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ABSTRACT

Most engineered systems are inclined to fail sometime during their lifetime. Many of

these systems are repairable and not necessarily discarded and replaced upon failure. Un-

like replacements, where the failed system is replaced with a new and identical system, not

all repairs have an equivalent effect on the working condition of the system. Describing the

effect of repairs is a requirement in modeling consecutive failures of a repairable system–

at the very least, it is assumed that a repair simply returns the failed system to an opera-

tional state without affecting its working condition (i.e. the repair is minimal). Although

this assumption simplifies the modeling process, it is not the most accurate description of

the effect of repair in real situations. Often, along with returning a failed system to an op-

erational state, repairs can improve the working condition of the system, and thus, increase

its reliability which impacts on the rate of future failures of the system.

Repair models provide a generalized framework for realistic modeling of consecutive

failures of engineered systems, and have broad applications in fields such as system relia-

bility and warranty cost analysis. The overall goal of this research is to advance the state of

the art in modeling the effect of general repairs, and hence, failures of repairable systems.

Two specific types of system are considered:

(i) a system whose working condition initially improves with time or usage, and whose

lifetime is modeled as a univariate random variable with a non-monotonic failure rate

function;

(ii) a system whose working condition deteriorates with age and usage, and whose life-

time is modeled as a bivariate random variable with an increasing failure rate function.

Most univariate lifetime distributions used to model system lifetimes are assumed to

have increasing failure rate functions. In such cases, modeling the effect of general repairs is

straightforward– the effect of a repair can be modeled as a possible decrease, proportional to

the effectiveness of the repair, in the conditional intensity function of the associated failure

process. For instance, a general repair can be viewed as the replacement of the failed system

with an identical system at a younger age, so that the conditional failure intensity following

the repair is lower than the conditional failure intensity prior to the failure. When the fail-

ure rate function is initially decreasing, specifically bathtub-shaped, general repair models

suggested for systemswith increasing failure rate functions can only be applied when initial

repairs are assumed to be minimal. In this study, we propose a new approach to modeling



the effect of general repairs on systems with a bathtub-shaped failure rate function. The

effect of a general repair is characterized as a modification in the conditional intensity func-

tion of the corresponding failure process, such that the system following a general repair

is at least as reliable as a system that has not failed. We discuss applications of the results

in the context of warranty cost analysis and provide numerical illustrations to demonstrate

properties of the models.

Sometimes the failures of a system may be attributed to changes in more than one mea-

sure of its working condition– for instance, the age and some measure of the usage of the

system (such as, mileage). Then, the system lifetime is modeled as a bivariate random vari-

able. Most general repair models for systems with bivariate lifetime distributions involve

reducing the failure process to a one-dimensional process by, for instance, assuming a rela-

tionship between age and usage or by defining a composite scale. Then, univariate repair

models are used to describe the effect of repairs. In this study, we propose a new approach

to model the effect of general repairs performed on a system whose lifetime is modeled as

a bivariate random variable, where the distributions of the bivariate inter-failure lifetimes

depend on the effect of all previous repairs and following a general repair, the system is at

least as reliable as a system that has not failed. The lifetime of the original system is assumed

to have an increasing failure rate (specifically, hazard gradient vector) function. We discuss

applications of the associated failure process in the context of two-dimensional warranty

cost analysis and provide simulation studies to illustrate the results.

This study is primarily theoretical, with most of the results being analytic. However, at

times, due to the intractability of some of the mathematical expressions, simulation studies

are used to illustrate the properties and applications of the proposed models and results.
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Chapter 1

Research Overview

A system’s ability to perform its intended functions changes over time (or with use). A fail-

ure of the system occurs when it is no longer able to execute one or more of its functions

satisfactorily. Most engineered systems are inclined to fail sometime during their lifetime.

Many of these systems are repairable and not necessarily discarded and replaced upon fail-

ure.

The rate of future failures depends on, among others, the type of system and the type

of rectification action performed following previous failures of the system. Rectification

actions include replacing the failed system with a new and identical system, and repairing

the failed system. Not all rectification actions have an equivalent effect on the working

condition of the system. For instance, it is well-known that a repair, along with returning

a failed system to an operational state, often improves the working condition of the system

to somewhere between its working condition immediately prior to failure and its working

condition following a replacement. It is possible that a repair may render a system unusable

or worse than it was prior to failure– in this study, however, we do not consider these types

of repair.

We use the term ‘general repair’ to refer to repairs that return the failed system to an

operational state, and at the very least, do not further improve the working condition of the

system. General repairs, based on their effectiveness in improving the working condition

of the system, are classified as: ‘minimal repair’, which is the least effective repair; ‘perfect

repair’, which is the most effective repair (and is in general modeled as a replacement); and

‘imperfect repair’, whose effectiveness is between those of the minimal and perfect repairs.

In order to model the effect of repairs, it is necessary to first define a measure of the

working condition of the system. In most of the reliability literature, the working condition
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of the system is modeled with probabilistic measures, such as: the ‘failure rate function’

(which represents the rate of future failures of the system); the ‘conditional reliability func-

tion’ (which represents the probability of the system surviving an interval of time condi-

tional on its current age); and the ‘mean residual lifetime function’ (which represents how

long a system of a certain age is expected to survive). These measures can be a function of

more than one variable; for instance, when the system deteriorates with increased age and

usage. These functions reflect the type of system; for example, the lifetime of a system that

deteriorates over time can be modeled with a distribution having an increasing failure rate

function. Most often, the failure rate function, which uniquely determines the distribution

of the original system lifetime, is the chosen metric.

For a repairable system, the working condition of the system at any point may depend

on the effectiveness of previous repairs. Then, the successive lifetimes (i.e. lifetimes be-

tween consecutive failures) may not have the same distribution as the original lifetime. It

is reasonable to assume that the distribution of an inter-failure lifetime depends on the pre-

ceding failure points and the effectiveness of the corresponding repairs. Therefore, having

a model that adequately describes the effect of general repairs is a requirement in modeling

consecutive failures of a repairable system.

With most general repair models, the effect of a repair is described in terms of changes

in the failure rate or conditional reliability functions of the successive inter-failure lifetimes.

The distributions of these successive inter-failure lifetimes uniquely determine the ‘failure

process’ (i.e. the process of consecutive failure points of the repairable system).

1.1 Research Objectives

The overall goal of this research project is to advance the state of the art in modeling the effect of

general repairs, and hence, consecutive failures of repairable systems, using stochastic point processes.

Two specific types of system are considered in this study:

(i) a system whose working condition initially improves with age (or usage), and whose

lifetime is modeled as a univariate random variable with a bathtub-shaped failure rate

function;

(ii) a system whose working condition deteriorates with age and usage, and whose life-

time is modeled as a bivariate random variable having a bivariate increasing failure

rate property.
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1.1.1 Modeling Repairs in One Dimension

Most univariate lifetime distributions used to model system lifetimes are assumed to have

increasing failure rate functions. In such cases, modeling the effect of general repairs is

straightforward– the effect of a repair can be modeled as a possible decrease, proportional

to the effectiveness of the repair, in the conditional intensity function of the associated failure

process (the conditional intensity function of the process uniquely determines the distribu-

tions of the associated inter-failure lifetimes). For instance, a general repair can be viewed

as the replacement of the failed system with an identical system at a younger age, so that

the conditional intensity following the repair is lower than the conditional intensity imme-

diately prior to the failure. This translates to an increased system reliability.

In practical situations it has been observed that systems do not always exhibit behavior

with a monotonically degrading pattern. The lifetime of many electrical and mechanical

systems have been successfully modeled with lifetime distributions having non-monotonic,

specifically, bathtub-shaped failure rate (BFR) functions. These lifetime distributions are

characterized by an initial period of “improvement”, where the failure rate function is de-

creasing (and hence, the conditional reliability and mean residual lifetime functions are both

initially increasing). When the failure rate function is initially decreasing, general repair

models suggested for systems with increasing failure rate functions can only be applied

when initial repairs are assumed to be minimal. General repair models describing the ef-

fect of non-minimal repairs performed while the system is still improving have not yet been

developed.

The first objective of this study is to model the effect of general repairs on systems whose

lifetime is modeled with a distribution having a bathtub-shaped failure rate function, such that, the

system following a general repair is at least as reliable as a system that has not failed. Then, a point

process is developed to model the consecutive failures of the system.

Although, time/age is used as the variable of interest, it can be replaced by any continu-

ous, non-negative variable, such as some measure of usage (e.g. mileage).

1.1.2 Modeling Repairs in Two Dimensions

Sometimes the failures of a system may be attributed to changes in more than one measure

of its working condition– for instance, the working condition of the system can deteriorate

with age and some measure of the usage of the system (such as, mileage). Then the system
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lifetime is modeled as a bivariate random variable.

For a system whose lifetime is modeled as a bivariate random variable, where the two

variables are not independent, the correlation structure of the variables needs to be taken

into account when modeling the consecutive failures. This complicates the modeling pro-

cess. To simplify the problem, most general repair models for systemswith bivariate lifetime

distributions involve reducing the failure process in two dimensions to a one-dimensional

process by, for instance, assuming a relationship between age and usage or by defining a

composite scale. Then, univariate repair models are used to describe the effect of general

repairs. Full bivariate repair models, where the variables are correlated but not functionally

related, have been suggested for minimal repair and perfect repair (or replacement), but not

for imperfect repair.

The second objective of this research is to model the effect of general (imperfect) repairs per-

formed on a system whose lifetime is modeled as a bivariate random variable, such that following a

general repair, the system is at least as reliable as a system that has not failed. Then, a point process

in two dimensions is developed to model the consecutive failures of the system.

Simulation studies will be carried out to demonstrate the properties and applications of

this model.

1.1.3 Applications in Warranty Cost Analysis.

Repair models provide a generalized framework for realistic modeling of consecutive fail-

ures of repairable engineered systems, and have broad applications in many fields, such

as, system reliability modeling and warranty cost analysis. For instance, having accurate

estimates of the warranty servicing costs is necessary in developing and choosing optimal

(most cost-effective) warranty policies (from the point of view of manufacturers). This can

be achieved by defining realistic models of the effect of repairs, so that consecutive failures

of the system (which may result in warranty claims) can be successfully modeled.

A secondary objective of this study is to demonstrate the applications of the proposed general

repair models in the context of warranty cost analysis.

1.2 Research Methodology

This research is primarily theoretical, with most of the derived results being analytic. How-

ever, at times, due to the intractability of some of the mathematical expressions, we carry
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out simulation studies to illustrate the properties and applications of the proposed repair

models and to compute estimates of the quantities of interest.

This project involves identifying appropriate functional forms of the univariate condi-

tional intensity and the bivariate conditional reliability that realistically describe the effect

of general repairs on the working condition of the systems considered.

The failure (or general repair) processes, in one and two dimensions, are generalized to

include, as special cases, previously-suggested failure processes, such as the renewal process

and the minimal repair process.

1.3 Thesis Structure and Outline

We conclude this chapter with an outline of the structure and organization of the thesis.

This thesis is organized into four parts. Part I of the thesis contains an overview of the

study and a review of fundamental concepts in warranty analysis. Themain contributions of

the thesis are presented in Parts II and III, and both parts follow a common structure: in each

part, the first chapter is a review of literature and contains revisions of fundamental concepts

that will be used in the succeeding chapters of that part; the proposed repair models and

their properties are presented next; the part concludes with numerical illustrations of the

proposed repair models and applications in warranty cost analysis. Part IV of the thesis

concludes this study. A detailed outline of the chapters follows.

Part I - Introduction

Chapter 1: In this chapter, we provided an overview of this study.

Chapter 2: In this chapter, we discuss the concepts of system failure, rectification actions

(e.g. general repairs), warranty servicing strategies and the associated warranty ser-

vicing costs.

Part II - Modeling Repairs in One Dimension, with Applications in Warranty Analysis

Chapter 3: In this chapter, we discuss fundamental concepts used in modeling consecutive

failures of a repairable system in one dimension. We also provide a review of existing

general repair models for systems whose lifetimes are modeled as univariate random

variables.
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Chapter 4: In this chapter, we propose a new approach to model the effect of a general re-

pair performed on a system whose lifetime is modeled with a distribution having a

bathtub-shaped failure rate function. We then define a failure process to model con-

secutive failures of the system, where each failure is rectified by general repair.

Chapter 5: In this chapter, we suggest warranty servicing strategies for a system whose

lifetime is modeled with a distribution having a bathtub-shaped failure rate function.

We apply the repair models suggested in the previous chapter to derive the expected

servicing cost for each strategy.

Part III - Modeling Repairs in TwoDimensions, with Applications inWarranty Analysis

Chapter 6: In this chapter, we provide a brief review of fundamental concepts used in mod-

eling consecutive failures of a repairable system whose lifetime is modeled as a bi-

variate random variable. We also review existing models of general repairs in two

dimensions.

Chapter 7: In this chapter, we propose a new approach tomodel the effect of a general repair

performed on a system deteriorating with age and usage, whose lifetime is modeled

as a bivariate random variable. We then develop a failure (or general repair) process

to model consecutive failures of the system, where each failure is rectified by general

repair.

Chapter 8: In this chapter, we discuss various properties of the general repair process pro-

posed in the previous chapter.

Chapter 9: In this chapter, we suggest a procedure for simulating the failure or general re-

pair process in two dimensions. We illustrate the effect of general repairs through

simulations of the failure process. We also illustrate applications of the repair model

in the context of two-dimensional warranty cost analysis.

Part IV - Conclusion

Chapter 10: In this chapter, we conclude this study with a discussion and outline some

possible directions for future research.
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Chapter 2

System Failures, Repairs and Warranty

In this chapter, we review the concepts of system failure and rectification actions (e.g. re-

placements and general repairs). We provide a brief review of product warranty, warranty

servicing strategies and servicing costs.

This chapter is arranged as follows. In Section 2.1, we review the concept of system

failures. In Section 2.2, we discuss maintenance actions, in particular, general repairs. In

Section 2.3, we discuss the various types of product warranty. In Section 2.4, we provide

a brief review of warranty servicing strategies and discuss estimating warranty servicing

costs. In Section 2.5, we conclude with a chapter summary.

2.1 System Failures

In the context of reliability engineering, a system is often defined as a collection of com-

ponents (tools and equipments) that jointly perform a recognized set of functions. Each

component of the system can itself be viewed as a single-component system. We equate

products with systems.

Most engineered systems are inclined to fail sometime during their lifetime. Formally, a

failure of a system is defined as “the event when a function of the system is terminated” or

its performance is outside acceptable bounds [1]. Failures of a system can often be classified

as either sudden or gradual. A sudden failure is characterized by a sudden termination of

a system function, whereas a gradual failure is characterized by a gradual decrease in the

functional performance of the system; see Figure 2.1 for an illustration.

Most systems are complex, that is, they have more than a single function. In order to

recognize and diagnose failures of a complex system, all of its functions, interrelationships
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Figure 2.1: An illustration of the first failure of two systems, where System 1 has a sudden failure at
time t1 and System 2 has a gradual failure at time t′1.

between functions, and related functional requirements must be known. It is not always

possible to enumerate all manners in which the system may fail. For the purpose of this

research, we will assume that all functions of the system are known and all failures are

observable and a direct consequence of the system’s lack of function [1].

For modeling purposes, it is necessary to distinguish between various causes of failure.

Causes of failure include the following [1]:

(i) Faulty or lacking design.

(ii) Flawed manufacturing processes or divergence from standard processes.

(iii) Errors introduced while assembling the system.

(iv) Natural aging of the system (which may include age accumulation, usage accumula-

tion, etc.).

(v) External stresses or shocks that the systemmay be subject to.

(vi) Weaknesses of the system, which could be a result of over-stated system capabilities.

(vii) Misuse or manhandling of the system.

Most probabilistic models of failures of a system are based on failures caused by the

natural aging or the accumulated usage of the system or shocks delivered to the system.
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2.2 System Repairs and Replacements

Failures of a system can be corrected or controlled through maintenance actions. These

actions are usually classified as either preventive or corrective maintenance actions.

A preventive maintenance action refers to procedures performed in order to maintain the

system in a desirable working condition by attempting to reduce the likelihood of future

system failures. This type of maintenance is executed while the system is still in an opera-

tional state, although operation may have to cease when the system undergoes preventive

maintenance. This cessation is managed and not a failure. For instance, a system can be

serviced (maintained) periodically or when its performance falls below a preset limit [2].

A corrective maintenance action (also referred to as a rectification action) refers to procedures

performed immediately after the occurrence of a failure in order to return the failed system

to an operational state. Corrective maintenance actions include repair and replacement [2].

In terms of their repairability, systems are categorized as either repairable or non-repairable.

Non-repairable systems or components (e.g. a fuse or a light bulb) are not designed to

be repaired, and need to be replaced upon failure. Repairable systems or components, on

the other hand, can be rectified upon failure without necessarily being replaced. However,

repairable components that are beyond repair will need to be replaced. Multi-component

systems can comprise both repairable and non-repairable components. In this study, we

mainly consider corrective maintenance actions, repair in particular. Also, we assume that,

unless stated otherwise, all systems are repairable.

Replacement. A replacement of the failed system involves replacing the failed system with

a new and identical system. Therefore, the working condition of the system immediately

following a failure is the same as that of a brand new system [2].

General repair. Repairs, along with restoring a system from a failed state to an operational

state, are assumed to also affect the physical working condition of the repaired system. Not

all repairs have the same effect on theworking condition of a system. Theworking condition

of a repaired system depends on the effectiveness of the repair. Based on their effect on the

working condition of the system, repairs can be classified as one of the following three types:

(i) minimal repair, which simply restores the system to an operational state, leaving its

working condition as it was immediately before the failure– therefore, the system fol-

lowing a minimal repair behaves as though it did not fail;

13



(ii) perfect repair, which results in the most improvement in the working condition of the

system (when compared to a minimally-repaired system)– it is often defined as equiv-

alent to a replacement and referred to as “as-good-as-new” repair;

(iii) imperfect repair, which restores the working condition of a failed system to a working

condition between those following the two extremes: minimal repair and perfect re-

pair.

Therefore, in terms of their effectiveness in improving the working condition of the repaired

system, minimal repair is assumed to be least effective, perfect repair is assumed to be most

effective, and imperfect repair is assumed to be more effective than a minimal repair but

less effective than a perfect repair. These repairs are often collectively referred to as general

repair.

Degree of repair. The effectiveness of a general repair is quantified by the degree of the re-

pair. The degree of repair specifies the “degree to which the working condition of the system

can be restored” [3]. Let δ denote the degree of repair. In most studies, δ (whether preas-

signed or random) is defined as a variable in the range [0, 1], where the extreme δ = 0 and

δ = 1 represent a minimal repair and a perfect repair respectively. Any general repair with

degree in the range (0, 1) represents an imperfect repair. The degree of an imperfect repair

determines how far, in terms of effectiveness, it is from a perfect repair. As the degree of an

imperfect repair increases from 0 to 1, the effectiveness of the imperfect repair is assumed

to increase. Note that, depending on the model settings, minimal and perfect repairs can be

viewed as special cases of imperfect repair.

This repair categorization is not exhaustive. A comprehensive classification of repairs

includes repairs that can worsen the system and in extreme cases, render it useless, and also

repairs that improve the system beyond its design, e.g. upgrades and improvements. In this

research, we consider only what was defined above as general repair; refer to Pham [4] and

Blischke & Murthy [2] for more on repairs.

When modeling consecutive failures of a repairable system, the following assumptions

are made to simplify the modeling process:

(a) each failure of the system is followed immediately by a repair;

(b) the time to perform a repair is negligible in comparison to the operating time of the

system, and is hence set to zero (i.e. repairs are instantaneous).
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2.3 Warranty Policies

A warranty or warranty policy is a written contract that lists out the expected functions of a

system and the manufacturers responsibility in the event that the warranted system breaks

down or its performance is not satisfactory. Warranty policies also clearly specify the terms

and conditions under which the policy holds. These terms include the proper usage and

maintenance conditions of the warranted product [2, 3].

In the warranty literature, warranty policies are often categorized into one or more cat-

egories depending on the aspect of interest. Warranty servicing strategies and cost models

are then specifically developed for policies in each of these categories.

The features that characterize a warranty policy are normally set out in the warranty

agreement. Policies are usually distinguished based on two main characteristics: (i) the

definition of the warranty coverage; and (ii) the nature of compensation under warranty.

2.3.1 Warranty Coverage

The warranty coverage is usually defined in terms of the variables that govern the failures

of the warranted system, and the renewability of the warranty policy. These two characteri-

zations of warranty policies are as follows.

2.3.1.1 Variables of the Warranty Policy

Under this categorization, warranty policies are distinguished based on the number of vari-

ables describing the warranty coverage. The two most common variables used in defining

the warranty coverage are time (age) and some measure of usage (mileage or time spent in

service).

One-dimensional warranties. When the failures of the system are governed by changes in

a single variable– for instance, the age (or the usage) of the system– the warranty coverage

can then be a one-dimensional interval, say (0,w], starting immediately after the sale of the

system. The warranty expires when the age (or usage) of the system exceeds the warranty

limit w.

Two-dimensional warranties. When the failures of the system are governed by changes in

two variables–for instance, both the age and the usage of the system– the warranty coverage
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can be a two-dimensional region with time and usage constituting the two dimensions [2].

For example, consider a rectangular region (0,wt] × (0,wu], where wt and wu denote the

time and usage limits of the warranty, and the warranty expires as soon as one of these

limits is exceeded.

In the two-dimensional case, the warranty limits determine the shape of the warranty

region (coverage area); see Figure 2.2 for some examples (refer to Bliscke & Murthy [3] for

more).

0 time 0 time

usageusage

wt1 wt2

wu2

wu1

wt

wu

Figure 2.2: Some examples of two-dimensional warranty coverage.

Inmodelingwarranty policies, the variables used are usually time in the one-dimensional

case, and time and usage in the two-dimensional case. Both variables are defined on the

positive real axis R+. Although discrete variables (such as, number of flights in warranty

policies for aircraft) are sometimes used to define one of the dimensions, we only consider

continuous variables.

The warranty coverage can have more than two dimensions, however, the one- and two-

dimensional warranties are the ones commonly used. We restrict our study to one- and

two-dimensional policies.

2.3.1.2 Renewability of the Warranty Policy

This categorization is based on the changes in the warranty coverage following the repair

or replacement of the failed system under warranty. Based on this, warranty policies can be

classified as follows.

Renewing warranty policies. A warranty is renewing if upon repair or replacement of the

failed system, the warranty coverage is extended for a period/region equal to the original
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warranty period/region. Therefore, all repaired or replaced systems have the same war-

ranty as the original system.

For example, consider a warranty period (0,w]. If the system fails before time w, and

is either repaired or replaced, the repaired or new system is now warranted for a period of

length w. In other words, when the (n+ 1)-th system failure at time Tn+1 is within w units

of Tn, i.e. Tn+1 ≤ Tn + w, the warranty limit is extended to Tn+1 + w, for n ∈ N+, where

N+ = {1, 2, . . . } is the set of natural numbers. The warranty expires when the time between

two successive failures is greater than w; see Figure 2.3.

0 w

(t2, w + t2]

(t1, w + t1]

w + t1 t3 timet1 t2 w + t2

Figure 2.3: An example of a one-dimensional renewing warranty, where failures have occurred at
times t1, t2 and t3– the failure at time t3 is not covered under warranty.

0

∗

∗

∗

usage
wu + u2

wt + t2wt + t1

wu + u1

(t1,u1)

(t2,u2)

(t3,u3)

t3

u3

wt

wu

time

Figure 2.4: An example of a two-dimensional renewing warranty, where failures have occurred at
points (t1, u1), (t2, u2) and (t3, u3)– the failure at point (t3, u3) is not covered under war-
ranty.

Consider a warranted system with a two-dimensional rectangular warranty region, de-

noted by (0,wt]× (0,wu], where wt and wu denote the time and usage limits, respectively.

When the (n + 1)-th failure at the point (Tn+1,Un+1) is within the warranty coverage, i.e.

Tn+1 ≤ Tn+wt andUn+1 ≤ Un+wu or (Tn+1,Un+1) ∈ (Tn, Tn+wt]× (Un,Un+wu], the sys-
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tem after the repair (replacement) has warranty coverage (Tn+1, Tn+1 +wt]× (Un+1,Un+1+

wu], for n ∈ N+. Here, the warranty expires when the time between failures exceeds wt

and/or the usage between failures exceeds wu; see Figure 2.4.

Non-renewing warranty policies. A warranty is nonrenewing if the warranty coverage is

fixed and does not change following a system repair or replacement. That is, the warranty

coverage following a repair or replacement is the remaining warranty coverage of the sys-

tem.

For instance, for a one-dimensional warranty coverage (0,w], following the n-th failure

of the system under warranty, i.e. Tn ≤ w, the warranty coverage of the repaired or replaced

system is the remaining warranty period (Tn,w], for n ∈ N+. Therefore, the warranty

expires when the age of the system exceeds w, which is equivalent to the warranty expiring

immediately after the last failure in the warranty period (0,w]; see Figure 2.5.

0 wt1 t2 t3 time

Figure 2.5: An example of a one-dimensional non-renewing warranty, where failures have occurred
at times t1, t2 and t3– the failure at time t3 is not covered under warranty.
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(t2, u2)
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(t1, u1)

∗
(t2, u2)

Figure 2.6: An example of a two-dimensional non-renewing warranty where failures have occurred
at points (t1, u1), (t2, u2) and (t3, u3)– the failure at point (t3, u3) (right) and the failure at
point (t2, u2) (left) are not covered under warranty.

For a two-dimensional rectangular warranty coverage (0,wt]× (0,wu], the n-th repair or

replacement of the system is covered by warranty if the point (Tn,Un) is within the region

(0,wt]× (0,wu], and the warranty coverage of the repaired or replaced system is the remain-
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ing coverage (Tn,wt]× (Un,wu], for n ∈ N+. Analogous to the one-dimensional case, the

warranty expires when either limit is exceeded or immediately after the last failure before

time wt and usage wu; see Figure 2.6.

Note that while the coverage of the non-renewing warranty is fixed (constant), the cov-

erage of the renewing warranty is stochastic [3].

2.3.2 Compensation Under Warranty

This categorization of warranty policies is based on the type of compensation provided to

the consumer by the manufacturer in the event that the warranted system fails (and a claim

is made under warranty).

Free-Replacement or Free-RepairWarranty. Under a free-replacement warranty (FRW)– some-

times referred to as a free-repair warranty– the manufacturer agrees to replace or repair a war-

ranted system that fails in the warranty coverage region at no cost to the consumer. FRWs

are commonly offered with both repairable and non-repairable products such as household

appliances, automobile parts, electronics and other durable products.

Pro-rata Warranty. Under a pro-rata warranty (PrW), the manufacturer agrees to pay only

a portion of the cost of the repair of a repairable system that fails under warranty, and the

consumer is required to pay the remaining cost. The amount paid by the manufacturer is

usually inversely proportional to the age (or age and usage in the two-dimensional case)

of the system. That is, the refund is often a decreasing (or non-increasing) function of the

variables classifying the warranty coverage. An example of this type of warranty policy is

one that requires the consumer to pay an “excess” fee with each claim.

Full Rebate Warranty. Under a (full) rebate warranty (RW), the manufacture agrees to re-

fund the full purchase price of the system, if the system fails before the warranty coverage

ends. Under this type of warranty, the consumer is not obligated to buy a replacement prod-

uct. RWs are not the same as FRWs. However, the consumermay decide to invest the refund

provided by the manufacturer in a new and identical system.

Partial RebateWarranty. Under a partial rebate warranty (PRW), themanufacturer agrees to

refund a portion of the purchase price of the system, if it fails within the warranty coverage.

The amount that is not refunded is a compensation for the use of the system (or service
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provided by the system) from the time of purchase until the system failure. PRWs are often

offered with systems that deteriorate with age or usage, such as vehicle batteries.

CombinationWarranty. The warranty policies defined so far are sometimes refereed to as

“simple” warranty policies. Warranty combinations that are complex are often mixtures of

these simple policies. A combination warranty (CW) is a mixture of two or more different

types of simple warranty. These warranties are often characterized by portions of the war-

ranty region being covered by different types of warranty– for instance, an initial period of

FRWwarranty followed by a period of PrW; see Figure 2.7. Combination warranty policies

are sometimes used to cover multi-component systems where different groups or types of

components are covered by different types of warranty.

0 time 0 time

usageusage

wt1 wt2

wu2

wu1

wt

wu

RW PRW

PRW PrW

FRW

Figure 2.7: Some examples of combination warranty policies.

Types of warranty are not limited to the warranties mentioned above; see Blischke &

Murthy [3] for more on types and examples of warranty policies.

2.4 Warranty Servicing Strategies and Costs

When a claim is made under warranty, it is first examined for its validity. Claims may be

invalid for various reasons, such as: the claim being false (fraudulent); the claim being made

outside the warranty coverage; the system failure leading to the warranty claim being due

to the inappropriate use of the system; etc. [3]. For invalid claims, the manufacturer is not

bound to provide the services outlined in the warranty policy. For claims that are valid, the

manufacturer is required to resolve the claims based on the terms of thewarranty policy– for

instance, repairing the failed system or providing a replacement system. Warranty servicing

refers to all actions taken towards processing and resolving a claim made under warranty.
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The costs associated with servicing a warranty claim are referred to as warranty servicing

costs [2]. The total warranty servicing cost for a single warranted system sold is the cost of

servicing all claims made under its warranty.

The total warranty servicing cost for a system is a function of, among others, the war-

ranty coverage, the nature of compensation under warranty, the number of warranty claims,

and if rectification is involved, the type of rectification action (repair or replacement). The

exact pricing of servicing warranties in most situations is not determinable and has to be es-

timated. Since the total warranty servicing cost depends on the number of claims, modeling

the number of claims is important in estimating this cost. In most mathematical studies of

warranty cost analysis, the process of modeling warranty costs therefore begins with mod-

eling the process of warranty claims.

2.4.1 Consecutive Warranty Claims

In most studies on warranty cost modeling, four major assumptions are made when model-

ing consecutive warranty claims for a single warranted system:

(i) each failure of the warranted system is followed immediately by a claim;

(ii) all warranty claims are valid and the time taken to process a claim is negligible and is

set equal to zero;

(iii) each claim is followed immediately by a repair or a replacement under warranty;

(iv) the time taken to repair a failed system is negligible and is set equal to zero.

With the above assumptions, the number of failures of a system during warranty cov-

erage is equal to the number of claims under warranty, which is equal to the number of

repairs (or replacements) covered by warranty. Therefore, modeling consecutive failures of

the system during the warranty coverage is equivalent to modeling consecutive claims un-

der warranty. In this study, by default the above assumptions hold, and the terms ‘repair

process’, ‘failure process’ and ‘warranty claim process’ will be used interchangeably.

Since the total number of failures, and hence the total number of warranty claims is a ran-

dom variable, the total warranty servicing cost per warranted system sold is also random.

Finding a distribution function for the total warranty servicing cost is complex. Therefore,

in most of the literature on warranty cost analysis the focus is on deriving an expression for

the expected total warranty servicing cost.
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2.4.2 Warranty Servicing Costs

Warranty servicing costs may include various costs, such as: administrative costs; costs

of labor; costs of replacement components or parts; costs of servicing equipment; partial

or full refunds; and so on. To simplify the process of modeling warranty servicing costs,

often an aggregate of the associated costs is used as the cost of servicing a single warranty

claim. When the servicing cost is modeled as a constant, the problem of estimating the total

warranty servicing cost reduces to estimating the number of warranty claims.

Modeling the servicing cost as a constant simplifies the modeling process, but is not

always reasonable. Other functional forms of this cost have been defined in the literature;

see for instance, Yun & Kang [5] and Yun et al. [6]. Often, the suggested costs are a function

of the age of the system, and for repairable systems, these costs are generally assumed to

be proportional to the effectiveness of the repair, so that the cost of an imperfect repair is

bounded between the cost of a minimal repair (from below) and the cost of a perfect repair

(from above).

For warranty policies that involve rectification of the failed warranted system, it is often

assumed that the majority of the servicing cost of a single claim is the cost of the rectification

action. Then, the servicing cost is simply referred to as the cost of repair or cost of replacement.

We will discuss some possible functional forms of these servicing costs in our numerical

illustrations, in Chapters 5 and 9.

Refer to Blischke & Murthy for more on modeling warranty servicing costs [2, 3].

2.4.3 Warranty Servicing Strategies

Manufacturers attempt to reducewarranty servicing costs by variousmeans, for instance, by

improving the system reliability during the design andmanufacturing phases (e.g. burningI

in a system if it has an initially high rate of failure) or by performing scheduled preventive

maintenance on the systemwithin its warranty coverage. Both methods decrease the rate of

future failures of the system. The costs of these actions are generally part of the sale price of

the warranted system [6].

Another opportunity for reducing warranty servicing costs arises when the warranted

system fails. When the system fails, the two most important factors in making the choice

between repairing or replacing a failed system are the servicing cost and the working condi-

IRefer to Block & Savits [7] and Finkelstein & Cha [8] for a survey of the concept of burn-in and burn-in
processes.
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tion (reliability) of the system following the rectification action. There is usually a trade-off

between the two, since often as the effectiveness of the rectification action increases (i.e. its

reliability increases), its cost also increases– this may result in an increased total warranty

servicing cost [6]. Therefore, to reduce the total warranty servicing cost, various strategies

for resolving the warranty claims are considered.

One particular strategy is a warranty servicing strategy which refers to a planned series of

actions (usually rectification actions) for servicing warranty claims. Most warranty servicing

strategies found in the warranty literature, involve dividing the warranty period or region

into disjoint sets, and performing different rectification actions when the system fails in each

set. The sets and the rectification actions are chosen such that the total warranty servicing

cost to the manufacturer is minimized.

Consider for instance the two-dimensional warranty coverage (0,wt] × (0,wu] =: W .

The rectangular warranty region W is partitioned into n disjoint subregions, W1, . . . , Wn,

for n ∈ N+, where

Wi = (0, ki]× (0, li] \ (0, ki−1]× (0, li−1] , ∀i ∈ {1, . . . , n} ; (2.1)

k0 = l0 = 0; kn = wt and ln = wu; see Figure 2.8. Then, a possible warranty servicing

strategy is as follows: all repairs in the first and last subregions are minimal, and in the

n− 2 middle subregions, the first repair in each subregion is perfect (or imperfect) and all

remaining repairs are minimal; see for instance Chukova et al. [9] and Iskandar et al. [10].

0

usage

. . .

. . .

k2k1

...
...

Wn

W2

W1

ln−1

wu

l2

l1

kn−1 wt time

Figure 2.8: Illustration of the n subregions of the rectangular warranty region W = (0,wt]× (0,wu].
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The justification for having only minimal repairs at the start of the warranty coverage

is that, for a deteriorating system, the rate of failures is low at the start of its lifetime, and

therefore, repairs of higher degree may be unnecessary. Having only minimal repairs at the

end of the warranty coverage is justified because performing expensive repairs (with higher

degrees) may not be necessary as the warranty is near its end [10].

The number of subregions and the boundaries of the subregions are then chosen such

that the expected total warranty servicing cost over the warranty regionW is minimized.

An analogous one-dimensional warranty strategy defined for the warranty period (0,w]

is as follows. The warranty period is divided into n disjoint sub-intervals of the form

(ki−1, ki], for i ∈ N+, where k0 = 0 and kn = w. Then, the first failure in the n − 2 mid-

dle sub-intervals is perfect (or imperfect) and all other repairs under warranty are minimal;

see for instance Jack & Murthy [11] and Yun et al. [6].

Most warranty strategies are suggested for systems that deteriorate with age and/or

usage. In Chapters 4 and 5, we discuss failure modeling and warranty servicing strategies

for systems that initially improve with age/usage.

2.5 Chapter Summary

In this chapter, we reviewed the concepts of system failures and general repairs, and out-

lined the assumptions made in modeling successive failures of repairable systems.

We provided an overview of essential concepts and definitions of warranty policies, war-

ranty servicing strategies and warranty servicing costs. We also outlined the assumptions

made in modeling consecutive warranty claims.
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Chapter 3

Failure Modeling in One Dimension

In this chapter, we discuss fundamental concepts used in modeling consecutive failures of a

repairable system in one dimension and provide a review of existing general repair models

for systems whose lifetimes are modeled as univariate random variables.

This chapter is organized as follows. In Section 3.1, we provide some background for

failure modeling in one dimension. In Section 3.2, we provide a review of the literature on

modeling general repairs in one dimension. In Section 3.3, we conclude with a brief chapter

summary.

3.1 Fundamental Concepts

3.1.1 Stochastic Counting Processes

In the context of warranty analysis, failures of a system in one dimension are normally

characterized by either the age of the system or the usage of the system. Here, for clarity, we

will assume that the dimension of interest is time (age).

A common approach to model failures of a system is the probabilistic approach that as-

sumes failures of the system occur randomly in time and attempts to model the distribution

of the failure points. Then, the consecutive failures of the system, referred to as the failure

process, is modeled as a stochastic point process in one dimension (here, time) [see Section

6.1.1].

Let the sequence {Tn; n ∈ N+} denote the stochastic point process associated to the

failure process, where N+ = {1, 2, . . . }, and Tn is the time of the n-th failure. The corre-

sponding counting process, which counts the number of failures occurring in an interval
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(0, t], we denote by {N(t); t ∈ R+}, where R+ = [0,∞). Since the failure times are ordered,

i.e. 0 < T1 < T2 < . . . < Tn < . . ., the number of failures in any interval (s, t] ⊆ R+ is

given by N(t)− N(s), for s < t [12]. Note that, we have used N(t) to denote the number of

failures in the set (0, t], i.e. N(t) ≡ N((0, t]), and therefore, N(t)− N(s) ≡ N((s, t]).

Let the sequence {Xn; n ∈ N+} denote the inter-failure lifetimes, where T1 = X1 and for

n ∈ N+, Xn+1 = Tn+1− Tn. Then, the processes {Tn; n ∈ N+}, {Xn; n ∈ N+} and {N(t); t ∈

R+} are equivalent, i.e. contain the same information, and are therefore exchangeable.

Assuming that at most one failure can occur in an infinitesimally small interval of time

(hence, the strict ordering of the failure times), the corresponding counting process has the

following properties:

(i) N(0) = 0;

(ii) N(t) ∈ N for all t > 0, where N is the set of natural numbers;

(iii) N(t) = inf
s∈R+\[0,t]

N(s) for all t > 0, or N(t) ≤ N(s) for all t < s;

(iv) sup
s∈[0,t)

N(s) ≤ N(t) ≤ sup
s∈[0,t)

N(s) + 1 for all t > 0; in words, simultaneous failures do

not occur in a small interval (t− dt, t], dt → 0 [13].

Independent increments. A counting process {N(t); t ∈ R+} has independent increments if

for all time points 0 < t1 < t2 < · · · < tn, the distributions of the increments

N(t1) ,N(t2)− N(t1) , . . . ,N(tn)− N(tn−1) (3.1)

are independent [13].

Stationary increments. A counting process {N(t); t ∈ R+} has stationary increments if the

increment N(t+ s) − N(t), for each s ≥ 0, has the same distribution for all t ≥ 0. In other

words, the increments are stationary if the distribution of the change N(t+ s)− N(t) in the

process value between any two points, t and t+ s, depends only on the distance s between

the two points [13].

For a counting process associated to the failure process, the distributions of the process

increments depend on the type of rectification action performed on the system following

each failure. We have assumed that the time taken to repair or replace a system following a

failure is negligible (equal to zero), and also that a rectification action immediately follows

a failure.
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Since the failure times are strictly ordered, the number of failures in the interval (0, t] can

be expressed as

N(t) = max{n : Tn ≤ t; for n ∈ N+} =
∞

∑
n=1

I{Tn≤t} , (3.2)

i.e. N(.) is right continuous. The indicator random variable I{Tn≤t} is defined as

I{Tn≤t} =





1 , if Tn ≤ t

0 , if Tn > t .
(3.3)

The distribution of the count N(t) can be determined using the distributions of the fail-

ure times at time t, t > 0. Let Fn(.) denote the distribution function of the n-th failure time

Tn, i.e. Fn(t) = P{Tn ≤ t}. Then, the probability of n failures occurring in (0, t] is given by

P{N(t) = n} =P{N(t) ≥ n} − P{N(t) ≥ n+ 1}

=P{Tn ≤ t} − P{Tn+1 ≤ t}

=Fn(t)− Fn+1(t) .

(3.4)

3.1.1.1 Cumulative Intensity Functions

The expected number of failures is often referred to as the mean function or the cumulative

intensity function of the counting process {N(t); t ∈ R+}, and is denoted by Λ(.).

Given the distribution of N(t) in (3.4), the expected number of failures in the interval

(0, t] can be derived as follows:

Λ(t) = E[N(t)] =
∞

∑
k=0

k P{N(t) = k} =
∞

∑
k=1

k

∑
n=1

P{N(t) = k}

=
∞

∑
n=1

∞

∑
k=n

P{N(t) = k} =
∞

∑
n=1

P{N(t) ≥ n}

=
∞

∑
n=1

P{Tn ≤ t} =
∞

∑
n=1

Fn(t) ,

(3.5)

where clearly Λ(0) = 0. Alternatively, using the definition of N(t) given in (3.2), the ex-

pected number of failures can be derived as follows:

Λ(t) =
∞

∑
n=1

E[I{Tn≤t}] =
∞

∑
n=1

P{Tn ≤ t} =
∞

∑
n=1

Fn(t) . (3.6)

29



3.1.1.2 Intensity Functions

Consider the infinitesimally small interval (t, t+ dt], in which at most one failure can occur.

Then, the increment N(t+ dt)− N(t), for dt → 0, is a binary random variable, such that

N(t+ dt)− N(t) =





1 , with approximate probability λ(t) dt

0 , with approximate probability 1− λ(t) dt .
(3.7)

where the function λ(.) is referred to as the rate of occurrence of failures (ROCOF), and is

defined as follows:

λ(t) = lim
dt→0

P{N(t+ dt)− N(t) = 1}

dt
. (3.8)

When the process is orderlyI, the ROCOF function is equal to the intensity function of the

process, which is defined as the derivative of the cumulative intensity function Λ(.).

The increment N(t+ dt)−N(t) can be expressed as a sum of indicator random variables

(see previous section), and therefore, its expected value can be written as follows:

E[N(t+ dt)− N(t)] =
∞

∑
n=1

E
[
I{N(t+dt)−N(t)≥n}

]
=

∞

∑
n=1

P{N(t+ dt)− N(t) ≥ n} (3.9)

On dividing both sides of the above equation by dt and passing through the limit, we get

lim
dt→0

E[N(t+ dt)− N(t)]

dt
=

∞

∑
n=1

lim
dt→0

P{N(t+ dt)− N(t) ≥ n}

dt
, (3.10)

where the LHS is the derivative of the cumulative intensity function at time t, i.e. dΛ(t)/dt.

When the process is orderly, the probability that simultaneous failures occur in the small

interval (t, t+ dt] is approximately zero. Therefore, (3.10) reduces to

d

dt
Λ(t) = lim

dt→0

P{N(t+ dt)− N(t) ≥ 1}

dt
= lim

dt→0

P{N(t+ dt)− N(t) = 1}

dt
= λ(t) .

(3.11)

Therefore, given the ROCOF function λ(.), the cumulative intensity function can be derived

as follows:

Λ(t) =
∫ t

0
λ(s)ds . (3.12)

The intensity and ROCOF functions although useful, do not completely determine the

probability structure of the associated counting process [14]. Since the failure process is

IA process is orderly if the probability of simultaneous events occurring in a small interval (t, t+ dt] (dt → 0)
is of order dt or less, i.e. P{N(t+ dt)− N(t) ≥ 2} = o(dt).
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assumed to be orderly, henceforth, the term intensity function will also be used to refer to

the ROCOF defined in (3.8).

Let Ht denote the history of the process at time t, t ≥ 0. Then, Ht contains all relevant

data available at time t, including the process trajectory {N(s); 0 ≤ s < t} [12]. Then condi-

tional on this history, the conditional intensity function of the process is defined as follows:

λ̃(t|Ht) = lim
dt→0

P{N(t+ dt)− N(t) = 1 | Ht}

dt
. (3.13)

Note that, at any time t, the conditional intensity function λ̃(t|Ht), is stochastic (since the

history of the process is stochastic), whereas the intensity function is deterministic [14, 15].

The intensity function at any point t can be viewed as the expected value with respect to the

historyHt of the conditional intensity function at that point.

The conditional intensity process {λ̃(t|Ht); t ∈ R+} uniquely defines the stochastic

properties of the counting process {N(t); t ∈ R+} [16, 17]. Therefore, to model the fail-

ure process it is enough to model the effect of general repairs (following the failures) on the

conditional intensity function of the process.

