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Abstract

We have studied the nature of unconventional superconductivity in the rare-earth ni-
tride (REN) samarium nitride (SmN) for the purposes of providing a deeper understanding
of the mechanisms that lead to such a phenomenon in an already extremely interest-
ing material. An approximate low energy model has been introduced for SmN based on
previous bandstructure calculation and recent experimental results. This consists of the
non-dispersive 4f band associated with the samarium ion crossing through the dispersive
5d band associated with the nitrogen ion. Due to large spin polarisation in the bandstruc-
ture we need only consider the majority-spin 5d and 4f bands which lead to an essentially
spinless two band system. Starting from this two band system, we apply the k ·p method
to it in order to create an effective model for the system. This effective model for the mate-
rial acts as the platform from which we study the possible triplet superconducting pairing.
Basing our pairing on the electron-phonon interaction we have postulated the existence
of triplet pairing in the 5d band, from which we have successfully characterised the pair
potential in this system through the self-consistency equation. The pair potential ∆d could
be solved analytically in a special case where the Fermi level was equal to the 4f band. In
this case we find that above a threshold effective coupling strength the superconducting
state is established and analytically known. In contrast to this result for the more general
case where the Fermi level is different to the 4f band we numerically recover a solution
that was exponential in the effective coupling strength which is similar to the pairing as we
expect from the single band case. Analytic solutions in this case were not able to be found,
however, we know that from our numerical investigations there will exist a solution for any
effective coupling strength, contrasting with the special case where the pairing amplitude
can disappear below a certain threshold. In conjunction to these results we also examined
the situation where the 5d and 4f bands have hybridised together in order to search for
unique pairing that may be resistant to disorder. By keeping the triplet pairing only in the
5d band, this translates to hybrid pairing between electrons in the two hybridised bands.
Results from the hybridised bands system show a new singlet-like pairing ∆S which is even
in k and singlet in the hybridised band indices. Preliminary numerical results suggest that
this pairing indeed exists and occurs only near the avoided crossing of the hybridised bands.
The existence of such a pairing, originating from triplet pairing, has exciting implications
for the robustness of the superconductivity in the presence of disorder and/or impurities.
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Chapter 1

Introduction

In 1965 Gordan Moore [1] made his stunning observation that every two years or
so the number of transistors that fit on a silicon chip doubled. This is commonly
known as Moore’s Law and it has ushered in a technological boom, the likes of which
the world hasn’t seen since the start of the industrial age. However, as we start to
see the saturation of Moore’s Law [2] we must move past the miniaturisation of
existing technologies and look towards the future of new and exciting information
technologies. Such examples include spintronic devices, molecular electronics, and
of course the fabled quantum computer. Looking towards this future requires a
deep and thorough understanding of new and exotic materials to push into this new
frontier and to make these technologies a reality.

The end of Moore’s law is inevitable, of course, due to size constraints on a phys-
ical transistor and the new possibility of transistors being manufactured on such a
small scale that quantum effects start to manifest in the transistor [3]. However,
a more pressing issue for the construction of super dense computer chips is the
amount of heat they radiate collectively and the amount of damage that will do to
the chip itself. If not cooled properly, new chips cannot perform to their optimal
performance since current supplied to the chip will need to be throttled so as not to
threaten the integrity of the chip. With rising costs of cooling such chips, businesses
are hesitating to invest in the development of smaller transistors. To continue the
growth of the sector we may look to spintronic devices which use the manipulation
of an electron’s spin. These devices would move the current industry away from
the silicon transistor towards devices that use the small magnetic moment of elec-
trons, rather than their charge. As a result these devices have been predicted to be
smaller, faster, and more powerful than their electric cousins. If we were to look at
a spintronic transistor instead of the common electric one, the amount of current
required to operate such a device will be smaller since the spintronic device can be
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2 CHAPTER 1. INTRODUCTION

manipulated with a small magnetic field, rather than a comparably larger current.
This would protect the integrity of the chip at higher temperatures as well as more
punishing environments and in higher densities. As well as this, the promise of
high-temperature superconductivity could also move the industry forward. If the
chip or internal circuitry of the transistor was fashioned from such a material then
there would be no heat generated by the internal resistance of the circuitry, limiting
or even eradicating such wayward heat from damaging the chip. Current materi-
als that have promise for spintronic devices are the rare-earth nitrides (RENs) due
to their strong and unique magnetic properties as well as our material of interest,
samarium nitride (SmN), which has been shown to be superconducting as well as
a semiconductor [4–9]. The understanding of these materials may be the key to
realising some of these exciting new ideas.

The rare-earth nitrides were first investigated in the 1960s with much promise
for new technological applications however not much progress was made due to
poor stoichiometry of samples which is impacted by the materials’ ready oxidation
in ambient conditions [10, 11]. Recently however progress on the RENs has grown
rapidly due to breakthroughs in the production of high quality epitaxial thin films [9,
12–16]. Some RENs have exhibited semiconducting and ferromagnetic properties [6,
12, 14, 17–20] which has potential for exploitation of the spin of charge carriers
in semiconducting technologies as discussed above. There are now about a dozen
laboratories worldwide reporting growth and study of REN thin films [4].

Samarium nitride stands out from the rest of the RENs since has been reported
to be a low-moment ferromagnetic semiconductor [6–9, 21] which is already interest-
ing enough for potential spintronic devices. However, it is with great interest that
SmN has been observed to be superconducting. The mechanism behind the super-
conductivity in SmN is believed to be based on p-wave superconductivity due to the
spin polarization of its bands [22]. However nothing in depth is known theoretically
about the phenomenon in SmN and the development of such knowledge may lead to
improvements in its critical temperature for viable use in industry. This system may
also inspire the creation of some new material that will lead to commercialisation.
Therefore, in this thesis we will be looking to describe the superconductivity of SmN
in fuller detail than has been done before. We will use an idealised model of SmN’s
bandstructure to study the effect of possible p-wave superconducting pairing in the
region where two energy bands cross close to the Fermi-energy. The existence of
such multi-band p-wave pairing is intriguing and may be the reason as to why we
see superconductivity at all in this system.
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1.1 Rare Earth Nitrides (RENs)

Rare earth nitrides (RENs) are materials that have one of the elements from the
Lanthanide series (from 57 (La) to 71 (Lu)) bonded to nitrogen. The RENs we
will consider are the so called rare earth mononitides where the rare-earth forms
an RE3+ cation and bonds to a single nitrogen N3− anion. RENs show promise in
a wide variety of applications such as the realisation of spintronic devices, infrared
(IR) detectors and as contacts to group III-V compounds [4].

The rare-earths of the Lanthanide series are intriguing as they are the ele-
ments that have increasingly filled 4f orbitals. They have atomic configurations
of [Xe]6s24fn with n ranging from 0 (La) to 14 (Lu) with some elements (La, Ce,
Gd, Lu) having extra 5d electrons. The 4f states that make these elements interest-
ing are very localised and are often called heavy-fermions due to their localisation
and characteristically flat band dispersions. The highly localised nature of the 4f

electrons leads to the electrons having atomic-like properties and heavily influences
the material’s strong magnetic properties. The rare-earths are also the only stable
elements with significant filling of the 4f shell which give them their large spin and
orbital moments, making them desirable for applications that involve large moments
such as spintronic devices.

The RENs all form in the face-centered cubic (FCC) NaCl structure, see fig-
ure 1.1, with lattice constants ranging from 5.305Å for LaN [23] to 4.76Å for
LuN [24]. This structure is also shared by the rare earth pnictides (RE-Vs), of
which Nitrogen is the first pnictide. This structure has made the RE-Vs useful for
theoretical calculations due its simple crystal structure. Many studies have tried
to use these materials to better understand how the localised and strongly corre-
lated 4f electrons alter a material’s bandstructure. The interactions of these 4f

electrons with a material’s bandstructure have been modelled using a variety of dif-
ferent methods [22, 25–44] to varying degrees of success. The RENs also have a
strong exchange interaction which induces large spin splitting of the energy bands
for both the conduction and valence bands. The majority spin has higher energy in
the valence band and lower energy in the conduction band which means that at low
temperatures charge carriers (either electrons or holes) will all be of the majority
spin (minority-spin bands are unoccupied at lower temperatures [4]).

The strong magnetic behaviour exhibited in the rare-earths is also seen on display
in the RENs. An example of this is that almost all RENs are ferromagnetic [45–47].
They only adopt magnetic order at low temperatures however, the highest of which
is the Curie temperature (TC) of GdN (70K) [48, 49]. These magnetic properties
are offshoots of the 4f shell electrons, as stated before. The magnetic properties of
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Figure 1.1: The NaCl structure of the RENs. The large spheres represent the rare
earth cation while the small spheres represent the Nitrogen anion. Picture taken
from [4] (Figure 1).

the RENs can be roughly understood using Hund’s rules and in fact leads to the
breaking of cubic crystal symmetry [22] in the materials. This is due to a non-zero
orbital angular momentum in all the rare-earths, excepting Gd (see figure 1.2).

1.1.1 Properties of Samarium Nitride (SmN)

Samarium Nitride (SmN) is the REN that uses the rare earth Samarium (Sm) which
has an atomic structure [Xe]6s24f 5. It has five filled 4f states and 9 unfilled 4f

states, one of which is close to the Fermi level. This one low-lying unfilled 4f

state is unusual for a REN since photoemission and inverse photoemission show
that the 4f shells are in most cases well below (filled) or above (empty) the Fermi
level [22, 50, 51]. This leads to interesting structure near the Fermi level which will
be the basis of our investigation.

Samarium has a curious magnetic structure due to its number of 4f electrons.
Based on Hund’s rules we expect that the spin and orbital moments of Sm to cancel
each other out, giving a net zero total angular momentum J as seen in figure 1.2.
This property carries over to SmN where Preston et al. [6] have measured SmN to
have a very small moments, less than 0.1µB per Sm ion even in a 6T applied field
at low temperatures. Due to the large spin-splitting in its band dispersions (fig 2.3
and 2.4) it becomes a material with single-spin transport with a small magnetic
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Figure 1.2: The magnetic moments of all the RENs decomposed into spin and orbital
contributions based on a Hund’s rule density matrix [22]. SmN is predicted to have a
close to zero total magnetic moment which has been experimentally verified [6, 7, 21].
Figure taken from [22] (Figure 5(c)).

moment. This is because the only bands available for low energy transport near the
Fermi energy will occur in the majority spin bands. Along with its small moment
SmN is a ferromagnetic material at low temperatures with a TC of around 27K.
Coupled to this is the experimental evidence for SmN being a semi-conductor [4–9],
as compared to being a semi-metal as previously predicted [30]. This allows it to
have exciting potential in spintronic devices, for example it could be paired with
another spin dependent material with a large moment (say GdN) to create a spin-
dependent memory element, as well as having the advantage of being able to inject
spin-polarized electrons into a conventional semiconductor without the deleterious
effects of a fringe magnetic field [52].

SmN has also recently been reported to be superconductive [5] with critical tem-
peratures of less than 5K. This is an unexpected phenomenon to observe in SmN
since superconductivity is generally due to the common superconducting pairing,
s-wave pairing, involving both spin up and spin down electrons. This is impossible
at low energies for SmN due to its spin polarization which means that that the
superconducting pairing must pair together electrons of the same spin. Because of
the large spin-splitting and subsequent spin polarization, SmN opens the door to
unconventional superconducting pairing present in the material, specifically triplet-
pairing in this case. While the coexistence of magnetism and superconductivity in
bulk samples is not unheard of [53–55] what makes SmN special is that its supercon-
ductivity must likely be based on the heavy fermion electrons in the 4f band [5]. The
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necessity of these heavy fermions is so the triplet-pairing may survive in the presence
of disorder in the crystal, which has been established to severely limit the critical
temperature of such superconductors [56, 57]. This allows SmN to become a versa-
tile tool to access new states of quantum matter [58] due to its interplay between
its low moment ferromagnetism, superconductivity, and semi-conductor nature. To
first do this, a fuller understanding is required of the superconductivity at play in
SmN which will lead to accessing some of its promise as well as pave the way towards
understanding other potential new and exotic superconducting systems.

1.2 Superconductivty

Superconductivity is the phenomenon whereby a material loses all electrical resis-
tance below a critical temperature and magnetic field. In conventional superconduc-
tors there is also no internal magnetic field however, as stated before, there have been
reported superconductors where superconductivity and magnetic behaviour have oc-
curred together. This phenomenon was first discovered by Heike Kamerlingh Onnes
in 1911 [59] and the first successful microscopic theory to describe the phenomenon
was developed by Bardeen, Cooper, and Schrieffer and now called the BCS theory
of superconductivity [60]. Superconductors that obey BCS theory are often called
BCS superconductors and these materials generally have low critical temperatures
(<30K) (see figure 1.4). However breakthroughs in new material synthesis have in-
creasingly pushed the upper limit of superconductors critical temperature with some
even having critical temperatures up to 138K [61] in ambient pressure! Such ma-
terials with high critical temperatures may pave the way to innovate new circuitry
designs that take advantage of zero electrical resistances and the resulting energy
savings and efficiency increases. These materials that push the boundaries, how-
ever, are generally not described by the classic BCS framework, a notable exception
being H2S, and are described instead by processes not fully understood which are
all labelled as unconventional superconductivity. Of these unconventional supercon-
ductivity mechanisms, triplet pairing is the type we are interested in for SmN due
to its fully spin-polarized conduction bands. Thus understanding these new types
of materials will be paramount in the pursuit of engineering new and improved ma-
terials to propel us to higher temperature superconductors and new exotic circuitry
possibilities.
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1.2.1 BCS Superconductivity

The BCS framework, as developed in 1957, involves electrons forming pairs in the
presence of a weak interaction which is commonly taken to be the electron-phonon
interaction. These pairs are called Cooper pairs after Cooper showed in 1956 that
at least one such pair would form in a Fermi sea, so long as the interaction was
positive [62]. These pairs form the new ground state of the system and are formed
from electrons that have opposite spin and momenta. Using a mean-field approach
of the system they found that the energy spectrum of the system became gapped, i.e.
they found the existence of an energy region where there could be no quasi-particle
excitations. The only states that can exist within this gap is the ground state of
the system which, in this instance, are the Cooper pairs. This region is labelled the
superconducting gap and usually denoted by ∆. This gap is temperature dependant
and at a critical temperature the gap closes to zero with larger temperatures keeping
it closed and lower temperatures opening it up. At larger energies there are allowed
quasiparticle states but at low enough energies the only particles that will contribute
to transport are the allowed Cooper pairs, which leads to the observed phenomenon
of zero resistance.

As an introduction to the formalism we start with the well known BCS Hamil-
tonian

HBCS =
∑
k,σ

εkc
†
k,σck,σ − V

∑
k,k′

c†k,↑c
†
−k,↓c−k′,↓ck′,↑ (1.1)

where εk is the energy dispersion of an electron with momenta k, V is the effective
interaction strength, σ is the spin of the electron (either ↑ or ↓), and c

(†)
k,σ is the

annihilation (creation) operator for an electron with momentum k and spin σ. This
Hamiltonian can be split into two parts; the first of which describes the energy of
the single particle state |k, σ〉 and the second the effective attractive interaction
which is mediated by phonons. This interaction reads: through the absorption (or
emission) of a phonon two electrons of states |k′, ↑〉 and | − k′, ↓〉 change to the
states |k, ↑〉 and | − k, ↓〉 thereby pairing the electrons into the Cooper pair state
|k ↑;−k ↓〉. The interaction is attractive by the negative sign in the Hamiltonian
and the assertion that the strength V > 0. This interaction strength is assumed
to be non-vanishing for states in a shell of width 2~ωD around the Fermi energy,
where ωD is the Debye frequency. The established way to proceed now is to make a
mean-field approximation. While the Hamiltonian (1.1) conserves particle numbers,
the mean-field Hamiltonian will not. However, the ground state |φBCS〉 is expected
to contain a large number of pairs so we may make the mean-field approximation
by expanding in small fluctuations about a mean value of the operators. In such a
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way we may make the definition

∆ = V
∑
k

〈φBCS|c−k,↓ck,↑|φBCS〉 (1.2)

which allows us to write the mean-field approximation

V
∑
k

c−k,↓ck,↑ = ∆ + (V
∑
k

c−k,↓ck,↑ −∆) (1.3)

where the first term is the mean value of the operators and the term in brackets are
the small fluctuations about the mean value. Combining this result with the original
Hamiltonian (1.1), ignoring constant terms, and measuring the energy dispersions
with respect to the chemical potential µ we come to the mean-field Hamiltonian:

HMF
BCS =

∑
k,σ

(εk − µ)c†k,σck,σ −
∑
k

[
∆c†k,↑c

†
−k,↓ + ∆∗c−k′,↓ck′,↑

]
(1.4)

This Hamiltonian describes what is known as an s-wave superconductor since the
bound electrons have a singlet symmetry in their spins and is therefore s-wave in
its orbital wavefunction (figure 1.3). This lets us write that the solution for ∆ can
be taken as a constant. In general ∆ can be complex and so we may write it by
absorbing its complex nature as a phase factor ∆ = eiϕs|∆|. This Hamiltonian
is also quadratic in operators which means that it may be diagonalised and this
diagonalisation is known as a Bogoliubov transformation. This allows us to write
new operators:

γk,↑ = ukck,↑ − vkc†−k,↓
γ−k,↓ = vkc

†
k,↑ + ukc−k,↓

(1.5)

where the quantum amplitudes uk and vk are related to the probability of pairs
being occupied and obey the relation |uk|2 + |vk|2 = 1. The required form of uk and
vk can be easily worked out and give

uk =

√
1

2

(
1 +

εk − µ
Ek

)

vk = eiϕs

√
1

2

(
1− εk − µ

Ek

) (1.6)

where Ek =
√

(εk − µ)2 + |∆|2 and ϕs is the phase of ∆, which here turns out to
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also be the phase between uk and vk. This results in the diagonalised Hamiltonian

HMF
BCS =

∑
k,σ

Ekγ
†
k,σγk,σ (1.7)

where we see now that Ek are the excitation energies of the quasi-particles and
that the smallest such energy possible is |∆|. This is where we come to call ∆ the
superconducting energy gap. From this the celebrated superconducting ground state
is formulated to be

|φBCS〉 =
∏
k

(γk,↑γ−k,↓)|φ0〉

=
∏
k

vk(uk + vkc
†
k,↑c

†
−k,↓)|φ0〉

(1.8)

The superconducting gap can also be expressed in terms of the ground state and the
definitions of uk, vk and ∆. By starting with the definition (1.2) and performing
some simple operator algebra one can find:

∆ = g
∑
k

〈φBCS|c−k,↓ck,↑|φBCS〉

= g
∑
k

u∗kvk = eiϕs|∆|g
2

∑
k

1√
(εk − µ)2 + |∆|2

(1.9)

This equation is called the self-consistency equation since we find now that ∆ de-
pends on itself. By presuming that ∆ is non-zero one can solve this readily by
transforming the sum over momentum into an integral in energy, the result of which
gives:

|∆| = ~ωD
sinh( 1

gN
)

(1.10)

where N is the density of states and presumed to be constant in the relevant thin
shell about the Fermi energy. This is the classic s-wave pairing superconducting gap
equation at zero temperature and describes well most conventional superconductors.

1.2.2 Unconventional Superconductivity

Where for conventional superconductors much of the microscopic theory has already
been completed and well understood, unconventional superconductors are wild ex-
otic materials that are, at the moment, not completely understood and whose the-
oretical natures are not fully established yet.

Before discussing unconventional superconductivity though it will be instructive
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to briefly touch on the symmetries that the superconducting pair potential must
have. Since we are considering pairing between electrons, any solution that we have
for the system must necessarily be anti-symmetric due to the fermionic nature of
electrons. We know that the wavefunction of the pairing can be partitioned into a
product of a spin part and a space part. Naturally now either the spin part is odd and
the space part is even or the spin is even and space is odd which ensures that, overall,
the wavefunction is anti-symmetric. In BCS theory the spin part of the wavefunction
is odd, and therefore the space part is even, which is what we call singlet pairing.
Generally, to understand the space part of the wavefunction we may expand it in
terms of spherical harmonics, i.e. φspace(r) ∝

∑
l,|m|≤l r

lY m
l . Now since, in BCS,

the space part is even then it will only contain terms that are even (l = 0, 2, . . . ).
This means that the leading term in the expansion is a constant, which is what we
take in normal BCS theory as in equation (1.10). This is commonly labelled s-wave
pairing due to the leading term we take in the spherical harmonic expansion as in
table 1.1. In contrast to this unconventional superconductivity occupies all other

Table 1.1: The names and expansions of the first four Spherical Harmonics.

