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Abstract
Robots are entering our daily lives from self-driving cars to health-care robots.

Historically, pre-programmed robots were vulnerable to changing conditions in daily-
life, primarily because of a lack of ability to generate novel, non-preset flexible solutions.
Thus there is a need for robotics to incorporate adaptation, which is a trait of higher-
order natural species. This adaptation allows higher-order natural species to change
their behaviours and internal mechanisms based on experience with often dynamic
environment. The ability to adapt emerged through evolutionary processes.

Evolutionary Robotics is an approach to create autonomous robots that are capable
of automatically generating artificial behaviors and morphologies to achieve adaptation.
Evolutionary robotics has the potential to automatically synthesize controllers for real
autonomous robots and generate solutions to complete tasks in the uncertain real-world.
Compared to the inflexibility of pre-programmed robots, evolutionary robots are able to
learn flexible solutions to given tasks through evolutionary methods.

Cognitive robotics, a branch of artificial cognitive systems research, is such an attempt
to create autonomous robots by applying bio-inspired methods. As the robot interacts
with environment, an underlying cognitive system can learn its own solutions toward
task completion. This learning-solution-from-interaction approach, also termed as a
Reinforcement Learning (RL) approach, is widely applied in cognitive robotics to learn
the solutions automatically. Ideally, the solutions can emerge in the cognitive system
through the trial-and-error process of the RL approach without introducing human bias.

This thesis aims to develop an evolutionary cognitive architecture (system) for a
robot that can learn adaptive solutions to complete tasks. Inspired by emotion theories,
this work proposes Affective Computing Multilayer Cognitive Architecture (ACMCA),
a universal cognitive architecture, which is able to learn diverse solutions. Extending
from previous work, ACMCA has a five-layer structure, where each layer aims to achieve
different components of the solutions. The position of this thesis is that introducing a
novel emotion inspired multilayer architecture that produces task solutions through



subsumption operations and underlying appropriate machine learning algorithms will
allow a robot to complete admissible tasks.

ACMCA’s five layers are: primary reinforcer layer, secondary reinforcer layer, core
affect state layer, strategy layer, and behaviour layer. This five-layer decomposition also
meets the traditional decomposition of a mobile control system into functional modules
(e.g. perception, modelling, planning, task execution, and motor control). Each layer
contains computing nodes as functional modules that process various Stimuli, Actions,
and their consequential Outcomes of the cognitive system. In this work, 17 computing
nodes and their connections in ACMCA represent the solutions that a mobile robot has
learned to complete navigation tasks in complex scenarios.

Inspired by the Constructive Theory 1 and the robotic subsumption system, this work
proposes a contingency-based subsumption approach to construct ACMCA. This contin-
gency is termed Stimuli-Action-Outcome Contingency (SAOC), which is extended from
the Action-Outcome (AO) contingency of Construction Theory. SAOCs are represented
by “if-then” rules, termed SAOC rules, which encapsulate Stimuli, Actions, and their
consequential Outcomes, providing clear symbolic interpretations. That is, the symbolic
meaning of a SAOC rule can be interpreted as: if the input stimulus is perceived, the out-
put action will be advocated as a cognitive response, expecting the outcome of the action
with an estimation of relevance. As low-level computing nodes encapsulate Stimulus,
Actions, and Outcomes, high-level computing nodes can subsume these low-level ones
through the form of SAOC rules. Therefore, the proposed ACMCA can be constructed
by subsumption layers of Stimuli-Action-Outcome Contingency (SAOC) rules.

This work applies machine learning techniques to facilitate ACMCA’s real-world
robotic implementation. This work selects Accuracy-based Learning Classifier Systems
(XCS) algorithms as the underlying machine learning techniques that are deployed at
computing nodes for the contingency-based subsumption operations. The mitosis ap-
proach of XCS and the XCS with a Combined Reward method (XCSCR) are two novel
variants of XCS algorithm. They are proposed to amend two challenges that occur when
the standard XCS approaches are applied for robotic applications. The mitosis approach
introduces an accuracy pressure into the algorithm’s evolutionary process, improving
the algorithms’ performance in robotic applications where noisy interferences exist. The

1Constructive Theory is a majority emotion theory. Three majority emotion theories are
Constructive Theory, Appraisal Theory, and Basic Emotion Theory.



XCSCR enables the policy to emerge earlier andmore frequently than the existing bench-
mark approaches in multistep problems. Therefore, a robot with the XCSCR can handle
a multistep scenario more effectively than those with the benchmarked algorithms.

This work conducts five experiments to test the capability of ACMCA and its under-
lying algorithms in learning solutions for robotic navigation tasks. The five experiments
are conducted as follows: reflex-learning, IR-tuning, deliberation-establishing, emotion
model, and combined reward assignment. As the results of the experiments, three differ-
ent affective patterns have emerged in the first three experiments, an emotion model has
emerged in the fourth experiments, and the fifth experiment explores ACMCA’s potential
implementation in the life-long learning scenario.

These results demonstrate that ACMCA, a novel emotion inspired multilayer archi-
tecture, can produce task solutions through contingency-based subsumption operations
and underlying appropriate machine learning algorithms, allowing a robot to complete
admissible tasks through evolutionary processes. The contingency-based subsumption
operations can establish three contingencies and one emotion model between the sub-
sumed components by multiple RL agents which deploy the proposed mitosis approach
of XCS algorithms. These three emotion patterns and emotion model can consistently
improve the robot’s navigation performance with interpretable explanations. These two
variants of XCS algorithms can amend shortfalls of the standard XCS approach in real-
world robotic implementations. It has been demonstrated that the diverse solutions
learned by ACMCA improve the navigation performance of the robot in terms of higher
flexibility, reduction in continuous collisions and shorter navigation time consumption.
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Chapter 1

Introduction

1.1 Motivation

Robots are being integrated into human society from self-driving cars to health-care
robots (i.e. robots that are helping to fight the coronavirus pandemic [1]). “Hard-wired"
robots are vulnerable in daily-life as it contains changing conditions that can confuse
these pre-programmed robots. Thus, there is a need for intelligent robots to incorporate
adaptation to improve their performances in daily scenarios. As a trait of higher-order
species, adaptation allows natural agents to adjust their mental processes and control of
their bodies in often dynamic environments. Similarly, robots can achieve adaptation by
evolving internal mechanisms and behaviours through interactions with environments.

Evolutionary robotics is an approach to create artificial “brains” andmorphologies of
autonomous robots [2, 3]. In evolutionary robotics, evolutionary methods are proposed
to search for solutions and avoid the bias introduced by human designers [4]. The
bias is rooted in the designer’s limitations of interpretation on the true pattern of the
environment. Thus the bias can decrease the robot’s performancewhen the interpretation
cannot reflect the true pattern in the environment or the environment changes over
time so that the interpreted pattern does not cover the ideal behaviours. Evolutionary
robotics avoids bias by adapting behaviours based on the worth of behaviours/actions
as direct feedback from the environment. Compared with the inflexible solutions that
are often interpreted and perceived by human beings, evolutionary robots can learn
flexible solutions that are better adapted to environmental changes [4, 5]. For example,

1
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evolutionary algorithms can be applied to achieve adaptive behaviours through their
underlyingmodules. In these cases, evolutionary algorithms are considered as optimising
approaches for these modules [4, 6]. Therefore, evolutionary robotics has the potential to
automatically synthesize controllers for real autonomous robots and generate solutions
to complete tasks in the uncertain real-world without human intervention [7].

Evolutionary cognitive robotics embodies cognition within evolutionary robotics.
Cognition refers to the mental processes of perception, memory, reasoning, and learning
that an agent applied to inhabit and adapt to the environment [8, 9, 10]. In order to create
cognition in an autonomous robots, an abstract cognitive architecture is needed. That is,
the design of the architecture of a robot can be inspired by natural cognitive systems that
provide frameworks for the acquisition, representation, and use of knowledge. Although
there is still much debate in cognitive science on how animals adapt to the environment,
enough theories exist to act as inspirations to construct a robotic cognitive architecture.

Evolutionary cognitive robotics can integrate emotion theory into control systems to
create affective robots. Psychologically, emotional intelligence relates to “the ability to
recognize emotions in others, using emotions to support thinking and actions, understand
emotions, and regulating emotions” [6]. In robotics, affective robots mainly focuses on
two topics: Human-Robot Interaction (HRI) and emotion-inspired decision-making and
responses.

The first topics focuses on developing robots that can “detect common human com-
munication cues for more natural interactions” [11]. Therefore, affective robot in HRI
contains three computational tasks: affect detection, affect interpretation, and affective
inference [12]. For example, Park et al. [13] proposed a robotic system that increases
children’s engagement in their learning processes based on verbal and nonverbal affective
cues. As this work does not require interactions with humans by accurately interpreting
and appropriately responding to natural human communication cues, this work will not
focus on this topic.

The second topic is the concern of this work. The current research emphasizes
emotions as internal states that influence behaviours. Emotions are elicited as a sum-
mary of perception through well-defined models. For example, Butz et al. introduce
“curiosity”, “wealth”, “progress”, and “health” as four basic motivations for Mario in its
Super Mario world [14]. The motivation system will trigger different goal events and
learning processes. Mario (the agent) can make a probabilistic choice among different
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goals based on the current motivation, leading an emergence of experience-dependent
behaviours. Jacobs et al. [15] predefines the emotions (i.e joy, fear, hope) and demon-
strates their dynamic during reinforcement learning agents were trained in a simulated
maze environment. Through well-defined emotional models, the dynamic intensity of
emotion states can be interpreted with the properties of emotion dynamics in humans.
Moerland et al. [16] specify models of hope and fear based on the robot’s performance
in specific Pacman scenarios. Emotion models of hope and fear are specified by the
best and worst forward traces, leading the eliciting of these emotion states (e.g. hope
and fear) in the agent with interpretable explanations. In these work, emotions that are
elicited in the robotic architecture does not frequently engage within the robot’s learning
loop for adaptive behaviours.

However, robotic cognitive architecture can adopt a fully learning approaches of
co-evolving of emotion states and robot’s adaptive behaviours. Previously, Williams
[17, 18] proposed an emotion inspired cognitive architecture (system), which can learn
solutions for robotic navigation tasks through an RL and evolutionary approach. In-
spired by Constructive Theory 1, this cognitive architecture can automatically construct
an emotion model, which, for the first time, can generate affective solutions for adaptive
path-planning of robotic navigation. The emotion model is constructed by three layers
of different computing nodes for perception, emotion, and execution respectively. These
computing nodes are termed reinforcers, emotions, and modifiers. The mappings be-
tween reinforcers, emotions, andmodifiers represent the adaptive solutions, which evolve
through the underlying RL agent of the architecture. After multiple RL iterations, an
experienced emotion model emerges and this emotion model can provide solutions that
improve the adaptation of the path-planning of the robot. This work proposed the novel
integration approach of emerging emotions and adaptive behaviours that researchers
“should start focussing on” [19].

However, in this existing work it is difficult to generate heterogeneous solutions.
Although this solution-emerging process requires no human interference, the solutions
(reinforcer-emotion-modifier mappings) lack diversity. Additional emotions in the emo-
tion layer only bring redundant reinforcer-emotion-modifiermappings rather than diverse
solutions. That is, this architecture cannot achieve heterogeneous solutions in the ex-
perimental environment by merely increasing computing nodes (e.g. emotions). This

1Constructive Theory is an emotion theory (see details in Section 2.3)
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suggests a limitation in the scalability of the architecture.
Hence, the aim of this thesis is to develop an evolutionary cognitive architecture

(system) for a mobile robot that can learn adaptive solutions to complete tasks. Inspired
by emotion theories, this work proposes Affective Computing Multilayer Cognitive
Architecture (ACMCA), a universal cognitive architecture, to construct diverse solutions
for robotic tasks. Extending from the previous work, this ACMCA has a five-layer
structure, where each layer aims to achieve different components of the solution. The
position of this thesis is that introducing a novel, emotion inspiredmultilayer architecture
that produces task solutions with underlying appropriate learning algorithms will allow
a robot to complete admissible tasks 2.

These five layers are ranked into three levels of the hierarchy of ACMCA. Com-
ponents in the higher-level layers of the architecture can subsume components in the
lower-layers by their symbolic explanations. The subsumption operations bring two
advantages. Firstly, the operations can establish interpretable contingencies between
the subsumed components. The contingencies that are established in the middle-level
layer can be interpreted as emerged affective patterns, and those in the highest-level can
be considered as the evolved emotion model. Secondly, the subsumption operations
facilitate the emerging and evolving processes of the contingencies. This is because the
diverse components can innately and easily create an almost infinite search space for the
solutions. The subsumption operations on the contingencies can exponentially reduce
the entire search space, allowing optimal diverse solutions to emerge in the architecture.

1.2 Objectives

This work presents and examines a novel Affective Computing Multiplayer Cognitive
Architecture (ACMCA) that can evolve diverse solutions of admissible robot tasks. The
proposed objectives of the five-layer architecture are as follows:

(1) To create a multilayer cognitive architecture, which can improve a robot’s capa-
bility to complete admissible tasks. The multilayer cognitive architecture will

2An admissible task for a robot is a task that the robot can make every effort to complete through its
physical mechanism. For example, a task that requires a wheeled mobile robot to fly is not an admissible
task for the robot.
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contain diverse computing nodes distributed among different layers of the archi-
tecture. Each computing node focuses on a specific topic of the perception, the
localization, the mapping, the planning or the execution of a navigation task. Thus
a computing node can provide a unique solution component of a complete solution
to the given task. Through the cooperation of computing nodes, the multilayer
cognitive architecture is to generate solutions that allow a robot to perform flexi-
ble behaviours to achieve a given task, demonstrating its adaptation to the given
environment. This multilayer cognitive architecture will be a novel cognitive
architecture that contributes to evolutionary robotics.

(2) To develop the multilayer architecture (1) into a novel emotion-inspired, affec-
tive computing multilayer cognitive architecture, which can generate affective
responses for a robot. Inspirations from different emotion theories (e.g. Con-
structive Theory, Appraisal Theory, and Basic Emotion Theory) will be applied
to construct affective computing processes of the cognitive system. In affective
computing processes, diverse stimuli 3 will be generated as a robot perceives the
environment. These stimuli will elicit non-preset emotion states 4 that summarise
the robot’s perception and action tendency. These elicited emotion states will
automatically map to actions 5, allowing the robot to respond flexibly to achieve
anticipated outcomes in the given task. Through a robotic implementation of in-
spirations from emotion theories, this work can provide insights for psychological
theories, cognitive systems and Artificial Intelligence.

(3) To introduce a novel contingency-based subsumption operation to construct the
proposed Affective Computing Multiplayer Cognitive Architecture. Compared
to the traditional behaviour-based subsumption robotic system, the proposed ar-
chitecture (ACMCA) will be constructed by layers of Stimuli-Action-Outcome
Contingency (SAOC) rules, which describe contingencies between stimuli, ac-
tions, and their consequential outcomes. As stimuli, actions, and outcomes are
encapsulated in low-level computing nodes, high-level computing nodes can es-
tablish interpretable SAOC rules by subsuming these low-level nodes through

3The stimuli are categoried into primary reinforcer and secondary reinforcer in this work.
4The emotion states are termed core affect states in this work.
5The actions are categoried into strategies and behaviours in this work.
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evolutionary processes. When a robot interacts with the environment, the SAOC
rules become accurate by underlying machine learning agents that are deployed
for the evolutionary processes. As SAOC rules establish mappings between com-
puting nodes, the proposed ACMCA will construct through contingency-based
subsumption operations. Therefore, ACMCA will be a novel contingency-based
subsumption system that contributes to robotic control systems.

(4) To develop variants of XCS algorithms for real-world robotic implementations.
The mitosis approach and XCSCR (XCS with Combined Reward Method) are two
variants of XCS algorithms that can be deployed for real-world robotic implemen-
tations. They are proposed for the underlying machine learning agents that will
be deployed at computing nodes of ACMCA. The mitosis approach introduces an
accuracy pressure to amend the overgeneralized tendency of the benchmark XCS
algorithm. The mitosis approach excludes inaccurate niche-coverage of overgen-
eralized classifiers and passes on only the accurate niche-coverage to “children”
classifiers. In this approach, accurate classifiers can be made robust against in-
terference from noise. The XCSCR method is proposed for the multistep reward-
assignment problem for robotic applications. By combined efforts of different
reward-assignment mechanisms, the XCSCR method can bootstrap the emerging
of global optimal policies in early learning iterations. These two variants of XCS
algorithms are to be deployed for the learning agents in ACMCA, aiming to amend
the shortfalls of the standard XCS approach in the implementation of ACMCA.
Therefore, these two underlying novel XCS algorithms will extend the usage of
XCS algorithms for real-world robotic implementations.

(5) To test the proposed approach in realistic indoor environments (i.e. office do-
main). These environments will have irregular features to test the robustness of
the approach in navigation tasks. The domain will also have dynamic components
to test the range of known capabilities. A simulated robotic platform will be used
for efficiency and a real-world robot will be used for authenticity. This will also
test the transferability of the proposed approach between these two platforms.
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1.3 Thesis Outline

Chapter Two is an overview of robotic cognitive systems, covering cognitive
systems, emotion theories, robotic subsumption systems, machine learning algo-
rithms, a previous work of emotion inspired cognitive system, and the robotic
platform utilised in the task. Firstly, a review from the field of cognitive ar-
chitecture provides the general background of this work, providing a review of
the various existing architectures for cognitive systems. Secondly, three emo-
tion theories, which provide inspirations of the information processing progress
in this work, are introduced. Third, behaviour-based subsumption operations
that construct robotic control systems are introduced as the background of our
contingency-based subsumption approach. Fourth, machine learning algorithms
are presented as the underlying approach for learning knowledge in this robotic
application. Fifth, a previous work of emotion inspired cognitive system, which
this work is extended from, is reviewed. Finally, a mobile robot for conducting
the experiments is illustrated with its hardware and software operating system.

Chapter Three describes the methodology of ACMCA, which learns diverse
affective solutions for a robotic task. The chapter starts with a discussion of the
previous work of emotion inspired cognitive system, which the proposed five-
layer cognitive architecture is extended from. In the design of the architecture, an
overview of the novel affective solution, that is encapsulated in the proposed five-
layer cognitive system, is introduced. That is, the proposed cognitive architecture
targets to achieve the first objective from this part. In the description of the
affective solution, physiological inspirations are introduced to design affective
computing processes that are executed among the five layers of the proposed
cognitive system. Specifically, the functions of the five layers are based on the
inspirations from threemajority emotion theories: Constructive Theory, Appraisal
Theory, and Basic Emotion Theory. That is, the proposed cognitive architecture
is developed into an emotion-inspired one. This is the second objective of this
work. In the design of computing nodes in the layers, the function of each
computing node is introduced by the sequence of the five layers. Computing
nodes in high-level can subsume low-level ones according to various Stimuli-
Action-Outcome Contingency (SAOC), eventually leading to the construction of
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the proposed cognitive architecture (ACMCA). That is, the third objective is
achieved as the contingency-based subsumption operations constructed ACMCA.
The first and second objectives are also achieved along with the achievement of
the third objective at the end of this chapter.

Chapter Four describes two novel machine learning algorithms proposed for
robotic applications. The mitosis approach of XCS and the XCS with a Combined
Reward method (XCSCR) are proposed to amend two challenges that occur when
the standard XCS approaches are applied for robotic applications. The two pro-
posed algorithms will improve the performance of the standard XCS algorithm for
robotic applications. Therefore, the fourth objective is achieved in this chapter.

Chapter Five presents the results that demonstrate the utility of ACMCA in
learning solutions in various indoor scenarios. Both simulated and real-world
robotic platforms are engaged to test the robustness of ACMCA in navigation
tasks. The learnt solutions and their solution components are also presented with
analyses of the proposed algorithms. Therefore, the fifth objective is achieved in
this chapter.

Chapter Six concludes with a summary of the contributions, the publications of
this work, and a discussion of future work.



Chapter 2

Literature Review

2.1 Introduction

This work aims to realise a cognitive architecture inspired by studies of cognitive science
for a mobile robot. With this novel cognitive architecture, a robot should act as an
intelligent agent. This mobile robot should be able to perform cognitive behaviours,
such as perceiving the environment, storing memory, learning from past experience,
and making a decision between various options. To achieve these goals, the novel
cognitive architecture should have certain knowledge processing abilities, such as the
acquisition, representation and use of knowledge. Inspired by emotion theories, a
cognitive architecturewill lead to human-like knowledge, including emotionmechanisms
and emotional responses. Actually, such an affective computing cognitive architecture
is a universal approach that has been developed by thousands of years of evolution
among humans, mammals, and other creatures. Although the nature of the category
of the evolving emotional mechanism still requires exploring, this affective computing
cognitive approach is a promisingmethodology to perform adaptively to the environment
[20] as its universal adaptation demonstrated by living creatures.

This work seeks to investigate this cognitive approach that combinates the fields of
cognitive architecture, emotion theory, robotic control architecture (Figure 2.1). There-
fore, chapter 2 will provide background reviews of these fields and related topics. Section
2.2 will review four cognitive systems in the field of cognitive science. These cogni-
tive systems feature their unique architectures, producing various approaches to process

9
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Cognitive System

LCSs Robotic Control System

Emotion Theory

This Work

Figure 2.1: Venn diagram of this work

information. These features are inspired by the architecture design of the proposed
cognitive system. Section 2.3 will discuss emotion theories, providing principles to
relate the emotion and the cognitive processes together. Emotion theories attempt to
explain the role of emotion and emotion mechanisms during the cognitive information
process in the brain’s architecture. The emotion mechanism discussed will be applied
to cognitive processes proposed in this work. Section 2.4 will discuss the subsump-
tion architecture for robotic control systems. The classical subsumption architecture
composes behaviours by its multilayer architecture to achieve tasks. The subsumption
approach will be applied in this work to compose solutions through the proposed ar-
chitecture for the achievement of complex tasks. Section 2.5 will introduce a symbolic
machine learning technique, Learning Classifier Systems (LCSs) algorithm, which is an
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evolutionary algorithm originated from the field of cognitive science. This algorithm
will be applied as the underlying learning technique in the proposed cognitive system. A
brief description of LCSs algorithm and its iteration loop are illustrated in this section,
providing the reviews for two novel variants that will be proposed for real-world robotic
applications. Section 2.6 will describe the previous work, an emotion inspired cognitive
architecture, which can learn an emotion model for adaptive path-planning of robotic
navigation tasks. For the first time, this work evolves an emergent emotion model that
can provide appropriate, non-preset affective responses during navigations. The archi-
tecture of the previous work and its underlying emotional inspirations are discussed.
The previous work provides a benchmark, from which this work develops. Section 2.7
will introduce a mobile robot, the Pioneer, where the proposed contingency-based sub-
sumption architecture will be tested. Hardware capabilities and the software operating
system of the Pioneer are described.

2.2 Cognitive Systems

Studies of cognitive systems try to provide explanations for the nature of intelligence.
“Cognitive science is the scientific study of themind, the brain, and intelligent behaviour,
whether in humans, animals, machines, or the abstract" according to the definition from
University of California, San Diego (UCSD). Although there are many definitions of
cognitive system (see appendix table 1), these definitions are common in terms of
cognitive processes and related disciplines (see Table 2.1). The common topics of
cognitive processes include perception, memory, reasoning, and learning. The common
disciplines related to the cognitive system include cognitive psychology, neuroscience,
philosophy, linguistics, and computer science. Kotseruba [21] researches at least 195
cognitive systems featured in 17 sources, and they argue that "There is no exhaustive
list of cognitive architectures, their exact number is unknown, but it is estimated to be
around three hundred, out of which at least one-third of the projects are currently active".
Each cognitive system originates from a different set of assumptions and disciplines,
represents the world by its knowledge, drives its memory system, and operates by its
methodology. Therefore, diverse cognitive systems were proposed by their cognitive
assumptions [21, 22, 23].
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Institution
Topics of
Cognitive
Process

Related Disciplines
Knowledge Representa-
tion and other character-
izations

University
of Cal-
ifornia,
San Diego
(UCSD)

anthropology, computer
science, psychology,
neuroscience, linguis-
tics, sociology and
philosophy.

Cognitive science is the
scientific study of the
mind, the brain, and
intelligent behaviour,
whether in humans,
animals, machines, or
the abstract.

Princeton
University

natural
language,
memory,
problem
solving,
learning,
vision, and
reasoning

anthropology, philoso-
phy, psychology, oper-
ations research, com-
puter science, linguis-
tics, and history of the
science

acquisition, representa-
tion and use of human
knowledge

University
of Toronto,
Scar-
borough
Campus
(UTSC)

perception,
mem-
ory, and
communi-
cation.

philosophy, psy-
chology, computer
science, and linguis-
tics, neuroscience and
anthropology

Cognitive system tack-
les the relations be-
tween mechanical com-
putation and human
knowing and problem
solving.

Table 2.1: Comparison of different definitions of cognitive science [8, 9, 10]

General speaking, cognitive systems require an innate architecture to represent
knowledge and process information. When information flows through a cognitive sys-
tem, the architecture of this cognitive system provides a framework for the acquisition,
representation, and use of the knowledge. This framework decomposes the knowledge
processing of a cognitive system into underlying cognitive topics, such as perception,
reasoning, learning, and memory. Following the decomposition, cognitive systems are
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constructed based on different types of knowledge representation.

Figure 2.2: A timeline of 86 cognitive architectures [21].
Colors correspond to different types of architectures: symbolic (green), emergent (red)

and hybrid (blue).

Based on the knowledge representation, cognitive systems can be categorized by
three approaches: symbolic, emergent (sub-symbolic), and hybrid approaches (Figure
2.2) [21]. The first approach, the symbolic approach, constructs cognitive systems
through “language-like” models. In a symbolic cognitive system, knowledge is treated
as “discrete units of information that are encoded in a language-like format” [24]. This
approach is characterised by the natural, intuitive way of knowledge representation.
A popular symbolic model, the SOAR architecture (Section 2.2.1), demonstrates the
desirable characteristic of the interpretation of a rule-based cognitive system. The “if-
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then” pairs that are encoded in rule-based modules of the cognitive system is easy of
interpretation [24, 25].

The second approach to design a cognitive architecture is the emergent model (sub-
symbolicmodel). The emergentmodel adopts amassive parallelmodelwhere knowledge
is represented by links of nodes from different layers. Compared to the rule-based
symbolic systemwhere knowledge is represented by rules, the emergentmodel represents
knowledge through mappings among the cognitive architecture. Two examples of the
emergent model will be reviewed in this section. An example is the Artificial Neural
Networks (ANNs) approach. The knowledge exists in a network, which is a distributed
pattern of a set of computing elements and their connections [24]. An example of the
emergent model is the Multilevel Darwinist Brain (MDB) architecture (Section 2.2.2),
where knowledge is distributed in a multilevel architecture. The multilevel structure
of the MDB represents a hierarchy of solutions, which have the potential to achieve
complex tasks, including robotic tasks. Therefore, the review Section 2.2.2 will focus
on how the distributed solution components compose solution in the hierarchy.

The third approach is the hybrid model that attempts to combine the symbolic model
and the emergent model. To separate the uses of these two models, a hybrid model
categories knowledge into two types: declarative knowledge and procedural knowledge.
Declarative knowledge is the type of knowledge stored for recognition, telling what the
factor or information it is in the memory. Procedural knowledge is the type of knowledge
exercised in the performance of a task. Procedural knowledge basically describes how
you know to do something. A hybrid model can represent declarative knowledge by a
symbolic model and can represent procedural knowledge by an emergent model [22].
An example of the emergent model is the ACT-R architecture (Section 2.2.3), which pro-
cesses declarative knowledge and procedural knowledge through heterogeneousmodules
for various functions. The ACT-R provides a benchmark for this work in terms of ap-
plying various modules to achieve different processes of declarative knowledge and
procedural knowledge.

This work will take the hybrid approach to construct our cognitive system because
this approach combines the advantages of these the symbolic and the emergent approach.
Because the position of this work takes the hypothesis that emotions play a critical role
in the construction of a cognitive system, the following literature review of the hybrid
cognitive system thus focuses on emotion inspired hybrid cognitive systems. An example
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is Cognitive-Affective Personality System (CAPS, (Section 2.2.4)). Compared to the
ACT-R, which applies heterogeneousmodules, the CAPS applies homogeneousmodules
to process knowledge. In the CAPS, a module is a network that combines homogeneous
nodes and various mappings between these nodes. The CAPS hypothesises that after
training, various networks can emerge as different modules that can achieve cognitive
processes.

2.2.1 SOAR

SOAR 1 is a cognitive architecture that has been under continuous development since the
early 1980s [23]. It dynamically combines available knowledge for decision-making, and
can dynamically create subgoals whenever the knowledge for a decision is incomplete
or inconsistent [26]. SOAR can also compile the problem-solving in subgoals into
rules, using a process called chunking, so that over time, problem-solving in subgoals
is replaced by rule-driven decision-making [26]. Chunking allows SOAR to explore
various learning methods, strategy acquisition and many other methods by storing away
problem-solving information in a subgoal. Therefore, the decision-making process in
SOAR becomes extremely versatile.

The traditional SOAR architecture contains three parts: working memory, recogni-
tion memory and a chunk (Figure 2.3) [27]. The working memory is a short-term mem-
ory, which attempts to achieve goals, whereas the recognition memory and the chunk
are long-term memory. The recognition memory keeps the declarative knowledge and
a chunk contains productions, which are also known as condition-action associations.
The working memory consists of a problem space, which is represented by the three
triangles (Figure 2.3). The problem space consists of states and operators. The state,
such as an initial state or a goal state, is represented by the small circle. The operator is
represented by the arrow. A set of operators apply to states and produce new states.

A step in the problem space is taken in each decision cycle (bottom of Figure 2.3).
The decision cycle consists of two phases: the elaboration phase and the quiescence
phase. During the elaboration phase, SOAR’s learningmechanism, chunking, builds new
associations in the recognition memory that are compared to the retrieving knowledge
from relevant contexts. After all the associations have been executed, the system reaches

1SoarâĂŹs name is derived from this basic cycle of State, Operator, And Result
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Figure 2.3: SOAR Architecture [27]

the quiescence phase, in which the retrieved preferences are interpreted by the decision
procedure. The decision procedure implements the semantics of a fixed preference
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language in the recognition memory and decides the next problem states. However,
when knowledge about operator selection is insufficient to determine the next operator
to apply or when an abstract operator cannot be implemented, an impasse occurs. In
response, SOAR creates a new goal to determine which operator it should select or how
it should implement the abstract operator. As a result, all tasks in SOAR are formulated
as attempts to achieve goals. [27, 23].

At the learning algorithm level, the most recent SOAR module (SOAR 9) updates
its architecture by incorporating new modules (Figure 2.3). These additional modules
contain various machine learning algorithms to form different types of knowledge.
SOAR 9 provides a general platform in which each machine learning algorithm, such as
supervised learning, unsupervised learning, or reinforcement learning can be an option
to choose for generating knowledge. For example, Nason integrated Reinforcement
Learning with SOAR (SOAR-RL), which was implemented on a Pacman-like agent for
searching food in puzzles [26]. The agent can learn preference rules of moving towards
food.

As a rule-based cognitive system, SOAR demonstrates a framework of applying
rules in different cognitive processes. However, the SOAR faces two challenges to be
applied in real-world robotic applications. Firstly, the SOAR does not emphasise on
discovering the useful rules. Instead of encouraging rule-discovery from an architecture
level, the SOAR relies on the underlying algorithm’s ability to discover useful rules. In
contrast, this work argues that learning ability, including rule-discovery, is critical for a
cognitive systemwho cannot ignore. Secondly, as a complex robotic application requires
cooperations of different modules/rules, the SOAR framework is overgeneral and lacks
specific modules to handle the required cooperations. A robotic cognitive system should
consider the cooperations between multiple modules.

2.2.2 Multilevel Darwinist Brain

TheMultilevel Darwinist Brain (MDB) is a cognitive architecture that employs an evolu-
tionary approach, which provides autonomous robots with lifelong adaptation through its
interaction with the environment [28, 29]. This approach adopts neuroevolution, which
is an intrinsic part of the cognitive system that allows a robot to be able to learn different
tasks and objectives. The overview of MDB Cognitive Architectures is described in
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Figure 2.4. The MDB Cognitive Architecture consists of three models, namely, the
world model (W), the internal model (I) and the satisfaction (S) model.

The world model (W) describes the external perception e(t), which can be expressed
as a function of the last action performed by the agent A(t-1), the sensory perception
it had of the external world in the previous time instant e(t-1) and a description of the
events occurring in the environment that are not due to its actions, Xe(t-1) (Equation
2.1).

e(t) = W [e(t− 1), A(t− 1), Xe(t− 1)] (2.1)

i(t) = I[i(t− 1), A(t− 1), Xi(t− 1)] (2.2)

The internal perception i(t) of an agent ismade up of the sensory information provided
by its internal sensors. The internal model (I) describes the internal perception i(t) in
terms of the last action performed by the agent, the sensory perception it had from the
internal sensors in the previous time instant i(t-1) and other internal events not caused
by the agent’s actions Xi(t-1) (Equation 2.2). The satisfaction s(t) of the agent can be
defined as amagnitude or vector that represents the degree of fulfilment of themotivation
or motivations of the agent and it can be related to its internal and external perceptions
through Equation 2.3.

s(t) = S[e(t), i(t)] = S[W [e(t− 1), A(t− 1)], I[i(t− 1), A(t− 1)]] (2.3)

The main objective of the cognitive architecture is the satisfaction of the motivation
of the agent, which, without any loss of generality, may be expressed as the maximisation
of the satisfaction s(t) in each instant of time (Equation 2.4).

MAX(s(t)) =MAX(S[W [e(t− 1), A(t− 1)], I[i(t− 1), A(t− 1)]]) (2.4)

TheMultilevel Darwinist Brain appliesArtificial Neural Networks (ANNs) tomodify
models’ representations (Figure 2.4). The MDB is structured utilising two different time
scales, one devoted to the execution of the actions in the environment (reactive part)
and the other dealing with the learning of the models and behaviours (deliberative part).
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Figure 2.4: Multilevel Darwinist Brain’s Architecture [29]

This separation shows ANNs can distinguish the relevance between two models. This
ability can also be applied to simplify the complex network.

However, the Multilevel Darwinist Brain takes the Connectionist approach (Section
2.5) to evolve the cognitive architecture. The results are purely weights and connections.
This type of result requires large extra effects to interpret their meanings before the result
can apply to the real-world application without safety concerns.

2.2.3 Adaptive Control of Thought-Rational (ACT-R)

Adaptive Control of Thought-Rational (ACT-R) is a cognitive architecture, which sim-
ulates the human cognitive system as a set of independent modules [30, 31, 32] (Figure
2.5). ACT-R can be considered as a hybrid cognitive architecture for its symbolic and
sub-symbolic representation [33]. In ACT-R, the symbolic representation is the declar-
ative knowledge, and the sub-symbolic representation is the procedural knowledge [33].
The knowledge that is able to verbally describe or declare is considered declarative
knowledge, whereas knowledge that can only be inferred from an individual’s behaviour
is considered as procedural knowledge [34]. Intuitively, the relationship between declar-
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ative knowledge and procedural knowledge is similar to that of the data and the program.
A chunk is the basic unit of knowledge in the declarative memory, and the production
is that of knowledge in the procedural memory. The chunk tries to specify what it is,
while the production provides an appropriate method to processes it. ACT-R is built on
the declarative-procedural distinction, whereas other cognitive systems, such as SOAR,
blurs this distinction.

Figure 2.5: The ACT-R cognitive architecture
(a) Its apping to brain regions (b). The colours of the modules correspond to the
coloured squares in the brain [30].

