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Abstract 

Wings over Wairio: 

Using UAV imagery to perform fine-scale mapping of wetland vegetation 

 

by 

Patrick Hipgrave 

 

Differentiating between species of plants in aerial imagery is often challenging and, in some cases, 

can be impossible without significant field data collection. However, remote sensing technology is 

developing to the point where it is increasingly possible to eliminate the need for extensive fieldwork 

entirely and conduct non-disruptive monitoring of fragile environments. The increasing availability of 

UAV platforms with integrated high-resolution cameras and low-cost image processing software is 

also making remote sensing operations accessible to those outside the scientific community with an 

interest in environmental monitoring. This project trialled an emerging set of image analysis 

techniques called ‘object-based image analysis’ to create fine scale maps of a recovering wetland 

area, based on aerial photographs collected using a consumer-grade UAV (unmanned aerial vehicle). 

The effects of including additional ancillary data (such as digital surface models (DSMs) and 

multispectral imagery) in the classification process were also assessed to compare the ability of a 

standard digital camera to produce high-accuracy classifications to that of a more specialised 

multispectral sensor. The inclusion of this extra information was found to significantly improve 

classification accuracy in almost all cases, making a strong argument for the inclusion of ancillary 

data whenever possible, especially when considering the ease with which ancillary datasets can be 

produced.  The high-resolution (between 2 and 4cm/pixel) imagery provided sufficient detail to 

observe 28 distinct land cover classes in total, with around 20 classes per image. While the number 

of classes in the classification scheme may have imposed limits on the overall accuracy of the 

classified maps, several classes were classified with a high (70% or greater) level of accuracy, 

including two invasive species, showing that the object-based school of image classification has 

potential to be a powerful tool for detecting and tracking individual vegetation types. 
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Chapter 1 

Introduction 

1.1 Introduction 

Wetland environments may change rapidly over time, therefore precise tracking of temporal changes 

in wetland surface cover requires more frequent monitoring. While the use of Unmanned Aerial 

Vehicles (UAVs) as aerial remote sensing platforms is not a novel concept and neither is object-based 

image classification of vegetation, there is currently a dearth of studies that deal with the subject in 

relation to the environment of New Zealand. Additionally, none of the studies that deal specifically 

with wetlands e.g. (Cordeiro & Rossetti, 2015; Lechner, Fletcher, Johansen, & Erskine, 2012) focused 

on a wetland that was undergoing restoration at the time.  

There is also a disagreement within the literature regarding the effect that the additional of ancillary 

data might have on the results of their image classification. Some, for instance Kim, Madden, & Xu, 

(2010) and Waser et al (2008) argue in favour of the inclusion of topographic or multispectral 

variables alongside visible-spectrum imagery, some (Campbell & Whynne, 2011) suggest 

improvements are not guaranteed, and others (Pande-Chhetri, Abd-Elrahman, Liu, Morton, & 

Wilhelm, 2017; Dronova, et al., 2012) make no reference to the matter at all. It is possible that this 

phenomenon that has occurred due the development and adoption of UAV technology for various 

applications outpacing the understanding of the relationship between method and data quality 

(Dandois, Olano, & Ellis, 2015).  

Many users of UAVs are comparative novices, particularly in New Zealand wetlands, where many 

wetland restoration projects are undertaken by volunteers with no particular training in ecological 

science or remote sensing. Such projects are often conducted without access to the scientific 

expertise, equipment, and sources of funding of career scientists. However, the widespread adoption 

of UAVs and availability of low-cost image processing software is likely to increase their use by 

amateur wetland restoration teams. Given that the ‘gold standard’ of remote sensing typically 

involves the use of expensive multispectral sensor suites, the quality of studies conducted by those 

without access to these high-quality sensors is an unknown quantity. It may be that adding 

multispectral ancillary data does not improve the accuracy of classification to a degree that would 

justify the associated additional expense. A reliable classification scheme may simply require data 

that can easily be produced from ‘off-the-shelf’ sensors and aerial platforms that are easily accessed 

and operated by the general public. 
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1.2 Research Questions & Objectives 

The use of UAVs as remote sensing platforms is expanding at an increasingly rapid pace. Despite this, 

there have been no wetland monitoring projects conducted via UAV whose duration extended 

beyond a single survey covering one instance in time, either in New Zealand or elsewhere. 

Additionally, there appears not to be a consistent view on the merits of the inclusion of ancillary data 

sources. Therefore, this project will conduct a year-long monitoring programme of a recovering 

wetland area whilst simultaneously examining how the accuracy of object-based image analyses may 

be improved with the addition of a range of ancillary data types. 

This project will answer two primary research questions: 

1. Test the proposition that UAVs can provide accurate and convenient assessment of changes 
in vegetation and water coverage over time, using a recovering wetland area as a case study. 

2. To what extent is the accuracy of the image classification process improved with the addition 
of ancillary data, such as digital surface models or near infrared imagery? 

To answer these questions, the project will use object-based image analysis of orthomosaics 

captured with a UAV to pursue several objectives, namely:  

• Create a series of classified raster images to represent vegetation and surface cover at 

seasonal intervals. 

• Compare the results of the image classification process when ancillary (surface model or 

near-infrared) data is included in concert with the true-colour imagery. 

• Compare the extent of the target classes in the captured images with that evident in 

previously gathered data to look for changes over time. 

• Assess the feasibility of using a UAV for gathering ground-truthing data for post-classification 

verification of results and remote identification of plants. 

On completion, this project will have provided several important contributions to the literature 

surrounding aerial remote sensing of vulnerable environments. First and foremost, it will provide 

evidence in support of the inclusion of ancillary data in the classification of aerial imagery by 

documenting the effect that different varieties of ancillary data have on the results of the image 

classification. At the same time, it will test and report the ability of an object-based approach to 

provide species-specific classifications in an environment with a high degree of heterogeneity both 

within and between a large number of land cover classes.  Additionally, it will provide evidence of the 

ability of a research team with limited experience, personnel, budget and time to gather imagery and 
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process it into maps with much greater levels of detail than might otherwise be available without 

recourse to contracting professional UAV operators or GIS technicians. It will also support the 

assertion that UAVs are well-suited to surveying fragile environments as put forward by Anderson & 

Gaston, (2013) among others. This will be done by demonstrating the ability of UAVs to operate 

within such an environment without causing harm or disruption to the local flora or fauna. Protecting 

the latter from UAV-induced distress is both an ethical and legal concern constraining the wider use 

of UAVs in both New Zealand and elsewhere (Gonzalez & Johnson, 2017; Department of 

Conservation, 2019). Finally, the project will produce a valuable inventory of land cover and seasonal 

change within a recovering wetland area. 

1.3 The Wairio Wetland Block 

This thesis uses the Wairio wetland as a case study to investigate the research questions posed 

above. The wetland at Wairio, in the Lower North Island of New Zealand has only recently begun to 

be restored to a state approaching its natural condition, having been drained and converted into 

farmland during the 1960s and 70s. As part of the clearance programme, most of the native forest 

and sedge was removed, and exotic grasses suitable for cattle grazing were planted in their place. 

The land passed into the ownership of the Department of Conservation (DOC) in 1987 but no serious 

efforts were made to reverse the ecological changes caused by two decades of agricultural 

development and the land remained open for occasional grazing for a number of years. In 2005, 

Ducks Unlimited New Zealand (DU) and DOC entered into a partnership to undertake restoration of 

the area (Ducks Unlimited, 2016).  

Since then, several measures have been taken to restore the area into wetlands. A number of earth 

dams have been created to retain surface water in the site, resulting in large areas of former 

grassland now being permanently or semi-permanently flooded. A significant programme of re-

planting is ongoing to restore native vegetation to the area. As a result, most of the vegetation is 

comprised of isolated, compact stands of native trees, including manuka and cabbage trees, with 

smaller plantations of toetoe and flax being scattered throughout the site. A few large kahikatea 

(Dacrycarpus dacrydioides) and totara (Podocarpus totara) trees are also present and are the only 

remnant of the original forest. Several species of exotic grasses, including tall fescue (Lolium 

arundinaceum) and Yorkshire fog (Holcus lanatus) are widespread and make up most of the ground 

cover in open areas, giving way to grasses, sedges and rushes that are more tolerant of aqueous 

conditions in proximity to bodies of water. Meanwhile an eradication programme is underway to 

control weeds which are still well-established in the area including blackberry and gorse bushes, 
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supplemented by recent incursions of Bidens frondosa.

 

Figure 1: Boundary of the Wairio Wetland (approximate) Imagery dates from 2018 

The restoration programme means that the vegetation present in the site should be changing at a 

faster rate and should exhibit a greater deal of variation over time than would be present in a natural 

wetland. Therefore, a monitoring programme that can document the seasonal and successional 

changes that occur within the wetland would be a boon to restoration efforts as it would allow for 

better measurements of the rate at which vegetation is recovering and spreading. This would serve 

to illustrate the degree to which the goals of the project are being met or whether a specific area 

requires more remedial work. Understanding seasonal fluctuations in water cover can also be useful 

for managing or predicting habitat and nesting sites for waterfowl, threatened species like the 

Australasian Bittern in particular. A programme that leveraged remote sensing techniques would also 

allow for better targeting of weed species that would be difficult to find on foot, owing to the 

difficulty in accessing parts of the wetland now that many areas of dry land are cut off by water.  

1.4 Thesis Structure 

Chapter 2 presents a review of the literature which has contributed to the development of this 

project, with a particular focus of the recent applications of UAVs for remote sensing and aerial 

photography, the wetlands of New Zealand and the field of image classification for mapping and 

change detection. 
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Chapter 3 provides the methodology of the project, beginning by covering the methodology used to 

plan and conduct the survey flights. Following this, the processes used to classify the imagery 

datasets into land cover classes will be detailed and finally the means by which the accuracy of the 

image classifications were assessed will be described. 

Chapter 4 presents the results of the image classification process, including a description of the 

effects of the inclusion of ancillary data on the process as well as the surface cover maps of each site. 

The results of the accuracy assessments will also be discussed at this point. Chapter 4 also outlines 

the results of the change detection, describing the observed pattern of changes in the study areas 

over the course of the project.  

Chapter 5 presents an evaluation of the projects methods and results, followed by the conclusions 

drawn from the project. 
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Chapter 2 

Literature 

2.1 Aerial Remote Sensing 

Photogrammetry is one of the oldest scientific uses of aerial images. Though satellite imagery has 

replaced aerial imaging as the go-to option for imaging very large expanses at once, the relatively low 

altitude of aerial shots allows for greater levels of detail in the photograph, with the advent of low-

flying UAVs (Unmanned Aerial Vehicles) allowing for extremely detailed maps of topography and land 

cover to be produced over relatively small areas. 

Aerial remote sensing is a comparatively cost-efficient method of gathering data over large expanses, 

whilst field surveys require significant logistical planning, can be time consuming and even be 

disruptive or damaging to the environment being surveyed (Bollard-Breen, Brooks, & Jones, 2015). 

Recent developments in remote sensing technologies have led to the development of new, low-

impact methods of monitoring the environment from a distance and the use of conventional piloted 

aircraft or UAVs as airborne platforms for a wide array of scientific equipment allows for survey 

missions to be conducted without researchers needing to be physically present in the area. While 

satellite-based systems are theoretically capable of producing high-resolution1 maps of wetland 

areas, the levels of heterogeneity present in wetland vegetation are such that precise classification of 

satellite imagery would be challenging without collecting spectral measurements in the field with 

which to ‘train’ the image classification process.  

2.1.1 The Use of UAVs for Remote Sensing 

When monitoring wetland areas, capturing remotely-sensed data from an aerial platform has many 

advantages over on-site surveys. Though their use for environmental monitoring is still an emergent 

field, there has been an increase in their use over the last decade as small UAVs have become 

increasingly capable and affordable (Anderson & Gaston, 2013). Using UAVs to capture imagery 

allows for improved temporal and spatial resolutions in comparison to manned aircraft. The former 

advantage derives from the UAV’s ability to be readied for flight and deployed more rapidly while the 

latter stems from the UAV’s small size allowing it to be safely operated at very low altitudes (Giles & 

Billing, 2014), allowing for high spatial resolution image capture even with smaller or less advanced 

sensors than those that might be fitted to a full-size aircraft. Use of a self-piloted or autonomously 

operated UAV allows greater levels of user control over the final product as the surveyor is in full 

 
1 30cm/pixel resolution from the Worldview-4 satellite is currently among the best commercially available 
offerings. For contrast, the resolution of the mages gathered by the UAV in this project is 2cm/pixel. 
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control over the parameters of the flight. By comparison, conventional aircraft are expensive to hire, 

operate and maintain (Kumar, 1997); while pilots require special training and qualifications to 

conduct survey flights, which are normally restricted by local aviation regulations to a greater degree 

than UAV flights are. Additionally, it is occasionally illegal or unsafe to operate a full-size aircraft in 

certain areas or below certain altitudes where UAVs may operate with impunity, although the 

reverse is also true and there are increasing calls for tighter regulation of UAV use (Shelley, 2018). All 

these factors combine to render conventional aircraft impractical to use for small scale surveys or for 

projects with limited budgets. UAVs are far more cost-effective than manned aircraft as after an 

initial purchase the UAV is reusable ad infinitum at no extra cost to the user beyond occasional 

maintenance and requires no fuel (at least in the case of smaller, battery-powered models) or 

specialist training to operate.  

The use of UAVs as rapid, low-impact alternatives to ground surveys is a theme echoed in a number 

of papers, including Bollard-Breen, Brooks & Jones (2015), Chabot & Bird (2011), Johnson-Roberson, 

Murphy & Bongiorno (2013) and Anderson & Gaston (2013). All these studies cite advantages: such 

as the ability to easily access regions that are difficult for researchers to access on foot; providing 

very-high resolution images at low altitude, thus improving the researcher’s ability to detect objects 

on the ground and the increasing affordability of UAV systems making aerial surveys more accessible 

to the scientific community. Commonly noted disadvantages include limited flight time and payload, 

vulnerability to inclement weather conditions, and poor image resolution at higher altitudes. 

A further limitation of UAVs is related to the range of available sensors that may be employed. Whilst 

multi- and hyper-spectral sensors, as well as LiDAR sensors, are increasingly available and affordable, 

they remain considerably more expensive and offer poorer spatial resolution in comparison to RGB-

only cameras that often come pre-equipped on most off-the-shelf UAVs. As well as this, many off-

the-shelf UAVs are not capable of being fitted with additional sensors without undergoing significant 

modification. Consequently, research projects with a limited budget must be designed to make the 

most of high-resolution true-colour imagery. In order to do this, it is necessary to employ image 

analysis algorithms that can account for the textural and spatial characteristics of objects present in 

the images, as well as their spectral properties. The umbrella term for this category of image analysis 

methods is ‘Object-Based Image Analysis’ (OBIA), which will be discussed in detail in section 2.4.3. 

Some comparable studies to this project include Pande-Chhetri, Abd-Elrahman, Liu, Morton, & 

Wilhelm (2017) who used RGB aerial imagery captured via UAV in combination with OBIA techniques 

to detect invasive weeds in a wetland area in southern Florida and compared the accuracy of object- 

and pixel-based methods for the same purpose. They found that OBIA consistently outperformed 

pixel-based approaches, with a peak classification accuracy of 70%, but required considerably more 
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work on the part of the user to adjust the parameters of the classification and refining the classified 

image to achieve the best possible results, a process which required specialist knowledge of the 

vegetation present – a quality which may not always be possessed by the surveyor. In 2015, Peña et 

al. evaluated a range of visible-light and multispectral cameras fitted to a UAV to detect weed 

seedlings based on the unique physical and spectral properties of the weed plants in contrast to their 

surrounds. They found that up to ~91% of the weed population in their study area could be detected 

through this method, which allowed for better targeting of weed eradication programs, thus 

removing the need to spray wide swathes of area with herbicide. Lechner, Fletcher, Johansen, & 

Erskine, (2012) also used a UAV to gather both visible-light and multispectral imagery with which to 

perform surface cover classification of swampland areas in the Blue Mountains of Australia. They 

noted that one of the primary difficulties was distinguishing between vegetation types where there 

was a lack of spectral contrast between classes. 

2.2 New Zealand’s Wetlands 

Wetland ecosystems occur on the borders of terrestrial and aquatic ecosystems, at the point where 

land and water overlap. As a result, wetlands are characterised by areas of permanent water, as well 

as areas that are frequently inundated. The variable water levels require that any plants that become 

established within the wetland must have a high tolerance for waterlogged soil, or be able to quickly 

re-colonise areas of dry land exposed as water withdraws.  

Wetlands provide a number of important ecosystem services, including water purification, 

floodwater management and habitat provision. Despite this, it is estimated that less that 10% of New 

Zealand’s wetlands remain (Ausseil, et al., 2008). Of that 10%, much of what remains exists in a 

highly altered state owing to clearance by fire following Māori settlement, and later by logging, 

further land clearances and the introduction of various weeds following the arrival of European 

settlers (Ausseil, et al., 2008). Many wetlands were drained and cleared following European 

settlement in order to use the land for agriculture or urban development and they remain highly 

susceptible to harm caused by human activity (Hansford, 2010). The ecological importance of 

wetland areas is reflected in the Resource Management Act (1991) in which wetlands are identified 

as high priority for protection and preservation. Consequently, maintaining accurate inventories of 

existing wetlands is critical to preventing further loss and conserving the remaining wetlands for the 

ecosystem services they provide.   

As well as biological services, wetlands also represent areas of special social and cultural value to 

different groups. For Māori, wetlands have historically been vital sources of traditonal foods and 

plant materials for use in construction and weaving. Tourists, nature-lovers and hunters are drawn to 

wetlands by the diversity of birdlife, the environment’s natural aesthetic and the recreational 
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opportunities found within, which can also provide secondary economic benefits at a local scale via 

these persons patronising local businesses, paying for hunting licences, and so on. 

2.3 Wetland Vegetation Mapping 

Combinations of aerial and satellite imagery are commonplace tools for wetland mapping at varying 

scales. Satellite mapping is usually used for mapping larger areas, and a single image can be used to 

classify an entire wetland system. This, combined with the frequency with which satellites can 

repeatedly cover a study area and the quantity of archival data available have played to the 

advantage of a number of mapping projects (Ozesmi & Bauer, 2002). 

However, owing to the comparatively poor spatial resolution offered by satellite images most studies 

are often limited to rough classifications using generic surface types (Ruwaimana, et al., 2018). 

Species-specific classification of vegetation may become prohibitively difficult in such cases as the 

available spectral information is too limited to differentiate between species that occur in close 

proximity to one another, or that have too small a spatial footprint to be easily detected in imagery 

with a lower spatial resolution. Imagery gathered by aircraft allows for more detailed mapping and 

classification, but at the cost of reduced coverage area. Imagery gathered by UAV is often used when 

the highest possible level of precision is desired or in cases where smaller study areas are involved, 

as the limited flight endurance of most commercially-available models of UAV limits their range to 

strictly small-scale surveys of areas of a few dozen hectares (Anderson & Gaston, 2013). 

2.3.1 Ancillary Data Sources – Digital Surface Models 

Wetland mapping projects often employ a range of remote sensing products in addition to true-

colour imagery. Topographic data can be derived from several sources, including LiDAR, radar 

topographic mapping or stereo-photogrammetry and is commonly employed in conjunction with 

aerial photography (Li & Chen, 2005; Waser, et al., 2008; Kim, Madden, & Xu, 2010). Topographic 

data is usually represented in the form of Digital Elevation or Surface Models (DEM/DSM). These 

should not be confused for one another as they are used to represent elevation in different ways. 

DEMs represent a ‘bare earth’ raster grid, showing only the elevation of the ground, with features 

such as trees and building filtered out. A DSM does not filter out such features, so can represent both 

the height of an object above ground level and the elevation of ground level itself. 

The use of digital surface models allows objects in an otherwise two-dimensional image to be given 

additional contextual characteristics that can distinguish them from their surroundings, which can be 

particularly useful where such objects might be otherwise indistinguishable from terrain when only 

considering spectral information. Typical applications include detecting tree stumps (Goldbergs, 

Maier, Levick, & Edwards, 2018), estimating forest structure (Mahlangu, et al., 2018), measuring 
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above-ground biomass (Lin, Wang, Ma, & Lin, 2018) and differentiating between mangrove species 

based on their comparative size (Cao, et al., 2018). 

Approaches that include digital surface models for similar applications to those described here tend 

to have much higher levels of classification accuracy that those drawing solely on spectral 

information. For instance, Li & Chen (2005) tested a method of mapping wetlands that incorporated 

optical imagery from Landsat 7, SAR imagery and DEMs and found that their method correctly 

identified their target classes at a rate that varied between 71% and 92% depending on the class. This 

rate dropped to between 24% and 89% when employing only true-colour imagery. However, 

Campbell and Whynne (2011) noted in a review of image classification methods that the inclusion of 

a DSM does not always result in an improvement in classification accuracy. Puzinas (2017) found that 

including a DSM to aid land cover classifications actually decreased accuracy by around 2%, but their 

approach to selecting training data may have been the source of this reduction, rather than the DSM 

itself. 

2.3.2 Ancillary Data Sources – Multispectral Imagery 

Multi- and hyperspectral data is increasingly available from earth observation satellites and from 

miniaturised sensors that may be fitted to aircraft or UAVs. The distinction between the two types 

lies in the number and width of discrete wavelength bands in the electromagnetic spectrum that a 

sensor may detect – the ‘spectral resolution’. Multispectral sensors can generally detect three to ten 

bands, which may include both visible and non-visible wavelengths. Common multispectral products 

include a range of infrared imagery, including Near Infrared (NIR) and Red Edge (RE), Thermal 

Infrared (TIRS). By contrast, hyperspectral sensors, such as NASA’s Airborne Visible / Infrared Imaging 

Spectrometer (AVIRIS) may detect in the region of two hundred discrete bands - AVIRIS detects 224.  

The use of multi- and hyperspectral sensor allows for the spectral reflectance in the non-visible range 

to be leveraged to improve the accuracy of image classifications (Berhane, et al., 2018). The higher 

spectral resolution of these sensors allows them to distinguish between different surface types that 

appear alike to the eye, but feature different levels of reflectance in a non-visible wavelength. This is 

advantageous when mapping land cover types with high levels of heterogeneity in terms of the 

number of types present, but low levels of separation between types in the visible spectrum. This 

additional discriminatory power has resulted in the increasingly widespread adoption of beyond-

visible spectrum imagery for wetland mapping. (Hirano, Madden, & Welch, 2003; Berhane, et al., 

2018; Ramsey & Laine, 1997).   

While this class of sensors are far more versatile than optical sensors, they are often limited by poor 

spatial resolution and increase the complexity of the procedures required for image processing 
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(Hirano, Madden, & Welch, 2003). However, the loss of spatial resolution in aerial multispectral 

imagery can be made up for by reducing the altitude of capture, so a multispectral sensor fitted to a 

low-flying UAV can acquire much more nuanced imagery than a space-based sensor or one mounted 

to a full-size aircraft (Ruwaimana, et al., 2018). 

2.4 Image Classification Techniques 

Image classification refers to the practice of grouping collections of pixels in a reference image into 

several ‘classes’, based on the application of statistical or logical decision rules (Kavzoglu, 2017). In 

the context of remote sensing, this is done in order to convert the reference image into a thematic 

raster map of different types of land use or cover which may be drawn on for quantitative 

measurements of the spatial coverage of a given class, or changes in land cover over time. Image 

classification comes in a number of forms, from manual interpretation and digitisation of features to 

automatic ‘unsupervised’ classifications. 

2.4.1 Manual Interpretation & Digitisation 

Visual interpretation of remotely sensed imagery is still a viable technique and remains in common 

use within aerial mapping projects. The practice is highly reliant on the interpreter being familiar 

enough with the types of vegetation present to reliably identify them in the photograph and also 

requires them to make consistent decisions based on their interpretation of the characteristics of 

objects visible in the image. To improve the consistency of their decisions, researchers may create a 

decision tree to inform their choice of classification. Characteristics that typically inform classification 

include shade (colour), texture, size, shape and position relative to other objects (Avery & Berlin, 

1992). Though manual interpretation has been found to be more accurate than automated 

classification processes (Morgan, Gergel, & Coops, 2010), it also requires a greater investment of 

time and a greater level of skill on the part of the researcher to accurately trace the borders of 

features representing a given class (Wulder, 1998). As a result, the trend within the remote sensing 

community has been to increase the use of fully or partially automated pixel and object-based image 

classification techniques. 

2.4.2 Pixel-Based Classification 

Prior to the advent of object-based classification methods, remote sensing was primarily conducted 

using either supervised or un-supervised forms of pixel-based classification. In both forms, the 

classification algorithm considers the spectral properties of each pixel in the image and assigns the 

pixel to a class based on these.  
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Unsupervised classifications will group pixels by dividing the range of spectral values present in the 

entire image into a defined number of classes and then assigning every pixel to the class it most 

closely matches. This method is a ‘quick and dirty’ form of classification that typically produces 

results that lack the level of detail present in supervised classifications but is much faster to process 

as it eliminates the need to devote time to creating training datasets for the classification algorithm. 

As such, it is most commonly used for initial exploratory analyses (Blaschke, 2010). 

Supervised classifications differ as they sort pixels into classes which are based on the properties of 

groups of pixels identified by the user as being typical examples of the type of surface they 

represent, known as ‘training data’. This allows the classifier to be tailored to identify certain types of 

surface while ignoring others. Supervised methods are generally preferred in situations where a 

greater degree of accuracy is desired, and the extra time taken to create the training data is not a 

limitation. 

2.4.3 Object-Based Classification 

Object-based image analysis (OBIA) differs from other methods of classification as rather than 

classifying each individual pixel in the image based on the pixel’s spectral properties, the process 

looks for contiguous clusters of pixels with similar spectral, spatial and geometric characteristics 

according to user-defined rules (Dronova, Gong, & Wang, 2011). These clusters are then presented as 

individual ‘objects’, segmenting the raster image into a collection of vector polygons. Following this, 

the user identifies polygons which serve as examples of the target object in a similar manner to 

supervised pixel-based classifications. 

OBIA has been found to delineate objects more accurately in images with higher spatial resolutions 

and is consequently well-suited to analysing high-resolution images captured with a low-flying UAV 

but produces less precise results than from images taken from an aircraft or satellite (Pande-Chhetri, 

Abd-Elrahman, Liu, Morton, & Wilhelm, 2017). Object-based classification has been successfully used 

for vegetation mapping in a number of studies that sought to distinguish plant communities. As an 

example, Lopez-Granados, et al. (2016) classified imagery gathered via UAV to distinguish weeds 

growing in maize fields, allowing for more precise targeted of herbicide spraying. The technique has 

also been proven to be effective in wetland areas with more dynamic relationships between water 

and plant coverage (Dronova, Gong, & Wang, 2011; Cordeiro & Rossetti, 2015). OBIA avoids the ‘salt 

and pepper’ effect that characterises errors in pixel-based methods, in which mis-classified pixels 

occur within clusters of pixels of a single other class, producing a speckled appearance. Object-based 

classifications also allows for additional spatial information from other sources to be included as 

ancillary data. For instance, a digital surface model can be included to help distinguish between trees 

and ground cover or small bushes of similar colour or texture. 
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2.5 Change Detection 

A common method for providing a quantitative measurement of change in land cover over time is to 

conduct pixel-by-pixel comparisons of classified imagery, with one classified image correlating to one 

time period (Lu, Mausel, Brondizio, & Moran, 2005). Post-Classification comparisons allow the 

researcher to observe changes from one class into another, which means it is well suited to tracking 

change in variables that are not well represented by numerical values, such as changes in NDVI score 

(Inzamul & Basak, 2017). This method of change detection has been used in numerous studies to 

detect change over a range of periods, with some relevant examples being Munyati (2000) who used 

this to monitor the change in a Zambian floodplain over a 10-year period with a view to relating the 

observed changes to a period of reduced rainfall and increasing water abstraction and Laine & 

Ramsey (1997), who compared the condition of a coastal wetland following a hurricane to its 

condition prior to the weather event.  

It is also possible to conduct change detection by manually interpreting the pre- or post-classification 

image for changes. While this method is less able to produce quantified results and is more 

dependant on the skills and knowledge of the user, visual interpretation has its own advantages such 

as being being able to compare multiple images at once, or leveraging those skills and knowledge to 

interpret textural or spatial differences that a machine-driven interpretation might miss (Bhatt, 

2019).  

