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Abstract 

 
 
Mathematical achievement may impact on outcomes in later life; thus, identifying and 

improving key mathematical skills is a focus of a large body of educational research. Both 

additive reasoning, and knowledge of addition and subtraction facts, appear to predict later 

mathematical achievement. The current study explores the impact of a short intervention with 

a small group of year 7 and 8 students working at lower than expected academic levels. The 

current study is based on Cognitive Load Theory and research suggesting that counting 

strategies overload working memory. A mixed-methods approach was used to identify 

whether structured manipulatives improved the additive reasoning and, addition and 

subtraction fluency in a sample of ten participants.  Participants attended after-school 

intervention sessions of 45 minutes for seven weeks. The intervention focused on teaching 

additive reasoning and fluency using structured manipulatives. Inferential statistical analysis 

showed a statistically significant mean improvement in participants’ ability to answer simple 

addition and subtraction questions. Tests constructed to operationalise additive reasoning also 

showed statistically significant mean improvement. Participants answered diagnostic 

questions operationalising various aspects of additive reasoning. Individual differences in 

understanding of additive reasoning were observed, and the inverse relationship between 

addition and subtraction proved to be a challenging concept. Semi-structured interviews 

provided themes of valuing the intervention and the manipulatives used. Due to the size and 

design of this study, it is not possible to extrapolate findings to other learners. However, the 

study may provide directions for future research. Structured manipulatives may have a role to 

play in enabling learners to begin to learn additive relationships and further securing recall of 

addition and subtraction facts. Students at years 7 and 8 may still need considerable exposure 

to additive concepts; moreover, returning to manipulatives may develop this knowledge. 

Finally, the findings from the diagnostic questions help show the complexity of additive 

reasoning. Classroom practitioners may need to further develop their knowledge of additive 

reasoning, its importance, and the individual differences and misconceptions that learners 

hold in order to provide considered learning experiences. 
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Chapter 1 
 
 

Progress in mathematics learning is of concern to learners, parents, and teachers, as well as to 

governments. Fundamental to progress in mathematics learning is a strong foundation in 

numerical strategies, skills, and understanding. This thesis will examine two areas of 

mathematics (additive reasoning and arithmetic fluency) through the lens of Cognitive Load 

Theory (CLT). The current study involves a short intervention aimed at improving additive 

reasoning and arithmetic fluency using structured manipulatives. 

 

1.1 Overview of Chapter 1 

 

Chapter 1 will outline the importance of achievement in mathematics both to individuals and 

economies. New Zealand’s mathematical performance, in comparison to other countries and 

relative to its own standards, will be shared. Specific areas within mathematics have been 

shown to predict later mathematical achievement and these will be discussed. The varied data 

examining manipulative use as a pedagogical instructional method will be discussed and gaps 

in the research identified. The current study is based upon research into the capacity of 

working memory, and CLT. Research around these areas will be shared. Finally, the 

researcher will outline his previous experiences and will discuss how these have shaped the 

study design and aims. The research questions for the current study will be shared. 

 

1.2  The importance of mathematical achievement 

 

Research has shown links between educational achievement; income in later life; and life 

expectancy (Hahn & Chattopadhyay, 2019).  Poor numerical skills have been linked with a 

range of negative social outcomes such as poor mental health, and a lack of financial security 

(Bynner & Parsons, 2006). Further studies have found links between mathematical 

achievement and economic prosperity of a nation (Baumann & Winzar, 2016). Therefore, 

what contributes to mathematical achievement, and the variance in countries’ mathematical 

achievement, are important areas for research.  
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1.3  Mathematical achievement – the New Zealand context 

 

New Zealand students’ mathematical performance can be described as middling in 

comparison to that of their international peers (Ministry of Education New Zealand, 2017). 

However, further examination shows that at years 5 and 9, 41% and 42% respectively of New 

Zealand students are working below the Trends in International Mathematics and Science 

Study benchmark for these ages (categorised as below low or low). The proportion of students 

with achievement categorised as below low or low is less than the international median at 

year 5 but not at year 9. This is largely due to the greater proportion of lower achieving 

countries participating in the year 9 assessments (Ministry of Education, 2017). Furthermore, 

statistics from internal New Zealand assessments suggest that one third of students are not at 

the expected national curriculum level by the end of year 8. Students do not appear to catch 

up as the mean progress students make decreases with each year of education (Ministry of 

Education, 2018). 

In summary, data from international and national assessments suggest that New 

Zealand has a persistent tail of underachievement (Ministry of Education New Zealand, 

2017). Identifying what characterises, and how to address low mathematical achievement is 

important for individual learners and educational policy locally, nationally, and 

internationally.  

 

1.4  The role of arithmetic knowledge and mathematical reasoning in mathematical 

achievement 

 

There is a growing body of research focusing on understanding key contributors to 

mathematical achievement (Gilmore et al., 2018). Arithmetic knowledge is defined as the 

ability to calculate, while mathematical reasoning is defined as knowledge of the 

relationships between quantities (Nunes, Bryant, Barros, & Sylva, 2012). A longitudinal 

study completed by Nunes et al. (2012) researched these two types of mathematical 

knowledge (arithmetic knowledge and mathematical reasoning). The study, completed in the 

United Kingdom, lasted five years and involved over 1600 eight to 14 year-olds. Both 

arithmetic and mathematical reasoning were found to be independent predictors of later 

mathematical achievement. However, scores in mathematical reasoning tests devised by the 

researchers predicted later mathematical achievement in national tests more closely than 

arithmetic scores (Nunes et al., 2012). Parallels can be found in analysis of New Zealand 
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underachievement. Chamberlain (2013), when investigating the weak areas of a number of 

New Zealand students, states that adding and subtracting whole numbers is a weakness for 

students in the low achievement band at year 5, while at year 9 students had difficulty 

applying number facts and procedures (Section 2.7).   

It is important to find effective teaching methods and tools to lift achievement in 

mathematics; the areas of arithmetic knowledge and mathematical reasoning appear to be 

worthy of consideration. The current study will examine one aspect of mathematical 

reasoning termed additive reasoning, alongside fluency with addition and subtraction facts. 

 

1.5 Manipulatives as pedagogical tools 

 

A body of research examines what constitutes best practice in the mathematics classroom, 

with the use of manipulatives identified as being important for the development of 

mathematical understanding for many students. Bouck and Park (2018) define manipulatives 

as “concrete objects that can be used to help students understand and solve mathematics 

problems” (p. 66). Manipulatives are often identified as an integral part of educational policy 

for mathematics both in New Zealand (Anthony, 2007) and abroad (Department for 

Education, 2013; Ministry of Education, 2012). Research examining the use of manipulatives 

has produced a range of findings. Sowell (1989) completed a meta-analysis of 60 studies 

examining manipulative use, and identified a moderate-to-strong effect on learning when 

manipulatives were used over a significant period of time (one year). However, a more recent 

meta-analysis of 55 studies with a sample of 7,327  learners identified only small to moderate 

effects of manipulative use moderated by other factors such as manipulative design, 

instruction, and mathematical topic (Carbonneau, Marley, & Selig, 2013). Sowell (1989) 

called for further research examining the impact of specific types of manipulative in 

particular situations. Although the term situations might refer to a range of variables, the 

current study will examine the effectiveness of a specific manipulative type on learning in 

relation to additive reasoning and fluency. 

The current study examines the use of structured manipulatives. For the purpose of 

this study, the term “structured manipulatives” will be defined as, “manipulatives that 

accurately illuminate the quantities and relationships in additive and multiplicative 

relationships.” A search of the literature was unable to find the term “structured 

manipulatives” or any synonymous terms; therefore, the definition was developed as part of 

the current study. The current study aims to add to the body of research on manipulative 
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types.  The two structured manipulatives used are Numicon shapes and Cuisenaire rods 

(Figure 1.1). 

In summary, research examining manipulative use has reported inconsistent findings. 

The current study aims to explore the use of two structure manipulatives on additive 

reasoning and fluency. 

 

 
 
Figure 1.1. Cuisenaire rods (left) and Numicon shapes (right) 

 

1.6 The role of working memory and Cognitive Load Theory on learning 

 

The theoretical model that the current study draws from is CLT (Chandler & Sweller, 1991). 

CLT is an instructional theory centred around research of cognition and memory. Before 

describing CLT, a model of short-term memory which is foundational to CLT will be 

described. Baddeley and Hitch (1974) proposed a model of short-term memory that attempts 

to identify the key components within short-term memory; this is termed the working 

memory model. Working memory has a limited capacity (Miller, 1956) and contains three 

components: the phonological loop, visuo-spatial sketchpad, and the central executive. The 

phonological loop deals with auditory information, the visuo-sketch pad operates with visual 

information, while the central executive is believed to operate as a control centre mediating 

between the slave systems (Baddeley, 2018).  

Specifics of CLT will be outlined before linking this theory to the present study 

(Section 1.7). CLT proposes that consideration of this cognitive architecture is vital when 

exploring the processes of learning. The relative difficulty of learning a new concept is 

moderated by the intrinsic load of the concept (the complexity of the concept) and the 

extraneous load (presentation of information) (Sweller, Ayres, & Kalyuga, 2011). A further 

assertion of CLT is that long-term memory (LTM) has an important role to play in skill 

acquisition and learning; once key basic skills are embedded in LTM, these can be retrieved 
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without placing undue load on working memory (Sweller & Chandler, 1994); schemas 

defined as, “cognitive constructs for organising information” (p. 186) are stored in long-term 

memory. Sweller and Chandler (1994) state that schemas allow us to ignore the variability 

and specifics of a concept and increase the ability to generalise. This reduces the load on 

working memory.   

Sweller and Chandler (1994) make a distinction between material that is difficult to 

learn and material that creates a heavy cognitive load. Material that is difficult to learn may 

have many individual elements. For example, learning vocabulary from another language has 

many individual elements and is therefore difficult to learn. Material that places a high 

cognitive load has elements which interact, such as learning the grammatical rules of another 

language (Sweller & Chandler, 1994). Therefore, learning the grammatical structures of 

another language has a high intrinsic cognitive load.  

The instructional choices of a teacher may place increased cognitive load on a learner, 

termed extraneous load. Consideration of instructional choice also allows teachers to find 

ways to decrease working memory load. One example, the modality effect, suggests that 

presenting information in different modalities (linked to the components of working memory) 

will decrease cognitive load. For example, information presented visually and verbally can 

decrease cognitive load (Sweller et al., 2011). 

In summary, CLT uses cognitive psychology research findings to explain the 

challenge of learning in terms of difficulty and cognitive load. It also allows consideration of 

instructional choices that may increase or decrease cognitive load. 

 

1.7 How Cognitive Load Theory informs the current study 

 
The current study draws from cognitive load theory in several ways. First, it is conjectured 

that the low-achieving participants selected for this study have not mastered basic addition 

and subtraction facts. These learners may use less sophisticated methods for calculation, such 

as counting procedures. During mathematics lessons this may lead to an increased cognitive 

load as learners are challenged with a wide range of elements that may interact such as 

mathematical vocabulary, structure of a problem, number of steps to solve a problem, and 

calculating the equation.  

Secondly, it is possible these participants do not have a part-whole schema for 

additive reasoning. Therefore, they are likely to be unable to see the connection between 

related addition and subtraction facts. For example, a learner with sophisticated part-whole 
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schema and memorised facts might be able to recall 7 – 4 from LTM using knowledge of 

4 + 3 = 7 and an understanding of the relationship between addition and subtraction. Without 

mastery of these skills and concepts, learners need to find a less sophisticated method for 

subtraction, such as a counting strategy (Section 2.9). Once again, this can increase cognitive 

load in a classroom setting.  

In summary, lack of additive reasoning, and mastery of addition and subtraction facts, 

may result in an increased cognitive load. This regression to a counting method is particularly 

relevant for the New Zealand context.  

 

1.8 The importance of counting as a foundation of arithmetic knowledge in New 

Zealand 

 

In 2000, Numeracy Development Projects (NDP) were introduced with the intention of 

raising the standard of mathematics teaching (Higgins & Parsons, 2009). As part of the NDP, 

a Number Framework provided teachers with a detailed and structured learning progression, 

tasks, pedagogies, and assessments to progress students through sequential areas of number 

(Ministry of Education, 2008). The first four stages of the Number Framework focus on 

counting (Ministry of Education, 2008). Young-Loveridge (2011b) suggests that the projects 

had a narrow focus on counting strategies, possibly at the expense of learners’ focus on 

subitising and unitising. Some students may have become stuck at the counting stages due to 

regular explicit teaching of counting strategies rather than being progressed to part-whole 

understanding (Young-Loveridge, 2011b). Similar considerations have been made in other 

countries; Nunes, Bryant, Hallett, Bell, and Evans (2009) state that additive reasoning is not 

given adequate weight in the United Kingdom curriculum.   

 

1.9 Using structured manipulatives to develop arithmetic knowledge and fluency 

 

The modality effect found in relation to CLT (Section 1.7) states that teaching using a 

combination of visual and verbal information may decrease cognitive load. This idea supports 

the use of manipulatives in the current study. It is hoped that structured manipulatives may 

provide a visual tool to enable participants to learn basic addition and subtraction facts and 

develop understanding of additive reasoning (part-whole schema).   

Manipulatives emphasising, or limited to, one-to-one correspondence such as counters 

or beans may have a different effect on learning compared to manipulatives that are 
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structured (Section 1.5). This is a gap in the literature. It is an assumption of the current study 

that unstructured manipulatives may promote the use of counting strategies. Using 

unstructured manipulatives, the parts are always equal to one. The whole can be found using 

count all or count on strategies. It seems plausible that manipulatives in groups of one may 

not accurately represent the properties of additive reasoning. Providing learners with 

manipulatives that emphasise part-whole relationships may promote additive reasoning 

understanding.   

 

1.10 Researcher background 

 

I recognise that my experiences create a worldview that informs my research. My 

professional background provides a broad context for my study. I taught in the United 

Kingdom for ten years, leading mathematics teaching and learning at a primary school for 

four years. In 2014, the United Kingdom introduced a curriculum with a greater focus on 

teaching for conceptual understanding (Department for Education, 2013). Part of my role was 

to oversee the implementation of this curriculum in my school and the increased pedagogical 

focus on teaching conceptual understanding, particularly through manipulative use. A few 

years later, I moved to New Zealand and in January 2018 I started teaching a composite year 

7/8 class. While teaching this class, I became aware that a group of students lacked 

conceptual understanding across a range of mathematical concepts. I also noticed that this 

group of students used their fingers to count. Subtraction was a particular challenge, and they 

were unable to see the relationship between addition and subtraction. I felt that these students 

would benefit from experience with manipulatives and the opportunity to learn some of the 

fundamental concepts of mathematics. I wanted to design and implement an intervention to 

study how I could assist the group of students exhibiting these gaps in mathematical 

understanding that could possibly inform practice across the school for students with similar 

difficulties.  

The approach to this study was also informed by my previous academic experiences. 

My first degree was in psychology, focussing heavily on cognitive science. I have taught 

primary school aged children for 13 years and I have always been interested in effective 

teaching techniques. Although I understand that learners bring prior learning, 

misconceptions, cultural, social, attitudinal and, genetic influences to learning, I believe that 

there are teaching methods and practices that are more effective (or more likely to be 

effective) than others. This belief is grounded in my academic experiences of cognitive 
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psychology (Baddeley, 2018; Miller, 1956; Sweller et al., 2011). Throughout most of my 

career, I have attempted to seek a greater understanding of what those practices might be.  

 

1.11 Summary 

 
In summary, given the importance to learners of sound mathematical understanding and 

recall, the national and international research showing the importance of addition and 

subtraction facts, and additive reasoning, my personal interests and experience, exploring 

structured manipulative use for advancing additive reasoning and fluency became the key 

driver of this thesis research. The current study hypothesises that a reliance on counting 

strategies and a lack of understanding of additive reasoning in low-achieving year 7 and 8 

students may result in an overloaded working memory. These students may have a reduced 

ability to identify relationships between quantities. Structured manipulatives may help 

participants to develop understanding of additive reasoning, and move participants away 

from counting strategies. 

Specifically, this study sets out to explore the following research questions: 

 

1) Does the use of structured manipulatives improve fluency of addition and subtraction 

facts? 

2) Does the use of structured manipulatives improve additive reasoning in this sample? 

3) What perception of using structured manipulatives do year 7 and 8 students have? 

4) Is there a link between learning gains and perception of manipulatives? 

5) Are counting strategies frequently used by participants in this sample? 

 

Chapter 1 has indicated that additive reasoning and addition and subtraction fluency are 

important for broader mathematical achievement. CLT has been discussed and linked to 

additive reasoning and fluency. The use of manipulatives as an instructional tool has been 

linked to the modality effect aspect of CLT. The rationale behind the choice of manipulatives 

has been shared. Finally, the researcher has outlined his background and has identified how 

this helped shaped the research. This context frames the current study in which structured 

manipulatives are used as part of an intervention to develop the additive reasoning, and 

addition and subtraction fluency, of currently low achieving year 7 and 8 students. 

Chapter 2 will highlight and critically analyse the body of literature on addition 

reasoning, fluency, and manipulative use. Chapter 3 will discuss the research paradigm and 
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worldview used for the current study. The choice of research method and data collection tools 

will be shared along with a rationale for these choices. Chapter 3 will also outline how the 

intervention was completed and how the collected data were analysed and coded. Chapter 4 

shares the results of the current study, including descriptive and inferential statistics. Chapter 

5 discusses the results of the study, links these to the research literature, and discusses 

implications of the study findings. 
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Chapter 2 
 
 
The current study focuses on the development of addition and subtraction fact fluency, and 

additive reasoning. The literature review examines the research in both areas, beginning with 

additive reasoning. This chapter will also examine research identifying the relationship 

between additive reasoning and fluency. Furthermore, the literature examining manipulative 

use and CLT will be shared. 

