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Abstract

We consider an industrial problem brought to the Mathematics in Industry New
Zealand (MINZ) study group in 2016, where items pass briefly over load cells result-
ing in a noisy oscillatory signal, from which the mass of the item is to be computed.
We compare results obtained using a single load cell, with results from passing over
two load cells in tandem or in succession. We develop mathematical models to
assist with the computation of total load mass, considering both deterministic and
statistical approaches.
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1 Introduction

Compac designs and exports equipment that sorts fruits and products for orchard pack-
houses. They presented a challenge to the 2016 Mathematics in Industry New Zealand
(MINZ) study group, entitled Estimating the Weight of a Moving Article Across Multiple
Weigh Points. Compac also presented challenges to MINZ and MISG (Mathematics in
Industry Study Group) in previous years. For instance in the 2004 Compac Challenges
were “The Boxing Problem” and “The Bagging Problem” [1]. The former challenge
was about filling boxes with a specific number of articles to specifications such as mini-
mum weight and maximising the number of boxes packed. The “Bagging Problem” was
about filling bags above a minimum weight and maximising the number of bags packed,
amongst other criteria. In 2015 Compac brought forward another challenge to MINZ,
entitled “Calibration Transform for Discrete Spectroscopic, Mechanical and Optical Sys-
tems”. This project aimed at creating a calibration transform that would convert the
output of different spectroscopic systems to a standardized form. All these problems,
including the Compac challenge of this work, the MINZ or MISG teams built mathemat-
ical and computational models to understand and predict the physical situation and to
improve and optimize algorithms the processes. Proposed solutions by the study groups
and teams have directly impacted and significantly improved Compac’s boxing, weighing,
bagging, and sorting software processes, which led to increased quality and productivity
of their equipment and systems.

The work presented here is based on the results of the MINZ 2016 study group. Part
of the fruit sorting process relies on fruit being weighed as it briefly passes over load cells
(LC) on a conveyer belt. The fruit is supported by holders or keys. The weighing table
needs to be able to deal with a range of fruit sizes and geometries. For instance, some
fruit in the proposed new design will be supported by a single holder or key that will be
measured as the single key moves over a load cell, and previous conveyor belt designs
used a single holder for a single piece of fruit. The new design of the weighing section has
led to the possibility of having one piece of fruit or any other article on multiple keys,
to allow each key to remain on a load cell for a longer period of time than in previous
single-holder designs. Now, articles may rest on one or multiple keys (Fig. 1), which are
weighed sequentially, key-by-key. The main challenge arising from the proposed multi-key
weighing machine is the measurement of the distributed weight of the article by multiple
keys, typically with unknown contact points and locations, as in the case of the kumara1

(c.f. Fig. 1b)). Inferring the weight of a piece of fruit on such a machine is complicated
by the multiple support points, the fact that the article and/or the key may bounce
during the weighing time, and the signal noise arising from the engineering environment.
Compac are particularly interested in assessing whether the new design, with the help
of some mathematical postprocessing of the data, is effective in improving the accuracy
of the weighing process. Compac aims at an accuracy tolerance of smaller or equal 1 g
for single-key and 5 g for multi-key articles.

In this paper we analyse and post-process data to find the most desirable weighing

1Sweet potato, called kūmara in New Zealand.
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Figure 1: Articles on conveyor belt system. a) single-key article (apple); b) multi-key
article (kumara).

solution for Compac’s existing measuring system. The analysis will answer the following
three key questions:

1. Currently, there are two measuring concepts (see Section 1.1) - parallel and serial
- with which articles are measured. Which of the two measuring set ups - single or
dual load cell - provide a higher accuracy?

2. Can a mathematical model be developed that is able to estimate the true weight of
the article from recorded data sets for all considered articles single and multi-key
alike?

3. What is the estimated theoretical weighing accuracy for a given conveyor belt ve-
locity?

1.1 Single key versus multiple keys

The simultaneous two-key or parallel weighing method measures the weight on a pair of
keys that simultaneously pass over two load cells, and outputs signals from each of the
load cell. The data used in our analysis is from a seven key set up illustrated in Fig. 2.
We refer to keys by consecutive number, with number 1 being the first key, and number
seven being the last. The support points of the keys are organised such that three keys
(namely keys 2-4-6) are measured on load cell one and four keys (namely keys 1-3-5-7)
are measured on load cell two. In this set up the keys are weighed simultaneously in
pairs, excluding key 7 which has no pair; key 1 is weighed on load cell two simultaneously
with key 2 on load cell one, and so forth.

In contrast, in the single-key or serial weighing method the keys pass over one load
cell sequentially and due to the design of the weigh beam the single-key measurements
are made in half the period of time that is available when using the parallel weighing
method. Data obtained with the single-key method are generated by another load cell
(load cell three, with a wider top plate) that is impacted by all seven keys (not shown).

