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Massive MIMO is known for its high level of spectral efficiency in multipath rich en-
vironments. We present a detailed Massive MIMO cell system using maximum-ratio
transmission (MRT) and zero-forcing (ZF) where energy efficiency is taken into ac-
count. This is done through the use of a realistic model of moderate performance and
hence moderate cost power amplifiers (PAs) for the base station downlink, which
could be applied in a practical Massive MIMO system. In the process of detailing
the linear aspects of the Massive MIMO system, results for the normalisation fac-
tor and array gain are derived, which as far as the author is aware are original.
These results are used to derive an expression to optimise the downlink signal-to-
interference-and-noise-ratio (SINR) in a linear system, which is also original as far
as the author is aware. A process is outlined to optimise the downlink SINR when
nonlinear PAs are used and a simulation of a cell system is performed where the
benefits of applying the nonlinear optimisation process are demonstrated.
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Chapter 1

Introduction

1.1 Literature and Background

In wireless communications there is an ever increasing demand to obtain better util-

isation of available system resources, for example, power and bandwidth. Resource

pressure comes from greater demand for user data and the desire to reduce power

consumption for cost, battery life and environmental reasons. In wireless communi-

cations, a common system is a cell where multiple distinct users have bidirectional

communication with a single base station, which accumulates and distributes data

to and from the cell users to the wider world. Examples of this system are cellular

data networks and Wi-Fi. The increased demands placed on wireless networks show

no sign of abating.

One very promising technology to increase spectral efficiency (SE) is MIMO (Mul-

tiple Input Multiple Output) at the base station. SE is the data throughput per unit

of bandwidth. MIMO involves the use of multiple antennas to exploit spatial multi-

plexing to increase SE via multiplexing gain and provides robustness to fading due

to diversity gain [8]. The use of MIMO as a method of increasing SE is well studied

[19, 21]. Spatial multiplexing provides gain by sending multiple streams simulta-

neously at the same frequency and time by exploiting spatial diversity caused by

multipath [28]. Multipath gain is greatest in systems without a strong line of sight.

This thesis deals exclusively with spatial multiplexing in cells with significant mul-

tipath and without a strong line of sight path. Fading caused by multipath is known

as small scale fading. If the separate small scale fading paths between different users

and the base station are orthogonal, or near orthogonal, it is known as favourable
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propagation for a Massive MIMO channel [2, 17, 19, 29]. Favourable propagation

conditions reduce the level of inter-user interference experienced within a cell.

MIMO can be divided into three types, single-user MIMO (SU-MIMO), multiuser

MIMO (MU-MIMO) and Massive MIMO [19]. SU-MIMO involves point to point

communications between two units, both of which have multiple transmit and re-

ceive antennas. MU-MIMO involves a base station with multiple antennas commu-

nicating to multiple physically separated units which each have one or more anten-

nas. Massive MIMO is a subset of MIMO where only the base station has knowledge

of the channel and only linear signal processing techniques are used. By keeping the

requirements of only the base station having channel knowledge and using linear

processing, the system is scalable, allowing for the potential of a very large num-

ber of base station antennas [19]. This thesis deals exclusively with Massive MIMO

where each user has a single antenna.

Massive MIMO is a technology that has only recently been applied to physical

commercial systems [5]. The scope of growth for Massive MIMO applications is

very large. Massive MIMO can be applied in a range of frequency bands [2]. Mas-

sive MIMO has potential benefits in the growing millimeter (30 GHz to 300 GHz)

wave band where antenna spacing is reduced by smaller wavelengths [15] allowing

denser arrangements of base station antennas. Massive MIMO can also be applied

at lower frequencies, for instance, a physical demonstration of MIMO at 2.6 GHz,

close to current Wi-Fi and cellular bands, was given in [11]. The authors in [11] also

demonstrated high performance linear precoding using zero forcing (ZF), achieving

98% of the capacity of the ideal theoretical dirty paper coding (DPC) throughput in a

residential environment, with 20 base station antennas and 2 users. The existence of

a favourable propagation environment at 2.6 GHz, which is an environment where

different users experience orthogonal small scale fading was demonstrated in [16].

Linear signal processing techniques can provide near optimal performance in

cases where the number of base station transceivers is twice or more the number

of user receivers [27]. This thesis will deal with two forms of linear signal process-

ing, maximum ratio (MR) and ZF. These two forms of linear processing are the most

prominent [33] and whose capacity characteristics have been widely studied [2, 16,

27, 33]. Maximum-ratio processing can be split into maximum-ratio combining for
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the uplink and maximum-ratio transmission (MRT) for the downlink. It is also some-

times referred to as matched filtering processing.

The standard Massive MIMO system operates in time-division duplex mode

(TDD) [2], due to the simpler channel estimation procedure compared to frequency-

division duplex (FDD). Each Massive MIMO TDD frame can be divided into three

parts as described in [1]: pilot uplink, data uplink, and data downlink. This frame

structure for Massive MIMO has been used in the literature for a long time [18]. Up-

link refers to transmission from the users to the base station, while downlink refers

to transmission from the base station to the users. It is assumed that the base sta-

tion antennas are connected to radio frequency (RF) paths that allow for half-duplex

operation. That is, if a base station has M antennas, it has M distinct receive paths

during uplink and M distinct transmit paths during downlink. The pilot refers to

the simultaneous transmission of fixed orthogonal data streams known by both the

users and the base station to help the base station learn the effects of small scale

fading on the uplink. The effects of small scale fading are assumed to be symmetric

for uplink and downlink, so the base station also simultaneously learns the effects

of small scale fading on the downlink. Small scale fading effects are assumed to be

constant within a TDD frame and uncorrelated between TDD frames. The extent to

which the base station has knowledge of the cell’s small scale fading and the effect

of incomplete knowledge or imperfect channel state information (CSI) forms a sig-

nificant part of this thesis. This thesis uses the minimum mean square error (MMSE)

approximation for small scale fading outlined in [1]. The MMSE estimator in [1]

assumes a cell where users experience a Rayleigh fading channel for small scale fad-

ing, while users also experience different large scale fading, which is known to the

base station.

Large scale fading is due to path loss from the base station to a particular user

and is dependent on the user’s physical location within the cell, that is, distance from

the base station. The combined result of the multipath fading between the users and

the base station transceivers describes the communications channel.

This thesis primarily deals with optimisation of downlink signal to noise and

interference ratio (SINR), where the aim is to maximise the minimum mean SINR
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experienced by any user in the cell. This is subject to the constraint of constant to-

tal radiated power with ideal base station hardware and constant consumed power

with non-ideal base station hardware. The optimisation involves allocating aver-

age downlink powers to users based on the large scale fading they are experiencing.

Optimising over large scale fading makes sense, because as explained in [30], opti-

mising over small scale fading is computationally expensive, as the small scale fad-

ing environment changes rapidly and it is unnecessary to compensate for variations

in capacity due to small scale fading, as users are primarily concerned with aver-

age capacity not instantaneous. Another reason given to base optimisation on large

scale fading is channel hardening which is explained in [7]. Channel hardening in

Massive MIMO channels means that the effects of small scale fading and frequency

dependence disappear when the number of base station transceivers in large [19]. A

practical physical demonstration of channel hardening at 2.6 GHz is given in [12].

The sole hardware imperfection taken into account in the thesis is PA nonlin-

earity. While the use of Massive MIMO represents a method of increasing spectral

efficiency [19], that is, data throughput per unit of bandwidth, in order to fully char-

acterise a MIMO system, energy efficiency (EE) must be taken into account [9]. Ac-

cording to [8], power amplifiers consume approximately 57% of the energy in macro

base stations and cooling contributes 10%, which would also be reduced if power

dissipation in the power amplifier is reduced. Power amplifiers (PAs) exhibit a trade

off between efficiency and nonlinearity, so the ability to use PAs operating with sub-

stantial nonlinearity could greatly reduce overall power consumption at the base

station, increasing EE.

The effects of non-ideal PAs on MIMO systems is an active field of research.

Some papers model the effects of non-ideal PAs as either a fixed power additive

complex Gaussian signal [6, 34] or proportional additive complex Gaussian signal

[1, 4], added to the wanted transmit signal at the output of the PAs. Another ap-

proach used was to model the input to the PAs as a complex Gaussian signal input

to an amplifier described by a nonlinear function [3, 10, 25]. In these cases, by using

the Bussgang Theorem, the effect of nonlinearity can be modelled as the combina-

tion of a real multiplicative scalar and an additive noise term. These are statistical

models for the effect of nonlinearity, which the author found to be unsatisfactory.



1.1. Literature and Background 5

In this thesis, we use the approach used in [20], which involved using actual MRT

and ZF waveforms run through a nonlinear function. The use of real waveforms is

explained in [13], where the limitation of using uncorrelated interference terms is

outlined. In reality interference is highly correlated to the transmit waveform. Also

as any practical wireless system would use a band-limited passband [14], a Gaus-

sian signal input is not a realistic model. This thesis exclusively uses band-limited

waveforms.

There are several papers which optimise capacity over short term fading taking

into account amplifier efficiency assuming Rayleigh channels [6, 9, 10, 34]. Also, [34]

showed that increasing both the transmit and the receive antennas in a SU-MIMO

system means performance does not have a capacity ceiling but a fixed performance

offset. While [25] showed that by using multiple receivers for each user, it is pos-

sible to compensate for transmit nonlinearities through correcting the received con-

stellation. However, this is not an option for Massive MIMO which relies on single

antenna users.

The authors of [4] demonstrated a fixed capacity ceiling for Massive MIMO down-

link when hardware impairments are taken into account. While [13] provided a

more detailed breakdown of hardware imperfections, including a detailed power

amplifier model which included nonlinear memory polynomials for the individual

transmitters, mutual coupling between the base station power amplifiers and the

impact of digital to analogue (DAC) conversion noise in Ricean and Rayleigh small

scale fading channels. The authors of [13] showed a greater resilience to power am-

plifier coupling in Rayleigh channels. While the authors of [33] provided a detailed

comparison of the performance of MRT and ZF for the downlink in a single cell

TDD system with Rayleigh fading and imperfect channel knowledge, where chan-

nel knowledge is obtained via an MMSE estimate. Note these papers do not take

into account large scale fading or imperfect CSI.
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1.2 Outline and Contributions

This thesis deals with EE optimisation over large scale fading in systems with im-

perfect CSI and non-ideal amplifiers. Combining all of those factors together is rela-

tively unusual. Papers which combine all these factors include [1, 20, 31, 35]. Only

one of those papers [20], used real waveforms to provide the most realistic model of

a Massive MIMO system and it is the paper most heavily referenced in this thesis.