 

2.1 Defining, and examining the role of additive reasoning. 

 
Nunes et al.’s (2012) work evidences the importance of mathematical reasoning as a 

predictor of mathematical achievement. Mathematical reasoning can involve understanding 

of additive, multiplicative and spatial relationships (Nunes et al., 2012). This literature review 

focuses on one aspect of mathematical reasoning - additive reasoning. The teacher/researcher 

completing this study identified additive reasoning as a focus for the struggling students in 

his class, some of whom were invited to participate in the current study.  This focus on 

additive reasoning is supported by analysis of New Zealand students’ performance in 

international tests (Section 1.3). 

A range of terms appear to be synonomous with additive reasoning: part-whole 

relations (Resnick, 1992), arithmetic principle knowledge (Prather & Alibali, 2009); and 

understanding of addition and subtraction concepts (Canobi, Reeve, & Pattison, 1998). The 

current study will use the term additive reasoning throughout. The definition of additive 

reasoning used for this study is, “based on quantities connected by part-whole relations. Two 

central properties of part-whole relations involve (a) commutativity and (b) the inverse 

relation between addition and subtraction” (Ching & Nunes, 2017b, p. 483). Furthermore, as 

a function of additive reasoning, learners should understand that four expressions can 

describe the relationship between three quantities (a + b = c, b + a = c, c – a + b, and c – b = 

a), and three related expressions can be derived from a fourth given expression (Ching & 

Nunes, 2017b).  

Ching and Nunes (2017b) suggest that understanding of additive reasoning is a crucial 

component of mathematical understanding. A recent study demonstrated the importance of 

additive reasoning on mathematical achievement; non-Causasian seven-year old students had 

an understanding of additive reasoning that was strongly related to mathematical ability, 

independent of working memory, and counting ability (Ching & Nunes, 2017b). Knowledge 



11 
 

of additive reasoning may also have benefits on areas of mathematics more widely. Baroody, 

Ginsburg, and Waxman (1983) highlight how knowledge of mathematical structure can 

reduce the effort required when carrying out calculation. It might be argued that the effort 

involved is akin to working memory overload (Section 1.6). Another crucial affordance of 

mastering additive reasoning is the illumination of the structure behind real-world addition 

and subtraction contexts, allowing students to access, and be users of the mathematics of their 

world (Carpenter & Moser, 1984). 

 

2.2 The development of additive reasoning 

 

Research indicates additive reasoning develops progressively (Ding & Auxter, 2017). This 

assertion is supported by Canobi (2005) who found individual differences in young children’s 

conceptual profiles of additive reasoning. Resnick (1992) discusses the importance of 

reasoning with mathematical entities, describing a four-layer theory of increasingly abstract 

mathematical knowledge progressing from reasoning with physical quantities 

(protoquantities) where comparisions of size or quantity are made. The second layer involves 

reasoning with and about quantities. At layer three, a shift in the use of numbers from 

adjectives to nouns occurs, and numbers are used abstractly. The final layer of formalised 

thinking is the mathematics of operators where operations can be reasoned with. This 

progression is consistent with the work of CLT, identifying how schema may become 

increasingly more sophisticated. Resnick (1992) specifically relates these layers to additive 

reasoning. At the first protoquantitive layer, learners understand that, “a whole quantity can 

be cut up into two or more parts and that the parts can be recombined to make the whole” 

(p. 49). In the second and third layers, these relationships persist and learners begin to 

enumerate quantities of objects. In the final layer, the learner is able to reason more abstractly 

with part-whole relationships. Resnick (1992) highlights that the relationships between the 

parts and the whole remain the same throughout the four layers. Although Resnick’s work 

provides a pathway for developing reasoning and descriptors for complexity of thinking, it 

does not discuss how students can be taught these challenging but vital concepts or have 

moved from layers in a specific domain.  Resnick’s model provides further weight for the use 

of structured manipulatives for developing part-whole thinking, as each physical 

manipulative can represent a part and can be combined with another to create a whole 

(Section 1.9). 
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Research into additive reasoning shows variation in how easily sub-concepts are 

acquired. The commutative law of addition appears to be acquired relatively easily by 

learners (Canobi, Reeve, & Pattison, 2002). Baroody et al. (1983) suggest that children may 

discover commutativity informally and through play or early counting experiences. The 

inverse relationship between addition and subtraction appears to be a more challenging 

concept (Baroody, 1999; Baroody et al., 1983; Canobi, 2005; Koponen et al., 2018; Nunes et 

al., 2009). Torbeyns, Peters, De Smedt, Ghesquière, and Verschaffel (2016) studied 

understanding of the complement principle with a sample of 67 nine to ten year-olds. 

Participants were provided with a task where previous addition problems could be used to 

solve target subtraction problems. It might be expected that participants could use the visible 

addition problem and knowledge of additive reasoning to solve the target subtraction 

problem. Despite participants being specifically told that looking back may help them solve 

problems, only 12% of participants did so consistently. This demonstrates the challenge of 

the inverse relationship between addition and subtraction for some learners. Canobi (2005) 

refers to Piaget and suggests this may be due to learners identifying the positive 

characteristics more easily than the negative aspects. 

In summary, the literature identifies the importance of additive reasoning as a facet of 

mathematical understanding and that some areas of this concept are learnt more easily than 

others. The literature offers parallels to the importance of schema discussed as part of CLT 

(Section 1.7). 

 

2.3 Research on manipulative use for teaching additive reasoning 

 

Several studies have examined how additive reasoning might be taught effectively; however, 

the findings have been inconsistent. Baroody (1999) found that an intensive training 

intervention was not effective in teaching first graders the complement principle. Nunes et al. 

(2009), however, completed an intervention which improved participants’ understanding of 

the complement principle compared to the performance of a control group. In their study, 

visual demonstration (using unifix blocks) of the complement principle yielded a greater 

improvement compared to oral instruction. However, it may be difficult to distinguish 

between the impact of the unifix blocks and the modelling provided. A more recent study 

with kindergarten children showed that an intervention with unifix blocks led to significant 

greater understanding of the inverse relationship between addition and subtraction than a 

control group, and a group taught without manipulatives, suggesting the importance of 
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manipulatives as part of an intervention (Ching & Wu, 2019).  Ding and Auxter (2017) state 

that young children should be taught about additive reasoning using concrete materials, 

concluding this after examining the strategies that young children use when solving additive 

problems. However, in their study,  the test instruments were not piloted and were distributed 

and administered by 35 teachers enrolled on a postgraduate course, so it is possible that not 

all tests were administered the same way.   

In a theoretical model, Resnick (1984) shares a visual part-whole coding system 

where the two parts equal the length of one whole. This visual model closely replicates some 

of the manipulatives used in the current study (Cuisenaire rods), and hence is particularly 

relevant to the current study, supporting the rationale to use structured manipulatives to 

develop learners’ understanding of additive reasoning.  Comparison of Figure 1.1 and Figure 

2.1 shows the similar affordances of the two manipulatives used in the present study and 

Resnick’s model. 

 

Figure 2.1. Modified from Resnick’s (1984) visual part-whole coding system (p. 116)  

However, despite some researchers highlighting the valuable role of manipulatives for 

teaching additive reasoning, this view is not unanimous. When discussing the difficulty of 

using direct instruction to teach the complement principle, Baroody (1999) suggests a range 

of strategies that may aid the discovery of this principle but does not mention the use of 

manipulatives. Baroody (1999) does suggest explictly using the terms “part” and “whole” 

when referencing quantities in an equation, a technique used in the current study as a result.  

In summary, research on instruction of additive reasoning is inconsistent. 

Manipulatives may have a role to play in the development of additive reasoning, particularly 
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if the manipulatives emphasise part-whole relations. Further detail on manipulative use will 

be shared in section 2.14. 

 

2.4 The development of arithmetic knowledge  

 

Baroody and Dowker (2003) identify some of the early 20th century theorists’ views on the 

teaching and development of arithmetic; specifically, the skills versus meaning focus 

underpinning instructional programmes. Skills-focused theorists value drill, procedural 

learning of algorithms and number facts; however, meaning-focused theories, such as 

Brownell (1945), espouse an instructional view with conceptual understanding as a key 

component. Baroody and Dowker (2003) discuss four possible views on instructional 

programmes: skills first, concepts first, iterative development, and simultaneous 

development. A skills first approach values the transmission of key skills and facts with little 

or no thought for understanding. Conversely, a concepts first approach values meaningful 

memorisation of facts. Sitting between these two polarised views are iterative development 

and simultaneous development. Iterative development believes that one form of knowledge 

(conceptual or procedural) might lead to advances in the other (e.g., a counting procedure 

might allow learners to discover that addends are order-irrelevant). Finally, simultaneous 

development suggests that the two knowledge types build concurrently. Baroody’s summary 

of these viewpoints informs the current study in two ways. Firstly, the current study aims to 

develop additive reasoning and fluency in a sample of learners and therefore the instruction 

used will be placed somewhere on the procedural to conceptual continuum. Secondly, it 

might be argued that teaching additive reasoning may itself by a form of conceptual 

knowledge (Section 2.12) and that development of this conceptual knowledge leads to 

improvements in procedural understanding of number facts. This review will now focus on 

the specific development of arithmetic and examine the literature surrounding this before 

looking more closely at the relationship between additive reasoning and fluency. 

 

2.5 The role of counting in developing arithmetic knowledge 

 

Arithmetic knowledge has its roots in early mathematical experiences with counting, and 

early arithmetic procedures may be the adaptation of counting skills (Geary, 1994). 

Geary (1994) summarises five basic addition strategies that develop in complexity, 

and highlights the cross-cultural consistencies of these strategies: using manipulatives, finger 
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counting, verbal counting, deriving facts, and fact retrieval.  Carpenter, Hiebert, and Moser 

(1983) completed a three-year longitudinal study with 144 participants examining strategy 

choice for word problems with a variety of structures. These researchers found counting 

strategies were prevalent at younger ages; however, counting strategies were superseded by 

retrieval strategies for the majority of students by grade three. Strategy use was dependent on 

the structure of the word problem.  

Geary (1994) describes how counting strategies vary in sophistication from a count-

all strategy to a count-on from the first addend, then finally count-on from the larger addend. 

The increase in sophistication links to an increase in cognitive demand: count-on strategies 

involve a double-count. For example, solving 6 + 4 using a count-on from the first addend 

strategy would require counting the complete total and the total of the four to be added, 7 (1), 

8 (2), 9 (3), 10 (4). Research has shown that some students find this demand more 

challenging than others (Section 2.7). Geary (1994) states that once learners are able to use 

verbal counting strategies to solve addition facts, the next learning stage involves using 

known facts and deriving facts with small addends. Derived facts may begin from knowledge 

of doubles; as research has shown these are memorised more easily (Ashcraft, 1992; 

Carpenter & Moser, 1984). 

 

2.6 The role of conceptual understanding in arithmetic development 

 

Baroody (1994) describes two varying theories of arithmetic (fact-retrieval and schema-

based). It is generally accepted that learners move from counting procedures to retrieval; 

however, it is debated whether fact retrieval is due to associations (Siegler, 1987) or driven 

by conceptual understanding (Baroody, 1999).  

Gray and Tall’s (1994) work supports the role of conceptual understanding in 

arithmetic, introducing the idea of a procept – the duality of a process and a concept. 

Specifically, 3 + 2 might be considered a process but could also be a concept itself; hence, the 

portmanteau procept. The idea of a procept is described in relation to arithmetic development. 

When using a count-all strategy, the learner is carrying out a process. The shift to counting-

on strategies signifies that the starting addend is a procept (or whole) and the second addend 

is counted-on which could be considered a process. Once both addends are considered 

procepts, this becomes a known fact. Gray and Tall (1994) assert that this type of situation 

illustrates not a known fact learnt by rote, but a flexible form of understanding from which 

further facts can be derived.  Gray and Tall (1994) emphasise that this shift in arithmetic 
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thinking is a shift from procedural methods to a more flexible conceptual understanding. This 

idea is supported by Hopkins and Egeberg (2009) who discuss how using known facts to 

derive facts is underpinned by flexible use of existing knowledge; for example 5 + 7 might be 

calculated by decomposing 7 into 5 and 2. 5 + 7 then becomes 5 + 5 + 2. 

In summary, although there is some debate over the role of conceptual knowledge in 

arithmetic development, a large body of research supports the idea of a conceptually based, 

flexible understanding and teaching of arithmetic. 

 

2.7 Difficulties with counting and the impact on arithmetic knowledge 

 

Despite the literature identifying some clear pathways for developing basic fact knowledge, a 

proportion of learners do not acquire this fluency and this impacts on their achievement 

(Chamberlain, 2013). Therefore, it is salient to examine the literature on learners who 

struggle in this area. Young children with poor mastery of addition and subtraction facts 

persist with finger counting when compared to students with mastery of these facts (Jordan, 

Hanich, & Kaplan, 2003). Counting strategies may frequently be used in the early stages of a 

learner’s arithmetic knowledge, or may persist in low-achieving learners (Gray & Tall, 1994; 

Siegler, 1987).  Dowker (2005) theorises that an overreliance on counting strategies may 

impede arithmetic development. This reliance may inhibit the development of more 

sophisticated strategies due to the attentional requirements of counting; furthermore, Dowker 

(2005) suggests that learners who rely on counting procedures to calculate also find counting 

cognitively taxing.  

 Gray (1991) examined the strategy choices of 72 learners who had been categorised 

by their teachers as below average ability, average ability, or above average ability. Above 

average students recalled facts more frequently and were able to derive facts from known 

facts more frequently when compared to below average peers. Gray suggests that less 

sophisticated strategies chosen by below average learners provide security and discourage 

learners from storing the fact in LTM. Supporting this, Ostad (1997) compared students with 

mathematical difficulties to their peers, finding that students with mathematical difficulties 

are more likely to use less sophisticated strategies.  
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2.8 The relationship between working memory, counting, and arithmetic 
 

The present study is framed around CLT, suggesting that consideration of cognitive load is 

important to learning. Research has found that working memory, alongside intelligence, 

predicts academic achievement (Schneider & Niklas, 2017). Linked specifically to 

mathematics, research has found that difficulties with arithmetic are linked to deficits in 

working memory (Adams & Hitch, 1997; Jesica, Silvia, Irene, & Juan Pablo, 2018; McLean 

& Hitch, 1999).  Research has also reported an interaction between working memory, 

anxiety, and mathematical performance (Ganley & Vasilyeva, 2014).  Further evidence from 

other domains shows that counting tasks can be used successfully to test working memory 

(Van Den Hout et al., 2010). de Chambrier, Thevenot, Barrouillet, and Zesiger (2018) found 

that children who used finger counting more frequently had lower working memory capacity. 

It could be hypothesised that finger counting lowers demands on working memory, and 

supports the learner in the short-term; however, finger use may promote the perpetual use of 

counting strategies in some learners. Gray (1991) states that learners who perpetually count 

do not have the feedback loop that allows a network of known facts to be learnt, and 

subsequently learners are unable to use new facts to derive further facts. The ability to derive 

facts then leads to a greater number of known facts. Although counting is often considered 

the gateway to calculation, there may be other pathways (Findell, Kilpatrick, & Swafford, 

2001; Young-Loveridge, 2011a). 

 

2.9 Alternative pathways to arithmetic understanding 

 

The NDP placed part/whole thinking after counting strategies in the broad progression of 

number knowledge; however, researchers have called for a greater emphasis on using 

part/whole thinking to develop arithmetic knowledge (Young-Loveridge & Bicknell, 2015).  

It is important to consider the focus on taught counting strategies in the NDP alongside the 

finding that some learners become stuck in using counting to calculate (Section 2.8). One 

possible pathway to fluency that requires greater research is the use of subitising (Young-

Loveridge, 2002). Subitising can be defined as instantly seeing an amount without counting 

(Faulkner & Ainslie, 2017). Clements, Sarama, and MacDonald (2019) refer to subitising as 

the neglected quantifier and suggest that conceptual subitising (subitising two parts and 

creating a whole) may have an organising role in part-whole understanding alongside that of 

counting. Specifically, learners might subitise two and then three, then combine these two 
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parts to identify the whole. A developmental progression would be to subitise five because of 

the identification of the sub-groups two and three. The importance of understanding groups 

and structure was identified in a recent study by Kullberg and Björklund (2019), who noted 

that young children could solve 3 + ? = 8 by using fingers to identify part-whole relations 

rather than counting; finding that identifying parts, wholes and structure, can have a powerful 

impact on arithmetic knowledge. The role of subitising and structure is relevant to the current 

study as Numicon shapes are organised into patterns which may encourage similar processes 

to conceptual subitising. Relevant to the New Zealand context, a concluding remark from 

Young-Loveridge (2011b) stated that subitising should have been included alongside 

counting in New Zealand’s NDP. 

In summary, although most of the literature suggests counting is the foundation of 

arithmetic, it is possible that other pathways exist and research into effective teaching 

methods relating to these pathways is valuable. 