Spherical
Harmonic Name Expansion

l = 0 s-wave ∝ r0Y 0
0 (θ, φ)

l = 1 p-wave ∝ r1Y m
1 (θ, φ)

l = 2 d-wave ∝ r2Y m
2 (θ, φ)

l = 3 f -wave ∝ r3Y m
3 (θ, φ)

types of pairing; higher singlet harmonics such as d-wave pairing and triplet pairing
such as p and f -wave pairing where the spin now is even which allows for an odd
space part. The spin symmetries of given pairing will determine whether it will have
singlet or triplet space symmetries. Figure 1.3 captures this information and gives
examples of some of the discovered unconventional superconducting materials that
fit the different symmetries.

Unconventional superconductors were first postulated as a response to the dis-
covery of ‘high-temperature’ superconductors which does not fit well with the pre-
dictions of BCS superconductivity. Here ‘high-temperature’ is generally thought to
mean superconductors with a critical temperature of the order of or larger than the
boiling point of Nitrogen (77K). The first proper group of materials that breached
the 77K mark were a new class of ceramics called the cuprates as they all have CuO
in their chemical composition. The first of these was LaBaCuO4 which was discov-
ered in 1986 [63] and had a critical temperature of 35.1K. Soon after there was rapid
increase in the critical temperatures that could be obtained by the cuprates as can
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Figure 1.3: A table that shows the allowed products of space and spin parts of the
superconducting states wavefunction and the resultant symmetries that exist.

be seen from figure 1.4, including mercury, barium, calcium, copper oxide, which
has a critical temperature of 138K at ambient temperature [61]. The cuprates and
their a-typical structure demanded different theoretical understanding compared to
BCS theory. Current understanding places their superconducting pairing as having
d-wave symmetry which was first proposed by Bickers et al. [65]. This was based
upon a description of the material using resonating valence bond theory [66] and
has been confirmed to be a direct consequence of such a description [67]. This has
also been experimentally confirmed by direct observation of the excitation spectrum
as captured by Angle Resolved Photoemission Spectroscopy (ARPES) [68, 69].

Other forms of unconventional superconductivity have been proposed such as p-
wave superconductivity which are part of the spin-triplet class of superconductors.
Spin-triplet pairing involves the superconducting pairing having a symmetrical spin
state, i.e. swapping the two spins does not change the sign of the state. This state,
like most unconventional superconductors, is also characterised by an anisotropic gap
function or order parameter which means that it is not a constant. Triplet pairing,
due to its spin symmetry, requires anti-symmetric orbitals (space part) which if we
expand in spherical harmonics leads to the allowed odd harmonics such as p-wave
(l = 1), f -wave (l = 3), etc. Current key materials to have triplet pairing is the heavy
fermion material UPt3 with reported f -wave pairing [70] and Sr2RuO4 with reported
chiral p-wave pairing [71]. However, up till now there has been scant evidence of p-
wave superconductivity experimentally due its sensitivity to disorder, characterised
by several theoretical studies [56, 57]. The disorder inhibits the superconducting
pairing and lowers the critical temperature of such materials, making it hard to
identify any superconducting behaviour at all. This is expressed in the universal
formula [57] relating the critical temperature Tc to the critical temperature in the



12 CHAPTER 1. INTRODUCTION

Figure 1.4: Graph showing the critical temperatures of known superconductors from
the first discovery in 1911 to 2015. The colours represent different types of super-
conductors found; green circles represent BCS superconductors, light green stars are
heavy fermion based superconductors, blue diamonds are the cuprates, purple in-
verted triangles are Buckminsterfullerene-based superconductors, red triangles are
carbon-allotropes, and orange squares are Iron-pnictogen-based superconductors.
Picture taken from [64].

absence of disorder Tc0:

ln

(
Tc0
Tc

)
= ψ

(
1

2
+

~
4πτkBTc

)
− ψ

(
1

2

)
(1.11)

where ψ denotes the Digamma function, τ the quasiparticle scattering time, and kB
the Boltzmann constant. The increase in impurities will serve to lower τ and will
thus reduce the critical temperature of the materials.

Another form of superconductivity comes from considering multi-band supercon-
ductivity. Up until now we have only talked about superconductivity where electron
pairing occurs between electrons from the same band. However, one can extend this
to systems that have two or more bands and look at either intraband pairing or inter-
band pairing. Intraband pairing would describe pairing between electrons within a
single band. This type of pairing describes superconducting states in MgB2 [72, 73]
and iron pnictides [74, 75]. On the other hand interband pairing pairs electrons
from differing bands and are expected in a wide variety of topological-type materi-
als such as CuxBi2Se3 [76–78]. They are expected in these types of materials since
band-crossings play essential roles in realizing topologically nontrivial states. These
interband couplings can also open the door to both spin-singlet and spin-triplet or-
der parameters as the band index can give the wavefunction its needed asymmetry
as required by the fermionic nature of the electrons. This may be the way in which
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we can construct a spin-triplet s-wave pairing in SmN. However, it has been reported
that such pairing is fragile in the presence of random non-magnetic impurities [79].

In our model of SmN we are attempting to combine p-wave superconductivity in
a two-band environment in the hopes that this will explain the existence of seemingly
p-wave symmetry pairing [5].

1.2.3 p-wave Superconductivity

Since we are attempting to describe SmN with a possible p-wave superconducting
pairing we will describe a simple one-band case as developed thanks to private
communications with Moghadden et al. [80].

Considering one spin polarised band we see that the pairing will be a spin-
triplet: ∆↑↑. This pairing must have an odd orbital form in keeping with fermionic
dynamics as the spin component of the wavefunction is naturally symmetric. In this
type of superconductivity since both spins are in the same direction we may drop
the electron’s spin indices. The Hamiltonian of such a system may be written as:

H =
∑
k

ξkc
†
kck −

1

2

∑
k,k′

Vk,k′c
†
kc
†
−kc−k′ck′ (1.12)

Here ξk is the band dispersion about the chemical potential µ and Vk,k′ is the inter-
action potential which is assumed to be attractive. Here the form of Vk,k′ is unknown
but the functional form is assumed to be a function of |k− k′|. From this point on
much of the formalism follows closely in comparison to BCS theory, but with some
meaningful differences.

The first step is to apply the mean-field approximation to (1.12) by making the
definition for ∆ be:

∆(k) =
∑
k′

Vk,k′〈c−k′ck′〉 (1.13)

Note that in difference to BCS theory that the pairing potential ∆k has explicit k

dependence. This allows us to write the mean-field Hamiltonian:

HM.F =
∑
k

ξkc
†
kck −

∑
k

[
∆kc

†
kc
†
−k + ∆∗kc−kck

]
(1.14)

Now since (1.14) is quadratic in operators it can be diagonalised in the same way
by using the Bogoliubov transformation:

γk = ukck − vkc†−k
γ−k = vkc

†
k + ukc−k

(1.15)
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where again uk and k obey |uk|2 + |vk|2 = 1 and uk and k have the form

uk =

√
1

2

(
1 +

ξk
Ek

)

vk =
∆k

|∆k|

√
1

2

(
1− ξk

Ek

) (1.16)

where Ek =
√
ξ2
k + |∆k|2. Note that at this point there is no difference between this

and the BCS theory as the prefactor ∆k

|∆k|
is just another way of writing the phase

between uk and vk. These choices of quantum amplitudes allows us to once again
write our Hamiltonian as HM.F =

∑
kEkγ

†
kγk and our expected form for the ground

state |φG〉 =
∏

k γk|φ0〉. Here we see that the only differences between BCS and
this spinless p-wave formalism is that the spin of the electrons are not important
and that the pair potential cannot only be a constant and must depend on k in a
non-trivial way.

At zero temperature one can construct the self-consistency equation which can
be easily worked out to be

∆k =
∑
k′

Vk,k′〈c−k′ck′〉 =
∑
k′

Vk,k′u
∗
k′vk′

=
1

2

∑
k′

Vk,k′
∆k√

ξ2
k + |∆k|2

(1.17)

To solve this self-consistently there are three possible pairing symmetries that ∆k

may take. These are governed by the three spherical harmonics Y m
l (l = 1,m =

−1, 0, 1) [81] in the following way:

∆(k)(m) ≡ ∆
(m)
0

k

kF
Y m

1 (θ, ϕ) (1.18)

where m = 0,±1 corresponds to what are called the pz- and (px ± ipy)-pairing
symmetries. In addition to this since Vk,k′ is assumed to be a function of |k − k′|
then it may be expanded in powers of k·k′. Now since the pairing potential is p-wave
and is thus defined by its expansion in spherical harmonics r1Y m

1 (θ, ϕ) as in table 1.1
and in equation (1.18). Terms entering into the gap equation must therefore be of
the same symmetry. We must conclude that the only surviving term of the Vk,k′
expansion will be the term linear in k · k′: V2k · k′. This is due to this linear term
being the only such term to contain the required form in the radial direction, i.e. r1

or in this case k1. Using this result and converting the sum in (1.17) to an integral,
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where Ω is the volume, via

∑
k′

→ Ω

(2π)3

∫
dk′3 =

Ω

(2π)3

∫
dk′k′2

∫ π

0

dθ′ sin θ′
∫ 2π

0

dϕ′; (1.19)

a self-consistent solution can be found for (1.17) for all three p-wave symmetries.
The results of such an integration give the results:

∆
(0)
0 = ωD2e

1
3 exp

(
− 3

λN(εF )

)
∆

(±1)
0 = ωDe

5
6 exp

(
− 3

λN(εF )

) (1.20)

where λ = ΩV2k
2
F and N(εF ) =

k2
F

2vF π2 . We will be adapting this formalism in our
description of SmN’s p-wave superconductivity.

1.3 The k ·P Method

In order to model our REN of choice SmN, we will be utilising the results of the
k · p method [82, 83], the basics of which are reviewed below. As in [82] we begin
with a Hamiltonian containing only a kinetic operator, a periodic potential, and a
spin-orbit coupling term.

H =
p2

2m0

+ V (r) + α0 (σ ×∇V ) · p (1.21)

with p = −i~∇, α0 = ~
4m2

0c
2 and bold symbols represent vector quantities. From

considering the Schrödinger equation for one electron

Hψnk(r) = En(k)ψnk(r) (1.22)

we presume that solutions may take the form of Bloch states

ψnk(r) = eik·runk(r) (1.23)

where the unk(r) corresponding to different bands n are orthogonal to each other,
i.e.

〈unk|un′k〉 =

∫
V

dV u∗nkun′k = δnn′
V

(2π)3
(1.24)

with V the volume of the unit cell.
Now we may substitute the solution (1.23) into (1.22) to find an eigenvalue
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equation for un,k. Initially we apply the operator p and p2 to ψnk to find

p(ψnk) = −i~∇(eik·runk) = ~keik·runk + eik·rpunk (1.25)

p2(ψnk) = −i~∇(~keik·runk + eik·rpunk) = eik·r(~2k2 + 2~k · p + p2)unk (1.26)

Thus (1.22) becomes

eik·r
[
~2k2

2m0

+
~k · p
m0

+
p2

2m0

+ V (r)

]
unk+eik·rα0(σ×∇V )·(~k+p)unk = En(k)eik·runk

[
p2

2m0

+ V (r) + α0(σ ×∇V ) · p
]

︸ ︷︷ ︸
H0

unk +
~
m0

(
k · π +

~
2
k2

)
︸ ︷︷ ︸

Hk·p

unk = En(k)unk (1.27)

with π = p+α0m0(σ×∇V ) and we may write H(k) = H0 +Hk·p. Equation (1.27)
is the k ·p equation and is the starting point for our treatment of SmN. If the set of
unk used form a complete set then one may find the dispersion relation throughout
the entire Brillouin zone by diagonalising 〈unk|H(k)|un′k〉. This is the power of the
k ·p method. As well as this if we only consider one single unk function then we may
apply non-degenerate perturbation theory to find its energy dispersion. Recalling
perturbation theory for a system of the form H = H0 + λV with λ small then the
energy dispersion to second order can be given by

En = E(0)
n + λ〈n(0)|V |n(0)〉+ λ2

∑
k 6=n

|〈n(0)|V |k(0)〉|2

E
(0)
n − E(0)

k

(1.28)

1.4 Outline

The goal of this thesis is to investigate the nature of superconductivity in SmN,
a ferromagnetic semi-conductor, to shed light on recent experimental results that
indicate the onset of superconductivity in this material. To understand the super-
conductivity of SmN we will attempt to find some pair potential ∆ in a system
based on SmN’s bandstructure in a similar way as seen in subsection 1.2.1 and sub-
section 1.2.3. We will also work to see what happens to the pairing if we consider the
case when a band crossing occurs near the Fermi energy. The model Hamiltonians
that we will be working with will all be treated with the mean-field approxima-
tion and assuming that the potential pairing together electrons comes from phonons
in the long wavelength limit. Focus will be given to finding the pairing potential
∆ which contains key information about superconductivity in a given system and
attempts will be made to find it in a closed form (i.e. an analytic expression for ∆).
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In chapter 2 we develop the effective model that we will use to probe the super-
conductivity of SmN. In this chapter we will consider the bandstructure of SmN,
where recent experiments have placed the 4f energy band close to the bottom of
the conduction band. We assume that the electron-phonon interaction is the mech-
anism through which we expect the electrons to pair to one-another. As such, we
form a model for this interaction in the long wavelength model which we may input
into our model Hamiltonian. This is done by considering how the energy bands will
change due to a phonon travelling through the crystal, which allows us to predict
how strong the interaction will be. Next, in chapter 3 we will investigate p-wave
pairing present between electrons in SmN’s 5d-band. We apply the mean-field ap-
proximation to our model Hamiltonian and diagonalise this system in order to find
an expression for the pair potential. This is done by constructing a self-consistency
equation which we attempt to solve. This has partial success in generating analytic
solutions but we are able to find the functional dependence on the effective coupling
strength for the resultant pairing. After this, in chapter 4, we instead consider the
electron-phonon interaction interacting with energy bands that have hybridised to-
gether. We did this to search for more robust pairing since we expect the p-wave
pairing found in the previous chapter to be sensitive to disorder. This hybridisation
has the effect of ‘mixing’ the pair potential that we found previously from which we
will find new pairing between electrons in both of the hybridised bands. Finally, we
conclude the thesis in chapter 5 by summarising the results in the previous chapters
and providing avenues for potential continuation of this research in the future.
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Chapter 2

The Model

2.1 Band-Structure of SmN

The bandstructure of a material is a plot of the energy dispersions of the material
in reciprocal space, or k space. A simple example is give in figure 2.1 where the
energy bands of the semi-conductor Silicon (Si) are shown as a function of electron
wavevector k. We see that as with all semi-conductors there is a band gap; a range
of energies where no states are available for occupation. The conduction bands are
those bands above this band gap while the valence bands are those below. Si is in
fact an example of a semi-conductor with an indirect band gap since the top of the
valence band (at Γ) is not in line with the bottom of the conduction band (close to
X). This is the same type of semi-conductor as SmN, although SmN has a more
complicated structure overall. The y-axis moves up in energy and the x-axis along k

space, which does not move in a straight line but rather moves from predetermined
points of high symmetry such as the Γ point or the X point. These points will
depend on the shape of the crystal structure of the material. We are studying SmN
which has a cubic crystal structure, therefore its reciprocal space has a body centered
cubic (BCC) structure. Figure 2.2 shows the high symmetry points for such a crystal
and how they connect to each other. At zero temperature the Fermi level will sit
directly in the middle of the band gap, although this can be moved up and down by
doping the semiconductor with either extra electrons or holes in the form of foreign
atoms. In SmN’s case this can also be achieved by introducing Nitrogen vacancies.

For most materials, bandstructure calculations are a straightforward task that
yield widely accepted results. The calculated bandstructures are usually probed
by conducting experiments on the material and finding its density of states (DOS)
among other techniques. However, there are materials where bandstructure calcu-
lations are not so easy to compute. The RENs are one such material class that

19
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This content has been removed.

Please consult the given reference in the caption for further
details.

Figure 2.1: The bandstructure of Silicon. There is a band-gap between the top of
the valence band at the Γ point and the bottom of the conduction band around the
X point. The positions of these points show that it is an indirect band-gap semi-
conductor since electrons with just enough energy to be excited into the conduction
band must also be shifted in momentum (k) space by an incident phonon. Figure
taken from [84] (see section 2.1.5 under the Semiconductor Physics chapter).

have bandstructures that are complicated to model due, almost exclusively, to the
highly localised and correlated 4f electrons. There has been difficulty isolating the
proper bandstructure for SmN due to sparse experimental data and the difficulties
of properly modelling the effects of the atomic-like 4f electrons. An example of
SmN’s bandstructure is seen in figure 2.3 which has been calculated by Larson and
Lambrecht et al. [22]. The figure shows the highly atomic 4f bands as the flat
bands down at -5eVs and below and up at 5eVs and above, with the one unoccupied
majority-spin 4f band hybridising with the conduction band near the Fermi level.
It also shows an optical band gap between the conduction band and the valence
band at the X point.

There are multiple similarities between the different bandstructures that re-
searchers have calculated such as the five occupied 4f bands far below the Fermi
energy and the top eight unoccupied 4f bands far above the Fermi energy and the
observed optical band-gap at the X point. However, what has been debated is where
to pin the unoccupied majority 4f band that is closest to the Fermi level and how
to model the magnitude of the indirect band gap we expect it to have due to its
semi-conductor behaviour. Some calculations do not take the localised nature of the
4f bands into account very well which push it far above the Fermi energy [86, 87]
while some calculations and experiments place the 4f band near the conduction
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Figure 2.2: The high symmetry points in reciprocal space of SmN. The shaded
polygon is the shape of the first Brillouin Zone of SmN. Figure taken from [85].

band minimum [22, 88]. However, we are fortunate to have recent experimental
studies that have probed for the exact location of this closest 4f band [8, 22, 89].

Informed by these experimental results and the general form of the bandstructure
calculations we suppose that the shape of the bandstructure for bands close to the
Fermi energy is as shown schematically in figure 2.4. The Sm 4f band is assumed
to be flat and dispersion-less for the most part and meets the Sm 5d band near
the X point. This forms the bottom of the conduction band and will be the focus
of the model. As discussed before there is significant exchange splitting within
the bands as well. Since there is large exchange splitting of the bands we may
treat each band as spin-polarized i.e. containing electrons of one spin. This also
naturally leads to the breaking of time reversal symmetry in the crystal. There
is only one spin majority Sm 4f band that is located near the Fermi level as in
figure 2.4 and the other unoccupied bands are calculated to be at energies ≥ 5eV [22,
87] allowing us to ignore these bands in our low energy model. The location of
the Fermi level EF is not well known as well since the size of the indirect band
gap between the valence band maximum (VBM) (attributed to the Nitrogen’s 2p
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Figure 2.3: Calculated bandstructure of SmN using the LSDA+U approach [22].
The occupied 4f bands are all located well below the Fermi level at −5eV. There
is a band crossing between the lowest unoccupied 4f level and the Sm 5d level at
the X point. There is also significant spin splitting in the band levels as indicated
by the dotted line. In this bandstructure calculation there does not seem to be an
indirect band-gap between the majority spin bands. Figure taken from [22] (Figure
8).

electrons) at the Γ point and the conduction band minimum (CBM) at the X point
is not well known. Band calculations have reported [22, 90] that there may in fact
be no indirect band-gap, however, this is not consistent with experiment [4–9] which
reports semiconductor behaviour at temperatures below the ferromagnetic TC . Thus
we will assume that there is a definite indirect band gap for the majority spin bands
which lie lower (higher) in energy for the conduction (valence) band. From this we
may then disregard the N 2p bands in our model since these bands should play no
role in the transport properties of the conduction band due to the band gap.

