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We address questions that arise if a slurry containing liquid water is enclosed in a ball of hot viscous vesicular
magma ejected as a bomb in the context of a Surtseyan eruption. We derive a mathematical model for transient
changes in temperature and pressure due toflashing of liquidwater to vapour inside the bomb. Themagnitude of
the transient pressure changes that are typically generated are calculated togetherwith their dependence onma-
terial properties. A single criterion to determine whether the bomb will fragment as a result of the pressure
changes is derived. Timescales for ejection of water vapour from a bomb that remains intact are also revealed.
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1. Introduction

A driving purpose in volcanology is to better understand observa-
tions of active volcanoes and of the deposits that result from eruptions.
This is particularly so in the emergent field of Surtseyan eruptions,
characterised by their unique bulk interactions between molten
magma and large quantities of water. This paper aims to inform the on-
going discussion of keymechanisms of Surtseyan eruptions by develop-
ing a transient mathematical model of heat and mass transport inside a
Sursteyan bomb, assuming that a wet slurry inclusion has been encap-
sulated by a body of hot vesicular magma at the instant of ejection
(Kokelaar, 1983; Schipper & White).

Surtseyan eruptions take their name from their resemblance to the
eruptions that formed the new island of Surtsey off the coast of
Iceland in 1963 (Kokelaar, 1983; Thorarinsson, 1965; Thorarinsson,
1967a; Thorarinsson, 1967b; Thorarinsson, 1968; Thorarinsson et al.,
1964). Defined as shallow subaqueous explosive basaltic volcanic erup-
tions (White and Houghton, 2000), Surtseyan eruptions are violent and
are characterised by the ejection of silent tephra jets, with bombs shoot-
ing out of each jet, trailing black comet-like tails that turn white as
steam condenses (Thorarinsson, 1967b). Large bodies of water with
ready access to the vent surface, mix with ejected tephra that has fallen
or slipped back into the top of the vent, to form a slurry that readily pen-
etrates molten vesicular magma (Kokelaar, 1983; Kokelaar, 1986). Tex-
tural studies (Murtagh and White, 2013; Schipper & White) provide
evidence in tephra of intact bombs, highly vesicular and highly
cGuinness).
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permeable, each containing a number of inclusions. Each inclusion con-
sists ofmaterial similar to that in the parent bomb, surrounded by a void
space. Murtagh andWhite (Murtagh andWhite, 2013) note that “many
lapilli also contain previously formed pyroclasts as inclusions”, and
noted evidence that “erupting magma entrained previously formed
pyroclasts”. One explanation for this morphology would be that the
void space is associated with water that has vented during the ejection
process, leaving the bomb intact. Steam venting during ejection is also
evidenced by the vapour trails observed behind bombs during ejection
(Thorarinsson, 1967b; Schipper & White).

The term bulk interaction steam explosivity, referring to water encap-
sulated by hot magma and prevented from escaping, is the third of the
processes listed by Kokelaar (Kokelaar, 1986), for forming clasts in a ba-
saltic volcano, that is, for rupturing magma. Kokelaar also argues that
this process is a key ejectionmechanism in Surtseyan eruptions, causing
“a violent and continuous expansion that is manifested as a jet of teph-
ra”. Murtagh and White (Murtagh and White, 2013) also note in their
conclusions the important role played by magma–water explosivity in
driving fragmentation throughout the Surtseyan eruption at Black
Point volcano in California. So it is perhaps surprising to consider, along-
side of this violent explosivity associated with water–magma interac-
tions, the possibility that there is also a nonviolent interaction
between ejected vesicular bombs and enclosed slurry, evidenced by ob-
servations of steam trails and voids.

Given the observations noted above and in (Schipper & White), our
interest in this paper is focussed on the interaction between bulk water
enclosed as a slurry and the ejected magma bomb containing it, and on
the possibility that, and the conditions under which, the bomb does not
rupture. We ignore the effects of distributed water coming out of
sport in Surtseyan bombs, J. Volcanol. Geotherm. Res. (2016), http://
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Fig. 1. A sketch of the model of a spherical Surtseyan bomb with a spherical slurry
inclusion placed at its centre. The inclusion has radius R1. The bomb has initial
temperature Tm and radius R2. Not to scale.

2 M.J. McGuinness et al. / Journal of Volcanology and Geothermal Research xxx (2016) xxx–xxx
solution due to pressure decrease as magma rises, except to model the
bomb as a porousmedium, vesiculated by that process. We seek a crite-
rion for bomb rupture, and timescales for steam escape.

1.1. Model motivation

A calculation of the pressure increase consequent on instantaneous-
ly heating a small inclusion of liquid water from say 370 K at one atmo-
sphere to 1200 K at pressure P2, can be made by using the ideal gas
equation PV=nRT. Note that for instantaneous heating, the volume V
and the number ofmoles n of water is the same before and after heating
the water. T is the absolute temperature, and P is the pressure in Pa.

Since the number of moles of water in an inclusion of effective
volume V is given by n=ρlV/M, where ρl is liquid density and M is the
mass of onemole ofwater, vaporising all of the liquidwater affects pres-
sure in two ways — the density ratio of liquid to vapour phase of water
gives a higher number of moles than startingwith only vapour, by a fac-
tor of about 1000/0.6 ≈ 1700, and the temperature increase of the va-
pour phase from 370 K to 1200 K raises the pressure by a factor of
about three:

nR
V

¼ constant ¼ P
T
≈

1700� 105

370
¼ P2

1200
:

The combination of increased number of moles and increased tem-
perature, starting at one atmosphere, gives P2≈550 MPa.

Tensile strengths of small rock samples range up to 66MPa for basalt
(Goodman, 1989), p.83, and for vesicular basaltwill be considerably less
than this value, with shock tube experiments (Koyaguchi et al., 2008)
indicating rupture at pressure differences ranging from 2–30 MPa for
hot (850 °C) and cold vesicular magmas with porosities ranging from
0.05–0.8. Most of the samples with porosities above 0.2 ruptured at
less than 15 MPa. Koyaguchi et al. (Koyaguchi et al., 2008) calculate an
effective tensile strength of 2.18 MPa for their samples from Unzen
and Monserrat, with an error of about ±2 MPa, after correcting for
the effect of porosity.