3.1.1.3 Baseline Intensity (or Failure Rate) Functions

To model the failure process, we begin with determining the initial conditional intensity func-

tion or the baseline intensity function, which is the conditional intensity function of the failure

process before the first failure of the system. We denote the baseline intensity function by

λ0(.). The effect of a general repair can be defined as changes in this baseline intensity func-

tion.

The baseline intensity function is the instantaneous failure rate function corresponding to

the lifetime of the original system (i.e. the time T1 (= X1) to first failure of the system), which

is denoted by r(.). This function is also referred to as the hazard rate function or simply the

failure rate function. It is a deterministic function of time and is defined as follows:

r(t) = lim
dt→0

P{N(t+ dt)− N(t) = 1 | N(t) = 0}

dt

= lim
dt→0

P{T1 ≤ t+ dt | T1 > t}

dt

= lim
dt→0

P{t < T1 ≤ t+ dt}

dt P{T1 > t}
=

1

F̄(t)
lim
dt→0

F(t+ dt)− F(t)

dt
,

(3.14)

where F(.) and F̄(.) denote the distribution and reliability functions of the original lifetime,
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and F = 1− F̄. When the density exists, it is denoted by f (.), and the failure rate function

can be expressed in terms of the density function as follows: r(t) = f (t)/F̄(t). The product

r(t) dt is the approximate probability of a failure occurring in the interval (t, t+ dt], given

that the system is operating at (and has not failed prior to) time t.

The failure rate function in (3.14) can be written in terms of the reliability function F̄(.)

alone:

⇒ r(t) =
1

F̄(t)
lim
dt→0

F̄(t)− F̄(t+ dt)

dt

⇒ r(t) =
− d

dt F̄(t)

F̄(t)

⇒ −r(t) =
d

dt
{ln [F̄(t)]}

⇒ −
∫ t

0
r(s) ds = ln [F̄(t)]

⇒ e−
∫ t
0 r(s) ds = F̄(t) .

(3.15)

This exponential representation is important, since the reliability, density and distribution

functions of the original lifetime can be constructed using just the failure rate function. In

terms of the failure rate function, the distribution and density functions are given by

F(t) =1− F̄(t) = 1− e−
∫ t
0 r(s) ds ; (3.16)

f (t) =
d

dt
F(t) = −

d

dt
F̄(t) = r(t) e−

∫ t
0 r(s) ds . (3.17)

The failure rate function characterizes the first failure of the system, and all succeeding

failures are characterized by the conditional intensity function, which takes into account the

effect of the general repairs performed following the failures of the system [3].

3.1.2 Stochastic Aging Classification

In reliability studies, lifetime distributions are classified based on their aging properties. The

aging (or stochastic aging), in some probabilistic sense, describes how the working condition

(or performance) of the system changes with time. The working condition of a system can:

(i) improve with time (negative aging); (ii) deteriorate with time (positive aging); or (iii)

remain constant [18].

In this section, we define various classes of univariate lifetime distributions based on

three indicators of the working condition of a system: the failure rate function, the condi-

tional reliability function and the mean residual lifetime function.
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3.1.2.1 Classes based on Failure Rate

Let X denote the original lifetime of the system, and let r(.) denote the associated failure

rate function.

IFR/DFR/CFR. When theworking condition of the system ismodeled in terms of its failure

rate, we have the following classification of aging:

• the lifetime distribution is increasing failure rate (IFR), if r(t) increases as t ≥ 0 increases;

• the lifetime distribution is decreasing failure rate (DFR), if r(t) decreases as t ≥ 0 in-

creases;

• the lifetime distribution is constant failure rate (CFR), if r(t) remains constant for all

t ≥ 0 [3].

Classes of non-monotonic failure rate functions have been defined as combinations of

these monotonic classes. Non-monotonic failure rate functions are distinguished by the

presence of one or more change-point(s), which are points where the monotonicity of the

function changes [18, 19, 20]. A non-monotonic class, frequently appearing in the reliability

literature, is the bathtub-shaped failure rate (BFR) class of failure rate function. These curves

are characterized by two change-points, which we denote by a1 and a2, and are defined

piece-wise as follows:

r(t) is





decreasing (r′(t) < 0) , for t ∈ [0, a1]

constant (r′(t) = 0) , for t ∈ [a1, a2]

increasing (r′(t) > 0) , for t ∈ [a2,∞) ,

(3.18)

where r(a1) = r(a2) and r′(t) = dr(t)/dt [21]– we will further discuss BFR functions in the

next chapter.

Another example of the non-monotonic class is the U-shaped failures rate (UFR) class of

failure rate function, which is characterized by a single change-point a, before which the

failure rate is decreasing and after which the failure rate is increasing. UFR functions can be

derived from BFR functions, by setting a1 = a2.

In Figure 3.1, we have plotted example functions from the different classes of failure

rate function. In general, non-monotonic failure rate functions can be reduced to monotonic

functions by selecting appropriate change-points, and can be viewed as generalizations of

the monotonic functions [18].
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Figure 3.1: Examples of failure rate functions from various classes: DFR class (top,left); CFR class
(top,middle); IFR class (top,right); BFR class (bottom, left); and UFR class (bottom right).

3.1.2.2 Classes based on Conditional Reliability

The conditional reliability of a system is the probability of the system surviving a finite

interval of time, given that it has not failed prior to its current age. Let F̄t(.) denote the

conditional reliability function of a system of age t. Then, for x > t,

F̄t(x) =P{X > x|X > t} =
P{X > x}

P{X > t}
=

F̄(x)

F̄(t)
, (3.19)

where X denotes the lifetime of the system. Therefore, F̄t(x) is the probability that a system

of age t survives an additional x− t units of time, given that it has not failed before t. When

t = 0, (3.19) reduces to the reliability function at time x, i.e. F̄0(x) = F̄(x) = P{X > x}. The

corresponding conditional distribution function, which we denote by Ft(.), is given by

Ft(x) = P{X ≤ x|X > t} =
P{t < X ≤ x}

P{X > t}
=

F(x)− F(t)

F̄(t)

=
F̄(t)− F̄(x)

F̄(t)
= 1−

F̄(x)

F̄(t)
= 1− F̄t(x) .

(3.20)

The monotone properties of the failure rate function r(.) are the same as those of the condi-

tional distribution function Ft(.), since

r(t) = lim
dt→0

F(t+ dt)− F(t)

dt F̄(t)
= lim

dt→0

Ft(t+ dt)

dt
. (3.21)

When Ft(t + dt) is increasing (decreasing) in t ≥ 0, for all dt ≥ 0, then r(t) is increasing

(decreasing) in t ≥ 0 [18]. Since, F̄t = 1− Ft, the monotone properties of the conditional

34



reliability function are the opposite of those of the failure rate function.

IFR/DFR/CFR. When the working condition of the system is modeled in terms of its con-

ditional reliability, the IFR/DFR classification can be equivalently expressed in terms of this

function:

• the lifetime distribution is IFR, if F̄t(t+ s) decreases as t ≥ 0 increases, for each s ≥ 0;

• the lifetime distribution is DFR, if F̄t(t+ s) increases as t ≥ 0 increases, for each s ≥ 0;

• the lifetime distribution is CFR, if F̄t(t+ s) is constant for all t ≥ 0, and for each s ≥ 0

[18]; see Figure 3.2 for an illustration.
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Figure 3.2: Examples of the conditional reliability function and the corresponding failure rate func-
tion: DFR class (left column); CFR class (middle column); and IFR class (right column).

Using the exponential representation in (3.15), the conditional reliability function in

terms of the failure rate function is, for x > t, given by

F̄t(x) =
F̄(x)

F̄(t)
=

e
−

x∫
0

r(u) du

e
−

t∫
0

r(u) du

= e
−

x∫
t

r(u) du
. (3.22)

Therefore, for distributions where the failure rate function is defined piece-wise (for in-

stance, BFR functions), the conditional reliability function can be derived from the failure

rate function; see Figure 3.3 for an illustration. Notice that, the conditional reliability func-
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tion for a BFR function is non-monotonic (initially increasing, then decreasing); we will

further discuss this in the next chapter.
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Figure 3.3: Examples of the conditional reliability function and the corresponding failure rate func-
tion: BFR class (left column); and UFR class (right column).

NBU/NWU. Another categorization of lifetime distributions defined based on conditional

reliability, which is weaker (in terms of conditions) than the IFR/DFR classification, is as

follows:

• the lifetime distribution is new-better-than-used (NBU), iff F̄t(t + s) ≤ F̄(s), for all

t > 0 and each s ≥ 0;

• the lifetime distribution is new-worse-than-used (NWU), iff F̄t(t + s) ≥ F̄(s), for all

t > 0 and each s ≥ 0 [18].

The CFR distribution can be a member of either class, if the definitions are not strict. Ac-

cording to this classification, the working condition of a used system is compared to that of

a new system. When the probability of a system of age t not failing in the next s time units is

less (greater) than that of a new system, then the new system is better (worse) than the used

system.

When F̄t(t+ s) is increasing (decreasing) in t ≥ 0, for each s ≥ 0, then F̄(s) = F̄0(0+ s) ≤

(≥)F̄t(t+ s), for t > 0. Therefore, the IFR (DFR) class is contained in the NBU (NWU) class

[18].
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3.1.2.3 Classes based on Mean Residual Lifetime

The residual lifetime of a system is its remaining life conditional on the event that it has not

failed prior to its current age. Let Xt denote the residual life of a system of age t. Then,

Xt = [X − t|X > t], where X is the original system lifetime (see Figure 3.4).

0 t timeX1

Xt

X

Figure 3.4: Illustration of the residual life of a system prior to its first failure at time X ≡ X1.

The distribution function of the residual lifetime is the conditional distribution function

in (3.20), i.e.

P{Xt ≤ x− t} = P{X ≤ x|X > t} = Ft(x) , (3.23)

where Ft(x) represents the probability of a failure occurring at or before time x given that

the system has not failed prior to time t, for x > t > 0.

The aging properties of a system are often described in terms of its mean residual lifetime

(MRL), which is given by

µ(t) :=E[Xt] = E[X − t|X > t] = E




[X|X>t]∫

t

dx




=E




∞∫

t

I{X>x|X>t} dx


 =

∞∫

t

P{X > x|X > t} dx

=

∞∫

t

F̄t(x) dx =
1

F̄(t)

∞∫

t

F̄(x) dx .

(3.24)

The MRL at time t = 0 is the expected value of the original lifetime, i.e. µ(0) = E[X] := µ.

DMRL/IMRL. When the working condition of a system is modeled in terms of the MRL,

we have the following classification of lifetime distributions:

• the lifetime distribution is decreasing mean residual lifetime (DMRL), iff µ(t) is decreasing

in t, for t ≥ 0;

• the lifetime distribution is increasing mean residual lifetime (IMRL), iff µ(t) is increasing

in t, for t ≥ 0 [18].
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NBUE/NWUE. An alternate classification in terms of the MRL function is based on a com-

parison between a new system and a used system, where

• the lifetime distribution is new-better-than-used-in-expectation (NBUE), iff µ(t) ≤ µ,

for all t ≥ 0;

• the lifetime distribution is new-worse-than-used-in-expectation (NWUE), iff µ(t) ≥ µ,

for all t ≥ 0 [18].

When the MRL function µ(t) is decreasing (increasing) in t, then µ(t) ≤ (≥) µ(0) = µ,

for all t > 0. Therefore, the DMRL (IMRL) class is contained in the NBUE (NWUE) class.

NBUE (NWUE)

IFR (DFR)

NBU (NWU)

NBUE (NWUE)

DMRL (IMRL)

IFR (DFR)

Figure 3.5: Illustration of the containment hierarchies of the aging classes.

Figure 3.5 depicts the two containment hierarchies of the aging classes. Let F denote a

lifetime distribution. Then, the following chains of implications apply:

F ∈ IFR (DFR) ⇒ F ∈ NBU (NWU) ⇒ F ∈ NBUE (NWUE) ;

F ∈ IFR (DFR) ⇒ F ∈ DMRL (IMRL) ⇒ F ∈ NBUE (NWUE) .
(3.25)

The proofs follow from the relationships between the failure rate, conditional reliability

and MRL functions. The first chain of implications follows directly from the definitions of

the three functions:

r(t) increasing (decreasing) in t ⇔ F̄t(t+ s) decreasing (increasing) in t, for each s ≥ 0

⇒ F̄t(t+ s) = e
−

t+s∫
t

r(u) du
≤ (≥) F̄(s) = e

−
s∫
0

r(u) du

⇒ µ(t) =

∞∫

0

F̄t(t+ s) ds ≤ (≥) µ =

∞∫

0

F̄(s) ds .

(3.26)
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The second chain of implications follows from (3.26) and the definitions of classes based on

MRL:

r(t) increasing (decreasing) in t ⇒ µ(t) decreasing (increasing) in t

⇒ µ(t) ≤ (≥) µ(0) = µ .
(3.27)

Figure 3.6 provides illustrations of the monotonic classes of failure rate function and the

corresponding MRL functions. Notice that, the monotonicity of the failure rate function is

the opposite of that of the MRL function for the monotonic classes.
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Figure 3.6: Examples of the failure rate function and the corresponding MRL function: DFR class
(left column); CFR class (middle column); and IFR class (right column).

The MRL function can, using (3.22), be expressed in terms of the failure rate function as

follows:

µ(t) =

∞∫

t

F̄t(x) dx =

∞∫

t

e
−

x∫
t

r(u) du
dx . (3.28)

Solving for the failure rate function, we get

r(t) =
d
dt µ(t) + 1

µ(t)
, (3.29)

since

d

dt
µ(t) =

∞∫

t

d

dt
F̄t(x) dx− F̄t(t) =

∞∫

t

F̄(x)
d

dt

1

F̄(t)
dx− 1 =

∞∫

t

F̄(x)
f (t)

F̄2(t)
dx− 1

=

∞∫

t

F̄(x)
r(t)

F̄(t)
dx− 1 = r(t)

∞∫

t

F̄t(x) dx− 1 = r(t) µ(t)− 1 .

(3.30)
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Therefore, the MRL can be constructed from the failure rate function. This is useful, for

instance, when the failure rate function is defined piece-wise (e.g. the BFR function); see

Figure 3.7 for an illustration. Notice that, theMRL function corresponding to a BFR function

is non-monotonic (initially increasing, then decreasing) [21]; we will discuss this further in

the following chapter.
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Figure 3.7: Examples of the failure rate function and the correspondingMRL function: BFR class (left
column); and UFR class (right column).

As with the failure rate function, the MRL function completely determines the distribu-

tion of the system lifetime. The distribution function can be expressed solely in terms of the

MRL function as follows:

F(t) = 1− e
−

t∫
0

r(u) du
= 1− e

−
t∫
0

d
du

µ(u)+1

µ(u)
du

= 1− e
−

t∫
0

µ′(u)
µ(u)

du

e
−

t∫
0

1
µ(u)

du

= 1− e−
(
ln µ(t)−lnµ(0)

)
e
−

t∫
0

1
µ(u)

du

= 1− e
ln
(

µ(0)
µ(t)

)
e
−

t∫
0

1
µ(u)

du

= 1−
µ(0)

µ(t)
e
−

t∫
0

1
µ(u)

du

.

(3.31)

3.1.3 Partial Orderings of Distributions

While the aging classes describe (in some probabilistic sense) the aging properties of a sys-

tem, partial orderings provide a comparison between lifetime variables in terms of some

chosen aging property [18].
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In this section, we provide a brief review of partial orderings of lifetime distributions in

terms of failure rate, reliability and mean residual lifetime.

3.1.3.1 Partial Ordering based on Reliability

Let X and Y denote two lifetime variables with reliability functions denoted by F̄X(.) and

F̄Y(.) respectively. Then, a partial ordering based on reliability is the stochastic ordering (ab-

breviated to ’ST’), which is defined as follows.

Definition 3.1. X is greater than Y in stochastic ordering, i.e. X ≥ST Y, iff

F̄X(t) ≥ F̄Y(t) , ∀ t ≥ 0 . (3.32)

3.1.3.2 Partial Ordering based on Mean Residual Lifetime

Let µX(.) and µY(.) denote theMRL functions of the random variables X and Y respectively.

Then, a partial ordering based on MRL is the mean residual ordering (abbreviate to ’MR’),

which is defined as follows.

Definition 3.2. X is greater than Y in mean residual ordering, i.e. X ≥MR Y, iff

µX(t) ≥ µY(t) , ∀ t ≥ 0 . (3.33)

It can be proved that this definition is equivalent to the ratio

∞∫
t

F̄X(u) du

∞∫
t

F̄Y(u) du

(3.34)

being increasing in t ≥ 0 [18].

3.1.3.3 Partial Ordering based on Failure Rate

Let rX(.) and rY(.) denote the failure rate functions of the two variables X and Y respectively.

Then, the partial ordering based on failure rate is the failure rate ordering (abbreviated to ’FR’,

or sometimes, ’HR’ for hazard rate), which is defined as follows.

Definition 3.3. X is greater than Y in failure rate ordering, i.e. X ≥FR Y, iff

rX(t) ≤ rY(t) , ∀ t ≥ 0 . (3.35)
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Failure rate ordering is more stringent than both stochastic ordering and mean residual

ordering, and it implies stochastic and mean residual orderings, i.e.

X ≥FR Y ⇒ X ≥ST Y ;

X ≥FR Y ⇒ X ≥MR Y .
(3.36)

The first implication follows from the relationship between the failure rate and reliability

functions given in (3.15):

rX(t) ≤ rY(t) ⇒

t∫

0

rX(u) du ≤

t∫

0

rY(u) du

⇒ e
−

t∫
0

rX(u) du
= F̄X(t) ≥ e

−
t∫
0

rY(u) du
= F̄Y(t) .

(3.37)

The second implication follows from (3.21) and (3.24), where for t > 0,

rX(t) ≤ rY(t) ⇒

t+s∫

t

rX(u) du ≤

t+s∫

t

rY(u) du

⇒ e
−

t+s∫
t

rX(u) du
≥ e

−
t+s∫
t

rY(u) du

⇒

∞∫

0

e
−

t+s∫
t

rX(u) du
ds = µX(t) ≥

∞∫

0

e
−

t+s∫
t

rY(u) du
ds = µY(t) .

(3.38)

3.2 Review of Repair Models in One Dimension

In this section, we provide a review of various general repair models for a system with a

univariate lifetime. The associated failure processes are defined in one dimension, which is

assumed to be time (or age).

Degree of a general repair. Recall that general repairs, based on their effectiveness in im-

proving the working condition of the system, are categorized as one of the following types:

(i) perfect repair; (ii) imperfect repair; (iii) minimal repair. Perfect repair is most effective,

minimal repair least effective and imperfect repair has effectiveness between the two; see

Section 2.2. The improvement in working condition following an imperfect repair can be

anywhere between no improvement (minimal repair) or maximal improvement (perfect re-

pair).
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To model imperfect repairs, the effectiveness of repairs is translated to a variable, often

referred to as the degree of repair, in the range [0, 1]. The two extremes 0 and 1 correspond

to a minimal repair and a perfect repair, respectively, and any repair with a degree between

the two (i.e. in the range (0, 1)) corresponds to an imperfect repair. The degrees of repair are

ordered, such that, a general repair with a higher degree is more “effective“ than one with a

lower degree.

We have categorized the general repair models (processes) based on the three type of

general repair. However, in most cases, the imperfect repair models include the minimal

and perfect repair models.

3.2.1 Perfect Repair Process

The system following a perfect repair is assumed to be in an “as-good-as-new” working

condition. This assumption is reasonable when the system deteriorates with time, and its

working condition at the start of its lifetime is at its best (for instance the IFR class of lifetime

distributions– we will discuss this further in the next chapter).

The sequence of consecutive failures of a system with a univariate lifetime, where fail-

ures are followed by immediate and instantaneous perfect repairs, is modeled as a renewal

process in one dimension [3]. Since the repairs are immediate and instantaneous, the number

of failures in any given interval is equal to the number of perfect repairs (or renewals).

A stochastic counting process {N(t); t ∈ R+} is a renewal process if the sequence of non-

negative inter-failure lifetimes {Xn; n ∈ N+} are independent and identically distributed

random variables [13]. This is equivalent to replacing a failed system with a new and iden-

tical system immediately following each failure.

Let F(.) denote the distribution function of the original lifetime. Since, the inter-failure

lifetimes are independent and identically distributed, F(.) is the distribution function of

all consecutive lifetimes X2,X3, . . . . Also, let {Tn; n ∈ N+} denote the sequence of failure

points. Then, N(t) = max{n : Tn ≤ t} counts the number of failures (or perfect repairs)

performed in the interval (0, t]. Let Fn(.) denote the distribution function of the n-th failure

time Tn, for n ∈ N+. The distribution function of the first failure time, for t ≥ 0, is given by

F1(t) = P{T1 ≤ t}

= P{X1 ≤ t} = F(t) .
(3.39)
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Then, the distribution function of the second failure time T2, is given by

F2(t) = P{T2 ≤ t} = P{T1 + X2 ≤ t} = P{X2 ≤ t− T1}

=

t∫

0

P{X2 ≤ t− t1|T1 = t1} dF1(t1)

=

t∫

0

F(t− t1) dF1(t1) =: F∗∗F1(t) ,

(3.40)

where F∗∗F1(.) denotes the convolution of F with F1(= F); and dF1(t) = f1(t) dt, when

the corresponding density function f1(.) exists. In general, the distribution function of the

(n+ 1)-th failure time Tn+1, for n ∈ N+, is given by

Fn+1(t) = P{Tn+1 ≤ t} = P{Tn + Xn+1 ≤ t} = P{Xn+1 ≤ t− Tn}

=

t∫

0

P{Xn+1 ≤ t− tn|Tn = tn} dFn(tn)

=

t∫

0

F(t− tn) dFn(tn) =: F∗∗Fn(t) .

(3.41)

Therefore, the distribution function of the (n+ 1)-th failure time Tn+1 is the convolution of

F with Fn, which we denoted by F∗∗Fn(.), for n ∈ N+; refer to Ross [22, 13]. Note that, when

the times {t1, . . . , tn} of the previous n failures are given, the conditional distribution of the

(n+ 1)-th failure time Tn+1 depends only on the last failure time tn before it, for n ∈ N+. It

follows from the definition of a renewal process that, for all n ∈ N+ and t > tn,

P{Tn+1 ≤ t|T1 = t1, . . . , Tn = tn} = P{Tn+1 ≤ t|Tn = tn} = P{Xn+1 ≤ t− tn|Tn = tn}

= P{X1 ≤ t− tn} = F(t− tn) .

(3.42)

The distribution of the number N(.) of failures and its expected value (or cumulative

intensity function) Λ(.) = E[N(.)] can be derived by substituting for the distribution func-

tions of the failure times in equations (3.4) and (3.5), respectively. Note that, Λ(t) represents

the expected number of renewals (here, perfect repairs) in the interval (0, t], for t > 0, and

at t = 0, Λ(0) = E[N(0)] = 0.

The cumulative intensity function of the renewal process is sometimes referred to as the

renewal function. The renewal function uniquely determines the distribution F [22].

By conditioning on the first failure at time T1 = X1, the renewal function can be ex-
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pressed as the following renewal equation:

Λ(t) =

t∫

0

E
[
N(t)|T1 = t1

]
dF(t1) =

t∫

0

E
[
N(t)− N(t1) + N(t1)|T1 = t1

]
dF(t1)

=

t∫

0

E
[
N(t1)|T1 = t1

]
dF(t1) +

t∫

0

E
[
N(t)− N(t1)|T1 = t1

]
dF(t1)

=

t∫

0

dF(t1) +

t∫

0

Λ(t− t1) dF(t1) = F(t) +

t∫

0

Λ(t− t1) dF(t1) ,

(3.43)

since E[N(t1)|T1 = t1] = 1, and

E[N(t) − N(t1)|T1 = t1] = E[N(t− t1)] = Λ(t− t1) . (3.44)

This follows from the definition of a renewal process: since a new and identical system is put

into use after the first failure at t1, the distribution of the number of renewals (or failures) at

any point t, for t > t1, is the same as the distribution of the number of renewals at the point

t− t1, i.e. N(t)− N(t1)
d
= N(t− t1) [13].

Given a distribution function F(.), the renewal equation can sometimes be analytically

solved for the renewal function Λ(.); see Ross [13] and Karlin & Samual [23]. Most often,

however, numerical methods involving the Reimann-Stieltjes approximation of the integral

equation are used to compute the renewal function; see for instance Xie [24].

The conditional intensity function of the renewal process at time t ≥ 0 is given by

λ̃(t|Ht) = r(t− (X1 + · · ·+ XN(t−))) = r(t− TN(t−)) , (3.45)

where TN(t−) = X1 + · · ·+ XN(t−) is the time of the last renewal before time t, and r(.) is the

failure rate function corresponding to the original lifetime [25].

3.2.2 Minimal Repair Process

By definition, a minimal repair restores the working condition of the system after the repair

to its working condition immediately prior to the failure, i.e. the system behaves like a

system that has not failed.

The sequence of consecutive failures of a system with a univariate lifetime, where fail-

ures are followed by immediate and instantaneous minimal repairs, is modeled as a Poisson
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process in one dimension. The Poisson process is unique in that the intensity function of the

process is equal to the conditional intensity function of the process, i.e.

λ(t) = λ̃(t|Ht) = r(t) , (3.46)

where r(.) is the failure rate function corresponding to the original system lifetime [17, 26].

The Poisson process can be used to model minimal repairs of systems with both monotonic

(e.g. IFR or DFR) and non-monotonic (e.g. BFR) lifetime distributions– i.e. there is no

restriction on the class of lifetime distribution.

A stochastic counting process {N(t); t ∈ R+} is a Poisson process with intensity function

λ(.), if the following conditions hold:

(i) {N(t); t ∈ R+} has independent increments;

(ii) P{N(t+ dt)− N(t) = 1} = λ(t) dt+ o(dt);

(iii) P{N(t+ dt)− N(t) ≥ 2} = o(dt); and

(iv) for n ∈ N, the number of failures in the interval (0, t], t > 0, has a Poisson distribution

with parameter Λ(t), i.e.

P{N(t) = n} =
[Λ(t)]n e−Λ(t)

n!
, (3.47)

where

Λ(t) = E[N(t)] =

t∫

0

λ(s) ds . (3.48)

The number of failures in any interval (s, t], for 0 < s ≤ t, is given by Λ(t)− Λ(s), and

therefore, the distribution of the increment N(t)− N(s) is given by

P{N(t) − N(s) = n} =
[Λ(t)− Λ(s)]n e−

{
Λ(t)−Λ(s)

}

n!
. (3.49)

3.2.3 Imperfect Repair Processes

The stochastic properties of a failure process can be uniquely determined by the associated

conditional intensity process, which we have denoted by {λ̃(t|Ht); t ∈ R+}; see Section

3.1.1.2. Therefore, in order to define a failure process, where failures are followed by general

repair, we can model the effect of the general repairs in terms of the conditional intensity

function of the process.
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In this section, we will review various approaches suggested for modeling the effect of

imperfect repairs.

3.2.3.1 Age Modification Approach

This approach involves modeling the effect of general repairs as changes (reductions) in

the age of the system, such that, after a general repair the system behaves like an identi-

cal system at a younger age. This approach assumes that the system has an IFR lifetime

distribution (i.e. the system is deteriorating with time).

Let A(t) denote the age of the system at real time t in terms of its working condition.

This function is referred to as the virtual age or effective age function, and is different from the

calendar age of the system. For systems with IFR functions, it is defined such that A(t) ≤ t,

for all t > 0 (at t = 0, A(0) = 0). When the system has not failed or if all failures of the

system are rectified by minimal repair, then this virtual age is equal to the actual or calendar

age of the system.

With virtual age models, the conditional intensity function of the failure process at any

time t ≥ 0, is defined as follows:

λ̃(t|Ht) = λ0(A(t)) , (3.50)

where λ0 = r is the baseline intensity (or failure rate) function of the original lifetime. The

baseline intensity function remains unchanged, and the effect of a repair can be viewed as

shifting or translating this baseline function along the time axis.

The virtual age function A(.) at any point is defined as a function of the number of

failures and the corresponding degrees of repair prior to that point. Usually the virtual age

functions are of the form

A(t) = t− ξA(T1, . . . , TN(t−); δ1, . . . , δN(t−)) , (3.51)

where ξA(.) is some non-negative function of the failure times {Tn; n ∈ N+} and the corre-

sponding general repair degrees {δn; n ∈ N+}, and N(t−) represents the number of failures

prior to time t. This function is defined such that, when δi = 1 for all i ∈ N+ (i.e. all repairs

are perfect), then the virtual age reduces to A(t) = t− TN(t−), for all t ≥ 0, which is the vir-

tual age corresponding to a renewal process in one dimension; see Section 3.2.1. Also, when

δi = 0 for all i ∈ N+ (i.e. all repairs are minimal), then the virtual age reduces to A(t) = t,
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for all t ≥ 0, which is the virtual age corresponding to a Poisson process in one dimension;

see Section 3.2.2.

The first virtual age models, suggested by Kijima [27], are defined in terms of a virtual

age process, denoted by {Vn; n ∈ N+}, whereVn is the virtual age of the system immediately

following the n-th repair, for n ∈ N+. That is, in terms of a virtual age function,

Vn = A(T+
n ) . (3.52)

These virtual age models are characterized by the following property: the distribution of the

(n+ 1)-th inter-failure lifetime Xn+1, n ∈ N+, given all previous failure points, is defined as

P{Xn+1 > x|Vn = vn} = P{X1 > vn + x|X1 > vn} =
F̄(vn + x)

F̄(vn)
, (3.53)

where F̄(.) is the reliability function of the original lifetime X1.

Kijima’s Model I. Kijima’s first virtual age model assumes a repair can at most undo dam-

age accumulated by the system since the previous repair, and therefore,

Vn = Vn−1 + Dn Xn =
n

∑
i=1

Di Xi , (3.54)

where {Dn; n ∈ N+} is a sequence of independent and identically distributed random vari-

ables in the range [0, 1]. Note that, here, 1 corresponds to aminimal repair and 0 corresponds

to a perfect repair. Using our notations, this virtual age process is equivalent to having the

following virtual age function:

A(t) = t−
N(t−)

∑
i=1

δi
[
A(Ti)− A(T+

i−1)
]
= t−

N(t−)

∑
i=1

δi Xi , (3.55)

since, when we set δi = 1− Di, we get

A(T+
n ) = T+

n −
n

∑
i=1

δi Xi = T+
n −

n

∑
i=1

(1− Di) Xi

= T+
n −

n

∑
i=1

Xi +
n

∑
i=1

Di Xi

= T+
n − Tn +

n

∑
i=1

Di Xi

=
n

∑
i=1

Di Xi = Vn .

(3.56)
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Kijima’s Model II. Kijima’s second virtual age model assumes a repair can undo all dam-

age accumulated by the system since the start of its lifetime, and therefore,

Vn = Dn (Vn−1 + Xn) =
n

∑
i=1

(
n

∏
j=i

Dj

)
Xi . (3.57)

Using our notations, this virtual age process is equivalent to defining the virtual age function

as follows:

A(t) = t−
N(t−)

∑
i=1

δi A(Ti) . (3.58)

The proof is straight-forward. When we set 1− δi = Di, for all i ∈ N+, we get

A(T+
1 ) = A(T1)− δ1 A(T1) = (1− δ1) A(T1) = (1− δ1) T1

=
1

∑
i=1

1

∏
j=i

(1− δj) Xi =
1

∑
i=1

1

∏
j=i

Dj Xi = V1 .
(3.59)

We assume that this is true for n, i.e.

A(T+
n ) =

n

∑
i=1

n

∏
j=i

(1− δj) Xi =
n

∑
i=1

n

∏
j=i

Dj Xi = Vn . (3.60)

Then, for n+ 1, we get

A(T+
n+1) = (1− δn+1) A(Tn+1) = (1− δn+1)

[
A(T+

n ) + Xn+1

]

= (1− δn+1)

[
n

∑
i=1

n

∏
j=i

(1− δj) Xi + Xn+1

]

=
n

∑
i=1

n+1

∏
j=i

(1− δj) Xi + (1− δn+1) Xn+1

=
n+1

∑
i=1

n+1

∏
j=i

(1− δj) Xi =
n+1

∑
i=1

n+1

∏
j=i

Dj Xi = Vn+1 .

(3.61)

Other functional forms of the virtual age function can be defined; see for example Doyen

& Guadoin [28], Hollander [29], and Varnosafaderani & Chukova [30].

3.2.3.2 Intensity Modification Approach

Another approach for modeling the effect of general repairs is the intensity modification ap-

proach. Here, the effect of a general repair is defined as a reduction in the baseline intensity

function of the failure process, such that, the conditional intensity function following an
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imperfect repair is bounded between those following a minimal repair and a perfect repair

[28]. These models also assume an IFR lifetime distribution.

Where the conditional intensity function for the age modification approach has the fol-

lowing form:

λ̃(t|Ht) = λ0

(
t− ξA(T1, . . . , TN(t−); δ1, . . . , δN(t−))

)
, (3.62)

the conditional intensity function for the intensity modification approach is of the form

λ̃(t|Ht) = λ0(t)− ξλ0
(T1, . . . , TN(t−); δ1, . . . , δN(t−)) , (3.63)

where, ξλ0
(.) is some function of the baseline intensity function λ0(.) and also the times

and degrees of the general repairs. This function is defined such that, when all repairs are

minimal, the conditional intensity function reduces to λ̃(t|Ht) = λ0(t), for all t ≥ 0, which is

the conditional intensity function corresponding to theminimal repair process; andwhen all

repairs are perfect, the conditional intensity function reduces to λ̃(t|Ht) = λ0(t− TN(t−)),

for all t ≥ 0, which is the conditional intensity function of the perfect repair process; see

Sections 3.2.1 and 3.2.2.

An example of these intensity modification models, analogous to Kijima’s second virtual

age model, given in (3.57), is

λ̃(t|Ht) = λ0(t)−
N(t−)

∑
i=1

δi
[
λ̃i(t|Ht)− λ0(t− Ti)

]
, (3.64)

where λ̃i(t|Ht) represents the conditional intensity function after the i-th general repair,

defined for t ∈ (Ti,∞) [31].

In Figure 3.8, we have plotted examples of this conditional intensity function, given the

failure times Ti = ti, i ∈ {1, 2, 3}, for minimal, imperfect and perfect repair processes.
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Figure 3.8: Illustrations of the conditional (failure) intensity, given the failure times t1, t2, and t3:
minimal repairs (left); imperfect repairs (middle); and perfect repairs (right).
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Intensity modification models having forms other than (3.63) can be defined; see for

example Doyen & Gaudoin [28], Lawless & Thiagarajah [15] and Lindqvist [32].

3.2.3.3 Monotone Stochastic Processes

The imperfect repair process can also be modeled as a monotone stochastic process, where

the inter-failure lifetimes {Xn; n ∈ N+} are monotone decreasing, i.e.

Xn+1 ≤ST Xn , ∀n ∈ N+ . (3.65)

For example, consider the quasi-renewal process, a generalization of the ordinary renewal pro-

cess, which is defined as follows. A point process is a quasi-renewal process with parameter

α > 0 and distribution F, iff

Xn
d
= αn−1 Zn , ∀n ∈ N+ , (3.66)

where the equality is in distribution, and {Zn; n ∈ N+} is a sequence of independent and

identically distributed random variables with distribution function F(.) (i.e. a renewal pro-

cess) [33].

LetGn(.) denote the distribution function of the n-th inter-failure lifetime Xn of the quasi-

renewal process, for n ∈ N+. Then, G1(x) = F(x), for x ≥ 0; and the distribution function

of the (n+ 1)-th inter-failure lifetime Xn+1, for n ∈ N+, is given by

Gn(x) = P{Xn+1 ≤ x}

= P{αn Zn+1 ≤ x} = P{Zn+1 ≤ α−n x} = F
( x

αn

)
.

(3.67)

This process with parameter α ∈ (0, 1] is used tomodel imperfect repairs, when the inter-

failure lifetime following an imperfect repair is assumed to have the same distribution as the

inter-failure lifetime leading to the repair scaled by α. When α = 1, the process reduces to an

ordinary renewal process. These processes are a generalization of the perfect repair process,

but not the minimal repair process.

For more on quasi-renewal (and geometric) processes and their applications in imperfect

maintenance see Lam [34], Pham & Wang [35], Park & Pham [36], Lam & Zhang [37], and

Rehmert & Nachlas [38].
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3.2.4 General Repair Processes and BFR Lifetime Distributions

The general repair models discussed above assume a monotonically increasing failure rate

function, and are therefore unsuitable for modeling non-minimal general repairs when the

system lifetime distribution has a non-monotonic failure rate function– in particular, BFR

function. BFR functions are characterized by three lifetime phases: DFR (“burn-in” phase),

CFR (“useful life” phase) and IFR (“wear-out” phase); see Figure 3.1.2.1.

As discussed earlier, when all repairs are minimal, the Poisson process can be used to

model the consecutive failures of a system, regardless of the class of lifetime distribution.

To model consecutive replacements of the system, the renewal process can be used, again

regardless of the class of distribution. When perfect repairs are modeled as replacements

however, there is the implicit assumption that the system is deteriorating with time, and

therefore the system at the start of its lifetime is in a better working condition. For systems

whose lifetimes are modeled with distributions having BFR functions, this is not the case;

see Section 3.1.2 on aging properties.

Systems whose working condition initially improves with time are often subjected to a

burn-in period in order to improve their reliability before they are released into the market.

Most studies on burn-in strategies suggest only minimal repairs to rectify failures during

the burn-in period. This is because existing general repair models are not appropriate when

the failure rate function has a DFR phase.

Attempts have been made to adapt existing virtual age models to suit systems with life-

time distributions having a BFR function. In Dijoux [39] and Shafiee et al [40], a perfect

repair in the non-decreasing phase returns the system to the start of the useful life period

[a1, a2] instead of the start of the system lifetime (note that a1 and a2 are the change-points

of the BFR function; see Section 3.1.2.1). Therefore, virtual age models are applied only out-

side the DFR phase. In the DFR phase however, as with burn-in strategies, all repairs are

modeled as minimal repairs.

Dijoux & Idée [41] introduce the concepts of “as-good-as-optimal repair” and “arith-

metic increase in age” as a first attempt to model the effect of general repairs in the DFR

phase. The effect of a repair, in both models, is expressed in terms of changes in the vir-

tual age of the system. In both models, the effect of a non-minimal general repair in the

DFR phase is reaching the useful life period faster than when a minimal repair is performed

(i.e. aging the system). Once in the useful life period, the effect of a repair is modeled as a

decrease in the virtual age, with a perfect repair returning the virtual age to a1 (not 0).
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Modeling the effect of a repair as an aging of the system, does not always preserve the

order of the types of general repair in terms of their effectiveness (for instance, a perfect

repair may not always be the most effective repair)– we will discuss this further in the next

chapter, where we propose a new approach to model the effect of repairs while the system

is still improving.

For more on imperfect repair modeling in general, refer to Wang & Pham [42], Lindqvist

[32] and Blishcke & Murthy [2].

3.3 Chapter Summary

In this chapter, we provided a brief review of concepts (such as, stochastic counting pro-

cesses, intensity processes and the failure rate function) necessary in modeling consecutive

failures of systems in one dimension.

We discussed various aging classes and partial orderings of univariate distributions in

terms of the failure rate, conditional reliability and mean residual lifetime functions.

We reviewed existing general repair models and the associated failure processes in one

dimension.
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Chapter 4

Modeling Repairs of a System with a

Bathtub-Shaped Failure Rate Function

In this chapter, we propose a new approach tomodel the effect of a general repair performed

on a system whose lifetime is modeled with a distribution having a bathtub-shaped failure

rate function. We then define a failure process to model consecutive failures of the system,

where failures are rectified by general repair.

This chapter is arranged as follows. In Section 4.1, we define the type of system con-

sidered. In Section 4.2, we discuss the definitions of the various types of general repair

and their effect on the working condition of the system. In Section 4.3, we formulate the

proposed general repair model and discuss its properties. In Section 4.4, we derive the dis-

tributions of the failure times and the inter-failure lifetimes of the proposed failure process.

In Section 4.5, we conclude with a summary of the results.

4.1 Bathtub-Shaped Failure Rate Functions

We propose a general repair model for a system that is assumed to be from a homogeneous

population having a lifetime distribution with a bathtub-shaped failure rate (BFR) function.

(For brevity, we will say that a lifetime distribution is BFR, when the associated failure rate

function is BFR.) We do not consider systems from a heterogeneous populations, where

the BFR function is a result of a mixture of sub-populations of “weak” and “strong” sys-

tems; see Section 3.2.4. Instead, we consider systems that have a period of improvement

following manufacture. During this warm-up or burn-in phase, the performance of the sys-

tem improves. For instance, in a mechanical system, rough edges are smoothed, operating
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temperature increases, lubricant circulates and systems perform increasingly smoothly.

The BFR function is characterized by three lifetime phases: (i) a decreasing failure rate

(DFR) phase or wear-in period (also, warm-up or burn-in period); (ii) a constant failure rate

(CFR) phase or useful life period; and (iii) an increasing failure rate (IFR) phase or wear-out

period. Let r(.) denote a BFR failure rate function. Then, at time t ≥ 0,

r(t) =





r1(t) : r
′
1(t) < 0 , 0 ≤ t ≤ a1

r2(t) : r′2(t) = 0 , a1 ≤ t ≤ a2

r3(t) : r′3(t) > 0 , t ≥ a2 ,

(4.1)

where a1 and a2 denote the change-points, and r2(t) = r1(a1) = r3(a2), for all t ∈ [a1, a2]

[21]; see Figure 4.1.

During the initial, DFR phase, system failures are attributed to minor, undiscovered pro-

duction defects whose effect on the working condition of the system diminishes over time.

During the CFR phase, system failures are assumed to be random, due mostly to accidents

(such as shocks, misuse, etc.) and not due to wear. During the IFR phase, system failures are

due to accumulation of wear or damage and other negative effects of aging [43]; see Section

3.2.4.

Throughout this study, to illustrate concepts andmodels, and in the numerical examples,

we use the following BFR function from Dijoux [39]:

r(t) =





λ + α1 β1 (a1 − t)β1−1 , t ≤ a1

λ , a1 ≤ t ≤ a2

λ + α2 β2 (t− a2)β2−1 , t ≥ a2 ,

(4.2)

where λ > 0, α1, α2 > 0, β1, β2 > 1, and a2 > a1, for a1, a2 > 0 [39]; see Figure 4.1. The

derivative of this function is given by

r′(t) =





−α1 β1 (β1 − 1) (a1 − t)β1−2 , t ≤ a1

0 , a1 ≤ t ≤ a2

α2 β2 (β2 − 1) (t− a2)β2−2 , t ≥ a2 .

(4.3)
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Figure 4.1: An example of the BFR function r(.) and its derivative r′(.), with parameters λ = 1,
α1 = α2 = 0.15 , β1 = β2 = 3.45, a1 = 8, and a2 = 22, plotted over the interval [0, 35].

4.2 General Repairs

General repairs restore a system from a failed state to an operational state and are also as-

sumed to affect the physical working condition of the repaired system. Based on their ef-

fectiveness, general repairs can be classified as one of the following three types: minimal,

perfect and imperfect repairs, where minimal repairs are least effective, perfect repairs are

most effective and imperfect repairs have effectiveness between the two. The effectiveness

of a repair is represented by its degree, which is a variable in the range [0, 1]. The two ex-

tremes 0 and 1 correspond to minimal repair and perfect repair, respectively, and any repair

with a degree between the two (i.e. in the range (0, 1)) corresponds to an imperfect repair.

Thus, a general repair with a higher degree is more effective than one with a lower degree;

see Section 3.2.

Throughout this text, we use the term non-minimal repair to refer to general repairs with

degrees in the range (0, 1], i.e. imperfect and perfect repairs.

4.2.1 System Condition Following General Repairs

A univariate lifetime distribution F can be characterized in terms of the following proba-

bilistic properties of the residual lifetime: (i) the failure rate function r(.); (ii) the conditional

reliability function F̄t(.); and (iii) the mean residual lifetime (MRL) function µ(.).

Let Xt = [X − t|X > t] denote the residual lifetime of a system of age t ≥ 0. Then, the
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relationships between the three functions are presented in the following equations:

F̄t(t+ x) = P{Xt > x} =
F̄(t+ x)

F̄(t)
= e

−
t+x∫
t

r(u) du
, (4.4)

µ(t) = E[Xt] =

∞∫

0

F̄t(t+ x) dx =

∞∫

t

F̄t(u) du , (4.5)

and

r(t) dt ≈ P{Xt ≤ dt} = 1− F̄t(t+ dt) , (4.6)

where F̄(.) denotes the reliability function of the original lifetime X; see Section 3.1.2. These

metrics describe the aging properties of the system and are assumed to be a reflection of the

physical working condition of the system.

We define the behavior of the system following a general repair in terms of the failure

rate of the succeeding residual lifetime. Therefore, we need a more rigorous definition of

the types of general repair based on this failure rate.

