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Abstract
Coal pyrolysis is a complex process involving a large number of

chemical reactions. Pyrolysis is a key step in all coal conversion pro-
cesses. The Distributed Activation Energy Model (DAEM) is a state-
of-the art approach to the problem of predicting the amount of volatile
released versus activation energy or time. The distribution of mass
released is usually assumed to be Gaussian. We present an inverse
iterative approach together with a smoothing function to estimate the
underlying distribution directly from volatilisation data.

1 Introduction
Coal pyrolysis has been the subject of numerous studies on reaction kinetics
and the amount of total volatile yield. Some of these studies have addressed
the individual volatile species and measured the kinetics of species evolution.
Modeling coal pyrolysis is important not only for processes where coal is a
part of the chemical system, but also for combustion, thermal decomposition,
or gasification processes in general.

Howard [1] and Solomon et al. [2] proposed two mathematical models
of coal pyrolysis in their research. They describe two models, the Single
First Order Reaction model (SFOR) and the more complicated Distributed
Activation Energy Model (DAEM). Recent researchers including Niksa and
Lau [3], Suuberg [4], Miura and Maki [5] and McGuinness et al. [6] have
discussed simplifications of these models. Niksa and Lau [3] claimed that
holding the SFOR base-rate constant is a good way to estimate nominal
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rates for any given thermal history. The same devolatilization rate will be
predicted as in the DAEM at every instant in the thermal history. By us-
ing this approach to explore the relationship between the DAEM and the
SFOR model, the activation energy is fixed. Niksa and Lau [3] introduce
an effective or nominal rate constant 〈k〉 which varies with time. They also
derive analytical approximations to the DAEM for testing linear or exponen-
tial temperature ramping. The resulting rapidly varying double exponential
(DExp) function is approximated by a piecewise linear function with three
regions. That is, DExp is zero or unity, and the region in between is where
it rises linearly from zero to one. This procedure can make the evaluation of
the integral much easier where the initial distribution is Gaussian. Therefore
it provides an accurate approximation of the full DAEM for all parameters of
interest. Parameters which influence the pyrolysis process vary at different
stages of the process and depending on the reactor space [7].

Niksa and Lau [3] indicated that this approximate procedure using a
piecewise linear function provides a more accurate approximation to the full
DAEM for all parameters. This is a refinement of the ideas in Suuberg [4].
Suuberg used a simple step-function approximation to the double exponen-
tial ( see also [1, 8, 9]), which jumps from zero to one at an energy that varies
with time. The use of a Gaussian initial distribution with the step-function
gives an error function approximation to the DAEM. This error function
will be used later in this study as a foundation function for the development
of the inverse problem in the wide distribution case. Niksa and Lau [3] note
that some shortcomings remain in using their approximation at lower tem-
peratures, particularly with the numerical solution of the equations for the
position of the piecewise linear approximation.

Miura and Maki [5] (see also [10], [11]) consider the inverse problem
and present a method to estimate both the distribution f(E) and the rate
constant k0 from three sets of experiments performed at different heating
profiles without assuming any functional forms for f(E) and k0. They sum-
marize a procedure with four steps to estimate f(E) and k0. For a linearly-
ramping temperature, they approximate DExp by a step function because
DExp changes rather steeply with E at a given temperature. Miura and
Maki [5] found the rate of change of volatility with time is proportional to
the distribution of volatiles (f). They used this relationship to obtain f from
the experimental measurements. McGuinness et al. [6] present a more accu-
rate approximation to the double exponential, which is used in the two cases
of narrow and wide distribution. A careful analysis in these two regimes is
given based upon asymptotic expansions, leading to systematic methods for
rapidly finding accurate approximations.

In this study we review the Simple First Order Reaction Model (SFOR)
and Distributed Activation Energy Model (DAEM) in order to understand
why the DAEM is a more accurate and appropriate approach to modeling
coal pyrolysis. Then we consider how to solve the inverse problem of finding
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the distribution used by the DAEM when the relative width of the initial
distribution is much wider than the width of the double exponential term.
Finally we focus on a method to reduce the errors due to differencing by first
fitting an appropriate smooth function to the data. This appropriate smooth
function allows the calculation of higher-order terms, and gives a better fit
to data, providing a more accurate estimate of the underlying distribution
in the DAEM.

2 Mathematical Models of Coal Pyrolysis

2.1 Existing Models

The development in this study follows Howard’s [1] and Solomon and Ham-
blen’s [12] approaches. The amount and composition of the thermal decom-
position products depends on the physicochemical properties of coal and on
process parameters. As the process of thermal decomposition of coal evolves,
i denotes one particular reaction and coal’s constituents are numbered with
i= 1....n. The thermal decomposition of coal is assumed to comprise large
numbers of independent chemical reactions. Large fragments of the coal
molecule are present due to depolymerization and the rupture of various
bonds within the coal molecule. The strength of chemical bonds depends
on the coal type and rank, related to the occurrence of different reactions at
various temperature intervals. The contribution to evolution by a particular
reaction is described by a first order equation, so that the rate of pyrolysis
is

dVi
dt = ki(V *

i − Vi) , (1)

where Vi is the released mass fraction of volatiles corresponding to the ith
constituent, while V ∗i is the initial mass of constituent i in the coal. The
proportionality constant ki is the rate coefficient that is typically associated
with temperature by an equation which is Arrhenius in form,

ki = k0i exp
( −Ei
RT (t)

)
(2)

where k0i is the pre-exponential or frequency factor in sec−1, Ei is the appar-
ent activation energy for constituent i in J/mol, R is the ideal gas constant
in (J/mol kelvins) and T (t) is the absolute temperature of the coal particle
in Kelvins. Values of k0i, Ei, and V *

i are estimated from matching with
experimental data. Anthony and Howard [13] summarized a collection of
experimental rate constant values ki, and the associated rate parameters
and coal properties.
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The solution to Equation (1) may be written in terms of the mass of
volatiles remaining to be released at time t as

V ∗i − Vi
V ∗i

= exp
(
−
∫ t

0
ki(u)du

)
. (3)

Then the mass of the volatiles released for one sample reaction is

Vi = V ∗i − V ∗i exp
(
−
∫ t

0
ki(u)du

)
. (4)

The model developed by Howard [1] and Solomon and Hamblen [12] has
been further refined and developed specifically for SFOR and DAEM models
which are briefly described in the following.