This thesis also focuses on the effects of incomplete channel knowledge and base

station PAs nonlinearity on simulated Massive MIMO cells. It empirically deter-

mines approximate values of several nonlinear system parameters which are then

used to optimise the system capacity subject to maximum-minimum criteria. This is

also known as an "egalitarian" criteria [20], where SINR is maximised, subject to the

constraint that all users have the same SINR.

Chapter 2 provides a detailed breakdown of the system model used in simula-

tions for both MRT and ZF. This breakdown includes: the definition of cell param-

eters for small and large scale fading, MRT and ZF signal processing, the MMSE

estimator, the nonlinear PA model and the definition of the elements of SINR which

can be used to calculate SINRk, the SINR for user k in both the linear and nonlinear

cases. The elements of SINR which are identified for the linear case include: array

gain, array gain variance and channel estimation error. While the additional ele-

ments of SINR introduced due to saturation in the nonlinear case include: gain loss,

interference loss and additional uncorrelated distortion.

Chapter 3 derives explicit values for the elements of SINR for MRT and ZF which

were introduced in Chapter 2. This includes what the author believes to be original

values for the array gains for MRT and ZF. Having derived explicit values for the ele-

ments of SINR, Chapter 3 derives an expression to optimise the maximum-minimum

SINR by varying the downlink power allocation in a linear Massive MIMO system.

Finally, the chapter introduces a process to optimise the maximum-minimum SINR

by varying the downlink power allocation in a nonlinear system, which integrates

the explicit value of the elements of SINR for the linear system, as well as the non-

linear factors outlined in Chapter 2. Appendix A applies the normalisation factors

to derive values of the Frobenius norms for MRT and ZF. While Appendix B applies
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the normalisation factors and linear downlink optimisation expression to a situation

where the total pilot uplink power is fixed.

Chapter 4 applies the linear optimisation expression and the nonlinear optimisa-

tion process introduced Chapter 3 to a specific set of cells. Each instance of a cell is

chosen from a distribution of large scale fading and experiences many instances of

small scale fading as introduced in Chapter 2. An optimal level of input backoff for

the nonlinear amplifiers is estimated through simulation for MRT and ZF and this

level of backoff is applied to the nonlinear process simulations. Estimates of various

parameters for the nonlinear amplifier outlined in Chapter 2 are generated through

simulation in the process of finding the optimal level of backoff. The nonlinear pro-

cess relies on calculated estimations of various nonlinear factors introduced in Chap-

ter 3 for MRT and ZF as a function of downlink power. These estimations are plotted

and their correlation to allocated downlink power outlined. These estimations are

applied to the nonlinear optimisation process to generate cumulative distribution

functions (CDFs). These CDFs show the effect of nonlinearity on the minimum av-

erage SINR and the benefits of applying the nonlinear optimisation process.

Chapter 5 summarises the thesis and outlines potential areas for future work.
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Chapter 2

Information and Background

This chapter provides a detailed description of the Massive MIMO model used in

Chap.3 and Chap.4. We begin with the definition of the parameters which make up

a cell.

Each cell simulation consists of a single M antenna base station and K single an-

tenna users. The set of simulations take into account large and small scale fading.

Initially, an instance of a set of users experiencing large scale fading values is se-

lected from a statistical distribution described in Sec.2.1.1. For this single instance

of large scale fading, multiple instances of small scale fading are selected from a dif-

ferent statistical distribution described in Sec.2.2. For each instance of small scale

fading, a TDD frame simulation is run. It is assumed that each TDD frame would

experience independent small scale fading and that the base station would need to

learn the unique channel for each frame. The channel is assumed to stay constant for

the duration of each frame, that is, the frame duration does not exceed the channel

coherence time. It is assumed the base station has perfect knowledge of large scale

fading, while it only has complete knowledge of the statistical distribution of small

scale fading. The assumption of independent channels for each frame is based on

the observation that small scale fading occurring quickly, while generating multiple

instances of small scale fading for each large scale fade is based on large scale fading

occurring slowly. The TDD frame is divided into pilot uplink and data downlink.

The channel is assumed to be frequency flat for all channel instantiations, which is

a valid assumption for orthogonal frequency-division multiplexing (OFDM) based

transmissions.

This chapter then introduces the MMSE channel estimation matrix in Sec.2.3.1
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and defines some associated parameters in Sec.2.3.2. The base station can only derive

an approximation to the small scale fading based on the signal it receives during

the pilot uplink combined with its knowledge of the statistical distribution of small

scale fading. During the pilot uplink, each of the users simultaneously transmits

a sequence of symbols which are orthogonal to other users. The uplink pilots are

scaled by the large scale fading gain. The base station makes an MMSE estimation to

the channel, whose accuracy is limited by the presence of additive white Gaussian

noise (AWGN) at its receivers. The base station uses its approximation to the channel

to generate a precoding matrix for the data downlink. This thesis uses ZF and MRT

precoding. Simulations only deal with a single cell, that is, we neglect inter-cell

interference.

The users receive data in the presence of multiple sources of noise and interfer-

ence. The ability to isolate and separate the sources of noise and interference is es-

sential to optimising the downlink power distribution to maximise minimum SINR

as outlined in Chap.3. The sources can be divided into linear given in Sec.2.5 and

nonlinear given in Sec.2.7.1. The linear sources are independent of nonlinearities in

the base station PAs, while the nonlinear sources are caused by the PAs’ nonlineari-

ties. The linear sources of noise and interference are gain variance, channel approx-

imation error and AWGN at the receivers. In the nonlinear case, the data downlink

experiences all of the linear effects and also array gain loss due to saturation of trans-

mit signal, interference loss due to saturation and additional uncorrelated distortion.

For the linear case, the aim is to maximise the received average SINR for a given

total transmit power at the base station. The definition of SINR is given in Sec.2.5.3,

and it is separated into its linear components. The additional components of SINR

in the nonlinear case are given in Sec.2.7.1. For the nonlinear case, the aim is to

maximise the received average SINR for a power consumed at the base station PAs.

A detailed breakdown of the model used for the PAs is given in Sec.2.8.1.

2.1 Model for Large Scale Fading

Every instance of large scale fading involves a set of K independent large scale fading

values described in Sec.2.1.2. For each instance of large scale fading, many instances
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of small scale fading are generated from a model explained in Sec.2.2.

2.1.1 Spatial Distribution of Users

The large scale channel effect used in this thesis depends on the spatial distribution

of users. User k is distance dk from the base station. The dimensions of the cell are an

annulus shape where r < dk < R. The distribution of users within the cell is uniform

by area. Using the inverse sampling method, dk is computed by

dk =
√

uk(R2 − r2) + r2, (2.1)

where uk ∼ U (0, 1) i.e., is taken from a uniform distribution between 0 and 1.

2.1.2 Effect of Large Scale Fading

The distribution of users given in (2.1) is then combined with a path loss exponent

to give a total power scaling factor for user k,

βk = dαs
k , (2.2)

where αs is the path loss exponent, which can vary depending on the type of envi-

ronment (e.g., rural or urban) in which the cell is located. In this thesis, the βk values

are often grouped together in a matrix B ∈ RK×K where

B =



β1 0 . . . 0

0 β2 . . . 0
...

...
. . .

...

0 0 . . . βK


. (2.3)

2.1.3 Countering Effect of Large Scale Fading

To compensate for the effect of large scale fading, this thesis uses ξk as a parameter

to be optimised. ξk is the proportion of the downlink power that the base station

allocates to user k during downlink data transmissions.
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In this thesis, ξk is normalised such that

K

∑
i=1

ξk ≡ 1, 0 < ξk ≤ 1 ∀k, (2.4)

that is, there is a fixed total downlink power to be distributed between the users.

2.2 Model for Small Scale Fading

Small scale fading is taken into account in the downlink channel matrix H ∈ CK×M.

The distribution of channel matrices is Rayleigh where each element is i.i.d. and

hkm ∼ CN (0, 1). Assuming TDD channel reciprocity, the uplink and downlink for

each channel instance are symmetrical, that is, the uplink channel matrix is H∗.

In this thesis

E[|hkm|2] = 1 ∀k, m, (2.5)

which is a standard normalisation [20], causing small scale fading to have no effect

on the mean signal power.

2.3 Channel Approximation with Pilot Uplink

The system uses TDD, where each cell consists of a fixed number K of single antenna

user equipments (UEs) and one base station with M antennas. Each frame consists

of a pilot uplink and a data downlink. Note that this thesis does not consider a

possible data uplink. This section outlines the pilot uplink and the resulting channel

approximation matrix.

2.3.1 Using Uplink Pilot to Estimate the Channel

During the pilot uplink, the UEs simultaneously send a sequence of B orthogonal

quadrature phase shift keying (QPSK) signals where B ≥ K. The received signal at

the base station is given by

Y = H∗
√

BV∗ + N, (2.6)
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where Y ∈ CM×B is the matrix of the received signal at the base station at antenna m

due to symbol b, H∗ is the uplink channel matrix ∈ RM×K, V is the matrix of pilot

signals ∈ CB×K where each of the K users broadcast an orthogonal sequence of B

QPSK symbols, N is a matrix of AWGN ∈ CM×B where Nmb ∼ CN (0, ρ), ρ is the

power ratio inverse of signal to noise ratio (SNR) during the pilot from user k at the

base station normalised for βk = 1 and B ∈ RK×K is the large scale fading matrix

defined in (2.3).

The base station generates an MMSE approximation H̃ to the channel H. The

MMSE estimator for a Rayleigh channel under AWGN is given in [1] for a multicell

case. This thesis only deals with a single cell case which reduces the estimate to

H̃ = (YΨ−1V)∗, (2.7)

where

Ψ = VBV∗ +
1
ρ

IB. (2.8)

IB is the B× B identity matrix. The uplink approximation is done the same way and

using the same equations for both MRT and ZF.