Let Tn and δn, for n ∈ N+, denote the n-th failure time and the degree of the correspond-

ing general repair, respectively. Note that, the failure times are ordered: 0< T1 < T2< . . .<

Tn< . . . . Then, we define the conditional residual lifetime of the system at time t, given that

n failures have occurred before t, as follows:

X
(δ1,...,δn)
t;ht;n

d
= [Tn+1 − t | Tn+1 > t,N(t) = n, T1 = t1, . . . , Tn = tn; δ1, . . . , δn] , (4.7)

defined for t > tn, where Ht = ht;n denotes the relevant history at time t, which in this case

is the event {N(t) = n, T1 = t1, . . . , Tn = tn}, along with the degrees δ1, . . . , δn. When t = t+n ,

then this residual lifetime is equal in distribution to the (n+ 1)-th conditional inter-failure

lifetime, i.e. for n ∈ N+, and Xn+1 = Tn+1 − Tn,

X
(δ1,...,δn)

t+n ;ht+n ;n

d
= [Xn+1 | N(t+n ) = n, T1 = t1, . . . , Tn = tn; δ1, . . . , δn] . (4.8)

Since a minimal repair has no effect on the working condition of the repaired system,

when all n repairs before t are minimal, then the conditional residual lifetime in (4.7) is

equal in distribution to the residual lifetime of the original system. That is, when δi = 0, for

all i ∈ {1, . . . , n}, then

X
(0,...,0)
t;ht;n

d
= [X1 − t | X1 > t] = Xt , (4.9)
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where X1 = T1 is the original lifetime (or the time to first failure) of the system and Xt is the

corresponding residual lifetime at time t.

From the definitions of the types of general repair, we know that, following a repair

(i) the working condition of the system is no worse than a system that has not failed (or

equivalently, a minimally-repaired system); and

(ii) the working condition of the system improves as the degree of the repair increases,

with a perfect repair resulting in the most improvement.

Since we use the failure rate function as a measure of the working condition of the system,

we require the following ordering to hold:

X
(δ1,...,δi=0,...,δn)
t;ht;n

≤FR X
(δ1,...,δi=δ,...,δn)
t;ht;n

≤FR X
(δ1,...,δi=δ′,...,δn)
t;ht;n

≤FR X
(δ1,...,δi=1,...,δn)
t;ht;n

,

(4.10)

for any i ∈ {1, . . . , n}, n ∈ N+, and all δ ≤ δ′, where δ, δ′ ∈ (0, 1) denote the degrees of

imperfect repairs. The term ‘FR’ specifies that the partial ordering of the distributions is

based on failure (or hazard) rate; we use the terminology introduced in Lai & Xie [18]. The

ordering in (4.10) implies that, given the number n and times t1, . . . , tn of failures before time

t, the residual lifetime at t > tn is stochastically ordered (based on failure rate ordering) by

the value of any of the n degrees δ1, . . . , δn, given that the other n− 1 degrees are fixed.

Let rt;ht;n(x|δ1, . . . , δn) denote the failure rate function, at time t + x, of the (n + 1)-th

conditional residual lifetime defined in (4.7). This function is defined for t > tn and x ≥ 0.

The ordering in (4.10) is equivalent to the failure rate function rt;ht;n(x|δ1, . . . , δi = δ, . . . , δn)

being decreasing in δi = δ ∈ [0, 1], for any i ∈ {1, . . . , n}, and each t > tn and all x ≥ 0,

when all other parameters are fixed. That is, given the history ht;n of the failure process,

rt;ht;n(x|δ1, . . . , δi = 0, . . . , δn) ≥ rt;ht;n(x|δ1, . . . , δi = δ, . . . , δn)

≥ rt;ht;n(x|δ1, . . . , δi = δ′, . . . , δn) ≥ rt;ht;n(x|δ1, . . . , δi = 1, . . . , δn) ,
(4.11)

for any i ∈ {1, . . . , n}, n ∈ N+, and for each t > tn and all x ≥ 0. Therefore, the failure rate

following an imperfect repair is bounded between those following a minimal repair and a

perfect repair.

The failure rate has a probabilistic interpretation which makes it a reasonable measure

to use when defining the effect of repairs. In general, r(t)dt is the probability of a system

failing for the first time in an interval of length dt immediately following its current age t.
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Then, rt;ht;n(x|δ1, . . . , δn) dx can be interpreted as the probability that the (n+ 1)-th failure of

the system is in the interval (t+ x, t+ x+ dx], given that its n-th failure was before time t,

and given all n previous failure times and the corresponding repair degrees. In terms of the

corresponding conditional reliability function, the failure rate satisfies

rt;ht;n(x|δ1, . . . , δn) dx ≈ P{Tn+1≤ t+ x+ dx | Tn+1> t+ x, T1 = t1, . . . , Tn = tn; δ1, . . . , δn}

= 1− P{Tn+1> t+ x+ dx | Tn+1> t+ x, T1 = t1, . . . , Tn = tn; δ1, . . . , δn} ,

(4.12)

defined for all t > tn [cf. (4.6)]. Therefore, since the failure rate is decreasing in any of the n

degrees of repair, the conditional reliability function is increasing in that degree. That is, a

general repair of a higher degree at any of the n failure times results in greater improvement

in system reliability when compared to a repair of a lower degree at that same time (when

all other parameters are fixed). When t = t+n , then the failure rate function in (4.12) becomes

the failure rate function of the (n+ 1)-th conditional inter-failure lifetime at t+ x, and when

all repairs are minimal, it reduces to the failure rate function of the original lifetime.

Note that, if (4.10) holds, then this order of residual lives also holds when the partial

ordering is based on conditional reliability and mean residual life; see Lai & Xie [18] for

more on partial orderings.

4.2.2 Replacement vs. Perfect Repair

Often perfect repair is defined as one that leaves the working condition of the system in

an “as-good-as-new” state, which implies that it is equivalent to a replacement. Defining

perfect repair such that it coincides, in effectiveness, with a replacement is consistent with

the definition that perfect repair is the most effective general repair, only when:

(i) the repair model is defined such that all damage accumulated since the start of the

system lifetime can be undone; and

(ii) the lifetime distribution is IFR (i.e. the system deteriorates over time).

Example 1. To illustrate point (i), consider the virtual age models introduced by Kijima

[27]; see Section 3.2.3. The first virtual age model is defined such that a general repair can at

most undo damage accumulated since the previous repair. Then, the definition of the repair

model allows a perfect repair to coincide with a replacement as long as all previous repairs

are perfect. Any perfect repair performed after the first general repair that is not perfect
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does not coincide with a replacement. The second virtual age model is defined such that

a repair can undo all damage accumulated since the start of the system lifetime. Then, a

perfect repair always coincides with a replacement. Presented in Figure 4.2 are examples of

the two virtual age functions

Model I: V(t) = t−
N(t−)

∑
i=1

δi
[
V(Ti)−V(T+

i−1)
]
;

Model II: V(t) = t−
N(t−)

∑
i=1

δi V(Ti) ,

(4.13)

where V(t) is the virtual age at time t, N(t) is the number of failures in (0, t], and V(T+
i ) is

the virtual age immediately following the i-th repair, for i ∈ N+.

tt1 t2 t3

t
v(t)

tt1 t2 t3

t
v(t)

Figure 4.2: Example virtual age functions, denoted by v(t), where a repair can undo damage accu-
mulated since: (i) the previous repair (left) and (ii) the start of the system lifetime (right).
In both plots, δ1 = 0.3, δ2 = 0.8 and δ3 = 1.

In Figure 4.2, notice that the effect of the perfect repair at time t3 in both models is not the

same: for Model I (left plot), the perfect repair at t3 does not return the system to an as-good-

as-new state, whereas for Model II (right plot), the perfect repair at t3 returns the system to

an as-good-as-new state. That is, the virtual ages immediately following the repairs are

non-decreasing in Model I, whereas they are unrestricted in Model II. Yet, in each model,

a perfect repair is the most effective according to the definition of the corresponding repair

model given in (4.13). �

A system with an IFR function has a decreasing conditional reliability function and a

decreasing mean residual life (MRL) function; see Section 3.1.2. This depicts a system that

is deteriorating with time. Therefore, a repair that restores the working condition of the

system to an as-good-as-new state is the most effective repair, since the system at the start of

its lifetime is assumed to be in its best working condition. For a systemwith an IFR lifetime

distribution, the ordering in (4.10) holds when perfect repair is defined as a replacement.
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For a system with a BFR lifetime distribution, however, both the MRL function and the

conditional reliability function are non-monotonic (initially increasing, and then decreas-

ing); see Section 3.1.2. It has been shown that the point that maximizes the MRL for a BFR

lifetime distribution is before the first change-point a1 of the failure rate function and not

necessarily at 0; see Mi [21]. When the system has a BFR lifetime distribution, the ordering

in (4.10) does not always hold when perfect repair is defined as a replacement. That is, an as-

good-as-new repair is not necessarily the most effective repair, since the working condition

of the system is initially improving with time.

Example 2. To illustrate point (ii) on page 60, consider two systems: one with an IFR life-

time distribution and the other with a BFR distribution. Following the first failure at time

T1 = t1, each system is replaced with a new and identical system. Figure 4.3 depicts the

failure rate function of the original lifetime and the failure rate function of the second inter-

failure lifetime conditional on T1 = t1, for the two systems.

λ0(t)
λ~(t|ht)

t t1

λ0(t)
λ~(t|ht)

tt1

Figure 4.3: Conditional intensity function following a replacement at time T1 = t1: IFR distribution
(left); and BFR distribution (right).

In Figure 4.3, notice that for the IFR case (left plot), for all t > t1, the conditional intensity

function following the repair is less than the original failure rate function. This is not the case

for the BFR lifetime. This implies that following a replacement the system is not necessarily

in a better condition than a system that has not failed (or equivalently, has been minimally

repaired). In this case, perfect repair is not synonymous with as-good-as-new repair (or

replacement). �

When dealing with lifetime distributions that are not IFR, we need to: (i) distinguish

between as-good-as-new repair (or replacement) and perfect repair; and (ii) identify the

most effective repair within the definition and constraints of the repair model, which will
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then be labeled perfect repair.

Here, we do not consider repairs that can worsen the system. Therefore, the working

condition of the system following a repair either remains unchanged (following minimal

repairs) or improves (following non-minimal repairs).

4.3 The General Repair Model

We model the effect of a general repair as a change in the conditional intensity function of

the corresponding failure process, such that the system following the repair is at least as

reliable as a system that has not failed. Although the proposedmodel is not a typical virtual

age model, when the decreasing failure rate phase is removed, it reduces to the traditional

virtual age models proposed by Kijima [27]; see Section 3.2.3.

Let {N(t); t ∈ R+} denote the counting process associated with the failure process. Let

λ̃(t|Ht) denote the conditional intensity (or failure intensity) of the process at time t, condi-

tional on its history at this time. The history Ht contains all information available at time t,

including the process trajectory up to this point [14]. Then, when the process is orderly, the

conditional intensity function at time t is such that [cf. (3.7)]

λ̃(t|Ht) dt ≈ P{N(t+ dt)− N(t) = 1 | Ht} . (4.14)

The initial or baseline intensity function of the failure process, which we denote by λ0(.),

is a deterministic function and equal to the failure rate function of the lifetime of the original

system; see Section 3.1.1. Therefore, before the first failure, λ̃(t|Ht) = λ0(t) = r(t), where

r(.) is the failure rate function of the original lifetime, and

r(t) dt ≈ P{N(t+ dt)− N(t) = 1 | N(t) = 0} . (4.15)

Note that, here, the original lifetime distribution is BFR, i.e. the failure rate function r(.)

is bathtub-shaped and of the form defined in (4.1).

4.3.1 Model Description

We assume that a general, non-minimal repair, along with restoring the failed system to an

operational state, improves the working condition of the system. This will be reflected in

the reliability of the system following the repair.
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The conditional intensity function of the failure process completely determines the con-

ditional reliability of the system. Let F̄t(t + x|Ht) denote the conditional reliability of the

system at time t+ x, given that the system is operational at time t and conditional on the

process history at t. In terms of the conditional intensity function, this conditional reliability

function can be expressed as follows:

F̄t(t+ x|Ht) = P{N(t+ x)− N(t) = 0 | Ht} = e
−

t+x∫
t

λ̃(s|Hs) ds
, (4.16)

where Hs = Ht ∪ {N(t + s)− N(t) = 0}, for s > t. Therefore, we incorporate the effect of

general repairs in the conditional intensity function of the failure process. Given (4.16), it is

clear that this conditional reliability increases when the conditional intensity decreases.

For the general repair model, we make the following modeling assumptions:

(a) repairs are immediate and instantaneous (i.e. repair times are equal to zero);

(b) the system after a general repair can perform no worse than a minimally-repaired sys-

tem; and

(c) the system can perform no better than it does during its useful life period.

We model the assumptions in (b) and (c) through the following bounds on the conditional

intensity function. For all t ≥ 0, and given the baseline intensity function λ0(.),

min
t′∈R+

λ0(t
′) ≤ λ̃(t|Ht) ≤ λ0(t) . (4.17)

We propose the following approach to model the effect of a general repair on the distri-

bution of future failures of the system.

DFR phase: Early system failures are governed by initial defectswhose impact on thework-

ing condition of the system reduces over time. Then a general repair following such

failures removes some of the initial defects detected upon system failure, which results

in improved system reliability. Therefore, in the DFR phase (i.e. when the conditional

intensity function is decreasing), we model the effect of a general repair as a reduction

in the conditional intensity along with an extension of the useful life period; see Figure

4.4 (left).

Both the drop in the conditional intensity and the extension of the useful life period

following the general repair are proportional to the degree of the repair. Therefore, fol-
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t1 τa1 a1 a2t

λ0(t)
λ~(t|ht)

t1 = τa1
a1 a2t

λ0(t)
λ~(t|ht)

Figure 4.4: Example conditional intensity functions of a system whose failure at time t1 is followed
by a general repair: imperfect repair of degree δ1 = 0.3 (left), and perfect repair (right).
Notice that, following the general repair, the useful life period is extended from [a1, a2] to
[τa1 , a2], where the length a1 − τa1 of extension is proportional to the degree of the repair.

lowing a perfect repair, which is the most effective repair, the reduction and extension

are both maximal, resulting in a useful life period that begins at the point of perfect

repair; see Figure 4.4 (right). The conditional intensity does not change following a

minimal repair.

CFR/IFR phase: Failures outside the DFR phase are governed by wear or damage accumu-

lation, whose effect may be slight for a period of time (the useful life period), but accel-

erates system deterioration in time (the wear-out period). A general repair following

such failures removes some of the accumulated wear, which improves the working

condition of the system. Therefore, when the conditional intensity function is non-

decreasing, we model the effect of a general repair such that the system behaves like a

younger system with an extended useful life period, where a perfect repair returns the

conditional intensity to the start of the extended useful life period. The length of the

extended CFR phase is determined following the repairs performed in the DFR phase;

see Figure 4.5.

The failures in the useful life period of the system are assumed to be chance and less

due to the aging of the system. A general repair in this phase can be viewed as a form

of maintenance that removes some of the accumulated damage and thus delays the

wear-out period. We defined general repairs as repairs that can improve the working

condition of the system, thus improving its reliability, which may decrease the number

of future failures. Although following a general repair in the CFR phase does not
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λ0(t)
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a2 − τa1
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Figure 4.5: Example conditional intensity functions of a system whose failures are followed by gen-
eral repairs. The repair at t1 in both plots is imperfect with degree δ1 = 0.2. The repair at
t2 is: imperfect with degree δ2 = 0.3 (left), and perfect (right). Notice that, following the
perfect repair at t2, the conditional intensity is returned to the start of the extended useful
life period which has length a2 − τa1 , where τa1 is a function of the first repair at t1 and its
degree δ1.

change the conditional intensity immediately after the repair, it does push back the

IFR phase, which results in an improvement in system reliability.

To simplify the modeling approach, we unify the components of the repair model cor-

responding to the decreasing and non-decreasing phases, and implement the general repair

model as follows.

4.3.2 Model Implementation

To implement the general repair model, we define two functions: an age modification function,

denoted by A(.), and a modified baseline intensity function, denoted by λ1(.). Before the first

failure, A(t) = t and λ1(t) = λ0(t), for all t ≥ 0, where λ0(t) = r(t) is a BFR function with

change-points 0 < a1 < a2; see (4.1). Then, the effect of a general repair is implemented as

changes in these functions.

The conditional intensity function of the failure process is comprised of the two func-

tions, such that, at any time t ≥ 0,

λ̃(t|Ht) = λ1(A(t)) . (4.18)

We now proceed to formally define the age modification and modified baseline intensity

functions and illustrate the effect of changes in the two functions on the behavior of the
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conditional intensity.

4.3.2.1 The Age Modification Function

The age modification function, at any time t, for t ≥ 0, is defined as follows:

A(t) = t+
N(t−)

∑
i=1

δi [a1 − A(Ti)] IA(Ti)<a1 −
N(t−)

∑
j=1

δj [A(Tj)− a1] IA(Tj)≥a1 , (4.19)

where N(t−) denotes the number of failures before time t ≥ 0, I. denotes an indicator ran-

dom variableI, and A(Ti) denotes the modified age at the time of the i-th failure. The mod-

ified age at any point is stochastic, since it depends on earlier failure times and also the

degrees, if random, of repairs performed following the failures. Here, we assume that the

degrees of repair are given.

Let Ta1 and τa1 denote, respectively, the point at which the modified age reaches a1 and

its realization. That is,

Ta1 = min{t : A(t) ≥ a1}

= a1 −
N(a−1 )

∑
i=1

δi [a1 − A(Ti)] IA(Ti)<a1 .
(4.20)

Ta1 is the point at which the conditional intensity function first reaches its minimum; we will

discuss this further in Section 4.3.2.3.

For n ∈ N+, the effect of the n-th general repair performed at time Tn is implemented in

the age modification function as follows:

• When the modified age A(Tn) is less than a1, then the effect of the corresponding

general repair is an increase in the modified age. A minimal repair does not change

the modified age; a perfect repair increases the modified age to a1; and an imperfect

repair increases the modified age by a fraction δn of the distance [a1 − A(Tn)].

• When the modified age A(Tn) is at least a1 (i.e. when the time Tn of the failure is

greater than or equal to Ta1), then the effect of the corresponding general repair is a

decrease in the modified age. A minimal repair does not change the modified age; a

IAn indicator random variable of any event B is defined as follows:

IB =

{
1 , if B occurs
0 , if B does not occur .
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perfect repair decreases the modified age to a1; and an imperfect repair decreases the

modified age by a fraction δn of the distance [A(Tn)− a1]; see Figure 4.6.

τa1t1 t2a1 a2t

a(t)

= τa1t1 t2a1 a2t

a(t)

Figure 4.6: Examples of the age modification function, where the two failures at times t1 and t2 are
rectified by: imperfect repair (δ1 = 0.5, δ2 = 0.5) (left); and perfect repair (right).

Although, the age modification function can be expressedwith a single summation term

as follows:

A(t) = t−
N(t−)

∑
i=1

δi [A(Tj)− a1] , (4.21)

we have expressed it in a form closest to its description. It is easy to see that, when a1 = 0

(i.e. when the system does not have a burn-in phase), (4.21) reduces to an age reduction

function; see Section 3.2.3.

In a typical age reduction model, the conditional intensity at any time t is given by

λ0(A(t)), where λ0(.) is the original baseline intensity function. Here, however, this re-

sults in reaching the useful life period faster (i.e. aging the system), which is not the effect

proposed by the general repair model. Therefore, we define a new baseline intensity func-

tion.

4.3.2.2 The Modified Baseline Intensity Function

Themodified baseline intensity function λ1(.) is the original baseline intensity function λ0(.)

modified to have a delayed IFR phase (i.e. an extended CFR phase). Therefore, the first

change-point of λ1(.) is a1, and we denote its second change-point by A′
2, where A′

2 ≥ a2

(note that, A′
2 is a random variable). Then, the modified baseline intensity function λ1(.) is
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formally defined as follows:

λ1(s) =





r1(s) , 0 ≤ s ≤ a1

r2(s) , a1 ≤ s ≤ A′
2

r3(s− (A′
2 − a2)) , s ≥ A′

2 ,

(4.22)

where the functions ri(.), i ∈ {1, 2, 3}, are the same functions used to define the original

baseline intensity (or failure rate) function given in (4.1). For all s ∈ [a1, A
′
2], we have

r2(s) = r1(a1) = r3(A
′
2) . (4.23)

The CFR phase [a1, A
′
2] of the function λ1(.) is of a stochastic nature, and its length de-

pends on the random variable A′
2, which is defined as follows:

A′
2 = a2 +

N(a−1 )

∑
i=1

δi [a1 − A(Ti)] IA(Ti)<a1

= a2 + (a1 − Ta1) > a2 .

(4.24)

This change-point is the original change-point a2 shifted by the total increase in themodified

age resulting from repairs performed during the DFR phase, i.e. repairs performed while

the modified age is less than a1; see Figure 4.7.

a1 a2 a2
,

t a1 − τa1

λ0(t)
λ1(t)

a1 a2 a2
,

t a1 − τa1

λ0(t)
λ1(t)

Figure 4.7: Illustration of the modified baseline intensity functions corresponding to the plots in Fig-
ure 4.6. The value of the change-point A′

2 depends only on the time of the failure in the
DFR phase and the degree of the corresponding repair. That is, a′2 = a2 + a1 − τa1 , where
τa1 is a function of t1 and δ1.

For n ∈ N+, the effect of the n-th general repair at time Tn is implemented in the modi-

fied baseline intensity function as follows:
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• When the modified age A(Tn) at the time of failure is less than a1, then the effect of

the corresponding general repair is an additional delay of length δn [a1 − A(Tn)] in the

IFR phase of the baseline intensity function.

• When the modified age A(Tn) is at least a1 (i.e. when the time Tn of the failure is

at least Ta1 ), then the corresponding general repair does not affect the baseline inten-

sity function. In other words, the value of the new change-point A′
2 is unaffected by

general repairs performed after Ta1 ; see Figure 4.7.

When all repairs in (0, a1] are minimal (or no failure occurs in this period), then A′
2 = a2

and λ1 = λ0, otherwise A′
2 > a2 and λ1(t) = λ0(t), for all t ≤ a2, and λ1(t) < λ0(t), for all

t > a2; see Figure 4.7.

The changes made in the age modification and modified baseline intensity functions

following repairs result in the proposed effects described in Section 4.3.1, and observed in

the conditional intensity functions plotted in Figures 4.4 and 4.5.

4.3.2.3 The Conditional Intensity Function

As mentioned earlier, for the proposed repair model, the conditional intensity function of

the process at time t ≥ 0 is given by λ̃(t|Ht) = λ1(A(t)).

When all repairs are minimal, A(t) = t and λ1 = λ0, and therefore, the conditional

intensity function reduces to

λ̃(t|Ht) = λ0(t) , (4.25)

which is the conditional intensity function of a Poisson (or minimal repair) process with

intensity λ0(.).

When all repairs are perfect, the failure process is not equivalent to a replacement (re-

newal) process; see Section 4.2.1. The conditional intensity function of the replacement pro-

cess is given by λ̃(t|Ht) = λ0(t− TN(t−)); see Section 3.2.1. When a1 = 0, then the proposed

model reduces to an age reduction model, where the perfect repair process is equivalent to

the replacement process.

The proposed approach should not be confused with typical virtual age models. Here,

the original baseline intensity function is altered following repairs performed in the DFR

phase. In virtual age models, however, the baseline intensity function remains unchanged

and the effects of repairs are described as changes in the virtual age of the system alone.

Therefore, for a given virtual age function V(.) and baseline intensity function λ0(.), the
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conditional intensity function of a virtual age model, at time t ≥ 0, is given by λ̃(t|Ht) =

λ0(V(t)).

Example 3. Suppose that the first three failures of the system, at times t1, t2 and t3, are

followed by general repair. To illustrate the proposed model, we select the failure times

such that one general repair is performed in each of the three phases. In Figure 4.8, we

have plotted the conditional intensity function, and the corresponding age modification and

modified baseline intensity functions for the following three cases: (top row) the repair at t1

is minimal (δ1 = 0); (middle row) the repair at t1 is imperfect (δ1 = 0.3); and (bottom row)

the repair at t1 is perfect (δ1 = 1). The failure times t1, t2 and t3, and the other degrees δ2 and

δ3 are fixed, and only δ1 varies (row-wise). Note that, a(.) and a′2 denote the realizations of

the age modification function A(.) and the change-point A′
2, respectively.

t1 t2 t3a2
, =a2τa1

=a1 t

a(t)

a1 a2a2
, =t

λ0(t)
λ1(t)

t1 t2 t3τa1
=a1 a2t

λ0(t)
λ~(t|ht)

t1 t2 t3a1 a2τa1 a2
,

a(t)

a1 a2 a2
,

t

λ0(t)
λ1(t)

t1 t2 t3a1 a2τa1 t

λ0(t)
λ~(t|ht)

t1 t2 t3a1 a2τa1
= a2

,

a(t)

a1 a2 a2
,

t

λ0(t)
λ1(t)

t1 t2 t3a1 a2τa1
= t

λ0(t)
λ~(t|ht)

Figure 4.8: Example conditional intensity functions (right column), with corresponding age modifi-
cation functions (left column) andmodified baseline intensity functions (middle column).
General repairs are performed at t1, t2 and t3 with fixed degrees δ2 = 0.4 and δ3 = 0.2,
and varying degree δ1: δ1 = 0 (top row); δ1 = 0.5 (middle row); and δ1 = 1 (bottom row).

In Figure 4.8 (right column), at no point the sample conditional intensity is greater than
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the original baseline intensity (or failure rate of the original lifetime); i.e. in all three cases,

λ̃(t|ht) = λ1(a(t)) ≤ λ0(t) . (4.26)

This implies that, the system following a general repair at any point is at least as reliable as

a minimally-repaired system (or one that has not failed). Let ht,0, ht,δ and ht,1 denote the re-

alizations of the histories for the three cases (rows), respectively. Looking at the conditional

intensity functions in the three rows, it is evident that the ordering in expression (4.11) holds,

since

λ̃(t|ht,0) ≥ λ̃(t|ht,δ) ≥ λ̃(t|ht,1) , ∀ t . (4.27)

That is, for each t ≥ 0, the conditional intensity is a decreasing function of the degree δ1 of

the first repair, given that all other function parameters are fixed.

As mentioned earlier, Ta1 is the point at which the modified age reaches a1. This point is

also the time at which the DFR phase is exited, i.e.

Ta1 = min{t : λ̃(t|Ht) = λ0(a1)} . (4.28)

This is visible in the age modification functions in the left column of Figure 4.8 and the

corresponding conditional intensity functions in the right column.

In Figure 4.8 (middle column), notice that, when the repair at t1 is minimal (top row),

then the two baseline intensity functions λ1(.) and λ0(.) are equal. When the repair at t1 is

non-minimal (middle and bottom rows), the only change in λ1(.) when compared to λ0(.)

is the delayed start of the IFR phase. Before a2, the two functions coincide. Also, the length

of the extension in the CFR phase of λ1(.) is |a
′
2 − a2| = a1 − τa1 = δ1 (a1 − t1), which is

proportional to the degree δ1, since t1 is fixed for all plots. �

4.3.3 Model Properties

The reliability function conditional on the history of the failure process, is given in (4.16).

The corresponding MRL function at time t is given by

µ(t|Ht) =

∞∫

0

F̄t(t+ x|Ht) dx =

∞∫

0

e
−

t+x∫
t

λ̃(s|Hs) ds
dx , (4.29)

where Hs = Ht ∪ {N(t+ s)− N(t) = 0}, for s > t; see (4.16) for the reliability function.
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When n failures have occurred prior to t, then the above functions reduce to the relia-

bility and MRL functions corresponding to the (n+ 1)-th residual lifetime defined in (4.7),

i.e.

F̄t(t+ x|ht;n) = P{Tn+1 > t+ x | Tn+1 > t,N(t) = n, T1 = t1, . . . , Tn = tn; δ1, . . . , δn} ;

(4.30)

µ(t|ht;n) = E[Tn+1 − t | Tn+1 > t,N(t) = n, T1 = t1, . . . , Tn = tn; δ1, . . . , δn] , (4.31)

for n ∈ N+ and t > tn. Note that, the relevant information in the history of the process is the

number and the times of the failures before time t, and also, the degrees of the corresponding

general repairs.

The conditional reliability andMRL functions are both increasing in each degree of repair

when all other parameters are fixed, since, for each t > tn, the conditional intensity function

is decreasing in each δi, i ∈ {1, . . . , n}, when all other parameters are fixed (as illustrated

in Example 3 on page 71). This implies that, the order of residual lifetimes in (4.10) holds,

when the partial ordering is in terms of conditional reliability (’ST’) or mean residual (’MR’)

lifetime; see Section 4.2.1.
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Figure 4.9: Example conditional reliability and MRL functions, given in (4.30) and (4.31), where the
failure of the system is at time t1 and followed by a general repair of degree δ1. The
conditional functions are plotted for t > t1.
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Example 4. To illustrate the effect of repairs on the conditional reliability and MRL func-

tions, suppose that one failure has occurred in the interval [0, 20] and it is followed by a

general repair. In Figure 4.9, the conditional reliability function F̄t(t+ x|ht) given in (4.30)

and the MRL function µ(t|ht) given in (4.31) are plotted for various values of the degree δ1,

for t > t1 and x = 0.2. The conditional reliability and MRL functions of the original lifetime

(which is equivalent to the case where the repair is minimal) are plotted over [0, 20] (black

dashed line). In the top row, t1 = 1 is in the DFR phase, and in the bottom row, t1 = 8 is

outside the DFR phase. The chosen change-points are a1 = 6 and a2 = 10.

In Figure 4.9, notice that both the conditional reliability function and the MRL function

are increasing in the degree δ1 of the general repair at t1. When t1 < a1 (top row), the

improvement is in the DFR phase, and when t1 > a1 (bottom row), the improvement is in

the CFR and IFR phases. �
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Figure 4.10: Example conditional reliability and MRL functions, given in (4.30) and (4.31), where the
failures of the system, at times t1 and t2, are followed by general repair. The conditional
functions are plotted for t > t2.

Example 5. Now suppose that two failures have occurred in the interval [0, 20], one in the

DFR phase, at time t1 = 1, and the other outside the DFR phase, at time t2 = 8. In Figure

4.10, the conditional reliability and the MRL functions are plotted for various values of the

degrees δ1 and δ2, for t > t2 and x = 0.2. These functions, for the original lifetime (which is
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equivalent to the case where both repairs are minimal), are plotted over [0, 20] (black dashed

line). In the top row, δ2 is fixed, and δ1 varies, and in the bottom row, δ1 is fixed, and δ2 varies.

In Figure 4.10, notice that the conditional reliability functions and the MRL functions are

increasing in each of the degrees of repair, when the other is held fixed. In each plot, the

lowest curve corresponds to the case where both repairs are minimal (i.e. δ1 = δ2 = 0). �

4.3.3.1 A Note on the Age Modification Function

With the age modification function proposed in Section 4.3.2, there is no restriction on the

amount of wear that can be removed following a general repair outside the DFR phase.

Other age modification functions can be defined restricting the amount of damage that can

be undone.

Suppose that, in the non-decreasing phases, a repair can at most remove damage accu-

mulated since the last repair. Then, an appropriate age modification function can be defined

as follows:

A(t) = t+
N(t−)

∑
i=1

δi [a1 − A(Ti)] IA(Ti)<a1 −
N(t−)

∑
i=1

δi [A(Ti)−max(a1, A(T
+
i−1))] IA(Ti)≥a1 ,

(4.32)

where A(T+
i ) is the modified age immediately after the i-th repair. Note that, the difference

between the two models is only in the effect of repairs performed outside the DFR phase of

the conditional intensity function [cf. (4.19)]. The following example illustrates the differ-

ence between the two models.

Example 6. Suppose that two failures have occurred while the conditional intensity func-

tion is still decreasing and two have occurred while it is non-decreasing. The two age modi-

fication functions and the corresponding modified baseline intensity and conditional inten-

sity functions are plotted in Figure 4.11. The values of the failure times and the degrees of

the corresponding general repairs are the same in both rows.

In Figure 4.11, notice that, for all t > t4, the conditional intensity corresponding to the

second agemodification function (bottom row, right) is greater than that of the first agemod-

ification function (top row, right). This is because the amount of wear that can be removed

is restricted in the second repair model. Also, the modified baseline intensity functions for

both models are the same, since the difference in the models is only in the effect of repairs

performed outside the DFR phase of the conditional intensity function (which do not influ-

ence the second change-point of the modified baseline intensity function). �
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Figure 4.11: An illustration of the difference between the age modification function defined in (4.19)
(top row, left) and the agemodification function defined in (4.32) (bottom row, left). Cor-
responding modified baseline intensity and conditional intensity functions are plotted
in the middle and right columns, respectively.

4.4 The Failure (or General Repair) Process

The proposed failure process is the sequence of consecutive system failures, where each

failure is followed by a general repair and the effect of the general repair is modeled as

proposed in Section 4.3. Since we assume that each failure is followed immediately by an

instantaneous general repair, the number of failures is equal to the number of general re-

pairs. Therefore, the associated counting process {N(t); t ∈ R+} is the sequence of the

numbers of general repairs in each interval (0, t], for t ≥ 0.

The distribution of the count N(t), t ≥ 0, can be derived using the distributions of the

failure times through the following equation:

P{N(t) = n} = P{Tn ≤ t} − P{Tn+1 ≤ t} . (4.33)

The expected number of failures in the interval (0, t], can also be derived from the distribu-

tions of the failure times, using the relationship

E[N(t)] =
∞

∑
n=1

P{Tn ≤ t} ; (4.34)
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see Section 3.1.1.

In the following sections, we derive the distribution and reliability functions of the fail-

ure times and the inter-failure lifetimes of the proposed general repair process.

4.4.1 Distribution of Failure Times

Let Fn(.), F̄n(.) and fn(.) denote, respectively, the cumulative distribution, reliability and

density functions of the n-th failure time Tn, for n ∈ N+. For the original lifetime T1 (= X1),

these functions are defined as follows:

F1(t) = P{T1 ≤ t} = 1− P{N(t) = 0} = 1− e
−

t∫
0

λ0(s) ds
; (4.35)

F̄1(t) = P{T1 > t} = P{N(t) = 0} = e
−

t∫
0

λ0(s) ds
; (4.36)

f1(t) =
d

dt
F1(t) = −

d

dt
F̄1(t) = λ0(t) e

−
t∫
0

λ0(s) ds
. (4.37)

Let an(t) denote the realization of the age modification function at time t, given that n

failures have occurred prior to time t, for n ∈ N+. The subscript n is used to emphasize the

dependence of this function on the n previous failure times {t1, . . . , tn} and the correspond-

ing degrees of repair {δ1, . . . , δn}. Before the first failure of the system, a(t) = a0(t) = t.

Let, for n ∈ N+, F̄n+1(. |t1, . . . , tn) denote the conditional reliability function of the failure

time Tn+1, given the n previous failure times. Then, for t > tn,

F̄n+1(t|t1, . . . , tn) = P{Tn+1 > t | T1 = t1, . . . , Tn = tn}

= P{N(t) − N(tn) = 0 | T1 = t1, . . . , Tn = tn}

= e
−

t∫
tn

λ̃(s|hs) ds

= e
−

t∫
tn

λ1(an(s)) ds

;

(4.38)

we discussed a generalization of this conditional reliability function (associated with the

residual lifetimes) in Section 4.3.3. Next, the corresponding conditional distribution function

is, for t > tn, given by

Fn+1(t|t1, . . . , tn) := P{Tn+1 ≤ t | T1 = t1, . . . , Tn = tn}

= 1− P{Tn+1 > t | T1 = t1, . . . , Tn = tn}

= 1− F̄n+1(t|t1, . . . , tn) .

(4.39)
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Note that, at t = t+n , we have Fn+1(t
+
n |t1, . . . , tn) = 0 and F̄n+1(t

+
n |t1, . . . , tn) = 1.

The corresponding conditional density function is simply the derivative of the condi-

tional distribution function:

fn+1(t|t1, . . . , tn) :=
d

dt
Fn+1(t|t1, . . . , tn) = −

d

dt
F̄n+1(t|t1, . . . , tn)

= λ̃(t|ht) e
−

t∫
tn

λ̃(s|hs) ds

= λ1(an(t)) e
−

t∫
tn

λ1(an(s)) ds

,

(4.40)

which is defined for 0 < t1 < . . . < tn < t, n ∈ N+. The exponent term represents the

conditional probability of having no failure between tn and t, and the conditional intensity

is such that the product λ̃(t|ht) dt = λ1(an(t)) dt represents the probability of having a

failure in (t, t+ dt], given the historyHt = ht of the process.

Given the functions in (4.38), (4.39) and (4.40), we can now derive the (unconditional)

distributions. The distribution function of the (n+ 1)-th failure time is derived by removing

the conditioning on (4.39):

Fn+1(t) =

t∫

0

. . .

t2∫

0

Fn+1(t|t1, . . . , tn) fn(t1, . . . , tn) dt1 . . . dtn , (4.41)

where fn(t1, . . . , tn) denotes the joint density function of the first n failure times at (t1, . . . , tn),

and Fn+1(0) = 0. In general, for n ∈ N+ and t > tn, this joint density function is a product

of the conditional density functions in (4.40):

fn(t1, . . . , tn) = fn(tn|t1, . . . , tn−1) . . . f2(t2|t1) f1(t1)

= λ1(an−1(tn)) e
−

tn∫
tn−1

λ1(an−1(s)) ds

. . . λ1(a1(t2)) e
−

t2∫
t1

λ1(a1(s)) ds

λ0(t1) e
−

t1∫
0

λ0(s) ds
,

(4.42)

since, before the first failure, λ1 = λ0– after the first general repair, the second change-point

a′2 of λ1(.) may be shifted depending on the degrees of the repairs before τa1 ; see Section

4.3.2.

The (unconditional) reliability function of the (n + 1)-th failure time is derived as fol-

lows:

F̄n+1(t) =

∞∫

0

. . .

t2∫

0

F̄n+1(t|t1, . . . , tn) fn(t1, . . . , tn) dt1 . . . dtn

= F̄n(t) +

t∫

0

. . .

t2∫

0

F̄n+1(t|t1, . . . , tn) fn(t1, . . . , tn) dt1 . . . dtn ,

(4.43)
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where the last expression is derived by splitting the outer integral (the integral with respect

to tn), so that

F̄n+1(t) = P{Tn+1 > t, Tn > t}+ P{Tn+1 > t, Tn ≤ t} . (4.44)

The relationship between the reliability and distribution functions is F̄n+1 = 1− Fn+1, for all

n ∈ N+, and when t = 0, Fn+1(0) = 0 and F̄n+1(0) = 1− Fn+1(0) = 1.

Finally, for t ≥ 0, the density function of the (n+ 1)-th failure time Tn+1, is given by

fn+1(t) =

t∫

0

. . .

t2∫

0

fn+1(t|t1, . . . , tn) fn(t1, . . . , tn) dt1 . . . dtn . (4.45)

Note that, this density function can be derived by differentiating the corresponding distri-

bution or reliability function. Using the distribution function, this is straight-forward, so we

show this using the reliability functionII:

fn+1(t) =
d

dt
Fn+1(t) = −

d

dt
F̄n+1(t)

= −
d

dt
F̄n(t)−

d

dt




t∫

0

. . .

t2∫

0

F̄n+1(t|t1, . . . , tn) fn(t1, . . . , tn) dt1 . . . dtn




= fn(t) +

t∫

0

tn∫

0

. . .

t2∫

0

(
−

d

dt
F̄n+1(t|t1, . . . , tn−1, tn)

)
fn(t1, . . . , tn−1, tn) dt1 . . . dtn−1 dtn

−




tn∫

0

. . .

t2∫

0

F̄n+1(t|t1, . . . , tn−1, tn) fn(t1, . . . , tn−1, tn) dt1 . . . dtn−1



tn=t

= fn(t) +

t∫

0

tn∫

0

. . .

t2∫

0

(
−

d

dt
F̄n+1(t|t1, . . . , tn−1, tn)

)
fn(t1, . . . , tn−1, tn) dt1 . . . dtn−1 dtn

−

t∫

0

. . .

t2∫

0

fn(t1, . . . , tn−1, tn = t) dt1 . . . dtn−1

=

t∫

0

tn∫

0

. . .

t2∫

0

fn+1(t|t1, . . . , tn−1, tn) fn(t1, . . . , tn−1, tn) dt1 . . . dtn−1 dtn ,

(4.46)

since, when tn = t, the conditional reliability function F̄n+1(t|t1, . . . , tn−1, tn) is unity, and

the joint density of (T1, . . . , Tn), integrated over all possible values of the first n− 1 failure

IITo differentiate the expressionwith the variable in the limits of the integral the Leibniz integral rule is used:

d

dx

v(x)∫

u(x)

h(x, y) dy =

v(x)∫

u(x)

d

dx
h(x, y) dy+ h(x, v(x))

d

dx
v(x)− h(x, u(x))

d

dx
u(x) .
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times, reduces to the marginal density of Tn, i.e.

t∫

0

. . .

t2∫

0

fn(t1, . . . , tn−1, t) dt1 . . . dtn−1 = fn(t) . (4.47)

4.4.2 Distribution of Inter-Failure Lifetimes

The distributions of the inter-failure lifetimes of the process can be derived using the condi-

tional distributions of the failure times.

For n ∈ N+, the (n + 1)-th inter-failure lifetime is Xn+1 = Tn+1 − Tn. Let Gn(.), Ḡn(.)

and gn(.) denote respectively the distribution, reliability and density functions of the n-th

inter-failure lifetime Xn, for n ∈ N+. These functions, for the first lifetime X1 = T1, are

defined in (4.35), (4.36) and (4.37). For n ∈ N+, the distribution function of the (n + 1)-th

inter-failure lifetime is derived as follows:

Gn+1(x) = P{Xn+1 ≤ x} = P{Tn+1 ≤ Tn + x}

=

∞∫

0

. . .

t2∫

0

Fn+1(tn + x|t1, . . . , tn) fn(t1, . . . , tn) dt1 . . . dtn ,
(4.48)

defined for x > 0, where the conditional distribution function is given in (4.39) and the joint

density is defined in (4.42). Therefore, the probability that the (n+ 1)-th inter-failure lifetime

is less than x units of time is equal to the probability of the (n+ 1)-th failure occurring within

x units of the n-th failure. The corresponding reliability function is given by

Ḡn+1(x) = 1− Gn+1(x)

= 1−

∞∫

0

. . .

t2∫

0

Fn+1(tn + x|t1, . . . , tn) fn(t1, . . . , tn) dt1 . . . dtn

=

∞∫

0

. . .

t2∫

0

(
1− Fn+1(tn + x|t1, . . . , tn)

)
fn(t1, . . . , tn) dt1 . . . dtn

=

∞∫

0

. . .

t2∫

0

F̄n+1(tn + x|t1, . . . , tn) fn(t1, . . . , tn) dt1 . . . dtn ,

(4.49)

since integrating the joint density function of the first n failure points over its entire support

is unity; see (4.38) for the condition reliability function. Note that, the distributions of the

inter-failure lifetimes depend on the degrees of all previous general repairs.

The density function of the (n+ 1)-th inter-failure lifetime is derived by differentiating
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the distribution function:

gn+1(x) =
d

dx
Gn+1(x) = −

d

dx
Ḡn+1(x)

=

∞∫

0

. . .

t2∫

0

d

dx
Fn+1(tn + x|t1, . . . , tn) fn(t1, . . . , tn) dt1 . . . dtn

=

∞∫

0

. . .

t2∫

0

fn+1(tn + x|t1, . . . , tn) fn(t1, . . . , tn) dt1 . . . dtn ,

(4.50)

where the conditional density function is given in (4.40).

Sequence of minimal repairs. When all failures of the system are followed by minimal

repair, the system behaves as though it has not failed, i.e. a(t) = t and λ1(t) = λ0(t), for

all t ≥ 0. Therefore, the conditional reliability function of the (n+ 1)-th failure time Tn+1

becomes

F̄n+1(t|t1, . . . , tn) = e
−

t∫
tn

λ1(an(s)) ds

= e
−

t∫
tn

λ0(s) ds

=
F̄1(t)

F̄1(tn)
= P{T1 > t | T1 > tn} ,

(4.51)

defined for t > tn, n ∈ N+. This conditional reliability is equivalent to the probability that

the first failure of the system is after time t, given that the system is in an operational state

at time tn.