ACT-R processes information through a set of modules, each of which processes a
different type of information. Each module has an associated buffer, a chunk, which
holds a relational declarative structure. Productions respond to the chunk by applying
a rule whose condition part matches the chunk and whose action part initiates what
modification should be done in that buffer. The modification may involve commands
such as retrieving a chunk from long-term declarative memory or executing a motor
command.

Schumacher et al. reported an experiment in which participants performed a visual-
manual task and an auralâĂŞvocal task (Figure 2.6) [32]. The following steps demon-
strate the process of how theACT-R architecture responds to the visual input with a figure
movement command. 1. When the visual module detects a visual stimulus, it updates
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Figure 2.6: Overview of the ACT-R architecture [35]

the visual buffer. 2. Productions notice this update, and a production rule (compiled-
attention-rule) puts a request to indicate this visual stimulus in the visual buffer. 3. The
visual module finds the pattern to this visual stimulus and places it in the visual buffer. 4.
This pattern in the visual buffer will elicit another production rule (extract-index-finger)
that will put a request to press the index finger in the manual buffer. 5. When the manual
module is done, the rule "Ready" terminates the trial. This experiment demonstrated the
ACT-R architecture’s potential to be applied to a real-world robot.

The ACT-R community has used its architecture to model a variety of phenomena
from the experimental psychology literature, including aspects of memory, attention,
reasoning, problem-solving, and language processing. However, the ACT-R architecture
relies on the preset modules that are activated in a fixed sequence. The ACT-R architec-
ture may be more adaptive if it can improve its performance in two fields: the knowledge
acquiring skill and the decision process. The heterogeneous modules of the ACT-R
architecture limit its ability to acquire knowledge. The ACT-R architecture is difficult
to automatically generate new modules based on the existing heterogeneous modules. It
cannot also generate new behaviours based on the current decision-making processes.
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2.2.4 Cognitive-Affective Personality System (CAPS)

Three cognitive architectures have been discussed in previous sections. These cognitive
architecture don’t emphasise on the role of emotion in their cognitive process. However,
emotion might gravely engage in cognitive process consciously and unconsciously [36].
In the field of emotion theory, an affective cognitive hypothesis advocates that an affective
cognitive system can achieve solutions by its capability of reconceptualizing situations,
dispositions, dynamics, and invariance in personality structure [37]. In a task scenario,
relevant capabilities toward task solutions are diverse in terms of encodings, expectancies
and beliefs, affects, goals and values, competencies and self-regulatory plans (see an
example in Figure 2.7). Generally, these capabilities are upheld by computing unites in
the affective cognitive system. Therefore, each computing unite represents a component
of the task solutions, and the network of the total unites represents the completed solution.
At a given moment, these units are activated or deactivated to execute a solution for the
task. As diverse computing nodes are able to represent the components of the task
solutions, an affective cognitive system has the potential to handle every admissible
task.

An affective cognitive system also has the potential to learn “appropriate" compo-
nents of the task solutions. Ideally, instead of presetting the task solutions and their
components, the computing unites of an affective cognitive system can apply learning
agents (i.e, RL agents) to learn these components through the RL approach. That is,
the learning agent of each component aims to search the appropriate context of this
component. For example, a learning agent can be deployed to search the optimal value
of hyperparameter of a path-planning model. In this case, the hyperparameter is the
targeted component, and the learning agent aims to search the optimal value from a
space that contains all the admissible values. Therefore, the potential of learning diverse
components of a task solution exists if all the learning agents can learn effectively.

However, all the learning agents cannot learn effectively if they face a large searching
space of the solutions. The searching space of the solutions is constituted from the
searching spaces (sub-spaces) of the components of these solutions. Mathematically,
the operation of the constitution of sub-spaces can generate a combinatorial explosion
of the constituted space. As components diversify, the searching space of the solutions
approaches to almost infinite exponentially. As a result of an enormous searching space,
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Figure 2.7: Cognitive-affective mediating processes [37]

learning agents incline to be failed in learning components.
This work argues that an affective cognitive system should require an architecture

that innately decomposes the searching space of the solution. A hierarchy structure is
a promising architecture because it can introduce innate subsuming operations to the
system. Similarly to the subsumption system [38], the subsuming operations allow
components in the higher-layer of the architecture to subsume components in the lower-
layer by their symbolic meanings. The subsuming operations can diminish the entire
searching space of the solutions into sub-spaces, facilitating the embedded learning
agents. Therefore, subsumption between components of different layers should be
necessary for an affective cognitive system to learn solutions with diverse components.

2.2.5 Summary

Before designing our affective cognitive system for robotic applications, this section
reviewed benchmarked cognitive system in the field of psychology. Four cognitive
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systems were introduced in this section: SOAR, Multilevel Darwinist Brain, Adaptive
Control of Thought-Rational, and Cognitive-Affective Personality System. These four
cognitive systems cover all three types of knowledge representation: symbolic, emergent,
and hybrid. Compared to the other three cognitive systems, the hypothesis of Cognitive-
Affective Personality System are more related to emotion theory, which plays a critical
role in the hypothesis of this work. Thus the next section will introduce three mainstream
emotion theories.

The number of emotion inspired cognitive systems that are applied for robotic nav-
igation tasks is rare, although hundreds of cognitive systems [21] have been proposed.
For the first time, the previous work (Section 2.7) proposed an emotion inspired robotic
cognitive system, which can evolve an emergent emotion model and generate appropri-
ate, non-preset affective responses during navigations [19]. Because of the shortfalls of
the previous work, it is necessary to propose a novel cognitive system, which is inspired
by the insights from the fields of cognitive systems, emotion theories and robotic control
systems.

2.3 Emotion Theories and Brain’s Cognitive Architec-
ture

2.3.1 Introduction to the Nature of Emotion

Emotions can be thought of as states elicited by rewards or punishers [39]. Generally
speaking, “a reward is anything for which an animal will work, whereas a punisher
is anything that an animal will work to escape or avoid, or that will suppress actions
on which it is contingent” [40]. By approaching rewards and avoiding punishments,
emotions are elicited in cognitive processes (i.e. decision-making), leading the execution
of actions for goals. In neuroscience, various human brain areas (such as orbitofrontal
cortex (OFC), amygdala, and the anterior cingulate cortex) fire during these cognitive
processes, suggesting a complex brain mechanism existing in emotion affect cognitive
processing [40, 41, 42]. Therefore, investigation of the architecture that underlies
affective cognitive processes has the potential to create an autonomous robot that can
pursue rewards and avoiding punishments due to elicited emotion states.
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2.3.2 Emotion States and Cognitive Architecture

Cognition is closely related to emotion. Every type of cognitive operations may be
involved in processes which determine the goal for an action. In cognitive operations,
a certain event, stimulus, and memory will be involved to evaluate the agent related
event in terms of rewards and punishments. Thus, emotions as states will be provoked
in the cognitive process [40]. Under this circumstance, emotion can also be used as the
“umbrella” concept that includes affection, cognition, behaviour, expression, and a host
of physiological changes [20]. The hierarchy of mind, which include emotion within
a cognitive architecture, is worth exploring because it can inspire the methodology for
this work (Section 3.2). At the molecular level, the brain’s emotional-affective hierarchy
has three levels, namely, the primary process level, the secondary process level and the
tertiary level (Figure 2.8) [43, 40]. Investing emotion machines in these three levels will
provide reasonable presumptions for the proposed methodology.

Figure 2.8: Nested brain-mind hierarchies [36]
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2.3.2.1 Primary Process Level

The primary process level takes place in the sub-neocortical region of the brain. This
level contains an unconscious perception system and an autonomic endocrine system 2.
The perception system can perceive the external stimulus, transfer them into perceived
fact, then pass this declarative knowledge onto the next brain level and activate the
endocrine system at the same time. The endocrine system will prepare the body for
action by releasing chemicals. For example, the endocrine systemwill release adrenaline
when a snake-phobia patient sees a python [40]. The perceived fact can be considered
as the “cold” declarative knowledge, which will be stored in the short-term memory.
Conclusively, the primary process level aims to perceive all the facts, which will be
transferred to the secondary process level for further processing.

2.3.2.2 Secondary Process Level

The secondary process level receives facts from the primary-processes level, and pro-
cesses the information in the basal ganglia and cingulate cortex of the brain to obtain
rewards and punishments unconsciously or implicitly.

(1) Stimulus-response behaviour. The basal ganglion deals with facts, which are the
results of perceptions of external stimuli in the primary process level, to learn the
stimulus-response behaviour or activate such behaviour that “Nature” built into
our brains. The behaviour triggered by the basal ganglion will directly respond to
certain stimuli unconsciously. This process does not require an intervening state
such as a goal to be reached [40]. For example, the hand will retract immediately
once it touches a hot surface. Only minimal explicit consciousness is involved in
stimulus-response behaviours.

(2) Stimulus-reinforcer behaviour. Another process on this level is the cingulate
cortex process that supports the stimulus-reinforcer association behaviour, which
will connect the personal relevance in this process and thus provoke emotions.
With the rewards and punishments, the cingulate cortex process transfers the

2The endocrine system is the collection of glands that produce hormones that regulate metabolism,
growth and development, tissue function, sexual function, reproduction, sleep, and mood, among other
things.



2.3. EMOTION THEORIES AND BRAIN’S COGNITIVE ARCHITECTURE 27

“cold” fact into the “hot” declarative knowledge, which is also known as appraisal.
The hot declarative knowledge appraisal will define the personal significance of
an encounter for well-being [44]. As a result, the appraisal is a proximal variable
which directly influences whether an emotion will be generated, and if so, its type
and intensity.

In the stimulus-reinforcer learning process, the fact is evaluated by what happens
beneficially or harmfully to the agent itself. The fact with such anticipated knowl-
edge is transferred into appraisal knowledge by the stimulus-reinforcer learning
process. As a result, each positive emotion reflects a particular kind of appraised
benefit, and each negative emotion reflects a particular kind of appraised harm
[44].

Classical conditioning might be generated by this stimulus-reinforcer learning pro-
cess. The classical conditioning, which is also known as Pavlovian conditioning, orig-
inates from the legendary experiments conducted by Ivan Pavlov (1849-1936) [39]. In
one of Pavlov’s experiments, also called Pavlov’s dog, the sound of a bell would connect
with dog’s prediction that food is coming. After training, the dog will salivate when
the bell rings. The food is considered to be the unconditioned stimuli (US) that are the
true rewards, whereas the bell is the conditioned stimuli (CS). In the stimulus-reinforcer
learning process, the fact, which is the sound of the bell in this case, has been evaluated
as beneficial by the reward that is food. With the evaluation, the fact has transferred into
appraisal knowledge. This appraisal will implicitly provoke emotion and thus activate
the responsive behaviour. In other words, the ringing bell (CS) is associated with the
dog’s positive emotion and triggers its slobbering in this case. During the stimulus-
reinforcer process, the long-term memory stores the declarative knowledge including
fact and appraisal in the secondary-processes level.

However, if the bell keeps ringing without food being provided, the dog will establish
a new stimulus-reinforcer association to replace the old one, and stop salivating. In this
new stimulus-reinforcer learning process, the new appraisal knowledge will be learned.
In other words, the new appraisal knowledge will be established, while the old appraisal
knowledge of the bell will be inhibited but is still in the memory.

Another example that shows the old appraisal knowledge will be inhibited by a
new one is the new PTSD (Post-Traumatic Stress Disorder) therapy. Originally coming
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from the military, PTSD often happens to people who have experienced life and death
scenes. Those people who over-learn emotional memory (the appraisal knowledge)
might develop PTSD. Those who suffer from PTSD might have flashbacks, nightmares
or severe psychological trauma, which might cause them unable to function normally in
daily life. The new therapy is to provide a drug to overcome the overlearning of the old
emotional memory by increasing the learning of new memory. The new drug increases
the activity of the receptor, which is similar to the gate for neurons and cells. Therefore,
the drug can increase the learning of new memory so that the good new memory will
inhibit the old one that provokes too much fear. This new PTSD therapy provides
more insights for the stimulus-reinforcer behaviour and the stimulus-reinforcer learning
process through exploring the interaction between memory and appraisal [45, 46].

Inspired by the stimulus-reinforcer learning process, this work will introduce sec-
ondary reinforcers (Section 3.2.2) into the proposed cognitive system. A secondary
reinforcer attempts to achieve stimulus-reinforcer learning, which connects primary
reinforcers (Section 3.2.1) with optional actions and their consequential outcomes. Dif-
ferent stimulus-reinforcer learnings will be achieved through subsumption operations on
secondary reinforcers (Section 3.3.2).

2.3.2.3 Tertiary Process Level

The tertiary process level consciously processes four topics in the Neo-cortical area
of the brain: knowledge, emotions, goals, and goal-directing behaviours. The process
on this level is conscious; the agent is aware of these four topics. This is different
from the secondary process level which “has no control over whether the unconditioned
stimulus is delivered” [40]. In terms of knowledge, which is a topic at this level, some
processes related to knowledge are clear: the declarative knowledge will be processed
in the tertiary process level. The processing progress of declarative knowledge includes
generating both fact and appraisal, storing them in both short term memory and long
term memory, and retrieving them from long term memory.

However, the interactions between these four topics are still not clear. There is also no
agreement of how conscious emotion would be elicited by or affect the other three topics
[47]. Traditionally, there are three emotion theories to explore this question: Basic
Emotion Theory, Appraisal Theory, and Constructive Theory. These three emotion
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theories will be discussed below, following the framework of Constructive Theory. This
framework may not strictly match paradigms of Basic Emotion Theory and Appraisal
Theory: Basic Emotion Theory does not have a clear definition about the unconscious
emotion; and Appraisal Theory does not distinguish the relationship between behaviour
and conscious or unconscious emotions. The principal ideas of these three theories are
as follows:

(1) Basic Emotion Theory. Basic Emotion Theory, which is also known as dis-
crete emotions theory, is inspired by Tomkins’s (1962) rediscovery of Darwin’s
(1872/1998) work on the expression of emotion. “The fundamental assumption
is that a specific type of event triggers a specific affect programme correspond-
ing to one of the basic emotions and producing characteristic expression patterns
and physiological response configurations” [48]. According to the theory, this
basic emotions are “joy”, “fear”, “anger”, “disgust”, “sadness” and “interest” [49].
Panksepp follows this discrete emotions theory. His emotion model is slightly
modified from these seven basic emotions, and advocates the seven basic affec-
tive systems according to each basic emotion [50, 51]. These are SEEKING for
enthusiastic, RAGE for pissed-off, Fear for anxious, LUST for horny, CARE for
tender and love, PANIC for lonely and sad, PLAY for joyous. These basic affec-
tive systems are executed in a certain part of the brain to activate the behaviours.
For example, the SEEKING system is associated with anticipatory-appetitive be-
haviours and is driven by activation of several neurological structures, including
the ventral tegmental area (VTA) and lateral hypothalamus (LH) [33, 43]. Gen-
erally speaking, this approach treats emotions as fixed action patterns elicited as
motor responses to stimuli [40].

(2) Appraisal Theory. Appraisal Theory generally treats emotions through the assess-
ment from four aspects: relevance, implications, coping potential, and normative
significance [40]. They advocate adaptive response by “defining the adaptive
functions in terms of the efferent results of individual appraisal checks that add
up cumulatively to prepare appropriate action tendencies” [48]. This theory treats
emotion as a reaction to significant events [40]. As a result, the agent might have
actions’ readiness 3 and select an optimised action to different types of alternatives.

3Actions’ readiness is “a state of preparedness for action that is elicited as part of an emotional response
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(3) Constructive Theory. Constructive Theory considers emotions as states, which
are critical in brain design. The emotion mechanism suggests a way from stimuli
to states, “in which a goal must be held in mind as the target for an instrumental
action to direct behaviour” [40]. The emotional states are represented by the
valence/arousal affect space. This core affect space provides a theoretical founda-
tion to quantify every emotion state in a reasonable way [47]. The goal-directed
actions are realised by the instrumental learning, in which there is a contingency
between the behaviour and the reinforcing outcome. The behaviour may be said
to be goal-directed if it depends on both (1) the instrumental contingency between
the action and a particular outcome (Action-Outcome (AO) contingency), and (2)
a presentation of the outcome as a goal [40, 47].

If an agent has AO contingency, it can learn the instrumental contingency between
an action and its consequence. Whereas emotions are directly linked to models
in Basic Emotion Theory or to functions in Appraisal Theory, they are linked to
“labels” in Constructive Theory. This theory mentions behaviours as the declara-
tive knowledge rather than the procedural knowledge. In other words, it does not
define how to carry out behaviours in AO contingency. The benefit of symbolic
behaviour is that it might increase the flexibility of agents in the actual actions that
are produced [53]. Yet, it requires another effort to link the behaviours’ declarative
knowledge to its procedural knowledge.

Constructive Theory pays much more attention to the learning process than the other
two theories because the agent acquires the instrumental learning process to establish
the AO contingency [53].

The instrumental learning process introduces an incentive value to demonstrate the
linking strength between stimuli and behaviours. The incentive value is directly linked
to motivation. The decreasing incentive value will weaken the motivation, and thus
affect the subsequent behaviour [53].

While the incentive value tells how strong a desire is for the agent, the hedonic
assessment demonstrates the agent’s attitudes toward different stimuli. For example, one
can rate a monkey’s acceptation to food by measuring whether the monkey will open its

and associated with such physiological indicators as changes in heart rate, respiratory rate, and muscle
tension” [52].
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mouth ready to accept the food, whether he will swallow food being placed in the mouth,
or whether he will use his hand to push away the food [53].

Discriminative stimuli are introduced to justify the conditional relationship of the
stimuli or the behaviour. The agent must discriminate between different stimuli to
respond to them in different ways. For example, a S+ is a discriminative stimulus
which indicates an agent that reinforcement is available, while a S- is a discriminative
stimulus which tells an animal reinforcement is not available. Then the agent will learn
to approach a S+ and avoid a S- [54]. Discriminative stimuli have been frequently used
to study brain mechanisms involved in processing reward-related visual and olfactory
stimuli [53]. This suggests that instead of being bias to positive rewards and ignoring
the negative reward, both positive and negative rewards can be applied in the cognitive
process.

2.3.3 Summary

To conclude, this section has provided a brief definition of emotion and an introduction
to a three-level cognitive structure where emotion states are elicited.

The primary process level focuses on the perception of the external stimuli for
the future cognitive process. The input of the environment for the cognitive agent is
transferred into fact, which will be stored in the short-term memory as one type of
declarative knowledge. This level also controls the endocrine system for the body’s
behaviour preparation.

The secondary process level advocates two types of learning behaviours, the stimulus-
response behaviour and the stimulus-reinforce behaviour. The stimulus-response be-
haviour provides a quick, automatically responding mechanism for the cognitive agent
to react in an emergency. After the link between fact (stimuli) and behaviour model
is established, the agent directly reacts to the fact without explicit consciousness. In
contrast, the stimulus-reinforce behaviour learning process will label fact with emotion
according to the personal significance. This process will transfer fact into the appraisal.
The stimulus-reinforce behaviour learning process might be the fundamental mechanism
of Pavlovian conditioning. This learning process not only creates the appraisal but also
interfaces its intensity. This idea is demonstrated by the principle of new PTSD therapy.
The stimulus-reinforce behaviour also provides insights about how emotion interacts
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with declarative knowledge.
Three traditional emotion theories are introduced in the tertiary process level to

explore the interaction between knowledge, conscious emotion and behaviours. Basic
Emotion Theory explores the interaction by defining a prototypical reaction, which
includes a specific action tendency, physiological response pattern, motor expression
and feeling state. Appraisal Theory indicates that emotional states can be elicited by
stimuli. Constructive Theory considers emotions as estimations of primary stimuli, thus
transfers these primary stimuli into secondary stimuli by attaching the estimations.

This section has reviewed the study in neuroscience and psychology regarding emo-
tion and the brain’s cognitive architecture. The brain’s mechanism provides insights to
construct an affective computing cognitive system for an agent. Firstly, an emotionmech-
anism indicates an agent’s evolutionary result. An emotion mechanism is a dynamic
mechanism, which is generated through the agent’s interactions with an environment.
Secondly, emotion mechanism may contain a certain hierarchy in which each layer may
focus on a specific topic of a cognitive process. Therefore, the emotion mechanism
may contain various specific mechanisms in each layer to solve a cognitive topic, such
as decision-making. Thirdly, generated emotion mechanisms are diverse and universal.
The diversity in environments and agents leads to diversity in emotion mechanism. Yet,
the universal hierarchy in cognitive process indicates universal underlying principles
(mechanisms) of diverse evolutionary results.

These reasons also indicate the necessity of introducing an evolutionary approach to
construct an emotion model in a cognitive architecture. Section 2.4 will review robotic
subsumption architectures, which can be applied to automatically construct an emotion
model with underlying machine learning techniques (Section 2.5).

2.4 Subsumption Architecture

A completely autonomous robot would include complex functional modules for task
completions in uncertain, dynamic real-world environments [55]. Traditionally, a control
system for an autonomous mobile robot is decomposed into functional modules by
the sense-plan-act (SPA) topics: proception, modelling, planning, task execution, and
motor control. Under this functional decomposition, each functional module attempts
to achieve individual topic, and all modules combined together as a control system for
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tasks (see Figure 2.9). As shown in the figure, functional modules activate by a sequence
of topics to complete tasks.
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Figure 2.9: A traditional decomposition of a mobile robot control system into functional
modules [55]

However, this functional decomposition might introduce human bias thus causing
problems. Firstly, the functional decomposition ignores the potential innate interactions
and impacts between these modules. For example, an motor execution without involving
sensors could be dangerous in a dynamic environment. The knowledge that is learned
by a functional module is hard to be transferred to improve other modules. Secondly, the
system’s overall performance is constrained by the sequential firing chain of functional
modules. As one systemic output requires a sequential firing chain of functionalmodules,
the system’s robustness is much inferior to each functional module’s robustness. One
bug in a module might cost the performance of the entire system.

The subsumption architecture proposed an alternative control system for a robot.
Compared to the approach of the functional decomposition of a control system, a sub-
sumption system decomposes itself by layers of behaviours (see Figure 2.10). A layer
of behaviours is a behaviour-based Finite State Machine, which is a control loop that
connects perceptions to action behaviours (see Figure 2.11). As high-level behaviours
can override low-level behaviours, hierarchical control loops compose a subsumption
system. As behaviours in the lowest layer directly connect sensors and actuators, a
subsumption system can optimise its behaviours through a hierarchy of Finite State
Machines to interact with the environment. Compared to a functional decomposition
system, this feature increases the robot’s flexibility in its behaviours for task completions.
Besides, the subsumption system can react to a dynamic environment more quickly than
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the alternative system, because the subsumption system constantly perceives the envi-
ronment. The subsumption architecture is developed with hierarchical components to
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Figure 2.10: A layer of a subsumption system based on task achieving behaviours [55]
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Figure 2.11: Example layer of subsumption system [55]

achieve goal-directed behaviours. These hierarchical components attempt to optimize a
robot’s planning toward goal achievement. Hierarchical components, such as planning
components and learning components, are thus introduced into the classical subsumption
system. Autonomous Robot Architecture (AuRA) [56] is an example of a combination of
hierarchical components with Finite StateMachines 4 (see Figure 2.12). The hierarchical
components, including mission planner and spatial reasoner, aim to achieve symbolic
reasoning in the high-level of the architecture to generate goal-directed behaviours in

4The Finite State Machines in the AuRA are called finite-state acceptors (FSAs).
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the low-level. Through hierarchical components, a subsumption system is able to per-
form goal-directed behaviours rather than initiate reactive behaviours. Machine learning
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Figure 2.12: High-level AuRA schematic [56]

techniques are introduced to the subsumption system to optimize the robot’s behaviours.
Traditionally, Finite State Machines (FSMs) establish relatively fixed innate connec-
tions from sensors to actuators in the classical behaviour-based subsumption system.
These fixed connections make the classical system almost impossible to optimize its
behaviours [57]. Therefore, hierarchical components are introduced to improve the
system’s capability in behaviour optimization.

For example, Arruda introduces Dynamic Fuzzy Cognitive Maps (DFCMs) with
Reinforcement Learning into the classical behaviour-based subsumption system, termed
DFCMs-based subsumption system [58]. In the DFCMs-based subsumption system,
DFCMs replace the FSMs, becoming hierarchical components that affect innate connec-
tions of the system. A learning system applies the Reinforcement Learning technique
to train these connections through interactions with the environment (see Figure 2.13).
As a system that is inspired by cognitive models of marine life [57], the DFCMs-based
subsumption system also introduces an explicit internal state system, which aims to sim-
ulate motivation and homeostasis system for physiological processes. Compared to the
behaviour-based subsumption system, the DFCMs-based subsumption system has shown
the ability to learn and adapt its behaviours for the task in a simulation environment.

Although subsumption systems are based on the hypothesis that achieving behaviours
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Figure 2.13: Architecture of DFCMs-based Subsumption System [57]

can compose a robot’s control system through subsumption, it proved very difficult to
compose behaviours to achieve long-range tasks [57]. One potential reason is that the
FSMs approach to behaviour-based subsumption essentially preset a finite behaviour
space, which has no guarantee of the existence of achieving behaviours. As a result,
“no emergent or unexpected behaviours" would be composed by the system [59], which
indicates the limitation of the FSMs approach. Introducing a huge behaviour space (even
an almost infinite behaviour space) would increase the flexibility of behaviours. But the
huge search space brings challenges for the underlying machine learning techniques to
subsume behaviours effectively.

Another reason is that planning and reasoning are separated from the composition of
behaviours. As the system’s interactions with the environment fail to directly impact the
behaviours’ composition in each layer, the behaviours’ compositions have no reason to
move toward task achievement. In a huge behaviour space, the machine learning algo-
rithm should guide these behaviours’ compositions evolving toward task achievement.

Additionally, the architecture with a high hierarchy structure might create a huge
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search space for the behaviours’ composition. A total search space explodes exponen-
tially as layers pile up in the architecture. Even the search space contains successful
behaviour combinations, machine learning techniques still require significant computing
resource for this search, bringing practical challenges for real-world robotic applications.

2.5 Learning Classifier Systems

Existing machine learning techniques can be categorised into five tribes: Symbolist,
Connectionist, Evolutionaries, Bayesians, and Analogizers [60]. Each tribe has a major
advantage over others. Symbolist tends to compose knowledge into semantic rules that
can be easily interpreted. Connectionist technology is good at reward backpropagation,
so is adaptable to Reinforcement Learning tasks. Thus Connectionist approaches are
popular among robotic paradigms for learning from the past. Evolutionary technologies,
such as Genetic Algorithm, contain optimization in an evolutionary process. Bayesians
focus on handling uncertainty using probabilistic approaches such as the Bayesian ap-
proach. The Analogizers approach focuses on techniques to match bits of data to each
other. For the evolutionary cognitive robot, evolutionary technologies/algorithms are
selected for the application. This is because the evolutionary capability would allow the
robot to autonomously evolve solutions for the task with the symbolic interpretation of
the final solution, which is desirable in the field of robotics.

Evolutionary Algorithms are search algorithms inspired by the Darwin’s theory of
natural selection [61, 62, 63]. This theory assumes that natural competition allows the
transmission of hereditary benefits to pass through generations. Therefore, evolutionary
algorithms need many iterations to allow individuals of a population to evolve over a
number of generations. During each iteration, feedback from successful behaviours is
used to select appropriate “parent” individuals to generate “children” individuals. In this
process, genetic operators, such as crossover and mutation, are applied to evolve children
from parents [6]. The crossover operator generates one or more child individuals from
the combinations of several parents, and the mutation operator alters an individual inde-
pendently of parents. Therefore, evolutionary algorithms allow the evolving population
to search for solutions to complex problems.

Machine learning techniques have three different learning paradigms: Supervised
Learning, Unsupervised Learning, and Reinforcement Learning. Supervised Learning
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trains amodel with a labelled dataset, which creates a learning scenariowhere a “teacher”
is available. The output of the model is a prediction guided by the labelled data. In
contrast, Unsupervised Learning trains its model based on unlabeled data, which creates
a learning scenario without any intervention from a “teacher”. The output of the model
is based on the dataset’s pattern that is discovered in the training process. Reinforcement
Learning has an agent that can interact with its environment by performing its actions.
Thus the agent learns “how to perform behaviours” from errors or rewards. This is
similar to a learning scenario where the agent can obtain a score from an environment
according to criteria from an “unavailable teacher”. As the agent can exploit or explore
the environment, the model can be trained with no predefined data. This learning by
trial-and-error approach makes Reinforcement Learning popular in the field of robotics
[64].

Learning Classifier Systems (LCSs) are rules-based evolutionary algorithms that
covermany characteristics ofmachine learning techniques [65]. AnLCS agent contains a
population of classifiers, where a classifier is a “condition-action” rule with statistics (i.e,
predicted-reward, fitness). The “condition-action” representation of the rules facilitates
their symbolic interpretation, becoming the primary characteristic of this algorithm.
The evolutionary capability that drives both global and local search for improved rules
is the second characteristic of LCSs algorithms. Evolutionary technologies, such as
Genetic Algorithms, are applied in the methods that generate classifiers, enabling the
entire population of classifiers to move from initial population towards an optimal one.
Expansibility is the third characteristic of LCSs algorithms. LCSs algorithms provide
an evolutionary framework to generate optimal rules without strict restrictions on its
application. For example, various data-niche representations can be introduced into the
LCSs algorithms to meet the requirements of different applications. For encoding the
condition of a problem instance, the tree structure can be introduced in the algorithm’s
representation (i.e, XCSCF [66]), which leads to the induction capability to represent the
environment in a structured way. By convertingMulti-Layered Perceptron (MLP) neural
networks [67] into the representation, Accuracy-basedNeuro andNeuro-FuzzyClassifier
Systems (X-NCS) [68] can apply the connectionist technology to learn the function
approximation from the input to the output. Thus, the characteristic of expansibility will
facilitate this proposal of novel variants of LCSs algorithms for robotic applications.
Therefore, this work selects LCSs as the major underlying machine learning technique
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for this research application.
Generally, LCSs can be categorised into Accuracy-based Learning Classifier Sys-

tems and Strength-based Learning Classifier Systems, according to the method used to
calculate fitness. Fitness is a statistic that estimates the quality of a rule through its pre-
dicted reward. Accuracy-based Learning Classifier Systems (e.g. XCS [69]) calculate
the fitness based on the accuracy of the prediction of reward, and Strength-based Learn-
ing Classifier Systems calculate the fitness based on the strength of the received reward
[70]. XCS rules attempt to move towards the most general, accurate rules because of the
pressure that is generated by the accuracy-based fitness coupled with subsumption and
deletion pressure.

In this work, we choose XCS as the benchmark algorithm to apply to the proposed
cognitive architecture for three reasons. The first reason is that a robot is preferred to be
consistent in its performance compared to the opposite case of performing excellently
in many trials, but crashing in others. This argues for an Accuracy-based Learning
Classifier System. Secondly, solutions that a robot learns from a less frequent event will
not be overwhelmed by solutions learned from amuchmore frequent event, which argues
against Strength-based Learning Classifier Systems. The third reason is that “correct"
actions are generally unknown in a robot’s training process. So a “teacher” is unavailable.
In the learning process, XCS adopts the reinforcement learning approach, which will
allow the robot to take actions in the environment and learn solutions to improve its
performance [71, 72]. The robot’s training process makes XCS more suitable for this
robotic application than UCS (sUpervised Classifier System) [73, 74], which is designed
for supervised problems where the “correct" actions are available in the training process
[75].

2.5.1 Standard XCS Learning Iteration

A standard XCS agent estimates the fitness of rules through iterations of interactions
with the environment. Based on how the agent perceives the environment in each
iteration, rules in the XCS agent will advocate an action as the agent’s effect on the
environment (see Figure 4.3.a). All rules in the XCS rules’ population [P] that match
the current perception will form a Match Set [M] through the Match filter. Next, [M]
selects an action by the selection filter through either the exploration or the exploitation
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method. In exploration, the selection filter selects an action randomly from all options.
In exploitation, the selection filter selects the most promising action with the maximum
worth in [M] (see Equation 4.6). The selected action will be executed by the agent, and
rules in [M] who vote for the executed action will form an Action Set [A]. After the
action execution, the agent will immediately receive a step reward ra from the reward
filter as feedback from the environment in single step problems. The worth (fitness)
and other statistics of the rules in [A] are updated according to the step reward ra. As
iterations progress, fitness better reflects the utility of a rule to guide evolutionary search
to better solutions (policies of actions).

The reward filter updates each rule in [A] by updating the statistics of a rule, including
predicted reward rp, prediction error ε, and fitness F based on its ra. Predicted reward
rp is updated by a learning rate β (see Equation 4.1).

rp = rp + β ∗ (rp − ra) (2.5)

Prediction error ε is also updated in a similar way (see Equation 4.2).

ε = ε+ β ∗ (|rp − ra| − ε) (2.6)

Finally, fitness fit, the worth of the rule, is updated through calculations of absolute
accuracy κ and relative accuracy κ, (see Equations 4.3, 4.4, 4.5).

κ =

1, if ε ≤ ε0

(ε/ε0)
ν , otherwise.

(2.7)

κ, = κ/(
∑

[A] κ) (2.8)

fit = fit+ β ∗ (fit− κ,) (2.9)

worthaj =

∑
clk∈[M ]|aj rpk ∗ fitk∑

clk∈[M ] fitk
,

where j,k ∈ N, cl is a classifier, aj is the action of cl,

fit is the fitness of cl, rp is the predicted reward of cl,

worthaj is applied to each action in a rule set [M]

to select the most promising action in the exploit mode.

(2.10)
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Figure 2.14: Iteration Loop of Standard XCS
Blue blocks are the standard XCS sub-processes, grey blocks are XCS rule sets, orange
blocks are sub-processes of reward methods, and purple blocks indicate the agent’s
interactions with a maze environment. Arrows indicate the agent’s working flow, and
dotted arrows indicate classifiers/rules working flow.

2.5.2 Multistep Problem and Robotics Adaption

XCS algorithms have been applied to solve multistep problems [76], such as maze
problems introduced by Wilson [69]. In maze problems, the agent has to execute
actions in sequential iterations to complete a navigation task. Rewards are provided
only in certain states in the multistep problems. A long-term reward rl represents the
completion of the task. rl equals an arbitrary value of 1000 if the task is completed.
Otherwise, rl equals an arbitrary value of 0 in non-goal states or if the task fails (e.g.
the agent has taken more steps than the step-threshold in an epoch of a trial). A short-
term reward (immediate reward) rs traditionally represents the agent’s execution effects
during each iteration. rs equals an arbitrary value of -1 as a cost of the agent moving
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a step forward. rs equals an arbitrary value of -50 if a collision occurs. At the final
state, the sum of all short-term rewards and the long-term reward contributes to the final
reward as the measurement of the performance of the agent.

Traditionally, a reward propagation is required by a reward method for applying the
standard XCS iteration loop in the multistep problems. The reward method is internally
responsible for assigning external rewards, including short-term rewards and any long-
term reward, to step rewards for each iteration. The step reward ra is the reward which
the agent assigns to recent active rules in [A]i for the step i, as mentioned in the single
step problem above. The standard XCS reward method encapsulates long-term rewards
into short-term rewards through a Q-learning like algorithm [69, 76]. The maximum
potential reward available is propagated to previous actions [A]i−1, even if that action is
not taken in [A]i. Although Q-learning can mathematically guarantee the approximation
of estimated ra, it takes a long time before the effect of a rl can propagate to early
states. The propagation speed of the standard reward method might be not fast enough
for robotic applications in the real-world. A mobile robot might take minutes to finish a
propagation by interacting with a real-world environment, but millions of iterations for
training the robot is impractical.