2.2 The Effective Model of SmN

Moving from the bandstructure of SmN as developed in the preceding section we
may now create an effective model from the bands that are close to the Fermi level.
For our model we will only consider the spin minority and majority Sm 5d and spin
majority Sm 4f bands at the X point to be relevant for transport properties and for
superconductivity. As such we expect to be able to write an effective Hamiltonian



2.2. THE EFFECTIVE MODEL OF SMN 23

This content has been removed.

Please consult the given reference in the caption for further
details.

Figure 2.4: Schematic representation of the bandstructure for SmN. The Sm 4f
band is presumed to be flat and meets the parabolic Sm 5d band at the X point
(hysteresis not shown). There is significant spin splitting within the bands as seen
by the difference between the majority spin bands (solid black) and the minority
spin bands (dashed red). Figure taken from [8] (Figure 1).

for this system of the form

HX =

Ed↓(k̄) S.O. S.O.
S.O. Ed↑(k̄) Ak̄

S.O. Ak̄ Efb(k̄)

 (2.1)

where k̄ is k measured from the X point, Ed↓,(↑)(k̄) is the energy dispersion of the 5d

minority (majority) spin bands, Efb(k̄) is the energy dispersion of the 4f majority
spin band, S.O. is the spin-orbit coupling between the 5d majority and minority
spin bands and between the 4f and minority 5d bands, and Ak̄ is an interaction
term between the majority spin 4f and 5d states found via the k · p method. We
also presume that at this stage the S.O. terms will be negligibly small due to the
large spin-splitting between bands in SmN. To find the elements A we first apply
the k · p method at the X point.

We begin by calling the k vector at X kX and define k̄ to be the k vector around
kX i.e. k̄ = k− kX . When k = kX equation (1.27) is now

H0unkX +
~
m0

(
kX · π +

~
2
k2
X

)
unkX = En(kX)unkX
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and we presume now that we are able to solve for and find En(kX). As in [91] we
can write

HkX = H0 +
~
m0

(
kX · π +

~
2
k2
X

)
(2.2)

which will act as our unperturbed Hamiltonian at kX . Now we can re-express H(k)

as

H(k) = H0 +Hk·p

= H0 +
~
m0

(
k · π +

~
2
k2

)
+

~
m0

(
kX · π +

~
2
k2
X

)
− ~
m0

(
kX · π +

~
2
k2
X

)
= HkX +

~
m0

(
(k− kX) · π +

~
2

(k2 − k2
X)

)
︸ ︷︷ ︸

Hp

(2.3)

and so we may now treat Hp as our perturbation to HkX . Since we would like to
write everything in terms of k̄ let us rearrange Hp to a suitable form first.

Hp =
~
m0

(k− kX) · π +
~2

2m0

(k2 − k2
X) +

~
m0

(k− kX) · ~kX −
~
m0

(k− kX) · ~kX

=
~
m0

(k− kX) · (π + ~kX) +
~2

2m0

|k− kX |2︷ ︸︸ ︷
(k2 + k2

X − 2k · kX)

=
~
m0

(
k̄ · (π + ~kX) +

~
2
k̄2

)
(2.4)

Now we may perform perturbation theory about the X point by presuming we know
the solution set unkX . In this basis we now find for the 5d majority spin band

Ed(k̄) = Ed(k̄ = 0) + 〈d|Hp|d〉+
∑
n′ 6=d

|〈d|Hp|n′〉|2

Ed(k̄ = 0)− En′(k̄ = 0)

= Ed(0) +
~
m0

〈d|k̄ · (π + ~kX) +
~
2
k̄2|d〉+

~2

m2
0

∑
n′ 6=d

|〈d|k̄ · (π + ~kX) + ~
2
k̄2|n′〉|2

Ed(0)− En′(0)

= Ed(0) +
~2

2m0

k̄2 +
~
m0

k̄ · (~kX + 〈d|π|d〉) +
~2

m2
0

∑
n′ 6=d

|k̄ · 〈d|π|n′〉|2

Ed(0)− En′(0)

where |n〉 = unkX and 〈n|W |n′〉 = (2π)3

V

∫
V
dV u∗nkXWun′kX for convenience. Consid-

ering that the 5d band is at an extremum at kX then we also expect that any linear
terms in the dispersion will go to zero, i.e. ∂En(kX)

∂ki
= 0. Also by only considering

the lower 2 × 2 block of (2.1) the diagonal element Ed↑ will not have second order
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corrections from the 4f band since these will go on the off-diagonal for the Ak̄ term.
For now we consider only an isotropic case. Thus we may write

Ed↑(k̄) = Ed↑(0) +
~2

2m0

k̄2 +
~2

m2
0

k̄2
∑

n′ 6=d↑,f

|〈d ↑ |π|n′〉|2

Ed(0)− En′(0)

= Ed↑(0) +
~2

2md↑
k̄2

(2.5)

with 1
md↑

= 1
m0

+ 2
m2

0

∑
n′ 6=d↑,f

|〈d↑|π|n′〉|2
Ed(0)−En′ (0)

. Naturally based off of the bandstructure
diagram we are working with Ed↓ will have the same from as Ed↑ but with an
additional Ees constant representing the exchange splitting of the bands. This term
can be absorbed into a Ed↓(0) term, i.e. Ed↓(0) = Ees + Ed↑(0). Similarly for Efb,
recognizing that the band is assumed to be flat, we arrive at

Efb(k̄) = Efb(0) +
~2

2mfb

k̄2 (2.6)

with 1
mfb

= 2
m2

0

∑
n′ 6=d↑,f

|〈f |π|n′〉|2
Efb(0)−En′ (0)

and mfb assumed to be very large. Now we may
write our off-diagonal Ak̄ terms as 〈d|H(k)|f〉 and 〈d|H(k)|f〉 which gives

〈d ↑ |H(k)|f〉 = 〈d ↑ |HkX +Hp|f〉

= 〈d ↑ |Hp|f〉 = 〈d ↑ | ~
m0

(
k̄ · (π + ~kX) +

~
2
k̄2

)
|f〉

=
~
m0

k̄ · 〈d ↑ |π|f〉

(2.7)

Putting this all together equation (2.1) now looks like

HX =


Ed↓(0) + ~2

2md↓
k̄2 S.O. S.O.

S.O. Ed↑(0) + ~2

2md↑
k̄2 ~

m0
k̄ · 〈d ↑ |π|f〉

S.O. ~
m0

k̄ · 〈f |π|d ↑〉 Efb(0) + ~2

2mfb
k̄2

 (2.8)

However, we are also assuming that there is significant spin-splitting in SmN’s
energy bands due to the broken symmetry of the 4f electrons below the Fermi level.
From this we also then expect that any contributions from the spin-minority 5d

band will be negligible since the spin splitting will make any spin-orbit contributions
negligible. Continuing on, for the sake of simplifying the notation, we will now drop
the bar from k̄ so that k is now the wavevector measured from the X-point. We
expect now the existence of pairing for superconductivity to occur in the two-band
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system of the majority-spin 4f and 5d bands like so:

HN(k) =

[
εd,k k ·P

k ·P∗ εfb,k

]
(2.9)

where εd,k = Ed↑(0) + ~2

2md↑
k2, εfb,k = Efb(0) + ~2

2mfb
k2, and P = ~

m0
〈d ↑ |π|f〉.

For simplicity’s sake, as in both (1.3) and (1.14), we will also measure the band
dispersions with respect to the chemical potential µ. As well as this we will assume
that

2.3 The Electron-Phonon Interaction

As in BCS theory we assume that the interaction that mediates superconductivity
is the electron-phonon interaction. The electron-phonon interaction is a process
whereby two electrons can transfer momentum via a phonon wave in the material. In
normal BCS superconductivity the effect provides a positive interaction between two
electrons with equal and opposite momenta and spin to be linked to form the Cooper
pairs upon which superconductivity operates. For more exotic pairing such as p-wave
pairing, there have been different mechanisms proposed for the attractive interaction
between electrons, for example spin fluctuations [92]. However, for our case to
simplify matters we will consider the effective interaction to be due to phonons.
In the same vein as BCS theory then we expect a similar formalism for this effect
between electrons in our two-band system. For this model we will only consider long
wavelength acoustic phonons as it will simplify the considerations we need to make
for the effective potential.

We begin by considering the changes that an incoming phonon will have on a
materials energy dispersion. Now informed by arguments made by Kittel [93] we
write the deformation of the energy dispersions due to long wavelength acoustic
phonons as:

εn(k, r) = ε0,n(k) + C1,n∆(r) (2.10)

with ε0 being the unperturbed energy dispersions, C1,n = ∂ε0,n
∂∆
|∆=0 a constant, and

the dilation of the lattice, ∆, which is expressed as

∆(r) = i
∑
q

1√
2ρωq

|q|
(
bqe

iq·r − b†qe−iq·r
)

(2.11)

where ρ is the density, ωq is the phonon dispersion, and b(†)
q is the phonon annihilation

(creation) operator. We now consider the electron-phonon vertex as seen in figure 2.5
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where either a phonon is being absorbed or emitted from the scattering of an electron
from a state |n,k〉 to |n′,k′〉. We may write this vertex as an overlap integral of

�q

n,k

n′,k′

Figure 2.5: Vertex component for the electron-phonon interaction.

the form:
An,n′(k,k

′) =

∫
dr3ψ†n′k′(r)C1,n∆(r)ψnk(r) (2.12)

To compute this integral we first recall equation (1.23) where we express the wave-
functions ψ in terms of Bloch states. Since we also work within the k ·P scheme we
may also express our Bloch states perturbatively as we have done with our energy
dispersions (2.5, 2.6), i.e. to first order

unk = unkX +
~
m0

∑
n′ 6=d↑,f

〈n|k · π|n′〉
En(0)− En′(0)

un′kX (2.13)

where k is measured from the X-point. Since we are only interested in the d and
f bands at the moment we may approximate the Bloch states then by unk ≈ unkX .
We now may express An,n′(k,k′) in the following way:

An,n′(k,k
′) = iC1,n

∑
q

1√
2ρωq

|q|

×
∫
dr3u∗n′kXunkX

(
bqe

i(k−k′+q)·r − b†qei(k−k
′−q)·r

)
c†n′,k′cn,k (2.14)

Now since the Bloch functions are also periodic in the lattice then the factors
ei(k−k

′±q)·r in the integral restrict the wavevectors to obey k − k′ ± q = 0 or G

(G a reciprocal lattice vector). If we have that k − k′ ± q = 0 then the wavelike
portion of the integral becomes a constant. On the other hand if k − k′ ± q = G

then this portion of the integral remains non-constant. However, since we are in
the long wavelength limit we may approximate the wavelike portion of the integral
in this case to be constant over the unit cell to simplify the integral. Now we may
treat the u∗n′kXunkX term separately. Due to the orthogonality of the un,k Bloch
functions (1.24) we may evaluate the integral

∫
dr3u∗n′kXunkX to be δn,n′ since we

are considering, in the spirit of the k · P method, the un,k only at the X point.
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�
q

n,k n,k′

n,k± q n,k′ ∓ q

�
q

n,k n′,k′

n,k± q n′,k′ ∓ q

Figure 2.6: Electron-electron interaction terms mediated by the emission and ab-
sorption of virtual phonons. The changed momenta k + (−)q correspond to the
absorption (emission) of a phonon.

Due to the periodicity of the Bloch functions this will be the same in every unit cell
in the crystal. Now the remaining wavelike part of the integral may be integrated
simply to unity as long the wavevector restrictions are observed. Thus we now write
(2.14) as

An,n′(k,k
′) = iC1,n

∑
q

1√
2ρωq

|q|δn,n′
(
bqδk′−k,q − b†qδk−k′,q

)
c†n′,k′cn,k (2.15)

From the form of (2.15) we immediately see that the matrix element prohibits scat-
tering events that shift an electron into a different energy band, i.e. the diagram in
figure 2.5 may only scatter to the same band (n = n′). Therefore we can express
An,n′ as just An. We may simplify An further by evaluating the q sum to gain

An(k,k′) = iC1,n
|k′ − k|√

2ρ

(
1

√
ωk′−k

bk′−k −
1

√
ωk−k′

b†k−k′

)
c†n,k′cn,k (2.16)

since |k′−k| = |k−k′|. This model as described by Kittel [93] is also only valid for
acoustic phonons since the dilation is only related to acoustic phonons and that we
have not included long-range electrostatic potentials which would arise from optical
phonon deformations. Therefore the phonon frequencies ωq can be expressed as:

ωq = vs|q| (2.17)

where vs is the speed of sound in the material. Now we may write An as

An(k,k′) = iC1,n
|k′ − k|√
2ρωk′−k

(
bk′−k − b†k−k′

)
c†n,k′cn,k (2.18)

where we can now identify the prefactor that will give us the strength of the electron-
phonon interaction:

Mn(k′ − k) = iC1,n
|k′ − k|√
2ρωk′−k

(2.19)

We note that this is based on the assumption that both the d and f bands can
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be treated with the Born-Oppenhiemer adiabatic approximation, which may not be
the case for the f electrons due to their highly atomic-like behaviour and slow group
velocity due to their flat dispersion.

The interaction terms themselves will be composed of two vertices as we see
from the Feynman diagrams (figure 2.6). This means that while a single vertex
cannot swap band indices the full interaction does not prohibit joining two vertices
with different band indices together. So now if we were to have an interaction term
between electrons in bands n and n′ we would be able to write the interaction term
as

Vn,n′ = MnM
∗
n′ = C1,nC1,n′

(k′ − k)2

2ρωk′−k
(2.20)

If we also use the expression for the phonon frequencies (2.17) then we may write

Vn,n′ =
C1,nC1,n′

2ρvs
|k′ − k| = V |k′ − k| (2.21)

We see here that the relative strength of these interactions are purely based on the
constants C1,n and that the interaction will depend on |k′ − k| which is even in
(k′ − k).
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Chapter 3

Triplet Pairing Superconductivity in
SmN

3.1 The Effective Hamiltonian

We begin our investigation into superconductivity in SmN by first considering the
normal state Hamiltonian of our system (2.9) which we will rewrite in the following
way:

HN(k) =

[
εd,k eiθk ·P

e−iθk ·P εfb

]
(3.1)

where now we have made explicit the (possible) complex nature of the k · P term
through the introduction of the phase factor eiθ. As explained before this Hamil-
tonian will describe the two-band system close to the Fermi level. The 5d band
here will have a quadratic dispersion while we assume that the 4f band will be
dispersionless since the 4f band hosts highly localised electrons which orbit close to
the nucleus of the Sm atom. The off-diagonal elements in (3.1) will act as a term
to introduce band hybridisation into the system. Band hybridisation is when one
band mixes with another such that the new hybridised band now has characteristics
of both of the unmixed bands. The hybridisation serves also to introduce avoided
crossings at the points where the two bands would normally intersect. As an ex-
ample, the dispersions in our case gives new hybridised bands of the form seen in
figure 3.1. We see that instead of the 4f band intersecting the 5d band as in fig-
ure 2.3 the bands form an avoided crossing such that the states do not overlap. Such
hybridisation between the bands can even be seen in the calculated bandstructure
of SmN in figure 2.3 where the red of the 4f bands give way to the blue of the 5d

band and vice versa.
We wish to add to the Hamiltonian (3.1) the phonon interaction terms that

31
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Figure 3.1: A plot of how the two energy bands εd,k and εfb will hybridise with
each other. The presence of the off diagonal terms (non-zero k · P) causes the
hybridization of the bands. The functional forms of these bands can be recovered
by diagonalising (3.1).

will lead to the superconductivity in SmN. We do this by writing (3.1) in the second
quantisation formalism as we have seen in (1.1) and (1.12). To do this we are guided
by a previous s-wave two-band Hamiltonian by Kristoffel et al. [94] and we construct
our Hamiltonian in a similar way. The Hamiltonian of Ref [94] includes terms that
pairs electrons in the same band (intra-band pairing). However, unlike this previous
Hamiltonian we are in a spin polarised system and so we may drop the spin degree
of freedom. We will also add in another term that forms pairings between electrons
in different bands (inter-band pairing) so that the Hamiltonian includes all possible
pairing combinations that could exist in the system. The resultant Hamiltonian
reads:

H =
∑
n,k

εn,ka
†
n,kan,k +

∑
k

[k ·Peiθa†d,kafb,k + H.c.]

+
1

2

∑
n,k,k′

Vnn(k,k′)a†n,ka
†
n,−kan,−k′an,k′

+
∑
k,k′

Vdf (k,k
′)a†d,ka

†
fb,−kafb,−k′ad,k′

+
∑
k,k′

V ′df (k,k
′)[a†d,ka

†
d,−kafb,−k′afb,k′ + a†fb,ka

†
fb,−kad,−k′ad,k′ ]

(3.2)

where n is the band index (either d or fb), εn,k is the energy dispersion for each
band, Vnn′(k,k′) is the matrix element for pairing between bands n and n′, a(†)

n,k is
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the annihilation (creation) operator for an electron in band n with momentum k,
and H.c. stands for the Hermitian conjugate. In (3.2) we note that the interaction
terms here are positive which generally indicate repulsive interactions. While this is
in contrast to the Hamiltonians in (1.1) and (1.12) we shall see later that the specific
choice of potential (2.21) will give rise to an attractive interaction.

The first line of the Hamiltonian is merely a rewriting of the matrix (3.1) while
the second and third lines describe intra- and inter-band electron pairing. The final
line however we immediately recognise as a pairing that scatters paired electrons
from one band into the other which, by the result (2.15) in chapter 2, we know is
forbidden. Hence we may remove this term entirely from consideration and rewrite
our second quantisation Hamiltonian as

H =
∑
n,k

εn,ka
†
n,kan,k +

∑
k

[k ·Peiθa†d,kafb,k + H.C.]

+
1

2

∑
n,k,k′

Vnn(k,k′)a†n,ka
†
n,−kan,−k′an,k′

+
∑
k,k′

Vdf (k,k
′)a†d,ka

†
fb,−kafb,−k′ad,k′

(3.3)

As said before the second line describes intra-band pairing which pairs two electrons
in the same band together into a Cooper pair. We see that the electrons in this case
must both have the same spin (spin up in this case) and therefore must have even
spin parity. This means that this pairing must be of triplet nature (as in fig 1.3)
which we likely suspect to be p-wave since it is the leading term (l = 1) in an odd
expansion in spherical harmonics (see table 1.1). This term, then, leads to p-wave
pairing in both the f and d bands. The third term on the other hand describes
inter-band pairing; pairing between two electrons in different bands. The form of
such a pairing is evocative due to the structure of its band indices. If one compares
this term to the one in equation (1.1) we can immediately see the similarity of the
terms by substituting the band indices with differing spins. The form of this pairing
means that now we can construct a pairing that has triplet pairing in the spins but
singlet pairing in the band indices. In this case, now, such a term will describe an
overall singlet pairing in the material, indeed such a possibility is one of the enticing
reasons for considering multi-band superconductivity in the first place.

While the singlet pairing term is appealing due to the predisposition of such
symmetries surviving random non-magnetic impurities we must first look to the
specific form of the interaction that we have developed in the preceding chapter.
Equation (2.21) clearly shows that the strength of the electron-phonon interaction
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will be dependent on the constants C1,n. Remembering the specific form of these
constants C1,n = ∂ε0,n

∂∆
|∆=0 we see that the constant is dependent on the change in

the energy dispersion with respect to the dilation of the lattice i.e. how much will
the energy dispersion be deformed by some change in the lattice. Considering now
the relative strengths of the C1,n for the d and f bands we expect the coupling
strength for the f electrons to be smaller than that of the d electrons. As well as
reported small 4f coupling strength in Sm compared to other RE elements [86], our
physical reasoning for this conclusion is that the phonons mediating this process are
created via the application of stress to the crystal which in turn changes the atomic
coordinates of the crystal. Since the 4f electrons are highly localised and orbit close
to the nucleus of the samarium atoms then some shift in atomic coordinates will
not impact the energy dispersions of these states as they will simply move with the
atom as the phonon passes through the crystal. Compared to the 4f band, the 5d

band will be more affected by the compression and expansion of the crystal since the
broad dispersion of the 5d band is spread throughout the crystal and dependent on
the periodicity of the lattice. The alterations to the periodicity of the lattice, caused
by the passage of the phonon, will thus disrupt this broad dispersion. Therefore we
will find that the constants controlling the strength of the phonon interaction are
such that C1,d � C1,f in this case. Thus we may take the potentials Vff and Vdf to
be negligible compared to the Vdd term. This leads us to discarding the singlet term
in (3.3) and the triplet term for the f band and allows us to write our Hamiltonian
simply as

H =
∑
n,k

εn,ka
†
n,kan,k +

∑
k

[k ·Peiθa†d,kafb,k + H.C.]