2.2 Single First Order Reaction Model (SFOR)

The simplest method for the description of the kinetics of the pyrolysis
reactions is to use a first order reaction for overall weight loss of the volatile
and for individual species evolution. The development of the mathematical
models above shows that if i=1 then the model is referred to as the Single
First Order Reaction Model (SFOR). Thus, the rate of pyrolysis is expressed
as:

dV

dt
= k(V ∗ − V ). (5)

where the rate constant k is given by:

k = k0 exp
(−E
RT

)
. (6)

Many authors have approximated the overall process of the complex decom-
position and transport phenomena involved in coal pyrolysis. They believed
decomposition occurs evenly throughout the volume of the particles as a
first order reaction, and its course is determined by the chemical structure
of coal [14]. Howard and Essenhigh [15] explained their results by assum-
ing that pyrolysis is a first order reaction with respect to the amount of
undecomposed volatile matter. They assume a constant rate which is of
the Arrhenius type. Badzioch and Hawksley[16], and Pitt [9] among others,
have also shown that the thermal decomposition of coal occurs via first order
reactions. The SFOR model is the approach based on holding the activation
energy fixed and defining k in Equation (6) as the rate constant which varies
with time, t→∞.
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2.3 Distributed Activation Energy Model (DAEM)

The DAEM is one of the multi-reaction models used widely to clarify the
thermal decomposition processes of coal pyrolysis. Pitt [9] assumed that the
evolution of a certain substance involves an infinite number of independent
chemical reactions by considering a continuous distribution of reactants.
That is, many irreversible first-order parallel reactions that have different
rate parameters occur simultaneously. In the DAEM model, the dependence
on i is replaced by a continuous dependence on activation energy E so the
values of k0i, Ei and V ∗i are not known apriori and must be estimated from
the experimental data.

DAEM has been applied to represent the change in overall conversion
and the change in the yield of a given component during the coal pyrolysis.
The increase in the number of reactions required can cause a problem. This
problem is simplified by assuming that the ki’s differ only in activation
energy so a common assumption is then to take all the pre-exponential
factors, k0i, to have the same value k0 for all constituents i. Then the
number of reactions is large enough to permit the use of a distribution
function f(E), acknowledging the differences in the activation energies of
the volatiles present. Then f(E)dE represents the fraction of the potential
volatile loss V ∗ that have a activation energies between E and E+dE. Thus,
the total amount of volatile material available for release from the coal in
this energy range can be written as:

dV ∗ = V ∗f(E)dE (7)

with the distribution function f(E) normalized to satisfy∫ ∞
0

f(E)dE = 1. (8)

The solution then becomes

V ∗ − V
V ∗

=
∫ ∞

0
exp

(
−
∫ t

0
k0(E)e−E/(RT (u))du

)
f(E)dE. (9)

In DAEM reactions are assumed to consist of set of irreversible first or-
der reactions that have different activation energies and a constant frequency
factor. The activation energies are usually assumed to be a Gaussian dis-
tribution. The SFOR and DAEM models are discussed in relation to the
kinetic expressions for the pyrolysis reaction. These two models are com-
pared in the next section.

2.4 Comparison of the Two Models

The SFOR model is used in Howard [1] and Saxena’s [17] work. The values
of V ∗, E and k0 are determined experimentally. Details of the different
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experimental methods are discussed by Anthony and Howard [13]. The coal
is heated so that temperature increases at a constant rate dT

dt = m where
m > 0. Then integrate this uniform heating rate with Equations (5) and
(6) in the SFOR model as follows:∫ V

0

dV

V ∗ − V
=
∫ T

0

k0
m

exp
(−E
RT

)
dT. (10)

Since E/RT � 1 is a good approximation for pyrolysis reactions, the solu-
tion to Equation (10) can be approximated as

V ∗ − V
V ∗

= exp
(
−k0RT

2

mE
exp

(−E
RT

))
. (11)

This approximation applies to the solutions in Equations (3) and (4).

The distribution curve f(E) is generally assumed to be a Gaussian distri-
bution in the DAEM and Equation (9). Within this distribution, the mean
activation energy E0 and standard deviation σ are both determined by the
experimental data. Thus

f(E) = 1
σ
√

2π
exp −(E − E0)2

2σ2 . (12)

Equations (9) and (12) provide the solution for the DAEM model as follows:

V ∗ − V
V ∗

= 1
σ
√

2π

∫ ∞
0

exp
[
− k0

∫ t

0
exp

(−E
RT

)
dt− (E − E0)2

2σ2

]
dE. (13)

Equation (13) permits correlation of coal decomposition data using four
parameters (V ∗, E0, σ, k0) and is applicable to a non isothermal process [18]
where the distribution is Gaussian.

Comparing the two models, three parameters, k0, E0, and σ are required
in addition to V ∗ for the DAEM model. However for the SFOR model, only
two parameters, frequency factor and activation energy are required for anal-
ysis. In other words DAEM requires only one additional parameter, σ, from
SFOR model but it is applicable to the description of thermal decomposi-
tion processes with different heating rates [1, 19]. The main drawback of the
DAEM model is the computational time required to evaluate the integral,
prompting a number of studies of approximations to it.

Niksa and Lau [3] have explored the relationship between the DAEM
and the SFOR models with an approach based on holding the activation
energy fixed and defining an effective or nominal rate constant 〈k〉, which
varies with time as

dV

dt
= 〈k〉(V ∗ − V ). (14)
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The nominal rates for any given thermal history can be estimated from the
SFOR-based rate constant that predicts the same devolatilization rate as the
DAEM at every instant in the thermal history. Niksa and Lau [3] note that
there is a large variation in 〈k〉 with time or temperature, and also a more
modest variation with coal rank. They also derive analytical approximations
to the DAEM for temperatures undergoing linear or exponential ramping.
Their approach is based on exploiting the rapid changes occurring in the
double exponential (DExp). In Equation (9), the integrand consists of the
product of the double exponential term

DExp ≡ exp
(
−
∫ t

0
k0(E)e−E/(RT (u))du

)
,

and a term representing the distribution of activation energy f(E). Niksa
and Lau [3] noted that if E/RT � 1, and the temperature ramps as T=
mt, then ∫ t

0
k0(E)e−E/(RT (u))du ∼ k0RT

2

mE
exp

(−E
RT

)
. (15)

Gunes and Gunes [20] discussed the influences of various parameters on
the numerical solution of the nonisothermal DAEM Equation (13), while
Brown [21] undertook a detailed review of the effect of various parameters
on the SFOR model. In the SFOR model, Howard [1] plotted Equation (11)
using various activation energies and it clearly illustrated the nature of any
parameter changes. The comparison here is focused mainly on the influ-
ence of these parameters: heating rate (m), activation energy (E) and the
pre-exponential factor (k0). Both models used various numerical values of
parameters to explore the effects of the changes in parameters.