Then, the conditional reliability function of the (n+ 1)-th inter-failure lifetime, when all

repairs are minimal, is simply

P{Xn+1 > x | T1 = t1, . . . , Tn = tn} = P{Tn+1 > tn + x | T1 = t1, . . . , Tn = tn}

= e
−

tn+x∫
tn

λ0(s) ds

,

(4.52)

defined for x > 0 and n ∈ N+. The (unconditional) reliability function of the inter-failure

lifetime Xn+1, given in (4.49), then reduces to

Ḡn+1(x) =

∞∫

0

e
−

tn+x∫
tn

λ0(s) ds
( tn∫

0

. . .

t2∫

0

fn(t1, . . . , tn−1, tn) dt1 . . . dtn−1

)
dtn

=

∞∫

0

e
−

tn+x∫
tn

λ0(s) ds

fn(tn) dtn ,

(4.53)

since the conditional reliability function depends only on the time tn of the last failure before
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tn + x, for x > 0 and n ∈ N+. This is the reliability function of the (n+ 1)-th inter-failure

lifetime of a Poisson process with intensity function λ0(.).

Sequence of replacements. As previously discussed, here, the process of consecutive per-

fect repairs is not equivalent to the replacement (or renewal) process. However, when

a1 = 0, then the agemodification function A(.) reduces to an age reduction function, and the

modified baseline intensity function λ1(.) reduces to the original baseline intensity function

λ0(.). Therefore, when a1 = 0 and all repairs are perfect, the conditional intensity function

becomes

λ̃(t|Ht) = λ0(A(t)) = λ0(t− TN(t−)) , (4.54)

for all t ≥ 0, which is the conditional intensity function of a renewal process in one dimen-

sion; see Section 4.3.2.

When a1 > 0 (i.e. when the lifetime distribution has a DFR phase), for the consecutive

replacements of the failed system, the conditional reliability function of the (n+ 1)-th failure

time needs to be replaced by

F̄n+1(t|t1, . . . , tn) = F̄1(t− tn) , (4.55)

for all t > tn and n ∈ N+. Then, the conditional reliability function for the (n + 1)-th

inter-failure lifetime, for x > 0, becomes

P{Xn+1 > x | T1 = t1, . . . , Tn = tn} = F̄n+1(tn + x|t1, . . . , tn)

= F̄1(x) .
(4.56)

Then, the reliability function in (4.49), for consecutive replacements of the system, becomes

Ḡn+1(x) =

∞∫

0

. . .

t2∫

0

F̄1(x) fn(t1, . . . , tn) dt1 . . . dtn

= F̄1(x)

( ∞∫

0

. . .

t2∫

0

fn(t1, . . . , tn) dt1 . . . dtn

)

= F̄1(x) ,

(4.57)

which implies that the inter-failure lifetimes are independent and identically distributed, as

is the case with the renewal process; see Section 3.2.1.
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4.5 Chapter Conclusion

In this chapter, we proposed a new approach to model the effect of general repairs per-

formed on a system whose original lifetime distribution is assumed to have a bathtub-

shaped failure rate function. We discussed and illustrated the properties of the model

through multiple examples, and derived the distributions of the failure times and inter-

failure lifetimes of the associated failure process.

Here, the effect of a general repair is incorporated in the conditional intensity function of

the failure process. It is assumed that the system following a general, non-minimal repair is

in a better working condition than a minimally-repaired system, and therefore, the effect of

a non-minimal repair is modeled as a possible improvement in the reliability of the system.

The degree of a general repair reflects the effectiveness of the repair and a repair that is

more effective is expected to result in greater reliability improvement. Illustrations of the

model showed that the conditional reliability and mean residual lifetime functions are both

increasing in each degree of repair, when all other parameters of the functions are fixed.

In reliability literature, the Poisson process has been suggested for modeling consecutive

minimal repairs and the renewal process is used to model consecutive replacements. The

proposed failure process, when all repairs are minimal, reduces to a Poisson process whose

intensity function is given by the failure rate function of the original lifetime. Here, perfect

repair is not modeled as a replacement (or renewal). However, when the first change-point

is set to zero (i.e. the original failure rate is non-decreasing), the model reduces to an age

reduction (or virtual age) model, where perfect repair is equivalent to replacement.
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Chapter 5

Warranty Servicing Strategies for a

System with a Bathtub-Shaped Failure

Rate Function

In this chapter, we suggest warranty servicing strategies for a systemwhose lifetime is mod-

eled with a distribution having a bathtub-shaped failure rate (BFR) function. We apply the

general repair model suggested in Chapter 4 when deriving the expected total warranty ser-

vicing cost for each servicing strategy. We suggest a class of cost functions to model the cost

of an individual general repair. We then provide numerical illustrations of the proposed

strategies.

This chapter is arranged as follows. In Section 5.1, we suggest possible cost functions for

an individual general repair. In Section 5.2, we present the warranty servicing strategies. In

Section 5.3, we provide numerical illustrations of the strategies and compute the expected

costs for various cost functions. In Section 5.4, we conclude with a summary of the chapter.

5.1 Cost of an Individual General Repair

The cost of a repair is often assumed to be proportional to the degree of the repair. This is

a reasonable assumption, since the degree of the repair reflects its effectiveness, and repairs

that are more effective lead to greater improvement in the reliability of the system following

the repair. The cost of a repair can also depend on the time of the repair, since the cost of

labor and material are often time-dependent. Here, we assume that the cost of a repair is

both a function of the degree of the repair and the time of the repair.

85



Let c(T; δT) denote the cost of an individual general repair at time T with degree δT ∈

[0, 1]. This cost is a random variable, since the failure time T is random. We use c(t; δt) to

denote its realization for T = t.

Since perfect repair is the most effective general repair and minimal repair is the least

effective, this cost is assumed to be increasing in the degree δt of repair, such that, for each

t ≥ 0,

c(t; 0) ≤ c(t; δt) ≤ c(t; 1) , (5.1)

where δt ∈ (0, 1) is the degree of an imperfect repair. In order to formulate the cost functions,

we first model the costs of the two extremes, i.e. minimal and perfect repairs.

A minimal repair does not change the working condition of the system; we therefore

assume that its cost is a function of time alone, such that

c(t; 0) = c0(t) , (5.2)

where c0(t) is some increasing function of t. This cost is also the minimum cost of a repair

at time t ≥ 0. The maximum cost of a repair at time t is the cost of a perfect repair, which

we model as follows:

c(t; 1) = c0(t) + cp(t) =: c1(t) , (5.3)

where cp(.) is the difference between the cost of a minimal repair and a perfect repair. The

function cp(.) can be defined in various ways depending on the repair model: for instance,

it can reflect the amount of additional effort involved in performing a perfect repair in com-

parison to a minimal repair. We assume that all cost functions are positive.

Given the cost functions in (5.2) and (5.3), we define the cost of any general repair of

degree δt ∈ [0, 1] performed at time t as follows:

c(t; δt) = c0(t) +
(
δt
)q [

c1(t)− c0(t)
]

= c0(t) +
(
δt
)q [

c0(t) + cp(t)− c0(t)
]

= c0(t) +
(
δt
)q

cp(t) ,

(5.4)

where q ≥ 0. The first component in the above cost function is the minimum cost of a

repair at time t, and the second component is the cost for the improvement made or damage

undone resulting from a general repair of degree δt. When δt = 0, we get the cost of a

minimal repair defined in (5.2), and when δt = 1, we get the cost of a perfect repair defined
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in (5.3).

In (5.4), the parameter q determines how the cost of an imperfect repair changes in rela-

tion to the costs of perfect and minimal repairs, and is included to provide flexibility. When

all parameters are fixed, the cost c(t; δt) is decreasing in q, since as q increases
(
δt
)q

cp(t)

approaches zero. Therefore, for values of q close to 0, the cost of an imperfect repair at time

t is closer to that of a perfect repair at that time (since (δt)q approaches 1 as q approaches

0); and as q increases, the cost of the imperfect repair moves away from the cost of a perfect

repair (and closer to the cost of a minimal repair).

Note that, the cost function in (5.4) is an increasing function of the degree of repair, and

therefore, the cost of an imperfect repair is always bounded between the cost of a minimal

repair and the cost of a perfect repair.
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Figure 5.1: Illustrations of the example cost function c(t; δt) in (5.6), plotted over t ∈ [0, 15], for b0 = 1;
b1 = b2 = 0.5; m1 = m2 = 1.5; and various values of δt (see plot legends); and q = 0.5
(left column), q = 1 (middle column), q = 2 (right column).

Theminimum cost of a repair (i.e. the cost of aminimal repair) can be any non-decreasing

function of time. Here, for instance, we will use the following cost function in our numerical
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illustrations:

c(t; 0) = c0(t) = b0 + b1 t
m1 , (5.5)

where b0 > 0 and b1,m1 ≥ 0 are parameters of the cost function; b0 is the cost of a minimal

repair performed following a failure at the start of the lifetime of the system. We will now

present some examples of the additional cost cp(.).
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Figure 5.2: Illustrations of the example cost function c(t; δt) in (5.7), plotted over t ∈ [0, 15], for b0 = 1;
b1 = b2 = 0.5; m1 = m2 = 1.5; and various values of δt (see plot legends); and q = 0.5
(left column), q = 1 (middle column), q = 2 (right column).

Example 1. The additional cost cp(.) can be constant, i.e. cp(t) ≡ cp, for all t ≥ 0, so that the

cost of a perfect repair at any time is always cp units higher than the cost of a minimal repair

at that time. Then, using the cost of a minimal repair in (5.5), the cost of a general repair of

degree δt ∈ [0, 1], becomes

c(t; δt) = b0 + b1 t
m1 +

(
δt
)q

cp , (5.6)

for cp ≥ 0; see Figure 5.1. In Figure 5.1, in each row, the degree of the imperfect repair is
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constant across the three columns. Notice that, in each row, as q increasing from 0.5 (left)

to 2 (right), the cost of the imperfect repair (black solid line) moves closer to the cost of a

minimal repair (blue dashed line) or away from the cost of the perfect repair (red dashed

line). �

Example 2. The additional cost cp(.) can be an increasing function of time, for instance,

cp(t) = b2 tm2 , so that the difference between the cost of a perfect repair and the cost of a

minimal repair increases over time. Then, using the cost of a minimal repair in (5.5), the cost

of a general repair of degree δt ∈ [0, 1], becomes

c(t; δt) = b0 + b1 t
m1 +

(
δt
)q

b2 t
m2 , (5.7)

for b0 > 0, and b1, b2,m1,m2 ≥ 0; see Figure 5.2. �
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Figure 5.3: Illustrations of the example cost function c(t; δt) in (5.8), plotted over t ∈ [0, 15], for b0 = 1;
b1 = b2 = 0.5; m1 = m2 = 1; and various values of δt (see plot legends); and q = 0.5 (left
column), q = 1 (middle column), q = 2 (right column).

Example 3. The additional cost cp(.) can reflect directly the amount of improvement (or

damage removal) using the definition of the general repair model. Recall that, accord-
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ing to the repair model, a perfect repair at time t returned the modified age A(t) to a1,

which resulted in the maximum reliability improvement possible at that time. Therefore,

one possible measure of system improvement following a perfect repair is the difference

|A(t)− a1|. Then, using the cost of a minimal repair in (5.5), the cost of a general repair of

degree δt ∈ [0, 1], becomes

c(t; δt) = b0 + b1 t
m1 +

(
δt
)q

b2
(
|A(t)− a1|

)m2 , (5.8)

for b0 > 0, and b1,m1, b2,m2 ≥ 0. Note that, since this cost is a function of A(t), it depends

on all failure times and degrees of repair before time t. Since the second cost component

is a function of |A(t) − a1|, when A(t) = a1, the cost of a general repair at t, regardless of

its degree, is equal to the cost of a minimal repair at this point. According to the proposed

general repair model, the effectiveness of any general repair performed around the end of

the DFR phase is minimal; see Section 4.3.1.
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Figure 5.4: Illustrations of the example cost function c(t; δt) in (5.8), plotted over t ∈ [0, 15], for b0 = 1;
b1 = b2 = 0.5; m1 = m2 = 2; and various values of δt (see plot legends); and q = 0.5 (left
column), q = 1 (middle column), q = 2 (right column).
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In Figures 5.3 and 5.4, we have plotted this cost function for the cost of the first repair

at time T1 = t, over t ∈ (0, 15], for m1 = m2 = 1 and m1 = m2 = 2, respectively. Notice

that, the cost of all general repairs at time t = a1 is equal to the cost of the minimal repair

at this point, since before the first failure |a(t) − a1| = |t− a1|, which is 0 when t = a1, and

therefore, cp(a1) = 0.

In Figure 5.3 and 5.4, notice that the cost of a minimal repair (blue dashed line) is simply

an increasing function of time. The cost of an imperfect repair (solid black line) at any given

point is an increasing function of the degree of repair. Also, the cost of an imperfect repair

is always bounded between the cost of a minimal repair and the cost of a perfect repair

(dashed red line). �

5.2 Warranty Servicing Strategies

In this section, we proposewarranty servicing strategies for a systemwhose lifetime is mod-

eled with a distribution having a BFR function.

Let w denote the end of the warranty period. We propose two warranty servicing strate-

gies based on the following cases:

(i) The useful life period of the original system is long and the warranty ends during the

useful life period, i.e. a1 ≤ w < a2.

(ii) The useful life period of the original system is short compared to its wear-out period

and the warranty ends in the wear-out period, i.e. w > a2.

The type of warranty considered is a non-renewing, free-repair warranty (FRW) policy,

where the warranty period (0,w] is fixed and the manufacturer repairs the failed system

with no cost to the consumer; see Section 2.3.

We make the following assumptions in modeling the process of warranty claims: (a)

each failure of the system is followed immediately by a warranty claim; (b) all claims are

legitimate; (c) the time to process a claim is negligible with respect to the operating time of

the system and set equal to zero; and (d) all repairs are immediate and instantaneous. There-

fore, modeling the process of failures of the system is equivalent to modeling the process of

warranty claims; see Sections 2.2 and 2.4.
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5.2.1 Warranty Servicing Strategy I

For this strategy, we assume that the warranty period ends when the system is still in its

useful life (CFR) period, i.e. before system wear-out. Since the warranty ends before sys-

tem wear-out begins, a non-minimal repair in the CFR phase is an unnecessary cost to the

manufacturer– delaying the wear-out period of the system does not affect the rate of failures

before the end of the warranty period; see Section 4.3 for the repair model.

Therefore, for a warranted system whose warranty expires before it begins to wear out,

we suggest the following warranty servicing strategy.

Strategy I. The first failure of the system while the conditional intensity function is decreasing

is rectified with a general, non-minimal repair and all remaining failures are rectified with minimal

repair.

Therefore, according to Strategy I, the first repair in (0, a1] can be a non-minimal repair

with degree δ1 ∈ (0, 1], and all remaining repairs are minimal.

5.2.1.1 Expected Number of Failures (Claims)

Let T1 denote the time of the first failure of the system and let δ1 denote the corresponding

degree of repair. For strategy I, the expected number of system failures during the warranty

period (0,w] is derived as follows. We consider two cases: (i) at least one failure occurs in

the DFR phase (0, a1] (i.e. T1 ≤ a1); and (ii) no failure occurs in the DFR phase (i.e. T1 > a1).

Then, for case (i), the conditional expected number of failures is given by

E[N(w)|T1 = t1 ≤ a1] = 1+

w∫

t1

λ̃(s|hs,1) ds = 1+

w∫

t1

λ1(a1(s)) ds , (5.9)

where a1(s) = s + δ1 (a1 − t1) denotes the realization of the modified age when one non-

minimal repair has been performed prior to time s; λ1(.) denotes the modified baseline

intensity function; and λ̃(.|hs) denotes the conditional intensity function of the process given

the historyHs = hs; see Section 4.3. Note that, in general, the notation hs,n is used to denote

the history of the process when n non-minimal repairs have been performed prior to time s,

for n ∈ N.

The conditional expected number of failures for case (ii), where no failure has occurred
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in (0, a1], is given by

E[N(w)|T1 = t1 > a1] =

w∫

a1

λ̃(s|hs,0) ds =

w∫

a1

λ1(a0(s)) ds =

w∫

a1

λ0(s) ds , (5.10)

since, when no non-minimal repair is performed before time s (also, before the first failure

of the system), the modified age is given by a0(s) = s, and the modified baseline intensity

function λ1(.) is equal to the original baseline intensity function λ0(.); see Section 4.3.2.2.

On removing the conditioning on the expected numbers of failures in (5.9) and (5.10), we

get the (unconditional) expected number of failures during the warranty period (0,w]:

E[N(w)] =

a1∫

0

E[N(w)|T1 = t1 ≤ a1] dF1(t1) +

∞∫

a1

E[N(w)|T1 = t1 > a1] dF1(t1)

=

a1∫

0

[
1+

w∫

t1

λ1(a1(s)) ds

]
f1(t1) dt1 +

[ w∫

a1

λ0(s) ds

] ∞∫

a1

f1(t1) dt1

=

a1∫

0

[
1+

w∫

t1

λ1(a1(s)) ds

]
f1(t1) dt1 +

[ w∫

a1

λ0(s) ds

]
F̄1(a1) ,

(5.11)

where F̄1(.) is the reliability function of the time T1 to first failure, which is given by

F̄1(t) = P{T1 > t} = P{N(t) = 0} = e
−

t∫
0

λ0(s) ds
; (5.12)

and the corresponding density function is given by

f1(t) = −
d

dt
F̄1(t) = λ0(t) e

−
t∫
0

λ0(x) dx
; (5.13)

see Section 4.4.1. Note that, the expected number of failures is different for each δ1 ∈ [0, 1],

and therefore, we will also use the notation E[N(w | δ1)] to refer to (5.11) for a particular δ1.

5.2.1.2 Expected Total Warranty Servicing Cost

To derive the expected total warranty servicing cost for Strategy I, we use the cost functions

introduced in Section 5.1, where the cost of a repair performed at time t with degree δt ∈

[0, 1] is denoted by c(t; δt).

As with the expected number of failures, the expected cost in (0,w] is derived by con-

sidering the two cases: (i) T1 ≤ a1; and (ii) T1 > a1. Then, for the first case, the conditional
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expected cost is given by

E[C(w)|T1 = t1 ≤ a1] = c(t1; δ1) +

w∫

t1

c(s; 0) λ̃(s|hs,1) ds = c(t1; δ1) +

w∫

t1

c(s; 0) λ1(a1(s)) ds ,

(5.14)

where c(t1; δ1) is the cost of the general, non-minimal repair at time t1 with degree δ1. Note

that, since all repairs after t1 are minimal, the process after t1 is a Poisson process, and

therefore, integrals of the form

u∫

l

c(s; 0) λ̃(s|hs) ds ≡ E

[ N(u)

∑
i=N(l)+1

c(Ti; 0)

]
(5.15)

represent the expected cost of minimal repairs in the interval (l, u]; refer to Boland [44] for

more on (5.15). When all repairs are minimal, the conditional intensity does not change

following each repair, and hence, the intensity function is equivalent to the conditional in-

tensity function of the corresponding Poisson (or minimal repair) process over the defined

interval.

The conditional expected cost for case (ii), where no failure has occurred in the interval

(0, a1], is given by

E[C(w)|T1 = t1 > a1] =

w∫

a1

c(s; 0) λ̃(s|hs,0) ds =

w∫

a1

c(s; 0) λ1(a0(s)) ds =

w∫

a1

c(s; 0) λ0(s) ds .

(5.16)

On removing the conditioning on the expected costs in (5.14) and (5.16), we get the (un-

conditional) expected total warranty servicing cost for Strategy I:

E[C(w)] =

a1∫

0

E[C(w)|T1 = t1 ≤ a1] dF1(t1) +

∞∫

a1

E[C(w)|T1 = t1 > a1] dF1(t1)

=

a1∫

0

[
c(t1; δ1) +

w∫

t1

c(s; 0) λ1(a1(s)) ds

]
f1(t1) dt1 +

[ w∫

a1

c(s; 0) λ0(s) ds

] ∞∫

a1

f1(t1) dt1

=

a1∫

0

[
c(t1; δ1) +

w∫

t1

c(s; 0) λ1(a1(s)) ds

]
f1(t1) dt1 +

[ w∫

a1

c(s; 0) λ0(s) ds

]
F̄1(a1) ,

(5.17)

where the distribution functions of T1 are given in (5.12) and (5.13); see Section 4.4.1 for

the baseline intensity functions, the age modification function and the conditional intensity

function.
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Notice that, when all the cost functions in (5.17) are replaced by 1, the expected cost

reduces to the expected number of failures in (5.11).

The expected total warranty servicing cost E[C(w)] is different for each δ1 ∈ [0, 1], and

therefore, we will also use the notation E[C(w | δ1)] to refer to (5.17) for a particular δ1.

5.2.2 Warranty Servicing Strategy II

For this strategy, we assume that the useful life period of the system is short, and there-

fore, the warranty period ends during the wear-out period of the original system. Since the

warranty period may include part of the wear-out period (the length depends on previous

repairs), with this strategywe aim to extend the useful life period of the system and delay its

wear-out period, by having two possible general repairs of degree greater than 0 (i.e. non-

minimal repairs). Since the system reliability is improved during the warranty period, the

cost of servicing the warranty for the manufacturer may be reduced (with the appropriate

choice of the degrees of repair).

Therefore, for a warranted system whose warranty expires during its wear-out period,

we suggest the following warranty servicing strategy.

Strategy II. When the conditional intensity function of the system is decreasing, the first failure of

the system is rectified with a non-minimal repair and all remaining failures are rectified with minimal

repair. When the conditional intensity function of the system is non-decreasing, the first failure of

the system is rectified with a non-minimal repair and all remaining failures are rectified with minimal

repair.

In other words, only the first repair in the DFR phase and the first repair outside the

DFR phase of the conditional intensity function are general, non-minimal repairs, and all

remaining repairs under warranty are minimal.

According to the general repair model proposed in Section 4.3, a non-minimal repair in

the DFR phase results in extending the useful life period such that it begins earlier. There-

fore, the start of the useful life period (i.e. the end of the DFR phase) depends on the time

and degree of the non-minimal repair performed in the interval (0, a1]. Let Ta1 denote the

end of the DFR phase, and let τa1 denote its realization; see Section 4.3.2.1. If no failure has

occurred in the DFR phase (0, a1], then τa1 = a1. If at least one failure has occurred in (0, a1],

then τa1 ≤ a1 depending on the degree of the performed repairs. The end of the DFR phase,

95



given the time t1 of the first failure and the corresponding degree of repair δ1, is given by

τa1 =





a1 , t1 ≥ a1

a1 − δ1 (a1 − t1), t1 < a1
. (5.18)

Therefore, the subintervals of the warranty strategy are characterized by the random

variable Ta1 . Then, given the warranty period (0,w], this servicing strategy can be expressed

as follows:

• The first repair in the DFR phase (0, Ta1 ] of the conditional intensity function is non-minimal

with degree δ1 and all remaining repairs in this interval are minimal.

• The first repair in the non-decreasing phase (Ta1 ,w] of the conditional intensity function is

non-minimal with degree δ′1 and all remaining repairs in this interval are minimal.

5.2.2.1 Expected Number of Failures (Claims)

As before, let T1 denote the time to first failure of the system, with reliability and density

functions given in (5.12) and (5.13), respectively. Let T′
1 denote the time of the first failure of

the system outside the DFR phase, i.e. in (Ta1 ,w], and let t′1 denote its realization. Then, to

derive the expected number of failures for Strategy II, we must consider the following four

possible cases:

(i) at least one failure has occurred in each of the subintervals (0, Ta1 ] and (Ta1 ,w], i.e.

T1 ≤ a1 and T′
1 ≤ w;

(ii) no failure has occurred in the first subinterval (0, Ta1 ] and at least one failure has oc-

curred in the second subinterval (Ta1 ,w], i.e. T1 > a1 and T′
1 ≤ w (here, Ta1 = a1, and

T′
1

d
= T1);

(iii) at least one failure has occurred in the first subinterval (0, Ta1 ] and no failure has oc-

curred in the second subinterval (Ta1 ,w], i.e. T1 ≤ a1 and T′
1 > w;

(iv) no failure has occurred in either of the two subintervals, i.e. T′
1 ≡ T1 > w.

The conditional expected number of failures for the last case is zero, since no failure has

occurred during the warranty period (0,w].

As before, let the history hs,n, for n ∈ {1, 2}, denote the case where n non-minimal repairs

have been performed before time s. Here, the histories for both cases (ii) and (iii) include one
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prior non-minimal repair; however, the two histories are not the same. Therefore, we use

h′s,1 and hs,1 to distinguish between the two. Similarly, for the corresponding realizations of

the age modification functions, we use a1(s; δ
′
1) and a1(s; δ1). Then, the conditional expected

number of failures for case (i) is given by

E[N(w)|T1 = t1 ≤ a1, T
′
1 = t′1 ≤ w] = 1+

τa1∫

t1

λ̃(s|hs,1) ds+ 1+

w∫

t′1

λ̃(s|hs,2) ds

= 2+

τa1∫

t1

λ1(a1(s; δ1)) ds+

w∫

t′1

λ1(a2(s; δ1, δ
′
1)) ds ,

(5.19)

where a2(s; δ1, δ
′
1) denotes the realization of the modified age at time s after the two non-

minimal repairs. Note that, since we have conditioned on the events that at least one failure

has occurred in each subinterval, the conditional expected number of failures counts at least

two failures.

The conditional expected number of failures for cases (ii) and (iii) are similarly derived

as follows:

E[N(w)|T1 = t1 > a1, T
′
1 = t′1 ≤ w] = 1+

w∫

t′1

λ̃(s|h′s,1) ds = 1+

w∫

t′1

λ1(a1(s; δ
′
1)) ds ; (5.20)

E[N(w)|T1 = t1 ≤ a1, T
′
1 = t′1 > w] = 1+

τa1∫

t1

λ̃(s|hs,1) ds = 1+

τa1∫

t1

λ1(a1(s; δ1)) ds . (5.21)

We used the notations a1(s; δ1), a1(s; δ
′
1) and a2(s; δ1, δ

′
1) to specifywhich degrees of repair

apply. The degree of repair in the first subinterval (0, τa1 ] is δ1 and in the second subinterval

(τa1 ,w] is δ′1. Therefore, the realizations of the age modification functions are given by

a1(s; δ1) = s+ δ1 (a1 − t1) , (5.22)

defined for all s ∈ (t1, t
′
1];

a1(s; δ
′
1) = s− δ′1 (t

′
1 − a1) , (5.23)

defined for all s ∈ (t′1,w], given that t1 > a1; and

a2(s; δ1, δ
′
1) = s+ δ1 (a1 − t1)− δ′1(a1(t

′
1; δ1)− a1) , (5.24)
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defined for s ∈ (t′1,w], given that t1 ≤ a1 and t′1 ≤ w.

Using (5.19) – (5.21), and on removing the conditioning, we derive the expected number

of failures for Strategy II:

E[N(w)] =

a1∫

0

w∫

τa1

(
2+

τa1∫

t1

λ̃(s|hs,1) ds+

w∫

t′1

λ̃(s|hs,2) ds

)
fT ′

1|T1
(t′1|t1) f1(t1) dt

′
1 dt1

+

w∫

a1

(
1+

w∫

t′1

λ̃(s|h′s,1) ds

)
f1(t

′
1) dt

′
1

+

a1∫

0

∞∫

w

(
1+

τa1∫

t1

λ̃(s|hs,1) ds

)
fT ′

1|T1
(t′1|t1) f1(t1) dt

′
1 dt1

=

a1∫

0

w∫

τa1

(
2+

τa1∫

t1

λ1(a1(s; δ1)) ds+

w∫

t′1

λ1(a2(s; δ1, δ
′
1)) ds

)
fT ′

1|T1
(t′1|t1) f1(t1) dt

′
1 dt1

+

w∫

a1

(
1+

w∫

t′1

λ1(a1(s; δ
′
1)) ds

)
f1(t

′
1) dt

′
1

+

a1∫

0

∞∫

w

(
1+

τa1∫

t1

λ1(a1(s; δ1)) ds

)
fT ′

1|T1
(t′1|t1) f1(t1) dt

′
1 dt1 .

(5.25)

The function fT ′
1|T1

(.|t1) is the density function of T′
1 given T1 = t1, and is derived by differ-

entiating the corresponding conditional probability function:

FT ′
1|T1

(s|t1) = P{T′
1 ≤ s|T1 = t1} = 1− P{T′

1 > s|T1 = t1} = 1− P{T2 > s|T2 > τa1 , T1 = t1}

= 1−
P{T2 > s|T1 = t1}

P{T2 > τa1 |T1 = t1}
= 1− e

−
s∫

τa1

λ̃(x|hx,1) dx

= 1− e
−

s∫
τa1

λ1(a1(x;δ1)) dx

,

(5.26)

which is defined for s > τa1 ; see Section 4.4.1. Since all repairs between T1 = t1 and τa1 are

minimal, the system behaves as though it has not failed in the interval (t1, τa1 ]. Then, the

distribution of T′
1 (which is the time of the first failure after τa1) is the same as the distribution

of the time T2 of the second failure, conditional on T2 happening after τa1 [cf. (4.38)]. The

corresponding conditional density function is then given by

fT ′
1|T1

(s|t1) =
d

ds
FT ′

1|T1
(s|t1) = λ̃(s|hs,1) e

−
s∫

τa1

λ̃(x|hx,1) dx

= λ1(a1(s; δ1)) e
−

s∫
τa1

λ1(a1(x;δ1)) dx

.

(5.27)
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Note that, products of the form λ̃(t|ht) e
−

t∫
x

λ̃(s|hs) ds
dt are the approximate probability of

having a failure at time t, given that no failure has occurred in the interval (x, t], given the

history of the failure process.

The third summand in (5.25) can be further simplified– since the conditional expected

number of failures is not a function of t′1, we can replace the summand by

a1∫

0

(
1+

τa1∫

t1

λ̃(s|hs,1) ds

)
F̄T ′

1|T1
(w|t1) f1(t1) dt1 , (5.28)

where λ̃(s|hs,1) = λ1(a1(s; δ1)), and the conditional reliability function is given by

F̄T ′
1|T1

(w|t1) := 1− FT ′
1|T1

(w|t1) = e
−

w∫
τa1

λ̃(x|hx,1) dx

= e
−

w∫
τa1

λ1(a1(x;δ1)) dx

=

∞∫

w

fT ′
1|T1

(t′1|t1) dt
′
1 .

(5.29)

Since the expected number of failures is a function of δ1 and δ′1, we will also use the

notation E[N(w | δ1, δ
′
1)] to refer to (5.25).

5.2.2.2 Expected Total Warranty Servicing Cost

The expected total warranty servicing cost for Strategy II, is derived by considering the four

possible cases mentioned in the previous section; see page 96. The conditional expected cost

corresponding to case (iv) is zero (since no failure has occurred during the warranty period

(0,w]. The conditional expected costs corresponding to case (i) is given by

E[C(w)|T1 = t1 ≤ a1, T
′
1 = t′1 ≤ w]

= c(t1; δ1) +

τa1∫

t1

c(s; 0) λ̃(s|hs,1) ds+ c(t′1; δ
′
1) +

w∫

t′1

c(s; 0) λ̃(s|hs,2) ds

= c(t1; δ1) +

τa1∫

t1

c(s; 0) λ1(a1(s; δ1)) ds+ c(t′1; δ
′
1) +

w∫

t′1

c(s; 0)λ1(a2(s; δ1, δ
′
1)) ds ,

(5.30)

where c(s; 0) is the cost of a minimal repair at time s, c(t1; δ1) is the cost of the first repair in

the DFR phase at time t1(≤ a1)with degree δ1, and c(t′1; δ
′
1) is the cost of the first repair after

the DFR phase at time t′1(> τa1) with degree δ′1; see page 97 for the realizations of the age
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modification functions. Similarly, the conditional expected cost for case (ii) is given by

E[C(w)|T1 = t1 > a1, T
′
1 = t′1 ≤ w] = c(t′1; δ

′
1) +

w∫

t′1

c(s; 0) λ̃(s|h′s,1) ds

= c(t′1; δ
′
1) +

w∫

t′1

c(s; 0) λ1(a1(s; δ
′
1)) ds ;

(5.31)

and the conditional expected cost for case (iii) is given by

E[C(w)|T1 = t1 ≤ a1, T
′
1 = t′1 > w] = c(t1; δ1) +

τa1∫

t1

c(s; 0) λ̃(s|hs,1) ds

= c(t1; δ1) +

τa1∫

t1

c(s; 0) λ1(a1(s; δ1)) ds .

(5.32)

Using the above conditional costs, upon removing the conditioning, we derive the ex-

pected total warranty servicing cost for Strategy II as follows:

E[C(w)] =

a1∫

0

w∫

τa1

(
c(t1; δ1) +

τa1∫

t1

c(s; 0) λ̃(s|hs,1) ds+ c(t′1; δ
′
1) +

w∫

t′1

c(s; 0) λ̃(s|hs,2) ds

)

× fT ′
1|T1

(t′1|t1) f1(t1) dt
′
1 dt1

+

w∫

a1

(
c(t′1; δ

′
1) +

w∫

t′1

c(s; 0) λ̃(s|h′s,1) ds

)
f1(t

′
1) dt

′
1

+

a1∫

0

∞∫

w

(
c(t1; δ1) +

τa1∫

t1

c(s; 0) λ̃(s|hs,1) ds

)
fT ′

1|T1
(t′1|t1) f1(t1) dt

′
1 dt1 ,

(5.33)

where fT ′
1|T1

(.|t1) is the conditional density function of T′
1, given T1 = t1, which is defined in

(5.27). Note that, in the last summand of (5.33), the conditional cost does not depend on t′1,

and therefore, the last summand can be replaced by

a1∫

0

(
c(t1; δ1) +

τa1∫

t1

c(s; 0) λ̃(s|hs,1) ds

)
F̄T ′

1|T1
(w|t1) f1(t1) dt1 , (5.34)

where F̄T ′
1|T1

(.|t1) is the conditional reliability function of T′
1 given T1 = t1, and is defined in

(5.29).

On substituting for the conditional intensity functions in (5.33) and further simplifying
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the expressions, we get the following expected total warranty servicing cost for Strategy II:

E[C(w)] =

a1∫

0

w∫

τa1

(
c(t1; δ1) +

τa1∫

t1

c(s; 0) λ1(a1(s; δ1)) ds+ c(t′1; δ
′
1) +

w∫

t′1

c(s; 0) λ1(a2(s; δ1, δ
′
1)) ds

)

× fT ′
1|T1

(t′1|t1) f1(t1) dt
′
1 dt1

+

w∫

a1

(
c(t′1; δ

′
1) +

w∫

t′1

c(s; 0) λ1(a1(s; δ
′
1)) ds

)
f1(t

′
1) dt

′
1

+

a1∫

0

(
c(t1; δ1) +

τa1∫

t1

c(s; 0) λ1(a1(s; δ1)) ds

)
F̄T ′

1|T1
(w|t1) f1(t1) dt1 .

(5.35)

Note that, when all cost functions in (5.35) are replaced by 1, then the expected total war-

ranty servicing cost reduces to the expected number of failures derived in (5.25).

Since the expected total warranty serving cost for Strategy II is a function of the degrees

of repair δ1 and δ′1, we will also use the notation E[C(w | δ1, δ
′
1)] to refer to (5.35).

The derived expected total warranty servicing costs for both strategies are conditional on

the degrees of the non-minimal repairs being δ1 and δ′1. If the degrees are random, then these

expected costs are conditional on D1 = δ1 and D′
1 = δ′1; then to derive the expected costs,

the conditioning needs to be removed using the distributions of D1 and D′
1. For simplicity,

we assume that the degrees δ1 and δ′1 of the non-minimal repairs are preassigned.

5.3 Numerical Illustrations

In this section, we provide numerical illustrations of the two warranty servicing strategies.

To compute the expected total warranty servicing costs for each strategy, we apply the gen-

eral repair model proposed in Section 4.3 along with the cost function from Example 3 (on

page 90).

The original baseline intensity (or failure rate) function used in the numerical illustra-

tions of the proposed servicing strategies is the following BFR function [39]:

λ0(t) =





λ + α1 β1 (a1 − t)β1−1 , t ≤ a1

λ , a1 ≤ t ≤ a2

λ + α2 β2 (t− a2)β2−1 , t ≥ a2 ,
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where λ > 0, β1, β2 > 0, and α1, α2 > 0.

Parameter values for Strategy I. To illustrate Strategy I, we have chosen change-points

a1 = 4 and a2 = 15. The other parameters are: λ = 0.4, α1 β1 = 0.45, α2 β2 = 0.35, β1 = 3.3,

and β2 = 3.6; see Figure 5.5 (left).

Parameter values for Strategy II. To illustrate Strategy II, we have chosen change-points

a1 = 3 and a2 = 6. The other parameter values are: λ = 0.15, α1 β1 = 0.6, α2 β2 = 0.5,

β1 = 3.4, and β2 = 3.1; see Figure 5.5 (right).
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20
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λ0(t)

Figure 5.5: The original baseline intensity function λ0(t) used in the illustration of: Strategy I (left)
and Strategy II (right).

Note that, the warranty period for both illustrations is set to (0,w] = (0, 10]; however,

the change-points a1 and a2 for the two baseline intensity functions are chosen such that, for

Strategy I, a1 < w < a2, and for Strategy II, w > a2. Recall that, Strategy I was suggested

for a system with a long useful life period and Strategy II was suggested for a system with

a short useful life period; see Figure 5.5.

5.3.1 Expected Number of Failures for Strategies I and II

The expected number of failures can be used to examine the behavior of the general repair

model. A good repair model will stay true to the definitions of the various types of gen-

eral repair, resulting in the following property: as the degree of any of the non-minimal

repairs increases, given that the degrees of all other repairs remain fixed, the corresponding

expected number of failures decreases. This is because as the degree of the repair increases,

so does the conditional reliability of the repaired system.

102



To illustrate the behavior of the general repair model, in Figure 5.6, we have plotted the

expected number of failures for Strategies I and II as a function of the degree(s) of the non-

minimal repair(s). The expected number of failures for the two strategies were derived in

(5.11) and (5.25), respectively.
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Figure 5.6: The expected number of failures E[N(10 | δ1)] (left) and E[N(10 | δ1, δ
′
1)] (right), for

degrees δ1, δ
′
1 ∈ [0, 1].

Notice that, for both strategies, the expected number of failures is a decreasing function

of the degree(s) of the non-minimal repair(s). In Figure 5.6, for instance, for any fixed δ1,

the expected number of failures decreases as δ′1 increases, and for any fixed δ′1, the expected

number of failures decreases as δ1 increases (given that all other repairs are minimal). This

indicates that, according to the general repair model, the reliability of the system increases

as the degree of any non-minimal repair increases, given that the degrees of all other repairs

remain fixed.

5.3.2 Expected Total Warranty Servicing Costs for Strategy I

To illustrate Strategy I, we use the example cost function given in (5.8), and compute the ex-

pected total warranty servicing cost E[C(10 | δ1)] for δ1 ∈ [0, 1]. The expected total warranty

servicing cost E[C(w | δ1)] for Strategy I was derived in (5.17).

To compute the expected costs, we choose the following parameter values for the ex-

ample cost function in (5.8): we fix m1 = m2 = 2 and b0 = 0.01, and compute the ex-

pected costs for various values of the parameters b1, b2 and q: b1 ∈ {0.5, 1.0, 1.5, 2.0, 5.0};

b2 ∈ {0.5, 1.0, 2.5, 5.0, 7.5}; and q ∈ {1, 2}.
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Let δ⋆1 denote the degree of the non-minimal repair that minimizes the expected total

warranty servicing cost, and therefore, E[C(10 | δ⋆1 )] represents the minimum, over all δ1 ∈

[0, 1], expected total warranty servicing cost over the warranty period (0, 10]. In Tables 5.1

and 5.2, the minimum expected total costs are tabulated for q = 1 and q = 2 respectively,

for various values of the cost parameters b1 and b2. Also included in each table are the

corresponding expected costs when all repairs are minimal, i.e. δ1 = 0, and the expected

costs when the non-minimal repair is perfect, i.e. δ1 = 1.

Table 5.1: Minimum expected total warranty servicing costs E[C(10 | δ⋆
1 )], for q = 1.

b1 b2 δ⋆
1 E[C(10 | δ1 = δ⋆

1 )] E[C(10 | δ1 = 0)] E[C(10 | δ1 = 1)]

0.5

0.5 0.36 70.3579

75.9536

74.3114
1.0 0.24 72.5922 81.9472
2.5 0.05 75.6992 104.8546
5.0 0.01 75.9535 143.0336
7.5 0.01 75.9535 181.2127

1.0

0.5 0.46 137.6500

151.9072

140.9869
1.0 0.36 140.7158 148.6228
2.5 0.2 146.8492 171.5302
5.0 0.05 151.3985 209.7092
7.5 0.01 151.9069 247.8883

1.5

0.5 0.51 204.6426

227.8608

207.6625
1.0 0.42 208.1364 215.2983
2.5 0.27 215.8275 238.2057
5.0 0.14 223.4811 276.3848
7.5 0.05 227.0977 314.5638

2.0

0.5 0.54 271.5255

303.8144

274.3381
1.0 0.46 275.3000 281.9739
2.5 0.32 284.0101 304.8813
5.0 0.20 293.6983 343.0604
7.5 0.12 299.6093 381.2394

5.0

0.5 0.63 672.1569

759.5360

674.3915
1.0 0.57 676.7079 682.0273
2.5 0.46 688.2501 704.9347
5.0 0.36 703.5790 743.1138
7.5 0.29 715.8480 781.2928

Note that, column 5 (where δ1 = 0) and column 6 (where δ1 = 1) in Table 5.1 (when q =

1) are identical to the corresponding columns in Table 5.2 (when q = 2). This is because the

parameter q of the cost function describes only how the cost of an imperfect repair changes

with respect to the cost of a perfect repair, and has no effect on the cost of a minimal or

perfect repair. In the cost function, when all other parameters are fixed, as q increases, the

cost of an imperfect repair moves farther away from that of a perfect repair and closer to

the cost of a minimal repair. The effect of this on the expected total warranty servicing cost

can be seen with a row-wise comparison of the two tables. The minimum expected total

warranty servicing costs in column 2 of Table 5.1 are lower than the corresponding expected

costs in column 2 of Table 5.2.

When b1 is fixed, δ⋆1 decreases as b2 increases. That is, as the cost of imperfect repair

increases, an imperfect repair of a lower degree results in the minimum expected total war-
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Table 5.2: Minimum expected total warranty servicing costs E[C(10 | δ⋆
1 )], for q = 2.

b1 b2 δ⋆
1 E[C(10 | δ1 = δ⋆

1 )] E[C(10 | δ1 = 0)] E[C(10 | δ1 = 1)]

0.5

0.5 0.39 68.5676

75.9536

74.3114
1.0 0.32 69.5120 81.94718
2.5 0.22 71.0965 104.8546
5.0 0.16 72.3989 143.0336
7.5 0.12 73.1156 181.2127

1

0.5 0.46 135.7533

151.9072

140.9869
1.0 0.39 137.1352 148.6228
2.5 0.29 139.7373 171.5302
5.0 0.22 142.1931 209.7092
7.5 0.18 143.7192 247.8883

1.5

0.5 0.51 202.7344

227.8608

207.6625
1.0 0.44 204.4022 215.2983
2.5 0.34 207.7174 238.2057
5.0 0.26 211.0781 276.3848
7.5 0.22 213.2896 314.5638

2

0.5 0.53 269.6271

303.8144

274.3381
1.0 0.46 271.5066 281.9739
2.5 0.37 275.3743 304.8813
5.0 0.29 279.4746 343.0604
7.5 0.25 282.2741 381.2394

5

0.5 0.61 670.3639

759.5360

674.3915
1.0 0.55 672.9425 682.0273
2.5 0.46 678.7664 704.9347
5.0 0.39 685.6762 743.1138
7.5 0.35 690.8903 781.2928

ranty servicing cost. When b2 is fixed, δ⋆1 increases as b1 increases. That is, as the cost of

minimal repair increases, an imperfect repair of a higher degree results in the minimum ex-

pected total warranty servicing cost. This trend is clearly observed in Figures 5.7 and 5.8,

where we have plotted the expected cost function E[C(10 | δ1)] over δ1 ∈ [0, 1], for q = 1

and q = 2 respectively, and for various values of the cost parameters b1 and b2. In both

figure, first b1 is kept fixed and b2 is increased (top rows), and then b2 is kept fixed and b1 is

increased (bottom rows).

In Figures 5.7 and 5.8, notice that in all plots, after a certain degree of repair, the initially

decreasing expected total warranty servicing cost begins to increase. This is because there

is a trade-off between the effect of the cost of a general repair on the expected total war-

ranty servicing cost and the effect of the resulting improvement in system reliability on the

expected total warranty servicing cost.

5.3.3 Expected Total Warranty Servicing Costs for Strategy II

To illustrate Strategy II, we again use the example cost function given in (5.8), and compute

the expected total warranty servicing cost E[C(10 | δ1, δ
′
1)] for (δ1, δ

′
1) ∈ [0, 1]2. The expected

total warranty servicing cost E[C(w | δ1, δ
′
1)] for Strategy II was derived in (5.35).