+
1

2

∑
k,k′

Vdd(k
′ − k)a†d,ka

†
d,−kad,−k′ad,k′

(3.4)

This means we will now only consider triplet pairing of the electrons in the d band.

3.2 The Mean Field Hamiltonian

In order to find the gap equation for for the Hamiltonian (3.4) we will use the mean
field approximation as in sections subsection 1.2.1 and subsection 1.2.3. As before
we will construct the mean field Hamiltonian by introducing the pair potential ∆d

which we define as
∆d(k) = −

∑
k′

Vdd(k,k
′)〈ad,−k′ad,k′〉 (3.5)



3.2. THE MEAN FIELD HAMILTONIAN 35

The reason for defining the pair potential (3.5) with a minus sign will become obvious
once we consider more carefully the specific form of Vdd. This lets us write the
following mean field Hamiltonian:

HM.F. =
∑
n,k

εn,ka
†
n,kan,k +

∑
k

[k ·Peiθa†d,kafb,k + H.C.]

− 1

2

∑
k

[
∆d,ka

†
d,ka

†
d,−k + H.C.

] (3.6)

We may also rewrite this Hamiltonian using Nambu notation to express it as a ma-
trix. Writing the Nambu spinors as ~ak† = [a†d,k, a

†
fb,k, ad,−k, afb,−k] the Hamiltonian

(3.6) can be rewritten as

HM.F. =
1

2

∑
k

~ak
†


εd,k eiθk ·P −∆d,k 0

e−iθk ·P εfb 0 0

−∆∗d,k 0 −εd,k e−iθk ·P
0 0 eiθk ·P −εfb

~ak (3.7)

Now that we have the Hamiltonian (3.7) in this form we can diagonalise this matrix
with some unitary transformation so that in the end we may write and solve the self
consistency equation for ∆d.

We now look into the form of the interaction term in more detail to uncover how
we generate our attractive interaction from a seemingly repulsive interaction term.
We begin with some potential (suppressing spin indices since we are still in a spin
polarised system) in the usual way

V =
1

2

∑
k,k′,q

V (q)c†k′+qc
†
k−qckck′ (3.8)

This equation describes a process that imparts some momentum q to an electron at
the expense of another electron. We then would like to set up paired electrons of
opposite momenta, so we take k = −k′ which gives:

V =
1

2V ol

∑
k′,q

V (q)c†k′+qc
†
−k′−qc−k′ck′

=
1

2V ol

∑
k,k′

V (k− k′)c†kc
†
−kc−k′ck′

(3.9)

where in the second equality we have taken q = k−k′. Until this point we have said
nothing about the nature of this potential but now we assume that the potential is
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repulsive, like that of Coulomb repulsion or phonon coupling. Now from (2.21) we
have that V (k − k′) = V |k − k′| where V is positive and so V (k − k′) is always
positive, i.e. the potential is repulsive. However, what we may do is expand V (k−k′)

in the following way so that

V (k− k′) = V |k− k′| ≈ V0 + V2(k− k′)2 +O[(k− k′)2]

= V0 + V2(k2 + k′2)− 2V2k · k′ +O[(k− k′)2]
(3.10)

Now we see that from a purely repulsive potential we find that there is an attractive
component of the potential. In normal BCS theory this repulsive component of the
potential is usually cancelled out during the necessary operator algebra and we need
only to keep the surviving constant terms. However, in the case of the triplet pairing
we do not have the same result, in fact if we take the potential to be the leading
constant term then we would find that our pairing potential is zero. Performing
operator algebra with the specific form of Vdd (2.21) on the pair potential as defined
in (3.5) we find

∆d(k) =
V

2

[∑
k′

|k− k′|〈ad,−k′ad,k′〉+
∑

k′→−k′
|k− k′|〈ad,−k′ad,k′〉

]
(3.11)

where we have split the sum into two equal parts and are intending to send the
second sum from k′ → −k′. By sending k′ → −k′ in the second sum we are able to
write now:

∆d(k) =
V

2

∑
k′

[|k− k′|〈ad,−k′ad,k′〉+ |k + k′|〈ad,k′ad,−k′〉] (3.12)

Now by making use of the fact that the anticommutater of two different fermion oper-
ators is zero (i.e. {aα, aβ} = δαβ) we may make the swap 〈ad,k′ad,−k′〉 = −〈ad,−k′ad,k′〉
in (3.12). This allows to write ∆d(k) in the following way:

∆d(k) =
1

2

∑
k′

[V (|k− k′| − |k + k′|)] 〈ad,−k′ad,k′〉 (3.13)

The main takeaway from this new form of ∆d,k has the effective potential as Vdd(k−
k′) − Vdd(k + k′). Now connecting (3.10) to this result we see that Vdd(k − k′) −
Vdd(k + k′) will be purely attractive as a potential since:

Vdd(k− k′)− Vdd(k + k′) ≈ −4V2k · k′. (3.14)
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This is to be expected from Akhiezer et al. [95] since we are looking fundamentally at
p-wave pairing in the d-band. Remembering that this came from a purely repulsive
potential we now see why we have started with such a repulsive interaction term
in our second quantisation Hamiltonian. We see now the reason for introducing a
minus sign in the pair potential (3.5) as we may now modify the pair potential to
have the following form:

∆d(k) = −1

2

∑
k′

[Vdd(k− k′)− Vdd(k + k′)] 〈ad,−k′ad,k′〉

= 2V2

∑
k′

k · k′〈ad,−k′ad,k′〉.
(3.15)

We note that the constant V2 will have units of energy per wavevector squared since
it is a second order expansion of Vdd(k−k′). We have considered a model where the
interaction term is mediated by phonons. However, the results which we will present
in the following rely only on the property where Vdd(k−k′)−Vdd(k+k′) ≈ −4V2k·k′,
irrespective of how the interaction is mediated.

3.2.1 Diagonalising the Mean-Field Hamiltonian

We are now in a position to diagonalise the mean-field Hamiltonian (3.7). Consid-
ering just the matrix in the Hamiltonian (3.7) and calling it Hk we wish to find a
unitary matrix U such that

U †HkU =


E1,k 0 0 0

0 E2,k 0 0

0 0 E3,k 0

0 0 0 E4,k

 = Hdiag
k (3.16)

where the En,k, n = 1, . . . , 4 are the eigenenergies of the new diagonalised system.
The way to do this is of course the foundational theorem from linear algebra whereby
if there are n distinct eigenvalues of an n × n Hermitian matrix (En,k in this case)
then such a diagonalisation is possible where the columns of the required U will be
the eigenvectors associated with each eigenvalue1. Now all we need to do is introduce
a substitution to give us a matrix product as in (3.16) which we do in the standard
way. Since we have that HM.F. ∝ ~ak

†Hk~ak then we can move to a new operator

1While it is true that not every eigenenergy from a Hamiltonian need be distinct we will not
need to worry about such a case here.
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system, ~γk, with the following substitution:
ad,k

afb,k

a†d,−k
a†fb,−k

 = U


γ1,k

γ2,k

γ†1,−k
γ†2,−k

 (3.17)

This substitution is valid since we can write:

HM.F. =
1

2

∑
k

~ak
†Hk~ak

=
1

2

∑
k

~γk
†U †HkU~γk

=
1

2

∑
k

~γk
†Hdiag

k ~γk (3.18)

which is what we require. As stated before the U we require will be of the form

U =
[
w1,k, w2,k, w3,k, w4,k

]
(3.19)

where the wn,k are the associated eigenspinors of the eigenenergies En,k. It will also
be useful later to define now the eigenspinors as having the following form:

wn,k =
[
u1,n,k, u2,n,k, v1,n,k, v2,n,k

]T
(3.20)

We are now in a position to diagonalise (3.7) which can be done straightforwardly
to give the eigenenergies:

E1(k) =
1√
2

√
2(k ·P)2 + ε2

d,k + ε2
fb + |∆d|2 + bk (3.21)

E2(k) =
1√
2

√
2(k ·P)2 + ε2

d,k + ε2
fb + |∆d|2 − bk (3.22)

E3(k) = −E1(k)

E4(k) = −E2(k)
(3.23)

where bk is defined as

bk =
√

(ε2
d,k − ε2

fb + |∆d|2)2 + 4(k ·P)2(|∆d|2 + (εd,k + εfb)2) (3.24)
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With this we have successfully rewritten HM.F. into the expected form as we have
seen previously i.e.

HM.F. =
∑
n,k

En,kγ
†
n,kγn,k (3.25)

where n = 1, 2. This leads us to our guess for the groundstate of the system which
we write as:

|ΦG.S.〉 =
∏
k

γ1,kγ2,k|Φ0〉 (3.26)

with |Φ0〉 indicating electronic vacuum. This state satisfies the necessary condition
for the groundstate since γn,k|ΦG.S.〉 = 0 for n = 1, 2 and any k. In the interests
of saving space the eigenspinors wn will not be written out here as we will discover
that we will only require two of the four for expressing the pair potential in the self
consistency equation. To discover which of these we require we will need to set up
the self consistency equation for ∆d which we do in following section.

3.3 Self Consistency Equation for ∆d

In order for us to write the self consistency equation for ∆d we must first find out
how to express the expectation value 〈ad,−k′ad,k′〉 in terms of the γn,k operators.
Using (3.17) in conjunction with (3.19) and (3.20) we are able to simply write the
a operators in terms of the γ operators:

ad,k = u1,1,kγ1,k + u1,2,kγ2,k + u1,3,kγ
†
1,−k + u1,4,kγ

†
2,−k

afb,k = u2,1,kγ1,k + u2,2,kγ2,k + u2,3,kγ
†
1,−k + u2,4,kγ

†
2,−k

a†d,−k = v1,1,kγ1,k + v1,2,kγ2,k + v1,3,kγ
†
1,−k + v1,4,kγ

†
2,−k

a†fb,−k = v2,1,kγ1,k + v2,2,kγ2,k + v2,3,kγ
†
1,−k + v2,4,kγ

†
2,−k

(3.27)

For our purposes we are only interested in expressing ad,k and ad,−k in terms of
the γn,k operators. We already have ad,k and to find ad,−k it is a simply matter of
Hermition conjugating the term a†d,−k which gives us:

ad,−k =
(
a†d,−k

)†
= v∗1,1,kγ

†
1,k + v∗1,2,kγ

†
2,k + v∗1,3,kγ1,−k + v∗1,4,kγ2,−k (3.28)

Since we are dealing with an expectation value in the γn,k basis we will have our
expectation value be 〈ad,−kad,k〉 = 〈ΦGS|ad,−kad,k|ΦGS〉 where γn,k|ΦGS〉 = 0 as
stated above. The expression generated from the product ad,−kad,k will have sixteen
separate terms in it. Many of these terms can be safely ignored however, the reasons
for which will be explained below.
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In a product as we are expecting above there will be terms of three different
types. The first type will have the an annihilation γn,k operator at the end of the
product such as the term u1,1,kv1,1,kγ

†
1,kγ1,k. All terms of this first type can be

evaluated to zero since the annihilation γn,k operator at the end will be the first
to act on the ground state which will give a zero. The second type will have an
operator pair in the form γ†n,kγ

†
n′,k. These terms may also be safely evaluated to zero

since now the inner product 〈ΦGS|γ†n,kγ
†
n′,k|ΦGS〉 can be written as 〈ΦGS|n,k;n′,k〉

after applying the operators. This inner product now is of course zero since the
two kets are orthonormal to each other in this basis. The third type of term will
have operator pairs in the form γn,kγ

†
n′,k. Because we know that {aα, aβ} = δαβ for

fermion operators then we may write these terms like so γn,kγ†n′,k = δnn′ − γ†n′,kγn,k.
We see now in this form that the only terms that will survive are those with n = n′

and thus we know only those terms with the form γn,kγ
†
n,k in the expansion will be

non-zero. This leaves us with only two terms of the original sixteen which we may
write now as

〈ad,−kad,k〉 = 〈ΦGS|u1,3,kv
∗
1,3,kγ1,−kγ

†
1,−k + u1,4,kv

∗
1,4,kγ2,−kγ

†
2,−k|ΦGS〉

= u1,3,kv
∗
1,3,k + u1,4,kv

∗
1,4,k

(3.29)

We see now that from (3.29) that we will only need components from the eigenspinors
w3 and w4. Writing these vectors now so that we may express (3.29) fully we have

w3 =
1

N3


e−iθ((k ·P)2 − (E1,k − εd)(E1,k − εfb))

e−2iθ

k·P ((E2
1,k − ε2

d − |∆d|2)(E1,k − εfb)− (E1,k + εd)(k ·P)2)

e−iθ∆∗d(εfb − E1,k)

∆∗dk ·P

 (3.30)

and

w4 =
1

N4


e−iθ((k ·P)2 − (E2,k − εd)(E2,k − εfb))

e−2iθ

k·P ((E2
2,k − ε2

d − |∆d|2)(E2,k − εfb)− (E2,k + εd)(k ·P)2)

e−iθ∆∗d(εfb − E2,k)

∆∗dk ·P

 (3.31)

where N3 and N4 are the norms of the vectors to normalise them. These norms are
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defined as:

N 2
3 =

1

(k ·P)2
((E2

1,k − ε2
d − |∆d|2)(E1,k − εfb)− (E1,k + εd)(k ·P)2)2

+ ((k ·P)2 − (E1,k − εd)(E1,k − εfb))2 + |∆d|2(εfb − E1,k)2 + |∆d|2(k ·P)2

(3.32)

and

N 2
4 =

1

(k ·P)2
((E2

2,k − ε2
d − |∆d|2)(E2,k − εfb)− (E2,k + εd)(k ·P)2)2

+ ((k ·P)2 − (E2,k − εd)(E2,k − εfb))2 + |∆d|2(εfb − E2,k)2 + |∆d|2(k ·P)2

(3.33)

Thus we may now write our expectation value as

〈ad,−k′ad,k′〉 = ∆d

[
(εfb − E1,k)((k ·P)2 − (E1,k − εd)(E1,k − εfb))

N 2
3

+

(εfb − E2,k)((k ·P)2 − (E2,k − εd)(E2,k − εfb))
N 2

4

]
= ∆dEV (k)

(3.34)

where for simplicity we have absorbed the complicated expression in the square
brackets into some function EV (k) (EV standing for ‘expectation value’). Finally
the self consistency equation can be written, whereby we convert the sum over k

into an integral:

∆d(k) = 2V2
Ω

(2π)3

∫
dk′3k · k′∆d(k

′)EV (k′) (3.35)

This will the form of our self-consistency equation which we note has marked simi-
larities to the self consistency in subsection 1.2.3 due to the k·k′ term in the integral.
We will use this similarity to treat our integral (3.35) in much the same way.

3.3.1 Treating the Self Consistency Integral

Before we begin to treat the integral we may begin to simplify the problem by
assuming, without loss of generality, that the P vector (which is real) points in the
z direction, i.e. P = P ẑ. This means that we may write any k ·P terms as kP cos θ

where θ is the angle from the z-axis to the vector k. Another consequence of this
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choice is that we may now write the vector k in spherical coordinates as usual:

k = k
[
cosφ sin θ, sinφ sin θ, cos θ

]T
(3.36)

which allows us to express the k · k′ term as

k · k′ = kk′(cosφ cosφ′ sin θ sin θ′ + sinφ sinφ′ sin θ sin θ′ + cos θ cos θ′)

= kk′(cos(φ− φ′) sin θ sin θ′ + cos θ cos θ′)
(3.37)

where the last equality comes from the trigonometric identity: cos(A ∓ B) =

sinA sinB ± cosA cosB.

As was mentioned in subsection 1.2.3 we expect three types of pairing symmetries
in 3D that ∆d can take as a p-wave superconductor. These were given in (1.18) and
were called as the pz- and px±iy-pairing symmetries. For our uses we will make
Ansätze for the form these three symmetries may take. These will be:

∆d,z(k) =
kz
kF

∆
(0)
0 (3.38)

and
∆d,x±iy(k) =

kx ± iky
kF

∆
(±1)
0 (3.39)

where kF is the Fermi wavevector, the ∆0 terms are constants and the superscripts
for the ∆0 terms are in keeping with equation (1.18). In keeping with the changes
to spherical coordinates we may now rewrite our Ansätze (3.38) and (3.39) as:

∆d,z(k) =
k

kF
cos θ∆

(0)
0 (3.40)

and
∆d,x±iy(k) =

k

kF
sin θe±iφ∆

(±1)
0 . (3.41)

We will now attempt to reduce the complexity of the self consistency integral for
all three cases for a general EV (k). We note here that based on these current
definitions our expression for EV (k) will have no azimuthal dependence, i.e. it will
not depend on the angle φ.

pz Pairing Symmetry

For the pz-symmetry case we substitute our expressions (3.37) and (3.40) into the
integral (3.35) which has been moved to spherical coordinates via the transformation
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(1.19). The result of such operations leaves us with the expression:

k

kF
cos θ∆

(0)
0 = 2

k

kF
∆

(0)
0 V2

Ω

(2π)3

∫
dk′
∫ π

0

dθ′
∫ 2π

0

dφ′k′4 sin θ′ cos θ′

× (cos(φ− φ′) sin θ sin θ′ + cos θ cos θ′)EV (k′, θ′) (3.42)

Immediately we see cancellations on the right and left hand side of (3.42) and we
also recognise that the integral

∫ 2π

0
cos(φ− φ′)dφ′ = 0 due to the periodicity of the

sin function. Thus we may reduce (3.42) to:

cos θ = 2V2 cos θ
2πΩ

(2π)3

∫
dk′
∫ π

0

dθ′k′4 sin θ′ cos2 θ′EV (k′, θ′) (3.43)

which can be easily simplified to:

1 =
2V2Ω

(2π)2

∫
dk′
∫ π

0

dθ′k′4 sin θ′ cos2 θ′EV (k′, θ′). (3.44)

At this stage we can do no more without using the actual form of EV (k, θ). However,
we can still simplify the integral even without knowing EV (k, θ) at this stage. Refer-
ring back to subsection 1.2.1 we will also use the fact that we assume the interaction
strength is non-vanishing only in a thin shell about the Fermi energy εF . Thus we
restrict the k integral such that the energies lie within the range (εF−~ωD, εF +~ωD)
where ωD is the Debye frequency. This can be written then as a constraint for the
wavevectors that satisfy

εF − ~ωD <
~2

2md↑
k2 + εd,0 < εF + ~ωD (3.45)

since εd is the only energy band that depends on wavevector in the system.