2.3.2 Magnitude of Elements of Channel Approximation Matrix and Er-

ror Matrix

The channel matrix H can be defined as the sum of the MMSE estimation matrix H̃

and an error matrix F,

H = H̃ + F, (2.9)

where F ∈ CK×M is the error matrix between the approximation to the channel ma-

trix H̃ ∈ CK×M and H. Note that all the elements of F are uncorrelated to all elements

in H. Introducing δk for the variance of the elements of the estimator, that is

δk ≡ E[|h̃km|2]. (2.10)
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For an MMSE estimator for a Rayleigh fading channel [20] gives the variance of the

elements of the estimator as

δk =
Bρβk

1 + Bρβk
, (2.11)

where B is the pilot length, βk is the power scaling factor for user k and ρ is the mean

SNR during the pilot uplink at the base station receiver when βk = 1. Note that [20]

also considers for the number of taps in the channel, L, allowing for the possibility

the channel is not frequency flat. This thesis only deals with the case L = 1 where

the channel is frequency flat.

Similarly the power in the elements of the error matrix F defined in (2.9) is

E[| fkm|2] =
1

1 + Bρβk
. (2.12)

Note that as the power of the elements of H are defined as in (2.5) and the elements

of H and F are uncorrelated

E[| fkm|2] = 1− δk, ∀k, m. (2.13)

2.4 Precoder Output

This section outlines the precoding matrices used for MRT and ZF, WZF and WMRT,

respectively and defines the power value at the output of the precoder. When it is

not necessary to specify a precoder type, i.e., the statement or equation applies to

both, W will be used.

2.4.1 Precoding Normalisation

We denote the output of the precoder at discrete time n by [20]

u[n] = Ws[n], (2.14)

where W is the precoding matrix and s[n] is the message vector at time n. We nor-

malise the signal so that
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M

∑
m=1

E[|um[n]|2] = 1 ∀m, n, (2.15)

or alternatively

E[|um[n]|2] =
1
M
∀m, n. (2.16)

2.4.2 Precoding Matrix Definition for ZF and MRT

The precoding matrix WMRT for MRT is defined as [20]

WMRT ≡ αMRTH̃∗. (2.17)

The precoding WZF matrix for ZF is defined as

WZF ≡ αZFH̃∗(H̃H̃∗)−1, (2.18)

where an expression for the value of αZF required to satisfy (2.16) will be derived in

Sec.3.1.1 while the value of αMRT required to satisfy (2.16) is derived in Sec.3.1.2.

2.5 Linear Downlink System Model

This section defines the signal received by the users during the data downlink. It

then divides this signal into various gain, noise and interference terms to allow for

optimisation of downlink SINR described in Chap.3.

2.5.1 Linear Signal Received by Users

The signal received by the UEs in a linear model can be described as follows, which

is taken from [20]

y[n] = (
√

P
√

BH)(Ws[n]) + z[n] (2.19)

where P is the total radiated (RF) power, B is a diagonal matrix ∈ RK×K defined

in (2.3), H is the downlink channel matrix, W is the normalised precoding matrix

∈ CM×K, s[n] ∈ CK is the vector of QPSK message symbols sent to user k at time n
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and z[n] is the vector of AWGN at the UEs, where zk[n] ∼ CN (0, Z)∀n. There are two

types of precoding matrices used in this thesis, MRT and ZF outlined in Sec.2.4.2.

The downlink power allocated to user k is ξk defined by

ξk ≡ E[|sk[n]|2] ∀n, k, (2.20)

where ξk was introduced in Sec.2.1.3. The values of ξk optimised for maximum-

minimum SINR in Chap.3 and Chap.4.

2.5.2 Linear Downlink: Gain, Noise and Interference Terms

In order to perform linear SINR optimisation in Chap.3 and Chap.4 it is necessary to

identify and separate the sources of signal gain, interference and noise that the users

receive.

One potential source of interference is due to channel estimation error. By treat-

ing the channel as the sum of an estimation and error matrix as in (2.9) and substi-

tuting into (2.19) gives

y[n] =
√

P
√

B(H̃Ws[n] + FWs[n]) + z[n]. (2.21)

Defining the received signal in the absence of approximation error as r[n] ∈ CK

where

r[n] ≡ H̃Ws[n] (2.22)

and the received signal error from channel approximation error e[n] ∈ CK where

e[n] ≡ FWs[n], (2.23)

then substituting (2.22) and (2.23) into (2.21) gives

y[n] =
√

B(r[n] + e[n]) + z[n]. (2.24)

Once approximation error is removed to create rk[n], an important deterministic con-

stant can be derived from rk, the array gain gk which is defined as [20]
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gk ≡
E[s∗k [n]rk[n]]√

δkξk
. (2.25)

The array gain term for user k, gk is calculated using the correlation between the

signal transmitted to user k, sk[n] and rk[n]. The gain is normalised by
√

δk to remove

the effect of multiplication by H̃ and ξk to remove the effect of power allocation at

the base station. Note that in Chap.3, original values for gk for MRT and ZF are

derived.

Using the deterministic array gain term gk, the rk[n] can be divided further into

array gain acting on the message symbol sk[n] which is then scaled by the message

channel gain for the approximation
√

δk and ik[n] which is the rest of the received

signal. Being uncorrelated to the message symbols, ik[n] is a interference source.

From [20], the interference term ik is

ik[n] ≡ rk[n]−
√

δkgksk[n]. (2.26)

Rearranging (2.26) for rk and substituting into (2.24) gives

yk[n] =
√

βk(
√

δkgksk[n] + ik[n] + ek[n]) + zk. (2.27)

For later use, the variance of the interference for user k is Ik,

Ik ≡ E[|ik|2]. (2.28)

In Sec.3.3.1, the value of Ik is derived for MRT, while in Sec.3.3.2 it is derived for ZF,

while the variance of the channel error for user k is Ek, that is,

Ek ≡ E[|ek|2], (2.29)

where ek is defined in (2.23).

2.5.3 Linear SINR

In [20] the SINR for user k is defined by
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SINRk =
|E[y∗k [n]sk[n]]|2/ξk

E[|yk[n]|2]− |E[|y∗k [n]sk[n]|]|2/ξk
(2.30)

Note that this definition applies to both linear and nonlinear systems. By substi-

tuting the definition of yk given in (2.27), and using the fact that sk, ik and ek are

uncorrelated and using the definition of ξk given in (2.20), substituting into (2.30)

gives [20]

SINRk =
Pβkδkξkg2

k
Pβk(Ik + Ek) + Z

. (2.31)

Introducing mean downlink SNR value at UE when β = 1

η =
P
Z

(2.32)

Then (2.31) can be written

SINRk =
ηβkδkξkg2

k
ηβk(Ik + Ek) + 1

(2.33)

In Chap.3, values for gk, Ik and Ek for MRT and ZF are derived. Also in Chap.3,

once the values of gk, Ik and Ek are known, they are used to optimise (2.33) by vary-

ing the downlink power allocation ξk.

2.6 Matched Filtering

The output signal from the precoder u[n] given in (2.14) is then upsampled and

passed through a root-raised-cosine (RRC) filter. The purpose of the filter is to pro-

duce a band-limited analogue signal (or in simulation, upsampled digital domain

signal) to pass to the PAs. This is the same as in [20]. All M transmitters at the base

station have their own individual RRC filter, which all have identical coefficients.The

UEs have matched receive filters. If the PA is perfectly linear and in the absence of

channel frequency selectivity, the output of the receiver matched filter will have re-

sulting zero intersymbol interference (ISI) [14]. In this thesis, the use of nonlinearity

in the PAs causes ISI at the receivers.
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The matched filter takes the M output signals from the precoder um[n] in the

discrete domain to M continuous domain functions um(t) via the filtering operation

[20]

um ≡∑
n

um[n]p(t− nT). (2.34)

2.7 Received Signal with Nonlinearities

Having detailed the linear elements of the downlink system in Sec.2.5 the remain-

der of Chap.2 deals with the nonlinear system elements. The in-band distortion

caused to user k due to base station PA nonlinearity is the difference between the

linear signal and the received signal after matched filtering at the receiver followed

by downsampling. As the output of the nonlinear amplifier no longer matched to

the receive filter, it has to be represented in the time domain (and simulated in the

upsampled digital domain) and can be written

dk(t) = Hx(t)−H(
√

Pu(t)). (2.35)

Note that
√

Pu(t) is the equivalent output power from a perfectly linear amplifier.

Once dk(t) is filtered at the UE receiver and sampled it gives

dk[n] = dk(τ) ∗ p∗(−τ). (2.36)

Note as p(τ) is real and symmetric this reduces to

dk[n] = dk(τ) ∗ p(τ). (2.37)

When the distortion term is added, the linear system given in (2.19) becomes

y[n] = (
√

P
√

B)(HWs[n] + d[n]) + z[n]. (2.38)

2.7.1 Distortion Term Sub-components

Once the distortion term for user k, dk, has been found, it is possible to separate it

into sub-components as is done in [20].
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We denote the power of the distortion term which is correlated to the sent signal

to user k by ck. It is normally negative as it represents the reduction in gain of the

wanted signal due to saturation. It is normalised by
√

δkξk to remove the effect of

the channel and the power allocation at the base station [20]

ck[n] =
E[s∗k [n]dk[n]]√

δkξk
. (2.39)

The term ρk, represents the reduction in gain variance and channel estimation error

due to saturation [20]. It is normalised by the power of the gain variance Ik and the

channel estimation error power Ek. This term is also generally negative.

ρk[n] =
E[(i∗k + e∗k )dk[n]]

Ik + Ek
. (2.40)

Finally the term d′k is used for the additional distortion which is uncorrelated to sk,

ik and ek [20]

d′k[n] = ck
√

δksk[n] + ρk(ik[n] + ek[n])− dk[n]. (2.41)

The power of the uncorrelated distortion term d′k is denoted as

Dk = E[|d′k[n]|2]. (2.42)

Once the array gain saturation term ck, the interference and channel error saturation

term ρk and the uncorrelated distortion term dk are known, the received signal for

user k can be written [20]

yk[n] =
√

Pβk(
√

δk(gk + ck)sk[n] + (1 + ρk)(ik[n] + ek[n]) + d′k[n]) + zk[n]. (2.43)

Having separated the distortion elements, it is possible to write a general term for

the downlink SINR for user k in the presence of PA nonlinearity.

2.7.2 Nonlinear SINR

The term for received signal, yk[n], in the presence of PA nonlinearity which includes

gk, ρk and Dk is given by (2.43). By using the general equation for SINRk, (2.30),

substituting (2.43) for yk gives [20]
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SINRk =
δkξkηβk|gk + ck|2

ηβk((Ik + Ek)|1 + ρk|2+Dk) + 1
(2.44)

which is the general term for SINRk in a system with nonlinearities. The values of

gk, Ik and Ek as a function of system parameters are derived in Chap.3. The values

of the distortion related terms ck, ρk and Dk are empirically calculated from cell sim-

ulations in Chap.4 using the PA model explained in Sec.2.8. In Chap.3 a process for

maximising the minimum SINR using (2.44) with empirically calculated ck, ρk and

Dk is outlined.

