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Abstract

Sonar is a vital technology for the detection of objects in the water. Sonar
systems have been redefined over many decades, but research is still being
conducted into optimal detection methods. Codes, and the filters that
process the codes, have been at the forefront of this research. An important
objective has been the minimization of interference caused by reflections.
Matched filters are commonly used in sonar systems. They are equivalent to
correlation filters, which are bound by the Welch bound. The Welch bound
governs the minimum peak correlation for points outside of detection.

This thesis investigated matched filters and their bounds, and it was
found that by relaxing the condition for detection, properties beyond the
Welch bound could be achieved. By relaxing these conditions, the Welch
bound no longer applies, and so a modified Welch bound was developed
to accurately investigate the nature of these codes. In this thesis, methods
to generate codes for these new codes were investigated. Generating codes
for a matched filter is a non-convex problem, so gradient based methods
were utilised. Methods to improve correlation and power characteristics
were developed, along with methods for mapping a sequence for use with
a digital transmitter having particular limitations. Mis-matched filters were
used to improve signal characteristics that may be lost due to this mapping.

The performance of the generated codes was evaluated, and the rela-
tionships between input parameters and output properties of the resulting
signal were observed. These performance assessments demonstrate that
tradeoffs are required between various properties, and a balance is needed
to obtain codes useful for sonar. The optimization was parametrized by an
example set of requirements for sonar. The signals were found to meet the



given requirements, and when compared to codes typically used in sonar,
the optimized signals were shown to have significantly better correlation
properties. Furthermore, compared to the general bounds for the properties
of codes, it was found that the new codes had nearly optimal properties,
and performed better than equivalent codes bounded by the Welch bound.

The performance of codes were also investigated in a water tank to
verify their feasibility. There were several additional considerations which
limit codes that can be tested, and once these are taken into account the
test provided a robust method to verify the design process. Initial tests
showed results that differed from simulations, but after the inclusion of
zero padding before upscaling, the results from empirical testing agree
with simulation.

Summarizing the research in this thesis, a new set of codes were devel-
oped using a gradient based optimization method. The codes were mapped
to a digital transmitter, and the filter adjusted using a mis-matched filter.
The optimization was shown to generate near optimal codes which met all
the given sonar system requirements.
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Chapter 1

Introduction

Underwater sonar has been a vital technology for detection of objects in the
surrounding environment. Utilised in nature and in modern technology,
sonar is a simple yet accurate scheme that provides a large amount of infor-
mation regarding nearby obstacles in a short amount of time. Underwater
sonar uses acoustic pressure waves [57] pulsed into the water, which are
reflected by objects in the water and received back as echoes. By aligning
the received pulses with the sent pulse, the time delay between reflections
can be resolved with high accuracy and can be used as an indicator for the
distance between the transmitter and obstacles.

Sonar detectors were initially developed for military purposes, to assist
the US Navy in detecting enemy submarines during WWII [52]. Several
classified reports were produced, later declassified, providing an in depth
analysis on sonar systems and the signal processing used to maximise
detection [10]. This sparked a new field of research into signal processing,
and produced innovations in detection systems with broad applications.

Modern day applications of sonar still include military use, but the
scope has broadened to include commercial fishing as well as recreational
fishing, stimulating research in these new applications [1, 29, 41]. For fishers,
it is useful to know if fish are nearby before attempting to catch, as this
saves time and resources. Underwater detectors provide a useful aid to
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CHAPTER 1. INTRODUCTION 2

detect fish, providing direction for fishing spots, indicating the depth of the
sea as well as potential obstacles which may interfere with fishing [31].

Unlike the military application, which typically involves detection of
large objects, fishing requires the detection of signals of various relative
strength [32]. Fish typically reflect a weaker signal, compared to reflections
off the sea floor [51]. This introduces difficulties in accurate detection,
especially if reflections overlap. A major objective of this thesis is to inves-
tigate methods to produce ideal codes for the scenarios discussed above.
To understand this further, it is useful to first look at the sonar system in
detail.

1.1 Sonar systems

Sonar systems vary in design and functionality; however the core concept
of these systems remains the same. The typical sonar system is based
on an echo, and is illustrated in Figure 1.1. A transmitter pulses a signal
into a medium, where it travels through and is reflected by any obstacles
along the path. A receiver picks up these reflections as one long signal.
Once reflections are identified, the relative delay between transmitting and
receiving pulses can be calculated according to the velocity equation in
Equation (1.1). Using the time delay, and the known velocity constant in
water, the distance d of a reflected pulse can be calculated. This distance is
used to identify any potential obstacles, or points of interest such as fish.

d = vt (1.1)

where v is the velocity of sound in the water,
t is the elapsed time between transmission and reception, and
d is the distance the pulse travelled, both forward and back.

Although the concept of sonar systems is simple, robust detection is
difficult. In simple cases each reflection can be distinguished easily as peaks
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Figure 1.1: Diagram of sonar system, indicating basic components. [10]

in the signal, however this can become difficult when reflections overlap
and are distorted. To aid in distinguishing these signals, a filter is typically
used to compare the transmitted signal against the received signal. The
output of this filter is then used to identify the likelihood of any point in
the received signal being a reflection of the transmitted signal. The use of
this filter can be very powerful - if designed effectively, received pulses can
be identified with high accuracy, identifying delays by as little as 1 sample.
However the design of the filter response is challenging, as both the filter
coefficients and the transmit pulse must be designed.

One implementation of filter design is the matched filter, introduced in
the following section, Section 1.1.1.

1.1.1 Matched Filter

The matched filter is a common filter used in sonar detection [34]. The
matched filter is the optimal filter to maximize the signal to noise ratio, or
SNR, of a known signal in Gaussian noise. If the noise in underwater sonar
is assumed to be Gaussian, then the matched filter is the optimal filter for
detecting reflections of a transmitted pulse. Several sources have analyzed
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noise for underwater environments [8, 39], and although not truly Gaussian
the noise can be modeled as Gaussian as a first approximation.

Details of the matched filter are explored further in Section 2.1. For now,
it is important to note that the output to a matched filter is equivalent to
the correlation algorithm between a transmitted signal and the received
signal, shown in Equation (1.2) below.

R f ,g[k] = 〈 f [n], g∗[n− k]〉

=
+∞

∑
−∞

f [n]g∗[n− k] (1.2)

For optimal output of the filter, the filter output should be optimized for
desired sonar properties such as resolution. Using the matched filter, this is
equivalent to optimizing the autocorrelation and cross correlation of trans-
mitted signals. This provides a simple set of inputs to vary, the transmitted
codes, which can then be converted to matched filter coefficients. However
this optimization of correlation properties are not trivial, as explored in
Chapter 3.

Several considerations exist for the design of underwater sonar systems,
which guide properties and objectives for optimization in the sonar system.
These considerations are explored in the next section, Section 1.1.2.

1.1.2 Underwater Sonar

Underwater sonar adds several complications to sonar design. In under-
water sonar, pulses typically reflect off marine life and off the ocean floor.
These different sets of objects reflect pulses at different intensities. Re-
flections off the ocean floor and off solid obstacles are relatively strong in
power, while reflections from fish are typically weak.

Additionally, there are typically multiple reflections for fish due to the
swim bladder [5], as well as the shape and type of fish [11]. The multiple
weak reflections are likely to overlap, and for detection reflections need to
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Figure 1.2: Illustration of the Rayleigh Criterion, for resolving signals.

be resolved for separate fish, and ideally grouped for the same fish. This
requirement can be described as fish to fish resolution.

For fish in similar locations, reflected signals are expected to be similar in
strength. To resolve them, the Rayleigh Criterion must be met. The Rayleigh
Criterion was originally conceived for the optical resolution of objects [14],
however has been shown to apply to signal resolution in general [7]. An
example of this resolution is shown in Figure 1.2. This figure demonstrates
that for signals of similar strength to be clearly resolved as separate signals,
the points of overlap must not exceed half the strength of the peak of the
signal. This is equivalent to the -3 dB point of each signal. To resolve fish
with high distance resolution, the reflected signals off each fish must be
able to be resolved with minimal distance between peaks. This requirement
is equivalent to minimizing the distance of the -3 dB point from the centre
peak, for each signal.

Furthermore, any fish near the sea floor need to be detected as well. This
involves detection of a strong signal from the sea floor, and a weak signal
from the fish. Empirically this has been noted to differ as much as 40 dB in
signal strength between each peak [12, 28, 49]. Since the fish in this scenario
is located near the sea floor, it is expected that the signals will overlap. This
introduces a new requirement for resolution, to be able to resolve a weaker
signal while overlapping with a stronger signal. This is not trivial, as these
signals differ by as much as 40 dB, requiring overlapping points in the
strong signal to be lower than the peak of the weaker signal. In other words
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in the strong signal these overlapping points must be below -40 dB from
the main peak. It should be noted that this scenario does not require the
same distance resolution as for fish to fish resolution, instead has a looser
requirement for resolution. This provides more flexibility in the design.

1.2 Proposed Sonar System

Typical sonar systems use a pressure-based transmitter to create pressure
waves, and a receiving hydrophone to pick up reflected waves, measuring
the time for them to return. Beamforming is used in conjunction to provide
spatial information. However these sonar techniques have limitations.

A major limitation of typical sonar systems is the angular range. A
single sonar projector can only transmit effectively in a limited range of
angles, limiting the angles at which objects can be detected by the sonar
system. One way to improve this range is to use multiple transmitters
and receivers. However simply repeating projectors across the bottom of
the boat would result in overlapping ranges for the projector, necessary to
eliminate blind spots. This would result in transmitted pulses interfering
with each other. If the pulses interfere, then the beam pattern would be
affected — the beam pattern could not be used in beamforming calculations
for position or for target strength estimation.

The solution to this problem is to use codes orthogonal for all time
delays on each transmitter, so that if transmitted or reflected signals overlap
the signals do not significantly interfere with each other, allowing the beam
pattern to remain consistent and beamforming to remain accurate. The
system is shown in Figure 1.3. This system is set up on the bottom of a boat
or fishing vessel, and detects objects below the vessel in a 2D slice. As the
boat moves along a series of slices are taken, to eventually form a map of
the ocean floor. The design of these codes is non-trivial, as noted in Chapter
2. Additionally the codes are required to meet resolution requirements for
underwater sonar environments, as described earlier in Section 1.1.2.
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Figure 1.3: Visualisation of multiple transmitter / receiver system (2D slice). Each ellipse
represents a transmitter and receiver pair, with the effective angular range shown.

1.3 Additional Considerations

There are various considerations around sonar systems affecting the quality
of detection. In particular, noise is a significant factor that should be
minimised for optimal detection. Much research has been undertaken
to investigate various noise properties, and noise sources in the ocean
[42, 55], however in most cases the noise can be assumed to be Gaussian
noise [50]. To reduce the effect of this noise, it is useful to look at the
receiving filter.

Several filters have been researched for sonar, including the Eckart
Filter [9], the matched filter [16], and the mismatched filter [2]. It has been
found that for white Gaussian noise (AWGN), the Matched Filter is the most
effective filter for maximising signal to noise ratio (SNR). The matched filter
is equivalent to a correlation filter that measures the correlation between a
template signal, in this case the transmit signal, and a received signal. By
using the transmit signal as a template the optimal detection can be made
for that transmit signal.

Another consideration is the transmit signal itself. Through empirical
experiments it was found that different transmit signals produce different
filter responses in the matched filter, which affects the matching of non-
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perfect signals such as those distorted by noise or interference. To optimize
SNR and minimize interference, a method is needed to find the optimal
transmit pulse. Signal design for detection is an area of active research and
is explored further in Section 1.4.

1.4 Codes and sequences

Code and sequence design is a relatively abstract field with a broad range of
applications in signal processing. In particular it is useful in communication
systems and detection systems such as for sonar.

Pulses used in sonar systems are typically optimised to produce ideal
responses in receiving equipment. Various codes have been explored such
as Gold codes [17], Zadoff-Chu sequences [36], and other poly-phase codes
with good aperiodic properties [13]. These codes have good correlation
properties with a wide range of applications, including application in sonar.
These codes follow a pattern which make them easy to generate, however
they are also limited in their properties with high peak errors for aperiodic
systems. Optimization techniques have been applied for receiving filters
[46] to improve properties, and although these optimized filters show
improvement they are still limited in properties for resolution.

Bounds for general codes have been determined in the Welch bound
[54], describing bounds on the peak correlation error. The Welch bound
shows bounds on what properties can be achieved, however do not show
how to achieve them. The Welch bound shown in Equation (1.3) shows the
optimal bound on correlation properties, indicating the minimum possible
level of the peak error in correlation detection.

cmax ≥
√

M− 1
M(2N − 1)− 1

(1.3)

where
cmax is the correlation bound,
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M is the number of codes, and
N is the length of each code.

Applied to underwater sonar for fish detection, we can observe the
expected performance for fish detection systems. Typical parameters are
M=2 and N=[100-1000]. In the Welch bound, this equates to cmax ≥-26.988
dB for N=100 and cmax ≥-36.017 dB for N=1000. Referring back to Section
1.1, the expected difference of strength in reflections are -40 dB for fish
to bottom detection, and -3 dB for detection between fish. In this case,
the requirement to resolve both fish and the sea floor is not met, and so
detection cannot be reliably performed.

This set of parameters is limited to codes governed by the Welch bound -
codes that ideally have delta like autocorrelation and zero cross correlation.
However, it has been empirically observed that some codes can have better
than Welch bound performance if the target properties are modified. By
targeting a main lobe of detection in autocorrelation instead of a delta
function, the correlation properties outside the main lobe have been ob-
served to be significantly lower. This result has stimulated the research into
alternative codes that can achieve better than Welch bound performance,
and this development is a core result of this thesis.

Having observed the scope of the system, and potential bounds of these
systems, it is now useful to see how these requirements convert to pulse
and filter design. The next chapter, Chapter 2, details design considerations
for the sonar system designed in this thesis, exploring the matched filter
system and how sonar properties affect the filter.



Chapter 2

Code Design

Several codes exist for sonar, as noted in Section 1.4, using the matched
filter as a detection filter for the sonar system. The properties of the codes
and filter are governed by the Welch bound [54], describing a bound on the
minimum peak correlation outside the peak autocorrelation. These filters
target a delta-like detection, however investigation in sonar properties have
suggested an alternative approach may overcome the Welch bound, and
have been verified empirically. To aid investigation into this new approach,
the Welch bound is investigated and extended for these new properties.

To begin this investigation into the design of codes, it is useful to first
look at the detection system, matched filtering.

2.1 Matched Filtering

Introduced in Section 1.1.1, the matched filter is the optimal filter for max-
imizing SNR in the detection of a known signal, in Gaussian noise. This
is particularly useful for sonar, as obstacle information is not typically ob-
tained from the pulse itself, rather from the time delay of reflections, and
from beamforming. Detection of reflections involve detection of a known
signal, the transmitted pulse, so a filter can be used to ideally detect this
reflected pulse with high accuracy, in Gaussian noise.

10



CHAPTER 2. CODE DESIGN 11

To understand why the matched filter is optimal, and the benefits it
provides towards sonar, it is useful to first derive the matched filter itself.

2.1.1 Derivation of the Matched Filter

The derivation below is one possible derivation for the matched filter,
derived by Rabbani using matrix algebra [38]. The process looks at a
general filter, then substitutes the filter into the definition of SNR and
maximizes to find the optimal filter for SNR.

The derivation begins by observing the general linear filter, as shown
in Equation (2.1). This takes an input x and convolves with the filter h to
produce an output sequence y. The input is defined by (2.2). Here, the
input sequence x is defined as the signal s plus the noise v. This noise can
be described by a covariance matrix, as described by (2.3). The general
filter defines the filter output as it varies over time, however for detection
the filter should have, at some point in the output, a single optimal output
maximizing SNR.

y[n] =
∞

∑
k=−∞

h[n− k]x[k] (2.1)

x = s + v (2.2)

Rv = E{vvH} (2.3)

The filter output for a single point is defined in (2.4). This shows the
output of the filter, y, as the convolution with a general filter h with the
input vector x. This output will be shown to be optimal for a particular
solution to the filter h. The output y is separated into the signal component
and noise component of the output, ys and yv respectively.

y =
∞

∑
k=−∞

h∗[k]x[k] = hHx = hHs + hHv = ys + yv (2.4)

The SNR is defined as the power of the desired signal over the power
of the noise. As noise varies, the expected power of the noise is taken for
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analysis. This is shown in (2.5). Substituting the definition of each output
component gives (2.6).

SNR =
|ys|2

E{|yv|2}
(2.5)

=
|hHs|2

E{|hHv|2} (2.6)

h is a constant filter, and so the bottom line can be expanded as shown
in (2.7). Additionally the covariance matrix is substituted in.

E{|hHv|2} = E{(hHv)(hHv)
H} = hHE{vvH}h = hHRvh (2.7)

Using (2.7), the SNR can now be represented by (2.8). This equation is
modified in (2.9) to introduce R1/2

v R−1/2
v in the top line, which is equivalent

to muliplying by 1, and in the bottom line the covariance matrix is split
into two terms of R1/2

v . This step appears counterproductive, however will
assist with simplification further in the derivation.

SNR =
|hHs|2
hHRvh

(2.8)

SNR =
|(R1/2

v h)
H
(R−1/2

v s)|2

(R1/2
v h)

H
(R1/2

v h)
(2.9)

The next step uses the Cauchy-Schwarz inequality, as shown in (2.10),
where equality is met if a and b are collinear, as indicated in (2.11).

|aHb|2 ≤ (aHa)(bHb) (2.10)

Equality if

a = αb (2.11)

where α is a scalar.
Using this inequality to expand the absolute square term, the follow-

ing result in (2.12) can be obtained. This step also groups terms R1/2
v h,



CHAPTER 2. CODE DESIGN 13

and groups R−1/2
v s. This inequality enables the expression to be greatly

simplified, to the expression in (2.13).

SNR =
|(R1/2

v h)
H
(R−1/2

v s)|2

(R1/2
v h)

H
(R1/2

v h)
≤

[
(R1/2

v h)
H
(R1/2

v h)
] [

(R−1/2
v s)

H
(R−1/2

v s)
]

(R1/2
v h)

H
(R1/2

v h)
.

(2.12)

SNR =
|(R1/2

v h)
H
(R−1/2

v s)|2

(R1/2
v h)

H
(R1/2

v h)
≤ sHR−1

v s (2.13)

As stated earlier, equality is met if vectors are collinear. Observing (2.13),
the bound is met if R1/2

v h = αR−1/2
v s, where α is a scalar. Rearranging for h

gives the optimal filter for SNR, in Equation (2.14).

h = αR−1
v s (2.14)

If the noise is Gaussian, then the covariance matrix Rv is unitary, leaving
the expression for the optimal filter to maximize SNR in Gaussian noise.
The Gaussian noise matched filter is shown in (2.15).

h = αs (2.15)

Observing the output of this filter substituted into the linear filter, as
shown in (2.16), it can be seen that the matched filter in Gaussian noise is
equivalent to the correlation algorithm (2.17).

y[n] =
∞

∑
k=−∞

s∗[n− k]x[k] (2.16)

R f ,g[n] =
+∞

∑
−∞

f [k]g∗[k− n] (2.17)

This equivalence provides a powerful tool to observe the expected
output of a matched filter, when designing a signal. With the matched filter
defined, applications to sonar can be investigated to maximize properties
in sonar detection. These are investigated in the following Section 2.1.2.
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2.1.2 Application in Sonar

In sonar, the matched filter is used as a likelihood detector for reflected
signals. A designed signal is transmitted into the water, where it is reflected
by objects and obstacles. These reflections are picked up by the receiver,
and passed through the matched filter.

The matched filter returns the correlation based on the relative offset
of the matching signal, in this case the transmitted pulse, and the reflected
signal composed of several reflected pulses. If a reflected pulse is similar
to the transmitted pulse then the filter will output the autocorrelation
function, with a peak when the matching signal and the reflected pulse are
aligned. This peak allows for high accuracy alignment in time, facilitating
the calculation of time delay in transmitting and receiving pulses, which in
turn allows for calculation of distance with high resolution.

Simple detection mechanisms use a threshold to detect the output of a
filter [24], though these mechanisms can be assisted by prefilters [22]. For
optimal detection, the output filter should only output above the threshold
for detection, and zero otherwise. In reality, codes have a minimum corre-
lation level outside the peak detection, bounded by the Welch bound [54].
The properties of correlation affect overlapping signals and the strength of
signals that can be reliably resolved.

To overcome these bounds, an alternative approach was explored by
modifying the definition of detection, to detect signals with varying reso-
lution. Early experiments suggested that improvements could be made to
the correlation properties in the matched filter, by targeting a main lobe
of detection instead of a delta-like detection. This main lobe showed that
lower correlation could be achieved beyond the detection region. In the
main lobe, this worsens the level of strength that signals that can be re-
solved reliably, however improves the level of strength that signals can be
resolved outside the main lobe.

To implement this, the filter shape can be designed to fit a modified
box+delta shape for autocorrelation, and minimally flat cross correlation



CHAPTER 2. CODE DESIGN 15

when detecting other codes. This provides a simple target to optimize the
code set, and is discussed further in Section 2.2. Before investigating these
properties, it is first useful to investigate an alternative to the matched filter
used in sonar systems. This filter is discussed in Section 2.1.3.

2.1.3 Mis-Matched Filter

Alternatives to the matched filter have been investigated, in cases where it
may not be feasible to optimize correlation properties to a sufficient level.
[30] Research as early as 1969 have investigated mis-matched filters, filters
initially designed to be matched to a signal and are then modified for better
properties [30]. The codes in previous research were short and so could be
optimized manually per offset, however more recent research have shown
more practical applications and quantized losses [40, 47].

Notably, with a mismatched filter the matching is no longer against the
same code, so there is a loss in the central peak. However mis-matched
filtering allows for significant side lobe peak reduction, resulting in an
overall improvement in performance. The details of implementing the
mismatched filter are developed further in Section 3.3.

2.2 Properties

The output of a matched filtered sonar system is equivalent to the cor-
relation of a target signal, in the case of sonar the correlation with the
transmitted sonar pulse. The correlation properties are shaped to maximize
the likelihood of correct detection of objects and obstacles in the water.
Regions of detection are categorized into the main lobe in autocorrelation,
a region of detection centered around the peak in autocorrelation, and side
lobes, areas outside the main lobe of detection which are considered errors
in detection.

Ideal properties for use in this system are described below, discussing
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how the properties correspond to correlation properties.

• Fish to Bottom Detection

• Fish to Fish Detection

• Interference Rejection

• Pulse Length

• Power Shaping

As discussed in Section 1.1.2, reflections of a signal from a fish near the
ocean floor is about -40 dB less than the reflection from the ocean floor itself.
To correctly resolve any overlapping detections in the filter, the side lobes
need to be less than -40 dB relative to the main lobe peak. This ensures
that if a strong signal from the ocean floor is reflected and an overlapping
weaker signal is also reflected from a fish, the weaker signal can still be
correctly detected without the possibility of mistaking it for the side lobe
in the strong signal. The filter response comparing the strong and weak
signals can be seen in Figure 2.1.

In contrast, for fish to fish resolution similar strength signals require
overlapping components to be below -3 dB, according to the Rayleigh
Criterion discussed in Section 1.1.2. This -3 dB roll off from peak detection
is set as close to the peak, to maximize time resolution.

Fish to fish resolution is easily met if the fish to bottom detection is
met, as when side lobes are below -40 dB they will be well below -3 dB. A
box-like function can be used to distinguish regions for side lobes below
-40 dB from a main lobe for detection at 0 dB. However this function does
not allow for detection of similar signals within the main lobe. Instead, the
function can be modified to shift the main lobe outside a single point of
detection down to -3 dB, equivalent to a box function plus a delta function.
This box+delta function can be observed in Figure 2.2, where the side lobes
are set below -40 dB, the main lobe is set below -3 dB and the central peak
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Figure 2.1: Illustrative filter response comparing chirp pulse reflections from fish and
from sea floor. Note the larger pulse (blue) and its side lobes, to distinguish overlapping
pulses the peak of the weaker pulse (red) must have higher power than side lobes of the
larger pulse.

detection is at 0 dB. This allows for signals of significant power difference
to be resolved in the side lobe, while signals of similar strength can be
resolved in both the side lobes and in the main lobe, providing multiple
levels of detection.