To compute the expected costs, we choose the following parameter values for the ex-
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Figure 5.7: Expected cost function E[C(10 | δ1)] plotted over δ1 ∈ [0, 1], for q = 1, and for various
values of b1 and b2.
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Figure 5.8: Expected cost function E[C(10 | δ1)] plotted over δ1 ∈ [0, 1], for q = 2, and for various
values of b1 and b2.

ample cost function in (5.8): we fix m1 = m2 = 1 and b0 = 0.01, and compute the ex-

pected costs for various values of the parameters b1, b2 and q: b1 ∈ {0.5, 1.0, 1.5, 2.0};

b2 ∈ {3, 4, 5, 7, 10, 20}; and q ∈ {0.5, 1}.

Let δ⋆1 and δ′⋆1 denote the degrees of the two non-minimal repairs that minimize the

expected total warranty servicing cost, and therefore, E[C(10 | δ⋆1 , δ
′⋆
1 )] represents the min-

imum, over all (δ1, δ
′
1) ∈ [0, 1]2, expected total warranty servicing cost over the warranty

period (0, 10]. In Tables 5.3 and 5.4, the minimum expected total costs are tabulated for
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q = 0.5 and q = 1 respectively, for various values of the cost parameters b1 and b2. Also

included in each table are the corresponding expected costs when all repairs are minimal,

i.e. δ1 = δ′1 = 0, and the expected costs when the two non-minimal repairs are perfect, i.e.

δ1 = δ′1 = 1.

Table 5.3: Minimum expected total warranty servicing costs E[C(10 | δ⋆
1 , δ

′⋆
1 )], for q = 0.5.

b1 b2 δ⋆
1 δ′⋆

1 E[C(10 | δ1= δ⋆
1 , δ

′
1= δ′⋆

1 )] E[C(10 | δ1= 0, δ′
1= 0)] E[C(10 | δ1= 1, δ′

1= 1)]

0.5

3 0.200 1.000 30.5618

59.7742

34.2423
4 0.075 1.000 32.4433 41.5965
5 0.025 1.000 33.9725 48.9507
7 0.000 0.975 36.8458 63.6591
10 0.000 0.925 41.1559 85.7217
20 0.000 0.675 53.8835 159.2638

1.0

3 0.525 1.000 53.3625

119.5484

46.4220
4 0.375 1.000 56.3467 53.7762
5 0.275 1.000 58.8907 61.1304
7 0.125 1.000 63.1079 75.8388
10 0.000 0.950 67.9449 97.9014
20 0.000 0.875 82.3116 171.4435

1.5

3 0.950 1.000 74.2629

179.3225

58.6017
4 0.600 1.000 78.3329 65.9559
5 0.475 1.000 81.6310 73.3101
7 0.300 1.000 87.1222 88.0185
10 0.150 1.000 93.7057 110.0811
20 0.000 0.975 109.1007 183.6232

2.0

3 1.000 1.000 93.9877

239.0967

70.7814
4 0.950 1.000 99.0171 78.1356
5 0.650 1.000 103.2224 85.4898
7 0.450 1.000 109.8481 100.1982
10 0.275 1.000 117.7813 122.2608
20 0.000 1.000 135.8897 195.8028

As observed in the illustration of Strategy I, as the value of q increases from 0.5 (Table 5.3)

to 1 (Table 5.4), the expected total warranty servicing costs decrease, since a larger q results

in the cost of an imperfect repair of fixed degree moving away from the cost of a perfect

repair and closer to the cost of a minimal repair. The minimum expected total warranty

servicing costs in Table 5.3 are higher than the corresponding minimum expected costs in

Table 5.4. Also, notice that, columns 6 and 7 in both tables are identical, since the value of

the parameter q does not affect the cost of a minimal repair or a perfect repair; see Example

3 on page 90.

The other trends in the two tables are similar to those observed in the illustration of

Strategy I. When b1 is fixed, both δ⋆1 and δ′⋆1 decrease (or do not increase) as b2 increases.

When the cost of imperfect repair increases, imperfect repairs of lower degrees yield the

lowest expected costs. When b2 is fixed, both δ⋆1 and δ′⋆1 increase (or do not decrease) as b1

increases. That is, as the cost of minimal repair increases, the degrees of the non-minimal

repairs that result in the minimum expected total warranty servicing cost increases.

In Figures 5.9 and 5.10, we have plotted the expected cost E[C(10 | δ1, δ
′
1)] as a function
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Table 5.4: Minimum expected total warranty servicing costs E[C(10 | δ⋆
1 , δ

′⋆
1 )], for q = 1.

b1 b2 δ⋆
1 δ′⋆

1 E[C(10 | δ1= δ⋆
1 , δ

′
1= δ′⋆

1 )] E[C(10 | δ1= 0, δ′
1= 0)] E[C(10 | δ1= 1, δ′

1= 1)]

0.5

3 0.000 0.825 24.8901

59.7742

34.2423
4 0.000 0.750 27.4725 41.5965
5 0.000 0.675 29.8276 48.9507
7 0.000 0.600 34.0648 63.6591
10 0.000 0.500 39.5521 85.7217
20 0.000 0.275 52.5053 159.2638

1.0

3 0.175 1.000 39.7657

119.5484

46.4220
4 0.100 0.950 43.6183 53.7762
5 0.050 0.875 46.9128 61.1304
7 0.000 0.775 52.4278 75.8388
10 0.000 0.675 59.6551 97.9014
20 0.000 0.500 79.1042 171.4435

1.5

3 0.300 1.000 53.2145

179.3225

58.6017
4 0.200 1.000 57.5836 65.9559
5 0.150 1.000 61.6488 73.3101
7 0.050 0.900 68.8012 88.0185
10 0.000 0.800 77.3479 110.0811
20 0.000 0.600 100.2048 183.6232

2.0

3 0.375 1.000 66.2623

239.0967

70.7814
4 0.300 1.000 70.9526 78.1356
5 0.225 1.000 75.3590 85.4898
7 0.125 1.000 83.4991 100.1982
10 0.050 0.875 93.8257 122.2608
20 0.000 0.675 119.3102 195.8028

of δ1 and δ′1, for q = 0.5 and q = 1 respectively. In the top row of each figure, b1 is kept

fixed and b2 is increased along the columns, and in the bottom row, b2 is kept fixed and b1 is

increased along the columns. The trends in Tables 5.3 and 5.4 are better seen in the figures.
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Figure 5.9: Expected cost function E[C(10 | δ1, δ
′
1)] plotted over (δ1, δ

′
1) ∈ [0, 1]2, for q = 0.5, and for

various values of b1 and b2.
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Figure 5.10: Expected cost function E[C(10 | δ1, δ
′
1)] plotted over (δ1, δ

′
1) ∈ [0, 1]2, for q = 1, and for

various values of b1 and b2.

Since computing the expected costs for Strategy II is computationally intensive, a coarser

grid (for the degrees δ1 and δ′1) was chosen to illustrate this strategy. The values of the

expected cost function were interpolated between the grid points.

5.4 Chapter Conclusion

In this chapter, we proposed warranty servicing strategies for a system whose lifetime is

modeled with a distribution having a bathtub-shaped failure rate function. We derived the

expected number of failures and the expected total warranty servicing costs for each of the

strategies, using the general repair model proposed in the previous chapter.

We suggested possible cost functions for modeling the cost of an individual general re-

pair, where the cost of repair is a function of both the time of the repair and the degree of

the repair.

We provided numerical illustrations of the suggested strategies. We computed the ex-

pected number of failures and the expected total warranty servicing costs for each strategy

using an example cost function. The illustrations showed that as the degree of any given

general repair increases (while others remain fixed), the expected number of failures de-
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creases, since the conditional reliability of the system is further improved. As discussed in

the previous chapter, the degree of repair indicates the effectiveness of the repair, and a re-

pair of higher degree results in greater reliability improvement. We also observed that there

is a tradeoff between the cost of a repair and the improvement in system reliability following

the repair, in terms of their effect on the expected total warranty servicing cost.
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Chapter 6

Failure Modeling in Two Dimensions

In this chapter, we provide a brief review of fundamental concepts used in modeling con-

secutive failures of a repairable system whose lifetime is modeled as a bivariate random

variable, and we review existing models of general repairs in two dimensions.

This chapter is organized as follows. In Section 6.1, we provide some background for

failure modeling in two dimensions. In Section 6.2, we provide a review of the literature

on modeling general repairs in two dimensions. In Section 6.3, we conclude with a brief

chapter summary.

6.1 Fundamental Concepts

6.1.1 Stochastic Counting Processes

A stochastic process is a family of random variables, denoted by {Z(t); t ∈ T }, where T is

the parameter index set of the process, and t is the vector of parameter indexes (arguments).

Stochastic processes are distinguished based on three factors: (i) their state space, denoted

by S ; (ii) their index parameter set T ; and (iii) the relationship between the randomvariables

Z(t).

Let Rd denote the real d-dimensional Euclidean space, where d ≥ 1. Then, the counting

process {N(t); t ∈ T } in d dimensions is a stochastic process whose state space is the set of

natural numbers N = {0, 1, 2, . . . } and whose index parameter set is T ⊆ Rd. For every

stochastic counting process, there exists a stochastic point process, which is equivalent to

the counting process.

Consecutive failures of a system (that is either repaired or replaced upon each failure)
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can be modeled as a stochastic process. We refer to this process as the failure process, which

could mean either the counting process or the corresponding point process.

In the context of warranty analysis, the failures of the system are often characterized by

the age variable (time) and a usage variable (such as mileage). For clarity, in explaining the

failure process, we assume that the index parameters of the counting process are time and

usage. Therefore, the index parameter set is T = R2
+ = [0,∞)× [0,∞).

When counting system failures, the relationship between the counts N(t) depend on the

type (and effect) of rectification actions performed following each failure of the system.

When at most one failure can occur in an infinitesimally small region, the failure process

in two dimensions can be modeled by the point process {(Tn,Un); n ∈ N+}, where Tn

denotes the time of the n-th failure, Un denotes the usage at the n-th failure, and N+ =

{1, 2, . . . }. For this point process, the failure points are scattered in the two-dimensional

space R
2
+, such that

0 < T1 < T2 < · · · < Tn < . . . ;

0 < U1 < U2 < · · · < Un < . . . .
(6.1)

The corresponding counting process is denoted by the sequence {N(t, u); t, u ∈ R+},

and satisfies the following properties:

• N(0, 0) = 0;

• N(t, u) ∈ N for all t > 0;

• N(t, u) = inf
(s,v)∈R2

+\[0,t]×[0,u]
N(s, v) for all t, u ∈ R+, or N(t, u) ≤ N(s, v) for all t < s

and u < v;

For simplicity, we have used the notation N(t, u) to denote the number of failures in sets

of the form (0, t]× (0, u], i.e. N(t, u) ≡ N((0, t]× (0, u]), for t, u > 0. Note that, for t < s and

u < v, the process increment N(s, v) − N(t, u) does not count the number of failures that

occur in (t, s]× (u, v]; see Figure 6.1. The number of failures in (t, s]× (u, v] is given by

N(s, v)− N(s, u)− N(t, v) + N(t, u) =: N((t, s]× (u, v]) . (6.2)

The point process {(Tn,Un); n ∈ N+} and the counting process {N(t, u); t, u ∈ R+}

contain the same information, and can be used interchangeably.

Given the ordering in (6.1), the number of failures in the set (0, t]× (0, u] can be expressed
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0

usage

time

N(t, u)

N(t, v)−N(t, u)

N(s, u)−N(t, u)

−N(t, v) +N(t, u)

N(s, v)−N(s, u)

t

u

s

v

Figure 6.1: An illustration of the increments of the failure process {N(t, u); t, u ∈ R+}.

as

N(t, u) = max{n : Tn ≤ t and Un ≤ u, for n ∈ N+} =
∞

∑
n=1

I{Tn≤t,Un≤u} , (6.3)

where the indicator random variable is defined as follows:

I{Tn≤t,Un≤u} =





1 , if Tn ≤ t and Un ≤ u
(
or (Tn,Un) ∈ (0, t]× (0, u]

)

0 , otherwise .
(6.4)

Let {NX(t); t ∈ R+} and {NY(u); u ∈ R+} denote the two marginal counting processes

with respect to time and usage respectively, where

NX(t) =
∞

∑
n=1

I{Tn≤t} and NY(u) =
∞

∑
n=1

I{Un≤u} . (6.5)

Then, the failure process in two dimensions can also be represented in terms of the marginal

processes, since

N(t, u) = min{NX(t),NY(u)} . (6.6)

The failure process can also be represented by the sequence {(Xn,Yn); n ∈ N+} of the

non-negative bivariate inter-failure lifetimes, where, for n ∈ N+, Xn+1 = Tn+1 − Tn is the

(n + 1)-th inter-failure time and Yn+1 = Un+1 − Un is the (n + 1)-th inter-failure usage.

Therefore, for n ∈ N+,

(Tn,Un) =

(
n

∑
j=1

Xj,
n

∑
j=1

Yj

)
, (6.7)

where (T1,U1) = (X1,Y1) represents the bivariate lifetime of the original system. As dis-

115



cussed earlier, repair times are assumed to be negligible and set equal to zero, and therefore,

the system is in an operational state between failures; see Section 2.2.

6.1.1.1 Cumulative Intensity Functions

The expected number of failures in (0, t]× (0, u], t, u ∈ R+, is denoted by the function Λ(., .),

and is referred to as the mean function or the cumulative intensity function corresponding to

the stochastic counting process {N(t, u); t, u ∈ R+} [16, 14]. This function is defined as

Λ(t, u) = E[N(t, u)] =
∞

∑
n=0

n P{N(t, u) = n} . (6.8)

The distribution of the random variables N(t, u), t, u > 0, can be determined using the

distributions of the failure points. Let Fn(., .) denote the distribution function of the n-th

failure point (Tn,Un), for n ∈ N+. Then since

N(t, u) ≥ n ⇒ min{NX(t),NY(u)} ≥ n

⇒ max{NX(t),NY(u)} ≥ n

⇒ NX(t) ≥ n and NY(u) ≥ n ,

(6.9)

we can express the probabilities P{N(t, u) = n}, for n ∈ N+, in terms of the distributions of

the failure points as follows:

P{N(t, u) = n} =P{N(t, u) ≥ n} − P{N(t, u) ≥ n+ 1}

=P{NX(t) ≥ n,NY(u) ≥ n} − P{NX(t) ≥ n+ 1,NY(u) ≥ n+ 1}

=P{Tn ≤ t,Un ≤ u} − P{Tn+1 ≤ t,Un+1 ≤ u}

=Fn(t, u)− Fn+1(t, u) .

(6.10)

Note that, the probability of no failure occurring in the region (0, t]× (0, u] is given by

P{N(t, u) = 0} = 1− P{N(t, u) ≥ 1} = 1− P{T1 ≤ t,U1 ≤ u} = 1− F1(t, u) . (6.11)

The expected number of failures can also be expressed in terms of the distribution func-

tions Fn(., .), n ∈ N+. Using the definition in (6.3), we have

Λ(t, u) =
∞

∑
n=1

E[I{Tn≤t,Un≤u}] =
∞

∑
n=1

P{Tn ≤ t,Un ≤ u} =
∞

∑
n=1

Fn(t, u) . (6.12)
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Alternatively, this can be derived using the definition in (6.8) as follows:

Λ(t, u) =
∞

∑
k=0

k P{N(t, u) = k} =
∞

∑
k=1

k

∑
n=1

P{N(t, u) = k}

=
∞

∑
n=1

∞

∑
k=n

P{N(t, u) = k} =
∞

∑
n=1

P{N(t, u) ≥ n}

=
∞

∑
n=1

P{Tn ≤ t,Un ≤ u} =
∞

∑
n=1

Fn(t, u) .

(6.13)

6.1.1.2 Intensity Functions

When the stochastic process is orderly, at most one failure can occur in an infinitesimally

small region. Consider the region (t, t+ dt]× (u, u+ du], for dt → 0 and du → 0; see Figure

6.2. The counting process increment N((t, t+ dt]× (u, u+ du]) is a binary random variable,

taking values in {0, 1}, such that

N((t, t+ dt]× (u, u+ du]) =





1 , with approx. probability λ(t, u) dt du

0 , with approx. probability 1− λ(t, u) dt du ,
(6.14)

where λ(t, u) is the rate of occurrence of failures (ROCOF) function of the process at time t and

usage u [14]. Formally, the ROCOF function is defined as follows:

λ(t, u) = lim
dt,du→0

P{N((t, t + dt]× (u, u+ du]) = 1}

dt du
. (6.15)

0 t + dtt

u

u+ du

time

usage

Figure 6.2: Illustration of the set (t, t+ dt]× (u, u+ du].

Since failures do not occur simultaneously, and the probability of having more than one

failure in the small region (t, t+ dt]× (u, u+ du] is of order dt du or less, the ROCOF function

is equal to the intensity function of the process (we will use the terms interchangeably). That
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is,

lim
dt,du→0

P{N((t, t+ dt]× (u, u+ du]) = 1}

dt du
= lim

dt,du→0

P{N((t, t+ dt]× (u, u+ du]) ≥ 1}

dt du
.

(6.16)

The intensity function of an orderly stochastic process is the derivative of the cumulative

intensity function of the process. That is,

λ(t, u) = lim
dt,du→0

P{N((t, t+ dt]× (u, u+ du]) ≥ 1}

dt du

= lim
dt,du→0

P{N((t, t + dt]× (u, u+ du]) = 1}

dt du
= lim

dt,du→0

E[N((t, t+ dt]× (u, u+ du])]

dt du

= lim
dt,du→0

E[N(t+ dt, u+ du)]− E[N(t+ dt, u)]− E[N(t, u+ du)] + E[N(t, u)]

dt du

= lim
dt→0

1

dt

[
lim
du→0

E[N(t+ dt, u+ du)]− E[N(t+ dt, u)]

du
− lim

du→0

E[N(t, u+ du)]− E[N(t, u)]

du

]

= lim
dt→0

1

dt

[
∂

∂u
E[N(t+ dt, u)]−

∂

∂u
E[N(t, u)]

]

=
∂2

∂t ∂u
E[N(t, u)] =

∂2

∂t ∂u
Λ(t, u) .

(6.17)

Therefore, the expected number of failures in (t, t+ dt]× (u, u+ du], expressed in terms of

the intensity function, is

Λ(t, u) =

t∫

0

u∫

0

λ(s, v) dv ds . (6.18)

LetHt,u denote the history of the process at the point (t, u). The historyHt,u is stochastic

and includes the trajectory of the failure process up to the point (t, u). Conditional on this

history, the conditional intensity function of an orderly process in two dimensions is defined

as follow:

λ̃(t, u|Ht,u) = lim
dt,du→0

P{N((t, t+ dt]× (u, u+ du]) = 1 | Ht,u}

dt du
, (6.19)

where the product λ̃(t, u|Ht,u) dt du is the approximate probability of a failure occurring

in the region (t, t+ dt]× (u, u+ du], conditional on the history of the process at time t and

usage u, for t, u > 0 [16]. The conditional intensity function at any point is stochastic, since

the history of the process is stochastic.

Note that, the intensity function can be viewed as the expected value of the conditional

intensity function with respect to the history of the process.
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6.1.2 Failure/Hazard Rate Functions

The (instantaneous) failure rate or hazard rate function, often denoted by r or h, characterizes

the first failure of the system, i.e. the original lifetime of the system (T1,U1) = (X1,Y1).

The concept of failure rate functions for bivariate (or multivariate) distributions is more

complex, and unlike the univariate case, the approach to failure rate functions is not unique

[cf. Section 3.1.1.3].

In this section, we review two of the most commonly-used failure (or hazard) rate func-

tions suggested for bivariate lifetimes: (i) the bivariate failure rate function by Basu [45];

and (ii) the hazard gradient vector by Johnson & Kotz [46]. Other multivariate generaliza-

tions of the univariate failure rate function have been proposed; see for example Shaked &

Shanthikumar [47] and Cox [48].

6.1.2.1 Bivariate Failure Rate Function

The bivariate conditional intensity function of the failure process before the first failure of

the system is given by the instantaneous bivariate failure rate function r(., .). Let (T,U) ≡

(T1,U1), denote the original lifetime (or the point of first failure) of the system. Then, the

bivariate failure rate function is defined as follows:

r(t, u) = lim
dt,du→0

P{T ≤ t+ dt,U ≤ u+ du | T > t,U > u}

dt du

= lim
dt,du→0

P{t < T ≤ t+ dt, u < U ≤ u+ du}

dt du P{T > t,U > u}
,

(6.20)

for t, u > 0. Therefore, before the first failure,

λ̃(t, u|Ht,u) = r(t, u) . (6.21)

The quantity r(t, u) dt du + o(dt du) can be viewed as the conditional probability of the

system failing for the first time in the rectangle (t, t+ dt]× (u, u+ du], given that the system

is in an operational state at time t and usage u [49, 50].

This bivariate generalization of the univariate failure rate function was introduced by

Basu [45].

Let f (., .), F(., .), and F̄(., .) denote respectively the density, distribution and reliability

functions of the point of first failure (T,U). When the density function exists, then for t, u >
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0, it is defined as follow:

f (t, u) =
∂2

∂t ∂u
F(t, u) =

∂2

∂t ∂u
F̄(t, u) . (6.22)

Then, the above bivariate failure rate function becomes

r(t, u) = lim
dt,du→0

P{t < T ≤ t+ dt, u < U ≤ u+ du}

dt du P{T > t,U > u}
,

= lim
dt,du→0

F(t+ dt, u+ du)− F(t, u+ du)− F(t+ dt, u) + F(t, u)

dt du F̄(t, u)
,

=
1

F̄(t, u)

∂2

∂t ∂u
F(t, u)

=
f (t, u)

F̄(t, u)
,

(6.23)

which resembles the univariate failure rate functionI. The bivariate distribution and relia-

bility functions, in terms of the density function, are:

F(t, u) =
∫ t

0

∫ u

0
f (s, u) du ds ; (6.24)

F̄(t, u) =
∫ ∞

t

∫ ∞

u
f (s, u) du ds . (6.25)

Note that, r(t, u) dt du is not the probability of having a system failure in (t, t + dt] ×

(u, u + du], given that no failure has occurred in (0, t] × (0, u] (i.e. N(t, u) = 0). The two

events {N(t, u) = 0} and {T > t,U > u} are not equivalent, since

P{N(t, u) = 0} =1− P{N(t, u) ≥ 1}

=1− P{T ≤ t,U ≤ u} = 1− F(t, u)

6=P{T > t,U > u} = F̄(t, u) .

(6.26)

This makes bivariate failure modeling less straight-forward than the univariate case, for

which F = 1− F̄. For bivariate probability distributions, F̄(t, u) 6= 1− F(t, u) (see Figure

6.3), instead

F̄(t, u) = 1− F(t,∞)− F(∞, u) + F(t, u) ; (6.27)

or equivalently

F(t, u) = 1− F̄(t, 0)− F̄(0, u) + F̄(t, u). (6.28)

IThe univariate failure rate function is defined as r(t) = f (t)/F̄(t), where f and F̄ are the density and
reliability functions of the time to first failure; see Section 3.1.1.3.
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Figure 6.3: Illustration of the regions of the time-usage space with respect to the point (t, u).

Note that, the marginal distribution and reliability functions of T and U, appearing in

(6.27) and (6.28), are

FT(t) := F(t,∞) = P{T ≤ t} ; F̄T(t) := F̄(t, 0) = P{T > t} ; (6.29)

FU(u) := F(∞, u) = P{U ≤ u} ; F̄U(u) := F̄(0, u) = P{U > u} . (6.30)

In the univariate case, the distribution of the time to first failure can be defined in terms

of the failure rate function. In the bivariate case however, the solution F(., .) to equation

(6.20), given the bivariate failure rate function r(., .), is not known. In the univariate case

the failure rate function uniquely determines the distribution. In the bivariate case this is

in general not the case; see Navarro [51] who discusses the conditions under which the

bivariate failure rate function r(., .) can uniquely determine the distribution F(., .).

6.1.2.2 The Hazard Gradient

One multivariate generalization of the univariate failure rate, which appears often in the

literature, is the vector-valued hazard rate proposed by Johnson and Kotz [46].

In the univariate case, the failure rate (or hazard rate) function is defined as r(t) =

− d
dt ln F̄(t), over the set {t : F̄(t) > 0}, where F̄ = 1− F is the univariate reliability function

of the time to first failure [52]. The univariate cumulative failure rate function, denoted by

R(.), is then given by

R(t) =

t∫

0

r(s) ds = − ln F̄(t) ; (6.31)
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see Section 3.1.1.3. Note that, in the univariate case, the distribution function F(.) is uniquely

determined by the failure rate function r(.).

Given the bivariate reliability function F̄(., .), one bivariate analog of the univariate cu-

mulative failure rate function is defined as follows:

H(t, u) = − ln F̄(t, u) , (6.32)

over the set {(t, u) : F̄(t, u) > 0}, and is referred to as the bivariate cumulative hazard function.

It is assumed that F̄(0, 0) = 1 (i.e. the randomvariables T andU are positivewith probability

one), and hence, H(0, 0) = 0. Since the reliability function F̄(t, u) is non-increasing in its

arguments, the cumulative hazard function H(t, u) is non-decreasing in t, u ≥ 0 (i.e. its

partial derivatives with respect to t and u are both non-negative, for all t, u ≥ 0) [46, 52].

The hazard gradient, introduced by Johnson and Kotz [46], is the gradient vector of the

bivariate cumulative hazard function H(., .) and is denoted by h(., .), i.e. h = ▽H. Defined

over {(t, u) : F̄(t, u) > 0}, the hazard gradient is given by

h(t, u) =

(
∂

∂t
H(t, u),

∂

∂u
H(t, u)

)
. (6.33)

The hazard gradient is a vector of the conditional failure rate functions hT(., .) and hU(., .),

where

hT(t, u) := lim
dt→0

P{T ≤ t+ dt | T > t,U > u}

dt
= lim

dt→0

F̄(t, u)− F̄(t+ dt, u)

dt F̄(t, u)

=
1

F̄(t, u)
lim
dt→0

F̄(t, u)− F̄(t+ dt, u)

dt
= −

1

F̄(t, u)

∂

∂t
F̄(t, u)

=−
∂

∂t
ln F̄(t, u) =

∂

∂t
H(t, u) ;

(6.34)

and similarly,

hU(t, u) := lim
du→0

P{U ≤ u+ du | T > t,U > u}

du
=

∂

∂u
H(t, u) . (6.35)

Therefore, hT(t, u) dt can be interpreted as the approximate probability of the system failing

for the first time at time t, given that the system usage is greater than u units; see Figure

6.4 (left). Similarly, hU(t, u) du can be interpreted as the approximate probability that the

system fails for the first time at usage u, given that it has not failure prior to time t; see

Figure 6.4 (right).
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Figure 6.4: Illustration of the sets associated with the components of the hazard gradient vector,
given in (6.34) and (6.35).

6.1.3 Marginal, Conditional and Bivariate Distributions

The hazard gradient uniquely determines the bivariate distribution– the bivariate lifetime

distribution can be constructed using the components of the hazard gradient. In the follow-

ing sections, we will see that the marginal and conditional distributions (used to define the

bivariate distribution) can be derived from the hazard gradient vector.

6.1.3.1 Marginal Distributions

The marginal failure rate functions of the variables T and U can be derived from the com-

ponents of the hazard gradient vector [52, 53].

Let F̄T(.) and F̄U(.) denote the marginal reliability functions of T and U respectively; see

(6.29) and (6.30). Then, the corresponding marginal failure rate functions, denoted by rT(.)

and rU(.) respectively, are given by

rT(t) =
− ∂

∂t F̄T(t)

F̄T(t)
= −

∂

∂t
ln F̄T(t)

= −
∂

∂t
ln F̄(t, 0) =

∂

∂t
H(t, 0) = hT(t, 0) ;

(6.36)

and similarly,

rU(u) =
− ∂

∂u F̄U(u)

F̄U(u)
= hU(0, u) . (6.37)

When the corresponding densities, denoted by fT(.) and fU(.) exist, then the marginal fail-

ure rate functions can be expressed in terms of the marginal densities as follows:

rT(t) = fT(t)/F̄T(t) and rU(u) = fU(u)/F̄U(u) . (6.38)
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6.1.3.2 Conditional Distributions

The two components of the hazard gradient vector represent the failure rates of the condi-

tional random variables [T|U > u] and [U|T > t].

Let fT(.|U > u), F̄T(.|U > u) and rT(.|U > u) denote the density, reliability and failure

rate functions of T conditional onU > u. Similarly, let fU(.|T > t), F̄U(.|T > t) and rU(.|T >

t) denote the corresponding functions for U conditional on T > t.

When the corresponding densities exist, then the conditional failure rate functions can

be expressed in terms of these functions as follows:

rT(t|U > u) =
fT(t|U > u)

F̄T(t|U > u)
=

∂
∂tFT(t|U > u)

F̄T(t|U > u)

=
1

F̄T(t|U > u)
lim
dt→0

P{t ≤ T ≤ t+ dt|U > u}

dt

= lim
dt→0

F̄(t,u)
F̄U(u)

− F̄(t+dt,u)
F̄U(u)

dt F̄(t,u)
F̄U(u)

= lim
dt→0

F̄(t, u)− F̄(t+ dt, u)

dt F̄(t, u)

= −
∂

∂t
ln F̄(t, u) = hT(t, u) ;

(6.39)

and similarly,

rU(u|T > t) =
fU(u|T > t)

F̄U(u|T > t)
= hU(t, u) . (6.40)

Then, the corresponding conditional reliability functions can be defined as follows:

P{T > t|U > u} = F̄T(t|U > u) = e
−

t∫
0

rT(s|U>u) ds
= e

−
t∫
0

hT(s,u) ds
, (6.41)

and

P{U > u|T > t} = F̄U(u|T > t) = e
−

u∫
0

rU(v|T>t) dv
= e

−
u∫
0

hU(t,v) dv
. (6.42)

6.1.3.3 Bivariate Distributions

The reliability function F̄(., .) of the bivariate random variable (T,U) can be constructed

using the relationship between the marginal failure rate functions and the components of

the hazard gradient vector [52]. From (6.39) and (6.40), we have

rT(t|U > u) dt = hT(t, u) dt ≈ P{t ≤ T ≤ t+ dt|T > t,U > u} , (6.43)
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and

rU(u|T > t) du = hU(t, u) du ≈ P{u ≤ U ≤ u+ du|T > t,U > u} . (6.44)

From the relationships between the components of the hazard gradient and the conditional

and marginal distributions, it follows that

F̄(t, u) = F̄T(t|U > u) F̄U(u) = e
−

t∫
0

rT(s|U>u) ds
e
−

u∫
0

rU(v) dv

= e
−

(
t∫
0

hT(s,u) ds+
u∫
0

hU(0,v) dv

)

;

(6.45)

or equivalently,

F̄(t, u) = F̄U(u|T > t) F̄T(t) = e
−

u∫
0

rU(v|T>t) dv
e
−

t∫
0

rT(s) ds

= e
−

(
u∫
0

hU(t,v) dv+
t∫
0

hT(s,0) ds

)

.

(6.46)

Therefore, the hazard gradient vector completely determines the bivariate distribution [46].

Note that, from the definitions of the hazard gradient components, it follows that:

∂

∂u
hT(t, u) =

∂

∂t
hU(t, u) = −

∂2

∂t ∂u
ln F̄(t, u) . (6.47)

Since H(t, u) = − ln F̄(t, u), and therefore, F̄(t, u) = exp
{
− H(t, u)

}
, the bivariate cu-

mulative hazard function H(., .) can be expressed in terms of the components of the hazard

gradient as follows:

H(t, u) =

t∫

0

hT(s, u) ds+

u∫

0

hU(0, v) dv =

u∫

0

hU(t, v) dv+

t∫

0

hT(s, 0) ds . (6.48)

Note that, (6.47) is the second order mixed partial derivative of the bivariate cumulative

hazard function H(., .); refer to Marshall [52] for more on the hazard gradient.

6.1.4 Stochastic Aging Classification

Many bivariate aging concepts analogous to the univariate aging classes have appeared in

the reliability literature, and in this section, we will discuss concepts relevant to our study.

As in the univariate case, bivariate aging classes can be based on failure rate, condi-

tional reliability or mean residual life. Although most classes have been defined for multi-
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component systems, we will adapt the definitions to suit reliability classes for a single com-

ponent system whose lifetime is defined in terms of its age and usage.

6.1.4.1 Classes based on Conditional Reliability

A bivariate analogue of the univariate conditional reliability function F̄(t+ x)/F̄(t) is given

by
F̄(t+ s, u+ v)

F̄(t, u)
= P{T > t+ s,U > u+ v|T > t,U > u} , (6.49)

for t, u ≥ 0 and s, v > 0. This function is interpreted as the probability of a system surviving

s units of time and v units of usage, given that the system has survived up to time t and

usage u. Note that, when t = u = 0, then the above function reduces to the reliability

function of the system at time s and usage v, i.e. (6.49) becomes F̄(s, v), for s, v ≥ 0. We will

refer to this function as the BCR (bivariate conditional reliability) function.

In the univariate case, for an IFR (DFR) distribution, the corresponding conditional reli-

ability function F̄(t+ x)/F̄(t) is decreasing (increasing) in t, for all t ≥ 0 and each x ≥ 0. An

analogous definition of an IFR (DFR) distribution of a bivariate random variable, introduced

by Harris [54], is as follows.

Definition 6.1. A bivariate lifetime distribution is bivariate increasing (decreasing) failure rate

(BIFR (BDFR)), iff the BCR function in (6.49) is decreasing (increasing) in t and u, for all t, u ≥ 0

and each s, v ≥ 0.

Let ϕF̄ denote the vector of the two conditional reliability functions derived from the

BCR function in (6.49) by setting v = 0 and s = 0 respectively. That is, for t, u ≥ 0 and

s, v ≥ 0, let

ϕF̄(s, v; t, u) :=

(
F̄(t+ s, u)

F̄(t, u)
,
F̄(t, u+ v)

F̄(t, u)

)
, (6.50)

where
F̄(t+ s, u)

F̄(t, u)
= P{T > t+ s|T > t,U > u} ; (6.51)

and
F̄(t, u+ v)

F̄(t, u)
= P{U > u+ v|T > t,U > u} . (6.52)

If a distribution F is BIFR (BDFR), then it follows that these two conditional reliability func-

tions are also decreasing (increasing) functions of t and u, for all t, u ≥ 0 and each s, v ≥ 0.
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This, in turn, implies that the corresponding conditional probabilities of failure,

P{T ≤ t+ dt|T > t,U > u} = 1−
F̄(t+ dt, u)

F̄(t, u)
≈ hT(t, u) dt , (6.53)

and

P{U ≤ u+ du|T > t,U > u} = 1−
F̄(t, u+ du)

F̄(t, u)
≈ hU(t, u) du , (6.54)

where s and v have been replaced by dt and du, are increasing (decreasing) in t and u, for

all t, u ≥ 0 and each dt, du ≥ 0. Therefore, for a BIFR (BDFR) distribution, the components

hT(t, u) and hU(t, u) of the hazard gradient vector are both increasing (decreasing) in t and

u, for all t, u ≥ 0.

The above definition of BIFR (BDFR) class of distributions implies that the marginal

distributions of T and U are both IFR (DFR), since when u = v = 0,

F̄(t+ s, u+ v)

F̄(t, u)
=

F̄T(t+ s)

F̄T(t)
; (6.55)

and when t = s = 0,
F̄(t+ s, u+ v)

F̄(t, u)
=

F̄U(u+ v)

F̄U(u)
. (6.56)

The BIFR (BDFR) class in Definition 6.1, in the context of system reliability, can be used

to model the reliability of systems that deteriorate (improve) with time and use. If a system

deteriorates (improves) with time and use, then the system when it is new is in a better

(worse) condition than a used system. This can be modeled using the following class of

bivariate distributions (the condition is weaker than that of Definition 6.1).

Definition 6.2. The class of bivariate lifetime distribution is bivariate new-better-than-used (BNBU)

(bivariate new-worse-than-used (BNWU)), iff

F̄(t+ s, u+ v)

F̄(t, u)
≤ (≥)

F̄(0+ s, 0+ v)

F̄(0, 0)
= F̄(s, v) , (6.57)

for all t, u ≥ 0 and each s, v ≥ 0.

Note that, Definitions 6.1 and 6.2 are both based on the BCR function in (6.49). Defini-

tions of bivariate IFR (DFR) distributions based on variants of (6.49) and also the conditional

reliability vector in (6.50) have been suggested; see for instance Lai & Xie [18]. We will how-

ever use Definition 6.1, since it is suitable for this study. Henceforth, wewill use BIFR/BDFR

to refer exclusively to distributions in the class in Definition 6.1.
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Basu’s failure rate function and BIFR/BDFR classes. As mentioned above, the distribu-

tion being BIFR (BDFR) implies that the corresponding hazard gradient components are

increasing (decreasing)– it does not however imply that the bivariate failure rate function

r(., .) (as defined by Basu [45]) is increasing (decreasing) in t, u ≥ 0. In terms of the BCR

function in (6.49),

r(t, u) dt du ≈ P{T ≤ t+ dt,U ≤ u+ du|T > t,U > u}

=
F(t+ dt, u+ du)− F(t+ dt, u)− F(t, u+ du) + F(t, u)

F̄(t, u)

=
F̄(t, u)− F̄(t+ dt, u)− F̄(t, u+ du) + F̄(t+ dt, u+ du)

F̄(t, u)

= 1−
F̄(t+ dt, u)

F̄(t, u)
−

F̄(t, u+ du)

F̄(t, u)
+

F̄(t+ dt, u+ du)

F̄(t, u)
.

(6.58)

When the BCR function is decreasing (i.e. F is BIFR), then

F̄(t+ dt, u+ du)

F̄(t, u)
≤

F̄(t+ dt, u)

F̄(t, u)
(6.59)

and
F̄(t+ dt, u+ du)

F̄(t, u)
≤

F̄(t, u+ du)

F̄(t, u)
, (6.60)

for all t, u ≥ 0 and each dt, du ≥ 0. In other words, for any t, u ≥ 0 and each dt, du > 0, the

BCR function at any point is bounded from above by the minimum of the components of

the conditional reliability vector ϕF̄(dt, du; t, u):

F̄(t+ dt, u+ du)

F̄(t, u)
≤ min

(
F̄(t+ dt, u)

F̄(t, u)
,
F̄(t, u+ du)

F̄(t, u)

)
. (6.61)

Rearranging the terms in (6.58), and using (6.61), we get

r(t, u) dt du ≈ 1−
F̄(t+ dt, u)

F̄(t, u)
−

[
F̄(t, u+ du)

F̄(t, u)
−

F̄(t+ dt, u+ du)

F̄(t, u)

]

≤ 1−
F̄(t+ dt, u)

F̄(t, u)
≈ hT(t, u) dt ;

(6.62)

and similarly,

r(t, u) dt du ≤ 1−
F̄(t, u+ du)

F̄(t, u)
≈ hU(t, u) du . (6.63)

Therefore, we can conclude that, when F is BIFR, then for all t, u ≥ 0,

r(t, u) dt du ≤ min
(
hT(t, u) dt, hU(t, u) du

)
. (6.64)
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When the BCR function is increasing (i.e. F is BDFR), then

F̄(t+ dt, u+ du)

F̄(t, u)
≥

F̄(t+ dt, u)

F̄(t, u)
(6.65)

and
F̄(t+ dt, u+ du)

F̄(t, u)
≥

F̄(t, u+ du)

F̄(t, u)
, (6.66)

for all t, u ≥ 0 and each dt, du ≥ 0. In other words, for any t, u ≥ 0 and each dt, du > 0, the

BCR function at any point is bounded from below by the maximum of the components of

the conditional reliability vector ϕF̄(dt, du; t, u):

F̄(t+ dt, u+ du)

F̄(t, u)
≥ max

(
F̄(t+ dt, u)

F̄(t, u)
,
F̄(t, u+ du)

F̄(t, u)

)
. (6.67)

Rearranging the terms in (6.58), and using (6.67), we get

r(t, u) dt du ≈ 1−
F̄(t+ dt, u)

F̄(t, u)
+

[
F̄(t+ dt, u+ du)

F̄(t, u)
−

F̄(t, u+ du)

F̄(t, u)

]

≥ 1−
F̄(t+ dt, u)

F̄(t, u)
≈ hT(t, u) dt ;

(6.68)

and similarly,

r(t, u) dt du ≥ 1−
F̄(t, u+ du)

F̄(t, u)
≈ hU(t, u) du . (6.69)

Therefore, we can conclude that, when F is BDFR, then for all t, u ≥ 0,

r(t, u) dt du ≥ max
(
hT(t, u) dt, hU(t, u) du

)
. (6.70)

6.1.4.2 Classes based on Failure Rate

The bivariate reliability function F̄(., .) cannot in general be determined by the bivariate

failure rate function r(., .) by Basu [45]. The hazard gradient vector, however, uniquely

determines the distribution, and is often usedwhen defining classes of distributions in terms

of failure/hazard rate. In terms of the hazard gradient vector, we have the following class

of distributions.

Definition 6.3. The distribution F of the bivariate random variable (T,U) is bivariate increasing

(decreasing) failure rate (BIFR2 (BDFR2)), iff the hazard gradient component hT(t, u) is, for each

u, increasing in t, and the hazard gradient component hU(t, u) is, for each t, increasing in u, for all

t, u ≥ 0.
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That is, F is BIFR2 (BDFR2), iff for each u ≥ 0,

∂

∂t
hT(t, u) =

∂2

∂t2
H(t, u) ≥ (≤) 0 , ∀t ≥ 0 ; (6.71)

and, for each t ≥ 0,

∂

∂u
hU(t, u) =

∂2

∂u2
H(t, u) ≥ (≤) 0 , ∀u ≥ 0 . (6.72)

As in the univariate case, this definition is equivalent to the components of the con-

ditional reliability vector in (6.50) having the opposite monotonicity of the corresponding

components of the hazard gradient vector, since

(
1−

F̄(t+ dt, u)

F̄(t, u)
, 1−

F̄(t, u+ du)

F̄(t, u)

)
≈
(
hT(t, u) dt, hU(t, u) du

)
; (6.73)

see Section 3.1.2 for the analogous univariate definitions.

As discussed earlier, F being BIFR (BDFR) implies that the components of the conditional

reliability vector are decreasing (increasing) in both arguments. Therefore, F being BIFR

(BDFR) implies that F is also BIFR2 (BDFR2).

The BCR function can be expressed in terms of the components of the hazard gradient

vector as follows:

F̄(t+ dt, u+ du)

F̄(t, u)
=

e−H(t+dt,u+du)

e−H(t,u)
=

e
−

(
t+dt∫
0

hT(s,u+du) ds+
u+du∫
0

hU(0,v) dv

)

e
−

(
t∫
0

hT(s,u) ds+
u∫
0

hU(0,v) dv

)

= e
−

(
t+dt∫
0

hT(s,u+du) ds−
t∫
0

hT(s,u) ds

)

e
−

(
u+du∫
0

hU(0,v) dv−
u∫
0

hU (0,v) dv

)

= e
−

(
t+dt∫
0

hT(s,u+du) ds−
t∫
0

hT(s,u) ds

)

e
−

u+du∫
u

hU(0,v) dv
;

(6.74)

or equivalently,

F̄(t+ dt, u+ du)

F̄(t, u)
= e

−

(
u+du∫
0

hU(t+dt,v) dv−
u∫
0

hU(t,v) dv

)

e
−

t+dt∫
t

hT(s,0) ds
. (6.75)

Note that, the distribution F being BIFR2 (BDFR2) (Definition 6.3) does not imply that F

is BIFR (BDFR) (Definition 6.1).
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6.1.4.3 Classes based on Mean Residual Life

Let µ(., .) denote the vector of conditional mean residual time and usage functionsII. These

functions correspond to the components of the conditional reliability vector in (6.50), and

we denote them by µT(., .) and µU(., .) respectively. Then, for t, u ≥ 0,

µ(t, u) :=
(
µT(t, u), µU(t, u)

)
. (6.76)

The function µT(t, u) is the conditional mean residual time (MRT) at t, given that the system

is in an operational state at (t, u), i.e.

µT(t, u) = E[T − t|T > t,U > u] =

∞∫

0

F̄(t+ s, u)

F̄(t, u)
ds

=

∞∫

0

e
−

(
t+dt∫
0

hT(x,u) dx+
u∫
0

hU(0,v) dv

)

e
−

(
t∫
0

hT(x,u) dx+
u∫
0

hU(0,v) dv

) ds =

∞∫

0

e
−

t+s∫
t

hT(x,u) dx
ds =

∞∫

0

e−
(
H(t+s,u)−H(t,u)

)
ds .