Brown [21] and Gunes and Gunes [20] examined the influence of each
parameter on the numerical solution of both models. The first parameter
is the influence of heating rate (m) on both models. Their results illustrate
that the DAEM and SFOR models show that remaining mass fraction curves
are shifted up the temperature scale by an increase in the heating rate. The
second parameter is the influence of mean activation energy (E0). Both
models show similar influences. When E0 values increased it causes the
curves to shift towards the right. By comparing the curves of both models
to Howard’s [1] curve of data on the total yield of volatiles, it seems that the
DAEM curve gives a more realistic result, due to the influence of standard
deviation (σ). The third parameter is the pre-exponential factor (k0). The
DAEM and the SFOR models show that an increase in k0 value causes the
curves to shift toward the left. The effect of each of the three parameters is
to cause the curves to shift up the temperature scale.

A model such as the Single First-Order Reaction model (SFOR) is strictly
applicable only to homogeneous systems in which decomposition from the
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source V ∗ is due to a single chemical process which occurs with a single
activation energy E. Solomon et al. [19] has shown that for the devolatiliza-
tion of coal, the values of k0 and E determined for one heating rate are not
appropriate when used for another heating rate. Some other simple models
were used also and, like the single first order model, they were applicable
only under limited experimental conditions [1]. Howard [1] plotted Equa-
tion (9) using what might be called reasonable parameters in fitting the data
to the total yield of volatile. The resulting graph showed Howard some inad-
equacies in the single reaction model. In an attempt to improve the SFOR
model, Howard specified that the activation energy and pre-exponential fac-
tor must be very low to approximately fit the temperature dependence that
results from the occurrence of different reactions at different temperature
intervals. However, he still concluded that the SFOR model was inadequate
for dealing with the complexities of coal pyrolysis.

When modeling industrial processes where large particles or lumps of
coal are involved, heat transfer cannot be neglected and the change of tem-
perature cannot be described with one uniform heating rate. In general, the
change of temperature in solids is modelled by the transport partial differ-
ential equation, which may be nonlinear. In other words more complicated
reactions like coal pyrolysis cannot be adequately modelled by a single re-
action, due to large variations in the value of k0 and E0 with the heating
rate dT

dt [19]. Therefore, researchers realized that the SFOR model could
only be applied to limited experimental conditions and that they needed a
model which could be applied to more complex experimental conditions of
coal pyrolysis. They then moved to a more complicated model such as the
Distributed Activation Energy Model (DAEM) model. It is adapted from
Vand’s [8] treatment of independent parallel processes in modeling the re-
sistance of metallic films. DAEM has proved very successful in describing
the pyrolysis of various coal types under differing temperature histories.

The DAEM can also be applied to explain the thermal decomposition
processes of the pyrolysis of coal and other materials, including biomass,
residual oils, resin chars [22] and kerogen [23]. Anthony et al. [18] and
Howard [1] described the DAEM as applicable over a wide range of thermal
conditions. The model was originally developed to predict volatile yields
during rapid pyrolysis of coal but has also been applied at the relatively
low heating rate encountered during thermal decomposition of coal to coke
(Merrick, [24]). DAEM is the simplest model that depicts devolatilization
rates during transient heating over a broad range of heating rates. It is also
the only formalism in devolatilization modeling that captures the observed
density of reaction time scales for this process [1].
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2.5 Evaluation of the Two Models

The two models have their shortcomings for application to the pyrolysis of
coal. According to Howard [1], the most serious problem of Equation (5)
and (6) in the SFOR model is the apparently asymptotic yield of volatiles
that is observed after some time at the final temperature. As a result, the
apparent value of V ∗ as a function of final temperature is mechanistically
inconsistent with the equations and is mathematically unamenable. Howard
also plotted Arrhenius plots for rate constants from the work of different
researchers and labelled the different graphs using time zones in some of the
correlations. The relatively slow rate of weight loss observed after extended
times at a given temperature requires a set of parameter values that differ
markedly from those that fit the behavior of the graph over short time.
Howard [1] clearly stated that coal pyrolysis is not a single reaction, but
rather a multiplicity of overlapping decompositions concentrated in different
time intervals for isothermal pyrolysis, or in different time and temperature
intervals for the usual case of pyrolysis during heatup. He concluded that
any one set of parameter values for these equations cannot be expected to
represent data accurately over a wide range of conditions. The SFOR model
could only be applied in limited conditions and in this way was problematic.

The problems were then solved by applying the DAEM model to these
limited conditions. However, the main difficulty with the DAEM solution
is a complicated double integral which can require significant computing
resources, particularly when it needs evaluating many times [25]. Miura [10]
also discussed in his work that the DAEM model has two major weak points.
The first is the assumption of a constant k0 value for all reactions. The
other is the assignment of the Gaussian distribution to f(E). It is possible
to estimate f(E) from experimental data without assuming the Gaussian
distribution as performed by Vand [8]. However, in order to use the Gaussian
distribution, a constant value must be assigned to k0 beforehand in order
to estimate f(E). Miura [10] presented a simple method to overcome this
problem. The simple method was applied to estimate f(E) and k0(E) from
three sets of experimental data without any assumption on the functional
form of f(E) or k0 for the pyrolysis of three kinds of coal.

In all of the recent research, the DAEM has been described as a more
powerful model for evaluating the complex experimental conditions of coal
pyrolysis. Researchers show that the shortcomings of the SFOR model can
be solved by the use of the DAEM. The DAEM is generally recognized to
be the most appropriate approach to model coal pyrolysis.