In the sonar system, the physical arrangement of projectors are used
to increase the angular range of detection. To provide a complete range
without gaps, there will be a small overlap between projectors. This will
result in codes transmitted from one projector to be potentially received
on neighbouring hydrophones. For correct detection, each receiver should
only detect the one code and reject codes transmitted from neighbouring
projectors. In the receiving filter, this requirement is interference rejection,
requiring minimum cross correlation between pulses. The filter should be
designed to equally minimize the output when receiving codes from other
projectors.

Sonar systems detect for a range of depths and resolutions, and so
have different intervals where a pulse can be transmitted before the first
reflection needs to be detected. For short distances, the time between the
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Figure 2.2: Box+delta function to define ideal detection of a pulse. Multiple levels of
detection allows for variable resolution between strong pulses and for between strong and
weak pulses.

beginning of a transmit pulse and the time when the first reflection is
detected is short, so a short transmit pulse is required. For longer distances,
a longer time window is available before a reflection is detected so the
transmit pulse can be longer. If the sampling frequency is kept constant,
then a longer signal allows for a larger number of samples in the code.

In the Welch bound, the bound on the maximum correlation error, it can
be observed earlier from Equation (1.3) that larger values of code length
N allow for a lower maximum correlation error. For sonar, a longer pulse
length allows for better correlation properties, so in the matched filter
allows for lower side lobes. This suggests that codes should be designed
for the longest code length possible for a given range, to allow for better
side lobe properties. This is in contrast to the previous timing requirement,
limiting code length based on the available time window, and so a balance
must be met between optimal codes and requirements for sonar systems.

Sonar transmitters ideally have perfect recreation of the designed signal
in the transmit pulse for detection, however for sonar these systems usually
require high power transmitters to achieve long range detection. This
imposes limitations on the signal that can be transmitted, based on the
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power system supplying the transmitter. Power systems are typically
designed to provide a constant supply of power [33], so systems typically
struggle to respond to high variations in power that needs to be supplied.
In these cases, if there is too high a variation in the power drawn, the signal
is distorted since power cannot be supplied. This distortion is especially
present at the beginning of a signal, when there is a sharp variation from
zero power supplied to the start of the signal. To minimize distortion,
the beginning of a transmitted signal should ramp up slowly in power.
This reduces variation in power, so the power system can supply enough
current, and can be achieved by shaping the magnitude of the designed
code.

Another limitation in power is transformer ringing, or ferroresonance
[15]. This ringing is common in high power systems with magnetic and
capacitive components, caused by energized components such as transform-
ers and capacitors oscillating energy between each other. This oscillation
occurs even when the switch to the input circuit is open, and so cannot
be solved by simply shutting off the input. To mitigate this phenomenon,
the magnitude of the code can be ramped down at the end to reduce
trailing ringing after the pulse has ended. This minimizes the residual
power oscillating in the transformer, reducing the power of the ringing,
and minimizing potential interference outside the transmitting interval.

These properties guide the design of codes, to design for correlation as
well as for the code itself. Beyond these properties, there is an additional
consideration for the sonar system, concerning the transmitter. A novel
digital transmitter was designed and developed outside of the work pre-
sented in this thesis, however has several constraints on signals that can be
transmitted. This is investigated in the following Section 2.3.
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Figure 2.3: Example transmitting cycles in the digital transmitter, of how amplitude is
changed by changing pulse width, and how phase is changed by changing each cycles
frequency.

2.3 Digital Transmitter

Transitional transmitter systems take complex samples and transmit at the
passband frequency, as amplitude and phase offsets. However these trans-
mitter schemes are not ideal, as they are power limited, and require a large
amount of data to be stored. An alternative transmitter was proposed to
overcome these limitations, a ‘digital transmitter’. This digital transmitter
transmits whole cycles and modulates the frequency of each cycle, to attain
phase properties when sampled.

This can be seen in Figure 2.3. Phase is controlled by setting the length
of each cycle, stored as a coefficient of half the length labeled half-pulse
width or HPW. The amplitude is controlled by setting the pulse width of
positive and negative pulses, each centered at the peak and trough of an
equivalent sine wave, and stored as a pulse width coefficient AMP. When
filtered, the red digital transmitted signal smooths to a signal similar to the
blue signal of sinusoids.

The digital transmitter was proposed and developed before the work
presented in this thesis had begun, and is a required component in the
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designed sonar system. The design of this transmitter has been developed,
however codes to drive this transmitter had yet to be designed. A signifi-
cant limitation of this digital transmitter is the non-regular cycles generated
for the signal. The sampling operation is regular, and so can be determined
relative to the transmit rate, however the cycles generated are non-regular,
each cycle’s position in time is determined by the cumulative lengths of
previous cycles. Additionally, cycles are not guaranteed to overlap with a
sample point, or may span several sample points. The cumulation of these
problems make it difficult to design a signal using linear methods.

Another property of signals generated by this digital transmitter is the
amplitude of the signal. The signal is a square-like function, which when
filtered for the first harmonic produces a sinusoidal wave. The amplitude
coefficient in the digital transmitter is not the same as the amplitude of a
sinusoidal wave, however is bound by a function. This function can be
found by taking the Fourier series of the waveform, and observing the first
harmonic. Observing the digitally transmitted function as (2.18):

f (t) =


+1

(
1− AMP

AMPmax

)
T
4 ≤ t ≤

(
1 + AMP

AMPmax

)
T
4

−1
(

1− AMP
AMPmax

)
T
4 + 3T

2 ≤ t ≤
(

1 + AMP
AMPmax

)
T
4 + 3T

2

0 else

(2.18)

For Fourier analysis, it is easier to observe the interval from 0 to T/4,
then repeat for the whole waveform, as it is symmetric along the sine wave.
Since the waveform is sinusoidal, there are no DC components nor cosine
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components in the series. The computation simplifies to the following.

bn=1 =
−2
T

∫ T

0
x(t)sin

(
2πt
T

)
dt

= 4× −2
T

∫ T
4

1− AMP
AMPmax

sin
(

2πt
T

)
dt

= 4× −2
T

2π

T
cos
(

2πt
T

) ∣∣∣ T
4

1− AMP
AMPmax

=
16π

T

(
cos(

π

2
)− cos(

π

2

(
1− AMP

AMPmax

)
)

)
=

16π

T

(
−cos

(
π

2
− π

2
AMP

AMPmax

))
=

16π

T
sin
(

π

2
AMP

AMPmax

)
Scaling factors can be ignored, as the signal should be scaled to max-

imum power for maximum range. Observing the mapping relationship,
the relation simplifies to (2.19), providing a simple equation for the control
coefficient and the effective amplitude of the filtered signal. This function
is monotonic increasing and one-to-one [44], providing useful properties in
mapping.

Amplitude = sin
(

π

2
AMP

AMPmax

)
(2.19)

However, like with phase, the non-regular cycles of the digital trans-
mitter limit the usefulness of the amplitude property, specifically in cases
when a single cycle spans multiple samples. When this occurs, a single
cycle will control the amplitude of multiple samples when downsampled,
which limits samples which can be mapped accurately.

A solution proposed in this thesis is to use an alternative method to
transmit signals, using a method similar to minimum shift keying, or MSK
modulation [20]. This alternative is referred to hereafter as the MSK digital
transmitter. The MSK digital transmitter generates cycles at the carrier
frequency, varies the amplitude per cycle then circularly phase shifts each
cycle depending on the related sample. This can be seen in the example
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Figure 2.4: Example of MSK modulation. Note the discontinuity at points t=1× 10−5

seconds and t=2× 10−5 seconds.

in Figure 2.4. By circularly phase shifting the sample, the overall cycle
length remains the same. This simplifies the mapping of a sequence to the
transmitter, as the lengths of samples are now regularly spaced. However
a major limitation of the MSK digital transmitter is the discontinuities
between samples. When cycles are generated at the centre frequency, the
waveform is continuous, however phase shifts cause the cycles to no longer
be continuous at the borders of samples.

The MSK digital transmitter is an alternative option for a transmitter, in
the case that the original digital transmitter is not accurate enough. Note
that this alternative is not ideal in signal properties, due to discontinuities
between samples, however is offered as a viable alternative. For the re-
mainder of the thesis, the original digital transmitter is used for design, to
target compatibility with existing resources.

With the characteristics of the digitally transmitted signal defined, it is
now possible to produce signals for the system that accurately represent
designed codes. This is developed further in Section 3.2.

Before discussing methods to generate codes, it is first useful to observe
theoretical performance of codes. This introduces another method to evalu-
ate codes, to check for optimal performance. This theoretical performance
is explored in the next section, Section 2.4, deriving bounds for expected
correlation properties in codes.
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2.4 Welch Bound (and beyond)

Typical matched filtered systems rely on the properties of autocorrelation
and cross correlation to produce an effective likelihood detector. For these
systems, ideal detection occurs when the matched signal is perfectly aligned
to the reflected pulse, and would otherwise reject the pulse. Here, the ideal
code characteristics correspond to a delta like autocorrelation and zero
cross correlation. In reality correlation properties have a minimum level
of correlation outside the centre of autocorrelation, contributing towards
errors in matched filter detection. These correlation properties are bound
by the Welch bound, which indicate the optimal bound to minimize peak
correlation error.

2.4.1 Welch Bound

In 1974, Welch developed bounds on correlation describing the limits of a
matched filter [54]. He noted that although several researchers had looked
at autocorrelation, there was little that included cross correlation of signals.
The aim of the correspondence was to establish bounds on how small cross
correlation and autocorrelation values could be.

Welch’s derivation of the bounds begins with a set of vectors describing
the code set as {(av

1...av
L) : v = 1, ..., M}, where there are M codes each of

length L. The components of av
1 are complex numbers, and the norm of

each code is 1, as indicated below.

cv,v(0) =
L

∑
i=1
|av

i |2 = 1

The first theorem starts with an inner product of M vectors each of
length L and norm 1. For now, relative offsets between vectors are ignored,
and are considered later.

Define correlation as

cv,λ =
L

∑
i=1

av
i āλ

i
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and
cmax = max

v 6=λ
|cv,λ|

Welch’s first theorem (inner products) is,

cmax ≥
1

M− 1

(
M
L
− 1
)

Proo f : (Welch1)
The proof begins with the expected bound if all error is set to worst case,

cmax.
The equation in (2.20) compares the worst case sum of correlation with

the actual sum of correlation across all combinations of vectors in the set.
The sum across each point in the cross correlation algorithm is taken, for
cross correlation between each and every vector, including the same vector.
The number of cross correlation pairs is M × M. Since each vector has
a norm of 1, if it matches with itself then the autocorrelation will have
a value of 1. There are M vectors so this matched correlation occurs M
times, summing to 1×M = M. The vectors will not match in combinations
M2 − M or M(M − 1), and each contribute a value c2

max. The sum of
correlation for non-matching vectors becomes M(M− 1)× c2

max, describing
the left side of the inequality. The right side shows the squared norm of
correlation, summed across all combinations of vectors in the set.

M(M− 1)c2
max + M ≥∑

v,λ
|cv,λ|2 = B (2.20)

Here it is useful to look to another derivation, which proves an equiva-
lent result using a simpler method.
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2.4.2 Capocelli

At this point, it is easier to understand the Welch bound for complex
hermitian space using the derivation in Capocelli [3]. Here the correlation
is represented as an inner product, and simplifies B as an inequality.

ci,j = 〈x(j), x(i)〉

B = ∑
v,λ
|cv,λ|2 = ∑

v,λ
|〈xv, xλ〉|2

Before deriving the bound on the sum of correlations, a few lemma are
introduced to aid in derivation.

Lemma 1: (Row-Column Equivalence) Let y(1), y(2), . . . y(L) show the
rows of the M× L matrix representing M codes each of length L, where
rows follow the form x(1), x(2), . . . x(M), then

M

∑
i=1

M

∑
j=1
|〈x(i), x(j)〉|2 =

L

∑
k=1

L

∑
l=1
|〈y(k), y(l)〉|2 (2.21)

Proof: (Lemma 1) Using 〈x(i), x(j)〉 = 〈x(j), x(i)〉∗,

M

∑
i=1

M

∑
j=1
|〈x(i), x(j)〉|2 =

M

∑
i=1

M

∑
j=1
〈x(j), x(i)〉〈x(i), x(j)〉

Expand the inner product,

=
M

∑
i=1

M

∑
j=1

L

∑
k=1

x(j)
k x(i)∗k

L

∑
l=1

x(i)l x(j)∗
l

Shift sum over L out, then group (i) and (j)

=
L

∑
k=1

L

∑
l=1

M

∑
i=1

x(i)l x(i)∗k

M

∑
j=1

x(j)
k x(j)∗

l
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The terms including summation over (i) and (j) are equivalent to the inner
product between columns, and so can be simplified

=
L

∑
k=1

L

∑
l=1
〈y(l), y(k)〉〈y(k), y(l)〉

Finally using the complex inner product as earlier,

=
L

∑
k=1

L

∑
l=1
|〈y(l), y(k)〉|2

The next lemma will also prove useful:

Lemma 2: If a1, a2, . . . , aL are real numbers, then

L

∑
k=1

(ak)
2 ≥ 1

L
(

L

∑
k=1

ak)
2 (2.22)

with equality if and only if a1 = a2 = . . . = aL.

Proof: (Lemma 2) Consider a random variable X that has a value of ak

with probability 1/L for 1 ≤ k ≤ L. Observing the square function of this
variable, we can see that it is strictly convex over the range, and so using
Jensen’s inequality [21, 25],

E[X2] =
L

∑
k=1

1
L
(ak)

2 ≥ E[X]2 = (
L

∑
K=1

1
L

ak)
2

Multiplying both sides by L gives the lemma.

Using these two lemmas the bound on B can now be proven. Capocelli
produces a result describing the sum of correlations as a generalised bound,
and this is one typical application of the Welch bound [53]. However, Welch
proves this bound and more by further deriving a bound on correlation for
matched filters. The next few steps will prove Capocelli’s result, which will
then be used to derive Welch’s bound.
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Welch’s Bound (Generalized): For sequences of the same energy, i,e,

||x(i)||2 = 〈x(i), x(i)〉 = L

for i = 1, . . . , M, the following bound applies.

M

∑
i=1

M

∑
j=1
|〈x(j), x(i)〉|2 ≥ M2L (2.23)

Proof: (Welch Bound (Generalized))
The proof begins using lemma 1, using row-column equivalence for the

inner products. This shows the sum correlation of combinations of row
vectors, in this case the sum of correlation between codes, is equivalent to
the sum of the correlation between columns.

M

∑
i=1

M

∑
j=1
|〈x(i), x(j)〉|2 =

L

∑
k=1

L

∑
l=1
|〈y(k), y(l)〉|2

Here the correlation between all column vectors is absolute squared,
and summed over every combination. This effectively sums the power of
correlation for every combination of vectors.

L

∑
k=1

L

∑
l=1
|〈y(l), y(k)〉|2 ≥

L

∑
k=1
|〈y(k), y(k)|2 =

L

∑
k=1

(||y(k)||2)2

The sum over these combinations is expected to be less than or equal to
the sum of the inner products of the same vectors, as the right hand sum is
contained in the left hand sum. Equality is reached if the column vectors
are orthogonal. The right side of the inequality is simplified as a norm
operator. Using lemma 2 in (2.22),

L

∑
k=1

(||y(k)||2)2 ≥ 1
L

(
L

∑
k=1
||y(k)||2

)2
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The term ||y(k)||2 is the squared norm of a single column in the M × L
matrix of codes, and is equivalent to taking the squared magnitude of each
sample and summing them together along dimension M. This allows for
the following substitution,

1
L

(
L

∑
k=1
||y(k)||2

)2

=
1
L

(
L

∑
k=1

M

∑
i=1
|x(i)k |

2

)2

Rearranging the sum for M and L,

=
1
L
(

M

∑
i=1

L

∑
k=1
|x(i)k |

2)2

Using the definition of the 2-norm as the sum of absolute squared elements,
to replace the sum across L,

=
1
L
(

M

∑
i=1
||x(i)||2)2

Capocelli’s derivation uses the assumption that each sample as a unit
magnitude, and so the squared norm of each code sequence is L. Taking
the sum of L across M codes gives the following result,

=
1
L
(ML)2 = M2L

From which shows Capocelli’s result,

M

∑
i=1

M

∑
j=1
|〈x(j), x(i)〉|2 ≥ M2L

Modifying the assumption of the norm of the sequence, we can obtain
an equivalent result to Welch.

1
L

(
L

∑
k=1
||y(k)||2

)2

=
1
L

(
M

∑
i=1
||x(i)||2

)2
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The norm of each sequence is now 1, so ||x(i)||2 = 1. Taking the sum across
M, then squaring the result yields,

=
1
L
(M)2 =

M2

L

Finally, this derivation gives the result

M

∑
i=1

M

∑
j=1
|〈x(j), x(i)〉|2 ≥ M2

L
(2.24)

2.4.3 Back to Welch

With a core inequality proven, the inequality in (2.24) can now be substi-
tuted into (2.25). This provides the following inequality,

M(M− 1)c2
max + M ≥ M2

L
(2.25)

This result is no longer dependent on varying sequences, only on pa-
rameters M, L and cmax. This greatly simplifies the inequality, and can be
rearranged for the following result in (2.26).

cmax ≥
1

M− 1

(
M
L
− 1
)

(2.26)

This is the result Welch presents in his correspondence as the bounds
on correlation for codes, without shifts. He extends his proof, postulating
that for non shifted codes, there are M codes to check for correlation. For
periodically shifted codes, the set of codes increases from M to ML, to
account for every periodically shifted version of each code.

For periodic correlation, the correlation is defined as:

cv,λ(τ) =
L−τ

∑
i=1

av
i āλ

i+τ +
τ

∑
i=1

av
i+L−τ āλ

i

c1 = max
v 6=λ

max
0≤τ≤L

|cv,λ(τ)|
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c2 = max
v

max
1≤τ≤L

|cv,v(τ)|

and
cmax = max(c1, c2)

then from earlier in (2.25), comparison of correlation between ML vectors,

ML(ML− 1)c2
max + ML ≥ (ML)2

L
(2.27)

Divide both sides by ML

(ML− 1)c2
max + 1 ≥ ML

L
(2.28)

Simplify right hand fraction, and rearrange

cmax ≥
√

M− 1
ML− 1

(2.29)

This shows the bound for periodic correlation, including relative shifts
between vectors.

For aperiodic sequences, the length L is replaced with the length (2N −
1), to allow for partial overlap between sequences.

cmax ≥
√

M− 1
M(2N − 1)− 1

(2.30)

2.4.4 Discussion of bounds

For sonar systems, pinging is typically done with pulses separated by
silence. The silence between pings means the waveform is non-periodic
over the time interval of comparison. When reflections are processed in
the receiving matched filter, the correlation algorithm compares these non-
periodic waveforms using aperiodic correlation. For sonar systems, the
aperiodic Welch bound (2.30) is applicable.

To understand how the bounds affect requirements, it is useful to see
where the bounds sit for some example parameters. For a set of 2 codes, of
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N 10 100 1000 10000
cmax (dB) -15.6820 -25.9879 -36.0173 -46.0203

Table 2.1: Example parameters for Welch Bound

lengths [10,100,1000, 10000], the following bounds apply in Table 2.1. Here
it can be seen that to meet the bounds for fish to sea floor detection, for
side lobes to be below -40 dB, the code length must be greater than 1000
samples. However for some requirements the code length may need to be
less than 1000 samples, in which case resolution requirements cannot be
met even with an ideal code.

However this limitation applies to codes bound by the Welch bound. An
alternative approach is to loosen the bound in a region around the aligned
detection, to allow for improved side lobe characteristics. This alternative
approach is not bound by the Welch bound, as there is not a single point of
detection, instead there are multiple regions for detection and for bounds.
A modified bound is to be used to determine what code characteristics are
achievable.

2.4.5 Beyond Welch

The Welch bound shows a limit in the error of a matched filter, for the gain
of non-zero lags in autocorrelation and all lags in cross correlation. A looser
definition of detection can provide improvements in these errors, reducing
the error for non-centre autocorrelation. This can be achieved by widening
the detection point at non-zero lag in autocorrelation to a small range of
values centred around zero. This is referred to as the main lobe.

This main lobe can be incorporated into the bound by modifying Equa-
tion (2.27). The left side of this equation represents the sum of worst case
square correlation, for ML vectors in autocorrelation for codes with zero
relative lag, and ML(ML− 1) vectors in non-zero relative lag and in cross
correlation of codes. However with a range of detection, instead of just
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zero lag between offsets, there is a range between ±D samples around
zero with a different worst case correlation of up to cmax,D. For values in
autocorrelation outside the ±D range and for all offsets in cross correlation,
these values can be defined as the error in correlation cmax. This results
in the following inequality (2.31). This inequality is simplified further in
(2.32), by removing ML from both sides and simplifying L on the right side.

ML(ML− 1− 2D)c2
max + ML(2D)c2

max,D + ML ≥ (ML)2

L
(2.31)

ML− (1 + 2D)c2
max + 2Dc2

max,D + 1 ≥ M (2.32)

Rearranging for the side lobe correlation cmax, the modified Welch
bound takes the form of Equation (2.33). Allowing for aperiodic corre-
lation, the bound takes the form of (2.34). Note as the detection range D
goes to zero, the bound takes the form of the original Welch bound. In
this modified bound, the improvements in correlation are not immediately
obvious. The properties are better illustrated as a 3-dimensional map.

cmax ≥

√
M− (1 + 2Dc2

max,D)

ML− (1 + 2D)
(2.33)

Or for aperiodic correlation,

cmax ≥

√
M− (1 + 2Dc2

max,D)

M(2N − 1)− (1 + 2D)
(2.34)

Figure 2.5 displays the values of cmax for various input parameters. Note
the white space is negative infinity dB. Here it can be seen that if the main
lobe is set to a high value, and the lobe size is non-zero, then the correlation
properties can usually be better than if the lobe size is zero.

One case where this does not hold true is if the main lobe worst case
correlation is set below the correlation of side lobes if the main lobe is zero.
For example, in this case if the main lobe is zero the correlation is roughly -
15.5 dB. If the main lobe is set below this value, then points outside the main
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Figure 2.5: Demonstration of various input parameters for the modified Welch bound, for
a sequence of length N=10. Note the empty space in the top right corresponds to negative
infinity - these points are not bounded so can theoretically reach zero correlation in side
lobes.

lobe compensate for the main lobe being below the standard Welch bound,
increasing to above -15 dB. This highlights a limitation of the modified
bound, correlation in the main lobe must be above the standard Welch
bound, to show improvements outside the main lobe.

Another particularly noteworthy characteristic is that for a large enough
lobe size, and if the values are allowed to be high enough, then values out-
side the main lobe can reach negative infinity decibels, or in non-dB scale
have a value of zero. This suggests that given a loose enough definition
of detection, a pair of codes can be designed to not have any error in the
matched filter. In practise, the lobe size is typically constrained to less than
10% of the sequence length, in this figure would be less than 1 sample, and
so is still bound. However the relation suggests interesting properties that
may be useful if interference properties are more heavily weighted than
detection properties in the matched filter.

These modified bounds suggest that better code characteristics can be
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achieved for sonar detection, and provide motivation for Chapter 3 to
produce codes approaching these bound. The next chapter details methods
to produce these codes.



Chapter 3

Generating Codes

Several codes already exist in the domain of sonar detection, and have
been shown to have good performance, as well as simplicity. In particular,
polyphase codes as investigated by Wirth [58] have been shown to display
good properties in side lobes, and can be further improved by modifying
the filter. However the nature of these modifications are only for a spe-
cific class of codes, and are not guaranteed to have good cross correlation
properties as needed for a multiple projector system.

A new set of parameters and a novel approach to detection motivate
a new set of codes to be designed and generated, to achieve even greater
performance.