Consequently, the manual method of change detection is still considered a valid method in spite of 

the array of digital means in common use. Mas and González (2015) applied manual interpretation 

techniques to improve the accuracy of land cover change detection in the state of Michoacán, 

Mexico. In this instance, manual interpretation was used as the arbiter in cases where their machine-

driven methods for change detection produced uncertain results and to perform accuracy 

assessment of the final maps. Panigrahy et al (2010) also used visual interpretation in the absence of 

any machine-driven methods to monitor deforestation in western India. Manual methods are also 

useful in situations when the desired change variable is not well represented by spectral variables or 

changes in land cover, as demonstrated by Yamazaki, Yano and Matsuoka (2005), who compared 

satellite imagery to assess damage to buildings following the 2003 earthquake in Bam, Iran. 
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Chapter 3 

Methodology 

 

Figure 2: Image Capture, Processing and Classification Process Diagram 

3.1 Study Area 

This project focused on three out of four monitored subsections in the Wairio wetland, which are 

referred by those involved with the restoration process as ‘stages’, the borders of which are 

indicated in figure 3 below. Restoration efforts have been concentrated in these areas; thus, they 

were thought to be of more scientific interest and would be easier to use to validate the process 

used to capture and classify imagery. Each stage presents a unique combination of open water and 

land as well as distinct patterns of vegetation, therefore, consistent results across each stage will 

suggest the process employed in this project will be valid not just at Wairio, but also at similar 

wetlands nationwide. 
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Figure 3: Outline of the four stages of the Wairio Wetland (Imagery from 2018) 

Stage one (see fig. 4 below) at the western edge of the wetland has recently been flooded and 

depending on the current level between 30-50% of the 7.87ha site is now submerged. A number of 

small islands are scattered around the flooded section, which have been thickly planted with Flax and 

Toetoe as part of the re-vegetation programme. Raupō is prominent around the water’s edge. The 

western edge of the stage is entirely covered in exotic grasses leftover from the period in which the 

land was in use as farmland, for instance Tall Fescue (Lolium (previously Festuca) arundinacea) and 

Yorkshire Fog (Holcus lanatus) which are also found in abundance in stage three. 
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Figure 4: Stage One of the Wairio Wetland Block, imagery Captured by Patrick Hipgrave (June 2018) 

Stage two (fig. 5) is the largest of the three surveyed stages, with a total area of 8.25ha. It is 

approximately 50% aquatic by surface area, with most dry land concentrated in the southern and 

eastern sections of the site. Most vegetation is limited to ground cover and low shrubs around the 

stage borders, with occasional clusters of cabbage trees and flax bushes scattered throughout. As of 

June 2018, a large population of Bidens frondosa had become established in the southern part of the 

stage.  
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Figure 5: Stage Two of the Wairio Wetland Block, imagery Captured by Patrick Hipgrave (June 
2018) 

Stage three (fig. 6) is mostly terrestrial and covers 5.2ha with a small area of open water. However, 

much of the northern section of the stage is low-lying and often floods following prolonged periods 

of rain or in wetter seasons. The re-planting operations have produced several very tight clusters of 

Manuka (Leptospermum scoparium), Konunu (Pittosporum tenufolium), Cabbage trees, Flax and 

Toetoe. Sedges (Carex geminata being the most common) are also present in moderate quantities 

and several patches of Bidens frondosa and Blackberry bushes are distributed around the stage. A 

few Kahikatea and Totara trees dating to the pre-settlement forest can be found here. Other rarer 

plants include Coprosma robusta, and C. propinqua and Olearia virgata which were planted as a part 

of the restoration programme.  
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Figure 6: Stage Three of the Wairio Wetland Block, imagery Captured by Patrick Hipgrave (June 
2018) 

Stage four was not studied, as with an area of approximately 30 hectares it was too large to conduct 

UAV operations over without having several observers present to monitor the craft, as is mandated 

by Civil Aviation regulations (Civil Aviation Authority of New Zealand, 2018). To assess the feasibiltiy 

of mapping a comparatively large area compared to the other stages, a trial flight over this stage was 

completed in June 2018. For this flight, an additonal observer in radio contact with the UAV operator 

was present in order to fulfil the CAA requirement for constant line-of-sight contact wth the UAV. 

During this flight, it was proved that a single observer could not maintain visual contact with the 

drone as due to the layout of the stage, the UAV would occasionally be obscured by trees or up to a 

kilometre away from the operator – well out of visual range. While the UAV could complete the flight 

with the available number of batteries2, several safety issues were noted regarding operating a UAV 

beyond line-of-sight. The common factor in these issues was the method of communication between 

observer and pilot. With the UAV out of sight, the pilot is reliant on the observer for notification of 

 
2 Approximately 2 and a half batteries were requiring to complete the flight, which lasted approximately 50 
minutes, including the time needed to land the UAV and swap used batteries for fresh ones. 
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hazards posed to the UAV, or problems with the UAV itself3. This means there is an additional delay 

in the pilot’s ability to react in emergency situations posed by the need to wait for the observer to 

become aware of the hazard and contact the pilot. Given that a delay of only a second could make 

the difference between a crash and a successful evasion, this communication lag is undesirable. 

Moreover, there must be a clear method of communicating instructions to the pilot when they are 

flying blind. For instance, the command ‘fly left’ could be interpreted in at least three ways: left 

relative to the observer, relative to the UAV’s current heading, or relative to the pilot. With two out 

of three interpretations being potentially dangerous, it is clear that beyond line-of-sight operations 

are not advisable for teams of operators and observers with little previous experience.  

Given this safety issue, and conscious of the fact that the UAV was not my property to risk, I opted to 

eliminate the potential for accidents by not pursuing further flights over stage four. This decision did 

not hinder the project’s aims, as the three remaining stages would still provide me with sufficient 

data to achieve my research aims. 

3.2 Survey Flights 

Survey flights were conducted between June 2018 and March 2019. To facilitate gathering imagery 

to represent seasonal change, flights were conducted in June, September, January, and March. 

True-Colour Imagery was captured using a DJI Phantom 4, a small quadrotor-type UAV. The Phantom 

4 has an integrated 20-megapixel camera mounted on a ventral gimbal for stability and which, when 

flown at a height of 50 metres above ground level produces imagery with an average ground 

sampling distance of 1.96 centimetres per pixel. Using a quadrotor UAV is advantageous in a wetland 

environment as the UAV’s ability to take off and land vertically4 allows it to be operated safely even 

when open, flat terrain suitable for use as a landing site is scarce. A further advantage afforded by 

the UAV’s small frame and VTOL capability is that it may be carried directly to the area to be flown 

over and launched onsite, thus conserving battery power, and reducing time in the air. However, 

quadrotor UAVs have a lower endurance range than fixed-wing types owing to their lower flight 

speed and inability to glide, thus the Phantom’s endurance of 20-25 minutes per battery meant it 

was only possible to survey one of the wetland stages per flight and a limited number of batteries 

permitted no more than one hour of flight time per day – in effect, three survey flights over any of 

stages one, two and three. 

 
3 For instance, changes in pitch of the rotor noise implying an issue with the UAV’s motor and/or rotors, or the 
UAV clearly struggling to fly against the wind. 
4 Commonly referred to as ‘VTOL Capability’ in aviation parlance. 
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To capture the imagery, the UAV was flown in a ‘lawnmower’ pattern at a constant height of 50 

metres above ground level, this height was chosen in order to achieve a target resolution of 2 

centimetres per pixel or better. Increasing the resolution beyond this point would have been 

prohibitive as it would have exponentially increased flight time, file size and processing time required 

in exchange for no significant improvement in the final product. Imagery was captured at intervals to 

achieve 80% forward and lateral overlap between images. This level of overlap exceeds the minimum 

necessary amounts to produce an orthomosaic5 by a considerable degree, but was deemed desirable 

to facilitate more accurate mosaicking of the captured images into a single orthomosaic by increasing 

the number of tie points between adjacent images, which in turn improves the resolution of the 

mosaic and the accuracy of the digital surface model produced from the images. 

Rather than manually flying the UAV, the aircraft’s flight path was plotted using DroneDeploy - an 

autopilot application which autonomously controls the UAV’s course and operates the camera 

independently of the UAV operator. This method keeps the flight altitude and the overlap between 

images constant as well as to optimise the aircraft’s flight path to make the most of the limited 

battery capacity. Manual operation would have resulted in a greater risk of inconsistent overlap 

between images, making stitching the images harder, possibly causing distortion or reduced 

resolution in areas of the orthomosaic, or even gaps where no imagery was captured. One flight plan 

was created for each of the three stages and each plan was designed to capture not only the target 

stage but enough area outside the stage boundaries to act as a buffer against edge distortion in the 

resulting mosaic. 

For the purposes of maintaining consistency between image datasets, all flights were conducted in 

an identical fashion, using the same flight plan and camera overlap settings. All flights were captured 

as close to solar noon – the time at which the sun is highest in the sky - as was practical, in order to 

increase the level of illumination of the terrain and reduce the appearance of shadows in the image 

as much as possible. An acceptable bracket of time for image capture was deemed to be within one 

hour before or after solar noon, except on overcast days where the appearance of shadows was 

much reduced.  

The weather played a significant role in constraining the UAV’s deployment. Because the UAV must 

fly in precise lines and at a low speed (10-15m/s), wind speeds equal to or greater than this could 

have the potential to blow the UAV off course. While the UAV can automatically adjust for occasional 

gusts, or constant wind speeds slower than its own velocity, it cannot compensate for constant winds 

above about 20 m/s and according to the manufacturer’s guidelines, should not be flown under 

those conditions. Additionally, the UAV cannot operate in the rain, though very light drizzle - 

 
5 PrecisionMapper recommends at least 70% overlap (PrecisionMapper Support, 2018) 
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‘spitting’ to use a colloquial descriptor - is safe. Therefore, wind and rain forced the postponement of 

a few flights in spring and autumn. The optimal conditions for flight are therefore a partly cloudy or 

overcast day, with no precipitation and calm winds, ideally less than 5 m/s. 

Every time a flight over a given area was conducted, the flight path used was identical to that used 

on the initial flight over the area being photographed, covering the same track in the same direction 

each time, thus ensuring that all objects in the survey area were photographed from the same 

perspective each time. While it is possible that small amounts of variation in flight path and altitude 

between flights may have been introduced by imprecision in the UAV’s onboard GPS receiver6, this 

level of variance is low enough that it is unlikely that this would have any noticeable effect on the 

images. 

The procedure for a typical survey flight is described below: 

Pre-Flight Checks 

• Once on location, position UAV on flat ground that is suitable for use as a take-off/landing 
point. 

• Insert battery and check charge level is sufficient for the planned flight.  

• Check propellers are securely attached, the gimbal clamp is removed, and the memory 
card is inserted correctly. Finally, check the lens of the camera is free of any dirt and is 
undamaged. 

Start Up 

• Power up the UAV and remote controller. Ensure the remote is set to ‘P’ (positioning) 
mode. Connect the mobile device to the controller via USB cable. 

• Using the UAV’s default interface app, check the internal compasses and gyroscopes are 
calibrated correctly and do not show any errors. If necessary, carry out a re-calibration. It 
is inadvisable to fly if the onboard sensors are displaying errors as this will reduce the 
accuracy of the aircraft’s flight path, or at worst lead to a ‘fly-away’ error in which the 
aircraft ceases to respond to control inputs correctly. 

• Confirm that ‘obstacle avoidance’ settings are switched on. 

• Close DJI Go to prevent conflicts with DroneDeploy, then open DroneDeploy app. Select 
the appropriate flight plan and confirm the flight path has loaded correctly. 

• Wait for the UAV to warm up and acquire a strong GPS positioning fix.  

• Select the mission start option on the mobile app. The UAV will automatically start up, 
launch, and proceed to the initial point in the flight plan and will then complete the flight 
autonomously. 

 
6 DJI rates the Phantom 4 Pro’s GPS unit’s accuracy to within +/- 0.5m vertically, and +/- 1.5m horizontally. 
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In Flight 

• If the UAV’s battery requires changing, the app will detect this and return the UAV to its 
launch point and land. After changing the battery, relaunch the UAV using the app. The 
UAV will proceed to the point at which it aborted the survey flight and continue the 
mission. 

• In the event of an emergency, the operator can assume manual control by switching the 
UAV into ‘S’ (sport) mode using the remote controller. This overrides the app, which 
otherwise blocks manual input on the controls. 

Landing & Post-Flight 

• The UAV will land automatically on or near the location it was launched from. The 
precision of the landing is affected by the quality of the UAV’s GPS fix. Take manual control 
if the UAV appears to be descending into a hazardous area. 

• On landing, DroneDeploy will shut down the UAV’s motors and produce a preview image 
taken from the survey flight. Check the preview image for distortion or unusual colouring, 
which would indicate a fault with the camera settings. 

• If the flight has completed to the user’s satisfaction, shut down the UAV.  Remove the 
rotors and battery and re-attach the gimbal clamp for transport. 

• Copy imagery from the memory card to a computer for processing. File storage should be 
set up to ensure that imagery set from different sites and flights are kept separate and 
well labelled. 

 

 

Notes on safety & legal aspects 

New Zealand Civil Aviation legislation, specifically General Operating Rule Part 101 (Civil Aviation 

Authority of New Zealand, 2018) mandates that all remotely operated aircraft regardless of size are 

subject to the rules of the air, thus it is not always possible to operate a UAV in the manner or 

location desired without seeking authorisation from one or more external parties. Depending on the 

category of the airspace the flight takes place in, operators may be required to seek permission from 

local air traffic controllers. Additionally, landowners and local authorities have a right to dictate 

additional terms and conditions which UAV operators must adhere to in order to fly over their land.  

The flights conducted as part of this project were covered under subsection ‘E’ of Civil Aviation 

Authority Rule Part 101 which covers lower-risk non-commercial flights. To ensure that the 

requirements for constant visual contact with the UAV were met, additional observers were brought 

in to assist in maintaining visual contact with the UAV. Since Lake Wairarapa is outside controlled 

airspace it was not necessary to notify aviation authorities about the flights, but for safety’s sake a 
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notification was posted on Airshare7 to warn any other aircraft that might happen to be operating in 

the same area. DOC requires that anyone wishing to operate a UAV over any area of conservation 

land apply for a permit and submit a risk assessment for their proposed flight. In this case my project 

was able to be conducted in accordance with a standing permit held by Victoria University of 

Wellington and so required no additional permission other than notifying the local DOC office of my 

intent to fly. 

3.2.1 Multispectral Imagery Collection 

In April 2019, a multispectral camera was made available to me and it became possible to pursue the 

use of multispectral data – specifically Near Infrared and Red Edge imagery. Whilst time constraints 

meant that only a single round of flights could be conducted, it was still desirable to pursue 

investigation into how classification accuracy might improve with the application of different 

combinations of ancillary data other than a DSM. Of particular interest was whether accuracy could 

be improved to greater levels than those achieved with data extracted from an ‘off-the-shelf’ 

camera, or whether the additional spectral resolution of the multispectral camera could compensate 

for the camera’s lower spatial resolution. 

In general terms, the methodology for these flights remained the same as before, with a few minor 

differences to account for the different equipment used. These flights were conducted with a DJI 

Matrice 200 quadcopter, as the Phantom is not able to carry third-party cameras. The camera used 

was a Micasense RedEdge-M, which features a set of five imagers to gather red, green, blue, NIR and 

RE wavelengths independently.  

Band 
Number: 

Band Name: Centre Wavelength (nm) Bandwidth 
FWHM (nm) 

1 Blue 475 20 

2 Green 560 20 

3 Red 668 10 

4 Near IR 840 40 

5 Red Edge 717 10 
RedEdge-M Image Bands (MicaSense Inc, 2017) 

These flights required the additional purchase and installation of a custom-designed mounting kit to 

fit the camera to the UAV as the RedEdge cannot be fitted directly to the Matrice’s gimbal mount. 

Part of the modifications required additional internal electrics to the UAV to power the camera from 

the UAV’s battery, which appeared to have the side-effect of reducing the flight endurance of the 

Matrice from around 30 minutes to 20 or less. Since the RedEdge camera has a narrower field of view 

 
7 A website operated by Airways NZ which allows UAV operators to register flights with the national air traffic 
control agency. 
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and cannot capture photos as quickly as the Phantom’s camera the altitude of the flights was 

increased to 60 meters in order to maintain the 80% forward and side overlap used in the regular 

flights. This produced a spatial resolution of approximately 4cm/pixel. Processing the images 

followed the same methods outlined below. 

3.3 Image Processing – Mosaic & Surface Model Generation 

The collected images from each flight over each stage were stitched into a single large image using 

PrecisionMapper, a cloud-based mapping and analytic service8. There were no processing options or 

parameters to specify, which has the advantage of limiting the potential for unintentional 

inconsistencies in the way the images are stitched. Each image has associated metadata detailing the 

UAV’s height, spatial coordinates and camera angle added to its metadata automatically upon 

capture which PrecisionMapper extracts and uses to overlay each image correctly. The process then 

blends the images together along the overlapping areas, creating a single colour-corrected image.  

PrecisionMapper also uses the raw images to create a digital surface model from the image. This is 

done by comparing the perspective difference between two overlapping images to establish the 

height of the object, a process known as stereophotogrammetry. This process creates a three-

dimensional point cloud which in turn is used to generate a digital surface model (DSM). The 

accuracy of this process is significantly improved by having high levels of overlap between images as 

this increases the number of reference points the program can detect and compare between images, 

which in turn allows for a larger point cloud and a more nuanced representation of elevation in the 

DSM.  PrecisionMapper allows for the DSM to be downloaded as an independent dataset from the 

orthomosaic, which is not a common feature of free online orthomosaic processing tools. The DSM 

created from each set of imagery was downloaded alongside the orthomosaic.  

Creation of the DSM is a necessary step in proper orthomosaic creation and is not a peculiarity of 

PrecisionMapper. The DSM is used to ‘orthorectify’ the image, removing perspective distortion and 

so making sure that objects in the image retain their correct proportions and position. While the 

need to create a DSM can be avoided if the target area is entirely flat, such a situation is surely rare, 

and certainly not the case in any of the three stages at Wairio.  

3.4 Image Classification 

All image classification was conducted using Harris Geospatial’s ENVI 5.4, which includes an object-

based image classification tool as part of the software’s ‘Feature Extraction’ add-on. The object-

based classification process is a multi-stage workflow. 

 
8 www.precisionmapper.com 
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3.4.1 Input 

The first stage of the classification workflow was to load all the required data into the program. 

Specifically, the mosaicked image to be classified and any additional data used to support the 

segmentation and classification, known as ‘ancillary data’, which is used to give the image 

segmentation and classification algorithm additional information to work with. For instance, adding 

the DSM should improve the classifier’s ability to distinguish between low-lying ground cover and 

larger objects such as bushes or trees which might otherwise be hard to tell apart if they have a 

similar colouration and texture. Near Infrared imagery is also commonly used for this purpose, as two 

species that appear similar to the human eye may have very different degrees of spectral reflectance 

in non-visible element of the electromagnetic spectrum. 

The imagery for each stage and season was classified individually and the DSM that was generated in 

tandem with a particular image and the NIR data (where applicable) were added as ancillary data, 

except when testing for the difference in classification accuracy caused by the lack of ancillary 

information. At this point, a processing mask was applied to confine the segmentation and 

classification algorithms and their outputs to within the border of the stage, as marked by the fence 

line around the border of each stage. 

3.4.2 Segmentation 

The second stage of the classification workflow was to segment the image. Segmentation divides the 

image to be classified into groups of neighbouring pixels that have similar properties, which are 

known as ‘segments’.  

Segmentation Bands 

The segmentation algorithm evaluates only the original image’s spectral bands by default, but can be 

customised to consider one or more ancillary datasets. For this project, the segmentation band 

settings were set up so that segmentation would be based on all the bands of every raster dataset 

included, as shown in table 3.1 below. 
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Table 3.1: Band Combinations for Segmentation and Classification 

RGB Only DSM  Multispectral  All Ancillaries 

Red, Green & Blue 

Bands 

Red, Green & Blue 

Bands 

Red, Green & Blue 

Bands 

Red, Green & Blue 

Bands 

 DSM Near Infrared Near Infrared 

  Red Edge Red Edge 

   DSM 

 

Choice of Algorithm 

ENVI features a choice of only two segmentation algorithms. The first, known as ‘Edge’ is optimised 

for detecting the edges of features, but relies on these being sufficiently well-defined in whatever 

imagery the algorithm is applied to. The second algorithm, called ‘Intensity’ is typically used to detect 

small differences in values such as those that might occur in a single-band image, whether these 

changes reflect different objects or not. This can lead to situations where multiple different objects in 

the real world are represented as a single object after segmentation, so the ‘Intensity’ algorithm was 

deemed unsuitable given the need for precise definition of objects in the image and was not used in 

accordance with the developer’s recommendations (ITT Visual Information Solutions, 2008). 

Scale and Merge Settings 

The ‘edge’ algorithm is controlled by two parameters. The ‘scale level’ controls the maximum size of 

segmented areas of the image, and by extension the number of objects present after the 

segmentation process. Scale may have a value between 0 and 100, with larger values resulting in 

fewer objects. Scale should be given a value that prevents both ‘over-segmentation’, which results in 

a single object being represented by multiple segments and ‘under-segmentation’ where multiple 

objects are represented by a single segment. In contextual terms, scale must be adjusted so that 

each segment produced by the algorithm represents only one type of surface cover. After some 

experimentation, scale was fixed at a constant value of 20 for all iterations of the image classification 

process. For detail of how this figure was arrived at, see section 3.4.5. 

The ‘merge level’ controls the algorithm’s ability to combine neighbouring segments with similar 

properties into a single segment. Like the scale setting, higher merge levels will reduce the number of 

individual segments produced, but increases the risk of under-segmentation. Following 
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experimentation, the merge level was fixed at 50.  The scale and merge levels were kept constant so 

that this project could focus on the consequences of including (or not including) ancillary data during 

the classification process. 

Parameter Refinements 

I opted not to investigate the effects that scale, merge, and algorithm settings would have on 

classification accuracy. Instead, I kept these parameters constant for all iterations of the classification 

process. To achieve this, it was necessary to determine what combination of parameters would be 

best suited for the range of situations and classification schema encountered in this project. This was 

done through a process of assessing previews of the segmentation image which adjusted in real time 

based on changes made to the segmentation settings. While this is a more subjective method of 

assessing the best combination of scale and merge factors in contrast to observing the effect of 

different settings on the final classification accuracy, visual assessment is a widely used method of 

testing the effects of segmentation settings (Zhang, Fritts, & Goldman, 2008). Moreover, the inherent 

subjectivity of this method can be overcome when a well-defined set of assessment criteria are in 

place (Gelasca, Ebrahimi, Farias, Carli, & Mitra, 2004).  

I based my assessment of the quality of segmentation on the principles proposed by Haralick and 

Shapiro (1985), which in their original or adapted forms have become a de facto standard (Zhang, 

Fritts, & Goldman, 2008) specifically: 

1. Regions should be uniform and homogeneous with respect to some characteristic(s). 

2. Adjacent regions should have significant differences with respect to the characteristic on 

which they are uniform. 

3. Region interiors should be simple and without holes. 

4. Boundaries should be simple, not ragged, and be spatially accurate. 

To test the settings to find the combination that best fit these criteria, I made use of ENVI’s capability 

to offer the user a preview of the segmentation image as the scale and merge settings are being set. 

By visually examining the preview images with scale settings of 5, 10, 20, 40 and 60 I was able to gain 

an impression of what settings would offer the best results for my purposes.  I tested the settings on 

the June imagery for each of the three stages simultaneously, in order to make sure that settings 

were transferrable between sites, rather than picking a setting that worked well in one location and 

relying on it being suited to the others. 

The coarser scale setting of 60 tended toward under-segmentation with very obvious segments 

which contained multiple classes, meanwhile the fine scale settings of 5 and 10 typically resulted in 
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over-segmentation within objects with variable texture or colouration. The intermediate settings of 

20 and 40 produced segments that appeared to be the best fit for the detectable objects in each 

image, with the former occasionally over-segmenting and the latter occasionally under-segmenting. 

I opted to proceed with a scale level of 20, reasoning that for the purposes of the study it was better 

to have the borders between classes correctly delineated at the cost of increased processing time 

owing to the larger number of segments – offset somewhat by the merge setting - than to risk the 

chance of two separate surface types being conflated. A larger scale setting would have been viable if 

it were not for the fact that I needed a high degree of precision from the classification in order to be 

able to classify vegetation at species level. Coarser scales would have been better suited if more a 

more generic classification were desired. Once I had fixed on a scale setting, I introduced merge 

settings to the test. Merge levels were initially set at either 0, 25, 50, 75 and 90. A merge level of 50 

proved to offer the best balance between reducing the total number of segments as much as 

possible whilst not merging segments that represented different classes. 

A potential alternative to either manual assessment or assessment based on classification accuracy 

would have been to create a reference image by manually digitising the visible objects in the aerial 

photograph and comparing this to the automated segmentation. A manually digitised image would 

be much more precise than a computer-generated one (Graaf, Koster, Vincken, & Viergever, 1994), 

but to create such an image would have been enormously time-consuming given the desired level of 

precision required delineation of individual objects. A typical image classification workflow for this 

project would take in the region of 3-5 hours, including processing time. By contrast, manually 

digitising the reference image alone would be the work of several days, even though the survey areas 

are not large.  

Since most of the literature on these subject deals with a range of different software suites, it was 

not possible to adopt the recommended settings used in other studies. As an example (Pande-

Chhetri, Abd-Elrahman, Liu, Morton, & Wilhelm, 2017) describe the effect of scale settings for the 

segmentation process in some detail, to the point of identifying optimal settings for segmenting 

objects of different sizes, but the software they used (Trimble eCognition) measures ‘scale’ 

differently to ENVI as the parameter in their program may be set between 5 and 300 or more, while 

ENVI only permits a range of 1-100. This difference in the way software suites treat parameters with 

identical names and functions - but different programming of the underlying algorithm renders it 

unlikely that Pande-Chhetri et al’s observation that a scale level of 40 was best for segmenting mixed 

communities of vegetation not dissimilar to those present in the Wairio study site would be directly 

applicable to ENVI’s scale setting. It was therefore necessary to ‘test and adjust’ the classification 

workflow to establish a consistent set of parameters for future use.  



 29 

3.4.3 Creating Training Data 

Once the segmentation process was completed, a set of segments were manually classified in order 

to create a set of training data. Training sites were selected according to the following criteria: 

1. Sites should be evenly distributed around the image, where the distribution of the relevant 

class allows this.  

2. A minimum of five, but usually around 10 or more distinct sites was used for all classes. The 

number of segments this would represent would vary depending on the class9.  

3. Training sites were at a minimum the size of the object they were intended to represent, for 

instance the whole head of a Cabbage Tree and all the segments it contained.  

4. Where a distinct object was not visible (e.g. grasses), training sites included all segments 

within a minimum area of approximately 5m2. 

5. The training sites should be representative of the majority of examples of that class.  

6. If intra-class variability is high enough (see the example below) create subclasses to 

represent the different expressions of each class. 

Training datasets needed to be redefined with each change in season as land cover changes in the 

wetland meant that data from a previous season might not be applicable to the current time. For 

instance, certain vegetation types would have gone dormant (as was the case for bidens) or been 

replaced by (or would have replaced) water as water levels rose and fell. 

Table 3.2 below sets out each class, with a brief description of what it represents, along with when 

and where it was observed. 

Table 3.2: List of Classes 

Class Name Represents: Observed: When Evident: 

Water All open water. All stages Constant 

Mixed Grasses Various exotic grass species that are too similar 
to distinguish. 

All stages Constant 

Brown Grass Exotic grasses, possibly in poor health that are 
distinctively brown in colouration 

All stages Winter & Spring 

 
9 Very homogenous classes like ‘Water’ and ‘Azolla’ tended towards fewer, larger segments, and around 20 
segments in total would be used as training sites. Classes broken into smaller segments were represented by 
several hundred segments, but the training sites for these classes would cover roughly equivalent areas to the 
sites with larger segments 
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Isolepis Isolepis sp. All stages Constant 

Yellow Isolepis Isolepis sp. that exhibits a distinctive yellow 
coloration. 

Stage 1 Spring 

Reeds Raupō (Typha orientalis) All stages Constant 

Rush Assorted Juncus species All stages Constant 

Sedge Various Carex species, primarily C. geminata All stages Constant 

Flax Flax/Harakeke (Phormium tenax) All stages Constant 

Toetoe Toetoe (Austroderia toetoe) Stages 1 & 3 Constant 

Cabbage Tree Cabbage Tree/Ti kouka (Cordyline australis) All stages Constant 

Manuka Manuka (Leptospermum scoparium) All stages Constant 

Kahikatea Kahikatea or other tree significantly larger than 
the average in each stage. 