The data we considered during the study group was obtained for a setup with just
seven keys in total, which go over the weigh-bridge with three load cells, crossing them as
detailed above, then loop around and go over it again. Fruit or test weights are added by
hand to the keys, before they reach the weigh-bridge, and are removed after the weigh-
bridge before the keys loop around to begin again. The placement of fruit is repeated
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several times in one data run. Hence the data shows at various times, load cells with
nothing on them, or with empty keys moving across them, or with a loaded key moving
across them. The mean signal value indicates which case obtains at any given time.

LC1
LC2

a)

LC1

LC2

key 2 key 4 key 6

key 1 key 3 key 5 key 7

b)

Figure 2: Key and load cell numbering system. a) Real system. b) Schematics.

Compac currently operates an automatic system that specialises in weighing fruits or
articles based on single-key technology. The method estimates the weight of the article
by calculating the average of the low-pass filtered output signal from the load cell for a
time range when the key and fruit passed over the load cell (see Fig. 3; key 2 has the
mandarin on it; the other keys are empty but they weigh about 18 g). An estimation of
the weight of a single-key article such as e.g. the mandarin (Fig. 3) using this average
technique is within 0.3 g of its actual weight at this belt speed.

When the simultaneous weighing method is applied to a two-key sized fruit (e.g. a
pear) there are two potential outcomes based on the position of the article or fruit on the
key(s). In the first case the fruit is positioned such that the fruit lies on a key pair with
each key simultaneously supported on a separate load cell as illustrated by the signal
in Fig. 4a. In case two the fruit is positioned such that the key pair is measured in a
staggered manner, each key being weighed in separate time windows and thus its weight
is recorded sequentially instead of simultaneously as illustrated in Fig. 4b.

The motion of the keys over the load cells (and other obstacles) cause the articles to
arbitrarily separate from the keys and thus causing the fruitarticle to lift off. If the lift-off
happens entirely on one key the full weight of the fruit is supported by the remaining
key(s) for the lift-off duration. In this case the weight of a two-key article is estimated
with the average method as a one-key article for the duration of the lift-off (see Fig. 4a).
Applying this method the weight of the pear is estimated to be 165.11 g, where its actual
weight is 165.26 g (error 0.1 %, or 0.15 g < 1 g).

When a lift-off occurs such as in case two, the prior method cannot be used as this
shifting weight can not be captured simultaneously on each load cell. Ignoring this and
treating the data as if the fruit would be supported on one key, the prediction of the
weight by adding partial weights from two keys together falls outside the acceptable error
tolerance of 1 g. However, measuring the weight of the pear in a staggered manner
(article is resting on keys 2 and 3, Fig. 4b), the predicted weight is 164.2 g which also lies
outside of the desired error tolerance. The importance of considering the aforementioned
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Figure 3: Filtered load cell signals for a mandarin sitting on a single key, belt speed 900
rpm. The zero weight is arbitrary at about 220 g for both cells. An empty key weight
gives a mass change of about 18g; the mandarin a further 110 g approximately. Note
that key 1 (load cell 2) is empty while passing over the load cell system together with
the mandarin on key 2 (load cell 1) simultaneously (see Fig. 2).

measuring methods, simultaneous and staggered, becomes more obvious when considering
an article that spans more than two keys (see Fig. 5); in such a case it is impossible for
the entire article’s weight to be measured simultaneously.

The load cell voltage signals are statically calibrated by four different calibration
masses (ranging from 67.31 g to 200.03 g) as well as with empty keys (which have slightly
differing weights about 16.31 g) and for all three load cells. The calibration curves
are linear and the calibration factors are directly implemented in the analyses. Unless
otherwise specified we directly present measured masses in gram and not in voltage.

Note that for an initial proof of concept of this method time ranges where eye-balled
manually at values after and before jumps, respectively and according to the resolution of
the data set. Compac Sorting monitors the speed of the belt per minute (RPM) and the
length of the keys is known by design. Furthermore, optical sensors are used to record
key to load cell interactions. Therefore, in an automated process the exact time ranges
are readily available.

1.2 Data Analysis

The parallel set up (on two load cells) produces two simultaneous signals. In the data
provided by Compac, as detailed above, a total of seven keys pass over the two load
cells. The single load-cell method (# 3) produces one signal from 7 keys in succession.
As above, in this section we use only the low-pass filtered signals that is provided directly
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(a) Simultaneous weight measure. The pear
is mainly carried on key 4, but some of its
weight is also on key 3, both measured during
the same time range (23.9, 24.05) s. Lift-off of
the fruit from the key is observed in the signal
behaviour indicated by the black line.