2.8 Power Amplifiers

This section details the specific PA model used in this thesis. After passing through

the matched filter, the base station transmit signal is passed through a nonlinear PA.

We introduce the elements of the system dealing with the non-ideal PAs: the power

amplifier model, the signal backoff and the amplifier efficiency.

2.8.1 Power Amplifier Model

All M transmitters have identical independent PAs which introduce nonlinear dis-

tortion. Given the large number of transmitters involved in Massive MIMO, it is

desirable to use low cost, low power consumption PAs. This thesis considers class

B amplifiers. As outlined in [22], class B amplifiers are more efficient than class A

but produce more distortion. This thesis will use the Rapp model, which is a com-

mon model for solid state power amplifiers (SSPAs). It is a type of memoryless

model [23]. The Rapp model for SSPAs is widely used as an approximation to the

behaviour of low to medium linearity PAs in MIMO systems, for instance [10, 20, 25,

26]. The Rapp model assumes only AM-AM distortion with no AM-PM distortion.

AM-AM distortion is a nonlinear effect on output amplitude due to a change in in-

put amplitude. While AM-PM refers to a phase distortion or shift resulting from a

change in input amplitude. In a physical system, the PAs are an RF device, however,

using a complex base band equivalent model as given in (2.45) provides an accurate

representation.
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The complex scalar output of the PA, g(u), for a complex scalar input u using the

Rapp model is [22]

g(u) = Amax

u
uref

(1 + ( |u|uref
)2p)

1
2p

, (2.45)

where Amax is the maximum output amplitude, uref is a reference input magnitude

and p is positive parameter which control smoothness [22]. As in [20], we set

uref =
√

M. (2.46)

For small signals

lim
|u|→0

g(u) = u
(

Amax

uref

)
, (2.47)

which makes the small signal gain

g′(0) =
Amax

uref
. (2.48)

Note the the nonlinear PA reduces to a linear PA in the limit of a small signal.

2.8.2 Signal Backoff

The input signal to the PA is scaled by a real constant
√

b to change the level of

saturation the signal experiences. The backoff value is measured from the 1dB input

compression point, that is the input level at which the output is 1dB below where it

would be for a perfectly linear amplifier. The 1dB input compression point for the

Rapp model derived below.

Note the for a perfectly linear amplifier, the output is the small signal gain times

the input, i.e., g′(0)u. The ratio of the actual PA output to the perfectly linear output

is set as equal to -1dB and solved for |u1dB|

− 1 = 20 log10

(
g(u1dB)

g′(0)u1dB

)
(2.49)

which using the definition of g(u) given in (2.45) and g’(0) given in (2.48), rearranged

for |u1dB| gives
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|u1dB|= uref

(
10
−2p
20 − 1

) 1
2p

(2.50)

As in [20], we consider p = 2, for a model of a moderate cost PA.

Substituting p = 2 and (2.46) into (2.50) gives

|u1dB|≈ 0.8745
√

M, (2.51)

which is consistent with [22]. Using the fact that the power of each of the precoder

matrix for all M transmitters is defined in (2.16), the input power scalar b can then

be defined as

b ≈ 10IBOdB/10

0.87452 , (2.52)

where IBOdB is the relative backoff to the 1dB input saturation point.

The input to the power amplifier M is given by

um(t)√
b

, (2.53)

resulting in the output of power amplifier

xm(t) = g
(

um(t)√
b

)
=

Amax

(
um(t)√

Mb

)
(

1 +
(
|um(t)|√

Mb

)4
) 1

4
. (2.54)

Amax is a scaling factor for xm(t) which is derived via simulation to give the required

total radiated power P for various IBOdB in Sec.4.1. b is also calculated via simulation

for various IBOdB in section Sec.4.1.

Finally, the total radiated power from the base station is defined as [20]

P = lim
t0→∞

M

∑
m=1

E

[
1
t0

∫ t0
2

t0
2

|xm(t)|2dt

]
. (2.55)

2.8.3 Amplifier Efficiency

The efficiency of an amplifier is the ratio of consumed power to transmitted RF

power. The efficiency for a class B amplifier whose output is defined by g(u) is given
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by [22]

µ =
πE[g(|u(t)|)2]

4AmaxE[g(|u(t)|)] . (2.56)

In Sec.4.2.1, the resulting efficiency of using differing levels of backoff constant b

are derived through simulation. Note these simulations involve substituting (2.54)

into (2.56), which results in A2
max terms on both the numerator and the denominator,

which cancel, leaving µ independent of Amax.

In Chap.3 and Chap.4, it is assumed that the consumed power is constant. If the

consumed power PDC is constant, then the radiated power

P = µPDC, (2.57)

where µ is the efficiency of the nonlinear amplifier as a ratio. Without loss of gener-

ality it is assumed that PDC = 1, giving

P = µ, (2.58)

which can be substituted into (2.38) to give a general equation for the received signal

in a nonlinear system of

y[n] = (
√

µ
√

B)(HWs[n]) + d[n]) + z[n]. (2.59)

(2.59) is used in Chap.4 to calculate SINRk and the nonlinear components of SINR,

ck, ρk and Dk.

2.9 Conclusion

In this section a detailed breakdown of components of the Massive MIMO system

was provided. This included small and large scale fading, the channel approxima-

tion matrix, the PAs, the definition of downlink SINR for user k and an expansion of

the linear and the nonlinear contributions to that SINR. Having separated the con-

tributions to SINR, it is then possible to optimise the maximum-minimum SINR by

controlling the downlink power allocation ξk. Chap.3 will provide explicit values for
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the linear elements of SINR, including a original result for array gain gk. Chap.3 will

also provide solutions to optimising the maximum-minimum SINR in both linear

and nonlinear systems. For a linear system, a closed form solution is found, using

the explicit values found for the linear system elements. For a nonlinear system, a

solution is found which requires empirical values based on simulations performed

in Chap.4.
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Chapter 3

Contributions

This chapter will expand on the Massive MIMO system outlined in Chap.2. The

aim of this chapter is to introduce what the author believes to be original results for

maximum-minimum SINR optimisation in a linear and nonlinear systems.

Having previously introduced the linear system components: array gain gk, ar-

ray gain variance Ik, and channel approximation error variance Ek, this chapter will

provide explicit values for a given cell in both the ZF and MRT cases. The result

for array gains are original as far as the author is aware. As an intermediate step

to finding gk, Ik and Ek, Sec.3.1 derives normalisation factors for ZF and MRT, αZF

and αMRT respectively, which when applied, give constant mean power output from

the precoders, independent of channel estimation error and downlink power alloca-

tion. As far as the author is aware these normalisation factors are also original. Once

the normalisation factors are found, they are applied to generate the array gains for

MRT and ZF in Sec.3.2. In Sec.3.3 the gain variance is derived for ZF and MRT and

in Sec.3.4 the channel estimation error is found which is the same for ZF and MRT.

Having found explicit values of gk, Ik and Ek, a closed form solution to optimise

maximum-minimum SINR for MRT and ZF is found in Sec.3.6. As far as the au-

thor is aware this is also original, given the original values of gk. This chapter will

then apply the explicit values of of gk, Ik and Ek to outline a process to optimise the

maximum-miniumum SINR in a system with nonlinear PAs in Sec.3.7.

3.1 Normalisation Value

This section derives the normalisation values for MRT and ZF which provide con-

stant mean power at the precoder outputs, independent of the channel estimator
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matrix variance δk and downlink power distribution ξk. As far as the author is

aware, these values are original. A derivation of the effect of these normalisation

values on the Frobenius norm of the precoding matrices for MRT and ZF are given

in Appendix A.

3.1.1 Normalisation Value for MRT

To find the value of the normalisation factor for MRT, αMRT, introduced in the def-

inition of MRT (2.17), it is necessary to find the value of αMRT which satisfies the

required total precoder output power defined in (2.15). Substituting the definition

of precoder output (2.14) into (2.15) gives

M

∑
m=1

E[|um[n]|2] = E[u∗[n]u[n]] = E[s∗[n]W∗
MRTWMRTs[n]] = 1. (3.1)

Using the definition of WMRT given in (2.17)

W∗
MRTWMRT = α2

MRT(H̃H̃∗). (3.2)

Then substituting into (3.1)

E[s∗[n]W∗
MRTWMRTs[n]] = E[s∗[n]α2

MRT(H̃H̃∗)s[n]] = 1, (3.3)

which can be rearranged to for αMRT to give

αMRT =
1√

E[s∗[n]H̃H̃∗s[n]]
. (3.4)

Using the fact the h̃km are uncorrelated to sk, it is possible to separate the product of

the expectations. Dealing with E[(H̃H̃∗)] first, as the h̃km are from an i.i.d. Rayleigh

fading channel, they are uncorrelated with each other, and the expectation of the

product of h̃km and h̃∗mk are only non-zero when m = k. Therefore E[(H̃H̃∗)] reduces

to

E[(H̃H̃∗)] = IkE

[
M

∑
m=1

h̃kk h̃∗kk

]
= Ik ME[h̃kk h̃∗kk]. (3.5)

Using the definition of δk from (2.10) then,
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E[(H̃H̃∗)] = M



δ1 0 . . . 0

0 δ2 . . . 0
...

...
. . .

...

0 0 . . . δK


. (3.6)

To find E[s∗[n]H̃H̃∗s[n]] which is required for (3.4), using the definition of ξk from

(2.20) and (3.6) and the fact h̃km and sk are uncorrelated gives,

E[s∗[n]H̃H̃∗s[n]] = M
K

∑
k=1

ξkδk, (3.7)

which when substituted in (3.4) gives

αMRT =

√
1

M∑K
k=1 ξkδk

. (3.8)

3.1.2 Normalisation Value for ZF

Similarly a value of the normalisation factor for ZF, αZF, as introduced in the defini-

tion of ZF (2.18), is derived in this section. Again, beginning with substituting (2.14)

into (2.15) one can write

M

∑
m=1

E[|um[n]|2] = E[u∗[n]u[n]] = E[s[n]∗W∗
ZFWZFs[n]] = 1. (3.9)

Using the definition of WZF given in (2.18) it can be shown that

W∗
ZFWZF = α2

ZF(H̃∗(H̃H̃∗)−1))∗(H̃∗(H̃H̃∗)−1)) (3.10)

By using the fact that for any matrices A and C [32]

(AC)∗ = C∗A∗, (3.11)

(3.10) can be rearranged to give

W∗
ZFWZF = α2

ZF((H̃H̃∗)−1)∗(H̃H̃∗)(H̃H̃∗)−1, (3.12)

which reduces to
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W∗
ZFWZF = α2

ZF((H̃H̃∗)−1)∗. (3.13)

Then using the fact that for any invertible matrix A [32]

(A−1)∗ = (A∗)−1 (3.14)

and (3.11), then (3.13) can be simplified to

W∗
ZFWZF = α2

ZF(H̃H̃∗)−1. (3.15)

Via simulation is was seen that

E[(H̃H̃∗)−1] =
1

M− K



1
δ1

0 . . . 0

0 1
δ2

. . . 0
...