(6.77)

Similarly, µU(t, u) is the conditional mean residual usage (MRU) at u, given that the system

is in an operational state at (t, u), i.e.

µU(t, u) = E[U − u|T > t,U > u] =

∞∫

0

F̄(t, u+ v)

F̄(t, u)
dv

=

∞∫

0

e
−

u+v∫
u

hU(t,y) dy
dv =

∞∫

0

e−
(
H(t,u+v)−H(t,u)

)
dv .

(6.78)

The conditional MRL function for each variable reduces to its marginal MRL function

when the other variable is simply greater than 0. That is, µT(t, 0) = µT(t) and µU(0, u) =

µU(u), where µT(.) and µU(.) denote the marginal MRT and MRU functions respectively.

As with the hazard gradient vector, the conditional MRL vector µ(, , .) also uniquely

determines the bivariate distribution [55, 53]. The relationship between the components

of the hazard gradient vector and the corresponding components of the conditional MRL

vector is the same as that of the univariate case, where one can be described solely in terms

of the other; see Section 3.1.2.3 for the univariate case.

The derivatives of the conditional MRT and MRU functions in (6.77) and (6.78) are re-

IIWe may use the term “mean residual life” to refer to the expected residual of any non-negative random
variable– for instance, usage.
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spectively given by

∂

∂t
µT(t, u) =

∂

∂t

∞∫

0

e−
(
H(t+s,u)−H(t,u)

)
ds

=

∞∫

0

e−
(
H(t+s,u)−H(t,u)

)
∂

∂t

[
− H(t+ s, u) + H(t, u)

]
ds

=

∞∫

0

e−
(
H(t+s,u)−H(t,u)

) [
hT(t, u)− hT(t+ s, u)

]
ds

= hT(t, u)

∞∫

0

e−
(
H(t+s,u)−H(t,u)

)
ds−

∞∫

0

e−
(
H(t+s,u)−H(t,u)

)
hT(t+ s, u) ds

= hT(t, u) µT(t, u)−
1

e−H(t,u)

∞∫

0

e−H(t+s,u) hT(t+ s, u) ds

= hT(t, u) µT(t, u) +
1

e−H(t,u)

∞∫

0

∂

∂t
e−H(t+s,u) ds

= hT(t, u) µT(t, u) +
1

e−H(t,u)

∞∫

t

∂

∂x
e−H(x,u) dx

= hT(t, u) µT(t, u) +
1

e−H(t,u)

(
e−H(∞,u) − e−H(t,u)

)

= hT(t, u) µT(t, u)− 1 ,

(6.79)

and

∂

∂u
µU(t, u) = hU(t, u) µU(t, u)− 1 . (6.80)

Therefore, one can derive the hazard gradient vector h(., .) from the components of the

conditional MRL vector µ(., .) using the following relationships:

(
hT(t, u), hU(t, u)

)
=

(
1+ ∂

∂tµT(t, u)

µT(t, u)
,
1+ ∂

∂uµU(t, u)

µU(t, u)

)
. (6.81)

Two classes of bivariate lifetime distributions based on the conditional MRL vector, anal-

ogous to the univariate classes, are as follows.

Definition 6.4. The class of lifetime distribution is bivariate increasing (decreasing) mean residual

life (BIMRL (BDMRL)), iff the two components µT(t, u) and µU(t, u) of the conditional MRL vector

are increasing (decreasing) in t and u respectively, for all t, u ≥ 0.

Definition 6.5. The class of distribution is bivariate new-better-than-used in expectation (BNBUE)
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(new-worse-than-used in expectation (BNWUE)), iff, for all t, u ≥ 0 and each s, v ≥ 0,

µT(t, u) = E[T − t|T > t,U > u] ≤ (≥) µT(0, u) = E[T|U > u] (6.82)

and

µU(t, u) = E[U − u|T > t,U > u] ≤ (≥) µU(t, 0) = E[U|T > t] . (6.83)

The chains of implications are similar to those defined in the univariate case [cf. (3.25);

also see Figure 3.5]. That is,

F ∈ BIFR2 (BDFR2) ⇒ F ∈ BNBU (BNWU) ⇒ F ∈ BNBUE (BNWUE) ;

F ∈ BIFR2 (BDFR2) ⇒ F ∈ BDMRL (BIMRL) ⇒ F ∈ BNBUE (BNWUE) .
(6.84)

Note that, F ∈ BIFR (BDFR) implies F ∈ BIFR2 (BDFR2), and therefore the other implica-

tions in (6.84) follow. We discussed some of these implications in the preceding sections (see

Sections 6.1.4.1 and 6.1.4.2)– the proofs for the others follow from the relationships between

the components of the hazard gradient vector, the conditional reliability vector and theMRL

vector; see also the proofs for the univariate case in Section 3.1.2.3. Refer to Lai & Xie [18]

for these and more on classes of bivariate distributions.

6.1.5 Partial Orderings of Distributions

In this section, we provide a brief review of partial orderings of bivariate lifetime distribu-

tions in terms of the BCR function, the conditional reliability vector, the hazard gradient and

the conditional MRL vector.

6.1.5.1 Partial Ordering based on Conditional Reliability

A partial ordering of bivariate random variables can be defined in terms of the BCR function

in (6.49) as follows.

Definition 6.6. The bivariate random variable (T,U) with reliability function Ḡ(., .) is stochas-

tically smaller (larger) than the bivariate random variable (X,Y) with reliability function F̄(., .),

iff
Ḡ(t+ s, u+ v)

Ḡ(t, u)
≤ (≥)

F̄(t+ s, u+ v)

F̄(t, u)
, (6.85)

for all t, u ≥ 0 and each s, v ≥ 0.
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A weaker partial ordering can be defined in terms of the conditional reliability vector in

(6.50) as follows.

Definition 6.7. The bivariate random variable (T,U) with reliability function Ḡ(., .) is condition-

ally stochastically smaller (larger) than the bivariate random variable (X,Y) with reliability function

F̄(., .), iff

Ḡ(t+ s, u)

Ḡ(t, u)
≤ (≥)

F̄(t+ s, u)

F̄(t, u)
and

Ḡ(t, u+ v)

Ḡ(t, u)
≤ (≥)

F̄(t, u+ v)

F̄(t, u)
, (6.86)

for all t, u ≥ 0 and each s, v ≥ 0.

6.1.5.2 Partial Ordering based on Hazard Rate

A partial ordering of bivariate random variables can be defined in terms of the components

of the hazard gradient vector in (6.33) as follows.

Definition 6.8. The bivariate random variable (T,U), with hazard gradient components hT(., .)

and hU(., .), is conditionally stochastically smaller (larger) in hazard rate ordering than the bivariate

random variable (X,Y), with hazard gradient components hX(., .) and hY(., .), iff

hT(t, u) ≥ (≤) hX(t, u) and hU(t, u) ≥ (≤) hY(t, u) , (6.87)

for all t, u ≥ 0 and each s, v ≥ 0.

See (6.34) and (6.35) for the definitions of the components of the hazard gradient vector.

6.1.5.3 Partial Ordering based on Mean Residual Life

A partial ordering of bivariate random variables can be defined in terms of the components

of the conditional MRL vector in (6.76) as follows.

Definition 6.9. The bivariate random variable (T,U), with conditional MRL vector components

µT(., .) and µU(., .), is conditionally stochastically smaller (larger) in mean residual ordering than

the bivariate random variable (X,Y), with conditional MRL vector components µX(., .) and µY(., .),

iff

µT(t, u) ≤ (≥) µX(t, u) and µU(t, u) ≤ (≥) µY(t, u) , (6.88)

for all t, u ≥ 0 and each s, v ≥ 0.

See (6.77) and (6.78) for the definitions of the components of the conditional MRL vector.
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6.2 Review of Repair Models

When modeling the effect of general repairs in two dimensions (here, time and usage),

where one dimension is time and the other usage, one must take into account the relation-

ship (dependence) between usage and time. Based on the type of relationship, two ap-

proaches have been suggested for modeling consecutive failures in two dimensions, where

failures of the system are rectified by general repair: (i) the one-dimensional approach; and

(ii) the two-dimensional approach.

In this section, wewill briefly review each of the two approaches and provide an overview

of models suggested for various types of general repair.

Recall that, general repairs are categorized as perfect, imperfect and minimal, with per-

fect repair being most effective, minimal repair being least effective and imperfect repair

having effectiveness between those of the minimal and perfect repairs; see Section 2.2.

6.2.1 The One-dimensional Approach

The one dimensional approach involves reducing the problem of modeling consecutive fail-

ures of a system in two dimensions to modeling its failures in one dimension by assuming

a relationship between the age and the usage of the system.

One suggested modeling method is to combine the two dimensions (time and usage) to

form a new composite dimension, and define the failure process in this single dimension.

This method is rarely used, since there is some loss of information when combining the two

dimensions, as there may be more than one (time, usage) point yielding the same value in

the new dimension and an equivalence is implied that requires assumptions [56, 57].

Another method, which makes up the bulk of the reliability literature on modeling con-

secutive failures rectified by general repair, is to assume that usage is a function of age with

a usage rate parameter that is a random variable. By conditioning on the value of this us-

age rate (whose distribution is assumed to be known), the process of consecutive failures in

two dimensions is effectively reduced to a process in one dimension, thus simplifying the

modeling process. Univariate general repair models are then applied to model the effect of

general repairs; see Section 3.2 for univariate repair models. The conditioning on the usage

rate is later removed to derive the distributions associated with the unconditional failure

process in two dimensions.

Let R denote this usage rate, whose distribution function we denote by FR(.). The rela-
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tionship between time and usage is assumed to be linear, so that M(t) = Rt, where M(t)

denotes the cumulative usage of the system at calendar time t. Therefore, the associated

point process (or sequence of failure points) is given by {(Tn,Un) = (Tn, RTn); n ∈ N+},

where Un ≡ M(Tn), for n ∈ N+.

Let {N(t, u); t, u ∈ R+} denote the associated counting process in two dimensions, and

let {NX(t|r); t ∈ R+} denote the counting process along the x-axis, given the usage rate

R = r. Therefore, N(t, u) counts the number of failures in the region (0, t] × (0, u], and

NX(t|r) counts the number of failures in the interval (0, t], for a system used at rate R = r.

Then, the distribution of the count N(t, u) is derived as follows:

P{N(t, u) = n} =
∫ u/t

0
P{NX(t|r) = n} dFR(r) +

∫ ∞

u/t
P{NX(τ|r) = n} dFR(r) , (6.89)

where τ := u/r is the earliest time at which usage exceeds u units, when r > u/t; see Figure

6.5.

0

usage

time

u

t

r ≤ u

t

0

usage

time

u

t

r > u

t

τ

Figure 6.5: Illustration of realizations of the usage rate R = r, for r ≤ u/t (left) and r > u/t (right).

The corresponding expected number of failures in the region (0, t]× (0, u] is derived as

follows:

E[N(t, u)] =

u/t∫

0

E[NX(t|r)] dFR(r) +

∞∫

u/t

E[NX(τ|r)] dFR(r) (6.90)

where E[NX(t|r)] is the expected number of failures in the interval (0, t] for a system used at

rate R = r; we will discuss this approach further in Chapter 8.

Let λ̃r(t|Ht) denote the conditional intensity function of the process {NX(t | r); t ∈ R+}

at time t, conditional on the process history Ht. Then, the effect of a general repair can

be incorporated into this conditional intensity function, since it uniquely determines the

probability structure of the conditional counting process in one dimension; see Chapter 3
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for univariate general repair models.

When all repairs are minimal, {NX(t|r); t ∈ R+} is a Poisson process with conditional

intensity function equal to the conditional failure rate function of the original lifetime (time

of first failure) of a system used at rate R = r. We denote this failure rate function by ρ(.|r).

Then, for the Poisson process,

λ̃r(t|Ht) = ρ(t|r) , (6.91)

for all t ≥ 0.

When all repairs are perfect (replacements), then {NX(t|r); t ∈ R+} is a renewal process

in one dimension, with inter-failure lifetimes all having the following conditional distribu-

tion function:

F(t|r) = 1− e−
∫ t
0 ρ(s|r) ds , (6.92)

where ρ(.|r) is the failure rate function of the original system lifetime conditional on R = r.

The conditional intensity function for this process is given by

λ̃r(t|Ht) = ρ(t− TNX(t−|r)|r) , (6.93)

where TNX(t−|r) is the last failure of the system before time t, given that the system is used at

rate R = r.

This one-dimensional approach to modeling consecutive failures of a repairable system

in two dimensions has been studied extensively; see Blishke & Murthy [2] for more on this

approach.

One-dimensional approaches with other functional forms of the time-usage relationship

have been suggested; see for instance Yang & Nachlas [58], Yang et al. [59] and Eliashberg

et al. [60].

6.2.2 The Two-dimensional Approach

Where the one-dimensional approach assumes that usage is a function of age, the two-

dimensional approach assumes only a correlation between age and usage. Then, the lifetime

of the original system is modeled by some bivariate lifetime distribution which describes

the correlation structure between age and usage. Following the first failure of the system,

general repair models are applied to model the distribution of the successive bivariate inter-

failure lifetimes of the repairable system.
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The two-dimensional approach, due to its complexity, has not been investigated or ap-

plied as much as the one-dimensional approach, especially in modeling consecutive failures

followed by imperfect repairs.

In this section, we review bivariate general repair models and stochastic point processes

in two dimensions suggested for the three types of general repair.

6.2.2.1 Perfect Repair Process in Two Dimensions

The effect of a perfect repair is defined to be equivalent to that of a replacement of the failed

system with a new and identical system, when the lifetime distribution is assumed to be

BIFR (see Definition 6.1 for the BIFR (BDFR) class of distributions). The BIFR class of lifetime

distributions is used to model the lifetime of a systemwhose working condition deteriorates

with age and usage– therefore, the system is at its best working condition at the start of its

lifetime (i.e. when its age and usage are both zero). Then, it is reasonable to assume that

a perfect repair restores the working condition of the system to this point. Therefore, the

consecutive failures of a repairable system having a BIFR lifetime distribution, where all

failures are rectified by perfect repair, is modeled as a renewal process in two dimensions; see

Hunter [61, 62].

The theory of renewal processes in both one dimension and two dimensions is well es-

tablished. In this section, we will briefly review some basic results of renewal theory in two

dimensions; see Section 3.2.1 for the process in one dimension.

Suppose that failures of a system are followed by immediate and instantaneous perfect

repairs (or replacements). Note that, since the repairs are immediate and instantaneous, the

failure points are the points at which the perfect repairs are performed. Then, the consecu-

tive perfect repairs of the original system constitute a renewal process.

A stochastic counting process {N(t, u); t, u ∈ R+} is a renewal process in two dimen-

sions, if the sequence of bivariate inter-failure lifetimes {(Xn,Yn); n ∈ N+} are independent

and identically distributed random variables with some distribution F. That is, P{Xn ≤

x,Yn ≤ y} = F(x, y), for all n ∈ N+, where F(., .) denotes the distribution function of the

bivariate lifetime of the original system (i.e. the point of first failure) [61]. For the sequence

of failure points {(Tn,Un); n ∈ N+}, the random variable

N(t, u) = max{n : Tn ≤ t and Un ≤ u; n ∈ N+} (6.94)

counts the number of renewals (perfect repairs) of the system in the region (0, t] × (0, u],

138



and at t = u = 0, N(0, 0) = 0. The distribution of the count N(t, u) is derived using the

distributions of the failure points {(Tn,Un); n ∈ N+} at the point (t, u), for t, u ≥ 0; see

Section 6.1.1.1.

As before, let Fn(., .) denote the distribution function of the failure point (Tn,Un), for

n ∈ N+. Then, the distribution function of the first failure point (T1,U1) is given by

F1(t, u) = P{T1 ≤ t,U1 ≤ u} = P{X1 ≤ t,Y1 ≤ u} = F(t, u) . (6.95)

Following the first perfect repair (or replacement) of the system at the point (T1,U1), the

distribution of the second failure point (T2,U2) is given by

F2(t, u) = P{T2 ≤ t,U2 ≤ u} = P{T1 + X2 ≤ t,U1 + Y2 ≤ u}

= P{X2 ≤ t− T1,Y2 ≤ u−U1}

=

t∫

0

u∫

0

P{X2 ≤ t− t1,Y2 ≤ u− u1|T1 = t1,U1 = u1} dF1(t1, u1)

=

t∫

0

u∫

0

F(t− t1, u− u1) dF1(t1, u1) =: F∗∗F1(t, u) ,

(6.96)

where F∗∗F1(., .) denotes the convolution of F with F1(= F). In general, the distribution of

the (n+ 1)-th failure point (Tn+1,Un+1) is derived as follows:

Fn+1(t, u) = P{Tn+1 ≤ t,Un+1 ≤ u} = P{Tn + Xn+1 ≤ t,Un + Yn+1 ≤ u}

= P{Xn+1 ≤ t− Tn,Yn+1 ≤ u−Un}

=

t∫

0

u∫

0

P{Xn+1 ≤ t− tn,Yn+1 ≤ u− un|Tn = tn,Un = un} dFn(tn, un)

=

t∫

0

u∫

0

F(t− tn, u− un) dFn(tn, un) := F∗∗Fn(t, u) ,

(6.97)

for t, u ≥ 0, where F∗∗Fn(., .) denotes the convolution of F with Fn, for n ∈ N+. With the

renewal process, the conditional distribution of the (n + 1)-th failure point (Tn+1,Un+1),

given all previous renewal (failure) points, depends only on the point (Tn,Un) = (tn, un) of

the last renewal before it, for n ∈ N+; see Hunter [61].

Note that, with the renewal process, the marginal point processes {Tn; n ∈ N+} and

{Un; n ∈ N+} are both renewal processes. The corresponding counting processes are de-

noted by {NX(t); t ∈ R+} and {NY(u); u ∈ R+}, respectively– NX(t) is the number of re-
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newals in the time interval (0, t], and NY(u) is the number of renewals in the usage interval

(0, u]; see Section 6.1.1.

The distribution functions of the failure points are used to determine the distribution

of the number of failures and the expected number of failures; see (6.10) and (6.12). The

expected number of failures or the cumulative intensity function Λ(., .) := E[N(., .)] of the

renewal process is referred to as the bivariate renewal function [61]. As in the univariate case

(in Section 3.2.1), by conditioning on the original lifetime (T1,U1) = (X1,Y1), the renewal

function can be expressed as the following renewal equation:

Λ(t, u) =

t∫

0

u∫

0

E[N(t, u)|T1 = t1,U1 = u1] dF(t1, u1)

=

t∫

0

u∫

0

(
1+ E[N(t− t1, u− u1)]

)
dF(t1, u1)

=

t∫

0

u∫

0

[1+ Λ(t− t1, u− u1)] dF(t1, u1)

=F(t, u) +

t∫

0

u∫

0

Λ(t− t1, u− u1) dF(t1, u1) .

(6.98)

This follows from the definition of the renewal process, where the system is replaced by a

new and identical system following each failure. The number of failures before time t and

usage u, given the point (T1,U1) = (t1, u1) of first failure, is equal in distribution to

N
(
(t1, t]× (u1, u]

)
≡ N(t, u)− N(t1, u)− N(t, u1) + N(t1, u1)

d
= N(t− t1, u− u1) , (6.99)

since the system is renewed at (t1, u1); see Figure 6.6. When the distribution function F(., .)

is given and continuous, then the renewal equation can sometimes be solved to get the

renewal function Λ(., .); see Hunter [61, 62]

The conditional intensity function for the renewal process in two dimensions is given by

λ̃(t, u|Ht,u) =





λ0(t− Tn, u−Un) , for (t, u) ∈ (Tn, Tn+1]×(Un,Un+1]; 0 ≤ n ≤ N(t, u)

0 , otherwise ,

(6.100)

where the initial (baseline) intensity function λ0(., .) is the bivariate failure rate function

r(., .) of the original system, i.e. λ0(t, u) = r(t, u), for t, u ≥ 0 [63, 14]; see Sections 6.1.1.2

and 6.1.2.
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Figure 6.6: Illustration of the sets (t1, t] × (u1, u] and (0, t − t1] × (0, u − u1] corresponding to the
counts in (6.99).

The renewal process in two dimensions takes into account the correlation between the

age and usage of the system. If a functional relationship exists between the usage and the

age, the two-dimensional process can effectively be reduced to a conditional one-dimensional

process, where the renewal process in one dimension can be used to model consecutive per-

fect repairs. We discussed this one-dimensional approach in the previous section.

6.2.2.2 Minimal Repair Process in Two Dimensions

The working condition of a system following a minimal repair does not change. In other

words, the working condition of the system immediately following a minimal repair is the

same as its working condition just before system failure.

Consecutive failures of a repairable system with a univariate lifetime, where failures are

rectified by minimal repair, can be modeled as a Poisson process in one dimension, because

the conditional intensity function of the Poisson process is equal to the failure rate corre-

sponding to the lifetime of the original system (i.e. does not change following each repair);

see Chapter 3.

The d-dimensional generalization of the Poisson process– which counts the number of

points randomly scattered in a subset of the d-dimensional space R
d– is the spatial Poisson

process. According to this process, the counts over disjoint subsets Ai ⊂ B, for i ∈ N+, are

independent and have a Poisson distribution with mean measure (or cumulative intensity)

Λ(Ai) :=
∫

Ai

λ(x) dx , (6.101)

where λ : R
d → R is the intensity function defined over B ⊂ R

d. This process does not take
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into account the ordering of points, and therefore, consecutive minimal repairs of a system

with a bivariate lifetime cannot be modeled as a Poisson process in two dimensions; see

Figure 6.7.
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*

*
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Figure 6.7: Illustration of an unordered scattering of points in the two-dimensional space R
2
+ (left)

versus a trajectory of a failure processwhere points are ordered (right) (see (6.1) for order).

Let {N(t, u); t, u ∈ R+} denote the counting process, where N(t, u) counts the number

of minimal repairs performed in (0, t]× (0, u]. The corresponding point process is denoted

by {(Tn,Un); n ∈ N+}. When the rectification action is a minimal repair, the bivariate inter-

failure lifetimes, (Xn,Yn), n ∈ N+, are neither independent nor identically distributed.

Baik et al [64] propose the following approach to model the process of consecutive

minimal repairs in two dimensions. The probability of having n failures in the region

(0, t]× (0, u] is derived by conditioning on the following event:

{N
(
t′, u′

)
=n−1, N

(
(t′, t′ + dt′ ]×(u′, u′ + du′]

)
=1, N

(
(t′ + dt′, t]×(u′ + du′, u]

)
=0} ,

(6.102)

i.e. n− 1 failures occur in the regionA = (0, t′]× (0, u′]; the n-th failure occurs in the region

B = (t′, t′ + dt′]× (u′, u′ + du′]; and no failure occurs in the region C = (t′ + dt′ , t]× (u′ +

du′, u]; see Figure 6.8. To shorten the expression in (6.102), we use the setsA, B and C:

{N
(
A
)
=n−1, N

(
B
)
=1, N

(
C
)
=0} . (6.103)

Then, the probability of the event in (6.103) can be derived as follows:

P{N
(
A
)
=n−1, N

(
B
)
=1, N

(
C
)
=0} = P{N

(
C
)
=0 | N

(
B
)
=1, N

(
A
)
=n−1}

P{N
(
B
)
=1 | N

(
A
)
=n−1} P{N

(
A
)
=n−1} .

(6.104)

When all repairs are minimal, the conditional distribution of the (n + 1)-th failure point
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Figure 6.8: An illustration of the description of number of failures from Baik et al. [64].

(Tn+1,Un+1), given all n previous failure points, depends only on the last failure point

(Tn,Un) = (tn, un), for n ∈ N+. This follows from the definition of a minimal repair, which

is that the system following a minimal repair behaves like a system that has not failed, and

therefore,

P{Tn+1 ≤ t,Un+1 ≤ u | (T1,U1) = (t1, u1), . . . , (Tn,Un) = (tn, un)}

def
= P{T1 ≤ u,U1 ≤ u | T1 > tn,U1 > un}

=
F(t, u)− F(tn, u)− F(t, un) + F(tn, un)

F̄(tn, un)
,

(6.105)

where (T1,U1) is the original lifetime with distribution and reliability functions F1 = F and

F̄1 = F̄ respectively.

Upon passing the first conditional probability in (6.104) through the limit (shrinking set

B), we get

lim
dt′,du′→0

P{N
(
C
)
=0 | N

(
B
)
=1, N

(
A
)
=n−1}

= 1− lim
dt′,du′→0

P{N
(
C
)
≥1 | N

(
B
)
=1, N

(
A
)
=n−1}

= 1− P{Tn+1 ≤ u,Un+1 ≤ u | (Tn,Un) = (t′+, u′+), N
(
A
)
=n−1}

= 1−
F(t, u)− F(t′, u)− F(t, u′) + F(t′, u′)

F̄(t′, u′)
;

(6.106)

since F is continuous, F(x+, y+) = F(x, y). Note that, the event that at least one failure

occurs in C is equivalent to the event that the (n+ 1)-th failure point (Tn+1,Un+1) is in C,
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given that n failures have occurred inA∪B. The second to last expression in (6.106) follows

from passing through the limit, i.e.

lim
dt′,du′→0

{N
(
B
)
=1, N

(
A
)
=n−1} = lim

dt′,du′→0
{(Tn,Un) ∈ B, N

(
A
)
=n−1}

≡ {(Tn,Un) = (t′+, u′+), N
(
A
)
=n−1} ,

(6.107)

where B = (t′, t′ + dt′ ]× (u′, u′ + du′].

Since the process is orderly (i.e. simultaneous failures do not occur), the second condi-

tional probability in (6.104) becomes

P{N
(
B
)
=1 | N

(
A
)
=n−1} = P{N

(
(t′, t′ + dt′]× (u′, u′ + du′]

)
=1 | N(t′, u′)=n− 1}

≈ r(t′, u′) dt′ du′ ,

(6.108)

where r(., .) is the bivariate failure rate function defined in (6.20). This follows from the

conditional intensity function of the minimal repair process in two dimensions being

λ̃(t, u|Ht,u) =





λ0(t, u) , for (t, u) ∈ (Tn, Tn+1]×(Un,Un+1]; 0 ≤ n ≤ N(t, u)

0 , otherwise ,
(6.109)

where the baseline intensity function λ0(., .) is equal to the failure rate function r(., .).

Then, given (6.106) and (6.108), the probability of n failures occurring in (0, t]× (0, u] can

be derived from the following recursive expression:

P{N(t, u)=n} =

t∫

0

u∫

0

(
1−

F(t, u)− F(t′, u)− F(t, u′) + F(t′, u′)

F̄(t′, u′)

)
P{N(t′ , u′)=n− 1}

× r(t′, u′) dt′ du′ ,

(6.110)

for n ∈ N+, where P{N(t, u)=0} = 1− F(t, u) [50, 64].

6.2.2.3 Imperfect Repair Processes in Two Dimensions

When consecutive failures of a repairable system are rectified by imperfect repair, the bi-

variate inter-failure lifetimes {(Xn,Yn); n ∈ N+} are, as in the minimal repair case, neither

independent nor identically distributed (analogous to the univariate imperfect repair mod-

els). Often the distribution of each of the failure points (Tn,Un), for n ∈ N+, depends on

the effect of all imperfect repairs performed prior to that point, which makes the modeling
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process less straight-forward.

Therefore, imperfect maintenance models in two dimensions often assume that the bi-

variate inter-failure lifetimes are independent. Consider, for instance, the quasi-renewal pro-

cess in two dimensions. Let {(X′
n,Y

′
n); n ∈ N+} denote the sequence of bivariate inter-failure

lifetimes of a renewal process in two dimensions. Then, the sequence {(Xn,Yn); n ∈ N+}

forms a quasi-renewal process in two dimensions, iff

(Xn,Yn)
d
=
(
αn−1X′

n, βn−1 Y′
n

)
, (6.111)

for all n ∈ N+, where α and β, α, β > 0, are parameters of the quasi-renewal process in two

dimensions; see Section 3.2.3.3 for the quasi-renewal process in one dimension.

Let, for n ∈ N+, the function Gn(., .) denote the distribution function of the n-th bi-

variate inter-failure lifetime (Xn,Yn). Also, let F(., .) denote the common distribution of the

bivariate inter-failures lifetimes of the associated renewal process. Then, G1(x, y) = F(x, y),

for all x, y ≥ 0, and the distribution of the (n + 1)-th bivariate inter-failure lifetime of the

quasi-renewal process in two dimensions is, for n ∈ N+, given by

Gn+1(x, y) = P{Xn+1 ≤ x,Yn+1 ≤ y}

= P{αnX′
n+1 ≤ x, βn Y′

n+1 ≤ y}

= P{X′
n ≤ α−nx,Y′

n ≤ β−ny} = F

(
x

αn
,
y

βn

)
.

(6.112)

Note that, when α = β = 1, the quasi renewal process in two dimensions reduces to the

(ordinary) renewal process in two dimensions. The marginal processes {Xn; n ∈ N+} and

{Yn; n ∈ N+} are increasing sequences when α, β > 1 and decreasing sequences when

α, β < 1. This process, with α, β ∈ (0, 1], is used to model consecutive failures of a system

where each failure is followed by imperfect repair.

The quasi-renewal process is a generalization of the renewal process in two dimensions,

but not of the minimal repair process in two dimensions; refer to Gülay [65] for more on the

quasi-renewal process.

In the next chapter, we propose a generalization of the renewal process in two dimen-

sions to model the general repair process, where the inter-failure lifetimes are not indepen-

dent. We will show that the proposed model, as its special cases, includes both the renewal

process in Section 6.2.2.1 and the minimal repair process in Section 6.2.2.2.
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6.3 Chapter Summary

In this chapter, we provided a brief review of concepts (such as, stochastic counting pro-

cesses, intensity processes and failure rate functions) necessary in modeling consecutive

failures of systems in two dimensions.

We also discussed various bivariate aging classes and partial orderings of bivariate dis-

tributions in terms of the bivariate conditional reliability, the hazard gradient vector and the

mean residual life vector.

We reviewed various bivariate general repair models and the associated failure processes

in two dimensions.
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Chapter 7

Modeling Repairs in Two Dimensions

In this chapter, we propose a new approach tomodel the effect of a general repair performed

on a system whose lifetime is modeled as a bivariate random variable. We then develop a

failure (or general repair) process to model consecutive failures of the system,where failures

are rectified by general repair.

This chapter is arranged as follows. In Section 7.1, we describe the type of system con-

sidered in this study. In Section 7.2, we introduce the general repair model. In Section 7.3,

we derive the distribution and reliability functions of the consecutive failure points and the

bivariate inter-failure lifetimes of the proposed failure process. In section 7.4, we discuss

constructing bivariate increasing failure rate distributions. In Section 7.5, we conclude with

a chapter summary.

7.1 The System

For a system whose lifetime is modeled as a bivariate random variable, the two variables

are often assumed to be time (or age) and some measure of the usage of the system (such as,

mileage, number of flights, etc.). We will use the generic terms ‘age’ (or time) and ‘usage’

for the two lifetime variables. Here, the lifetime variables are assumed to be correlated but

not functionally related.

We consider a system whose ability to perform its intended function decreases as its

age and usage increase, given that it is in an operational state. That is, if the system has

not failed, its working condition deteriorates with time and use. Therefore, to model the

distribution of the original bivariate lifetime, or the time and usage at first failure, we must

choose a lifetime distribution that displays this pattern of degradation.
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In the univariate case, lifetime distributions having an increasing failure rate (IFR) func-

tion have been used to model the lifetime of a deteriorating system. These lifetime distri-

butions are characterized by a decreasing conditional reliability function, which implies a

decreasing mean residual lifetime (MRL) function. Both the conditional reliability function

and the MRL function can be viewed as probabilistic measures of the working condition of

the system, and therefore, when decreasing, can model positive aging (or degradation).

A bivariate increasing failure rate concept analogous to the univariate case is the de-

creasing bivariate conditional reliability (BCR) function, which was discussed in Section 6.1.4.

For a bivariate lifetime (T,U), this function is defined as

F̄(t+ s, u+ v)

F̄(t, u)
=

P{T > t+ s,U > u+ v}

P{T > t,U > u}
, (7.1)

for t, u ≥ 0 and s, v ≥ 0. Then, when this function is decreasing in t and u, for all t, u ≥ 0

and each s, v ≥ 0, the associated lifetime distribution F is said to have the bivariate increasing

failure rate (BIFR) property. For brevity, we will say that the distribution is BIFR when we

mean the bivariate lifetime distribution has a decreasing BCR function.

The BCR function is interpreted as the probability that the system survives an additional

s units of time and v units of usage, given that it is in an operational state at the point (t, u),

i.e. its first failure is after the point (t, u). An appealing consequence of defining the IFR

property through this conditional reliability function is that this definition implies that the

hazard gradient components (which together uniquely determine the lifetime distribution)

are increasing in their arguments; see Section 6.1.4.
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Figure 7.1: Plots illustrating a decreasing bivariate conditional reliability function with Weibull
marginals, plotted for: (i) s = 0.3 and v = 0.2 (left) and (ii) s = 0.2 and v = 0.3 (right).
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In Figure 7.1, for various values of s, v ≥ 0, we have plotted an example of a BCR function

which is decreasing in t, u ≥ 0.

7.2 The General Repair Model

Following each failure, the system is rectified by general repair. The effectiveness of a gen-

eral repair is described by its degree, which we denote by the vector (δn,γn) for the n-th

repair, where (δn,γn) ∈ [0, 1]2 and n ∈ N+. A general repair can be categorized as one

of the following three types: (i) minimal repair, which is assumed to be least effective; (ii)

perfect repair, which is assumed to be most effective; and (iii) imperfect repair, which is as-

sumed to be more effective than a minimal repair but less effective than a perfect repair. We

let (0, 0) represent the degree of a minimal repair; (1, 1) the degree of a perfect repair; and

(δ,γ) ∈ [0, 1]2 \ {(0, 0), (1, 1)} the degree of an imperfect repair.

The two components of the degree (δn,γn) represent the repair effectiveness in terms of

time and usage respectively. Although, the components δn and γn can each vary in the range

[0, 1], given either, some values of the other may be more likely. It makes sense to consider

modeling the degrees of repair (δn,γn), n ∈ N+, as bivariate random variables. For the pur-

pose of this study,we have assumed that the degrees of repair are given (fixed/preassigned).

Since the system is deteriorating with age and use, we can model a perfect repair as

a replacement of the system with a new and identical system, i.e. perfect repairs can be

modeled as system renewals. Here, we generalize this approach tomodel general, imperfect

repairs. We propose that, a general repair performed following a system failure be modeled as a

replacement of the system with an identical system at some younger age and lower usage, where the

age and usage of the replacement system depend on the effectiveness of the general repair.

The associated failure process includes the renewal process in two dimensions (used to

model consecutive perfect repairs, when the system lifetime distribution is BIFR) and the

minimal repair process in two dimensions; see Section 6.2.2.

7.2.1 The Virtual Age and Usage Processes

In order to implement the above general repair model, we define two marginal processes

{A(t, u); t, u ∈ R+} and {B(t, u); t, u ∈ R+}, where A(t, u) and B(t, u) denote the virtual

age and the virtual usage of the system at the point (t, u) ∈ R
2
+. The virtual age and virtual

usage at any point are functions of all previous failure points and also the degrees of the
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corresponding repairs. Based on the assumptions of a repair model, various virtual age and

usage functions can be defined.

Here, we make the following assumptions in modeling the effect of general repairs:

(a) Failures of the system are followed immediately by a general repair;

(b) The time to repair the failed system is assumed to be negligible compared to its operating

time, and therefore, assumed to be equal to zero;

(c) A perfect repair performed on the failed system can remove systemdegradation or undo

damage accumulated, in terms of both age and usage of the system, since the start of its

lifetime (i.e. perfect repair is equivalent to replacement).

Let (Tn,Un) denote the time and usage at the n-th failure of the system, n ∈ N+. Then,

based on the above assumptions, we define the virtual age and usage functions, at the point

(t, u), as follows:

A(t, u) = t−
N(t−,u−)

∑
i=1

δi A(Ti,Ui) ;

B(t, u) = u−
N(t−,u−)

∑
i=1

γi B(Ti,Ui) ,

(7.2)

respectively, where N(t−, u−) denotes the number of failures in [0, t) × [0, u), t, u ≥ 0, with

N(0, 0) = 0. Before the first failure, the virtual age and usage of the system are equal to its

actual age and usage; therefore, at (t, u) = (0, 0), we have A(0, 0) = B(0, 0) = 0. Note that,

the failure points (Tn,Un), n ∈ N+, are ordered, such that

0 < T1 < T2 < · · · < Tn < . . . ;

0 < U1 < U2 < · · · < Un < . . . .
(7.3)

Therefore, N(t−, u−) = max{n : Tn < t and Un < u, n ∈ N+}.

If a general repair can only undo damage accumulated since the previous repair [cf.

assumption (c)], then the virtual age and usage functions can be defined as follows:

A(t, u) = t−
N(t−,u−)

∑
i=1

δi
[
A(Ti,Ui)− A(T+

i−1,U
+
i−1)

]
;

B(t, u) = u−
N(t−,u−)

∑
i=1

γi

[
B(Ti,Ui)− B(T+

i−1,U
+
i−1)

]
,

(7.4)

where, in general, A(T+
n ,U+

n ) and B(T+
n ,U+

n ) denote the virtual age and virtual usage im-

mediately after the n-th repair, for n ∈ N+.
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For this study, we will use the functions in (7.2); however, the proposed repair model

is general enough to work with other virtual age and usage functions that are increasing in

t, u ≥ 0 and decreasing in each δn and γn, for n ∈ N+.

Sequence of perfect repairs. When all repairs are perfect, i.e. when (δn,γn) = (1, 1), for

all n ∈ N+, then, the virtual age function at any point (t, u) reduces to

A(t, u) = t−
N(t−,u−)

∑
i=1

A(Ti,Ui)

= t−
N(t−,u−)−1

∑
i=1

A(Ti,Ui)− A(tN(t−,u−), uN(t−,u−))

= t−
N(t−,u−)−1

∑
i=1

A(Ti,Ui)− TN(t−,u−) +
N(t−,u−)−1

∑
i=1

A(Ti,Ui)

= t− TN(t−,u−) .

(7.5)

Therefore, immediately after the n-th repair, the virtual age is A(T+
n ,U+

n ) = T+
n − Tn = 0.

Similarly, the corresponding virtual usage at the point (t, u) is given by

B(t, u) = u−UN(t−,u−) , (7.6)

and the virtual usage immediately after the n-th perfect repair is B(T+
n ,U+

n ) = 0.

Sequence of minimal repairs. When all failures of the system are followed by minimal

repair, i.e. when (δn,γn) = (0, 0), for all n ∈ N+, then, the virtual age function at the point

(t, u) is given by

A(t, u) = t−
N(t−,u−)

∑
i=1

0 A(Ti,Ui) = t , (7.7)

Therefore, immediately after the n-th minimal repair, the virtual age is A(T+
n ,U+

n ) = T+
n .

Similarly, the corresponding virtual usage at the point (t, u) is given by

B(t, u) = u , (7.8)

and the virtual usage immediately after the n-th minimal repair is B(T+
n ,U+

n ) = U+
n .

The virtual age and usage vector (A(t, u), B(t, u)) is stochastic because of its dependence

on the number and the points of failures that occur at random in the rectangle [0, t)× [0, u),

t, u ≥ 0. Wewill use a(t, u) and b(t, u) to denote the realizations of the two random variables
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A(t, u) and B(t, u), respectively.

These virtual age and usage vectors are novel extensions, from one dimension to two

dimensions, of the virtual age models introduced by Kijima [27]; see Section 3.2.3.

7.2.2 The Effect of General Repairs

Given the virtual age and usage vector, we nowproceed to define the effect of general repairs

on the distribution of succeeding failures of the system.

We can describe the effect of repairs in terms of the conditional reliability function, or

equivalently, in terms of the conditional distribution function of the failure points. We begin

with the conditional reliability function, since it may be more intuitive to describe general

repairs in terms of their effect on system survival (or reliability).

7.2.2.1 Conditional Reliability Function

Let F̄n+1(., .|tn,un), where tn = (t1, . . . , tn) and un = (u1, . . . , un), denote the reliability

function of the (n+ 1)-th failure point (Tn+1,Un+1), for n ∈ N+, given all previous failure

points {(t1, u1), . . . , (tn, un)}. Formally,

F̄n+1(t, u|tn,un) = P{Tn+1 > t,Un+1 > u | (T1,U1) = (t1, u1), . . . , (Tn,Un) = (tn, un)} ,

(7.9)

for t > tn and u > un; see Figure 7.2.

(0,0) time
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o
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u1

u2

un−1
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(tn+1, un+1) ∈

tn−1

(t,∞)× (u,∞)

tn

un

Figure 7.2: Illustration of the n failure points prior to (t, u) for the conditional reliability function
F̄n+1(t, u|tn,un), defined for t > tn and u > un.
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This reliability function represents the probability that the (n + 1)-th failure of the sys-

tem, given previous failure points, is after the point (t, u). In other words, F̄n+1(t, u|tn,un)

is the conditional probability that the system survives t− tn units of time and u− un units

of usage, following the n-th general repair at the point (tn, un).

The repair model in terms of the reliability function. We define the effect of a general

repair on the conditional reliability function of the (n+ 1)-th failure point, for n ∈ N+, as

follows:

F̄n+1(t, u|tn,un) = P{Tn+1 > t,Un+1 > u | (T1,U1) = (t1, u1), . . . , (Tn,Un) = (tn, un)}

= P{T1 > a(t, u),U1 > b(t, u) | T1 ≥ a(t+n , u
+
n ),U1 ≥ b(t+n , u

+
n )}

=
P{T1 > a(t, u),U1 > b(t, u), T1 ≥ a(t+n , u

+
n ),U1 ≥ b(t+n , u

+
n )}

P{T1 ≥ a(t+n , u
+
n ),U1 ≥ b(t+n , u

+
n )}

=
P{T1 > a(t, u),U1 > b(t, u)}

P{T1 ≥ a(t+n , u
+
n ),U1 ≥ b(t+n , u

+
n )}

=
F̄(a(t, u), b(t, u))

F̄(a(t+n , u
+
n ), b(t

+
n , u

+
n ))

,

(7.10)

for t > tn and u > un, where F̄(., .) denotes the reliability function of the lifetime of the

original system (i.e. point of first failure); see Figure 7.3. Note that, since the virtual age and

usage functions A(., .) and B(., .) are increasing in their arguments (when all other parame-

ters are fixed), their realizations are ordered, i.e. a(t, u) ≥ a(t+n , u
+
n ) and b(t, u) ≥ b(t+n , u

+
n ),

for all t ≥ t+n and u ≥ u+n .
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{T2 > t, U2 > u; (T1, U1) = (t1, u1)}
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{T1 > a(t, u), U1 > b(t, u), T1 > a(t+1 , u
+
1 ), U1 > b(t+1 , u

+
1 )}

= {T1 > a(t, u), U1 > b(t, u)}

a(t+1 , u
+
1 ) a(t, u)

b(t+1 , u
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1 )

u

u1

b(t, u)

t

Figure 7.3: Illustrations of the sets (actual and virtual) used in defining F̄2(t, u|t1, u1), where δ1 = 0.45
and γ1 = 0.6.

Therefore, according to the proposed general repair model, the probability of the sys-

tem failing for the (n + 1)-th time after the point (t, u), given all previous failure points
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{(t1, u1), . . . , (tn, un)}, is equal to the probability of an identical system failing for the first

time after the point
(
a(t, u), b(t, u)

)
, given that it is operating at the point

(
a(t+n , u

+
n ), b(t

+
n , u

+
n )
)
.

Note that, simultaneous reductions in the two functions a(., .) and b(., .) take place only at

the points (t+n , u
+
n ), n ∈ N+, and therefore, the vector

(
a(t+n , u

+
n ), b(t

+
n , u

+
n )
)
represents the

virtual age and usage of the system immediately following the n-th general repair.

Sequence of perfect repairs. When all repairs are perfect, then a(t+n , u
+
n ) = b(t+n , u

+
n ) = 0,

for all n ∈ N+; see page 151. Therefore, the conditional reliability function in (7.10) reduces

to

F̄n+1(t, u|tn,un) =
F̄(a(t, u), b(t, u))

F̄(a(t+n , u
+
n ), b(t

+
n , u

+
n ))

=
F̄(t− tn, u− un)

F̄(0, 0)
= F̄(t− tn, u− un) ,

(7.11)

since F̄(0, 0) = 1; see Figure 7.4 (left). This is the conditional reliability function of the

renewal process in two dimensions, introduced by Hunter [61].
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Figure 7.4: Illustrations of the (virtual) sets used in defining F̄2(t, u|t1, u1): for (δ1, γ1) = (1, 1) (left)
and (δ1, γ1) = (0, 0) (right).