3 Mathematical Formulation
In Equation (9) for the DAEM, the integrand consists of the product of two
major parts. First, the double exponential (DExp) term is determined by
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the temperature during the experiment and depends on time through the
temperature history experienced by the sample. The other term represent-
ing the initial distribution f(E) is determined by the type of coal being
considered and it is independent of time, and depends on the distribution
of volatiles in the sample. So Equation (9) can be re-written as

v =
∫ ∞

0
(DExp)(f(E))dE, (16)

where v= 1 − (V/V ∗) is the fraction of the volatile yield not yet released.
Another way of writing the double integral in Equations (9) and (16) is in
the form

v =
∫ ∞

0
exp

(
−
∫ t

0
k0(E)e−E/(RT (u))du+ ln(f(E))

)
dE

The effect of constant temperature T (u)= T0 on DExp is discussed first. It
is followed by an investigation of ramping temperature histories.

3.1 Double exponential integrand simplification for DAEM

McGuinness et al. [6] developed an approximation to DExp where T (u) is
specified and E can take any positive value. Their approach was similar to
the work presented by Niksa and Lau [3] but uses more systematic methods
and a more accurate approximation. The approach taken is similar to that
of Niksa and Lau [3] and McGuinness et al. [6] but it is different in the sense
that here we use higher-order terms. The more such terms we provide, the
better the underlying distribution in the DAEM. The equation of the double
exponential term is shown as

DExp ≡ exp
(
−
∫ t

0
k0e
−E/(RT (u))du

)
. (17)

The integral of DExp is particularly simple when temperature is constant,
T (u)= T0 . Equation (17) is integrated with respect to the dummy variable
u from zero to t to obtain

DExp ≡ exp
(
−tk0e

−E/RT0
)
. (18)

In order to apply the systematic simplifications of this integrand it is
necessary to assume some typical range of the parameters and functions
on which it depends. The frequency factors are typically in the range of
1010 ≤ k0 ≤ 1013s−1, whereas the activation energies fall into the region of
100− 300kJ mol−1. The temperature history depends on the particular ex-
periments but 100−600◦C is mainly used in pyrolysis. However, we can also
apply this DAEM model of the interest in combustion problem where the
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temperature range can be significantly larger than any other application.
When both of the parameters E/RT0 ∼ 10 and tk0 ∼ 1010 from Equa-
tion (18) are given large values, the DExp function changes rather steeply
with E. In order to describe the stepwise function simplification of Gaus-
sian distribution, the case of ramping temperature with T= mt is used in
Equation (17) gives

DExp ≡ exp
(
−
∫ t

0
k0e
−E/Rmudu

)
. (19)

In Equation (19), the integral inside the exponential function can be approx-
imated using the conventional Laplace transform approach. The parameter
E/(Rmt) is assumed to be large. Evaluating the integral of the DExp func-
tion produces the following well known asymptotic solution,

exp
(
−
∫ t

0
k0e
−E/Rmudu

)
∼ exp

(
− k0Rmt

2

E
e−E/Rmt

)
,

E

Rmt
→∞. (20)

Equations (20) and (15) have the same form as Equation (11) when T=
mt. These equations are exactly the same as the equation resulting from
the p-function presented by Miura [10]. Equation (20) can be rewritten as:

exp
(
− exp

(
Es − E
Ew

))
,

and as noted above, when E is increased over a range of size Ew around Es,
the function changes rapidly from zero to one. To obtain the desired form,
we let

g(E) = Es − E
Ew

;

and we set

exp
(
−k0Rmt

2

E
e−E/Rmt

)
= exp(− exp(g(E))),

which implies that

g(E) = − E

Rmt
+ ln

(
k0Rmt

2

E

)
.

Since only the behavior near Es is of interest, this function is expanded
in a Taylor series as follows in order to allow the terms Es and Ew to be
identified:

g(E) ∼ g(Es) + (E − Es)g′(Es) + (E − Es)2g′′(Es)/2 +
(E − Es)3g′′′(Es)/6 + . . . (21)
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Comparing Equation (21) and the definition of g(E) gives the values of
g(Es) = 0 and g′(Es) = −1/Ew, hence:

g(Es) ≡ −
Es
Rmt

+ ln
(
k0Rmt

2

Es

)
= 0 (22)

and

g′(Es) ≡ −
1

Rmt
− 1
Es

= − 1
Ew

. (23)

Solving and simplifying Equation (22) and (23) gives the solutions Es =
Rmt Y (k0t) and Ew = Rmt Es

Rmt+Es
where Y (x) is the LambertW function con-

sidered to be the one real root of the equation

Y eY = x. (24)

Writing Equation (22) in the form of Equation (24) produces

Es
Rmt

eEs/(Rmt) = k0t.

The LambertW function Y (x) is used often in this study in order to develop
the formula of the inverse problem. So it is useful to understand approxi-
mations to Y (x) for small and large x corresponding to short and long time
periods [26].

Y ∼ x− x2, x� 1,

and
Y ∼ ln

(
x

ln( x
lnx)

)
, x� 1.

In Equation (9), the total integrand is the product of the double exponential
function (DExp) and initial distribution (f(E)). The DExp has been de-
scribed as a smooth step-function which changes rapidly from zero to one.
This rapid change is due to the large size of tk0 in a range of activation
energies of width Ew around the value E= Es, with Es and Ew varying
with time. The f(E) is presumed to be a Gaussian distribution with σ as
the standard deviation of the distribution and E0 as the mean activation
energy. Both parameters are treated as constant values. There are two dif-
ferent limits to evaluate the Gaussian distribution: wide initial distribution
and narrow initial distribution.

This study focuses on the wide distribution case, where the initial distri-
bution f(E) is wider than the width Ew. As time progresses, Dexp moves
across the distribution, bringing the integrand from zero times the distri-
bution, to one times the distribution. Thus the initial distribution is pro-
gressively chopped off from the left by step-like function. The location of
the maximum of the total integrand can move significantly, and the shape
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becomes quite skewed. This behaviour of the integrand is know to originate
in the nature of DExp when it is approximated by a step-function (see also
[1], [4], [8], [9]).