...
. . .

...

0 0 . . . 1
δK


, K < M (3.16)

Using (3.15) and (3.16) , the definition of ξk from (2.20) and the fact h̃km and sk are

uncorrelated gives

E[s[n]∗W∗
ZFWZFs[n]]] =

α2
ZF ∑K

k=1
ξk
δk

M− K
= 1 (3.17)

which when rearranged for αZF gives

αZF =

√
M− K

∑K
k=1

ξk
δk

(3.18)

3.2 Array Gain

3.2.1 Array Gain for MRT

The gain due to diversity defined by (2.25) from [20] is

gk ≡
E[sk[n]∗rk]√

δkξk
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Using the definition for the received signal in the absence of channel estimation er-

ror, rk, from (2.22), and the definition of WMRT from (2.17)

gkMRT =
E[s∗k [n]H̃αMRTH̃∗sk[n]]√

δkξk
(3.19)

Using (3.6), the fact the h̃km and sk are uncorrelated and the definition of ξk from

(2.20) gives

gkMRT = αMRTMδk (3.20)

Using the definition of αMRT from (3.8) and simplifying for δk and ξk gives

gkMRT =

√
δk M

∑K
k=1(ξkδk)

(3.21)

Note that if all the δk are equal, (3.21) reduces to gk =
√

M, which is the array gain in

[20].

3.2.2 Array Gain for ZF

Again using the definition of gk from (2.25) and the definition of rk from (2.22), but

instead substituting the definition of WZF from (2.18), gives

gkZF =
E[s∗k [n]H̃αZFH̃∗(H̃H̃∗)−1sk[n]]√

δkξk
(3.22)

which using the definition of ξk from (2.20) reduces to

gkZF =
αZF√

δk
(3.23)

Then using the definition of αZF from (3.18) gives

gkZF =

√
M− K

δk ∑K
k=1( ξk

δk
)

(3.24)

Also note that if all the δk are equal, (3.24) reduces to gk =
√

M− K, which is the

array gain in [20].
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3.3 Array Gain Variance

This section uses the original values of array gain derived in Sec.3.2 and applies

them to give values of gain variance.

3.3.1 MRT Array Gain Variance

To find the values of gain variance for MRT, IkMRT, begin with the definition of in-

stantaneous gain fluctuation given by (2.26), reproduced below

ik[n] ≡ rk[n]−
√

δkgksk[n]

Substituting the value of array gain gkMRT as a function of αMRT given in (3.20), the

definition of rk[n] given in (2.22), then the definition of WMRT given in (2.17) and the

definition of ik given in (2.26) to give

ikMRT = αMRT(H̃H̃∗s[n])k − αMRTδk Msk[n] (3.25)

Note that by (3.5)

(E[H̃H̃∗])k = Ik Mδk, (3.26)

and the off diagonal elements of (E[H̃H̃∗])k are zero. This means ik has a distribution

with zero mean and variance given by

IkMRT ≡ (E[|ikMRT]2)k = Var[(H̃H̃∗)kk] = δk. (3.27)

This is the same value of gain variance used for MRT in [20].

3.3.2 ZF Array Gain Variance

Similarly to find the values of IkZF use the value of gkZF as a function of αZF given in

(3.23), the definition of rk[n] given in (2.22), the definition of WZF given in (2.18) and

the definition of ik given in (2.26) to give

ikZF = αZF(H̃H̃∗(H̃H̃∗)−1s[n])k − αMRTsk[n] = 0, ∀k (3.28)
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Trivially the value of IkZF is then

IkZF ≡ E[|ikZF|2] = 0 (3.29)

Again, this is the same value of gain variance for ZF used in [20].

3.4 Channel Estimation Error Variance

To find the variance of the elements of the channel estimation error vector Ek, begin

with the definition of the channel estimation error vector (2.23), reproduced below

e[n] ≡ FWs[n].

Note that given the variance of the values of F given in (2.13) and the variance of the

elements of u[n] = Ws[n] from (2.16) and the fact that the elements of F and u[n] are

uncorrelated, the value of Ek can be defined as

Ek = 1− δk (3.30)

This is the same for MRT and ZF and is the same value as [20].

3.5 Mean SINR Values for Linear System

Having derived original values for gk for both MRT (3.21) and ZF (3.24), this re-

sults in a expanded expressions for SINRk for MRT and ZF. These expressions are

then used to generate an expression for maximum-minimum optimisation by vary-

ing downlink power distribution ξk in Sec.3.6 for the linear case and a maximum-

minimum optimisation process in Sec.3.7.

3.5.1 Mean SINR Value MRT, Linear System

The expression value for SINRk for given values of gk, Ik and Ek is given in (2.33)

which is derived from [20] and is reproduced below

SINRk =
ηδkξkβkg2

k
ηβk(Ik + Ek) + 1

.
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For MRT, substituting (3.21) for gk, (3.27) for Ik and (2.29) for Ek into (2.33) gives

a predicted mean term SINRk of

SINRkMRT =
Mηβkδ2

k ξk

(ηβk + 1)∑K
k=1ξkδk

. (3.31)

3.5.2 Mean SINR Value for ZF, Linear System

For ZF, substituting (3.24) for gkZF, (3.29) for IkZF and (2.29) for EkZF into (2.33) gives

SINRkZF =
(M− K)ηβkξk

(ηβk(1− Bρζk βk
1+Bζkρβk

) + 1)∑K
k=1

ξk
δk

(3.32)

3.6 Linear Optimisation

In this section expressions for optimising maximum-minimum SINR by varying the

downlink power allocation ξk for MRT and ZF are derived. In Sec.3.6.1 a general so-

lution for optimising the form of equation is outlined, while in Sec.3.6.2 and Sec.3.6.3

explicit expression for optimising for MRT and ZF, respectively, are outlined.

3.6.1 General Expression

This section derives an expression to optimise maximum-minimum SINR in a gen-

eral case which is similar to [19], however some intermediate results are different

and the final solution takes a different form. Given the aim to optimise the mini-

mum maximum SINR, it can be stated at the desired value of ξk

SINRk = SINR, ∀k. (3.33)

That is all SINRk are equal. Both equations for SINRk, (3.31) for MRT and (3.32) for

ZF, can be written in the form

SINRk = akξk, ∀k. (3.34)

where the ak have different values for MRT and ZF. It is then possible to create a

solution to optimise the SINR. Given (3.33) and (3.34)
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a1ξ1 = a2ξ2 = ...... = aKξK (3.35)

Selecting arbitrarily to rearrange (3.35) for ξ1 gives

ξ1 =
akξk

a1
, ∀k, (3.36)

and setting arbitrarily to write ξ1 as a function of ξK gives

ξ1 =
aKξK

a1
. (3.37)

Substituting (2.4), i.e., that the ξk sum to 1, into (3.37) gives,

ξ1 =
aK

a1

(
1−

K−1

∑
k=1

ξk

)
. (3.38)

Rearranging (3.36) for ξk and substituting into (3.38) gives

ξ1 =
aK

a1

(
1− a1ξ1

K−1

∑
k=1

(
1
ak

))
. (3.39)

Rearranging for ξ1 gives

ξ1 =
(

aK

a1

) 1

1 + ∑K−1
k=1

(
1
ak

)
 . (3.40)

Once ξ1 is known, it is possible to rearrange (3.36) for ξk, to give all other ξk.

3.6.2 Linear Optimisation for MRT

Having found a general downlink optimisation for maximum-minimum SINR as a

function of downlink power allocation, it is possible to apply the solution to optimise

SINRkMRT as given in (3.31), reproduced below

SINRkMRT =
Mηβkδ2

k ξk

(ηβk + 1)∑K
k=1ξkδk

.

As stated in (3.33), the maximum-minimum occurs when all SINRk are equal, that

is
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SINR1 = SINR2 = ...... = SINRK . (3.41)

Substituting (3.31) into (3.41) gives

Mηβ1δ2
1ξ1

(ηβ1 + 1)∑K
k=1ξkδk

=
Mηβ2δ2

2ξ2

(ηβ2 + 1)∑K
k=1ξkδk

= ...... =
MηβKδ2

KξK

(ηβK + 1)∑K
k=1ξkδk

. (3.42)

By removing common terms, the (3.42) can be reduced to

β1δ2
1ξ1

(ηβ1 + 1)
=

β2δ2
2ξ2

(ηβ2 + 1)
= ...... =

βKδ2
KξK

(ηβK + 1)
. (3.43)

This can be seen to be an equation in the form given in (3.35) where

akMRT =
βkδ2

k
ηβk + 1

, ∀k, (3.44)

which can be substituted into (3.40) to give

ξ1MRT =
(

βKδ2
K(ηβ1 + 1)

β1δ2
1(ηβK + 1)

) 1

1 + ∑K−1
k=1

(
ηβk+1
βkδ2

k

)
 . (3.45)

Finally, ξ1MRT can be combined with (3.36) to give all other ξkMRT.

3.6.3 Linear Optimisation for ZF

Similarly using equation (3.32), reproduced below, a linear optimisation formula for

ZF is derived

SINRkZF =
(M− K)ηβkξk

(ηβk(1− Bρζk βk
1+Bζkρβk

) + 1)∑K
k=1

ξk
δk

.

Using (3.35) where after simplification by removing common terms gives

akZF =
βk

ηβk(1− δk) + 1
, ∀k (3.46)

as the form of the equation is the same, it can be substituted into (3.40) with akZF to

give
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ξ1ZF =
(

βK(ηβ1(1− δ1) + 1)
β1(ηβK(1− δK) + 1)

) 1

1 + ∑K−1
k=1

(
ηβk(1−δk)+1

βk

)
 . (3.47)

Again by rearranging (3.36), it is possible to derive all other ξkZF from ξ1ZF.