(b) Staggered weight measure. The pear is
mainly on key 2, weighed during the time pe-
riod (66.3, 66.5) s, but apparently some part
is bouncing onto key 3 during the next mea-
suring period.

Figure 4: Load cell signals for a pear positioned on two keys, belt speed 900 rpm.

Figure 5: Kumara weighing data, belt speed 900 rpm.

from the load cells.
Compac currently operates equipment that weighs single-key fruit successfully. Their

current method involves taking the average of the filtered signal from a load cell after
initial transients have subsided. This method provides an estimated weight with under 1
g of error, for fruit that is not too heavy and for moderate belt speeds.

As discussed above, when weighing a multi-key article, there are two possible scenarios
for the article to pass over the load cells, namely simultaneously or successively. These
cases will result in qualitatively dissimilar signals, as the dynamic behaviour of keys
dropping on to a load cell may cause fruit to move or even to bounce off of a key for a
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time instant. At the moment of lift-off for scenario one, the article’s entire weight might be
assumed to be supported by the remaining key, from which a very accurate measurement
can be obtained by using Compac’s single-key method. Should a lift-off occur for case
two (successive measurement), however, the single-key method fails. Another degree of
complexity is added by fruit bouncing between two or more keys due to the dynamic
nature of the motion, which introduces transient signals due to impact and rebound and
thus altering the apparent weight of the fruit.

Considering a multi-key article such as the kumara from the previous section again
(Fig. 5), there are two ways of using an averaging technique to approximate the weight
of a multi-key article. In each case, we take the average value of the signal f(t) over
some time window ∆t starting from time t0. By first adding the signals of the load cells
together, and then taking an average of the combined signal we can gain an estimate
for the weight of the article on each key pair and identify any simultaneously recorded
dynamics. The total weight of the article is then estimated by adding up the estimates for
each key pair. We will refer to this method as the combined signal method. Alternatively,
we can first split the load cell signals up into separate key signals and take an average
of the individual signals. Calculating the sum of the averages of all key signals provides
an estimate of the total weight of the fruit. This method is referred to as the separate
signal method. Note, that for the single-cell load cell measurement method (# three as
described in Section 1.1 on p. 3), the latter method for finding weight estimate must be
used.

Testing these methods on a potato they were found to provide practically identical
estimates, which, however, fall outside of the desired error tolerance of 1 g (Fig. 6). The
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Figure 6: Potato weights calculated using different weighing methods.

combined signal method and the separate signal method both produce better results
from the parallel load-cell data than predictions estimated from the single load-cell data
(Fig. 6). This reveals a conclusion and answer to the first question of Section 1 about
the accuracy between parallel and serial load-cell measurement methods. The parallel
load-cell set up provides higher accuracy measure than the single load-cell set up.

7



2 A Geometric Approach

In this section we consider a slightly different (geometric) approach to extract the weight
from a raw load-cell signal that is oscillating due to damped harmonic motion. This
approach largely follows that of Kesilmis and Baran [2]. We have modestly extended
their findings in the following three main ways:

1. by developing an explicit formula for the static equilibrium voltage;

2. by demonstrating the both linear and nonlinear interpolations give rise to the same
solution for the static equilibrium voltage; and

3. by comparing these results with those obtained with a computer program that
solves this problem using iterative methods.

The static equilibrium of a dynamic system is the mean value about which the object
oscillates when in motion. For this highly dynamic weighing process of articles the mean
value needs to be extracted from the signal. This off-set value is subject to change for
every key and key-article combination.

The motivation for a geometric approach is as follows: the weight force that an article
applies to the keys (and hence the load cell) typically causes the load cell to produce
a voltage/time signal that resembles damped oscillations. Determining the equilibrium
from the signal amounts to knowing the combined mass of the article of fruit, and the
keys over which it spans (since the mass of an object on the load cell is linearly related
to the voltage that the load cell outputs). Once this combined mass value is known, the
masses of the keys (approximately 16 g each) can be subtracted, leaving the mass of the
fruit, which is, of course, what Compac is interested in knowing.

To the extent that the voltage signals produced by the load cell can be modelled by
damped sinusoids, we can exploit geometric properties of sinusoids to determine this off-
set voltage. In the following we outline this method by referring to the details of Fig. 7,
which illustrates how this method is applied to a typical set of damped oscillations.

1. Locate three adjacent local extrema in the signal, with coordinates given by (t1, v1),
(t2, v2), (t3, v3), where vi = v(ti) for a voltage/time signal v.

2. Interpolate between t1 and t2 with a function vI(t), and again between t2 and t3
with a function vII(t) (using either straight lines, or trigonometric functions).