3.1 Matched Filter code generation

The matched filter produces an output based on the template signal to be
matched, and the received signal to be compared. The filter function is
equivalent to the correlation function, as shown in Equation (3.1). This
equation is dependant on two variables, a and b correlated together, and so
for the problem of optimizing both a and b for correlation properties the
problem is not a convex problem. This makes the problem difficult to solve
directly using existing convex optimization toolboxes.

36
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R[n] =
+∞

∑
i=−∞

a[i]b∗[i + n] (3.1)

Since the problem is non-convex, a different approach must be taken
to find a solution. Iterative methods were observed to improve correlation
properties of two codes, suggesting that improvement can be made. Iter-
ative methods are not as efficient as convex optimization, nor as optimal,
as iterative methods tend to settle towards local minima instead of global
minimum solutions. However, iterative methods do not rely on a problem
being strictly convex, instead requires a function be continuous and ideally
locally convex around a local minima. This allows non-convex functions to
be optimized using these methods [48], and provides a usable option for
optimization of correlation.

The method investigated for this problem was the gradient method.
This iterative method simply requires an error function that is first order
differentiable, and to settle on a solution the error function should have
local minima.

3.1.1 Gradient Method

The gradient method, in particular the Method of Steepest Descent [35], is
an algorithm to iteratively step toward an optimal minimum solution in a
differentiable function, as shown in Equation (3.2).

x(k) = x(k−1) − µ∇F(x), k = 1, 2, ... (3.2)

The objective function describes the error for optimal properties, so that
minimizing the error optimizes the properties. The derivative of this error
is calculated, and the code is shifted in the opposite direction of the error
by a small fraction µ of this gradient. This method depends on the function
being first order differentiable, and locally convex.

This method can be applied to the design of sonar codes, by design-
ing error functions based on the correlation properties of the sequence.
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The equations for correlation are known, and so an analytical first order
derivative can be calculated for the optimization functions, and efficiently
implemented to optimize for the properties. The algorithm can be extended
to optimize for several metrics at once, by calculating multiple gradients,
applying a weighting function to each and including them all in the itera-
tion process. This can be seen in Equation (3.3).

x(k) = x(k−1) − µ(λ1∇F1 + λ2∇F2 + ...), k = 1, 2, ... (3.3)

The algorithm is applied to the peak error of each of the error functions,
such that the points of maximum error are pushed down. In the matched
filter, signal detection involves a detection based on the maximum of this
filter, and the aim for the sonar system is to reduce the number of incorrect
decisions or detections. This reduction in error is achieved by optimizing
for the worst case scenario, by minimization of points of maximal error. By
iteratively finding points of maximum error and minimizing each point,
the peak error can be reduced to a sufficient target value in relatively few
steps. This reduces the worst case error for the function, and so reduces the
properties of worst case error.

Applying the gradient descent algorithm to the properties outlined in
Chapter 2 yields the optimization problem in Equation (3.4). In the matched
filter the properties for detection and interference rejection are based on
the correlation properties of the transmitted code, so the equations for
correlation are incorporated into the objective function as the correlation
function R(l; x, y). The power of the code is also an objective, and so the
scaled magnitude of each sequence is also present in the function as |Ta|
and |Tb|.
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minimize
a,b

max
l



λc1,2 |R(l, Haa, Hbb)|,
λc1,1 |R(l, Haa, Haa)S(l)|,
λc2,2 |R(l, Hbb, Hbb)S(l)|,

λpower|Ta|,
λpower|Tb|,


(3.4)

where:
R(l; x, y) is the cross correlation of lag l between x and y,
S(l) is the scaling function for autocorrelation,
and T is real valued scaling function for the time sequence.

To implement the optimization process, a loop is set up to continually
optimize a code vector describing the code set. The first step in the loop
is to calculate the point of maximum error. The gradient of error for this
point is calculated, as a partial derivative relative to the code vector. The
code vector is then iterated in the negative direction of the error gradient,
to reduce the error. This new code vector is now fed back to the beginning
of the loop, to find the new point of maximal error and repeat the process.

The described process still requires a method to calculate the error for
each property, as well as the gradient of each error. These are detailed in
the following subsections, where derivations of error gradients are defined
for each property to optimize. These gradients are implemented in the
gradient method, to iteratively optimize a set of codes.

3.1.2 Error functions — Autocorrelation

The derivative of the error function for autocorrelation properties is based
off the matched filter detecting a received pulse. The matched filter com-
pares an incoming signal with the transmit pulse, with an output signifying
the likelihood of match. This comparison is done using the cross correlation
algorithm, and for ideal detection the received pulse should be identical
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to the transmit pulse. The detection characteristics are simplified to the
autocorrelation algorithm, as shown in Equation (3.5).

R[n] =
+∞

∑
i=−∞

a[i]a∗[i + n] (3.5)

Ideal detection in the matched filter is typically a delta function, where
detection at zero lag is maximal and all other points are erroneous and
minimised. The error points are traditionally equally penalised, however
with the multiple properties for detection there are multiple regions to
detect with different error levels. This is handled by having two regions
to optimize for autocorrelation, each weighted differently depending on
the target lobe level. A separate penalty is applied to each region, and
a function defined to evaluate this penalty. The first function takes the
maximum error across the main lobe and minimizes to optimize fish to fish
detection, while the second function minimizes the maximum error across
the side lobes to optimize fish to bottom detection.

These two functions differ only on the region which the maximum er-
ror can be found, and on the weightings that each function apply in the
objective function. Once the point of maximum error is found, the point is
optimized according to the error gradient to minimize this error. This error
gradient for autocorrelation is derived below.

For the centre autocorrelation, of 0 offset, the normalised correlation
value should be equal to 1. The error can be analysed for each position of
the code, as elaborated below in the following error derivation, beginning
with Equation (3.6). The error shown below is derived for code a; but is
equivalently applicable to code b.

e0 = a1a∗1 + a2a∗2 + ... + aNa∗N − 1, (3.6)

where N is the length of the code. To simplify the expression, we use a
variable k to represent the correlation calculation for a particular offset, at
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this point for offset 0. Note that the autocorrelation for zero offset is real
valued.

So
e0 = k0 − 1

where
k0 = a1a∗1 + a2a∗2 + ... + aNa∗N

and so,
|eo|2 = (k0 − 1)2

The equation for |e0|2 represents the error at the 0 offset in the code, so
the partial derivative is taken in terms of a and b to find the rate of change
for each point in the code. There are no b terms in the autocorrelation of
a, so the partial derivative in terms of b is simply zero. Continuing the
derivation for a:

∂|e0|2
∂a∗1

= 2(k0 − 1)
∂(k0 − 1)

∂(a∗1)

The partial derivative of (k− 1) is simply a single term, so the equation
simplifies to:

∂|e0|2
∂a∗1

= 2(k0 − 1)a1

The zero offset autocorrelation gradient can be generalised for each
point in the code.

∂|e0|2
∂a∗i

= 2e0ai (3.7a)

∂|e0|2
∂b∗i

= 0 (3.7b)

For non-centre autocorrelation, of offsets not equal to 0, the correlation
at that point should ideally be 0, so non-zero values are treated as error. As
an example, the error at offset j = −1 will be derived first, then generalised.

e−1 = a1a∗2 + a2a∗3 + ... + aN−1a∗N,
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where N is the length of the code. Taking the absolute squared error as the
error function:

|e−1|2 = e−1e∗−1

This cannot simply be squared like with autocorrelation, as the value is not
guaranteed to be real. The derivative of the squared magnitude is

∂|e−1|2
∂a∗1

= e−1
∂e∗−1
∂a∗1

+ e∗−1
∂e−1

∂a∗1

e−1 does not contain any a∗1 terms, so ∂k−1
∂a∗1

= 0 . However the k∗−1 term
contains a single a∗1 term, with a single variable in front. This simplifies the
expression to:

∂|e−1|2
∂a∗1

= e−1a2

Similarly

∂|e−1|2
∂a∗2

= e−1a3 + e∗−1a1

∂|e−1|2
∂a∗3

= e−1a4 + e∗−1a2

By repeating for several ai, it can be observed that the partial gradi-
ent term relates to the relative shift j. This can be seen in (3.8), and the
autocorrelation for non-zero offsets are generalised as:

∂|ej|2

∂a∗i
= ejai−j + e∗j ai+j (3.8)

where an is treated as 0 if the indices i− j or i + j go outside the index range,
i.e. beyond [1, ..., N].

Once regions and corresponding penalties are taken into account, the
subset of the error function becomes (3.9):

∂|ej|2

∂a∗i
=

λMain

(
ejai−j + e∗j ai+j

)
if |j| ≤ lobe size,

λSide

(
ejai−j + e∗j ai+j

)
else

(3.9)



CHAPTER 3. GENERATING CODES 43

3.1.3 Error functions — Cross Correlation

The error function for cross correlation is based on the matched filter re-
ceiving a pulse in one projector that originated from another projector.
Neighbouring projectors use different codes, and so to minimize error the
filter output should be minimized, which for different codes corresponds
to minimizing the cross correlation between codes. Unlike with the auto-
correlation function, the cross correlation is equally minimized for all lags
as all points are equally erroneous.

An additional consideration is the multiple angles of overlap. Repeating
multiple projectors increases angular range, but to prevent blind spots the
ranges of the projectors must overlap. The overlap occurs on both sides
of the projector, and the matched filter output is not symmetric due to the
transducer not being symmetric across angles. This is discussed further in
Section 3.1.4. Because of this asymmetry the codes must be optimized for
cross correlation through multiple transducer functions. The error gradient
for cross correlation is derived below, and is applied to the maximum cross
correlation across codes through all transducer functions applicable.

Cross-correlation is similar to shifted autocorrelation in error gradient,
but is consistent for all offsets. As an example, the error at offset j = −1
will be derived first, then generalised for all offsets.

e−1 = a1b∗2 + a2b∗3 + ... + aN−1b∗N,

where N is the length of each code.

|e−1|2 = e−1e∗−1

Firstly looking at the partial derivative with respect to a∗1 , using the product
rule for derivatives:

∂|e−1|2
∂a∗1

= e−1
∂e∗−1
∂a∗1

+ e∗−1
∂e−1

∂a∗1
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e−1 contains no a∗1 terms, and so ∂e−1
∂a∗1

= 0. However the e∗−1 term contains a
single a∗1 term, multiplied with a single term b2. This greatly simplifies the
expression to:

∂|e−1|2
∂a∗1

= e−1b2

Similarly

∂|e−1|2
∂a∗2

= e−1b3

∂|e−1|2
∂a∗i

= e−1bi+1

By repeating for several ai, it can be observed that the partial gradient term
relates to the relative shift j. Similar steps can be used to derive for the
partial derivative in terms of b. This is generalised as:

∂|ej|2

∂a∗i
= ejbi−j (3.10a)

∂|ej|2

∂b∗i
= e∗j ai+j (3.10b)

where a and b are treated as 0 if the indices i − j or i + j go outside the
index range of a, beyond [1,...,N].

3.1.4 Transducer Characteristics

A transducer is a process or device that converts energy from one form to
another [56]. In sonar, these are incorporated into projectors to convert an
electrical signal into a pressure wave, to transmit in the water for sonar
detection. The transmitted pressure wave is reflected back by objects, and
picked up by a receiving hydrophone, a specific type of transducer, to
convert the pressure wave back into an electrical signal for processing.
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For this reason transducers are necessary in a sonar system, however they
have limitations. Most significantly, transducers do not perfectly transfer a
signal; certain frequencies pass with less loss than others. Careful design of
transducers can reduce this effect, however there will still be a non-trivial
amount of signal distortion. This affects the magnitude and phase of the
resulting signal, deviating from the properties of the designed sonar code.

To achieve the properties needed for accurate sonar, these transducer
characteristics must be taken into account. These characteristics can be
accurately measured, and so provide an opportunity to incorporate these
in the sonar code. The transducer characteristics can be described by a
frequency response, which varies depending on the transmit angle, and
the receive angle. An example of these characteristics can be observed in
Figure 3.1, showing the frequency response at various angles for a particular
transducer. For a transmitter receiver pair, the signals are expected to be
mostly along the main beam axis, or 0 angle, affected by the characteristics
shown in Figure 3.2. For any cross talk, the angle for the transfer functions
are expected to be at the edges.

The characteristics of the transducer can now be incorporated into the
optimization of sonar codes themselves, to produce an optimal set of codes
that when passed through a transducer will produce properties as per the
design. This addition into the optimization requires several adjustments,
which are detailed in the next section.

Derivation and implementation

The transducer characteristics can be represented by convolving the im-
pulse response of the transmit and receiver transducers with each code.
This convolution with an impulse response can be represented with the
convolution matrix, in Equation (3.11). Here, H is an (N + M − 1)×N
matrix and a is a column vector. N is the length of the code before passing
through the transducer, and M is the length of the impulse response of the
transducer.



CHAPTER 3. GENERATING CODES 46

-30

-30

-3
0

-25

-25

-2
5

-25 -2
0

-20

-2
0

-20

-15

-1
5

-15

-15

-1
5

-15

-10

-10
-10

-1
0

-10

-5

-5

-5

-5

-3

-3

-3

-2

-2

-2

-1-1

1.5 2 2.5 3
Frequency #105

-60

-40

-20

0

20

40

60
A

ng
le

 (
D

eg
re

es
)

Figure 3.1: Transducer characteristics of a tested transmitter, affecting the gain of frequen-
cies as they pass through. Note the contour plot shows the amplitude normalized by the
peak gain, in dB.
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Figure 3.2: Transducer characteristics of a tested transmitter, taking a slice along the main
beam axis (θ = 0). Left shows the normalized magnitude in dB against frequency, right
shows the phase delay in radians.
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at = h ∗ a = Ha (3.11)

H =



hM 0 0 0 0 · · · 0 0
hM−1 hM 0 0 0 · · · 0 0

. . . . . . . . . . . . . . . . . . ...
...

0 . . . 0 h1 h2 . . . hM−1 hM

0 . . . 0 0 h1 . . . hM−2 hM−1
...

...
...

... . . . . . . . . . . . .

0 . . . . . . . . . 0 · · · h1 h2

0 . . . . . . . . . 0 · · · 0 h1


Extending this to the derivation of the cross-correlation, we can use the

chain rule to simplify the derivation. The derivative of at with respect to a
is simply the H matrix itself.

Cross-correlation

For cross-correlation, kt,−1 can be defined as:

e−1 = at,1b∗t,2 + at,2b∗t,3 + ... + at,N−1b∗t,N = kt,−1,

where N is the length of each code. kt,−1 can otherwise be represented as

kt,−1 = aT
t .b∗t,(−1),

where b∗t,(−1) is offset by the relative shift between at and bt in the cross
correlation algorithm, in this case by −1. b∗t,(−1) is zero padded such that
the length of b∗t,(−1) remains N + M− 1. In this case several zero samples
are appended to the end.

The magnitude squared error is given by:

|e−1|2 = kt,−1k∗t,−1
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Firstly looking at the partial derivative with respect to a∗t,1 :

∂|e−1|2
∂a∗1

= kt,−1
∂k∗t,−1

∂a∗1
+ k∗t,−1

∂kt,−1

∂a∗1

Using the H matrix from Equation (3.11), as well as the alternative
representation of kt,−1, we can derive the partial derivative of k∗t,−1 with
respect to a∗1 . Since bt,(−1) contains no a∗1 terms, it can be treated as constant
with respect to a, so the next part is to find the derivative of at with respect
to a. Observing (3.11), each row of the H matrix affects a different value
in at, and each column corresponds to a value in a affecting the at vector.
To find the derivative of at with respect to a, that is to find how at changes
with a small change in each value in a, we can simply look at each column
for each partial derivative of an. The derivation simplifies to:

∂a∗t
∂a∗1

= H(:, 1)∗

∂k∗t,−1

∂a∗1
= (H(:, 1)∗)>.b∗t,(−1)

∂k∗t,−1

∂a∗1
= (H(:, 1))Hb∗t,(−1)

where bt,(−1) is a N + M− 1 by 1 vector.
Extended to the error derivative:

∂|e−1|2
∂a∗1

= kt,−1(H(:, 1))Hbt,(−1)

By repeating for several ai, it can be observed that the partial gradient term
relates to the index i, as shown below.

∂|e−1|2
∂a∗2

= kt,−1(H(:, 2))Hbt,(−1)

∂|e−1|2
∂a∗i

= kt,−1(H(:, i))Hbt,(−1)
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A similar approach is taken for the relative shift between signals at and
bt, the relative shift represented by j. This can be generalised as:

∂|ej|2

∂a∗i
= ej(H(:, i))Hbt,(j) (3.12a)

∂|ej|2

∂b∗i
= e∗j (H(:, i))Hat,(−j) (3.12b)

where a and b are treated as 0 if the indices go outside the range of [1, ..., N].

Autocorrelation

A similar derivation applies for autocorrelation:
For non-zero shifts,

ej = at ∗ at,(j)

e−1 = at,1a∗t,2 + at,2a∗t,3 + ... + at,N−1a∗t,N

e−1 = k−1

|e−1|2 = k−1k∗−1

∂|e−1|2
∂a∗1

= k−1
∂k∗−1
∂a∗1

+ k∗−1
∂k−1

∂a∗1
Now,

∂k∗−1
∂a∗1

= H∗(1, :)a∗t,(−1)

and
k∗−1

∂k−1

∂a∗1
= H(1, :)at,(−1)

so
∂|e−1|2

∂a∗1
= k−1H∗(1, :)a∗t,(−1) + k∗−1H(1, :)at,(−1)

∂|e−1|2
∂a∗2

= k−1H∗(2, :)a∗t,(−1) + k∗−1H(2, :)at,(−1)

This can be generalized for any shift j as:
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∂|ej|2

∂a∗1
= k jH∗(i, :)a∗t,(j) + k∗j H(i, :)at,(j)

Similar for e0, replacing k with k− 1, gives

∂|e0|2
∂a∗i

= 2(k0 − 1)H∗(i, :)a∗t,(j) (3.13a)

∂|ej|2

∂a∗i
= ejH∗(i, :)a∗t,(j) + e∗j H(i, :)at,(j) (3.13b)

3.1.5 Error functions — Power

As discussed earlier in Section 2.2, the sonar system is limited in the power
of codes that can be transmitted, due to limitations in the power supply
and transformer. To avoid distortion, the code should be ramped up at
the beginning to limit power draw, and ramped down to minimize trans-
former ringing after transmitting. The exact shape to optimize the pulse
is not known, however at this stage the pulse is shaped using a piecewise
sinusoidal ramp up then ramp down, as a first approximation.

It is useful to develop methods to shape the signal pulse using a general
function, so future codes can be developed with a different shape by simply
changing an input parameter. Algorithms to optimize the shape of these
pulses are detailed in the following sections.

Power ramping using Peak-to-Average Power Ratio

The peak-to-average power ratio (PAPR) is a ratio that measures the peak
deviation of the magnitude of a sample from the average value of all
samples in a sequence or signal [43]. This can be observed in the equation
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below.

PAPR =

(Ppeak

Pavg

)
= max

1≤i≤len(x)

(
Pi

Pavg

)
where,

Ppeak = max
1≤i≤len(x)

(x∗i xi)

Pi = x∗i xi

Pavg = xHx

and x is the sequence or signal to measure.
PAPR is useful as it provides a metric for the worst case error in power of

a signal. However this assumes that every point in the signal is targeted to
have the average power. For the case of pulse shaping, some modifications
are needed. One simple modification is to take the difference of the power
ratio relative to a fixed scaling function, then take the peak error from this.
This scaling power ratio can be seen in Figure 3.14.

ei,p2a =
x∗i xi

xHx
− gi, (3.14)

where gi is the ramp function.
One limitation with this function is that this error function directly

optimizes the code. The purpose of the transducer ramping is to control
the signal after passing through a transducer, rather than the code itself.
To control the signal, the characteristics of transducer must be taken into
account, so that the signal is optimized for the target shape.

Another major limitation using the PAPR ratio in the error function is
that the error will scale with the ratio. For a non-constant g ramp function,
this will result in the value peak error scaling with the magnitude of the
ramp function. An improved implementation provides a constant envelope
of error, such that the scaled error is also a scaled constant envelope. This
can be implemented using a difference equation.
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Transducer ramping using difference equation

To implement a constant envelope of error, a difference equation is used
between the magnitude of each point in the code, and a ramping function
scaled by the norm of the code. This is shown in Equation 3.15.

ej,p2a = a∗t,jat,j − a∗t at
1

Nt
gr,j (3.15)

where at is a column vector for the signal of a code after passing through
the transducer. The point j in the signal is optimized to match the shape of
the ramp function.

To optimize the code based on this function, the error function is defined
as e2

j,p2a, and the gradient of this function is used in the gradient descent
method. The gradient is calculated by the following derivation. The code a
passes through the transducer, described using the convolution matrix for
the impulse response of the transducer, H.

at = Ha

a∗t = (Ha)∗ = a∗H∗

ej,p2a = a∗t,jat,j − a∗t at
1

Nt
gr,j

∂e2
j,p2a

∂a∗1
= 2ej,p2a

∂ej,p2a

∂a∗1
∂ej,p2a

∂a∗1
= H(j, :)∗at,j −H(j, :)∗at

1
Nt

gr,j

From these equations, both the error and the gradient of the error can be
calculated, so the gradient of the squared error can be calculated and used
in optimizing the codes.

The optimization strategy can be implemented in a similar manner to
other strategies in the optimization, minimization of peak error. However
in some cases this approach was found to have limitations. The impulse
response of the transducer was found to concentrate a large proportion
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Figure 3.3: Optimization of two signals based on a ramping function, minimizing the
positive peak magnitude of samples.

of the energy in the beginning of the impulse response. This resulted in
a relatively large error at the end of the code, as the tail of the impulse
response for the transducer would pull the signal down to zero, resulting in
the maximum error being consistently located at the end of the code. This
resulted in the optimization only optimizing the end section of the code.

An alternative approach is to optimize only the positive peak magnitude
of samples in the code, which would ignore low values, such as the tail of
the impulse response. An example of a signal optimized with this approach
can be seen in Figure 3.3. The positive peak magnitudes of each signal are
optimized for the ramp function shape, however the lower points are not.
To maximize power, the amplitude should be as close to the ramp function
as possible, including the negative peaks.

Another approach is to maximize the sum of the squared errors. This is
effectively optimizing for the `2 norm of the signal, and allows for optimiz-
ing multiple points at once, but requires calculating and implementing the
error gradient for each point in the signal in each iteration. The result of
this optimization can be seen below in Figure 3.4.
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Figure 3.4: Optimization of two signals based on a ramping function, minimizing the `2

norm.

The signal follows the ramp function, and both positive and negative
peaks are close to the target shape. The signal is still pulled down to zero
at the end of the sequence, however it does not significantly affect the opti-
mization of the other sections in the signal. This method of optimization,
minimizing the `2 norm, was found to be the most effective for optimizing
the ramping of the signal, and so is implemented in the optimization.

The gradient functions presented in this section provide a method to
generate codes with optimal sonar properties in a matched filtered sonar
system. An implementation of the optimization is found in Appendix A.1.2,
and a method to efficiently use this optimizer is found in Appendix A.1.1.
This method of generating codes assumes the sonar system can transmit
code samples near perfectly, after taking into consideration limitations such
as power scaling and transducer characteristics. However from Section
2.3 it was found that a digital transmitter complicates the accurate trans-
mission of these codes, which if uncompensated will cause changes to the
code’s properties in the sonar system. To mitigate this, an algorithm was
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developed to optimally map a sequence on to the digital transmitter. This
is explored in the next section, Section 3.2.

3.2 Digital Transmitter

Limitations of the digital transmitter have been explored earlier in Section
2.3, where the most significant problem was due to the non-regular time
characteristics of the cycle lengths. To transmit a code, the digital trans-
mitter produces full cycles at roughly the centre frequency, then shortens
or lengthens to achieve phase characteristics at the sample points. The
amplitude is also adjusted to meet amplitude requirements for a sample.

The main problem is in the phase characteristics. By changing the length
of one cycle, every cycle afterwards is affected. This suggests that each
sample point should be optimized in order of the time of transmitting.
However, if cycles are not carefully designed then subsequent sample
points may be aligned with the beginning or end of a cycle, such that
changing the length of the cycle has very little effect on the phase of the
sample.