3.7 Optimisation Process with Nonlinear Amplifiers

Having outlined linear optimisation expressions in Sec.3.6, this section will apply

those expressions as part of a process to approximate the optimal downlink power

distribution, that is, the values of ξk for maximum-minimum SINR in a nonlinear

system. This process is applied to a MATLAB simulation of a specific cell system

in Chap.4 for MRT and ZF. Simulating a cell system involved generating many in-

stances of large scale fading and for each instance of large scale fading generating

many instances of small scale fading.

The general equation for SINRk, for a nonlinear system was given in (2.44) and

is reproduced below

SINRk =
δkξkηβk|gk + ck|2

ηβk((Ik + Ek)|1 + ρk|2+Dk) + 1

This section will outline a process to maximise the minimum value SINRk of (2.44)

by varying ξk. The value of the average downlink SNR, η, is fixed for the system.

While, for a given instance of large scale fading, several parameters are known a

priori without the need for small scale fading generation. These are gk, Ik, Ek, δk and

βk. These are the parameters required to describe a linear system SINRk as given in

(2.33). The linear optimisation formula for MRT is given in Sec.3.6.2, while for ZF the

linear optimisation formula is given in Sec.3.6.3. The values of ξk used to optimise

a linear system are used as a first approximation to the optimum values of ξk in the

nonlinear system.

The nonlinear optimisation process assumes that the nonlinear contributions to

SINR introduced in Chap.2, that is, ck the reduction in array gain due to saturation,

ρk the reduction in gain variance and channel uncertainty error and Dk uncorrelated

distortion are not known a priori for a given downlink power distribution and must

be calculated empirically. It is observed for Sec.4.1, in the cell system described in
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Chap.4 that the power amplifier efficiency, µ and maximum output amplitude Amax

are not functions of ξk or δk and hence βk, to within the level of accuracy used in this

thesis. This means the radiated power P which helps determine the SNR, η, is not

a function of ξk. Using this fact it was decided to separate the optimisation process

into two distinct parts. Firstly, optimising SINRk for a fixed βk and ξk by varying

the efficiency of the PAs, µ, for a fixed consumed power. Having determined the

value of µ to use, the values of ξk are then found. This is done by iteratively by

making successive approximations to the values of ck, ρk and Dk and using them to

find approximations to the optimal values of ξk.

A detailed explanation of the steps in the process to estimate the power distribu-

tion to maximise the maximum-minimum SINR is as follows.

1. Determine the median value of the power scaling factor for the particular large

scale fading distribution used as described in Sec.2.1. Assign users this value

of βk, ∀k.

2. Assign equal power to all the users in the cell which by (2.4) means ξk = 1
M , ∀k.

3. Generate an instance of small scale fading H from Sec.2.2, a pilot uplink signal

at the base station receivers using (2.6) and an approximation to the small scale

fading H̃ using (2.7).

4. Generate unique sets of QPSK message symbols, sk, to send to all the users

with magnitude ξk as described by (2.20).

5. Generate MRT precoding matrix using H̃ and (2.17) or ZF using (2.18).

6. Apply precoding matrix to message symbols and generate input to filters u[n]

using (2.14).

7. Upsample u[n] and pass through transmit filters as outlined in Sec.2.6.

8. Create a set of input 1dB backoffs IBOdB to generate a set of power scalars, b,

using (2.52) for the upsampled filtered signal.

9. Pass the scaled signal through the nonlinear PA as described in (2.54). Note

that Amax is unknown at this time.
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10. Expand the running averages of the transmit power of the PA output using

(2.55) and efficiency using (2.56).

11. Return to Step 3 if more instances of small scale fading are required.

12. Now have values of efficiency, µ, for different backoff values, which can be

applied to (2.58) to find Amax for different backoff values.

13. Can apply known values of µ and Amax and repeat Step 3 to Step 7 to generate

PA outputs for every instance of small scale fading which then passes through

the channel to give a received signal to the users given by (2.59).

14. The received signal can be used to generate an average SINR for a given back-

off using(2.30) across many instances of small scale fading. The value of input

backoff which gives the peak SINR is used for the rest of the process.

15. Generate an instance of large scale fading coefficients βk from the distribution

described in Sec.2.1.

16. Use the expressions found for linear optimisation in either Sec.3.6.2 for MRT

or Sec.3.6.3 for ZF to find optimal ξk values in a linear system for the given set

of βk.

17. Run Step 13 across many instances of small scale fading to find estimations of

the values of ck using (2.39), ρk using (2.40) and Dk (2.42) at the level of backoff

found in Step 14 at the values of ξk found in Step 16.

18. Use the values of ck, ρk and Dk found in Step 17 and use the nonlinear optimi-

sation estimate outlined in Sec.3.7.1 for MRT or Sec.3.7.2 for ZF to derive new

estimates of the optimal values for ξk. These ξk comprise the values of the first

nonlinear optimisation iteration.

19. Use the values of ξk found in Step 18 and run Step 13 for many instances of

small scale fading to find new values of ck, ρk and Dk.

20. Use the values of ck, ρk and Dk found in Step 19 and use the nonlinear opti-

misation estimate outlined in Sec.3.7.1 for MRT or Sec.3.7.2 for ZF to derive
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new estimates of the optimal values for ξk. These ξk comprise the values of the

second nonlinear optimisation iteration.

21. If additional instances of large scale fading are required return to Step 15 or

else stop.

The process outlined in this section is used to produce CDFs of the minimum

SINR values in Chap.4. In section Sec.3.7.1 an expression for ak for MRT given which

is later used for nonlinear maximum-minimum SINR optimisation. While Sec.3.7.2

does the same for ZF.

3.7.1 Nonlinear Optimisation MRT

It can be seen that the general equation for SINRk in a nonlinear system given in

(2.44), is an equation of the form outlined in Sec.3.6.1 with the same goal of optimis-

ing the maximum-minimum SINR. Substituting (2.44) into (3.34) and rearranging

for akNL gives

akNL =
ηδkβk |gk + ck|2

ηβk(|1 + ρk|2+Dk) + 1
(3.48)

For MRT using (3.21) for gk, (3.27) for Ik and (2.29) for Ek gives

akMRT =

ηδkβk

∣∣∣∣∣
√

δk M
∑K

k=1(ξkδk)
+ ck

∣∣∣∣∣
2

ηβk(|1 + ρk|2+Dk) + 1
(3.49)

3.7.2 Nonlinear Optimisation ZF

For ZF, using (3.24) for gk, (3.29) for Ik and (2.29) for Ek gives

akZF =

ηδkβk

∣∣∣∣∣√ M−K
δk ∑K

k=1( ξk
δk

)
+ ck

∣∣∣∣∣
2

ηβk((1− δk)|1 + ρk|2+Dk) + 1
(3.50)

3.8 Conclusion

This chapter derived normalisation factors for MRT and ZF which the author be-

lieves are original. By applying these normalisation factors, explicit values for the
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linear contributors to downlink SINR, introduced in Chap.2 for MRT and ZF, are

derived, including values for the array gains which the author also believes are orig-

inal. The values of the linear contributions to downlink SINR: array gain, array gain

variance, and channel estimation error were integrated into the downlink SINR ex-

pression introduced in Chap.2. This was used to derive an expression to optimise

the maximum-minimum downlink SINR by varying the downlink power distribu-

tion. A process is introduced to approximate the downlink power distribution to

optimise the maximum-minimum SINR in the presence of PA nonlinearity when

the base station power consumption is fixed. This process outlines the generation

of empirical values for the nonlinear elements of downlink SINR as a function of

downlink power distribution. Chap.4, applies the process in a simulated cell across

many instances of large scale fading to show the benefits of applying the process to

Massive MIMO systems using MRT and ZF.
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Chapter 4

Results

This chapter will apply the process for optimising the maximum-minimum SINR

in a nonlinear system outlined in Sec.3.7 to a particular cell experiencing large and

small scale fading. Before applying the process it was necessary to derive various

PA parameters introduced in Sec.2.8 via simulation. This is done in Sec.4.1. Next,

these parameters are applied to the first steps of the nonlinear optimisation process,

involving estimating the level of PA input backoff, done in Sec.4.2. Having found

the input backoff level, simulations of a nonlinear downlink system are performed

over many instances of small and large scale fading for ZF in Sec.4.3 and MRT in

Sec.4.4. For each instance of large scale fading the remaining steps of the nonlinear

optimisation process are performed. This makes it possible to compare the mini-

mum SINR, i.e., the value of SINR intended to be optimised, for linear optimisation,

first nonlinear optimisation iteration and second nonlinear optimisation iteration in

all the instances of large scale fading. The relative benefits of the optimisation stages

can then be seen on CDF plots for MRT and ZF.

4.1 Nonlinear Amplifier Derived Constants for MRT and ZF

To find the required input backoff, first it was necessary to the create a MATLAB

simulation of the nonlinear Rapp model amplifier with p = 2 defined in (2.54) and

introduced in Sec.2.8. p = 2 is a considered a reasonable value for a moderate cost

PA [20, 22]. Values of p between 2 and 4 are considered representative [22], with a

higher p value corresponding to more linear performance. The PA simulation was

run for different input backoff values IBOdB. These use constants given in Table 4.2.
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Note that b was calculated using (2.52), µ was estimated using (2.56). While Amax

was estimated using (2.54) substituted into (2.55), combined with (2.58).

No dependence was observed for Amax and µ on ξk, δk or whether MRT or ZF

precoding was used to 2s f . This was confirmed for δk by running simulations of

cells where all users had maximum δk = 1, ∀k and minimum δk = 0.9091∀k cor-

responding to the maximum and minimum possible values of βk. For ξk this was

confirmed by running simulations where all the users had equal ξk = 0.1, ∀k and

ξ1 = 1 while ξk = 0, k = 2, ..., K. That is, even for the most extreme values of δk and

ξk the approximations given in Table 4.1 hold. This make the application of a fixed

input backoff across different instances of large scale fading a viable approach.