Sequence of minimal repairs. When all repairs are minimal, then a(t+n , u
+
n ) = t+n and

b(t+n , u
+
n ) = u+n , for all n ∈ N+. Therefore, the conditional reliability function in (7.10)

becomes

F̄n+1(t, u|tn,un) =
F̄(a(t, u), b(t, u))

F̄(a(t+n , u
+
n ), b(t

+
n , u

+
n ))

=
F̄(t, u)

F̄(t+n , u
+
n )

=
F̄(t, u)

F̄(tn, un)
,

(7.12)

since F̄(., .) is absolutely continuous; see Figure 7.4 (right). This function is the conditional

reliability function corresponding to the minimal repair process in two dimensions; refer to

Baik et al [64].
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The proposed general repair model is a two-dimensional analog of the virtual age model

in one dimension (proposed by Kijima [27]), with conditional reliability function given by

P{Tn+1 > t|T1 = t1, . . . , Tn = tn} = P{X > vn + x|X > vn} =
F̄(vn + x)

F̄(vn)
, (7.13)

for n ∈ N+ and x = t− tn, where vn is the virtual age immediately after the n-th repair, X

is the original univariate lifetime and F̄(.) is the reliability function of the original lifetime;

see Section 3.2.3.

7.2.2.2 Conditional Distribution Function

We can also define the effect of a general repair in terms of the conditional distribution func-

tions of the failure points. Let the function Fn+1(., .|tn,un) denote the distribution function

of the (n + 1)-th failure point (Tn+1,Un+1), for n ∈ N+, given all previous failure points

{(t1, u1), . . . , (tn, un)}. Formally,

Fn+1(t, u|tn,un) = P{Tn+1 ≤ t,Un+1 ≤ u | (T1,U1) = (t1, u1), . . . , (Tn,Un) = (tn, un)} ,

(7.14)

for t > tn and u > un; see Figure 7.5.

(0,0) time

usage

t2t1

u

o
o

o

u1

u2

un−1

ttn−1

(tn+1, un+1) ∈ (tn, t]× (un, u]

tn

un

Figure 7.5: Illustration of the n failure points prior to (t, u) for the conditional distribution function
Fn+1(t, u|tn,un), defined for t > tn and u > un.

Notation. To simplify the expressions appearing in the remainder of this chapter, we adopt

the following notation from Nelson [66]. Let G denote a non-decreasing real function of two
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variables, such that G : S1 × S2 → R, where S1 and S2 are non-empty subsets of the real line

R = (−∞,∞). Then, the G-volume of set B, where B = [x1, x2]× [y1, y2] ⊆ S1 × S2, is defined

as

VG(B) ≡ VG([x1, x2]× [y1, y2])

:= G(x2, y2)− G(x2, y1)− G(x1, y2) + G(x1, y1) .
(7.15)

When G is a lifetime probability distribution function, then the G-volume of a set is inter-

preted as the probability of a failure occurring in that set (or region); see Figure 7.6.

(0,0)

y2

y1

x1 x2

G(x2, y2)G(x1, y2)

G(x1, y1) G(x2, y1)

x

y

Figure 7.6: Illustration of the points of evaluation for the G-volume of the set [x1, x2]× [y1, y2].

The repair model in terms of the distribution function. Using the above notation, the

effect of a general repair in terms of the conditional distribution function of the (n + 1)-th

failure point, for n ∈ N+, given all previous failure points, is given by

Fn+1(t, u|tn,un) = P{Tn+1 ≤ t,Un+1 ≤ u | (T1,U1) = (t1, u1), . . . , (Tn,Un) = (tn, un)}

= P{T1 ≤ a(t, u),U1 ≤ b(t, u) | T1 ≥ a(t+n , u
+
n ),U1 ≥ b(t+n , u

+
n )}

=
VF([a(t

+
n , u

+
n ), a(t, u)]× [b(t+n , u

+
n ), b(t, u)])

F̄(a(t+n , u
+
n ), b(t

+
n , u

+
n ))

,

(7.16)

for t ≥ t+n and u ≥ u+n , where F(., .) and F̄(., .) are the distribution and reliability functions

of the original bivariate lifetime.

Therefore, the probability of the system failing for the (n+ 1)-th time before time t and

usage u, given all previous failure points, is equal to the probability of an identical system

(or the original system) failing for the first time on or before the point (a(t, u), b(t, u)) given

that it is still operating at the point (a(t+n , u
+
n ), b(t

+
n , u

+
n )); see Figure 7.7. This condition (i.e.

“still operating”) is not equivalent to the event that the system does not fail prior to the
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point (a(t+n , u
+
n ), b(t

+
n , u

+
n )), the probability of which is given by 1− F(a(t+n , u

+
n ), b(t

+
n , u

+
n )).

For bivariate distributions, F̄ 6= 1− F; see Section 6.1.2.

(0,0)

usage

timet

u

u1

{T2 ≤ t, U2 ≤ u; (T1, U1) = (t1, u1)}

t1 (0,0)

usage

time

b(t, u)

u1

a(t, u)t1 t

u

a(t+1 , u
+
1 )

b(t+1 , u
+
1 )

{a(t+1 , u
+
1 ) < T1 ≤ a(t, u), b(t+1 , u

+
1 ) < U1 ≤ b(t, u)}

Figure 7.7: Illustrations of the sets (actual and virtual) used in defining F2(t, u|t1, u1), where δ1 = 0.6
and γ1 = 0.3.

In (7.16), the support of the function F(., .) is the set S1 × S2 = R
2
+, and the F-volume of

the virtual set is

VF([a(t
+
n , u

+
n ), a(t, u)]× [b(t+n , u

+
n ), b(t, u)])

= F(a(t, u), b(t, u))− F(a(t+n , u
+
n ), b(t, u))− F(a(t, u), b(t+n , u

+
n )) + F(a(t+n , u

+
n ), b(t

+
n , u

+
n ))

= F̄(a(t+n , u
+
n ), b(t

+
n , u

+
n ))− F̄(a(t+n , u

+
n ), b(t, u))− F̄(a(t, u), b(t+n , u

+
n )) + F̄(a(t, u), b(t, u)) .

(7.17)

Substituting (7.17) in (7.16), we can express the conditional distribution function in terms of

the conditional reliability function defined in (7.10) as follows:

Fn+1(t, u|tn,un) = 1−
F̄(a(t+n , u

+
n ), b(t, u)) + F̄(a(t, u), b(t+n , u

+
n ))− F̄(a(t, u), b(t, u))

F̄(a(t+n , u
+
n ), b(t

+
n , u

+
n ))

= 1−
F̄(a(t+n , u), b(t

+
n , u)) + F̄(a(t, u+n ), b(t, u

+
n ))− F̄(a(t, u), b(t, u))

F̄(a(t+n , u
+
n ), b(t

+
n , u

+
n ))

= 1− F̄n+1(t
+
n , u|tn,un)− F̄n+1(t, u

+
n |tn,un) + F̄n+1(t, u|tn,un) .

(7.18)

The second expression follows from the definitions of the virtual age and usage functions

A(., .) and B(., .), given in (7.2). The proof if straight-forward: when n failures have occurred

prior to the point (t, u) and given the n failure points {(t1, u1), . . . , (tn, un)}, the virtual age

at the point (t, u) depends only on the time variables, and the virtual usage at the point (t, u)

depends only on the usage variables. Therefore, for all t+n ≤ t < Tn+1 and u+n ≤ u < Un+1,

the virtual age at the point (t, u) is equal to the virtual age at the point (t, u+n ), and the
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virtual usage at the point (t, u) is equal to the virtual usage at the point (t+n , u). That is, the

following equalities hold:

a(t+n , u
+
n ) = a(t+n , u) ; a(t, u) = a(t, u+n );

b(t+n , u
+
n ) = b(t, u+n ) ; b(t, u) = b(t+n , u) .

(7.19)

Sequence of perfect repairs. When all repairs are perfect, a(t, u) = t − tn and b(t, u) =

u − un, for all t > tn and u > un. Therefore, the virtual age and usage immediately after

a repair are both equal to zero, i.e. a(t+n , u
+
n ) = b(t+n , u

+
n ) = 0, for all n ∈ N+. Then, the

conditional distribution function of the (n+ 1)-th failure point (Tn+1,Un+1), given in (7.16),

reduces to

Fn+1(t, u|tn,un) =
VF([a(t

+
n , u

+
n ), a(t, u)]× [b(t+n , u

+
n ), b(t, u)])

F̄(a(t+n , u
+
n ), b(t

+
n , u

+
n ))

=
VF([0, t− tn]× [0, u− un])

F̄(0, 0)

=
F(t− tn, u− un)− F(t− tn, 0)− F(0, u− un) + F(0, 0)

F̄(0, 0)

= F(t− tn, u− un) ,

(7.20)

since F(t − tn, 0) = F(0, u − un) = F(0, 0) = 0 and F̄(0, 0) = 1; see Figure 7.8 (left). This

is the conditional distribution function corresponding to the (n+ 1)-th renewal point of the

renewal process in two dimensions [61].

Sequence of minimal repairs. When all repairs are minimal, then a(t, u) = t and b(t, u) =

u, for all t > tn and u > un, n ∈ N+. Then, the conditional distribution function of the

(n+ 1)-th failure point, given in (7.16), becomes

Fn+1(t, u|tn,un) =
VF([a(t

+
n , u

+
n ), a(t, u)]× [b(t+n , u

+
n ), b(t, u)])

F̄(a(t+n , u
+
n ), b(t

+
n , u

+
n ))

=
VF([t

+
n , t]× [u+n , u])

F̄(t+n , u
+
n )

=
F(t, u)− F(t+n , u)− F(t, u+n ) + F(t+n , u

+
n )

F̄(t+n , u
+
n )

=
F(t, u)− F(tn, u)− F(t, un) + F(tn, un)

F̄(tn, un)
,

(7.21)

since F(., .) and F̄(., .) are absolutely continuous; see Figure 7.8 (right). This function is the

conditional distribution function corresponding to the (n+ 1)-th failure point of theminimal
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repair process in two dimensions [64].
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+
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a(t, u) = t− t1

a(t+1 , u
+
1 ) = b(t+1 , u

+
1 ) = 0

b(t, u)
= u− u1

= {T1 ≤ t− t1, U1 ≤ u− u1}

(0,0)

usage

timea(t+1 , u
+
1 ) = t+1 a(t, u) = t

b(t+1 , u
+
1 )

= u+
1

b(t, u) = u

{a(t+1 , u
+
1 ) < T1 ≤ a(t, u), b(t+1 , u

+
1 ) < U1 ≤ b(t, u)}

= {t1 < T1 ≤ t, u1 < U1 ≤ u}

Figure 7.8: Illustrations of the (virtual) sets used in defining F2(t, u|t1, u1): for (δ1, γ1) = (1, 1) (left)
and (δ1, γ1) = (0, 0) (right).

The conditional density function. The conditional density function of the (n+ 1)-th fail-

ure point, corresponding to the distribution and reliability functions in (7.16) and (7.10), is

derived as follows:

fn+1(t, u|tn,un) :=
∂2

∂t ∂u
Fn+1(t, u|tn,un)

=
∂2

∂t ∂u
F̄n+1(t, u|tn,un)

=
1

F̄(a(t+n , u
+
n ), b(t

+
n , u

+
n ))

∂2

∂t ∂u
F̄(a(t, u), b(t, u))

=
f (a(t, u), b(t, u))

F̄(a(t+n , u
+
n ), b(t

+
n , u

+
n ))

,

(7.22)

for t > tn and u > un, where f (., .) is the bivariate density function of the original lifetime.

Note that, by definition, a(t, u) is of the form t− c and b(t, u) is of the form u− c, where c

is constant with respect to t and u. Therefore, the second order mixed partial derivative of

F̄(t− c, u− c), with respect to t and u, is simply f (t− c, u− c).

7.3 The Failure (or General Repair) Process

The failure process {N(t, u); t, u ∈ R+} is distinguished from other stochastic counting pro-

cesses based on the relationships between the inter-failure lifetimes (Xn,Yn), n ∈ N+. With

a renewal process, the inter-failure lifetimes are independent and identically distributed bi-

variate random variables. Here, however, these lifetimes are neither independent nor iden-
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tically distributed, and therefore, the distribution of any lifetime depends on all prior failure

points. The increments of the counting process are not independent.

Since the processes {N(t, u); t, u ∈ R+} and {(Tn,Un); n ∈ N+} are equivalent, the

distributions of the numbers of failures can be derived from the distributions of the failure

points. In this section, we derive the distributions of the failure points and the bivariate

inter-failure lifetimes for the proposed failure (or general repair) process.

7.3.1 Distribution of Failure Points

In Section 7.2.2, we defined the effect of general repairs on the conditional distribution and

reliability functions of succeeding failure points of the system, given all previous failure

points. We now proceed to deriving the (unconditional) distribution and reliability func-

tions of the failure points.

Let Fn(., .), F̄n(., .) and fn(., .) denote respectively the (unconditional) distribution, reli-

ability and density functions of the n-th failure point (Tn,Un), where n ∈ N+. Then, the

distribution function of the first failure point is given by F1(t, u) = F(t, u), and the corre-

sponding reliability function is F̄1(t, u) = F̄(t, u), where F and F̄ are the distribution and

reliability functions of the bivariate lifetime of the original system. When the density func-

tion exists, it is given by

f1(t, u) =: f (t, u) =
∂2

∂t ∂u
F(t, u) =

∂2

∂t ∂u
F̄(t, u) . (7.23)

The distribution function of the second failure point (T2,U2) depends on that of the first,

and is derived as follows:

F2(t, u) = P{T2 ≤ t,U2 ≤ u}

=

t∫

0

u∫

0

F2(t, u|t1, u1) dF1(t1, u1)

=

t∫

0

u∫

0

VF([a(t
+
1 , u

+
1 ), a(t, u)]× [b(t+1 , u

+
1 ), b(t, u)])

F̄(a(t+1 , u
+
1 ), b(t

+
1 , u

+
1 ))

dF1(t1, u1) ,

(7.24)

where the conditional distribution function F2(., .|t1, u1) is defined in (7.16), the F-volume

VF(.) is defined in (7.15), and

dF1(t, u) := f1(t, u) dt du . (7.25)
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The distribution function of the third failure point (T3,U3) depends on the previous two

failure points, and is derived as follows:

F3(t, u) = P{T3 ≤ t,U3 ≤ u}

=

t∫

0

u∫

0

t2∫

0

u2∫

0

F3(t, u|t2,u2) f2(t2, u2|t1, u1) f1(t1, u1) du1 dt1 du2 dt2

=

t∫

0

u∫

0

t2∫

0

u2∫

0

VF([a(t
+
2 , u

+
2 ), a(t, u)]× [b(t+2 , u

+
2 ), b(t, u)])

F̄(a(t+2 , u
+
2 ), b(t

+
2 , u

+
2 ))

f2(t2,u2) du1 dt1 du2 dt2 ,

(7.26)

where f2(t2,u2) denotes the joint density of the first two failure points at (t1, u1) and (t2, u2);

and f2(., .|t1, u1) denotes the conditional density function of the second failure point (T2,U2)

given the first point (T1,U1) = (t1, u1); see (7.22).

In general, for n ∈ N+ and t, u ≥ 0, the (unconditional) distribution function Fn+1(., .)

of the (n+ 1)-th failure point (Tn+1,Un+1) is given by

Fn+1(t, u) = P{Tn+1 ≤ t,Un+1 ≤ u}

=

t∫

0

u∫

0

. . .

t2∫

0

u2∫

0

Fn+1(t, u|tn,un) fn(tn, un|tn−1,un−1) . . . f1(t1, u1) du1 dt1 . . . dun dtn

=

t∫

0

u∫

0

. . .

t2∫

0

u2∫

0

VF([a(t
+
n , u

+
n ), a(t, u)]× [b(t+n , u

+
n ), b(t, u)])

F̄(a(t+n , u
+
n ), b(t

+
n , u

+
n ))

fn(tn,un) du1 dt1 . . .

dun dtn ,

(7.27)

where Fn+1(0, 0) = Fn+1(t, 0) = Fn+1(0, u) = 0. Note that, the joint density of the first n

failure points, denoted by fn(tn,un) at the points {(t1, u1), . . . , (tn, un)}, is given by

fn(tn,un) = fn(tn, un|tn−1,un−1) . . . f2(t2, u2|t1, u1) f1(t1, u1) , (7.28)

defined for 0< t1< t2< . . .< tn< . . . and 0<u1<u2< . . .<un< . . . , where tn = (t1, . . . , tn)

and un = (u1, . . . , un), for n ∈ N+; see (7.22) for the conditional density functions.

We can use the above distribution functions to derive the (unconditional) reliability func-

tions using the following relationship: for n ∈ N+, the reliability function of the (n+ 1)-th

failure point in terms of the corresponding distribution function is

F̄n+1(t, u) := 1− Fn+1(t,∞)− Fn+1(∞, u) + Fn+1(t, u) , (7.29)
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for t, u ≥ 0, where Fn+1(t,∞) =: FTn+1
(t) and Fn+1(∞, u) =: FUn+1

(u) are the marginal distri-

bution functions of the (n+ 1)-th failure time and the (n+ 1)-th failure usage, respectively.

Alternatively, to derive the reliability function of (Tn+1,Un+1) using the conditional reli-

ability function defined in (7.10), we need to consider the possible positions of the previous

failure point (Tn,Un), for n ∈ N+; see Figure 7.9.
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. . .(0, 0)

...

Figure 7.9: Illustration of the possible trajectories of the failure process, in terms of the n-th failure
point (tn, un). In each plot, the shaded area is the set corresponding to the conditional
reliability function of (Tn+1,Un+1) at the point (t, u).

The conditional reliability function of (Tn+1,Un+1) in (7.10) was defined for t > tn and

u > un, where (tn, un) is the realization of the n-th failure point. To derive the reliabil-

ity function, we need to determine the conditional reliability function for the four cases in

Figure 7.9. Since the failure points are ordered, we have:

(i) when the n-th failure is before time t and usage u, the conditional reliability function

is F̄n+1(t, u|tn,un) ;

(ii) when the n-th failure is before time t but after usage u, the conditional reliability func-

tion is F̄n+1(t, un|tn,un);

(iii) when the n-th failure is before usage u but after time t, the conditional reliability func-

tion is F̄n+1(tn, u|tn,un);
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(iv) when the n-th failure is after time t and usage u, the conditional reliability function is

F̄n+1(tn, un|tn,un) = 1.

Therefore, for n ∈ N+, the reliability function for the (n+ 1)-th failure point (Tn+1,Un+1)

can be derived as follows:

F̄n+1(t, u) = P{Tn+1 > t,Un+1 > u}

=

∞∫

0

∞∫

0

. . .

t2∫

0

u2∫

0

F̄n+1(max(t, t+n ),max(u, u+n )|tn,un) fn(tn,un) du1 dt1 . . . dun dtn

=

t∫

0

u∫

0

. . .

t2∫

0

u2∫

0

F̄(a(t, u), b(t, u))

F̄(a(t+n , u
+
n ), b(t

+
n , u

+
n ))

fn(tn,un) du1 dt1 . . . dun dtn

+

t∫

0

∞∫

u

. . .

t2∫

0

u2∫

0

F̄(a(t, u+n ), b(t, u
+
n ))

F̄(a(t+n , u
+
n ), b(t

+
n , u

+
n ))

fn(tn,un) du1 dt1 . . . dun dtn

+

∞∫

t

u∫

0

. . .

t2∫

0

u2∫

0

F̄(a(t+n , u), b(t
+
n , u))

F̄(a(t+n , u
+
n ), b(t

+
n , u

+
n ))

fn(tn,un) du1 dt1 . . . dun dtn

+

∞∫

t

∞∫

u

. . .

t2∫

0

u2∫

0

F̄(a(t+n , u
+
n ), b(t

+
n , u

+
n ))

F̄(a(t+n , u
+
n ), b(t

+
n , u

+
n ))

fn(tn,un) du1 dt1 . . . dun dtn

= P{Tn+1 > t, Un+1 > u, Tn ≤ t, Un ≤ u}+ P{Tn+1 > t, Un+1 > u, Tn ≤ t, Un > u}

+ P{Tn+1 > t, Un+1 > u, Tn > t, Un ≤ u}+ P{Tn > t, Un > u} .

(7.30)

This function, when simplified, reduces to the reliability function in (7.29), which is de-

fined in terms of the distribution function. We can derive the associated marginal relia-

bility functions from the above reliability function as follows: F̄Tn+1
(t) := F̄n+1(t, 0) and

F̄Un+1
(u) := F̄n+1(0, u).

The density function of the (n+ 1)-th failure point (Tn+1,Un+1), for n ∈ N+, is given by

fn+1(t, u) =

t∫

0

u∫

0

. . .

t2∫

0

u2∫

0

fn+1(t, u|tn,un) fn(tn,un) du1 dt1 . . . dun dtn

=

t∫

0

u∫

0

. . .

t2∫

0

u2∫

0

f (a(t, u), b(t, u))

F̄(a(t+n , u
+
n ), b(t

+
n , u

+
n ))

fn(tn,un) du1 dt1 . . . dun dtn ,

(7.31)

for t, u ≥ 0, where the conditional density function is defined in (7.22).

The distribution functions derived here are functions of the bivariate degrees of repair

(through the virtual age and usage functions), which we assume are preassigned.

The associated failure (or general repair) process is a generalization, in terms of the effec-
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tiveness of repairs, of the perfect repair (or renewal) process and the minimal repair process

in two dimensions. Therefore, by selecting the appropriate degrees of repair, we can derive

the distributions of the failure times of the perfect and minimal repair processes.

7.3.1.1 Failures Followed by Perfect Repair

When all failures of the system are followed by perfect repair, the virtual age and usage at

any point depend only on the last renewal before that point. That is, when n failures have

occurred before the point (t, u), a(t, u) = t− tn and b(t, u) = u− un, for t > tn and u > un,

and n ∈ N+; see Section 7.2.1. Therefore, for n ∈ N+, using the corresponding conditional

distribution function in (7.20), the distribution function in (7.27) reduces to

Fn+1(t, u) =

t∫

0

u∫

0

. . .

t2∫

0

u2∫

0

Fn+1(t, u|tn,un) fn(tn,un) du1 dt1 . . . dun dtn

=

t∫

0

u∫

0

F(t− tn, u− un)




tn∫

0

un∫

0

. . .

t2∫

0

u2∫

0

fn(tn,un) du1 dt1 . . . dun−1 dtn−1


 dun dtn

=

t∫

0

u∫

0

F(t− tn, u− un) fn(tn, un) dun dtn

=

t∫

0

u∫

0

F(t− tn, u− un) dFn(tn, un) =: F∗∗Fn(t, u) ,

(7.32)

when all repairs are perfect, where F(., .) is the distribution function of the original bivariate

lifetime; F∗∗Fn denotes the convolution of F with Fn; and dFn(tn, un) := fn(tn, un) dtn dun.

The corresponding density function is derived by substituting for the virtual age and usage

functions in (7.31). Then, for n ∈ N+ and t, u ≥ 0, we get

fn+1(t, u) =

t∫

0

u∫

0

. . .

t2∫

0

u2∫

0

f (t− tn, u− un) fn(tn,un) du1 dt1 . . . dun dtn , (7.33)

since a(t+n , u
+
n ) = b(t+n , u

+
n ) = 0, for all n ∈ N, and therefore, F̄(a(t+n , u

+
n ), b(t

+
n , u

+
n )) =

F̄(0, 0) = 1. Note that, f (., .) is the density function of the original bivariate lifetime.

These functions are the distribution and density functions of the (n+ 1)-th replacement

point of a renewal process in two dimensions; refer to Hunter [61]. Therefore, the proposed

general repair process includes the renewal process as a special case, i.e. when all degrees

of repair are (1, 1).
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7.3.1.2 Failures Followed by Minimal Repair

When all failures of the system are followed by minimal repair, the virtual age and usage at

any point are equal to the actual age and usage; see Section 7.2.1. Then, the corresponding

conditional distribution function of (Tn+1,Un+1), defined in (7.21), is only a function of the

last minimal repair at point (tn, un). Therefore, when all repairs are minimal, for n ∈ N+

and t, u ≥ 0, the distribution function in (7.27) reduces to

Fn+1(t, u) =

t∫

0

u∫

0

. . .

t2∫

0

u2∫

0

Fn+1(t, u|tn,un) fn(tn,un) du1 dt1 . . . dun dtn

=

t∫

0

u∫

0

VF([t
+
n , t]× [u+n , u])

F̄(t+n , u
+
n )




tn∫

0

un∫

0

. . .

t2∫

0

u2∫

0

fn(tn,un) du1 dt1 . . . dun−1 dtn−1


 dun dtn

=

t∫

0

u∫

0

F(t, u)− F(tn, u)− F(t, un) + F(tn, un)

F̄(tn, un)
fn(tn, un) dun dtn ,

(7.34)

where F(., .) and F̄(., .) denote the distribution and reliability functions of the original life-

time. The corresponding density function is given by substituting for the virtual age and

usage functions in (7.31). For n ∈ N+ and t, u ≥ 0, the density function of (Tn+1,Un+1) is

given by

fn+1(t, u) =

t∫

0

u∫

0

. . .

t2∫

0

u2∫

0

f (t, u)

F̄(tn, un)
fn(tn,un) du1 dt1 . . . dun dtn , (7.35)

when all repairs are minimal, since a(t, u) = t and b(t, u) = u, for all t, u ≥ 0.

These functions are the distribution and density functions of the (n+ 1)-th failure point

of the minimal repair process in two dimensions; refer to Baik et al. [64]. Therefore, the

proposed general repair process reduces to the minimal repair process when all degrees of

repair are set to (0, 0).

7.3.2 Distribution of Bivariate Inter-failure Lifetimes

In this section, we derive the distribution of the bivariate inter-failure lifetimes (Xn,Yn), for

n ∈ N+. The corresponding conditional distribution functions will later be used to simulate

the proposed failure (or general repair) process.

The first bivariate inter-failure lifetime is equal to the point of first failure, i.e. (X1,Y1) =

(T1,U1). For n ∈ N+, the inter-failure time Xn+1 is defined as the time between the n-th and
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(n+ 1)-th failures, and the inter-failure usage Yn+1 is defined as the usage between the n-th

and (n+ 1)-th failures, i.e.

(Xn+1,Yn+1) =
(
Tn+1 − Tn, Un+1 −Un

)
. (7.36)

Let Gn(., .) and Ḡn(., .) denote the probability distribution and reliability functions of the

n-th bivariate inter-failure lifetime (Xn,Yn), for n ∈ N+. Then, the distribution function of

the first bivariate inter-failure lifetime is given by

G1(x, y) = F1(x, y) = F(x, y) , (7.37)

for x, y ≥ 0, where F1 = F is the distribution corresponding to the lifetime of the original

system, i.e. the point of first failure.

The distribution of the (n + 1)-th bivariate inter-failure lifetime (Xn+1,Yn+1) depends

on the distributions of the n previous failure points {(T1,U1), . . . , (Tn,Un)}, for n ∈ N+.

Given all previous failure points, the probability that Xn+1 ≤ x and Yn+1 ≤ y is equal to

the probability of having the (n + 1)-th failure in the region (tn, tn + x] × (un, un + y], for

n ∈ N+ and x, y > 0, where (tn, un) denotes the realization of the n-th failure point (Tn,Un).

Therefore, for n ∈ N+ and x, y > 0, the conditional distribution function of the (n+ 1)-th

inter-failure lifetime is derived as follows:

Gn+1(x, y|tn,un) := P{Xn+1 ≤ x,Yn+1 ≤ y | (T1,U1) = (t1, u1), . . . , (Tn,Un) = (tn, un)}

= P{Tn+1 − Tn ≤ x,Un+1 −Un ≤ y | (T1,U1) = (t1, u1), . . . , (Tn,Un) = (tn, un)}

= P{Tn+1 ≤ tn + x,Un+1 ≤ un + y | (T1,U1) = (t1, u1), . . . , (Tn,Un) = (tn, un)}

= Fn+1(tn + x, un + y|tn,un) ,

(7.38)

where Fn+1(., .|tn,un) is the conditional distribution function of the (n+ 1)-th failure point

(Tn+1,Un+1), defined in (7.16). Given these conditional distribution functions, we can now

derive the unconditional distribution functions Gn+1(., .), for n ∈ N+.

The distribution function of the second bivariate inter-failure lifetime (X2,Y2) is given

by

G2(x, y) = P{X2 ≤ x,Y2 ≤ y} = P{T2 ≤ T1 + x,U2 ≤ U1 + y}

=

∞∫

0

∞∫

0

F2(t1 + x, u1 + y | t1, u1) f1(t1, u1) du1 dt1 .
(7.39)
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Similarly, the distribution function of the third bivariate inter-failure lifetime (X3,Y3) is

given by

G3(x, y) = P{X3 ≤ x,Y3 ≤ y} = P{T3 ≤ T2 + x,U3 ≤ U2 + y}

=

∞∫

0

∞∫

0

t2∫

0

u2∫

0

F3(t2 + x, u2 + y|t2,u2) f2(t2,u2) du1 dt1 du2 dt2 ,
(7.40)

where f2(t2,u2) is the joint density of the first two failure points at the points (t1, u1) and

(t2, u2)– this joint density function is defined in (7.28). Note that, the only difference between

these distribution functions and those of the corresponding failure points, is that the value

of the last observed failure point is not bounded from above (see end limits of the two outer

integrals).

In general, the distribution function of the (n+ 1)-th bivariate inter-failure lifetime, for

n ∈ N+ and x, y > 0, is given by

Gn+1(x, y) = P{Xn+1 ≤ x,Yn+1 ≤ y} = P{Tn+1 ≤ Tn + x,Un+1 ≤ Un + y}

=

∞∫

0

∞∫

0

. . .

t2∫

0

u2∫

0

Fn+1(tn + x, un + y|tn,un) fn(tn,un) du1 dt1 . . . dun dtn ,

(7.41)

where the conditional distribution and the joint density functions of the failure points are

given in (7.16) and (7.28) respectively.

The corresponding reliability function can be derived in a similar manner, and is, for

n ∈ N+ and x, y > 0, given by

Ḡn+1(x, y) = P{Xn+1 > x,Yn+1 > y} = P{Tn+1 > Tn + x,Un+1 > Un + y}

=

∞∫

0

∞∫

0

. . .

t2∫

0

u2∫

0

F̄n+1(tn + x, un + y|tn,un) fn(tn,un) du1 dt1 . . . dun dtn ,

(7.42)

since the conditional reliability function of (Xn+1,Yn+1) is given by

Ḡn+1(x, y|tn,un) := P{Xn+1 > x,Yn+1 > y | (T1,U1) = (t1, u1), . . . , (Tn,Un) = (tn, un)}

= P{Tn+1 > tn + x,Un+1 > un + y | (T1,U1) = (t1, u1), . . . , (Tn,Un) = (tn, un)}

= F̄n+1(tn + x, un + y|tn,un) .

(7.43)

The conditional reliability function F̄n+1(., .|tn,un) of the failure point (Tn+1,Un+1) is de-
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fined in (7.10). Note that, to derive the reliability functions of the bivariate inter-failure

lifetimes, unlike for the failure points, we do not need to consider the four possible regions

in which the last failure can occur [cf. (7.30); also see Figure 7.9].

Before we derive the corresponding density functions, we need to determine the deriva-

tives of the virtual age and usage functions, which appear in the conditional distribution

and reliability functions, with respect to x and y. The virtual age and usage functions of

interest, for x, y > 0, are:

a(tn + x, un + y) = tn + x−
n

∑
i=1

δi a(ti, ui) ;

b(tn + x, un + y) = un + y−
n

∑
i=1

γi b(ti, ui) .

(7.44)

Note that, since x and y are strictly greater than 0, the n-th failure is counted in evaluating

the virtual age and usage. Also, the derivatives of the virtual age and usage functions above,

with respect to x and y respectively, are both 1. Then, the density function of the (n+ 1)-th

inter-failure lifetime, which we denote by gn+1(., .), can be derived as follows:

gn+1(x, y) =
∂2

∂x ∂y
Gn+1(x, y) =

∂2

∂x ∂y
Ḡn+1(x, y)

=

∞∫

0

∞∫

0

. . .

t2∫

0

u2∫

0

∂2

∂x ∂y
F̄n+1(tn + x, un + y|tn,un) fn(tn,un) du1 dt1 . . . dun dtn

=

∞∫

0

∞∫

0

. . .

t2∫

0

u2∫

0

∂2

∂x ∂y

F̄(a(tn + x, un + y), b(tn + x, un + y))

F̄(a(t+n , u
+
n ), b(t

+
n , u

+
n ))

fn(tn,un) du1 dt1 . . . dun dtn

=

∞∫

0

∞∫

0

. . .

t2∫

0

u2∫

0

f (a(tn + x, un + y), b(tn + x, un + y))

F̄(a(t+n , u
+
n ), b(t

+
n , u

+
n ))

fn(tn,un) du1 dt1 . . . dun dtn

(7.45)

for x, y > 0, where we have used the conditional reliability function in (7.10). Note that, the

conditional density function in (7.45) can be replaced by

gn+1(x, y|tn,un) :=
f (a(t+n + x, u+n + y), b(t+n + x, u+n + y))

F̄(a(t+n , u
+
n ), b(t

+
n , u

+
n ))

, (7.46)

for x, y ≥ 0 (i.e. equality included) [cf. (7.22)].

The distribution of a bivariate inter-failure lifetime depends, through the virtual age and

usage functions, on the degrees of the general repairs performed prior to the start of that

lifetime. In the following sections, we will show that by choosing the appropriate degrees of
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repair, the functions derived here reduce to those corresponding to the perfect and minimal

repair processes in two dimensions.

7.3.2.1 Inter-failure Lifetimes following Perfect Repairs

When all repairs are perfect, then a(t+n + x, u+n + y) = t+n + x− tn = x, and similarly, b(t+n +

x, u+n + y) = y. Then, immediately following the n-th repair, we have virtual age a(t+n , u
+
n ) =

0 and virtual usage b(t+n , u
+
n ) = 0. Therefore, the conditional distribution function in (7.38)

reduces to

Gn+1(x, y|tn,un) = Fn+1(tn + x, un + y|tn,un)

=
VF([a(t

+
n , u

+
n ), a(t

+
n + x, u+n + y)]× [b(t+n , u

+
n ), b(t

+
n + x, u+n + y)])

F̄(a(t+n , u
+
n ), b(t

+
n , u

+
n ))

=
VF([0, x]× [0, y])

F̄(0, 0)
= F(x, y) ,

(7.47)

for x, y ≥ 0 and n ∈ N+ [cf. (7.20)]; see (7.17) for the definition of the F-volume VF(.). The

corresponding (unconditional) distribution function in (7.41) becomes

Gn+1(x, y) =

∞∫

0

∞∫

0

. . .

t2∫

0

u2∫

0

F(x, y) fn(tn,un) du1 dt1 . . . dun dtn

= F(x, y)

∞∫

0

∞∫

0

fn(tn, un) dun dtn = F(x, y) ,

(7.48)

when all repairs are perfect, since, for n ∈ N+, the integral of the density function fn(tn, un)

over its entire support is equal to Fn(∞,∞) = 1. This implies that the bivariate inter-failure

lifetimes are independent and identically distributed random variables with a common dis-

tribution F, as is the case with the renewal process in two dimensions; refer to Hunter [61].

We can also prove this in terms of either the reliability function or the density function.

The conditional reliability function in (7.43), when all repairs are perfect, reduces to

Ḡn+1(x, y|tn,un) = F̄n+1(t
+
n + x, u+n + y | tn,un)

=
F̄(a(t+n + x, u+n + y), b(t+n + x, u+n + y))

F̄(a(t+n , u
+
n ), b(t

+
n , u

+
n ))

=
F̄(x, y)

F̄(0, 0)
= F̄(x, y) ,

(7.49)

for x, y ≥ 0 and n ∈ N+, since F̄(0, 0) = 1. Then, the corresponding (unconditional) relia-
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bility function, given in (7.42), becomes

Ḡn+1(x, y) =

∞∫

0

∞∫

0

. . .

t2∫

0

u2∫

0

F̄(x, y) fn(tn,un) du1 dt1 . . . dun dtn

= F̄(x, y)

∞∫

0

∞∫

0

fn(tn, un) dun dtn = F̄(x, y) .

(7.50)

Similarly, the conditional density function defined in (7.46), when all repairs are perfect,

reduces to

gn+1(x, y|tn,un) =
f (a(t+n + x, u+n + y), b(t+n + x, u+n + y))

F̄(a(t+n , u
+
n ), b(t

+
n , u

+
n ))

=
f (x, y)

F̄(0, 0)
= f (x, y) ,

(7.51)

for x, y ≥ 0. Then, the corresponding density function, given in (7.45), becomes

gn+1(x, y) =

∞∫

0

∞∫

0

. . .

t2∫

0

u2∫

0

gn+1(x, y|tn,un) fn(tn,un) du1 dt1 . . . dun dtn

= f (x, y)

∞∫

0

∞∫

0

. . .

t2∫

0

u2∫

0

fn(tn,un) du1 dt1 . . . dun dtn = f (x, y) ,

(7.52)

since the integral of the joint density function over its entire support is unity.

Therefore, the proposed failure process becomes a renewal process in two dimensions,

when all degrees of repair are set to (1, 1).

7.3.2.2 Inter-failure Lifetimes following Minimal Repairs

When all system failures are followed by minimal repairs, then a(t, u) = t and b(t, u) = u,

for all t, u ≥ 0. Therefore, when all repairs are minimal, the conditional distribution function

in (7.38) reduces to

Gn+1(x, y|tn,un) = Fn+1(t
+
n + x, u+n + y|tn,un)

=
VF([t

+
n , t

+
n + x]× [u+n , u

+
n + y])

F̄(t+n , u
+
n )

=
F(tn + x, un + y)− F(tn, un + y)− F(tn + x, un) + F(tn, un)

F̄(tn, un)
,

(7.53)

for x, y ≥ 0 and n ∈ N+ [cf. (7.21)]. Then, since the conditional distribution function de-

pends only on the last failure point (tn, un), the corresponding (unconditional) distribution
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function becomes

Gn+1(x, y) =

∞∫

0

∞∫

0

. . .

t2∫

0

u2∫

0

VF([t
+
n , t

+
n + x]× [u+n , u

+
n + y])

F̄(t+n , u
+
n )

fn(tn,un) du1 dt1 . . . dun dtn

=

∞∫

0

∞∫

0

VF([t
+
n , t

+
n + x]× [u+n , u

+
n + y])

F̄(t+n , u
+
n )

fn(tn, un) dun dtn ,

(7.54)

for x, y ≥ 0.

Similarly, when all repairs are minimal, the reliability function in (7.42) reduces to

Ḡn+1(x, y) =

∞∫

0

∞∫

0

. . .

t2∫

0

u2∫

0

F̄(tn + x, un + y)

F̄(tn, un)
fn(tn,un) du1 dt1 . . . dun dtn

=

∞∫

0

∞∫

0

F̄(tn + x, un + y)

F̄(tn, un)
fn(tn, un) dun dtn ,

(7.55)

since the corresponding conditional reliability function is given by

Ḡn+1(x, y|tn,un) = F̄n+1(t
+
n + x, u+n + y|tn,un) =

F̄(tn + x, un + y)

F̄(tn, un)
, (7.56)

for x, y ≥ 0 and n ∈ N+ [cf. (7.12)].

Finally, the density function of (Xn+1,Yn+1), given in (7.45), when all repairs are minimal,

becomes

gn+1(x, y) =

∞∫

0

∞∫

0

. . .

t2∫

0

u2∫

0

gn+1(x, y|tn,un) fn(tn,un) du1 dt1 . . . dun dtn

=

∞∫

0

∞∫

0

f (tn + x, un + y)

F̄(tn, un)




tn∫

0

un∫

0

. . .

t2∫

0

u2∫

0

fn(tn,un) du1 dt1 . . . dun−1 dtn−1


 dun dtn

=

∞∫

0

∞∫

0

f (tn + x, un + y)

F̄(tn, un)
fn(tn, un) dun dtn ,

(7.57)

for n ∈ N+ and x, y ≥ 0, since the corresponding conditional density function is given by

gn+1(x, y|tn,un) =
f (a(t+n + x, u+n + y), b(t+n + x, u+n + y))

F̄(a(t+n , u
+
n ), b(t

+
n , u

+
n ))

=
f (t+n + x, u+n + y)

F̄(t+n , u
+
n )

=
f (tn + x, un + y)

F̄(tn, un)
.

(7.58)

The derived functions are the distribution, density and reliability functions of the bivari-
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ate inter-failure lifetimes corresponding to the minimal repair process in two dimensions;

refer to Baik et al. [64] (also, see Section 6.2.2). Therefore, when all degrees of repair are

set to (0, 0) (i.e. when all repairs are minimal), the proposed failure process becomes the

minimal repair process in two dimensions.

7.3.3 Distribution of Number of Failures

The distribution of the numbers (or counts) of failures occurring in given subsets of the space

R
2
+ can be derived using the distribution functions of the failure points (Tn,Un), n ∈ N+,

which we derived in Section 7.3.1.

For n ∈ N+, the probability of n failures occurring in the region (0, t]× (0, u], for t, u > 0,

is given by

P{N(t, u) = n} =P{N(t, u) ≥ n} − P{N(t, u) ≥ n+ 1}

=P{Tn ≤ t,Un ≤ u} − P{Tn+1 ≤ t,Un+1 ≤ u}

=Fn(t, u)− Fn+1(t, u) ,

(7.59)

and the probability of no failure occurring in the region (0, t]× (0, u] is given by

P{N(t, u) = 0} = 1− P{N(t, u) ≥ 1}

= 1− P{T1 ≤ t,U1 ≤ u}

= 1− F(t, u) 6= F̄(t, u) .

(7.60)

The expected number of failures in a given region (0, t] × (0, u] can also be computed

using the distribution functions of the failure points, i.e.

E[N(t, u)] =
∞

∑
n=1

Fn(t, u) ; (7.61)

see Section 6.1.1 for details.

7.4 Constructing BIFR Distributions

In order to simulate and illustrate the proposed general repair process in two dimensions,

we need a distribution function that satisfies the bivariate increasing failure rate (BIFR) prop-

erty discussed in Section 7.1. A distribution F is said to be BIFR, if the bivariate conditional
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reliability (BCR) function F̄(x+ s, y+ v)/F̄(x, y) is decreasing in both x ≥ 0 and y ≥ 0, for

each s, v ≥ 0. Here, “increasing” and “decreasing” are not used in the strict sense (i.e. they

are synonymous with “non-decreasing” and “non-increasing” respectively).

Bivariate distributions can be constructed from univariate distributions. Various trans-

formations have been suggested for constructing bivariate reliability functions from known

marginals (see Balakrishnan and Lai [67] for a comprehensive review). Consider, for in-

stance, the bivariate exponential distribution by Gumbel [68]:

F̄(x, y) = e−x−y−θxy , (7.62)

where θ > 0 and x, y ≥ 0, which has exponential marginals with reliability functions

F̄X(x) = e−x and F̄Y(y) = e−y (scale parameters can be introduced to generalize this model).

This distribution is BIFR, since

F̄(x+ s, y+ v)

F̄(x, y)
= e−s−v−θ(sy+vx+sv) , (7.63)

is decreasing in x, y ≥ 0, for each s, v ≥ 0.

Note that, the bivariate reliability function in (7.62) is of the form

F̄(x, y) = F̄X(x) F̄Y(y) e
−θ K(x,y) , (7.64)

where F̄X(.) and F̄Y(.) are the marginal reliability functions of the lifetime variables X and Y

respectively, and the function K(., .) is chosen such that K(x, 0) = K(0, y) = K(0, 0) = 0, for

all x, y ≥ 0, and K(x, y) is increasing in x, y ≥ 0. For the purpose of this study, we will work

with the model in (7.64) due to its simplicity; see Lu and Bhattacharyya [69] for more on this

and other types of transformation.

For (7.64) to be a reliability function, the following boundary conditions need to be sat-

isfied:

(i) F̄(0, 0) = 1;

(ii) F̄(x, 0) = F̄X(x), for x ≥ 0, and F̄(0, y) = F̄Y(y), for y ≥ 0;

(iii) F̄(x,∞) = F̄(∞, y) = F̄(∞,∞) = 0, for x, y ≥ 0.