3.2.1 Mapping / Optimization Details

Digital Transmitter estimation

Before optimization can begin, it must be possible to observe the output of
the digital transmitter when driven by a set of control coefficients. There
are two properties to observe in the baseband signal after downmixing
the output of the digital transmitter. These properties are the wrapped
phase and the amplitude of samples in the signal. These properties need to
be accurately estimated, to determine how the output affects the matched
filter properties, which in turn indicates how to improve the properties.

Standard techniques simulate the transmitting process in the passband,
then downmix the signal. For the digital transmitter, this would involve
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mapping the coefficients to an upsampled signal, then downmix the signal
and filter it to produce a base band equivalent signal for comparison in
properties. It was found that the upsampled signal used significant memory
and took significant time to run, even for short sequences. This was because
the passband signal was upsampled by as much as 500 in some cases, so
relative to the base band signal the sequence was extremely long. To
effectively use this in later optimizations this simulated digital transmitter
would need to be improved.

A prior designed algorithm, which was provided for the project, had
aimed to solve this problem. The algorithm was designed to process the
control coefficients as a frequency per cycle, then spline between the non-
regular intervals of cycles to get sample information at the sampling rate.
The algorithm is as follows.

1. Build up sequence of time lengths of cycles
2. Build timing vector based on cycle points
3. Invert time lengths to get frequency vector of each cycle
4. Spline between frequency vector points based on the timing vector
5. Spline between amplitudes of cycles based on the timing vector
6. Integrate the splined frequency to obtain phase, and combine with

splined amplitudes to get sample information.

This pre-designed process provides an option to quickly build a set
of frequencies of the signal, and integrating provides phase information.
However, upon testing the algorithm it was found to not provide accurate
phase information, especially around edges of the sequence. This was likely
due to the combination of the spline operation and integrating operation.
Splines are a tool used for interpolation, and because of this there can be
a small error associated with the interpolated result and the true result.
This error, when integrated, can result in large errors later in the sequence.
Phase information is the important information to extract from the signal,
as it is used in the baseband sequence which in turn is fed into the matched
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Figure 3.5: Procedure to estimate samples from a Digital Transmitter, at a low computa-
tional cost.

filter. To accurately observe the matched filter from the digitally transmited
sequence, a more accurate estimation is necessary.

An alternate approach was developed to target accuracy in phase and
amplitude information of the baseband sequence from a digital transmitter.
For phase estimation, the phase was observed at a sample point as the
ratio of cycle start to sample point, relative to the cycle start and cycle
end points, as illustrated in Figure 3.5. The digital transmitted transmits
whole cycle sinusoidal waveforms. The phase of a sinusoidal waveform
changes linearly relative to time, and so a linear ratio of time from cycle
start to sample point relative to the cycle length gives an indication of the
phase. Converting this ratio relative to cycle length to a ratio relative to 2π

provides phase information for a sinusoidal waveform.
Using the cycle ratio, the phase information can be extracted. This

approach avoids the upsampling operation, which reduces memory usage
and reduces the data that needs to be processed, significantly improving
the processing time. Since the process skips the signal construction at the
pass band, there is also no need for additional processing such as down
mixing or filtering.

Amplitude in the digital transmitter is based on the amplitude in the
input sequence. Earlier derivation in Section 2.3 showed that when the
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digital transmitter sequence is filtered for the first harmonic, the AMP
coefficient maps to amplitude according to Equation (3.16).

amplitude = sin(
π

2
AMP

AMPmax
) (3.16)

where 0 ≤ AMP ≤ AMPmax.

For estimation, the amplitude coefficient was taken from a single cycle
that overlapped the sample point of interest. This was then converted
to an amplitude as per (3.16). This process is very efficient as the cycle
that overlaps a sample point is already identified in the phase estimation,
so the only additional processing is to parse a coefficient through a sine
function. A disadvantage of this amplitude estimation is that it only takes
the overlapping cycle into account. If there are several cycles per sample
period then the cycles are likely to have an effect on the amplitude, espe-
cially if filtered. Empirical tests showed that these effects did not produce
significant errors.

To implement the digital transmitter estimation system, a script was
produced that tracked the baseband sample points and the end points of
each cycle for a given set of coefficients. These variables listed baseband
sample points relative to the upsampled rate, and the cycle end points also
relative to the upsampled rate. Figure 3.5 is labelled (a) to (c) to indicate
order of the algorithm, to determine phase properties. Amplitude was then
calculated based on the cycle overlapping the sample point. The algorithm
to determine digital transmitter baseband properties is as follows:

(a) Sample point identified, intercepting the current cycle.
(b) Previously completed cycle identified to reference the current cycle

start, and cycle length of the current cycle identified.
(c) Difference between cycle start and sample point measured, taken as

ratio relative to current cycle length.

The cycle’s ratio is converted from relative to cycle length to relative to
2π, to obtain phase, and the amplitude is taken as the amplitude coefficient
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of the current cycle passed through the function earlier in Equation (3.16).
This tool was found to be fast, as well as accurate. For comparison, a
short random sequence was generated, upsampled then downmixed, then
compared to the digital transmitter equivalent sequence. These were found
to be equivalent in phase and amplitude.

This efficient tool can now be incorporated into other algorithms as an
efficient method to check the digital transmitter output, and to determine
error between output and a target input for the mapping.

Mapping Options

Estimation of the digital transmitter provides a powerful tool for optimiza-
tion of codes on this transmitter. A mapping approach was used to convert
codes from the matched filtered optimization to a set of control coefficients
for the digital transmitter. Initially a mapping seems trivial, however the
non-linear nature of the digital transmitter adds several complications.

Direct mapping onto the digital transmitter is not possible, due to
the non-fixed nature of the transmitted cycles. Cycles are not aligned
with the sampling rate, and so it is not simple to determine which cycle
affects a particular sample point. For long cycles spanning multiple sample
points, a particular cycle could control the properties of these sample points,
and as they are all controlled by a single cycle the sample points will be
fully coupled. This limits what baseband properties these sample points
can attain. The length of cycles also has an integrating effect on phase.
Increasing the length of one cycle causes a delay in every subsequent cycle,
which will affect the phase of every subsequent cycle. This cumulative
effect must be taken into account when designing a sequence on the digital
transmitter.

It is difficult to justify direct optimization of the control coefficients
based on peak error. As discussed with direct mapping, a cycle can span
several sample points which causes these sample points to be fully coupled,
limiting what baseband phase and amplitude properties can be obtained.
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This spanning of several sample points introduces an error that has a fixed
minimum range.

In peak optimization, if other points of error are optimized below half
the range, then the optimization algorithm will always target one of the
extremes of these fixed points of error. As one point is optimized, the
other worsens and vice versa. This causes an oscillation in the optimization
algorithm, preventing further optimization.

Take an example of a single cycle spanning two samples. The two points
will be fully coupled, so a change in phase of one sample results in the
same change in phase in the other sample. If the absolute error of the first
point is optimized for phase, and the error in phase for the second point
is the negative of the first, the error in the second sample will increase
as the first sample’s error decreases. If the second point is now targeted
for optimization, the reverse happens with the error increasing in the first
point. These points will oscillate in optimization until the absolute error is
equal for both points, after which the optimization will target either point
without noticeable improvement. This locks the algorithm, preventing any
other point of lower peak error from being optimized.

To overcome these limitations, a sliding window optimization was
used to map phase and amplitude to control coefficients. This provides
the advantages of optimization, while overcoming any potential points
of oscillation or fixed errors. This also mitigates the integrating effect of
phase. In peak minimization optimization, optimization effort may be
spent on later parts of the sequence, and these points could then be shifted
by changing a cycle early in the sequence, undoing the optimization from
earlier iterations. Taking only a subset of samples, and optimizing in order
of transmitting prevents this, as once a point is optimized later samples
will not affect its properties. This process improves efficiency, optimizing
only when a sample point is unlikely to be affected by others.
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Figure 3.6: Example of a walk function used in optimization of mapping a sequence onto
the digital transmitter.

Mapping Optimization Algorithm

The mapping optimization begins by setting up a vector of phase control
coefficients at the centre frequency, and a vector of zero phase amplitude
coefficients. A walk function is set up to loop over a small window a fixed
number of times, then slide the window along by one sample and repeat
the loop. This walk function is shown in Figure 3.6. The walk function
determines which point in the target sequence should be optimized at the
iteration step.

For each iteration step, the cycle containing the sample point is identi-
fied, and phase error calculated for the point. The error gradient is calcu-
lated below.

The relation between cycle ratio and phase ratio is shown in (3.17). This
ratio is rearranged for HPW in (3.18), to indicate what the target HPW
should be to obtain the correct phase. The phase is padded by a cycle, 2π,
to ensure stability in the resulting gradient function. Note that although
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the required coefficient for a particular sample is known from this result, it
is unknown how neighbouring samples will affect it at this stage, hence the
use of an optimization instead of a mapping. The HPW control coefficients
control all cycles before and including the current cycle, and so the required
change is taken in (3.19) as the amount m must change to meet phase
characteristics. This is taken as the target HPW minus the current HPW.
The equation is factorised in (3.20) and simplified to provide the final error
gradient in (3.21).

m
HPW

=
2π + ∆φ

2π
(3.17)

HPW =
2π

2π + ∆φ
m (3.18)

∆HPW =
2π

2π + ∆φ
m−m (3.19)

=

(
2π

2π + ∆φ
− 1
)

m (3.20)

∆HPW =
−∆φ

2π + ∆φ
m (3.21)

where
m is the length from the start of a cycle to the sample point,
∆φ is the phase error between the phase of the digitally transmitted signal
at the sample point and the phase of the target sequence at the sample
point, and
HPW is the half-pulse width, half the length of a particular cycle in the
digital transmitter, and is the control coefficient for phase.

The error gradient can now be used to optimize a set of cycles for
properties. A set of cycles governing the properties of each sample point
are obtained, then optimized using the gradient. The cycles are identified as
every complete cycle that is after the preceding sample point and before the
current sample point. These cycles are all shifted by a small perturbation of



CHAPTER 3. GENERATING CODES 63

the error gradient, to optimize towards the correct phase. The amplitude
of these same cycles are also set as a direct mapping, according to the
previous equation describing the amplitude control coefficient (3.16). The
inverse of this amplitude function is used to directly map the AMP control
coefficients.

The walk function iterates across each sample point, optimizing the
points. If the error step is less than a single upsampled transmit sample that
can be generated by the digital transmitter, then the walk function skips the
optimization step. The upsampled transmit rate of the digital transmitter
can only transmit whole samples, so any fraction of a sample will be lost
through rounding. Any further optimization would be undone through
rounding, so for efficiency points are skipped when they are optimized to
within a single sample.

This algorithm iterates through the entire sequence, optimizing each
sample point to map phase and amplitude optimally. An implementation
of this optimization can be found in Appendix A.1.3. The process maps
as accurately as the algorithm allows, however it has been noted that
few cases the mapping is not perfect, producing occasional errors in the
sequence that become evident in the resulting matched filter characteristics.
To overcome these imperfections, a mis-matched filter is designed to correct
the properties.

3.3 Mis-Matched Filter

The mis-matched filter is very similar to the matched filter, but modifies
the comparison vector to adjust the filter characteristics. It is notably useful
because the filter itself is not limited by the constraints of transmitting,
as the filter is implemented digitally. This provides the opportunity for
significant improvement in the filter.

The most significant gain in using the mis-matched filter is to filter for
the digital transmitter system. The output signal from the digital transmit-
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ter has been shown to closely match the desired output, but error still exists
that results in the designed matched filter properties being not optimal. Op-
timizing the mis-matched filter for the output of the digitally transmitted
sonar codes allows for the error to be eliminated, at the cost of additional
optimization and complexity in storing the filter coefficients.

Producing these codes is easier than for a matched filter, as the set of
sonar codes is static. Optimizing a filter against static codes is a convex
problem, unlike for matched filters, and so the use of a mis-matched filter
allows for a wider set of tools to use for optimization.

3.3.1 Semi-Definite Programming Tools

The use of static codes to optimize a mis-matched filter simplifies the prob-
lem to a vector variable cross correlated with constant vectors. This problem
is shown in Equation (3.22). In implementation, A would typically include
the 0 angle pulse to detect, and several extreme angles for interfering pulses
between 60 and 70 degrees. The result of multiplying the concatenated
correlation matrix with the control coefficients will be the matched filter
plots concatenated one after another without overlap. This provides a
simple output to quickly locate the maximum.

min ||Ax− T1|2T2|∞ (3.22)

where,
x is a N by 1 vector for filter coefficients to optimize,
A11 is (2N − 1) by N correlation matrix for a single correlation, which is
used in A,
A is made up of several correlation matrices Aij concatenated together, one
for each expected received pulse.
T1 is the template for ideal correlation, in detection correlation this is a
kronecker delta function and for rejection correlation it is 0, and
T2 is the template scaling function, for scaling different regions for ideal
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correlation. For detection correlation this controls the ratio of main lobe to
side lobe peaks, and for rejection correlation this is flat to evenly minimize
all cross correlation.

This problem is a strictly convex problem, it contains a linear function
that is applied through an absolute square function, and multiplied by a
constant function. This function, in standard form, can now be solved for
filter coefficients using semi-definite programming (SDP) tools.

CVX is a toolbox that enables convex optimization of convex problems
presented in standard form [18, 19]. The standard form implies specific
rules, which once met allows for a useful tool that can quickly find an
optimal solution to a problem. Using the toolbox, solving convex problems
is relatively simple as it requires only the objective function as well as
defined parameters. Implementation of the solution to the mis-matched
filter using CVX can be found in Appendix A.1.4.

CVX provides a simple yet powerful method for solving convex prob-
lems, especially useful for finding optimal filter coefficients for the mis-
matched filter. However there are some limitations in using CVX for sonar.
In particular, the memory usage for solving complex convex functions is
significant. The correlation matrices for each code are already of significant
size, in some cases of the order of 5000 by 10000 and to use them in the
CVX toolbox the real and imaginary parts are separated in memory, as part
of the operation. This doubles the number of matrices, and as there is a
squaring operation the size is doubled yet again. For large code lengths,
this quickly becomes a memory intensive solution.

When generating codes for sonar, it was found that for most cases CVX
was able to be used, but for the longest length codes memory limitations
were reached. Because of this, another solution was needed, one that did
not have the same memory limitations as CVX or other SDP tools.
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3.3.2 Gradient Descent Method for Mis-Matched Filter

Gradient descent is a memory efficient algorithm, that only requires search-
ing for maximal points and an instantaneous gradient at the point of error to
step. It is not as solution efficient as CVX, however the reduced complexity
makes it ideal for longer length codes since it requires less computational
resources to solve.

Implementation of the gradient descent method for mis-matched filters
is similar for matched filters, however when optimizing the transmit codes
are kept static and not optimized, and the transducer characteristics do
not need to be included as they are not present in the digital system. An
optimization implementing the gradient descent method for mis-matched
filters is included in Appendix A.1.5.

The series of methods from this chapter detail solutions for generating
codes that target several requirements for sonar, in matched filtering, dig-
ital transmitting and in mis-matched filtering. To ensure the codes meet
requirements, and that they are generated as per design, several codes are
generated and evaluated for performance in Chapter 4.



Chapter 4

Performance Considerations

Methods have been developed in Chpater 3 to optimize codes for various
code properties, targeting real world applications in sonar. These methods
aim to generate a set of optimal codes, however there are various parame-
ters driving the optimization which vary the balance of output properties.
For implementation, it is useful to understand the relationship between
input parameters and output properties, so that codes can be designed
for specific properties. It is also important to verify the codes meet the
designed properties, to develop a robust system.

This chapter observes generated codes and their properties, for rela-
tionships between the input and output of the optimization. An example
set of parameters are used to produce a set of codes, to ensure codes meet
requirements for an example sonar system. Furthermore, comparisons are
made to existing codes, as well as overall bounds for codes, to investigate
the effectiveness of generated codes and to see how close codes are to an
optimal solution.

4.1 Tradeoffs

The optimization for sonar codes minimizes the error for each property
specified by the objective function. This minimization is dependant on the

67
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input parameters, which are specified before optimization begins. Perturb-
ing the various input parameters showed several changes to the output
properties, suggesting relationships between input and output parameters.
It is useful to investigate these relationships, as they provide information
that can be used to achieve specific output properties once optimized,
instead of reaching arbitrary minimization for a particular set of codes.

Multiple parameters have a significant effect on the output code and
its properties. The weighting factors for optimization is one set of these
parameters. The weighting factors affect the significance of error for each
property, and so affects how each property is prioritized in optimization.
The higher the priority, the lower the error relative to other properties.
In practise this prioritization typically is at the cost of other properties
controlled by the weighting, and so weighting one property higher causes
that property to improve, but other properties to deteriorate in terms of
error. It is expected that this trade-off between weightings is linear, as the
weightings are combined in the objective function linearly.

Another significant parameter is code length. A lower settling point has
been observed for longer codes, similar to how standard codes are limited
by the Welch bound. This suggests a similar bound may exist for these
multi-detection codes. For implementation, a shorter code is ideal as it
allows for a shorter burst between pings and also is easier to store in the
system. The relation between side lobe and code length provides useful
information on code lengths for desired performance in a sonar system.

The size of the main lobe in autocorrelation also has a significant effect
on code properties. The main lobe corresponds to the range for fish to
fish resolution occurs, where detection can occur only if there is a small
difference in the power of reflected signals. It was found through empirical
testing that the size of this region affected side lobes significantly, and so
is useful to know the relationship for achieving specific requirements. An
increase in main lobe size would correspond to a reduced resolution in
time for resolving differing power reflections while being able to resolve
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signals of a larger difference in power.
From the above, the input parameters for the code are primarily based

on the following parameters. Included are the default values per parameter,
used in each of the subsequent subsections for testing and displaying the
relation between parameters.

• Code Length = 500

• Weighting factors [Sidelobe, Power, Main Lobe] = [1 0 10
−40+3

20 ]

• Main Lobe Size = 10

For sake of completion, the following also affect the optimization to a
lesser extent:

• Power scaling function

• Iteration step size

• Transducer Transfer Function

• Code start points

4.1.1 Code Length

The length of the code for sonar systems determines the duration of a signal.
Signals in turn are limited by how long they can transmit in a sonar system.
If the signals are too long, the reflections interfere with reception. Because
of this, a longer code limits the rate that a sonar system can ping, and so
limits what ranges can be detected as well as how often information is
updated. For ideal systems, the ping rate would be high, and so the code
length should be short.

Conversely, the Welch bound has indicated that longer code lengths
provide better bounds on correlation, suggesting that for better properties
a longer code should be used. This contrast in requirements and in bounds
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Figure 4.1: Relationship between length of code vs side lobe level in the matched filter.

leaves strict limitations on what can be implemented in a sonar system.
Using an alternative detection system, with multi-level detection, separates
the codes from the Welch bound, however there are still limitations on what
code lengths can be used. It has been observed that longer code lengths
still improve side lobe performance in a multi-level detection code, and so
it is worthwhile investigating this relationship.

Empirical testing has shown that for longer code lengths, a lower side
lobe level can be achieved, as shown in Figure 4.1. Here it can be seen that
the codes follow an approximately inverse proportional relation, similar to
the Welch bound. The codes were tested for a range of code lengths, and for
a fixed main lobe size of 9 samples wide, from sample -4 to +4 relative to the
central peak. The weighting factors applied were for weighting the main
lobe and side lobe as standard, and zero weighting on power characteristics
to observe the bounds on the code length.

From this relationship it can be seen that similar constraints apply to
the multi-level detection codes as for standard codes for implementation in
a sonar system. For the target of -40 dB for fish to bottom detection, it can
be seen it can be achieved in this case for codes of length 200 samples. For
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cases of shorter code length, the required side lobe characteristics cannot
be met with the default parameters by varying only code length. Another
approach must be taken to improve the side lobe properties.

4.1.2 Weighting

Weightings in optimization are arbitrary prioritizations in an objective
function. The weightings prioritize the amount a function or sub-function
should be optimized relative to other functions. Because of this arbitrary
prioritization, it can be difficult to observe the effect a weighting has on the
optimization other than improving or worsening a particular property. In
some cases this is acceptable, as a simple attempt at a set of weightings can
provide a good result which can then be adjusted to adjust the error of each
property. In the case of sonar, there are a few points that can be noted to
improve this weighting.

The weighting for side lobe level is the fixed point for the weightings.
For design, the side lobe levels are targeted for -40 dB, to resolve fish from
the sea floor. This fixed point removes some of the ambiguity with the
relative weightings, allowing for a more quantitative look at the effect
of other weightings. Conversely, weighting of the main lobe is based on
the Rayleigh Criterion, requiring points outside the detection point to be
below -3 dB. This is another fixed point for weighing. The relative ratio
between the main lobe and side lobe is -3 dB : -40 dB, and so to optimize
to these levels the functions should be prioritized based on this ratio. The
weightings are applied as -3 dB for side lobes and -40 dB for the main lobe,
to have a high weighing for side lobes and a lower weighting for the main
lobe.

The weighting for power shaping is not based on a fixed weighting
relative to the weightings for the side lobe level and the main lobe level. The
weighing for power shaping controls the optimization of the magnitude of
the code to match a target pulse shape, and this optimization is not related
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(b) Weighting=101
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(c) Weighting=102
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Figure 4.2: Relationship between power weighting in optimization vs power shaping.

directly related to other optimizations. This allows the power shaping
weighting to be varied separately.

Figure 4.2 shows the relation between the power weighting factor and
shaping of the magnitude of samples. For weightings less than 100, the
magnitude of the code was not significantly shaped. By increasing the
power weighing, the magnitude of samples in the code deviate less from
the target power shape. This suggests that a code can be shaped to a
desired level of deviation from a target pulse shape, by adjusting the power
weighting in design.
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Figure 4.3: Relationship between power weighting in optimization vs side lobe level in
matched filter.

One point to note is the change in deviation of magnitudes to the target
shape, along the sequence. For relatively low values in the pulse shape, the
deviation in magnitude is higher, and for relatively high values in pulse
shape, the deviation is less. This suggests the power weighting is applied
more heavily on higher values in the shape than lower. Although variable
deviation is not ideal, the results show that the magnitude is still well
shaped to a target shape, and so the variation is considered negligible.

As power weighting increases, the relative weighting for matched filter
optimization decreases, which implies a tradeoff between the two prop-
erties. Figure 4.3 shows a consequence of this tradeoff, between power
weighting and sidelobe level. This shows that as the power weighting
increases, the side lobe also increases. Lower side lobes are desired, for
fish bottom detection, so this tradeoff suggests that as the power weighting
is increased to reduce deviation from a target pulse shape, the side lobe
characteristics will worsen, and so a balance must be found to meet both
properties.

Side lobe characteristics are a requirement set to be below -40 dB, yet
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the power weightings are qualitatively set to be as good as possible. Re-
quirements can be met by setting a fixed requirement at -40 dB for side
lobes, then choosing the largest power weighting to meet this result will
provide an optimal code. Observing the relation for this example, Figure
4.3, shows that this can be met for these particular parameters using a
power weighting of about 101. The actual weighting can vary between
parameters, however provides a methodology for designing codes with
optimal power properties.

4.1.3 Main Lobe Size

The main lobe corresponds to a wide detection region, which enables
better side lobe characteristics to be obtained in optimization of codes, as
discussed throughout Chapter 2. Typical matched filtered systems target
delta-like detection in autocorrelation, effectively a main lobe size of zero.
By widening this main lobe, it was observed that by sacrificing correlation
properties in the main lobe, the side lobe characteristics were improved.

In implementation, this main lobe can be compared with fish detection.
For the detection of pings reflecting off two fish, where the reflected pings
are of similar power, the main lobe does not affect detection as points
are optimized to meet the Rayleigh Criterion, discussed in Section 1.1.2.
For reflection of pings where one is from a fish and another the sea floor,
the reflection off the floor will be up to 40 dB higher than the reflection
off the fish and so any overlap in signals can only be detected in regions
where autocorrelation of the stronger signal is below -40 dB, in other words
regions outside the main lobe. To maximize the resolution of this detection,
the width of the main lobe should be minimized.