Hence, instantaneous heating of an inclusion leads to pressure dif-
ferences that far exceed the expected tensile strength of the bomb con-
taining them, yet intact bombs are routinely encountered. That is, if
water is encapsulated by hot magma and is prevented from escaping
as steam, simple calculations indicate the magma will be ruptured.
However, heating and flashing to steam of enclosed liquid is not instan-
taneous, and enclosed high-pressure vapour can escape a vesicular
bomb since it is effectively a porous medium. There is then a race be-
tween the heating of liquid in an inclusion, and the escape of the vapour
generated through the surrounding porous medium, that determines
how large a pressure difference is created. The pressures generated
would be expected to depend on the thermal and transport properties
of themagma bomb, and this dependence is of interest, leading perhaps
to a criterion for fragmentation of the bomb (Spieler et al., 2004;
Mueller et al., 2008), and a timescale for escape of the water if the
bomb does not fragment. These considerations provide the motivation
for developing a mathematical model that gives the time-dependent
pressure behaviour when a liquid water inclusion is heated by a bomb.

2. Mathematical model

We model the transient heating of a single inclusion placed at the
centre of a spherical ball of hot vesicular magma at the instant of
ejection. The magma and inclusion are treated as porous media. The in-
clusion is taken to be a sphere of radius R1, and the magma to have ra-
dius R2, as illustrated in Fig. 1. SI units are used throughout unless
stated. Observations suggest R2 values range from several millimetres
to more than a metre. We will use 10 cm here for illustration purposes.

We consider the inclusion to be a slurry of ash and lapilli and water,
and that the water can escape the ball only by flowing as a vapour
Please cite this article as: McGuinness, M.J., et al., Modelling vapour tran
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through the porous magma, but that the solid component of the slurry
remains in place, as observed in intact bombs. Initially the included
water is assumed to be liquid at or near boiling point and at atmospheric
pressure. The only other water vapour present in our model is that in
the vesicles in the surrounding magma, which has come out of solution
as the rising magma cooled. The magma ball is flying through the air at
the head of a plume in a tephra jet, with its surface effectively at atmo-
spheric pressure but very hot.

We model the heating of the inclusion by conduction from the sur-
rounding hot magma, and we model the consequent flash to steam to
obtain the pressure transients as steam is generated at the inclusion
and then flows out through the porous magma due to the pressure dif-
ferences generated by heating. For simplicity we separate the heating
and flowing problems.

2.1. Temperature model

The radius of the slurry inclusion is assumed to be small enough that
the initial temperature Tm of the surrounding magma does not change
significantly during the time that it is heating the enclosed water and
solids. A temperature gradient between the surface of the inclusion at
a time-varying temperature T and the hot magma is estimated by a
heat balance approach, so that the rate of heat flow into the inclusion
from the magma is

4πKR2
1
∂Tmagma

∂r
;

where K is the thermal conductivity of the hotmagma, and Tmagma is the
actual temperature of the surroundingmagma, which varies with radial
distance r and time t. We approximate the temperature gradient in the
magma by (Tm−T)/RT where RT≈0.3R1. The thermal lengthscale RT is
calculated in the Appendix A, and it depends on both sensible and latent
heat changes.

Then the rate of heat flow into the inclusion is estimated as

4πKR2
1

Tm−T
0:3R1

� �
:

The spatial origin is taken to be at the centre of the inclusion, and
time is zero at the instant of entrainment. We match the rate of change
of internal energy of the inclusion to the rate of heat flow into it,

4
3
πR3

1ρcp
dT
dt

¼ 4πKR2
1

Tm−T
0:3R1

� �
;
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where ρ=ϕ1ρl+(1−ϕ1)ρm is the effective density of the inclusion, ϕ1

is the porosity of the inclusion, ρl is the density of liquid water, ρm is the
density of solid magma, and cp is the effective heat capacity of the inclu-
sion at constant pressure (see the Appendix A for more details). This ef-
fective heat capacity varies with temperature, and jumps at the boiling
point of the liquid due to the specific heat of vaporisation, but we take
a constant effective value in order to simplify the thermal problem suf-
ficiently to solve it separately from the pressure problem.

The temperature at the surface of the inclusionmust then satisfy the
equation

dT
dt

¼ 10K

ρcpR2
1

Tm−Tð Þ;

which has the solution

T ¼ Tm− Tm−T0ð Þe−αt;

where T0 is the initial temperature of the inclusion upon entrainment,
and

α ¼ 10K

ρcpR2
1

:

So our simple model has the temperature at the surface of the inclu-
sion increasing and approaching the magma temperature, with a time-
scale of 1/α.

2.2. Pressure model

Conservation of vapour mass in the surrounding hot magma can be
expressed as

∂ ϕ2ρvð Þ
∂t

¼ −∇ � vϕ2ρυð Þ;

where ρv is the density of vapour, ϕ2 is the porosity of themagma, and v
is the fluid velocity (bold font indicating a vector quantity) in the pores.
This may be combined with Darcy's law for the volume flux q (volume
per unit area per second) of a fluid through a porous medium,

ϕ2v ¼ q ¼ −
k
μυ

∇p;

where k is the permeability of the porous magma, p is the pressure of
the water vapour, and μv is the dynamic viscosity of the water vapour.
Permeability and dynamic viscosity are taken to be constant here.
Then we have

∂ ϕ2ρυð Þ
∂t

¼ ∇ � kρυ

μυ
∇p

� �
: ð1Þ

The ideal gas law relates vapour density to vapour pressure:

ρυ ¼ pM
RTmagma

where R=8.314 J K−1 mol−1 is the universal gas constant, andM is the
molar mass of water (kg mol−1). Equilibrium between vapour temper-
ature andmagma temperature is assumed.We again neglect changes in
magma temperature, setting Tmagma≈Tm. Then using the ideal gas law
to replace vapour density in Eq. (1) gives a nonlinear diffusion equation
for vapour pressure,

∂p
∂t

¼ k
ϕ2μv

� �
∇ � p∇pð Þ:
Please cite this article as: McGuinness, M.J., et al., Modelling vapour tran
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The initial condition is taken to be that p(r,0)=0, that is, that the
partial pressure of water vapour in the vesicular magma is negligible.
The total pressure at the surface of the bomb may be assumed to be
one atmosphere. The partial pressure of water vapour there can be up
to one atmosphere, much smaller than critical fragmentation pressures.
Similarly, the boundary condition at the surface of the hotmagma at r=
R2 is assumed to also correspond to negligible partial pressure of water
vapour,

p ¼ 0; r ¼ R2:

The other boundary condition to be applied is at the flashing front in
the inclusion. This is considered in the following subsection.

2.3. Flashing front

Theflowof heat to the inclusion vaporises thewater there, providing
a source of vapour that flows into the surrounding magma. We model
this source as a flashing front that propagates into the inclusion at a
rate governed by a heat balance between the heat conducted to the in-
clusion from the surrounding magma, and the latent heat required to
move the flashing front some distance into the inclusion. This is a classic
Stefan problem for propagation of a change of phase.

The amount of heat provided to the flashing front located at radius
s(t) in time Δt by conduction from the hot magma is

4πs2K
dT
dr

Δt:

We approximate dT/dr by (Tm−T)/RT and use our temperature solu-
tion to obtain the following expression for the amount of conductive
heat provided:

4πs2K Tm−T0ð Þ e
−αt

RT
Δt:

We neglect changes in sensible heat and heat loss due to vapour
flowing outwards from the flashing front. We assume that in time Δt
the flashing front advances a distance Δs towards the origin. We
match the conductive heat provided in time Δt with the heat required
to vaporise the water in a spherical shell of thickness Δs,

4πs2Δs ρlϕ1hυl

where hυl J kg−1 is the specific heat of vaporisation of water. Then,
equating heat supplied to heat required, taking the limit as Δt (and
hence Δs) approaches zero, and noting that _s ¼ limΔt→0Δs=Δt, we ob-
tain an expression for the inwards speed of the flashing front,

_sj j ¼ K Tm − T0ð Þe−αt

0:3ρlϕ1hυlR1
:

Starting with s=R1 at t=0, this implies that

s tð Þ ¼ B e−αt−1
� �þ R1;

where B/R1 is a Stefan number, and

B ¼ Tm−T0ð ÞρcpR1

3ρlϕ1hυl
:

Hence flashing of liquid in the inclusion is completed when s=0,
that is, after t0 seconds, where

t0 ¼ −
1
α

ln 1−
R1

B

� �
:
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Note that for t0 to be a real number requires that the Stefan number
B/R1 be greater than one, that is, that the change in sensible heat at the
inclusion exceeds the latent heat required to vaporise all of the liquid in
it. If for example the temperature of the surrounding magma is insuffi-
cient to completely vaporise the liquid in the inclusion, then t0 has no
real value since the flashing front never reaches the origin (s=0).

2.3.1. Inner boundary condition
The vapour pressure gradient in the magma at the flashing front

resulting from the generation of steam in the inclusion is then obtained
by noting that the vapour generatedmust all flowoutwards into the po-
rous magma surrounding the inclusion. The mass of vapour generated
per second over the entire flashing front is

−ϕ1ρl4πs
2 _s;

and the totalmass flow rate of vapour that flows away from theflashing
front into the magma is

− 4πs2
kρυ

μυ
∇p:

Equating these and applying the ideal gas law gives

k
ϕ2μυ

� �
p∇p ¼ RTmϕ1ρl _s

Mϕ2
: ð2Þ

This provides a flux boundary condition at the inner boundary r=
s(t) between the origin and R1, until t=t0 and there is no more liquid
left in the inclusion. After time t0, the boundary condition at the origin
is then

k
ϕ2μυ

� �
p∇p ¼ 0: ð3Þ

To summarise, the dimensional problem to solve is

∂p
∂t

¼ D
1
r2

∂
∂r

pr2
∂p
∂r

� �
ð4Þ

p ¼ 0; r ¼ R2 ð5Þ

Dp
∂p
∂r

¼
RTmϕ1ρl _s

Mϕ2
; t b t0

0; t ≥ t0

8<
: ; r ¼ s tð Þ ð6Þ

_s ¼ −
K Tm−T0ð Þe−αt

0:3ρlϕ1hυlR1
ð7Þ

α ¼ 10K

ρcpR2
1

ð8Þ

D ¼ k
ϕ2μυ

ð9Þ

t0 ¼ −
1
α

ln 1−
R1

B

� �
ð10Þ

B ¼ Tm − T0ð ÞρcpR1

3ρlϕ1hυl
ð11Þ

and the flashing front at r=s(t) begins at r= R1 ≪ R2 and reaches zero
in time t0. Dp is the nonlinear diffusivity in this nonlinear Stefan diffu-
sion problem for vapour pressure, which has a moving boundary at
the flashing front in the inclusion.