Since the form of EV (k, θ) is quite complicated we introduce the following ap-
proximation which will serve to simplify (3.44). As was suggested via private com-
munications with Moghaddam et al. [91] we move to linearize the dispersion εd,k

about the Fermi energy. Thus we may write

εd ≈ ~vF (k − kF ) (3.46)

where vF = 1
~
∂εd
∂k

∣∣
k=kF

is the Fermi-velocity (the speed of the electrons in the d-band
at the Fermi-level) and kF is the Fermi-wavevector. This is true for small values of
k − kF and so now we may define kD = ωD

vF
such that the energy condition (3.45)

now restricts the wavevectors to the range (kF − kD, kF + kD) where based on our
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assumptions now we take kF � kD. Now our integral (3.44) is written

1 =
2V2Ω

(2π)2

∫ kF+kD

kF−kD
dk′
∫ π

0

dθ′k′4 sin θ′ cos2 θ′EV (k′, cos θ′) (3.47)

For the sake of simplicity we make two substitutions, the first being u = cos θ′ and
the second being q = k′ − kF . This transforms the integral to

1 =
2V2Ω

(2π)2

∫ +kD

−kD
dq

∫ 1

−1

du(q + kF )4u2EV (q, u) (3.48)

Using that kF � kD we see that of course q � kF as well since the greatest value q
attains is kD. Now we may replace all factors of q + kF (corresponding to k′ terms)
with kF . This results in the integral

1 =
2V2k

4
FΩ

(2π)2

∫ +kD

−kD
dq

∫ 1

−1

duu2EV (q, u) (3.49)

This is the simplest we can make this integral without using the specific form of
EV (q, u). We shall repeat this for the px±iy case after which we may look to incor-
porating EV (q, u) into our considerations.

px±iy Pairing Symmetry

Since the px+iy- and px−iy-symmetries are so similar we will treat them both at the
same time. We will see that the choice of either one does not impact the integral in
any significant way. Just as we have done for the pz-symmetry case we will end up
with a very similar integral to deal with:

k

kF
sin θe±iφ∆

(±1)
0 = 2

k

kF
∆

(±1)
0 V2

Ω

(2π)3

∫
dk′
∫ π

0

dθ′
∫ 2π

0

dφ′k′4 sin2 θ′e±iφ
′

× (cos(φ− φ′) sin θ sin θ′ + cos θ cos θ′)EV (k′, θ′) (3.50)

Once again we see there are immediate cancellations to be made. The integral in
φ′ however is now slightly more complicated in this case. The solution however is
not complicated and beautifully balances out the left hand side, just as we have
seen before for the other symmetry. Firstly we recognise the term that will only
have the contribution

∫ 2π

0
e±iφ

′
dφ′ will be zero. Secondly we find that the integral∫ 2π

0
e±iφ

′
cos(φ− φ′)dφ′ has the analytic solution:∫ 2π

0

e±iφ
′
cos(φ− φ′)dφ′ = πe±iφ (3.51)
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Using this solution we find that (3.50) reduces to:

sin θe±iφ = 2V2 sin θe±iφ
πΩ

(2π)3

∫
dk′
∫ π

0

dθ′k′4 sin3 θ′EV (k′, θ′) (3.52)

which can be easily simplified to:

1 =
V2Ω

(2π)2

∫
dk′
∫ π

0

dθ′k′4 sin3 θ′EV (k′, θ′) (3.53)

From here the same argument as for the pz-symmetry applies and we can easily
obtain:

1 =
V2k

4
FΩ

(2π)2

∫ +kD

−kD
dq

∫ 1

−1

du(1− u2)EV (q, u). (3.54)

3.4 Results

Due to the overall complexity of EV (q, u) it is difficult to extract analytic expressions
for its behaviour. As such, we move to the special case where the Fermi level is raised
to the energy of the f band leaving εfb = 0. This simplifies much of the algebra and
allows us to solve the integral in limiting cases of ∆0.

3.4.1 Special Case When εfb = 0

Starting from first principles we may write our mean-field Hamiltonian for this
reduced system as:

HM.F.(k) =
1

2

∑
k

~ak
†


~vF q eiθk ·P −∆d 0

e−iθk ·P 0 0 0

−∆∗d 0 −~vF q e−iθk ·P
0 0 eiθk ·P 0

~ak (3.55)

where we have made the substitution (3.46). Diagonalising this as we have discussed
previously gives the eigenenergies:

E1(k) =
1√
2

(
2(k ·P)2 + ~2v2

F q
2 + |∆d|2

+
√
~2v2

F q
2 + |∆d|2

√
~2v2

F q
2 + |∆d|2 + 4(k ·P)2

) 1
2

(3.56)
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E2(k) =
1√
2

(
2(k ·P)2 + ~2v2

F q
2 + |∆d|2

−
√
~2v2

F q
2 + |∆d|2

√
~2v2

F q
2 + |∆d|2 + 4(k ·P)2

) 1
2

(3.57)

E3(k) = −E1(k)

E4(k) = −E2(k)
(3.58)

and allows us to write the expectation value in the same form as (3.34), i.e. 〈ad,−k′ad,k′〉 =

∆dEV (k) with

EV (k) =
E1,k(E2

1,k − (k ·P)2 − E1,k~vF q)
N 2

1

+
E2,k(E2

2,k − (k ·P)2 − E2,k~vF q)
N 2

2
(3.59)

where

N 2
1 = (~2v2

F q
2 + |∆d|2)

×
(

4(k ·P)2 + ~2v2
F q

2 + |∆d|2 +
√

~2v2
F q

2 + |∆d|2
√
~2v2

F q
2 + |∆d|2 + 4(k ·P)2

)
− 2E1,k~vF q

√
~2v2

F q
2 + |∆d|2

√
~2v2

F q
2 + |∆d|2 + 4(k ·P)2 (3.60)

and

N 2
2 = (~2v2

F q
2 + |∆d|2)

×
(

4(k ·P)2 + ~2v2
F q

2 + |∆d|2 −
√

~2v2
F q

2 + |∆d|2
√
~2v2

F q
2 + |∆d|2 + 4(k ·P)2

)
+ 2E2,k~vF q

√
~2v2

F q
2 + |∆d|2

√
~2v2

F q
2 + |∆d|2 + 4(k ·P)2 (3.61)

It turns out that after some mathematical massaging of (3.59) it can be simplified
down to (see A)

EV (k) =
1

2
√

4(k ·P)2 + ~2v2
F q

2 + |∆d|2
(3.62)

From here we may integrate (3.62) in the integral (3.49) and (3.54) for each of the
different symmetries.
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pz Pairing Symmetry

Using the specific form of ∆d,z we can now write the integral Iz:

Iz =
2V2k

4
FΩ

(2π)2

∫ +kD

−kD
dq

∫ 1

−1

du
u2

2

√
4k2

FP
2u2 + ~2v2

F q
2 + (∆

(0)
0 )2u2

(3.63)

The integral in q for this expression exists and can be shown to give the result:

Iz =
2V2k

4
FΩ

(2π)2~vF

∫ 1

−1

duu2Arcsinh

 ~vFkD

kFP |u|
√

4 + (
∆

(0)
0

kFP
)2

 (3.64)

Now assuming the factor vF kD

kFP |u|

√
4+(

∆
(0)
0

kF P
)2

is small (i.e. vFkD < kFP ) then we may

take the Maclaurin series of Arsinh(x), which is Arcsinh(x) ≈ x. Thus the integral
becomes:

Iz =
2V2k

4
FΩ

(2π)2

kD

kFP

√
4 + (

∆
(0)
0

kFP
)2

∫ 1

−1

u2

|u|
du (3.65)

This integral is elementary with
∫ 1

−1
u2

|u|du = 1. Now we find

Iz =
2V2kDk

4
FΩ

(2π)2kFP

√
4 + (

∆
(0)
0

kFP
)2

(3.66)

Connecting back to the self consistency equation we will have

1 =
2V2kDk

4
FΩ

(2π)2kFP

√
4 + (

∆
(0)
0

kFP
)2

→ ∆
(0)
0 = 2kFP

√
V 2

2 k
2
Dk

6
FΩ2

(2π)4P 2
− 1

(3.67)

This result is also consistent with numerically plotted values of the integral Iz(∆
(0)
0 )

for the entire range of ∆
(0)
0 as seen in figure 3.2. This result tells that the self-

consistency is solvable, but only if we have V 2
2 k

2
Dk

6
FΩ2

(2π)4P 2 > 1. We can express this
condition slightly differently by defining, as we did in subsection 1.2.3, the effective
coupling strength λ and the density of states at the Fermi level N3D(εF ) as

λ = ΩV2k
2
F

N3D(εF ) =
k2
F

2π2~vF

(3.68)
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Figure 3.2: Plot of the numerically integrated integral (3.63) as a function of ∆
(0)
0

(blue curve) compared to the integrated result in (3.66) (yellow curve) measured in
units of kFP . We see very good agreement between the two curves with a slight
discrepancy occurring at lower values of ∆

(0)
0 . Note that

Now using that kD = ωD/vF we can write the condition for solutions as

λ2N2
3D(εF )~2ω2

D

4k2
FP

2
> 1

→ λ >
2kFP

N3D(εF )~ωD

(3.69)

Thus from (3.69) we see that there will be no solutions if the effective pairing po-
tential is below this critical threshold. This is the only result where we can find an
analytic expression for the whole integral, the others can only be solved for limiting
values of ∆0 in the cases ∆0 � kFP and ∆0 � kFP . Thus for completeness the
limiting values of this integral are as follows. For ∆

(0)
0 � kFP we recover the power

law:
I
z,∆

(0)
0 �kFP

=
2V2kDk

4
FΩ

(2π)2∆
(0)
0

=
λN3D(εF )~ωD

∆
(0)
0

(3.70)

Connecting this to the self-consistency condition we find that in this case we have

∆
(0)
0 = λN3D(εF )~ωD (3.71)

In this case we will find this result if the effective coupling strength is much larger
than 2kFP

N3D(εF )~ωD
as we see from the second line in (3.67). On the other hand, for
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Figure 3.3: Plot of the numerically integrated integral (3.63) as a function of ∆
(0)
0

(blue curve) compared to the limiting results found in (3.70) (green curve) and
(3.72) (yellow curve), measured in units of kFP . We see good agreement between
the curves and the numeric result in their respective limits.

∆
(0)
0 � kFP we can expand the square root in the first line of (3.67) to find:

I
z,∆

(0)
0 �kFP

=
V2kDk

4
FΩ

(2π)2kFP

(
1− (∆

(0)
0 )2

8k2
FP

2

)
=
λN3D(εF )~ωD

2kFP

(
1− (∆

(0)
0 )2

8k2
FP

2

)
. (3.72)

Now solving this for the self-consistency equation we find that we can express ∆
(0)
0

as:

∆
(0)
0 = 2kFP

√
2

(
1− 2kFP

λN3D(εF )~ωD

)
(3.73)

where we see that the same condition for the existence of solutions as the full case
(3.69) is expected from this equation, once again reinforcing the fact that in this
regime the pairing is only satisfiable for large enough values of λ. These results also
agree with the numerics in their respective limits as seen in figure 3.3. We note that
in a real material we are likely to only be in the case where ∆

(0)
0 is smaller than kFP .

This means that the low limit results are more realistic in the more likely scenarios
that we encounter in the world.
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px±iy Pairing Symmetry

Moving to the px±iy-symmetry we find we must integrate the integral Ix±iy:

Ix±iy =
V2k

4
FΩ

(2π)2

∫ +kD

−kD
dq

∫ 1

−1

du
1− u2

2

√
4k2

FP
2u2 + ~2v2

F q
2 + (∆

(±1)
0 )2(1− u2)

(3.74)

We find that the q integral in (3.74) is integratable in exactly the same way as for
the pz case. This gives us:

Ix±iy =
V2k

4
FΩ

(2π)2~vF

∫ 1

−1

du(1− u2)Arcsinh

 ~vFkD√
4k2

FP
2u2 + (1− u2)(∆

(±1)
0 )2

 (3.75)

We naively expect the same trick that we tried before to work with this integral and
so we attempt the same integration. However, this does not work very well at all as
it does not capture the proper lineshape and does not match the numeric result for
small values of ∆

(±1)
0 . The problem arises since we are taking only the Maclaurin

series of Arcsinh in this case. If we consider the case where ∆
(±1)
0 is very small, then

the Maclaurin series will give us the integral:

V2k
4
FΩ

(2π)2

∫ 1

−1

(1− u2)
kD

2kFP |u|
du (3.76)

which is divergent over the integrating range due to the 1
|u| term. Even if we keep

the (∆
(0)
0 )2 term and only discard the (∆

(0)
0 )2u2 term in (3.75) to give

V2k
4
FΩ

(2π)2

∫ 1

−1

(1− u2)
kD√

4k2
FP

2u2 + (∆
(±1)
0 )2

du (3.77)

this integral is still divergent. This is shown by plotting the integrand of (3.75)
against the integrand of (3.77) in figure 3.4. We see that the approximation is good
for most of the range but diverges when u is close to zero. In this case we, for small
∆

(±1)
0 , can move to a different approximation of Arcsinh(x) in which x becomes

large. This approximation is Arcsinh(x) ≈ ln(2x) and when plotted works well for
very small u but not for others as seen in figure 3.5. This would result in an integral
of the form

V2k
4
FΩ

(2π)2~vF

∫ 1

−1

(1− u2)ln

 2~vFkD√
4k2

FP
2u2 + (∆

(±1)
0 )2

 du. (3.78)
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Figure 3.4: Plot of the integrand in (3.75) (blue curve) against the integrand in (3.77)
(yellow curve). The approximation of Arcsinh(x) ≈ x is good for larger values of
|u|, but diverges as |u| tends to zero.

We overcome this problem by splitting the integral over the range
∫ 1

−1
du = 2

∫ 1

0
du

to the two integrals 2
∫ usplit

0
du + 2

∫ 1

usplit
du where the upper integral will integrate

(3.77) and the lower (3.78). We must consider where then to split the integral. If we
consider the fraction ~vF kD√

4k2
FP

2u2+(∆
(±1)
0 )2

where ∆
(±1)
0 is small compared to the other

energy scales then we see that the fraction will start to grow large when u is such
that 2kFPu < ~vFkD. Thus we guess that a split when u = ~vF kD

2kFP
would yield

a good approximation to the integral at small ∆
(±1)
0 , provided of course that this

quantity is less than 1. We also verify this numerically in figure 3.6 which shows
excellent agreement. Thus we take in the limit for ∆

(±1)
0 small in comparison to the

energy scales kFP and ~vFkD the integral to be

Ix±iy =
V2k

4
FΩ

(2π)2~vF

∫ 1

−1

du(1− u2)Arcsinh

 ~vFkD√
4k2

FP
2u2 + (1− u2)(∆

(±1)
0 )2


≈ 2V2k

4
FΩ

(2π)2~vF

[∫ ~vF kD
2kF P

0

(1− u2)ln

 2~vFkD√
4k2

FP
2u2 + (∆

(±1)
0 )2

 du

+

∫ 1

~vF kD
2kF P

(1− u2)
~vFkD√

4k2
FP

2u2 + (∆
(±1)
0 )2

du

]
(3.79)
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Figure 3.5: Plot of the integrand in (3.75) (blue curve) against the integrand in
(3.78) (yellow curve). The approximation of Arcsinh(x) ≈ ln(2x) fits well to the
actual integrand for small values of |u|. However, we see that outside of this small
window the approximation fails, quite spectacularly, to fit to the real integrand.

This expression can be analytically integrated which gives the result:

Ix±iy =
V2kDkFΩ

4(2π)2P 3

[
~vFkD

2

√
(∆

(±1)
0 )2 + ~2v2

Fk
2
D − kFP

√
(∆

(±1)
0 )2 + 4k2

FP
2

+
1

2
((∆

(±1)
0 )2 + 8k2

FP
2)ln

 2kFP +

√
4k2

FP
2 + (∆

(±1)
0 )2

~vFkD +

√
~2v2

Fk
2
D + (∆

(±1)
0 )2


+

(∆
(±1)
0 )2

3
− ∆

(±1)
0

3~vFkD
((∆

(±1)
0 )2 + 12k2

FP
2)Arctan

(
~vFkD
∆

(±1)
0

)

+ 4k2
FP

2

1 + ln

 2~vFkD√
~2v2

Fk
2
D + (∆

(±1)
0 )2


− ~2v2

Fk
2
D

9

1 + 3ln

 2~vFkD√
~2v2

Fk
2
D + (∆

(±1)
0 )2

]

(3.80)

This expression cannot be rearranged to give ∆
(±1)
0 by itself, however, we may still

use the fact that ∆
(±1)
0 is smaller than the energy scales kFP and ~vFkD to simplify

this expression. If we take ∆
(±1)
0 to be small then we find that we may approximate

Arctan

(
~vF kD
∆

(±1)
0

)
≈ π

2
− ∆

(±1)
0

~vF kD
and that we do not need to consider (∆

(±1)
0 )2 terms as

the leading term in ∆
(±1)
0 in linear. Putting this together we find we may simplify
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(3.80) as

Ix±iy =
V2kDkFΩ

4(2π)2P 3

[
~2v2

Fk
2
D

(
7

18
− 1

3
ln2

)

+ 2k2
FP

2

(
1 + 2ln

(
4kFP

~vFkD

))
− 2πk2

FP
2

~vFkD
∆

(±1)
0

] (3.81)

which shows good numerical agreement with the actual integral in figure 3.6 as we
expect. However, we notice that the integral (3.79) is even in ∆

(±1)
0 while (3.81) is

not. Thus we see that (3.81) can only be valid for ∆
(±1)
0 positive. Solving this now

for ∆
(±1)
0 back in the self-consistency equation is now simple and yields

∆
(±1)
0 =

~ωD
π

[
~2ω2

D

2k2
FP

2

(
7

18
− 1

3
ln2

)
+ 1 + 2ln

(
4kFP

~ωD

)
− 4kFP

λN3D(εF )~ωD

]
(3.82)

where we have made the relevant substitutions for the effective coupling constant
and density of states. From this we see that there are values of the effective coupling
strength that make (3.82) negative, which make the solution invalid. This introduces
another condition on the effective coupling strength for viable solutions which can
be expressed as:

λ >
4kFP

N3D(εF )~ωD

(
~2ω2

D

2k2
FP

2

(
7

18
− 1

3
ln2

)
+ 1 + ln

(
4kFP

~ωD

))−1

(3.83)

Moving onto the case when ∆
(±1)
0 is large, we find we may write (3.75) as

Ix±iy =
V2k

4
FΩ

(2π)2~vF

∫ 1

−1

du(1− u2)Arcsinh

(
~vFkD

∆
(±1)
0

√
1− u2

)
(3.84)

which allows us to write the Arcsinh using its Maclaurin series since we will avoid
any divergences. This gives us the integral

Ix±iy =
V2k

4
FΩ

(2π)2

∫ 1

−1

(1− u2)
kD

∆
(±1)
0

√
1− u2

du (3.85)

which is simply written as:

Ix±iy =
V2kDk

4
FΩ

(2π)2∆
(±1)
0

∫ 1

−1

√
1− u2du (3.86)



54 CHAPTER 3. TRIPLET PAIRING SUPERCONDUCTIVITY IN SMN

Figure 3.6: Plot of the numerically integrated integral (3.74) as a function of ∆
(±1)
0

(blue curve) compared to the three limiting results found in (3.87) (yellow curve),
(3.81) (red curve), and (3.80) (green curve), measured in units of kFP The functions
fit well to the numeric result in their respective limits, with the approximate function
(3.81) performing well enough in the limit of small ∆

(±1)
0 .

The integral in (3.86) has the analytic value
∫ 1

−1

√
1− u2du = π

2
. Thus we find in

this limit that the integral in fact is also a power law given by:

Ix±iy =
πV2kDk

4
FΩ

2(2π)2∆
(±1)
0

=
πλN3D(εF )~ωD

4∆
(±1)
0

(3.87)

This can now be solved back in the self-consistency equation to give simply

∆
(±1)
0 =

π

4
λN3D(εF )~ωD (3.88)

Numerically this once again also fits well as shown in figure 3.6. This shows that
once again if the effective coupling constant is very large we find that the pairing
amplitude depends linearly on the effective coupling strength, just as in the pz-
symmetry case. Both symmetries in this situation have also shown transitions into
separate regimes for smaller λ which lead to threshold values of the effective coupling
strength, below which no pairing will form.

It is interesting that when the Fermi level is in this position, the pair amplitude
can disappear since a naive guess would be the recovery of a result that is similar
to the single band result in subsection 1.2.3. What we find instead is that there is
a threshold effective coupling strength above which the superconducting state can
be realised. This is due to the hybridisation between the two bands which results
in an avoided crossing. The location of the Fermi level in this situation is now in
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the middle of this avoided crossing. Thus the result of a minimum effective coupling
strength being required for the pairing to exist is so that the pairing can actually
pair electrons across the avoided crossing.