3. Determine the special time, T ∗, for which vI(T
∗) = vII(T

∗+∆t) with ∆t = t3−t2 =
t2 − t1 being the half-period of the oscillation.

4. Determine the off-set voltage, v∗, by evaluating vI(T
∗).

The key for solving for both T ∗ and v∗ is the assumption that the time intervals between
the occurrence of each pair of local extrema is constant. In reality some variations would
be present, but expected to be sufficiently small and therefore treated as negligible.

We now give a brief derivation of both linear and nonlinear “interpolation” functions.
Figure 7 illustrates how we might go about doing so with straight lines. For instance, the
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Figure 7: Linear interpolations to determine the off-set voltage.

straight line joining (t1, v1) and (t2, v2) has a gradient of v2 − v1/t2 − t1. It is described
by

vI(t) =

(
v2 − v1
t2 − t1

)
t+

v1t2 − v2t1
t2 − t1

for t1 ≤ t ≤ t2.

Similarly, the straight line that subsequently joins (t2, v2) and (t3, v3) is given by

vII(t) =

(
v3 − v2
t3 − t2

)
t+

v2t3 − v3t2
t3 − t2

for t2 ≤ t ≤ t3.

These results agree with those in [2]. Imposing the geometric condition that

vI(T
∗) = vII(T

∗ + ∆t)

and recalling that ∆t = t3 − t2 = t2 − t1 gives the result that

T ∗ =
v3t3 − 2v3t2 + v2t2 + v2t1 − v1t2

2v2 − v1 − v3
.

It can immediately be shown that the off-set voltage, v∗, is given by

v∗ =
v1v3 − v22

v1 + v3 − 2v2
.

In order to see that this formula makes intuitive sense, consider the case of totally un-
damped motion. This has the consequences that v1 = v3. Therefore, replacing v3 with v1
in the expression for v∗ yields

v∗ =
v21 − v22

2v1 − 2v2
=

(v1 + v2)(v1 − v2)
2(v1 − v2)

=
v1 + v2

2
.
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This demonstrates that v∗ will return the correct value of the mean of the two local
extrema v1 and v2, which represent a peak and a trough (in no particular order).

This formula for the off-set voltage can be derived in a slightly different manner.
Instead of formulating linear interpolation functions vI and vII , we can interpolate using
portions of e.g. cosine functions. This is perhaps a slightly more intuitive approach,
since we have assumed that the signals oscillate like sinusoids. The relevant interpolation
functions in this case are:

vI(t) =
v1 − v2

2
cos

(
π

[
t

∆t
− 1

2∆t
(t1 + t2) +

1

2

])
+
v1 + v2

2
for t1 ≤ t ≤ t2

and

vII(t) =
v2 − v3

2
cos

(
π

[
t

∆t
− 1

2∆t
(t2 + t3) +

1

2

])
+
v2 + v3

2
for t2 ≤ t ≤ t3.

When we impose that vI(T
∗) = vII(T

∗ + ∆t), we get the following solution for T ∗:

T ∗ =
1

2
(t1 + t2) +

∆t

π
cos−1

(
v3 − v1

v1 − 2v2 + v3

)
− ∆t

2
.

Assuming once again that ∆t = t3−t2 = t2−t1, we can easily produce the same expression
for v∗ as we did with the previous linear approach.

2.1 Results

The success of the formula we have derived for the off-set voltage, v∗, depends on the
extent to which the actual voltage/time signals resemble damped simple harmonic motion.
In many cases (especially where articles are irregularly shaped, and appears to rock among
keys) the signals display considerable volatility. In these situations, the value for v∗ that
the formula returns is also rather volatile.

An additional shortcoming of the expression for v∗ is that it assumes that the time
between each local extrema is constant which might not be true in every case in the
data. As a result, we have developed a computational method2 (not presented here) for
solving the problem in a more rigorous manner. This method does not use interpolation
functions, but operates on the data itself. It finds the particular time, T ∗, for which

vI(T
∗) = vII(T

∗ + ∆t)

where ∆t corresponds to the “mean half-period” of the particular set of three local ex-
trema. (The raw data is discretised at intervals of 2.5×10−4 seconds, which slightly
constrains the accuracy of both methods.) Clearly, at no point does this assume (or
require) that t3− t2 = t2− t1. In Figures 8a-8d below, we contrast the results of applying
both the expression, and the computational method, to the signals of two man-made
articles (A1 and A4), and also two real articles (F3 (Orange, 290.0 g) and F8 (potato,
74.7 g)).

There are several key observations that can be made from Fig. 8. The first is that
both methods clearly return similar values - A1’s estimated mass: 75.85 g (formula), 75.38

2The details of this program are available upon request.
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(a) Geometric approach applied to article A1.
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(b) Geometric approach applied to article A4.
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(c) Geometric approach applied to article F3.
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(d) Geometric approach applied to article F8.