We now rescale and non-dimensionalize the problem, in order to
identify key parameters and timescales.
Please cite this article as: McGuinness, M.J., et al., Modelling vapour tran
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3. Non-dimensional model

Themodel Eqs. (4) to (11) are rescaled and non-dimensionalised by
scaling pressure on the tensile strength pc of vesicular magma, scaling
time on the time t0 required to flash all of the included liquid to vapour,
and scaling r and s on the radius R2:

~p ¼ p
pc

;~t ¼ t
t0

;~r ¼ r
R2

;~s ¼ s
R2

; ~D ¼ t0pcD

R2
2

:

Note that typically the Fourier number αt0≈0.04, which is small
enough that we can approximate e−αt0t≈1 for tb1, and the nondimen-
sional flash front speed then becomes constant, _s ¼ − R1

R2
.Wenowhave a

simplified timescale for flash completion

t0 ¼ 0:3ϕ1R
2
1ρlhυl

K Tm−T0ð Þ :

The tildes are dropped, to obtain

∂p
∂t

¼ D
r2

∂
∂r

pr2
∂p
∂r

� �
ð12Þ

p r;0ð Þ ¼ 0; p 1; tð Þ ¼ 0 ð13Þ

Dp
∂p
∂r

¼ −E; t b 1
0; t ≥ 1

�
; r ¼ s tð Þ ð14Þ

s tð Þ ¼
R1

R2
1−tð Þ; t b 1

0; t ≥ 1

8<
: ð15Þ

E ¼ R1RTmϕ1ρl

R2Mϕ2pc
ð16Þ

D ¼ 0:3pchυlρlϕ1kR
2
1

Kμυ Tm−T0ð Þϕ2R
2
2

: ð17Þ

Our model is a nonlinear diffusion equation for pwith diffusivity Dp
and a constant flux E at the flashing surfacewhich is themoving bound-
ary s(t). Thisflux turns off at t=1. The totalmassflow rate of vapour out
of the inclusion reduces as s2 reduces in time, that is, like a quadratic in
time, until it reaches zero at t=1. The critical value of nondimensional
pressure at which bomb rupture is anticipated is if p reaches the value
one somewhere inside.

The nondimensionalmodel Eqs. (12)–(15) nowdepend on three pa-
rameters, D, E, and R1/R2.

Note that as R1 increases, the flux E increases near the origin. But di-
mensionless diffusivity D also increases as R1 increases, so it is difficult
to deduce pressure behaviour at the origin directly from these parame-
ters. In the next section, numerical solutions guide us to further helpful
simplifications.

3.1. Numerical solutions — fixed flash front

We use Matlab's pdepe command to solve Eqs. (12)–(15) . As a first
step, we fix the value of dimensionless s=ε≡R1/R2, that is, we take a
constant flash position at the surface of the inclusion for the flash
front, modelling the inclusion as delivering vapour to that fixed front
for dimensionless time t0. This delivers a larger total amount of vapour
than in the actual model, since it does not take account of the reducing
total area of the flashing surface, and pressure values obtained at this
fixed value of s then provide an upper limit on the actual pressure values
for s(t)→0. This upper limit turns out to be very useful.

Typical values for constants and parameters used in numerical solu-
tions unless noted otherwise are listed in Tables 1 and 2. Initial values
sport in Surtseyan bombs, J. Volcanol. Geotherm. Res. (2016), http://
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Table 1
Physical constants used.

Constant Value Units

pc 2×106 Pa
hvl 2×106 J kg−1

ρl 1000 kg m−3

k 10−14 m2

K 2 W m−1 K−1

μv 3×10−5 Pa s
M 18×10−3 kg mol−1

R 8.314 J K−1 mol−1

Tm 1300 K
T0 300 K
ϕ2 0.4
ϕ1 0.4
R1 0.001 m
R2 0.1 m

1.5
1

0.5
t01

r
0.5

1.5

0

0.5

1

2

0

p

Fig. 2. Numerical solutions to the nondimensional pressure equations, showing pressure
versus radius and time (all nondimensional). The flashing front is approximated by
fixing it at the initial radius of the inclusion. Parameters are as listed in Table 1.
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for pressure p, and the boundary value at r=1, are all taken to be
1.0 × 105 Pa in numerical simulations, rather than the zero value de-
scribed above. This only affects later computations of steam release
curves.

The numerical solutions reveal an interesting feature— the pressure
at the fixed surface of the inclusion quickly equilibrates, as illustrated in
Fig. 2. This rapid equilibration is observed over a wide range of param-
eters, independently of whether pressure changes are visible in graphs
at r=1 when t=1, or not.

The timescale for pressure to reach a steady value at the surface of
the inclusion is readily obtained, in a manner analogous to the exact so-
lution in the book by Crank (Crank, 1974), p.32. There an exact solution
proportional to erfc(η) is given for a linear diffusion equation with a
point source of constant flux at the origin, in an infinite medium,
which depends on the well-known similarity variable η ¼ r=ð2

ffiffiffiffiffiffi
Dt

p
Þ.

That solution equilibrates when η≈1, giving a timescale r2/(4D).
For our nonlinear problem, we can similarly take the source of va-

pour to be at the origin. In fact it is not possible to specify a boundary
value or flux at the origin in spherical coordinates. What is imposed is
the correct total flux at some radius ε, which is taken to be arbitrarily
close to the origin. We are interested in early times when the solution
may be approximated by a solution on an infinite domain. The
lengthscale for the point of interest is r=ε.

Our model may be compared to a linear one by rewriting the diffu-
sion Eq. (12), bymultiplying both sides by 2p and rearranging to obtain
the form

∂p2

∂t
¼ Dp

r2
∂
∂r

r2
∂p2

∂r

� �
ð18Þ

which is linear in the variable p2, provided that one uses an average
pressure value p in the diffusivity term Dp. This process is well-known
in geothermal reservoir literature, e.g. (Moench, 1979; Grant, 1978;
Moench and Atkinson, 1977), where taking an average pressure is a
good approximation.

The timescale ts for pressure changes at early times is then propor-
tional to the ratio of lengthscale squared to diffusivity Dp,

ts ¼ ε2

4Dp
;

Table 2
Derived dimensionless parameters and scales. The-
se use the parameter values given in Table 1.