 

2.10 Counting and working memory – a CLT perspective 

 

CLT (Sweller & Chandler, 1994) supports the notion that classroom practice should focus on 

embedding basic skills (such as arithmetic knowledge) in LTM to free working memory.  In a 

study of 228 primary school children, Geary, Hoard, Byrd-Craven, and Catherine Desoto 

(2004) found that working memory importance decreases with age as basic facts become 

stored in LTM; an additional finding was that learners with mathematical difficulties also 

have difficulties with working memory. Cognitive psychology also offers insight into this 

area using various data collection methods. Cho, Ryali, Geary, and Menon (2011) used brain 

imaging techniques with 7 to 9 year-old students and showed different parts of the brain were 

activated when students used retrieval strategies compared to counting, suggesting that 

counting strategies use different cognitive resources to retrieval strategies. Furthermore, a 

review of brain imaging research on arithmetic learning highlights that automatic retrieval 

lessens working memory load (Zamarian, Ischebeck, & Delazer, 2009). Geary et al. (2004) 

suggest that deficits in working memory lead to inaccurate and slow counting procedures 

and, as a result of this, basic facts are moved into LTM more slowly. This assertion is slightly 

at odds with Gray (1991) who suggests that counting procedures may provide learners with 

security. Another consideration for the perseverance with counting strategies is teacher 

validation; specifically, the focus on counting procedures in the New Zealand Number 

Framework may have resulted in some practitioners overemphasising counting methods to 
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calculate (Young-Loveridge, 2011b). Cheng (2012) states that children who are encouraged 

to count can become reluctant to move to more sophisticated strategies. Despite the lack of 

consensus regarding how counting can limit the development of retrieval strategies, a 

pragmatic view would suggest that finding effective ways to develop learners to use more 

sophisticated strategies is of importance. 

In summary, it is important to find methods to increase retrieval of basic facts in order 

to reduce cognitive load. The current study aims to examine if structured manipulatives might 

shift participants from counting strategies to retrieval strategies, possibly using similar 

processes to subitising. Alongside this, a body of literature suggests developing conceptual 

knowledge (additive reasoning) alongside arithmetic is desirable for creating flexible 

understanding of arithmetic. 

 

2.11 The distinction between fluency and arithmetic 

 

Arithmetic knowledge was previously defined as the ability to calculate (Nunes et al., 2012). 

This definition might be considered ambiguous and challenging to quantify as calculation can 

use a range of strategies of varying sophistication, ranging from a count-all strategy to 

retrieval of a fact. The current study uses the term fluency to refer to the accuracy and speed 

of calculation with addition and subtraction facts.  Wubbena (2013) links fluency to mastery 

understanding by combining accuracy and speed of calculation and identifies that measuring 

the construct arithmetic without speed can overestimate learners’ abilities. The rationale to 

include speed to measure fluency rather than arithmetic supports the model of CLT where the 

importance of automatic recall of facts from LTM has been presented (Section 2.10). 

 

2.12 The interaction between fluency and additive reasoning (procedural and 

conceptual understanding) 

 

A large scale research study (Nunes et al. 2012) has shown that mathematical reasoning and 

arithmetic ability (fluency) make independent contributions to later mathematical 

achievement; furthermore, these two constructs were significantly moderately correlated.  

Nunes et al. (2012) make the assertion that reasoning and arithmetic should be considered 

different constructs and state that mathematical reasoning is a form of conceptual knowledge.  

Conceptual understanding is defined as, “the implicit or explicit understanding of principles 

that govern a domain and of the interrelations between units of knowledge within a domain” 
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(Rittle-Johnson, Siegler, & Wagner Alibali, 2001, p. 346). Procedural knowledge is defined 

as, “the ability to execute action sequences” (p. 346). Using this definition, being fluent with 

addition and subtraction facts may be identified as a form of procedural knowledge.  

Research will be discussed which identifies links between counting strategies and lack of 

additive reasoning. Therefore, it is important to consider if and how these two constructs 

interact. 

Additive reasoning and arithmetic are interwined and related concepts. For example, 

calculating 21 – 19 might be most efficiently solved using the inversion principle and 

counting on from 19. What is unclear is how one construct informs the other (Canobi, 2009; 

Ching & Nunes, 2017b). Baroody et al. (1983) found that participants who used counting 

strategies were less likely to identify the complement principle than participants who used 

more sophisticated strategies; however, this was not true of the commutative law which 

appeared to be available to all learners. Research on a smaller scale has found that ability to 

retrieve addition and subtraction facts was related to conceptual knowledge of additive 

reasoning (Canobi et al., 1998). In a study of 200 second and third grade students, Cowan et 

al. (2011) found that addition and subtraction fluency was highly correlated with measures of 

conceptual understanding; however, the measures of conceptual understanding included, but 

were not restricted to the commutative and complement principles. 

Despite research showing the links between additive reasoning and fluency, the 

mechanisms for the interdevelopment of these two concepts are less clear. One possible 

explanation of the relationship is that understanding of additive reasoning helps learners to 

organise knowledge more efficiently, thus increasing fluency; alternatively, the ability to 

retrieve arithmetic facts might afford learners greater awareness of additive relationships 

(Canobi et al., 1998). Baroody (1999) suggests a model where learners with awareness of the 

principles of additive reasoning identify these principles before searching for the arithmetic 

triple that would provide the key to solving a calculation (Figure 2.2).   

 

 

 

Figure 2.2. Baroody’s (1999) model identifying how additive reasoning may aid retrieval (p. 

152) 
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2.13 Studies designed to improve additive reasoning or fluency 

 

Research has found inconsistent results relating to the improvement of fluency and additive 

reasoning. Although not specifically detailing additive reasoning, a twelve-week study with 

69 participants with low levels of calculation skills showed that an intervention focusing on 

conceptual and procedural understanding significantly improved fluency compared to 

controls (Koponen et al., 2018). This provides evidence for the interdevelopment of 

procedural and conceptual understanding. Further support comes from Baroody et al. (1983) 

who devised a task where students who used additive reasoning principles achieved more 

highly in a game scenario. Alongside this, participants were coded on the efficiency of their 

addition retrieval. Participants used the commutativity principle regardless of the efficiency 

of their addition retrieval; however, the complement principle was only frequently used by 

participants who recalled the related addition fact from memory. “It is as if laborious 

calculation used up attention – leaving none for discovering and using complement 

principles”  (Baroody, 1999, p. 167). These findings are consistent with CLT and the work of 

Gray (1991) where working memory is devoted to procedural methods, therefore resources 

are not available to identify additional structure.  

Not all interventions successfully improve additive reasoning or fluency. Baroody 

(1999) found that a sample of gifted first grade students were unable to identify the 

relationship between addition and subtraction, and that an intervention was unable to alter 

this finding. One possible explanation given was that mastery of addition facts enables 

discovery of the complement principle; knowledge of addition facts might be required to 

reach a threshold level or to be practised extensively before the complement principle can be 

used (Baroody, 1999).  

Development of additive reasoning may involve the understanding of rules. Baroody 

et al. (1983) point out that the use of shortcuts or rules may be viewed negatively by students 

(this may lead to the child persisting with an inefficient and mentally taxing procedural 

approach which perpetually blocks the ability to notice mathematical regularity). It is 

possible that over learning of addition facts may be required to enable students to identify 

additive reasoning principles.  However, a recent study focusing on training specific addition 

facts did not lead to an increase in the ability to answer a complementary subtraction 

question, or improve the ability to answer untrained facts (Walker, Bajic, Mickes, Kwak, & 

Rickard, 2014). It should be highlighted that this study contained no specific or explicit 

teaching of additive reasoning, rather drill practice of addition facts. It would appear that 



22 
 

procedural learning of addition and subtraction facts has limited benefits.  This is supported 

by Gilmore et al. (2018) who found that conceptual understanding was highly correlated with 

mathematical achievement when the application of a range of additive reasoning principles 

was used to operationalise conceptual understanding in a group of typically developing 

preterm 8 to 10 year-olds. 

Canobi (2009) completed a study involving practice of addition and subtraction facts. 

One treatment condition was composed of addition and subtraction questions that were 

presented in a specific order to illuminate the structure of additive reasoning, e.g. a + b 

followed by b + a. Participants in the conceptually ordered treatment made gains in retrieval 

of addition and subtraction facts and conceptual understanding which the random practice 

group did not make. The gains in retrieval were not evident in already practised problems, 

only unpractised problems. It should be noted that the gains in retrieval were not statistically 

significant. When placed alongside the work of Walker et al. (2014), this result adds to the 

literature regarding the links between conceptual and procedural understanding in the field of 

additive reasoning and fluency. Procedural practice of addition and subtraction facts appears 

to lead to very specific gains; conceptually ordering procedural work may have broader gains 

with other unpractised addition and subtraction facts. Mirroring Baroody’s model (Figure 

2.2), Canobi (2009) states, “a concept-based reorganization of children’s memory of addition 

and subtraction problems and their answers could help to explain the finding that conceptual 

knowledge enhances children’s use of retrieval-based procedures to solve unpracticed 

problems” (p. 147). It is important to note that these two studies (Canobi, 2009; Walker et al., 

2014) operationalised procedural fluency in different ways. Canobi operationalised fluency 

by proportion of retrieval strategies while Walker et al. (2014) used proportion of correct 

questions within a timeframe. 

In summary, the research suggests that teaching additive reasoning and fluency 

together may have benefits for each domain. Additive reasoning may be considered a form of 

conceptual understanding while fluency might be considered a form of procedural 

understanding.  Two possible explanations for this mechanism have been discussed and these 

both support CLT. A more conceptually organised schema may allow for more efficient 

retrieval (Canobi, 2009) or, placing addition and subtraction facts into LTM memory creates 

working memory capacity to attend to additive reasoning relationships (Baroody, 1999) 

which subsequently allows access to a greater range of known or derived facts. 
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2.14 The role of structured manipulatives to develop additive reasoning 

 

Section 2.3 briefly outlined the rationale for using structured manipulatives for teaching 

additive reasoning. Previous research has examined the inconsistent findings of manipulative 

use on learning. It is clear that a range of factors modulate any possible outcomes on learning 

(Carbonneau et al., 2013). Thompson (1994) discusses the importance of instructors 

considering the concept they wish to teach when selecting a manipulative. This is relevant to 

the current study as the manipulatives chosen may help to illuminate part-whole structures, 

and move participants away from counting strategies. Manches and O'Malley (2016) 

discovered that unifix blocks allowed participants to find a greater number of solutions in a 

partitioning task (attempting to find the partners for a given whole), and that manipulatives 

led to more sophisticated strategies being used. Bonne (2003) identified that some 

manipulative choices (the number line) encouraged learners to count in ones despite already 

having part-whole thinking. Bonne called for further research into the use of structured 

manipulatives to develop part-whole thinking. The use of manipulatives structured to 

replicate the base-10 system has been promoted (Bonne, 2003; Young-Loveridge, 1999).  

Mulligan and Mitchelmore (2009) emphasise the importance of pattern, structure and 

regularity in mathematical achievement, conjecturing that students with understanding of 

structure would be able to unitise, leading to improved number knowledge. The present study 

adds to the literature by using materials that allow each number to 10 to be unitised 

(Numicon and Cuisenaire rods).  

Numicon equipment was developed in 1996 as part of a teaching programme aimed at 

making mathematics more concrete for learners (Wing & Tacon, 2007).  Research on 

Numicon’s efficacy is limited. A study with a sample of 25 students found no significant 

effect of the intervention on achievement; this study called for more research into the benefits 

of Numicon (Forder, 2016). The second manipulative used in this study, Cuisenaire rods, was 

invented in Belgium 85 years ago by George Cuisenaire (Kurumeh, 2010). Although the rods 

can be unitised to represent different amounts, initially each rod is used to represent one of 

the numbers 1 to 10. Each rod’s value is equivalent to its length in centimetres; therefore, this 

structured manipulative has parallels with measurement. Some research has found an impact 

of Cuisenaire rods on the learning of specific mathematical concepts. In a study of 200 

secondary school students, an intervention using Cuisenaire rods led to significantly higher 

post-test scores than students taught conventionally (Kurumeh, 2010). Green, Piel, and 

Flowers (2008) found that instruction with manipulatives (including Cuisenaire rods) 
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significantly reversed preservice teachers’ arithmetic misconceptions; however, this study did 

not use a control group. A review of the literature could not find any studies detailing the use 

of Numicon or Cuisenaire rods on fluency or additive reasoning with children.  The search of 

the literature used the database SCOPUS and the terms Numicon or Cuisenaire with fluency, 

additive reasoning, part whole, and arithmetic, respectively. 

 

2.15 Summary 

 

This literature review has emphasised the importance of additive reasoning alongside 

fluency, suggesting that these two concepts are related. Proponents of meaningful, conceptual 

arithmetic instructional methods have been shared and it has been suggested that additive 

reasoning is a form of conceptual knowledge. The importance of counting has been discussed 

alongside the difficulties some learners have when counting to calculate. There is evidence 

that counting strategies may inhibit the development of more sophisticated strategy use of 

some learners, possibly due to the role of working memory in counting. Alternative pathways 

to arithmetic have been suggested, and the emphasis of counting in the NDP has been 

discussed. Inconsistent research into the development of additive reasoning and fluency has 

been shared. Finally, the possibility of structured manipulatives enabling learners to identify 

additive reasoning concepts and develop fluency has been shared. To highlight this, 

examining the manipulatives (Figure 1.1) alongside the models provided by Resnick (1984) 

(Figure 2.1) and Baroody (1999) (Figure 2.2) illustrates how these manipulatives might 

promote additive reasoning and fluency through the development of part-whole schema. The 

current study aims to explore whether an intervention using structured manipulatives to teach 

additive reasoning and fluency might lead to improvements in both areas. This is in 

alignment with proponents of meaningful, flexible, conceptually based models of arithmetic 

development. 
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Chapter 3  

 

3.1 Reflecting on decision making in terms of theory and context  

 

Creswell (2011) discusses the importance of researchers stating their philosophical 

worldview and assumptions when designing and carrying out a study. These assumptions 

should be made explicit, demonstrating what the researcher brings to the research (Creswell, 

2011). In section 1.10 I discussed my belief that certain teaching methods may be inherently 

more effective than others. Moreover, I believe that quantifiable improvements in learning 

are outcomes from effective teaching methods. These beliefs, coupled with my background 

studying cognitive psychology, lead much of my worldview to being consistent with 

positivism and to strongly value the importance of statistical analysis in research (Newby, 

2010). 

Creswell (2011) refers to positivism as the scientific method with a focus on 

quantitative data collection. However, Newby (2010) also highlights the complexity of 

different philosophical worldviews and that these are not necessarily dichotomous. My 

experience of teaching leads me to also value a pragmatic approach. Given the teaching 

context of the study, the pragmatic worldview was the most dominant when designing this 

study and selecting mixed methods as a research method. Creswell (2011) states that 

“pragmatism opens the door to multiple methods, different worldviews, and different 

assumptions, as well as different forms of data collection and analysis” (p. 11). Furthermore, 

Patton (1990) promotes the use of mixed methods as an appropriate research method for the 

pragmatist worldview as it combines a positivist emphasis alongside a more grounded 

practical approach. 

 

3.2 Overview and theory of mixed methods 

 

Creswell (2011) discusses the value of mixed methods research in social science; it harnesses 

the advantages of quantitative and qualitative data collection methods and provides greater 

insight. Both quantitative and qualitative data collection methods have their advantages. 

Quantitative research has a focus on measurable and observable phenomena and uses 

inferential statistics to provide insight, and quantitative research is based on the premise that 

a study may be replicated, elaborating findings and allowing for the derivation of theory 

(Newby, 2010). Conversely, qualitative research methods can be used in natural settings and 
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allow for relative truths dependent on situation and time: “The task of a qualitative researcher 

is not to look at how people behave as outsiders but to understand how individuals see the 

world.” (Newby, 2010, p. 119). Both data collection methods have weaknesses; Creswell 

(2011) states how mixed methods can neutralise these limitations to improve the quality of 

research. “By combining two (or more) research methods with different strengths and 

weaknesses in a research study, you can make it less likely that you miss something 

important” (Johnson & Christensen, 2014, p. 53). Not only is it important that a study design 

provides appropriate data for the research questions, it is also important that the method is 

suitable for the context. The present study has an educational context and Sammons (2010) 

asserts that mixed research in education is worthwhile as it offers the possibility of transfer to 

the classroom. 

The mixing of methods when collecting data is becoming more prevalent; however, 

this type of design is not without controversy. Despite this, mixed methods use of different 

data collection methods (quantitative and qualitative) has been described as complementary 

(Johnson & Christensen, 2014), allowing exploration of an issue flexibly and in real time 

(Newby, 2010) which enables successful aspects of an intervention to be transferred (Drabble 

& O’Cathain, 2015). This is relevant for the current study as it is hoped that any findings 

from the research can be transferred to the classroom.  

A defining characteristic of mixed methods research is the collection of both 

quantitative and qualitative data (Creswell, 2011). Moreover, the collection of the data using 

different methods is strategic (Section 3.3). Johnson and Christensen (2014) discuss that a 

fundamental principle of mixed methods is purposeful selection of data collection methods 

creating a study that is improved by the different strengths of the methods. Newby (2010) 

states that both data collection methods can be used to compare results and possibly reinforce 

findings.  

 Mixed methods was a suitable choice for the present study because both quantitative 

and qualitative data are required to answer the research questions. Specifically, quantitative 

data were collected to measure any change in participants’ fluency, and additive reasoning. 

Qualitative data were collected to examine participants’ perceptions of the study.  Also, 

mixed methods adds rigour to the study as the study uses a small convenience sample. 