TABLE 4.1: Nonlinear Amplifier Derived Constants

IBOdB 6 4 2 1 0 -1 -2 -3
b(5s f ) 5.2057 3.2846 2.0724 1.6462 1.3076 1.0387 0.8251 0.6554
µ(2s f ) 0.37 0.44 0.51 0.54 0.57 0.60 0.63 0.65

Amax(2s f ) 0.24 0.20 0.17 0.16 0.15 0.14 0.135 0.13

4.2 Estimating Level of PA Input Backoff

In order to find an approximation to the optimal level of IBOdB for MRT and ZF,

a simulation was performed with a cell with βk all equal to the median value for

the cell and equal ξk. Using the values of b, µ and Amax given in Table 4.1, and

combined with the definition for SINRk given in (2.30) with the definition of yk[n] for

a nonlinear system given in (2.38), separate plots for MRT and ZF were generated.

Both MRT and ZF used the constants given in Table 4.2.

4.2.1 MRT PA Input Backoff

Figure 4.1 shows the peak value of SINR in a nonlinear MRT system with equal βk

with a red "x". It can be seen that the peak SINR occurs at input backoff IBOdB =

−2dB or efficiency µ = 0.6297 (4s f ).
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TABLE 4.2: Nonlinear SINR constants, fixed βk

Description Symbol Value

Number of Users K 10
Number of Base Station Antennas M 100

Pilot Length (Symbols) B 10
Pilot Uplink SNR ρ 1

Number of Small Scale Fades NH 500
Message Length (Symbols) Ns 500

Large Scale Fading Coefficient βk 3.7, ∀k
Downlink Power Distribution ξk

1
M = 0.1, ∀k

Filter roll-off σ 0.22
Filter Samples per Symbol κ 7

Filter span (Symbols) τ 10
Data Downlink SNR η µ

4.2.2 ZF PA Input Backoff

Similarly, Figure 4.2 shows the peak value of SINR for a nonlinear ZF system with

equal βk with a red "x". It can be seen that the peak SINR also occurs at IBOdB =

−2dB or µ = 0.6297 (4s f ).

4.3 Nonlinear Optimisation Results, ZF

The nonlinear optimisation process described in Sect.3.7 was applied to a cell experi-

encing large and small scale fading generated using the constants given in Table 4.2

with exceptions being in βk and ξk not being constants and the changes and addi-

tions given in Table 4.3.

TABLE 4.3: Nonlinear optimisation constants, multiple large scale
fades

Description Symbol Value

Number of Small Scale Fades per Large Scale Fade NH 100
Number of Large Scale Fades Nβ 380

Cell Radius R 100
Cell Exclusion Zone r 1
Reference Distance d0 100
Path Loss Exponent αs 3.8
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The results of this for ZF are displayed in Figure 4.3 across many large scale fades

to give a cdf. It can be seen that the min(SINRk) is greatly affected by nonlinearity

and the first iteration of nonlinear optimisation provides substantial benefit. The

benefit of a second iteration, however, is significantly less and can not be seen on the
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scale of the plot.

-40 -30 -20 -10 0 10 20

min(SINR(dB))

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
(x

)
Linear Amplifier

NL Amplifier, Optimised for Linear

NL Amplifier, one iteration NL Optimisation

NL Amplifier, two iterations NL Optimisation

FIGURE 4.3: CDF of SINR for ZF across multiple large scale fades

In a version on the same plot with a smaller scale, Figure 4.4, a small benefit can

be seen a second iteration, however it is a small fraction of a dB, with the vast amount

of benefit from taking into account nonlinearity obtained on the first iteration.

The process defined in Sec.3.7 produces substantial benefits for ZF. The reason

for this can be seen in Figure 4.5, Figure 4.6 and Figure 4.7, which plot the values

of ck, the distortion correlated to the wanted signal, Dk, the uncorrelated distortion

term and ρk, the distortion correlated to the interference and channel estimation er-

ror, respectively as a function of the downlink allocation ξk. It can be seen that ck is

negatively correlated with ξk, Dk is positively correlated and ρk is effectively zero.

When substituted into (2.44), there is a clear relation between ξk and the loss of per-

formance due to nonlinearity, because an increase in ξk results in increased effects

of nonlinearity from both a decrease in the numerator due to decreased ck and an

increase in the denominator due to a increase in Dk. Both effects work together to

reduce SINRk, while ρk has no effect. This leads to the clear reduction in min(SINR)

seen in Figure 4.2 and makes optimising SINR for nonlinear effects very beneficial

for at least one iteration.
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4.4 Nonlinear Optimisation Results, MRT

Using the same constants used in the ZF simulations given in Table 4.3, a cdf for

MRT for many instances of large scale fading was generated in Figure 4.8. Interest-

ingly, MRT is far less affected by nonlinearity than ZF. It also benefits far less from



50 Chapter 4. Results

being optimised for nonlinearity, with essentially no benefit to taking into account

nonlinearity in optimising ξk for min(SINR). It can be seen that the optimised for lin-

ear curve, one iteration nonlinear optimisation curve and the two iteration nonlinear

optimisation curves essentially overlap in Figure 4.8.
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The reason that MRT is not affected by nonlinearity and does not benefit from

optimisation to the same extent as ZF can be seen in Figure 4.9, Figure 4.10 and Fig-

ure 4.11. Again, similar to ZF, ck is negatively correlated to ξk, while Dk is positively
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correlated. A key difference is that ρk is negatively correlated to ξk, due to the sig-

nificantly larger gain variance term, Ik. For MRT the reduction in interference due to

saturation provides a substantial benefit that offsets the loss in SINR due to ck and

Dk. Note that when a similar simulation was done with a much lower downlink

SNR η = 0.1, negative effects of nonlinearity were observed and could be partially

countered by optimisation for nonlinearity. The CDF from that simulation is given

in Figure 4.12. There is a visible improvement between optimisation for linear and

one iteration for nonlinear optimisation.
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FIGURE 4.12: CDF of SINR for MRT across multiple large scale fade,
η = 0.1

4.5 Conclusion

This chapter applied the nonlinear maximum-minimum SINR optimisation process

by varying downlink power allocation as outlined in Sec.3.7 to a cell experiencing

large and small scale fading. As an intermediate step, it estimated through simu-

lation parameters for the PA model introduced in Sec.2.8. It found an approximate

value for the input backoff for the nonlinear PAs to maximise SINR using MRT and
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ZF precoding. By applying the nonlinear optimisation process across different in-

stances of large scale fading, the effects of PA nonlinearity could be observed and

the benefits of applying the optimisation process could be seen. It was noted that

ZF precoding is substantially affected by PA nonlinearity and the average minimum

SINR is greatly improved by the application of the optimisation process. MRT pre-

coding was less affected by PA nonlinearity as so benefited less from the application

of the optimisation process. Plots of array gain, array gain variance and uncorre-

lated distortion were also plotted as a function of downlink power distribution for

ZF and MRT and the observed correlation was noted.
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Chapter 5

Conclusion and Future Work

This thesis presented a detailed model of a Massive MIMO system. This system

included large and small scale fading, an MMSE estimator matrix for small scale

fading in a cell where users are experiencing different large scale fading, a parame-

ter to control the downlink power distribution, the Rapp model for a nonlinear PA

and a breakdown of the components of downlink SINR for user k for with a lin-

ear and nonlinear PA at the base station. The components of linear downlink SINR

include array gain, array gain variance and channel approximation error. The addi-

tion of base station nonlinearity introduced additional factors in the downlink SINR

due to saturation of the PA, including array gain loss, interference and channel ap-

proximation loss and uncorrelated distortion. Two common forms of base station

precoding, MRT and ZF, were introduced. The ability to isolate individual contribu-

tors to SINR was essential to allow optimisation of the maximum-minimum average

SINR by varying the downlink power allocation later in the thesis.

Having expanded the contributions to linear downlink SINR, we derived explicit

values for these in both MRT and ZF systems. By applying the constraint of a con-

stant average transmit power, which is independent of the channel estimation and

power downlink distribution, normalisation factors were found for ZF and MRT,

which to the knowledge of the author are original. By applying the normalisation

factor, explicit values for the array gains, array gain variances and channel approx-

imation errors were derived. As far as the author is aware, the values of the array

gain for MRT and ZF are also original.

Once the values of the elements of linear downlink SINR were found for MRT

and ZF, they were used to generate an expression to optimise the maximum-minimum
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downlink average SINR by varying the downlink power allocation. Again as the

array gains for MRT and ZF are believed to be original, the resulting derived opti-

misation closed form expressions are also believed to be original. Once the linear

optimisation expression was found, a process was outlined to approximate the op-

timal downlink power distribution for SINR with maximum-minimum constraint

in a nonlinear system. The derived explicit linear components were integrated into

the nonlinear SINR optimisation process, while the nonlinear components were ap-

proximated via simulation. The efficacy of the nonlinear optimisation process was

demonstrated for a particular cell using ZF precoding, showing the necessity of ap-

plying at least one iteration of the nonlinear process. While we demonstrated in the

same cell conditions, that MRT was relatively immune to the effects of nonlinearity,

and thus did not benefit significantly from application of the nonlinear optimisation

process.

This thesis could lead to a range of future work. As noted in the Chap.4, simula-

tions showed that several PA derived parameters were independent of the channel

estimation and power downlink distribution, for the cell constants used in the sim-

ulations, to within the accuracy used in this thesis. It was shown in Chap.3 that the

original normalisation factors ensures the average output power of the precoders,

which is the input power to the PAs is independent of channel estimation error and

power downlink distribution. Future work could attempt to prove the waveforms

input to the PAs from different channel estimation errors and power downlink dis-

tributions are on average identical when the original normalisation factor is applied.

If they are not identical, the author believes they are very similar and an approxi-

mate bound in their differences might be derived. The bound in differences would

likely be related to the cell constants.

Additional future work could involve a full general analysis of nonlinear con-

tributions to SINR as a function of the downlink power allocation. This thesis es-

timated through simulation the nonlinear elements of SINR on a particular cell ex-

periencing large and small scale fading, using MRT and ZF precoding and fixed set

of parameters. It was observed by the author that different cell parameters resulted

in different relationships between downlink power distribution and nonlinear ele-

ments of SINR. For instance, increasing the number of users reduced the level of
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correlation between the allocated downlink power and the nonlinear elements. The

values of the nonlinear elements, could then be used to provide solutions, either ex-

act or approximate, to optimise the SINR in arbitrary cells. Having solutions for an

arbitrary cell would remove the need for a nonlinear optimisation process based on

empirical results as used in this thesis.

Also future work could involve joint optimisation of input backoff and downlink

power distribution. In this thesis, they are optimised separately with input backoff

not adjusted for the specific instance of large scale fading. For cells with small num-

bers of users, where mean and median power scaling factors would vary substan-

tially between instances of large scale fading, the author believes adjusting the level

of input backoff for each instance could yield substantial benefits.