Figure 8: Examples of applying the geometric method to filtered raw signals from load-cell
data.
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g (numeric method) and A4’s estimated mass: 188.99 g (formula), 188.59 g (numeric),
F3’s estimated mass: 272.6 g (formula), 271.6 g (numeric method) and F8’s estimated
mass: 72.4 g (formula), 73.1 g (numeric method). However, these results fall outside the
acceptable tolerance of 5 g (for multi-key articles), as e.g. the true masses of articles
A1 and A4 were 80.8 g and 200.1 g, respectively. The second is that the formula we
have derived for v∗, even though it assumes incorrectly that the “half-periods” between
successive local extrema are equally spaced, seems to return a less fluctuated value for the
off-set voltage, which is useful as these different values of v∗ would need to be averaged in
order to produce a single voltage for a given article (and, therefore, a single mass). Indeed,
the expression for v∗ often seems to smooth the volatility of the numerical solution; this
is especially apparent in the case of article A1.

Overall, a geometric approach seems to hold some promise in solving the problem
of high-speed weighing. In the case of an article that spans multiple keys, where there
is sudden and unpredictable rocking or bouncing on keys, the signal may be sufficiently
volatile that a geometric approach needs to be combined with another method. The
application of these methods to signals where the article is known to rock or bounce
should be the subject of further research in this area.

3 Nonlinear Fitted Solution Approach

In this section we consider an alternative and more sophisticated approach to those
presented in previous sections, this time working directly with the raw (unfiltered) signal
from any single load-cell as shown in Figure 9. The measure ADC (analogue to digital
converted) signal is the converted voltage signal from the load cell.

t [s]

A
D

C
[m

V
]

t [s]

A
D

C
[m

V
]

Figure 9: Unfiltered input signal.

We observe that the signal consists of two major components: one is a step function
and the other is highly oscillatory. The former originates from the change of weight
sensed by load cell. Even empty keys show a small abrupt change do to the change of
sensed weight. For keys with articles on this jump is significant and easy to identify. The
highly oscillatory nature of the signal has several technological origins, which are hard
to tell apart due to their highly-likely coupling possibility. The underlying cause of the
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dominating vibration, however, is initiated by the keys mechanically contacting the load
cell (on/off).

We seek to use nonlinear optimisation to fit the signal simultaneously with a step
function and a damped harmonic motion solution. For simplicity of presentation, we
consider only one load-cell signal in this section, and the focus is on an effective method
for rapidly filtering out the oscillations in the signal.

3.1 Mathematical modelling

Looking at Figure 9, we think of the signal y from a load cell as being composed of a static
component ys and a dynamic component yd from the raw signal y0. It can be expressed
as

y(t) = ys(t) + yd(t). (1)

It is envisaged that the dynamic component yd might be separated from the static
component ys, which would be used for the determination of weight. To obtain the
dynamic component of the signal yd, we assume that it can be described as damped
free vibration. Then, the dynamic component of the signal yd satisfies the equilibrium
equation of forces for damped free vibration or simple harmonic motion. The damped
free vibration of the system is given by

mÿd + bẏd + kyd = 0, (2)

where m is the total effective oscillating mass, b is the damping coefficient, and k is the
effective spring constant of the load cell system.

Rewriting the equilibrium equation (2) after dividing by m, we have

ÿd +Bẏd +Kyd = 0, (3)

where B = b
m

and K = k
m

. The general solution to (3) may be written in the form

yd(t) = A e−
Bt
2 cos(Ωt+ ϕ), (4)

where A is the initial amplitude of the oscillation, B is the damping coefficient relative to
system mass, Ω is the natural frequency of the system (rad/s), and ϕ is the phase shift
(rad).

Now, we consider how to find the parameters A, B, Ω, and ϕ of the dynamic compo-
nent yd and the static component ys which provide the best fit to the given raw signal
data y0. Since a new damped oscillation is generated each time a carrier key passes over
a load cell as shown in Figure 9, there are big jumps in the values of signals at these
points. Therefore, we consider piecewise processing of the load signal over a time interval
for fitting the data.

3.2 Moving window processing

Consider a k-th time window Tk centered on the time value tk,c as shown in Fig. 10.
Each window covers 2n + 1 samples of data and consecutive windows overlap by n data
points. To reconstruct the signal on each window, we use 2n+ 1 samples on each window
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Figure 10: Description of the moving windows.

for fitting to, and we choose the middle n + 1 values from the resulting fitted signal
for reconstruction. Let tk,a and tk,b be lower and upper bounds of the time window Tk,
respectively, then

tk,a = tk,1 ≤ tk,2 ≤ · · · ≤ tk,c = tk,n+1 ≤ · · · ≤ tk,2n+1 = tk,b.