Generating conclusions from small convenience samples can be problematic so a mixed 

approach allows for triangulation (Creswell, 2011). This triangulation gives the researcher the 

possibility to corroborate findings or search for conflicting information (Johnson & 

Christensen, 2014). Finally, mixed methods is suitable for the size and context of this study; 
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Newby (2010) states that mixed methods are valuable when completing “action research, 

particularly where the research takes the form of an experiment involving pre-test, 

intervention and post-test and where the insights of more qualitative assessments can add 

considerable value” (p. 131). 

 

3.3 Study design 

 

In the present study mixed methods were used with a quasi-experimental design (Johnson & 

Christensen, 2014). A sequential explanatory design was selected because this enabled 

targeted data collection to aid exploration of research questions. This design suits researchers 

with a strong quantitative focus (Creswell, 2014) and meets the needs of the current study as 

research question 1 focuses on whether there will be an improvement in scores from pre-test 

to post-test. Within mixed methods research, there are a range of designs and orders that can 

be tailored to best fit a study. Sequential mixed methods designs have an ordered approach 

with one type of data collected first. Creswell (2011) discusses how this ordering is 

purposeful. Data collected in the quantitative phase provides lines of inquiry in the qualitative 

phase. Students were invited for the interview phase based on their performance in the 

quantitative phase. 

After the intervention, the researcher conducted qualitative semi-structured interviews 

to explore students’ lived experience of the intervention (Creswell, 2014). Participants were 

invited for interviews purposefully using maximum variation sampling. Four participants 

were invited based on mean fluency scores and variation in mean improvement in fluency 

scores. The rationale was to select participants with the largest variation of these measures 

and students who score more closely to the mean. Johnson and Christensen (2014) state that 

maximum variation sampling increases rigour by ensuring that all types of cases are selected, 

adding weight to themes that exist across the different cases.  

 

3.4 Overview of data collection tools used  

 

The quantitative phase of this study used an identical pre-test and post-test containing a range 

of test instruments (Appendices A, B, C, D), a decision informed by Johnson and 

Christensen’s (2014) view that testing (using ratio scales) is a desirable data collection 

method in education for measuring performance.  Johnson and Christensen (2014) discuss the 

strengths of standardised tests but also state that researchers might design test instruments to 



28 
 

operationalise specific variables. The data collection tools in the current study were informed 

from previous research in this field, and then designed and refined through trialling by the 

researcher.  

Piloting of data collection tools was completed in two stages. First, the researcher 

invited students who would not be part of the research to attempt the tests. These students 

were of average mathematical ability. Timings were checked to gauge how many questions 

were answered in the time provided, and perceptions of the test tools were obtained. Also, a 

teacher and group of students from a nearby school trialled the data collection tools. These 

students were the same age and had a similar mathematical ability to participants in the study, 

providing an opportunity to check wording and layout of the questions. The teacher offered 

some critical feedback on the data collection tools and how these were interpreted. This 

informed some revisions of the data collection tools. 

A range of data collection tools was used in the present study (Table 3.1). Within the 

specific research field of additive reasoning, Prather and Alibali (2009) state, “The vast 

majority of studies utilize single-faceted knowledge assessments, which can lead to 

incomplete or misleading views of learners’ knowledge” (p. 221). The present study aimed at 

using multi-faceted instruments which covered a broad range of concepts within additive 

reasoning. Furthermore, Johnson and Christensen (2014) mention the problematic nature of 

using single test scores and promote using a range of data sources. The importance of multi-

faceted assessment has been discussed; thus alongside tests used to measure fluency, 

diagnostic assessments (Table 3.1) were used to measure various concepts within additive 

reasoning. These will be discussed respectively. 

 

Table 3.1  

Data collection tools used with construct operationalised 

Data collection tool Construct operationalised Research question 

Fluency test 
 

Fluency of addition and 
subtraction facts 

One 

Self-report tool Fluency of addition and 
subtraction facts 

One 
Five 

Diagnostic questions Understanding of additive 
reasoning 

Two 

Empty box test Understanding of additive 
reasoning 

Two 

Conceptually ordered fluency 
(COF) test 
 

Fluency of addition and 
subtraction facts 

One and two 
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Understanding of additive 
reasoning 

Semi-structured interviews 
 

Student perception of the 
intervention 
Student perception of 
manipulatives 
Understanding of additive 
reasoning 

Three 
Two 
Four 

 

3.5 Fluency data collection method 

 

Research question 1 explores whether the use of structured manipulatives improves the 

fluency of participants’ recall of addition and subtraction facts.  Within the literature a range 

of data collection methods is used to measure fluency and these were used to inform tools for 

the present study. Baroody (1999) used reaction time as a measure of addition and subtraction 

fact knowledge. This data collection method ensures that the data are sensitive to participants 

counting or using inefficient methods of calculation. Due to time and resource restraints, this 

data collection method was not used in the current study. However, the study used a method 

to calculate the number of correct responses in a given time to address the concerns of 

Baroody (1999) and the use of counting. The fluency test was based on a study examining 

fluency with multiplication (Nelson, Burns, Kanive, & Ysseldyke, 2013).  In the current 

study, participants were provided with a test consisting of 60 questions (Appendix A). These 

were presented in three columns of 20 on A4 paper. Thirty of these questions were addition 

questions and 30 questions were subtraction questions. All of the questions involved whole 

numbers and all answers were whole numbers above zero. The questions required the 

participants to bridge 10 (e.g., 8 + 5 or 13 – 6). The questions alternated from addition to 

subtraction. Standardised tests of mathematical fluency such as the Woodcock-Johnson test 

also use a mixing of addition and subtraction (Starkey & McCandliss, 2014). Participants 

were instructed to answer questions by moving down the columns but could skip any 

questions that they were unsure of. Work in this field used questions of comparable 

difficulty, albeit with a younger sample (Baroody et al., 1983). All participants answered 

these questions in silence without the use of any manipulatives. After two minutes, they were 

instructed to stop answering the questions. The same test was provided at pre-test and post-

test. Furthermore, a self-report question was asked after the fluency test. 
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3.6 Self-report after the fluency test 

 

Research question 1 focuses on whether structured manipulatives improve fluency when 

recalling addition and subtraction facts. Research question 5 explores whether counting 

procedures are used frequently in this sample. These two questions are linked as it may be 

possible to perform well on the fluency test instrument using counting procedures. Moreover, 

the researcher was aware of a possible lack of validity using the same fluency test before and 

after the intervention. Participants were asked to self-report how they had answered questions 

after completing the fluency test instrument at pre-test and post-test. A self-report question 

allows the researcher to gain an insight into students’ mathematical processes and strategies 

while also attempting to increase the validity of any findings (Johnson, 2014). Previous 

research in this field also used self-reports to gain an insight into participants’ conceptual 

understanding (Baroody et al., 1983; Canobi et al., 1998). Baroody (1999) states the 

importance of knowing how students answered addition questions. In the current study, 

participants were provided with the written, open-ended question, “How did you solve 

these?” An open-ended question was chosen as it provided the greatest opportunity to gain 

insight into the mathematical thinking and processes of participants. Moreover, it was 

important that participants responded with language that made sense to them when describing 

their mathematical thinking rather than be constrained by the language of the researcher. 

Previous work in this field used open-ended self-report questions to collect data on learners’ 

strategies (Canobi et al., 1998). Answers were coded inductively from the responses given by 

participants during the pre-test. The codes identified were: used a counting strategy, memory, 

used an arithmetic strategy such as doubling, and miscellaneous. The researcher checked the 

responses at post-test to ensure that the codes used at pre-test adequately reflected responses 

at post-test. 

 

3.7 The rationale and development of diagnostic questions  

 

After completing the fluency test and self-report, participants answered a range of diagnostic 

questions. This is supported by Canobi et al. (1998) who concluded it was meaningful to 

explore participants’ explanation of additive concepts. Furthermore, previous work has 

highlighted the importance of using multi-faceted assessments (Prather & Alibali, 2009). The 

present study uses a range of data collection tools to operationalise addition reasoning; 

diagnostic questions are one of these tools. 
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3.8 Research on multi-faceted assessments to operationalise additive reasoning 

 

Prather and Alibali (2009) discuss the role of context on participants’ performance on verbal, 

concrete, abstract and symbolic arithmetic principles. Specifically, verbal context refers to 

the story context of a word problem, concrete context refers to the use of manipulatives, 

abstract context might involve the use of pronumerals, and symbolic use purely of numerals.   

When designing the diagnostic questions for this study, consideration was given to the 

context of the questions. The current study tried to remove verbal context by 

decontextualising the diagnostic questions. As the research questions focussed on whether the 

structured manipulatives improved participants’ fluency and additive reasoning, it was 

decided that concrete materials would not be available for the testing phases. The study was 

concerned with whether thinking and understanding could be shifted after the intervention. 

The use of manipulatives in the testing phases might not reflect any changes in LTM which, 

in line with CLT, was a goal of the study. Furthermore, research has discussed how 

manipulative use is not the goal but a tool to achieve more sophisticated thinking (Bonne, 

2003).  

Prather and Alibali (2009) highlight the importance of multi-faceted knowledge 

assessments when assessing arithmetic principles. This paragraph will briefly summarise the 

work on multi-faceted knowledge assessments and identify which assessment types were 

used in the current study and the rationale for these choices. Several types of knowledge 

assessment are discussed: applications of procedures, evaluation of procedures, evaluation of 

examples, justification of procedures, and explicit recognition. Explicit recognition involves 

agreeing or disagreeing with an abstract statement that exemplifies a principle. For example, 

is it possible to add two numbers in any order? Do you agree or disagree? Explicit 

recognition of a concept can be proxied by the application of a procedure. For example, 

observing a student solving 3 + 99 by counting on from 99 might reflect additive reasoning 

understanding. However, there is some debate regarding whether this specific procedure 

accurately reflects understanding of commutativity (Baroody, 1987). When evaluating 

examples, participants rate questions and answers that have been provided by others. When 

participants rate an example that breaks a specific principle lower than an example that does 

not break the principle, this suggests that the participant has knowledge of the principle. For 

example, 10 – 7 = 13 might be rated worse than 10 – 7 = 2 as it shows an increase after 

subtraction of whole numbers. Evaluation and justification of procedures are closely related. 
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Participants look at the examples of others’ mathematical thinking and evaluate whether 

these examples of thinking are correct; for example, a + b can be used to solve b + a. 

Justifications of procedures involves identifying the principle adhered to or broken; for 

example, you cannot subtract in any order (Prather & Alibali, 2009). The majority of 

diagnostic questions (Table 3.2) used in this study use evaluation and justification of 

procedures. One application of procedures question was created to assess whether 

participants could recall related subtraction and addition facts. 

The rationale for using explanation and justification of procedures is explained by 

considering the disadvantages of other question types. First, application of procedures may 

require close observation of each participant. The intervention was completed outside of 

school and the time with participants was limited.  Furthermore, questions categorised as 

application of procedures may involve some calculation. In the main, this study tried to 

operationalise fluency and additive reasoning separately (Section 3.10). The researcher felt 

that using explicit recognition questions from Prather and Alibali (2009) would not provide 

reliable enough data. If a participant was asked to agree or disagree with a statement, there is 

a 50% chance of guessing the correct answer. Therefore, the majority of diagnostic questions 

involved evaluating and justifying procedures, allowing for richer and more valid data. 

The diagnostic questions used in this study were written so that calculation would not 

be required or possible and this is mirrored in the literature (Canobi, 2005). The numbers 

included within the diagnostic questions were more challenging than the fluency test. Three-

digit, four-digit and decimal numbers were used. Also, the questions were written so that they 

would be challenging enough that retrieval strategies would be unlikely (Ding & Auxter, 

2017; Gilmore et al., 2018). The rationale for this was to ensure that the diagnostic questions 

operationalised additive reasoning. This was a concern as the literature has identified that 

some students correctly answered inverse questions without using reasoning knowledge 

(Ding & Auxter, 2017). Participants completed the diagnostic test in silence without 

manipulatives; all questions were provided to participants on a test paper. These were also 

read to all participants in order to minimise the confounding influence of reading ability. 

The literature informed the diagnostic test tools. Questions were written with 

consideration of Prather and Alibali's (2009) knowledge assessment types. Research in this 

field has operationalised additive reasoning in a range of ways that overlap the work of 

Prather and Alibali (2009). Baroody (1999) asked participants whether one addition or 

subtraction expression could help to solve a related addition or subtraction question; after 

this, participants were asked to justify their answer. A range of studies using a similar method 



33 
 

has been completed (Cowan et al., 2011; Ding & Auxter, 2017; Dowker, 2014; Gilmore & 

Spelke, 2008). Canobi (2005) examined additive reasoning in a population of seven to nine 

year-olds, albeit using interviews rather than written responses. Participants had to evaluate 

whether a puppet needed to use counters to solve a calculation after the puppet had solved a 

related question. After an addition calculation, participants were provided with a 

commutative addition question and subtraction inverse question, 25 + 24 = 49 followed by 

24 + 25 = 49 and 49 – 25. After a subtraction problem, an addition inverse and subtraction 

complement problem were provided, 64 – 21 = 43, followed by 21 + 43 and 64 – 43 = 21. 

Participants were required to decide whether the puppet could use the previous calculation to 

solve the problem. Canobi (2005) labelled these sub-concepts of additive reasoning: 

commutativity, subtraction inverse, additive inverse, and subtraction complement. These sub-

concepts were used when creating the questions in the current study (Table 3.2).   

Some of the questions included in the current study do not follow Canobi (2005).  

Dowker (2014) discusses how some errors are the result of over extension of an arithmetic 

principle, such as treating subtraction as commutative. The researcher felt that it was 

important that participants could discriminate where additive relationships exist and where 

they do not. Research in this field used similar techniques. Ching and Nunes (2017a) used 

questions to control for a response bias e.g., does 5 + 3 = 8 help you to solve 5 – 3? The 

misapplication of a principle suggests that it is not fully understood. Research has highlighted 

concerns that learners may use shortcuts without mastery of a principle (Baroody et al., 1983; 

Canobi, 2005). Therefore, in the current study, one diagnostic question asked participants to 

judge whether subtraction was commutative. Another question asked participants to judge 

whether a subtraction question could be answered after an addition question where the 

numbers remain constant but the operation changes, a + b and a – b.  Question 3 (Table 3.2) 

uses application of procedures not explanation and justification (Prather & Alibali, 2009). 

The ability to derive three related facts from a given fact is a defining construct of additive 

reasoning (Ching & Nunes, 2017b). Therefore, participants in this study were asked to 

provide other related number facts when given an addition fact.  The numbers used in this 

question were selected to discourage or inhibit the use of calculation. 

In summary, the literature informed the design of the diagnostic questions (Appendix 

D). It was felt that evaluation and justification of procedures questions (Prather & Alibali, 

2009) provided the most reliable data required to answer research question two. For all but 

one of the questions, participants were provided with an example of another person’s 

mathematical thinking and were asked to evaluate whether that knowledge could be applied 
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elsewhere. Participants were then asked to provide a written justification. Previous research 

in this field also provided participants with the opportunity to explain answers (Canobi, 2005; 

Ding & Auxter, 2017).  However, it is important to note other work has suggested that asking 

students to explain strategies might encourage more flexible responses (Gilmore & Spelke, 

2008). This might be considered a limitation of this data collection method. 

 
Table 3.2 

Diagnostic questions used with links to literature 
Question  Questions Additive reasoning 

focus 
Assessment type 
(Prather & 
Alibali, 2009) 

Theoretical basis 

1 If Mark knows that 234 + 574 = 808, can he 
use this to solve the problem below?         
 

                      — 234 = 574 

 

Yes            No             Not sure 

Explain your answer 

 

Find a missing 
minuend when 
given the 
corresponding 
addition fact 
 

Evaluation and 
justification of 
procedures 

Subtraction 
inverse 
(Canobi, 2005) 

2 If Mark knows that 1 – 0.12 = 0.88, can he 
use this to solve the problem below? 
 

   0.12  +                 = 1 

 

Yes            No             Not sure 

Explain your answer 

 

Identify a missing 
addend when 
provided with 
related subtraction 
fact 

Evaluation and 
justification of 
procedures 

Additive inverse 
(Canobi, 2005) 

3 If Mark knows, 398 + 777 = 1175, what 

other number sentences can he make with 

these three numbers?  

Identify three 
related facts from 
one addition fact 

Application The definition of 
additive 
reasoning (Ching 
& Nunes, 2017b) 

4 If Mark knows 177 + 383 = 560 can he use 
this to solve 383 + 177? 
 

Yes            No             Not sure 

Explain your answer 

Understand the 
commutative law of 
addition 

Evaluation and 
justification of 
procedures 

Commutativity 
(Canobi, 2005) 

5 If Mark knows 177 + 383 = 560 can he use 
this to solve 383 – 177? 
 

Yes            No             Not sure 

Explain your answer 

Understanding the 
process of, and 
difference between, 
addition and 
subtraction. 