Bull et al. [77, 78, 79] proposed an approach to weight the influence of time on
the reward propagation in TCS (Temporal Classifier System). Instead of the propaga-
tion of the reward to every micro-states that a robot responds to, in TCS, the reward
is propagated to previous macro-states, which subsume these micro-states through the
generalization ability of the traditional LCS. Therefore, the number of iterations in the
reward propagation can be significantly reduced, thus increasing the efficiency of the
reward propagation, when micro-states can be subsumed based on spatial continuous
features (i.e. the brightness in a square that contains a single light [77, 80, 81]) in the
environment. That is, the subsumption of micro-states essentially increases the effec-
tiveness of reward propagation. However, TCS will face a similar reward propagation
problem when the subsumption fails as it is based on spatial continuous features. As
spatial continuous features are not always available in a real-world environment, TCS
will face a similar reward propagation problem like other Q-learning like algorithms.

Butz et al. [82, 83] applied XCSF [84], a derivative of the XCS, to learn functional
approximation in robotic control problems. XCSF was applied to approximate kinemat-
ics model of a robot arm with seven degrees of freedom (DoFs) [82]. Each classifier
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represents a kinematic models, the velocity kinematics of Jacobians, and XCSF evolves
a population of classifiers with the goal of accurate and maximally general approxima-
tions. The result showed that XCSF can learn a locally linear forward-inverse model of
the velocity kinematics of robotic arms [82]. Later, this work was extended to improve
robustness against noise on sensors of the robot arm [83]. By including a Kalman fil-
tering within classifiers, the extended approach can alleviate the negative effect of noisy
sensors, improving the noise-robustness for successful learning and control. These ap-
plications of flexible and adaptive robot arm control suggest that XCS algorithms can be
expected to be applied to an even broader range of robotic applications.

Inspired by cognitive psychology, Anticipatory Learning Classifier System (ACS)
and the subsequent ACS2 approach were proposed to encapsulate the psychological
mechanism of the anticipative behavioural control [85, 86]. Extended from classi-
cal LCSs’ “condition-action” representation, ACS2 has “condition-action-expectation”
triples. As the "expectation" part are embedded in the representation, ACS2 can achieve
latent learning, which is defined as learning in the absence of environmental reward. In
a robotic application, a mobile robot searches a maze and learns to achieve navigation to
a location where rewards are not always available [87]. Furthermore, ACS2 was tested
in real-valued environments, such as real-multiplexer and the cart pole problem, which
provide promising results for adjusting a psychologically inspired mechanism into LCSs
[86].

Williams et al. [17, 18] proposed a reward method suited to robotic applications to
solve multistep problems. The reward method encapsulates short-term effects, such as
collisions and number of steps taken, into the time factor (time) of long-term rewards
(see Equation 4.7). Instead of updating [A] at the end of each iteration as the standard
XCS reward method does, the robotics method records [A] in a Reward Stack [R] (see
Figure 2.15). At the end of a task, the robotic reward method propagates the long-term
reward rl backward to all previously active XCS rules evenly (see Equation 4.8) or with a
discount factor (γ) to emphasise the contributions of recently active rules (see Equation
4.9).

rl = 1000 + 1/time (2.11)



44 CHAPTER 2. LITERATURE REVIEW

ra, i = c ∗ rl/numstep,

where c is a constant, numstep is the number of steps, and i ∈ step.
(2.12)

ra, i = rl ∗ γi,

where γ is the learning rate.
(2.13)

Figure 2.15: Robotic XCS Iteration Loop
Blue blocks are the standard XCS sub-processes, grey blocks are XCS rule sets, orange
blocks are sub-processes of reward methods, and purple blocks indicate the agent’s
interactions with a maze environment. Arrows indicate the agent’s working flow, and
dotted arrows indicate classifiers/rules working flow.

2.6 Previous Work Of Emotion-inspired Cognitive Ar-
chitecture

Previously, Williams [17, 18] proposed an emotion inspired cognitive architecture that
can learn solutions for adaptive path-planning of robotic navigation tasks. This cognitive
architecture evolves an emergent emotion model and generated appropriate, non-preset
affective responses during navigations for the first time [19]. The cognitive architecture
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has a three-layer network structure, and each layer contains its unique type of nodes as
cognitive-affect units (see Figure 2.16 and Figure 2.17). They are reinforcers, emotions
5 and modifiers. Reinforcers generate stimuli from environmental perceptions, modifiers
affect executions as responses to the environment, and emotions connect reinforcers with
modifiers as summaries of perceptions and selections of affected executions. That is,
the learned affective solutions encapsulate the reinforcers-emotion-modifiers mappings
by the interpretable three-layer architecture (see Figure 2.16).

reinforcer 1

reinforcer 2

reinforcer 3

...

emotion 1

emotion 2

emotion 3

...

modifier 1

modifier 2

modifier 3

...

reinforcer layer emotion state layer modifier layer

Operation System Background

Figure 2.16: Three-layer architecture of the previous work

This three-layer cognitive architecture can automatically learn these affective so-
lutions by an RL process. The cognitive architecture applies an XCS agent (Section
2.5) to learn the reinforcers-emotion-modifiers mappings by RL training. The agent
learns both the context of the nodes and the connections between them. As a result, the
three-layer architecture learns reinforcers-emotion-modifiers mappings as interpretable
emotional responses in various scenarios. That is, emotions embedded in the reinforcers-
emotion-modifiers mappings can be interpreted as a “fear” state and a “happy” state by
these embedded mappings and their effects. For example, a “fear” state emerged as
the robot navigates in a crowded scenario, and the robot learned to engage responses

5emotion states
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Figure 2.17: Implementation of the three-layer architecture of the previous work

that caused fewer collisions. In contrast, a “happy” state emerged as the robot navi-
gates in an empty scenario, and the robot learned to move quickly. Without presetting
reinforcers-emotion-modifiers mappings as affective solutions, the robot can learn to
perform affective behaviours for the path-planning task.

However, the reinforcers-emotion-modifiers mappings of learned affective solutions
lack diversity. The learned emotion states are embedded components of the solutions,
yet lack symbolic diversity that is characterized by their natural counterparts. The
psychological meanings of emotion states come from the external interpretations of
their respective mappings that emerge probabilistically. Because these mappings are
established by perceived stimuli, including environmental and proprioceptive ones, the
emotion states would become homogeneous as stimuli lack enough (symbolic) diversity.
In Williams’ work, an increasing number of emotion states fail to increase diversity in
terms of their symbolic meanings. The emotion states were therefore limited to two
different symbolic meanings in the three-layer architecture: “happy” and “fear”.

The limited diversity of emotion states also constrain the robot’s flexibility. Be-
cause modifiers are embedded with an emotion state in a reinforcers-emotion-modifiers
mapping, the diversity of the modifiers is also constrained by the limited diversity of
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emotion states. As modifiers are associated with a robot’s execution behaviours, the
robot’s behaviour flexibility is thus constrained in the three-layer cognitive architecture.
In the previous work, the robots’ behaviours are limited by two sets of modifiers in the
affective solutions. As a result, the existing affective solutions fail to generate varied
behaviours for task completion.

2.7 Pioneer Robotic Platform

Pioneer 3-DXprovides a reasonably standard robotic platform that the proposed cognitive
system can be deployed to. The Pioneer [88, 89] is a two-wheel two-motor differential
drive robot equipped with sensors and an operating system. The sensors, including
LIDAR, sonars, and bumpers, allow this mobile robot to detect the environment, and
an external wireless router facilitates its communication with remote machines. ROS
(Robot Operating System), an open-source operating system, is utilised on the hardware,
providing a flexible framework for developing robot software [90]. ROS provides system
services for the Pioneer, including hardware APIs, standard functionality, network and
message passing system, etc. As the ROS network allows a ROS system to be deployed
across multiple machines, additional remote machines can mount distributed computing
resource for the entire network, thus increasing the limited computing budget of the
robot. In this work, two desktop boxes6 join the ROS network, which empowers the
Pioneer and the proposed cognitive system.

The Pioneer applies ROS environment for the robotic control system. In ROS,
the software is organized in packages, each of which contains ROS nodes, a ROS-
independent library, a dataset, configuration files, a third-party piece of software, or
anything else that logically constitutes a useful module [91]. Packages that can be
flexibly installed and then initiated for their functionality cooperate toward the robot’s
task completion. In the Pioneer, various packages are applied for perception, recognition,
localization, planning, motor control, etc. From this point of view, the proposed cognitive
system is equivalent to a package in thiswork. The proposed cognitive system contains 16
ROS nodes (see Chapter 3) that cooperate with other nodes and packages (i.e. navigation
packages) for the Pioneer to complete tasks.

6The Dell desktop box has eight CPUs, Intel Core i7-4900, CPU 3.60GHz, 8G RAM.
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Although the ROS nodes can be principally clustered by packages, there is no
boundary for messages that can be shared between nodes within the ROS network. To
complete processes, every ROS node can subscribe to any message from the network
or publish messages to the network. Two approaches for passing a message are both
applied in this work: the publisher-and-subscriber approach and the service-and-client
approach. Generally, the publisher-and-subscriber approach is applied to pass messages
between processes to generate a flow of message, and the service-and-client approach
is applied to communications within the same process for the synchronization of the
message.

ROS provides a flexible software-developing environment that facilitates the design
of an artificial cognitive system. Firstly, all ROS nodes are accessible to an artificial
cognitive system, which is equivalent to a ROS package. Through ROS nodes, an artifi-
cial cognitive system can directly or indirectly engage with all the cognitive processes,
including perception, recognition, localization, planning, motor control, etc. This will
be similar to the brain’s activities at a conscious level. Secondly, connections between
nodes can be modified in a cognitive system. In a human brain, the cognitive system
becomes mature as connections between different parts of the brain develop. Therefore,
evolving the mappings of the nodes creates the potential for creating a mature cognitive
system. Thirdly, homogeneous ROS nodes can be created, added, replaced, or removed
from an artificial cognitive system. This flexibility is also shown in a human’s brain.
Different modules of a human brain have homogeneous components (see Figure 2.5)
that, in some special cases, a module can be transferred from an original, damaged area
to a neighbouring area.

Except for the software environment, the Pioneer’s mobility is a critical factor that is
related to its navigation performance. Although any reference velocity can be published
by a ROS node through a velocity command, the execution of the command is limited
by the robot’s mechanism in the real-world. An experiment was conducted to verify the
assumed linear relationship between the reference velocity and the execution velocity.
In the experiment, the Pioneer was commanded to move straight forward with a constant
reference velocity commanded by a ROS node. The experiment was focused on the
forward velocity rather than the rotational velocity because (1) the robot’s mobility is
more sensitive to the forward velocity, and (2) the rotational velocity is also related to the
forward velocity because of the two-motor differential driving mechanism of the robot.
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(a) The 5 metre scenario

(b) The 10 metre scenario

Figure 2.18: The verification of the forward velocity of the Pioneer
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The robot travelled for distances of 5 metres and 10 metres in two separated scenarios.
The feedback velocity is equal to the travelled distance divided by the time-consumption.

The results indicate the mobility limitation of the Pioneer. The maximum forward
velocity that the robot achieved in the scenarios is about 0.7 metres/seconds (see Figure
2.18). In addition, the relationship between the reference velocity and the feedback ve-
locity become nonlinear when the reference velocity approaches the maximum velocity.
Based on the result, the maximum value of the forward speed was set to 0.5 m/s for the
real-world environment, compared to 4 m/s in the previous work [18]. Therefore, the
previous setting is inappropriate because 4 m/s is a setting far beyond the speed range
that the robot can achieve.

ROS also supports a simulation environment for the Pioneer. Gazebo is an open-
source simulation tool that can offer various simulated robots and environments. To
conduct experiments on the stand-alone Gazebo, a set of ROS packages are applied to
provide necessary interfaces between the ROS and Gazebo. Gazebo offers the ability to
rapidly test the Pioneer’s performance and underlying algorithms before they are trained
in real-world scenarios. Gazebo can also provide various simulated environments to test
the scalability of the robotic application without safety concerns.

2.8 Chapter Summary

This chapter introduced the background of this work. The chapter began with a brief
review of four diverse cognitive systems. SOAR, MDB, and ACT-R are examples that
demonstrate the symbolic, emergent, and hybrid approaches of construction of a cogni-
tive system respectively. Although these three cognitive architectures do not explicitly
consider any emotion theory as their assumptions, research shows that emotion mecha-
nisms play a critical part in cognitive processes, such as decision making. Thus, CAPS
was introduced as a hybrid cognitive system, which takes emotion theories explicitly as
its assumptions. As CAPS achieves its hybrid cognitive system through distributed com-
puting nodes, the proposed hybrid cognitive system will be constructed by distributed
computing nodes.

The success of CAPS led to a review of emotion theories and the brain’s cognitive
architecture in the next section. From this section, three emotion theories (e.g. Con-
structive Theory, Appraisal Theory, and Basic Emotion Theory) provided inspirations
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for the design of the cognitive processes in the proposed architecture.
To apply a cognitive system for robot applications, this chapter also reviewed robotic

behaviour-based subsumption systems. The behaviour-based subsumption operations
in these systems has great potential as a basis to construct a completely autonomous
robotic system. Therefore, based on the behaviour-based subsumption operations, this
work will propose contingency-based subsumption operations to construct the proposed
system.

Combining the inspiration of emotion theories and the composition processes of
the subsumption systems, this work proposes a contingency-based subsumption system,
the Affective Computing Multilayer Cognitive Architecture (see Chapter 3). Because
an autonomous robot requires autonomous knowledge generation, machine learning
techniques are discussed for this purpose. Accuracy-based classifier system (XCS) is the
selectedmachine learning techniques because of its symbolic interpretation, evolutionary
capability and expansibility for robotic applications. This part gave a brief introduction
to two variants of the XCS algorithm underlying this work (see Chapter 4). The previous
work, which this work is extended from, was introduced as the starting point of this
work. At the end of the chapter, a robot platform for the proposed architecture was
introduced. The mobile robot, the Pioneer, was introduced with its software operating
system and hardware capabilities.
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Chapter 3

Methodology

3.1 Introduction

This thesis aims to develop an evolutionary cognitive architecture (system) for a mobile
robot that can learn adaptive solutions to complete tasks. The reviewed literature
indicates that a desired cognitive system should contain the following features:

Firstly, the proposed robotic cognitive architecture can be composed of various
computing nodes. Inspired by cognitive systems (Section 2.2), the proposed architecture
is a network of computing nodes, which cooperate to provide solutions to a complex
robotic task. Thus, each computing node in this work can realise a separated functional
module (e.g. obstacle-recognition, decision-making, motor control) that is required to
complete the task.

Secondly, these computing nodes can cooperate and interact with each other to
achieve cognitive processes, which provide solutions for robotic tasks. Inspired by
the emotion theories and the brain’s cognitive architecture (Section 2.3), computing
nodes can be classified into five categories by their roles in cognitive processes. The
five categories are primary reinforcer, secondary reinforcer, core affect state, policy,
and behaviour. These computing nodes constitute layers by their categories, thus the
proposed cognitive system has a five-layer architecture.

Thirdly, cooperation and interaction of the computing nodes can be achieved by
subsumption operations. Inspired by the behaviour-based subsumption system (Section
2.4), a high-level computing node can subsume low-level ones according to the contin-

53
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gency 1 between these low-level nodes and their outcomes. As the robot interacts with
the environment, various contingencies 2 can be achieved through contingency-based
subsumptions, automatically establishing a cooperating network of the cognitive system.
These contingencies can be encapsulated in rules 3, providing a clear interpretation of the
cooperation and interaction of the computing nodes. Thus, the proposed contingency-
based subsumption is applied in evolutionary processes of the automatic establishment
of the cognitive architecture.

Fourthly, contingency-based subsumption operations can be achieved through ma-
chine learning techniques. Inspired by the Learning Classifier Systems (LCSs) (Section
2.5), contingency-based subsumption operations deploy Accuracy-based Learning Clas-
sifier System (XCS) as their underlying machine learning technique. Thus, variants of
this evolutionary computing algorithm are proposed for the subsumption operations,
allowing SAOC rules to evolve as the robot interacts with the environment.

This work proposes a five-layer cognitive architecture, Affective Computing Mul-
tilayer Cognitive Architecture (ACMCA), according to these four features. ACMCA
attempts to learn an affective solution to robotic tasks.

The hypothesis is that affective solutions are combined efforts of: (1) diverse stimuli
of two types of reinforcers in different perceptional levels, (2) symbolic emotion states
in an affective decision-making level, and (3) flexible behaviours in different executional
levels.

According to emotion theories, a solution should be composed of five symbolic
components to achieve these combined efforts (Figure 3.1):(1) primary reinforcers that
recognise the environmental features, (2) secondary reinforcers that generate rules of
Stimulus-Action-Outcome Contingency (SAOC), (3) core affect states that are elicited
by perceptual stimuli and affect decisions, (4) policies that provide flexible schemes for
various scenarios of the task, and (5) behaviours that that execute action tendencies and
robotic operations in each state of a task scenario.

This novel affective solution is extended from the previous solution (see Figure 2.16,
Figure 3.1 and Figure 3.9 for the comparison.). That is, the new solution (1) extends the

1A contingency is an estimation of a relation between Stimuli, Action, and their Outcome. In this
work, this contingency is termed Stimulus-Action-Outcome Contingency (SAOC).

2SAOCs, Stimulus-Action-Outcome Contingencies
3SAOC rules
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existing reinforcers into primary reinforcers and secondary reinforcers for the perception
levels of the affective solution, (2) extends the existing modifiers into policies and
behaviours for the execution levels, and (3) converts the existing emotion states into
core affect states. These extensions and developments are inspired by the three emotion
theories, which are discussed in this chapter.

This chapter will start with an introduction to affective solutions that ACMCA
attempts to achieve. The five categories of components of affect solutions (see Figure
3.1) are introduced along with their inspirations from emotion theories, which attempt to
explain the affective and the cognitive process. Themethodology of ACMCAwill follow
the introduction. 16 computing nodes are constructed for the application of ACMCA for
the Pioneer (see Figure 3.9). The methodologies of these computing nodes are described
in the order of the five layers. As each node encapsulates a functional module, ACMCA
can provide solutions for a robot through the cooperation of these computing modules.
This chapter will conclude with a brief summary, leading to the underlying machine
learning technique proposed in the next chapter.

3.2 Symbolic Affective Solution

The symbolic affective solution is inspired by the three emotion theories: the Construc-
tive Theory, theAppraisal Theory, and theBasic (Emotion) Theory. The five components
of the affective solution are illustrated with their potential symbolic meanings and in-
spirations in this section. These five components are primary reinforcer, secondary
reinforcer, core affect state, strategy and behaviour (Figure 3.1). Each component
focuses on a different perspective of the affective solution: recognition, contingency-
establishing, affective decision-making, scheduling, or behaviour. The five components
of the symbolic affective solution are presented below.

3.2.1 Primary Reinforcer

Primary reinforcers (primary stimuli) aim to recognise scenario features and provide
diverse raw perception for the robot. As inputs of the architecture, these primary
reinforcers directly describe a scenario by recognising the surrounding environment and
receiving the task objectives (see Figure 3.3). Primary reinforcers can cover scenario
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features, such as obstacles in the environment, the goal position of a task, the time-
consumption for the task, etc. By directly connecting to sensors, primary reinforcers
recognise the environment and receive task requirements, providing perception for the
architecture.
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Figure 3.3: Primary reinforcers of the affective solution

The complexity of the primary reinforcers depends on the difficulty of their recogni-
tions. Some primary reinforcers simply convert sensor readings. For example, a primary
reinforcer, which represents the sense of touch, can directly store the bumpers’ readings
for further usages. Other primary reinforcers require data from pre-processing models
and other primary reinforcers for the recognition. An example is that a primary stimulus,
which recognises a robot’s current position in an environment, requires mapping and
localization models. As the recognition becomes more complex, a primary stimulus
might rely on sophisticated models. For example, a primary reinforcer to recognise a
dynamic obstacle might rely on a figure-recognising model that is trained by machine
learning algorithms.

The definition of the primary reinforcer in this work is modified from the orig-
inal concept of the primary reinforcer in Constructive Theory. By the definition of
Constructive Theory, primary reinforcers are unlearned stimuli, which do not have any
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learning ability; the learning ability is an exclusive character of secondary reinforcers
[53]. However, this work slightly modifies this definition of the category. The functional
capability (i.e. learning ability) is no longer applied to categorise a reinforcer. Instead,
the construction capability (i.e. subsumption ability) is to separate primary reinforcers
and secondary reinforcers. That is, a primary reinforcer is a raw stimulus and an un-
constructive one, and a secondary reinforcer is a stimulus that is constructed by other
stimuli, including primary reinforcers and other secondary reinforcers. By this modifi-
cation, an obstacle-recognising reinforcer (i.e. the occupation node in Section 3.3.1.5),
which learns patterns to recognise obstacles, is still a primary reinforcer, although it
is capable of learning a recognition pattern. This primary reinforcer can be applied to
construct a secondary reinforcer (i.e. the deliberation node in Section 3.3.2.3) through a
subsumption process. Therefore, the modification allows a primary reinforcer to become
a completed functional module, being consistent with the feature that is learned from
the review of cognitive systems.

3.2.2 Secondary Reinforcer

A secondary reinforcer is a constructive stimulus that aims to establish a Stimulus-
Action-Outcome Contingency (SAOC) inspired by Constructive Theory. According to
Constructive Theory, secondary reinforcers 4 are stimuli "which, if their occurrence,
termination, or omission is made contingent upon the making of a response, alter the
probability of the future emission of the response [53]." That is, a secondary reinforcer
is a stimulus that is constructed with a contingency. In the field of psychology, this
contingency is termed as an "Action-Outcome (AO) Contingency", which represents
a relationship between Actions and their consequential Outcomes. In this work, by
encapsulating an input stimulus, the AO Contingency is extended as a "Stimulus-Action-
Outcome Contingency (SAOC)" to construct secondary reinforcers. This SAOC is
represented by SAOC rules in this work.

The structure of SAOC rules can provide a symbolic, abstract interpretation of a
scenario. Generally, a SAOC rule contains Stimuli, Action, and Outcome. In a rule
of SAOC, an input Stimulus is a condition, which can trigger its following Action with
an expected consequential Outcome. Thus, a SAOC rule can be represented by an "if-

4secondary reinforcer is also termed as instrumental stimulus or secondary stimulus.
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then" or "condition-action" representation, providing a clear symbolic interpretation. Its
symbolic meaning can be interpreted as: if the input stimulus is perceived, the output
action will be advocated as a cognitive response, expecting the outcome of the action
with an estimation of relevance.

SAOC rules can transfer an input stimuli (such as primary reinforcers) to secondary
reinforcers. Once SAOC rules are established, an input stimulus can be transferred
from its recognition to a secondary reinforcer by associating with its outcome and
estimation. For example, “money” is a secondary reinforcer, which is associated with
the value stamped by a government authority rather than by the recognition of a banknote
(primary reinforcer). When you are evoked by a primary stimulus of a banknote and
you are also aware of its value of “ten dollars”, you take an action of spending the
banknote for ten-dollar goods, receiving goods that are worth ten dollars as an outcome.
Secondary reinforcers and SAOC rules can be constructed through an agent’s experience.
By reserving an agent’s past experience, accurate SAOC rules can play a critical role in
the agent’s decision-making process when the agent faces a similar scenario.

Secondary reinforcers can cover diverse SAOC rules as they encapsulate various
components. The exhaustive number of diverse SAOC rules depends on combinations
of three components of SAOC rules: the input stimulus, the output action and the
outcome. In a SAOC rule, the input stimulus and the outcome can come from any
primary reinforcers, and the output action can come from any strategy (see Section 3.2.4)
and any behaviour (see Section 3.2.5). As each combination represents a different type
of SAOC, the architecture can establish diverse SAOC rules, the facilitating decision-
making process even affecting the emotion-eliciting process.

Each secondary reinforcer can deploy amachine learning agent (i.e. an XCS agent) to
evolve accurate SAOC rules. Each SAOC rule can be encapsulated by an XCS classifier
and a set of SAOC rules constitutes a population of classifiers in an XCS agent (see
section 2.5). In a classifier, the condition part covers the input stimulus and output
action of a SAOC rule, the action part predicts the outcome of this rule, and the statistics
are updated based on the comparison of the outcome and its predicted value. Therefore,
each time when an input stimulus occurs, an XCS agent will experience an iteration
and apply its population of classifiers to evolve SAOC rules. As iterations go, accurate
SAOC rules will automatically emerge within the XCS agent. Eventually, these SAOC
rules can alter the probability of the emission of the output action toward the desired
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Figure 3.4: SAOC (Stimulus-Action-Outcome-Contingency) components in the Five-
layer architecture of ACMCA

outcome. In this work, various types of SAOC rules are established then evolved by the
secondary reinforcers (Section 3.3.2).

3.2.3 Core Affect State

The core affect state is an integral component of the emerged affective solution, sum-
marising perception and execution (Figure 3.5). According to Appraisal Theory, a core
affect state is “a neurophysiological state that is consciously accessible as a simple,
nonreflective feeling [92].” In this work, core affect states are anthropomorphic emotion
states that integrate, bridge and connect stimuli in perception and responses in execu-
tion. Therefore, at a given moment, perceptual stimuli elicit a core affect state, causing
consequential affective responses.

The mappings from stimuli to core affect states are inspired by the Appraisal Theory.
This theory assumes that core affect states integrate stimuli by measuring their hedonic
(displeasure-pleasure) and their arousal (sleepy-activated) values. Hence, core affect
states can be demonstrated and labelled within a two-dimensional space of the hedonic



3.2. SYMBOLIC AFFECTIVE SOLUTION 61

primary

reinforcer 1

primary

reinforcer 2

primary

reinforcer 3

...

secondary

reinforcer 1

secondary

reinforcer 2

secondary

reinforcer 3

...

emotion 1

emotion 2

emotion 3

...

strategy 1

strategy 2

strategy 3

...

behaviour 1

behaviour 2

behaviour 3

...

perception (primary reinforcer
layers and secondary reinforcer layer)

decision making
(core affect state layer)

execution
(strategy layer and behaviour layer)

Operation System Background

Figure 3.5: Core affect states of the affective solution

and the arousal measurement: core affect space (see Figure 3.6). For example, an elicited
core affect state of “happy” in the first quadrant of the space has both higher hedonic and
arousal values than “calm” in the fourth quadrant. Compared to a discrete state, whose
symbolic meaning only comes from interpretations of external mappings in the previous
work (see section 2.6), the symbolic meaning of the core affect states also include the
state’s internal hedonic and arousal values, making the artificial labels more explainable.
Therefore, core affect states are elicited by stimuli according to the Appraisal Theory,
and these core affect states are demonstrated with symbolic labels (i.e. happy, calm) for
clear explanations in this work.

The mappings from core affect states to affective responses are motivated by Basic
Emotion Theory. This theory treats emotions and feelings as “minimalist predictions”
of affective responses [93]. For example, Panksepp suggests the seven basic affective
responses according to each basic emotion, such as the Seeking for enthusiastic and Fear
for anxious [20] [36]. Thus, a core affect state will activate its specific set of affective
responses, leading to flexible behaviours in execution. Following this concept, the
artificial core affect states will activate sequential responses and behaviours for robotic
executions.
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Figure 3.6: Core affect space [92]

The responses and behaviours engage various components of cognitive architecture.
Neurological studies show that brain firings of affective responses are distributed in
specific regions, driving affective tendencies and behaviours. For example, the Seeking
system, which is associated with anticipatory-appetitive behaviours, is driven by several
neurological structures, including the ventral tegmental area and lateral hypothalamus
[43] [94]. Inspired by these studies, affective responses will activate various components
of the architecture, including strategies (see Section 3.2.4) and behaviours (see Section
3.2.5) in this work.

3.2.4 Strategy

Strategy is a high-level executional component of the affective solution, representing
affective responses over a task scenario. Distributed among the strategy layer of the
architecture (see Figure 3.7), a strategy is an overall plan subsuming a scenario’s goal and
executional behaviours. When an emotion-provoking event is perceived in a scenario,
diverse Strategies allow a versatile robot to respond to the event flexibly, including
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switching the goal and the behaviours. Once a core-affect-state-associated strategy is
trained and evolved, the strategy itself represents a characteristic responding pattern to
that affective event, as the basic emotion theory suggested.
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Figure 3.7: Strategies of the affective solution

3.2.5 Behaviour

Behaviour is a low-level executional component of the affective solution, representing
affective responses over a step/state of the robotic task scenario. Distributed among
the behaviour layer of the architecture (see Figure 3.8), a behaviour is an optional ele-
ment that can directly or indirectly influence a robot’s performance. For example, as a
direct output of the architecture, a behaviour can be a specific velocity command that
directly affects the robot’s movement. A behaviour can also be a hyperparameter of a
navigation model, through which the behaviour will indirectly influence a robot’s navi-
gation performance. Traditionally, these optional elements can be preset by engineers,
thus introducing potential human bias. Alternatively, optional-element-encapsulated
behaviours can evolve by evolutionary algorithms through the robot’s training scenarios.
Being subsumed into various SAOC rules (i.e. IR pattern (see Section 3.3.2.2)) for the
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algorithm’s training process, behaviours will automatically adapt to the given training
scenarios.
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Figure 3.8: Behaviours of the affective solution

3.3 Five-layer Architecture

Affective Computing Multilayer Cognitive Architecture (ACMCA) is proposed to learn
the symbolic affective solution for a robotic task. ACMCA has a five-layer architecture,
corresponding to the five components of the solution (see Section 3.2). These five
layers are the primary reinforcer layer and the secondary reinforcer layer as perception
layers, the core affect layer, the strategy layer, and the behaviour layer for affective
decision making and execution layers (see Figure ??). Each layer contains a specific
type of computing node, and the five types of computing node are termed: primary
reinforcer, secondary reinforcer, core affect state, strategy, and behaviour. These nodes
are distributed to form the operational system of a robotic application, communicating
messages through the client-server approach for the entire cognitive architecture.

ACMCA is designed to be a universal cognitive system for robots. The scalability of
ACMCA layers for heterogeneous robots increases from the outer layers toward the inner
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Figure 3.9: Implementation of the five-layer architecture of ACMCA for the Pioneer

layer. That is, the secondary reinforcer is more scalable than the primary reinforcer, the
behaviour pattern layer is more scalable than the modifier layer, and the core affect layer
is the most scalable of all of them. For example, if this work is applied for another mobile
robot, primary reinforcers and modifiers may require adjustments for different sensors
and heterogeneous mechanisms. Yet, the inner layers, secondary reinforcer layer, core
affect layer and strategy, may require little modification.

3.3.1 Primary Reinforcer (Layer One)

Primary reinforcers aim to recognise environmental features in the primary reinforcer
layer of ACMCA. Generally, any computing unit/node of the robot operating system
can be considered as a primary reinforcer to perceive diverse raw stimuli. As this work
is conducted on a mobile robot to complete its navigation tasks, these environmental
features can come from any aspect of the task, including the experimental environment of
the task, the requirement of the task, and proprioceptive perception during the execution
of the task. Each primary reinforcer recognises an environmental feature, generating an
internal estimation as a raw stimulus. In this work, the selection of primary reinforcers
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from computing nodes includes Touch, Path, Occupation, Goal, Position, Reward (see
Figure 3.10). Different primary reinforcers can be added into or removed from the
primary reinforcer layer according to the task and/or robot morphology. These primary
reinforcers will be subsumed by separated secondary reinforcers (see Section 3.3.2).
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Figure 3.10: Implementation of primary reinforcers of ACMCA

This work manually selects these primary reinforcer nodes based on the symbolic
meanings of the Stimulus-Action-Outcome Contingency (SAOC) rules of secondary
reinforcers. An automatic selection of primary reinforcer would require sophisticated
techniques (i.e, feature construction, reward assignment method, meta-learningmethod).
Although a developing XCS algorithm (XCSCF, see Section 2.5) shows its potential to
achieve automatic selection in solving binary problems, extending the XCSCF algorithm
for robotic application is beyond the scope of this thesis.

3.3.1.1 Touch

The Touch node is a primary reinforcer, which could be chosen to represent the robot’s
touching sensation of the environment. Biologically, touching perception provides es-
sential sensations for infants during their brains’ structural and functional development
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Figure 3.11: Top view of the Pioneer
Bumpers are marked with blues points. The green arrows represent the moving
directions of the Reflex Velocities (Section 3.3.5.1)

[95, 96, 97]. Similarly, the robotic touching sensation could be applied for the compo-
sition of the robotic control system in this work. In this work, this sensation will lead to
a quickly responding pattern, the reflex pattern (see Section 3.3.2.1 and 5.2), which can
be applied to respond to dangerous environmental features.

The Touch node directly records the bumpers’ readings. The node contains a 10-bit
string, indicating the ten bumpers’ detections of collision (see the ten bumpers marked
as blue points in Figure 3.11). The value of each bit of the string is 1 for a detected
collision and 0 for no collision.

The Touch generates an inner stimulus, termed Pain, when collisions are detected.
Biologically, the peripheral stimulus of Pain can act as an impulse and provoke an
automatic response, a reflex, even before it reaches the conscious level of the brain. In
this work, a stimulus of Pain generated by the Touch node can be considered as another
primary stimulus to provoke an emotional response (see Section 3.3.3). As a detected
impulse, the value of the Pain is calculated as a scale value of -1000 for collisions and 0
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for no collision.

It is possible to replace the Touch node with primary reinforcers of different sen-
sations. For example, the sensation of vision from a camera can also be applied for a
similar purpose. Yet, this work chose the touching sensation for two reasons. The vision
sensation requires a more complex process than the touching, causing a response delay
to an environmental hazard. The second reason is to increase the diversity of stimuli.
As vision is widely applied to avoid predictable collisions, the touching sensation can be
applied for unpredicted collisions. It will be interesting to compare different sensations’
effects regarding a similar purpose in future.

3.3.1.2 Goal

The primary reinforcer, Goal, represents the destination of a navigation task. The
Goal node directly records the destination position of the task issued for goal-oriented
responses. This Goal node can be different parts of SAOC rules in various cases. For
example, the Goal node can trigger a robot’s sequential response at the beginning of
navigation. In this case, this primary reinforcer is the input stimulus of the SAOC rules
that aim to establish a navigation responding contingence (see Section 5.3). In another
case, the Goal node can provide feedback at the end of navigation to score the navigation
performance and carry out reward assignments. Thus, the Goal node and the current
Position (see Section 3.3.1.3) have access to the Outcome part of the SAOC rules to
estimate the effects of these SAOC rules. The Goal node can also be transferred into
other primary reinforcers. The primary reinforcer of Occupation (see Section 3.3.1.5)
encapsulates the Goal node to recognise the feasibility of the destination position.

3.3.1.3 Position

The primary reinforcer, Position, represents the robot’s awareness of its current position.
The Position updates the robot’s current position by the simultaneous localization and
mappingmodels of the robotic system. This proprioception can be applied for an internal
estimate of the progress during a task and reward assignments at the end of a task.



3.3. FIVE-LAYER ARCHITECTURE 69

3.3.1.4 Path

The primary reinforcer, Path, represents the task feasibility in terms of trajectory gen-
eration. When a Goal (see Section 3.3.1.2) is issued, the path-generation model of a
robot will calculate trajectories between its current position and the destination position.
The path node records the calculated result of the path-generation model. If a trajectory
exists, the Path will be marked with a scale value of 1. Otherwise, the Path is 0 because
the path-generation model cannot generate a valid trajectory.

The Path node can be applied for compositions of a primary reinforcer and a sec-
ondary reinforcer. The primary reinforcer of Occupation (Section 3.3.1.5) applies this
node to recognise the appearance of a dynamic obstacle. The Occupation node applies
a Convolutional Neural Network (CNN) (see Table 3.12 detailed in Section 3.3.1.5) to
predict the appearance of the obstacle, where the Path node can provide the ground truth
for the training of the CNN. The secondary reinforcer of the Tuning node (see Section
3.3.2.2) subsumes the Path node into SAOC rules. The Path node is the Outcome part
of the SAOC rules in the Tuning node, representing the effect of the SAOC rules and the
hyperparameter currently applied on the path-planning model.