Parameter Value

D 0.02
E 3
t0 0.12 s

Please cite this article as: McGuinness, M.J., et al., Modelling vapour tran
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where p is some average value of pressure, of order one for pressures of
interest. Hence the condition for the pressure to equilibrate at the fixed
flash front before running out of steam is ts b 1, that is, ε2 b 4Dp. Values
for D vary, but a typical small value for typical parameter values is 0.02,
giving ε=R1/R2 b 0.3. Most values of R1 that we consider are well
below this value (0.3R2), since we are assuming little thermal impact
on the surrounding magma due to flashing the inclusion, implying
that the timescale for pressure to equilibrate at the flashing front is typ-
ically much less than the time for the inclusion to boil dry.

3.2. Numerical results — moving flash front

The moving boundary problem may be solved numerically by fol-
lowing the flashing front. We could do this by solving the fixed-front
problem for a very short time, then updating the front position, re-
meshing, and interpolating the previous solution to provide new initial
values for the next step. Note that an alternative approach is to specify
the correct (reducing with time) total flux −4πEs2(t) at some small
fixed value of ε, rather than the constant flux −E at a variable flash
front location. Then pressure values at radii less that s(t) are ignored,
and the maximum pressure is found by interpolating the pressures ob-
tained to evaluate at r=s(t). The second approach, which corresponds
to the point source method for diffusion problems in porous media, is
much faster, since it does not require re-meshing and interpolating.
Both methods have been compared and found to give the same results
on [s(t),1].

The results are illustrated in Fig. 3. The most noticeable effect is that
the stable maximum pressure seen in the fixed boundary simulations is
almost reached before the pressure at the flashing front reduces due to
itsmovement towards the origin. This reduces themaximumvalue only
slightly from that in the fixed front simulations.

In both of these simulations, the maximum pressure computed nu-
merically is observed to rise above one, which should rupture the sur-
rounding rock, assuming it has an effective tensile strength of 2 MPa.
Increasing the permeability, as in Fig. 4, is oneway to reduce the nondi-
mensional maximum pressure so that it never rises above the critical
value of one. Increasing the radius of the inclusion from 1 mm to
1 cm, on the other hand, has a relatively small effect on the maximum
pressure, as may be observed by comparing Fig. 5 with Fig. 3.

4. Steady-state solutions

The rapid stabilisation of pressure at the surface of the inclusion
means that the steady-state solution for pressure in the case of a
sport in Surtseyan bombs, J. Volcanol. Geotherm. Res. (2016), http://
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Fig. 3. Numerical solutions to the nondimensional pressure equations, showing pressure
versus radius and time (all nondimensional), when the flashing front is allowed to
travel towards the origin. The radial mesh, initial conditions, and the flashing front
location s(t) are tracked. Parameters are as listed in Table 1.
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Fig. 5. Numerical solutions to the nondimensional pressure equations, showing pressure
versus radius and time (all nondimensional). The inner boundary moves with the
flashing front. The radius of the inclusion is now 1 cm. Other parameters are as in Table 1.
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constant and persistent source of vapour at r=εmay be used to provide
an approximation to the maximum value of pressure achieved there,
even when the source reduces with time and does turn off at t=1. A
steady state everywhere is not typically achieved by the time t=1, as
is evident in Fig. 2, but the value of pressure at r=ε predicted by the
steady-state solutionwill provide a fairly close upper bound to the actu-
al pressure there, since it reaches a stable value relatively quickly.

The steady-state solution satisfies

D
r2

∂
∂r

pr2
∂p
∂r

� �
¼ 0

which implies that

r2
∂p2

∂r
¼ c1

where c1 is a constant of integration. The steady solution is then

p2 ¼ −
c1
r
þ c2
1.5
1

0.5

t
01

0.5
r

0.2

0.05

0.1

0.15

0

p

Fig. 4. Numerical solutions to the nondimensional pressure equations, showing pressure
versus radius and time (all nondimensional). The inner boundary moves with the
flashing front, as in the previous figure. The permeability is 10−12 m2. Other parameters
are as in Table 1.
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and the constants are determined by the boundary conditions at r=ε
(where the flux value is −E) and at r=1 (where p=0), so that the
steady solution is

p2 ¼ 2Eε2

D
1
r
−1

� �
: ð19Þ

The value of pressure at r=ε is then given by

p εð Þ2 ¼ F 1−εð Þ;

where

F ¼ 2Eε
D

:

This serves as a formula for the maximum pressure that is rapidly
approached at the surface of the inclusion in this model. If it exceeds 1
in value, fragmentation is predicted.

5. Fragmentation criterion

The crucial combination of parameters in the maximum pressure is

F ¼ 2Eε
D

¼ 7RTmK Tm−T0ð Þμυ
Mp2c hυlk

;

which is independent of R1 and R2, so that for ε≪ 1,themaximum pres-
sure is approximated bypðεÞ ¼ ffiffiffiffi

F
p

and this is independent of R1 and R2.
This is consistent with our above observation, that increasing R1 from
1 mm to 1 cm has little effect on maximum pressure.

However, for larger values of R1, the more general formula

p εð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F 1−εð Þ

p
is required, that is,

p εð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7RTmK Tm−T0ð Þμυ

Mp2c hυlk
R2−R1

R2

� �s

and pressure does varymore significantly with the ratio ε=R1/R2 when
it is of order one.

The nature of the dependence on R1 is that the maximum pressure
reached decreases as R1 increases. This may be thought surprising,
if one considers that increased R1 means more water to drive steam
pressures upwards. But increased R1 also means a shorter distance
sport in Surtseyan bombs, J. Volcanol. Geotherm. Res. (2016), http://
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R2−R1 for steam to travel to escape from themagma, reducing pressure
rise.

The fragmentation criterion is that p(ε) N1, that is,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7RTmK Tm−T0ð Þμυ

Mhυlk
R2−R1

R2

� �s
N pc: ð20Þ

The full solution of the diffusion problemdoes depend on ε, as can be
seen by comparing Fig. 6 which has R1=1 cm (and R2=100 cm) with
Fig. 2 which has R1=1 mm. Both have much the same values for the
maximum pressure at r=ε, but the second figure has almost reached
steady state throughout by the time the steam source vanishes at t=1.