Evaluation and 
justification of 
procedures 

Over extension/ 
misapplication of 
principles 
(Dowker, 2014) 

6 If Mark knows the answer to 577 – 434, can 
he also solve 434 – 577? 
Explain your answer 

 

Yes            No             Not sure 

Understand that 
subtraction is not 
commutative 

Evaluation and 
justification of 
procedures 

Over extension/ 
misapplication of 
principles 
(Dowker, 2014) 
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3.9 Empty box test 
 

After completing the diagnostic questions, participants attempted the empty box test (Figure 

3.1). The empty box test was designed to operationalise additive reasoning. Participants were 

required to place the correct number in the empty box (Appendix B) in an addition or 

subtraction calculation. The position of the empty box varied from question to question but 

was never located after the equals sign to distinguish between these types of questions and 

questions that were asked in the fluency tests. Similar questions to these were used as part of 

the National Education Monitoring Project and were identified as challenging for 

approximately one third of year 8 students (Crooks, 2010).  All calculations used only whole 

numbers and all questions involved bridging 10. The empty box test was presented in a 

similar format to the fluency test instrument; however, only 29 questions were provided. 

During piloting, performance on this test indicated fewer completed questions in comparison 

to the fluency test. The researcher was cognisant that participants should feel positive about 

the current study and therefore reduced the number of questions on the page. They were 

given two minutes to complete as many questions as possible. Participants completed this test 

in silence and were not provided with manipulatives. As with the fluency test, addition and 

subtraction questions alternated.  The rationale for this data collection method will be 

explained alongside the rationale for the conceptually ordered fluency test (COF) (Section 

3.10). 

 

 
 
 
 
 
 
 
 

Figure 3.1. Empty box test example 
 

3.10 The conceptually ordered fluency test 

After the empty box test, participants completed the COF test. This test was presented in a 

similar fashion to the fluency test with questions of the same difficulty. However, questions 

were ordered so that related addition and subtraction facts were grouped together. Questions 

did not alternate between addition and subtraction. Within each set of four questions, two 
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subtraction questions and two addition questions were presented. The four questions contain 

the related addition and subtraction facts (a + b = c, b + a = c, c – a = b, c – b = a) in various 

orders. Participants completed as many questions as they could in silence for two minutes and 

were not provided with any manipulatives. They were encouraged to answer questions in 

order by working down the columns but were allowed to skip any questions they found too 

challenging.  Previous work in this field has measured conceptual understanding in the field 

of additive reasoning by providing participants with related calculations (Canobi et al., 1998; 

Gilmore & Spelke, 2008).   

The literature informed the use of COF and empty box tests. Canobi (2009) highlights 

the challenge of extracting conceptual understanding of additive reasoning from participants 

as learners may not be able to verbalise their understanding. Torbeyns et al. (2016) used non-

verbal data measures when investigating the complement principle. This study used a looking 

back task where a previous question at times provided the answer to a target question; this 

research called for the increased use of non-verbal data when measuring the complement 

principle. In light of this research, diagnostic questions alone may not adequately 

operationalise additive reasoning; therefore, the empty box and COF test aim is to 

operationalise understanding of additive reasoning using a task which does not require verbal 

explanation. 

 

 

 

 

 

 

 

 

 

Figure 3.2. Conceptually ordered fluency test questions example 

 

The fluency, empty box and COF tests constituted the pre and post-tests. Although these tests 

were designed to operationalise different concepts, they are very similar. To reduce testing 

effects, the researcher separated these during the data collection phases. As the fluency and 

COF tests are most similar, these were placed at the start and end of the data collection 

process respectively. 
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3.11 Semi-structured interviews 

 

The aim of the interviews (Appendix E) was to examine perceptions of the intervention, 

manipulatives, and changes in mathematical understanding. This provides data for research 

questions 3 and 4. Participants were also asked one verbal diagnostic question which was 

similar to an evaluation of procedure diagnostic question. However, in line with Johnson 

(2014) who discusses the importance of sensitivity when conducting an interview, a decision 

was made on whether to ask a further diagnostic question based on each individual 

participant’s responses and demeanour during the interview; for example, should a 

participant respond negatively to all the interview questions, leading the interviewer to feel 

that a further mathematical question would be damaging, then the diagnostic question was 

not asked. This was particularly important considering the maximum variation sampling used 

for the interviews. 

 The rationale for including a verbal diagnostic question to focus on research question 

2 is that it allowed for the use of the responsive nature of semi-structured interviews in 

comparison to the less responsive diagnostic questions in the pre-test/post-test (Creswell, 

2014).  Furthermore, the research questions focus on the use of structured manipulatives. It 

was felt that a verbal diagnostic question afforded the opportunity to examine how 

participants used and perceived the manipulatives more closely, adding richness to the study. 

Participants were provided with manipulatives during the semi-structured interview. 

 This study used the interview guide approach to collect qualitative data (Johnson & 

Christensen, 2014). This approach is described as using an interview protocol (Appendix E) 

to explore specific questions or issues. The approach allows the interviewer to change the 

wording and order of questions, and to ensure that the content of the interview provides data 

relating to the research questions (Johnson & Christensen, 2014). This method of 

interviewing was chosen as it allowed the researcher the flexibility to explore the research 

questions using language familiar to the student.  Another strength of this data collection 

method is the conversational nature of the interview (Johnson & Christensen, 2014). Many of 

the students in this study are relatively young and lack confidence and experience when 

articulating their learning goals and needs. Ethically, it was vital that participants were at ease 

and, from a research viewpoint, it was felt that the data would be more trustworthy if the 

students felt comfortable. However, Johnson and Christensen (2014) highlight some issues 

with this approach. Specifically, the interviews can differ considerably and this reduces their 
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comparability. This is a possible limitation. As maximum variation sampling was used, this 

interview method allows flexibility for the researcher to adapt the interview wording and 

order for each participant where necessary whilst still collecting data aimed at answering the 

research questions. The maximum variation sampling selects a more heterogenous sample 

from the original participants and it was felt that flexibility was key during qualitative data 

collection to explore the research questions fully. 

 Creswell (2014) highlights the importance of using an interview protocol. This tool 

was used to provide structure and consistency to the interview and to ensure that appropriate 

data were collected to answer the research questions (Appendix E). The interview protocol 

used in this study follows the guide produced by Creswell (2014).  All interviews began with 

the interviewer thanking the participant and informing them that the interview was about the 

mathematics intervention. Participants were told that they could stop the interview at any 

point. Also, participants were informed that there were no correct or incorrect answers and 

that they would not get into trouble for answers provided in an attempt to build trust 

(Johnson, 2014). The interviewer/researcher was a teacher at the school of the participants 

and it was important that any power relations were diminished. The interviewer made 

verbatim notes during the interview. These verbatim notes were read back to the participant 

to check for accuracy.  

 Johnson (2014) discusses the importance of impartiality when conducting interviews 

and to ensure reactions are neither positive nor negative. The interviewer was conscious of 

maintaining this impartiality during the interview. The wording of questions was 

intentionally neutral (Appendix E). Furthermore, questions were worded to elicit rich data to 

answer the research questions. Should a participant provide ambiguous answers, probes from 

Johnson (2014) were also used to clarify answers or explore a participant’s response further 

(e.g., What do you mean?).  
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Table 3.3 

Interview questions for exploring students’ perceptions  

Interview question Rationale/purpose 
How did you feel about the 

intervention? 
To build trust and legitimise the voice of the interviewee 

 
 

To explore perceptions of the intervention 
 
 
 

To explore participants’ perceptions of the intervention and 
their learning 

Can you explain why you felt 
RESPONSE A about the 

intervention? 
 

What effect do you think the 
intervention has had on your 

maths? 
(Point to manipulatives) Can you 

talk to me about these? 
To explore participants’ perceptions of the manipulatives 

 

In summary, a range of data collection tools was utilised in this study. Participants completed 

a fluency test to operationalise recall of basic addition and subtraction facts. After completing 

the fluency test, participants were asked to self-report how they answered the questions. 

Diagnostic questions were presented next and these were written with the aim of 

operationalising a range of additive reasoning sub-concepts. Next, the empty box test 

provided a range of addition and subtraction questions with an empty box placed before the 

equals sign. A conceptually ordered fluency test (COF) provided a range of addition and 

subtraction questions. Questions were specifically ordered based so that each group of four 

questions were from a fact family. The COF and empty box tests were designed to 

operationalise additive reasoning without relying on participants’ verbal or written responses. 

All of these tests were completed before the intervention and again after the intervention. 

Upon the completion of the post-tests, four participants were invited to take part in semi-

structured interviews and were purposefully selected using maximum variation sampling. The 

semi-structured interviews operationalise perceptions of the intervention and manipulatives, 

but also include one diagnostic question to utilise the responsive affordance of an interview. 

 

 3.12 The current study context 

 

The study was carried out in an intermediate school in the South Island of New Zealand 

where the researcher was a teacher. The school has approximately 500 students and 20% of 

these identify as Maori. The school was a convenience sample chosen to enable easy access 
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to participants who met the criteria for the study. The sample is small and the researcher has 

limited access to participants suitable for the study. 

Year 7 and 8 students were selected as a focus for the study as these year groups fall 

within an age range where underachievement in mathematics persists in New Zealand 

(Chamberlain, 2013) and at a crucial time for influencing their future mathematical 

achievement and success before joining college.  Lee (2010) identified the diminishing gains 

in mathematical achievement from primary school to middle school, and from middle school 

to secondary school. This suggests that finding effective means of acceleration at years 7 and 

8 is crucial.  

After gaining ethical consent from the Victoria University of Wellington Human 

Ethics Committee, the researcher wrote to the principal of the school selected for this study, 

informing him of the study. Once the principal had given permission for the study to take 

place, the researcher wrote to other teachers at the school asking them to nominate possible 

participants. Participants were to be fluent English speakers, not have a diagnosed special 

need, and be working at level two or early level three of the New Zealand curriculum in 

mathematics. Teachers were also asked not to nominate students who might experience harm 

from the intervention. After nomination, students and parents were provided with separate 

information and consent forms (Appendix F).  Eleven participants agreed to participate in the 

intervention. 

 

3.13 Intervention outline 

 

The intervention took place once a week for seven consecutive weeks. Sessions were 

conducted after the school day and each session lasted approximately 45 minutes and took 

place in a classroom of the school that participants attended. 

Participants were invited to sit where they wanted and they could choose to sit with 

peers or alone. Both types of structured materials (Numicon and Cuisenaire rods) were 

readily available for participants to use. Sufficient supplies of these manipulatives were 

available so that participants could select the manipulative they preferred or use both types. 

Participants were also provided with writing equipment.  

A key aspect of the intervention was that sessions were responsive to the needs of the 

participants. Therefore, the seven intervention sessions were not planned before the 

intervention. The previous session informed the content of the next session. Opportunities for 

discussion and explanation were seen as teaching moments. However, aspects of each 
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intervention session were consistent. Participants were encouraged to familiarise themselves 

with the equipment during each session. Furthermore, they were encouraged to orient the 

manipulatives to model the actions of the addition and subtraction questions. Participants 

were only encouraged to use the manipulatives if they had made a mistake or were observed 

counting by the researcher. It is possible to use the Numicon shapes as tools for counting 

strategies. If the researcher observed this, participants were encouraged to orient the shapes 

against a ten and use visual strategies to solve the problem. Furthermore, they were taught 

using terms that help to generalise additive relationships: part + part = whole and whole – 

part = part. Baroody (1999) suggests highlighting the parts and whole to teach the 

complement principle, citing personal communication with Fuson, “she conjectured that 

noticing the relation between such related subtraction combinations (Whole – Part 1 = Part 2 

and Whole – Part 2 = Part 1) might be the critical discovery in understanding the complement 

principle”  (p. 170). 

Another consistent feature of intervention sessions was the teaching of both fluency 

and additive reasoning. At the beginning of each session, for approximately ten minutes, 

participants were given an opportunity to practise addition and subtraction facts. These 

questions were of the same difficulty as the questions in the pre-test and post-test (Appendix 

A). Participants were encouraged to use the manipulatives to help calculate or check the 

answers to questions. After practising fluency, the intervention moved on to practising an 

area of additive reasoning.  This used a variety of techniques such as empty box questions, 

and ordered sets of calculations (a + b = c, c – b = a). 

A consequence of the responsive nature of the intervention was that other areas of 

mathematics were discussed and taught alongside additive reasoning. Algebraic notation was 

also used to help learners to generalise this relationship, a + b = c and, c - b = a. Furthermore, 

when teaching participants about the commutative nature of addition, and that subtraction 

was not commutative, participants increased their knowledge of negative numbers.  

 

3.14 Analysis of fluency/empty box/conceptually ordered fluency tests 

 

As the study design collected data in a range of ways, a range of tools was used to complete 

the analysis. Analysis of each data collection method will be discussed respectively. 

All three tests (fluency, empty box, COF) were measured using the same scale.  

Previous research in the field of fluency used the measure mean correct digit per minute 

(DCM) to measure fluency (Burns, Codding, Boice, & Lukito, 2010). For a response such as 
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7 + 8 = 15, participants would score two points as both digits are correct and in the correct 

position. If the participant had answered the same question with ‘51’ this would result in a 

score of 0 as the digits are not in the correct position. An answer of ‘16’ would score one 

point for the position of the digit one. Descriptive statistics were collated for each test at pre-

test and post-test respectively. Inferential statistics (t-tests) were used to compare each test at 

pre-test and post-test because, although these tests are measured using the same scale, it was 

expected that they will operationalise different items. Correlation coefficients were obtained 

to gain an insight into participant performance on the three tests at both time points, and to 

examine whether the three tests operationalise different constructs.  After completing the 

fluency test, participants were asked to self-report their calculation strategies (Section 3.6). 

These qualitative data were coded inductively.  Some statements were double coded. This 

reflects the research that learners often use a range of strategies to calculate (Siegler, 1987). 

 

3.15 Analysis of diagnostic questions 

 

The majority of the diagnostic questions required participants to answer ‘yes’, ‘no’, or ‘not 

sure’ and then to provide a justification for the chosen answer (Appendix D). Answers 

provided by participants were coded using a priori codes. The rationale for the use of a priori 

codes links to the construct being operationalised in research question 2: additive reasoning.  

Each diagnostic question operationalises a different area or concept within additive 

reasoning. A priori codes allow data to be enumerated across the different concepts spanning 

additive reasoning. The a priori codes (Table 3.3) that were used are similar to those used by 

Ding and Auxter (2017). Further, this affords analysis of whether the intervention is more 

effective at developing some areas of additive reasoning than others (Canobi, 2005). Despite 

the use of a priori codes, the researcher was prepared to change codes and use inductive 

coding if the a priori codes did not fit responses from students. The data analysis completed 

with diagnostic questions required some decision making regarding whether a participant’s 

response is mathematically acceptable. Ding and Auxter (2017) argue that it is important to 

be aware of answers that are correct but do not have a justification as this may not indicate a 

lack of understanding.  The codes and categories used reflect this consideration. 
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Table 3.4 

 A priori codes used for diagnostic questions 

Code Category 
Not sure ticked Incorrect 

Incorrect answer Incorrect 
Correct box tick but incorrect explanation Incorrect 

Correct box ticked but no explanation or participant states 
they cannot explain 

Correct box ticked but no explanation 

Correct box ticked with mathematically acceptable 
justification 

Correct 

 

One diagnostic question was coded differently. Participants were asked to provide related 

facts when provided with one addition fact. They were asked to use the same three numbers 

in the original equation. Again, the researcher used a priori codes (Table 3.5) when analysing 

these data. It is important that the codes reflect possible misconceptions that participants 

have; for example, a participant including the equations a – b, and b – a, would be coded as 

Equations provided (some incorrect and some correct). This suggests that the participant has 

some understanding of the relationship between addition and subtraction but does not yet 

understand that subtraction is not commutative. As well as allowing for identification of 

misconceptions, the codes afford a way of measuring the developing understanding of 

principles, laws and relationships. Inductive coding was a consideration if these a priori 

codes were not suitable. 

 

Table 3.5 

Codes used for analysing related fact diagnostic question 

Code 

No equations provided 

Only incorrect equations provided 

Equations provided (some incorrect and some correct) 

One or more of the correct equations provided (no incorrect equations) 

All three correct equations provided (no incorrect equations) 
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3.16  Analysis of the semi-structured interviews 

 

Coding of the data was completed inductively as this research aimed to augment the body of 

literature on additive reasoning and fluency in year 7 and 8 students rather than use an 

existing schema (Johnson, 2014). The coding of these data used a phenomenological 

approach, examining how the four interviewees experienced the intervention. In order to get 

participants to relive the experience, the semi-structured interviews were designed with 

questions to prompt participants with the intervention to help remind them of it (Johnson, 

2014). The essence of participants’ experience was reported with the questions were asked 

using verbatim quotes. 

 

3.17 Validity and trustworthiness 

 

Johnson (2014) describes validity as, “The accuracy of the inferences, interpretations, or 

actions made on the basis of a test score” (p. 172).  Internal validity can be defined as, “The 

ability to infer that causal relationship exists between two variables” (Johnson & Christensen, 

2014, p. 281). Single-group designs, such as the one used in this research, present threats to 

internal validity as any changes in responses gained from pre-test and post-test could be the 

result of a range of confounding variables rather than the intervention. History can be defined 

as any events that happen between the pre-test and post-test that might result in changes in 

the dependent variable (Johnson, 2014). When examining this study, history needs to be 

considered as the participants came from different classes in the school. It was not possible to 

control for the type, amount, or quality of mathematics being taught in participants’ 

respective classrooms during the intervention. Furthermore, being selected for the 

intervention might have triggered participants to focus more on mathematics at home. 

Although these threats to internal validity need to be considered, Johnson (2014) does state 

that history is most problematic during lengthy interventions and this intervention lasted only 

seven weeks, so it might be argued that history is less problematic in the present study. 