3.3.1.5 Occupation

The primary reinforcer, Occupation, represents the task feasibility in terms of obstacle
occupation. If a dynamic obstacle might be occupying the goal position, the task
feasibility depends on the occupied state of the obstacle. For example, a dynamic
obstacle can block the path, which a robot follows to its goal position. Occupation
predicts the occupied state by a costmap figure of the goal position (see Figure 3.12).
Based on the Path, Occupation is calculated as a predicted probability of the occupied
state by a Convolutional Neural Network (CNN) model, which is a "killer" model for
figure recognition [98]. A trained CNN model will allow the Occupation node quickly
respond to a dynamic obstacle. Compared to the Path node, the Occupation is much
quicker than the Path in the calculation, because the latter suffers the delay caused by
simultaneousness of the distributed path-generation service. Therefore, the Occupation
can replace the Path in real-world scenarios where the delay matters.

The Occupation deploys a trained CNN model for the predictions of obstacle occu-
pation. The structure of the CNN model is shown in Table 3.1. A costmap represent
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(a) Costmap figure of an empty path (type
one)

(b) Costmap figure including an obstacle in
the path (type two)

Figure 3.12: Costmap figures
These two costmap figures detect a real-world environment shown in Figure 5.3.

the environment detected by the path-planning model through sensors, and a costmap
can be presented by a figure (see Figure 3.12). The CNN model takes a local costmap,
which describes the 3 metres by 3 metres area around the goal position, as input for a
prediction. The size of the figures is limited to 126 pixels by 126 pixels so that the CNN
model can be trained within the available computing resource 5.

A dataset of costmap figures was established to train the CNN model. Costmap
figures capture a targeted area where the robot navigates. These costmap figures are
automatically labelled by the primary reinforcer Path to train the CNNmodel. According
to the obstacle’s occupation (see Figure 3.12), the label has two categories. If the targeted
area is occupied by an obstacle, the label value is 1. Otherwise, the label value is 0. After
training for 50 epochs, the model achieves 98.14% accuracy over the dataset. During
the testing phase for 300 applications, the model achieves 100% accuracy.

3.3.1.6 Reward

The primary reinforcer, Reward, represents the score of a robot’s performance in the
latest task. This primary reinforcer provides feedback on the latest performance based

5a Dell desk box with eight CPUs. Intel Core i7-4900, CPU 3.60GHz, 8G RAM.
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Table 3.1: CNN Model

Layer (type) Output Shape Parameters
activation-1 (Activation) (None 126 126 32) 0
conv2d-2 (Conv2D) (None 124 124 32) 9248 ((3*3*32+1)*32)
activation-2 (Activation) (None 124 124 32) 0
max pooling2d-1 (MaxPooling2d) (None 62 62 32) 0
dropout-1 (Dropout) (None 62 62 32) 0
conv2d-3 (Conv2D) (None 62 62 64) 18496 ((3*3*32+1)*64)
activation-3 (Activation) (None 62 62 64) 0
conv2d-4 (Conv2D) (None 60 60 64) 36928
activation-4 (Activation) (None 60 60 64) 0
max pooling2d-2 (MaxPooling2d) (None 30 30 64) 0
dropout-2 (Dropout) (None 30 30 64) 0
flatten-1 (Flatten) (None 57600) 0
dense-1 (Dense) (None 512) 29491712 ((57600+1)*512)
activation-5 (Activation) (None 512) 0
dropout-3 (Dropout) (None 512) 0
dense-2 (Dense) (None 3) 1539
activation-6 (Activation) (None 3) 0

Total parameters: 29,559,107
Trainable parameters: 29,559,107
Non-trainable parameters: 0

on the time consumption for the task achievement. When the Position matches the
Goal within a time consumption threshold, the last performance is considered to have
accomplished the task. Then, Reward is calculated by the time consumption, termed
time, based on a hyperbolic approach (see Equation 3.1). The constants in the equation
are to simulate the hyperbolic relationship between the strength of a human’s feeling and
the duration of that feeling time [99]. That is, the strength of feeling that is elicited by
the stimulus will decay as the stimulus lasts.

The time will also create pressure that drives the robot to perform efficiently for
a task. The constants in the equation are designed for a specific scenario, and an
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adjustment of these constants can create a desirable curve of time pressure for the targeted
scenario. Nevertheless, the hyperbolic approach is schedulable for every scenario. In
real applications, this hyperbolic approach is functional if the variance of time in the
measurement does not override its measurement accuracy. In this case, no matter how
small difference, a solution that brings a larger reward will become a superior one to the
solution with a smaller reward in the long term.

Reward = 100000/(time+ 50)− 1000 (3.1)

where $time$ is the time consumption. The constant 50 represents a threshold of 50
seconds for a robotic task. When the time consumption is less than this threshold, the
reward will be positive. Otherwise, there will be a punishment (negative reward) for the
last performance. The constant 100000 and the constant 1000 are to set the maximum
value of the hyperbola curve to a value of 1000.

3.3.1.7 Delay

The primary reinforcer, Delay, records the time that a robot has spent on a task. Psy-
chologically, satisfaction of current performance decays over time under influences of
emotions (i.e. frustration) (see Figure 3.13) [99]. The Delay node provides a real-time
stimulus from an environment, allowing a robot to estimate its on-processing perfor-
mance of a task at the given moment. When there is a dynamic environmental feature
(i.e. a dynamic obstacle) that causes the obstruction of the task process, this real-time
stimulus will allow ACMCA to construct a secondary reinforcer (i.e. the Deliberation
Node, see Section 3.3.2.3), which can develop patterns to respond to the dynamic feature
toward the task completion.

3.3.1.8 Velocity

The primary reinforcer, Velocity, records a robot’s velocity at the givenmoment. Psycho-
logically, a human’s movement is a critical factor that can indicate his/her arousal level
(see the Appraisal theory in Section 2.3) and/or action tendency (see the Basic Emotion
Theory in Section 2.3) The Velocity node provides a stimulus that estimates a robot’s
activation of an on-processing performance. In the real-world scenario, an emergent
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Figure 3.13: Exponential decay curves for the main effect of affect (i.e. Frustration)
[99].

event occurs and disrupts the robot’s navigation task with a dynamical change in the
velocity. Therefore, this primary reinforcer provides the robot with a rapid perception
of the emergent event, allowing the robot to respond to the event before a resume of the
original task.

3.3.2 Secondary Reinforcer (Layer Two)

Secondary reinforcers are designed to establish Stimulus-Action-Outcome Contingency
(SAOC) rules (Section 3.2.2) that can be applied for a robot’s decision-making processes.
Compared to primary reinforcers, Strategies, and Behaviours, secondary reinforcers
are high-level nodes that can subsume these low-level nodes into SAOC rules. In a
contingency-based subsumption operation, a SAOC rule subsumes a stimulus part as
a condition, an action part as a response to the condition, and an outcome part as
the consequential effect. That is, symbols of low-level nodes are encapsulated in the
condition part, action part, or outcome part of SAOC rules. Through this construction
of the SAOC rule, an accurate SAOC rule indicates a strong contingency between
its encapsulated parts, thus it can be applied for decision-making processes. Each
secondary reinforcer deploys an XCS agent (Chapter 4) to conduct this contingency-
based subsumption and to evolve SAOC rules. As the XCS agent evolves when the robot
interacts with the environment, high-accuracy SAOC rules can emerge in a secondary
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reinforcer.
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Figure 3.14: Implementation of secondary reinforcers of ACMCA

Three secondary reinforcers are proposed to investigate their capability to compose
various SAOC rules. By encapsulating various Strategies (Section 3.3.4) or Behaviours
(Section 3.3.5) in the action part of SAOC rules, SAOC rules can affect a robot’s
responses on the model level, the strategy level, and the behavioural level. To generate
robotic responses on these levels, three secondary reinforcers are proposed: the Reflex
node, the Tuning node, and the Deliberation node (see Figure 3.14). These secondary
reinforcers will learn various appropriate responses to environment features.

3.3.2.1 Reflex Node

Reflex node is a secondary reinforcer that aims to construct a set of SAOC rules for a
robot’s response on a concrete behaviour level, and is illustrated in Figure 3.15. The set
of SAOC rules that are learned in the Reflex node will allow the robot to rapidly respond
to unpredicted obstacles without continuous collisions. As shown in Figure 3.15, the
Reflex node applies an XCS agent (see the blue line that link between the Reflex node
and the XCS agent) to learn this set of SAOC rules (Section 3.2.2 for a brief introduction
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Figure 3.15: Reflex node of ACMCA
The blue block details the components of a classifier that encapsulates a SAOC rule.
The blue lines refer to the affiliation between the node, the XCS agent, and a classifier.
The red lines refer to the flow of the data to/from a classifier.

to applying an XCS agent to learn a set of SAOC rules). As proposed in Section 3.2.2, a
classifier from the population of the XCS agent in the Reflex node encapsulates various
components to represent a SAOC rule. In this XCS agent, the classifier (see the blue block
in Figure 3.15) encapsulates Touch (Section 3.3.1.1), the Reflex-Velocity ( also called
R-Vel for short, see Section 3.3.5.1), the Pain (Section 3.3.1.1). That is, in a classifier,
(1) The Touch perceives collisions, executes its sequential response, and transfers them
into the stimulus input of a SAOC rule. It is covered in the condition part of the XCS
classifier as an encapsulated perception (see the red dashed line 1 in Figure 3.15). (2) The
Reflex-action is the output action of a SAOC rule and an executional behaviour of the
robot. It also is covered in the condition part of the XCS classifier with the Touch as
an encapsulated execution (see the red dashed line 2 in Figure 3.15). (3) The Pain is
the outcome part of a SAOC rule and feedback of the executional behaviour from the
environment. It is predicted by the action part of the XCS classifier as an encapsulated
anticipation (see the red dashed line 3 in Figure 3.15). (4) The innate statistics update
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when this XCS agent iterates.
This set of SAOC rules evolves within the classifiers by the XCS agent’s training

iteration. In the training, the XCS agent updates its classifiers and SAOC rules by the
accuracy in the prediction of the Pain at each iteration. After the training, the accurate
SAOC rules of the Reflex node, termed as Reflex-Pattern, will emerge in the XCS agent
after sufficient iterations. The Reflex-Pattern is the first affective pattern that is learned
by ACMCA in this work, and it can guide a mobile robot to move away from unpredicted
collisions without presetting appropriate responses. The pattern will demonstrate that
ACMCA can generate appropriate responses from the behavioural level. Experiments
in learning the Reflex-Pattern are conducted and detailed in Section 5.2.

3.3.2.2 Tuning Node
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Figure 3.16: Tuning node of ACMCA
The blue block details the components of a classifier that encapsulates a SAOC rule.
The blue lines refer to the affiliation between the node, the XCS agent, and a classifier.
The red lines refer to the flows of the data to/from a classifier.

Tuning node is another secondary reinforcer that aims to construct a set of SAOC
rules, which allow the path-planning model of a mobile robot to be adapted to its
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scenario. The SAOC rules will provide appropriate hyperparameters of the model, so
the model can be adaptive to different scenarios. Similar to the Reflex node, the Tuning
node also deploys a separate XCS agent to learn this set of SAOC rules (see Figure
3.16). In the XCS agent, the classifiers include components ofGoal, the Inflation Radius
(IR), and the Path to encapsulate the SAOC rules to be learned (see Figure 3.16 for the
components of the classifier, and see Section 3.3.1.2, 3.3.5.3, 3.3.1.4 for details of these
components.) That is, (1) The XCS condition covers the goal position in the Goal that
the path-planning model generates a path toward. The Goal component indicates the
scenario that the SAOC rules and classifiers are applied to (see the red dashed line 1 in
Figure 3.16). (2) TheXCS condition part also covers the IR, the affecting hyperparameter
of the model, to describe the action part of the SAOC rules. Therefore, different values
of IR are associated with various Goals within the XCS condition (see the red dashed
line 2 in Figure 3.16). (3) The XCS action part of a classifier is to predict whether a
valid path is generated by the model. The Path of the primary reinforcer is compared to
the prediction of the XCS action part for updating of the statistics of this classifier (see
the red dashed line 3 in Figure 3.16). (4) Finally, the updated statistics are kept in the
statistics part for the future process of the evolving algorithm.

This set of SAOC rules evolves within the classifiers by the XCS agent’s training
iteration. In the training, the XCS agent updates its classifiers and SAOC rules by the
accuracy in the prediction of the Path at each iteration. After the training, the accurate
SAOC rules of the Tuning node, termed as IR-Pattern, will emerge in the XCS agent
after its sufficient iterations. The IR-Pattern is the second affective pattern that is learned
by ACMCA in this work, and it can support an adaptive path-planning approach for a
mobile robot moving without presetting hyperparameters. The pattern will demonstrate
that ACMCA can generate appropriate responses from the model level. Experiments in
learning the IR-Pattern are conducted and detailed in Section 5.3.

3.3.2.3 Deliberation Node

Deliberation node is the third secondary reinforcer in the secondary reinforcer layer. It
aims to construct SAOC rules that will allow a mobile robot to reflect on its own policies
and to reason its choices under "frustration". Similar to the two secondary reinforcers
mentioned above, a separate XCS agent is deployed on the Deliberation node to learn
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Figure 3.17: Deliberation node of ACMCA
The blue block details the components of a classifier that encapsulates a SAOC rule.
The blue lines refer to the affiliation between the node, the XCS agent, and a classifier.
The red lines refer to the flows of the data to/from a classifier.

the SAOC rules that are related to frustration.

The SAOC rules related to frustration encapsulate the Occupation node, the Delay
node, the Strategy node, and the Reward node to represent a frustration pattern (see
details of the Occupation node, the Delay node, the Strategy node, and the Reward in
Section 3.3.1.5, 3.3.1.7, 3.3.4, and 3.3.1.6). (1) The SAOC rules have two input stimuli:
the Occupation and the Delay. The first stimulus is the Occupation. The Occupation,
which perceives a dynamic obstacle in the goal position, is associated with an event
that can elicit an emotion of "frustration". The second stimulus is the Delay. The
Delay, which records the time-delay caused by the obstacle, indicates the intensity of
the frustration. Therefore, the intensity increases as the Delay lasts, providing a second
stimulus to respond to. (2) The action part of the SAOC rules encapsulates the Strategy
as the response to these two stimuli. Different choices in the Strategy produce various
outcomes in the scenario. (3) The outcome part records the outcomes as the feedback
of the execution of the Strategy. This part encapsulates the Reward as it measures the
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robotic performance and the execution of the Strategy.
The SAOC rules are contained in the classifiers of the XCS agent of the Deliberation

node (see Figure 3.17). Specifically, the condition part of classifiers contain the two
stimuli of the targeted SAOC rules, and the action part of classifiers contain the action
part of the SAOC rules. Classifiers whose condition part covers the current stimuli will
be activated to advocate the Strategy node for execution. The statistics of these activated
classifiers update according to the performance of the execution and the outcome of the
SAOC rules. Therefore, the quality of the SAOC rules, such as their accuracies, can be
ascertained from the statistics.

The SAOC rules in the Deliberation node evolve within the XCS agent as it iterates.
Useful SAOC rules can automatically emerge as the classifiers of the XCS agent become
accurate after multiple iterations. These accurate SAOC rules are termed as frustration-
pattern because it is a pattern response to a "frustrating" environmental feature in the
experiment (Section 5.4). The frustration-pattern is the third affective pattern that is
learned by ACMCA in this work, showing ACMCA’s ability to learn flexible responses
from the Strategy level.

3.3.3 Core Affect State (Layer Three)

The core-affect-state layer aims to establish an emotion model that makes decisions from
the highest hierarchy ofACMCA. Psychologically, conscious emotions are assumed to be
processed at the highest-level mental process in the nested brain-mind hierarchies [36].
In this work, an emotion model, which serves as a decision-making mechanism at the
highest level of ACMCA, can emerge at the core-affect-state layer. The emotion model
attempts to summarise diverse stimuli, elicit core affect states, and activates affective
responses of the robot.

The emotion model can elicit emotional states by summarising stimuli. The emo-
tional states are termed as core affect states in this work, following the definition of
Appraisal theory (Section 3.2.3). “Core affect refers to consciously accessible elemental
processes of pleasure and activation, has many causes, and is always present [100]”.
Thus, core affect states are represented by hedonic and arousal values, which span a
two-dimensional space, termed core affect space in this work (Figure 3.6). That is,
diverse stimuli, including primary reinforcers and secondary reinforcers, are transferred
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into hedonic and arousal values to elicit a core affect state at a given monent. There-
fore, there are almost infinite, non-preset emotion states that can emerge in the robot’s
cognitive architecture.

The first-dimensional value to describe a core affect state is its hedonic value. The
hedonic value measures the pleasure level of the robot, regarding reward that provides
the “common current [101]” for diverse stimuli. Different methods of calculating this
value can be introduced to create heterogeneous core affect states. One potential method
is to calculate the hedonic value by different time-schedules. For example, it can
introduce an anticipated reward, which a robot can predict, into the hedonic calculation
to create "motivation-like" emotional states. Another potential method can compare the
difference between a received reward and its expected reward. This difference can create
emotion states that are labelled with “surprise”. These methods suggest how diverse core
affect states can be, thus they are worth being extended by future work. The calculation
method of the hedonic value is described in Equation 5.2 (Section 5.5), serving as a
“starting position” and a benchmark before diverse hedonic-value calculation method
can be applied.

The second-dimensional value to specify a core affect state is its arousal value.
The arousal value measures the activation level of the robot, referring to a sense of
mobilization or energy [100]. This value summaries the robot’s physiological state,
suggesting the physiological coping ability or the action preparation of the robot. This
work transfers the sense of mobilization of the robot into its arousal value through
Equation 5.3 (Section 5.5). Energy consumption is not a significant factor when each
iteration only lasts minutes in this work. Nevertheless, if necessary, there is no practical
problem to take energy consumption into consideration in future work.

The emotion model can map emerged core affect states to affective responses of
the robot. According to the Basic Emotion Theory, emotional states are treated as
“minimalist predictions” of affective responses [93]. In the emotion model, emerged
core affect states are the conditions that can trigger consequential responses. Instead
of presetting mappings between core affect states and affective responses, the emotion
model applies contingence-based subsumption operations to achieve these mappings.
That is, the mappings of the emotion model are encapsulated in SAOC rules that are
assigned to this model. Similarly to SAOC rules of the secondary reinforcers, the
hedonic and the arousal values of core affect states are encapsulated in the Stimuli part,
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selected affective responses are encapsulated in the Action part, and their effects are
encapsulated in the Outcome part (see Section 5.5). These subsumption operations also
deploy a machine learning agent to evolve accurate SAOC rules. As a result, the emotion
model can select appropriate responses to stimuli-eliciting events.

Although this work does not pre-define emotion states and their responses, three
basic emotions that dominate different areas of this core affect space are expected as
follows: Happiness, Fear, Frustration, and Calm (see Figure 3.6 and 3.18).
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Figure 3.18: Implementation of core affect states of ACMCA

3.3.3.1 Happiness

Happiness can be used to label core affect states with high-scale hedonic value and
high-scale arousal value. Happiness is elicited by reward-related stimuli, such as the
target achievement, the expectation of a reward, or the absence of punishment. In this
work, happiness can be an emotion state which activates goal-oriented behaviours.
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3.3.3.2 Fear

Fear can be used to label core affect states with low-scale hedonic value and low-scale
arousal value. Fear is triggered by stimuli of punishments, such as collisions. The
responses of the fear aim to mitigate these hazard stimuli, leading to an avoid pattern.

3.3.3.3 Frustration

Frustration is a label which refers to core affect states with medium-scale hedonic value
and medium-scale arousal value. Frustration occurs when anticipated reward is reduced,
delayed, or removed completely [102]. From the perspectives of stimuli, frustration is
described as the "withdrawal of an anticipated reinforcer" [103]. In this work, frustration
is considered as a core affect state, which is elicited by the withdrawal of an anticipated
reinforcer. The strength of Frustration is related to the length of the delaying time in
receiving an anticipated reward (i.e. a reward of achieving a task). The frustration of the
delay of anticipated reward could lead to affective responses that have negative effects
on the original plan, such as rescheduling schemes.

3.3.3.4 Calm

Calm can refer to core affect states with medium-scale hedonic value and low-scale
arousal value. Calm is considered as a reversal of anger. In a robot, it can lead to
suppressing behaviours when they are not of benefit for the current scenario.

3.3.4 Strategy (Layer Four)

Strategy aims to provide flexible schemes and plans to deal with the environment’s
uncertainty factors over a task scenario6. In a real world application, a task scenario may
contain multiple optional schemes, whose completions are impacted by an uncertainty
factor. A strategy represents an optional scheme chosen as a response to an uncertainty
factor for the current scenario (iteration). Encapsulated in the SAOC rules ofDeliberation
(Section 3.3.2.3), two strategies are proposed as affective schemes responding to the
Occupation (Section 3.3.1.5). These two strategies are Persistence and Rescheduling,

6A task scenario is an iteration to complete the task. In a multistep scenario, a task scenario includes
multiple and sequential state-action steps.
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Figure 3.19: Implementation of strategies of ACMCA

providing flexibility for the task completion (see Figure 3.19). After the evolving SAOC
rules are established, Persistence and Rescheduling can represent characteristic response
patterns to a "frustration" event.

3.3.4.1 Persistence

Persistence stimulates a persistent pattern of sticking to its original scheme. By disre-
garding the influence of the uncertainty factor and the alternative schemes, Persistence
sticks with its original Goal (see Section 3.3.1.2) until the end of a scenario. In this work,
Persistence will keep the destination position of the Goal (see Section 3.3.1.2) intact for
the executed behaviours (e.g. Path-following (see Section 3.3.5.2)) to complete.

3.3.4.2 Rescheduling

Rescheduling stimulates a rescheduling pattern to provide an alternative scheme for
task completion. Under the influence of the uncertainty factor, Rescheduling selects an
alternative scheme for the scenario. In this work, Rescheduling resets the Goal with an
alternative position, suggesting a different position to move forward to.
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3.3.5 Behaviour (Layer Five)

Behaviour aims to provide diverse executed behaviours for a robot’s performance in
states of a task scenario. A Behaviour is an operational element of a model applied
to the robot. Through models, behaviours can influence the robot’s performance at the
given moment from various aspects (i.e, perception, execution, etc). Various optimal
behaviours can be learned by SAOC rules and XCS agents for each state. These optimal
behaviours in a state can be considered as a behaviour pattern of the state, leading to the
task achievement in the final state of a scenario. In this work, behaviours include Reflex
Velocity, Path-following, and Inflation Radius (see Figure 3.20). Each of these includes
a set of specific operational behaviours that can be executed by the robot.
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Figure 3.20: Implementation of behaviours of ACMCA

3.3.5.1 Reflex Velocity

Reflex Velocity is a behaviour that directly sets the velocity command to the motor
controller of a robot. In this work, the move-base model is applied in a robot (e.g. the
Pioneer (Section 2.7)) to control its movement via velocity commands. Reflex Velocities
for the move-base model includes six velocity-commands that allow the Pioneer to move
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in different directions, immediately responding to unpredicted collisions (see Figure
3.11). The detailed settings of Reflex Velocities are described in Table 3.2. These
settings aim to create different movement of the robots and thus could be changed based
on the robot’s morphology. The settings are determined by the investigation of the
mechanical mobility of the robot platform (the Pioneer) (see the investigation in Section
2.7). The settings of velocities can be arbitrary values in the linear range where the input
velocity causes no steady-state error on the system. After the evolving SAOC rules of the
Reflex agent (Section 3.3.2.1) are trained, Reflex Velocities are alternative behaviours
of Path-Following for rescuing the robot from continuous collisions with obstacles that
are unpredicted by the robot’s path-planning model.

Table 3.2: Reflex Velocity

Index (Direction Index) Linear Velocity (m/s) Angular Velocity (rad/s)
NO.1 (Direction 1) 0.1 0
NO.2 (Direction 2) 0.05 -0.32
NO.3 (Direction 3) 0.05 0.32
NO.4 (Direction 4) -0.1 0
NO.5 (Direction 5) -0.05 -0.32
NO.6 (Direction 6) -0.05 0.32

3.3.5.2 Path-following

Path-following is a behaviour that transfers a velocity command from a path-planning
model to the motor controller of a robot. Generally, path-following is a default behaviour
for most mobile robots, allowing a robot to execute velocity commands generated by a
path-planning model. In this work, Path-following and its counterpart, Reflex Velocity,
are two behaviours that influence the robot’s executed performances. In the experiment of
the emotion model (Section 5.5), random velocities are introduced to simulate velocities
that are generated by the path-planning model. According to the Pioneer’s mechanism
(Figure 2.18) and the constraint of the experimental environments, random velocities
are set in Table 3.3. Similarly to the settings in the Reflex Velocity, these settings are
selected from the linear range where no steady-state error can be caused. The average
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values of the settings in the Path-following are larger than that of the Reflex Velocity to
simulate navigation performances.

Table 3.3: Random Velocity

Index (Direction Index) Linear Velocity (m/s) Angular Velocity (rad/s)
NO.1 (Direction 1) 0.15 0
NO.2 (Direction 2) 0.1 -0.32
NO.3 (Direction 3) 0.1 0.32
NO.4 (Direction 4) -0.15 0
NO.5 (Direction 5) -0.1 -0.32
NO.6 (Direction 6) -0.1 0.32

3.3.5.3 Inflation Radius

Inflation Radius is a behaviour that specifies a hyperparameter of obstacle-inflation-
distance for a path-planning model. Generally, a hyperparameter is a parameter that
has determining effects on the method’s performance, beyond methods and implications
that it is applied to. Inherited from a modifier of the previous work [17, 18], Inflation
Radius (IR) specifies an obstacle-spreading distance within which the free area around
the obstacle will also be marked with an obstacle-occupied cost in the perceived map
(termed as costmap). For example, an overlarge value of inflation radius (e.g. 0.8
metres) will fill the space around obstacles with a large inflation (see Figure 3.21.c).
Hence, narrow spaces, where the path-planning method should be able to generate a
path through, will be considered as being occupied by an obstacle. As a result, different
values of the IR will result in different perceived environments of the same scenario,
especially in narrow spaces (see Figure 3.21).

IR has a dominant effect on admissible behaviours of the path-planning method.
Because IR will directly affect the costmap that a path-planning method works on, the
path-planning method would not necessarily generate a valid path if the IR is not fit for
the scenario. For example, in scenario No.4 (see Figure 3.21.c), the IR with a value of
0.8 metres is appropriate for the wide-open area on the top right corner of the local zoom
map, but this value will lead to an enclosed perception of the doorway. Traditionally,
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it is the engineer’s responsibility to tune such a hyperparameter scenario by scenario to
ensure the path-planning method can generate paths. In this work, the SAOC rules and
XCS agents of the Tuning can automatically learn an appropriate IR for the generation
of a valid path (see Section 3.3.2.2).

(a) Ground Truth Map (b) Robotic Perception Map 1

(c) Robotic Perception Map 2 (d) Representation from Learned Knowl-
edge

Figure 3.21: Different Representations of Willow Garage Office Environment.
(a) Environment Viewed in Gazebo (targeted navigation path is illustrated by black
arrows); (b) inflation radius = 0.1 metres; (c) inflation radius = 0.8 metres, (maximum
value in this paper, and the default value of the navigation package is 5.5 metres); (d)
TP Patterns (the yellow cuboids compared with (a).

3.3.6 Section Summary

There are three major benefits of the combination of various components in the five-layer
architecture. Firstly, the diverse components provide potential search space from which
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their combinations can achieve adaptive behaviours. The combination of these compo-
nents, ACMCA, constructs a hierarchy of contingencies to achieve adaptive behaviours
in various subsumption-architecture levels. Secondly, diverse interactions between var-
ious components can emerge in the ACMCA. These interactions of an applied robot
can be explained by Constructive Theory, Appraisal Theory, and Basic Emotion Theory.
Thirdly, the combination of components is also based on the SAOC contingency, leading
to a novel contingency-based separating of the search space.

ACMCA will have better performances when these five layers are complete for
perception, decision making, and executions. However, the rest of ACMCA will not
break if only one component is removed. The first layer is the layer of primary reinforcer.
The robot perceives the environment through primary reinforcers that are connected
with sensors. As the input of ACMCA, removing this layer deprives the robot’s external
perception, leaving a “blind and deaf” robot wandering in the environment.

The second layer contains secondary reinforcers. Secondary reinforcers construct
SAOC rules based on their primary reinforcers. These SAOC rules provide estimations
on the perceived stimuli. When this layer is removed, the robot has no estimations from
perception. This will significantly damage the system’s adaptation, leaving a robot that
never learns from its past experience.

The third layer contains core affect states. Core affect states establish flexible connec-
tions between perception and execution. Core affect states summarise the perception,
thus advocating behaviours for the execution. The robot can learn to select strate-
gies/patterns responding to the current perception. If the system removes the core affect
state layer, the robot cannot switch its behaviours flexibly.

The fourth layer contains strategies that subsume behaviours. The subsumption
of behaviours decreases the SAOC search space, thus increasing the efficiency of the
learning agents in learning SAOC rules. If this layer is removed from the architecture,
the learning agents will face a larger search space than the current one. As a result, the
time consumption for training the robot will increase.

The fifth layer contains behaviours as the outputs of the ACMCA. Behaviours can
affect the robots executions from a module level or a responsive level. The removal of
this layer will remove the ACMCA’s impact on the robot. That is, an Outcome/effect of
the robot’s behaviour is no longer related to the Action that SAOC rules advocate. The
learnt SAOC rules can no longer be trusted, although the learning agents and the rest of
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the architecture functions normally.
It is also noted that SAOC rules and the emotion mechanisms essentially lead to a hi-

erarchy of contingencies, which can achieve adaptive behaviours in various subsumption-
architecture levels. On one hand, these diverse SAOC rules separate the entire search
space by interpretable contingencies, so that independent learning agents can effectively
learn different types of SAOC rules in separated search space. Therefore, SAOC rules
and the emotion mechanisms essentially guide searching directions that are not eas-
ily accessible in other approaches. On the other hand, emotion mechanism creates a
novel contingency-based subsumption approach for robotic systems. SAOC rules in the
high-level indicate a contingency-based subsumption approach that subsumes low-level
components. This unique contingency-based subsumption approach has the potential
to create completely autonomous robots that the classical behaviour-based subsump-
tion approach fails to generate. In addition, the emotion mechanisms allow the robot
to learn diverse SAOC rules that improve the adaptation of the robot. SAOC rules
are achieved by secondary reinforcers, core affect states, and strategies, while other
approaches/architectures have not yet achieved these SAOC rules.

The emotion mechanisms are inspired by Constructive Theory, Appraisal Theory,
and Basic Emotion Theory. Constructive Theory emphasises the reinforcer, which
associates Stimulus with responsive Action and their sequential Outcome (i.e. reward).
This work constructs various reinforcers (e.g. secondary reinforcers), which establish
SAOC rules from experiments. Appraisal Theory advocates that emotion states (e.g.
core affect states) are elicited by stimuli. These emotion states can be summarized
in a two-dimensional space (e.g. core affect space) by arousal and hedonic values of
emotion states. The work does not preset any high-fidelity emotional states. In contrast,
artificial core affect states are elicited in our experiment. Basic Emotion Theory focuses
on the action preparation on behaviours. Each basic emotion is associated with a
specific behaviour pattern. This work contains Strategy nodes, that include different
behaviour patterns, which are connected with elicited core affect states. Therefore, the
work bridge these three main-stream emotion theories by applying them in perception,
decision-making, and execution of the robot.

In addition, this work allows the robot to learn adaptive behaviours that can be
labelled with emotional states. As mentioned above, although we do not preset any
emotion states, the robot can learn to perform behaviours that can be interpreted as
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emotional responses. In the experiment of Reflex-learning (see Section 5.2), the robot
can perform “aggressively” to avoid continuous collisions by spinning and pushing away
obstacles. Although the robot never matched the human’s concept of angry, people
should keep themselves in a safe location when the “ pissed-off” robot scratched the
obstacles in the experiment.

3.4 Chapter Summary

This chapter described the methodology of ACMCA, which learns diverse affective
solutions for a robotic task. Section 3.2 introduced five components of the affective
solutions inspired by the three major emotion theories: Constructive Theory, Appraisal
Theory, and Basic (Emotion) Theory. The solutions extend primary reinforcer and be-
haviours from the previous solution of the reinforcers-emotion-modifiers mappings, and
introduces secondary reinforcer, core affect states, and policy as its novel components.

Section 3.3 introduced five sequential layers and nodes within these layers. In the
primary reinforcer layer, the primary reinforcers, including Touch, Path, Occupation,
Goal, Position, andReward, provide raw stimuli from recognising environmental factors.
In the secondary reinforcer layer, the secondary reinforcers, includingReflex, Tuning, and
Deliberation, construct instrumental stimuli and establish various populations of SAOC
rules for affective responses. In the core affect space, core affect states link between the
first two preception layers and the last two execution layers, expecting four basic emotions
to emerge in ACMCA for various scenarios: Happiness, Fear, Frustration, and Calm.
In the strategy layer, the strategies, including Persistence and Rescheduling, provide
flexible schemes for task completion. Finally, in the behaviour layer, the behaviours,
including Reflex Velocity, Path-following, and Radius Inflation, focus on the operational
behaviours to improve performance.

This chapter also proposes contingency-based subsumption operations to construct
ACMCA. With underlying machine learning algorithms, contingency-based subsump-
tion operations can automatically construct a multilayer and multiple hierarchy cognitive
system, what look-up tables would be hard to construct. The underlying machine learn-
ing algorithms will be introduced in Chapter 4. Experiments of ACMCA and proposed
algorithms will be introduced in Chapter 5.



Chapter 4

Algorithms

4.1 Introduction

The previous chapter introduced the methodology of Affective Computing Multilayer
Cognitive Architecture (ACMCA), which aims to learn a novel affective solution for
robotic tasks. Computing nodes are distributed among the five-layer hierarchy of
ACMCA. Each node represents a separate solution-component, and all the nodes coop-
erate to achieve the affective solution. The cooperations between nodes are automati-
cally established through the contingency-based subsumption operations, which allow
nodes in high-level of the hierarchy to subsume nodes in low-level by encapsulated
contingencies 1. These subsumption operations of high-level nodes are realised by an
underlying machine learning technique. As the robot interacts with the environment,
the contingency-based subsumption can establish an appropriate network of ACMCA
computing nodes, providing an affective solution toward task completion.

The XCS algorithm is selected as the underlying machine learning technique for its
symbolic interpretation, reasoning ability, and affordable computing budget. However,
although the standard XCS algorithm has comparatively significantly better performance
in binary problems (e.g. n-bit multiplexer problem) than other EC algorithms [104], it
has shortfalls that hinder its robotic applications (Section 4.2.2 and 4.3.1). Therefore,
two variants of XCS algorithms, the mitosis approach and the XCSCR, are proposed in
this chapter to mitigate these shortfalls that challenge real-world robotic applications.

1They are Stimulus-Action-Outcome Contingency (SAOC) rules, which are introduced in Section 3.2.2
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Real-world robotic applications bring challenges for the standard XCS algorithm.
Two universal challenges occur when the standard XCS algorithm is applied in ACMCA
for a mobile robot. The first challenge for the standard XCS algorithm is the noisy
environment of a real-world robot. Different from binary problems, a real-world robotic
application will unavoidably contain noisy data niches. These noisy data niches interfere
with the performance of the rule-based standard XCS algorithm. This is because its
innate "overgeneralized tendency" can magnify the negative impacts of noisy data niches
on accurate rules (Section 4.2.2). Because of these interferences, the standard XCS
algorithm will (1) lack robustness to maintain its accurate rules, and (2) have a tendency
to become stuck at a local optimum. Therefore, nodes that deploy the standard XCS
algorithm fail to achieve maximally generally and accurate solution-components.