In order to describe the approach, the initial distribution (f(E)) is taken
to be a Gaussian distribution with mean activation energy E0 and standard
deviation σ. Approximation is sought to the integral

v = 1
σ
√

2π

∫ ∞
0

exp(h(E))dE,

where
h(E) = − exp

(
Es − E
Ew

)
− (E − E0)2

2σ2

and Es and Ew are functions of time as stated earlier. The energy is rescaled
as y = E/E0, so the problem becomes

v =
√
α

π

∫ ∞
0

exp(h(y))dy (25)

where

h(y) = − exp
(
ys − y
yw

)
− α(y − 1)2, (26)

where ys = Es
E0

, yw = Ew
E0

, and α= 1
2

(
E0
σ

)2
. Note that in practice α � 1.

Consider our two special cases of temperature history in terms of the rescaled
parameters y and τ= k0t:

1. For a constant temperature where T = T0,

ys = RT0
E0

ln τ, yw = RT0
E0

.

2. For a linear ramping temperature where T = mt,

ys = Rmτ

k0E0
Y (τ), yw = ys

1 + Y (τ) .

These equations are used to approximate v, in the case of a linear ramping
temperature, in the next section, when the initial distribution is much wider
than DExp.

4 The Wide Distribution Case
The following sections concentrate on the case where the initial distribution
(f(E)) is much wider than the double exponential (DExp). As discussed
above, the DExp is approximated as a smoothed step-function. It rises
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rapidly from zero to one in a range of activation energies of width Ew around
the value E= Es, where Es and Ew vary with time. We consider the limit
yw
√
α� 1. The step-function U is defined to be

U(y − ys) =
{

0 , if y < ys
1 , if y ≥ ys.

Equation (25) can be written in the form

v =
√
α

π

∫ ∞
0

[
exp

(
− exp

(
ys − y
yw

))
− U(y − ys)

]
exp(−α(y − 1)2)dy +√

α

π

∫ ∞
ys

exp(−α(y − 1)2)dy. (27)

The first integrand in Equation (27) is the product of the initial distri-
bution and a function which is very small everywhere except in a neighbour-
hood of size yw around the point y = ys. Hence the initial distribution term
is expanded in a Taylor series about y = ys,√

α

π

∫ ∞
0

[
exp

(
− exp

(
ys − y
yw

))
− U(y − ys)

]
exp(−α(y − 1)2)dy =√

α

π

∫ ∞
0

[
exp

(
− exp

(
ys − y
yw

))
− U(y − ys)

]
(1− (y − ys)

2α(ys − 1) + . . . ) exp(−α(ys − 1)2)dy.

(28)

The right hand side of Equation (28) can then be approximated as√
α

π
ywe

−α(ys−1)2
∫ ∞
−∞

[
e−e

−x − U(x)
]

(1− (y − ys)2α(ys − 1) + ...)dx ,

so that√
α

π

∫ ∞
0

[
exp

(
− exp

(
ys − y
yw

))
− U(y − ys)

]
exp(−α(y − 1)2)dy =√

α

π
ywe

−α(ys−1)2
[
b0 − 2αyw(ys − 1)b1 + αy2

w

{
2α(ys − 1)2 − 1

}
b2

+2
3y

3
wα

2
{

2 (ys − 1) + 2α (ys − 1)3 + 1
}
b3 + . . .

]
,

where
bi ≡

∫ ∞
−∞

xi(e−e−x − U(x))dx i = 0, 1, 2, . . .

remain to be evaluated. The values of bi need to be calculated once, as they
are independent of any parameters.

b0 ≈ −0.5772, b1 ≈ −0.98906, b2 ≈ −1.81496, b3 ≈ −5.89037.
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Most of the previous simplifications of the step-function approximations used
only the conventional error function as a dominant function and ignored the
first integral. The case of a Gaussian initial distribution in the step-function
gives an error function approximation to the DAEM illustrated in the second
integral of Equation 27. Then noting that√

α

π

∫ ∞
ys

exp(−α(y − 1)2)dy = 1
2erfc(

√
α(ys − 1)) ,

where erfc is the complementary error function

erfc(
√
α(ys − 1)) = 1√

π

∫ ∞
√
α(ys−1)

e−u
2
du ,

combining these results gives an approximation to the solution of Equa-
tion (27).

v ∼ 1
2erfc(

√
α(ys − 1)) +

√
α

π
ywe

−α(ys−1)2
[
b0 + 2αyw(ys − 1)b1 + αy2

w{
2α(ys − 1)2 − 1

}
b2 + 2

3y
3
wα

2
{

2(ys − 1) + 2α(ys − 1)3 + 1
}
b3

]
.(29)

This expansion is only valid when αyw(ys−1)� 1 and in the limit yw
√
α→

0, which apply when the initial distribution f(E) is much wider than the
width yw of DExp. Then each successive term on the right-hand side of
Equation. (29) is smaller than the previous term. This asymptotic approach,
illustrated above for the case that the distribution of volatiles is Gaussian in
the energy, generalises to gives the following result for a general underlying
distribution f(E) that is not necessarily Gaussian:

v ∼
∫ ∞
ys

f(y)dy + ywb0f(ys) + y2
wb1f

′(ys) + y3
wb2f

′′(ys)/2+

y4
wb3f

′′′(ys)/6 + y5
wb4f

iv(ys)/24 + y6
wb5f

v(ys)/120. (30)

Equation (30) is now used to solve the inverse problem of finding the distri-
bution f given data for v, in the case of a relatively wide distribution.

4.1 Inverse Problem

The rate of volatilization from the general result in Equation (30) is rewritten
in non-dimensional form that gives a procedure for considering the inverse
problem with greater accuracy.

dv

dτ
∼
[
− f(ys) + ywb0f

′(ys) + y2
wb1f

′′(ys) + 1
2y

3
wb2f

′′′(ys)+

1
6y

4
wb3f

iv(ys)
]
dys
dτ

+
[
b0f(ys) + 2b1ywf

′(ys) + 3
2y

2
wb2f

′′(ys) +

2
3y

3
wb3f

′′′(ys) + 5
24y

4
wb4f

iv(ys)
]
dyw
dτ

. (31)
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Since E0 is unknown for the inverse problem, it is convenient to write Equa-
tion (31) in dimensional form:

dv

dt
∼
(
− dEs

dt
+ b0

dEw
dt

)
f(Es) +

(
b0Ew

dEs
dt

+ 2b1Ew
dEw
dt

)
f ′(Es)+(

b1E
2
w

dEs
dt

+ 3
2b2E

2
w

dEw
dt

)
f ′′(Es) +

(1
2b2E

3
w

dEs
dt

+ 2
3b3E

3
w

dEw
dt

)
f ′′′(Es) +

(1
6b3E

4
w

dEs
dt

s+ 5
24b4E

4
w

dEw
dt

)
f iv(Es). (32)

Note that f(Es) is to be determined whereas Es and Ew are known functions
depending on t (provided that k0 is known). Niksa and Lau [3] discussed
replacing the dependence on t with dependence on Es, by inverting Es(t).