Maturation is another threat to internal validity that needs to be considered. Johnson 

(2014) defines maturation as “mental changes that may occur in individuals over time” 

(p. 285). Any changes from pre-test to post-test may be the result of maturation rather than 

the intervention. Again, it might be argued that threats from maturation are less problematic 

due to the short nature of this intervention. 
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Testing is the phenomenon of participants’ improved results on a test occurring 

because they have previously completed the same test. Again, the study design used in this 

research is vulnerable to this threat due to the same test being used before and after the 

intervention. Johnson (2014) discusses how familiarity with the content of a test can boost 

performance. This study tried to mitigate against this somewhat by not providing participants 

with feedback on their performance after the pre-test, and students not having access to the 

test during the intervention. However, it is possible that testing is a threat to internal validity.  

External validity is defined as, “the extent to which the results of a study can be 

generalised to, and across populations” Johnson (2014, p. 291). The sample selected for this 

study was not randomly selected from the target population but was a convenience sample 

nominated by class teachers.  Therefore, any generalisations from the study will be limited, 

but may provide direction for future research. Furthermore, it will not be possible to 

generalise the findings to other settings as it was difficult to control for effects of the teacher 

in this study. Pedagogical content knowledge, subject knowledge, relational aspects of 

teaching, and the ability to provide effective feedback may vary depending on who is 

implementing the intervention (Hattie & Timperley, 2007; Shulman, 1986). As such, the 

study lacks ecological validity which can be defined as the ability to generalise results across 

studies (Johnson, 2014). This links closely with the concept of treatment variation validity, 

“the ability to generalize the results across variations” (Johnson, 2014, p. 294). As stated 

previously, varying the teacher implementing the research may lead to different outcomes. 

When considering treatment variation validity, it would also be salient to consider the 

number of participants in the group. There was a considerable amount of student to student, 

and student to teacher talk within the intervention, and changing the size of the group may 

impact on this negatively or positively. The intervention was very much in response to the 

participants; the structured manipulatives only formed part of the treatment. It is not possible 

to completely separate the effectiveness of the structured manipulatives from other aspects of 

the intervention. Future research might use a control group to examine this more closely. 

Another consideration could be the behaviour of participants. Participants who are more or 

less likely to share their mathematical thinking may alter results.  This is especially salient as 

the intervention was responsive to comments made by participants. Furthermore, this study 

took place after the school day. We cannot generalise findings from the study to interventions 

completed during the school day due to students being more tired at the end of the school day 

and the possible stigma that low-achieving peers may feel by being involved in extra 

mathematics learning time. 
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Validity or trustworthiness is also applicable to qualitative research and can be 

defined as research that is “plausible, credible, trustworthy, and therefore defensible” 

(Johnson, 2014, p. 299).  Johnson highlights a range of strategies to increase validity such as 

a critical friend providing feedback to the researcher. This strategy was used during the 

research as the researcher’s supervisor provided regular feedback. 

The data from the interviews were coded and verbatim quotes were used during the 

analysis. Furthermore, characteristic to the phenomenological approach, bracketing occurred 

before analysis of the interviews. This was an attempt at reducing researcher bias through the 

conscious removal of preconceived ideas (Johnson, 2014). Moreover, maximum variation 

sampling was used when selecting participants for the interview phase. Within this, there 

were some cases that could be defined as negative cases (i.e., students who made the least 

amount of progress on the fluency measure). Johnson (2014) states that negative case 

sampling is a useful strategy in mitigating for research bias as these cases can disconfirm 

beliefs that the researcher holds. Finally, the researcher attempted to increase trustworthiness 

through a study design that maximised opportunities for triangulation. Table 3.1 shows how 

multiple data collection methods were obtained in an attempt to corroborate one another and 

provide rich data. 
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Chapter 4 
 
 
The description of data analysis will be carried out in the same order as the data collection 

methods were administered as is appropriate for presenting results of a sequential explanatory 

design study. One participant did not complete the intervention; the data presented are from 

the remaining ten participants only.  

 

4.1 Descriptive statistics show increase in mean correct digits between pre-test and post-

test for all test instruments 

  

Participants completed six tests (fluency, empty box, and COF) before and after the 

intervention. Across all the three tests, participants’ mean correct digits per minute (MCD) 

increased from pre-test to post-test (Table 4.1). Measures of standard deviation showed that 

the spread of participants’ scores also increased from pre-test to post-test for all test 

instruments (Table 4.1). The data were examined for normal distribution. Skewness and 

kurtosis were within the range of -2 and 2 for all data sets. Further to this, a Shapiro-Wilk test 

for normal distribution suggests that all data sets are normally distributed, p>.05. However, it 

is important to take into account the small sample size (10) used in this study when 

considering normal distribution. 

 

Table 4.1  

Mean (M) and Standard deviations (SD) from quantitative tests (Mean digits correct per 
minute) 

Fluency Pre-test Fluency 

Post-test 

Empty box 

Pre-test 

Empty box 

Post-test 

Conceptually 

ordered Pre-test 

Conceptually 

ordered Post-test 

M = 9.8 

SD = 3.3 

M = 16.4 

SD = 5.8 

M = 3.1 

SD = 2.7 

M = 5.4 

SD = 3.5 

M = 8.8  

SD = 4.3 

M = 13.4 

SD = 5.2 

Note: N = 10, means and standard deviations to 1 decimal place. 
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4.2 Inferential statistical analysis demonstrating significant improvements from pre-test 

to post-test 

  

Three dependent sample t-tests were used to compare the differences between MCD at pre-

test and post-test for all three test instruments respectively. Bonferroni’s correction was used 

to modify alpha levels to p = 0.017.  

Despite the small sample size, it appears that the mean scores of all tests are 

significantly different at pre-test and post-test (Table 4.1). There was a significant difference 

in the scores for fluency at pre-test (M=9.8, SD=3.3) and post-test (M=16.4, SD=5.8); 

t(9)=4.34, p = 0.0018. There was also a significant difference in the scores for empty box at 

pre-test (M=3.05, SD=2.7) and post-test (M=5.35, SD=3.5); t(9)=3.45, p = 0.007. There was 

a significant difference in the scores from COF at pre-test (M=8.8, SD=4.3) compared to 

post-test (M=13.35, SD=5.2); t(9)=3.47, p = 0.007. 

  The differences between proponents of the drilling of procedural knowledge and the 

more conceptually driven flexible approach to arithmetic development have been discussed 

(Section 2.4). Research discussing the intertwined relationship between fluency and additive 

reasoning was shared (Section 2.12). Therefore, correlation coefficients were obtained from 

MCD scores on the fluency test and the empty box test at both pre-test and post-test. Pearson 

correlation coefficients were found for the fluency and empty box test at pre-test (0.67) and 

post-test (0.83). However, this improvement in correlations was not statistically significant. 

Before the intervention, the relationship between scores on the two test instruments was 

positive and moderately correlated. After the intervention, the scores from both tests were 

more closely correlated but this change was not significant. Future research might examine 

these tools further to gain a deeper understanding of the intertwined nature of conceptual and 

procedural understanding. 

The moderate correlation of fluency and empty box at pre-test provides some 

evidence to suggest that participants were able to answer fluency questions (possibly using 

counting strategies) but this did not equate to performance on the empty box test. Although 

performance on the two tests was more strongly correlated at post-test, the change was not 

significant. 
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4.3 Inferential statistics highlighting that the test instruments used operationalised 

different constructs 

  

The three test instruments were designed to operationalise similar but different constructs. 

This study aimed to augment the body of the literature on fluency and additive reasoning by 

combining a range of data collection methods (Prather & Alibali, 2009; Torbeyns et al., 

2016). Therefore, it is pertinent to examine whether fluency, empty box, and COF tests did 

operationalise different constructs. The moderate correlation coefficients found at pre-test 

(Section 4.2) suggest that the fluency and empty box tests may operationalise different 

constructs. Inferential statistics were used to examine the differences in means between all 

three tests at pre-test in an attempt to strengthen the notion that the three test measures 

operationalise different constructs and inform any analysis of data collected from these tests. 

The decision to examine the means between tests at pre-test rather than post-test was justified 

by considering any possible improvements in scores due to the intervention, maturation or 

testing effects. Bonferroni’s correction was used to modify alpha levels to p = 0.017 (3dp). 

There was a significant difference in the mean scores (Table 4.1) for fluency at pre-test 

(M=9.8, SD=3.3) and empty box at pre-test (M=3.05, SD=2.7); t(9)=8.66, p = 0.00001. There 

was not a significant difference in the scores for fluency at pre-test (M=9.8, SD=3.3) and 

COF at pre-test (M=8.8, SD=4.3); t(9)=1.34, p = 0.21. There was a significant difference in 

the scores for empty box at pre-test (M=3.05, SD=2.7) and COF at pre-test (M=8.8, SD=4.3); 

t(9)=7.22, p = 0.00005. 

 T-tests comparing the test instruments at pre-test show participants performed 

significantly worse on the empty box test than fluency and COF at pre-test. This result 

provides some weight to the assertion that the empty box test instrument operationalises a 

different construct to the other two tests. Added to this, the dependent samples t-test showed 

that mean performance on the fluency and COF instruments was not significantly different at 

pre-test. The lack of significant difference at this time may have several explanations. Firstly, 

there is a possibility that these tests may operationalise similar (or the same) constructs. 

Secondly, participants may have used the same strategies on both tests at pre-test. This is 

relevant because both tests used the same difficulty of question.  It is also relevant to the 

current study which explores the possibility that counting strategies are used frequently in 

this sample.  It is possible that individual differences in strategy use might result in the test 

operationalising different constructs, and this would be a limitation of the research. 
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A difference between the COF and fluency tests was the relationally ordered 

subtraction and addition questions in the COF test rather than randomly ordered questions in 

the fluency test. It was hypothesised that participants with more developed additive reasoning 

knowledge would perform better at this test as answers could be derived from previous 

questions. It might be expected that participants’ scores would not differ significantly 

between the two test types at pre-test as participants may have been relying on similar 

strategies for both instruments. The results of the fluency and COF instruments were also 

analysed at post-test using a dependent sample t-test. There was a significant difference 

between the scores for fluency at post-test (M=16.4, SD=5.8) and COF at post-test (M=13.35, 

SD=5.2); t(9)=2.79, p = 0.02. 

Participants performed worse on the COF test compared to fluency at post-test. This 

was an unexpected result. A closer look at the data shows that only one participant scored 

higher in the COF post-test compared to the fluency post-test. There are several possible 

explanations for this. It is possible that the intervention had little or no impact on additive 

reasoning; however, the significant increase in performance on the empty box test suggests 

that there were some gains in additive reasoning. It is possible that a flawed test design 

resulted in poorer performance on the COF test. The ordered nature of the COF test was not 

made explicit, and participants were given two minutes to complete the task. Because of this, 

it is possible that participants did not realise that the questions were relationally ordered. 

Therefore, it is possible that participants did not apply knowledge and strategies they had an 

understanding of due to a lack of awareness of how the task was organised.  Another 

possibility is that individual understanding of additive principles was still developing and 

therefore participants may have been using the relationally ordered calculations, but this was 

slower than the strategies used in the fluency test. A limitation of this study is that a self-

report question was not used at the end of the COF test to explore strategy use. A final 

consideration was that the COF was the final test completed in the post-test and comparing 

the performance on this test to the fluency test (which was completed first) might not be 

reliable as participants may have become fatigued as the data collection progressed. 

  

4.4 What limitations exist in the quantitative phase of this research? 

  

Participants showed significant improvement in all three test instruments; however, an 

increase in standard deviations for all instruments (Section 4.1) suggests that not all 

participants improved at the same rate.  One explanation for this could be that despite the 
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inclusion criteria, the group was not homogenous. During the intervention, the researcher 

noted that there appeared to be considerable variation in mathematical ability and 

understanding across the group. This was evident from the varying speeds that participants 

completed exercises during the intervention. Furthermore, the researcher noted there was 

considerable variability in the mathematical language that participants used. Participants were 

not nominated for the study if they had a diagnosed special need. It is possible that some 

members of the sample had an undiagnosed special need and made less progress in the 

intervention relative to the group. Future research might select participants more 

diagnostically (and from a wider population) in order to create greater homogeneity in the 

sample.  The large variance within the small study sample makes generalisation of findings 

difficult.  

The possibility that the improvements found in the quantitative tools of the study were 

due to a testing effect need to be considered. Some evidence for this was observed when 

results were collated; specifically, a greater number of questions were skipped in the post-test 

than in the pre-test. The significant improvement in mean scores might be attributed to 

students using the same counting strategies but being more strategic with their choice of 

questions. Future research might provide students with one question at a time to increase 

reliability. Students were informed that they could skip questions in the fluency and empty 

box tests. The rationale for this was to reduce any possible anxiety and discomfort caused by 

the testing phase; however, this affordance may confound results. Another possibility is that 

participants still required the manipulatives during the testing phase, and because they had 

not been reminded to use sophisticated strategies, they returned to counting strategies. 

In conclusion, there was a significant improvement in the participants’ performance 

on the test instruments from pre-test to post-test. Inferential statistics showed significant 

differences in the three tests at pre-test suggesting they operationalise different constructs. An 

unexpected result showed significantly worse performance on the COF test compared to the 

fluency test at post-test.  

 

4.5 Analysis of diagnostic tests 

 

 Participants completed a range of diagnostic questions. In the quantitative phase of the 

research, significant improvements observed may have been the result of testing effects as the 

pre-test and post-test used the same questions. To explore the impact of the intervention 
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further using qualitative data, diagnostic questions were included in both testing phases. Each 

question aimed to operationalise a different aspect of additive understanding (Table 3.2). 

 The results of these data were coded and then categorised to provide percentages of 

responses for each category at pre-test and post-test.  The analysis provides insight into the 

specific changes in understanding during the intervention. There were two diagnostic 

questions coded differently. Firstly, participants were asked to self-report how they had 

answered the fluency questions. Secondly, participants were asked to derive addition and 

subtraction facts when given one fact. 

  

4.6 Counting strategies self-reported by participants at both pre-test and post-test 

  

After completing the fluency test, participants were asked to provide a written answer to the 

question, ‘How did you solve these?’ (Section 3.6). Participant responses provide further 

insight into the mathematical understanding and strategy use of the participants and the 

variance within the sample. At pre-test, the two miscellaneous comments were, ‘I used times 

tables’ and, ‘To make it easier, I swapped them around’. The first comment gives an 

indication of the mathematical understanding of this participant and the confusion of 

operations. The second comment suggests an understanding of the commutative law of 

addition; however, it is not clear from the participant’s response how switching 6 + 9 to 9 + 

6, for example, helped the participant to solve the calculation. Therefore, this was coded as 

miscellaneous. It could be conjectured that switching addends might make ‘counting on’ a 

more efficient strategy as the participants will count from the largest addend (Baroody, 

1987). However, without follow-up discussion with participants we cannot conjecture with 

confidence on a participant’s thoughts. 

Some participants named counting strategies such as ‘count on’ or ‘count back’ while 

others simply stated that they ‘counted’. Some participants stated that they used their fingers, 

suggesting use of a counting strategy. On one participant’s pre-test, single tally marks 

showed further evidence of counting strategies. The researcher noted a large proportion of the 

participants using fingers to count during the pre-test. This adds weight to the hypothesis that 

participants in this sample use counting strategies to solve addition and subtraction equations. 

It was hypothesised that from pre-test to post-test there would be a reduction in 

counting strategies used in the fluency and COF tests. The evidence (Table 4.2) does not fully 

support this. The same number of ‘counting’ responses were reported at pre-test and post-test.  

However, a greater number of responses were coded as, ‘memory’ or ‘arithmetic strategy’ 
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than in the pre-test. This result suggests that some participants were beginning to identify that 

they were moving away from counting strategies while other participants persisted with 

counting strategies. This is supported by results (Table 4.1) which identified the increase in 

standard deviations from pre-test to post-test.  Furthermore, the self-report comments from 

some students at post-test show a range of more sophisticated strategies being used. A lack of 

homogeneity within the sample was given as a possible explanation for this and Table 4.3 

provides further evidence of considerable variation within the sample. Table 4.3 provides 

verbatim quotes of fluency self-reports at pre-test and post-test. These have been ordered so 

that the participant with the highest fluency post-test score is at the top of the table. It is 

noticeable that retrieval strategies appear to be used more by the students with higher fluency 

scores and, students with lower fluency scores rely on counting strategies. 
 

Table 4.2  

Number of self-reported responses of strategy use in the fluency test 

  Counting strategy Memory Arithmetic strategy Miscellaneous 

Pre-test 5 2 1 2 

Post-test 5 4 2 1 

Note: responses could be coded in more than one way 
 

Table 4.3 Self-reported strategy choices in the fluency test ordered by performance 

Participant fluency score at post-test 
(MCD) 

Self-report Pre-test Self-report post-test 

26.5 For 9 + 6 you do 10 + 6 = 16 -1 = 
15 

7 + 5 = 12 
5 + 5 = 10 + 2 

21 I counted some and some I knew I just knew them 

20.5 To make it easier I swapped it 
around 

To make it easier I swapped it 
around 

19.5 By doing x tables For example 7 + 8 I knew that 4 + 4 
was 8 then I added what need to be 

added 

19 By counting with takeaway I knew some off by heart and 
thinking of the block things and 

counting and taking away 

14.5 Some I knew some I counted I counted some of them 

14 Counted them to get the right 
answer 

I knew some 
Counting 

10 Already knew them Already knew some 

10 With my fingers I use my fingers to count 

9 By using my fingers I counted on my fingers 
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When examining the fluency test instruments, inferential statistics showed significantly 

different means from pre-test to post-test. Yet, the number of responses coded as ‘counting’ 

at both pre-test and post-test remained the same. One possibility could be that some 

participants improved their performance by becoming more efficient users of counting 

strategies. However, during the intervention phase, participants were specifically asked to try 

not to count and rather to use the manipulatives to help them solve the calculations. 