This work proposes themitosis approach for the XCS algorithm (Section 4.2) to meet
the first challenge in real-world robotic applications. Inspired by the mitosis procedure
in the biological cell-division circle, this approach introduces novel procedures into
the standard algorithm’s evolutionary process. These procedures allow the parent rule
to pass its accurate elements down to children rules in the evolutionary process. The
passing of accurate elements becomes an accuracy pressure that is introduced into the
algorithm’s iteration loop, balancing the overgeneralized tendency and the negative
impacts of noisy data niches on accurate rules. Driven by the accuracy pressure, the
mitosis approach can perform better than the standard approach in terms of prediction
accuracy, pattern robustness and pattern accuracy (Section 5.3.2). After deploying the
mitosis approach to assist subsumption operations, high-level nodes can achieve accurate
solution-components with interpretable symbolic meanings.

The second challenge is that the XCS algorithm’s credit assignment method for
robotic tasks is flawed. In a multistep navigation scenario, a robot receives a long-term
credit at the final step. Then, a credit assignment method is activated to assign this
final credit to previous steps of a policy 2 that led to that credit. As the robot repeats
the task, an ideal credit assignment method can identify global optimal policies from
a vast policy space. However, the functionality of the XCS credit assignment method
(Section 2.5.2) might be not fast enough for robotic applications in the real world. This

2A policy is a state-action mapping of an agent. A "state" represents the state of the world where the
agent is, i.e. the surrounding environment of a mobile robot. An "action" indicates what action the agent
should take in that state, e.g. moving forward.



4.2. MITOSIS APPROACH 93

is because the credit assignment method requires sufficient rewards to search global
optimal policies from the vast policy space, yet long-term, positive rewards are so scarce
that it is insufficient to guide the searching. That is, especially at the initial learning
phase, it is rare for the robot to achieve the goal and receive long-term, positive rewards.
Therefore, if it only relies on the long-term, positive rewards, the credit assignment
method cannot learn policies effectively for multistep robotic applications.

This work proposes the XCSCR, an XCS algorithm with a combined reward method
(Section 4.3), to meet the second challenge. The XCSCR explores both long-term and
short-term rewards to search for optimal policies. The XCSCR technique also adjusts
the rewards’ impacts on the policy search by different training phases to encourage an
early emergence of optimal policies. The XCSCR evolves its population of policies
toward optimal policies by the pressure that is introduced by the current best policies.
As a result, the XCSCR enables the policy to emerge earlier and more frequently than
the existing benchmark approaches in multistep problems (Section 4.3). Therefore, a
robot with the XCSCR can handle a multistep scenario more effectively than those with
the benchmarked algorithms.

4.2 Mitosis Approach

This section presents the mitosis approach for the XCS algorithm. We start with an
introduction of the learning process in the standard XCS algorithm (Section 4.2.1) as
the benchmark for the mitosis approach. The next subsection (Section 4.2.2) discusses
the overgeneralized tendency of the standard XCS Algorithm, which is the reason why
the overgeneral pressure frequently dominates the evolutionary processes of XCS. After
identifying the overgeneralized tendency, subsection 4.2.3 introduces where the novel
mitosis approach is added to the benchmark learning process. The following subsections
4.2.4 and 4.2.5 detail two mitosis procedures during the learning process, generating
accurate "descendants" and creating an accuracy pressure against the overgeneralized
tendency. The final subsection 4.2.6 provides a summary of the mitosis approach.
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4.2.1 Main Loop of Standard Approach of XCS algorithm

A learning agent of the standard XCS algorithm learns classifiers through its iteration
loops (Section 2.5). In its iteration loops, the XCS learning agent interacts with an
environment in a sequence of operations: perceiving the current state from the environ-
ment, selecting an action by the perceived state and classifiers, executing the selected
action to the environment, and updating classifiers by the reward from the environment
(Figure 4.1). Classifiers engage in these sequential operations to update their worth.
At the beginning of an iteration loop, the XCS agent perceives a current state, which
is in a niche from the environment, as a perception. Then, the XCS agent initiates its
Matching method to choose classifiers from the Population ([P ]). The niche-coverage
of the condition part of the chosen classifiers must be able to cover the perception.
If there is no classifier in [P ] that meets this requirement, the Covering method will
be activated to generate a perception-covered classifier. The chosen classifiers or the
perception-covered classifier form a Match set ([M ]). As an iteration loop progresses,
the Selection method chooses an Action from the available Actions, which come from
the classifiers in [M ]. Classifiers with the chosen Action in [M ] forms an Action set
([A]). After the execution of the chosen Action, the agent will receive a reward from the
environment. Based on the reward, classifiers in [A] are updated (Section 2.5) and return
to [P ] at an end of the iteration loop. In addition to these methods, a Genetic Algorithm
(GA) method will be activated conditionally within [A] to generate new classifiers, and
a Deletion method removes excess classifiers from [P ]. The interactions between these
two methods can create a generalization tendency, which has the potential to create
overgeneral classifiers and become a fundamental problem for the standard algorithm.

Figure 4.1: Learning Processes in Standard XCS
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4.2.2 Overgeneralized Tendency of XCS Algorithm

The standard XCS algorithm suffers from an overgeneralization tendency. This tendency
creates overgeneral classifiers by extending the niche-coverage of their condition parts.
It is an intrinsic tendency [69] that originates from interactions between niched evolution
(i.e. Genetic Algorithm (GA) in [A]) and panmictic deletion (i.e. removal of excess
rules from [P ]) [105]. In niched evolution, the classical GA of the standard XCS creates
a much stronger generalisation pressure than specification pressure. That is, GA tends
to create more general classifiers than specific ones because the former has a closer
Hamming distance than the later [106]. Yet, the panmictic deletion aims to remove unfit
classifiers from the population, and the fitness of a classifier is not completely reliant on
its generalisation. As a result, the standard XCS algorithm tends to create overgeneral
classifiers if the algorithm has no explicit method to balance this pressure.

The XCS algorithm lacks the ability to distinguish overgeneral classifiers from
other inaccurate classifiers. Generally, inaccurate classifiers contain inaccurate niche-
coverage. Overgeneral classifiers distinguish other inaccurate classifiers because over-
general ones mix major accurate niche-coverage with little inaccurate niche-coverage. In
the GA procedure, the crossover and mutation operations can extend the niche-coverage
of an accurate classifier to inaccurate niche-coverage of an overgeneral classifier. Be-
fore the inaccurate niche can encounter a negative reward, the overgeneral classifier can
subsume the accurate classifier because of its larger niche-coverage than the accurate
one, leading to the accurate classifier being replaced by the overgeneral one. When
the inaccurate niche eventually affects the panmictic deletion method, the overgeneral
classifier can be deleted from [P ]. In this case, as accuracy classifiers have been driven
out of [P ], no classifier existing in [P ] can accurately cover the data-niche. As a result,
the over-generalization tendency causes the following problems [107]:

1 An accurate classifier lacks robustness to maintain its accurate state;

2 As the overgeneral classifiers prosper, classifiers tend to be stuck at a local opti-
mum, where those classifiers stop evolving toward maximally general and accurate
classifiers.

The standard XCS algorithm’s performance is not robust in a noisy environment
of typical robotic real-world applications. Noisy data from a noisy environment are
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inaccurate instances, which interfere with the performance of accurate classifiers. When
the overgeneral pressure frequently dominates the evolutionary processes, an accurate
classifier can eventually be driven out by its overgeneral counterpart because of these
inaccurate instances. Because the standard approach cannot distinguish accurate niche-
coverage from inaccurate niche-coverage in overgeneral classifiers, accurate classifiers
are rare, especially in a noisy environment.

To amend the overgeneral pressure that frequently dominates the evolutionary pro-
cesses of XCS, this work proposes the mitosis approach which introduces a novel ac-
curacy pressure into the algorithm. The mitosis approach is inspired by the biological
cell’s mitosis procedure in which an original cell passes down its chromosome to two
new cells. Mother chromosomes of the original cell are replicated and then are separated
into two daughter nuclei for new cells. Similarly, the proposed artificial mitosis method
will generate child classifiers that inherit an accurate niche-coverage from a parent clas-
sifier but abandon inaccurate niche-coverage. Compared to the classical evolutionary
process that introduces overgeneral pressure, the accuracy pressure introduced by the
mitosis approach allows generated child classifiers to move towards accuracy. As train-
ing progresses, the accurate children will eventually replace their inaccurate parents in
a classifier population. As a result, the mitosis approach is anticipated to increase the
accuracy of the entire classifier population.

4.2.3 Mitosis Approach Overview

Figure 4.2: Mitosis Approach in XCS algorithm’s Learning Processes.

The mitosis method is added into XCS for the mitosis approach (comparing Figure
4.2 with the standard counterpart in Figure 4.1). Structurally, the mitosis method is
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in parallel to the Updating method, which updates the classifier Population according
to a reward. Yet the mitosis method needs to be activated before the execution of the
updating method so that the qualified overgeneral classifiers can be processed by the
mitosis method. Otherwise, the qualified overgeneral classifiers could be modified by
the activated GA procedure 3 of the updating method. Because the GA procedure is
an evolutionary process without a specific evolutionary direction, the updating method
could remove the accurate elements from overgeneral classifiers. This is what the mitosis
process aims to preserve. The mitosis method introduces an accuracy pressure to guide
its evolutionary process for a more accurate generation of children than the existing one.
The mitosis proceeds the updating method and GA procedure so does not interfere with
those procedures behind.

Figure 4.3: Mitosis’ Two-step Procedure.

A classifier’s generation process takes two steps in the mitosis method (see Fig-
ure 4.3). Firstly, the mitosis-parents-selection procedure chooses qualified overgeneral
classifiers from [A]. This selection procedure allows the following procedures to be
activated only by qualified overgeneral classifiers, potentially improving the efficiency
of the mitosis process. All the qualified overgeneral classifiers are denoted as mitosis
parents and are preserved in a mitosis parent set ([MiP ]) waiting for the second step.
The second step, mitosis-children-generation procedure, will generate new classifiers
(denoted as mitosis children), and inserts them into [P ]. The procedure removes inaccu-
rate niche-coverage from the mitosis parents and preserves accurate niche-coverage and
other accurate elements for the mitosis children. These accurate mitosis children in [P ]

create the accuracy pressure to amend the general pressure in [A].

3A procedure is one computing progress in a method, and a method can include multiple procedures.
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4.2.4 Mitosis-Parents-Selection Procedure

The mitosis-parents-selection procedure identifies mitosis parents which have been po-
tentially affected by the general pressure yet contain accurate elements. Three require-
ments are provided to identify mitosis parents (see Algorithm 1). Firstly, mitosis parents
are classifiers that made an incorrect prediction in the current iteration. This feedback
of prediction will directly separate inaccurate classifiers from accurate classifiers. The
parents cannot be created by the Covering method (Section 4.2.1) because this necessary
feedback is not available when the Covering method is activated. Secondly, mitosis
parents must have achieved the maximum accuracy (ε0) 4 before this iteration. The
statistics of the maximum accuracy indicates that substantial accurate elements are con-
tained in the current classifier. This requirement will filter overgeneral classifiers from
the rest of the incorrect classifiers. Thirdly, mitosis parents have to reach the value of
the maximum reward (threshold.prd). This requirement attempts to identify qualified
overgeneral classifiers that are close to optimum solutions. If a classifier’s absolute value
of the predicted reward (cl.prd) has achieved the value of the maximum reward, this
classifier is more likely to reach the global optimum solution than those who have not. If
[MiP ] is empty, the next procedure, the mitosis-children-generation procedure, will not
be activated. Therefore, the mitosis-parents-selection procedure potentially increases
the efficiency of the mitosis approach by focusing on qualified overgeneral classifiers. In
addition, without this procedure to filter out unqualified classifiers, the mitosis approach
risks the introduction of an undesirable over-specified pressure into [P ].

Algorithm 1 Mitosis Parents Selection
Inputs: RewardR, Action set [A], Mitosis Parents Set [MiP ], a classifier cl, a classifier’s

accuracy cl.acc, a classifier’s predicted reward cl.prd, a preset difference threshold
of predicted-reward threshold.prd.diff .

Outputs: Select qualified mitosis parents.
1: function Select Mitosis Parents(R, [A])
2: [MiP ]← empty

3: for cl in [A] do

4ε0 is a common statistics parameter of the XCS algorithm, which sets the accuracy threshold for
classifiers. If a classifier’s accuracy is beyond this threshold, this classifier can be considered as an
accurate one.
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4: if cl.acc > threshold.acc and cl.prd > threshold.prd then
5: if |cl.prd| < |R| and |cl.prd−R| > threshold.prd.diff then
6: [MiP ]← cl.id

7: end if
8: end if
9: end for
10: return [MiP ]

11: end function

4.2.5 Mitosis-Children-Generation Procedure

The mitosis-children-generation procedure passes accurate elements from the selected
mitosis parent to child classifiers after themitosis-parents-selection procedure (see Algo-
rithm 2). If there are qualified mitosis parents in [MiP ], the mitosis-children-generation
procedurewill initiate a loop of theMitosis-division procedure to iterate eachmitosis par-
ent. In the loop iteration, the Mitosis-division procedure generates new classifiers based
on accurate elements that are extracted from the qualifiedmitosis parent. This generation
is an evolutionary procedure (Algorithm 3) including two sub-procedures: chromosome-
morphing procedure and telophase procedure. The chromosome-morphing procedure
(Algorithm 4) separates accurate elements from an inaccurate data-niche through the
chromosome morphing operation, providing the condition parts for mitosis child classi-
fiers. Next, the telophase procedure (Algorithm 5) combines these condition parts with
action parts and statistics to generate completed mitosis child classifiers.

Algorithm 2 Mitosis Children Generation
Inputs: Mitosis Parents Set [MiP ], Mitosis Children Set [MiC], Stituation σ, Popula-

tion [P ]
Outputs: Target: Generate mitosis children set and insert it into populstion set.
1: function Generate Mitosis Children(σ, [MiP ], [P ] )
2: [MiC]← empty

3: for cl in [MiP ] do
4: [NewBorn]←Mitosis Devision(cl, σ) ///parent dividemitosis children

are returned in [MiC]

5: end for
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6: if [MiC] is not empty then
7: [P ]← [MiC]

8: end if
9: return [P ]

10: end function

The chromosome-morphing procedure generates accurate condition parts for child
classifiers by detecting and removing inaccurate niche-coveragewithin themitosis parent.
The detection is based on overlaps between the current perception and the niche-coverage
of the condition part of the mitosis parent. Because the mitosis parent is inaccurate
under the current perception, these overlaps must contain an inaccurate niche-coverage.
Thus, condition parts that have removed one of the overlaps have a more accurate
niche-coverage for the mitosis child. By extracting the accurate niche-coverage for
new classifiers, the chromosome-morphing procedure actually introduces an accuracy
pressure to affect the evolutionary process.

The telophase procedure generates new mitosis children by combining components
that inherit accurate components from the parent classifier. These components are the
condition part, the action part, and the standard statistics. The condition part comes
from the chromosome-morphing procedure, the action part directly inherits from the
mitosis parent. The statistics of child classifiers also inherit from their parent, except
the numerosity and the experience. The numerosity specifies the number of copies of
a classifier. The experience indicates how many times a classifier has been activated.
As these two statistics measure the new classifier’s performance, they are not inherited
from the parent classifier. In this procedure, these two statistics are reset to their initial
values of one, following the default settings of a newborn classifier.

Algorithm 3 Mitosis Devision
Inputs: An Individual Mitosis Parent cl, Stituation σ, New Generation’s Gene Set

[Gene]

Outputs: Target: Generate mitosis children through the mitosis process
1: function Mitosis Execution Process(cl, σ )
2: [Gene]←Chromosome Morphing(cl, σ) ///chromsomes devision andmor-

phing, and reunite into new chromsomes
3: [NewBorn]← Telophase(cl, [Gene] )
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4: return [NewBorn]

5: end function

Algorithm 4 Chromosome Morphing
Inputs: Situation σ, A Dimension of Situation attribute, An Individal Mitosis Parent

cl, A Mitosis Parent’s Chromosome Set[Chs], A Chromosome in The Chromesome
Set chromosome, Morphed Chromatids [MoCht], A Chromosome/Chromatid Set
Prepared for FutureMitosis Children [ChCht], NewGeneration’sGeneBank [Gene]

Outputs: Target: Chromosome breaks and morphs into new chromosome for next
generation.

1: function Chromatids Mutation(cl, σ, [MoCht] )
2: [Chs]← [cl]′s ChromosomeSet

3: [MoCht]← empty

4: for chromosome in [Chs] do
5: i← 0

6: Attribute← σ.attribute[i]

7: chromatid← empty

8: // Begin morphing for each chromosome individed
9: if attribute.low <= chromosome.low and chromosome.high <= attribute.high

then
10: pass /// no chromatids generated
11: end if
12: if chromosome.low <= attribute.low and chromosome.high <= attribute.high

then
13: chromatid.low = chromosome.lower

14: chromatid.high = attribute.low

15: [MoCht]← chromatid

16: end if
17: if chromosome.low <= attribute.low and chromosome.high <= attribute.high

then
18: chromatid.low = chromosome.lower

19: chromatid.high = attribute.low

20: [MoCht]← chromatid

21: end if
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22: if chromosome.low <= attribute.low andattribute.high <= chromosome.high

then
23: chromatid.low = chromosome.lower

24: chromatid.high = attribute.low

25: [MoCht]← chromatid

26: chromatid.low = attribute.high

27: chromatid.high = chromosome.high

28: [MoCht]← chromatid

29: end if
30: if [MoCht] is not empty then
31: for chromatid in [MoCht] do
32: // Begin envelope individual chromatids as new chromosomes set for

an individual
33: combine chromatid with other chromosomes in [Chs] to produce

[ChCht]

34: [Gene]← [ChCht]

35: end for
36: end if
37: end for
38: return [Gene]

39: end function

Algorithm 5 Telophase
Inputs: Mitosis Parent [cl], A Chromosome/Chromatid Set Prepared for Future Mitosis

Children [ChCht], New Generation’s Gene Bank [Gene], New Born Generation
[NewBorn], a new born child cell, a child’s Chromosome Set cell.chromosomes,
a child’s cytoplasm cell.cytoplasm

Outputs: Target: Generate children cells by enveloping all elements of a classifier
together.

1: function Telophase(cl, [Gene] )
2: for [ChCht] in [Gene] do
3: cell.chromosomes← [ChCht] ///fetch a new suit of chromosomes
4: cell.cytoplasm←inherit cytoplasm(cl) ///inherit statistics and action

from parent
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5: [NewBorn]← cell /// envelope a new cell
6: end for
7: return [NewBorn]

8: end function

4.2.6 Mitosis Method Summary

This section proposed the mitosis approach for the XCS algorithm, which introduced
an accuracy pressure to amend the overgeneralized tendency of the benchmark XCS
algorithm. The mitosis approach excluded inaccurate niche-coverage of overgeneralized
classifiers and passed on only the accurate niche-coverage to child classifiers. In this
approach, accurate classifiers can be robust against interferences from noise. Therefore,
the mitosis approach is deployed on learning agents of ACMCA nodes to learn various
environmental patterns in experiments (Chapter 5). The analysis of the mitosis approach
is presented in the discussion of the results of the experiments (Section 5.3.2).

Generally, this algorithm cannot work for completely unseen data. It depends on the
data distributions between the training dataset and the unseen one. If they have similar
data distributions, the algorithms can work on the unseen dataset. If they have different
data distributions, the algorithms cannot work as effectively as its performance on the
training dataset. For example, an indoor, crowded office will generate different sensor
(i.e. LIDAR) distributions to a wide-open playground. What the algorithm learned in
the office, such as a speed limitation, will not be necessarily applied to the playground.

4.3 XCSCR Method

This section proposes XCSCR, an XCS with a combined reward method, to guide the
search for global optimal policies in multistep problems. This section contains nine
subsections. Subsection 4.3.1 introduces the problem: the vast policy-searching space
of multistep problems that occurs when a robot assigns a final credit to previous policies
in a life-long learning scenario. The next two subsections discuss the background of
the credit assignment and reward updating procedures. Subsection 4.3.2 introduces the
reward updating procedure in single-step scenarios, and then Subsection 4.3.3 extends
this procedure to multistep scenarios. Subsection 4.3.3 also introduces another bench-
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mark procedure, which is proposed to bootstrap the policy-searching speed for robotic
applications. The next five subsections detail the XCSCR method. Subsection 4.3.4
provides a brief overview of the method, and Subsections 4.3.5, 4.3.6, 4.3.7, and 4.3.8
detail the four XCSCR mechanisms that differentiate the impact of various long-term
and short-term rewards. Finally, Subsection 4.3.9 provides a summary of the proposed
XCSCR method.

4.3.1 Vast Policy-Searching Space of Multistep Problems

An XCS agent can be considered to be a Reinforcement Learning (RL) agent when it
seeks to improve performance from its interactions with an environment. An XCS agent
performs actions in an environment and receives rewards as feedback. In multistep
scenarios, an agent takes steps and performs sequential actions in an environment before
the agent achieves a reward in the final step. The rewards are distributed by a reward
method within the agent to estimate the contributions of each action. Actions that
would contribute to the maximum reward are selected as optimal policies as estimations
become accurate. By successively applying learned policies, an agent can optimise its
performance in the environment.

An RL agent often faces a vast policy space when searching for a global optimal
policy in multistep scenarios. Amultistep scenario, such as a way-findingmaze, requires
an RL agent to take steps and perform sequential actions to complete a task. For example,
the RL agent is required to complete a navigation task by choosing four directions within
ten steps in the maze 4 environment (Section 5.6.1). There are three global optimal
policies compared with a policy space with naïvely 410 policies5. The vastness of a
policy-searching space increases the difficulty of solving the credit assignment problem.
Specifically, the vastness of a policy-searching space requires efficient estimations of the
worth of actions within policies to search for an optimum policy.

The standard reward methods cannot efficiently estimate actions and policies when
positive rewards are scarce [64]. An estimation relies on assigned rewards through
Bellman’s equation (see Section 4.3.3), which does not discriminate long-term rewards
between positive ones and negative/neutral ones. Actions and policies can be estimated
effectively when positive rewards are frequently achieved as they guide the search. If the

5the number of possible combinations of four actions that the agent can attempt to take in ten steps
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number of the negative/neutral rewards is overwhelming, the estimations generated by
scarce positive rewards will be quickly offset by the interference of the negative/neutral
rewards. As the reward method fails to estimate actions and policies efficiently, global
optimal policies are elusive to the RL agent in multistep problems.

These problems are particularly apparent in real-world robotics experiments where it
is impractical to conduct millions of iterations, which are common in simulations. Simi-
larly, although modern computing power is increasing, those available to an autonomous
robot are often limited. Previous work by Williams et al. [17, 18] has adapted Learning
Classifier Systems for policy learning in real-robots, but this work still suffered from
credit assignment problems regarding scarce rewards in a real-world environment. In
addition, the work did not take into account the benefits of an autonomous agent in terms
of being able to identify short-term reinforcement, e.g. the ability to note a collision
during a policy learning trial. Therefore, a reward method that addresses these credit
assignment problems would be beneficial to real-world robotic applications.

This section proposes XCSCR, a combined reward (CR) method for an Accuracy-
based Learning Classifier System (XCS) algorithm, to achieve global optimal policies in
multistep problems. That is, XCSCR needs to introduce immediate short-term negative
rewards to encourage exploration when long-term, positive rewards are scarce. XCSCR
also exploits the policies that led to long-term, positive rewards to balance potential
interferences from long-term, negative rewards. In addition, XCSCR emphasises the
effect of long-term, positive rewards, and includes a dynamic threshold to drive policies
to move toward globally optimal ones. The effects of XCSCR on policy search will be
demonstrated with experiments using interpretable multistep maze problems.

4.3.2 Reward Updating Procedure of Standard XCS Approach

A standard XCS agent estimates rules through iterations of these interactions. Based on
how the agent perceives the environment in each iteration, rules in the XCS agent will
advocate an action as the agent’s effect on the environment (Figure 4.3.a). All rules in
the XCS rules’ population [P] that match the current perception will form a Match Set
[M] through the match filter. Next, an action from [M] is selected by the selection filter
through either an exploration or an exploitation method. In exploration, the selection
filter selects an action randomly from all options. In exploitation, the selection filter
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selects the most promising action with the maximum worth in [M] (Equation 4.6). The
selected action will be executed by the agent and rules in [M], who vote for the executed
action, will form anAction Set [A]. After the action execution, the agent will immediately
receive a step reward ra from the reward filter as feedback from the environment in single
step problems. The worth (fitness) and other statistics of the rules in [A] are updated
according to the step reward ra. As the iterations progress, the fitness reflects the utility
of a rule to guide the evolutionary search of better solutions (policies of actions).

The reward filter updates each rule in [A] by updating the statistics of a rule, including
the predicted reward rp, the prediction error ε, and the fitness F based on its ra. The
predicted reward rp is updated by a learning rate β (Equation 4.1).

rp = rp + β ∗ (rp − ra) (4.1)

Prediction error ε is also updated in a similar way (Equation 4.2).

ε = ε+ β ∗ (|rp − ra| − ε) (4.2)

Finally, fitness fit, the worth of the rule, is updated through calculations of absolute
accuracy κ and relative accuracy κ, (Equations 4.3, 4.4, 4.5).

κ =

1, if ε ≤ ε0

(ε/ε0)
ν , otherwise.

(4.3)

κ, = κ/(
∑

[A] κ) (4.4)

fit = fit+ β ∗ (fit− κ,) (4.5)

worthaj =

∑
clk∈[M ]|aj rpk ∗ fitk∑

clk∈[M ] fitk
,

(4.6)

where j,k ∈ N, cl is a classifier, aj is the action of cl, fit is the fitness of cl, rp is the
predicted reward of cl, worthaj is applied to a rule set [M].
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(a) Standard XCS Iteration Loop

Figure 4.3: XCS algorithms’ learning iteration
Blue blocks are the standard XCS sub-processes, grey blocks are XCS rule sets, orange
blocks are sub-processes of reward methods, and purple blocks indicate the agent’s
interactions with a maze environment. Arrows indicate the agent’s working flow, and
dotted arrows indicate classifiers/rules working flow.
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(b) (cont.) Robotic XCS Iteration Loop

(c) (cont.) XCSCR Iteration Loop

Figure 4.3 (cont.): XCS algorithms’ learning iteration
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4.3.3 Reward Propagation in Multistep Problem

XCS algorithms have been applied to solve multistep problems [76], such as maze
problems introduced byWilson [69]. In maze problems, the agent has to execute actions
in sequential iterations to complete a navigation task. Rewards are provided only in
certain states in multistep problems. A long-term reward rl represents the completion
of the task. rl equals an arbitrary value of 1000 if the task is completed. Otherwise, rl
equals zero in non-goal states or if the task fails (e.g. the agent has taken more steps than
the step-threshold in an epoch of a trial). A short-term reward (immediate reward) rs
traditionally represents the agent’s execution effects during each iteration. rs equals an
arbitrary value of -1 as a cost of the agent moving a step forward. rs equals an arbitrary
value of -50 if a collision occurs.

Traditionally, reward propagation is provided by a reward method for applying the
standard XCS iteration loop in multistep problems (See Section 2.5.2). The reward
method is internally responsible for assigning external rewards, including short-term
rewards and any long-term reward, for each iteration. The step reward ra is the reward
which the agent assigns to recent active rules in [A]i for the step i, as in single step
problems. The standard XCS reward method encapsulates long-term rewards into short-
term rewards through a Q-learning like algorithm [69, 76]. The maximum potential
reward available is propagated to previous actions [A]i−1, even if that action is not
taken in [A]i. Although Q-learning can mathematically guarantee the approximation of
estimated ra, it might take a long time before the effect of a rl can propagate to ra’s of
early states. The propagation speed of the standard reward method might not be fast
enough for robotic applications in the real-world.

Williams et al. [17, 18] proposed a reward method suited to robotic applications to
solve multistep problems. The reward method encapsulates short-term effects, such as
collisions and the number of steps taken, into the time factor (time) of long-term rewards
(Equation 4.7). Instead of updating [A] at the end of each iteration as the standard XCS
reward method does, the robotics method records [A] in a Reward Stack [R] (Figure
4.3.b). At the end of a task, the robotic reward method propagates the long-term reward
rl backward to all previously active XCS rules evenly (Equation 4.8) or with a discount
factor (γ) to emphasise the contributions of recently active rules (Equation 4.9).
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rl = 1000 + 1/time (4.7)

ra, i = c ∗ rl/numstep, (4.8)

where c is a constant, and i ∈ step.

ra, i = rl ∗ γi, (4.9)

where i ∈ step.
The reward encapsulation of the adapted robotic reward method [17, 18] fails to

identify the rules that directly respond to short-term rewards (Section 2.5.2). The effects
of short-term rewards were encapsulated as a time factor (Equation 4.7), which sums up
the agent’s short-term performances in the standard reward filter (Figure 4.3). Although
the time factor encapsulates the effects of collisions if they happened during a trial, the
time factor fails to record when these negative rewards happened. Thus, information to
identify responsible rules is neglected by this method.

As the adapted robotic reward method fails to identify the rules responsible for the
negative rewards, this leads to a purely random search in an agent’s initial training phase.
Before the establishment of effective policies, long-term, positive rewards are scarce and
the agent frequently receives long-term, negative rewards. All the long-term rewards
are indiscriminately propagated to rules as the reward method suggests (Equations 4.8
and 4.9). The overwhelming majority of negative rewards could be unintentionally
propagated to rules that could otherwise lead to positive rewards. Therefore, all rules
could be estimated as equally bad (Figure 4.4). In this case, the agent will essentially take
purely random actions because explorations rely on the difference between the worth of
rules.

4.3.4 XCSCR Method Overview

This work proposes XCSCR, an extension of XCSwith a combined reward (CR)method,
to guide the search for global optimal policies in multistep problems. CR discerns the
impact of various long-term and short-term rewards to address different challenges
arising from the scarcity of long-term, positive rewards. Its combined reward method
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includes a short-term reward mechanism and a modified long-term reward mechanism.
The short-term reward mechanism aims to encourage exploration at the learning agent’s
initial training phase, when the agent faces a vast policy-searching space. The long-term
reward mechanism aims to exploit the long-term, positive reward effectively. The long-
term reward mechanism is developed from the standard reward method with three novel
reward mechanisms: an imprinting mechanism, a learning-rate switching mechanism,
and a learning step-threshold mechanism. The imprinting mechanism aims to balance
the negative effects of an agent’s explorations on current best policies in multistep
problems. The learning-rate switching mechanism differentiates long-term rewards
between positive ones and negative ones. The learning step-threshold mechanism aims
to create optimisation pressure to drive local optimal policies toward global optimal
policies.

4.3.5 Short-term Reward Mechanism

Short-term rewards are defined as immediate rewards that the agent receives in each
step. Traditionally, in a Markov model, short-term rewards are arbitrary negative values
that demonstrate the immediate effects of an agent’s recent step [108]. If the agent
(i.e. a robot) runs to an obstacle-free cell, a small negative value, such as -1, will be
assigned to this step as its cost. If a step leads to a collision, another negative value with
a larger magnitude, such as -50, can be the short-term reward as a severe punishment
to the step. It is hypothesised that a training process would drive local optimal policies
toward global optimal policies by taking short-term rewards into consideration in an
optimisation function.

[h] Algorithm 6 Short-term Reward Filter
Inputs: Short-term Reward rs, Action Set [A], Population[P].
Outputs: Action Set [A].
1: function update Short-term Reward(rs, [A])
2: if rs <= θrs then
3: aj ← [A] ///get the last executed action aj
4: worthaj ← (aj, [P])
5: worthaj = worthaj + rs

6: Call Function: reward procedure ([A], worthaj )
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7: end if
8: return [A]
9: end function

(a) All the policies have the same worth. (b) No optimal action/policy learnt.

Figure 4.4: Worth of rules shown by actions.
When the long-term, positive rewards are scarce, all actions in the initial steps are
equally bad. Red arrows: the worth (fitness) of rules, magnitude suggests the negative
value of the worth. Green arrows: optimal actions/policies, magnitudes are fixed. Light
grey cells suggest they have been visited by the agent in this epoch of a trial. The dark
grey cell suggests the location where the agent ended up at the end of the epoch.

Based on this hypothesis, this work proposes a short-term reward mechanism that
attributes any severe negative short-term rewards only to the latest activated rules. The
short-term reward mechanism is implemented by a short-term reward filter, which is
inserted at the end of an XCS iteration loop (Figure 4.3.c). The short-term reward
filter aims to immediately respond to severe negative short-term rewards, such as severe
collisions, at the current step/state (see Algorithm 6). In the filter, the worth of the
responsible rules in an [A] will decrease by adding a short-term reward rs, a negative
reward in this case. Then, the calculated worth will be applied to update [A] through the
XCS standard rules’ updating procedure (Equation 4.6 for calculating an action’s worth
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from a chosen rule set). The updated [A] is recorded in [R] for the long-term reward
mechanism at the end of the iteration loop. In addition, minor negative short-term
rewards, such as a step’s cost, could be ignored through setting the parameter θrs for
saving on the computing budget.

The short-term reward mechanism bootstraps the policy search when long-term
positive rewards are scarce in the initial training phase. The mechanism can differentiate
potential useful rules from useless ones because the useless rules are responsible for
severe negative effects and their worth decreases. If the long-term positive rewards
are scarce, this differentiation can encourage the agent to explore the targeted states
appropriately (see Section 5.6.2 and Figure 5.11.a).

4.3.6 Imprinting Mechanism

An exploration and an exploitation method are common optimisation components for
machine learning algorithms, including XCS algorithms. In XCS algorithms, the ex-
ploration and the exploitation methods are applied to select an action in the selection
filter (Figure 4.3). In exploitation, the filter will select the action with the best action
worth, worthaj (Equation 4.6). The filter will also activate exploration with a proba-
bility parameter pexplr to choose an action purely randomly. Previous studies show that
a sensitive balance between the exploration and the exploitation is critical for XCS to
learn optimal policies in single-step problems [105, 109].

Algorithm 7 Imprinting Procedure
Inputs: Current Policy p, Policy Set [PS], long-term reward rl, Population Set [P].
Outputs: Policy Set [PS], Population Set [P].
1: function Imprinting procedure(p, [PS], rl)
2: if rl == 1000 then /// p achieved the goal position
3: Call Function: update [PS] procedure (p, [PS])

///(see Algorithm 8)
4: return [PS]
5: else if (RandomNumber[0, 1) > θx and [PS] is not empty then
6: randomly select a Policy pi from [PS]
7: Call Function: behavioural cloning procedure (pi, [P])

///(see Algorithm 9)
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8: return [P]
9: end if
10: end function

However, the exploration and the exploitation can hardly achieve the sensitive balance
that drives XCS to learn optimal policies efficiently in multistep problems. This is
because the standard reward-assignment mechanisms for multistep problems do not
differentiate explored steps and exploited steps when the mechanism propagates rewards
[76, 108]. The Q-learning reward-assignment mechanism, the even reward-assignment
mechanism (Equation 4.8) and the discount reward-assignment mechanism (Equation
4.9) propagate rewards based on the sequence of steps (see Section 4.3.3). Thus, effects
of exploration and exploitation activated in different steps can interfere with each other.
For example, an iteration could fail because of an explored action, which is activated by
the probability of pexplr, in a step. Without an additional algorithm to differentiate steps
between exploration and exploitation, rules would be punished with the explored rules
for the failure. Since the exploration is activated with the probability of pexplr, the best
rules will be affected. Therefore, global optimal policies, which consist of the best rules,
are hard to achieve or make stable in a multistep XCS agent.