All stages Constant 

Other Tree 1 Generic class - tree species with dark green 
colouration (Coprosma spp. etc) 

All stages Constant 

Other Tree 2 Generic class - tree species with brown 
colouration 

All stages Constant 

Other Tree 3 Generic class - tree species with light green 
colouration. (Kowhai, Pittosporum etc) 

Stages 1,3 Constant 

Azolla Red Azolla (Azolla rubra) All stages Spring – Summer 

Green Algae Unidentified water plant characterised by very 
light green colour, usually found on the water’s 
surface at the edge of flooded areas 

All stages Winter-Autumn 

Mixed Algae Vegetation covering the surface of an area of 
water that appears to be a mix of Red Azolla 
and ‘green algae’ 

Stages 2 & 3 Summer 

Yellow Algae Unidentified yellow water plant Stage 2 Summer 

Blackberry Blackberry bush (Rubus sp.) Stage 1, 3 Constant 

Bidens Bidens frondosa All stages Winter & Spring 

Dry Bidens Bidens frondosa – while dormant, has a very 
distinct white/grey colouration 

Stage 2 Spring 

Dry Vegetation Ground cover vegetation that is dead, dry, or 
dormant, characterised by light yellow to 
grey/white colouration 

All stages Constant 

Dormant Tree Tree that is either dead or dormant, 
characterised by grey colouration 

All stages Constant 

Waterlogged Grass Class representing grass or other ground cover 
that is submerged in, floating on, or emergent 
through standing water, but still visible above 
the surface 

All stages Most evident in 
Spring & Summer 

Mud Sediment exposed by retreating water All stages Autumn 

Shadow Area in shadow that is too dark to identify All stages Constant 

 

It was found that it was sometimes necessary to have multiple sub-classes representing a single 

surface type, for instance the appearance of water could vary greatly depending on the water’s 
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depth, turbidity or whether the surface was calm or not. In practice, this meant that several water 

subclasses would need to be defined as required: common examples included ‘brown’, ‘blue’ and 

‘rippled’.  

 

Figure 7: Comparison of water colouration within a stage 

However, small levels of variation in colour and texture within the examples for a class are 

acceptable and even desirable as the classification algorithm has a threshold for determining 

whether a segment belongs to a given class. If the range of possible values that represent a class is 

narrow, there will be an increased chance that a segment that should be assigned to the target class 

but has slightly different values than those that fall within the acceptable range will be mis-classified. 

3.4.4 Object-Based Classification 

Choice of Algorithm & Algorithm Settings 

ENVI offers three choices of classification algorithm, but as the Support Vector Machine (SVM) 

algorithm has been found in other studies10 to be a reliably accurate classifier, I opted to proceed 

using the SVM algorithm for consistency.  

Classification Bands 

Similar to the segmentation algorithm, the classification algorithm was set up so as to consider the 

values of all the available variables, including any ancillary data included in the workflow, as per table 

3.1 above. 

Attributes 

 
10 For instance, in Pande-Chhetri et al (2017), or Pal & Mather (2005) who found that the SVM algorithm 
consistently outperformed other algorithms when applied to surface cover classifications of UAV or satellite 
imagery respectively. 
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The classification algorithm was set to consider all spectral and textural properties of the segments, 

as follows: 

Table 3.3: Spectral Properties used for Classification 

Spectral Attribute: Description: 

Spectral Maximum Maximum value of the pixels comprising the region in each band. 

Spectral Minimum Minimum value of the pixels comprising the region in each band. 

Spectral Mean Average value of the pixels comprising the region in each band. 

Spectral Deviation Standard deviation value of the pixels comprising the region in each band. 

 

Table 3.4: Textural Properties used for Classification 

Textural Attribute: Description: 

Texture Range Average data range of the pixels comprising the region inside a kernel of a 

defined size.  

Texture Mean Average value of the pixels comprising the region inside the kernel. 

Texture Variance Average variance of the pixels comprising the region inside the kernel. 

Texture Entropy Average entropy value of the pixels comprising the region inside the 

kernel. 

 

3.5 Accuracy Assessment 

To quantify the effects that ancillary data had on improving classification accuracy, it was necessary 

to test both the overall and class-specific accuracy of the classifier, with and without ancillary data. 

To assess accuracy, I first created my own set of ‘ground-truth’ data with which to judge the 

classifier’s accuracy. The creation of the reference datasets (described in section 3.5.2) and the 

accuracy assessment was conducted using ArcGIS Pro 2.1 and is illustrated in figure 8. 
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Figure 8: Accuracy Assessment Process Diagram 

3.5.1 Image Preparation 

The classified images produced in ENVI were reclassified in ArcGIS Pro to combine some of the sub-

classes created in the training stage into a single class. For instance, the Spring classification for stage 

two included three separate ‘Water’ classes to account for differences in colour caused by depth or 

surface reflection, which were combined into a single class for the purposes of assessing accuracy. 

Reducing the number of classes where possible is desirable as this helps offset the reduction in 

accuracy inherent in classification schemes with larger numbers of classes. However, subclasses 

representing the same species that were significantly distinct from one another were left as 

individual classes. An example of this include the ‘Isolepis’ & ‘Yellow Isolepis’ classes, the latter of 

which is believed to represent Isolepis in either poor health or at a different stage in its growth 

pattern. A further example is the ‘Mixed Grass’ & ‘Dry Vegetation’ classes. While much of the ‘Dry 

Vegetation’ class represents dry grass stalks and so could arguably be counted among the mixed 

grass species, there was enough potential for overlap with other non-grass species to keep them 

apart. 

3.5.2 Creating Reference Data for Ground-Truthing 

Several methods of creating a reference image were considered. The most precise method would 

have been to manually digitise the class boundaries from the aerial photographs but this would have 

been time-consuming and potentially prone to error if the boundaries between classes were 

insufficiently distinct (Green & Hartley, 2000). Therefore, I opted to use a series of reference points 

distributed so as to create a stratified random sample of the actual surface cover in each site. 

Reference data was created for each site individually and was updated with each set of seasonal 
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imagery to account for changes in surface cover or water levels. The boundaries for the reference 

data were determined by a shapefile marking the fence boundary of each stage. Keeping all the 

reference points inside the stage ensured that all the reference points could be assigned a value from 

the classified images and that their ground truth value would not be that of a type of surface that 

was not included in the classification process – for instance the gravel paths bordering some of the 

stages. 

To ensure that the reference dataset was suitably comprehensive, each dataset contained at least 

1000 points, a figure determined from the general rule of thumb that for each class in the dataset 

there should be at least 50 points (Lillesand, Kiefer, & Chipman, 2004). Although some classifications 

included fewer than 20 classes, the minimum was kept at 1000 for consistency.  

To keep the allocation of ground truth data consistent in the event that the surface cover was not 

readily identifiable, I noted the identifying characteristics of each class to use these as a reference. 

The final decision of which class to apply would be based on which set of traits best matched what 

was evident in the image. Table 3.5 below lists these in full. However, the 2 cm/pixel resolution of 

the aerial photographs meant it was possible to determine what type of surface cover to assign to 

each point quite easily, as even classes with similar characteristics listed below could be easily 

differentiated. Photos of each class can be found in appendix A. 

Table 3.5: Defining Characteristics of Classes 

Class Name: Colour Texture & Appearance Shape Size Position 

Mixed Grass Light to Dark Green Rough. May grow in 
obvious tufts 

N/A Low ground cover Widespread 

Brown Grass Brown Rough texture, low-lying 
vegetation in grassed areas 

N/A Small patches Mixed in with 
other grasses 

Isolepis Bright Green Smooth N/A Low ground cover Usually near water 
or lower-lying 
areas 

Waterlogged 
Grass 

Green or Brown Rough N/A Small Always 
in/bordering water 

Bidens Dark brown or grey 
(when dormant) 

Rough. Often forms a clear 
linear pattern. 

N/A Small Variable 

Dry Bidens Grey/White Rough. Often forms a clear 
linear pattern. 

N/A Small Variable 

Dry 
Vegetation 

Pale yellow to off-
white/grey 

May be smooth or rough N/A Low ground cover N/A 

Reeds Yellow 
(Winter/Autumn) or 
Green (new shoots) 

Rough Long, thin 
leaves 

Small-Medium 
(~1m high) 

Always 
in/bordering water 

Rush Dark Green Smooth, grows in small 
clusters 

Round cluster 
with pointed 
leaves 

Small (<1m high) Usually near water 

Water Blue (various shades), 
Black, Brown 

Smooth. Ripples may give a 
rougher appearance. 
Reflected light/cloud may 
be visible. 

N/A N/A N/A 
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Manuka Dark, Brown-tinged 
green 

Rough Roughly circular Small Tree Usually in clusters 
of other trees 

Flax Mid to Dark Green Rough Circular plant. 
Thick, long 
leaves 

Medium sized Usually grows in 
clusters 

Toetoe Light Green, appearing 
grey/white at edges 

Rough Circular plant. 
Long, thin 
leaves 

Medium Size In clusters, often 
near water. 

Cabbage Tree Light Green, 
occasionally with 
yellowish accents 

Rough Compact 
circular heads, 
(<1m diameter) 

Medium-sized 
tree but typically 
only the head is 
visible 

No pattern, may 
be either individual 
plants or groups in 
close proximity 

Sedge Dark Green or Brown Rough Thin leaves 
often grow in a 
regular linear 
pattern 

Small  Grows in patches 
several meters in 
diameter. Found 
on open ground 

Kahikatea Mid- to Dark-green Rough. Often 
distinguishable by a large 
shadow or patches of bare 
branch 

Round Large. Usually 
large enough to 
cast a shadow 
under certain 
lighting 
conditions 

Isolated individual 
plants 

Yellow 
Isolepis 

Yellow. Occasional 
green tint 

Smooth N/A Low ground 
cover.  

Within or 
bordering green 
Isolepis patches 

Azolla Pink or Red Smooth N/A Always on the 
surface of a body 
of water.  

Always on the 
surface of a body 
of water.  

Green Algae Light ‘lime’ green Smooth N/A Surface cover Always on the 
surface of a body 
of water.  

Mixed Algae Mix of green and red 
within the same 
segment 

Smooth N/A Surface cover Always on the 
surface of a body 
of water.  

Yellow Algae Yellow Smooth N/A Surface cover Always on the 
surface of a body 
of water.  

Other Tree 1 Dark Green, variable 
patterns caused by 
leaves 

Rough, with dark patches 
representing gaps in leaves 

Roughly circular 
or oval shape 

Variable from 
~1m high or 
more. May cast 
shadow 

No pattern, may 
be individual 
plants or cluster of 
several 
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Other Tree 2 Brown Rough, with dark patches 
representing gaps in leaves 

Roughly circular 
or oval shape 

Variable from 
~1m high or 
more. May cast 
shadow 

No pattern, may 
be individual 
plants or cluster of 
several 

Other Tree 3 Light green Rough, with darker patches 
representing gaps in leaves 

Roughly circular 
or oval shape 

Variable from 
~1m high or 
more. May cast 
shadow 

No pattern, may 
be individual 
plants or cluster of 
several 

Blackberry Dark Green, may have 
patches of yellow 
brown during 
autumn/winter 

Rough, often has a 
speckled appearance 

Variable Ground cover. 
Grows in patches 
of >1m diameter. 

N/A 

Mud Grey or light brown. 
Grey mud occasionally 
has a blue tinge 

Typically smooth. May 
show rivulet patterns 
formed by flowing water 

N/A N/A In locations 
previously covered 
by or now 
bordering water 

Shadow Grey to black. May be 
tinted the colour of 
whatever surface type 
it obscures. 

Depending on strength of 
the shading may be either 
smooth (completely black) 
or rough (underlying 
surface shows through) 

Variable N/A N/A 

Dormant 
Tree 

Grey  Rough. Depending on 
species, multiple boughs 
may be visible 

Round or 
elongated oval, 
depending on 
perspective 

Medium. May 
cast shadow 

Isolated individuals 

 

3.5.3 Confusion Matrices 

Once each set of reference points was complete, ArcGIS Pro’s image analysis tools were used to add 

a value representing the surface type as determined by the image classifier at the same point.  I then 

created a confusion matrix to compare my ‘ground truth’ values to the ‘classified’ value, allowing me 

to determine how often each class was correctly identified and which classes the classification 

algorithm struggled to distinguish between. The matrix presents class-specific accuracy 

measurements representing the rate at which each class was correctly assigned in the form of ‘user’s 

accuracy’ and ‘producer’s accuracy’ (UA and PA), and two measure of the classifications’ total 

accuracy, ‘overall accuracy’ and ‘Kappa’ (Campbell & Whynne, 2011).   

3.5.4 Analysis of Accuracy Results 

A linear mixed effects (LME) model was used to test the effect of season and ancillary DSM data on 

overall accuracy and kappa, using “stage” as a random factor representing spatial replication 

(equation 1). Analysis of deviance was performed on the fitted model using the “Anova” function of 

the car package, and type two sum of squares. 

lme(Accuracy ~ DSM + Season, random = ~1|Stage) 

(Equation One) 
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A separate LME model was used to test the main and interactive effects of DSM and infra-red 

ancillary data in one season, replicated across the three stages. Analysis of deviance was performed 

on the fitted model with type three sum of squares due to the interaction term in the model (eqn 2) 

lme(Accuracy ~ DSM * Infrared, random = ~1|Stage) 

(Equation Two) 

Models were fitted in the programming language R. The results of the Autumn surveys were treated 

as a reference point for the effect of season on classification accuracy, therefore they do not appear 

in the tables of results in chapter four. 

To confirm whether the inclusion of the DSM in the classification process had a measurable and 

statistically significant effect, I extracted the UA and PA values for each class from the confusion 

matrices. This allowed me to amass up to 24 data points11 for each class under both sets of 

conditions (with and without ancillary DSM data). To provide a measure of the accuracy for a given 

class across the course of the project, I recorded the mean of both sets of measurements and used 

the difference between each set of means to provide the average improvement when the DSM was 

applied.  

To determine whether this difference was statistically significant, I performed a paired t-test on the 

individual data points for both UA and PA to compare the DSM-inclusive and DSM-excluded results.  

The analysis of the classification accuracy using data acquired from the multispectral sensor followed 

an identical method. The changes in overall accuracy and kappa under four conditions were 

subjected to the LME model described above and the difference in class specific accuracies between 

conditions 1 and 4 (as below) was determined and tested for significance. 

Conditions for Multispectral Sensor Imagery Tests: 

1. The visible (red, green, and blue bands) only 

2. The visible bands and a DSM 

3. The visible bands, NIR and RE 

4. The visible bands, a DSM and both multispectral bands. 

 
11 One point for each accuracy measurement from each time the class was observed in one of the survey 
flights. Four flights over three stages allow for a maximum of 24 points. 
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3.6 Change Detection 

To conduct change detection (quantified in terms of net change in surface area), it was necessary to 

simplify the classified images. The primary motivation for this was to make up for the low accuracy 

with which some classes were classified (this is detailed in chapter four), minimising the loss of 

reliability in the results by reducing the number of areas where change might be shown because of 

incorrect classification, rather than actual change (Green & Hartley, 2000). Additionally, the low 

accuracy rate of certain classes would make it difficult to determine what quantitative 

measurements of change were valid, and which were influenced to any degree by incorrect 

classification.  

To provide example of why this was necessary: the classes representing different types of tree were 

often mistaken for one another by the classifier. Leaving these as separate classes during change 

detection would result in an apparent change from one class to another where in fact, none 

occurred. Given the short interval between images, it was unlikely that a Cabbage Tree would have 

supplanted a Pittosporum in the space of three months. Consequently, an indication that this had 

occurred would in all probability be incorrect and unhelpful for any scientific application. Combining 

these classes into one would avoid this issue.  

The second motivation was so that the results would be easier to interpret and display, as with 20 

classes per image the number of possible combinations of changing classes would have been too 

great to convert into meaningful results with ease. In a classification involving 20 classes, up to 20 

possible change states exist for each class: ‘no change’ and one for change from the first class to 

another. This has the potential to produce up to 400 different indications of change between seasons 

for a single stage, each of which would be treated as a unique value in the resulting raster. So many 

values would have been impossible to accurately display on a map. Additionally, this meant that in 

the region of 360012 quantified measures of change could be expected, all of which would need to be 

suspect owing to the levels of accuracy obtained. 

Therefore, the classified images were reclassified into five classes (see table 3.6) according to their 

size and typical growth zone. 

 

 

 
12 Assuming each classification has 20 classes - 400 between each season: (Winter-Spring, Spring-Summer and 
Summer-Autumn) = 1200. 1200 x three stages = 3600. 
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Table 3.6: List of change detection 'generic' classes 

Change Detection Class Contains: 

Water Water 

Aquatic and semi-aquatic emergent vegetation Isolepis, Yellow Isolepis, Waterlogged Grass, 

Raupō, Rushes, Red Azolla 

Terrestrial Ground Cover Mixed Grasses, dry vegetation, bidens, dry 

bidens, blackberry, sedge   

Terrestrial Substantial Vegetation Flax, Toetoe, All six tree classes: Manuka, 

Kahikatea, Cabbage Tree, Other Trees 1-3 

Shadow Shadow 

 

Change detection efforts were focused on documenting the changing balance of water and land in 

the study areas, as it was not clear that the image classifications were precise enough to give a 

reliable idea of the expansion or retreat of any individual species. 

Since several classes representing land cover were classified with an average accuracy of 50% or less 

– effectively worse than random odds, it would not be justifiable to use these results to carry out 

change detection to quantify seasonal or successional changes in land cover as the potential for error 

is too great. However, water was consistently classified with a very high level of accuracy (90% or 

greater in most cases), thus measurements of change in water levels would be far more reliable than 

change in other classes and still of scientific value in the context of a wetland considering the 

implications of water levels for the prediction of habitat distribution for local bird species, or 

planning the re-planting of native plants – planting types that are not flood-resistant in flood-prone 

areas would not be advisable. Using generic classes as above would be quite capable of providing a 

reliable representation of the changing patterns of water and solid ground.  

3.6.1 Flood Patterns 

To map changes in flood extent, I identified areas of permanent water and land and the distribution 

of aquatic vegetation and water in each set of seasonal imagery to determine areas that occasionally 

flood. Combining these allowed me to map the change in water coverage in each of the three stages.  
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Terrestrial Ground Cover, Substantial Vegetation and Shadow were treated as ‘permanent land’ for 

the purposes of this test, on the assumption that the species contained in these classes are not 

especially flood resistant and would have been supplanted by flood-tolerant species of aquatic 

vegetation if their position was waterlogged. 

Aquatic vegetation is a reliable indicator of the presence of water, as the species present cannot exist 

if water is not present at their base, or has not recently covered the site. For instance, isolepis is 

known to prefer poorly drained, permanently damp soil (New Zealand Plant Conservation Network, 

2019). Therefore, if isolepis is present in a location, it is reasonable to infer that the location is at 

least retaining more water from rain or occasional flooding. Likewise, Raupō can only grow at the 

water’s edge as the roots must be either submerged or in waterlogged soil. Therefore, if Raupō 

flourishes in an area, that area must be at least occasionally underwater, if not permanently so.  
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Chapter 4 

Classification & Change Detection Results 

4.1 Classification Results 

4.1.1 Seasonal Flights 

Flights were conducted at seasonal intervals of approximately 3-4 months. As multispectral imagery 

was not available until the Summer of 2019, it was only possible to measure the effects of 

introducing a DSM to the classifier for the seasonal imagery, the effects of including multispectral 

imagery has been dealt with as a special case study and are presented in 4.1.3.  

Table 4.1 presents two measurements of the accuracy of each classification, Overall Accuracy and 

Cohen’s Kappa coefficient (Kappa for short). ‘Overall Accuracy’ represents the proportion of the 

ground-truthing reference points that were correctly classified. ‘Kappa’ reflects the difference 

between the actual level of agreement between the reference data and the classified image and the 

level of agreement that would be expected in a purely random classification (Congalton & Green, 

2008). Therefore, a Kappa of 0.5 would indicate that the classified map was 50% more accurate than 

would be the case if the assignment of classes were entirely random. Each set of results in the table 

below represents the results of an independent classification process with unique training data, 

however the methodology used to obtain them was identical in each case.  

Table 4.1: Overall Classification Accuracy & Kappa Scores 

Stage Season No DSM DSM Included Difference 

Overall 

Accuracy 

Kappa Overall 

Accuracy 

Kappa Overall 

Accuracy 

Kappa 

One Winter 41% 0.35 69% 0.65 +28% +0.30 

Spring 60% 0.54 72% 0.68 +12% +0.14 

Summer  45% 0.40 54% 0.49 +9% +0.09 

Autumn 53% 0.48 55% 0.51 +2% +0.03 

Two Winter 53% 0.59 67% 0.65 +14% +0.06 

Spring 62% 0.57 66% 0.60 +4% +0.03 
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Summer 69% 0.60 74% 0.66 +5% +0.06 

Autumn 68% 0.62 71% 0.66 +3% +0.04 

Three Winter 52% 0.46 73% 0.70 +21% +0.24 

Spring 57% 0.52 71% 0.67 +14% +0.15 

Summer 57% 0.53 63% 0.60 +5% +0.07 

Autumn 57% 0.50 63% 0.57 +6% +0.07 

Average over all Stages 
& Seasons: 

56% 0.51 67% 0.62 10.25% 0.11 

 

The inclusion of ancillary data in the form of a DSM increased the overall accuracy and kappa score in 

all situations, though not always by a large amount as the improvement varied between 2% and 28% 

in terms of overall accuracy and 0.03 and 0.3 in terms of kappa. 

The average improvement in overall accuracy was 10.25%, while kappa scores were improved by 

0.11. In simple terms, this means that on average the OBIA process had an additional 10.25% 

probability of correctly classifying a given surface and avoided 11% more of the errors that would 

have been caused by a purely random classification. 

Tables 4.2 and 4.3 present the results of the LME model applied in R to test for the effects of all the 

co-variates on Overall Accuracy and Kappa, respectively. 

Table 4.2: Analysis of deviance of LME for the effect of ancillary DSM data and Season on Overall 
Accuracy (n = 24 values from Table 4.1) 

Factor Chi-squared df Significance13 

Ancillary DSM data 15.031 1 0.00011 *** 

Season 2.370 3 0.499     

 

 
13 The number of asterisks indicates the degree of significance: 
* = < 0.05 ‘Significant’ 
** = < 0.01 ‘Highly Significant’ 
*** = < 0.001 ‘Extremely Significant’ 
This applies to all tables in this chapter 
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Table 4.3: Analysis of deviance of LME for the effect of ancillary DSM data and Season on Overall 
Kappa (n = 24 values from Table 4.1) 

Factor Chi-squared df Significance 

Ancillary data (DSM) 16.854 1 0.00004 *** 

Season 2.074 3 0.557     

 
The results of these tests provide further confirmation that the addition of a DSM to the classifier 

had an extremely significant improving effect on both Overall Accuracy and Kappa. Meanwhile, the 

season the imagery was captured in only had a minor, non-significant effect on both measures of 

accuracy. 

4.1.2 Class-Specific Results 

Table 4.4 breaks down the accuracy measurements for each of the 28 classes. Here two different 

measures of accuracy are used as Overall Accuracy and Kappa are measures of accuracy on the level 

of the entire map, not the component classes.  

User’s accuracy indicates the level of agreement between the reference data and the classified map. 

It is generally used to indicate the map’s reliability from the point of view of the end-user, as it 

measures the probability that an area classified as a given type of land cover on the classified map 

represents that type of land cover in the field (Campbell & Whynne, 2011). User’s accuracy is 

calculated as: 

𝑈𝑠𝑒𝑟′𝑠 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑐𝑙𝑎𝑠𝑠 (𝑥) =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑝𝑜𝑖𝑛𝑡𝑠 𝑓𝑜𝑟 𝑐𝑙𝑎𝑠𝑠 (𝑥)

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡𝑠 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑎𝑠 𝑐𝑙𝑎𝑠𝑠 (𝑥)
 

Producer’s accuracy indicates the proportion of reference points for a given class that were correctly 

classified. This is used to quantify how often features on the ground were assigned their correct class 

by the image classifier, and thus the level of accuracy on the part of the producer of the map 

(Campbell & Whynne, 2011). The calculation for this measurement is: 

𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟′𝑠 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑐𝑙𝑎𝑠𝑠 (𝑥) =  
𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑝𝑜𝑖𝑛𝑡𝑠 𝑓𝑜𝑟 𝑐𝑙𝑎𝑠𝑠 (𝑥)

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑝𝑜𝑖𝑛𝑡𝑠 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑖𝑛𝑔 𝑐𝑙𝑎𝑠𝑠 (𝑥)
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Table 4.4: Per Class Accuracy 

Class Name: Type: Accuracy Accuracy 
w/DSM 

Change n14. Significant 
Improvement? 

Water 
UA 0.944 0.967 0.023 

12 
Yes (p=0.0267)* 

PA 0.903 0.959 0.056 No (p=0.0779) 

Mixed Grasses 
UA 0.681 0.788 0.108 

12 
Yes (p=0.0223)* 

PA 0.423 0.522 0.099 Yes (p=0.0110)* 

Brown Grass 
UA 0.453 0.788 0.335 4 

Yes (p=0.0308* 

PA 0.293 0.403 0.110 No (p=0.3118) 

Isolepis 
UA 0.800 0.827 0.027 12 

Yes (p=0.0475)* 

PA 0.523 0.648 0.124 Yes (p=0.0221)* 

Yellow Isolepis 
UA 0.900 0.870 -0.030 1 

Too Few 
Observations PA 0.590 0.810 0.220 

Reeds 
UA 0.399 0.459 0.060 12 

No (p=0.1870) 

PA 0.476 0.538 0.062 No (p=0.2578) 

Rush 
UA 0.295 0.358 0.063 4 

No (p=0.4366) 

PA 0.338 0.598 0.260 No (p=0.0562) 

Sedge 
UA 0.163 0.198 0.036 12 

Yes (p=0.0115)* 

PA 0.437 0.588 0.151 Yes (p=0.0052)** 

Flax 
UA 0.508 0.630 0.123 12 

Yes (p=0.0225)* 

PA 0.581 0.660 0.079 Yes (p=0.0053)** 

Toetoe 
UA 0.238 0.325 0.087 6 

No (p=0.1102) 

PA 0.298 0.472 0.173 No (p=0.0770) 

Cabbage Tree 
UA 0.275 0.433 0.158 12 

Yes (p=0.0191)* 

PA 0.699 0.747 0.048 No (p=0.3073) 

Manuka 
UA 0.161 0.308 0.147 12 

Yes (p=0.0020)** 

PA 0.556 0.763 0.208 Yes (p=0.0068)** 

Kahikatea 
UA 0.154 0.398 0.243 12 

Yes (p=0.0088)** 

PA 0.528 0.823 0.295 Yes (p=0.0028)** 

 
14 Here ‘n’ represents the number of accuracy measurements for each class. 
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Other Tree 1 
UA 0.199 0.431 0.232 12 

Yes (p=0.0327)* 

PA 0.330 0.649 0.319 Yes (p=0.0092)** 

Other Tree 2 
UA 0.070 0.505 0.435 4 

No (p=0.0858) 

PA 0.163 0.518 0.355 No (p=0.1235) 

Other Tree 3 
UA 0.110 0.147 0.037 3 

No (p=0.5172) 

PA 0.350 0.320 -0.030 No (p=0.4226) 

Azolla 
UA 0.866 0.873 0.008 9 

No (p=0.7770) 

PA 0.718 0.808 0.090 Yes (p=0.0042)** 

Green Algae 
UA 0.698 0.767 0.069 9 

No (p=0.0606) 

PA 0.321 0.484 0.163 Yes (p=0.0088)** 

Mixed Algae 
UA 0.185 0.725 0.540 2 

No (p=0.3743) 

PA 0.205 0.325 0.120 No (p=0.5000) 

Yellow Algae 
UA 0.630 0.820 0.190 1 

Too few 
observations PA 0.670 0.600 -0.070 

Blackberry 
UA 0.223 0.265 0.043 8 

No (p=0.1929) 

PA 0.474 0.606 0.133 Yes (p=0.0247)* 

Bidens 
UA 0.646 0.754 0.109 7 

No (p=0.0859) 

PA 0.471 0.651 0.180 No (p=0.1013) 

Dry Bidens 
UA 0.62 0.79 0.170 1 Too few 

observations PA 0.62 0.69 0.07 1 

Dry Vegetation 
UA 0.733 0.861 0.128 12 

Yes (p=0.0180)* 

PA 0.315 0.375 0.060 No (p=0.0815) 

Dormant Tree 
UA 0.250 0.410 0.160 9 

No (p=0.2169) 

PA 0.644 0.613 -0.031 No (p=0.8456) 

Waterlogged 
Grass 

UA 0.640 0.716 0.076 7 
No (p=0.1241) 

PA 0.451 0.619 0.167 Yes (p=0.0090)** 

Mud 
UA 0.920 0.963 0.043 3 

No (p=0.1859) 

PA 0.573 0.723 0.150 No (p=0.2730) 

Shadow 
UA 0.815 0.917 0.102 11 

Yes (p=0.0294)* 

PA 0.624 0.761 0.137 No (p=0.1033) 

 
Of the 28 classes observed, 23 displayed an improvement in both user’s and producer’s accuracy 

upon application of the DSM, the remaining four only displayed improvement in one or the other 
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measure. 16 out of 28 displayed a statistically significant improvement in their either their user or 

producer accuracy and seven of these exhibited statistically significant improvement in both 

measures.  The remainder did not display significant improvement in either accuracy measure, of 

which two classes were not observed enough times to enter their data into the t-test, which requires 

a minimum of two pairs of means to compare.  