Now, we have a nonlinear least squares problem over each time window Tk and the
least squares error Sk over the time window Tk is expressed as follows:

Sk(A,B,Ω, ϕ, ys) =
2n+1∑
i=1

|y(tk,i)− y0(tk,i)|2. (5)

We call the piecewise processing of the load signal the moving window process (Fig. 11).

3.3 Nonlinear data fitting

We apply the Levenberg-Marquardt algorithm [3, 4] for solving the nonlinear least squares
minimization problem on each window. For the Levenberg-Marquardt algorithm, getting
an initial guess that is close enough to the desired minimising value is crucial for conver-
gence to the global minimum.

3.3.1 Estimation of the static component

For the static component ys, we adopt the average value of the raw signal over k-th time
window Tk as an initial value. On each window Tk, an initial value is estimated as

ys(Tk) = average{y0(tk,1), y0(tk,2), · · · , y0(tk,2n+1)}.

3.3.2 Estimation of the dynamic component parameters

The dynamic component of the signal yd(Tk) is obtained by subtracting ys(Tk) from
y0(Tk). To find the dynamic component parameters using the Levenberg-Marquardt
algorithm, we need to start with a good estimate of the initial value of each parameter.
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Figure 11: Description of moving window process.

Numerical differentiation with respect to time is performed to obtain estimates of ẏd
and ÿd on Tk. A system of equations based on (3) can be written for each time in the
time window Tk: yd(tk,a) ẏd(tk,a) ÿd(tk,a)

...
...

...
yd(tk,b) ẏd(tk,b) ÿd(tk,b)


KB

1

 =

0
...
0

 . (6)

The linear system (6) can be rewritten as

M

[
K
B

]
= f , (7)

where M is an (2n + 1) × 2 matrix and f ∈ R2n+1. We then find initial estimates of K
and B by solving the 2× 2 normal equation

MTM

[
K
B

]
= MT f .

An estimate of parameter A is found from the maximum of y0 − ys within the time
window Tk as

A = max
tk,i∈Tk

|y0(tk,i)− ys(tk,i)|.

The estimate of Ω is given by

Ω =

√
K −

(
B

2

)2

.

The phase shift ϕ is estimated as

ϕ = cos−1
(
yd(tk,a)

A

)
.
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Figure 12: Result of the deterministic approach, after fitting simple harmonic motion
(red symbols) to raw data (black curve). The fitted step values approximating the mass,
which can be regarded as a filtered signal, can also be seen (horizontal blue lines), for
three windows.

Using the above estimates as an initial guess, we solve the minimization problem (5)
to reproduce the signal y(Tk) by the Levenberg-Marquardt algorithm. The reproduced
signal y(Tk) is shown in Figure 12, during a time when there is no key on the cell. The
fitted step values are relatively close to each other, indicating a reasonably stable filtered
signal value for the zero additional load case.

3.4 Results

We applied our algorithm to the data set a9-900rpm to illustrate the performance of the
proposed approach. Article F9 is a red potato with a measured weight of 303.03 g. As
shown in Figure 13, the signal is highly oscillatory even when empty carrier keys are
passing over the load cells.

Relatively high-valued peaks occur when a carrier key supporting an object is on a
load cell. There are three peaks visible in the given data and we indicate them using the
numbered red arrows in Figure 13. The signals of the corresponding time intervals are
shown in more detail in Figure 14. To fit the signal in a9-900rpm, we used a window size
101 and the size of the intersection between consecutive windows was 50 sampled points.
Since the signal data in a9-900rpm is sampled every 0.25 ms, each window covers a time
interval of about 25 ms.

Figure 15 shows the graph of the reproduced signal obtained by using our approach.
The zoom-in graphs of the reconstructed signal on the time intervals 12.60∼13.00 ms,
24.58∼24.98 ms, 45.90∼46.30 ms, and 67.21∼67.61 ms are given in Figs. 16a to 16d,
respectively. The black line indicates the original input signal, the red dots are the points
on the reproduced signal, and the blue line shows the static component ys obtained on
each window.
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Figure 13: The load cell data obtained using item A9 travelling at 900 rpm, showing the
four intervals chosen for analysis. Note, that the one labelled with a star has nothing on
the keys, and the other three are when item A9 is on the keys crossing the load cells.

Table 1 shows information of the static component of the reproduced signal on each
windows covering the time intervals 12.60∼13.00 ms, 24.58∼24.98 ms, 45.90∼46.30 ms,
and 67.21∼67.61 ms.

The a9-900rpm as well as other data sets that have been used for our algorithms and
analyses are proprietary to Compac Sorting Equipment Ltd.