Algorithm 8 Updating [PS] Procedure
Inputs: Current Policy p, Policy Set [PS].
Outputs: Policy Set [PS].
1: function updating [PS] procedure(p, [PS])
2: if [PS] is empty then
3: initialise [PS] with p
4: else if p.length == pi.length (pi ∈ [PS]) and p /∈ [PS] then
5: cover p by [PS]
6: else if p.length < pi.length (pi ∈ [PS]) then
7: [PS]← empty

8: cover p by [PS]
9: end if
10: return [PS]
11: end function

Algorithm 9 Behavioural Cloning Procedure
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Inputs: Selected Policy pi, Population Set [P].
Outputs: Population Set [P].
1: function behavioural cloning procedure(pi, [P])
2: Behavioural Cloning Set [BC]← empty

3: for each state-action pair in p do
4: [BC]← ([P] ∩ state-action pair)
5: end for
6: Call Function: reward procedure ([BC])
7: return [P]
8: end function

An imprinting mechanism seeks to restore the exploration and exploitation balance
by emphasising exploitation of the current optimal policies. Similar to ideas in deep RL’s
behavioural cloning, the imprinting mechanism increases the worth of rules that applied
in the current best policies. This will be achieved by inserting an imprinting procedure
to the long-term reward filter (Figure 4.3.c). The imprinting procedure manages a Policy
Set [PS], for exploitation reinforcements (see Algorithm 7). When a policy emerges
during iterations, the imprinting procedure will update the [PS] through an updating PS
procedure to keep the current best policies (see Algorithm 8). When the agent fails in
an iteration because of explorations, the imprinting procedure will activate [PS] with a
probability θx (e.g. θx = 0.5) to emphasise exploitation. The emphasising process will
randomly choose a current best policy from [PS] to undergo the behavioural cloning
procedure. A behavioural cloning procedure allows rules, which led to the chosen
policy in [P], to increase their worth as if they had led to a current successful iteration
(see Algorithm 9). Through these procedures, the imprinting procedure allows [P] to
learn from “expert policies”. The worth of rules that have been interfered with by the
exploration method can recover their worth in an implicit way. In future work, both the
updating PS procedure and the behavioural cloning procedure can employ individual
XCS agents for their learning and evolving. XCS agents in these two procedures can
co-evolve with an XCSCR agent at different hierarchies.
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4.3.7 Learning-rate Switching Mechanism

The learning-rate can significantly impact an agent’s training progress. In equation 4.1,
a learning-rate β specifies the predicted reward’s updating process. If β is set to a
large value, the predicted reward rp will rely on the current ra more than the historic
estimation. Otherwise, if β is set to a small value, the predicted reward rp will have a
tiny update toward the current ra. In the classical XCS algorithm, the learning-rate is
well-tuned and pre-set as a fixed parameter.

The learning-rate switching mechanism proposes to compensate for the scarcity
of long-term, positive rewards by switching the learning-rate to appropriate values in
training iterations. To encourage XCS rules learning aggressively from scarce, positive
results, the β in Equation 4.1 is set to a large value, such as 0.2, when the agent receives
long-term, positive rewards. Negative rewards are more frequent than the positive ones
in a training process. When the agent receives a punishment, the β is switched to a small
value, e.g. 0.05, to learn from punishments slowly. The reason for this discretization
is to avoid an optimal rule in a step of an iteration being overwhelmed by “wrong
rules” applied in the same iteration. As a result, the learning-rate switching mechanism
emphasises the role of scarce long-term, positive rewards.

4.3.8 Learning Step-threshold Mechanism

Step-threshold was introduced into multistep learning agent as a threshold for computing
resources. Step-threshold is a parameter which specifies the maximum number of steps
allowed for the agent to search in an iteration. The agent needs to terminate a training
iteration before amemory crash if the agent has taken toomany steps in a vast space. Once
the agent takes a number of steps over the value of step-threshold, the agent terminates
this trial with a failure to achieve the target result. Traditionally, the step-threshold is
pre-set according to the environment.

The learning step-threshold mechanism applies this threshold to generate pressure
for better policies. The step-threshold θstep is set as a parameter that is learnt from
discovered optimal policies. Following Bellman’s function, the step-threshold is updated
whenever it is larger than the number of steps stepa taken in the currently applied policies
(Equation 4.10). When the step-threshold approaches the number of steps taken in the
global optimal policies, it will create an optimal pressure driving local optimal policies
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toward global optimal ones.

θstep = θstep + β ∗ (stepa − θstep) (4.10)

4.3.9 XCSCR Method Summary

This section proposed the XCSCR method that can bootstrap the emergence of global
optimal policies in early learning iterations. The combined mechanisms of XCSCR
discerned different impacts of long-term and short-term rewards. Experiments are
conducted in three standard maze environments to test the performances of the XCS
algorithms on their search global optimal policies (see Section 5.6). The combined
reward method of XCSCR allows ACMCA to assign the final credit to co-evolving
learning agents that were previously activated in a life-long learning scenario.

4.4 Chapter Summary

This chapter described two novel XCS algorithms for robotic applications of ACMCA:
the mitosis approach and the XCSCR method. By introducing a novel accuracy pressure
into the algorithm, themitosis approach allowsACMCA learning agents to learn accurate
knowledge even in noisy scenarios. Extending the mitosis approach from single-step
scenarios to multistep scenarios, XCSCR should allow learning agents to co-evolve in
multistep scenarios. Experiments that were conducted to illustrate ACMCA and these
XCS algorithms are discussed in chapter 5.
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Chapter 5

Results

5.1 Introduction

The previous two chapters introduced the framework of Affective Computing Multilayer
Cognitive Architecture (ACMCA), which attempts to learn affective solutions for robotic
applications. The framework, which includes the nodes and layers of ACMCA and its
underlying machine learning algorithms, is described in these two chapters. Under this
framework, the affective solutions are composed of different solution components that
are distributed among the five-layer-and-three-level hierarchy. High-level solution com-
ponents (e.g. secondary reinforcers and the emotion model) can be constructed through
subsumptions of low-level ones. Through subsumptions, each constructed solution com-
ponent provides a contingency-reasoning for a robot’s responses by considering different
environmental aspects. This contingency is represented by the Stimuli-Action-Outcome
Contingency (SAOC) rules, which encapsulate environmental aspects, the robot’s re-
sponses and their sequential effects. The contingency-based subsumptions are automat-
ically processed by the machine learning agents of AMCMA nodes as the robot interacts
with the environment. As various SAOCs are established by ACMCA, this SAOC-based
subsumption system can provide affective solutions for robotic applications.

This chapter describes the implementation of ACMCA, which aims to learn affective
solutions for robotic navigation scenarios. The implementation is addressed through five
experiments: Reflex-learning, IR-tuning, Deliberation-establishing, Emotion model,
and Combined reward assignment. Each experiment is engaged with different nodes
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and layers of ACMCA to achieve a different component of the affective solutions. As
described in the methodology chapter, the first three experiments aim to achieve three
affective patterns of various behavioural levels from different navigation scenarios; the
fourth experiment aims to learn an emotion pattern that coordinates the learned affective
patterns; and the fifth experiment aims to extend the implementation from single-step
scenarios to multistep scenarios (i.e. a robot’s life-long learning scenarios).

The five experiments in this chapter unfold as follows:

(1) Reflex-learning: Section 5.2 conducts the experiment regarding the secondary
reinforcer of Reflex node, which aims to produce reflex-patterns for reflex-like
responses based on "pain-causing" stimuli (i.e. collisions). Following the method-
ology detailed in Section 3.3.2.1, this section tests the Reflex’s performance of
learning reflex-patterns in a collision scenario. The reflex-patterns, which effect
a robot’s instant behaviours, seek to allow the robot to respond to the unpredicted
"pain-causing" collision to prevent the further repetition of it.

(2) IR-tuning: Section 5.3 conducts the experiment for the secondary reinforcer of
Tuning node, which aims to produce IR-patterns for the adaptation of the path-
planning model. Following the methodology detailed in Section 3.3.2.2, this
section tests the Tuning node’s performance in learning IR-patterns in real-world
and simulated scenarios. The IR-patterns, which effect a robot’s underlying path-
planning model, attempt to achieve an automatic tuning of the model to complete
navigation tasks.

(3) Deliberation-establishing: Section 5.4 conducts the experiment for the secondary
reinforcer of Deliberation node, which aims to establish frustration patterns. Fol-
lowing the methodology detailed in Section 3.3.2.3, this section tests the Deliber-
ation node’s performance in learning frustration-patterns in a dynamic real-world
scenario. These patterns allow a robot to reschedule its plans for a task when its
original expectation of this task is failing to be achieved.

(4) Emotion model: Section 5.5 details the experiment for the node of core affect
state, which aims to achieve an emotion model that responds to emotion-eliciting
events. Following the methodology detailed in Section 3.3.3, this section tests
this node’s performance in learning its emotion model. The emotion model is
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a high-level, abstract knowledge, which is achieved through the subsumptions of
low-level knowledge. This emotion model allows a robot to respond appropriately
to events that occur in a navigation task.

(5) Combined reward assignment: Section 5.6 conducts the experiment for combined
reward assignment to explores ACMCA’s potential implementations of the life-
long learning scheme. Following the adapted XCSCR algorithm proposed in
4.3, the combined reward assignment will allow a robot to assign the final credit
to previous, contributed policies. The method will allow a robot to co-evolve
multiple learning agents together (yet not necessarily simultaneously) in multistep
scenarios.

5.2 Experiment One: Reflex-learning

A robot’s immediate response to hazardous environmental factors is necessary for the
robot to avoid severe damage caused by these unpredicted factors. An immediate
response of a robot is associated with a specified, low-level command, such as an
emergency-stop instruction. Traditionally, engineers might preset certain rules regarding
immediate responses under safety concerns. For example, a mobile robot might have a
preset rule that freezes the robot’s movement when collisions are detected. As “well-
intentioned” as these preset rules might be, they might introduce human bias into the
system and limit the robot’s capability. In the last example, the freezing rule can be
redundant at best for a rescue robot that aims to search for survivors in hazardous
environments (i.e. a collapsed mine).

Instead of hard-coded responses, this section tests an approach that will allow the
robot to learn appropriate unconditioned responses to environmental factors. TheReflex-
learning node, a secondary reinforcer of ACMCA (Section 3.3.2.1), seeks to automati-
cally learn an appropriate response to the factors, such as collisions with obstacles. As
discussed in the methodology chapter, the Reflex-learning node aims to learn Stimuli-
Action-Outcome Contingency (SAOC) rules that establish unconditioned responses of
“reflex action” to the unconditioned stimulus from collisions. After multiple iterations,
accurate SAOC rules of the Reflex-learning node will emerge, allowing the robot to avoid
the repeat of impulse collisions. These accurate rules are termed as reflex-patterns.
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The organisation of this section is addressed as follows: Subsection 5.2.1 starts with
description about the scenario set-up of the experiment. The probability of collisions
in the scenario is designed to be relatively higher than normal navigation scenarios
to trigger a reflex-learning process of the Reflex node, which encapsulates a set of
SAOC rules regarding collisions. The SAOC rules subsume solution components of the
Touching node, the Reflex Velocity node and the Pain node to measure and reason the
contingency between these solution components. As the robot responds appropriately to
the collisions, accurate SAOC rules can emerge in this reflex-learning process. The next
subsection 5.2.2 presents the result of the reflex-learning process. The SAOC rules in the
Reflex node approach accuracy as the robot interacts with the environment. Accurate
SAOC rules, termed reflex-patterns, emerge in this reflex-learning process. These
reflex-patterns are visualised for interpretation. Finally, discussion 5.2.3 summarises the
function of the Reflex node and the Reflex-patterns that were learnt by this node.

5.2.1 Scenario Set-up

The experiment is conducted within a representative indoor environment, i.e. a corner
of an office, for the Pioneer to learn the reflex-patterns (Figure 5.1, and see details of
the Pioneer in Section 2.7). The environment provides a restricted area, where random
movements of the Pioneer are expected to frequently 1 cause diverse collisions. The
Reflex node, a secondary reinforcer of ACMCA, is deployed to learn the reflex-patterns
through iterations. When a collision is detected by the Pioneer’s bumpers as a primary
stimulus, it activates the Reflex node and triggers a learning iteration. In an iteration, the
reflex-learning agent, which is underlying the activated Reflex-learning node, advocates
a reflex-action to respond to this stimulus (see Section 3.3.2.1). The reflex action is
then executed as an immediate response of the Pioneer to the collision, aiming to avoid
continuous collisions. The feedback from the execution of the reflex action from the
environment is then applied to estimate the fitness of the response, finishing an iteration.
After multiple iterations, the Reflex-learning node will learn how to respond to collisions
by selecting the highest fitness responses.

The reflex-patterns are encapsulated in a SAOC rule set that the reflex-learning agent

1That is, there are approximately 3 collisions per minute in the crowded area, which is shown in
Figure5.1.b.
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(a) a corridor

The corridor is an empty area, where few collisions happen to the robot.

(b) a corner

The corner is an crowded area, where collisions are events that frequently happen to the
robot.

Figure 5.1: Two real world environments. The environments are applied for the robot to
learn reflex-patterns and an emotion model (see section 5.5).
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aims to establish. As described in 3.3.2.1, reflex-patterns are fit SAOC rules that contain
three major parts: Stimuli part, the Action part and the Outcome part. The SAOC rules
that interact with the environment during a trial of the task are illustrated as follows:

(1) Stimuli part. The representation of the bumpers’ readings is encapsulated in
the Stimuli part of the SAOC rules. The Stimuli part contains 10 attributes,
representing the 10 bumpers’ reading from the Touch node (see Section 3.3.1.1).
Each attribute is an encoding of the values of the lower and upper boundaries
that cover the bumper’s reading from the environment. In this case, the value for
the attribute records the corresponding reading of the bumper, and the lower and
upper boundaries are generated by the algorithm to cover this value 2. When a
collision is detected by the bumper, the value of 1 will be recorded in the value of
the corresponding attribute and then covered by the lower and upper boundaries.
Otherwise, the value of 0 will be applied to the corresponding attribute. As the
localization of bumpers around the Pioneer is fixed, the stimuli part can easily tell
where the collisions happen around the robot.

(2) Action part. The action part subsumes the responding actions from the Reflex-
Velocity node. It contains the index of the Reflex-Velocity (see Table 3.2), thus
it advocates the corresponding Reflex-Velocity for the robots’ execution. An ap-
propriate advocation will allow the robot to react immediately from the previous
colliding state. In contrast, inappropriate advocations will introduce future colli-
sions, which will be recorded as the feedback of the execution.

(3) Outcome part. The Outcome part contains the feedback from the environment
to update the fitness of the SAOC rules applied. After the robot executes the
Reflex-Velocity, which is advocated by the SAOC rules, the sequential feedback
is recorded for the Outcome part. After an execution of the Action, the feedback
records the detection of collisions through the Touch node. The two seconds’
delay is required to observe the effect of the execution because a default protection
3 will cancel any robot’s actions when collisions are detected. Ideally, when
the advocated Reflex-velocity is appropriate, the robot will move away for the

2Table 3.2 only shows the value of the reading and ignores their lower and upper boundaries for
simplicity.

3The default protection takes approximately 1.5 seconds, leaving 0.5 seconds for the execution.
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colliding location. Otherwise, the robot will still collide in the same place, which
will damage the robot and its environment.

The reflex-learning agent learns the reflex-pattern for its SAOC rule set through
training iterations. When the robot operates in a narrow corner, it will collide with
walls sooner or later, initiating the reflex-learning agents’ learning process. Initially, the
reflex-learning agent randomly selects SAOC rules to execute and updates the fitness
of the selected rules from their resulting feedbacks. After sufficient iterations of the
SAOC rules’ updating, high fitness rules can emerge in the reflex-learning agent. Thus,
these fitness rules, termed as reflex-patterns, provide empirical collision solutions that
the robot has experienced.

5.2.2 Result of the Reflex-learning

The SAOC rules are evolved by the reflex agent of the Reflex-learning node (Section
3.3.2.1) in the experiment. As a result, the reflex-patterns, the fittest SAOC rules in
the reflex agent, emerge as learnt solutions for reacting to collisions. The solutions
demonstrate that moving away from the colliding positions is an appropriate response.

These solutions are demonstrated in Table 5.1. Each row represents a solution that
is represented by an XCS macro-classifier within the reflex agent. The columns C1V to
C10V indicate the readings of the bumpers. These columns also indicate the location
of the collisions because the bumpers are fixedly arranged around the robot (see Figure
3.11), setting the condition part of the solution. For example, if C1V equals 1, the robot
has a collision in the front. As shown in the table, collisions were detected by a single
bumper or by two neighbouring bumpers simultaneously. When the condition part of
the solution matches the current detections, the Reflex-action that is encapsulated in the
action part of the solution is activated for the robot’s execution.

The learned reflex-pattern meet the expectation of the robot’s appropriate responses
to collisions. That is, the reflex-patterns can prevent the robot from a further repetition
of collisions. The learned reflex-patterns are shown in Table 5.1, and they are also
visualised in Figure 5.2, The result shows that these patterns correctly advocate the
robots’ actions that drive the robot away from the position where the collisions are
detected.
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Table
5.1:Reflex-patterns
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(a) Reflex-pattern NO.1 (b) Reflex-pattern NO.105

(c) Reflex-pattern NO.11 (d) Reflex-pattern NO.54

(e) Reflex-pattern NO.235

Figure 5.2: Reflex-pattern
Bumpers that detect collisions are marked with blues points. The green arrows
represent the moving directions that are selected by reflex-patterns.
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These reflex-patterns are high worth rules, which are shown by their statistics pa-
rameters. These statistics parameters include predicted-reward (PRD), prediction error
(ERR), accuracy (ACC), fitness (FIT), experience (EXP), action set size (AS), and nu-
merosity (NUM) (see the columns of “PRD”, “ERR”, “ACC”, “FIT”, “EXP”, “AS”,
and “NUM” from Table 5.1, and see the definition of these parameters in [76]). The
parameter of the fitness denotes a classifier’s fitness, which is a normalized value of all
the classifier in the same data niche. The classifiers in the table have a higher value of
fitness than their counterparts in the same data niche. This suggests that these classifiers
are fit reflex-patterns, which are learnt from the experiment. Their parameters of the
predicted-reward and the accuracy approach their maximum scaled values. This sug-
gests that these classifiers are accurate patterns that have a positive effect (e.g. avoid a
repetition of collisions). The classifiers shown in the table are macro-classifiers, and the
parameter of numerosity reflects the number of micro-classifiers in the marco-classifier.
The numerosity of all the classifiers in the table is larger than two, suggesting the system
has converged on these classifiers.

Notice that there are equivalent patterns in the SAOC rule set. Equivalent patterns are
accurate rules that have the same condition, the same action part, and similar statistics.
For example, these patterns are equivalent: NO.1, NO.131, NO.361, NO.305, etc. In
terms of algorithm, a potential subsumption operation of the equivalent patterns may
bring a clearer view of interpretation than the current one. Similar to the GA operation
of XCSAM [110] be conducted on the best action set, this subsumption operation can
be conducted on the evolved patterns. But the subsumption operation may have little
impact on the robot’s performance. This is because the effort of subsumed patterns
has the equivalent effect on the decision-making process of the reflex-agent to all the
equivalent pattern together. This subsumption operation also requires additionalmemory
and computing resources, which are generally constrained by the robotic application.
Therefore, this work chooses not to implement this subsumption operation.

In addition, the pattern with the action two and the action six did not emerge as
other patterns matured. The explanation is the experiment might not generate enough
scenarios for the reflex-agent to learn these patterns. A pattern with the action two
requires the robot to move in the direction of the action six, and vice versa. As the
patterns with action one, three, four, five matured, the robot’s sequential movements
in the directions of action one, three, four, and five become overwhelming. Therefore,
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scenarios, where the robot moves in the other two directions, were inhibited by these
overwhelming actions.

5.2.3 Summary

This section introduced the experiment for learning the reflex-patterns through the
Reflex-learning node in a real-world environment. Instead of presetting the linkings
between collisions and responses, the Reflex-learning node learns these linkings as
the reflex-patterns. The learned reflex-patterns allow a robot to respond appropriately
to the unpredicted "pain-causing" stimuli instantly from continuous damage. These
reflex-patterns are one of many low-level solution components that can be achieved by
secondary reinforcers. These solution components can be applied to automatically con-
struct high-level solution components (i.e an emotion model) by a high-level ACMCA
node. Therefore, a completed solution, which includes both low-level and high-level so-
lution components, can be generated by ACMCA thought its evolutionary subsumption
processes. That is, ACMCA can evolve its architecture to learn the complete solution
for complex tasks.

5.3 Experiment Two: IR-tuning

Fine-tuned parameters can be critical for a model to function appropriately for its robotic
application. A hyperparameter of a method is a parameter that has determining effects
on the method’s performance from a higher perspective (e.g. the number of inputs
available to a control system). Traditionally, it is the engineer’s responsibility to tune
hyperparameters scenario by scenario to ensure the model functions well. Thus, these
fine-tuned hyperparameters are preset for a scenario as prior knowledge. However,
this manually tuning approach increases the potential to introduce human bias into the
system, and the job of tuning could become a tedious burden for engineers who have to
make the model adaptive to the targeted scenario.

Instead of manually tuning a hyperparameter, this section proposes an automatically-
tuning-hyperparameter approach for navigation models. The Tuning node, a secondary
reinforcer in the architecture (see Section 3.3.2.2), can automatically learn appropriate
values of Inflation Radius (IR) (see Section 3.3.5.3), a hyperparameter of the path-
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planning model, for various scenarios. Actually, whether a path can be generated by the
path-planning model is a contingency that an IR setting can determine when the robot
operates in crowded areas. Learning this IR contingency from an environment can lead
to the adaptation of the path-planning model to this environment without presetting or
manually tuning the hyperparameter.

The Tuning node is proposed to learn this IR contingency for the path-planning
model. Following the proposed methodology (Section 3.3.2.2), this section conducts the
experiment of the Tuning node in various scenarios. The Tuning node learns the SAOC
rules that encapsulate the IR contingency through the proposed XCS algorithms, which
includes the mitosis approach of the XCS algorithm (Section 4.2). As the robot interacts
with the environment, the most fit SAOC rules, which encapsulate IR-patterns, emerges.
These IR-patterns and their encapsulated contingencies can be visualised within the
environmental map for interpretation and analyses.

The proposed mitosis approach of the XCS algorithm aims to discover accurate IR
patterns from the experiments. Compared to the standard XCS algorithm, the mitosis
approach introduces an accuracy pressure to balance the overgeneralized pressure, which
is rooted in the standard algorithm. The hypothesis is that the XCS algorithm with
balanced accuracy pressures can evolve more accurate rules than the one dominated by
the overgeneralized pressure. The proposed algorithm compares with the benchmarked
algorithms in various navigation scenarios. The comparison includes quantitative and
qualitative analyses of learned IR-patterns of both algorithms. These analyses also
indicate that accurate learned IR-patterns can be learnt by the Tuning node with the
novel algorithm, instead of hand-coded hyperparameters for targeted scenarios as prior
knowledge.

The following section starts with the scenario set-up of the experiment. Different
navigation scenarios are included in the experiences, and a description of the IR con-
tingency encapsulated in the Tuning node is detailed. In the next part, the results of
these experiments are illustrated with quantitative and qualitative analyses. The learned
fitness SAOC rules, termed IR patterns, are visualised and compared to the navigation
environment. A summary of the Tuning node and the mitosis approach is provided at
the end of the section.
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5.3.1 Scenario Set-up

Experiments were conducted in both simulated and real-world environments. The
simulated environments were in the Willow Garage Offices (see Figure 3.21.a), which is
implemented using a Robotic Operation System backend engine, the Gazebo simulator
[17]. A mobile robot is to navigate along a targeted path (see Figure 3.21.a), which is
separated into 31 segments. Each segment was contained in a 3m by 3m square area,
also termed IR-tuning window. Although it is not a necessary requirement, each IR-
tuning window was the same size as the local perception map in the ROS path-planning
module to facilitate the analysis of the results. An IR-tuning window is the navigation
environment of a scenario, which includes a navigation environment, a navigation task,
and the robot’s admissible behaviours to fulfil the task in the environment. Thus, the
segmentations ensured that the 31 scenarios contain various territories (see Figure 3.21),
such as wide-open areas, doorway areas, long narrow corridors and irregular territories.

31 navigation scenarios are included in the experiences for three reasons. Firstly,
31 different scenarios can generate 31 groups of results, which are sufficient to conduct
a two-tailed statistical significance test. Secondly, 31 navigation scenarios can test the
scalability of the Tuning node and the underlying algorithm because these scenarios
contain various territories. Thirdly, 31 navigation scenarios facilitate the experiment.
When a robot finishes the experiment in one scenario, it can automatically move to the
next scenario along the circle path.

The Tuning node aims to find appropriate values of the hyperparameter of IR for
each scenario. Each scenario has its optimum IR value and the same IR value for all
scenarios are non-optimum. A large IR value can lead to valid paths being block in a
narrow area, and a small IR value can lead to unnecessary collisions occurring.

The real-world environment was an office of the Alan MacDiarmid building of the
VUW university (see Figure 5.3). As shown in the figure, a filing cabinet was set in the
middle of the open area to create narrow corridors in the environment. The Tuning node
had the same objective as in the simulated environments above. Although the Tuning
node is capable of operating in the physical world, repetition for statistical analysis is
too time-consuming, so the major tasks were conducted in the simulation environment
to verify its functionality and scalability. One task was in the real-world experiment to
show its practical effects.
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Figure 5.3: A filing cabinet blocks the path in the office.
A robot should learn appropriate IR value to pass through the left side of the cabinet
without collisions. This cabinet is simulated as a dynamic obstacle (Section 3.3.1.5) by
our sim2real approach.

This approach is similar to sim2real [111, 112, 113], which avoid fine-tuning in
the real world, yet train wholly in simulation, and perform a zero-shot transfer to the
real world. The knowledge that is learned by the Tuning node in the simulations is
transferable to a real-world robot.

Themobile robot in the simulated environment and the real-world one isPioneer [17],
which is equipped with a LIDAR, front and rear bump sensors, and ultrasonic sensors.
The common ROS navigation stack [18] was applied as its the path-planning module.
The navigation task of a scenario is to require the path-planning module to generate a
path to a goal position. As the Pioneer interacts with the environments, the Tuning node
will learn solutions about the path-planning module’s admissible behaviours.
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The path-planning module’s admissible behaviours largely rely on hyperparameters,
as described in the beginning of this Section. These hyperparameters include Inflation
Radius (IR), Cost Factor, Publishing Frequencies and so on [90]. Among these hy-
perparameters, IR has a dominant effect on admissible behaviours of the path-planning
method. The IR specifies an obstacle-spreading distance from obstacles [90], and this
hyperparameter is critical to results of the path-planning method: whether the path-
planning method can generate a path within the current scenario or not. This is because
different values of the IR will result in different perceived environments of the same
scenario, especially in narrow spaces (see Figure 3.21.b, 3.21.c and 3.21.d). An over-
large value of IR (e.g. 0.8 m) will fill space around obstacles with large inflation (see
Figure 3.21.c). Hence, narrow spaces, where the path-planning method should be able
to generate a path through, will be considered as being occupied by an obstacle as
well. Doorway areas in the scenario NO.4 and NO.24 (see Figure 5.5.b and 5.5.h) are
such narrow spaces where the path-planning method could fail to generate a valid path
through these areas (see Figure 3.21.c). In contrast, there are opposite consequences
(i.e, collisions) if IR is too small in these areas.

The Tuning node aims to establish a contingency between the engaging environment,
the module’s admissible behaviours, and their feedback from the environment through
experiments. As described in Section 3.3.2.2, the contingency is represented by the set
of SAOC rules and the population of classifiers in an XCS agent of the node. Specifically
for the experiments, the physical meanings of each attribute of the condition and action
parts of classifiers are detailed as follows:

(1) The first two attributes of the condition respond to the targeted position of the
navigation task through the Goal node (see the Goal node in Section 3.3.1.2).
Because a targeted position is kept in an orthogonal coordinate system (an x-axis-
and-y-axis plane), the two attributes are needed. Classifiers that can be applied to
the targeted position will cover the x-axis coordinate and the y-axis coordinate of
the targeted position by their first two attributes.

(2) The third attribute of the condition is associated with the hyperparameter value of
the IR of the path-planning model (see the IR node in Section 3.3.5.3). The IR
value is then updated to the path-planning model as its new hyperparameter by
the IR node. This updating process is completed through the dynamic reconfigure
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process of ROS (see details of the dynamic reconfigure process in this link [114]).

(3) The attribute of the action part predicts whether any valid path can be generated
by the model. Then, this prediction will be compared with the "ground truth" that
comes from the Path node (see the Path node in Section 3.3.1.4) as the feedback
of the model.

The XCS agent of the Tuning node is evolved through multiple iterations in the
experiments. In each iteration, the targeted position and the IR value are inputs of the
XCS agent. The targeted position is created as a random position within the IR-tuning
window, and the IR value is a random value selected from a score of 0m to 0.8m 4.
When the XCS agent has access to these inputs, the agent selects a set of classifiers
from the population. The selected classifiers can cover the inputs by their condition
parts. Based on the selected set, the XCS agent then predicts the existence of any
valid path. If the path-planning model is not going to generate any valid path to the
targeted position under the IR value, the prediction is assigned by an arbitrary value of
0. Otherwise, the prediction is an arbitrary value of 1. After the prediction, the XCS
agent is suspended and the Tuning node updates the IR value to the path-planning model,
waiting for the path-planning result from this model. The path-planning model responds
with an arbitrary value of 0, if there is not any valid path generated, and otherwise
responds with an arbitrary value of 1. The response of the path-planning model resumes
the XCS agent to update the classifiers in the selected set. Compared to the response,
if these classifiers made a correct prediction, the fitness and the prediction accuracy of
these classifiers will increase. Otherwise, the fitness will decrease, which increases the
probability of deletion of the classifiers from the population. Generally, high fitness
classifiers can emerge from the population as they evolve through multiple iterations.
These SAOC rules, which are encapsulated by these high fitness classifiers, are termed as
the IR-patterns. In the next subsection, IR-patterns are visualised for statistical analysis.

SAOC datasets are established in 31 navigation scenarios (Figure 3.21.d) for the
training and iterations of the XCS agent. Each SAOC instance in the datasets records the
targeted position, the IR values, and the response of the path-planning model as the label.

4The upper boundary is defined as 0.8 m. This is because we assume that 0.8 m is a sufficient distance
to keep the robot away from an obstacle. This upper boundary can be modified according to various
robotic applications.
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Thus, SAOC instances are labelled data that were applied for training the XCS agent.
Notice that the SAOC datasets contain noise, which is instances with wrong labels. Take
noise instances in Scenario NO.28 (Compare Figure 5.5.c) for example. This scenario
contains a wall occupied on the left side (Figure 5.5.b). There is no path that can lead a
robot to the wall-occupied area, yet some noise instances in that area suggest otherwise
(see blue points in the wall-occupied area). As discussed in Section 4.2.2, these noisy
instanceswill prevent the standardXCS algorithm from evolving towardmaximal general
and accurate classifiers, because of the algorithm’s overgeneralized tendency that the
mitosis approach aims to amend.

5.3.2 Result of IR-tuning

The experiments show that the Tuning node was able to increase navigation adaptation of
the mobile robot. The learned IR-patterns allow the path planning to generate valid paths
in all 31 navigation scenarios (Figure 3.21.d and Section 5.3.2.1). These IR-patterns
were visualised for ease interpretation (Section 5.3.2.2). Experiments also showed that
the emotion inspired reasoning mechanism applied by XCS algorithms was capable of
learning SAOC knowledge in the 31 navigation scenarios. The mitosis approach of XCS
algorithm performed better than the standard approach on almost all of the 31 navigation
scenarios in terms of prediction accuracy (Section 5.3.2.1), pattern robustness (Section
5.3.2.2), and pattern accuracy (Section 5.3.2.2).

5.3.2.1 Quantitative Analysis

Quantitative analysis is based on the prediction accuracy of learned SAOC rules in the
Tuning node. The learned SAOC rules are applied to predict each SAOC instance’s label
in a dataset, then the number of correct predictions of the dataset will be recorded to
calculate the prediction accuracy. The prediction accuracy is the ratio of the number of
correct prediction to the number of instances in a SAOC dataset. Notice that inaccurate
instances in a SAOC dataset keeps this prediction accuracy from achieving 100% accu-
racy. The quantitative analysis includes the standard XCS approach as the benchmark
for the mitosis approach proposed.

A one-hidden-layer neural network is also included to demonstrate potential interfer-
ences from the SAOC datasets. These datasets come from various scenarios. Different
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scenarios contain different numbers of inaccurate instances, thus causing a different
level of interferences. The one-hidden-layer neural network provides a base-line that
demonstrates the potential interferences to the XCS algorithms.

The quantitative analysis of the prediction accuracy highlighted that the mitosis
approach achieved better prediction accuracy than the standard approach (see Table 5.2).
The mitosis approach had statistically significant improved prediction accuracies in 23
of the 31 navigation scenarios based on two-tailed T-test with 0.05 p-value (see Table
5.2, each navigation scenario was run for 30 trails with known seeds). In the remaining
eight navigation scenarios, prediction accuracies were not significantly different between
the two approaches, yet the mitosis approach achieved a higher value of the mean of
prediction accuracy in seven of these eight scenarios and a slightly worse performance
in one scenario. As the mitosis approach had overall better two-tailed performances,
this also indicates that the accuracy pressure that was introduced by this method could
effectively amend the overgeneralized tendency of the standard XCS algorithm.

Table 5.2: Statistics of The Two Approaches and The Standard One-hidden-layer Neural
Network

Scenario ID 1 2 3 4 5 6 7 8 9 10
Mean 1 0.836 0.909 0.902 0.823 0.818 0.875 0.777 0.798 0.826 0.814
Mean 2 0.826 0.901 0.892 0.814 0.808 0.866 0.76 0.779 0.813 0.816
Mean 3 0.8 0.851 0.84 0.732 0.721 0.787 0.644 0.706 0.641 0.63
P value 0.005 0.009 0.004 0.117 0.159 0.022 0.002 0 0.005 0.704
Difference 0.01 0.008 0.01 0.009 0.01 0.009 0.017 0.019 0.013 -0.002

Scenario ID 11 12 13 14 15 16 17 18 19 20
Mean 1 0.847 0.805 0.812 0.894 0.94 0.886 0.909 0.926 0.923 0.925
Mean 2 0.834 0.77 0.791 0.86 0.94 0.868 0.904 0.918 0.908 0.914
Mean 3 0.614 0.688 0.611 0.858 0.836 0.807 0.897 0.904 0.922 0.914
P Value 0.002 0 0.006 0 0.786 0 0.09 0.009 0 0
Difference 0.013 0.035 0.021 0.034 0 0.018 0.005 0.008 0.015 0.011

Scenario ID 21 22 23 24 25 26 27 28 29 30 31
Mean 1 0.886 0.918 0.911 0.836 0.805 0.819 0.837 0.8 0.772 0.805 0.857
Mean 2 0.882 0.912 0.9 0.818 0.785 0.805 0.824 0.782 0.762 0.797 0.838
Mean 3 0.841 0.877 0.827 0.747 0.633 0.764 0.703 0.681 0.766 0.69 0.796
P Value 0.071 0.005 0.019 0.014 0.026 0.003 0.014 0.001 0.07 0.154 0.002
Difference 0.004 0.006 0.011 0.018 0.02 0.014 0.013 0.018 0.01 0.008 0.019
1 Mean 1: mean value of prediction accuracies of the mitosis approach for 30 trials.
2 Mean 2: mean value of prediction accuracies of the standard approach for 30 trials.
3 Mean 3: mean value of prediction accuracies of the standard one-hidden-layer neural network for 30 trials.
4 P value: P-value of prediction accuracies the mitosis and standard approach by the two-tailed T-test among 30 trials.
4 Difference = Mean1-Mean2, the difference of the prediction accuracies between the mitosis and standard approach.
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5.3.2.2 IR-Pattern Analysis

A major advantage of the two XCS approaches over the applied neural network is that
the learned knowledge of the XCS approaches is easy to interpret. The neural network
learns knowledge through matrix modules, in which mappings and weights usually
require extra effort to interpret. In contrast, XCS preserves knowledge in rules, where
the “if-then” structure is comprehensible. In addition, because SAOC knowledge is
directly encoded into XCS rules (Section 3.3.2.2 and Figure 3.16), the learned, qualified
SAOC knowledge, termed IR-Pattern, can be conveniently harvested from a qualified
classifier for visualisation.