Moreover, participants were not taught or reminded of counting strategies during the 

intervention, although more developed counting strategies is a possible explanation for the 

improvement, Table 4.3 appears to suggest that counting strategies are being used by the 

participants with lower fluency. Aggregating the self-reports across the sample obscures 

some of the information. It is possible that the impact of the intervention on fluency and 

frequency of counting strategies varied across the sample. A limitation of the self-report tool 

is that it gives no information on how frequently participants counted or retrieved, nor on 

how strategies adapted were based on question type or difficulty (Siegler, 1987). 

  

4.7 Analysis of diagnostic questions data collection phase: how the intervention 

impacted on understanding of additive reasoning 

 

This section will analyse how participants’ performance on the diagnostic questions changed 

from pre-test to post-test. Further, it will describe how participants’ performances on 

different additive reasoning areas varied. Section 4.8 will provide a summary of results across 

all diagnostic questions. Subsequent sections will analyse each question type. Three 

categories of coded answers are reported. Incorrect responses are the proportion of responses 

coded as Not sure, Incorrect answer or Correct box ticked with incorrect explanation. 

Correct responses are only the responses coded Correct with mathematically accurate 

explanation. It is accepted that the participants in this study may have difficulty articulating 

their understanding and this difficulty may be characteristic of participants’ current levels of 

mathematical achievement (Torbeyns et al., 2016). Therefore, correct answers without an 

explanation will also be shared. 
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4.8 Summary of diagnostic questions showing an improvement in additive 

understanding 

 

When examining responses to the diagnostic questions, it can be seen that 34% of correct 

answers were supplemented with a mathematically correct or acceptable explanation at post-

test. In comparison, 8% of answers were coded this way at pre-test (Table 4.4). This suggests 

an improvement in accuracy and understanding of additive reasoning over the time of the 

study. At pre-test, 12% of participants gave a correct answer with either no explanation or 

noting that they could not explain their answer. This increased to 20% at post-test. These 

figures need to be interpreted with caution due to the lack of explanation, and therefore, the 

possibility of a participant randomly selecting the correct answer. A limitation of the 

diagnostic questions would be the inability to ask follow-up questions to clarify responses. 

However, the lack of nuance in this data collection method was partly addressed by a 

diagnostic question asked during semi-structured interviews (Section 4.23). 

 Table 4.4 shows that 80% of answers at pre-test were categorised as incorrect. At 

post-test, this reduced to 44%. These results suggest that the sample made some progress 

identifying and explaining key additive structures over the intervention. However, even at 

post-test, 44% of answers were categorised as incorrect.  Furthermore, the averaging of 

percentages across question types obscures information. For example, the 8% of correct 

answers at pre-test were all from the same question: assessing understanding of the 

commutative law of addition. 

 

Table 4.4  

Percentage of answers across diagnostic question types that could be coded homogeneously 

 Not sure Incorrect 
answer 

Correct box 
ticked but 
incorrect 

explanation 

Correct box 
ticked but no 

response/I can’t 
explain 

Correct with 
mathematically 

accurate 
explanation 

Pre-test 46% 26% 8% 12% 8% 

Post-test 18% 22% 4% 20% 34% 
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4.9 Some participants showed a shift in ability to find a missing minuend when given the 

corresponding addition fact 

 

Participants were asked whether it would be possible to find a missing minuend when 

provided with one of the two related addition facts. The two addends of the addition fact total 

the missing minuend. The subtrahend and difference are the same numbers used as addends 

in the given fact. During the pre-test, no students provided a correct answer with an accurate 

explanation (Table 4.5). At post-test, 20% of responses were coded as correct with an 

explanation. Further to this, 40% of students ticked the correct answer yet were unable to 

give an explanation compared to 20% at pre-test. At pre-test, 80% of answers were coded as 

incorrect with responses of: Not sure, incorrect answer or correct box ticked with incorrect 

explanation. Forty percent were coded the same way at post-test. A greater number of 

students were able to explain why it is possible to find a missing minuend from a related 

addition fact at post-test; however, this area of additive reasoning appeared particularly 

challenging to acquire and the majority of participants failed to answer this question. 

  

Table 4.5 

Finding a missing minuend  (From 234 + 574 = 808 can you solve ? – 234 = 574) 

 Not sure Incorrect 
answer 

Correct box 
ticked but 
incorrect 

explanation 

Correct box 
ticked but no 

response/I can’t 
explain 

Correct with 
mathematically 

accurate explanation 

Pre-test 30% 30% 20% 20% 0% 

Post-test 20% 0% 20% 40% 20% 

 

 
4.10  The intervention had limited impact on participants’ ability to identify a missing 

addend when provided with a related subtraction fact 
  

Participants were asked to find a missing addend when given a related subtraction fact. At 

pre-test, 80% of answers were incorrect (Table 4.6) and 0% of participants provided a correct 

answer with explanation. At post-test, this increased to only 10%. Overall, participants 

performed poorly when trying to identify a missing addend when given a related subtraction 

fact at both pre-test and post-test.  It is possible that the use of decimals in the questions may 
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have been a contributing factor; however, research discussed in Section 2.2 highlighted how 

manipulating an addition fact to find a minuend was challenging. 

 

Table 4.6  

Missing addend when provided with related subtraction fact (If Mark knows that 1 - 0.12 = 
0.88 what is 0.12 + ? = 1) 
 

  Not sure Incorrect 
answer 

Correct box 
ticked but 
incorrect 

explanation 

Correct box 
ticked but no 

response/I 
can’t explain 

Correct with 
mathematicall

y accurate 
explanation 

Pre-test  60% 10% 10% 20% 0% 

Post-test  50% 20% 0% 20% 10% 

  
 

4.11 Participants showed an increase in their ability to identify related addition and 

subtraction facts 
 

Participants were asked to provide related addition and subtraction facts when provided with 

one addition fact. The coding for this question was adapted to consider possible responses 

which included a misapplication of additive relations. For example, if I know 7 - 3 then I also 

know 3 - 7. A response like this would be coded as ‘some correct facts combined with 

incorrect facts’. The researcher accepts that, for the example provided, knowledge of the fact 

7 - 3 = 4 can be applied to 3 - 7 = - 4; however, no responses identified a negative number 

being derived this way. At pre-test, no participants attempted this question (Table 4.7). There 

was an improvement at post-test; only 10% of participants did not respond while 60% of 

participants provided the addition fact in its commutative form and the two related 

subtraction facts. Twenty percent of participants provided some of the possible facts while 

one participant (10%) responded with some correct and incorrect facts. This evidence 

suggests that participants at the beginning of this study did not have an understanding of the 

relationship between addition and subtraction. After the intervention, a greater number of 

participants were able to demonstrate an understanding of the relationship between addition 

and subtraction.  Moreover, participants were able to identify this relationship with numbers 

that were challenging. 
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Table 4.7  

Finding three related facts when given one addition fact (If Mark knows, 398 + 777 = 1175 

what other number sentences can he make with these three numbers?) 

 No answer Only incorrect 
facts provided 

Some correct 
facts combined 
with incorrect 

facts 

Some available 
facts given (all 

correct 

All available 
facts given 

Pre-test 100% 0% 0% 0% 0% 

Post-test 10% 0% 10% 20% 60% 

  
 
4.12 A greater number of participants had an understanding of the commutative law of 

addition after the intervention 

 

At pre-test, 40% of participants identified that a second addition fact could be derived from 

one addition fact and gave a correct mathematical explanation. This is surprising given that 

the previous question (given one addition fact what other number sentences could be made 

with these three numbers?) had 0% correct answers whereas 40% percent of participants 

could answer a commutative question correctly at pre-test. It is important to note the 

differences in question type. It is also possible that the difference in correct answers on these 

two question types is due to the assessment type (Prather & Alibali, 2009). Identifying linked 

addition and subtraction questions may be less cognitively challenging than deciding whether 

one calculation can help answer another and explaining why. The commutative question 

yielded the greatest improvement from pre-test to post-test in that 90% of participants could 

identify and explain use of the commutative law at post-test. 

 

Table 4.8  

Understanding commutative law of addition (If Mark knows, 177 + 383 = 560 can he use this 

to solve 383 + 177?) 

 Not sure Incorrect 
answer 

Correct box 
ticked but 
incorrect 

explanation 

Correct box 
ticked but no 

response/I can’t 
explain 

Correct with 
mathematically 

accurate 
explanation 

Pre-test 30% 10% 0% 20% 40% 

Post-test 0% 0% 0% 10% 90% 
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4.13 Participants still had limited understanding of the different operators when 

numbers remained the same 
  

One of the challenging aspects of the symbolic notation of mathematics is that subtle changes 

in notation and order can be mean significantly different actions and answers (Haylock, 

2010). The previous diagnostic question (Section 4.12) measured whether participants 

understood a + b = b + a. This diagnostic question asks whether there is a relationship 

between a + b and a - b. At pre-test, 70% of participants provided answers that were coded as 

Not Sure; the remaining 30% of answers were incorrect. At post-test, only 10% of answers 

were coded as Not Sure while 50% of answers were incorrect (Table 4.9). Of the incorrect 

answers ticked, only one provided an explanation, ‘Yes, it’s just turned around.’ This 

suggests that participants are developing conceptual understanding of addition and 

subtraction yet misapplying this understanding to make incorrect generalisations. The 

majority of participants in this sample were unable to correctly answer this question.  

 

Table 4.9 

 Understanding the process of, and difference between, addition and subtraction. Can we find 

383 – 177 from 383 + 177? 

 Not 
sure 

Incorrect 
answer 

Correct box 
ticked but 
incorrect 

explanation 

Correct box 
ticked but no 

response/I 
can’t explain 

Correct with 
mathematically 

accurate 
explanation 

Pre-test 70% 30% 0% 0% 0% 

Post-test 10% 50% 0% 20% 20% 

 
 
4.14 After the intervention, some participants still appeared unsure of whether 

subtraction is commutative 

 

A large proportion of participants in this study were able to identify the commutative law of 

addition after the intervention (Table 4.9). This question aimed to test participants’ 

understanding of subtraction. Participants were asked, If Mark knows 577 - 434, can he use 

this to solve 434 - 577? The researcher recognises that a - b = c and that b - a = - c where a is 

greater than b. Therefore, if a participant had ticked yes and linked their explanation to 

negative numbers in the above manner, this would be coded as correct. At pre-test, none of 
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the participants were able to give a mathematically correct answer to this question. After the 

intervention, 30% of participants were able to give a correct answer and explanation while 

40% gave an incorrect answer (Table 4.10). 

 

Table 4.10  

Understanding that subtraction is not commutative (If Mark knows, 577 - 434, can he use this 

to solve 434 - 577) 

 Not sure Incorrect 
answer 

Correct box 
ticked but 
incorrect 

explanation 

Correct box 
ticked but no 

response/I can’t 
explain 

Correct with 
mathematically 

accurate explanation 

Pre-test 40% 50% 10% 0% 0% 

Post-test 10% 40% 0% 20% 30% 

 
 
4.15 Summary of results from the diagnostic questions used at pre-test and post-test 

 

The diagnostic questions used in this study provide detail of the impact of the intervention. It 

appears that the intervention has made some improvement on the additive reasoning of some 

participants. This result is dependent on the concept of additive reasoning being tested. 

Participants’ understanding of the commutative law of addition improved from pre-test to 

post-test. Furthermore, participants’ ability to derive related addition and subtraction facts 

from one addition fact improved. The variation in the sample was once again evident as were 

individual differences in understanding, as a section of the cohort found it difficult to work 

flexibly with both operations, or incorrectly generalised a property of one operation to 

another (e.g., the commutative law of addition). This will be examined further in Section 5.2. 

 

4.16 Limitations 

  

The data collected from the diagnostic questions supplement the data collected from the 

quantitative phase. However, this collection method has some limitations. Although 

participants were able to ask clarification questions during the testing, this was in a group 

situation and participants may not have felt comfortable doing this in the presence of peers. 

Another limitation was the variation in numbers used in some of the questions. Numbers 

were chosen so that participants were unable to calculate with (or unlikely to calculate with) 
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them in order to operationalise additive reasoning rather than ability to calculate. However, 

one of the question types used decimals, and another used numbers not bridging 1,000 and 

another used numbers bridging 1,000. It is possible that participants’ answers were 

influenced by the numbers used in the equations as these may be numbers that participants do 

not have regular exposure to. Furthermore, even though a mathematical explanation was 

asked for, some participants did not provide explanations and some explanations required 

further clarification, leading to the researcher making subjective judgements when coding. 

Future research might use the same data collection method but verbally in a one-to-one 

setting. This might allow participants to ask for clarification of the diagnostic questions 

resulting in more accurate profiles of their understanding. A final phase of the experimental 

design was to conduct semi-structured interviews with four of the participants to provide 

greater insight into their perspective of the intervention. 

 

4.17 Analysing the data collected from semi-structured interviews 

  

Four participants were invited for semi-structured interviews. Scores on the fluency test were 

used to select participants using maximum variation sampling. The rationale for this was that 

the fluency test instrument had the largest standard deviation (Table 4.1) at post-test, and 

therefore the changes in scores were more evident for sampling. The aim of the semi-

structured interviews was to gather information about participants’ lived experience of the 

intervention. It was of particular interest to see whether this lived experience varied with 

mathematical achievement.  Pseudonyms are used for the reporting of these data. Layla had 

the greatest fluency score (26.5 DCM) at post-test. Lucy had a score close to the mean at 

post-test (14 DCM where the mean = 16.4 DCM) and an improvement close to the mean 

improvement (6 DCM where the mean improvement was 6.6 DCM). Evie had a post-test 

fluency score below the mean (10 DCM where the mean was 16 DCM) and an improvement 

of 2 when the mean improvement was 6.6 DCM). Aiden had a post-test fluency score below 

the mean (10 DCM where the mean was 16 DCM) and an improvement of four when the 

mean was 6.6 DCM). Relative to the study, Aiden and Evie had lower mathematical 

achievement on the fluency instrument. Lucy displayed middling mathematical achievement 

and Layla had the highest level of mathematical achievement. 
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4.18 Participants felt that the intervention was positive 

 

Lucy and Layla, who had middling and high achievement respectively, felt that the 

experience was positive. 

 
Great!  

It was good. 

 

Aidan and Evie, who had lower mathematical achievement, gave responses that were slightly 

less enthusiastic, or placed the intervention into the context of a school day or considered the 

impact on their lives: 

 

After school was a bit bad because it was after school. 

Nothing was bad. 

 

When asked to elaborate on the intervention, three of the four interviewees specifically 

mentioned the positive impact of the intervention on learning. This is especially pertinent as 

the interviewees had made varying levels of progress on the test measures. The participant 

who did not make a positive comment about learning had the lowest level of progress; they 

were unable to verbalise the effect that the intervention had on their learning: 

 

We did extra maths and we learnt extra stuff. 

The learning was cool. It has helped. 

I learnt things that I didn’t know how to do. 

 

4.19 Participants identify changes in their fluency strategies 

 

Section 4.18 identified that most participants interviewed felt that the intervention had a 

positive impact on learning. All interviewees commented on how they felt they were less 

likely to count to calculate. The researcher did not mention counting or retrieval strategies 

during the interview, yet at least one of these was mentioned by all interviewees: 

 
We learnt not to count. 

I’m better… because (before) I couldn’t remember and had to use my fingers. 
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I got better at not counting. I know things like 4 + 7 = 11 before I had to count. 

Before I used to add with my fingers. 9 + 6 = 15. 

 

4.20 Participants’ self-report transition from counting to knowing 

 

Section 4.6 discussed that participants self-reported counting as a method of calculating at 

both pre-test and post-test in equal amounts. A common theme from the interviews was that 

interviewees report moving away from counting methods but still rely on this at some point: 

 
I still use my fingers but not as much. 

I know some facts. 

Before I used to add with my fingers. I still do a bit, depends on the questions. 

I got better at takeaways. 

 

One comment from Layla (the highest achieving student) was particularly powerful in 

understanding how the intervention helped to develop her as a mathematician:  

 
I don’t use my fingers because I found better ways 

 

4.21 Participants’ attitudes towards the equipment used in the intervention 

 

The majority of the four interviewees explained their preference for Numicon shapes rather 

than Cuisenaire rods. A common theme was that the Numicon shapes were easier to work 

with due to their numerical value being indicated by the number of holes in each shape: 

 
I used these (Numicon shapes) to know which numbers are which. It’s easier than the 

rods. 

I used Numicon because I can see what the number is. 

The equipment helped but the rods not as much because you can’t see the numbers. I 

can pick up (picked up black Cuisenaire rod) but I don’t know what it is. 

 

Lucy, the student with middling progress and achievement, had a slightly different view of 

the Cuisenaire rods which was linked to her personal schema of the world and her interest in 

music: 
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I liked them both the same. I like using equipment. I said the rods were like the 

marimba because music and maths are connected. 

 

One consideration for the data presented above is the relatively short length of the 

intervention. Although time was provided for participants to familiarise themselves with both 

types of equipment, perhaps a greater amount of time exploring and making sense of the 

manipulatives would have led to participants having more positive attitudes towards 

Cuisenaire rods. This is a consideration for future research in this area. 