4 Statistical Approach

Thematically, we have thought about gaining as much prior information about the indi-
vidual articles as possible before they hit the load cells. This is made possible through
the vision technology that Compac implement. Compac currently use a camera to take
photos of an article moving at high speed. This image can be processed rapidly in or-
der to determine characteristics such as the diameter, and any external deficiencies such
as discolouration that might be present. This complements the actual weighing process
in informing packers as comprehensively as possible. We have posited two specific ap-
proaches to using this prior information. A simple top down photograph of an article
of fruit is sufficient to generate a crude approximation to the mass of that article. For
example, it is a simple task computationally to fit an ellipse to the outline of a piece of
fruit, from which we could interpolate a three dimensional envelope of an ellipsoid, say,
and then use an approximate value for the density of the article to estimate its mass. A
typical density range across different types of fruit are 102 − 103 kg/m3.

Even the fairly crude approximation of the mass that this process would produce
would be useful, for example as an initial estimate of mass in a parameter-fitting ap-
proach like the Levenberg-Marquardt method discussed in the previous section. At the
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Figure 14: Expanded views of the four time intervals chosen to analyse item A9 at 900
rpm, as shown in Fig. 13. The first interval, labelled with a star, shows the baseline signal
when keys are empty.

moment, the signals that the load cells are producing are essentially the sum of an ide-
alised step function, representing the true mass of the article being weighed, as well as
noisy oscillations, caused by the natural oscillatory motion of the article as it bounces
and rocks on the keys and load cells. Using the approximate mass value, a physical model
can produce such a simple harmonic signal, which can then be backed out of the noisy
signal, which will give us a better estimate of the true mass of the article.

Our second approach does not assume an accurate physical model for the motion
of the article. Instead, it is based around searching a data base of averaged signals,
accumulated over time, each average corresponding to a specific kind of an article and
a specific combination of keys on which it rests. Prior knowledge, before the load cell
measurement, includes the type of the article, the estimated weight, the number of keys
that are being spanned (but not necessarily touched) by the article and the chain speed.
This information defines an expectation space in the data space of averaged signals in our
library. If the current load cell output is cross-correlated to all entries in the expectation
space, one result will produce a higher correlation than others. The averaged signal that
best correlates with the current signal allows the weight of the fruitarticle to be read out
from the data base.
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Figure 15: Data (black curve), fitted signal yd (red symbols), and fitted step functions
ys (horizontal lines) for the full data set. Three loaded key events are clearly visible
during this time period. The filtering performed in getting the step functions also clearly
identifies the empty keys passing over the weigh table near t = 3 s early in the time series.

5 Summary and Conclusion

We have addressed the challenge of weighing articles on multiple support keys in a va-
riety of ways. In summary the three questions posted in Section 1 are answered as follows:

1) Currently, there are two measuring concepts - parallel and serial - with
which articles are measured. Which of the two measuring set ups - single or
dual load cell - provide a higher accuracy?

We found that the doubling of time on the load cell that is consequent upon using stag-
gered keys does improve weighing accuracy over the conventional single holder system
used by Compac, when considering the low-pass filtered signal provided by the load cells
(c.f. Section 1.2). The low-pass filter is too slow for the single holder at this conveyor belt
speed, leading to a consistent under-estimation of the fruit weight for the single holder,
as evidenced in Figure 6.

2) Can a mathematical model be developed that is able to estimate the
true weight of the article from recorded data sets for all considered articles
single and multi-key alike?

When the considered article is supported by more than one key, a static approach reveals
that the weights recorded for each key should be added together. We found there was no
detectable difference in accuracy, between adding the filtered signals before computing
mass, and adding the computed masses from the separate filtered signals, as in Figure 6.

19



12.6 12.65 12.7 12.75 12.8 12.85 12.9 12.95

Time with reconstruction window

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

S
ig

n
a

l 
m

a
g

n
it
u

d
e

×10
4

Original signal

y
d

y
s

(a) Data (black curve), fitted signal yd (red
symbols), and fitted step functions ys (hor-
izontal lines) expanded for the star event,
with no load on the keys (24.58∼24.98 ms)

24.6 24.65 24.7 24.75 24.8 24.85 24.9 24.95

Time with reconstruction window

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

S
ig

n
a

l 
m

a
g

n
it
u

d
e

×10
4

Original signal

y
d

y
s

(b) Data (black curve), fitted signal yd (red
symbols), and fitted step functions ys (hor-
izontal lines) expanded for the first event
with keys loaded (24.58∼24.98 ms)