IR-patterns were visualised as cuboids in the three-dimensional SAOC Space for
interpretation (see Figure 5.4 and 5.5). A shape of a cast from a pattern to the x-
axis-and-y-axis plane covers the targeted area within the navigation environment where
these patterns apply. The length of cast from a pattern to the modifier axis indicates an
inflation radius value, which is what the path-planning module applies to the targeted
area. Therefore, patterns provide more generalized knowledge than specific SAOCs.
Besides, the SAOC patterns are also called Inflation Radius (IR) patterns, because these
patterns describe the learned inflation radius distribution on the x-axis-y-axis plane.
Four types of IR patterns, which are generated by the XCS algorithm, can be categorised
into four types by symbolic meanings of classifiers (Table 5.3, 5.4). The action part
(act) predicts whether it is open spaces or obstacles. The strength of the classifier, prd,
indicates the strength of this prediction. For example, in TP pattern, the act equals 1,
suggesting a prediction of open spaces; the prd equals 1000, indicating the strength of
this prediction is very strong. Therefore, the TP pattern suggests an open space. In
the TN pattern, the act equals 0, suggesting a prediction of obstacles; the prd equals 0,
indicating the strength of this prediction is very weak. Therefore, the TN pattern also
suggests its application in an open space. Likewise, the FP and FN pattern work for
space that contains obstacles.

Experiments show that the proposed cognitive architecture was capable of being
applied to various territories. The 31 navigation scenarios contained various territories,
such as wide-open areas, long narrow corridors, doorway areas and irregular territories.
Four navigation scenarios are selected as examples for three typical territories in Figure
5.4 and Figure 5.5. Navigation scenario No.7 was for a long corridor with 45-degree
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(a) (b)

(c) (d)

(e) (f)

Figure 5.4: Two Types of Discovered IR Patterns - Scenario No.7, Mitosis Approach
Global Perception Map: a; Local Zoom Map: b (targeted area shown with the green
grid); TP pattern: yellow cuboids, TN pattern: purple cuboids; plan view: c, e;
diagonal view: d, f. Red dots: instances that are labelled with obstacles; Blue dots:
instances that are labelled with no obstacle.
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Table 5.3: ConfusionMatrix of IR Patterns (from the perspective of classifier’s statistics)

Predicted-reward
Open Spaces Obstacles
(prd=1000) (prd=0)

Open Spaces TP Pattern FP Pattern
Classifier (act=1) (True Positive) (False Positive)
Prediction Obstacles FN Pattern TN Pattern

(act=0) (False Negative) (True Negative)

Table 5.4: Confusion Matrix of IR Patterns

True Occupancy
Open Spaces Obstacles

(True) (False)
Open Spaces TP Pattern FP Pattern

Classifier (Positive) (True Positive) (False Positive)
Prediction Obstacles FN Pattern TN Pattern

(Negative) (False Negative) (True Negative)

orientation (see Figure 5.4.a, and Figure 5.4.b.). Scenario No.28 was for an irregular
territory (see Figure 5.5.b). Scenario No.4 (see Figure 5.5.h) and No.24 (see Figure
5.5.n) were for doorway areas.

Experiments show that the mitosis approach performed better than the standard
approach to learn valid IR patterns in terms of pattern robustness and pattern accuracy.
Firstly, correct patterns were more frequently achieved by the mitosis approach than
the standard approach. The pattern robustness refers to the frequency of valid IR
patterns, which can be harvested at the end of a learning process. An example is their
performance comparison in navigation scenario No.7 (see Figure 5.4). Patterns aim to
cover the corridor without a gap. The 45-degree orientation of the corridor creates a
challenge for two approaches to generate accurate patterns, which will have an accurate
coverage. The coverage requirement is similar to filling a trapezoidal space with cubes
that can be skewed to align the axes. Thus, gaps between the cubes are difficult to avoid,
and connected patterns without a gap are more accurate than patterns with gaps. Based
on the performances of TP pattern in the total 30 trials repetition, the mitosis approach
overcame this challenge 15 times, and the standard approach accomplished it 7 times.
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Secondly, patterns that were achieved by the mitosis approach are more accurate
than that of the standard approach. Pattern accuracy can be judged by how accurately
a pattern covers the targeted area in the perception map, hence a global optimum solu-
tion is patterns that can accurately cover the targeted area. The mitosis approach was
able to achieve a global optimum solution in complex territories, e.g. Scenario No.4,
No.24 and No.28, where the standard approach failed (see discussions in the next two
paragraphs). This suggests that the mitosis approach overcame two problems caused by
the overgeneralization tendency of the standard XCS algorithm (see Section 4.2.2):

1 Mitosis approach provides an accuracy pressure that keeps accurate classifiers in
their accurate states;

2 This accuracy pressure drives the evolutionary methods toward maximally general
and accurate classifiers.

The first point was shown in irregular territories, such as Scenario No.28. In Scenario
No.28, TN patterns of the mitosis approach reached the global optimum solution because
of their accurate, full coverage (see Figure 5.5.c). In contrast, TN patterns of the standard
approach only reached local optimum solutions because of their partial coverage (see TN
patterns learned by the standard approach in three different trials in Figure 5.5.d, 5.5.e,
and 5.5.f respectively). It is worth noticing that the combination of three local optimum
solutions of the standard approach could provide the global optimum solution as in
the mitosis approach. This also suggests that the standard approach has the potential
to generate all the accurate rules that are necessary to represent a globally optimum
solution. But, the standard approach failed to maintain some of these accurate rules in
the later learning processes (see Section 4.2.1), hence this approach only achieved the
local optimum solutions in this scenario. In contrast, the mitosis approach was able to
maintain accurate classifiers because of the introduction of the accuracy pressure.

The second point was highlighted in doorway areas, such as Scenario No.4 and
No.24. Again, the mitosis approach reached the global optimum solution and the
standard approach failed (see i-l and o-r in Figure 5.5). Specifically, TN patterns of
the mitosis approach contained the narrow doorways that the standard approach was
less likely to identify them (see comparisons between (i) and (k), (j) and (l), (o) and
(q), and (p) and (r) in Figure 5.5). These suggest that the generalized pressure in
the standard approach is insufficient to learn accurate classifiers from such territories.
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These also suggest that the accuracy pressure introduced by the mitosis approach can
drive classifiers evolving toward maximally general and accurate classifiers.

Patterns also highlighted a complementary relationship. TP and TN patterns ap-
proach to the same ground truth pattern in open scenarios in opposite directions. A
TP pattern approaches the ground truth pattern from its “upper boundary”, because it
tends to include neighbour spaces, which belong to boundaries of two types of spaces
(see Figure 5.4.c and 5.4.d). Therefore, a TP pattern can be considered as a maximally
general, accurate pattern. In contrast, a TN pattern becomes a “lower boundary” of the
ground truth pattern, because it tends to exclude such neighbour spaces (see Figure 5.4.e
and 5.4.f). Therefore, a TN pattern can be considered as a minimally specific, accu-
rate pattern. Both of a maximally general, accurate pattern, and a minimally specific,
accurate pattern can be represented as the robot’s perceptions of the environment.

However, both the mitosis approach and the standard approach did not generate
robust FP and FN patterns, which predict space that is occupied by obstacles. FP and
FN patterns were relatively rarely generated in all the 31 navigation scenarios. This
is because of inaccurate instances within scenarios. In these scenarios, the obstacle-
occupied space contains a high proportion of inaccurate instances that advocate the open
space. Due to the lack of a sufficient amount of the accurate instances, FP and FN
patterns are much less frequently generated compared with TP and TN patterns.

A success for real-world application of thiswork depends on the noise and uncertainty
in the world. If the noise has the same or less magnitude and the similar distribution
as in the simulations, the system can function well. If the noise has larger magnitude
or different distributions, then as long as the number of inaccurate instances that are
caused by the noise is under a known accuracy limit, the system can still function
because of SAOC pattern robustness. Once the known accuracy limit is exceeded,
further experiments will be needed to investigate the effects of the noise.

5.3.3 Summary

This Section proposed an emotion inspired cognitive architecture for robotic adaptive
path-planning without hand-coded prior knowledge. Firstly, SAOC knowledge is the
basis of the proposed cognitive architecture, which was beneficial to navigation adap-
tation. Experiments showed that the architecture was able to generate valid paths in all
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the 31 navigation scenarios. Secondly, the SAOC patterns can be learned by the novel
algorithm, the mitosis approach, instead of hand-coded hyperparameters for targeted
scenarios as prior knowledge. Learned SAOC patterns (IR patterns) are plain and in-
terpretable for humans. The visualisations of TP pattern and FP pattern showed that
these patterns accurately describe open space within the navigation scenarios. Finally,
our mitosis approach performed better than the standard approach as the novel accuracy
pressure improved performance in terms of prediction accuracy, pattern robustness and
pattern accuracy.

5.4 Experiment Three: Deliberation-establishing

Psychological frustration is an experienced emotional response to the opposition that re-
sists the fulfilment of an individual’s goal. For a cognitive robot, an artificial frustration
pattern can be categorised into an affective response to an event that causes the obstruc-
tion of the completion of the given task. An example event can be a physical roadblock
that probabilistically occupies the targeted position of a mobile robot. An occupation is
a negative event that can trigger a sensation of frustration during the cognitive robot’s
navigation task. The intensity of the sensation depends on the estimation of the future,
potential result of the event. The intensity also increases as the perceived waste of time
continues. Under the sensation of frustration, the robot can select an admissible action
with the best, estimated result as its response to the event, then execute the action toward
the result. After the execution, the outcome of the execution is provided for the robot
to update its previous estimated result, improving the accuracy of the estimation and
making the frustration pattern more sophisticated through an evolving process. The
frustration hypothesis is that, under the guidance of a sophisticated frustration pattern, a
cognitive robot can choose the best response among other alternatives, overcoming the
frustration-causing event and moving toward task completion.

This section starts with the scenario set-up of the experiment, in which the frustration
patterns emerges. A dynamic obstacle is introduced into the environment to trigger a
Frustration event when the robot is interacting with the environment. The Deliberation
node aims to learn its mappings to the best Strategy node as a response to the event.
That is, the Frustration patterns can emerge from the encapsulated SAOC rule set of the
Deliberation node after multiple iterations of the trials. The experiment shows that the
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Frustration patterns as the result of the Deliberation node. 12 Frustration patterns are
achieved by the node with interpretable symbolic meanings.

5.4.1 Scenario Set-up

This section introduces an experiment to support the above frustration hypothesis. The
experiment concerns a robotic navigation task within a real-world office 5. This real-
world environment contains one beginning position and two targeted positions, and the
task of a robot is to reach a targeted position in a multistep scenario. To simulate a
human’s occupation in the targeted position, a dynamic obstacle occurs, occupies the
first targeted position for 15 seconds, then moves away. This occupation event has a 70%
probability to occur in the trials of the experiments, triggering the sensation of frustration.
This probability aims to create a balanced scenario distribution among various obstacle-
occupied and obstacle-free scenarios (Table 5.5). This dynamic environment provides
a multistep scenario for the mobile robot (the Pioneer) to learn the frustration pattern.
Specifically, the Deliberation node in the secondary reinforcer layer (see the Deliberation
node in 3.3.2.3) is assigned to learn this affective pattern during the node’s engagement
in an affective decision-making process of the task. The probability is set to 70% to
create a balanced niche between different categories of the SAOC rules.

Table 5.5: Scenarios Distribution

obstacle-occupied
scenarios

obstacle-free scenarios

Delay 0s 10s 20s 0s 10s 20s
Probability 23.3% 23.3% 23.3% 30%

The Frustration patterns are encapsulated in a SAOC rule set that engages in the
affective decision-making process in each trial of the task. As described in 3.3.2.3,
Frustration patterns are fitness SAOC rules that contain three major parts: Stimuli part,
the Action part and theOutcome part. The SAOC rules that interact with the environment
during a trial of the task are illustrated as follows:

5Office 409, Alan MacDiarmid Building, VUW
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(1) Stimuli part. The representation of the emotion of frustration is the condition of
a SAOC rule to make decisions. This frustration representation subsumes two
stimuli. The first stimulus comes from the Occupation node, which is a primary
reinforcer that represents the sensation of the occupation event. When an obstacle
is detected by the Occupation node, the value that is generated by the node and is
embedded in the SAOC rules is 1, otherwise is 0 (see “C1V” in Table 5.6). Because
this detection is not an exclusive function of the Occupation node, other primary
reinforcer nodes (such as the Path node) can also achieve a similar detection. Yet,
this Stimuli subsumes the Occupation node rather than the Path node because of
the time consumption. The Path node takes about 10 seconds to generate the
result, and the Occupation node takes less than 1 second because of its application
of the CNN model (Section 3.3.1.5).

The second stimulus is a timer that increases the intensity of the sensation of
the frustration. When an occupation event is detected, the timer starts and its
increasing value represents the increasing intensity of the frustration. Before the
timer and the intensity reach a threshold, the robot waits at the initial position.
In this experiment, 0 second, 10 seconds, and 20 seconds are three optional
thresholds of the waiting time (see “C2V” in Table 5.6). These three optional
thresholds create different Outcomes when the agent chooses different Actions
(see Outcome and Action below). A sub-hypothesis is that different thresholds
of the frustration will bring various consequential outcomes by selecting different
actions. Although the number of the options tested are limited to three by the time
consumption that a real-world experiment takes, the approach itself is theoretically
not subjected to this limitation.

(2) Action part. The response of the frustration is the action part of the SAOC rule,
indicating what the decision needs to be made under the current condition. Two
Strategies are available for the response: Persistence or Rescheduling (see 3.3.4).
If Persistence is considered to be a better option than Rescheduling, the robot will
focus on its navigation to the first targeted position in the current trial, even if
the targeted position is constantly inaccessible. This strategy is embeded in the
SAOC rules as a symbol of “one” in the action part (see “ACT” in Table 5.6).
Otherwise, the robot will aim to move forward to the alternative position, even
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if the roadblock moves away and the first targeted position becomes accessible.
Thus, the action part of the SAOC rules will be filled with a symbol of “two”.
After the Deliberation node selects the Strategy, the robot will execute the selected
Strategy till the end of the trial.

Other Strategies can be added as a potential response of the Deliberation node
into the action part. A Strategy node, called “freeze”, which can suspend the
robot’s executional commands, used to be the third options in the action part.
Yet, this third option exponentially increases the robot’s training time in this real-
world scenario. Therefore, this node is removed from the action part for the time
constraint of the experiment.

(3) Outcome part. The robot’s performances are the Outcome part of the SAOC
rules. The performances can be considered as the result of the execution of the
selected Strategy. To estimate the effect of the selected Strategy, two elements
are considered for the Outcome: the achievement of the goal and the associated
time-consumption. The achievement is represented by the reward that the robot
perceived through the primary reinforcer of the Reward node (see details of the
Reward node in 3.3.1.6). When the Pioneer reaches any one of these targeted
positions, it will receive a reward with an arbitrary value of 1000. Otherwise,
when the Pioneer fails to achieve the targeted position, it will receive a reward with
an arbitrary value of 0. In addition to the reward, a timer records the entire time-
consumption of the task during the Pioneer’s navigation performance, including
the waiting time. Thus, the Outcome part is updated by a formula that equals
the reward divided by the time-consumption. Through these two elements, a high
fitness SAOC rule will represent a solution/pattern that can lead to a successful
achievement with less time consumption than other low-fitness solutions.

High fitness SAOC rules, which are expected to emerge from the SAOC rule set,
are termed as frustration patterns. 12 frustration patterns 6 emerge as the SAOC rule
set evolves by an RL learning agent of the Deliberation node. The symbolic meaning
of these patterns is shown in Table 5.7. As discussed in 3.3.2.3 and 4.2, the mitosis

6 The number of the types of the SAOC rules equals to the combination of the Stimuli part and the
Action part of these SAOC rules, and there are 12 combinations. (12 = 2 Stimuli (part 1) * 3 Stimuli (part
2) * 2 Actions)
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approach of the XCS algorithm is applied by the RL learning agent that is underlying the
Deliberation node, evolving the SAOC rule set. As the RL learning agent goes through
trials and iterations of the task, frustration patterns can emerge as the SAOC rules
approach their fittest states. By subsuming the primary reinforcers and the Strategies,
this secondary reinforcer (the Deliberation node) allows the robot to make a long term
decision, performing a “frustration-like” response.

5.4.2 Result of Deliberation-establishing

Frustration patterns become clear in the experienced SAOC rules as the RL agent runs
through more than 150 iterations. The experienced SAOC rules of the Deliberation
node are shown in the Table 5.6. All the rules which experienced less than 10 iterations
are removed from the table, because they are defined as inexperienced rules in this
experiment. Theoretically, at the fastest convergent rate, a SAOC rule (an XCS classifier)
requires 16 iterations to reach its final accuracy value due to the RL agent’s updating
method (see Equation 4.1 and the related discussion in Section 4.3.2) 7. If an iteration
takes about 90 seconds, 16 continuous iterations cost 24 minutes for a SAOC rule to
reach an accurate state in the real-world environment. Thus, in this case, an entire
population/set of SAOC rule takes at least 9.6 hours8 to achieve accurate states in
the most ideal case. When we take the real-world noise, the algorithm’s evolutionary
processes, and the real-world event distribution into consideration, it takes much longer
than 9.6 hours in reality. Therefore, we bootstrap the classifiers’ accuracy in their
first three iterations to reduce this time consumption (Equation 5.1). Although this
bootstrapping encourages the early emerging of fit rules, it is still fair to say a classifier
is an inexperienced one if it was experienced less than 10 iterations 9 .

7Specifically, the Bellman equation requires at least 16 continuous iterations to approach accuracy
with the standard learning rate (β = 0.2) and the standard error threshold (ε0 = 5%)

89.6 hours = 24 minutes * 12 (patterns) * 2 (positive and negative rewards)
9In XCS simulated problems, a classifier is considered as an inexperienced one when its experience

is less than 25 iterations [76]. This work decreases this inexperienced threshold from 25 iterations to 10
iterations because of the constraint of time consumption to train a robot in the real world.
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accexp =(accexp−1 ∗ (exp− 1) + acccurrent)/exp, if exp <= 3

β ∗ acccurrent + (1− β) ∗ accexp−1, if exp > 3.

(5.1)

where exp and acc are statistics of a classifier. exp is the experience of the classifier,
acc is the accuracy of the classifier.

The result shows that 12 expected frustration patterns are achieved by theDeliberation
node. Fit SAOC rules that are achieved by the Deliberation node are shown in Table
5.6. These high fitness SAOC rules cover 12 types of frustration patterns, which are
enumerated in Table 5.7. The analysis of their statistics (i.e. “prd” 10) can provide
insights about their meanings and effects that are learned from the experiment:

(1) When there is no frustration event, hesitation brings no benefits, and selecting the
strategy of Persistence always allows the robot to have a better performance than
the strategy of Rescheduling. There are two underlying reasons:

Firstly, the waiting time of the hesitation is added to the final performances. This
is clearly suggested by the comparison of the time consumptions between Patterns
of 1, 3 and 5 (or Patterns of 2, 4 and 6). For example, Pattern 1 takes around 17s to
complete a navigation task, and Pattern 3 takes around 28s. The major difference
of the time consumptions is assumed to be from the waiting time.

Secondly, Persistence is always a better Strategy than Rescheduling. This is
because that the first targeted position is closer to the beginning position than the
alternative one. Therefore, Persistence allows the robot to navigate to the first
position to complete the task, avoiding travelling an additional journey that takes
about 7 seconds.

(2) When the frustration event happens in this experiment, then Rescheduling is the
best Strategy among the alternatives. Pattern 8 allowed the robot to reach the
alternative position and complete the task within the shortest time consumption
among Pattern 7 to 12. This is reasonable because the obstacle that triggers the

10“prd” stands for “predicted reward”, which is a standard statistics parameter of the XCS algorithm,
see its definiton in Section 5.2.2. See values of the “prd” in the Table 5.6.
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Table 5.6: Experienced SAOC rules (XCS classifiers)
ID C1L C1V C1H C2L C2V C2H ACT PRD ERR ACC FIT EXP NICHE NUM
18 -0.01 0 0.01 -0.78 0 0.78 one 473.5039 8.6723 1 0.5344 17 13.1181 10
2 -0.01 0 0.01 -0.78 0 0.78 one 473.3284 10.3532 1 0.4512 19 13.1069 8
3 -0.01 0 0.01 -0.78 0 0.78 two 345.1114 20.3183 1 0.5189 18 14.987 10
26 0 0 0.01 -0.78 0 0.78 two 345.4354 19.4608 1 0.2307 15 15.0635 5
24 -0.03 0 0.03 9.6 10 10.4 one 280.2623 26.0327 1 0.6822 15 3.27 1
42 -0.03 0 0.03 9.6 10 10.4 one 270.8018 53.2833 0.0826 0.0758 14 3.3549 1
85 0 0 0.97 9.6 10 10.4 one 280.6018 45.1247 1 0.1383 11 3.2902 1
62 -0.03 0 0.03 9.6 10 10.4 two 174.2181 12.6545 1 0.2474 11 20.7496 9
22 -0.02 0 0.02 19.25 20 20.75 one 136.6944 3.8208 1 0.3422 19 20.0229 7
23 -0.02 0 0.02 19.25 20 20.75 two 21.3316 70.4973 0.0357 0.8285 13 8.2014 9
4 0.99 1 1.01 -0.59 0 0.59 one 212.992 11.5416 1 0.4387 22 23.314 17
14 0.99 1 1.01 0 0 0.59 one 213.1158 11.1982 1 0.4125 21 23.3199 14
89 0.99 1 1.01 -0.59 0 0.59 one 211.5218 17.6825 1 0.0938 19 23.3384 5
105 0.99 1 1.01 0 0 1 one 213.0614 16.5392 1 0.0476 17 23.3496 3
16 0.99 1 1.01 0 0 0.59 two 238.7742 103.558 0.0113 0.3212 32 6.2463 2
5 0.99 1 1.01 -0.59 0 0.59 two 238.7965 103.6015 0.0112 0.1595 34 6.2454 1
40 0.99 1 1.01 -0.59 0 0.59 two 238.6401 103.8332 0.0112 0.1554 31 6.247 1
56 0.99 1 1.01 0 0 2.59 two 238.6567 103.8949 0.0111 0.1538 28 6.25 1
134 0.99 1 1.01 -0.59 0 0.59 two 239.7318 102.83 0.0115 0.173 23 6.2621 1
9 0.98 1 1.02 9.7 10 10.3 one 183.7456 47.4313 1 0.3162 40 25.3996 10
20 0.02 1 1 9.7 10 10.3 one 183.751 47.4121 1 0.1853 39 25.3996 6
88 0.98 1 1.02 9.7 10 10.3 one 184.6886 45.4307 1 0.1597 16 25.4954 6
81 0.02 1 1.02 9.7 10 10.3 one 183.7173 47.5225 1 0.1037 35 25.4023 4
78 0.98 1 1.02 9.7 10 10.3 one 184.4562 46.861 1 0.0566 20 25.4177 4
101 0.98 1 1.02 9.7 10 10.3 one 183.7299 47.5118 1 0.0838 34 25.403 3
108 0.98 1 1.02 9.7 10 10.3 one 183.4754 49.4954 1 0.0359 14 25.6411 2
32 0 1 1 9.7 10 10.3 two 110.0379 62.2388 0.0518 0.2862 43 23.6907 9
8 0.98 1 1.02 9.7 10 10.3 two 93.0323 62.5086 0.0512 0.3589 36 20.262 9
102 0 1 1 9.7 10 10.3 two 109.836 60.9082 0.0553 0.0628 13 24.2283 1
86 0.98 1 1.02 9.7 10 10.3 two 86.915 66.5502 0.0424 0.0262 11 20.7636 1
162 0 1 0.98 20 20 20 one 136.7826 4.6962 1 0.1719 13 20.4143 5
1 0.98 1 1.02 20 20 20 one 108.7281 48.532 1 0.1249 40 18.7119 4
28 0.98 1 1.02 20 20 20 one 108.717 48.5939 1 0.0911 36 18.713 4
10 0.98 1 1.02 18 20 20 one 108.7289 48.5291 1 0.0949 38 18.7123 3
93 0.98 1 1.02 18 20 20 one 108.7119 48.9937 1 0.0594 28 18.7183 3
0 0.98 1 1.02 20 20 20 two 41.0909 44.1464 1 0.4922 29 24.6486 14
12 0.98 1 1.02 20 20 20 two 41.1009 43.9625 1 0.3978 26 24.6523 10
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Table 5.7: 12 Frustration Patterns

Pattern ID. Description and Classifier IDs

1 No Frustration (C1V=0), No Hesitation (C2V=0), thus select the
strategy of Persistence (ACT=one).
Classifier IDs: 2,18.
Time consumption: 17.8 +/- 0.4 s

2 No Frustration (C1V=0), No Hesitation (C2V=0), thus select the
strategy of Rescheduling (ACT=two).
Classifier IDs: 3,26.
Time consumption: 24.3 +/- 1.1 s

3 No Frustration (C1V=0), Little Hesitation (C2V=10), thus select the
strategy of Persistence (ACT=one).
Classifier IDs:24,42,85.
Time consumption: 28.1 +/- 1.5 s

4 No Frustration (C1V=0), Little Hesitation (C2V=0), thus select the
strategy of Rescheduling (ACT=2).
Classifier IDs: 62.
Time consumption: 35.1 +/- 0.9 s

5 No Frustration (C1V=0), Medium Hesitation (C2V=20),thus select
the strategy of Persistence (ACT=one).
Classifier IDs: 22.
Time consumption: 38.0 +/- 0.3 s

6 No Frustration (C1V=0), Medium Hesitation (C2V=20), thus select
the strategy of Rescheduling (ACT=2).
Classifier IDs: 23.
Time consumption: 47.9 +/- 0.3 s

7 Frustration (C1V=1), No Hesitation (C2V=0), thus select the strategy
of Persistence (ACT=one).
Classifier IDs: 4,14,89,105.
Time consumption: 32.4 +/- 0.7 s

8 Frustration (C1V=1), No Hesitation (C2V=0), thus select the strategy
of Rescheduling (ACT=2).
Classifier IDs: 5,16,40,56,134.
Time consumption: 30 +/- 6.2 s

9 Frustration (C1V=1), Little Hesitation (C2V=10), thus select the
strategy of Persistence (ACT=one).
Classifier IDs: 9,20,78,81,88,101,108.
Time consumption: 34.4 +/- 3.3s

10 Frustration (C1V=1), Little Hesitation (C2V=10), thus select the
strategy of Rescheduling (ACT=2).
Classifier IDs: 8,32,86,102.
Time consumption: 40.1 +/- 4.8 s

11 Frustration (C1V=1), Medium Hesitation (C2V=20), thus select the
strategy of Persistence (ACT=one).
Classifier IDs: 1,10,28,93,106.
Time consumption: 39.3 +/- 2.1 s

12 Frustration (C1V=1), Medium Hesitation (C2V=20), thus select the
strategy of Rescheduling (ACT=2).
Classifier IDs: 0,12.
Time consumption: 46 +/- 3.9 s
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frustration event is designed to occupy the first targeted position for 15 seconds.
Rescheduling to the alternative targeted position only cost 7 more seconds to travel
the extra journey. Therefore, instead of waiting for the obstacle to move away,
Rescheduling is the best Strategy when the obstacle is detected.

In addition, Pattern 8 also illustrates the impact of the dynamic obstacle on the
task performance. Compared to the performance of Pattern 2, Pattern 8 took more
time on average with a large error. This is because the dynamic obstacle creates
a narrow area where the path-planning model of the robot has to plan a curved
path through. When the robot follows a curved path, it has a slower speed than
when it goes straight. The repetition accuracy also drops when the robot makes
a turns. The accuracies of the classifiers of Pattern 8 also indicate this impact.
Their accuracies are the lowest among all 12 Patterns.

(3) Pattern 7 and Pattern 9 have similar performances in the task. This is because,
in these two scenarios, the robot has to wait 15 seconds until the obstacle has
moved away and the first targeted position becomes available again. These two
patterns are complete solutions to Pattern 8 at the current experimental setup. This
is because the time consumption, which Pattern 7 and 9 spend in waiting, almost
equals to the time consumption that Pattern 8 spends in travelling for the extra
distance of the alternative targeted position. If the alternative targeted position
is set in a further position from the beginning position, these two patterns could
outperform pattern 8.

(4) Performances of the patterns becomes similar when the event has little impact
on the navigation scenario. Pattern 5 and Pattern 11 have similar performances
because the waiting time is too long to eliminate the effects of the obstacle. That
is, Pattern 5 and Pattern 11 require the robot to wait for 20 seconds, while the
dynamic obstacle only occupies the targeted position for 15 seconds. The same
reasoning is also applicable to Pattern 6 and Pattern 12.

5.4.3 Summary

The experiment was conducted on the secondary reinforcer of the Deliberation node,
which aims to establish frustration patterns in a dynamic real-world environment. The
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Deliberation node in the middle level of the hierarchy subsumes the low-level nodes,
including primary reinforcers and strategy nodes, to construct appropriate components
for the affective pattern. As a result, the node achieved 12 frustration patterns that
allow a robot to extricate itself out of the negative impacts of a dynamic environment by
adopting the best strategy.

5.5 Experiment Four: Emotion model

This experiment attempts to construct an emotion model that can necessitate decisions
and respond to events in a robotic navigation scenario. Emotion states 11 can be elicited by
events, and the emotion model can automatically learn appropriate affective responses
to these emotion states. This emotion model is achieved by high-level subsumption
operations that subsume the low-level nodes in ACMCA architecture. As reviewed from
the research of the neuroevolutionary cognitive system (Section 2.2), human emotions
are evidenced in the cognitive system and the brain’s emotional-affective hierarchy
[43]. This emotion model and its high-level subsumption operations allow ACMCA to
construct complex, hierarchy knowledge from simple, diverse components.

Emotion theories (Section 2.3) attempt to provide interpretations of these cognitive
processes. Three emotion theories, including Appraisal Theory, Constructive Theory,
and Basic Emotion Theory, give their perspectives on emotion-related cognitive pro-
cesses. These theories attempt to explain cognitive processes, such as how emotions are
elicited and how they affect responses. Inspired by these explanations, this work pro-
poses an emotion model that makes decisions by perceived events at the core affect state
node (Section 3.3.3). This emotion model is designed as an event-emotion-response
mapping structure, which subsumes events, emotions 12, and responses. Events are
represented by primary reinforcers (Section 3.3.1) and secondary reinforcers (Section
3.3.2), emotions are core affect states (Section 3.3.3) elicited by the events, and the
responses includes strategies (Section 3.3.4) and behaviours (Section 3.3.3). Various
event-emotion-response mappings are encapsulated in the SAOC rules of a learning
agent of the core affect state node. As the learning agent evolves by iterations, fit SAOC
rules and event-emotion-response mappings can emerge. A learnt emotion model is

11core affect states, see Section 3.2.3
12also called emotion states or core affect states
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the set of these fit SAOC rules, which are high-level, abstract, interpretable knowledge
that establishes fit mappings between symbols of the low-level, concrete knowledge of
primary reinforcer, secondary reinforcer, strategy and behaviour. Therefore, a learnt
emotion model is reusable and transferable: an emotion model generated on a robot can
be easily transferred to other homonomous and heteronomous robots that also deploy
ACMCA.

To test the ability of ACMCA to learn such an emotion model, two events are
introduced into the experiment: a routine navigation event and a special event. The
routine navigation event activates standard navigation modules for a robotic navigation
task. The special event interrupts the navigation event thus it requires auxiliary processes
before the navigation event can be resumed. These two events are designed to provoke
emotion states that necessitate decisions during the navigation task. Because emotion
states are considered to be high-level states that summarise events, these two events do
not directly elicit emotion states, but appraisals of events do as the Appraisal Theory
suggests.

Following the Appraisal Theory, elicited core affect states (emotion states) can be
directly assessed by their hedonic value and arousal value. The hedonic value indicates
the pleasure level of a robot, demonstrating its attitude toward different stimuli during
events. A stimulus is from a secondary reinforcer, the Reflex node (Section 3.3.2.1),
producing the hedonic value that comes from the "pain" pattern for responding to
unpredicted collisions. This stimulus is thus transferred into a normalized hedonic
value for the current core affect state (see Equation 5.2). When a collision is detected
by bumpers, the hedonic value equals to an arbitrary value of -1000. Otherwise, the
hedonic value equals to an arbitrary value of 1000. In future, other stimuli that come
from different nodes or the same stimulus from different time schedules (i.e. the future
or the past) can be introduced by their normalized hedonic values to affect the core affect
state.

rewardpain = stimuluspain (5.2)

rewardvel = b(45500 ∗ vel2x + 3400 ∗ vel2w)c, (5.3)

where velx is the linear velocity and velw is the angular velocity, weights of velx and
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velw are to schedule rewardvel to a range between 0 and 800. To emphasis the effect of
the linear velocity, its weight is set to be above 10 times of the weight of the velw. Yet,
weights of velx and velw, and the range can be customised to any scaled value.

rewardemotion = rewardvel + rewardpain, (5.4)

The second appraisal that elicits the core affect states is the arousal value. The
arousal value indicates the activation level of a robot. In the experiment, this arousal
value comes from a primary reinforcer, the Speed node (Section 3.3.1.8), which records
the robot’s current velocity, suggesting the activation level of the robot. The Speed node
transfers the current velocity into a scaled momentum of the robot as the arousal value
of the current core affect state (See Equation 5.3). The momentum is scaled to facilitate
the visualization of core affect states. Through the hedonic and arousal values, events
and emotions are connected in the emotion model.

Emotion states in this emotion model are different from those of previous work. In
previous work, emotion states are only discrete states without innate meanings (Section
2.6). The symbolic meanings of the emotion state come from the interpretation of the
learnt reinforcer-emotion-modifier mappings. That is, these emotion states are labelled
by external interpretations. In this work, emotion states (core affect states) have innate
meanings that originate from stimuli, which follows the definition of the Appraisal
Theory (Section 3.3.3). The meanings of the emotion states are not reliant upon on the
interpretation of extra event-emotion-response mappings. Actually, the innate meanings
of the core affect states should be coherent with the executable behaviours that are
the results of the emotion model, because of the hypothesis of the Action-Outcome
(AO) Contingence of the Constructive Theory (Section 2.3). The examination of this
coherence can validate the hypothesis of theAOContingence from a robotics perspective.

Responseswill bemapped to emotion states in the emotionmodel. When a core affect
state is elicited, the response that is associated with the core affect state is activated for a
robot’s executable behaviours. A response can be a specific commond to control robot’s
behaviour (i.e. the Reflex Velocity node (Section 3.3.5.1) ) or an “umbrella” response
(i.e. the Path-following node (Section 3.3.5.2)). Umbrella responses are critical for two
reasons. Firstly, an umbrella response can subsume related topics that are necessary
for an emotional response. For example, the path-following node includes various
modules that are engaged in a navigation task, including obstacle-recognising modules,
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map-service module, path-planning module, and motor control module. Thus, umbrella
responses are necessary for a subsumption system. Secondly, umbrella responses allow
the robot to focus on the action tendency as the Basic Emotion Theory suggests. The
action tendency categories the robot’s executable behaviours by emotion states. Each
core affect state leads to a set of executable behaviours of the robot. As a high-level
node, the Emotion model focus on establishing appropriate mappings from core affect
states to sets of executable behaviours, leaving the construction of the sets of behaviours
to the low-level nodes. This approach allows the emotion model to become a high-level,
abstract knowledge that can be transferred among other homonomous or heteronomous
ACMCA robots.