Based on this data, the average improvement in user accuracy when a DSM was included was 13.1%, 

while for producer accuracy the average improvement was 13.4%, which shows that the addition of 

the DSM has improved both the ability of the classifier to distinguish between classes and the 

reliability of the map for the eventual user.  

4.1.3 Multispectral Imagery Tests 

This set of tests was conducted as an independent case study and the classified imagery produced 

from it was not included in the change detection analysis as it was only available for a single season. 

The objective of this set of tests was to determine whether the extra layers of ancillary data 

improved the classification accuracy to a sufficiently significant degree that would justify the 

additional expense and logistics inherent in acquiring and deploying a multispectral sensor.  

Table 4.5: Overall Accuracy and Kappa with different combinations of ancillary data 

Stage RGB Only RGB + DSM  RGB + Multispectral  RGB + Multispectral & 
DSM Combined 

Overall 
Accuracy 

Kappa Overall 
Accuracy 

Kappa Overall 
Accuracy 

Kappa Overall 
Accuracy 

Kappa 

One 54% 0.48 53% 0.47 59% 0.54 61% 0.56 

Two 72% 0.62 71% 0.62 77% 0.70 80% 0.73 

Three 50% 0.43 51% 0.44 63% 0.57 64% 0.58 

Average: 59% 0.51 58% 0.51 66% 0.6 68% 0.62 

 
When examining the results presented in table 4.5, we can see that including Near-Infrared and Red-

Edge imagery has a clear ameliorating effect over the baseline accuracy figures acquired from an 

RGB-only classification, as the two additional layers of ancillary information provided an average 

improvement of 9.33% overall accuracy and 0.11 kappa. 

Of special note is that there was only minimal difference between the ‘multispectral only’ 

classifications and those which included the full range of ancillary data.  Equally, adding a DSM to the 

base RGB data does not appear to have had any noticeable effect on classification accuracy. The LME 

model’s results (table 4.6 and 4.9 below) confirm these trends.  
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These two tables show that there was no significant interaction between the DSM and Multispectral 

datasets in terms of their effects on accuracy, and that there was no synergistic improvement or 

antagonistic deterioration in accuracy when including both datasets. 

Table 4.6: Analysis of deviance of LME for the effect of ancillary data in the form of a DSM and/or 
multispectral infrared on Overall Accuracy assessed in late Summer (n = 12 values from Table 4.5) 

Factor Chi-squared df Significance 

DSM 0.034 1 0.855 

Multispectral 17.732 1 0.00003*** 

DSM + Multispectral 0.603 1 0.437     

 

Table 4.7: Analysis of deviance of LME for the effect of ancillary data in the form of a DSM and/or 
multispectral infrared on Overall Kappa assessed in late Summer (n = 12 values from Table 4.5) 

Factor Chi-squared df Significance 

DSM 0.000 1 1.000 

Multispectral 32.441 1 <0.00001 *** 

DSM + Multispectral 0.745 1 0.388 

 

4.1.4 Class-Specific Results 

Owing to the reduced resolution and general image quality of the true-colour imagery produced by 

the RedEdge sensor, it was only possible to reliably identify 17 distinct classes. Except for the ‘Other 

Tree – Dark’ class which now incorporates the previously distinct ‘Manuka’ class, all classes in the 

table below represent the same surface types as in table 4.8 below.  
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Table 4.8: Class-Specific Accuracy (Multispectral Camera) 

Class Name: Type: Accuracy Accuracy 
w/All 
Ancillaries 

Change n. Significant 
Improvement? 

Water 
UA 0.913 0.987 0.073 3 

No (p=0.0904) 

PA 0.910 0.953 0.043 No (p=0.3178) 

Mixed Grasses 
UA 0.640 0.780 0.140 3 

No (p=0.2315) 

PA 0.537 0.663 0.127 No (p=0.0849) 

Isolepis 
UA 0.903 0.903 0.000 3 

No (p=1) 

PA 0.550 0.557 0.007 No (p=0.9719) 

Reeds 
UA 0.453 0.447 -0.007 3 

No (p=0.9432) 

PA 0.487 0.710 0.223 Yes (p=0.0286)* 

Sedge 
UA 0.130 0.267 0.137 3 

Yes (p=0.0058)** 

PA 0.297 0.400 0.103 No (p=0.6050) 

Flax 
UA 0.533 0.533 0.000 3 

No (p=1) 

PA 0.557 0.703 0.147 No (p=0.1754) 

Toetoe 
UA 0.300 0.200 -0.100 1 Too few observations 
PA 0.160 0.480 0.320 

Cabbage Tree 
UA 0.153 0.370 0.217 3 

No (p=0.0668) 

PA 0.257 0.533 0.277 No (p=0.1527) 

Kahikatea 
UA 0.020 0.030 -0.010 1 Too few observations 
PA 0.170 0.420 -0.250 

Other Tree 1 
UA 0.200 0.210 0.010 3 

No (p=0.9504) 

PA 0.523 0.600 0.077 No (p=0.6758) 

Other Tree 3 
UA 0.285 0.420 0.135 2 

No (p=0.6411) 

PA 0.115 0.345 0.230 Yes (p=0.0009)*** 

Green Algae 
UA 0.915 0.915 0.000 

2 
No (p=1) 

PA 0.250 0.710 0.460 No (p=0.0527) 

Blackberry 
UA 0.135 0.250 0.115 2 

 

Yes (p=0.0442)* 

PA 0.665 0.725 0.060 No (p=0.7536) 

Bidens 
UA 0.437 0.797 0.360  

3 

No (p=0.2417) 

PA 0.263 0.590 0.327 No (p=0.2416) 
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Dry Vegetation 
UA 0.833 0.900 0.067  

3 

No (p=0.1789) 

PA 0.320 0.390 0.070 Yes (p=0.0317)* 

Dormant Tree 
UA 0.210 0.240 0.030  

3 

No (p=0.8771) 

PA 0.343 0.453 0.110 No (p=0.7396) 

Shadow 
UA 1.000 1.000 0.000 3 

No (p=1) 

PA 0.375 0.915 0.540 Yes (p=0.0303)* 

 

While the majority of the improvements in accuracy were not statistically significant, it should be 

noted that these figures are drawn from only three observations at most, compared to up to 12 for 

the seasonal flights. Two results is the bare minimum needed to run a t-test, so more data could 

refine these results and perhaps indicate some significant differences. Taking all results into account, 

the average improvement in user accuracy was 8.9%, while producer accuracy increased by 16.9% 

but this is based on primarily statistically insignificant results, so should be considered with caution.  

4.2 Change Detection 

4.2.1 Land / Water Change by Surface Area 

Stage: Permanent Open Water Maximum Flood 
Coverage 

Permanent Dry Land 

Stage One 11,260m2  32,460m2 27,790m2 

Stage Two 16,570m2  46,520m2  11,390m2  

Stage Three 1,170m2  26,500m2 19,560m2 

 

Stage three featured the greatest levels of change in water levels, expressed in terms of surface area. 

The 25,300m2 difference between the area of water coverage at the lowest and highest levels 

amounts to an increase of 2164.96%.  Stage one’s water coverage increased by a similar area of 

21,200m2, though this only equates to a percentage increase of 188.228%. Stage two’s coverage area 

differs by 29,950m2 – a percent change of 180.75%.  

Stage three may exhibit the most dramatic difference in coverage area as the flooded areas may be 

at a lower elevation relative to the lowest water level, thus a small increase in water levels has the 

potential to ‘spill’ further than at other sites. Stage one features a raised berm running around the 

edge of the local body of water, which is probably serving as a stopbank preventing water from 

spreading in certain directions, resulting in the water becoming deeper instead. This is demonstrated 
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by the ring-like patterns of ‘occasionally flooded’ area around the islands in figure 9 (see below). 

Stage two has no earthworks, the only limitation to the spread of water is that the areas that remain 

dry are high enough above the water table to remain dry. 

4.2.2 Change Visualisation 

In the maps below, the areas which remained open water are shown in blue, while areas that were 

either temporarily covered by floodwater or feature vegetation types that grow in water, sodden soil 

or in areas cleared by retreating water (for instance, Azolla, Isolepis or Raupō) are marked in orange. 

All other areas remained dry land and featured terrestrial vegetation for the full course of the 

project. 

 

Figure 9: Land/Water Change in Stage One 
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Figure 10: Land/Water Change in Stage Two 
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Figure 11: Land/Water Change in Stage Three 

4.2.3 Descriptive 

Stage One 

The terrestrial portion of stage one remained largely unchanged over the course of the year in terms 

of vegetation coverage, but the aquatic section displayed significant change. Between June and 

October, the water level across the entire wetland rose considerably. In stage one, this manifested in 

lower-lying areas of the south-eastern section of the stage flooding, and the water level rose high 

enough to encroach on several of the flax & toetoe plantations on the raised islands. Based on the 

prevalence of Isolepis, I infer this may be a regular occurrence on the grounds that Isolepis prefers 

the damp conditions associated with poor drainage or regular flooding. The increase in water level 

and the increase in sunlight during the transition into summer coincided with the appearance of 

floating plants in the stage such as Red Azolla. By January 2019, this species was prevalent across a 

wide area of the open water in the stage but had mostly died back by March. The quantity of Raupō 

increased noticeably between June 2018 and January 2019, as the existing banks of the reed 

increased in both their apparent density and coverage area. Bidens became evident in January 2019, 



 53 

(coinciding with the gradual retreat of the water level) and remained present at the conclusion of the 

survey flights. 

Stage Two 

The rise in water level between winter and spring was especially noticeable in stage 2. Of note is that 

the water level increased to cover areas of land which appear not to have been previously inundated. 

This was evident as prior to flooding, the areas contained terrestrial grasses which are not known to 

survive flooding and do not spread fast enough to have become as established as they had been in 

the few months between flood periods. Azolla and other unidentified aquatic plants became evident 

on the surface of open areas of water in spring and remained in evidence until after January 2019. 

The water level receded somewhat by this tie, and the areas of land exposed by the retreating water 

now featured a predominance of Isolepis in the place of the previous exotic grasses, though it 

appears that Bidens was once again able to quickly recolonise these areas. By March 2019, the water 

had retreated still further, exposing bare sediment beneath. 

Stage Three 

Stage three also experienced a dramatic change in water coverage between Winter and Spring, but 

unlike stage one, the water levels did not subside to their previous level at the same rate, since 

several areas that were dry land as of the start of the project in June 2018 remained flooded as of 

January 2019. A side-effect of the flooding is that the clusters of Bidens that were detected in June 

2018 were eliminated, as their positions were inundated and the plants no longer distinguishable by 

eye in subsequent orthomaps and were not present in subsequent on-foot surveys of their location. 

However, Bidens did in fact outlast the flooding and re-established itself, becoming clearly 

observable by April 2019. The water levels eventually receded to an approximation of their previous 

levels by March 2019, revealing bare sediment in several places. As was the case in stage one, the 

flooded areas were previously covered in Isolepis, which would lend weight to the inference that the 

change in water level across the wetland is a regular seasonal pattern, rather than a one-off event 

caused by an unusually rainy period15. Red Azolla and green algae appeared in stage three later than 

the other sites, not being apparent until the summer flights. Several blackberry patches in the site 

appear to have expanded over time and their position on relatively high ground has protected them 

 
15 Monthly rainfall data from MetService shows that the study period (in particular, the months in which 
imagery was captured) was actually drier than the historical norm, as were the 12 months preceding the start 
of the project (Meteorological Service of New Zealand, 2019). However, the rainfall for November and 
December 2018 was more than double the historical average for these months, which could account for stage 
three appearing to retain water levels longer. 



 54 

from flooding for some time. Anecdotal reports suggest these patches have been extant for some 

time and are reportedly much larger now than their first observation a couple of years ago16. 

4.2.4 Comparative Maps 

The maps below serve as side-by-side comparisons of the seasonal imagery to illustrate the changes 

discussed in the section above. Full page versions of each image may be found at Annex C. 

 
16 Personal conversation with Dr Stephen Hartley, my supervisor and regular visitor to the Wairio block. 
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Figure 12: Stage One - changes over time 
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Figure 13: Stage Two - changes over time 
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Figure 14: Stage Three - changes over time 
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Chapter 5 

Discussion & Evaluation 

Two research questions were defined at the outset of this project: 

1. Test the proposition that UAVs can provide accurate and convenient assessment of changes 
in vegetation and water coverage over time, using a recovering wetland area as a case study. 

2. To what extent is the accuracy of the image classification process improved with the addition 
of ancillary data, such as digital surface models or near infrared imagery? 

Guided by these questions, I sought to test the ability of an OBIA process to distinguish a range of 

different land cover classes to determine what land cover types common to a wetland environment 

were easiest to classify and to demonstrate how OBIA can be improved with the addition of a range 

of ancillary data sources. Concurrently, I evaluated how current UAV technology, remote sensing 

techniques and image processing software could enable a research team or management unit with 

limited skills, budget and time to gather and process data with much greater levels of detail than 

might otherwise be available without recourse to contracting professional UAV operators or GIS 

technicians. An additional focus of this line of investigation was an investigation into whether 

multispectral (NIR and RE band) ancillary data could offer equal or greater improvements in 

classification accuracy to those offered using a DSM. 

5.1 Classification Accuracy 

In this section, I cover the accuracy of the classifications produced from the UAV imagery sets, in line 

with research question one. 

Regrettably, the average overall accuracy (67%) and kappa (0.62) of the classifications derived from 

the DSM-informed seasonal flights are not high enough to regard the maps as having a fully reliable 

degree of overall accuracy. Nonetheless, it is worth noting that there is no universally observed 

criteria for what constitutes a desirable degree of accuracy, whether measured by percent 

agreement or kappa (Bakeman, Quera, McArthur, & Robinson, 1997). For example, Landis & Koch 

(1977) held that the bracket for ‘substantial agreement’ as indicated by kappa values was between 

0.61-0.8, a bracket which most of the classifications in this study fall into. Meanwhile, Fleiss (1981) 

posited that a score between 0.4 and 0.75 was ‘fair to good’.  

‘Overall Accuracy’ (OA) is a weighted measure obtained from the accuracy for each class in the 

confusion matrix. Therefore, a few low scores will have reduced the overall measure in every case. As 

a result, it may be more appropriate to evaluate the results based on the class-specific accuracy 
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scores. When these are examined, it becomes clear there is a great deal of variability in how 

accurately the classification program was able to deal with different types of vegetation and surfaces. 

For the purposes of this section, I have created an ‘overall class-specific accuracy’ measurement by 

taking the average of the user and producer accuracies for each class in the DSM-inclusive (the ‘best 

case’) tests to provide a combined measure of the level of commission and omission error for each 

class, and used this measure to rank the accuracy of each class (Table 5.1). 

Table 5.1: Classes Ranked by Overall Accuracy (OA)  

UA = User’s Accuracy PA = Producer’s Accuracy 

Class: UA PA OA UA Rank PA Rank OA 
Rank 

Water 0.967 0.959 0.963 1 1 1 

Mud 0.963 0.723 0.843 2 8 2 

Azolla 0.873 0.808 0.841 4 4 3 

Yellow Isolepis 0.870 0.810 0.840 5 3 4 

Shadow 0.917 0.761 0.839 3 6 5 

Dry Bidens 0.790 0.690 0.740 9 9 6 

Isolepis 0.827 0.648 0.738 7 13 7 

Yellow Algae 0.820 0.600 0.710 8 17 8 

Bidens 0.754 0.651 0.703 13 11 9 

Waterlogged Grass 0.716 0.619 0.668 15 14 10 

Mixed Grasses 0.788 0.522 0.655 10 21 11 

Flax 0.630 0.660 0.645 16 10 12 

Green Algae 0.767 0.484 0.626 12 23 13 

Dry Vegetation 0.861 0.375 0.618 6 26 14 

Kahikatea 0.398 0.823 0.611 22 2 15 

Brown Grass 0.788 0.403 0.596 11 25 16 

Cabbage Tree 0.433 0.747 0.590 19 7 17 

Other Tree (Dark 
Green) 

0.431 0.649 0.540 20 12 18 

Manuka 0.308 0.763 0.536 25 5 19 

Mixed Algae 0.725 0.325 0.525 14 27 20 

Other Tree (Brown) 0.505 0.518 0.512 17 22 21 

Dormant Tree 0.410 0.613 0.512 21 15 22 

Reed 0.459 0.538 0.499 18 20 23 

Rush 0.358 0.598 0.478 23 18 24 

Blackberry 0.265 0.606 0.436 26 16 25 

Toetoe 0.325 0.472 0.399 24 24 26 

Sedge 0.198 0.588 0.393 27 19 27 

Other Tree (Light 
Green) 

0.147 0.320 0.234 28 28 28 
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5.1.1 Higher-Accuracy Classifications (OA: >70%) 

A common factor among the nine classes with OA greater than 70% is that each appears as a fairly 

smooth surface with consistent colouration. These classes are: 

1. Water 
2. Mud 
3. Azolla 
4. Yellow Isolepis 
5. Shadow 
6. Dry Bidens 
7. Isolepis 
8. Yellow Algae 
9. Bidens 

 
The exception to this rule is Bidens which is rougher, but its distinctive brown colouration may be 

acting as a unique identifier preventing confusion with other surface types. Azolla and potentially 

Water, Shadow and Yellow Isolepis may also benefit from their unique colouration (red, light to dark 

blue, black, or very dark green and yellow respectively) as these colours are not found in other 

surface types. Consistency of colouration and smooth surface texture lead to increased accuracy for 

two reasons. Firstly, this means that one segment of a given class will be fairly similar to all other 

segments representing that class throughout the image, so fewer areas will differ sufficiently from 

the training data to be treated as something else. Secondly, the similarity in these factors will have 

increased the probability that adjacent segments representing that class will have merged into one 

during the segmentation process. This reduces the number of individual segments for that class, 

which in turn reduces the possibility for error as there are fewer segments that could be subject to 

classification error.  

5.1.2 Moderate Accuracy (OA: 60%-69%) 

10. Waterlogged Grass 
11. Mixed Grasses 
12. Flax 
13. Green Algae 
14. Dry Vegetation 
15. Kahikatea 

 
As accuracy levels drop, rates of confusion between spectrally similar classes increase to the point 

that clear trends can be observed in the confusion matrices (Annex B). For example, ‘Mixed Grasses’ 

was commonly confused for the ‘Sedge’ classes and vice versa, the result of which was reduced 

accuracy for all classes. Regular confusion between classes such as this is a strong argument in favour 

of reducing the number of classes in the classification scheme by incorporating the two species into a 

single class. Most of these classes (with the exclusion of green algae) featured a rougher texture or 
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less consistent colouration, so were more segmented than the higher accuracy classes, which may 

have reduced their accuracy to a small degree. 

5.1.3 Poor Accuracy (OA: <60%) 

16. Brown Grass 
17. Cabbage Tree 
18. Other Tree (Dark Green) 
19. Manuka 
20. Mixed Algae 
21. Other Tree (Brown) 
22. Dormant Tree 
23. Reed 
24. Rush 
25. Blackberry 
26. Toetoe 
27. Sedge 
28. Other Tree (Light Green) 

 
 
In these cases, the reduced accuracy was generally due to a higher rate of confusion between classes 

(see the confusion matrices at annex B). For instance, ‘Toetoe’ features a similar coloration to many 

of the longer exotic grasses, meaning it was occasionally difficult to distinguish them manually and 

thus the higher rate of confusion is understandable. In other cases, the low accuracy was due to a 

combination of over-segmentation of the objects representing the class and the texture and colour 

of the object. A good example of this effect are blackberry bushes, which are segmented into very 

small parts and can display a range of colours across a single bush, from light green to near black and 

occasionally yellow as leaves die off in autumn and winter. Since the small segments had such a 

degree of variance in their properties, other small segments with similar spectral properties – often 

areas of scrub around fence lines or patches of short, rough grass - were misclassified as blackberry.  

5.1.4 Confusions 

Table 5.2 lists the common confusions for each class. The complete set of confusion matrices can be 

found at Annex B. Some interesting patterns in the types of confusions that occurred can be seen 

here. First, larger vegetation classes were most often confused with ground cover when a DSM was 

not present (for instance, Kahikatea/Mixed Grass confusion) and when a DSM was present, the larger 

classes were usually only confused with other large vegetation varieties. A similar pattern exists for 

ground cover, which was normally only mistaken for other ground cover. This pattern supports the 

hypothesis that including a DSM would allow for better separation between classes based on their 

physical properties, rather than relying on spectral separability. This also suggests that a simpler 

classification scheme that combined all ground cover classes into a single class and did likewise for 
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larger vegetation types, might show significantly less confusion with a higher rate of accuracy 

obtained. This is discussed further in section 5.6.2. 

Table 5.2: Classes and their Common Conclusions 

Class: OA 
Rank 

Most commonly confused with: 

Water 1 Shadow (darker coloured water only) 

Mud 2 Waterlogged Grass 

Azolla 3 Water, Green Algae 

Yellow Isolepis 4 Isolepis, Brown Grass 

Shadow 5 Water, various vegetation types (if shadow is weak) 

Dry Bidens 6 Bidens, Dry Vegetation 

Isolepis 7 Mixed Grass, Sedge 

Yellow Algae 8 Green Algae, Waterlogged grass 

Bidens 9 Isolepis (while green) Dry Bidens, Dry Vegetation 
(while brown/dormant) 

Waterlogged 
Grass 

10 Water, Mixed Grass, Sedge. Kahikatea (Stage 3 only 
and when no DSM was present) 

Mixed Grasses 11 Sedge, Toetoe. Various Tree Classes - when no DSM 
present 

Flax 12 Reeds (while they are green: Spring-Autumn). 
Cabbage Tree 

Green Algae 13 Mixed Grass, Waterlogged Grass 

Dry Vegetation 14 Reeds, Sedge (when these are dry/dormant and 
appear lighter brown: Winter-Spring). Toetoe, 
Bidens 

Kahikatea 15 Mixed Grass (without DSM). Manuka, dry vegetation 
(bare branches) 

Brown Grass 16 Sedge, Mixed Grass, Dry Vegetation. When no DSM 
Present: Manuka, Other Tree (Brown) 

Cabbage Tree 17 Flax, Other Tree (Dark Green) 

Other Tree 
(Dark Green) 

18 Mixed Grass, 

Manuka 19 Kahikatea (confusion rate reduces with DSM) Other 
Tree (dark green)  

Mixed Algae 20 Azolla, Waterlogged Grass 

Other Tree 
(Brown) 

21 Brown Grass, Mixed Grass 

Dormant Tree 22 Dry Vegetation, Bidens 

Reed 23 Flax, Dry Vegetation, Mixed Grass 

Rush 24 Flax, Mixed Grass, Dry Vegetation 

Blackberry 25 Mixed Grass, Brown Grass, Waterlogged Grass 

Toetoe 26 Mixed Grass, Dry Vegetation 

Sedge 27 Mixed Grass, Dry vegetation (when brown) 

Other Tree 
(Light Green) 

28 Mixed Grass, Other Tree (dark green) 



 63 

5.1.5 Implications of Accuracy 

Though 19 out of 28 classes were not classified with a ‘high’ level of accuracy, there are encouraging 

conclusions to be drawn from the results. The classes with accuracies of around 70% or better are 

among the most common classes in the wetland and represent the majority of land cover by area. 

More interestingly, two of the high-accuracy classes: Bidens and Azolla are invasive species, so the 

classifier’s ability to reliably locate these plants could be leveraged in more targeted applications to 

track just these species, as their spectral uniqueness allows them to be easily separated from their 

surrounds. This would be advantageous for anyone wishing to monitor the pest species, but without 

the need of a complete land cover inventory. Meanwhile, high accuracy for Isolepis is also a good 

result, as this species can be used as an indicator of the water retention of soil, (New Zealand Plant 

Conservation Network, 2019) which is important information as wetlands, by definition, must retain 

water. A sudden reduction in the prevalence of Isolepis could serve as an early indication that the 

wetland was drying out, even if surface water levels appeared unchanged. 

High levels of user accuracy for the various algae classes are also encouraging but would be more so 

if complemented by equal measures of producer accuracy. Algae often create the foundation for the 

food chain in aquatic ecosystems, so the presence of algae in reasonable amount is a good indicator 

of environmental health (Kislik, Dronova, & Kelly, 2018). However, algal blooms in lakes, rivers, 

oceans and wetlands can be disruptive to the local system and in some cases can be toxic (Ministry 

for Primary Industries, 2019). Prevention of the spread of harmful algae blooms as Didymosphenia 

geminata is a real and current concern of New Zealand’s environmental protection services (Feltham, 

2006). Proper control programmes require early detection and reliable intelligence as to the exact 

distribution of the algae. Since algae commonly manifest as distinctly coloured patches under or on 

the water’s surface, image analysis techniques that can reliably detect these would be a boon to 

researchers looking to monitor a waterway for the spread of unwanted algae. The use of a UAV 

would also be advisable here, as a UAV affords the researcher cost-effective aerial survey capability 

and improved temporal and spatial resolutions compared to large airborne or space-based systems 

leveraged in this project and elsewhere (Kislik, Dronova, & Kelly, 2018). 

5.1.6 Accuracy vs. Usability 

Low classification accuracy for a given class does not necessarily equate to the classified image not 

being of use in detecting the presence of a targeted species. In April 2019, a contractor working for 

the wetland restoration team travelled to Wairio to carry out weed control, one objective was to 

spray herbicide on blackberry bushes throughout the wetland. To assist them in locating the 

blackberry bushes, they were provided with extracts (Figure 15) from the full set of classified images 

for stage three, showing the location of all detected blackberry patches.  
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Figure 15 : Example of the Blackberry Patch maps given to the contractor. Extracted from a Map 
created by Stephen Hartley (2019). Blue patches represented blackberry detected in one season, 

purple indicates the same, but in a different season. Overlapping areas are therefore the most 
likely locations for blackberry patches. 

They were positive about the use of the vegetation maps produced: 

“I think the overview photo has got them [the blackberry patches] nailed 
pretty well. I had a good look over much of Stage 3 and the areas I saw 
correspond exactly with the blue patches. I am planning on doing the 
spraying next week so the map will be very useful.” 

In spite of the poor reported user accuracy of the ‘blackberry’ class, a common-sense interpretation 

of the map still allows for the class to be useful for practical purposes. This usefulness is present 

despite the class’s low accuracy as even though certain parts of the image that should have been 

classed as blackberry were not (and some that were should not have been), a high concentration of 

contiguous ‘blackberry’ pixels in the classified image is a reliable indicator of the presence of a 

blackberry bush in that location. Meanwhile, occasional scattered ‘blackberry’ pixels can be easily 

discounted by the end-user as probable error. While contiguous clusters of pixels may not accurately 

capture the dimensions of the plant, many practical applications do not require this level of 
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precision. In this case, only the general location of a plant was required, the exact dimensions could 

be determined once on site. 

The high resolution of the UAV images could be grounds to skip the image classification process 

entirely as once the user learns to recognise blackberry bushes. These bushes are easily distinguished 

by manually interpreting the raw photo. In this case, providing the weed sprayer with a high-

resolution photo on which all blackberry bushes were highlighted may have been of equal use. Being 

able to remove the specialised process of image classification from the workflow could be useful to 

the amateur monitor, as they are likely sufficiently familiar with the plant species to reliably identify 

them from an aerial photograph. This alleviates the need for additional software and experience with 

classifying images. One drawback to this approach is that it is still possible for the interpreter to miss 

plants of smaller size, whereas the classifier is perhaps more likely to catch smaller plants 

represented by only a few pixels the human would miss. This could limit the effectiveness of 

approaches that benefit from detecting a species in the early stages of growth, for instance, 

detecting and eliminating weed species before they have a chance to become established. 

Conversely, early detection of newly-emergent plant species that are desirable in the local 

environment would help quantify the rate of recovery of the wetland and help target vegetation 

modification schemes to support the plants as they established themselves. 

Another drawback is that depending on the application, errors of commission may be less of a 

concern than errors of omission. For example, false positive results can result in weed control 

programmes being targeted at areas that do not require them, resulting in a greater financial cost 

than is truly necessary. However, false negatives can result in areas that do require attention being 

overlooked, leading to an environmental cost through the uncontrolled spread of invasive species 

and an additional financial cost in the future when trying to control the plants not detected in the 

initial survey (Psaltopoulos, et al., 2017).  

5.2 Potential Causes of Error 

Segmentation 

Proper segmentation of the objects in the aerial photograph is essential to accurate object-based 

classifications (Haralick & Shapiro, 1985). While the segmentation settings were tested and adjusted 

for the best results (see 3.4.2), it was not possible to find settings that were well-suited to all classes. 

As a consequence, some classes were represented by many thousands of small (<0.1m2) segments, 

while others were represented by only a few larger segments of several tens of square meters. A 

drawback of smaller segments is that they do not always cover enough area to give the classification 

algorithm a representative set of textural or spectral data (Zhou & Lam, 2008). As an example, an 
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area of only a few square meters of mixed grass would typically contain several hundred segments, 

while an area of Isolepis might only contain a dozen. This indicates that in instances where species-

specific classification is desired, the segmentation approach should be tailored to individual species, 

rather than pursuing a ‘one size fits all’ approach.  