Figure 4.4 shows the relation between main lobe width in samples vs
the achievable side lobe level after optimization. Each point is calculated
for a constant code length of 500, and with constant weighting factors.
A random vector initialized each code, and optimization automatically
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Figure 4.4: Relationship between main lobe size vs side lobe level in matched filter.

stopped when the change in error dropped below 0.01 dB per 10,000 steps.
This was repeated for several random codes. Here it can be seen that, over-
all, increasing the main lobe width reduces the side lobe level, improving
performance.

Compared to the sonar requirements, which for improved resolution
aim to minimize the width of this main lobe, this tradeoff result shows
a conflicting property that codes optimal for side lobes have larger main
lobes. To design for ideal properties, a trade off must be made between
increasing the main lobe width to improve side lobe performance, versus
decreasing the main lobe to improve time resolution for pings of significant
power difference.

The bounds and relationships of the various input parameters provide
a scope for codes that are able to be produced. However this does not
directly inform how codes perform in a real system. To get a better idea
of realistic properties, it is useful to parameterized the codes for a real life
system, and observe output properties.
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4.2 Parametrization for a Sonar System

With the scope of parameters known, codes can now be produced to meet
requirements for a real life sonar system. These requirements are based on
target ranges desired for a fish detection system, however the applications
are broad enough that the codes can be adapted as needed. The previous
analysis on how parameters affect the output properties show what is
feasible in implementing a sonar system, and so guide the efforts on what
properties should be targeted, as well as the potential for improvement.

4.2.1 Requirements (including calculations)

The requirements of a sonar system are based off the desired detection
range of a sonar system for recreational and industrial fishing vessels.
These systems need to detect fish at both close range of the order of metres,
as well as long range to the order of 1-2 kilometres. A table listing example
ranges and requirements are shown in Figure 4.5. Here it can be seen that
for various ranges of detection, there are different constraints on the rate
of pings. This limits the time interval between pings, requiring shorter
pings for pings of a higher rate. The rate of pings limits the length of the
signal in each ping, and so puts constraints on the code and its properties
in the matched filter. However from Section 4.1 it has been shown that
there are limitations for the properties that can be achieved using optimiza-
tion. Based on these varying requirements and limitations, it is difficult to
produce a single code set that applies to all ranges, and so the sonar system
has been designed to use multiple code sets for each set of ranges.

The example ranges highlight a few interesting requirements for the
sonar codes. Note the requirements include the time for a signal to trans-
mit from the boat to the target, and back, calculated using the following
equation.

dfish =
ct
2
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Firstly, for fish to fish resolution, the requirement is to resolve signals 0.013
ms apart, equivalent to about 0.97 cm apart in distance. Assuming the code
is sampled at roughly 100 kHz, this corresponds to a sample resolution of
about 0.013ms× 100kHz = 1.3 samples. To meet the Rayleigh Criterion,
to ideally resolve the two signals the overlap points should not exceed
-3 dB. Assuming similarly shaped signals in the receiving filter, since the
signals are based on the same transmit signal, the overlap point is likely
to be equidistant from the two peaks, roughly 0.65 samples away. This is
difficult to design in a code, as the signal is optimized and adjusted per
sample, not per fraction of a sample. Instead, the requirements can simply
be exceeded at the rounded requirement, at 1 sample out. This ensures that
two fish can still be resolved with high accuracy.

To resolve fish from the sea floor, the signal must be able to be resolved
while in the side lobe of a stronger signal. This requires side lobes to be
below -40 dB to the peak. The requirement for this resolution is for 1m
between targets, corresponding to a time resolution of 1.333 ms between
signal peaks. At 100 kHz, this corresponds to 1.333ms× 100kHz = 133.3
samples. In design of the matched filter, this corresponds to the main lobe
between −133 to +133 sample offsets.

This resolution is less stringent than for fish to fish resolution, so much
that it is larger than some of the required pulse lengths. This means that for
shorter pulse lengths, lengths less than the time resolution of fish to bottom,
the requirement is automatically met as matched filters outside an input
signal are defined to be zero, or negative infinity dB. In reality it is based
on the noise level, however this makes no difference to the required design
as the matched filter is designed for rejecting noise. Short pulse lengths
require no additional consideration for designing fish to bottom resolution,
while longer pulses do have this fish to bottom requirement.

Pulse lengths significantly vary based on the required resolution. For
short distances a high ping rate is needed, limiting the maximum pulse
length available for design. For a depth of 5 m, a pulse length of 0.1 ms is
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available. At 100 kHz, this allows for a code length of 0.1ms× 100kHz = 10
samples. Earlier analysis showed that a short pulse length allows for only
a limited side lobe control, however after analyzing requirements on fish
to bottom resolution the side lobe levels are only needed for code lengths
above 133 samples when sampled at 100 kHz. For points above 133 samples,
the side lobe is considered as the points outside the main lobe, and so for
short code lengths above 133 samples there are only a few sample points
needed for side lobe optimization, still providing a simple requirement in
optimization. These characteristics in the requirements simplifies design
requirements for shorter codes, while still allowing for longer codes to meet
resolution requirements.

The previous analysis shows how requirements convert into parameters
for code optimization, and so can be used to produce an optimal code for
sonar. The process of producing the codes is outlined below.

4.2.2 Optimization output

With a set of requirements laid out, and an indication of property tradeoffs
illustrated, a strong foundation has been set for analysis of the sonar codes.
Before observing the final output it is useful to look at the stages of produc-
ing the codes, observing how the code’s properties are set and improved at
each stage. This gives an idea of how well each stage can optimize, as well
as any weaknesses that need to be overcome.

The set of sonar codes are produced in 3 stages. These are:

• Matched Filter Optimization

• Digital Transmitter Mapping

• Mis-Matched Filter Correction

The process will use the example codes for detecting at a depth of 50-
70m, for a pulse length of 10 ms. At 100 kHz, this corresponds to a code
length of 1000 samples. The Rayleigh criterion needs to resolve signals
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separated by 1.3 samples, and the main lobe sits at roughly -133 to +133
sample offsets from the main matched filter peak.

Matched Filtered Optimization

Optimization begins by inputting parameters. These parameters are a code
length, using the pulse length times the sample rate. This example sets the
code length as 10ms× 100kHz = 1000 samples. It was found that the main
lobe size could be reduced further than the requirement, achieving better
resolution. The parameter for main lobe was modified to 65 samples out
from the central peak, to achieve 0.666 ms fish bottom range resolution, or
0.5 m resolution for fish to bottom. Weighting factors are [1 λPAPR 10

−40+3
20 ],

where λPAPR is adjusted to provide power weighting without permitting
side lobes above -40 dB.

Optimization using iterative methods step to reduce error of a vector
and so, in some cases, not guaranteed to achieve a perfect solution. Instead,
the error is reduced each step until the error is considered non-significant.
This suggests that optimal codes may be optimized forever, however in
reality a good solution is produced within a few steps, and so an arbitrary
stop point can be set by observing the error not changing significantly. A
more robust method in place is to set this stop point in the optimization,
which stops the algorithm once the net improvement of error drops be-
low a threshold. This threshold stepping is implemented by running the
algorithm for roughly 10,000 steps, then comparing the error from before
the steps to the error after, and if the improvement in error is above the
threshold the optimization repeats for another set of steps. If below the
threshold, it is unlikely that further significant optimization is possible, so
the optimization stops. The large set of steps between comparisons allows
for any potential overshoot and self correction, to prevent the algorithm
from ending prematurely. This allows for multiple optimizations to be
queued at once, so that a set of codes for each requirement can be generated
with one optimization set up.
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Figure 4.6: Optimization Output for the Matched Filter optimizer, observing the code’s
matched filter output.

The optimization was applied to the example parameters outlined ear-
lier, optimized until there is no significant change in error. Properties
observed in the optimized code are based on the matched filter, and the
magnitude of the code. The matched filter provides observation of reso-
lution requirements, while the magnitude provides observation of power
requirements of the code. For the sonar code in this example, the properties
are shown in Figures 4.6, 4.7 and 4.8.

Figure 4.6 shows the properties of both codes in the matched filter. This
plot effectively compares a single received pulse compared in the matched
filter, scaled based on the magnitude of the code. Note the side lobes sitting
below -40 dB. Also, any cross correlation between codes at edge angles of
the transducer is below -40 dB as well. A zoomed version of the same plot
is shown in Figure 4.7, to show further details of the main lobe. Here it can
be seen that there is a distinct main lobe between -65 and +65 sample offsets.
Zooming in on the central peak, the offsets outside of the central peak sit
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below -10 dB, which is well below -3 dB meeting the Rayleigh Criterion.
For resolution, the code meets the expected properties in the matched filter,
and so these codes are expected to perform as needed in the sonar system
by correctly resolving any interfering signals.

Although not a direct objective for design, spikes in the main lobe are
non-ideal. For clear resolution in the main lobe, any overlapping signals
must be stronger than the highest point in the region, to avoid confusion
with the main signal. Spikes in Figure 4.7 are sporadic, preventing over-
lapping weaker signals in the main lobe being resolved when below -30
dB. The main lobe is primarily optimized to meet the Rayleigh criterion,
and using peak optimization continually targets the highest points next to
the central peak. To reduce spikes in the main lobe, an additional region
could be implemented for peak error minimization, targeting the main
lobe excluding points near the Rayleigh Criterion. This would prevent the
algorithm locking optimization near the central peak, smoothing out the
main lobe region.

The magnitude of each signal after passing through a transducer is
shown in Figure 4.8, and the pulse shaping function is shown as well. In
this case an arbitrary shaping function has been used as a test function,
however any function can be used to shape the pulse. This function used a
sine wave to ramp up, then a cosine wave to ramp down followed by zeros
to pad out the trailing transients of the transducer. This combination of
functions provides a smooth waveform with a continuous gradient, while
being simple to generate.

The signals’ magnitudes in Figure 4.8 are shown to clearly follow the
shaping function, ideally meeting the power requirements for the set of
sonar codes. Based on the matched filter properties, the side lobes could
be sacrificed to further improve magnitude shaping. The side lobes are
targeted to be below -40 dB, and any improvement beyond this is beneficial,
however does not provide any direct improvement from the requirements.
One alternative for improvement is to limit the optimization to -40 dB then
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Figure 4.7: Optimization Output for the Matched Filter optimizer, observing the code’s
matched filter output. Zoomed to show details of main lobe.
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Figure 4.8: Optimization Output for the Matched Filter optimizer, observing each signal’s
magnitude properties after passing through a transducer. Blue and red show the magni-
tude of each code, and purple shows the shaping function used to shape the magnitude of
each code.

using further optimization for magnitude shaping, which can potentially
improve the shaping even further. At this stage, results have proven more
than satisfactory, so further improvements to the algorithm are optional.

These example results show the output of matched filter optimization
meet the requirements sufficiently, and are a good indicator for the final
codes and the properties expected after transmitting. The next stage looks
at how this matched filtered code translates to a digital transmitter, to apply
to a sonar system.

Digital Transmitter Mapping

The digital transmitter mapping takes a set of samples and maps it to a
waveform that the digital transmitter can transmit, using coefficients to con-
trol the waveform. This mapping aims to reproduce the input waveform as
accurately as possible, such that samples match the design. The accuracy of
the samples is based on the phase properties and the amplitude properties
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Figure 4.9: Optimization Output for the Digital Transmitter mapping, observing the phase
properties of each code. Left shows a subsection of ideal phase (blue) and mapped phase
(red). Right shows phase error of each sample in radians, for the digital transmitter output
and the target output.

of the samples. For this example one digitally transmitted sequence is
observed, however similar properties are present in the second code.

The set of sonar codes for 50-70m is mapped and evaluated based off
the output from the matched filter optimization. For illustrative purposes
a subset of the phase characteristics of both the original matched filter
optimizer output and of the digital transmitter output are included in
Figure 4.9. Here it can be seen that the mapped phase is very similar to
the original phase. Observing the whole sequence, the error does not go
beyond 0.03 radians. This suggests the phase is mapped on the digital
transmitter accurately. Further accuracy can be obtained by optimising for
more iterations, and with smaller step sizes.

The amplitude of the code is directly compared in Figure 4.10. This
plot compares the ratio of original sequence amplitude to the amplitude
of the digitally transmitted signal. An accurate mapping should show a
flat, constant ratio across samples to show the code scaled equally across
the whole sequence. For most of the sequence the ratio of amplitudes is
constant near 8.7, however there are peak errors at points that can be as
large as 50% of the amplitude. This is not ideal, and occurs due to cycles
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Figure 4.10: Optimization Output for the Digital Transmitter mapping, observing the
amplitude properties of each code. Amplitude properties represented as a ratio, each
sample’s amplitude for ideal sonar divided by each sample’s amplitude in the digital
transmitter.

spanning several sample periods. A single cycle has a constant amplitude,
and so when it spans multiple periods the constant amplitude is spread
across these periods. If these samples are designed for different amplitudes,
then there will be some error across the samples. This error is always
present if cycles span multiple samples, however later results will show
this does not have a significant impact on results.

For a sanity check, it is useful to also look at the distribution of coeffi-
cients for both cycle length and for amplitude control. Figure 4.11 shows
the distribution of cycle lengths. Note the sequence is followed by a con-
stant set of cycles, these are at the centre frequency of the digital transmitter
and are effectively zero padding the sequence.

To get a frame of reference for the coefficients, it is useful to look at how
the coefficients compare to the transmit and sample rates of the system. The
clock rate of the transmitter is about 102.5 MHz, which controls the lengths
of each digitally transmitted cycle, in relative sample lengths. This can be
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Figure 4.11: Optimization Output for the Digital Transmitter mapping, observing the
distribution of coefficients for half cycle lengths.

used to calculated a ratio of the clock rate over the rate in question. For
centre frequency, this corresponds to 102.5 MHz / 250 kHz = 410 samples,
and for sampling frequency about 102.5 MHz / 100 kHz = 1025 samples.
Converted to half pulse widths, which are control coefficients in the digital
transmitter, these are 205 samples for centre frequency, and about 512 for
sampling frequency.

Observing the generated coefficients in Figure 4.11 , the sequence shows
most of the half cycle lengths distributed around the centre frequency,
about 205 samples. There are also a few spikes in long lengths, above 400
samples. Several of these spikes in lengths are longer than the number of
cycles per sample, which is at about 512 samples, and so correspond to
cycles spanning multiple samples. Since cycles are a fixed sinusoidal shape,
the samples are coupled in amplitude and phase, potentially contributing
to error. Identifying these points indicates areas of potential improvement
for the algorithm, and in the digital transmitter, which can be investigated
further in future work.

The amplitude coefficients are shown in Figure 4.12. The amplitude
control is similar to the amplitude of the signal itself, however takes into ac-
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Figure 4.12: Optimization Output for the Digital Transmitter mapping, observing the
distribution of coefficients for amplitude control.

count harmonic loss. This relationship is non-linear, however the mapping
is monotonic increasing and one to one, as discussed in Section 2.3, so it is
expected the amplitude coefficients follow a similar shape to the amplitude
itself. This is evident in the figure, where the amplitude coefficients ramp
up then down, similar to the original matched filter optimized sequence
and in the shaping function.

This evaluation of the digitally transmitted signal shows signal char-
acteristics very similar to the original match filter optimized signal. As a
final comparision for this stage, the matched filter of the digital transmitted
signal is shown in Figure 4.13. Here the matched filter characteristics are
shown to be very similar, with side lobes below -40 dB, however a new set
of spikes have been introduced outside the main lobe, close to the centre.
This set of results is still usable, however can still be further improved. To
realise this improvement, the receiving coefficients can be optimized using
a mis-matched filter.
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Figure 4.13: Matched filter of one code, comparing autocorrelation from matched filter
optimization (blue) and digital transmitter mapping (red). Note the spikes either side of
the main lobe, not originally present in the first stage of matched filter optimization.

Mis-Matched Filter

The digital transmitter was shown to transmit a designed code, however
with few errors based on the constraints of cycles. This suggests that
matching a transmitted waveform will not produce ideal properties as
designed. However by using a mis-matched filter the filter properties can
be improved. By mis-matching the digitally transmitted signal, the filter
coefficients are obtained by a similar optimization as in the matched filter,
but in this stage against a static code.

The results of this optimization are shown in Figure 4.14. This figure
shows the matched filter properties meeting the ideal properties for re-
solving signals, similar to the matched filter properties in the first stage.
The major differences are that this is now receiving a signal that can be
transmitted in a high power system, using the digital transmitter, and
that the filter coefficients are no longer constrained by the power scaling
properties as in the transmitting code. The reduced constraints allow for
further optimization and improvement, as evident in the mis-matched filter
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response.
From this example it is shown that a code for a particular range is

designed and optimized, in both transmitting and receiving. The process is
repeated for other ranges. It should be noted that the digital transmitter
is aimed for high power systems, for transmitting the larger distances in
the requirements. This additional design constraint is not needed for short
ranges, and so short ranges only require design of a matched filter.

4.2.3 Comparison against existing codes

Comparison of existing codes provide a good benchmark for the properties
of the generated sonar codes. Existing codes such as Gold and Zadoff-
Chu codes have useful properties with regard to autocorrelation and cross
correlation, making them useful for the matched filter. Newer codes utilise
these codes and more, providing additional properties that are useful for
not only sonar but for communication and detection systems in general.

Chirp signals are a common signal used for sonar detection [6, 26, 45].
A chirp signal is a sinusoidal waveform that changes frequency over time.
This has a fixed bandwidth of signal, and has typically good properties
for auto-correlation and cross correlation. A linearly changing waveform
makes it simple to generate, and fixed bandwidth is a useful benefit for
designing on frequency dependant systems, such as with sonar transducers.

A comparison of a chirp sequence of similar length is shown in Figure
4.15a and 4.16. The signals tested were linear up-chirps, with parameters
chosen to target as good performance as possible to compare against the
optimized codes from Section 4.2.2. Each chirp was designed using a sam-
pling rate of 100kHz, each given 10 kHz bandwidth and given frequency
separation to allow for ideal cross correlation properties.

The auto-correlation and cross correlation of these two chirp signals are
shown to indicate the potential performance in a matched filter. Overall
the properties initially seem good, however the side lobes are still too
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Figure 4.14: Optimization Output for the Mis-Matched Filter optmization, optimizing
filter coefficients for receiving a digitally transmitted signal. Shown is the receiving filter
characteristics for filter coefficients of code A receiving signal A and signal B (top), and
code B receiving both signals A and B (bottom).
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(c)

Figure 4.15: Observing the autocorrelation and cross correlation of two chirp signals. (a)
and (b) indicate main lobe properties, with side lobes dropping below -40 dB beyond±170
sample offsets. Also note the wide peak (c) for the Rayleigh Criterion.
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high. For the requirement of -40 dB, the side lobes meet these requirements
outside offsets ±170, which for a sampling rate of 100kHz is beyond the
required resolution. Cross correlation properties are satisfactory in this case.
For Rayleigh Criterion signal resolution, the main peak has points above
-3 dB outside the 0 lag offset, making similar strength signal resolution
difficult. Although the signal shows promising properties, it doesn’t meet
the requirements and so is not as good to implement as the optimized
signal.

Another useful comparison is to introduce power scaling. Scaling the
magnitude of samples affects correlation, and so it is useful to note if
any additional considerations could make the chirp signal viable. A plot
of correlation properties introducing this power scaling into the chirp is
included in Figure 4.16. Here the signal shows much better side lobe
properties, however the main lobe is now much worse for similar strength
signal resolution. Although the chirp signal is easier to generate based on a
simple function, the target properties are not met and so is not as good a
sonar code as the optimized code.

Zadoff-Chu sequences are another class of sequences that provide useful
correlation properties for code design [27]. The Zadoff-Chu sequence is
based on a complex exponential sequence oscillating at a rate based on a
prime number [4]. The use of this prime number ensures that values are
not exactly the same as the phase wraps around, and so provides good
correlation properties for every shift of the sequence. These sequences
primarily have good periodic correlation properties, however the aperiodic
properties are also notable.

Figure 4.17 shows the correlation properties of a pair of Zadoff-Chu
codes, each with relatively prime coeffcients to generate the code. The
relatively prime coefficients ensure good cross correlation properties. The
figure shows initially that side lobe levels are worse for Zadoff-Chu codes
than for chirp codes, however the main peak has a much sharper descent
for non-zero offsets, making similar strength detection better. These codes
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Figure 4.16: Autocorrelation and cross correlation of two chirp signals, frequency sepa-
rated and power scaled. Note the wide main lobe, making resolution of similar power
signals difficult for small offsets.
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Figure 4.17: Autocorrelation and cross correlation of two Zadoff-Chu sequences. Note the
spikes in correlation, and also the sharp peak detection around the central peak, good for
similar strength signal resolution.

provide a better property in one regard, however at the sacrifice of another
property.

Note that although the correlation properties appear worse than chirp
signals, the errors are spikes. The Gradient Descent algorithm uses peak
minimization to reduce error, and so if there are only a few peaks then there
is minimal optimization effort to improve the code. This property suggests
that Zadoff-Chu codes could be a good start point for optimization of
codes using the gradient descent method. Empirical evidence supports this,
showing that these codes take less iterations to optimize than chirp codes,
or random codes. Because of this property, implementation has defaulted
to use Zadoff-Chu codes as a start point, then optimize to produce ideal
codes.

4.2.4 Comparison to bounds

The codes generated have been optimized for correlation and power prop-
erties in a sonar systems. Compared to existing codes, these optimized
codes have been shown to perform better overall, in terms of resolution for
sonar. However although the codes are relatively better, it is more powerful
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to ensure codes are optimal for all possible codes. To evaluate this, and to
further validate the performance of these codes, it is useful to look at the
bounds.

The Welch bound, analysed in Section 2.4, shows the overall bounds
on correlation for a set of codes. This bound, repeated below in Equation
4.1, shows the minimum peak correlation for autocorrelation excluding
the zero lag peak, and for all cross correlation for all codes in a set. This
provides an indicator of optimal properties that can be achieved in sonar.

cmax ≥
√

M− 1
M(2N − 1)− 1

(4.1)

Observing the Welch bound, for M = 2 codes of length N = 1000, the
bound on correlation is cmax ≥ −36.0173 dB. The optimized codes have
shown to be below these codes, achieving side lobes of -40 dB. Initially
this would seem to violate the Welch bounds, however the main lobe in
autocorrelation is not based solely on the zero lag offset, as required by
the Welch bound, but is instead a region. Because of this, the Welch bound
does not directly apply. Despite this, it is useful to know that the codes
have properties better than other codes which rely on a peak only at the
zero lag offset.

Further analysis of the bounds showed the modified Welch bound, as
analysed earlier in Section 2.4.5. This shows a bound that allows for a main
lobe region, providing a more useful metric for evaluating the performance
of codes generated by this optimization. Note that this modified Welch
bound is for a fixed level of correlation in the main lobe, however results
of optimization have shown that the main lobe level is not fixed in the
matched filter. As shown earlier in Figure 4.7, points near the zero lag peak
are near -10 dB, while points further out are closer to -30 dB. Because of
this non-fixed property, the main lobe is estimated to be between -20 and
-30 dB on average, to enable a rough comparison.

Parametrizing the modified Welch bound using the optimization inputs
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Figure 4.18: Modified Welch bound for 2 codes, each code length 1000. Points indicated
show the lobe size of points ±65, and the various side lobe correlation bounds that can be
set.

in Section 4.2.2, a relation of bounds relative to main lobe can be observed.
This is illustrated in Figure 4.18. Here it can be seen that for a fixed lobe size,
as the main lobe level increases the bound on the side lobe level decreases,
making it possible to achieve better side lobe performance. Also note the
white space towards the top right of the plot, this region indicates negative
infinity dB, suggesting potentially zero side lobes and cross correlation.

Labelled on this figure is the main lobe size of ±65, used in the opti-
mization. Here it can be seen the side lobe properties are between -36.48
dB to -46.33 dB, based on the assumption the main lobe correlation level
is between -30 dB and -20 dB. A plot of correlation for a fixed lobe size of
±65 shows this relation in more detail, as shown in Figure 4.19. This plot
shows that it is possible to achieve side lobes of below -40 dB using a main
lobe of ±65, by setting the main lobe correlation high enough.