It is also of interest that the fragmentation criterion does not depend
on the porosity ϕ2 of the hot magma surrounding the inclusion. This
may be understood as due to the importance of the steady-state
pressure solution, which is independent of diffusivity, together with
the fact that the speed of the flashing front depends on the temperature
gradient driving it from the hot magma, but only on the porosity of the
inclusion which is the source of liquid for flashing.

Note to the lack of dependence on ϕ1. An increased ϕ1 value
slows the speed of the flashing front but increases the amount flashed.
In the dimensional problem (Eqs. (6) and (7)) it can correspondingly

be seen that in the source term RTmϕ1ρl _s
Mϕ2

the ϕ1 terms cancel exactly.

5.1. Travelling flash front

The steady-state solution is altered slightly in a quasi-steadymanner
if we solve for steady p on the moving interval [s(t),1]. This gives

p2 εð Þ ¼ 2Es2

D
1
s
−1

� �
;

and in the limit as s(t) approaches zero,

p2 εð Þ→ 2Es
D

→ 0:

This is consistent with the behaviour of numerical solutions seen in
the previous section, in particular with the pressure behaviour at the
moving flash front. The steady solution predicts that as smoves towards
zero (at a constant time rate), p varies as

ffiffi
s

p
, as can be seen in Figs. 5 and 3

as t→1.
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Fig. 6. Numerical solutions to the nondimensional pressure equations, showing pressure
versus radius and time (all nondimensional). The flashing front is frozen at its initial
location, the surface of the inclusion, which has dimensional radius 1 cm. Other
parameters are as in Table 1.

Fig. 7. Comparisons of numerical and theoretical maximum nondimensional pressures at
theflashing front in amagma bomb. Numerical results use a point source to give amoving
flash front, and cover permeabilities stepping from 10−10 m2 to 10−16 m2 evenly in log
space by dividing by ten, and close groupings of ten values for each permeability of
inner radii R1 taking values 0.001 m, 0.005 m, stepping evenly then to 0.045 m. Symbols
indicate numerical values and lines indicate equality when used. Higher maximum
pressures correspond to lower permeabilities. Pressure at r=1 and initial pressure have
been set to zero in these plots. Other parameters are as in Table 1. Trends with
decreasing permeability and increasing R1 are indicated in the last plot, showing the
ratio of numerical to theoretical maximum pressures for each case computed. (a) Log–
Log plot of numerical vs theoretical maximum pressures (symbols). (b) Linear plot of
numerical vs theoretical maximum pressures (symbols). (c) Ratios of numerical to
steady-state maximum pressures.
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5.2. Numerical verification

We tested the fragmentation criterion obtained from the steady-
state solution, by comparing it with numerical solutions to the diffusion
equation with a travelling flashing front. A number of maximum
pressure values were computed at the flashing front, for permeability
ranging in powers of ten from 10−10 m 2 to 10−16 m2, and at each
sport in Surtseyan bombs, J. Volcanol. Geotherm. Res. (2016), http://
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Fig. 8. A close-up view near the critical nondimensional pressure, of a Log–Log plot of
numerical vs theoretical maximum pressures (symbols). Permeabilities are 10−14 m2

(red circles), 2 × 10−14 m2 (blue squares), 3 × 10−14 m2 (black diamonds), and
4 × 10−14 m2 (red plusses). Each permeability has seven values of inner radii R1,
0.001 m, 0.005 m, 0.01 m, 0.02 m, 0.03 m, 0.04 m, and 0.05 m. As inner radii increase at
a fixed permeability, the steady state value of maximum pressure decreases. The critical
value of pressure is indicated by the dashed lines. Other parameters are as in Table 1.
(For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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Fig. 9. Plot of the dimensionless times for 10% (red circles) and 90% (black diamonds) of
the inclusion vapour to flow out of the bomb, versus the theoretical dimensionless
timescale τ. The solid line shows where the times would be equal to τ. The cases
included here have seven values of permeability stepping from 10−10 m2 to 10−16 m2

by dividing by ten. For each permeability setting, there are five values of inner radii R1,
taking values evenly spaced from 0.01 m to 0.05 m. Other parameter values are as in
Table 1. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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permeability using ten values of R1 from the list 0.001, 0.005, then
stepping to 0.045 with step-size 0.005. These computed maximum
pressures are compared with the theoretical steady state formula in
Fig. 7, where it can be seen that the steady-state approximate formula
gives a good match on the log–log plot over a wide range of pressure
scales. The linear plots show that the more accurate numerical values
of the maximum pressure can be as low as 75% of those predicted by
the formula, and that the better approximations correspond to larger in-
clusions and to larger permeabilities. That is, for small permeability and
small inclusions, the steady-state formula predicts maximum pressures
that are higher than observed in numerical simulations. For all of these
plots, the initial and boundary pressures have been set to zero.

It is also clear from Fig. 7(a) that it is at a permeability between
10−13 and 10−14 m2 that maximum pressure crosses the critical value
of one, irrespective of the value of R1.

A comparison of numerical and theoreticalmaximumpressures over
a permeability range that is narrowed to the range 10−14 m2 to
2 × 10−15 m2 appears in Fig. 8. The critical value of maximum pressure
appears to be reached at permeabilities near 2 × 10−14 m2, depending
on R1. Rearranging Eq. (20) gives for small R1 the critical value of perme-
ability for rupture,

kc ¼ 7RTmK Tm−T0ð Þμv

Mhυlp2c
≈3� 10−14 m2:

which is close to our more careful result from numerical simulations.

6. Steam flow times

Given the observations of plumes of steam trailing behind Surtseyan
bombs, it is of interest to compute the time needed before steam begins
to flow through the outer surface of a bomb, and the time period before
steam flow is almost exhausted.