Another challenge inherent in accurate segmentation is having the borders between segments 

representing different classes correctly align with the actual divide between each class on the ground 

(Dronova, Gong, & Wang, 2011). However, these divides are rarely distinct lines as different types of 

vegetation overlap one another, and so appear to blend into one another. This effect was 

exacerbated by the high resolution of the images, meaning the merging areas are represented by 

enough pixels to be treated as independent objects and it proved difficult, sometimes impossible, to 

adequately adjust the segmentation process. The end result of this was that areas of incorrect 

classification can often be seen around the edges of areas of certain types of vegetation, such as in 

figure 16 below where the core of a patch of Isolepis has been correctly classified (light green), but 

the edges of the patch have been mis-identified as belonging to the ‘Mixed Grass’ (dark green) class.  

 

Figure 16: Demonstration of edge effects in the classified imagery (Stage two, October 2018) 

While it was possible to reduce this ‘edge effect’ by including samples of segments representing 

these border areas in the training data, to fully eliminate the issue would have required the addition 

of multiple subclasses representing only borderline areas and across all possible combinations of 

neighbouring classes. Alternatively, post-processing of the image, replacing cells based on the 

majority values in their neighbourhood (such as with the ‘majority filter’ tool in ArcGIS) could have 

eliminated some of this effect, but could also have caused error-free areas of the raster to change 

values unnecessarily. 

Class Similarity 

As the class roster includes a mix of generic classes representing several species and single-species 

classes, it is possible that the wider range of spectral and textural properties of the generic classes 
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includes data values that either match, or are sufficiently close to the narrower range of values 

representing the single-species class. A higher than expected degree of similarity between the 

segments representing different classes may be responsible for several of the low accuracy rates for 

certain classes, especially the high frequency of sedges being mis-classified as ‘mixed grass’. While 

patches of sedge and mixed grass are easily distinguishable by an observer familiar with both types 

when viewing the aerial photographs, the purely numerical properties that the feature extraction 

module uses to segment and classify them may be close enough to overlap, leading some areas of 

exotic grasses to be classified as sedge, and vice versa. 

Training Data 

While care was taken to ensure that training sites were properly distributed and only contained 

examples of the land cover class they were meant to (see section 3.5.2), the possibility that the range 

of acceptable values used to denote certain classes may have overlapped suggests that the selection 

of training sites is a likely source of error. Adding subclasses to cover variations in colour and texture 

within classes helped to eliminate some of this type of error. Additionally, subclasses were 

occasionally used to represent land cover classes in different locations. For instance, the ‘Island 

Mixed Grass’ subclass created to account for the higher elevation and longer leaves of the grass on 

the islands in stage one relative to the rest of the stage. Without this subclass, the classifier identified 

a significant proportion of the mixed grass across the whole image as ‘Toetoe’17 regardless of 

whether a DSM was applied. This subclass prevented the properties of grass in one specific location 

from affecting the values used to classify the remainder of the exotic grasses in the stage. However, 

in cases where two classes (or subclasses) were not easily separable based on the available data, it is 

unlikely that creating more subclasses would have been an effective strategy without additional 

information or insight into the properties of each class to separate the two. 

The choice of mixing generic and species-specific classes could also have reduced the overall 

accuracy of the map. Consider the ‘Manuka’ and ‘Other Tree (Dark Green) and (Brown)’ classes. 

While Manuka trees have a single, fairly recognisable shade of green, the ‘Other Tree’ classes are 

trained on a variety of species which, while excluding Manuka, do include several species with not 

dissimilar heights and textures, as well as providing a wide bracket of spectral values which Manuka’s 

own spectral properties fall into. This resulted in the classes being conflated with one another on 

occasion, thus reducing the accuracy of all of them. A sensible solution to the latter confusion would 

have been to include Manuka in one or the other of the ‘Other Tree’ class, however Manuka was 

 
17 Most of the Toetoe in stage one is concentrated on the raised islands. 
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kept separate as a test of the Feature Extraction Module’s ability to pick a single species out from a 

variety of not dissimilar types. 

Accuracy Assessment Method 

While the method used to assess the accuracy of the classified images was a standard procedure, 

two factors relating to it may mean that the overall and class-specific accuracies may not be a true 

reflection of the accuracy of the classifications. Firstly, the accuracy assessment points were 

distributed according to a stratified random model, with the locations of the points based on the 

results of the classification process, not the actual locations of the target species for each class. There 

is a distinct possibility that rarer examples of vegetation types that do not occur often in the image, 

(such as ‘dormant tree’) which might only be represented by two or three individuals in the field, or 

types with many individual examples but only a small area visible in the images, (like Cabbage Trees) 

are disadvantaged by this approach. The random placement of accuracy points and number of points 

assigned to each class combining to mean few of the points were located on actual examples of a 

tree species, especially if many areas in the classified image were wrongly assigned to that class. 

Considering that user’s accuracy should in principle shed light on the rate at which points 

representing a class were correctly classified, if there are only a dozen or fewer such points, this 

measure loses some of its statistical weight (Campbell & Whynne, 2011). 

To overcome this, manually adding a small number of points in addition to those created by the 

random process would improve the representation of classes with a small presence in the field. 

Though care would need to be taken not to introduce bias by unintentionally distributing points in a 

way that stacked the accuracy assessment calculation in favour of a positive result. For instance, 

adding many points to represent a few examples of a class, rather than distributing an equal number 

of points around as many examples of the class as possible. 

Additionally, using a method of accuracy assessment that considers the rate at which pixels were 

correctly classified seems out of step with a classification process that was otherwise focused on 

classifying whole objects, or portions of them. Since the results of the segmentation process often 

broke objects into several segments, there were several occasions where some of the segments 

representing a single object were correctly classified, while the others were not. If by chance an 

accuracy assessment point was located within the borders of this object, and within one of the 

incorrectly classified segments, then according to the confusion matrix the whole object would seem 

to have been incorrectly classified, when in truth only a portion of it was.  
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5.3 Convenience of UAV Mapping 

In this section, I describe the potential of UAV platform to offer convenient mapping solutions for a 

wetland environment, in line with research question one. 

Over the course of this project, I have had the opportunity to use and evaluate two UAV platforms 

which are in common use worldwide and which are representative examples of two subtypes of 

quadrotor UAVs. Here I present my observations as to the convenience of using a UAV for a long-

term wetland monitoring programme, with particular reference to the advantages afforded a 

volunteer or untrained monitor. 

Here, ‘convenience’ is assessed through five qualitative measures: 

• The logistics involved in deploying and operating the UAV 

• The skill level required of the operator 

• The operational capability of the UAV 

• The capacity of the UAV to be used without disrupting the environment in which it operates 

• The ease with which captured imagery may be converted into useful results. 

Though my appraisal cannot apply to all the varieties of UAV, the prevalence of quadcopter types of 

similar size and capability to the DJI Phantom and Matrice models allows for the points raised here to 

apply to a sufficiently broad range of platforms. 

5.3.1 UAV Logistics & Ease of Use 

Portability 

The Wairio wetland is not an unusual example of a New Zealand backcountry site. The launch points 

for each of the three stages were roughly five minutes’ walk from the access road and reaching them 

required porting all necessary equipment over at least one fence or through a gate and walking over 

uneven ground. The proximity of the launch points to the access road is an advantage not shared by 

many backcountry locations, which might require longer periods of on-foot travel to reach and in 

such cases the operator may also need to carry other equipment, including food or water. Therefore, 

the portability of a UAV platform, determined by its size and weight, could be a deciding factor in 

whether that platform can be used for monitoring a remote site. Given that UAVs are now being 

deployed locations which have historically been inaccessible, and remain difficult to access such as 

the Antarctic (Bollard-Breen, Brooks, & Jones, 2015) post-earthquake cities (Baiocchi, Dominici, & 
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Mormile, 2013) and volcanic environments (Amici, Turci, Giammanco, Spampinato, & Giulietti, 2013), 

the ability of a platform of a certain size or weight to be transported in or around difficult locations is 

an important concern. 

Not all wetlands are in the backcountry, and many can be found on farms or in areas with good 

vehicle access. However, the ease of transporting the UAV within a location is to ensure the UAV is 

launched from a location that makes the most efficient use of its limited battery. Since this location 

may not be the access point to the wetland, or the nearest road, the portability of a UAV platform 

when travelling on foot is a valid consideration. 

The low weight (1.4kg) and small size (290mm x 290mm x 200mm) of the Phantom makes it easy to 

transport both to and within the survey location. The Phantom can be carried in a backpack-style 

case, making transporting the UAV to the designated launch point easy, even when getting there 

requires crossing fences or trekking over difficult terrain. This degree of portability is not shared by 

the Matrice. While the platform’s weight (3.8kg) is not an issue of itself, its size (720mm x 220mm x 

240mm while folded, 890mm x 890 x 380mm when rigged for flight) presents more of a challenge 

when trying to transport the UAV. The Matrice used in this project was provided with a protective 

case roughly the size of a suitcase, which proved cumbersome to carry (weighing 5kg when fully 

loaded). While such a case can be carried by one person relatively easily, doing so over longer 

distances becomes tiring, and the carrier loses a free hand with which they might otherwise operate 

gates, steady themselves or carry other equipment. Consequently, the Matrice, and UAVs of 

equivalent size are perhaps not best suited for use in backcountry sites not accessible by vehicle. 

Ease of Use 

Flight planning requires a basic understanding of the principles of aerial photography. Since 

DroneDeploy and equivalent apps are compatible with most smartphones and tablets, making use of 

the app and its web browser-based counterpart should not be beyond the capability of the amateur 

operator.  

Since the flight plan automates the entire flight from take-off to landing, operating the UAV in flight 

also requires little specialist knowledge. Nevertheless, the ability to manually fly the UAV in the event 

of emergencies is desirable. The method of control input for quadcopter UAVs is standardised across 

most models, regardless of manufacturer. Therefore, an operator who has flown one such UAV 

should have all the experience they need to operate a different model. 

The automatic position holding system and collision avoidance sensors which are becoming 

increasingly common features of commercially-available models combine to make it easy to fly even 
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for inexperienced operators and greatly reduce the risk of accident through collision with the ground 

or obstacles, which proved useful when trying to land the UAV in a confined space of open ground 

little larger than the UAV itself. 

5.3.2 Operational Capability 

Endurance 

The battery life and comparatively short range of small quadcopter UAVs compared to fixed-wing 

varieties or conventional aircraft represent two significant limitations to the usefulness of such types 

for monitoring larger areas. While it is probable that the natural development of the technology over 

time will eventually reduce this restriction (Anderson & Gaston, 2013), it was clear that survey flights 

covering areas of around 8 hectares and with the high spatial resolution desired are comfortably 

within the capability of the UAV to perform. By tailoring the survey flight’s desired levels of overlap, 

altitude and flight speed, I estimate that with the present development level of camera and battery 

technology, areas at least twice this size could be surveyed on a single battery without a significant 

loss of resolution or accuracy in the final classified image.  

However, the regulations concerning line-of-sight operation can limit the range over which a UAV 

may be operated just as much as the battery capacity. Based on my experience in the field, a UAV of 

size equivalent to the Phantom remains visible up to around 300 metres from the observer, though 

this would vary based on individual eyesight, and the UAV’s colour in contrast to the sky. Therefore, a 

single operator is limited to surveying small sites equivalent to the stages at Wairio unless they are 

supported by additional observers, or gain a qualification that permits beyond-line-of-sight 

operation. 

Vulnerability to Weather  

Unfavourable weather only prevented the completion of survey flights on two occasions, this can be 

ascribed to good advance planning rather than the UAV’s resistance to weather conditions. In order 

for the UAV to follow the desired flight path, the wind must not to push the UAV off course. While 

UAVs of equivalent weight to the Phantom can hold their course in crosswinds of up to 

approximately 10 knots, in the event the UAV is blown off-track, it will halt in place and attempt to 

regain the correct line of flight before continuing. Alternatively, a strong headwind can prevent the 

UAV from making way in a certain direction as it must maintain a constant forward speed to keep the 

same amount of forward overlap between images. Therefore, winds close to or greater than the 

programmed flight speed can prevent it making any headway. Interference by wind can therefore 

cause the survey flight to take much longer than planned, which can prove problematic in the event 
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that spare charged batteries are not available. Meanwhile, especially strong gusts may blow the UAV 

into trees, resulting in the craft becoming damaged or stuck.  

As a result, flights of the type conducted in this project might be difficult to perform successfully in 

locations that are more exposed to prevailing winds or are generally windier than the normally calm 

conditions in the Wairarapa. 

5.3.3 Non-Disruptive Operation 

A small UAV would be unlikely to cause major damage to local vegetation in the event of a crash. 

Being lightweight limits the force of any impact with either trees or ground cover, and the fragility of 

smaller models means that a collision with a solid object like a tree trunk is more likely to damage 

the UAV than the plant. 

An important consideration during the design of this project and during UAV operations was how the 

UAV might disrupt wildlife in the survey area.  This is of importance from both an ethical and legal 

standpoint, as the Wairio block is home to a number of protected bird species which the Wildlife Act 

of 1953 prohibits disturbing or harming, whether deliberately or by accident (Department of 

Conservation, 2019). While UAVs have been used in close proximity to birds in previous studies 

without incident (Chabot & Bird, 2011), DOC guidelines and ‘best practice’ recommendations from 

the scientific community (Gonzalez & Johnson, 2017; Cowie, et al., 2018) recommend bringing flights 

to an immediate halt in the event of an alarmed or aggressive response to the UAV by local bird life. 

There is a growing field of study into the possibility of using UAVs as aerial scarecrows, exploiting 

their disruptive potential for the purpose of repelling birds from agricultural sites (Wang, Lucas, 

Wong, & Charmitoff, 2017), the opposite of the intent of this project. 

The rotors of quadcopter UAVs spin at several thousand revolutions per minute and can cause 

serious injury on contact, especially to smaller birds. Meanwhile the noise of the UAV is known to 

cause distress to some birds and animals (Gonzalez & Johnson, 2017; LaFrance, 2016), and the UAV 

flying over nest sites could provoke a defensive or alarmed response from nesting birds mistaking the 

silhouette of the UAV overhead for a predator (Cowie, et al., 2018). Additionally, several of the 

species present at Wairio and commonly found in wetlands nationwide are either large enough to do 

a UAV serious harm in the event of a collision or known to mob assumed predators in defence of 

nests. Consequently, the potential for an unintended interaction between bird and drone causing 

harm to either party was a valid concern that needed to be minimised if possible. 

While the resident bird life demonstrated a range of reactions to the UAV, none appeared to be 

unduly disturbed by its presence and none demonstrated aggressive (or defensive) behaviour 

towards it. Australasian harriers, which I assumed would pose the most risk to the flight by virtue of 
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their size and position as the dominant predator in the location, appeared to have little interest in 

the UAV. Water birds, such as swans and pukeko, were never observed to be startled by the UAV 

flying overhead, and several can be observed at rest or nesting in some of the orthomosaics. Small 

birds (typically swifts) occasionally circled the UAV at a safe distance for less than a minute, but never 

flew towards it as if to engage a predator, so I attribute this behaviour to curiosity rather than 

aggression. This is not to suggest that care need not be taken while operating near birds, but does 

lend credence to the possibility of using UAVs for monitoring bird life, after Chabot & Bird (2011) and 

shows that UAVs can operate in areas populated by protected wildlife without unduly disrupting said 

wildlife, as long as the operator uses caution and common sense. 

5.3.4 Post-Flight Processes 

While learning to operate a UAV is not difficult, processing geospatial data is a specialised task and 

the typical monitoring volunteer may not be able to gain competence. However, there are still 

options for data processing that are relatively accessible to the untrained individual. Processing raw 

photos into orthomosaics by uploading them to a cloud-based system is a straightforward process 

that is not much more complex than uploading photos to a social media account. While such cloud-

based systems require no additional software or training on the end-user’s part, this method 

sacrifices a degree of control over the finished product that would be retained if the user processed 

their own data through a programme such as Pix4D. 

Classifying imagery requires direct involvement on the part of the user. Unlike orthomosaic creation, 

classification requires the user to acquire and familiarise themselves with a geoprocessing software 

suite capable of object-based image analysis. Several options are available, ranging from specialised 

programmes to all-purpose suites. Cost-wise, the user has a choice of paid programmes or free and 

open source software. Despite this, it must be acknowledged that the average person may not be 

proficient in GIS programmes or ‘tech-savvy’ enough to become so under their own training. If 

performing a simple classification with only half a dozen classes is beyond the user’s capability, 

regardless of whether the limiting factor is their skill or the software available to them, it may be that 

producing an orthophoto is all that is needed. Depending on the requirements of the end-user, a 

suitably detailed orthophoto may suffice for the identification of certain land cover classes. For 

instance, consider the case of the weed control contractor described in section 5.1.6.  

In this instance, a user with sufficient familiarity with the appearance of blackberry plants would 

have no difficulty in picking these out and indicating their general location with enough precision for 

the contractor to locate the plants in the field. This task does not require the precise delineation of 

the borders of the blackberry patch that image classification would provide, as the contractor can 

determine these themselves in the field. The time saved by providing the contractor with a 
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photographic map rather than having them search the wetland on foot for individual plants would 

significantly reduce the contractor’s operating costs, and therefore save the restoration team money 

which could then be redirected to other ends.  

5.4 Improving Effects of the DSM 

Sections 5.4 and 5.5 relate the effects of including different combinations of ancillary data in image 

classifications, with a focus on the impact on the accuracy of the classification process. These 

sections address research question two. 

When a DSM was included in the classification process, both the overall accuracy of the entire 

classification and that of each class contained within improved. The classes that experienced 

improvements of the greatest magnitude were primarily those that represented larger vegetation 

types, such as Kahikatea. As increases in overall accuracy and kappa on the application of the DSM 

were both present and statistically significant, there are grounds to accept the hypothesis that the 

DSM allows the classification process to distinguish between low-lying ground cover and larger 

plants, even if they were visually similar. This confirms the findings of the studies that argue in favour 

of the use of topographic data in image classification (Cao, et al., 2018; Kim, Madden, & Xu, 2010; 

and Corcoran, et al., 2012).  

In certain circumstances, smaller Kahikatea trees were not readily visible in the aerial photographs as 

they feature a very similar colouration to the ground cover beneath them (as in figure 17 below), 

thus the vertical perspective of the photo meant the trees blended into the background. In some 

cases, the presence of a tree was only given away by the shadow it cast. As a result, the ‘Kahikatea’ 

class returned low classification accuracy rates in the RGB-only tests, with a high instance of 

confusion with ground cover classes, or with other tree-type classes in images where the Kahikatea 

was distinguishable. With the addition of the DSM, the rate of confusion between Kahikatea and 

other trees dropped significantly as even the smaller Kahikatea were several metres taller than all 

other trees nearby, and so the DSM values were able to provide a point of difference when spectral 

values could not. This is a similar trend to that observed by Cao, et al., (2018) when trying to 

distinguish mangrove species with similar spectral properties, but significant differences in size. 
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Figure 17: Two Kahikatea trees in stage one blend into the background in the leftmost image 
(Winter, 2018), but are clearly visible in the image to the right (Spring, 2018). 

The improvements were less pronounced for classes that do not have a significant vertical presence, 

such as ‘water’ or ‘Isolepis’, but were still present. This small improvement may be due to the DSM 

providing additional information about the texture or roughness of the surface, helping to increase 

the rate at which individual segments were merged or providing an extra characteristic to allow the 

classification algorithm to differentiate otherwise similar segments. In figures 18 and 18b, extracts 

from the classified imagery for stage two in June 2018 are compared, to illustrate the effect of 

including a DSM. 
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Figure 18a & 18b: Comparing RGB-Only (above) and DSM-Inclusive Classifications (below) of stage 
two (June 6th, 2018)

 

 

Since a DSM must be produced as a precursor to the creation of a proper orthomosaic, it requires no 

extra effort on the part of the user to produce. Because of this, the DSM is effectively a free source of 

ancillary data, as there is no cost to its production and use other than a small increase in processing 

time during the classification phase. Therefore, given the ease of DSM creation and the fact that 

DSMs have been proven to increase accuracy in measurable and statistically significant amounts, it is 

unclear why a DSM should ever not be used, if the option to employ ancillary data exists. 

5.5 Multispectral Camera Imagery Tests 

Despite the lower spatial resolution of the imagery (approximately 4cm/pixel), the accuracy levels of 

the classifications produced with the RedEdge multispectral camera are equivalent to those 
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produced from the true-colour imagery from the Phantom’s stock camera. However, despite the 

additional sources of ancillary data produced by the RedEdge, combining all of these datasets did not 

result in a greater degree of accuracy than was attained with the Phantom camera’s products. 

Nevertheless, the inclusion of the multispectral ancillary data did produce a significant improvement 

in classification accuracy. 

5.5.1 Data Quality Issues 

Three problems with the raw imagery may have prevented the accuracy of the final classifications of 

the RedEdge-sourced imagery exceeding the bar set by the Phantom imagery. The first and most 

prevalent are areas in the orthomosaic that appear out-of-focus compared to the rest of the image 

(Figure 19). 

 

Figure 19: Extract from Stage One Orthomosaic (April 2019) showing the blurred areas. 

Why this should have happened was initially unclear, though vibration and movement of the camera 

is a probable cause (Wigmore, pers. Comm. 2019). The attachment that connects the RedEdge 

camera to the Matrice is a fixed type (figure 20), which cannot automatically adjust for pitch and roll 

as motorised gimbals can. Most importantly, the fixed mount offers no dampening of the high 

frequency vibrations of the UAV’s motor, which pass directly from the UAV’s fuselage and into the 

camera. The frequency of this vibration is high enough that even extremely high shutter speeds 

offered by global shutters such as that fitted to the RedEdge cannot always eliminate blurring caused 

by the camera moving as the image is recorded.  The Matrice does have three vibration dampers 

fitted to the camera mounting point, but it appears these were not enough to reduce vibration to 

manageable levels. Possibly the attachment between the camera itself and the mounting adapter 

was not secure enough to prevent vibration. In addition to the UAV’s own motion, strong wind gusts 
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on the day of capture may have contributed additional movement to the camera during the exposure 

windows. 

 

Figure 20: The mounting arrangement for the RedEdge Camera 

This phenomenon of movement-induced distortion is quite common in cheaper multispectral 

cameras (Wigmore, pers. Comm. 2019), which feature rolling shutters as opposed to high-speed 

mechanical ones. Cameras fitted with this type of shutter begin scanning an image from one edge of 

the frame, rather than by taking a snapshot of the whole frame at once, so if the camera moves 

while the shutter rolls, then parts of the image may be distorted. While such distortion is less 

common in cameras with global shutters (Rengarajan, Rajagopalan, Aravind, & Seetharaman, 2016), 

it is not the case that it never occurs. Vibration-induced blur can have a marked negative effect on a 

program’s ability to detect tie points between a pair of images. Sieberth, Wackrow and Chandler 

(2015) tested the effect that vibrations of different magnitude had on this aspect of photogrammetry 

and experimented with overlapping a single sharp image and a single blurred image, with the blur 

induced by vibrating the camera while the image was captured. Once displacement during exposure 

windows increased beyond around 0.25mm, the rate of correct tie point registration declined 

rapidly. Displacement of as little as 0.377mm reduced the number of detected tie points by 28%, and 

the number of correctly referenced points by 83% - from a total of 12,214 possible ties, only 1,524 

were matched correctly. At a displacement of 1.028mm, the number of correctly registered points 

was only 47 (Sieberth, Wackrow, & Chandler, 2015). While the amount of vibration affecting the 

RedEdge camera in flight cannot be known, it is clear that not much movement is necessary to 

induce blur. Considering that the camera is already in motion regardless of any vibration, blur 

induced by the camera being displaced in the interval that the camera’s shutter is open is the most 

likely cause of the blurred areas in the orthomosaic. 
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The effect of motion blur may be compounded by the fact that the RedEdge camera takes five 

separate images to represent the five spectral bands it can detect. These five images are all offset 

from each other owing to the layout of the camera’s lenses and must be overlaid with one another to 

form a single multiband raster image, which is then used to create the final orthomosaic. Therefore, 

motion blur has the potential to distort imagery on two occasions when precise detection of tie 

points is needed: first when the five image bands are composited and again when the composite 

images are overlaid. 

Two options to counter this blurring in future uses of the camera are recommended, both of which 

are applicable to all deployments of sensitive imaging sensors. Either ensure the mounting kit is 

fitted with strong vibration dampers and confirm that the camera is as securely fastened to the 

mount as is possible, or edit the finished orthomosaic to remove distorted raw images. However, 

while the latter option is offered by paid software suites such as AgiSoft Photoscan, it is not offered 

by PrecisionMapper, so this represents a drawback to processing images in a closed system where 

the user forfeits control for the sake of convenience. While removing distorted photos before they 

were uploaded is possible, either by deleting them or applying blur correction algorithms, it would 

also be very time-consuming in this case, as the RedEdge camera captured in the region of 3000 

images per stage.  

Another workaround for this issue would be to increase the altitude at which images were taken. The 

increased relief between the camera lens and the photographed surface would reduce the distortion, 

while at the same time also reducing the spatial resolution of the images. Given that a high level of 

spatial resolution is needed for reliably identifying training areas for species specific classification, 

such a workaround could make identifying some land cover classes difficult. Reducing the UAV’s 

flight speed to reduce the amount of camera movement during exposures would also be effective. 

The total area of each image affected by distortion was around 10% of the total area of each map. 

However, as the dominant land cover type in the blurred areas was still identifiable, I opted to keep 

the data and used subclasses in the training dataset to represent land cover in the blurred areas and 

so reduce the rate of classification errors.  

The second issue in the orthomosaics concerns high levels of overexposure, this may be attributed to 

the sun briefly breaking through the cloud cover and the camera not adjusting its exposure settings 

in time. This only occurred in stage two and affects around 0.0005% of the total area of the stage, so 

this is a very minor issue. Additionally, the only land cover class affected are the already light-

coloured dry vegetation types, which are difficult to make out in the over-exposed areas. This issue 

was countered by created an ‘over-exposed’ subclass for the land cover classes in these areas. 
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A final issue appears to have been caused by a GPS tagging error. Partway through the flights over 

stages two and three, the GPS module used to geotag the photographs seems to have lost its 

position fix. As a result, some images were marked as being in a different location to their actual 

position. Consequently, a section of each orthomosaic is missing, as without correct GPS data these 

images could not be properly overlapped with the other images in the mosaic. However, a smaller 

area to classify should not have any effect on the resulting classification accuracy scores. Stage two 

lost an area of 0.43ha, around 5% of its total area, but the remaining classifiable area was still larger 

than either of the other stages, so I believe the results to be still be meaningful. Meanwhile stage 3 

only lost 0.07ha (approx. 1% of the total area), meaning the loss of data here was negligible. 

5.5.2 Benefits of additional ancillary data 

As expected, the addition of near-infrared and red edge imagery provided measurable and significant 

improvements in classification accuracy. However, it is curious that the inclusion or exclusion of a 

DSM appears to have had little effect on the accuracy of this set of imagery. In theory, the addition of 

just the DSM to the base RGB imagery should have increased the overall accuracy and kappa score, 

but this increase was not evident. Likewise, only a small improvement was evident when the DSM 

was included alongside multispectral ancillary data. 

The inclusion of DSMs as ancillary datasets is not always effective in all applications (Campbell & 

Whynne, 2011; Puzinas, 2017). However, it is not clear why it should not have been so in this 

instance, as the RGB and DSM datasets from the Phantom and RedEdge cameras are of comparable 

resolution and the classifier was trained on the same objects. The DSM produced by the RedEdge-M 

images was of slightly lower resolution (Figure 21b), but still picked out the same areas of larger 

vegetation as the DSM produced from the Phantom’s camera. Therefore, the three-dimensional 

information provided by the DSM should have increased the user and producer accuracy of certain 

classes, and thus a noticeable difference in overall accuracy and kappa. It is not impossible that the 

lack of improvement could be grounded in user error, for instance if the segmentation and 

classification process were not configured to include the DSM, then no effect would be evident. 

However, as three separate iterations of an RGB + DSM classification were run, it is unlikely that such 

an error would have recurred on three occasions. The distortion effects in the base RGB dataset 

could have offset improvements in accuracy – but as these were kept isolated by training data 

subclasses and only affected a small portion of each image in any case, increases in classification 

accuracy throughout the rest of the image should still have been present.  
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Figure 21a & 21b: Comparison of base orthomosaics (above) and DSM resolution (below) between 
the two cameras. The area shown is an extract of stage three, as surveyed on the 5th of March 

(Phantom) and 4th April 2019 (RedEdge-M) 
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However, inclusion of multispectral (NIR and RE) data did have a pronounced positive effect on 

classification accuracy and did so with an extremely high level of statistical significance (see tables 

4.6 and 4.7). Here, the increase in accuracy stems from the additional data improving the classifier’s 

ability to distinguish between classes on spectral grounds, rather than adding a topographic element 

to act as a unique identifier. The bulk of the improvement is probably due to the inclusion of the NIR 

band as opposed to the RE band, as the former band is considered to offer the greatest degree of 

spectral separability between otherwise similar vegetation classes (Everitt, Yang, Fletcher, & Deloach, 

2008).  