These bounds agree with the optimization output shown in 4.6. This
earlier plot showed correlation side lobes and cross correlation settling at
roughly 43 dB, which sits within the expected range of -36.48 dB to -46.33
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Figure 4.19: Modified Welch bound for M = 2 codes, each code length N = 1000, main
lobe of D = 65 corresponding to ±65 sample offsets.

dB from the modified Welch bound. This suggests the codes are close to
optimal.

A noteworthy characteristic of the plot in 4.19 is the asymptote as the
main lobe correlation level is increased towards -18 dB. In reality this is
level in main lobe correlation is not ideal, as the main lobe corresponds
to potential interference for fish to fish detection. Allowing a lower main
lobe allows for detection of small signals in the main lobe of a strong signal,
however If allowed to rise this main lobe detection will be limited. This
introduces a new kind of trade off, however is more appropriate to analyse
in requirements design rather than signal design, which is beyond the
scope of this thesis.

Overall, codes have been shown to go beyond the performance of codes
bound by the Welch bound, and have also been shown to be limited by
the modified Welch bounds. The performance of these codes close to the
bounds suggest they are close to optimal for implementation in a sonar
system. To confirm these properties, an empirical test was set up to evaluate
codes in a real life situation. This is explored further in Chapter 5.



Chapter 5

Evaluation - Empirical Testing
(Water Tank)

A methodology for design of sonar codes has been developed for multiple
level detection, and the codes have been evaluated in simulation for various
properties which assume ideal conditions. These conditions are good for
comparison from a theoretical perspective, allowing for a fair check against
other codes and against theoretical bounds. It has been shown that they
meet / exceed requirements, and have significantly better properties than
existing codes that are used in sonar. From a theoretical perspective, these
codes are ideal for use in sonar.

To provide further insight to the properties of these codes, it is useful
to also look at codes from a practical perspective. Physical systems for
testing sonar give an opportunity to observe how the codes perform in a
real life scenario, providing confirmation to the accuracy of code design
and providing checks for any additional considerations that may have been
missed during the design phase. The valuable insight and checks of a
practical system is worthwhile to set up.

For this evaluation, a water tank was set up with a transducer which
had been previously characterised for frequency response across angles.
With the characteristics known, sonar codes could be generated to transmit

99
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Figure 5.1: Photos of the water tank, where sonar codes were tested.

through this transducer with ideal properties. The details of this set up are
elaborated in Section 5.1.

5.1 Setup

A water tank was set up with a transducer transmitting pressure wave-
forms, and a hydrophone receiving these waveforms at the opposite end.
This water tank can be seen in Figure 5.1. The transducer was free to rotate
horizontally, and was controlled via software. This allowed the relative
angle between transducer and hydrophone to be set with high accuracy,
which allowed for testing a variety of situations for the sonar codes. Trig-
gering the sonar code pulses, recording the received waveform and control
of the transducer angle was all handled by software, which allowed for
automated testing once parameters were set.

The signal was generated using the Agilent 33522A Arbitrary Waveform
Generator [23], connected through a pre amplifier in turn connected to the
transducer, shown in Figure 5.2 and 5.3. The arbitrary waveform generator
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Figure 5.2: Internals of the water tank, showing the transducer transmitting codes.

Figure 5.3: Internals of the water tank, showing the hydrophone receiving pulses.
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Figure 5.4: Model of the signal path for testing in the water tank system. Quadrature
modulation used to shift the code up to pass band.

is able to produce a waveform of real valued samples with high accuracy,
and so a real valued waveform at passband was needed, as data input to
the arbitrary waveform generator. This signal was designed in MATLAB,
and was implemented using an upsampled baseband signal which was
then quadrature modulated to the pass band. A diagram illustrating the
signal model is illustrated in Figure 5.4. This model shows the process of
the signal, and is useful for identifying potential sources of error.

The signal travels from the transducer, through the water and is picked
up by a hydrophone, which has a relatively flat frequency response for the
frequency range being analysed. The hydrophone, shown in Figure 5.2,
picks up the sonar signal from the water, and converts it to an electrical
signal. This electrical signal is then analysed through an oscilloscope, which
records an output in a file to be later analysed digitally. For this experiment,
a matched filter was simulated in MATLAB to confirm the response. The
matched filter compares the originally designed sonar codes against the
received waveforms, to check if the received waveform is made up of the
designed codes. If transmitted in the water tank correctly, and if the codes
are designed correctly, the matched filter will have an output similar to
the autocorrelation for matching codes, and low cross correlation when
detecting non matched codes.
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5.2 Differences and Considerations

It is worth noting the differences between this practical evaluation versus
evaluating in the idealized simulated environment. One such difference
is the signal channel model as seen earlier in Figure 5.4. This channel
shows the signal being up converted to the pass band, passed through the
channel, received then down sampled to be processed by the matched filter.
This model highlights several additions to the channel, which are explored
further in the following sections.

5.2.1 Noise

In simulation, noise was assumed to be ideally minimized by the matched
filter and so noise was not included in simulation analysis. The simulation
of the up conversion and down conversion process yields a perfect recon-
struction, as there are no additional sources of error that could perturb the
code. However in the water tank experiment there are several potential
sources of error.

A major error source is the noise of the channel itself, in the water. Al-
though this noise source should be theoretically minimized by the matched
filter, it should still be considered when analysing the results. Averaging
the measurements of several pulses mitigates the error from noise, assum-
ing the noise has a mean of 0. This is a viable method to reduce noise as
it is likely to be present in the sonar system itself, in the form of repeated
pings.

5.2.2 Reflections

Another difference from simulation is the limited duration for codes in
the water tank. The water tank is of limited size, and so codes have a
limited duration when transmitted to be picked up by a hydrophone before
reflections are picked up. The diagram in Figure 5.5 shows a few expected
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Figure 5.5: Illustration of some expected reflections of a transmitted sonar pulse in a water
tank. Left is a transmitter, right a receiver. Two reflections shown, one off the right of the
tank, and one off the bottom of the tank.

reflections in the water tank. As the signal travels from left to right, the
direct path should be the first received signal. A reflection is expected as
the signal continues past the hydrophone, reflecting off the back wall of
the water tank then returning to the hydrophone. Another reflection is
expected from bouncing off the bottom of the tank.

In the tank used for the experiment, the receiving hydrophone was
positioned roughly 7.5 cm away from the side of the tank, and placed
significantly high off the bottom. The first reflections were from the side
of the tank, and for a code sampled at 200 kHz the first reflection would
be picked up roughly 0.1 ms after the first pulse was picked up. This is
calculated based on the speed of water, as shown in Equation (5.5). For a
code sampled at 200 kHz, this corresponds to a maximum code length of
20 samples.
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c =
d

tpulse
(5.1)

c = 1481m/s, for water at 20◦C (5.2)

d = 2× 0.075m (5.3)

tpulse = d/c =
0.15m

1481m/s
= 0.1ms (5.4)

tpulse = N ∗ ts (5.5)

= N/ fs (5.6)

fs = 200kHz (5.7)

N = tpulse ∗ fs (5.8)

= 0.1ms× 200kHz (5.9)

= 20 samples (5.10)

From these measurements we can calculate expected time intervals that
the hydrophone can receive a signal, before the next reflection begins to
interfere. To measure codes ideally, in other words without interference,
the codes must be limited to these time intervals. Compared to a simulated
signal, which has no limitations with reflections or overlapping signals, the
space of codes to test are significantly limited.

5.2.3 Equipment

A typical sonar system transmits using a transducer, then receives on either
the same transducer, or on a hydrophone. This means the signal passes
through two transfer functions, through the transmitting transducer and
through the receiving hydrophone. The water tank uses a single transducer,
then receives on a hydrophone that has a flat frequency response over the
frequency range. Effectively, the signal passes through only one transfer
function, highlighting a difference between the test and a real life sonar
scenario. Transmitting over a single transfer function allows for more
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accurate characterization of the response of the transducer, important for
optimizing the codes for the transducer, and for testing the accuracy of a
system.

Another point to note is that the codes are optimized per transducer,
so the codes used in the tank test are unique to the transducer. The codes
tested are for the transducer introduced earlier, in Figure 3.1. The reduced
gain at wide angles of ±60,±70 degrees is beneficial for minimizing cross
correlation, as these regions are regions which will interfere, and will have
a reduced gain relative to the main beam axis along the 0 angle.

5.3 Results from testing

The limitations in the water tank place limits on what can be tested for sonar
codes. The most significant of these limitations is the code length. Codes
longer than 20 samples will be received with interference from reflections,
so to minimize this interference a relatively short code length must be used.
This limitation prevents the testing of sonar codes for implementation re-
quirements, however tests can still be done to compare against simulations.
This checks for consistency, and allows for observation of how noise may
perturb the filter response of the sonar codes.

A set of codes were generated for length 100 samples using matched fil-
ter optimization, then upsampled to roughly 1 MHz. The short code length
provided spacing to minimize code overlap, and the code was oversampled
sufficiently such that when the waveform was band shifted, the waveform
could be clearly represented. The waveform was then modulated using
quadrature phase modulation, as a simple method to generate and accu-
rately modulate the waveform digitally. This waveform was transmitted
through the system, and received on the oscilloscope to be analyzed digi-
tally offline. The output was demodulated using quadrature demodulation,
and filtered to obtain the base band response. This base band signal was
then passed through a matched filter, matching against the designed code
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Figure 5.6: Water tank experiment 1 result, Code A (Not aligned). Note peaks in side lobes

from the original optimization.
The output of the matched filter is shown in Figure 5.6 for code A, and in

Figure 5.7 for code B. In both cases there is a match in the matched filter, and
a significant main peak detected, however there are also significant peaks
in the side lobes, not matching the design of the original codes. These side
lobe peaks may be incorrectly identified as lower power reflections if the
threshold is set according to the original design, and deviate significantly
from the design. This is not ideal.

To determine the cause of this deviation from design, it is useful to look
at the channel model from Figure 5.4. Here there are several processes
at work, and parts that have already been compensated for. Particularly
noteworthy are the upsampling and downsampling processes.

Assuming perfect upsampling and downsampling, it is expected that a
signal that was upsampled then downsampled would be perfectly recon-
structed, and mirror the original signal. However it should be noted that
the experiment deals with a real signal, which is bound in time limiting the
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Figure 5.7: Water tank experiment 1 result, Code B (Not aligned). Note peaks in side lobes

length of samples. Another limitation is the code itself, which is defined
for a limited time window and has samples for all points in the window.
Limited windows are not represented in perfect upsampling and down-
sampling processes, and if unaccounted for lead to distortion at the edge
samples. This can be accounted for by zero padding the edges of the code,
as well as allowing for preceeding and trailing zeros when recording the
received signal. This reduces the windowing effect in sampling, reducing
distortion caused by windowing the sequence and receiving signal.

Another limitation in the channel is filtering the upsampled signal
and the downsampled signal, during modulation. Modulation should
ideally shift a waveform up to a frequency band, however some modulation
schemes have not ideal, leaking signals outside the transmit frequency band
[37]. This is typically handled by filtering the band of the signal, after the
signal is shifted to the pass band. Ideally this filtering would be perfect,
to only pass the signal at the pass band without any change to the signal.
Offline filtering can approach this ideal with little distortion to the signal,
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but in real world usage filtering is typically causal and of finite impulse
response, to ensure stability and reduce complexity. For this experiment the
MATLAB command ‘filtfilt’ was used, which applies a filter then reverses
the output and passes it again to prevent any phase distortion. This ‘filtfilt’
command, in combination with a relatively high order butterworth filter,
was used to filter the signal for the pass band. Filtering using this zero-
phase distortion filter should have little effect on the output filter response,
and is unlikely to cause any changes from the expected simulated response.

Noise is another characteristic that may have a significant effect on the
output matched filter. Noise is present in any real world system, and can
enter at every stage of signal transfer. In particular, the cables running
from the signal generator to the transducer, and from the hydrophone to
the oscilloscope were long due to space limitations, and could potentially
couple significant noise into the system from nearby electrical sources, or
even to each other. Averaging the result should significantly reduce any
white noise, and overall is considered an inherent part of the system. This
characteristic is significant, but not significant enough to cause specific
points to peak as we saw in the first set of results. Random noise would
be expected to apply equally to the matched filter response, without any
preference to particular offsets.

The transducer response is a significant part of the channel, and has
been compensated for in the matched filter optimization. The transducer re-
sponse was measured by applying a single cycle pulsed sine wave through
the input, followed by a flat zero signal of equal length. This pulse provides
a wide frequency response near the frequency band, and so allows for an
input of various frequencies with a signal pulse. The output can then be
measured, and compared to the input, to form a frequency response. This
can be converted into a transfer function, which can then be optimized
using the processes outlined earlier. The accuracy of the transducer’s fre-
quency response is dependant on the accuracy of sampling the received
signal. A signal that is oversampled significantly has high resolution in
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the frequency domain, and so can resolve more detailed characteristics in
the frequency domain. This leads to a more accurate impulse response.
From empirical measurements it was assumed the transducer response
was accurate enough for testing, and further measurements confirmed the
frequency response was accurate.

From these considerations it was noted the upsampling and down-
sampling process would have the biggest impact on results, and so zero
padding was introduced to compensate for distortion at the beginning and
end of the sequence. This was implemented in the experiment, testing
the code by taking the optimization output, adding preceding and trailing
zeros, upsampling then modulating and filtering. The signal was generated
and passed through the water tank system, then received on the oscillo-
scope. The output was recorded with padding at the beginning and end of
the received waveform, and the signal demodulated and downsampled.
The base band sequence was finally passed through a matched filter based
on the original optimization output, and is shown in Figures 5.8 and 5.9 for
codes A and B respectively.

These figures show a significant decrease of peaks in the sidelobes, and
also show the signal is matched closer to 0 dB in the main peak. Char-
acteristics match that of the simulation, showing spikes and shallows in
the empirical filter plot as with the simulated filter, which confirms the
accuracy of the model and design. There are small increases in side lobe
characteristics compared to the simulated characteristics from code design,
however these can be attributed to perturbations from noise. Overall the
codes provide significant improvement in matched filter characteristics. It
should be noted that with the additional zero padding that the code lengths
are increased, and so affect the requirements. A longer code length means
that for a fixed ping rate, the number of samples available for design are
reduced. This additional consideration is needed for all future designs.
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Figure 5.8: Water tank experiment 2 result, Code A (Aligned). Note significant reduction
in side lobes matching design, and similar characteristics.
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Figure 5.9: Water tank experiment 2 result, Code B (Aligned). Note significant reduction
in side lobes matching design, and similar characteristics.



Chapter 6

Conclusion

Advanced sonar systems can potentially offer greater precision and re-
solving power than existing systems. A key component of the possible
improvement is the design of the transmitted signal. To permit the simul-
taneous use of multiple transmitters, multiple signals having low cross
correlation must be designed.

A set of codes have been developed and optimized for sonar detection.
To meet object resolvability requirements, the codes were designed using
multiple threshold criteria in their correlations. This is a novel approach
to detection. These codes were produced using numerical optimization
techniques, another novel approach for the design of both the codes and
matched filters simultaneously. Bounds were also developed, extending
Welch bounds to include the new class of sequences for multi-level detec-
tion.

A digital transmitter was to be used in the sonar system, and so a
method was developed to map the optimal match filtered sequence onto
this digital transmitter. The digital transmitter, a design imposed on the
project prior to my work, was a non-linear system that changes the length
and frequency of cycles to meet phase and amplitude properties at sample
points. This added complications to design, as the variable length cycles
made some sample points impossible to map. Additionally the integrating
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effect of phase when changing a cycle length affected the efficiency of
optimization. A sliding window optimization was used to map the match
filtered sequence onto the digital transmitter, to mitigate the integrating
effect on phase as well as to skip any points of fixed or oscillating error. The
mapping was confirmed to be accurate by observing errors in phase and
amplitude, as well as observing a simulated match filtered output from a
digitally transmitted sequence.

Small errors were identified in the digital transmitter sequences, and
so a mis-match filter was implemented to mitigate the effect of these er-
rors. The use of a mis-match filter vastly simplified the problem, which
became a strictly convex problem. This problem was characterized, and
input into convex optimization tools to produce an optimal solution for
filter coefficients. The output mis-matched filter was observed to correct
imperfections from the digital transmitter, producing ideal filter outputs
for resolution and detection in sonar.

An empirical test was conducted to confirm the accuracy of sequence
design, using a water tank. The codes were transmitted from one side of
the tank to the other, and processed digitally through a matched filter. The
process was used to confirm the accuracy of upscaling a sequence, and that
transducer characteristics were accurately modeled and compensated for
in sequence design. Limitations in the dimension of the tank limited the
length of sequences, and so the tank was used as a consistency check to
confirm codes worked as designed. The codes were designed for side lobes
of about -30 dB, and empirical results confirmed these same results of -30
dB. Furthermore the characteristics of the matched filter outputs were very
similar, showing spikes and shallows in the same places as in simulation.
This suggests the simulation modeled the empirical experiment conditions
accurately, confirming consistency between simulation and in physical
experiments. An important result from the tests highlighted that it is
important to zero pad the sequence before upscaling, to prevent distortion
at the edge of the sequences.
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The overall design for sonar codes uses a matched filter optimizer to
produce ideal codes, a digital transmitter mapping to map the codes to
a usable system, and a mis-matched filter optimization to compensate
for limitations in the digital transmitter. The design was confirmed to be
accurate for several simulations at each stage, and with empirical experi-
ments. Requirements in resolution and pulse shaping were met, and input
parameters provide further options for producing further codes.
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A.1 Source Files

A.1.1 Script to call optimization

%% Script to Call optimizer
% Script to parameterize and call optimizer, and to periodically display / save results.
% Rajiv Pratap

clear all, a 1 = NaN; b 1 = NaN;

steps = 1e4;

N=1000;

% a 1=randn(N,1)+1j*randn(N,1); a 1=a 1./norm(a 1); 10

% b 1=randn(N,1)+1j*randn(N,1); b 1=b 1./norm(b 1);

error margin = 0.01;

ramp fun = [sin(2*pi/4 *(1:300)/300), cos(2*pi/2*(1:700)/700)*.5+.5, zeros(1,200)].^2.’;

k=0;

prevEE=1;

for k=1:Inf

k

[v,v2,EE] = optimizer(’figure’,100,. . . 20

’N’,N . . .
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,’l’, [1 1e1 10^(-(40-3)/20)] . . .

,’ramp’, ramp_fun . . .

,’fixedlobe’,65 . . .

,’a’,a_1,’b’,b_1 . . .

,’fSample’,50e3 . . .

,’mu’,5e3 . . .

,’steps’,steps);

if (20*log10(EE) - 20*log10(prevEE) > -error_margin) 30

break

end

N = length(v)/4;

M = 50;

N2 = N+M-1;

lobe = 65;

a_1 = v(1:N)+1j*v(N+1:2*N);

b_1 = v(2*N+1:3*N)+1j*v(3*N+1:4*N); 40

% Plotting Correlation properties

h1 = sfigure(1);

h2 = sfigure(2);

drawnow;

% Save plots for viewing afterwards

saveas(h1,fullfile(’Figures009’,sprintf(’CorrProperties phase’)),’fig’); 50

saveas(h1,fullfile(’Figures009’,sprintf(’CorrProperties phase’)),’png’);

saveas(h2,fullfile(’Figures009’,sprintf(’MagProperties phase’)),’fig’);
saveas(h2,fullfile(’Figures009’,sprintf(’MagProperties phase’)),’png’);
save(fullfile(’Figures009’,’v set’),’v’,’v2’);

prevEE=EE;

end
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A.1.2 optimizer.m

function [v,v2, EE, output˙args ] = optimizer( varargin )

%OPTIMIZER Optimizes codes for sonar application.
% Rajiv Pratap

%% Initial and default variables

N = 201;

Nt = 201;

fClock=204.8E6; R1 = 410; 10

fCentre = fClock/2/R1;%(min(freq)+max(freq))/2;
fSample = 100e3;

% Isolate N initially, so it can initialise other variables.
for i=1:2:length(varargin)

switch upper(varargin{i})

case ’N’

N = varargin{i+1};
case ’FSAMPLE’ 20

fSample = varargin{i+1};
end

end

n = [1:N]’;

k = 2;

N2 = N+Nt-1;

steps = Inf;

figure_toggle = 1; 30

lobe = floor(.3*N); %210;

stepdown_width = 5;

ramp_fun = .9*(tukeywin(N2,.5)+.1);
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ramp_fun(floor(N2/2):end) = (.9*(N2:-1:floor(N2/2))/N2+.1);

% Scaling vector to scale each gradient for optimizer weighting.

% Ordered by [G_c G_p2a G_rc];

l = [1 1e-12 10^(-(40-3)/20)]; 40

l = [0 1e-1 0];

[~,~,freq] = impulsetransducer1(Nt,[0 0],[fSample fCentre]);

[txrx_nadir,TxRxC1_nadir_raw] = impulsetransducer1(Nt,[0 0],[fSample fCentre]);

txrx_nadir = txrx_nadir./norm(TxRxC1_nadir_raw,1);

[txrx2_nadir,TxRxC2_nadir_raw] = impulsetransducer1(Nt,[0 0],[fSample fCentre]);

txrx2_nadir = txrx2_nadir./norm(TxRxC2_nadir_raw,1);

angle_range = [60:5:70];

M_angle = length(angle_range); 50

for i=1:length(angle_range)

[txrx_angles(:,:,i)] = impulsetransducer1(Nt,[angle_range(i) 0],[fSample fCentre])./norm(TxRxC1_nadir_raw,1);

[txrx2_angles(:,:,i)] = impulsetransducer1(Nt,[-angle_range(i) 0],[fSample fCentre])./norm(TxRxC1_nadir_raw,1);

end

Nt = length(txrx_nadir); N2 = N+Nt-1;

% % Could initialise with Zadoff-Chu sequence instead.

u1 = 23; u2 = 29;

a = exp(-1j*(pi*u1*n.*(n+1))/N);

b = exp(-1j*(pi*u2*n.*(n+1))/N); 60

a = a/norm(conv(txrx2_nadir,a));

b = b/norm(conv(txrx_nadir,b));

mu=50;

%% Switch to implement function options

for i=1:2:length(varargin) %iterate length varargin in case other arguments exist for function

switch upper(varargin{i}) 70

case ’N’

%N = varargin{i+1};
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case ’FSAMPLE’

case ’MU’

mu = varargin{i+1};

case ’P2A’

l = varargin{i+1};

case ’LOBE’ 80

% Lobe as a fraction of N

lobe = floor(N*varargin{i+1});

case ’FIXEDLOBE’
lobe = floor(varargin{i+1});

case ’TAPER’
% Distance from centre autocorrelation to design Rayleigh stepdown point

stepdown_width = floor(varargin{i+1});

case ’RAMP’
ramp_fun = varargin{i+1};

ramp_fun = resample(ramp_fun,N2,length(ramp_fun)); 90

case ’L’
l = varargin{i+1};

case ’A’

if ~isnan(varargin{i+1})

a = varargin{i+1};

end

case ’B’
if ~isnan(varargin{i+1})

b = varargin{i+1};

end 100

case ’FIGURE’
figure_toggle = varargin{i+1};

case ’STEPS’
steps = varargin{i+1};

otherwise

error([’Unexpected option:’ varargin{i}])

end

end

%% More options, currently static 110
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v = [real(a);imag(a);real(b);imag(b)];

% Set up H matrix for easy calculation of gradient

% Sets each row to shift relative to the previous row, creating a band

% matrix.

txrx_op_angles = repmat([(conj((txrx_angles)));zeros((N2)-length(txrx_angles),1,M_angle)],1,N,1);

txrx_op_angles = permute(txrx_op_angles,[2 1 3]);

[m, n, o] = size(txrx_op_angles); 120

D = 0:n-1;

B = zeros(m, n, o);

for i = (1 : m)

B(i,:,:) = [txrx_op_angles(i,(n - D(i) + 1 : n),:), txrx_op_angles(i,(1 : n - D(i) ),:)];

end

txrx_op_angles = B;

txrx_op2_angles = repmat([(conj((txrx2_angles)));zeros((N2)-length(txrx2_angles),1,M_angle)],1,N,1);

txrx_op2_angles = permute(txrx_op2_angles,[2 1 3]);

[m, n, o] = size(txrx_op2_angles); 130

D = 0:n-1;

B = zeros(m, n, o);

for i = (1 : m)

B(i,:,:) = [txrx_op2_angles(i,(n - D(i) + 1 : n),:), txrx_op2_angles(i,(1 : n - D(i) ),:)];

end

txrx_op2_angles = B;

% Set up txrx_op matrices for nadir calculations

txrx_op_nadir = repmat([(conj((txrx_nadir)));zeros((N2)-length(txrx_nadir),1)],1,N)’;

[m, n] = size(txrx op nadir); 140

D = 0:n−1;
B = zeros(m, n);
for i = (1 : m)

B(i,:) = [txrx op nadir(i,(n − D(i) + 1 : n)), txrx op nadir(i,(1 : n − D(i) ))];

end
txrx op nadir = B;

txrx op2 nadir = repmat([(conj((txrx2 nadir)));zeros((N2)−length(txrx2 nadir),1)],1,N)’;

[m, n] = size(txrx_op2_nadir);
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D = 0:n-1; 150

B = zeros(m, n);

for i = (1 : m)

B(i,:) = [txrx_op2_nadir(i,(n - D(i) + 1 : n)), txrx_op2_nadir(i,(1 : n - D(i) ))];

end

txrx_op2_nadir = B;

clear(’B’);

%% Loop for error / gradient calculation

prevEE = 0; 160

for i=1:steps

% Calculating Correlation gradient

a_1 = v(1:N) + 1j*v(N+(1:N));

b_1 = v(2*N+(1:N)) + 1j*v(3*N+(1:N));

a_2_set = zeros(N2,M_angle); b_2_angle = zeros(N2,M_angle);

for k=1:M_angle

a_2_set(:,k) = conv(txrx2_angles(:,:,k),a_1);

b_2_set(:,k) = conv(txrx_angles(:,:,k),b_1);

end 170

% a_2 = conv(txrx2,a_1); % results in 201x1 matrix

% b_2 = conv(txrx,b_1);

a_2_nadir = conv(txrx2_nadir,a_1); % results in 201x1 matrix

b_2_nadir = conv(txrx_nadir,b_1);

max_error = 0;

max_error_position_c = 0;

%min_error = realmax; min_error_position = 0;

180

% Correlation error calculation

% Looking at each angle for the transducer, and picking the corr

% characteristics resulting in the largest error.