Our approach is to expand f as a power series in ε, f ∼ f0 + εf1 + ....,
in the previous equation. We leverage the relative narrowness of Dexp (and
define ε) by putting Ew = εew, where ε � 1 and ew is of order one. The
rate of volatilisation then becomes

dv

dt
∼ −dEs

dt
f0 − ε

dEs
dt

f1 − ε2
dEs
dt

f2 − ε3
dEs
dt

f3 − · · ·+ εb0
dew
dt

f0+

ε2b0
dew
dt

f1 + ε3b0
dew
dt

f2 + · · ·+ εewb0
dEs
dt

f ′0 + ε2ewb0
dEs
dt

f ′1 +

ε3ewb0
dEs
dt

f ′2 + · · ·+ 2ε2ewb1
dew
dt

f ′0 + 2ε3ewb1
dew
dt

f ′1 + · · ·+

ε2e2
wb1

dEs
dt

f ′′0 + ε3e2
wb1

dEs
dt

f ′′1 + · · ·+ 3
2ε

3e2
wb2

dew
dt

f ′′0 + · · ·+

1
2ε

3e3
wb2

dEs
dt

f ′′′0 + . . . (33)

The boundary conditions f → 0 when Es → 0 or ∞ are satisfied by the
zeroth-order solution and regular series expansion techniques provide a way
to approximate f - coefficients of powers of ε in Equation (33) are equated
to obtain a series of equations for the terms in the expansion of f . The first
result is the leading-order term

f0 = − dv/dt

dEs/dt
, (34)

which provides an estimate of the underlying distribution. The result ob-
tained by adding to the leading-order term f0, the higher-order correction
term

εf1 = A0

(
Ew

df0
dEs

+
dEw
dt f0
dEs
dt

)
, (35)

which is non Gaussian, does provide a more accurate estimate of the under-
lying distribution in the DAEM than the leading-order itself. We further
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improved approximation by calculating the higher-order terms ε2f2 and ε3f3
shown below:

ε2f2 = εA0

( dEw
dt f1
dEs
dt

+ Ewf
′
1

)
+A1Ew

(
2
dEw
dt f

′
0

dEs
dt

+ Ewf
′′
0

)
, (36)

ε3f3 = ε2A0

(
dEw
dt f2
dEs
dt

+ f ′2

)
+ εA1Ew

(
2
dEw
dt f

′
1

dEs
dt

+ Ewf
′′
1

)
+

1
2E

2
wA2

(
3
dEw
dt f

′′
0

dEs
dt

+ Ewf
′′′
0

)
. (37)

Each improvement requires higher-order derivatives (differences) to be cal-
culated, and without some form of prior smoothing (data fitting) this leads
to data errors that become too large.

5 Data Fitting
In this section we indicate an improved method for solving the inverse prob-
lem, that avoids the numerical errors that arise from repeatedly differencing
volatilisation data as in the previous section. The key idea is to firstly use
an iterative method to fit the leading order error function solution based on
a Gaussian distribution to data. Then this leading order approximation can
be regarded as a particularly appropriate smoothing function for the data,
that can be used to provide derivatives that are less prone to numerical error
due to truncation or measurement error. Note that although we start with
a first approximation based on a Gaussian distribution, we do not require
the underlying distribution to remain Gaussian further along the refinement
path.

We consider Eqn. (30) as providing a succession of approximations to v,

v ∼ v(1) + v(2) + . . .

so that in the case of f approximated by a Gaussian distribution f0,

v(1) =
∫ ∞
ys

f(y)dy

and we approximate this with

v
(1)
0 (t,E0 , σ, k0 ) =

∫ ∞
ys

f0(y)dy = 1
2 erfc

(√
α (ys − 1)

)
(38)

where

α = 1
2

E0
2

σ2 ,

Es = Rmt Y (k0 t) ,

ys = Es
E0
,
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and Y is the LambertW function. We fit v(1)
0 to data using the Levenburg-

Marquardt method (Seber and Wild [27]), which is a robust combination of
the Gauss-Newton method and the method of steepest descents. A Jacobian
matrix is computed from the partial derivatives of v(1) ,

∂v(1)

∂E0
= 1√

2π σ
exp

[
−(RmtY (k0 t)− E0)2

2σ2

]
, (39)

∂v(1)

∂σ
= 1√

2π σ2 exp
[
−(RmtY (k0 t)− E0)2

2σ2

](
RmtY (k0 t)

E0
− 1

)
, (40)

and

∂v(1)

∂k0
= − 1√

2π σ
exp

[
−(RmtY (k0 t)− E0)2

2σ2

](
RmtY (k0 t)

k0(1 + Y (k0 t))

)
.(41)

5.1 Data Generated with a Gaussian

The solution v(1) is used to generate ersatz data, by evaluating it on a mesh of
values of time, and adding ±5% random error to each data point. Parameter
values used to generate the data are m = 650K/s and R = 8.3144J/(mol
kelvins). Then we used the Levenburg-Marquardt method, to try to recover
the correct parameter values E0, σ and k0 by fitting to the data. The shape
of v(1) depends on E0 and k0 in a way that is highly correlated, so that fitting
v(1) using a simple Gauss-Newton method tends to fail to converge. The
initial parameter estimates chosen to begin the numerical fitting procedure
are: E0 = 2.20E5J/mol, σ = 44E3J/mol and k0 = 1.33E10s−1. The results
after each iteration, that is, the parameter values obtained by fitting to the
data at each step of the method, are shown in Table 1.