The essence of the experience for these four participants was that they felt positive 

about the equipment (especially the Numicon shapes) and a common theme was that the 

equipment was beneficial to learning: 

 
The equipment helped. 

I used it (the equipment) when I was stuck but not always. 

I like using equipment. 

It would be worse without equipment. 

I used it (the equipment) when I was stuck but not always. 

 

4.22 Participants’ perceptions of the role of the equipment in learning 

 

Section 4.20 suggests that participants did experience greater retrieval of facts after the 

intervention. This study is interested in the role of the equipment in learning these facts. The 

data from the semi-structured interviews show a range of answers.  The two interviewees 

with the highest progress and achievement mentioned the visual aspect of using equipment: 

 

I used Numicon because I can see what the number is. 

I picture the pieces in my head. 

 

One of the lower achieving interviewees discussed the importance of understanding and 

explanation during the intervention. Conceptual understanding was a key aspect of the 

intervention, and explanations were always accompanied with a visual model using Numicon 

and Cuisenaire rods: 

 

The explanations helped me. 
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4.23 The teaching of additive understanding conceptually led to wider understanding of 

other areas of maths 

 

Lucy and Layla both commented on the new learning that they acquired during this 

intervention. It is possible that the teaching of conceptual understanding helps learners to 

identify the interconnected nature of mathematics: 

 

We learnt extra stuff. We learnt about algebra. 

I learnt things I didn’t know how to do like negative numbers 6 - 9. 

 

4.24 The impact of the intervention on questions testing additive understanding 

 

One of the limitations of the diagnostic test (Section 4.16) was that the researcher was not 

able to probe understanding or lack of understanding. The diagnostic questions were also 

quite different to the teaching intervention where the use of talk and explanations alongside 

the concrete models was routine.  As part of the semi-structured interview, participants were 

given the calculation 2 - 6 = 8 and asked to check whether this was correct. The analysis of 

this question provides insight into the role of structured manipulatives when teaching additive 

reasoning. Layla (who had the highest performance on the fluency tests) was unsure about 

how to respond to 2 - 6 = 8: 

 

Wrong? I don’t know. 

Evie who had the lowest performance provided this response: 
 
It’s wrong because it’s not higher than 8. (Finds 8 and 6 and benchmarks the 
combined value of these against 10. Explains 2 should be 14). 
 

Section 4.4 discussed the variability in the sample; however, from Evie’s and Layla’s 

responses, it is important to consider whether individual understanding across areas of 

additive reasoning vary considerably. Lucy had middling achievement and responded with 

some ambiguity. The researcher then prompted her to use the equipment to clarify her 

thinking: 

 
It’s not right. They didn’t use the equipment right. I don’t know why (it is wrong). 
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[Prompted to use the equipment] 
 
You can’t do it. There’s only 2. (Picks up 6 and 8 to make 14). They did 8 - 6 = 2. 
 

Both Lucy’s and Evie’s responses show how they are able to use the equipment to help 

justify and explain their thinking. Aiden’s response showed that his own use of manipulatives 

provided feedback while replicating the principles of additive reasoning: 

 
It’s right. 
 
[Prompted to check with equipment] 
 
It’s wrong. 
 

The verbal diagnostic question provides additional data augmenting the results from Section 

4.9 where participants had to find a missing minuend when provided with one of the related 

addition facts. During this phase of the data collection, only 20% of participants provided a 

correct answer with a mathematically correct explanation. Participants were much more 

successful identifying an incorrect minuend in the semi-structured interviews. There are 

several possible reasons for this. First, two of the participants were able to justify their 

thinking after being prompted by the interviewer. As part of these prompts, participants were 

encouraged to use the manipulatives. This helped Lucy to understand her mistake and find 

the correct answer. Using the equipment also helped Aiden to realise that the equation was 

not correct. Evie used the equipment without being prompted.  

 

4.25 Limitations 

 

A major limitation of the semi-structured interviews was the position of the interviewer as a 

teacher at the school of the study. Despite assurances otherwise, participants may have felt 

that certain answers were not permitted and therefore moderated or changed their answers. A 

second limitation is that the interviewer was the teacher carrying out the intervention. 

Participants may have consciously or unconsciously provided answers based on the actions or 

words of the teacher during the intervention.  
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Chapter 5 
 
 

5.1 The impact of structured manipulatives on fluency 

 

Research question 1 explored whether the use of structured manipulatives improved fluency 

of addition and subtraction facts. The current study identified a significant mean increase in 

participants’ fluency scores. Due to the lack of a control group, it is difficult to ascertain the 

specific role of the manipulatives. It is possible that practice during the intervention resulted 

in improvement in fluency as previous studies have found this (Hopkins & Egeberg, 2009). 

Evidence from the semi-structured interviews suggests that the structured manipulatives may 

have had a role in improving fluency as participants spoke positively about the equipment. 

Another possibility is that the intervention improved understanding of additive reasoning, and 

consequently this led to an improvement in fluency. A considerable amount of research has 

examined the connected nature of additive reasoning and fluency (Section 2.11). The 

schema-based view promotes a model of LTM where additive reasoning knowledge affords a 

more organised storage of facts (Canobi et al., 1998). Future research might examine the 

relationship between structured manipulatives, fluency, and additive reasoning using a study 

with three interventions (manipulatives on fluency; manipulatives on additive reasoning; 

manipulatives on additive reasoning and fluency) to examine these relationships more 

closely. 

Individual differences in fluency gains were observed and future research might 

explore if this type of intervention is more effective for some students than others. Section 

4.4 highlights that the sample had considerable variance. The current study had broad 

knowledge of participants’ mathematical achievement before sampling. Future research 

might select a sample using diagnostic testing. Another important area for future research 

would be to examine whether the improvement in fluency is maintained after the intervention 

phase, and whether any improvement then impacts on wider mathematical achievement. 

 

5.2 The impact of structured manipulatives on additive reasoning 

 

Research question 2 focused on whether additive reasoning improved with the use of 

structured manipulatives. The findings for this question were mixed. A significant 

improvement in mean correct answers was observed on the empty box test; however, the 
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participants performed poorly on this test in comparison to the fluency test. This result 

supports previous research suggesting that these types of questions are challenging in this 

population (Crooks, 2010). The lack of improvement in the COF test was not expected. 

Future research might explicitly direct participants to the fact that questions were relationally 

ordered. Baroody (1999) states that this type of data collection method is dissimilar to 

learners’ everyday experience of school where calculations generally stand alone and require 

solving in isolation.  It is possible that the poorer performance on the COF test was due to 

participants using a different strategy without automaticity. A limitation of the current study 

is the lack of a self-report tool at the end of COF tests. 

The significant mean improvement in the empty box tests supports the notion that 

additive reasoning improved in the sample. Some support for this comes from analysis of the 

diagnostic questions. Some improvements in areas of additive reasoning were identified; 

however, individual differences in participants’ profiles of additive reasoning were also 

identified (Dowker, 2005). Furthermore, this research supports the body of literature 

suggesting that sub-concepts of additive reasoning vary in their difficulty. Commutativity 

was the sub-concept most easily acquired by learners, supporting previous research (Baroody 

et al., 1983; Canobi et al., 1998). It might be considered that commutativity is modelled 

effectively using structured manipulatives as the two parts can be physically reordered while 

maintaining the same total size (whole). Despite an improvement in understanding 

commutativity, it is possible that this principle was misapplied to other principles. Very few 

participants identified that subtraction was not commutative at post-test. The verbal 

diagnostic question asked during the semi-structured interview (2 – 8 = 6) examined 

participants’ understanding of the importance of order during subtraction. Availability of the 

manipulatives appeared to allow participants access to, or to test, some of the conceptual 

understanding needed to answer this question. Future research might examine the results of 

diagnostic tests with and without manipulatives. It is possible that some learners had not fully 

internalised part-whole relationships, which would allow them to work abstractly with these 

principles, and required the manipulatives to test or check answers, providing feedback on 

their mathematical thinking. 

  It appears that participants misapplied commutativity when asked if an addition 

question helped solve a subtraction question with the same numbers.  Research has 

highlighted concerns over the use of shortcuts compared to the use of principles (Canobi, 

2005). Symbolically, commutativity is the subtle change in an equation (a +b, b + a). In the 

current study, participants were unlikely to identify that a similar subtle change in equations 
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broke additive principles (a + b, a – b). The researcher noted some participants used quite 

basic, unspecific language to describe commutativity (You just swap them around). 

Alongside physical manipulation, future research might explore the use of explicit teaching 

of specific mathematically accurate definitions of additive principles. 

Overall, participants appear to have found it challenging to understand the inverse 

relationship between addition and subtraction. Very few mathematically correct answers were 

present at post-test in the two diagnostic questions that required participants to transfer 

understanding from one operation to another using knowledge of the inverse relationships. 

Previous research has identified that this is a particularly challenging area of additive 

reasoning (Section 2.1). As the intervention was relatively short, it might be expected that 

this aspect of additive reasoning would not develop to the same degree as other areas. 

Research has shown greater effectiveness with manipulatives if they are used for a year 

(Sowell, 1989). Future research might examine whether a longer intervention improved 

participants’ understanding of these inverse relationships. 

Findings from the semi-structured interviews identified a preference for the use of 

Numicon over Cuisenaire rods because the visual value of Numicon was readily available to 

learners. Although it is not immediately obvious, the obscured value of Cuisenaire rods may 

be an affordance as part-whole structure, and regularity is not detracted from by the 

numerical value of the manipulative. Perceptual richness of manipulatives has been shown to 

detract from mathematical learning (Carbonneau, Wong, & Borysenko, 2020). It is possible 

that explicit teaching with Cuisenaire rods would have helped learners to identify additive 

reasoning structure more clearly.  

Despite the majority of participants not being able to abstractly understand additive 

and subtraction inverse, there is some evidence that knowledge of the two operations and 

their relationships developed. No participants provided the related addition and two 

subtraction calculations to a given addition calculation at pre-test. At post-test, this increased 

to 60%. This is an important finding as the 60% of participants identified three correct 

calculations without misapplying rules or shortcuts. Furthermore, 20% of participants 

provided some correct calculations. In summary, some improvements in additive reasoning 

were identified, both using quantitative methods and through diagnostic questions. Future 

research might explore whether a longer intervention is required to impact on the more 

challenging aspects of additive reasoning. Research might also explore whether retrieval of 

facts from LTM needs to reach a level of mastery, freeing the working memory load to focus 

on additive reasoning (Baroody, 1999). 
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5.3 Participants’ perceptions of the manipulatives and the intervention 

 

Research questions 3 and 4 explore participants’ perceptions of the manipulatives, and 

whether learning gains altered perceptions. Semi-structured interviews with selected 

participants used maximum variation sampling, and results show positive attitudes towards 

the intervention and the manipulatives, especially the Numicon shapes. This finding is 

important as participants of this age may have identified using equipment as being child-like. 

Furthermore, all participants interviewed had positive attitudes despite variation in their 

relative gains. It is possible that the low-achieving participants could identify improvements 

in their learning and understanding, but the data collection tools were not sensitive enough to 

capture those improvements. As participants felt positively about the manipulatives and their 

impact on learning, it is important to explore the affordances further. Participants appeared to 

benefit from the visual organisation of dots in the Numicon shape. The visual affordance of 

the Numicon shape may provide support to research highlighting the importance of subitising 

and developing part-whole relationships as a supplementary pedagogy for developing 

arithmetic alongside counting (Kullberg & Björklund, 2019; Young-Loveridge, 2011b). The 

use of manipulatives provides support for the modality effect aspect of CLT as the 

manipulatives may have decreased working memory load, allowing for greater recognition of 

part-whole relations. Future research might explore whether structured manipulatives further 

decrease cognitive load by encouraging participants not to count to calculate (de Chambrier 

et al., 2018). 

Research question 5 explored whether counting strategies are frequently used by 

participants in this sample. The data from self-reports suggest that counting strategies were 

frequently used. However, it appears that there was a slight reduction in the use of counting 

strategies; a limitation of the present study is that this cannot not be quantified or explored 

further. During semi-structured interviews, all participants commented that they were 

counting less and had now had greater knowledge of addition and subtraction facts. An 

interesting finding was that participants who continued to self-report counting strategies at 

post-test had the lowest rates of fluency in the sample. This provides some evidence to 

suggest that participants who count to calculate are disadvantaged and counting may increase 

cognitive load when learning mathematics. 

In summary, participants responded positively about the manipulatives and the 

intervention. The current study reported an improvement in fluency and additive reasoning 

from pre-test to post-test; however, within the sample, individual differences were evident. 



71 
 

Chapter 6 
 
 
In conclusion, the present study aimed to explore whether the use of structured manipulatives 

improved fluency and additive reasoning in a group of lower-achieving year 7 and 8 students.  

There was evidence (Section 4.6) that counting strategies were prevalent in this sample at 

pre-test. Through the lens of CLT, the use of counting strategies may overload working 

memory, impeding the ability to identify additive relationships. The reliance on counting 

strategies may have a circular effect as consequently, participants may continue to count to 

calculate, resulting in the principles of additive reasoning not being discovered, and therefore, 

not being available to derive new addition and subtraction facts (Gray & Tall, 1994). In line 

with CLT, the researcher conjectured (Section 1.7) that structured manipulatives would 

alleviate the load on working memory during instructional time, providing participants with 

the attentional capacity to identify additive reasoning principles. This assertion builds on the 

work of Canobi (2005): “It seems likely that knowledge of addition principles emerges 

through noticing regularities in the ways in which physical objects can be combined” (p. 

224). Linked to the wider literature (Section 2.3), the structured manipulative accurately 

represents the additive reasoning principles required to develop part-whole understanding.  

CLT also framed the study in a broader context as the researcher conjectured that use of 

counting strategies in mathematics lessons may lead to working memory overload.  

Participants responded positively about the manipulatives and reported greater use of 

retrieval strategies post-intervention.  Participants had an improved understanding of additive 

reasoning after taking part in the intervention.   

 

6.1 Practical implications of the current study 

 

Practical implications may be drawn from this research. A lack of fluency and additive 

reasoning was evident in the sample at pre-test. The majority of participants used counting 

strategies at the start of the intervention. Within the classroom, early identification of learners 

not displaying additive reasoning understanding and also relying on counting strategies may 

provide the teacher with the time and opportunity to develop more sophisticated strategies 

and understanding with these students. The data collection tools used in this study could be 

used as assessment tools to help teachers identify students lacking in additive reasoning and 

fluency. Such diagnosis is especially pertinent as the current study supports the literature 

which states that some aspects of additive reasoning are more difficult to acquire than others 
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(Section 5.2). Initial teacher education providers should ensure that additive reasoning and 

conceptual understanding are given adequate weight when training new practitioners. 

Moreover, as part of on-going formative assessment, educators should be cognizant of 

learners who become reliant on counting strategies rather than developing more sophisticated 

understanding. As well as identifying at risk learners with low fluency and incomplete 

additive reasoning understanding, educators also need tools to remedy this issue. Providing 

teachers with an understanding of CLT may highlight the importance of placing basic facts 

into LTM, and how structured manipulatives might scaffold learners to develop flexible but 

abstract understanding of additive principles. Educators and policymakers should consider 

the role of subitising and unitising alongside counting as pathways to more developed 

arithmetic. The current study suggests that structured manipulatives may have a role to play 

in the development of fluency and additive understanding. Educators should consider using 

structured manipulatives as a means of developing additive reasoning. 

 

6.2 Recommendations for future research  

 

It would be productive to examine whether extended exposure with structured manipulatives 

impacts on some of the more challenging areas of additive reasoning (Section 5.2). Further 

research would be helpful to examine whether the two types of structured manipulatives used 

in the current study vary in their efficacy. Also, it is recommended that further research 

examines the effectiveness of the structured manipulatives across larger samples.  

A surprising finding from the current study was that students with the smallest 

relative improvements spoke positively about the manipulatives. The mixed-methods 

approach provided such insights in the current study that may have been obscured with a 

solely quantitative approach. The area of additive reasoning is akin to conceptual 

understanding. Therefore, in further studies, data collection using verbal diagnostic questions 

may provide even richer data into the understanding of learners and the development of 

additive reasoning. 

A large body of research examines the bi-directional relationship of conceptual 

understanding and procedural understanding (Section 2.12). The present study did not 

measure whether gains in fluency led to improved additive reasoning or vice versa. Useful in 

future research therefore would be to examine the bi-directional nature of these two 

intertwined areas of mathematics to enable teachers and policy makers to further identify 

effective ways of teaching these key mathematical concepts. Finally, future research is 
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needed to continue to broaden our understanding of the use of manipulative type in the 

learning of key mathematical concepts. 

In conclusion, the present study has demonstrated how theory and practice can be 

blended to effect positive change for students at a crucial stage of their education. The 

intervention was relatively short in terms of session length and duration and the required 

materials were inexpensive. Such an intervention is therefore easily replicated by classroom 

teachers or teacher aides. An understanding of CLT drove the researcher to consider how 

working memory load can be reduced in the short-term (using structured manipulatives) and 

in the long-term (placing facts into LTM and illuminating the structure of additive 

relationships).  The intervention and use of structured manipulatives provided learners with a 

deeper understanding of additive reasoning, and improved addition and subtraction fluency. 

These key aspects of arithmetic are potentially powerful for enhancing learners’ future lives 

and life opportunities. 
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Appendix B 
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