Eab_set = zeros(N2*2-1,1,M_angle);

for k=1:M_angle

Eab_set(:,:,k) = xcorr(a_2_set(:,k),b_2_set(:,k));
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end

Eab_max = max(Eab_set);

[~, Eab_pos] = max(Eab_max,[ ],3); 190

Eab = Eab_set(:,:,Eab_pos);

a_2_angle = conv(txrx2_angles(:,:,Eab_pos),a_1);

b_2_angle = conv(txrx_angles(:,:,Eab_pos),b_1);

txrx_op = txrx_op_angles(:,:,Eab_pos);

txrx_op2 = txrx_op2_angles(:,:,Eab_pos);

% txrx_op = fft(txrx_op).*fft(chebwin(Nt).’);

% txrx op2 = fft(txrx op2).*fft(chebwin(Nt).’);

%Eab = (xcorr(a_2,b_2)); 200

Eaa = (xcorr(a_2_nadir,a_2_nadir));

Ebb = (xcorr(b_2_nadir,b_2_nadir));

% Recalculate a and b for the filtered transducer function

a_2_nadir = conv(txrx2_nadir,a_1);

b_2_nadir = conv(txrx_nadir,b_1);

% Set requirements for correlation

Eaa_c = Eaa;

Eaa_c(N2-lobe:N2-1) = zeros(size(Eaa(N2-lobe:N2-1))); 210

Eaa_c(N2+1:N2+lobe) = zeros(size(Eaa(N2+1:N2+lobe)));

Eaa_c(N2) = Eaa(N2)-1;

Ebb_c = Ebb;

Ebb_c(N2-lobe:N2-1) = zeros(size(Eaa(N2-lobe:N2-1)));

Ebb_c(N2+1:N2+lobe) = zeros(size(Eaa(N2+1:N2+lobe)));

Ebb_c(N2) = Ebb(N2)-1;

% Set requirements for Rayleigh Criterion

Eaa_rc = abs(Eaa); % Set abs here so abs compared with -3dB 220

% Eaa_rc(N2-lobe:N2-1) = [zeros(lobe-stepdown_width,1); Eaa_rc(N2-stepdown_width:N2-1)-10^(-3/20)];

% Eaa_rc(N2+1:N2+lobe) = [Eaa_rc(N2+1:N2+stepdown_width)-10^(-3/20); zeros(lobe-stepdown_width,1)];

Eaa_rc(N2-lobe:N2-1) = [Eaa_rc(N2-lobe:N2-stepdown_width-1); zeros(stepdown_width,1)];

Eaa_rc(N2+1:N2+lobe) = [zeros(stepdown_width,1);Eaa_rc(N2+stepdown_width+1:N2+lobe)];

Eaa_rc(N2) = Eaa(N2)-1;
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Ebb_rc = abs(Ebb); % Set abs here so abs compared with -3dB

% Ebb_rc(N2-lobe:N2-1) = [zeros(lobe-stepdown_width,1); Ebb_rc(N2-stepdown_width:N2-1)-10^(-3/20)];

% Ebb_rc(N2+1:N2+lobe) = [Ebb_rc(N2+1:N2+stepdown_width)-10^(-3/20); zeros(lobe-stepdown_width,1)];

Ebb_rc(N2-lobe:N2-1) = [Eaa_rc(N2-lobe:N2-stepdown_width-1); zeros(stepdown_width,1)]; 230

Ebb_rc(N2+1:N2+lobe) = [zeros(stepdown_width,1);Eaa_rc(N2+stepdown_width+1:N2+lobe)];

Ebb_rc(N2) = Ebb(N2)-1;

Etotal_Vector_c = max(abs([Eab,Eaa_c,Ebb_c]),[ ],2);

%Etotal_Vector_c2 = arrayfun(@(x,y,z) max([x,y,z]),Eab,Eaa_c,Ebb_c); %

Etotal_Vector_rc = max(abs([Eab,Eaa_rc,Ebb_rc]),[ ],2);

%Etotal_Vector_rc2 = arrayfun(@(x,y,z) max([x,y,z]),Eab,Eaa_rc,Ebb_rc); %

[EE, max_error_position_c] = max(Etotal_Vector_c);

[~, max_error_position_rc] = max(Etotal_Vector_rc); 240

% Calculating the actual gradient at the max error positions

offset_range = [max_error_position_c, max_error_position_rc]-N2;

for k=1:length(offset_range)

offset = offset_range(k);

if offset<0

a0 = [zeros(-offset,1); a_2_angle(1:(N2+offset))];

b0 = [b_2_angle((1-offset):N2); zeros(-offset,1)];

a0_nadir = [zeros(-offset,1); a_2_nadir(1:(N2+offset))]; 250

b0_nadir = [b_2_nadir((1-offset):N2); zeros(-offset,1)];

h01a = [txrx_op2(:,(1-offset):N2),zeros(N,-offset)]; %h01 goes in front of eaa^*

h02a = [zeros(N,-offset),txrx_op2(:,1:(N2+offset))]; %h02 goes in front of eaa

h01b = [txrx_op(:,(1-offset):N2),zeros(N,-offset)]; %h01 goes in front of ebb^*

h02b = [zeros(N,-offset),txrx_op(:,1:(N2+offset))]; %h02 goes in front of ebb

elseif offset>0

a0 = [a_2_angle((1+offset):N2); zeros(offset,1)];

b0 = [zeros(offset,1); b_2_angle(1:(N2-offset))];

a0_nadir = [a_2_nadir((1+offset):N2); zeros(offset,1)]; 260

b0_nadir = [zeros(offset,1); b_2_nadir(1:(N2-offset))];

h01a = [zeros(N,offset),txrx_op2(:,1:N2-offset)]; %h01 goes in front of eaa^*
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h02a = [txrx_op2(:,1+offset:N2),zeros(N,offset)]; %h02 goes in front of eaa

h01b = [zeros(N,offset),txrx_op(:,1:N2-offset)]; %h01 goes in front of ebb^*

h02b = [txrx_op(:,1+offset:N2),zeros(N,offset)]; %h02 goes in front of ebb

else

a0 = a_2_angle;

b0 = b_2_angle;

a0_nadir = a_2_nadir; 270

b0_nadir = b_2_nadir;

h01a = txrx_op2; %h01 goes in front of eaa^*

h02a = txrx_op2; %h02 goes in front of eaa

h01b = txrx_op; %h01 goes in front of ebb^*

h02b = txrx_op; %h02 goes in front of ebb

end

Eab = sum(a_2_angle .* conj(b0));

Eaa = sum(a_2_nadir .* conj(a0_nadir)); 280

Ebb = sum(b_2_nadir .* conj(b0_nadir));

% Find max error for this offset

if(offset == 0)

[Etotal, Eindex] = max(abs([Eab Eaa-1 Ebb-1]));

Eindex_rc = Eindex;

% elseif abs(offset)>=stepdown_width && abs(offset)<=20%abs(offset)==stepdown_width | | abs(offset)==abs(20-stepdown_width)

% [Etotal, Eindex] = max(abs([Eab (abs(Eaa)-stepdown) (abs(Ebb)-stepdown)]));

elseif (offset <= lobe) && (offset >= -lobe) 290

[Etotal, Eindex] = max(abs([Eab 0 0]));

if abs(offset)>= stepdown_width

[~, Eindex_rc] = max(abs([Eab Eaa Ebb]));

else

Eindex_rc = 0;

end

else

[Etotal, Eindex] = max(abs([Eab Eaa Ebb]));

Eindex_rc = Eindex;

end 300
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if (k==2 && (Eindex_rc == 2 | | Eindex_rc == 3)) | | (k==1 && (Eindex == 2 | | Eindex == 3))

if offset < 0

h01a = [txrx_op2_nadir(:,(1-offset):N2),zeros(N,-offset)]; %h01 goes in front of eaa^*

h02a = [zeros(N,-offset),txrx_op2_nadir(:,1:(N2+offset))]; %h02 goes in front of eaa

h01b = [txrx_op_nadir(:,(1-offset):N2),zeros(N,-offset)]; %h01 goes in front of ebb^*

h02b = [zeros(N,-offset),txrx_op_nadir(:,1:(N2+offset))]; %h02 goes in front of ebb

elseif offset>0

h01a = [zeros(N,offset),txrx_op2_nadir(:,1:N2-offset)]; %h01 goes in front of eaa^*

h02a = [txrx_op2_nadir(:,1+offset:N2),zeros(N,offset)]; %h02 goes in front of eaa 310

h01b = [zeros(N,offset),txrx_op_nadir(:,1:N2-offset)]; %h01 goes in front of ebb^*

h02b = [txrx_op_nadir(:,1+offset:N2),zeros(N,offset)]; %h02 goes in front of ebb

else

h01a = txrx_op2_nadir; %h01 goes in front of eaa^*

h02a = txrx_op2_nadir; %h02 goes in front of eaa

h01b = txrx_op_nadir; %h01 goes in front of ebb^*

h02b = txrx_op_nadir; %h02 goes in front of ebb

end

end

% Check which loop, then calculate gradient 320

if k==2

if Eindex_rc == 1

m1 = conj(h02a)*b_2_angle;

m2 = conj(h01b)*a_2_angle;

G_ab = [ real((Eab).*(m1));. . .

imag((Eab).*(m1));. . .

real(conj(Eab).*(m2));. . .

imag(conj(Eab).*(m2)) ];

G1_rc = G_ab;

330

elseif Eindex_rc == 2

if offset == 0

m1 = conj(h02a)*a_2_nadir;

G_aa = [real(2.*(Eaa-1).*(m1));. . .

imag(2.*(Eaa-1).*(m1))

zeros(size(b_1));. . .

zeros(size(b_1)) ];

elseif abs(offset) <= lobe
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m1 = conj(h02a)*a_2_nadir; 340

m2 = conj(h01a)*a_2_nadir;

G_aa = [real(conj(Eaa).*(m1) + (Eaa).*(m2));. . .

imag(conj(Eaa).*(m1) + (Eaa).*(m2));. . .

zeros(size(b_1));. . .

zeros(size(b_1)) ];

else

m1 = conj(h02a)*a_2_nadir;

m2 = conj(h01a)*a_2_nadir;

G_aa = [real(conj(Eaa).*(m1) + Eaa.*(m2));. . .

imag(conj(Eaa).*(m1) + Eaa.*(m2));. . . 350

zeros(size(b_1));. . .

zeros(size(b_1)) ];

end

G1_rc = G_aa;

elseif Eindex_rc == 3

if offset == 0

m1 = conj(h01b)*b_2_nadir;

G_bb = [zeros(size(a_1));. . .

zeros(size(a_1)); . . . 360

real(2.*(Ebb-1).*(m1));. . .

imag(2.*(Ebb-1).*(m1)) ];

elseif abs(offset) <= lobe

m1 = conj(h01b)*b_2_nadir;

m2 = conj(h02b)*b_2_nadir;

G_bb = [zeros(size(a_1));. . .

zeros(size(a_1)); . . .

real(conj(Ebb).*(m1) + (Ebb).*(m2));. . .

imag(conj(Ebb).*(m1) + (Ebb).*(m2)) ];

else 370

m1 = conj(h01b)*b_2_nadir;

m2 = conj(h02b)*b_2_nadir;

G_bb = [zeros(size(a_1));. . .

zeros(size(a_1)); . . .

real(conj(Ebb).*(m1) + Ebb.*(m2));. . .

imag(conj(Ebb).*(m1) + Ebb.*(m2)) ];

end
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G1_rc = G_bb;

else

G1_rc = 0; 380

end

else %(k == 1)

if Eindex == 1

m1 = conj(h02a)*b_2_angle;

m2 = conj(h01b)*a_2_angle;

G_ab = [ real((Eab).*(m1));. . .

imag((Eab).*(m1));. . .

real(conj(Eab).*(m2));. . .

imag(conj(Eab).*(m2)) ];

G1_c = G_ab; 390

elseif Eindex == 2

if offset == 0

m1 = conj(h02a)*a_2_nadir;

G_aa = [real(2.*(Eaa-1).*(m1));. . .

imag(2.*(Eaa-1).*(m1))

zeros(size(b_1));. . .

zeros(size(b_1)) ];

else

m1 = conj(h02a)*a_2_nadir; 400

m2 = conj(h01a)*a_2_nadir;

G_aa = [real(conj(Eaa).*(m1) + Eaa.*(m2));. . .

imag(conj(Eaa).*(m1) + Eaa.*(m2));. . .

zeros(size(b_1));. . .

zeros(size(b_1)) ];

end

G1_c = G_aa;

elseif Eindex == 3

if offset == 0 410

m1 = conj(h01b)*b_2_nadir;

G_bb = [zeros(size(a_1));. . .

zeros(size(a_1)); . . .

real(2.*(Ebb-1).*(m1));. . .

imag(2.*(Ebb-1).*(m1)) ];
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else

m1 = conj(h01b)*b_2_nadir;

m2 = conj(h02b)*b_2_nadir;

G_bb = [zeros(size(a_1));. . .

zeros(size(a_1)); . . . 420

real(conj(Ebb).*(m1) + Ebb.*(m2));. . .

imag(conj(Ebb).*(m1) + Ebb.*(m2)) ];

end

G1_c = G_bb;

else

G1_c = 0;

end

end

end

clear h0*; 430

% P2A Gradient Calculation

ramp_fun = ramp_fun ./ (norm(ramp_fun,1)./N2);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

G1_p2a_a = zeros(N,1);

G1_p2a_b = zeros(N,1);

a_2 = a_2_nadir;

Ha=txrx_op2_nadir.’;

440

b 2 = b 2 nadir;
Hb=txrx op nadir.’; % Redefinitions to make code shorter

% b_2_r = repmat(b_2,1,N);

% b_2_r2 = repmat(b_2,1,N2);

% % For ratio error adjustment (error range dependant on ramp function)

% e_p2a = conj(a_2).*a_2 ./((a_2’*a 2)/N2*ramp fun short)−1;
% [˜,e p2a ind] = max(e p2a.*conj(e p2a)); 450

% e p2a val = e p2a(e p2a ind);
% ndx = e p2a ind;
%
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% de dx p2a = (a 2’*a_2/N2*ramp_fun(ndx)* Ha(ndx,:)’*a 2(ndx) − . . .

% Ha’*a_2/N2*ramp_fun(ndx)*a_2(ndx)’*a 2(ndx)) . . .

% ./ (a 2’*a_2/N2*ramp_fun(ndx)).^2;
% G1_p2a_a = 2*e_p2a_val * de_dx_p2a;

%

% % Full gradient set, to do more than max adjustment

% 460

% de_dx_p2a_2 = ((a_2’*a 2)/N2*ramp fun r.’.*Ha(:,:)’.*a 2 r.’ - . . .

% (Ha’*a 2 r2)/N2.*ramp fun r.’.*(a_2_r’.*a 2 r.’)) . . .

% ./ (a_2’*a 2/N2*ramp fun r.’).^2;
% G1_p2a_a_set = 2* bsxfun(@times,e_p2a.’,de dx p2a 2);
% G1 p2a a = (sum(G1 p2a a set,2))/N2;%de dx p2a 2(:,ndx);%

% For difference error adjustment (const error range)
e p2a = conj(a 2).*a 2 − a 2’*a_2/N2*ramp_fun;
[~,ndx] = max(e_p2a);

%dedx_p2a = Ha’.*a 2 r.’ - (Ha’*a 2 r2.’)/N2.*ramp_fun_r.’; 470

dedx p2a = bsxfun(@times,Ha’,a_2.’) − bsxfun(@times,Ha’*a_2,ramp_fun.’)/N2;
% clear Ha;

G1 p2a a set = 2*bsxfun(@times,e p2a.’,dedx_p2a);
% clear dedx_p2a;

G1_p2a_a = (sum(G1_p2a_a_set,2))/N2^.5;% Reduce p-1 norm error

%G1_p2a_a = G1_p2a_a_set(:,ndx);% Reduce positive peak error

e_p2a_b = conj(b_2).*b_2 - b_2’*b 2/N2*ramp fun;
[˜,ndx] = max(e p2a b);
%dedx p2a b = Hb’.*b_2_r.’ − (Hb’*b_2_r2.’)/N2.*ramp fun r.’; 480

dedx_p2a_b = bsxfun(@times,Hb’,b 2.’) - bsxfun(@times,Hb’*b 2,ramp fun.’)/N2;
% clear Hb;

G1_p2a_b_set = 2*bsxfun(@times,e_p2a_b.’,dedx p2a b);
% clear dedx p2a b;

G1 p2a b = (sum(G1 p2a b set,2))/N2^.5; % Reduce p−1 norm error
%G1 p2a b = G1 p2a b set(:,ndx);% Reduce positive peak error

% dxdx p2a b = bsxfun(@times,Hb’,b_2.’) − bsxfun(@times,bsxfun(@mtimes,Hb’,b_2),ramp_fun.’)/N2;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 490

G1 p2a = [real(G1 p2a a);imag(G1 p2a a);real(G1 p2a b);imag(G1 p2a b)];
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% Find Net Error Gradient
G1 = l(1)*G1 c + l(2)*G1 p2a + l(3)*G1 rc;

v2 = [real(a 2 nadir);imag(a 2 nadir);real(b 2 nadir);imag(b 2 nadir)];
v = v − mu.*G1;

% if EE > prevEE
% mu=mu/10; 500

% else
% mu=mu*1.5;
% end
% prevEE = EE;
%

if (mod(i,figure toggle ) == 0)

template = zeros(2*N2−1,1); template(N2) = 1;

aa = xcorr(a 2 nadir,a 2 nadir);
bb = xcorr(b 2 nadir,b 2 nadir);
for k=1:M angle 510

a 2 plot = conv(txrx2 angles(:,:,k),a 1);
b 2 plot = conv(txrx angles(:,:,k),b 1);
ab(:,k) = xcorr(a 2 plot,b 2 plot);

end

ee = (abs([aa−template;bb−template;reshape(ab,[M angle*length(aa),1])]));
%ee((N−lobe):(N+lobe)) = zeros(2*lobe+1,1);

ee((0*N2+N2−lobe−1):(0*N2+N2+lobe+1)) = zeros(2*lobe+3,1);

ee((2*N2+N2−lobe−1):(2*N2+N2+lobe+1)) = zeros(2*lobe+3,1);

%ee((4*N2−2+N2−lobe):(4*N2−2+N2+lobe)) = zeros(2*lobe+1,1); 520

EE = max(ee);

% if EE > prevEE
% mu=mu/8;
% else
% mu=mu*2;
% end
% prevEE = EE;
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% if (mod(i,figure toggle ) == 0) 530

%p2a a = max(abs(a 1))./(sum(abs(a 1))/N);

%p2a b = max(abs(b 1))./(sum(abs(b 1))/N);

%evaluate ramping function
p2a a = max((conj(a 2 angle).*a 2 angle)./(a 2 angle’*a_2_angle/N2*ramp_fun));%max(abs(a_1)./ramp_fun.^.5);
p2a_b = max((conj(b_2_angle).*b_2_angle)./(b_2_angle’*b 2 angle/N2*ramp fun));%max(abs(b 1)./ramp fun.^.5);

% if(20*log10(EE) > 0)

% pause;
% end

540

% Plotting Correlation properties

h1=sfigure(1);
x = −N2+1:N2−1;
plot(x,20*log10(abs([aa bb ab])));%ab])));
title(sprintf(’error:%1.3f dB, p2a:%1.3f, step:%1.f’,20*log10(EE),max(p2a a,p2a b),i));
%zoom on;
grid on;
ylim([−60 0]); 550

h2=sfigure(2); plot(abs([a 2 nadir b 2 nadir ramp fun.^.5.*(a 2 nadir’*a_2_nadir/N2)^.5 ramp_fun.^.5.*(b_2_nadir’*b 2 nadir/N2)^.5])),
title(’Magnitude of codes’),

legend(’|a|’,’|b|’,’Location’,’NorthEast’)

% h3=sfigure(3); plot(([G1 l(1)*G1 c l(2)*G1 p2a])),
% title(’Error Gradients and Gradient components’),

% legend(’G_{total}’,’G_{correlation}’,’G_{peak-to-average}’,’Location’,’NorthEast’)

% h4=sfigure(4); plot([(phase(a 1)) (phase(b 1))]), 560

% title(’Phase of signals’)

% legend(’a’,’b’,’Location’,’NorthEast’)

% h=figure(5); plot(real([a 1 b 1])),
% title(’Real component of signals’)

% legend(’a’,’b’,’Location’,’Best’)
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% h=sfigure(6); plot((e p2a)),
% title(’p2a Error’)

h=sfigure(7); plot(linspace(min(freq),max(freq),length(a 2)),abs(fftshift([fft(a 2) fft(b 2)]))) 570

% h=sfigure(7); plot(linspace(min(window range),max(window range),length(a 2)),abs(fftshift([fft(a 2) fft(b 2)])))
title(’FFT of signals’)

drawnow; %pause(0.5);

end

% if figure toggle == 1

% close([h1 h2 h3 h4]); 580

% end
end

end
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A.1.3 Baseband to Digital Transmitter Mapping Optimiza-

tion

%% BBtoDTx
% Sliding window optimization to map a baseband sequence on to a digital transmitter.
% Rajiv Pratap

clear all

% Using angle to match phase
%% Set up variables

% Random signal 10

% N = 100;

% bb = randn(N,1) + 1j*randn(N,1);

% bb = rand(N,1).*exp(1j* 2*(2*rand(N,1)−1));
% bb = rand(N,1).* exp(1j* 2*cumsum(2*rand(N,1)−1.5));
%bb = bb./norm(abs(bb));

% or, sonar designed sequence
load(’v_set’);
% load(’/u/students/pratapraji/Masters/matlab/rajiv/StrictMiniMaxOptimization/Figures003/v_set_N0500_phaseconstraint.mat’);
N = length(v)/4; 20