The rate of flow of steamQ (kg s−1) out of the sphere r=R2 is given
by Darcy's law as

Q ¼ −4πR2
2

kρυ

μυ
∇p

� �

and using the ideal gas law this becomes, in dimensional terms,

Q ¼ −
4πR2

2kM
μυRTm

p
∂p
∂r

� �
:
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If we non-dimensionalise as above, this becomes

Q ¼ −
4πR2kMp2c
μυRTm

~p
∂~p
∂~r

� �
:

Pressure and its derivative are to be evaluated at the outer surface, ~r
¼ 1. It is clear that pressure must not be zero here, if Q is to be nonzero,
so this section uses p=pa at the outer surface. We calculate Q(t) using
the numerical solutions obtained on the moving nondimensional do-
main [s(t)/R2,1], for a variety of parameter values.

Solutions to the diffusion equation have the theoretical property that
steam immediately begins toflowout of the bomb, but at infinitesimally
small rates initially. The more useful theoretical result is the time at
which significant and observable flow rates of steam begin, and the
time at which they end. Hence we calculate times for 10%, 50% and
90% of the included water to escape the bomb.

We have written our pressure diffusion equation in a form that is
semi-linear in p2 (see Eq. (18)) which has a diffusivity Dp that depends
on p. We use an average value p for p in the diffusivity that is based on
the steady-state solution. We compute p using Eq. (19) for p2, and we
take the integral average:

p ¼
Z1
ε

pdr= 1−εð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Eε2

D 1−εð Þ2

s Z1
ε

ffiffiffiffiffiffiffiffiffiffi
1−r
r

r
dr

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Eε2

2D 1−εð Þ2

s
2

ffiffiffiffiffiffiffiffiffiffiffi
r−r2

p
þ sin−1 2r−1ð Þ

� 	1

ε

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Eε2

2D 1−εð Þ2

s
π
2
−2

ffiffiffiffiffiffiffiffiffiffiffiffi
ε−ε2

p
− sin−1 2ε−1ð Þ

� 	
:

This becomes, for small ε,

p≈ π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eε2

2D 1−εð Þ2

s
:

A dimensionless timescale is then given for the lengthscale 1−ε as

τ ¼ 1−εð Þ2
Dp

¼ 1−εð Þ3
επ

ffiffiffiffiffiffi
2
DE

r
:
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Fig. 11. The cases included here are restricted to bombswhich remain intact. There arefive
values of permeability stepping from 10−10m2 to 10−13m2 by dividing by ten, then a fifth
value of 3 × 10−14m2. For each permeability setting, there are five values of inner radii R1,
taking values evenly spaced from 0.01 m to 0.05 m. Other parameter values are as in
Table 1. (a) Plot of the dimensionless times for 10% (red circles) and 90% (black
diamonds) of the inclusion vapour to flow out of the bomb, versus the theoretical
dimensionless timescale τ, for bombs that are expected to remain intact. The solid line
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Numerical results were used to find the dimensionless times when
10% and 90% of the total amount of water has flowed out of the bomb
in vapour form. These are comparedwith τ values in Fig. 9, to determine
whether τ is a good measure of steam escape times.

Referring to Fig. 9, it can be seen that at smaller values of τ, the time-
scale that controls steam release is the time to flash all of the liquid to
vapour, a dimensionless time of one. Hence the dimensional timescale
for these cases is given by t0. This is independent of τ, which is a time-
scale for diffusion through the magma, not a timescale for flashing.
This corresponds to cases where the diffusivity D is so large that vapour
flows relatively quickly from the flashing front to the outer surface of
the enclosing magma, and the time-limiting factor is the time to flash
the liquid to vapour.

At larger values of τ there is a range of numerical times for a given
value of τ, and the trend of these numerical values is the same as that
for τ. The value of τ is seen to provide an approximate lower limit on
the 10% escape times, and about ten times the τ value provides an esti-
mate of the time for 90% of the vapour to escape. The errors in these es-
timates are due largely to approximating the average pressure value
using the steady-state solution, but also to the simplification used that
ε is small.

Converting τ to a predicted timescale τs for the time in seconds for
most of the water to escape gives

τs ¼ 1−εð Þ3
επ

ffiffiffiffiffiffi
2
DE

r
t0 ¼ ϕ2

π
R2−R1ffiffiffiffiffiffiffiffiffiffiffiffi
R1R2

p
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:6μυMhυl
KkRTm Tm−T0ð Þ

s
:

shows where the times would be equal to τ. (b) Plot of the times in minutes for steam
to escape, for bombs that are expected to remain intact. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)
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Fig. 10. Plots of the times in minutes for 10%, 50% and 90% of the inclusion vapour to flow
out of the bomb, versus an index for the case run. The upper plot is log-linear, and the
lower plot is linear. The cases included here have seven values of permeability stepping
from 10−10 m2 (index 1–5) to 10−16 m2 (index 31–35) by dividing by ten. For each
permeability setting, there are five values of inner radii R1 increasing from left to right,
taking values evenly spaced from 0.01 m to 0.05 m. Other parameter values are as in
Table 1.
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Another view of the numerically computed escape times is provided
by Fig. 10. It can be seen that that for the higher permeability cases con-
trolled by the time for the inclusion liquid to flash to vapour, escape
times have a wide range. Initial appearance of steam ranges from
about two seconds for the smallest inclusions in very permeable
bombs, to about 50 s in tight bombs. Most steam has exited a bomb at
times ranging from 20 s for very permeable bombs to forty minutes
for tight bombs assuming they have not ruptured. Generally, escape
times increase as the square of the radius R1 due to the dependence of
the timescale t0 on R1

2.
In order to clarifywhen theflash timedominates, andwhen the time

for vapour to diffuse through the surrounding bomb controls steam re-
lease times, plots which are restricted to permeabilities higher than the
critical fragmentation value k = 3 × 10−14 m2 for bombs of strength
2 MPa are presented in Fig. 11.
Fig. 12. Region in which fragmentation of a Surtseyan bomb is predicted, in terms of
permeability k vs relative inclusion size ε=R1/R2.
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7. Conclusions

A nonlinear pressure diffusion equation has been derived that de-
scribes anticipated pressure increases due to flashing of a liquid inclu-
sion at the centre of a Surtseyan magma bomb. Numerical solutions
and some analysis indicate that, for a range of parameter values, the
steady-state solution provides useful information about the maximum
pressure difference generated by boiling.