In this experiment, two emotional responses are optional for each core affect states.
The first response is a navigation response, which should benefit the routine navigation
event. The navigation response is an umbrella response that subsumes all responses
related to a navigation task. To complete a navigation task, these responses include
the map service, the path-planning module, and the motor control module. The second
response is a reflex response, which should be applied for the special event. As the
special event is designed to introduce unpredicted collisions, the reflex behaviours that
are encapsulated in the reflex pattern provide experienced solutions for this event. Thus,
this response will activate the output of the reflex pattern that was learned by the Reflex-
learning node (see Section 5.2).

The emotionmodel evolves fitnessmappings between core affect states and emotional
response through multiple iterations. As discussed above, the event-emotion-response
mapping is encapsulated in the SAOC rules of the core affect state node. Instead
of presetting these mappings, the emotion model learns fitness mappings through a
reinforcement learning approach (Section 3.3.3). In this experiment, the SAOC rules,
which are inspired by the Constructive Theory, attempt to discover the contingencies
between the events, the emotions, the responses and their sequential outcome. In training
iterations, the performance of selected mappings will be provided to estimate the fitness
of the emotional response. As the performance faces a trade-off between high velocity
and little collisions, the performance is estimated by the combination of these two factors
(see Equations 5.2 - 5.4). In equation 5.4, this work is biased to the collisions value by
setting the maximum arbitrary value of hedonic value larger than the maximum arbitrary
value of arousal value. That is, the rewardemotion is usually negative in a scenario where
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collisions frequently occur. The estimation of the performance is then provided to the
XCS agent to update the mappings. The XCS agent that is deployed for the emotion
model updates the statistical parameters of the mappings, including the parameter of
fitness. As the emotion model iterates during the robot’s navigation training process,
fitness mappings emerge.

5.5.1 Scenario Set-up

The hypothesis is that the emotion model can learn to respond to various events through
internal core affect states and effecting emotional responses through trial and errors. This
section introduces an experiment to test this hypothesis. Two events, two responses, and
three environments are included in the experiment.

The two events of the experimental scenario are a routine event and a special event.
The routine event is a navigation event, which requires the robot to pursue the targeted po-
sition through its navigation responses. Ideally, an appropriate response should subsume
all the navigation-related processes of perception, decision-making and execution.

The special event is that the robot detects an unpredicted collision, which can be
categorised as an uncertainty factor of the environment. The response to this event
should guide the robot away from continuous collisions, which happens if the learnt
response affects positively. Therefore, a desirable response to the special event should
subsume the reflex pattern, which learns the solutions for collisions by the Reflex node
(Section 3.3.2.1) in the secondary reinforcer layer.

The navigation response and the reflex response are two responses that are available
for the above two events. Instead of applying the standard navigation response, a
simulated navigation response is proposed as the appropriate response for the routine
event. This is because the standard navigation modules will update the map service in
each iteration, and thus create different scenarios during the emotion model’s learning
iterations. To create a scenario thatwill be repeated in each of the iterations, the simulated
navigation response randomly selects a direction to move forward in this experiment. As
long as the simulated navigation response can generally simulate navigation behaviours,
the difference between them is less important, because the emotion model attempts to
achieve high-level, abstract knowledge.

The reflex response is another symbolic response. It subsumes the reflex patterns
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that select a reflex-action as an affected behaviour. As discussed in Section 3.3.2.1, the
reflex patterns were achieved by the learning agent of the reflex node. That is, execution
of the reflex-action requires cooperations of two learning agents in the different levels
of ACMCA.

Three real-world environments with different frequencies of the special event are
tested in this experiment. There are an obstacle-free environment, a corridor and a
narrow corner (Figure 5.1). The obstacle-free environment serves as the first scenario
for the experiment. To create an obstacle-free environment, the emotion model is trained
when the robot is suspended and lifted up from the ground. This scenario can determine
the form of trained emotion model when only the routine event engages in this scenario.

The second environment is a common corridor (i.e. level-4 of the AM building,
VUW). The corridor is an open space where a robot might engage with unpredicted
collisions in daily life. In the experiment, the robot has a chance to collide with the walls
thus triggering the special event as it carries out the routine event. As the emotion model
experiences both the routine event and the special event with a reasonably balanced
ratio, the emotion model shows the ability to cooperate with other learning agents from
different parts of the hierarchy to complete a navigation task.

The third environment is a corner in the office ofAM-409. The corner is a narrow area
of 1.5 metres by 1.5 metres, where the special event occurs frequently. As the emotion
model is exposed to the environment where the special event could be overwhelming,
the emotion model has the potential to show different characteristics from previous test
scenarios.

5.5.2 Result of Emotion Model

Results show that the emotion model establishes a fitness mapping between events and
responses through internal core affect states in these three environments. Core affect
states that summarise the events of the environments are elicited in the core affect space.
The elicited core affect states are mapped to the emotional responses by the emotion
model. The mappings that were automatically established by the emotion model are fit,
indicating that the solutions can be constructed to facilitate the robot decision-making
process in the complex scenarios.

Results are demonstrated in the core affect space with the predicted rewards of the
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Figure 5.6: Suspension environment
The hedonic-and-arousal plane represents the core affect space (Section 3.3.3). Each
bar represents a response to a core affect state. Thus, the location where each bar stands
represents a core affect state, and the height of each bar represents the strength of the
response that links to the core affect states. Only core affect states of “happiness” are
elicited. The blue bar represents the navigation response, and the yellow bar represents
the reflex response.
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Figure 5.7: Corridor environment
The number of emerged core affect states increase as the scenario get complex. Core
affect states of “happiness”, “fear”, and “calm” are elicited. The reflex response
dominates the area where core affect states have negative hedonic values.
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Figure 5.8: Corner environment
Most of the core affect states are biased to the reflex response in this scenario.
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mappings (see Figures 5.6, 5.7, and 5.8). As discussed above, the core affect space
is represented by the two-dimension space of the hedonic and arousal values. These
core affect states can be interpreted by their symbolic meanings. Each appearance of
a bar in Figures 5.6, 5.7, and 5.8 indicates an eliciting of a core affect state. The
location of a bar is defined by its hedonic and arousal values in the plane, allowing the
symbolic interpretation of a core affect state. For example, core affect states that have
high hedonic value and high arousal value can be categorised as states of “happiness” by
the Appraisal Theory (see the definition of “happiness”, “fear”, and “calm” in Section
3.3.3). In contrast, those states that have low hedonic value and low arousal value can
be categorised as states of “fear”. Core affect states that have high hedonic value and
low arousal value can be categorised as states of “calm”.

The elicited core affect states of happiness, fear and calm suggest a summary of the
current events the robot experiences at the given moment. When a robot is in a collision-
free environment, only states of happiness are elicited (see Figure 5.6). Only two core
affect states are elicited in this environment due to lack of the collisions and the ideal
velocities of the robot. The core affect states become diverse when the robot is exposed to
environments where collisions happen. Because collisions in these environments impact
the ideal velocities of the robot, different hedonic values and arousal value are generated.
Other states of "fear" and "calm" are experienced by the robot in the environments of
the corridor and the corner. This result provides an example to support an appraisal
hypothesis that the complexity of the environment leads to the diversity of core affect
states.

These emotion states of happiness, fear and calm are associated with potential conse-
quences of the effected emotional responses. Each core affect state activates emotional
responses through mappings, which also estimate the potential consequence of the ac-
tivated emotional response. The blue bar represents the navigation response and the
yellow bar represents the reflex response in the Figures. The estimated value of the
potential consequence is kept in the predicted-reward parameter, which represents the
emotion model. The predicted-reward of an emotional response predicts the consequen-
tial reward that this response can result in. By comparing the strength (/magnitude) of
the predicted-reward, the emotion model can advocate the strongest one among these
two emotional responses. All the predicted-rewards of the navigation response and the
reflex response of all core affect states make up a reward surface of the core affect space
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that the robot explored in the environment.

The results show that the emotion model learns reward surfaces from the robot’s
interactions with all three environments. In the first scenario, the reward surface ap-
proaches its theoretical value in the collision-free environment (see Figure 5.6). Both
two predicted-rewards of the navigation responses (see the two blue bars in Figure 5.6)
approach the upper boundary of 1800 13. Similarly, two predicted-rewards of the reflex
responses (see the two yellow bars) approach their upper boundary of 1500 14. The
navigation response has a stronger predicted-reward than the reflex response when core
affect states are elicited in this case. This is because the navigation response is con-
sidered to be the major response, which can lead to the task completion, and the reflex
response is the auxiliary response that facilitates the task completion. Therefore, the
navigation response is the better choice than the reflex response that the emotion model
will advocate in the collision-free environment as expected.

The reward surface shows a segmentation in the second scenario when the special
event is introduced into the corridor environment. The navigation event dominates half
of the core affect space and the reflex event dominates the other half, separating by
the hedonic value (see Figure 5.7). When core affect states have a positive hedonic
value, the navigation responses are the better choice. The navigation responses have
stronger predicted values than the reflex response because the navigation response leads
to a higher velocity than its alternative response on average. The situation reverses
when core affect states have a negative hedonic value. The reflex response enables a
better performance because the subsumed reflex pattern can guide the robot away from
continuous collisions. Compared with the first control group, elicited core affect states
become more diverse as the scenario gets more complex in the second scenario. The
emotion model can respond to the events by advocating the optional emotional response.

The reward surface shows that the reflex response is a better choice than the navigation
response in the third scenario where the special event happens frequently. The reflex
response dominates the entire core affect space (see Figure 5.8), including core affect
states with both positive and negative hedonic values. In the area with negative hedonic

13This upper boundary can be calculated by applying path-planning velocities in Table 3.3 into Equations
5.6, 5.7, and 5.8.

14This upper boundary can be calculated by applying reflex velocities in Table 3.2 into Equations 5.6,
5.7, and 5.8.
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values, the reflex response is activated through the subsumption of the reflex pattern in
the emotion model. In the area with positive hedonic values, the navigation response
is no longer dominate in this area, compared to its domination in the second scenario.
This is because the limited space of the corner environment limits the performance
of the navigation response. That is, when the robot becomes stuck in the corner, the
navigation response is inclined to elicit further future collisions. Thus, the navigation
response is inferior to the reflex response even in the navigation event. Therefore,
the reflex response is the better option, which the emotion model will advocate in the
full-of-collisions environment.

5.5.3 Summary

Inspired by the emotion theories, the experiment was conducted to train the emotion
model to learn optional emotional responses to complex scenarios. The emotion model
was trained to respond to the two events in the three scenarios. The event-emotion-
response mappings are the solution that was learned by the emotion model. Through
the visualization of these mapping in the reward surface, the results show that the
emotion model learnt correct event-emotion-response mappings in these environments.
Compared to the mappings learnt in these environments, the emotion model has also
demonstrated its adaptation to the given environment as the emotion model can advocate
the optional emotional response for the robot’s execution. Although the three inspiring
emotion theories focus on different perspectives, this experience provides a valid example
that attempts to unify these theories and apply them in a real-world robotic application.

5.6 Experiment Five: Combined Reward Assignment

The previous four experiments show ACMCA’s ability to achieve a complex solution
through solution components within a multilayer architecture. The fourth experiment,
the emotion model, further indicates that learning agents should cooperate to achieve
an optimum solution. However, coevolving agents require a credit assignment method
that can appropriately assign a final reward to agents that contribute to it. This next
experiment introduces maze problems to investigate the credit assignment method in
multistep problems. This method can allow multiple separate agents to coevolve for
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optimum solutions in a robot and lead to the life-long learning behaviours of a robot.

5.6.1 Scenario Set-up

Maze problems provide suitable environments to test an algorithm’s performance when
searching for global optimal policies. Maze environments include a large policy space
but with known and interpretable optimal paths as policies. This work includes ex-
periments in three maze environments: the Maze 4, 5, and 6 (see Figure 5.9). These
maze environments have been frequently applied to demonstrate XCS performance on
multistep problems [69, 109, 115]. Maze environments contain free paths, obstacles, a
starting position and a targeted position. Free paths are shown as white cells that can be
occupied by an agent. Obstacles are black cells.

The navigation task requires a robot to start at the left, top cell of the maze, targeting
to the right, bottom cell. In each step, the robot activates an XCS agent to select one
direction from four options (left, right, up, and down) to move forward as its action. A
greater number of directions, e.g. eight, can be used but this increases the search space
and more importantly makes visualisation of the results more cluttered so is difficult to
interpret the effects of novel methods. Actions toward any black cell or boundary in a
step would cause a collision. In these cases, the robot will stay at the same place until
the next step.

Policies can be learned through robot interactions with a maze. Generally, a policy
is any state-action-state succession. In the maze problem, a “state” is the robot’s current
perception of the environment, and an “action” is a direction that the robot moves
forward. Therefore, policies can establish a sequence of actions that are intended to lead
the robot to achieve its target position. Policies are often rewarded by the worth of the
robot’s performances (i.e a worth value of 1000 when the robot achieves the target cell)
such that state-action mappings in policies are assigned with values of worth. Therefore,
a global optimal policy is a policy with the minimum number of sequential actions that
reaches its target. Each action in a global policy has the maximum value of worth among
the other three actions available at a given state (see the worth of an action in Equation
4.6). A global optimal policy is a policy with the minimum number of sequential actions
that reaches its target. Global optimal policies, which are shown as sequences of blue
arrows in Figure 5.9, are the objective that the XCS algorithms attempt to learn.
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(a) Maze 4

three global optimal policies
(b) Maze 5

one global optimal policy

(c) Maze 6

two global optimal policies

Figure 5.9: Three Maze Environments
Start position is at the left, top cell of each maze environment, and targeted position is
at the right, bottom cell. Global optimal policies/rules are shown with blue arrows.

Experiments were conducted to test the XCSCR’s ability to search for global optimal
policy in multistep problems. In each maze problem, 100 trials were conducted for each
XCS, the adapted XCS algorithm and the proposed algorithm. In each trial, the number
of iterations (epochs) it took for an algorithm to achieve a global optimal policy for the
first time is recorded. In each iteration/epoch, an XCS agent takes steps to complete a
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maze navigation task. In each step of the interaction, the XCS agent interacts with the
maze environment through an XCS iteration loop (see Section 4.3.2). The XCS agent is
implemented by the XCSCR, the adapted XCS algorithm, and the standard XCS. These
XCS algorithms have common parameters with the same settings from Butz [76]. Other
parameters that are modified are specified in the method section 4.3.

Parameter Settings for XCS algorithms:.

- N, the maximum size of the classifier population: 900.

- β, the default learning rate for rp, ε, fit, and θstep : 0.2.

- ε0, the accuracy threshold, which equals 0.05 percentage of the absolute
value of the maximum reward: 5,

- γ, the discount fact for the standard XCS multistep problems: 0.8.

- θGA, the GA threshold: 20.

- θdel, the deletion threshold : 25.

- χ, the crossover probability: 0.8.

- µ, the mutation probability: 0.04.

- pexplr, the exploration probability: 0.2

5.6.2 Results of Maze Problems

The result shows that XCSCR performed better than the previous adapted XCS and the
standard XCS in all of the three maze environments. The global optimal policy are
shown as blue arrows in Figure 5.9. XCSCR achieved the global optimal policy more
often than the other two algorithms (Figure 5.10). In Maze 4, XCSCR achieved the
global optimal policy 79 times, compared to 77 times of the adapted XCS and 7 times
of the standard XCS. In Maze 5, XCSCR achieved the global optimal policy 54 times,
compared to 29 times of the adapted XCS and 2 times of the standard XCS. In Maze
6, XCSCR achieved the global optimal policy 65 times, compared to 25 times of the
adapted XCS and zero times of the standard XCS within 180 epochs.

In addition, XCSCR achieved the global optimal policy earlier than the other two
algorithms in these three mazes. The distributions of optimum policies of the XCSCR
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(a) Maze 4

(b) Maze 5

(c) Maze 6

Figure 5.10: Distribution of Global Optimal Policies in the Maze Problems
The x coordinate of a dot indicates when the global optimal policies first discovered.
The y coordinate of a dot indicates the count of times in 100 trials. The higher count at
fewer epochs, the better.
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are concentrated on early epochs, while the optimum policies of the adapted XCS and the
standard XCS are distributed among the entire epoch-axis (see Figure 5.10). In Maze 4,
major achievements of XCSCR happened before the fortieth epoch, while achievements
of the adapted algorithm and standard XCS were distributed evenly. In Maze 5, major
achievements of XCSCR happened before the seventieth epoch, while achievements of
the adapted algorithm majorly were distributed after the seventieth epoch. In the Maze
6, major achievements of XCSCR also happened before the seventieth epoch, while
achievements of the adapted algorithm majorly were distributed after the seventieth
epoch. Therefore, XCSCR changed the distribution of achievement of the global optimal
policy, and XCSCR achieved the global optimal policy more frequently and earlier than
the adapted XCS and the standard XCS.

5.6.3 Analyses and Discussion of Maze Problems

Analysis of the agent’s learning process illustrates XCSCR’s effects on generating policy.
The short-term reward mechanism contributes to a good policy emerging in an early
learning phase. Since the long-term, positive rewards are scarce at this phase, the worth
of rules were estimated by punishments, especially through the short-term reward filter
(see Figure 4.3.c). Thus, a policy is based on comparisons on the negative worth of rules
(see Figure 5.11.a). In addition, magnitudes of negative worth decrease from the starting
cell to the targeted cell in a policy, while magnitudes of positive worth are increasing.
This suggests the value of the worth is related to the vastness of the searching space.
The further the cell is from the targeted cell, the more vast a searching space will be,
and the higher likelihood that rules receive negative rewards.

The long-term reward mechanisms tend to increase the stability of a policy as
iterations progress. The long-term reward filter, which combines the three novel reward
mechanisms with the standard one, can propagate long-term positive rewards to rules.
For example, in the first four steps of Figure 5.11.b, the values of the worth of rules,
which belong to the policy, turn from negative to positive. In contrast, the values of the
worth of rules that suggest a different action from the optimum policy remain negative.

As the training encounters sufficient iterations, the magnitude of the worth of the
positive rules increases (see blue arrarys in Figure 5.11). The long-term positive rewards
were evenly assigned to rules in different steps. The magnitudes of the worth of these
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(a) Iteration = 44

The policy is bootstrapped by negative
rule worth during the initial learning
phase.

(b) Iteration = 79

The policy is bootstrapped by positive
rule worth as the training progresses.

(c) Iteration = 111

The positive worth become equivalent
after sufficient iterations.

Figure 5.11: Policy Learning Process in the Maze 4
Blue and red arrows: worth of rules, the direction of an arrow suggests the direction of
action in the rule, magnitude suggests the value of the worth, red suggests negative
worth and blue suggests positive worth. Green arrows: policy, sequential rules with the
best worth, the direction of an arrow suggests the direction of the best rule, the
magnitude is fixed. Light grey cells suggest they have been visited by the agent in this
epoch of a trail. The dark grey cell suggests the location where the agent ended up at
the end of the epoch.
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positive rules, which advocate for a policy, became more evenly spread in Figure 5.11.c
than they are in Figure 5.11.b.

The changing worth of rules in the XCSCR learning iterations also indicates that
XCSCR was able to increase the quality of policy in terms of stability. The stability
of a policy depends on the difference between the worth of rules advocating different
actions in the same state. A policy will increase its stability as the differences increase.
In the experiments, the differences along a policy were increased by XCSCR learning
(see Figure 5.11), suggesting that the quality of the policy was increasing.

5.6.4 Summary

This section conducted experiments for XCSCR, an XCS algorithm with a combined
reward method, to learn global optimal policies in multistep problems. The XCSCR
adopts four novel mechanisms to the reward method for better usages of long-term and
short-term rewards. Experiments were conducted in three standard maze environments
(the Maze 4, 5, and 6) to test the XCS algorithms’ performances on their search global
optimal policies. Results show XCSCR performed better than the standard XCS and the
adapted for robotics XCS methods. In all the three mazes, the XCSCR enabled global
optimal policies to emerge earlier and more frequently than the other two approaches.
Analyses also provide interpretable insights about the policy learning process. The
insights illustrate effects of the four novel mechanisms, which allows XCSCR to increase
the stability of the policy throughout the training iterations.
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5.7 Chapter Summary

This chapter conducted five experiments for the five-layer-and-three-level cognitive sys-
tem, Affective Computing Multiplayer Cognitive Architecture (ACMCA), to test its
capability of learning solutions for a robotic navigation task. These five experiments
were reflex-learning, IR-tuning, deliberation-establishing, emotionmodel, and combined
reward assignment.

The first three experiments were conducted among low-level nodes. The solution
components were constructed by the subsumption operations on the secondary rein-
forcers of ACMCA. These secondary reinforcers showed their capability of constructing
low-level solution components that affect a robot’s performance from the behaviour,
strategy, and model perspectives.

The fourth experiment was conducted among high-level nodes. The solution compo-
nent, emotion model, was constructed by the subsumption operations on the core affect
state node of ACMCA. The core affect state node showed its capability of constructing
the high-level solution (e.g. the emotion model) through the established low-level so-
lution components. The emotion models that were constructed by the core affect state
node are adapted to different scenarios. This indicates that ACMCA are able to construct
complex, hierarchy solution from simple, diverse components.

The fifth experiment was conducted to test the ability of the XCSCR (XCS with a
Combined Reward method) to search global optimal policy in multistep problems. This
method allows a robot to assign the final credit to previous, contributed policies, aiming
to explore ACMCAâĂŹs potential implementations of the life-long learning scenario.
This method could allow multiple separated agents to coevolve for optimum solutions in
a robot and lead to the life-long learning behaviours of a robot.

The first four experiments cost a different length of time to evolve various SAOC
(Stimulus-Action-Outcome Contingency) rules. The time consumptions of these ex-
periments vary primarily based on the components of the SAOC rules. Namely, time
consumptions of Stimulus, Action, and Outcome that are embedded in the rules. Gen-
erally, the time consumption of Action costs the majority of the time consumption in
each learning trial, because the Action will be advocated for the robot’s execution. For
example, in the experiment of IR-tuning, the dynamic setting of IR (Inflation Radius)
for the path planning module takes about 5 seconds. Thus, an iteration of the XCS agent
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costs about 7 seconds, including time consumption on the perception and the synchro-
nization among distributed ROS nodes. In the experiment of deliberation-establishing,
the Action in its SAOC requires the robot to navigate in the office. Each trail takes 4
minutes on average for the robot to reach the goal position and come back to the starting
position. Thus, this experiment runs longer than the earlier one.



Chapter 6

Conclusions

6.1 Summary of Work

This work proposed a five-layer-and-three-level cognitive system, termed an Affective
Computing Multiplayer Cognitive Architecture (ACMCA), which learns solutions for a
robotic navigation task. The five layers are the primary reinforcer layer, the secondary
reinforcer layer, the core affect state layer, the strategy layer, and the behaviour layer.
These five layers follow the traditional decomposition of a mobile control system, and
each layer contains various computing nodes that perform as functional modules that
construct the system. The architecture of the cognitive system provides a three-level
hierarchy that encapsulated the learned solution within its five-layer architecture. This
satisfied the first objective of this work.

This work decomposed the solution into diverse components within a hierarchy
structure by emotion theories. Inspired by psychological hypotheses, diverse solution
components cooperate to fulfil a cognitive system’s capabilities of reconceptualizing
situations, dispositions, dynamics, and invariance in personality structure 1. In this
work, solution components are encapsulated by 17 computing nodes as functional mod-
ules in the five layers. These nodes are distributed among five layers in ACMCA by
their categories: primary reinforcer, secondary reinforcer, core affect state, strategy and
behaviour. All these nodes and their interactions can provide clear symbolic interpreta-

1The hypothesis is that there is invariance in personality structure, which is underlying the variability
of behaviour across situations [37].
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tions for their solution components in terms of emotion theories. Therefore, the second
objective of this work was satisfied.

This work proposed a contingency-based subsumption approach to construct the cog-
nitive system. The contingency-based subsumptions can establish connections between
computing nodes within the hierarchy structure. Nodes in higher-level can subsume
lower-level ones by the proposed underlying XCS algorithms, which learn high-fitness
solution components with diverse symbolic contingencies. Such subsumption opera-
tions are conducted on the three secondary reinforcer nodes and the core affect state
node. The reinforcer nodes establish contingencies of diverse stimuli perceived, and the
core affect state node establishes emotional responses to environmental stimuli. As a
result, the cognitive system was constructed various contingencies had been established
by the proposed machine learning techniques. That is, the third objective of this work
was achieved.

This work proposed two novel variants of XCS algorithm as the machine learning
techniques that facilitate robotic applications. They are the mitosis approach of XCS and
the XCS with a Combined Reward method (XCSCR). The mitosis approach introduces
an accurate pressure into the algorithms evolutionary process. As the machine learning
technique that underlies the contingency-based subsumption operations, the mitosis
approach improves the algorithmsâĂŹ performance in robotic applications where noisy
interferences exist. The XCSCR enables the policy to emerge earlier andmore frequently
than the existing benchmark approaches in multistep problems. Had been tested in the
maze environments (the fifth experiment), the XCSCR explored ACMCAâĂŹs potential
implementation in the life-long learning scenario. Both of these two variants of the XCS
algorithm satisfied the fourth objective of this work.

This work test the proposed ACMCA in both simulated and real-world robotic
platforms. Four experiments were conducted to test the robustness of the proposed
approach. They are reflex-learning, IR-tuning, deliberation-establishing and emotion
model. In experiments, three secondary reinforcers (e.g. the Reflex node, the Tuning
node, and the Deliberation Node) and an emotion model had emerged. These also
indicate that ACMCAwere constructed through Reinforcement Learning (RL) approach.
Therefore, the fifth objective of this work was achieved.

These experiments also suggest that Various Stimuli-Action-Outcome Contingencies
(SAOCs) can be achieved by ACMCA. Contingencies are represented by connections
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between various computing nodes that encapsulate various Stimuli, Actions, and Out-
comes in different layers, suggesting ACMCA’s firing sequences as its responses to the
task. In this work, four types of SAOC are achieved and encapsulated in the three
secondary reinforcers and the emotion model, suggesting ACMCA’s learning and rea-
soning capability in real-world scenarios. The four types of SAOC and their symbolic
interpretations are summarised as follows:

The first type of SAOC is the reflex-pattern. The reflex-pattern describes reflex-like
responses based on collisions and the stimulus of the “pain” during the robot’s navigation
process. The automatic learning process of this pattern engages the Touch node, the
Reflex-Velocity node, the Pain node, and the Reflex node. Specifically, the Reflex node
subsumes the other three nodes, bringing solution components to unpredicted collisions
with the underlying XCS agent. The learned reflex-patterns allow the robot to respond in
an appropriate manner to the unpredicted “pain-causing” stimuli instantly, thus avoiding
continuous damage.

The second type of SAOC is the IR-pattern. The IR-patterns provide an adaptive
approach for path-planning modules. The IR-patterns automatically tune the adaptive
hyperparameter, Inflation Radius (IR), to the applied path-planning module, allowing
it to generate a valid path. Otherwise, the path-planning module would fail if the
hyperparameter is inappropriate. The automatic tuning process happens at the Tuning
node, which achieves the patterns by subsuming the Goal node, the Path node, and
the IR node. The achievement of the IR-patterns suggests that ACMCA is capable of
allowing a functional module to achieve its admissible performance, such as adaptive
path-planning, without hand-coded prior knowledge for this module.

The third type of the SAOC is the frustration-pattern. The frustration-pattern enables
a robot to extricate itself from the negative environmental impacts by adopting its best
strategy. Triggered by the dynamic obstacles in the environment, the frustration-patterns
reschedule strategies to achieve early task completion. The frustration-patterns are
encapsulated in the Deliberation Node, which subsumes multiple nodes: the Occupation
node, theDelay node, the Reward node, the Persistence node, and the Rescheduling node.
Although the frustration-patterns were automatically established by the XCS agent, these
interpretable artificial patterns can support the psychology-based hypothesis that the
personal emotions indicate an individual’s physical coping ability that was established
through previous experience. In addition, these three SAOCs, the reflex-pattern, the IR-
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pattern, and frustration-pattern, also support the Constructive Theory that conversions
from primary reinforcers to secondary reinforcers provide fundamental processes for
emotional responses.

The fourth type of SAOC is the emotion model. The emotion model was adapted to
the given environment so it could advocate the optional emotional response for the robot’s
execution. Inspired by the Appraisal Theory, when the emotion model is activated by
events, the emotion states, termed as core affect states, are elicited in the two-dimensional
core affect space, summarising the perception with straightforward interpretations. The
elicited core affect states thus activate respective responses, which lead to the robot’s
subsequential behaviour, based on the Basic Emotion Theory. This emotion model in
the high-level is an affective computing model that cooperates with other lower-level
solution components, increasing the robot’s flexibility.

In sum, this work proposed that ACMCA as a novel emotion inspired multilayer
architecture, which can produce task solutions through contingency-based subsumption
operations and underlying appropriate machine learning algorithms, allows a robot to
complete admissible tasks through evolutionary processes.

6.2 Contributions

ACMCA is a novel emotion-inspired, contingency-based, multilayer robotic cognitive
system, which has been tested on a real-world robot to learn solutions for navigation
tasks. This work contributes to evolutionary robotics, cognitive science and emotion
theory, and Learning Classifier Systems (LCSs). These contributions are summarised
below:

(1) ACMCA is a novel five-layer cognitive architecture that can contribute to evolu-
tionary robotics. The architecture of an ACMCA provides a three-level hierarchy
that encapsulates a learned solution within its five-layer architecture. Among the
five layers, nodes fulfil functional modules that provide diverse solution compo-
nents with symbolic meanings, leading to the construction of the solution with a
symbolic interpretation. The high-level nodes can learn their solution components
through the underlying machine learning techniques when the robot interacts with
the environment through trial and error. As a result, ACMCA can learn sym-
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bolically interpretable solutions toward task completion in real-world scenarios.
This work provides a benchmark of a five-layer cognitive architecture, in which
homogeneous computing nodes in layers can cooperate to achieve a robotic task
in complex scenarios.

(2) ACMCA is a novel emotion-inspired robotic cognitive system that can provide
insights for psychological theories, cognitive systems and Artificial Intelligence.
The construction in work is inspired by three emotion theories: Constructive
Theory, Appraisal Theory, and Basic Emotion Theory. The construction of sec-
ondary reinforcers supports Constructive Theory as stimuli are estimated by a
sophisticated cognitive system. The construction of the core-affect-state supports
Appraisal Theory in terms of how emotions are elicited. The construction of
the emotion model supports Basic Emotion Theory regarding how the emotional
responses are executed. This work extends the previous work [17, 18], which
applies Constructive Theory in the construction of a robotic cognitive system for
the navigation task for the first time. Following the previous work, this work
combines these three mainstream emotion theories in the construction of the sys-
tem, providing a novel benchmark for future construction of the emotion-inspired
robotic cognitive system.

(3) ACMCA is a novel contingency-based subsumption system that contributes to
robotic control systems. Traditionally, the classical behaviour-based subsump-
tion systems are constructed by layers of behaviours. In this work, the system
is constructed by layers of Stimuli-Action-Outcome Contingencies (SAOCs). As
Stimuli, Actions, and their consequential Outcomes are encapsulated in low-level
nodes, subsumptions of these low-level nodes by high-level nodes can establish
various SAOCs that construct the system. Based on the established SAOCs, the
system can select its action to respond to the detected stimulus and predict the con-
sequential outcome of the action. In the three-level hierarchy, contingency-based
subsumptions can operate at the middle level nodes (e.g. secondary reinforcers)
and at the highest level node (e.g. the core affect state node). These subsump-
tion operations can construct affective responding patterns from the secondary
reinforcers and an emotion model from the core affect state node, automatically
constructing a control system that instructs the robot’s reactions to complete a
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complex task. This work provides a benchmark of a subsumption system that
is capable of planning and prediction, which the behaviour-based subsumption
systems find difficult to incorporate.

(4) This work proposes two underlying novel XCS algorithms which extend the usage
of XCS algorithms for real-world robotic implementations. Two variants of XCS
algorithms, the mitosis approach and the XCSCR, are proposed to solve the prob-
lems that occur during real-world implementations. The mitosis approach allows
the XCS learning agents to learn accurate knowledge even in noisy scenarios. The
XCSCR could allow learning agents to co-evolve in life-long learning scenarios by
extending the mitosis approach from single-step scenarios to multistep scenarios,
These two XCS algorithms provide novel benchmarks for future variants of XCS
algorithms in robotic applications.

The following publications were produced during this thesis:

Zhang, Z., Browne, W.N. and Carnegie, D.A., 2018, June. Emotion Inspired
Cognitive Architecture for Robotic Adaptive Path Planning. In Australasian Con-
ference on Robotics and Automation 2018.

Zhang, Z., Browne, W.N. and Carnegie, D.A., 2019, June. XCS with Combined
Reward Method (XCSCR) for Policy Search in Multistep Problems. In 2019 IEEE
Congress on Evolutionary Computation (CEC) (pp. 2982-2989). IEEE.

Zhang, Z., Browne, W.N. and Carnegie, D.A. Affective Computing Multilayer
Cognitive Architecture (In process of writing).

6.3 Future Work

Three hypotheses can be tested in future work:
The first potential future work can focus on the hypothesis that increasing diversity

of nodes can produce increasing diversity of the learnt solutions. The current work
includes 17 nodes in the five-layer hierarchy of ACMCA, and the results show that
ACMCA are capable of learning solutions for complex scenarios. This future work can
increase the number of nodes in each layer. Because each node represents a different
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functional module and a unique solution component, including additional diverse nodes
into ACMCA should generate more diverse solutions than the current ones for the same
scenarios.

The second potential future work can continue to focus on the hypothesis that ap-
plying emotion theories in the construction of a robotic cognitive architecture will bing
benefits to robotic tasks. The current work applies the major principles of Constructive
Theory, Appraisal Theory, and Basic Emotion Theory in the construction of ACMCA.
Psychological mechanisms (i.e. empathy mechanism) of emotion theories provide in-
spirations for future work.

The third potential future work can focus on the hypothesis that introducing evo-
lutionary processes to the construction of a cognitive system can lead to a completely
automatic construction of the system. The current work constructs the system through
contingency-based subsumption operations, which allow high-level nodes to subsume
low-level ones. A potential future work can introduce an evolutionary process into the
contingency-based subsumption operation. The evolutionary process can create, select,
mutate, and/or replace nodes during the subsumption operation. XCSCFs (XCS with
code-fragment actions/conditions [66]) is a competitive underlying algorithm for this
evolutionary process. The code-fragment part of the algorithm can focus on the evolu-
tionary hierarchy, allowing the robot to evolve different types of contingencies through
its interactions with the environment. As a result, the evolutionary process should allow
the cognitive system to discover new contingencies that increase the robot’s performance
in the environment.

6.4 Final Summary

This thesis proposed the Affective Computing Multilayer Cognitive Architecture for a
mobile robot that can learn diverse task-complete solutions. Inspired by cognitive studies
and emotion theories, ACMCA introduces a novel representation of a task solution,
which is constructed by diverse components of solutions in the five-layer-and-three-
level hierarchy of ACMCA. These 17 diverse components of task solutions are achieved
automatically byACMCA.The subsumption operations can establish three contingencies
and one emotion model between the subsumed components by multiple RL agents
which deploy proposed XCS algorithms. These three emotion patterns and emotion
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model can consistently improve the robot’s navigation performance with interpretable
explanations. These two variants of XCS algorithms can amend shortfalls of the standard
XCS approach in real-world robotic implementations. It has been demonstrated that the
diverse solutions learned by ACMCA can improve the navigation performance of the
robot by increasing flexibility and reducing continuous collisions and navigation times.
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