3.4.2 General Case With εfb 6= 0

We move, in this section, to the full case where εfb is nonzero and is described by
(3.7). Unlike for the simplified case, at this point in time there is no known major
simplification to the function EV (k) as given in (3.34). As such we will attempt to
simplify the integral by only considering the limiting cases of ∆0 from the onset and
in fact we will find the same power law results as we did for the special case when
∆0 is large.

If we consider here, before moving onto the different symmetries, ∆d being large,
i.e. much greater than either εd,k, εfb, or k · P, then we are able to simplify large
swaths of (3.34). We will begin with what will happen to E1,k and E2,k in such a
case. We find that E1,k will reduce to

E1,k ≈
1√
2

√
|∆d|2 +

√
|∆d|4 + 4(k ·P)2|∆d|2

≈ 1√
2

√
|∆d|2 +

√
|∆d|4

≈ |∆d|

(3.89)

and, in a similar way, E2,k reduces to

E2,k ≈
1√
2

√
|∆d|2 −

√
|∆d|4 + 4(k ·P)2|∆d|2

≈ 1√
2

√
|∆d|2 −

√
|∆d|4

≈ 0.

(3.90)

Looking at the numerators of (3.34) we find the first numerator simplifies as

(εfb − E1,k)((k ·P)2 − (E1,k − εd)(E1,k − εfb))

≈ −|∆d|((k ·P)2 − |∆d|2)

≈ |∆d|3
(3.91)
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and the second simplifies to

(εfb − E2,k)((k ·P)2 − (E2,k − εd)(E2,k − εfb))

≈ εfb((k ·P)2 − εfbεd,k).
(3.92)

The norms (3.32) and (3.33) are also simplified to

N 2
3 ≈

1

k ·P)2
((|∆d|2 − |∆d|2)|∆d| − |∆d|(k ·P)2)2 + ((k ·P)2 − |∆d|2)2

+ |∆d|4 + |∆d|2(k ·P)2

≈ 2|∆d|4 + 2|∆d|2(k ·P)2

≈ 2|∆d|4

(3.93)

and

N 2
4 ≈

1

(k ·P)2
(|∆d|2εfb − εd,k(k ·P)2)2 + ((k ·P)2 + εfbεd,k)2

+ |∆d|2ε2
fb + |∆d|2(k ·P)2

≈
|∆d|4ε2

fb

(k ·P)2
+ ((k ·P)2 + εfbεd,k)2 + |∆d|2(ε2

fb + (k ·P)2)

≈
ε2
fb

(k ·P)2
|∆d|4.

(3.94)

Now we may simply write EV (k) as:

EV (k) ≈ |∆d|3

2|∆d|4
+
εfb((k ·P)2 − εfbεd,k)(

ε2fb
(k·P)2 |∆d|4

)
=

1

2|∆d|4

[
|∆d|3 +

2εfb(k ·P)2((k ·P)2 − εfbεd,k)

εfb

]
≈ |∆d|3

2|∆d|4
=

1

2|∆d|
.

(3.95)

Therefore this result holds for any form of |∆d| which is why we see such power laws
appearing in this limit for the special case. With this approximation in place we
may straightforwardly integrate (3.49) and (3.54). The results of which give us for
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the pz-symmetry:

1 =
2V2k

4
FΩ

(2π)2

∫ +kD

−kD
dq

∫ 1

−1

duu2EV (q, u)

≈ 2V2k
4
FΩ

(2π)2

∫ +kD

−kD
dq

∫ 1

−1

duu2 1

2|u|∆(0)
0

=
2V2kDk

4
FΩ

(2π)2∆
(0)
0

∫ 1

−1

u2

|u|
du

=
2V2kDk

4
FΩ

(2π)2∆
(0)
0

(3.96)

which is the same result as that which we found in equation (3.70). This is not a
surprising result in the limit of large ∆d since in this limit ∆d becomes large with
respect to every energy scale. Thus we may essentially take εfb ≈ 0, as well as the
other energy scales, since ∆d is the dominant term. This naturally reduces to the case
where we took εfb to be zero to begin with and thus is natural that we recover the
same result. Therefore (3.96) has the same solution in the self-consistency equation
as (3.70) which we repeat here

∆
(0)
0 = λN3D(εF )ωD (3.97)

In the same vein we turn to the px±iy-symmetry and we find:

1 =
V2k

4
FΩ

(2π)2

∫ +kD

−kD
dq

∫ 1

−1

du(1− u2)EV (q, u)

≈ V2k
4
FΩ

(2π)2

∫ +kD

−kD
dq

∫ 1

−1

du(1− u2)
1

2∆
(±1)
0

√
1− u2

=
V2kDk

4
FΩ

(2π)2kFP∆
(±1)
0

∫ 1

−1

1− u2

√
1− u2

du

=
πV2kDk

3
FΩ

2(2π)2P∆
(±1)
0

(3.98)

which, again, is the same as the result found in equation (3.87) and the same ex-
pression for ∆

(±1)
0 :

∆
(±1)
0 =

π

4
λN3D(εF )ωD (3.99)

3.4.3 General Case; Small |∆d|

Unfortunately for the limit where ∆d is small in comparison to kFP we have not yet
found analytic expressions for the self-consistency equation. However, based on our
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Figure 3.7: Plot of the numerically integrated integral (3.49) as a function of ∆
(0)
0

measured in units of kFP . We see that for small ∆
(0)
0 the integral behaves as a

negative linear line. The x-axis is log scaled which indicates that this behaviour can
be characterised as −ln(∆

(0)
0 ) in this limit.

numerical investigations into the form of the self-consistency integrals for all three
symmetry cases we have found that in this limit the integral behaves as −ln∆0.
This can be seen clearly in figures 3.7 and 3.8. These figures are plotted with a
log scale on the x-axis as ∆0 increases which means that any straight line we see
on the graph indicates a log natural relationship. We clearly see for ∆0 values less
than kFP that there is a negative straight line which is where we find the −ln∆0

behaviour. Thus in its most general we may write for the this type of integral I:

I = C1 − C2ln(C3∆0) (3.100)

where Cn for n = 1, 2, 3 are constants. More specifically for the pz-symmetry case
we will have

Iz =
2V2Ωk4

C

(2π)2

[
C1 − C2ln(C3∆

(0)
0 )
]

(3.101)

which is easily solved for ∆
(0)
0 when solving the self-consistency equation. This gives

us
∆

(0)
0 =

1

C3

e
C1
C2 exp

(
− (2π)2

2C2V2Ωk4
C

)
(3.102)

which is the same form as we had in our single band case (1.20)! We can also
say what units the constants Cn must have from this solution. We must have that
[C1] = [E−1L−1], [C2] = [C1] = [E−1L−1], and [C3] = [E−1]. Looking at the form of
(3.102) we see that the important term is the exponential containing the terms that
would contribute to the effective coupling strength. Thus we see that the constants
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Figure 3.8: Plot of the numerically integrated integral (3.54) as a function of ∆
(±1)
0

measured in units of kFP . We see again as in the pz-symmetry case that for small
∆

(±1)
0 the integral behaves as a negative linear line. The x-axis is log scaled which

indicates that this behaviour can be characterised as −ln(∆
(±1)
0 ) in this limit.

C1 and C3 only contribute to a numerical factor whereas the C2 factor contains
important information about the dominant exponential factor. Finding the form of
this factor would allow us to categorise the pairing more effectively and could be
achieved numerically by investigating the behaviour of the integral (3.49) at small
values of ∆

(0)
0 . However, this could not be completed at the current time. In the

same way we can easily see that for the px±iy case we will have

Ix±iy =
V2Ωk4

C

(2π)2

[
C1 − C2ln(C3∆

(±1)
0 )

]
(3.103)

which is solved to:
∆

(±1)
0 =

1

C3

e
C1
C2 exp

(
− (2π)2

C2V2Ωk4
C

)
. (3.104)

While the analytic solution to the self-consistency integral could be found we do
know how the integral could produce some discontinuity such that it would integrate
to a log natural, i.e. a 1/x dependence in either q or u. Considering the expression
for EV in (3.34) it seems that the second term is the dominant term, especially at
the discontinuity. It is possible to simplify this second term somewhat if we take
|∆d| to be much smaller than kFP . This simplification gives us:

EVdominant =
(εfb − E2,k)(k2

FP
2u2 − (E2,k − εd)(E2,k − εfb))
N 2

4

≈ (εfb − E2,k)k2
FP

2u2

2(εfb + ~vF q)E2,k((E2,k + ~vF q)2 + k2
FP

2u2)

(3.105)
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Now if we take the expression of E2,k in the limit as |∆d| becomes small we find
that:

E2,k ≈
1√
2

√
2k2

FP
2u2 + ~2v2

F q
2 + ε2

fb −
√

(~2v2
F q

2 − ε2
fb)

2 + 4k2
FP

2u2(~vF q + εfb)2)

=≈ 1√
2

√
2k2

FP
2u2 + ~2v2

F q
2 + ε2

fb − (~vF q + εfb)
√

(~vF q − εfb)2 + 4k2
FP

2u2

=
1

2
(
√

(~vF q − εfb)2 + 4k2
FP

2u2 − ~vF q − εfb)

(3.106)

From (3.106) it becomes clear that in this form E2,k can go to zero. In fact it can
be easily shown that it goes to zero when q =

k2
FP

2u2

~vF εfb
. Numerically this is indeed

where the observed divergence in the EV factor is observed to be and therefore
we conclude that the necessary divergence comes from the single E2,k factor in the
denominator of (3.105). If we look at E2,k in the relevant range of integration it also
seems to match the functional form E2,k ∝ |q −

k2
FP

2u2

~vF εfb
|. This is more evidence that

this term is the contributing factor to the observed behaviour and also shows that if
the integral only has this one divergence then we shall recover a log natural result,
modified by the other q dependencies in the integral. Using this knowledge will be
the way forward to unravelling this integral for a possible analytic solution.

3.5 Conclusions

We have investigated in this chapter the possible order parameters available in this
system (3.3) and based on our physical intuition we have established only the triplet
pairing in the d band to be significant2. We have also treated the self consistency
equations for the cases where ∆d is either large or small compared to the other
relevant energy scales. In the situation where the Fermi level is equal to the 4f

band we were able to find analytic solutions in both cases. However, even though
we found analytic solutions for large ∆d, in the general case we were not able to find
analytic solutions for small ∆d. We have found that in all cases the gap equation
will depend linearly on the effective coupling strength in the limit as ∆d becomes
large. More importantly is the limit when ∆d is small, where we expect real systems
to be. In the general situation we find that, numerically, the gap equation scales
with the exponential of the effective coupling strength. This solution is not unlike
the one we expect from a single band p-wave pairing potential as seen in subsec-

2In the absence of disorder and/or impurities
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tion 1.2.3. On the other hand, the order parameter for small pairing amplitudes
shows anomalous behaviour when the Fermi level coincides with the 4f band. In
this case, for effective coupling strengths below a certain threshold, there is no solu-
tion to the self-consistency equation and therefore the superconducting state cannot
be established. This occurs because the Fermi level is sitting within the middle of
the avoided crossing of the mixed bands. Thus some minimum coupling strength is
needed to effectively pair the electrons together across this avoided crossing.
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Chapter 4

Pairing Between Mixed Bands

Previously in chapter 3 we only considered the d band interaction term in the basis
of the 5d and 4f bands. The resultant order parameter has triplet pairing which we
expect to be sensitive to disorder [56, 57] and may not therefore be robust enough
to survive. However, what we can do is to consider how this interaction occurring
in the d band changes when we move to the basis of the mixed bands as seen in
figure 3.1. The transformation from the basic dispersions of εd,k and εfb to the new
hybridised bands will ‘mix’ the interaction term which will uncover new structures
for us to analyse. The motivation for this is that the mixing of the interaction term
will introduce new pairing that may turn out to be resistant to disorder since it will
allow pairing between electrons in the different hybridised bands now.

4.1 The Effective Hamiltonian for the Mixed Bands

We start by transforming our effective Hamiltonian (3.4) from the f and d band
basis into the new mixed bands. These mixed bands are the result of diagonalising
the normal state Hamiltonian (3.1) to find the new energy dispersions which we will
call ξ1,k and ξ2,k. Once we have found the correct diagonalisation matrix as in (3.16)
we will be able to transform the interaction term into the new basis through some
operator algebra. By moving to the mixed bands’ basis we will transform from the
operators ad,k and afb,k to the new operators c1,k and c2,k. The new band indices
for the c operators are 1 and 2, corresponding to the new mixed bands ξ1,k and ξ2,k.

Firstly the 2 × 2 normal state Hamiltonian (3.1) must be diagonalised. This is
a straightforward matter, however, care must still be taken since the off-diagonal
terms (eiθk ·P) are not even in k. Since from our definitions of the matrix structure
for the mean-field effective Hamiltonian (3.7) we will have the matrix structure for

63
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the normal state Hamiltonian to be

HN(k) =
∑
k

[
a†d,k a†fb,k

] [ εd,k eiθk ·P
e−iθk ·P εfb

][
ad,k

afb,k

]
. (4.1)

In the same vein now as (3.16) and (3.17) we can expect to find some diagonalisation
matrix U to transform us into the cnk operator basis. Diagonalising (4.1) is a
straightforward exercise and we find the new hybridised bands can now be explicitly
expressed as

ξ1,k =
1

2
(εd,k + εfb + Ek) (4.2)

and
ξ2,k =

1

2
(εd,k + εfb − Ek). (4.3)

From the same diagonalisation we may also write the resultant U as:[
ad,k

afb,k

]
=

[
cosα(k) −eiθ sinα(k)sign(k ·P)

e−iθ sinα(k)sign(k ·P) cosα(k)

][
c1,k

c2,k

]
. (4.4)

where sinα(k) and cosα(k) have the forms:

cosα(k) =
1√
2

√
1 +

εd,k − εfb
Ek

(4.5)

sinα(k) =
1√
2

√
1− εd,k − εfb

Ek

(4.6)

with Ek =
√

4(k ·P)2 + (εd,k − εfb,k)2. The forms of sinα(k) and cosα(k) are
similar to those in (1.6) and (1.16) as we expect. The expressions in (4.4) also have
added sign(k ·P) factors since the k ·P element is not even in k.

Looking more closely at the forms of sinα(k) and cosα(k) we see that both
functions will be even in k since εd,k and Ek are even. To characterise these functions
further we will consider their behaviour at k = 0, k large and when εd,k and εfb are
equal. If we take k = 0, assuming that εfb intersects εd,k, then εd,k− εfb is negative
and Ek = |εd,k − εfb|. Thus we see we will have cosα(0) = 0 and sinα(0) = 1. On
the other hand if k is large then εd,k, then εd,k−εfb is positive and Ek ≈ |εd,k−εfb|.
Therefore we will see cosα(k) → 1 and sinα(k) → 0. When εd,k and εfb are equal
we see straight away that cosα(k) = sinα(k) = 1√

2
. This behaviour is summed up

in the plots of sinα(k) and cosα(k) in figure 4.1.
Now that we have diagonalised the normal state Hamiltonian we can move for-

ward and transform the effective Hamiltonian to this new basis. Using (4.4) we can
express the an,k operators in terms of the new cn,k operators which we may then
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(a) sinα(k) (b) cosα(k)

Figure 4.1: Plots of sinα(k) and cosα(k).

directly substitute into (3.4). Thus we will have the expressions:

ad,k = cosα(k)c1,k − eiθ sinα(k)sign(k ·P)c2,k

afb,k = e−iθ sinα(k)sign(k ·P)c1,k + cosα(k)c2,k.
(4.7)

We can also, through (4.7), find expressions for terms such as an,−k and a†n,k, for
example:

ad,−k = cosα(k)c1,−k + eiθ sinα(k)sign(k ·P)c2,−k

a†d,k = cosα(k)c†1,k − e
−iθ sinα(k)sign(k ·P)c†2,k.

(4.8)

Now we are finally in a position to transform the effective Hamiltonian which we
split into two pieces. The first piece will be the diagonalised normal state HN and
the second will be the transformed interaction Hint, i.e.

H = HN +Hint

=
∑
n,k

ξn,kc
†
n,kcn,k +Hint

(4.9)

where n = 1, 2. The new interaction term, fully expanded and simplified, has the
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form

Hint =
1

2

∑
k,k′

Vdd(k
′ − k)

[
cos2 α(k) cos2 α(k′)c†1,kc

†
1,−kc1,−k′c1,k′

+ sin2 α(k) sin2 α(k′)c†2,kc
†
2,−kc2,−k′c2,k′

− e2iθ cos2 α(k) sin2 α(k′)c†1,kc
†
1,−kc2,−k′c2,k′ + H.c.

+
1

2
sin 2α(k)sign(k ·P) sin 2α(k′)sign(k′ ·P)c†1,kc

†
2,−k [c2,−k′c1,k′ − c1,−k′c2,k′ ]

+ eiθ sin 2α(k′)sign(k′ ·P) cos2 α(k)c†1,kc
†
1,−kc2,−k′c1,k′ + H.c.

− e−iθ sin 2α(k′)sign(k′ ·P) sin2 α(k)c†2,kc
†
2,−kc2,−k′c1,k′ + H.c.

]
(4.10)

where sin 2α(k) = 2 sinα(k) cosα(k). This expression gives us all possible pairings
between electrons in either band ξ1 or ξ2, modified by an amplitude based on where
the electrons are in k space. An example of this is the third term of (4.10) which
describes some hopping of electron pairs from band ξ2 to ξ1. While this type of
interaction was excluded due to the potential’s selection rules (2.15) we now have
such terms occurring between the mixed bands. This interaction is modified heavily
however by the prefactors cos2 α(k) sin2 α(k′) which means that this interaction only
occurs when the electrons in band ξ2 are around k = 0 and they hop to electrons
with k large, away from the avoided crossing. Comparing with figure 3.1 we see that
this is analogous to electrons scattering from low to high in the d band. So while the
form of Hint has various inter and intra-band pairings they are all consistent with
just interactions in the d band.

4.2 The Mean Field Hamiltonian

Now that we have our effective Hamiltonian in the mixed band basis we can now
apply the mean-field approximation to the system. In contrast to the previous mean-
field Hamiltonian we will have to define more than one pair potential. These new
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pair potentials we define as

∆1T (k) = −
∑
k′

Vdd(k− k′) cos2 α(k′)〈c1,−k′c1,k′〉

∆2T (k) = −
∑
k′

Vdd(k− k′) sin2 α(k′)〈c2,−k′c2,k′〉

∆1S(k) = −
∑
k′

Vdd(k− k′) sin 2α(k′)sign(k ·P)〈c2,−k′c1,k′〉

∆2S(k) = −
∑
k′

Vdd(k− k′) sin 2α(k′)sign(k ·P)〈c1,−k′c2,k′〉

(4.11)

where the T and S stand for triplet and singlet respectively. We label ∆1T and ∆2T

as such since they have an analogous form to the triplet pair potential we introduced
in chapter 3 (3.5), excepting the prefactors. The ∆1S and ∆2S are labelled as such
since their definitions contain both band indices, reminiscent of singlet pairing and,
as we shall see, they can be combined to form a true singlet type pairing. Using
these definitions we are now able to write our mean-field interaction term which can
be expressed as

Hint,MF = −1

2

∑
k

[
cos2 α(k)

(
∆1T,k − e2iθ∆2T,k + eiθ∆1S,k

)
c†1,kc

†
1,−k + H.c.

+ sin2 α(k)
(
∆2T,k − e−2iθ∆1T,k − e−iθ∆1S,k

)
c†2,kc

†
2,−k + H.c.

+ sin 2α(k)sign(k ·P)
(
e−iθ∆1T,k − eiθ∆2T,k

)
c†1,kc

†
2,−k + H.c.