5.6 Evaluation 

5.6.1 Survey Flights 

In keeping with the principle of ‘bad data in = bad data out’, faults in the methodology of the survey 

flights would have led to unsatisfactory results in either the creation of the aerial imagery datasets or 

the classification result drawn from them. However, I can state with confidence that the flights were 

conducted in accordance with accepted best practice methods and produced results that were of 

satisfactory quality. Given time to familiarise myself with the RedEdge-M, the flaws in the images 

captured with this camera could have been eliminated. As discussed in section 5.5.1 however, I do 

not believe they will have resulted in a significant drop in accuracy as I was able to introduce 

measures to work around them, such as the introduction of subclasses to represent example of land 

cover types that were overexposed or blurred. 

Given the intent of this project to explore the capabilities of multispectral mapping, conducting 

additional flights to capture this type of data would have been desirable. This was not done for two 

reasons, the first of which was financial. Conducting multispectral mapping at seasonal intervals in 

tandem with the other survey flights would have given me a great deal more data to work with and 

thus might have allowed me to produce more statistically significant results to inform my conclusions 

about the usefulness of multispectral imagery for identifying individual land cover classes. However, 

the RedEdge camera was not available from the outset of this project, so acquiring multispectral 

imagery would have required contracting a professional operator on multiple occasions. The budget 

was not available for this project.  

While the UAV was easily acquired, unforeseen delays in modifying it to be compatible with the 

RedEdge camera’s mounting kit meant the combined set of equipment was not ready for use until 

late March 2019, too late to align with any of the seasonal imagery. 
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5.6.2 Image Processing 

Given that several classes were not accurately classified, a revised approach to the image 

segmentation or classification process might have been desirable. It may be that the number of 

classes I sought to classify was too ambitious, as image classification typically becomes less precise as 

more classes are introduced, creating more opportunities for error (Campbell & Whynne, 2011). To 

avoid this issue a classification scheme with only a few generic classes (as was used for the change 

detection tests) could have been employed. Exploratory classifications of the seasonal imagery from 

March 2019 using the change detection classes defined in section 3.6 produced overall accuracy 

levels as shown in table 5.3 below, demonstrating a clear improvement in all cases: 

Table 5.3: Contrasting Classification Accuracy between schemes with many and few classes based 
on March 2019 imagery 

Stage: Overall Accuracy: 
Original Classification 
Scheme 

Overall Accuracy: Five Classes Difference 

Stage One 53% (19 Classes) 63% 10% 

Stage Two 68% (14 Classes) 83% 15% 

Stage Three 57% (18 classes) 78% 21% 

 

While this would have been less useful for the purposes of identifying and locating specific species of 

plant, it would still have provided a much more detailed documentation of the surface cover at 

Wairio than is currently available. The New Zealand Land Cover Database (Landcare Research New 

Zealand Ltd - Informatics Team, 2018) only lists two land cover classes in the survey area: 

‘Herbaceous Freshwater Vegetation’ and ‘Low Producing Grassland’, and ignores all areas of water 

and larger vegetation. Alternatively, a more rigorous approach to image segmentation, employing 

multiple levels of segmentation for different surface types (after Pande-Chhetri et al (2017)) and 

merging the results into a single classified image rather than trying to tailor a single setting to best 

suit all surfaces could have reduced some of the loss in accuracy for the classes that were typically 

broken into very small segments.  
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Chapter 6 

Conclusions 

6.1 Research Question One 

Test the proposition that UAVs can provide accurate and convenient assessment of changes in 

vegetation and water coverage over time, using a recovering wetland area as a case study. 

The use of the UAV to gather the data for this project allowed for total avoidance of environmental 

damage and was not observed to disrupt local fauna, both of which are highly desirable in fragile or 

protected environments such as wetlands. The large degree of automation in the data capture and 

initial image processing allows for this type of project to be conducted by anyone with access to the 

required equipment, regardless of prior experience or training, although the process of classifying 

images may remain beyond the reach of the amateur for the moment. The resolution of the 

orthomaps produced (~2cm/pixel) was more than sufficient for reliable visual identification of many 

different species of vegetation in the area, and such high-resolution imagery can be advantageous to 

end-users of the imagery even without being run through an image classifier. Consequently, this 

project demonstrated that the use of UAVs can provide small and inexperienced operators with a 

convenient, non-disruptive and user-friendly option for remote sensing of fragile or difficult to access 

areas. 

Using object-based methods to classify vegetation and other surface types at the Wairio wetland 

block proved difficult to perform with a consistently high level of accuracy. This was partly due to the 

level of variability within classes, partly to too little variation between classes used for training the 

classifier and partly due to the difficulty in finding segmentation settings that allowed for the best 

representation of all classes. Despite this, the classifier showed a promising ability to detect certain 

individual land cover classes which are more easily distinguished from their surroundings by virtue of 

their spectral properties and the high spatial resolution of the UAV-sourced imagery. This proves that 

the OBIA process would be well-suited to more targeted applications where tracking a single class 

(for instance Bidens frondosa) was desired.  

Though the initial classification scheme developed to inventory local land cover resulted in only a 

moderate level of accuracy, this did not prevent the use of a modified, more generic version of the 

classification scheme being used for accurate mapping of the changing water levels within the 

wetland over the course of the year. Neither did the limited accuracy of the classified maps prevent 

them being employed by a third party with limited GIS knowledge to good effect. This should not be 

considered a challenge to the idea that higher levels of classification accuracy are always desirable. 
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However, this project does serve as an example of how a high level of accuracy is not always 

necessary to provide a useful finished product. This is because an interpretation of a classified image 

based on the user’s own knowledge and common sense can overcome inaccuracies by filtering out 

false results. Therefore, I propose that classification processes that do not feature high accuracy 

levels of overall accuracy should not be immediately dismissed as invalid or being of no use. 

6.2 Research Question Two 

To what extent is the accuracy of the image classification process improved with the addition of 

ancillary data, such as digital surface models or near infrared imagery? 

With respect to the beneficial effects of ancillary datasets for image classification; the inclusion of a 

DSM to the classifier produced a clear improvement in accuracy in the majority of cases and was 

particularly effective when used to distinguish taller vegetation types (such as trees) from ground 

cover. In terms of overall accuracy, the DSM’s inclusion in the classification process resulted in an 

average increase of 10.25% OA and 0.11 kappa. The average magnitude of improvement on a class-

specific basis was around 13% in terms of user’s and producer’s accuracy, with a maximum 

improvement of 43.5% and above average improvements were exhibited vegetation types of larger 

size than ground cover.  As no extra effort was required to produce the DSM and the resulting 

improvements have the potential to be significant in terms of both magnitude and statistical 

meaning, these findings represent a strong case for the inclusion of topographic data in all such 

classifications.  

Likewise, the inclusion of multispectral ancillary data resulted in a pronounced and extremely 

statistically significant improvement in overall accuracy (averaging 9.33%) and kappa (averaging 0.11) 

in all cases. In this case, improvements were more evenly distributed across all classes, and 

particularly strong improvement such as those provided to large vegetation types by a DSM were not 

evident. However, a statistically meaningful measurement of the average improvement in class-

specific accuracy could not be obtained, which was partly due to a smaller set of results to draw 

conclusions from. What results were obtained suggest that producer’s accuracy was especially 

improved by the inclusion of multispectral data, as the average increase in this metric (16%) was 

double that of user’s accuracy (8%). 

Contrary to expectations, an approach that combined a DSM with multispectral imagery only 

exhibited a negligible synergistic improvement in accuracy – the difference amounted to an average 

of only 2% OA and 0.02 kappa. Therefore, I cannot conclusively determine whether the two data 

sources could be combined to offer superior accuracy levels in contrast to those derived from only a 

consumer-grade true-colour camera with a higher spatial resolution. Nevertheless, the beneficial 
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effect of the inclusion of multispectral data itself was clearly shown, even in a small dataset. With 

refinements to the process by which this data was gathered, and the classification process itself, a 

strong synergistic improvement through the inclusion of both topographic and multispectral ancillary 

data could be proved possible. 

6.3 Future Research Opportunities 

Synergistic Improvement from Ancillary Data Sources 

In the tests which involved the digital surface model produced from the RedEdge, no improvement in 

classification accuracy was evident when the DSM was added to the classification process. This was 

not the expected outcome and a reason was not established. It may be that the source of the error 

lies in the resolution of either the DSM or the base RGB imagery. It would be of interest to test 

whether an approach which combined higher-resolution RGB imagery and DSMs from a true-colour-

only camera mounted to a UAV with multispectral data from space-based, aerial or UAV mounted 

sensors could leverage the respective strengths of the two sensor types to provide a stronger 

synergistic improvement. 

Land Cover as Ancillary Data 

A second premise worth investigation would be whether historical land cover classifications can be 

used as ancillary data to enhance the accuracy of future classifications of the same area, a topic 

which is not yet well addressed in the existing literature. Theoretically, certain classes should remain 

constant over long periods, for instance, trees or larger vegetation. In the context of Wairio, a 

Manuka tree present in one year is likely to be present in the same location a year or more in the 

future, so it appears logical that knowing that an object was previously classified as ‘manuka’ would 

greatly increase the chance of that object still being a manuka tree. However, it is not clear whether 

this logic would hold in the case of land cover classes that frequently supplant one another, which is 

much more likely with lower-lying ground cover classes.  

An additional line of investigation would be whether land cover representing one season could be 

used to improve classifications for a different season. For instance, does knowing that a certain site 

was floodwater in winter increase the classifier’s ability to correctly classify emergent Bidens 

frondosa when the water retreats from those sites? Other points of interest would be the necessary 

level of classification accuracy and specificity (i.e. the number of distinct classes) needed to reliably 

improve results. If historical land cover can serve as a reliable predictor of future land cover, this 

would be a useful, if perhaps situational tool to improve classifications of areas that exhibit 

pronounced seasonal variation, or that may feature significant change over long periods, such as 

recovering wetlands. 
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Appendix A: Class Example Images 

Class Name: Example Images 
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Appendix B: Confusion Matrices 

Stage One – Winter 
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Stage One – Spring 
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Water 209 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17 1 0 0 0 0 0 227 0.92 0

Mixed Grass 0 194 3 1 0 7 0 0 2 0 1 0 0 3 0 0 4 0 0 0 0 1 0 216 0.90 0

Isolepis 0 2 8 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 0.67 0

Yellow Isolepis 0 0 1 19 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21 0.90 0

Brown Grass 0 0 0 1 6 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 8 0.75 0

Dry Vegetation 0 0 0 0 0 12 0 1 0 0 0 0 1 0 0 0 2 0 0 1 0 0 0 17 0.71 0

Shadow 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 1.00 0

Reed 0 0 0 0 0 3 0 11 0 0 0 0 0 1 0 0 1 0 0 2 0 0 0 18 0.61 0

Other Tree (Dark) 0 1 0 0 0 0 0 0 4 1 0 0 1 0 0 0 0 0 0 0 0 0 0 7 0.57 0

Other Tree (Brown) 0 34 3 2 8 1 0 0 0 2 1 0 1 2 0 1 0 0 0 1 0 0 0 56 0.04 0

Manuka 0 25 2 0 8 0 6 1 0 3 21 0 3 0 1 0 9 0 0 2 3 0 0 84 0.25 0

Blackberry 0 3 0 0 0 0 1 0 6 2 1 2 4 1 0 0 0 0 0 0 0 0 0 20 0.10 0

Flax 0 1 0 0 0 3 1 3 2 0 0 0 31 0 0 0 1 0 0 2 5 0 0 49 0.63 0

Sedge 0 3 0 2 6 1 0 0 0 0 0 0 0 1 0 0 4 1 0 2 0 0 1 21 0.05 0

Dormant Tree 3 0 0 0 0 5 0 0 0 0 0 0 0 0 3 0 26 2 0 0 1 0 0 40 0.08 0

Other Tree (Light) 0 13 2 3 0 0 0 0 0 0 0 0 0 1 0 3 0 0 0 1 0 6 0 29 0.10 0

Waterlogged Grass 3 0 0 0 3 2 0 0 0 0 0 0 0 0 2 0 50 1 0 0 1 0 0 62 0.81 0

Azolla 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 8 1.00 0

Green Algae 0 0 0 0 0 3 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 5 0.00 0

Toetoe 0 8 1 0 0 11 0 4 0 0 0 0 3 0 0 0 2 0 0 15 4 1 0 49 0.31 0

Rush 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.00 0

Cabbage Tree 0 17 0 0 0 0 0 0 0 0 0 0 7 0 0 1 0 0 0 2 3 5 1 36 0.14 0

Kahikatea 0 5 1 2 1 13 0 0 0 0 0 0 1 0 0 0 0 0 0 3 0 1 3 30 0.10 0

Total 215 306 21 32 33 61 14 20 14 8 25 2 53 9 6 5 116 13 0 32 17 14 5 1021 0.00 0

P_Accuracy 0.97 0.63 0.38 0.59 0.18 0.20 0.43 0.55 0.29 0.25 0.84 1.00 0.58 0.11 0.50 0.60 0.43 0.62 0.00 0.47 0.00 0.36 0.60 0.00 0.60 0.00

Kappa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.54
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Water 209 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19 2 0 0 0 0 0 230 0.91 0

Mixed Grass 0 242 3 0 0 3 0 0 1 1 0 0 3 5 0 0 2 0 0 0 0 0 0 260 0.93 0

Isolepis 0 1 10 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 0.67 0

Yellow Isolepis 0 0 0 26 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 30 0.87 0

Brown Grass 0 0 0 0 12 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 13 0.92 0

Dry Vegetation 0 0 0 0 0 12 0 9 0 0 0 0 0 0 0 0 1 1 0 2 0 0 0 25 0.48 0

Shadow 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 1.00 0

Reed 0 0 0 0 0 5 0 5 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 13 0.38 0

Other Tree (Dark) 0 1 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0.90 0

Other Tree (Brown) 0 3 0 0 0 0 0 0 0 4 0 0 1 0 0 1 0 0 0 1 0 1 0 11 0.36 0

Manuka 0 14 1 0 5 1 4 2 0 2 24 0 3 0 1 0 3 0 0 3 0 0 0 63 0.38 0

Blackberry 0 7 0 0 0 0 0 0 3 1 1 2 1 0 0 0 0 0 0 1 0 0 0 16 0.13 0

Flax 0 2 0 0 0 2 0 1 1 0 0 0 40 0 0 0 0 0 0 2 2 0 0 50 0.80 0

Sedge 0 19 2 2 8 6 0 0 0 0 0 0 0 3 0 0 2 0 0 3 3 0 0 48 0.06 0

Dormant Tree 0 0 0 0 0 2 0 0 0 0 0 0 0 0 5 0 2 0 0 0 0 0 0 9 0.56 0

Other Tree (Light) 0 5 1 0 0 2 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 2 0 13 0.23 0

Waterlogged Grass 6 1 1 0 4 1 0 0 0 0 0 0 0 0 0 0 83 0 0 0 4 0 0 100 0.83 0

Azolla 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 10 1.00 0

Green Algae 0 0 0 0 0 4 0 0 0 0 0 0 1 0 0 0 0 0 0 4 0 0 0 9 0.00 0

Toetoe 0 9 1 0 0 22 0 3 0 0 0 0 2 0 0 0 3 0 0 15 1 0 0 56 0.27 0

Rush 0 0 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 0 10 0.70 0

Cabbage Tree 0 2 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 7 0 11 0.64 0

Kahikatea 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 5 9 0.56 0

Total 215 306 21 32 33 61 14 20 14 8 25 2 53 9 6 5 116 13 0 32 17 14 5 1021 0.00 0

P_Accuracy 0.97 0.79 0.48 0.81 0.36 0.20 0.71 0.25 0.64 0.50 0.96 1.00 0.75 0.33 0.83 0.60 0.72 0.77 0.00 0.47 0.41 0.50 1.00 0.00 0.73 0.00

Kappa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.68
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Stage One – Summer 

RGB ONLY 

 

DSM 
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Water 126 0 1 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 132 0.95 0

Isolepis 0 52 0 16 0 0 0 0 0 0 0 1 0 0 3 0 0 0 0 72 0.72 0

Shadow 2 0 16 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 19 0.84 0

Mixed Grass 0 12 0 91 3 2 1 0 0 0 0 0 2 0 6 0 0 0 0 117 0.78 0

Dry Vegetation 0 0 0 8 24 0 0 1 3 0 0 1 5 0 0 0 0 0 0 42 0.57 0

Reed 1 0 0 7 2 7 3 3 3 0 1 0 0 0 1 1 1 0 0 30 0.23 0

Flax 0 0 2 3 1 6 24 0 1 0 0 0 0 0 1 0 0 0 0 38 0.63 0

Azolla 8 0 0 0 1 2 0 47 0 0 0 2 6 0 0 0 0 0 0 66 0.71 0

Toetoe 0 0 0 19 17 6 1 0 10 0 0 2 2 0 3 0 0 0 0 60 0.17 0

Cabbage Tree 0 9 0 54 5 20 13 0 6 5 1 2 2 0 6 1 2 0 0 126 0.04 0

Other Tree (Dark) 0 9 0 8 0 0 0 0 0 0 2 0 0 0 1 0 0 0 0 20 0.10 0

Brown Algae 0 1 0 1 8 0 1 0 1 0 0 7 0 0 0 0 0 0 0 19 0.37 0

Green Alage 0 0 0 0 5 0 0 0 1 0 0 0 6 0 0 0 0 0 0 12 0.50 0

Manuka 0 1 6 8 1 3 6 2 0 0 1 2 0 9 0 1 1 0 0 41 0.22 0

Sedge 0 13 0 34 1 1 2 0 0 1 2 0 0 0 13 0 0 0 0 67 0.19 0

Other Tree (Light) 0 3 0 14 9 3 0 1 0 0 0 0 3 1 1 0 0 0 0 35 0.00 0

Blackberry 0 1 0 1 4 8 6 1 0 2 2 0 1 0 0 0 1 0 0 27 0.04 0

Kahikatea 0 6 0 6 1 3 0 0 1 0 3 0 0 4 4 0 0 5 0 33 0.15 0

Other Tree (Brown) 0 8 0 19 2 0 1 0 1 1 0 0 0 2 3 0 0 2 2 41 0.05 0

Total 137 115 25 289 84 61 58 60 27 9 12 17 27 17 42 3 5 7 2 997 0.00 0

P_Accuracy 0.92 0.45 0.64 0.31 0.29 0.11 0.41 0.78 0.37 0.56 0.17 0.41 0.22 0.53 0.31 0.00 0.20 0.71 1.00 0.00 0.45 0

Kappa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.00 0.40

C
la

s
s
V

a
lu

e

W
a
te

r

Is
o

le
p

is

S
h

a
d

o
w

M
ix

e
d

 G
ra

s
s

D
ry

 V
e
g

e
ta

tio
n

R
e
e
d

F
la

x

A
z
o

lla

T
o

e
to

e

C
a
b

b
a
g

e
 T

re
e

O
th

e
r T

re
e
 (D

a
rk

)

B
ro

w
n

 A
lg

a
e

G
re

e
n

 A
la

g
e

M
a
n

u
k
a

S
e
d

g
e

O
th

e
r T

re
e
 (L

ig
h

t)

B
la

c
k
b

e
rry

K
a
h

ik
a
te

a

O
th

e
r T

re
e
 (B

ro
w

n
)

T
o

ta
l

U
_
A

c
c
u

ra
c
y

K
a
p

p
a

Water 132 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 135 0.98 0

Isolepis 0 54 0 9 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 66 0.82 0

Shadow 1 0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17 0.94 0

Mixed Grass 0 14 0 143 3 4 0 0 1 0 0 0 1 1 7 0 0 0 0 174 0.82 0

Dry Vegetation 0 0 0 0 22 0 0 1 0 0 0 1 4 0 0 0 0 0 0 28 0.79 0

Reed 0 3 0 9 3 18 6 2 5 1 1 0 1 0 2 2 1 0 0 54 0.33 0

Flax 0 0 0 1 0 3 25 1 0 0 0 0 0 0 0 0 0 0 0 30 0.83 0

Azolla 4 0 0 0 1 2 1 52 0 0 0 2 2 0 0 0 0 0 0 64 0.81 0

Toetoe 0 1 0 32 34 9 4 0 18 0 0 0 3 1 7 0 0 0 0 109 0.17 0

Cabbage Tree 0 10 0 37 2 10 6 0 1 6 1 0 2 0 4 0 0 0 0 79 0.08 0

Other Tree (Dark) 0 10 0 5 0 0 0 0 0 1 2 1 0 0 4 0 0 0 0 23 0.09 0

Brown Algae 0 1 0 1 7 0 0 0 0 0 0 11 0 0 0 0 0 0 0 20 0.55 0

Green Algae 0 0 0 0 4 0 0 0 0 0 0 0 10 0 0 0 0 0 0 14 0.71 0

Manuka 0 2 3 3 1 3 5 2 0 0 1 2 0 12 0 1 1 0 0 36 0.33 0

Sedge 0 5 0 26 1 3 1 0 1 0 3 0 0 2 10 0 1 0 0 53 0.19 0

Other Tree (Light) 0 0 0 3 2 0 0 1 0 0 0 0 3 0 1 0 0 0 0 10 0.00 0

Blackberry 0 3 3 3 1 7 8 1 0 1 2 0 1 0 0 0 2 0 0 32 0.06 0

Kahikatea 0 4 0 3 0 2 1 0 0 0 1 0 0 1 2 0 0 6 0 20 0.30 0

Other Tree (Brown) 0 8 0 14 3 0 0 0 1 0 0 0 0 0 4 0 0 1 2 33 0.06 0

Total 137 115 25 289 84 61 58 60 27 9 12 17 27 17 42 3 5 7 2 997 0.00 0

P_Accuracy 0.96 0.47 0.64 0.49 0.26 0.30 0.43 0.87 0.67 0.67 0.17 0.65 0.37 0.71 0.24 0.00 0.40 0.86 1.00 0.00 0.54 0

Kappa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.00 0.49
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Stage One – Autumn 

RGB ONLY 

 

DSM 
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Water 148 11 0 0 1 0 0 9 0 0 0 0 0 0 1 0 0 0 0 170 0.87 0

Azolla 4 15 1 0 2 1 0 3 0 0 0 0 2 0 1 0 1 0 0 30 0.50 0

Mixed Grass 0 0 50 0 0 13 4 1 2 0 0 0 0 0 0 0 0 0 0 70 0.71 0

Toetoe 0 0 8 9 1 1 0 0 2 0 1 0 0 0 0 0 0 0 0 22 0.41 0

Flax 0 1 3 4 36 1 5 0 0 1 2 1 17 1 0 1 2 0 0 75 0.48 0

Isolepis 0 0 7 1 0 82 0 0 1 1 0 2 0 0 0 0 0 0 0 94 0.87 0

Sedge 0 0 74 4 4 9 36 0 25 3 1 0 8 0 0 0 2 4 0 170 0.21 0

Shadow 0 0 0 0 0 0 0 11 0 0 0 0 0 0 0 0 0 0 0 11 1.00 0

Dry Vegetation 0 0 1 0 0 0 1 0 38 0 0 0 0 0 1 0 0 0 0 41 0.93 0

Other Tree (Light) 0 0 7 3 0 1 2 0 1 5 0 1 2 0 0 0 0 0 0 22 0.23 0

Cabbage Tree 0 0 1 2 5 5 2 0 0 0 13 4 3 0 0 3 1 0 0 39 0.33 0

Bidens 0 0 0 0 0 6 1 0 0 0 0 11 0 0 0 0 0 0 0 18 0.61 0

Reed 1 1 18 6 7 3 10 0 34 0 0 0 26 0 0 0 1 0 0 107 0.24 0

Kahikatea 0 0 3 2 3 4 1 0 0 0 1 2 6 7 1 0 0 0 0 30 0.23 0

Mud 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 1 10 0.90 0

Blackberry 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 2 2 0 0 7 0.29 0

Other Tree (Dark) 0 0 5 1 0 10 0 1 0 0 0 3 1 0 0 0 10 0 0 31 0.32 0

Manuka 5 1 3 0 2 4 4 2 9 1 0 0 1 1 0 0 0 18 0 51 0.35 0

Dormant Tree 0 0 0 0 0 0 0 0 2 0 0 0 0 0 2 0 0 0 5 9 0.56 0

Total 158 29 182 32 62 140 66 27 114 11 18 25 66 9 15 6 19 22 6 1007 0.00 0

P_Accuracy 0.94 0.52 0.27 0.28 0.58 0.59 0.55 0.41 0.33 0.45 0.72 0.44 0.39 0.78 0.60 0.33 0.53 0.82 0.83 0.00 0.53 0

Kappa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.00 0.48
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Water 150 7 0 0 0 0 0 3 0 0 0 0 0 0 1 0 0 0 0 161 0.93 0

Azolla 4 19 2 0 3 1 0 5 0 0 0 0 3 0 1 0 1 0 0 39 0.49 0

Mixed Grass 0 0 54 0 0 13 4 1 1 0 1 0 0 0 0 0 0 0 0 74 0.73 0

Toetoe 0 0 5 10 1 1 0 0 3 0 1 0 0 0 0 0 0 0 0 21 0.48 0

Flax 0 1 3 3 36 1 5 0 0 1 1 0 18 1 0 1 2 0 0 73 0.49 0

Isolepis 0 0 7 1 0 83 0 0 2 1 0 2 0 0 0 0 0 0 0 96 0.86 0

Sedge 0 0 72 5 4 8 40 0 23 4 0 0 8 0 0 0 2 4 0 170 0.24 0

Shadow 0 0 0 0 0 0 0 15 0 0 0 0 0 0 0 0 0 0 0 15 1.00 0

Dry Vegetation 0 0 1 0 0 0 0 0 37 0 0 0 0 0 1 0 0 0 0 39 0.95 0

Other Tree (Light) 0 0 6 2 0 1 1 0 2 4 0 1 2 0 0 0 0 0 0 19 0.21 0

Cabbage Tree 0 0 2 2 5 5 3 0 0 0 14 4 2 0 0 2 1 0 0 40 0.35 0

Bidens 0 0 0 0 0 6 1 0 0 0 0 11 0 0 0 0 0 0 0 18 0.61 0

Reed 1 1 17 6 7 3 9 0 35 0 0 1 26 0 0 0 1 0 0 107 0.24 0

Kahikatea 0 0 4 2 3 3 0 0 0 0 1 1 4 7 1 0 0 0 0 26 0.27 0

Mud 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 1 10 0.90 0

Blackberry 0 0 1 0 1 1 0 0 0 0 0 1 1 0 0 3 2 0 0 10 0.30 0

Other Tree (Dark) 0 0 5 1 0 9 0 1 0 0 0 3 1 0 0 0 10 0 0 30 0.33 0

Manuka 3 1 3 0 2 5 3 2 8 1 0 1 1 1 0 0 0 18 0 49 0.37 0

Dormant Tree 0 0 0 0 0 0 0 0 3 0 0 0 0 0 2 0 0 0 5 10 0.50 0

Total 158 29 182 32 62 140 66 27 114 11 18 25 66 9 15 6 19 22 6 1007 0.00 0

P_Accuracy 0.95 0.66 0.30 0.31 0.58 0.59 0.61 0.56 0.32 0.36 0.78 0.44 0.39 0.78 0.60 0.50 0.53 0.82 0.83 0.00 0.55 0

Kappa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.00 0.51
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Stage Two – Winter 

RGB ONLY 

 

DSM 
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Water 240 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 240 1.00 0