45.9 45.95 46 46.05 46.1 46.15 46.2 46.25

Time with reconstruction window

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

S
ig

n
a
l 
m

a
g
n
it
u
d
e

×10
4

Original signal

y
d

y
s

(c) Data (black curve), fitted signal yd (red
symbols), and fitted step functions ys (hor-
izontal lines) expanded for the second event
with keys loaded (45.9∼46.3 ms)

67.25 67.3 67.35 67.4 67.45 67.5 67.55

Time with reconstruction window

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

S
ig

n
a
l 
m

a
g
n
it
u
d
e

×10
4

Original signal

y
d

y
s

(d) Data (black curve), fitted signal yd (red
symbols), and fitted step functions ys (hor-
izontal lines) expanded for the third event
with keys loaded (67.21∼67.61 ms)

Figure 16: Results of fitting simple harmonic motion plus a step function on moving
windows to the raw data from a load-cell.

However, if random noise is affecting the signal then in principle we expect that adding
raw signals before processing is better, as adding can lead to a partial noise cancellation
effect.

We see some evidence (Figure 4a) that articles supported by more than one key are
sometimes rocking or bouncing off one key, which reduces the accuracy with which the
mass might be estimated from the load-cell signal. It may be useful to try to model
the nonlinear dynamics of bouncing and rocking, to identify when it may be occurring
and possibly to indicate how to modify the signal processing required to obtain improved
mass estimates during bouncing or rocking.

We consider the developed mathematical models very suitable for measuring single
and multi-key articles. We, however, suggest that a technological solution is found to
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Table 1: The static component of the reproduced signal on each window

Time interval 12.60∼13.00 ms 24.58∼24.98 ms 45.90∼46.30 ms 67.21∼67.61 ms
(scale of ys) ( ×103) ( ×104) ( ×104) ( ×104)

ys

8.199149122
8.193275115
8.195800767
8.200696404
8.199974365
8.203136892
8.206666706
8.199025101
8.200745519
8.196222451
8.192787658
8.189074124
8.189483868
8.193790048
8.200524923
8.200281068
8.204378909
8.206938240
8.200463269
8.195378163
8.198747941
8.193689967
8.197987606
8.204146349
8.201954416
8.201796959
8.195225700
8.196156737
8.201450330
8.201550862
8.197289073
8.203398973

0.884065397
1.237366221
1.268553616
1.256562369
1.239185312
1.224408683
1.210725345
1.200798109
1.193719152
1.186434718
1.179980846
1.22887638

1.265146609
1.257261387
1.240402637
1.221623113
1.211436924
1.207789305
1.206603078
1.206532654
1.202205455
1.20800041

1.218310845
1.212836883
1.205162304
1.18633177

1.176536791
1.17151302

1.166413553
1.167595133
1.167729574
1.162380894

1.006481181
1.222369614
1.220610841
1.209011696
1.194009965
1.178399255
1.169886902
1.160703245
1.152618887
1.147769102
1.14590337

1.220409767
1.255477593
1.245696501
1.227972468
1.21040503

1.200583793
1.198157834
1.198050721
1.198430168
1.19148167

1.217585089
1.248318944
1.240437001
1.227476207
1.213584192
1.199170172
1.194639228
1.192982943
1.191167537
1.193145369
1.178007061

0.821093226
1.1591075

1.234773283
1.228055312
1.211041845
1.196476421

1.182864
1.17019214

1.163920174
1.152477089
1.145150522
1.162449773
1.241376116
1.246065326
1.231319681
1.211291069
1.195730665
1.187584018
1.185827676
1.18617065

1.184129485
1.180466516
1.218608922
1.236161551
1.228633399
1.212538135
1.19614337

1.187417238
1.179774566
1.180549357
1.178415334
1.174061009

Average 8.198787113 1.199140265 1.19534198 1.183433293

eliminate the bouncing of articles problem.

3) What is the estimated theoretical weighing accuracy for a given conveyor
belt velocity?

With a view to improving on the speed of the low-pass filter currently used, we considered
two different approaches. A simple geometric approach gives very fast filtering that looks
promising for removing much of the effect of oscillations at the natural frequency of the
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Figure 17: Decision matrix.

load and key and load-cell. We also considered a more sophisticated approach, fitting
a multi-parameter damped harmonic motion solution plus a step function to successive
segments of the raw signal coming from one load-cell, using the Levenberg-Marquardt
method with carefully chosen initial conditions to assist convergence. The results are
very promising, providing very rapid filtering of the signal as illustrated by the piecewise
step-functions in Figure 16. The filtered signal (the step-functions) that is visible in this
figure, when viewed over the entire time-period that a key is on the load-cell, appears to
be decaying steadily. This might indicate that the window used to fit the decaying signal
is too narrow, and that a wider window might give better estimates of the decay rate,
resulting in filtered signals that are closer to constant and that provide a more accurate
measure of weight.
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