+
1

2
sin 2α(k)sign(k ·P) (∆1S,k −∆2S,k) c†1,kc

†
2,−k

+
1

2
sin 2α(k)sign(k ·P)∆∗1S,k [c2,−kc1,k − c1,−kc2,k]

]
(4.12)

This expression (4.12) can in fact be simplified, however, it requires some rules
regarding the pair potentials in (4.11) which we shall explore now. Beginning with
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∆1T,k, as in (3.15), we see that we may write

∆1T (k) = −1

2

[∑
k′

cos2 α(k′)Vdd(k− k′)〈c1,−k′c1,k′〉

+
∑

k′→−k′
cos2 α(k′)Vdd(k− k′)〈c1,−k′c1,k′〉

]
= −1

2

∑
k′

cos2 α(k′) [Vdd(k− k′)〈c1,−k′c1,k′〉+ Vdd(k + k′)〈c1,k′c1,−k′〉]

= −1

2

∑
k′

cos2 α(k′) (Vdd(k− k′)− Vdd(k + k′)) 〈c1,−k′c1,k′〉

= 2V2

∑
k′

cos2 α(k′)k · k′〈c1,−k′c1,k′〉. (4.13)

In a similar fashion we may write too

∆2T (k) = 2V2

∑
k′

cos2 α(k′)k · k′〈c2,−k′c2,k′〉. (4.14)

Thus we see as a natural consequence that both ∆1T,k and ∆2T,k must be odd in k,
i.e.

∆1T (−k′) = −∆1T (k′)

∆2T (−k′) = −∆2T (k′)
(4.15)

Considering now ∆1S,k we may repeat the same process to find:

∆1S(k) = −
∑
k′

sign(k′ ·P) sin 2α(k′)Vdd(k− k′)〈c2,−k′c1,k′〉

= −1

2

∑
k′

sign(k′ ·P) sin 2α(k′) [Vdd(k− k′)〈c2,−kc1,k′〉 − Vdd(k + k′)〈c2,k′c1,−k′〉]

= −1

2

∑
k′

sign(k′ ·P) sin 2α(k′) [Vdd(k− k′)〈c2,−k′c1,k′〉+ Vdd(k + k′)〈c1,−k′c2,k′〉] .

(4.16)

Similarly for ∆2S,k we find

∆2S(k) = −1

2

∑
k′

sign(k′·P) sin 2α(k′) [Vdd(k− k′)〈c1,−k′c2,k′〉+ Vdd(k + k′)〈c2,−k′c1,k′〉] .

(4.17)
Now if we were to consider taking ∆2S(−k) we see that we will find the Vdd(k− k′)

term change to Vdd(−k − k′), which is the same as Vdd(k + k′) since Vdd(k − k′) =

V0|k−k′|. Similarly we see that the Vdd(k + k′) term change to Vdd(−k + k′), which
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is the same as Vdd(k− k′). Thus by comparing terms between (4.16) and (4.17) we
find that in fact we will have the following rule linking ∆1S,k and ∆2S,k:

∆2S(−k) = ∆1S(k). (4.18)

Using these rules (4.15) and (4.18) we may now simplify the mean-field interaction
term (4.12). We achieve this paradoxically by generating more terms in the expres-
sion. Examples of the manipulations we do to add terms we show below. Take the
term 1

2

∑
k sin 2α(k)sign(k ·P)∆1S,kc

†
1,kc

†
2,−k to start with. We may split this term

into two as we have seen before for other such terms:

1

4

[∑
k

sin 2α(k)sign(k ·P)∆1S,kc
†
1,kc

†
2,−k +

∑
k→k

sin 2α(k)sign(k ·P)∆1S,kc
†
1,kc

†
2,−k

]
=

1

4

∑
k

sign(k ·P) sin 2α(k)
[
∆1S,k〈c†1,kc

†
2,−k〉 −∆1S,−k〈c†1,−kc

†
2,k〉
]

=
1

4

∑
k

sign(k ·P) sin 2α(k)
[
∆1S,k〈c†1,kc

†
2,−k〉+ ∆2S,k〈c†2,kc

†
1,−k〉

]
. (4.19)

Doing such a manipulation for terms that would appear on the off-diagonals of the
resultant matrix (terms with operator pairs c†n,kc

†
n′,k) we can manipulate the mean-

field interaction term into such a form where we may write the matrix:

Hint = −1

2

∑
k

[
c†1,k c†2,k

]
Hint,k

[
c†1,−k
c†2,−k

]
. (4.20)

where

Hint,k =

[
cos2 α(k)

(
∆1T,k − e2iθ∆2T,k + 1

2
eiθ(∆1S,k −∆2S,k)

)
−1

2
sin 2α(k)sign(k ·P)

(
e−iθ∆1T,k − eiθ∆2T,k + 1

2
(∆1S,k −∆2S,k)

)
1
2

sin 2α(k)sign(k ·P)
(
e−iθ∆1T,k − eiθ∆2T,k + 1

2
(∆1S,k −∆2S,k)

)
sin2 α(k)

(
∆2T,k − e−2iθ∆1T,k − 1

2
e−iθ(∆1S,k −∆2S,k)

) ]
(4.21)

Now that we have Hint,k in such a form we notice that every element of the matrix
contains the same pattern of pair potentials. If we now define some overall pair
potential ∆k as

∆k = e−iθ∆1T,k − eiθ∆2T,k +
1

2
(∆1S,k −∆2S,k) (4.22)
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then we see we may write (4.21) in a far more simple way:

Hint,k =

[
eiθ cos2 α(k)∆k

1
2

sin 2α(k)sign(k ·P)∆k

−1
2

sin 2α(k)sign(k ·P)∆k −e−iθ sin2 α(k)∆k

]
. (4.23)

Integrating this result into the full effective mean-field Hamiltonian allows us to fi-
nally write the full result in matrix form. Using the notation ~ck† = [c†1,k, c

†
2,k, c1,−k, c2,−k]

we have

HM.F. =
1

2

∑
k

~ck
†


ξ1,k 0

0 ξ2,k

−Hint,k

−H†int,k
−ξ1,k 0

0 −ξ2,k

~ck (4.24)

4.2.1 Emergence of Even Parity Pairing

Looking more closely at the overall pair potential ∆k we see that the two individual
pair potentials ∆1S,k and ∆2S,k are combined in an interesting way. If we were to
call this term ∆ST,k in the following way:

∆ST,k =
1

2
(∆1S,k −∆2S,k) (4.25)

then we immediately see that we must have

∆ST (−k) = −∆ST (k). (4.26)

A further consequence of this definition for ∆S,k is seen if we write out its definition
in full:

∆ST (k) = −1

2

∑
k′

Vdd(k− k′) sin 2α(k′)sign(k′ ·P)〈c2,−k′c1,k′ − c1,−k′c2,k′〉 (4.27)

This form is reminiscent of the singlet BCS pairing and the singlet inter-band pairing
since by swapping the band indices in (4.27) would introduce a minus sign. We may
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also now write ∆S,k in the same for as (4.13) and (4.14):

∆ST (k) = −1

2

[∑
k′

sin 2α(k′)Vdd(k− k′)sign(k ·P)〈c2,−k′c1,k′〉

−
∑

k′→−k′
sin 2α(k′)Vdd(k− k′)sign(k ·P)〈c1,−k′c2,k′〉

]
= −1

2

∑
k′

sin 2α(k′)sign(k ·P) [Vdd(k− k′)〈c2,−k′c1,k′〉+ Vdd(k + k′)〈c1,k′c2,−k′〉]

= −1

2

∑
k′

sin 2α(k′)sign(k ·P) (Vdd(k− k′)− Vdd(k + k′)) 〈c2,−k′c1,k′〉

= 2V2

∑
k′

sin 2α(k′)k · k′sign(k ·P)〈c2,−k′c1,k′〉. (4.28)

While ∆ST,k has itself a form reminiscent of singlet pairing we see here again that
it is odd in k which indicates triplet behaviour. However, naturally leading on from
this is the observation then that the overall pair potential ∆k must also be odd in
k, i.e.

∆(−k) = −∆(k). (4.29)

Now if we consider once more Hint,k the diagonal elements will be odd in k as we
expect but the off-diagonal elements must be even in k! If we consider now that
only ∆ST,k is non-zero, as we might expect in the case of adding disorder, then
we find that these off-diagonal elements have singlet form due to the placement of
the band indices and is even in k. This finding we attribute to the emergence of
a genuine singlet pairing between the mixed bands. With this we may make one
more definition for this new singlet pairing by incorporating the prefactors on the
off diagonal elements. This gives us

∆S(k) = V2 sin 2α(k)sign(k ·P)
∑
k′

sin 2α(k′)sign(k ·P)k · k′〈c2,−k′c1,k′〉 (4.30)

Using this form we may also rewrite Hint,k into the following form

Hint,k = ∆S,k

[
eiθsign(k·P)

tanα(k)
1

−1 −e−iθ tanα(k)sign(k ·P)∆k

]
. (4.31)

where tanα(k) = sinα(k)
cosα(k)

. At this stage we could relate this pair potential back to
the results we found in chapter 3 by expressing the cn,k operators in terms of the
original an′,k operators. By inverting the transformation (4.4) and neglecting all
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terms that are not in the form 〈ad,−kad,k〉 we find that

〈c2,−kc1,k〉 =
1

2
e−iθ sin 2α(k)sign(k ·P)〈ad,−kad,k〉 (4.32)

which allows us to express ∆S,k as

∆S(k) = V2 sin 2α(k)sign(k ·P)
∑
k′

1

2
e−iθ sin2 2α(k′)k · k′〈ad,−k′ad,k′〉. (4.33)

We might have hoped that this process would have allowed us to relate ∆S,k simply
to ∆d,k but unfortunately this is not the case. While in theory we could continue
and express the self-consistency equation in this form we choose instead to continue
in the mixed band basis.

4.3 The Self-Consistency Equation

In order to express the self-consistency equation for ∆S,k, we must first diagonalise
(4.31) once again. For simplicity’s sake we have chosen to write tanα(k) as t in the
following expressions. Adopting the same formalism as in subsection 3.2.1 allows us
to simply find the new eigenenergies:

E1(k) =
1√
2

√
(
1

t
+ t)2|∆S,k|2 + ξ2

1,k + ξ2
2,k +Bk (4.34)

E2(k) =
1√
2

√
(
1

t
+ t)2|∆S,k|2 + ξ2

1,k + ξ2
2,k −Bk (4.35)

E3(k) = −E1(k)

E4(k) = −E2(k)
(4.36)

where Bk is defined as

Bk =

((
1

t
+ t

)4

|∆S,k|4 − 2|∆S,k|2(ξ1,k − ξ2,k)

((
t2 − 2− 1

t2

)
ξ1,k

+

(
t2 + 2− 1

t2

)
ξ2,k

)
+ (ξ2

1,k − ξ2
2,k)2

) 1
2

. (4.37)

We will also need the eigenspinors wn (n = 1, 2, 3, 4) in order to express the expecta-
tion value 〈c2,−kc1,k〉 in (4.30). The eigenspinors however, as before in the previous
chapter, are clumsy expressions that, for brevity, will not be written down here. We
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will also find that we only need two of these vectors for us to write our expectation
value. In addition to this the form of our expectation value will also mirror that of
(3.34) where we will have 〈c2,−kc1,k〉 = ∆S,kEV (k) for some complicated function
EV (k). We must find how to express the cn,k operators in the new diagonalised
basis as in (3.27) to find the form of EV (k). So, as we did in (3.27), we may write
for our cn,k operators:

c1,k = u1,1,kγ1,k + u1,2,kγ2,k + u1,3,kγ
†
1,−k + u1,4,kγ

†
2,−k

c2,k = u2,1,kγ1,k + u2,2,kγ2,k + u2,3,kγ
†
1,−k + u2,4,kγ

†
2,−k

c†1,−k = v1,1,kγ1,k + v1,2,kγ2,k + v1,3,kγ
†
1,−k + v1,4,kγ

†
2,−k

c†2,−k = v2,1,kγ1,k + v2,2,kγ2,k + v2,3,kγ
†
1,−k + v2,4,kγ

†
2,−k.

(4.38)

Using these expressions and our knowledge of what terms in such an expansion
survive we may neatly write:

〈c2,−kc1,k〉 = 〈ΦGS|u1,3,kv
∗
2,3,kγ1,−kγ

†
1,−k + u1,4,kv

∗
2,4,kγ2,−kγ

†
2,−k|ΦGS〉

= u1,3,kv
∗
2,3,k + u1,4,kv

∗
2,4,k.

(4.39)

The form of the expectation value, as mentioned before, is in the form 〈c2,−kc1,k〉 =

∆S,kEV (k) where EV (k) does not depend on the angle φ. However, in contrast
to the previous chapter, the expression for this expectation value (4.39) can be
markedly simplified, but only after performing the k integral in our resulting self-
consistency integral. What we find is that we can approximate a factor in the
integral as a delta function, which is what simplifies the expression. So in order to
optimise the use of space we will give the required forms of the needed eigenspinors
after we find the result of our k integral. In this instance we may now take our
self-consistency integral to have the form

∆S(k) = sin 2α(k)sign(k ·P)V2

∫
dk′3k · k′ sin 2α(k′)sign(k′ ·P)∆S(k′)EV (k′)

(4.40)

4.3.1 Treating the Self-Consistency Equation

Now that we have the self-consistency equation we may choose again, without loss
of generality, to have P point along the z-direction. With this choice we may make
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the new Ansätze for both the pz- and px±iy-symmetries to be

∆S,z(k) = sign(k ·P) sin 2α(k)
kz
kC

∆
(0)
S0

= sign(k ·P) sin 2α(k)
k

kC
cos θ∆

(0)
S0

(4.41)

and

∆S,x±iy(k) = sign(k ·P) sin 2α(k)
kx ± iky
kC

e±iφ sin θ∆
(±1)
S0

= sign(k ·P) sin 2α(k)
k

kC
∆

(±1)
S0

(4.42)

where kC is the magnitude of the k where the d and f bands intersect. This choice,
as opposed to kF , will be made clear once we consider the integral (4.40) in more
depth. Starting with the pz-symmetry case we can begin by changing the integral
in (4.40) to spherical coordinates and by writing it in the following way:

sign(k ·P) sin 2α(k)
k

kC
cos θ∆

(0)
S0 = sin 2α(k)sign(k ·P)

k∆
(0)
S0

kC
V2

Ω

(2π)3

×
∫
dk′
∫ π

0

dθ′
∫ 2π

0

dφ′k′4 sin θ′ cos θ′ sin2 2α(k′)sign(k′ ·P)2

×(cos(φ− φ′) sin θ sin θ′ + cos θ cos θ′)EV (k′, θ′)

(4.43)

We see that, just like in the previous integrals (3.42) and (3.43), the integral sim-
plifies nicely as well as the integral in φ being straightforward. This allows us to
write

1 = V2
Ω

(2π)3

∫
dk′
∫ π

0

dθ′k′4 sin θ′ cos2 θ′ sin2 2α(k′)EV (k′, θ′), (4.44)

cancelling out the leftover cos θ factor on both sides after the result of the φ integral.
The only difference now between this integral and the one in (3.44) is the sin2 2α(k)

factor. If we consider the form of such a factor as sin 2α(k) = 2 sinα(k) cosα(k)

then from our knowledge of the sinα(k) and cosα(k) functions, as in figure 4.1 we
must conclude that it will be some sort of peaked function about the kC , the crossing
point. We have treated the sin2 2α(k) term separately in appendix B which leads
us to find that it may be approximated as a delta function. For convenience, as
explained in B, we introduce the wavevector scaling

k = k̃kC (4.45)
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where kC is the wavevector where the un-hybridised bands intersect, i.e. kC =

kC =

√
2md↑(εfb − εd,0)

~2
. (4.46)

With this new wavevector scaling we now find it reasonable to approximate sin2 2α(k̃) =

sin2 2α(k̃) as

sin2 2α(k̃) ≈ 1

π
ζ| cos θ|δ(k̃ − 1) (4.47)

where ζ = PkC
εfb−εd,0

= PkC
(∆E0)

. This is due to the function sin2 2α(k̃) resembling a
Lorentzian curve for ζ2 � 1.

With this result we turn back to our original problem in (4.44). Now considering
only the integral in k we will have∫

dkk4 sin2 2α(k)EV (k, θ)→
∫
dk̃k5

C k̃
4 sin2 2α(k̃kC)EV (k̃kC , θ) (4.48)

by making the substitution k = k̃kC . Now we recognise that sin2 2α(k̃kC) is simply
our function with the correct wavevector scaling such that we may approximate it
with a delta function. By using (4.47) we may now rewrite (4.48) to

1

π
k5
Cζ

∫
dk̃k̃4| cos θ|δ(k̃ − 1)EV (k̃kC , θ) (4.49)

which can be simply evaluated to

1

π
k5
Cζ| cos θ|EV (kC , θ) =

2kCP

π(∆E0)
k5
C | cos θ|EV (kC , θ) (4.50)

Putting this result back into the self-consistency integral now we may finally write

1 =
2V2k

6
CPΩ

π(2π)2(∆E0)

∫ π

0

dθ′ sin θ′ cos2 θ′| cos θ′|EV (kC , θ
′). (4.51)

This can be simplified by making the substitution u = cos θ′ which gives

1 =
2V2k

6
CPΩ

π(2π)2(∆E0)

∫ 1

−1

du|u|u2EV (kC , u). (4.52)

Guided by this example and the treatment of the φ integral for the px±iy-symmetry
case seen before in chapter 3 we may also write for the px±iy-symmetry pair potential
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this self-consistency equation:

1 =
V2k

6
CPΩ

π(2π)2(∆E0)

∫ 1

−1

du|u|(1− u2)EV (kC , u). (4.53)

With this result care must be taken however since we only expect non-zero contri-
butions to the pairing in the thin shell around the Fermi level. Thus this treatment
is only valid when the avoided crossing of the two bands is within the range of the
thin shell around the Fermi energy.

4.4 Results

As we have seen here the approximation of the sin2 2α(k) factor as a delta function
has vastly simplified the integral and simplified EV since now it must be taken at kC .
This allows us to take any tanα(k) terms to be 1 which simplifies the expressions
in how they are expressed and internally as well, i.e. the functions E1,k will become
simpler as well. Writing these eigenspinors so that we might express EV in full we
will have:

w3 =
1

N3


(ξ2

2,kC
+4|∆S,kC |

2−E2
1,kC

)(ξ1,kC+ξ2,kC−2E1,kC
)

(ξ1,kC−ξ2,kC )(3ξ1,kC+ξ2,kC )

e−2iθsign(kCPu)|∆S,kC |2
ξ1,kC+ξ2,kC−2E1,kC

(E1,kC
−ξ1,kC )(E1,kC

+ξ2,kC )

e−iθsign(kCPu)∆∗S,kC
ξ2,kC−E1,kC

ξ1,kC−E1,kC

∆∗S,kC

 (4.54)

and

w4 =
1

N4


(ξ2

2,kC
+4|∆S,kC |

2−E2
2,kC

)(ξ1,kC+ξ2,kC−2E2,kC
)

(ξ1,kC−ξ2,kC )(3ξ1,kC+ξ2,kC )

e−2iθsign(kCPu)|∆S,kC |2
ξ1,kC+ξ2,kC−2E2,kC

(E2,kC
−ξ1,kC )(E2,kC

+ξ2,kC )

e−iθsign(kCPu)∆∗S,kC
ξ2,kC−E2,kC

ξ1,kC−E2,kC

∆∗S,kC

 (4.55)

where N3 and N4 are the norms of the vector. These norms are founf to be:

N 2
3 =(

(ξ2
2,kC

+ 4|∆S,kC |2 − E2
1,kC

)(ξ1,kC + ξ2,kC − 2E1,kC )

(ξ1,kC − ξ2,kC )(3ξ1,kC + ξ2,kC )
)2

+ |∆S,kC |4|
ξ1,kC + ξ2,kC − 2E1,kC

(E1,kC − ξ1,kC )(E1,kC + ξ2,kC )
)2 + |∆S,kC |2(

ξ2,kC − E1,kC

ξ1,kC − E1,kC

)2 + |∆S,kC |2

(4.56)
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and

N 2
4 =(

(ξ2
2,kC

+ 4|∆S,kC |2 − E2
2,kC

)(ξ1,kC + ξ2,kC − 2E2,kC )

(ξ1,kC − ξ2,kC )(3ξ1,kC + ξ2,kC )
)2

+ |∆S,kC |4|
ξ1,kC + ξ2,kC − 2E2,kC

(E2,kC − ξ1,kC )(E2,kC + ξ2,kC )
)2 + |∆S,kC |2(

ξ2,kC − E2,kC

ξ1,kC − E2,kC

)2 + |∆S,kC |2.