Isolepis 0 86 6 0 0 0 3 0 0 0 0 1 0 0 0 0 0 0 96 0.90 0

Mixed Grass 0 19 103 10 7 1 7 2 5 3 0 39 2 3 0 2 0 30 233 0.44 0

Bidens 0 1 2 52 1 0 0 0 0 0 0 6 1 0 0 0 0 1 64 0.81 0

Sedge 0 14 67 1 6 0 8 0 1 1 0 4 0 1 0 1 0 6 110 0.05 0

Reed 0 0 0 4 0 4 0 0 0 0 0 1 0 1 0 0 0 0 10 0.40 0

Green Algae 0 1 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 7 0.86 0

Shadow 10 0 3 0 0 0 0 19 1 0 1 0 0 0 1 1 0 2 38 0.50 0

Flax 0 0 1 0 1 0 0 1 6 2 0 0 0 0 0 0 1 0 12 0.50 0

Cabbage Tree 0 11 11 0 0 0 0 0 2 4 0 0 0 0 0 1 0 2 31 0.13 0

Other Tree (Brown) 0 0 6 4 0 0 0 0 0 0 2 1 1 0 0 0 0 4 18 0.11 0

Dry Vegetation 0 0 0 2 0 0 0 0 0 0 0 7 0 0 0 0 0 0 9 0.78 0

Azolla 0 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 7 1.00 0

Rush 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 2 0.50 0

Manuka 1 8 42 7 3 0 1 3 2 0 1 9 0 0 3 1 0 23 104 0.03 0

Kahikatea 1 8 10 1 1 0 0 1 1 1 0 0 0 0 0 2 0 4 30 0.07 0

Other Tree (Dark) 0 1 6 0 0 0 0 0 3 2 0 0 0 0 0 0 0 1 13 0.00 0

Waterlogged Grass 5 0 1 2 0 0 0 2 4 0 4 2 0 0 0 0 0 19 39 0.49 0

Total 257 149 258 83 19 5 25 28 25 13 8 71 11 6 4 8 1 92 1063 0.00 0

P_Accuracy 0.93 0.58 0.40 0.63 0.32 0.80 0.24 0.68 0.24 0.31 0.25 0.10 0.64 0.17 0.75 0.25 0.00 0.21 0.00 0.53 0.00

Kappa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.46
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Water 245 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 245 1.00 0

Isolepis 0 111 8 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 121 0.92 0

Mixed Grass 1 35 150 9 4 1 12 0 1 0 0 38 2 1 0 0 0 57 311 0.48 0

Bidens 0 0 2 63 1 0 0 0 0 0 0 7 0 0 0 0 0 1 74 0.85 0

Sedge 0 2 89 4 14 0 2 0 5 0 1 5 0 0 0 0 0 1 123 0.11 0

Reed 0 0 0 5 0 4 0 0 0 0 0 1 0 1 0 0 0 0 11 0.36 0

Green Algae 0 1 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 10 0.90 0

Shadow 9 0 1 0 0 0 0 24 0 0 0 0 0 0 0 0 0 2 36 0.67 0

Flax 0 0 1 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 10 0.90 0

Cabbage Tree 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 10 1.00 0

Other Tree (Brown) 0 0 0 0 0 0 0 2 0 0 7 0 0 0 1 0 0 0 10 0.70 0

Dry Vegetation 0 0 0 1 0 0 0 0 0 0 0 12 0 0 0 0 0 0 13 0.92 0

Azolla 0 0 0 0 0 0 1 0 0 0 0 0 9 0 0 0 0 0 10 0.90 0

Rush 0 0 1 1 0 0 0 0 0 0 0 4 0 4 0 0 0 0 10 0.40 0

Manuka 0 0 2 0 0 0 0 2 2 0 0 1 0 0 3 0 0 0 10 0.30 0

Kahikatea 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 8 0 0 10 0.80 0

Other Tree (Dark) 0 0 1 0 0 0 0 0 7 1 0 0 0 0 0 0 1 0 10 0.10 0

Waterlogged Grass 2 0 3 0 0 0 0 0 1 0 0 2 0 0 0 0 0 31 39 0.79 0

Total 257 149 258 83 19 5 25 28 25 13 8 71 11 6 4 8 1 92 1063 0.00 0

P_Accuracy 0.95 0.74 0.58 0.76 0.74 0.80 0.36 0.86 0.36 0.77 0.88 0.17 0.82 0.67 0.75 1.00 1.00 0.34 0.00 0.67 0.00

Kappa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.61
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Stage Two – Spring 

RGB ONLY 

 

DSM 
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Water 258 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 261 0.99 0

Isolepis 0 84 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 85 0.99 0

Bidens 0 0 21 0 0 0 0 1 0 1 3 1 0 0 2 0 0 1 30 0.70 0

Sedge 1 7 1 5 0 2 4 16 0 0 8 4 0 0 2 12 0 1 63 0.08 0

Shadow 13 1 0 0 12 0 0 0 0 0 0 0 0 0 1 0 0 0 27 0.44 0

Flax 0 1 0 1 0 18 4 6 0 0 3 2 1 0 1 0 0 0 37 0.49 0

Green Algae 1 1 0 0 0 0 8 0 0 0 0 0 0 0 0 1 0 0 11 0.73 0

Mixed Grass 2 34 0 2 0 1 11 91 0 2 6 0 0 0 8 12 0 0 169 0.54 0

Kahikatea 0 2 0 1 1 0 0 3 1 1 1 0 0 0 0 1 0 0 11 0.09 0

Manuka 2 2 1 0 3 1 0 5 0 8 0 1 0 0 5 2 0 0 30 0.27 0

Dry Vegetation 0 0 0 0 0 0 0 0 0 0 19 1 0 0 0 0 0 3 23 0.83 0

Reed 0 0 0 0 0 0 0 0 0 0 3 9 0 0 0 1 0 1 14 0.64 0

Cabbage Tree 0 2 0 1 0 1 0 2 1 0 1 0 9 0 1 0 0 0 18 0.50 0

Dormant Tree 0 0 0 0 0 0 0 0 0 0 2 0 0 5 3 0 0 0 10 0.50 0

Waterlogged Grass 1 1 4 0 2 0 0 13 0 2 4 1 0 0 23 5 0 4 60 0.38 0

Brown Grass 1 1 3 2 0 0 4 17 0 1 12 0 0 0 25 20 1 11 98 0.20 0

Azolla 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 10 1.00 0

Dry Bidens 0 0 10 0 0 0 0 0 0 0 8 1 0 0 0 2 0 34 55 0.62 0

Total 279 136 40 12 21 23 31 154 2 16 70 20 10 5 71 56 11 55 1012 0.00 0

P_Accuracy 0.92 0.62 0.53 0.42 0.57 0.78 0.26 0.59 0.50 0.50 0.27 0.45 0.90 1.00 0.32 0.36 0.91 0.62 0.00 0.63 0

Kappa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.57
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Water 266 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 274 0.97 0

Isolepis 0 85 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 86 0.99 0

Bidens 0 0 26 0 0 0 0 1 0 1 2 1 0 0 1 0 0 0 32 0.81 0

Sedge 2 9 2 5 0 2 3 23 0 1 9 4 0 0 3 15 0 1 79 0.06 0

Shadow 9 1 0 0 9 0 0 0 0 0 0 0 0 0 1 0 0 0 20 0.45 0

Flax 0 1 0 1 0 18 5 5 0 0 2 1 0 0 1 0 0 0 34 0.53 0

Green Algae 1 1 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 10 0.80 0

Mixed Grass 0 32 0 3 0 1 10 90 0 3 6 0 1 0 7 10 0 0 163 0.55 0

Kahikatea 0 3 0 1 2 0 0 3 1 0 1 0 0 0 0 1 0 0 12 0.08 0

Manuka 1 1 0 0 1 0 0 3 0 9 0 1 0 0 4 1 0 0 21 0.43 0

Dry Vegetation 0 0 0 0 0 0 0 0 0 0 22 1 0 0 0 0 0 3 26 0.85 0

Reed 0 0 0 0 0 0 0 0 0 0 1 8 0 0 0 0 0 1 10 0.80 0

Cabbage Tree 0 1 0 1 0 1 1 2 1 0 1 0 9 0 1 0 0 0 18 0.50 0

Dormant Tree 0 0 0 0 0 0 0 0 0 0 3 0 0 5 5 0 0 0 13 0.38 0

Waterlogged Grass 0 2 10 1 1 1 4 27 0 1 16 1 0 0 48 17 1 10 140 0.34 0

Brown Grass 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 11 0 2 16 0.69 0

Azolla 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 10 1.00 0

Dry Bidens 0 0 1 0 0 0 0 0 0 0 6 2 0 0 0 1 0 38 48 0.79 0

Total 279 136 40 12 21 23 31 154 2 16 70 20 10 5 71 56 11 55 1012 0.00 0

P_Accuracy 0.95 0.63 0.65 0.42 0.43 0.78 0.26 0.58 0.50 0.56 0.31 0.40 0.90 1.00 0.68 0.20 0.91 0.69 0.00 0.66 0

Kappa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.61
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Stage Two – Summer 

RGB ONLY 

 

DSM 
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Water 445 0 0 2 1 0 0 22 0 0 0 0 0 0 1 0 0 0 0 471 0.94 0

Isolepis 0 23 2 0 0 0 0 0 0 1 0 0 0 16 0 0 0 0 0 42 0.55 0

Sedge 0 4 7 0 1 0 0 0 0 2 0 0 0 23 0 0 0 0 0 37 0.19 0

Shadow 1 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 10 0.80 0

Flax 0 0 1 1 11 0 0 2 1 0 0 0 0 6 4 0 0 0 0 26 0.42 0

Green Algae 0 0 0 0 0 15 2 0 2 0 0 0 0 0 0 0 0 0 2 21 0.71 0

Azolla 0 0 0 0 0 4 35 1 1 0 0 0 0 0 3 0 0 0 9 53 0.66 0

Waterlogged Grass 3 0 0 0 1 0 1 27 0 0 0 0 0 1 6 0 1 0 1 41 0.66 0

Yellow Algae 0 0 0 0 0 2 1 0 10 1 0 0 0 0 1 0 0 0 1 16 0.63 0

Rush 0 2 0 0 0 6 1 4 0 4 0 1 0 6 10 0 0 0 5 39 0.10 0

Manuka 0 1 1 0 0 0 0 8 0 2 1 0 1 2 1 0 0 0 0 17 0.06 0

Reed 0 3 1 0 1 0 0 0 0 0 0 2 1 4 1 1 0 0 0 14 0.14 0

Other Tree (Dark) 0 0 0 0 0 0 0 0 0 1 0 0 3 6 0 0 0 0 0 10 0.30 0

Mixed Grass 0 11 4 0 0 1 0 0 0 7 0 2 1 71 4 1 0 1 0 103 0.69 0

Dry Vegetation 0 0 0 0 1 0 0 4 0 0 0 0 0 1 25 0 0 0 2 33 0.76 0

Cabbage Tree 0 0 1 0 2 0 0 0 0 0 0 0 0 2 0 10 0 0 0 15 0.67 0

Dormant Tree 0 0 0 0 0 0 7 7 0 0 0 0 0 0 0 0 1 0 2 17 0.06 0

Kahikatea 0 2 1 0 2 1 0 6 0 1 0 3 0 11 4 0 0 4 0 35 0.11 0

Mixed Algae 6 0 0 0 0 1 0 2 1 0 0 0 0 0 1 0 0 0 0 11 0.00 0

Total 455 46 18 11 20 30 47 83 15 19 1 8 6 149 61 12 2 6 22 1011 0 0

P_Accuracy 0.98 0.50 0.39 0.73 0.55 0.50 0.74 0.33 0.67 0.21 1.00 0.25 0.50 0.48 0.41 0.83 0.50 0.67 0.00 0.00 0.69 0.00

Kappa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.60
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Water 450 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 456 0.99 0

Isolepis 0 25 3 0 0 0 0 0 0 1 0 0 0 18 0 0 0 0 0 47 0.53 0

Sedge 0 2 7 0 0 0 0 0 0 2 0 0 0 18 0 0 0 0 1 30 0.23 0

Shadow 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 1.00 0

Flax 0 0 1 1 15 0 0 1 1 0 0 0 0 10 4 0 0 1 0 34 0.44 0

Green Algae 0 0 0 0 0 16 1 1 1 0 0 0 0 0 0 0 0 0 0 19 0.84 0

Azolla 0 0 0 0 0 5 37 1 0 0 0 0 0 0 0 0 0 0 3 46 0.80 0

Waterlogged Grass 3 0 0 0 1 1 1 39 2 0 0 0 0 0 7 0 1 0 1 56 0.70 0

Yellow Algae 0 0 0 0 0 0 1 0 9 0 0 0 0 0 1 0 0 0 0 11 0.82 0

Rush 0 4 0 0 0 6 1 3 1 6 0 1 0 10 6 0 0 0 5 43 0.14 0

Manuka 2 1 1 0 0 0 0 15 0 3 1 0 0 1 0 0 0 0 0 24 0.04 0

Reed 0 1 1 0 1 0 0 1 1 0 0 4 0 3 2 1 0 0 0 15 0.27 0

Other Tree (Dark) 0 0 0 0 0 0 0 0 0 0 0 0 5 7 0 0 0 0 0 12 0.42 0

Mixed Grass 0 12 4 0 1 1 0 0 0 4 0 1 1 70 9 1 0 0 0 104 0.67 0

Dry Vegetation 0 0 0 0 2 0 0 2 0 1 0 0 0 0 27 0 0 0 1 33 0.82 0

Cabbage Tree 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 10 0 0 0 12 0.83 0

Dormant Tree 0 0 0 0 0 0 5 8 0 0 0 0 0 0 1 0 1 0 2 17 0.06 0

Kahikatea 0 1 0 0 0 1 0 6 0 2 0 2 0 11 4 0 0 5 0 32 0.16 0

Mixed Algae 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 9 10 0.90 0

Total 455 46 18 11 20 30 47 83 15 19 1 8 6 149 61 12 2 6 22 1011 0 0

P_Accuracy 0.99 0.54 0.39 0.91 0.75 0.53 0.79 0.47 0.60 0.32 1.00 0.50 0.83 0.47 0.44 0.83 0.50 0.83 0.41 0.00 0.74 0.00

Kappa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.66
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Stage Two – Autumn 

RGB ONLY 

 

DSM 
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Water 326 6 1 0 0 0 0 2 0 0 0 0 14 0 349 0.93 0

Mud 1 71 1 0 0 1 0 0 0 0 0 0 2 0 76 0.93 0

Isolepis 0 0 89 13 3 0 0 0 0 0 0 0 0 0 105 0.85 0

Bidens 0 0 0 52 1 0 0 0 0 0 0 0 0 0 53 0.98 0

Mixed Grass 0 0 11 0 18 0 0 0 0 0 0 0 0 0 29 0.62 0

Dry Vegetation 0 3 0 0 7 28 1 0 0 0 1 0 0 0 40 0.70 0

Flax 0 0 1 1 5 4 15 0 0 0 3 0 1 0 30 0.50 0

Shadow 0 0 0 0 0 0 0 8 0 0 0 0 0 0 8 1.00 0

Kahikatea 0 0 4 3 1 0 0 0 4 0 0 1 0 0 13 0.31 0

Manuka 0 1 16 5 7 0 0 0 4 4 0 2 2 0 41 0.10 0

Reed 0 1 6 2 14 5 6 0 0 0 5 1 9 0 49 0.10 0

Sedge 0 0 8 1 37 3 3 0 0 0 1 11 0 0 64 0.17 0

Waterlogged Grass 7 19 9 0 11 12 1 0 0 4 0 1 51 0 115 0.44 0

Cabbage Tree 0 0 5 11 11 0 2 0 1 0 2 4 2 10 48 0.21 0

Total 334 101 151 88 115 53 28 10 9 8 12 20 81 10 1020 0 0

P_Accuracy 0.98 0.70 0.59 0.59 0.16 0.53 0.54 0.80 0.44 0.50 0.42 0.55 0.63 1.00 0.00 0.68 0.00

Kappa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.62
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Water 322 1 0 0 0 0 0 0 0 0 0 0 0 0 323 1.00 0

Mud 1 82 0 0 0 0 0 0 0 0 0 0 0 0 83 0.99 0

Isolepis 0 0 85 15 1 0 0 0 0 0 0 0 0 0 101 0.84 0

Bidens 0 0 1 51 1 0 0 0 0 0 0 0 0 0 53 0.96 0

Mixed Grass 0 0 15 0 24 0 0 0 0 0 0 0 0 0 39 0.62 0

Dry Vegetation 0 3 0 0 1 29 0 0 0 0 0 0 0 0 33 0.88 0

Flax 0 0 1 1 3 4 20 0 0 0 3 2 0 0 34 0.59 0

Shadow 0 0 0 0 0 0 0 10 0 0 0 0 0 0 10 1.00 0

Kahikatea 0 0 5 4 5 0 0 0 8 0 0 1 0 0 23 0.35 0

Manuka 1 0 11 5 6 0 0 0 0 8 0 0 4 0 35 0.23 0

Reed 0 1 6 2 10 7 4 0 0 0 5 2 14 0 51 0.10 0

Sedge 0 0 9 2 40 3 1 0 0 0 2 14 0 0 71 0.20 0

Waterlogged Grass 10 14 10 0 14 10 0 0 0 0 1 0 61 0 120 0.51 0

Cabbage Tree 0 0 8 8 10 0 3 0 1 0 1 1 2 10 44 0.23 0

Total 334 101 151 88 115 53 28 10 9 8 12 20 81 10 1020 0 0

P_Accuracy 0.96 0.81 0.56 0.58 0.21 0.55 0.71 1.00 0.89 1.00 0.42 0.70 0.75 1.00 0.00 0.71 0.00

Kappa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.66
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Stage Three – Winter 

RGB Only 

 

DSM 
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Water 50 0 3 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 55 0.91 0

Isolepis 0 90 0 0 0 19 3 0 0 0 0 0 0 0 0 0 0 0 0 112 0.80 0

Reed 2 0 63 0 1 3 1 0 0 0 0 2 15 0 0 0 0 0 2 89 0.71 0

Green Algae 0 0 0 8 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 9 0.89 0

Bidens 3 0 2 0 22 7 1 0 2 0 0 0 8 0 0 1 0 0 4 50 0.44 0

Brown Grass 0 23 1 0 1 98 24 0 0 2 0 0 6 0 1 0 0 2 3 161 0.61 0

Mixed Grass 3 30 4 5 2 10 129 0 0 0 0 0 41 0 2 0 0 0 1 227 0.57 0

Shadow 1 0 0 0 0 0 2 5 1 0 0 0 0 0 0 0 0 0 0 9 0.56 0

Manuka 2 8 0 0 0 16 12 0 1 0 0 0 0 0 0 0 0 1 4 44 0.02 0

Other Tree (Dark) 0 0 0 0 0 0 1 0 0 2 0 0 0 1 0 0 0 0 0 4 0.50 0

Cabbage Tree 2 5 2 5 0 1 22 0 0 7 5 0 4 2 3 0 0 0 0 58 0.09 0

Blackberry 2 0 2 0 0 4 2 1 1 1 0 10 1 3 0 0 0 0 1 28 0.36 0

Dry Vegetation 0 0 1 0 4 0 3 0 0 0 0 0 19 0 0 1 0 0 0 28 0.68 0

Flax 0 0 1 0 0 1 1 1 0 0 0 0 0 10 0 0 0 0 0 14 0.71 0

Toetoe 0 0 1 0 0 1 1 0 0 0 0 0 8 0 0 0 0 0 0 11 0.00 0

Dormant Tree 7 0 4 0 8 0 3 0 0 0 0 0 21 0 0 6 0 0 0 49 0.12 0

Red Algae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 10 1.00 0

Kahikatea 4 0 0 0 2 3 4 1 0 0 0 2 1 0 0 0 0 3 3 23 0.13 0

Sedge 0 0 4 0 5 17 4 0 0 1 0 0 5 0 0 1 0 1 6 44 0.14 0

Total 76 156 88 19 45 181 214 8 5 13 5 14 129 16 6 9 10 7 24 1025 0.00 0

P_Accuracy 0.66 0.58 0.72 0.42 0.49 0.54 0.60 0.63 0.20 0.15 1.00 0.71 0.15 0.63 0.00 0.67 1.00 0.43 0.25 0.00 0.52 0.00

Kappa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.46
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Water 76 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 78 0.97 0

Isolepis 0 133 0 2 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 150 0.89 0

Reed 0 2 82 0 6 2 0 0 0 0 0 0 21 0 0 1 0 0 0 114 0.72 0

Green Algae 0 0 0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 1.00 0

Bidens 0 0 3 1 36 6 0 0 1 0 0 0 7 0 0 3 0 0 2 59 0.61 0

Brown Grass 0 8 0 0 0 132 12 0 0 0 0 1 4 0 0 0 0 0 6 163 0.81 0

Mixed Grass 0 8 1 0 1 6 164 0 0 1 1 0 26 0 2 0 0 0 0 210 0.78 0

Shadow 0 0 0 0 0 0 2 8 0 0 0 0 0 0 0 0 0 0 0 10 0.80 0

Manuka 0 1 0 0 0 5 8 0 4 3 0 1 0 0 0 0 0 0 0 22 0.18 0

Other Tree (Dark) 0 0 0 0 0 0 4 0 0 4 0 0 0 1 1 0 0 0 0 10 0.40 0

Cabbage Tree 0 0 0 0 0 0 3 0 0 1 4 0 0 2 0 0 0 0 0 10 0.40 0

Blackberry 0 0 0 0 0 3 1 0 0 1 0 11 7 0 0 0 0 0 0 23 0.48 0

Dry Vegetation 0 0 0 0 1 0 1 0 0 0 0 0 31 0 0 0 0 0 0 33 0.94 0

Flax 0 0 0 0 0 0 0 0 0 1 0 0 0 11 0 0 0 0 0 12 0.92 0

Toetoe 0 0 2 0 0 2 6 0 0 2 0 0 8 2 3 0 0 0 1 26 0.12 0

Dormant Tree 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 5 0 0 0 10 0.50 0

Red Algae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 10 1.00 0

Kahikatea 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 7 1 10 0.70 0

Sedge 0 3 0 0 1 9 12 0 0 0 0 1 19 0 0 0 0 0 14 59 0.24 0

Total 76 156 88 19 45 181 214 8 5 13 5 14 129 16 6 9 10 7 24 1025 0.00 0

P_Accuracy 1.00 0.85 0.93 0.84 0.80 0.73 0.77 1.00 0.80 0.31 0.80 0.79 0.24 0.69 0.50 0.56 1.00 1.00 0.58 0.00 0.73 0.00

Kappa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.70
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Stage Three – Spring 

RGB ONLY 

 

DSM 
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Water 82 0 5 0 5 0 0 0 0 0 0 0 0 1 0 0 0 0 93 0.88 0

Mixed Grass 0 112 0 1 0 0 0 1 0 2 0 3 0 0 0 0 0 0 119 0.94 0

Shadow 0 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14 1.00 0

Dry Vegetation 0 0 0 3 0 0 0 0 0 0 0 0 0 2 0 0 0 0 5 0.60 0

Waterlogged Grass 13 2 0 0 199 0 1 0 0 0 1 3 3 0 0 1 0 15 238 0.84 0

Blackberry 1 1 0 4 9 4 0 0 0 0 0 0 0 7 0 2 0 6 34 0.12 0

Manuka 0 9 1 1 13 0 4 1 2 0 0 0 0 1 0 0 1 6 39 0.10 0

Other Tree (Dark) 0 9 0 0 0 0 0 5 2 0 0 0 0 0 0 0 0 0 16 0.31 0

Flax 0 1 0 1 0 0 0 0 8 1 2 0 0 1 0 0 1 0 15 0.53 0

Cabbage Tree 0 6 0 1 0 0 0 0 2 9 0 1 0 0 0 0 2 0 21 0.43 0

Kahikatea 2 29 1 14 23 5 1 0 3 2 9 21 0 4 0 0 1 19 134 0.07 0

Isolepis 0 22 0 12 2 0 1 0 0 0 1 46 0 1 0 0 1 1 87 0.53 0

Azolla 0 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 7 1.00 0

Reed 0 2 0 23 0 0 0 0 2 0 0 0 0 29 0 5 0 3 64 0.45 0

Dormant Tree 0 0 0 3 0 0 0 0 0 0 0 0 0 1 3 0 0 1 8 0.38 0

Sedge 0 2 0 6 8 3 0 0 0 1 0 5 2 3 1 15 0 0 46 0.33 0

Toetoe 0 6 0 6 0 0 0 0 0 0 0 3 0 1 0 0 4 2 22 0.18 0

Green Algae 0 1 0 11 1 1 0 0 0 0 0 0 1 2 1 0 0 24 42 0.57 0

Total 98 202 21 86 260 13 7 7 19 15 13 82 13 53 5 23 10 77 1004 0 0

P_Accuracy 0.84 0.55 0.67 0.03 0.77 0.31 0.57 0.71 0.42 0.60 0.69 0.56 0.54 0.55 0.60 0.65 0.40 0.31 0.00 0.57 0.00

Kappa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.52
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Water 89 0 5 0 4 0 0 0 0 0 0 0 0 1 0 0 0 1 100 0.89 0

Mixed Grass 0 126 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 128 0.98 0

Shadow 1 0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17 0.94 0

Dry Vegetation 0 0 0 9 0 0 0 0 0 0 0 0 0 1 0 0 0 0 10 0.90 0

Waterlogged Grass 7 12 0 2 237 2 0 0 0 0 0 2 1 4 0 1 0 15 283 0.84 0

Blackberry 1 0 0 3 6 6 0 0 0 2 0 0 1 3 1 2 0 2 27 0.22 0

Manuka 0 3 0 0 0 1 6 0 2 0 1 0 0 0 0 0 1 0 14 0.43 0

Other Tree (Dark) 0 1 0 0 0 0 0 7 2 0 0 0 0 0 0 0 0 0 10 0.70 0

Flax 0 5 0 2 0 1 1 0 11 3 0 1 0 1 0 0 1 0 26 0.42 0

Cabbage Tree 0 0 0 1 1 0 0 0 2 9 0 1 0 0 0 0 1 0 15 0.60 0

Kahikatea 0 4 0 11 1 0 0 0 0 0 9 2 0 0 0 0 2 4 33 0.27 0

Isolepis 0 36 0 12 4 0 0 0 0 1 1 71 0 2 0 0 0 4 131 0.54 0

Azolla 0 0 0 1 0 0 0 0 0 0 0 0 9 0 0 0 0 0 10 0.90 0

Reed 0 2 0 14 0 0 0 0 2 0 0 0 0 36 0 1 0 0 55 0.65 0

Dormant Tree 0 0 0 5 0 0 0 0 0 0 0 0 0 2 4 0 0 5 16 0.25 0

Sedge 0 5 0 10 7 3 0 0 0 0 0 3 1 2 0 19 0 1 51 0.37 0

Toetoe 0 5 0 8 0 0 0 0 0 0 0 1 0 0 0 0 5 0 19 0.26 0

Green Algae 0 3 0 8 0 0 0 0 0 0 1 0 1 1 0 0 0 45 59 0.76 0

Total 98 202 21 86 260 13 7 7 19 15 13 82 13 53 5 23 10 77 1004 0 0

P_Accuracy 0.91 0.62 0.76 0.10 0.91 0.46 0.86 1.00 0.58 0.60 0.69 0.87 0.69 0.68 0.80 0.83 0.50 0.58 0.00 0.71 0.00

Kappa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.67
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Stage Three – Summer 

RGB ONLY

 

DSM 
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Water 63 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 65 0.97 0

Mixed Grass 0 121 0 23 7 0 0 3 0 0 0 0 5 0 0 0 1 1 161 0.75 0

Shadow 2 1 7 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 11 0.64 0

Isolepis 0 7 0 74 0 0 0 0 0 0 0 0 0 0 0 0 0 0 81 0.91 0

Dry Vegetation 0 1 0 0 71 0 0 0 0 0 0 2 16 1 1 0 0 0 92 0.77 0

Blackberry 0 3 0 0 0 12 1 0 1 3 0 0 0 0 0 1 0 0 21 0.57 0

Reeds 0 28 0 3 18 0 39 2 0 0 2 0 5 1 0 0 0 0 98 0.40 0

Sedge 0 18 0 24 0 1 4 18 0 0 0 0 0 0 0 0 0 0 65 0.28 0

Manuka 0 1 0 5 0 0 0 1 5 0 0 0 0 0 0 0 0 1 13 0.38 0

Other Tree (Dark) 0 11 0 6 0 0 0 2 0 6 0 0 0 0 0 0 0 0 25 0.24 0

Kahikatea 2 28 3 11 9 0 7 2 10 1 8 2 11 0 22 0 0 1 117 0.07 0

Azolla 0 0 0 0 0 0 0 0 0 0 0 24 2 0 0 0 0 0 26 0.92 0

Green Algae 0 0 0 0 0 0 0 0 0 0 0 1 19 0 0 0 0 0 20 0.95 0

Dormant Tree 0 0 0 0 2 0 0 0 0 0 0 4 1 3 1 0 0 0 11 0.27 0

Waterlogged Grass 0 1 0 1 1 0 0 0 0 0 0 1 0 0 26 0 0 0 30 0.87 0

Flax 1 6 0 0 4 2 10 0 0 1 2 0 1 0 1 16 1 0 45 0.36 0

Cabbage Tree 0 12 0 0 1 2 8 1 0 0 0 0 0 0 0 0 15 0 39 0.38 0

Rush 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 3 7 0.43 0

Total 68 239 10 148 114 17 69 29 16 11 12 34 60 5 55 17 17 6 927 0.00 0

P_Accuracy 0.93 0.51 0.70 0.50 0.62 0.71 0.57 0.62 0.31 0.55 0.67 0.71 0.32 0.60 0.47 0.94 0.88 0.50 0.00 0.57 0