Pressures inside the bomb are highest at the flashing front and de-
crease with distance from it. They increase rapidly with time at the
flashing front. Pressures reach their maximum value at times less than
the time to boil all of the inclusion liquid provided that the inclusion
has a radius that is less than half of the bomb radius. Rupture is predict-
ed formagmapermeabilities less than about 10−14m2, but this depends
also on effective tensile strength and other parameters that are quanti-
fied in the rupture criterion

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7RTmK Tm−T0ð Þμυ

Mhvlk
R2−R1

R2

� �s
N pc:

Noting that the two parameters whose variation from sample to
sample might be of most interest are permeability k and the size ratio
ε=R1/R2, this criterion may be written in the form

k b
B
p2c

1−εð Þ ð21Þ

where

B ¼ 7RTmK Tm−T0ð Þμυ
Mhυl

:

This inequality graphs as the region below a straight line as illustrat-
ed in Fig. 12.

The graph has slope −B/pc2 and intercept B/pc2. Using parameter
values Tm=1300 K, T0=300 K, and pc=2 MPa gives

B
p2c

≈ 3� 10−14 m2:

The value 3×10−14 m2 gives a lower bound for permeability when
the inclusion is negligibly small and bombs are to remain intact. Below
this value fragmentation is in general predicted by the mathematical
model. Modifying this for larger values of R1 is easy using Fig. 12 or
Eq. (21).

It is notable that the critical value of permeability given by the
steady-state criterion (20) and the consequent approximate value
obtained in the previous section of k = 3 × 10−14 m2 for bomb
fragmentation is less than the permeabilities of clasts measured by
Schipper et al. (Schipper et al., 2013), 10−10 m2 to 10−13 m2. This mea-
sured range of permeabilities of intact bombs is consistentwith our the-
oretical critical value, as themeasured values are above the critical value
for fragmentation.

We have assumed an effective tensile strength pc=2MPa. A reduc-
tion of this by a factor of three would increase the critical permeability
to the value 10−13 m2, close to the minimum values measured by
Schipper et al. (Schipper et al., 2013).

Steam escape times are found to vary from two seconds to 40 min.
They fall into two categories, one controlled by the relatively short
time required to flash the entrained liquid water, and the other con-
trolled by the relatively long time required for steam to flow through
the vesicular magma bomb. The flashing-controlled cases have initial
steamflows observable after about 2 s, and exhaustion of steamventing
after about ten minutes. Reference to Fig. 11 makes it clear that these
cases also correspond mostly to those bombs which are not expected
to fragment if pc=2 MPa, with bombs near fragmentation beginning
Please cite this article as: McGuinness, M.J., et al., Modelling vapour tran
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to show some correlation with the theoretical dimensionless time τ.
Other less permeable cases with some distance for the vapour to travel
can take up to 40 min to near exhaustion, and the initial appearance of
vapour from these bombs may also be significantly delayed, with times
ranging from oneminute to 20 min. However, these bombs are also the
ones with low enough permeabilities that they should fragment, unless
the bomb material is stronger than 2 MPa.

The timescale τs provides a useful indicator of how steam escape
times depend on magma properties, but only for bombs with such a
small permeability that they are predicted to fragment. For bombs
that our model predicts will remain intact, with k≥3×10−14 m2, the
timescale t0 is the relevant one for steam escape times, and this is con-
trolled by the time required to flash the inclusion to steam, not the neg-
ligibly small time for the steam to escape from the bomb.
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Appendix A. Thermal lengthscale

An estimate is required for the thermal lengthscale RT, since we ap-
proximate the temperature gradient in the magma by (Tm−T)/RT. We
approximate this lengthscale by estimating how much heat is required
to vaporise the liquid in the inclusion, initially at 293 K and vaporised at
373K. The heat required to raise the temperature of liquid by 80 K in the
slurry ball with porosity ϕ1, density ρl=1000, and specific heat cpl =
4184 J kg−1 K−1 is

Q1 ¼ 4
3
πR3

1ϕ1ρlc
l
p80≈ 1:4� 106ϕ1ρlR

3
1:

A similar calculation for the heat Q2 required to raise the tempera-
ture of the solid component of the inclusion gives Q2≈0.5Q1(1−ϕ1)/
ϕ1. The heat required to vaporise at 373 K is greater:

Q3 ¼ 4
3
πR3

1hvlϕ1ρl ≈ 9:5� 106ϕ1ρlR
3
1;

where hvl≈2260 kJ kg−1 is the specific heat of vaporisation.
Hence an effective value for cp that applies up to the point that all of

the liquid in the inclusion is vaporised can be estimated as about Q3/Q1

times the value 4184 used above, that is, cp≈3×104 J kg−1 K−1.
The volume of magma in a shell of radius R1+RT about the inclusion

is

VT ¼ 4
3
πϕ2 R1 þ RTð Þ3−R3

1

h i

and the sensible heat due to a change of temperature of 900 K in this is
set equal to Q1+Q2+Q3 to find RT:

900cmϕ2ρmVT ¼ Q1 þ Q2 þ Q3

where the thermal capacity cm=840 J kg−1 K−1, magma density ρm=
2800 kg m−3, and magma porosity is ϕ2. This gives

R1 þ RTð Þ3 ≈ 1þ 1:2
ϕ1

ϕ2
þ 0:6

1−ϕ1

ϕ2

� �
 �
R3
1:

Using equal porosities in magma and inclusion with values of 0.4
then gives the estimate for thermal lengthscale

RT ≈ 0:3R1:
sport in Surtseyan bombs, J. Volcanol. Geotherm. Res. (2016), http://
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