(4.57)

Since everything is taken at kC now the expressions for ξn reduce to ξ1,kC = 1
2
(εd,kC +

εfb+2kCP |u|) and ξ2,kC = 1
2
(εd,kC +εfb−2kCP |u|). As well as this the eigenerergies

can be shown to also reduce to

E1,kC =
1√
2

(
4|∆S,kC |2 + ξ2

1,kC
+ ξ2

2,kC

+ 2
√

4|∆S,kC |4 + k2
CP

2u2(4|∆S,kC |2 + (εd,kC + εfb)2)

) 1
2

(4.58)

and

E2,kC =
1√
2

(
4|∆S,kC |2 + ξ2

1,kC
+ ξ2

2,kC

− 2
√

4|∆S,kC |4 + k2
CP

2u2(4|∆S,kC |2 + (εd,kC + εfb)2)

) 1
2

. (4.59)

Now these eigenspinors can give us the expression for EV (kC , u) which is

〈c2,−kc1,k′〉 = ∆S,kC

[
(ξ2

2,kC
+ 4|∆S,kC |2 − E2

1,kC
)(ξ1,kC + ξ2,kC − 2E1,kC )

N 2
3 (ξ1,kC − ξ2,kC )(3ξ1,kC + ξ2,kC )

+

(ξ2
2,kC

+ 4|∆S,kC |2 − E2
2,kC

)(ξ1,kC + ξ2,kC − 2E2,kC )

N 2
4 (ξ1,kC − ξ2,kC )(3ξ1,kC + ξ2,kC )

]
= ∆S,kCEV (kC , u)

(4.60)

While it is not possible to analytically solve the integral with EV in this form,
preliminary numerical results indicate that the integral gives some positive number
for appropriate values of ∆0. They also seem to suggest that the integral attains
some maximum value at some ∆0. This means that, in principle, it is possible to
solve this self-consistency equation if the effective coupling strength is great enough.
Thus indicating that this pairing does indeed exist and may play a key role in the
superconducting state of SmN. Since this pairing can exist now we can look at the
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nature of our order parameters from our Ansätze (4.41) and (4.42). We see that both
order parameters are even in k, precluding it from triplet pairing, which is interesting
since we started from only triplet pairing. The order parameters also have a sin 2α(k)

prefactor which is peaked at wavevectors close to the avoided crossing. This means
that the pairing amplitudes are peaked functions around the intersection point of
the d and f bands, or in other words, the pairing amplitudes is significant only in
the region of k-space around the avoided crossing of the mixed bands. The fact that
this singlet-like pairing can exist due to the triplet pairing in the d band could be the
reason the superconductivity in SmN survives disorder; there is some contribution to
the triplet pairing which is singlet in the mixed band indices. This is a very exciting
result which may offer up an answer to the existence of superconductivity in SmN
even in the presence of disorder.

4.5 Conclusions

In this chapter we have considered how the triplet pairing in the 5d band acts in the
basis of the mixed bands. This shift of basis essentially ‘mixes’ the interaction term
into different intra- and inter-band pairing in the mixed bands. By applying the
mean-field approximation to this new scenario we saw the emergence of some total
pairing ∆S that turned out to be even in k with a form similar to that of other singlet
pairings. With this form of the pairing we were able to create the self-consistency
equation and made significant in-roads into the solution of such an equation. The
findings from our investigation into the self-consistency equation allowed us to state
the existence of such an even parity singlet pairing term between the mixed bands
ξ1,k and ξ2,k. This pairing exists near the avoided crossing of the two mixed bands
and serves to pair electrons from each band together across this avoided crossing.
The emergence of such a pairing from the postulated triplet pairing in the d band
could be a reason for the observation of superconductivity in SmN, even in the
presence of disorder. To properly make this claim, more in depth study is required
and disorder must be added to the system, however, this finding is an exciting step
forward in our understanding of this material’s system.



Chapter 5

Summary, Conclusions, and Outlook

The aim of this thesis was to understand in more depth the superconductivity of
SmN. Towards this end we have explored a low energy approximation of SmN’s
bandstructure which consisted of the Sm 4f band and N 5d bands. These bands
lay close to the Fermi level and interacted strongly with one another to create
hybridisation between the bands. With this picture in mind for our system we
postulated the existence for superconducting pairing between electrons due to the
electron-phonon interaction, where a travelling phonon in the crystal displaces the
crystal in such a way to effectively attract two electrons. We performed a calculation
for long wavelength phonons that detailed how they would act in the crystal, as well
as the resultant form such an interaction would have.

With this knowledge of the material in place we formulated our model with the
electron-phonon interaction to form the effective Hamiltonian of our system. This
lead us to the assertion that, in the absence of disorder and/or impurities, the most
likely place for superconducting pairing would be in the d band. Taking inspiration
from BCS superconducting theory and spinless p-wave theory we performed the
mean-field approximation on our system and diagonalised the resultant system to
form our self-consistency equation for the superconducting pairing ∆d. After many
considerations on how to reduce the resulting self-consistency integrals we found
solutions for the self-consistency equation in the limits for large and small ∆d in
comparison to the other energy scales at play. We investigated two different cases,
one more successfully than the other. The first, and more successful, was the case
where the material has been doped such that the Fermi level is the same as the f
band. Analytic solutions in this case showed that for large ∆d the gap equation was
linear in the effective coupling strength λ. In the small limit however, solutions for
the gap equation for all three p-wave symmetries showed that there would only be
a solution for sufficiently large effective coupling strengths. Physically this means
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that if the effective coupling strength is insufficient then the superconducting state
will not be established. The second case we explored was the more general case
where the Fermi level did not coincide with the f band. In this case for large ∆d we
found the same solutions as in the first case but we could not find analytic solutions
for the small ∆d limit. However, our numerical investigations showed that in this
limit the self-consistency integral behaves as −ln(∆0). This would lead to solutions
of the gap equation that are exponential in the effective coupling strength, which is
the same form as the pairing found for the single band case, up to constant factors.

On the other hand we attempted the same treatment of superconducting pairing
of the material in the mixed bands, rather than in the un-hybridised d and f bands.
The motivation for redoing the analysis was to search for new pairing that would
turn out to be more robust in the presence of disorder than just pure triplet pairing.
Keeping the pairing still within the d band, the effective interaction was mixed into
hybrid intra- and inter-band pairing when shifted to the mixed band basis. Once
the mean-field approximation had been applied to this new scenario we uncovered
the existence of a pairing ∆S that was both even in the wavevector k and had a form
reminiscent of inter-band pairing between the two mixed bands. The definition of
this pairing had the added property of only existing near the avoided crossing of the
mixed bands, the place where the d and f bands would have crossed in the absence of
hybridisation. From this point we once again expressed the self-consistency equation
as a set of similar integrals to before. Sadly no analytic work could be done for
solutions of the resultant integrals, however, preliminary numerical results showed
that in principle the self-consistency equation could be solved, provided once again
that the effective coupling strength was large enough. This indicated that such
pairing is possible to exist within the material and may even be resistant to disorder
due to its singlet-like form.

The conclusions that we can garner from our results is that in the absence of
disorder and/or impurities we do in fact find triplet superconducting pairing which
we believe to be p-wave since the resultant symmetries all have defined solutions.
We also know that as a result of this triplet pairing we can find, given the Fermi-
level is close enough to the avoided crossing, a contribution to this pairing which
is singlet in the mixed band indices. This indicates pairing between electrons in
different bands across the avoided crossing. The existence of such pairing may be
the key to superconductivity surviving in the presence of disorder and is an exciting
new step into the origins of SmN’s superconductivity.

Moving forward into the future then we envision several avenues of further re-
search. The first being the completion of analytic solutions in the small ∆d limit
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for the general case in the d and f band basis where the f band is different to the
Fermi level. The next is looking in greater depth at the self-consistency equation for
the case of the singlet-like pairing between the mixed bands since this could hold
the key to the robustness of the superconductivity in the presence of impurities.
The final immediate avenue of exploration is the introduction of impurities and/or
disorder into the system to see if in fact any pairing in the d band survives. The
form of such an addition to the Hamiltonian could easily be of the form given in
by Asano et al. [79] which describes random non-magnetic impurities in the basis of
the un-hybridised bands {|d ↑〉, |f〉}:

Himp = Vimp(r)


1 eiθ 0 0

e−iθ 1 0 0

0 0 −1 −e−iθ

0 0 −eiθ −1

 . (5.1)

This equation captures both intra- and inter-band scattering and can be seen when
written as the product of the Pauli spin matrices in the electron-hole (τi) and two
band spaces (ρi):

Himp = Vimp(r)τ̂3ρ̂0 + Vimp(r)Â (5.2)

where Â = cos θτ̂3ρ̂1−sin θτ̂3ρ̂2, the first term represents intra-band pairing, and the
second term represents inter-band pairing. The inclusion of this contribution in the
system would shed light onto the existence of the pairing we have found previously
in a more realistic system.

Further long term avenues of investigation include looking at the interplay be-
tween this material and Gadolinium Nitride (GdN) in a heterostructure, which has
been reported [35] to enhance the superconducting state of SmN. Understanding
this mechanism may lead to applications in pursuing higher critical temperatures in
similar materials.
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Appendix A

Simplification of the Expectation
Value

Starting with the expression (3.60) we define a new variable to help us with the
simplification. Let us call it rk where

r2
k = 4(k ·P)2 + ~2v2

F q
2 + |∆d|2 (A.1)

Now we can rewrite (3.60) and (3.61) as:

N1 = (~2v2
F q

2 + |∆d|2)(r2
k + rk

√
~2v2

F q
2 + |∆d|2)− 2rkE1,k~vF q

√
~2v2

F q
2 + |∆d|2

(A.2)
and

N2 = (~2v2
F q

2 + |∆d|2)(r2
k − rk

√
~2v2

F q
2 + |∆d|2) + 2rkE2,k~vF q

√
~2v2

F q
2 + |∆d|2

(A.3)
We can also rewrite both E1,k and E2,k as

E1(k) =
1√
2

√
1

2
(r2

k + ~2v2
F q

2 + |∆d|2) + rk

√
~2v2

F q
2 + |∆d|2

=
1

2

√
(rk +

√
~2v2

F q
2 + |∆d|2)2

=
1

2
(rk +

√
~2v2

F q
2 + |∆d|2)

(A.4)
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and

E2(k) =
1√
2

√
1

2
(r2

k + ~2v2
F q

2 + |∆d|2)− rk
√
~2v2

F q
2 + |∆d|2

=
1

2

√
(rk −

√
~2v2

F q
2 + |∆d|2)2

=
1

2
(rk −

√
~2v2

F q
2 + |∆d|2)

(A.5)

Working only on (A.2) for now, we see that

N1 = rk(~2v2
F q

2 + |∆d|2)

(
rk +

√
~2v2

F q
2 + |∆d|2

)
−
(
rk +

√
~2v2

F q
2 + |∆d|2

)
~vF qrk

√
~2v2

F q
2 + |∆d|2

= rk

√
~2v2

F q
2 + |∆d|2(rk +

√
~2v2

F q
2 + |∆d|2)(

√
~2v2

F q
2 + |∆d|2 − ~vF q) (A.6)

Working on the numerator above N1 in (3.59) now we find:

E1,k(E2
1,k − (k ·P)2 − E1,k~vF q) =

=
1

2

(
rk +

√
~2v2

F q
2 + |∆d|2

)(
1

2

(
~2v2

F q
2 + |∆d|2 +

√
~2v2

F q
2 + |∆d|2

)

−1

2
~vF q

(
rk +

√
~2v2

F q
2 + |∆d|2

))

=
1

4

(
rk +

√
~2v2

F q
2 + |∆d|2

)(√
~2v2

F q
2 + |∆d|2

(√
~2v2

F q
2 + |∆d|2 + rk

)

−~vF q
(√

~2v2
F q

2 + |∆d|2 + rk

))

=
1

4

(
rk +

√
~2v2

F q
2 + |∆d|2

)2(√
~2v2

F q
2 + |∆d|2 − ~vF q

)
(A.7)

Putting this together then we find:

E1,k(E2
1,k − (k ·P)2 − E1,k~vF q)

N 2
1

=
rk +

√
~2v2

F q
2 + |∆d|2

4rk
√
~2v2

F q
2 + |∆d|2

(A.8)
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Performing this same procedure for the other terms we find:

N2 = rk(~2v2
F q

2 + |∆d|2)

(
rk −

√
~2v2

F q
2 + |∆d|2

)
+

(
rk −

√
~2v2

F q
2 + |∆d|2

)
~vF qrk

√
~2v2

F q
2 + |∆d|2

= rk

√
~2v2

F q
2 + |∆d|2(rk −

√
~2v2

F q
2 + |∆d|2)(

√
~2v2

F q
2 + |∆d|2 + ~vF q) (A.9)

with the numerator above N2 in (3.59) giving:

E2,k(E2
2,k − (k ·P)2 − E2,k~vF q) =

=
1

2

(
rk −

√
~2v2

F q
2 + |∆d|2

)(
1

2

(
~2v2

F q
2 + |∆d|2 −

√
~2v2

F q
2 + |∆d|2

)

−1

2
~vF q

(
rk −

√
~2v2

F q
2 + |∆d|2

))

=
1

4

(
rk −

√
~2v2

F q
2 + |∆d|2

)(√
~2v2

F q
2 + |∆d|2

(√
~2v2

F q
2 + |∆d|2 − rk

)

+~vF q
(√

~2v2
F q

2 + |∆d|2 − rk
))

= −1

4

(
rk −

√
~2v2

F q
2 + |∆d|2

)2(√
~2v2

F q
2 + |∆d|2 + ~vF q

)
(A.10)

Putting this together then we find:

E2,k(E2
2,k − (k ·P)2 − E2,k~vF q)

N 2
2

= −
rk −

√
~2v2

F q
2 + |∆d|2

4rk
√

~2v2
F q

2 + |∆d|2
(A.11)

Finally we can put (A.8) and (A.11) together to find the result given in (3.62):

EV (k) =
rk +

√
~2v2

F q
2 + |∆d|2

4rk
√

~2v2
F q

2 + |∆d|2
−
rk −

√
~2v2

F q
2 + |∆d|2

4rk
√

~2v2
F q

2 + |∆d|2

=
1

2rk
=

1

2
√

4(k ·P)2 + ~2v2
F q

2 + |∆d|2
(A.12)
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Appendix B

Treating sin 2α(k)

To properly characterise this function it will be convenient to choose some set of en-
ergy and wavevector scaling to simplify the function. Since sin 2α(k) = 2 sinα(k) cosα(k)

then it will be easier to first work on sinα(k). We start by writing:

sinα(k) =
1√
2

√
1− ∆E

Ek

(B.1)

with
∆E = εd,k − εfb = εd,0 +

~2

2md↑
k2 − εfb (B.2)

We will scale both ∆E and Ek separately, however, we will find that the scaling
constants used will turn out to be the same. Beginning with ∆E we presume that
∆E and k can be written as

k = k̃kr, ∆E = ∆̃E∆Er (B.3)

where k̃ and ∆̃E are dimensionless. Then (B.3) becomes:

∆̃E∆Er = εd,0 − εfb +
~2k2

r

2md↑
k̃2

∆̃E =
εd,0 − εfb

∆Er
+

~2k2
r

2md↑∆Er
k̃2

From this we take
∆Er = εfb − εd,0 (B.4)

and

kr =

√
2md↑∆Er

~2
=

√
2md↑(εfb − εd,0)

~2
(B.5)
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where we choose ∆Er in this way so that it is positive (we are presuming that
there will be band crossing between the d and f bands). In fact physically these
quantities represent the difference in energy between the bands at the X point and
the wavevector at which the two energy bands crossover so we may in fact call
∆Er = ∆E0 and kr = kc. Now we see that we may write (B.2) dimensionlessly as

∆̃E = k̃2 − 1 (B.6)

Looking to Ek in the same way we see

Ẽk̃Er =

√
4(krk̃ ·P)2 + ∆E2

Ẽk̃ =

√√√√4

(
krk̃ ·P
Er

)2

+

(
∆E

Er

)2

Now if we choose Er and kr here to be ∆E0 and kc as found before we can define a
new quantity ζ such that

1

2
ζ =

Pkc
∆E0

= P

√
2md↑

~2(εfb − εd,0)
(B.7)

where P has been written so P = P P̂. This now allows us to express Ek as

Ẽk̃ =

√
ζ2(k̃ · P̂)2 + (k̃2 − 1)2. (B.8)

Putting (B.6) and (B.8) together now also gives us sinα(k̃):

sinα(k̃) =
1√
2

√√√√1− k̃2 − 1√
ζ2(k̃ · P̂)2 + (k̃2 − 1)2

(B.9)

We see also that cosα(k) is also easily expressed as

cosα(k̃) =
1√
2

√√√√1 +
k̃2 − 1√

ζ2(k̃ · P̂)2 + (k̃2 − 1)2

(B.10)

Now we may express sin 2α(k) which after some simplifications can be finally written
as:

sin 2α(k̃) =

√
ζ2(k̃ · P̂)2

ζ2(k̃ · P̂)2 + (k̃2 − 1)2
(B.11)
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Now that we have sin 2α(k̃) and we know that P is in the z-direction we may now
write

sin2 2α(k̃) =
ζ2k̃2 cos2 θ

ζ2k̃2 cos2 θ + (k̃2 − 1)2
= sin2 2α(k̃) (B.12)

We note that immediately the form of (B.12) is reminiscent of a Lorentzian which can
be easily approximated to a delta function. By rewriting (k̃2−1)2 = (k̃−1)2(k̃+1)2

and dividing through by k̃2 we may write (B.12) in the following form

sin2 2α(k̃) = ζ| cos θ| ζ| cos θ|
(ζ| cos θ|)2 + (k̃−1)2(k̃+1)2

k̃2

= ζ| cos θ| ζ| cos θ|
(ζ| cos θ|)2 + (k̃ − 1)2(1 + 1

k̃
)2

(B.13)

By writing (B.12) in this way we see that it is remarkably close to a proper Lorentzian
with an extra (1 + 1

k̃
)2 factor. If we take k̃ to be large then we see that 1

k̃
→ 0 and

so (B.13) reduces to a proper Lorentzian in this limit, whereas if we take k̃ small
then 1

k̃
→∞ which sends sin2 2α→ 0. If we take k̃ to be around 1 then we see that

1
k̃
≈ 1 and so we find we will have

sin2 2α(k̃) ≈ ζ| cos θ| ζ| cos θ|
(ζ| cos θ|)2 + 4(k̃ − 1)2

=
1

2
ζ| cos θ|L(k̃) (B.14)

which again is a Lorentzian with a half width of 1
2
Γ = ζ

2
| cos θ| (called L(k̃) here)

where L(k̃) has the definition:

L(k̃) =
(ζ| cos θ|/2)

(ζ| cos θ|/2)2 + (k̃ − 1)2
. (B.15)

This half width is also supported from numerical calculations and increases in accu-
racy as ζ decreases. This can also be seen in figure B.1 where even at ζ| cos θ| = 0.1

we see very good agreement between sin2 2α(k̃)/(ζ| cos θ|/2) and L(k̃) around the
peak and for small and large values of k̃. From the limiting values of k̃ we see that the
integral is well bounded on both sides and in fact the integral

∫∞
0

sin2 2α(k̃)dk̃ = π
2

for any value of ζ| cos θ|. From this we believe it is reasonable to approximate
sin2 2α(k̃) with

sin2 2α(k̃) ≈ 1

2
ζ| cos θ| 2

π
δ(k̃ − 1) (B.16)

For this approximation to work we would also like the side where k̃ > 1 to become
small on the same scale as it does for k̃ < 1 to keep the asymmetry of the function
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Figure B.1: Plot of sin2 2α(k̃)/(ζ| cos θ|/2) and L(k̃) with ζ| cos θ| = 0.1.

to a minimum and to maintain a delta function-like shape. Thus we would need

(k̃ − 1)2(1 +
1

k̃
)2 � (ζ| cos θ|)2

for k̃ ' 2. Thus for maximal values of | cos θ| we have the condition

ζ2 � 1. (B.17)
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