θ(n) En σn kn S(θ(n))
θ(0) 0.220E6 0.44E5 1.33E10 0.1204338066
θ(1) 211035.201 46249.9895 2.47972118E10 0.01237329944
θ(2) 210310.815 42077.4605 2.99977767E10 0.006463076506
θ(3) 212992.377 44346.2851 5.45149898E10 0.009266540071
θ(4) 214391.234 42993.6278 4.64972779E10 0.006461018969
θ(5) 214344.064 42968.0639 4.70126252E10 0.006452457778

Table 1: The results from E0 = 2.20E5J/mol, σ = 44E3J/mol and k0 =
1.33E10s−1.

The parameters in Table 1 illustrate that the first two iterations gave
better estimates for each parameter and caused a decrease in the sum of
squares S. The conditioning factor for those iterations was divided by a
factor of 10, reflecting that the Levenberg-Marquardt direction was chosen
to move in the direction of the Gauss-Newton method. However the third
iteration shows the sum of squares started to increase in value. The response
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of the Levenberg-Marquardt algorithm was then to increase the conditioning
factor by multiplying by a factor of 10 to push the algorithm in the direction
corresponding using that indicated by the method of steepest descents. The
Levenberg-Marquardt iterative method is repeated, with the sum of squares
error terms S reducing until the results satisfy Equation (42) below

Sold − Snew
Snew

≤ 10−5. (42)

At this point the Levenberg-Marquardt algorithm was taken to have con-
verged. The resulting fit is plotted for each iteration starting with the start-
ing function, and shown in Figure 1. In Figure 1 the later iterations lie close

Figure 1: Comparison of normalized fractional yield not yet released (v) vs
time in seconds. The circles are data, the solid line is the initial guessed
solution (θ(0)), the dashed line is the result after one iteration, using pa-
rameters (θ(1)), the diagonal crosses indicate the result after two iterations,
with parameters (θ(2)), the crosses indicate the result after three iterations,
with parameters (θ(3)), the boxes indicate the fourth result with parameters
(θ(4)) and the line composed of long dashes indicates the result after five
iterations, with parameters (θ(5)). These parameters are shown in Table 1.

to each other and it is difficult to see the fit improving. The improvement
of fit is easier to see in a plot of the residuals as in Figure 2, the plot of
residuals from Figure 1 with the same symbols.

5.2 Digitised Data

So far we have seen that even though two of the parameters to be fitted are
highly correlated, the Levenberg-Marquardt method can be used success-
fully to fit v(1) to data generated using the leading asymptotic behaviour
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Figure 2: Residuals of the fits shown in Figure 1. Symbols used are the
same.

of volatile released based on a Gaussian distribution, plus a small random
additive error. We then tested the method using v(1) to fit data which has
been digitised directly from published coal volatilisation experiments. Note
that when working with digitised actual data the underlying distribution is
unknown. Using digitized data demonstrates that this present method is
promising for use with coal data with an unknown underlying distribution,
even if the initial guess for the distribution f0 is Gaussian. Again we use
the Levenberg-Marquardt method, and we fit to actual coal data the leading
order solution v(1) of Equation (31) based on a Gaussian distribution. We
find that the present method works on this data, which has been digitized
from published coal volatilization experiments [28]. Figure (3) illustrates
the process, showing successive iterations converging to the data points,
and Figure (4) shows the residuals of those fits.

5.3 Higher-Order Correction

We seek to improve our fit and further reduce residuals by adding the higher-
order correction term εf1 (which is non-Gaussian) to the leading-order Gaus-
sian term f0 of v(1) and repeating the iterative process shown above, by
using the same digitized data [28] . Using the high-order approximation to
f , (f0 + εf1) in the formula v(1) =

∫∞
ys f(y)dy before fitting v(1) to data

is one approach to obtaining a more accurate estimate of the underlying
distribution in the DAEM.

The data is fitted with

v
(1)
1 =

∫ ∞
ys

(f0 + εf1) dy
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Figure 3: Data (circles) from a digitised graph of volatilisation measurements
[28], showing total normalised amount of volatiles not yet released versus
time, and successive fits to that data. The solid line is the initial guessed
solution, the dotted line is the result after one iteration, the crosses indicate
the result after two iterations, and the dashed line indicates the result after
four iterations.

where

f0 = −dv
(1)
0 /dt

dEs/dt
,

and
εf1 = A0

(
Ew

df0
dEs

+
dEw
dt f0
dEs
dt

)
,

so that

v
(1)
1 =

∫ ∞
ys

(
− dv

(1)
0 /dt

dEs/dt
+A0

(
Ew

df0
dEs

+
dEw
dt f0
dEs
dt

))
dy. (43)

We change the variable of integration in Equation (43) to the time t. Our
approximation to the volatilisation is then

v
(1)
1 ∼

∫ ∞
ts

(
− dv

(1)
0 /dt

dEs/dt
+A0

(
Ew

df0
dEs

+
dEw
dt f0
dEs
dt

))
K

E0
dt

where
K = RmY (k0t) + RmY (k0t)

1 + Y (k0t)
,
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Figure 4: Residuals of the fits shown in Figure 3. Symbols used are the
same.

and

ts =
√

t

k0Y (k0t)
.

Then v
(1)
1 is now rewritten as v(1∗)

1 = 1 − v
(1)
1 to give the fraction of the

volatile yield not yet released,

v
(1∗)
1 ∼ 1−

∫ ∞
ts

(
− dv

(1)
0 /dt

dEs/dt
+A0

(
Ew

df0
dEs

+
dEw
dt f0
dEs
dt

))
K

E0
dt (44)

where, differentiating Equation (38),

dv
(1)
0
dt

= − 1√
2π σ

exp
[
−(RmtY (k0 t)− E0)2

2σ2

]
RmtY (k0 t)

(2 + Y (k0 t)
1 + Y (k0 t)

)
.

We again use the Levenberg-Marquardt Algorithm procedure to fit the
digitised data as described above. Note that the starting parameter es-
timates θ(0) are chosen to be the same as the last parameter values that
were obtained from the last (converged) iteration of v(1)0 . To determine
the convergence of the iterative process we used Equation (42). Figure (5)
illustrates the process, showing successive iterations converging to the data
points, and Figure (6) shows the residuals of those fits.
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Figure 5: Data (boxes) from a digitised graph of volatilisation measurements
[28], showing total normalised amount of volatiles not yet released versus
time, and successive fits to that data. The solid line is the initial guessed
solution, the circles are the result after one iteration, the crosses indicate
the result after two iterations, and the dashed line indicates the result after
third iterations.