Kappa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.53
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Water 64 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 65 0.98 0

Mixed Grass 0 124 0 24 1 0 0 2 0 0 0 0 4 0 0 0 1 1 157 0.79 0

Shadow 1 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0.90 0

Isolepis 0 2 0 81 0 0 0 0 0 0 0 0 0 0 0 0 0 0 83 0.98 0

Dry Vegetation 0 0 0 0 83 0 0 0 0 0 0 1 4 0 1 0 0 0 89 0.93 0

Blackberry 0 2 0 0 0 12 0 0 1 2 0 0 0 0 0 0 0 0 17 0.71 0

Reeds 0 22 0 1 10 0 33 1 0 0 0 0 2 1 0 0 0 0 70 0.47 0

Sedge 0 29 0 23 0 0 6 23 0 0 0 0 0 0 0 0 0 0 81 0.28 0

Manuka 0 5 0 7 0 0 1 0 13 0 0 0 0 0 6 0 0 0 32 0.41 0

Other Tree (Dark) 0 8 0 2 0 1 1 3 0 8 0 0 0 0 0 0 0 0 23 0.35 0

Kahikatea 3 26 1 9 12 0 11 0 2 1 12 2 13 0 19 1 1 1 114 0.11 0

Azolla 0 0 0 0 0 0 0 0 0 0 0 26 1 0 0 0 0 0 27 0.96 0

Green Algae 0 0 0 1 1 0 0 0 0 0 0 2 34 0 0 0 0 0 38 0.89 0

Dormant Tree 0 0 0 0 3 0 0 0 0 0 0 3 1 4 1 0 0 0 12 0.33 0

Waterlogged Grass 0 0 0 0 0 0 0 0 0 0 0 0 0 0 26 0 0 0 26 1.00 0

Flax 0 8 0 0 4 3 9 0 0 0 0 0 1 0 0 16 0 0 41 0.39 0

Cabbage Tree 0 12 0 0 0 1 8 0 0 0 0 0 0 0 0 0 15 0 36 0.42 0

Rush 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 4 6 0.67 0

Total 68 239 10 148 114 17 69 29 16 11 12 34 60 5 55 17 17 6 927 0.00 0

P_Accuracy 0.94 0.52 0.90 0.55 0.73 0.71 0.48 0.79 0.81 0.73 1.00 0.76 0.57 0.80 0.47 0.94 0.88 0.67 0.00 0.63 0

Kappa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.60
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Stage Three – Autumn 

RGB ONLY 

 

DSM 
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Water 42 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 43 0.98 0

Mud 1 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 0.93 0

Isolepis 0 0 247 20 0 0 0 1 0 0 0 2 0 0 0 0 0 0 270 0.91 0

Mixed Grass 0 0 21 58 2 0 0 2 0 1 0 0 1 0 0 0 2 0 87 0.67 0

Dry Vegetation 0 2 0 3 73 0 0 0 0 0 0 0 1 0 0 0 0 0 79 0.92 0

Shadow 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 10 1.00 0

Flax 0 0 0 1 3 1 22 1 0 3 1 0 22 2 0 0 0 1 57 0.39 0

Sedge 0 0 6 23 5 0 0 10 0 0 1 0 3 1 0 0 0 2 51 0.20 0

Cabbage Tree 0 0 2 20 2 0 6 5 11 6 1 2 8 0 3 0 1 0 67 0.16 0

Blackberry 0 0 9 11 0 1 2 0 0 6 1 7 3 1 10 0 0 1 52 0.12 0

Kahikatea 0 1 14 12 0 0 0 0 0 1 4 0 1 3 0 1 0 3 40 0.10 0

Bidens 0 0 3 3 0 0 0 0 0 0 0 19 0 0 0 0 0 0 25 0.76 0

Reed 0 0 1 10 26 0 2 2 0 1 3 0 34 1 0 0 0 1 81 0.42 0

Manuka 6 1 16 5 2 3 0 2 0 0 0 3 3 7 1 0 0 0 49 0.14 0

Other Tree (Light) 0 0 1 4 0 0 0 0 0 0 0 2 1 0 1 0 0 0 9 0.11 0

Dormant Tree 2 14 0 0 0 0 0 0 0 0 0 0 0 0 0 4 2 0 22 0.18 0

Green Algae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 8 1.00 0

Rush 0 1 21 14 2 0 0 1 0 0 1 0 1 0 0 0 0 7 48 0.15 0

Total 51 33 341 184 115 15 32 24 11 18 12 35 79 15 15 5 13 15 1013 0 0

P_Accuracy 0.82 0.42 0.72 0.32 0.63 0.67 0.69 0.42 1.00 0.33 0.33 0.54 0.43 0.47 0.07 0.80 0.62 0.47 0.00 0.57 0.00

Kappa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.50
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Water 48 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 49 0.98 0

Mud 0 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25 1.00 0

Isolepis 0 0 266 19 0 0 0 1 0 0 0 3 0 0 0 0 1 0 290 0.92 0

Mixed Grass 0 0 8 58 0 0 0 0 0 0 0 0 1 0 0 0 0 0 67 0.87 0

Dry Vegetation 0 2 0 0 68 0 0 0 0 0 0 0 1 0 0 0 0 0 71 0.96 0

Shadow 1 0 0 0 0 14 0 0 0 0 0 0 0 0 0 0 0 0 15 0.93 0

Flax 0 0 0 3 3 0 22 2 0 2 1 1 19 1 0 0 0 0 54 0.41 0

Sedge 0 0 4 18 0 0 0 13 0 1 1 0 3 1 0 0 0 0 41 0.32 0

Cabbage Tree 0 0 6 24 1 0 6 3 11 5 0 1 11 0 2 0 1 0 71 0.15 0

Blackberry 0 0 14 9 0 0 2 1 0 7 2 4 4 2 2 0 0 0 47 0.15 0

Kahikatea 0 0 8 11 1 0 1 0 0 1 5 0 1 0 0 0 0 2 30 0.17 0

Bidens 0 0 2 2 0 0 0 0 0 0 0 20 0 0 0 0 0 0 24 0.83 0

Reed 0 0 0 14 40 0 0 0 0 1 1 0 36 1 0 0 0 2 95 0.38 0

Manuka 2 0 16 7 0 1 0 2 0 0 0 4 3 8 0 0 0 0 43 0.19 0

Other Tree (Light) 0 0 2 5 0 0 0 0 0 1 0 2 0 0 11 0 0 0 21 0.52 0

Dormant Tree 0 4 1 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 10 0.50 0

Green Algae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 0 11 1.00 0

Rush 0 1 14 14 2 0 1 2 0 0 2 0 0 2 0 0 0 11 49 0.22 0

Total 51 33 341 184 115 15 32 24 11 18 12 35 79 15 15 5 13 15 1013 0 0

P_Accuracy 0.94 0.76 0.78 0.32 0.59 0.93 0.69 0.54 1.00 0.39 0.42 0.57 0.46 0.53 0.73 1.00 0.85 0.73 0.00 0.63 0.00

Kappa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.57
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Multispectral Tests: Stage One 

RGB Only

 

RGB + DSM 
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Water 178 3 0 0 1 5 0 0 1 0 0 1 0 0 189 0.94 0

Mixed Grass 0 133 9 23 0 1 0 0 0 3 5 0 1 0 175 0.76 0

Isolepis 0 5 57 0 0 0 0 0 0 0 0 0 0 0 62 0.92 0

Dry Vegetation 0 3 0 37 0 1 0 0 0 0 1 0 0 0 42 0.88 0

Blackberry 0 14 5 1 4 1 1 8 0 0 1 0 2 0 37 0.11 0

Reed 1 6 2 5 0 31 0 8 1 0 4 6 2 0 66 0.47 0

Cabbage Tree 0 7 8 1 0 1 8 2 0 0 0 0 1 0 28 0.29 0

Flax 0 12 4 4 0 10 1 30 2 1 1 1 5 0 71 0.42 0

Other Tree (Dark) 1 4 26 1 1 1 1 3 22 4 0 0 3 0 67 0.33 0

Other Tree (Light) 0 0 8 0 0 0 2 0 0 2 0 0 0 0 12 0.17 0

Sedge 8 44 27 11 1 11 2 6 5 6 26 8 2 5 162 0.16 0

Bidens 0 1 0 3 0 3 0 0 0 0 0 3 0 0 10 0.30 0

Toetoe 1 21 2 19 1 2 1 0 0 2 5 0 12 1 67 0.18 0

Dormant Tree 3 1 0 6 0 1 0 0 0 0 1 0 1 1 14 0.07 0

Total 192 254 148 111 8 68 16 57 31 18 44 19 29 7 1002 0 0

P_Accuracy 0.93 0.52 0.39 0.33 0.50 0.46 0.50 0.53 0.71 0.11 0.59 0.16 0.41 0.14 0.00 0.54 0.00

Kappa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.48
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Water 174 3 1 0 0 5 0 0 1 0 0 0 0 1 185 0.94 0

Mixed Grass 0 128 6 27 0 2 0 0 0 1 7 1 1 0 173 0.74 0

Isolepis 0 5 53 0 0 0 0 0 0 0 0 0 0 0 58 0.91 0

Dry Vegetation 0 3 0 37 0 1 0 0 0 0 1 0 0 1 43 0.86 0

Blackberry 0 16 9 0 4 0 2 6 1 1 1 0 2 0 42 0.10 0

Reed 4 5 1 8 1 30 0 9 1 1 2 3 2 0 67 0.45 0

Cabbage Tree 0 7 10 0 0 1 7 1 0 0 1 0 0 0 27 0.26 0

Flax 0 15 3 4 0 9 1 28 0 2 4 1 9 0 76 0.37 0

Other Tree (Dark) 1 9 30 2 2 3 2 4 26 3 2 2 2 0 88 0.30 0

Other Tree (Light) 0 1 11 0 0 0 3 0 0 5 1 0 0 0 21 0.24 0

Sedge 3 33 20 9 1 8 0 8 2 3 20 4 2 3 116 0.17 0

Bidens 0 1 2 5 0 6 0 1 0 0 2 8 0 1 26 0.31 0

Toetoe 3 25 1 18 0 2 1 0 0 2 3 0 10 1 66 0.15 0

Dormant Tree 7 3 1 1 0 1 0 0 0 0 0 0 1 0 14 0.00 0

Total 192 254 148 111 8 68 16 57 31 18 44 19 29 7 1002 0 0

P_Accuracy 0.91 0.50 0.36 0.33 0.50 0.44 0.44 0.49 0.84 0.28 0.45 0.42 0.34 0.00 0.00 0.53 0.00

Kappa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.47
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RGB + MS 

 

ALL ANCILLARIES 
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Water 186 1 0 0 0 1 0 0 0 0 0 0 0 0 188 0.99 0

Mixed Grass 0 150 16 14 0 1 0 0 0 1 4 0 2 0 188 0.80 0

Isolepis 0 2 33 1 0 0 0 0 0 0 1 0 0 0 37 0.89 0

Dry Vegetation 0 1 0 43 0 3 0 0 0 0 1 0 2 0 50 0.86 0

Blackberry 0 6 5 1 6 0 0 1 1 0 1 1 0 0 22 0.27 0

Reed 2 16 26 9 0 45 2 9 1 1 1 2 6 1 121 0.37 0

Cabbage Tree 0 9 6 0 0 0 9 3 1 0 0 0 0 0 28 0.32 0

Flax 0 14 2 1 0 12 2 35 0 1 7 1 5 0 80 0.44 0

Other Tree (Dark) 0 3 25 1 1 1 1 4 27 2 0 0 0 0 65 0.42 0

Other Tree (Light) 0 0 2 0 0 0 1 1 0 6 1 0 1 0 12 0.50 0

Sedge 1 33 30 9 1 3 1 2 1 7 25 4 0 1 118 0.21 0

Bidens 0 0 0 1 0 0 0 0 0 0 1 11 0 0 13 0.85 0

Toetoe 0 18 2 31 0 1 0 2 0 0 2 0 12 0 68 0.18 0

Dormant Tree 3 1 1 0 0 1 0 0 0 0 0 0 1 5 12 0.42 0

Total 192 254 148 111 8 68 16 57 31 18 44 19 29 7 1002 0 0

P_Accuracy 0.97 0.59 0.22 0.39 0.75 0.66 0.56 0.61 0.87 0.33 0.57 0.58 0.41 0.71 0.00 0.59 0.00

Kappa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.54
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Water 186 0 0 0 0 0 0 0 0 0 0 0 0 0 186 1.00 0

Mixed Grass 0 154 17 11 0 0 0 0 0 1 5 0 1 0 189 0.81 0

Isolepis 0 1 36 1 0 0 0 0 0 0 1 0 0 0 39 0.92 0

Dry Vegetation 0 1 0 45 0 1 0 0 0 0 1 0 2 0 50 0.90 0

Blackberry 0 7 6 1 6 0 0 1 1 0 1 1 0 0 24 0.25 0

Reed 3 18 27 9 0 47 2 9 1 2 1 1 5 0 125 0.38 0

Cabbage Tree 0 8 6 0 0 0 10 3 1 0 0 1 1 0 30 0.33 0

Flax 0 14 3 1 0 12 2 36 0 1 5 0 5 0 79 0.46 0

Other Tree (Dark) 0 3 22 1 1 1 1 4 27 1 0 0 0 0 61 0.44 0

Other Tree (Light) 0 0 2 0 0 0 0 1 0 7 1 0 0 0 11 0.64 0

Sedge 1 31 26 9 1 3 1 1 1 6 25 4 0 1 110 0.23 0

Bidens 0 0 0 1 0 0 0 0 0 0 1 12 0 0 14 0.86 0

Toetoe 0 17 2 29 0 3 0 2 0 0 3 0 14 0 70 0.20 0

Dormant Tree 2 0 1 3 0 1 0 0 0 0 0 0 1 6 14 0.43 0

Total 192 254 148 111 8 68 16 57 31 18 44 19 29 7 1002 0 0

P_Accuracy 0.97 0.61 0.24 0.41 0.75 0.69 0.63 0.63 0.87 0.39 0.57 0.63 0.48 0.86 0.00 0.61 0.00

Kappa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.56
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Multispectral Tests: Stage Two 

RGB Only 

 

RGB + DSM 
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Water 407 1 13 3 0 0 0 0 1 0 1 1 0 427 0.95 0

Mixed Grass 2 45 3 7 0 1 7 0 3 1 0 0 0 69 0.65 0

Isolepis 5 5 166 1 1 0 0 0 0 3 0 0 0 181 0.92 0

Bidens 0 0 1 52 2 0 2 0 0 1 0 0 0 58 0.90 0

Flax 4 9 11 3 18 6 8 0 1 1 5 3 2 71 0.25 0

Cabbage Tree 0 8 3 0 3 3 1 0 0 0 0 0 0 18 0.17 0

Dry Vegetation 0 5 0 0 0 0 16 0 0 0 0 0 0 21 0.76 0

Dormant Tree 2 0 4 0 0 0 5 0 0 0 0 0 0 11 0.00 0

Green Algae 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1.00 0

Sedge 0 7 14 0 0 0 0 0 1 3 0 0 0 25 0.12 0

Reed 2 2 0 0 0 0 14 0 0 0 9 0 0 27 0.33 0

Shadow 0 0 0 0 0 0 0 0 0 0 0 2 0 2 1.00 0

Other Tree (Dark) 2 8 57 16 4 1 2 0 0 6 0 0 2 98 0.02 0

Total 424 90 272 82 28 11 55 0 7 15 15 6 4 1009 0 0

P_Accuracy 0.96 0.50 0.61 0.63 0.64 0.27 0.29 0.00 0.14 0.20 0.60 0.33 0.50 0.00 0.72 0.00

Kappa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.63
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Water 403 0 9 0 0 0 2 0 1 0 0 1 0 416 0.97 0

Mixed Grass 3 40 8 11 0 1 8 0 2 1 0 0 0 74 0.54 0

Isolepis 5 3 163 0 1 0 0 0 0 2 0 0 0 174 0.94 0

Bidens 4 1 1 56 1 0 2 0 0 1 0 0 0 66 0.85 0

Flax 4 15 11 3 22 7 12 0 2 2 5 3 2 88 0.25 0

Cabbage Tree 0 11 4 0 1 3 0 0 0 0 0 0 0 19 0.16 0

Dry Vegetation 0 5 0 0 0 0 13 0 0 0 0 0 0 18 0.72 0

Dormant Tree 1 0 4 0 0 0 3 0 0 0 0 0 0 8 0.00 0

Green Algae 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1.00 0

Sedge 0 6 9 0 0 0 0 0 1 3 0 0 0 19 0.16 0

Reed 1 1 0 1 0 0 13 0 0 0 10 0 0 26 0.38 0

Shadow 0 0 0 0 0 0 0 0 0 0 0 2 0 2 1.00 0

Other Tree (Dark) 3 8 63 11 3 0 2 0 0 6 0 0 2 98 0.02 0

Total 424 90 272 82 28 11 55 0 7 15 15 6 4 1009 0 0

P_Accuracy 0.95 0.44 0.60 0.68 0.79 0.27 0.24 0.00 0.14 0.20 0.67 0.33 0.50 0.00 0.71 0.00

Kappa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.62
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RGB + MS 

 

ALL ANCILLARIES 
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Water 404 0 4 0 0 0 0 0 1 0 0 0 0 409 0.99 0

Mixed Grass 0 46 3 4 0 0 4 0 0 0 0 0 0 57 0.81 0

Isolepis 7 3 193 3 0 0 0 0 0 2 0 0 1 209 0.92 0

Bidens 0 0 0 67 1 0 0 0 0 1 0 0 0 69 0.97 0

Flax 7 21 12 3 26 6 18 0 0 5 6 2 1 107 0.24 0

Cabbage Tree 0 5 1 0 1 5 0 0 0 0 0 0 0 12 0.42 0

Dry Vegetation 0 6 0 0 0 0 17 0 0 0 0 0 0 23 0.74 0

Dormant Tree 3 4 9 0 0 0 9 0 1 0 0 0 0 26 0.00 0

Green Algae 0 0 1 0 0 0 0 0 5 0 0 0 0 6 0.83 0

Sedge 0 1 6 0 0 0 1 0 0 3 0 0 0 11 0.27 0

Reed 3 0 5 0 0 0 6 0 0 0 9 0 0 23 0.39 0

Shadow 0 0 0 0 0 0 0 0 0 0 0 4 0 4 1.00 0

Other Tree (Dark) 0 4 38 5 0 0 0 0 0 4 0 0 2 53 0.04 0

Total 424 90 272 82 28 11 55 0 7 15 15 6 4 1009 0 0

P_Accuracy 0.95 0.51 0.71 0.82 0.93 0.45 0.31 0.00 0.71 0.20 0.60 0.67 0.50 0.00 0.77 0.00

Kappa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.70
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Water 408 0 4 0 0 0 0 0 1 0 0 0 0 413 0.99 0

Mixed Grass 0 56 3 2 0 0 3 0 0 0 0 0 0 64 0.88 0

Isolepis 8 6 197 3 1 0 1 0 0 2 0 0 1 219 0.90 0

Bidens 0 0 0 68 1 0 0 0 0 1 0 0 0 70 0.97 0

Flax 4 9 12 4 24 5 11 0 0 5 5 0 1 80 0.30 0

Cabbage Tree 0 7 1 0 1 6 0 0 0 0 0 0 0 15 0.40 0

Dry Vegetation 0 3 0 0 0 0 20 0 0 0 0 0 0 23 0.87 0

Dormant Tree 4 2 10 0 0 0 9 0 1 0 0 0 0 26 0.00 0

Green Algae 0 0 1 0 0 0 0 0 5 0 0 0 0 6 0.83 0

Sedge 0 2 5 0 0 0 0 0 0 3 0 0 0 10 0.30 0

Reed 0 0 3 0 1 0 11 0 0 0 10 0 0 25 0.40 0

Shadow 0 0 0 0 0 0 0 0 0 0 0 6 0 6 1.00 0

Other Tree (Dark) 0 5 36 5 0 0 0 0 0 4 0 0 2 52 0.04 0

Total 424 90 272 82 28 11 55 0 7 15 15 6 4 1009 0 0

P_Accuracy 0.96 0.62 0.72 0.83 0.86 0.55 0.36 0.00 0.71 0.20 0.67 1.00 0.50 0.00 0.80 0.00

Kappa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.73
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Multispectral Tests: Stage Three 

RGB Only 

 

RGB + DSM 
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Water 51 0 0 0 1 0 1 0 0 0 0 7 0 0 0 0 60 0.85 0

Mixed Grass 0 104 56 10 0 2 19 0 2 1 1 0 7 1 0 0 203 0.51 0

Dry Vegetation 0 5 59 1 0 0 0 0 0 0 0 2 0 2 0 0 69 0.86 0

Sedge 0 12 7 3 0 0 1 0 2 0 0 2 0 0 0 0 27 0.11 0

Bidens 0 0 0 0 4 0 0 0 0 0 0 17 0 0 0 0 21 0.19 0

Blackberry 8 20 8 11 7 19 14 6 5 3 9 6 1 0 0 0 117 0.16 0

Isolepis 0 9 2 0 12 0 208 0 0 1 1 5 0 0 0 0 238 0.87 0

Flax 0 0 0 0 0 0 0 13 0 0 0 1 0 0 0 0 14 0.93 0

Cabbage Tree 0 2 0 0 1 0 1 0 0 0 0 1 0 0 0 0 5 0.00 0

Other Tree (Dark) 0 2 4 0 5 0 0 0 0 5 0 2 0 0 2 0 20 0.25 0

Other Tree (Light) 0 0 0 0 1 0 0 0 0 0 2 1 1 0 0 0 5 0.40 0

Reed 0 3 17 0 4 1 0 2 1 0 0 36 0 0 0 0 64 0.56 0

Green Algae 0 0 0 0 0 0 0 0 1 0 0 0 5 0 0 0 6 0.83 0

Dormant Tree 0 0 8 0 0 0 0 0 0 0 0 0 0 5 0 0 13 0.38 0

Shadow 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 5 1.00 0

Kahikatea 2 19 11 5 23 1 77 5 1 4 4 10 0 0 5 6 173 0.03 0

Total 61 176 172 30 58 23 321 26 12 14 17 90 14 8 12 6 1040 0 0

P_Accuracy 0.84 0.59 0.34 0.10 0.07 0.83 0.65 0.50 0.00 0.36 0.12 0.40 0.36 0.63 0.42 1.00 0.00 0.50 0.00

Kappa 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.43
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Water 53 1 0 0 1 2 0 0 0 0 0 5 0 0 0 0 62 0.85 0

Mixed Grass 0 101 54 13 0 1 20 0 3 0 0 0 6 1 0 0 199 0.51 0

Dry Vegetation 0 3 60 1 0 0 0 0 0 0 0 2 0 2 0 0 68 0.88 0

Sedge 0 18 7 1 0 1 3 0 0 1 2 2 0 0 0 0 35 0.03 0

Bidens 0 0 0 0 5 0 0 0 0 0 1 17 0 0 0 0 23 0.22 0

Blackberry 6 22 10 8 12 18 41 4 4 4 8 11 1 0 0 0 149 0.12 0

Isolepis 1 7 3 1 8 0 207 0 0 0 1 2 0 0 0 1 231 0.90 0

Flax 0 0 0 0 0 0 1 13 0 1 0 2 0 0 1 0 18 0.72 0

Cabbage Tree 0 3 1 0 0 0 4 0 1 0 0 0 0 0 0 0 9 0.11 0

Other Tree (Dark) 0 1 1 2 1 0 0 0 0 2 1 1 0 0 1 1 11 0.18 0

Other Tree (Light) 0 1 0 0 2 0 0 0 0 1 2 1 0 0 0 0 7 0.29 0

Reed 0 3 24 1 5 1 0 2 1 0 0 40 0 0 0 0 77 0.52 0

Green Algae 0 1 0 0 0 0 0 0 1 0 0 0 7 0 0 0 9 0.78 0

Dormant Tree 1 0 5 0 0 0 0 0 0 0 0 0 0 5 0 0 11 0.45 0

Shadow 0 0 0 0 0 0 0 0 0 1 0 0 0 0 10 0 11 0.91 0

Kahikatea 0 15 7 3 24 0 45 7 2 4 2 7 0 0 0 4 120 0.03 0

Total 61 176 172 30 58 23 321 26 12 14 17 90 14 8 12 6 1040 0 0

P_Accuracy 0.87 0.57 0.35 0.03 0.09 0.78 0.64 0.50 0.08 0.14 0.12 0.44 0.50 0.63 0.83 0.67 0.00 0.51 0.00

Kappa 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.44
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RGB + MS 

 

ALL ANCILLARIES 
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Water 58 0 0 0 0 0 0 0 0 0 0 3 0 0 1 0 62 0.94 0

Mixed Grass 0 135 51 4 1 0 12 1 6 0 4 3 1 1 0 0 219 0.62 0

Dry Vegetation 0 0 69 0 0 0 0 0 0 0 0 1 0 3 0 0 73 0.95 0

Sedge 0 9 11 12 2 2 8 0 0 2 1 3 0 0 0 0 50 0.24 0

Bidens 0 0 8 1 21 0 1 1 1 0 0 1 0 0 0 0 34 0.62 0

Blackberry 0 4 2 2 3 13 20 0 0 3 2 0 0 0 0 2 51 0.25 0

Isolepis 0 10 2 1 11 1 222 0 0 1 3 1 0 0 0 0 252 0.88 0

Flax 0 0 0 0 0 0 0 16 1 0 0 1 0 0 0 0 18 0.89 0

Cabbage Tree 0 0 0 0 0 0 7 0 4 0 0 1 0 0 0 0 12 0.33 0

Other Tree (Dark) 0 7 0 2 9 2 8 1 0 7 0 2 0 0 1 3 42 0.17 0

Other Tree (Light) 0 5 0 5 2 0 3 4 0 0 6 2 1 0 0 0 28 0.21 0

Reed 2 2 23 3 6 3 5 3 0 0 1 71 2 0 1 0 122 0.58 0

Green Algae 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 10 1.00 0

Dormant Tree 1 0 5 0 0 0 0 0 0 0 0 1 0 4 0 0 11 0.36 0

Shadow 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 0 9 1.00 0

Kahikatea 0 4 1 0 3 2 35 0 0 1 0 0 0 0 0 1 47 0.02 0

Total 61 176 172 30 58 23 321 26 12 14 17 90 14 8 12 6 1040 0 0

P_Accuracy 0.95 0.77 0.40 0.40 0.36 0.57 0.69 0.62 0.33 0.50 0.35 0.79 0.71 0.50 0.75 0.17 0.00 0.63 0.00

Kappa 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.57
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Water 57 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 59 0.97 0

Mixed Grass 0 133 47 3 0 0 12 0 5 0 2 2 1 1 0 0 206 0.65 0

Dry Vegetation 0 0 69 0 0 0 0 0 0 0 0 2 0 3 0 0 74 0.93 0

Sedge 0 8 11 13 1 1 9 0 0 1 1 3 0 0 0 0 48 0.27 0

Bidens 0 0 9 1 18 1 1 0 0 0 0 2 0 0 0 0 32 0.56 0

Blackberry 0 5 3 3 3 16 22 2 0 4 4 1 0 0 0 1 64 0.25 0

Isolepis 0 10 1 1 13 0 227 0 0 0 2 1 0 0 0 1 256 0.89 0

Flax 0 0 0 0 0 0 0 16 1 0 0 2 0 0 0 0 19 0.84 0

Cabbage Tree 0 1 0 0 0 0 6 0 5 0 0 1 0 0 0 0 13 0.38 0

Other Tree (Dark) 0 7 0 2 11 1 8 0 0 6 0 1 0 0 1 3 40 0.15 0

Other Tree (Light) 0 6 0 5 2 1 3 3 1 1 6 1 1 0 0 0 30 0.20 0

Reed 1 2 26 2 6 2 5 5 0 0 2 70 2 0 1 0 124 0.56 0

Green Algae 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 10 1.00 0

Dormant Tree 3 0 5 0 0 0 0 0 0 0 0 2 0 4 0 0 14 0.29 0

Shadow 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 10 1.00 0

Kahikatea 0 4 1 0 4 1 28 0 0 2 0 0 0 0 0 1 41 0.02 0

Total 61 176 172 30 58 23 321 26 12 14 17 90 14 8 12 6 1040 0 0

P_Accuracy 0.93 0.76 0.40 0.43 0.31 0.70 0.71 0.62 0.42 0.43 0.35 0.78 0.71 0.50 0.83 0.17 0.00 0.64 0.00

Kappa 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.58
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Appendix C: Full-Page Maps 

C.1 True-Colour Camera Orthomaps 
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C.2 Multispectral Camera Imagery 

Two orthomosaics are presented here: the true-colour composite produced from the red, green and 
blue bands, used as the base RGB map for the multispectral tests, and a false-colour composite 
produced from the NIR, Red and Green bands to demonstrate the spectral separability in the NIR and 
RE ranges. 
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