Nt = 50;

a 1 = v(1:N)+1j*v(N+1:2*N);

b 1 = v(2*N+1:3*N)+1j*v(3*N+1:4*N);

bb = [0; a 1];

% Tx spec
fClock = 204.8E6;

num hwp bits = 12;

num amp bits = 8; 30

TransmitterParams = SpecifyTransmitterParams( fClock, num hwp bits, num amp bits);

TxampMAX = 2^TransmitterParams.num amp bits;
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% Rx spec
fSample = 100E3;

% sonar centre frequency
R1=410;

fCentre = fClock/2/R1;%200E3;

ReceiverParams = SpecifyReceiverParams( fSample, fCentre); 40

%% Loop to fit HPW to each phase value

AMP = zeros(1,5*N);%255*ones(1,2*N);

HPW zero = fClock/2 /fCentre /2;

HPW2 zero = fClock/2 /fSample /2;

HPW = HPW zero*ones(1,5*N);

HPWtotal = 0;

HPW0sum = cumsum([HPW2 zero*ones(1,5*N)]); 50

flipbit = zeros(1,2*N);

% Resample, find the upsampled phase, then decimate the phase to get better
% unwrapping
phase bb = phase(bb);
phase bb = angle(bb);

% Begin optimizing
window = 3; 60

walkFun = cumsum(upsample(diff(1:length(bb)+1),100*window));

walkFun = walkFun+mod(0:length(walkFun)−1,window) −window+2;

walkFun = min(walkFun,length(bb));
walkFun = max(1,walkFun);

k=1;

for i1 = 1:length(bb)
deltaHPW = ones(1,window);

mu = .1;

i3=1; 70
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while i3 <=100 && max(abs(deltaHPW))>= 1

i3=i3+1;

for i2 = 1:window
i = min(max(i1+i2−1,1),length(bb));
HPWsum = cumsum([0, HPW]);

% HPW phasediff = mod(HPWsum(i)−160,320)+160;

% While using valid k, and
% while the current HPW cumsum is less than the RX timing cumsum 80

% % Use a 50% offset in RX timing to ensure HPW is sampled at a
% % reasonable point within the waveform, so that changing length
% % significantly changes phase
k=1;

while k<length(HPWsum)−1 && HPWsum(k+1) < HPW0sum(i)−HPW zero/4
k=k+1;

end
k2=find(HPWsum < HPW0sum(i)−HPW zero/4 & HPWsum > HPW0sum(max(i−1,1)));

m(i) = HPW0sum(i) − HPWsum(k); 90

% Recalculate values in the plot
bb DTx = DTxtoBB(HPW(1:length(AMP)),AMP,TransmitterParams, ReceiverParams);%, flipbit);
phase bbDTx = phase(bb DTx);
phase bbDTx = angle(bb DTx);

mu = .1;

deltaHPW(i2) = −(phase bb(i)−phase bbDTx(i))/(2*pi+(phase bb(i)−phase bbDTx(i)))*(m(i)); 100

HPW(k2) = HPW(k2) + mu*deltaHPW(i2);

if HPW(k) > HPW2 zero*2 | | HPW(k) < HPW2 zero/4
HPW(k) = HPW2 zero − HPW(k);
HPW(k) = min(max(HPW(k),HPW2 zero/4),HPW2 zero*2);

end

% Amplitude adjustment − choose k without halfpulse offset
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k=1; 110

while k<length(HPWsum)−1 && HPWsum(k+1) <= HPW0sum(i)
k=k+1;

end
AMP(k2) = asin(abs(bb(i))./max(abs(bb))) ./ (pi/2/TxampMAX);

if mod(i3,30) == 0 && i2 == 1

% Recalculate values in the plot
[bb DTx,t ]= DTxtoBB(HPW(1:length(AMP)),AMP,TransmitterParams, ReceiverParams);
phase bbDTx = angle(bb DTx);

120

sfig(12); clf; hold on
% plot(([phase bb]))
% plot(([phase bbDTx]))

plot(wrapToPi([phase(bb)]))
plot(wrapToPi([phase(bb DTx)]),’-.’)
drawnow

sfig(13); clf; hold on
plot(([phase bb]))
plot(([phase bbDTx]),’-.’) 130

xlim([max(1,i1−5) min(length(bb),i1+5)])

drawnow

sfig(11); plot(HPW); drawnow
drawnow

end
end

end
end
%HPW = round(HPW); 140

TxampMAX = 2^TransmitterParams.num amp bits;
bb hpwalign = spline(HPW0sum(1:length(bb)), abs(bb), HPWsum(1:length(bb)));

% Produce the DTx signal for comparision
bb DTx = DTxtoBB(HPW(1:length(AMP)),AMP,TransmitterParams, ReceiverParams);%, flipbit);
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%% Plotting characteristics
t rx = (1:length(bb DTx))/ReceiverParams.fSample; 150

sfig(1); clf; plot(t rx, .5*real(bb DTx))
sfig(10); clf; plot(AMP)
sfig(11); clf; plot(HPW)

sfig(12); clf; hold on
plot(([phase bb]))
plot(([phase(bb DTx)]))

sfig(13); clf; hold on
plot(wrapToPi([phase bb])) 160

plot(wrapToPi([phase(bb DTx)]),’--’)

sfig(14); clf; hold on
plot(wrapToPi([phase bb])−wrapToPi([phase(bb DTx(1:length(bb)).’)]))

sfig(4);

plot(abs(bb)./abs(bb_DTx(1:length(bb)).’))

%% Corr properties − transmitting after the transducer
N2 = min([length(bb) length(bb DTx)])−1; 170

bbcorr = xcorr(bb(1:N2));
bbdtxcorr = xcorr(bb DTx(1:N2));

sfig(20); clf; hold on
plot(−N2+1:N2−1,20*log10(abs(bbcorr)))
plot(−N2+1:N2−1,20*log10(abs(bbdtxcorr) ./max(bbdtxcorr) *max(bbcorr)))

% plot(20*log10(abs(bbcorr)))
% plot(20*log10(abs(bbdtxcorr) ./max(bbdtxcorr) *max(bbcorr)))

180

%% Check against transducer − corr properties DTx before transducer

range = −length(a2)+1:length(a2)−1;
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Nt = 50;

[TxRxC1 nadir raw, ˜, freq] = transducer3(Nt,[0 0]);

[TxRxC2 nadir raw, ˜, ˜] = transducer3(Nt,[0 0]);

TxRxC1 nadir = TxRxC1 nadir raw./norm(TxRxC1 nadir raw,1);

TxRxC2 nadir = TxRxC2 nadir raw./norm(TxRxC2 nadir raw,1); 190

txrx nadir = ifft(ifftshift(TxRxC1 nadir))’;
txrx2_nadir = ifft(ifftshift(TxRxC2_nadir))’;

% fSample = 100e3;

% fCentre = 250e3;

[txrx nadir,TxRxC2 nadir raw] = impulsetransducer1(Nt,[0 0],[fSample/2 fCentre]);
[txrx2 nadir,TxRxC2 nadir raw] = impulsetransducer1(Nt,[0 0],[fSample/2 fCentre]);

a2 hpw = conv(bb DTx(1:length(bb)),txrx2 nadir); 200

a2 hpw = conv(bb DTx(1:length(bb)),txrx2 nadir);
a2 = conv(bb,txrx2 nadir);
aa hpw = abs(xcorr(a2 hpw));

aa = abs(xcorr(a2));
figure(21); sfig(21); clf; hold on;
plot(range, 20*log10((aa)./max(aa)))
plot(range, 20*log10((aa hpw)./max(aa hpw)))

ylim([−60 0])

grid on
210

% save a BBtoDTx 004 HPW AMP bb bb DTx fSample fCentre
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A.1.4 Mis-matched Filter Optimization

%% Mis−matched filter optimizationM̂
% Optimize MF for an incoming sonar code, using the CVX toolbox. M̂
% Rajiv PratapM̂
M̂

% run ’/am/rialto/home1/pratapraji/MATLAB/cvx/cvx_setup.m’M̂

% addpath(genpath(’~/Masters/matlab/rajiv/transducer/’))M̂
M̂

clear all; M̂
M̂

% Load Digital Transmitter codes, processing their baseband signalsM̂ 10

load(’a_BBtoDTx_005’);M̂
b 1 = bb DTx(1:length(bb)).’;M̂
load(’b BBtoDTx 005’);M̂
a_1 = bb_DTx(1:length(bb)).’;M̂

N = length(a 1);M̂
fClock=204.8E6; R1 = 410;M̂

fCentre = fClock/2/R1;M̂
M̂

% transducer characteristics − nadirM̂
Nt2 = 100;M̂ 20

[txrx nadir,TxRxC1 nadir raw] = impulsetransducer1(Nt2,[0 0],[fSample/2 fCentre]);M̂
[txrx2 nadir,TxRxC2 nadir raw] = impulsetransducer1(Nt2,[0 0],[fSample/2 fCentre]);M̂
Nt = length(txrx nadir); N2 = N+Nt−1;M̂
M̂

a = conv(a 1,txrx2 nadir);M̂
b = conv(b 1,txrx nadir);M̂
M̂

% transducer characteristics − angledM̂
angle range = [60:5:70];M̂

M angle = length(angle range);M̂ 30

A angle = [ ]; B angle = [ ];M̂

for i = 1:length(angle range) M̂

[txrx angles(:,:,i),TxRxC2 nadir raw] = impulsetransducer1(Nt2,[angle range(i) 0],[fSample/2 fCentre]);M̂
[txrx2 angles(:,:,i),TxRxC2 nadir raw] = impulsetransducer1(Nt2,[−angle range(i) 0],[fSample/2 fCentre]);M̂
M̂
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b angle(:,i) = conv(b 1,txrx angles(:,:,i));%M̂

M̂

B angle temp = convmtx(flip(conj(b angle(:,i))),N2);M̂
M̂

B angle = [B angle; B angle temp];M̂ 40

endM̂
M̂

clear ’TxRxC1’ ’TxRxC2’ ’A_angle_temp’ ’B_angle_temp’;M̂

M̂

M̂

lobe40 = 65;M̂

template = ones(2*N2−1,1);M̂
template(N2−lobe40:N2−1) = 10^(−40+3)*ones(length(N2−lobe40:N2−1),1);M̂
template(N2+1:N2+lobe40) = 10^(−40+3)*ones(length(N2+1:N2+lobe40),1);M̂
M̂ 50

template2 = zeros(2*N2−1,1);M̂
template2(N2) = 1;M̂

M̂

A = convmtx(flip(conj(a)),N2);M̂
B = [imag(A).^2+real(A).^2];M̂

M̂

% Begin optimizationM̂
cvx beginM̂

variable x(N2) complexM̂
minimize( . . .M̂ 60

max([ . . .M̂
pow abs(A*x−template2,2) .*template; . . .M̂
pow abs(B angle*x,2) . . .M̂

])) M̂

cvx endM̂
M̂

% Display results and saveM̂
h(1) = sfigure(1); clf; hold on;M̂
plot(−(N2−1):N2−1,20*log10(abs(xcorr(x,a))))M̂
for i=1:M angleM̂ 70

plot(−(N2−1):N2−1,20*log10(abs(xcorr(x,b angle(:,i)))))M̂
endM̂
title(’CVX MF properties for code b, and its detection against x’)M̂
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zoom on; grid on; ylim([−60 0])M̂

M̂

%save cvx optimized MF bx cross BBtoDTx005 xM̂
%saveas(h(1),fullfile(sprintf(’CorrProperties_CVX_MF_bx_cross_BBtoDTx005’)),’fig’);M̂
%saveas(h(1),fullfile(sprintf(’CorrProperties_CVX_MF_bx_cross_BBtoDTx005’)),’png’);M̂
M̂
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A.1.5 Mis-Matched Filter Gradient Optimization

% Optimization of Matched Filter coefficients for detecting received code a

clear all;

% Can swap b and a to choose which to optimize
% load(’/am/rialto/home1/pratapraji/Masters/matlab/marco/a_BBtoDTx_004.mat’);
% b 1 = bb DTx(1:1600).’;
% load(’/am/rialto/home1/pratapraji/Masters/matlab/marco/b BBtoDTx 004.mat’);
% a_1 = bb_DTx(1:1600).’;

10

% load(’/u/students/pratapraji/Masters/matlab/rajiv/TransducerAngleRange/Figures004/v_set.mat’);
% N = length(v)/4;
% Nt = 50;

% N2 = N+Nt−1;
% a 1 = v(1:N)+1j*v(N+1:2*N);

% b 1 = v(2*N+1:3*N)+1j*v(3*N+1:4*N);

N = 200; Nt = 50; N2 = N+Nt−1; % Max appears to be N=2000

a 1 = randn(N,1) + 1j*randn(N,1);

b 1 = randn(N,1) + 1j*randn(N,1); 20

powerSkew = ((1:N)/(.1*N).*exp(−(1:N)/(.1*N))).’; powerSkew=powerSkew./norm(powerSkew);

a_1 = a_1./abs(a_1).*powerSkew;

b_1 = b_1./abs(b_1).*powerSkew;

N = length(a_1);

Nt = 50; N2 = N+Nt-1;

lobe40 = 105;

% Transducer characterised

Nt = 50; 30

[TxRxC1_nadir_raw, ~, freq] = transducer3(Nt,[0 0]);

[TxRxC2_nadir_raw, ~, ~] = transducer3(Nt,[0 0]);

TxRxC1_nadir = TxRxC1_nadir_raw./norm(TxRxC1_nadir_raw,1);

TxRxC2_nadir = TxRxC2_nadir_raw./norm(TxRxC2_nadir_raw,1);

txrx_nadir = ifft(ifftshift(TxRxC1_nadir))’;
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txrx2 nadir = ifft(ifftshift(TxRxC2 nadir))’;

a = conv(a_1,txrx2_nadir);

b = conv(b_1,txrx_nadir);

40

% Angled transducers characterised

angle_range = [60:5:70];

M_angle = length(angle_range);

for i = 1:length(angle_range)

[TxRxC1(:,:,i), ~, ~] = transducer3(Nt,[angle_range(i) 0]);

[TxRxC2(:,:,i), ~, ~] = transducer3(Nt,[-angle_range(i) 0]);

% [TxRxC2(:,:,i), ~, ~] = transducer3(Nt,[angle_range(length(angle_range)-i+1) 0]);

TxRxC1(:,:,i) = TxRxC1(:,:,i)./norm(TxRxC1_nadir_raw,1);

TxRxC2(:,:,i) = TxRxC2(:,:,i)./norm(TxRxC2_nadir_raw,1);

Nt = 50; 50

txrx_angles(:,:,i) = ifft(ifftshift(TxRxC1(:,:,i)))’;

txrx2 angles(:,:,i) = ifft(ifftshift(TxRxC2(:,:,i)))’;

a_angle(:,i) = conv(a_1,txrx2_angles(:,:,i));

b_angle(:,i) = conv(b_1,txrx_angles(:,:,i));

a_angle(:,i) = a_angle(:,i)./norm(a);

b_angle(:,i) = b_angle(:,i)./norm(b);

end

60

a=a./norm(a);

b=b./norm(b);

% Start point of optimization variable x as the optimial MF coefficients

% for SNR detection (autocorrelation)

x = a;

%% Loop for optimizing x

70

mu=.05;

steps = Inf;%1e6;
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template1 = zeros(2*N2-1,1);

template1(N2) = 1;

template2 = ones(2*N2-1,1);

template2(N2-lobe40:N2+lobe40) = 10^((-40+3)/20);

template2(N2)=1;

80

for i=1:steps

% Defining error, and correcting error regions

xa1 = xcorr(x,a);

xa = (xa1-template1).*template2;

for i1=1:size(b_angle,2)

xb_angle(:,i1) = xcorr(x,b_angle(:,i1));

end

xcorr_vector = [xa;reshape(xb_angle,[ ],1)]; 90

[~,e_corr_ndx] = max(abs(xcorr_vector));

e_corr = xcorr_vector(e_corr_ndx);

G_ax = zeros(N2,1); % Gradient due to correlation in A

G_bx = zeros(N2,1); % Gradient due to correlation in B

if e_corr_ndx == N2 %Centre autocorr error

G_ax = e_corr*a;

elseif e_corr_ndx <= 2*N2-1 %Non-centre autocorr error

shift = e_corr_ndx-N2;

if shift < 0 100

G_ax = (e_corr)*([a(1-shift:end); zeros(-shift,1)]);

else %shift > 0

G_ax = (e_corr)*([zeros( shift,1);a(1:end-shift)]);

end

G_bx = zeros(N2,1);

else % cross corr error

shift = mod(e_corr_ndx-1,2*N2-1)+1-N2;

i1 = 1+floor( e_corr_ndx./(2*N2-1) );

if shift < 0 110

G_bx = (e_corr)*([b_angle(1-shift:end,i1); zeros(-shift,1)]);
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else %shift > 0

G_bx = (e_corr)*([zeros( shift,1);b_angle(1:end-shift,i1)]);

end

end

x = x - mu*(G_ax+G_bx);

% Plotting during optimization

if mod(i,1000) == 0 120

sfig(1); plot(-N2+1:N2-1,20*log10(abs([xa1 xb_angle]))); ylim([-60 0]); title(sprintf(’Steps: %d’,i))
sfig(2); plot(abs([a b x]))

drawnow

end

end
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les valeurs moyennes. Acta Mathematica 30, 1 (1906), 175–193.

[22] KAY, S., AND SALISBURY, J. Improved active sonar detection using
autoregressive prewhiteners. The Journal of the Acoustical Society of
America 87, 4 (1990), 1603–1611.

[23] KEYSIGHT TECHNOLOGIES. 30 MHz Function/Arbitrary Waveform Gen-
erators, 08 2014. Data Sheet.

[24] KNIGHT, W., PRIDHAM, R. G., AND KAY, S. Digital signal processing
for sonar. Proceedings of the IEEE 69, 11 (Nov 1981), 1474.

[25] KRANTZ, S. G. Jensen’s inequality. In Handbook of complex variables.
Springer Science & Business Media, 2012, ch. 9.1.3.

[26] LEBLANC, L. R., MAYER, L., RUFINO, M., SCHOCK, S. G., AND KING,
J. Marine sediment classification using the chirp sonar. The Journal of
the Acoustical Society of America 91, 1 (1992), 107–115.



BIBLIOGRAPHY 150

[27] LEVANON, N., AND MOZESON, E. Radar signals. John Wiley & Sons,
2004.

[28] LOVE, R. H. Measurements of fish target strength: a review. Fish. Bull
69, 4 (1971), 703–715.

[29] LUCCHETTI, A., SALA, A., AND JECH, J. M. Impact and performance
of mediterranean fishing gear by side-scan sonar technology. Canadian
journal of fisheries and aquatic sciences 69, 11 (2012), 1806–1816.

[30] MCAULAY, R., JOHNSON, J., AND LAB., M. I. O. T. L. L. Optimal
Mismatched Filter Design for Radar Ranging and Resolution. Technical
note. Defense Technical Information Center, 1969.

[31] MELVIN, G., LI, Y., MAYER, L., AND CLAY, A. Commercial fishing
vessels, automatic acoustic logging systems and 3d data visualization.
ICES Journal of Marine Science: Journal du Conseil 59, 1 (2002), 179–189.

[32] MISUND, O. A. Underwater acoustics in marine fisheries and fisheries
research. Reviews in Fish Biology and Fisheries 7, 1 (1997), 1–34.

[33] MOHAN, N., AND UNDELAND, T. M. Power electronics: converters, ap-
plications, and design. John Wiley & Sons, 2007, ch. 23 - Power Supplies.

[34] MORI, J.-L., AND GOUNON, P. The use of stochastic matched filter in
active sonar. In Signal Processing Conference, 2000 10th European (Sept
2000), pp. 1–4.

[35] MORSE, P., AND FESHBACH, H. Methods of theoretical physics. No. v.
2 in International series in pure and applied physics. McGraw-Hill,
1953.

[36] POPOVIC, B. M. Generalized chirp-like polyphase sequences with op-
timum correlation properties. IEEE Transactions on Information Theory
38, 4 (Jul 1992), 1406–1409.



BIBLIOGRAPHY 151

[37] PROAKIS, J. G., SALEHI, M., ZHOU, N., AND LI, X. Communication
systems engineering, vol. 94. Prentice Hall New Jersey, 1994, pp. 70–131.

[38] RABBANI, S. Derivation of the Matched Filter as the Highest SNR
Linear Estimator. http://srabbani.com/matched_filter.pdf, 2006.

[39] RAHMATI, M., PANDEY, P., AND POMPILI, D. Separation and classifi-
cation of underwater acoustic sources. In Underwater Communications
and Networking (UComms), 2014 (Sept 2014), pp. 1–5.

[40] ROHLING, H. Mismatched filter design for pulse compression. In
Radar Conference, 1990., Record of the IEEE 1990 International (May 1990),
pp. 253–257.

[41] ROSE, C. S., STONER, A. W., AND MATTESON, K. Use of high-
frequency imaging sonar to observe fish behaviour near baited fishing
gears. Fisheries research 76, 2 (2005), 291–304.

[42] ROSS, D. Mechanics of underwater noise. Elsevier, 2013.

[43] ROUPHAEL, T. J. RF and digital signal processing for software-defined
radio: a multi-standard multi-mode approach. Newnes, 2009, ch. 7.3.4.

[44] ROYDEN, H. L., AND FITZPATRICK, P. Real analysis, vol. 198. Macmil-
lan New York, 1988.

[45] SCHOCK, S. G. A method for estimating the physical and acoustic
properties of the sea bed using chirp sonar data. IEEE Journal of Oceanic
Engineering 29, 4 (Oct 2004), 1200–1217.

[46] SCHOLNIK, D. P. Optimal filters for range-time sidelobe suppression.
In Signal Processing Conference, 2000 10th European (2000), IEEE, pp. 1–4.

[47] SIMIC, S., ZEJAK, A., AND GOLUBICIC, Z. Range sidelobe reduction
in the portable battlefield surveillance radar. In Telecommunication in
Modern Satellite Cable and Broadcasting Services (TELSIKS), 2011 10th
International Conference on (Oct 2011), vol. 2, pp. 571–574.



BIBLIOGRAPHY 152

[48] SNYMAN, J. A. Standard methods for constrained optimization. Prac-
tical Mathematical Optimization: An Introduction to Basic Optimization
Theory and Classical and New Gradient-Based Algorithms (2005), 57–96.

[49] SUNARDI, S., DIN, J., YUDHANA, A., AND HASSAN, R. B. R. Target
strength for fish identification using echo sounder. Applied Physics
Research 1, 2 (2009), 92.

[50] TREES, H. L. V. Detection, Estimation, and Modulation Theory: Radar-
Sonar Signal Processing and Gaussian Signals in Noise. Krieger Publishing
Co., Inc., 1992.

[51] TREVORROW, M. V. Boundary scattering limitations to fish detection
in shallow waters. Fisheries Research 35, 12 (1998), 127 – 135.

[52] VACCARO, R. The past, present, and the future of underwater acoustic
signal processing. Signal Processing Magazine, IEEE 15, 4 (Jul 1998),
21–51.

[53] WALDRON, S. Generalized welch bound equality sequences are tight
frames. Information Theory, IEEE Transactions on 49, 9 (Sept 2003),
2307–2309.

[54] WELCH, L. Lower bounds on the maximum cross correlation of signals
(corresp.). Information Theory, IEEE Transactions on 20, 3 (May 1974),
397–399.

[55] WENZ, G. M. Review of underwater acoustics research: Noise. The
Journal of the Acoustical Society of America 51, 3B (1972), 1010–1024.

[56] WILSON, O. Introduction to the Theory and Design of Sonar Transducers
Peninsula. Los Altos, CA, USA, 1988, p. 1.

[57] WINDER, A. Ii. sonar system technology. Sonics and Ultrasonics, IEEE
Transactions on 22, 5 (Sept 1975), 291–332.



BIBLIOGRAPHY 153

[58] WIRTH, W.-D. Radar techniques using array antennas (FEE radar, sonar,
navigation & avionics series), vol. 10. IET, 2001, pp. 125–155.