5.4 Comparison of v
(1)
0 and v

(1∗)
1

Comparisons of the two fitted equations v(1)
0 and v(1∗)

1 illustrate that the re-
sults obtained by adding the higher-order correction term εf1 to the leading-
order term f0 provide an improved estimate of the underlying distribution.
This can be seen both from the sums of squares and from plots of the residu-
als. For example after seven iterations, the results are illustrated in Table 2
below. The sum of squares in Table 2 illustrates that v(1∗)1 provides a more

θ(7) in v(1)
0 θ(7) in v(1∗)

1
S(θ(7)) 0.009596682368 0.009575375913

E0 222004.3158 217815.530752700288
σ 22623.51229 22850.3934920922802
k0 8.52305343E10 9.68677057029868622E10

Table 2: The parameters θ(7) after seven iterations in both fitting equations
v

(1)
0 and v(1∗)

1 .

accurate estimate because the sum of squared residuals S is smaller for the
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Figure 6: Residuals of the fits shown in Figure 5. Symbols used are the
same.

latter. Note that both iterative processes showed convergence when N= 7.
A plot of the residuals of these fits to digitised data versus time is pro-

vided in Figure 7 with the crosses being v(1)
0 calculations, and the solid cir-

cles being those of v(1∗)1 calculations. It can be seen that the latter provide
smaller residuals and a better fit. The second plot shows the residual results
versus fitted values from Figure 7 with the v(1) results shown as crosses and
v(2∗) results shown as solid circles. Figure 8 shows that the residuals are
generally small compared to the fitted values and that they do not suggest
any distinct pattern. All residuals in v(1) are typically less than 0.13 in abso-
lute value, whereas the residuals in v(2∗) are less than 0.06 in absolute value.
This suggests that the results from v(2∗) provides a more accurate estimate
parameters than v(1). The analysis of the plotting in Figure 8 agrees with
the chosen iterative method.

The inverse problem of determining the distribution from measurements
of v versus time when θ = (217815.530752700288, 22850.3934920922802,
9.68677057029868622E10 is illustrated in Figure 9. Note that when working
with digitized actual data, the distribution is unknown. The crosses in
Figure 9 show the result of calculating just the leading-order term f0 using
Equation (34), and the solid circles are the result obtained by adding our
higher-order correction term from Equation (35). It can be seen that adding
εf1 to f0 shifts the underlying distribution a little bit toward the right which
suggests that adding εf1 gives a non Gaussian total distribution, that is, the
actual data distribution is non-Gaussian otherwise, the best fit of f0 would
lie exactly under it. This result suggests that the method may be useful for
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Figure 7: Comparison between residuals after fitting v
(1)
0 and v

(1∗)
1

to digitised data, at θ= (217815.530752700288, 22850.3934920922802,
9.68677057029868622E10). The crosses are v(1)

0 calculations, and the solid
circles are of v(1∗)

1 calculations.

fitting non Gaussian underlying distributions. The underlying distribution
is smooth and shown in Figure 9.

Note that during the iterative process, special attention needs to be paid
to how to increase and decrease the conditioning factor k(n) that is used in
the Levenberg-Marquardt method. There are two approaches to dealing
with the situation that may arise, that at some iteration the new sum of
squares is greater than the previous one. The first approach is to increase
k(n) by a factor and use this together with the most recent (increased sum
of squares) parameter values to perform the next iteration. The second
approach is to increase k(n) by a factor and use this together with the last
decreased sum of squares parameter values to compute the next iteration.
We find that the second approach converges faster than the first approach.

6 Conclusions
The DAEM model for the amount of volatile mass released versus time dur-
ing coal volatilisation has an exact solution. However, evaluation of this
solution involves a double integral and a double exponential function, mak-
ing it expensive to repeatedly evaluate. We have reviewed and extended
previous work, to approximate the solution without expensive multiple eval-
uations by using a succession of asymptotic approximations, in the case of
a relatively wide distribution function that describes the way that volatility
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Figure 8: A plot of residuals versus fitted values of v(1)
0 and v

(1∗)
1 at θ=

(217815.530752700288, 22850.3934920922802, 9.68677057029868622E10)
from Figure 7. The crosses are v(1)

0 calculations, and the solid circles are
v

(1∗)
1 calculations.

depends on the energy.
In particular we have considered the use of these asymptotic expansions

for solving the inverse problem — given the mass of volatile released versus
time, find the underlying relatively wide distribution of volatiles versus en-
ergy. Direct differencing of the volatility data leads to ever increasing errors
which can swamp the signal with noise, and prevent taking more accurate
approximations which require higher order differences.

We have outlined and tested a method for smoothing the volatility data,
using the leading-order Gaussian approximation to allow higher derivatives
to be taken without incurring the differencing error penalty. We find that the
method is promising, even in situations where the underlying distribution
may not be Gaussian.

We have two expansion directions, one that approximates the total mass
of volatile released,

v ∼ v(1) + v(2) + . . .

∼
∫ ∞
ys

f(y)dy + ywA0f(ys) + y2
wA1f

′(ys)

+y3
wA2f

′′(ys)/2 + y4
wA3f

′′′(ys)/6 +
y5
wA4f

iv(ys)/24 + y6
wA5f

v(ys)/120.
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Figure 9: Comparison of the underlying distributions estimated inversely
from digitised values of v versus time for the leading-order result and the
higher-order result. The leading-order result using v

(1)
0 is represented by

crosses, and the higher-order result using v(1∗)
1 is represented by solid circles.

and another that approximates the underlying distribution,

f ∼ f0 + εf1 + ε2f2 + . . .

∼ − dv/dt

dEs/dt
+A0

(
Ew

df0
dEs

+
dEw
dt f0
dEs
dt

)

+εA0

( dEw
dt f1
dEs
dt

+ Ewf
′
1

)
+ . . .

We explored the direction of using f0 and f0 +εf1 to approximate v(1) which
approximates v in this paper. We have not yet explored the other direction,
of improving the approximation to v by using more terms v(1) + v(2) +
. . .. Also useful for the future would be to explore which direction is more
important, that is, the relative sizes of corrections in the two directions.
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