The results obtained in this thesis could also be applied to the highly active re-

search areas of multi-cell or alternatively cell-free Massive MIMO.
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Appendix A

Normalisation Factors Applied to

Generate the Precoding Matrix

Frobenius Norm

A.1 Effect of Changed Normalisation Factor on Frobenius Norm

for MRT

A common value for the Frobenius norm of a precoding matrix is E[||W||2F] = K [20,

24, 33]. K is typically the expectation of the Frobenius norm of the precoding matrix,

because it does not affect the average total power when the total input power in

1, i.e., the input vector acted on the by the precoding matrix will have the same

average power as the output vector [24]. However that is only true if the elements

of the input vector or the elements of the precoding matrix are statistically identical

which they are not in this thesis. The use of αMRT derived in 3.1.1 gives a different

value for the Frobenius norm.

Using the definition of WMRT from (2.17)

E[||WMRT||2F] = E[||αMRTH̃∗||2F] (A.1)

and using the fact that for any matrix A [32]

||A||2F= Tr(A∗A) (A.2)
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Frobenius Norm

where Tr is the trace operation, then

E[||WMRT||2F] = α2
MRTE[Tr(H̃H̃∗)] (A.3)

using (3.6), (A.3) can be written

E[||WMRT||2F] = α2
MRTM

K

∑
k=1

δk (A.4)

substituting the derived value for αMRT (3.8) into (A.4) gives

E[||WMRT||2F] =
∑K

k=1 δk

∑K
k=1 ξkδk

(A.5)

Note that E[||WMRT||2F] reduces to K when all ξk or all the δk are the same and (2.4)

is satisfied.

A.2 Effect of Changed Normalisation Factor on Frobenius Norm

for ZF

Similarly a new Frobenius norm can be derived WZF using (2.18) giving

E[||WZF||2F] = α2
ZFE[||H̃∗(H̃H̃∗)−1||2F] (A.6)

Using the simplification for W∗
ZFWZF used in (3.15)

E[||WZF||2F] = α2
ZFE[Tr((H̃H̃∗)−1)] (A.7)

using (3.16), (A.7) can be written

E[||WZF||2F] =
α2

ZF ∑K
k=1

1
δk

M− K
(A.8)

Substituting the value for αZF given by (3.18)

E[||WZF||2F] =
∑K

k=1
1
δk

∑K
k=1

ξk
δk

(A.9)
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Note that E[||WZF||2F] also reduces to K when all ξk or all the δk are the same and

(2.4) is satisfied.
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Appendix B

Fixed Pilot Power Optimisation

Using the values for the downlink SINRk for MRT and ZF given in (3.31) and (3.32)

it is possible to derive equations to optimise the SINR when an additional constraint

is added for total pilot uplink power. In the other sections of this thesis it is assumed

that all users broadcast at their maximum power during the pilot uplink, however

it may be desirable for some users to broadcast at less than their maximum power

for system energy efficiency or to limit the required dynamic range of the base sta-

tion receivers. Due to the complexity of the equations, we will only deal with the

K = 2 case. We will apply two power constraints simultaneously, that is both the

uplink and downlink have fixed total power. Both MRT and ZF are optimised for

min(SINR1, SINR2). This appendix assumes a perfectly linear downlink.

B.1 Optimising SINR with Configurable Pilot Uplink Power,

MRT

This section will introduce a new variable ζk, which is the uplink pilot power alloca-

tion. This is a power scaling factor which can be applied to (2.11) for δk to give

δk =
Bρζkβk

1 + Bζkρβk
. (B.1)

It is assumed without loss of generality that the total pilot uplink power is 1. That is

ζ2 = 1− ζ1, (B.2)

which makes δ1 and δ2 configurable according to (B.1).
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Starting from the uplink SINRk equation for MRT, (3.31) reproduced below,

SINRkMRT =
Mηβkδ2

k ξk

(ηβk + 1)∑K
k=1ξkδk

and substituting the value of δk given by (B.1), gives

SINRkMRT =
Mηβk( Bρζk βk

1+Bζkρβk
)2ξk

(ηβk + 1)∑K
k=1ξk( Bρζk βk

1+Bζkρβk
)
. (B.3)

Note that by using the condition that when maximising min(SINR1, SINR2),

SINR1 = SINR2, (B.4)

and rearranging (2.4) when K = 2 gives

ξ2 = 1− ξ1. (B.5)

Substituting (B.3) and (B.5) into (B.4) then solving (B.4) for ξ1, gives an equation for

the values of ξ1MRT for which SINR1MRT = SINR2MRT,

ξ1MRT =
ξ1numMRT

ξ1denMRT
, (B.6)

where the numerator is

ξ1numMRT = ηB2ρ2β3
1β3

2ζ4
1− 2ηB2ρ2β3

1β3
2ζ3

1 + ηB2ρ2β3
1β3

2ζ2
1 + B2ρ2β2

1β3
2ζ4

1− 2B2ρ2β2
1β3

2ζ3
1

+ B2ρ2β2
1β3

2ζ2
1 + 2ηBρβ2

1β3
2ζ3

1 − 4ηBρβ2
1β3

2ζ2
1 + 2ηBρβ2

1β3
2ζ1 + 2Bρβ1β3

2ζ3
1

− 4Bρβ1β3
2ζ2

1 + 2Bρβ1β3
2ζ1 + ηβ1β3

2ζ2
1 − 2ηβ1β3

2ζ1 + ηβ1β3
2 + β3

2ζ2
1 − 2β3

2ζ1

+ β3
2,

(B.7)

and the denominator is

ξ1denMRT = 2ηB2ρ2β3
1β3

2ζ4
1 − 4ηB2ρ2β3

1β3
2ζ3

1 + 2ηB2ρ2β3
1β3

2ζ2
1 + B2ρ2β3

1β2
2ζ4

1

− 2B2ρ2β3
1β2

2ζ3
1 + B2ρ2β3

1β2
2ζ2

1 + B2ρ2β2
1β3

2ζ4
1 − 2B2ρ2β2

1β3
2ζ3

1 + B2ρ2β2
1β3

2ζ2
1

− 2ηBρβ3
1β2

2ζ3
1 + 2ηBρβ3

1β2
2ζ2

1 − 2Bρβ3
1β2ζ3

1 + 2Bρβ3
1β2ζ2

1 + 2ηBρβ2
1β3

2ζ3
1

− 4ηBρβ2
1β3

2ζ2
1 + 2ηBρβ2

1β3
2ζ1 + 2Bρβ1β3

2ζ3
1 − 4Bρβ1β3

2ζ2
1 + 2Bρβ1β3

2ζ1

+ ηβ3
1β2ζ2

1 + β3
1ζ2

1 + ηβ1β3
2ζ2

1 − 2ηβ1β3
2ζ1 + ηβ1β3

2 + β3
2ζ2

1 − 2β3
2ζ1 + β3

2.
(B.8)

Taking (B.6) and substituting into (B.3) then differentiating with respect to ζ1 and

setting the derivative to zero to find the value of ζ1optMRT, the value of ζ1 which

maximise SINR gives
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ζ1optMRT =
β2

2 − β1β2
√

(ρβ1 + 1)ρβ2 + 1 + ρβ1β2
2

ρβ2
1β2 + β2

1 − ρβ1β2
2 − β2

2
, β1 6= β2 (B.9)

B.2 Optimising SINR with Configurable Pilot Uplink Power,

ZF

Similarly for ZF starting from the equation for SINRk for ZF (3.32), and substituting

(B.1) gives

SINRkZF =
(M− K)ηβkξk

(ηβk(1− Bρζk βk
1+Bζkρβk

) + 1)∑K
k=1

ξk
Bρζk βk

1+Bζkρβk

(B.10)

By substituting (B.10) and (B.5) into (B.4) then solving (B.4) for ξ1, gives an equation

for the values of ξ1 for which SINR1 = SINR2.

ξ1ZF =
ξ1numZF

ξ1denZF
(B.11)

where the numerator is

(B.12)ξ1numZF = β2 + ηβ1β2 + Bρβ2
2 − Bρβ2

2ζ1 + Bρβ1β2ζ1

+ B2ρ2β1β2
2ζ1 + Bηρβ1β2

2 − B2ρ2β1β2
2ζ2

1 − Bηρβ1β2
2ζ1

and the denominator is

ξ1denZF =−B2ρ2β2
1β2ζ2

1 + B2ρ2β2
1β2ζ1−B2ρ2β1β2

2ζ2
1 + B2ρ2β1β2

2ζ1 +ηBρβ2
1β2ζ1 + Bρβ2

1ζ1

− ηBρβ1β2
2ζ1 + ηBρβ1β2

2 + Bρβ1β2 − Bρβ2
2ζ1 + Bρβ2

2 + 2ηβ1β2 + β1 + β2

(B.13)

Taking (B.6) and substituting into (B.10) then differentiating with respect to ζ1 and

setting the derivative to zero to find the value of ζ1optZF, the value of ζ1 which max-

imise SINR gives

ζ1optZF =
β2

2 − β1β2
√

(ρβ1 + 1)ρβ2 + 1 + ρβ1β2
2

ρβ2
1β2 + β2

1 − ρβ1β2
2 − β2

2
, β1 6= β2 (B.14)
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B.3 Conclusion

Note that

ζ1optZF = ζ1optMRT = ζ1opt =
β2

2 − β1β2
√

(ρβ1 + 1)ρβ2 + 1 + ρβ1β2
2

ρβ2
1β2 + β2

1 − ρβ1β2
2 − β2

2
, β1 6= β2 (B.15)

This is not unexpected given the same method of channel approximation is used

for both MRT and ZF. Also note that while ζ1opt is undefined with direct substitu-

tion of β1 = β2 into (B.15) , limβ2→β1 ζ1opt = 0.5. This is as expected as to optimise

min(SINR1, SINR2) with equal βk, equal power distribution would be expected i.e.,

ζ1 = ζ2 = 0.5.

Once ζ1opt and ζ2opt = 1− ζ1opt are found to optimise they can be substituted into

(B.1) to give the desired values of δk to optimise the maximum minimum SINR for a

fixed pilot uplink power. Having found the desired δk, they can be substituted into

(3.45) for give ξ1optMRT or substituted into (3.47) to give ξ1optZF. The values of ξ2MRT

or ξ2ZF can then be found by (B.5).
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