In addition, model parameters and the function K(., .)must be chosen such that the density–

assuming that the second order mixed partial derivative of F̄(., .) exists– at any point is non-

negative, i.e. for all x, y > 0, f (x, y) = ∂2 F̄(x, y)/∂x∂y ≥ 0.
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The bivariate cumulative hazard function, denoted by H(., .), for the above model is

given by

H(x, y) = − ln F̄(x, y) = − ln F̄X(x)− ln F̄Y(y) + θ K(x, y) , (7.65)

for x, y ≥ 0, and therefore the hazard gradient vector is given by

h(x, y) =

(
−

∂

∂x
ln F̄X(x) + θ

∂

∂x
K(x, y) , −

∂

∂y
ln F̄Y(y) + θ

∂

∂y
K(x, y)

)

=
(
rX(x) + θ kx(x, y) , rY(y) + θ ky(x, y)

)

=
(
hX(x, y), hY(x, y)

)
,

(7.66)

where kx(x, y) := ∂K(x, y)/∂x and ky(x, y) := ∂K(x, y)/∂y. Therefore, when y = 0, we

get hX(x, 0) = rX(x), and when x = 0, we get hY(0, y) = rY(y), where rX(.) and rY(.)

are the marginal (univariate) failure rate functions of X and Y. For Gumbel’s exponential

distribution in (7.62), the hazard gradient vector is given by

h(x, y) = (1+ θy , 1+ θx) (7.67)

If a distribution is BIFR, then the components of the associated hazard gradient vector

are both increasing in x, y ≥ 0; see Section 6.1.4. This can be easily verified for the hazard

gradient vector in (7.67).

It has been shown that the BCR function F̄(x + s, y + v)/F̄(x, y), for s = v = ∆, is

decreasing in x and y, for each ∆ > 0, if the partial derivatives

∂
∂x F̄(x+ ∆, y+ ∆)

F̄(x+ ∆, y+ ∆)
=

∂

∂x
ln F̄(x+ ∆, y+ ∆) (7.68)

and
∂

∂y F̄(x+ ∆, y+ ∆)

F̄(x+ ∆, y+ ∆)
=

∂

∂y
ln F̄(x+ ∆, y+ ∆) (7.69)

(assuming that they exist) are decreasing in ∆ > 0, for each x, y ≥ 0 (i.e. if the two compo-

nents of the hazard gradient vector h(x + ∆, y + ∆), which are the negatives of the partial

derivatives in (7.68) and (7.69), are increasing in ∆, for each x, y ≥ 0); refer to Block [70].

This can be verified for the Gumbel exponential distribution which is BIFR, where the com-

ponents of the hazard gradient vector

h(x+ ∆, y+ ∆) = (1+ θ (y+ ∆) , 1+ θ (x+ ∆)) (7.70)
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are increasing in ∆, for each x, y ≥ 0. We note that this also applies in the case where s = ∆1

and v = ∆2 are not necessarily equal.

Theorem 1. The BCR function F̄(x + ∆1, y + ∆2)/F̄(x, y) is decreasing in x, y ≥ 0, for each

∆1,∆2 > 0, if the two components hX(x + ∆1, y + ∆2) and hY(x + ∆1, y + ∆2) of the hazard

gradient vector h(x+ ∆1, y+ ∆2) are increasing in ∆1 and ∆2, for each x, y ≥ 0.

Proof. The proof is similar to that given in Block [70] (where ∆1 = ∆2 = ∆). If the first

component hX(x+ ∆1, y+ ∆2) is increasing in ∆1,∆2 > 0, for each x, y ≥ 0, then the corre-

sponding partial derivative is decreasing in ∆1,∆2 > 0, for each x, y ≥ 0. That is, for fixed

x, y,

hX(x+ ∆1, y+ ∆2) = −
∂

∂x
ln F̄(x+ ∆1, y+ ∆2) is increasing in ∆1,∆2 > 0

⇔
∂

∂x F̄(x+ ∆1, y+ ∆2)

F̄(x+ ∆1, y+ ∆2)
=

∂

∂x
ln F̄(x+ ∆1, y+ ∆2) is decreasing in ∆1,∆2 > 0

⇒
∂

∂x F̄(x, y)

F̄(x, y)
≥

∂
∂x F̄(x+ ∆1, y+ ∆2)

F̄(x+ ∆1, y+ ∆2)

⇒
∂

∂x F̄(x, y)

F̄(x, y)
−

∂
∂x F̄(x+ ∆1, y+ ∆2)

F̄(x+ ∆1, y+ ∆2)
≥ 0

⇒
F̄(x+ ∆1, y+ ∆2)

∂
∂x F̄(x, y) − F̄(x, y) ∂

∂x F̄(x+ ∆1, y+ ∆2)

F̄(x, y) F̄(x+ ∆1, y+ ∆2)
≥ 0

⇒
F̄(x, y) ∂

∂x F̄(x+ ∆1, y+ ∆2) − F̄(x+ ∆1, y+ ∆2)
∂

∂x F̄(x, y)

F̄2(x, y)
≤ 0

⇒
∂

∂x

F̄(x+ ∆1, y+ ∆2)

F̄(x, y)
≤ 0 .

(7.71)

Therefore, for fixed x, y ≥ 0, if the first component hX(x+ ∆1, y+ ∆2) of the hazard gradient

vector is increasing in ∆1,∆2 > 0, then the BCR function is decreasing in x, for each ∆1,∆2 >

0. It can be similarly shown that, if the second component hY(x+ ∆1, y+ ∆2) of the hazard

gradient vector is increasing in ∆1,∆2 > 0, for fixed x, y ≥ 0, then the BCR function is

decreasing in y, for each ∆1,∆2 > 0. Therefore, if both components are increasing in ∆1,∆2 >

0, for fixed x, y ≥ 0, the BCR function is decreasing in x, y ≥ 0, for each ∆1,∆2 > 0.

Therefore, to determine if a distribution is BIFR, it is enough to check whether the com-

ponents of the associated hazard gradient vector satisfy the property in Theorem 1. This is

useful, since: (i) the components of the hazard gradient vector often have simpler forms than

the bivariate reliability function F̄(., .) and are therefore easier to differentiate; and (ii) one

can define a hazard gradient vector with the above property and then construct a reliability
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function (and BIFR distribution) using the following relationship [52]:

F̄(x, y) = e
−

x∫
0

hX(s,y) ds−
y∫
0

hY(0,v) dv
= e

−
y∫
0

hY(x,v) dv−
x∫
0

hX(s,0) ds
. (7.72)

This allows us to construct BIFR distributions of the form in (7.64) with other marginal

distributions; for instance, Weibull marginals, which have been widely used in reliability

studies to model the distribution of lifetime variables. To construct a bivariate distribution

from known marginal distributions, the functional form of K(., .) in (7.64) must be defined.

For the distribution to be BIFR, it is enough that:

(C1) the failure rates rX(x) and rY(y) are increasing in x ≥ 0 and y ≥ 0;

(C2) the partial derivatives kx(x+ ∆1, y+ ∆2) and ky(x+ ∆1, y+ ∆2) of the function K(x+

∆1, y+ ∆2) are both increasing in ∆1,∆2 > 0, for each x, y ≥ 0.

Note that, the hazard gradient vector should be defined such that the following equality

(derived from (7.72)) is satisfied for all x, y ≥ 0:

x∫

0

hX(s, y) ds−

y∫

0

hY(0, v) dv =

y∫

0

hY(x, v) dv−

x∫

0

hX(s, 0) ds

⇔

x∫

0

(
hX(s, y)− rX(s)

)
ds =

y∫

0

(
hY(x, v)− rY(v)

)
dv .

(7.73)

A BIFR Distribution. Let RX(.) and RY(.) denote the cumulative marginal failure rate func-

tions of X and Y respectively. Then, when K(x, y) = RX(x) RY(y), the bivariate reliability

function in (7.64) becomes

F̄(x, y) = F̄X(x) F̄Y(y) e
− θ RX(x) RY(y)

= e−RX(x)
[
1+θRY(y)

]
e−RY(y) = e−RY(y)

[
1+θRX(x)

]
e−RX(x) ,

(7.74)

for x, y ≥ 0. Is F̄(., .) a reliability function? All boundary conditions are satisfied. We know

that, the cumulative failure rate functions are such that RX(0) = RY(0) = 0 and as increasing

functions, when x, y → ∞, RX(x), RY(y) → ∞. The marginal reliability functions are such

that F̄X(0) = F̄Y(0) = 1 and F̄X(∞) = F̄Y(∞) = 0. Then, we have

(i) F̄(0, 0) = F̄X(0) F̄Y(0) e
0 = 1;

(ii) when y = 0, F̄(x, 0) = F̄X(x) F̄Y(0) e0 = F̄X(x), for x ≥ 0, and when x = 0, F̄(0, y) =
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F̄X(0) F̄Y(y) e
0 = F̄Y(y), for y ≥ 0;

(iii) F̄(x,∞) = F̄X(x) F̄Y(∞) e−∞ = 0, for x ≥ 0, and similarly, F̄(∞, y) = 0, for y ≥ 0, and

F̄(∞,∞) = 0.

The second order mixed partial derivative of the function F̄(., .) in (7.74) is given by

∂2

∂x∂y
F̄(x, y) = e− θ RX(x) RY(y)

{
fX(x) fY(y) + F̄X(x) F̄Y(y)θ

2 RX(x) RY(y)rX(x) rY(y)

+ θF̄X(x) fY(y)RY(y)rX(x) + θF̄Y(y)rY(y)
(
RX(x) fX(x)− rX(x)F̄X(x)

)}

= e− θ RX(x) RY(y)

{
fX(x) fY(y) + fX(x) fY(y)θ

2 RX(x) RY(y)

+ θ fX(x) fY(y)RY(y) + θ fX(x) fY(y)RX(x)− θ fX(x) fY(y)

}

= fX(x) fY(y)e
− θ RX(x) RY(y)

{
1+ θ

(
RX(x) + RY(y) + θ RX(x) RY(y)− 1

)}
,

(7.75)

which is non-negative for all x, y ≥ 0, when 0 ≤ θ ≤ 1. Therefore, for θ ∈ [0, 1], the joint

density function f (x, y) = ∂2 F̄(x, y)/∂x∂y ≥ 0, for all x, y ≥ 0, and F̄(., .) is a reliability

function. Note that, in (7.74), θ = 0 when the two variables X and Y are independent.

This distribution was defined for uniform marginals in Barnett [71], and is sometimes

referred to as the Gumbel-Barnett Copula. The uniform marginals can be replaced by any

marginal distribution; refer to Balakrishnan and Lai [67].

Next, one needs to determine when this distribution is BIFR. To test the distribution for

the BIFR property, we can use Theorem 1 (on page 175) or equivalently we can check for

conditions C1 and C2 (on page 176).

The partial derivatives of the function K(x, y) with respect to x and y are given by

kx(x, y) =
∂

∂x
K(x, y) = RY(y) rX(x) (7.76)

and

ky(x, y) =
∂

∂y
K(x, y) = RX(x) rY(y) , (7.77)

respectively. Therefore, the corresponding hazard gradient vector is given by

h(x, y) =

(
rX(x) + θ RY(y) rX(x) , rY(y) + θ RX(x) rY(y)

)
. (7.78)

The partial derivatives of the hazard gradient vector h(x+∆1, y+∆2)with respect to ∆1
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and ∆2 are given by

∂

∂∆1
h(x+ ∆1, y+ ∆2) =

(
∂

∂∆1
rX(x+ ∆1) +

∂

∂∆1
kx(x+ ∆1, y+ ∆2) ,

∂

∂∆1
ky(x+ ∆1, y+ ∆2)

)

=

((
1+ θRY(y+ ∆2)

) ∂

∂∆1
rX(x+ ∆1) , rY(y+ ∆2) θ

∂

∂∆1
RX(x+ ∆1)

)
,

(7.79)

and

∂

∂∆2
h(x+ ∆1, y+ ∆2) =

(
∂

∂∆2
kx(x+ ∆1, y+ ∆2) ,

∂

∂∆2
rY(y+ ∆2) +

∂

∂∆2
ky(x+ ∆1, y+ ∆2)

)

=

(
rX(x+ ∆1) θ

∂

∂∆2
RY(y+ ∆2) ,

(
1+ θ RX(x+ ∆1)

) ∂

∂∆2
rY(y+ ∆2)

)
.

(7.80)

If the components of the vectors in (7.79) and (7.80) are non-negative, then this distribution

is BIFR (from Theorem 1). This is equivalent to conditions C1 and C2 (defined on page 176)

being satisfied.

C1? If the marginal failure rates rX(x) and rY(y) are increasing in x and y respectively,

then rX(x+ ∆1) is increasing in ∆1 for fixed x and rY(y+ ∆2) is increasing in ∆2 for fixed y.

In other words, their derivatives, which appear in (7.79) and (7.80), are non-negative.

C2? We know that the cumulative failure rate is an increasing function of its argument,

i.e. RX(x) and RY(y) are increasing in x and y respectively. This implies that RX(x + ∆1)

is increasing in ∆1 for fixed x and RY(y+ ∆2) is increasing in ∆2 for fixed y. That is, their

derivatives, which appear in (7.79) and (7.80), are non-negative. We also know that, the

marginal failure rates and the parameter θ are all non-negative. Therefore, the partial deriva-

tives
∂

∂∆1
kx(x+ ∆1, y+ ∆2) = RY(y+ ∆2)

∂

∂∆1
rX(x+ ∆1)

∂

∂∆2
kx(x+ ∆1, y+ ∆2) = rX(x+ ∆1)

∂

∂∆2
RY(y+ ∆2)

∂

∂∆1
ky(x+ ∆1, y+ ∆2) = rY(y+ ∆2)

∂

∂∆1
RX(x+ ∆1)

∂

∂∆2
ky(x+ ∆1, y+ ∆2) = RX(x+ ∆1)

∂

∂∆2
rY(y+ ∆2)

(7.81)

are also non-negative, for each x, y ≥ 0.

Note that, for this particular distribution, conditions C1 and C2 are equivalent, since the

signs of the derivatives in (7.81) depend on the monotonicity of the failure rate functions

rX(.) and rY(.) (all remaining terms are non-negative). Therefore, to construct a BIFR dis-

tribution of the form (7.74), it is enough to define marginal failure rate functions that are

increasing (or non-decreasing) in their respective arguments.
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The BCR function for the Barnett-Gumbel distribution (with known marginals) is given

by

F̄(x+ s, y+ v)

F̄(x, y)
= e−

[
RX(x+s)−RX(x)

]
e−
[
RY(y+v)−RY(y)

]
e−θ

[
RX(x+s)RY(y+v)−RX(x)RY(y)

]
, (7.82)

which is decreasing in x, y ≥ 0, for each s, v ≥ 0.

Example 1. For exponential marginals with scale parameters α1, α2 > 0, we have the fol-

lowing bivariate reliability function:

F̄(x, y) = e
−
(

x
α1

)
e
−
(

y
α2

)
e
− θ

(
x

α1

) (
y

α2

)
. (7.83)

When the marginals are standard exponential distributions, then the Barnett-Gumbel distri-

bution reduces to Gumbel’s bivariate exponential distribution discussed earlier. Here, the

failure rate functions are rX(x) = 1/α1 and rY(y) = 1/α2, which are both non-decreasing.
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Figure 7.10: Illustrations of the bivariate reliability function (left) and the corresponding BCR func-
tion (right), with Weibull marginals, plotted over x, y ∈ [0, 5], for s = 0.1 and v = 0.2,
and parameter values: θ = 0.7, α1 = 3, β1 = 1.1, α2 = 3.5 and β2 = 1.2.

Example 2. For two-parameter Weibull marginals with scale parameters α1, α2 > 0 and

shape parameters β1, β2 ≥ 0, we have the following bivariate reliability function:

F̄(x, y) = e
−
(

x
α1

)β1

e
−
(

y
α2

)β2

e
− θ

(
x

α1

)β1
(

y
α2

)β2

. (7.84)

179



Here, the marginal failure rate functions are

rX(x) =
β1

α1

(
x

α1

)β1−1

and rY(y) =
β2

α2

(
y

α2

)β2−1

, (7.85)

which are increasing in x and y respectively, for β1, β2 > 1. Therefore, for β1, β2 > 1, the

distribution is BIFR.

We will use this distribution for our illustrations. In Figure 7.10, we have plotted the

reliability and BCR functions of the Barnett-Gumbel distribution for Weibull marginals.

7.5 Chapter Conclusion

In this chapter, we proposed a new failure (or general repair) process to model consecutive

failures (followed by general repair) of a system whose lifetime is modeled as a bivariate

random variable. The lifetime distribution is assumed to be bivariate increasing failure rate

(BIFR), and therefore, the effect of a general repair is modeled as a possible decrease in

the virtual age and usage of the system following the repair. Therefore, the system after a

general repair behaves like a younger (in terms of both age and usage), identical system.

We derived the distribution functions of the failure points and the bivariate inter-failure

lifetimes, and showed that by choosing the appropriate degrees of repair, the proposed fail-

ure process reduces to the minimal and perfect repair processes in two dimensions.

We also investigated an approach to construct bivariate lifetime distributions with the

BIFR property, using themarginal distributions of the two variables. Wewill use the Barnett-

Gumbel distributionwithWeibull marginals in our numerical illustrations later in this study.

In the following chapters, we will discuss some properties of the general repair models

and suggest a simulation procedure to simulate trajectories of the associated general repair

process and estimate the expected number of failures.
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Chapter 8

Modeling Repairs in Two Dimensions:

Model Properties

In this chapter, we discuss various properties of the general repair process in two dimensions

proposed in the previous chapter– in particular, we examine the behavior of the proposed

general repair model with respect to the degrees of repair.

This chapter is arranged as follows. In Section 8.1, we discuss the effect of the degrees of

repair on the reliability of the system conditional on previous failure times. In Section 8.2, we

discuss the effect of the degrees of repair on the ordering of the bivariate residual lifetime

distributions. In Section 8.3, we show that when a functional relationship is imposed on

the failure times and usages, then the proposed two-dimensional approach reduces to the

one-dimensional approach to failure modeling in two dimensions, as defined by Blischke &

Murthy [2]. In Section 8.4, we conclude with a summary of the chapter.

8.1 Conditional Reliability and Degrees of Repair

A general repair model must have the following property: the reliability of the system fol-

lowing a repair should improve as the degree of the repair increases. In this section, we

discuss the relationship between the degrees of the general repairs performed on the system

and the system reliability following these repairs.

We have assumed that the system lifetime distribution is BIFR, which translates to a

bivariate conditional reliability (BCR) function that is decreasing in both time and usage;

see Section 7.1. That is, given that a system has no prior failure, a younger (in terms of age

and usage) system is more reliable than an older, identical system. Therefore, we model the
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effect of a general repair as reductions in the virtual age and virtual usage of the system

following the repair.

Let the realizations of the virtual age and usage functions at the point (t, u), when n

failures have occurred before this point, be denoted by an(t, u) and bn(t, u) respectively, for

t, u ≥ 0 and n ∈ N+. Given the n failure points prior to the point (t, u), the virtual age

an(t, u) is a function of the failure times tn = (t1, . . . , tn) and the corresponding components

δn = (δ1, . . . , δn) of the bivariate degrees of repair. Similarly, the virtual usage bn(t, u) is a

function of the failure usages un = (u1, . . . , un) and the corresponding components γn =

(γ1, . . . ,γn) of the degrees of repair. We have used the subscript n here to emphasize that

these functions are functions of the n previous failure points and the corresponding degrees

of repair. Note that, before the first failure (or when all repairs are minimal), the virtual age

and usage functions are equal to the actual age and usage: a0(t, u) = t and b0(t, u) = u.

Before the first failure, we used the BCR function F̄(t+ x, u+ y)/F̄(t, u) as an indicator

of the working condition of the system. Now suppose that n failures have occurred prior

to the point (t, u). Then, for n ∈ N+, the following conditional reliability function can be

viewed as an indicator of the working condition of the system at the point (t, u):

P{Tn+1> t+ x,Un+1>u+ y | Tn+1> t,Un+1>u, (T1,U1)= (t1, u1), . . . , (Tn,Un)= (tn, un)}

=
P{Tn+1> t+ x,Un+1>u+ y | (T1,U1)= (t1, u1), . . . , (Tn,Un)= (tn, un)}

P{Tn+1> t,Un+1>u | (T1,U1)= (t1, u1), . . . , (Tn,Un)= (tn, un)}

=
F̄n+1(t+ x, u+ y|tn,un)

F̄n+1(t, u|tn,un)
=

F̄(an(t+ x, u+ y), bn(t+ x, u+ y))

F̄(an(t, u), bn(t, u))

=
F̄(x+ an(t, u), y+ bn(t, u))

F̄(an(t, u), bn(t, u))
,

(8.1)

for x, y > 0, where the last line follows from the definitions of the virtual age and usage

functions given in Section (7.2.1). When no failure has occurred in the region (t, t + x] ×

(u, u + y], then an(t + x, u + y) = x + an(t, u) and bn(t + x, u + y) = y + bn(t, u). When

t = t+n and u = u+n , (8.1) reduces to the conditional reliability function of the (n + 1)-th

failure point (Tn+1,Un+1), which is given in (7.10) on page 153.

Notice that, the conditional reliability function in (8.1) is now of the same form as the

BCR function F̄(t+ x, u+ y)/F̄(t, u), where t and u have been respectively replaced by the

virtual age and usage at the point (t, u). We know that, the virtual age an(t, u) is decreas-

ing in each δj, for j ∈ {1, . . . , n}, when all other parameters in this function are fixed, and

similarly, the virtual usage bn(t, u) is decreasing in each γj, for j ∈ {1, . . . , n}, when all other
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parameters in this function are fixed (see (7.2) on page 150 for the definitions of the virtual

age and usage functions). Since the lifetime distribution F is assumed to be BIFR, the BCR

function F̄(t + x, u + y)/F̄(t, u) is decreasing in t, u ≥ 0, for each x, y ≥ 0. Therefore, the

conditional reliability function in (8.1) is increasing in each δj and each γj, for j ∈ {1, . . . , n},

when all remaining parameters (arguments and degrees) remain fixed.

The conditional reliability in (8.1) is the conditional probability of the system surviving x

units of time and y units of usage, conditional on the system operating at time t and usage u,

given that n failures have occurred prior to the point (t, u). Therefore, (8.1) is the reliability

corresponding to the conditional bivariate residual lifetime of the system at time t and usage u:

[
Tn+1 − t,Un+1 − u | Tn+1> t,Un+1>u, (T1,U1)= (t1, u1), . . . , (Tn,Un)= (tn, un); δn,γn

]
,

(8.2)

which is the bivariate analogue of the univariate residual lifetime conditional on all previous

failure times and the corresponding repair degrees. When t = t+n and u = u+n , then (8.2) is

equal in distribution to the conditional bivariate inter-failure lifetime

[
Xn+1,Yn+1 | (T1,U1)= (t1, u1), . . . , (Tn,Un)= (tn, un); δn,γn

]
, (8.3)

which is also a function of the n previous failure times and degrees of repair, for n ∈ N+.

Note that, the conditional reliability function of (8.3) is derived from (8.1) by setting t = t+n

and u = u+n . For any δi, i ∈ {1, . . . , n}, when all other parameters are fixed, (8.3) with δi = δ′

is stochastically larger than (8.3) with δi = δ, when δ′ ≥ δ (using Definition 6.6 on page 133).

Similarly, for any γi, i ∈ {1, . . . , n}, when all other parameters are fixed, (8.3) with γi = γ′ is

stochastically larger than (8.3) with γi = γ, when γ′ ≥ γ. This follows from the conditional

reliability in (8.1) being an increasing function of each δi and each γi, for i ∈ {1, . . . , n}, when

all other parameters are fixed.

The above results imply that, at any point, the conditional reliability of the system following

an imperfect repair is bounded between the conditional reliability following a minimal repair and the

conditional reliability following a perfect repair. Note that, in the bivariate case, this ordering of

the degrees of repair based on the effectiveness of the repairs is not a complete ordering. For

instance, it is not implied that an imperfect repair of degree (0.2, 0.6) is more (or less) effec-

tive than an imperfect repair of degree (0.6, 0.2). Both repairs are bounded (in effectiveness)

between a minimal repair and a perfect repair, but the ordering of the reliabilities following

the two imperfect repairs depends on the lifetime distribution.
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Figure 8.1: Illustration of the ordering of repairs in terms of their bivariate degree of repair (i.e. their
effectiveness in improving the reliability of the repaired system).

With general repair models in one dimension, we have complete ordering independent

of the lifetime distribution, i.e. the effectiveness (reliability improvement) of a general repair

at any point increases as its univariate degree δ increases from 0 to 1. For the proposed gen-

eral repair model in two dimensions, a partial ordering which applies to any BIFR lifetime

distribution is as follows. A general repair of degree (δ(t,u),γ(t,u)) performed at the point

(t, u), when compared to an imperfect repair of degree (δ⋆(t,u),γ
⋆
(t,u)) performed at the same

point, is

• less effective, if δ(t,u) < δ⋆(t,u) and γ(t,u) < γ⋆
(t,u); and

• more effective, if δ(t,u) > δ⋆(t,u) and γ(t,u) > γ⋆
(t,u); see Figure 8.1 for an illustration.

8.2 Ordering of Conditional Residual Lifetimes

In this section, we discuss the partial ordering of bivariate distributions based on the condi-

tional reliability vector, the hazard gradient vector and the mean residual vector; see Section

6.1.5 for more on partial orderings of bivariate lifetime distributions.

Let, as before, (Tn,Un) and (Xn+1,Yn+1) denote the n-th failure point and the (n+ 1)-th

bivariate inter-failure lifetime, for n ∈ N+. Also, let F(., .) denote the distribution of the

original lifetime (T1,U1) = (X1,Y1). Recall that, for the original lifetime, the conditional

reliability vector with components corresponding to the residual random variables [X1 −

x|X1 > x,Y1 > y] and [Y1 − y|X1 > x,Y1 > y] is given by

ϕF̄1(s, v; x, y) =

(
F̄(x+ s, y)

F̄(x, y)
,
F̄(x, y+ v)

F̄(x, y)

)
; (8.4)
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see Section 6.1.4.1. The corresponding conditional mean residual lifetime (MRL) vector is

given by

µ1(x, y) =
(
µX
1 (x, y), µY

1 (x, y)
)
=
(
E[X1 − x|X1 > x,Y1 > y], E[Y1 − y|X1 > x,Y1 > y]

)
,

(8.5)

where the conditional mean residual time (MRT) and the conditional mean residual usage

(MRU) functions can be expressed in terms of the components of the conditional reliability

vector [53]. That is,

µX
1 (x, y) =

∞∫

0

P{X1 > x+ s|X1 > x,Y1 > y} ds =

∞∫

0

F̄(x+ s, y)

F̄(x, y)
ds , (8.6)

and

µY
1 (x, y) =

∞∫

0

P{Y1 > y+ v|X1 > x,Y1 > y} dv =

∞∫

0

F̄(x, y+ v)

F̄(x, y)
dv ; (8.7)

see Section 6.1.4.3.

Also recall that the hazard gradient vector corresponding to the lifetime of the original

system is

h1(x, y) =
(
hX1

(x, y), hY1(x, y)
)
, (8.8)

where the components of the hazard gradient are such that

hX1
(x, y) dx ≈ P{X1 ≤ x+ dx|X1 > x,Y1 > y} = 1−

F̄(x+ dx, y)

F̄(x, y)
, (8.9)

and

hY1(x, y) dy ≈ P{Y1 ≤ y+ dy|X1 > x,Y1 > y} = 1−
F̄(x, y+ dy)

F̄(x, y)
; (8.10)

see Section 6.1.4.2. Note that, as in the univariate case, the hazard gradient vector corre-

sponding to the residual time and usage ([X1 − x|X1 > x,Y1 > y], [Y1 − y|X1 > x,Y1 > y])

is the same as the hazard gradient vector corresponding to the original lifetime (X1,Y1).

When the lifetime distribution F is BIFR, then: (i) F̄(x + s, y)/F̄(x, y) is decreasing in

x ≥ 0, for each s, y ≥ 0 (or equivalently hX1
(x, y) is increasing in x ≥ 0); and (ii) F̄(x, y +

v)/F̄(x, y) is decreasing in y ≥ 0, for each v, x ≥ 0 (or equivalently hY1(x, y) is increasing in

y ≥ 0). This implies that the components of the conditional MRL vector are also decreasing

in the corresponding argument, i.e. µX
1 (x, y) is decreasing in x ≥ 0, for each y ≥ 0, and

µY
1 (x, y) is decreasing in y ≥ 0, for each x ≥ 0; see Section 6.1.4.

185



8.2.1 General Repairs and Conditional Reliability Vectors

The vectors in (8.4), (8.5) and (8.8) are all associated with the original bivariate lifetime

(X1,Y1). Now, suppose that n failures have occurred before the point (t, u), where n ∈ N+

and t, u > 0. Let the conditional residual time of the system at the point (t, u), given that the

system has been repaired n times prior to (t, u), n ∈ N+, be denoted by

Xn+1(t, u; tn,un, δn,γn)

:= [Xn+1 − s | Xn+1 > s,Yn+1 >v, (T1,U1)= (t1, u1), . . . , (Tn,Un)= (tn, un); δn,γn]

d
= [Tn+1 − t | Tn+1 > t,Un+1 > u, (T1,U1)= (t1, u1), . . . , (Tn,Un)= (tn, un); δn,γn] ,

(8.11)

and, similarly, the conditional residual usage is denoted by

Yn+1(t, u; tn,un, δn,γn)

:= [Yn+1 − v | Xn+1 > s,Yn+1 >v, (T1,U1)= (t1, u1), . . . , (Tn,Un)= (tn, un); δn,γn]

d
= [Un+1 − u | Tn+1 > t,Un+1 > u, (T1,U1)= (t1, u1), . . . , (Tn,Un)= (tn, un); δn,γn] ,

(8.12)

where s = t− t+n ≥ 0 and v = u− u+n ≥ 0. The residual time Xn+1(t, u; tn,un, δn,γn) is the

time until the (n+ 1)-th failure of the system, given that the system is in an operational state

at the point (t, u) and has been repaired n times prior to this point. Similarly, the residual

usage Yn+1(t, u; tn,un, δn,γn) is the usage until the (n + 1)-th failure of the system, given

that the system is in an operational state at the point (t, u) and has been repaired n times

prior to this point. The above notations are used to emphasize the dependence on previous

failure points and the corresponding degrees of repair.

When n = 0, (8.11) and (8.12) reduce to the conditional residual time and usage, respec-

tively, of the original bivariate lifetime (X1,Y1). When t = t+n and u = u+n , then (8.11) and

(8.12) become, respectively, the (n + 1)-th conditional inter-failure time and the (n+ 1)-th

conditional inter-failure usage, given previous failure points.

Sequence of minimal repairs. When all n repairs are minimal, the conditional residual

time and usage at (t, u) are equal in distribution to those corresponding to the original sys-

tem lifetime at the same point (since the system behaves as though it has not failed), i.e.

Xn+1(t, u; tn,un, δn = 0,γn = 0)
d
= [X1 − t | X1 > t,Y1 > u]

Yn+1(t, u; tn,un, δn = 0,γn = 0)
d
= [Y1 − u | X1 > t,Y1 > u] .

(8.13)
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Sequence of perfect repairs. When all n repairs are perfect, the conditional residual time

and usage at (t, u) are equal in distribution to those corresponding to the original system

lifetime at the point (t− tn, u− un), where (tn, un) is the last renewal point before (t, u), i.e.

Xn+1(t, u; tn,un, δn = 1,γn = 1)
d
= [X1 − (t− tn) | X1 > t− tn,Y1 > u− un]

Yn+1(t, u; tn,un, δn = 1,γn = 1)
d
= [Y1 − (u− un) | X1 > t− tn,Y1 > u− un] .

(8.14)

To derive the reliability functions corresponding to the conditional bivariate residual

lifetime vector
(
Xn+1(t, u; tn,un, δn,γn), Yn+1(t, u; tn,un, δn,γn)

)
, we use the conditional

reliability function defined in (8.1). By setting, respectively, y = 0 and x = 0 in (8.1), we

derive the conditional reliability vector

ϕF̄n+1
(x, y; t, u, tn,un, δn,γn) :=

(
F̄(x+ an(t, u), bn(t, u))

F̄(an(t, u), bn(t, u))
,
F̄(an(t, u), y+ bn(t, u))

F̄(an(t, u), bn(t, u))

)
,

(8.15)

defined for t > tn, u > un and x, y ≥ 0. As mentioned earlier, when n = 0, then (8.15)

reduces to (8.4), since a0(t, u) = t and b0(t, u) = u.

In the previous section, we established that the conditional reliability function in (8.1) is

increasing in each δi and each γi, for i ∈ {1, . . . , n} and n ∈ N+, when all other parameters

remain fixed. This implies that, the components of the conditional reliability vector in (8.15)

are also increasing in each δi and each γi (when other parameters are fixed), since they are

derived from (8.1) by setting y = 0 and x = 0 respectively. This implies that, for δ′ ≥ δ and

γ′ ≥ γ, where δ, δ′,γ,γ′ ∈ [0, 1],

Xn+1(t, u; tn,un, δn−1,γn−1, δn = δ′,γn) ≥ST Xn+1(t, u; tn,un, δn−1,γn−1, δn = δ,γn) ;

Xn+1(t, u; tn,un, δn−1,γn−1, δn,γn = γ′) ≥ST Xn+1(t, u; tn,un, δn−1,γn−1, δn,γn = γ) ,

(8.16)

and similarly,

Yn+1(t, u; tn,un, δn−1,γn−1, δn = δ′,γn) ≥ST Yn+1(t, u; tn,un, δn−1,γn−1, δn = δ,γn) ;

Yn+1(t, u; tn,un, δn−1,γn−1, δn,γn = γ′) ≥ST Yn+1(t, u; tn,un, δn−1,γn−1, δn,γn = γ) ,

(8.17)

defined for t > tn and u > un, n ∈ N+. The orderings in (8.16) and (8.17) are true for any

of the components of the n bivariate degrees of repair I. Therefore, the conditional residual

time and usage both become stochastically larger when either component of any degree of

IThese partial orderings are in effect univariate; see Section 3.1.3 for more on univariate partial orderings of
distributions.
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repair is increased, while all other parameters are fixed.

Given the inequalities in (8.16) and (8.17), using Definition 6.7 on page 134, the bivariate

random variable (
Xn+1(t, u; tn,un, δn−1,γn−1, (δn,γn) = (δ′,γ′)),

Yn+1(t, u; tn,un, δn−1,γn−1, (δn,γn) = (δ′,γ′))
) (8.18)

is conditionally stochastically larger than the bivariate random variable

(
Xn+1(t, u; tn,un, δn−1,γn−1, (δn,γn) = (δ,γ)),

Yn+1(t, u; tn,un, δn−1,γn−1, (δn,γn) = (δ,γ))
) (8.19)

when δ′ ≥ δ and γ′ ≥ γ– this is true for any of the n degrees of repair, when other parameters

are fixed. The bivariate stochastic ordering discussed in Section 8.1 implies this conditional

stochastic ordering.

8.2.2 General Repairs and Conditional Mean Residual Vectors

Using the conditional reliability vector we can derive the expected values of the conditional

residual time and usage. The conditional mean residual time is derived as follows:

µX
n+1(t, u; tn,un, δn,γn) := E[Xn+1(t, u; tn,un, δn,γn)]

=

∞∫

0

P{Tn+1 − t > x | Tn+1> t,Un+1> u, (T1,U1)= (t1, u1), . . . , (Tn,Un)= (tn, un)} dx

=

∞∫

0

P{Tn+1> t+ x,Un+1> u | (T1,U1)= (t1, u1), . . . , (Tn,Un)= (tn, un)}

P{Tn+1> t,Un+1> u | (T1,U1)= (t1, u1), . . . , (Tn,Un)= (tn, un)}
dx

=

∞∫

0

F̄n+1(t+ x, u|tn,un)

F̄n+1(t, u|tn,un)
dx =

∞∫

0

F̄(an(t+ x, u), bn(t+ x, u))

F̄(an(t, u), bn(t, u))
dx

=

∞∫

0

F̄(x+ an(t, u), bn(t, u))

F̄(an(t, u), bn(t, u))
dx ,

(8.20)

and similarly, the conditional mean residual usage is given by

µY
n+1(t, u; tn,un, δn,γn) := E[Yn+1(t, u; tn,un, δn,γn)]

=

∞∫

0

F̄(an(t, u), y+ bn(t, u))

F̄(an(t, u), bn(t, u))
dy .

(8.21)
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Let the corresponding conditional MRL vector be denoted by

µn+1(t, u; tn,un, δn,γn) :=
(
µX
n+1(t, u; tn,un, δn,γn), µY

n+1(t, u; tn,un, δn,γn)
)
. (8.22)

The relationships between the components of the conditional reliability vector in (8.15) and

the corresponding components of the conditional MRL vector in (8.22) are the same as those

of the components of the vectors ϕF̄1(s, v; x, y) and µ1(x, y) of the original lifetime, given in

(8.4) and (8.5); see Section 6.1.4. Note that, these relationships are equivalent to the univari-

ate relationships discussed in Chapter 4.

Since the components of the conditional reliability vector are both increasing in each δi

and each γi, for i ∈ {1, . . . , n}, when other parameters are fixed, the corresponding compo-

nents of themean residual vector are also increasing in each δi and each γi, for i ∈ {1, . . . , n},

when all other parameters are fixed. That is, stochastic ordering implies conditional mean

residual (MR) ordering, i.e. for δ′ > δ and γ′ > γ, the following inequalities hold:

Xn+1(t, u; tn,un, δn−1,γn−1, δn = δ′,γn) ≥MR Xn+1(t, u; tn,un, δn−1,γn−1, δn = δ,γn) ;

Xn+1(t, u; tn,un, δn−1,γn−1, δn,γn = γ′) ≥MR Xn+1(t, u; tn,un, δn−1,γn−1, δn,γn = γ) ,

(8.23)

and similarly,

Yn+1(t, u; tn,un, δn−1,γn−1, δn = δ′,γn) ≥MR Yn+1(t, u; tn,un, δn−1,γn−1, δn = δ,γn) ;

Yn+1(t, u; tn,un, δn−1,γn−1, δn,γn = γ′) ≥MR Yn+1(t, u; tn,un, δn−1,γn−1, δn,γn = γ) .

(8.24)

The inequalities in (8.23) and (8.24) hold for either component of any of the n bivariate

degrees of repair. Then, using Definition 6.9 on page 134, the bivariate random variable

(
Xn+1(t, u; tn,un, δn−1,γn−1, (δn,γn) = (δ′,γ′)),

Yn+1(t, u; tn,un, δn−1,γn−1, (δn,γn) = (δ′,γ′))
) (8.25)

is conditionally stochastically larger in MR ordering than the bivariate random variable

(
Xn+1(t, u; tn,un, δn−1,γn−1, (δn,γn) = (δ,γ)),

Yn+1(t, u; tn,un, δn−1,γn−1, (δn,γn) = (δ,γ))
) (8.26)

when δ′ ≥ δ and γ′ ≥ γ, for t > tn and u > un– this is also true for any of the n degrees

of repair, when other parameters are fixed. Therefore, the conditional stochastic ordering in
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Section 8.2.1 implies the conditional stochastic ordering in terms of mean residual.

As the MRL vector in (8.5) completely determines the original bivariate distribution F

(see Johnson [53]), the conditional MRL vector completely determines the distribution of

the corresponding conditional bivariate lifetime given in (8.3).

8.2.3 General Repairs and Conditional Hazard Gradient Vectors

In the previous sections, we showed that as either component of any degree of repair in-

creases, while all other parameters remain fixed, the components of the conditional reliabil-

ity and MRL vectors increase. The monotonicity with the components of the corresponding

hazard gradient is the opposite– i.e. as either component of any degree of repair increases,

while all other parameters remain fixed, the components of the hazard gradient decrease.

Let the conditional hazard gradient vector, corresponding to the conditional MRL vector

in (8.22), be denoted by

hn+1(t, u; tn,un, δn,γn) :=
(
hXn+1

(t, u; tn,un, δn,γn), hYn+1
(t, u; tn,un, δn,γn)

)
, (8.27)

which is defined for t > tn and u > un, where n ∈ N+. As in the univariate case, the

hazard rate of the conditional mean residual time (usage) is the same as the hazard rate of

the corresponding conditional inter-failure time (usage). The components of this conditional

hazard gradient vector are such that

hXn+1
(t, u; tn,un, δn,γn) dt

≈ P{Tn+1 ≤ t+ dt | Tn+1 > t,Un+1 > u, (T1,U1)= (t1, u1), . . . , (Tn,Un)= (tn, un)}

= 1− P{Tn+1 > t+ dt | Tn+1 > t,Un+1 > u, (T1,U1)= (t1, u1), . . . , (Tn,Un)= (tn, un)}

= 1−
F̄n+1(t+ dt, u|tn,un)

F̄n+1(t, u|tn,un)
= 1−

F̄(dt+ an(t, u), bn(t, u))

F̄(an(t, u), bn(t, u))
,

(8.28)

and similarly,

hYn+1
(t, u; tn,un, δn,γn) du ≈ 1−

F̄(an(t, u), du+ bn(t, u))

F̄(an(t, u), bn(t, u))
. (8.29)

Notice that, the conditional reliability functions appearing in (8.28) and (8.29) are respec-

tively the components of the conditional reliability vector given in (8.15).

As shown in Section 8.2.1, the components of the conditional reliability vector are both

increasing in each δi and each γi, i ∈ {1, . . . , n}, when all other parameters of the function
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remain fixed. This implies that the corresponding components of the conditional hazard

gradient vector are both decreasing in each δi and each γi, for i ∈ {1, . . . , n} and n ∈ N+,

when other parameters are fixed. This leads to the following ordering, in terms of hazard

rate (HR), of the conditional residual times and usages: for δ′ > δ and γ′ > γ,

Xn+1(t, u; tn,un, δn−1,γn−1, δn = δ′,γn) ≥HR Xn+1(t, u; tn,un, δn−1,γn−1, δn = δ,γn) ;

Xn+1(t, u; tn,un, δn−1,γn−1, δn,γn = γ′) ≥HR Xn+1(t, u; tn,un, δn−1,γn−1, δn,γn = γ) ,

(8.30)

which holds for any component of the n degrees of repair; and similarly,

Yn+1(t, u; tn,un, δn−1,γn−1, δn = δ′,γn) ≥HR Yn+1(t, u; tn,un, δn−1,γn−1, δn = δ,γn) ;

Yn+1(t, u; tn,un, δn−1,γn−1, δn,γn = γ′) ≥HR Yn+1(t, u; tn,un, δn−1,γn−1, δn,γn = γ) .

(8.31)

Therefore, using Definition 6.8 on page 134, the bivariate random variable

(
Xn+1(t, u; tn,un, δn−1,γn−1, (δn,γn) = (δ′,γ′)),

Yn+1(t, u; tn,un, δn−1,γn−1, (δn,γn) = (δ′,γ′))
) (8.32)

is conditionally stochastically larger in HR ordering than the bivariate random variable

(
Xn+1(t, u; tn,un, δn−1,γn−1, (δn,γn) = (δ,γ)),

Yn+1(t, u; tn,un, δn−1,γn−1, (δn,γn) = (δ,γ))
) (8.33)

when δ′ ≥ δ and γ′ ≥ γ, for t > tn and u > un– this is also true for any of the n degrees of

repair, when other parameters are fixed. Note that, the stochastic ordering with respect to

the conditional hazard gradient vector implies the stochastic ordering with respect to both

the conditional reliability and MRL vectors (from Sections 8.2.1 and 8.2.2).

As with the conditional MRL vector, the conditional hazard gradient vector completely

determines the distribution of the corresponding conditional bivariate inter-failure lifetime,

given in (8.3).

8.3 One-DimensionalApproach as Special Case of Two-

Dimensional Approach

As discussed in Section 6.2.1, one approach to modeling consecutive failures of a system in

two dimensions is to assume that, the cumulative usage at any time is a stochastic function
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of time. The stochastic nature of the relationship is often due to treating one or more param-

eters (e.g. usage rate) of the function as a random variable. The relationship between the cu-

mulative usage and time is usually assumed to be linear; however, non-linear relationships

can be considered; see for instance Yang and Nachlas [58] and Eliashberg et al [60]. This

approach is known as the one-dimensional approach to modeling failures in two dimensions,

since given the value of the stochastic parameters, the process reduces to a one-dimensional

process; see Section 6.2.1.

In this section, we first derive the distribution functions of the consecutive failure points

for a one-dimensional approach, where usage is modeled as a linear function of time. Then,

we show that the distribution functions derived for the two-dimensional approach (pro-

posed in Chapter 7), when usage is set as a linear function of time, reduce to the distri-

bution functions derived for this one-dimensional approach. Therefore, the proposed two-

dimensional modeling approach can be viewed as a generalization of this one-dimensional

approach discussed by Blischke & Murthy [2].

8.3.1 One-Dimensional Approach

We begin by deriving general expressions for the distribution functions of the failure points

using the above-mentioned one-dimensional approach. When the relationship between us-

age and time is assumed to be linear, the cumulative usage at time t is given by M(t) = Rt,

where the usage rate R is modeled as a non-negative random variable. The cumulative

usage function M(.) is a non-decreasing function of time, and, at the start of the system

lifetime, this cumulative usage is M(0) = 0.

Let T denote the time of the first failure. Then, the usage at first failure is U := M(T) =

RT. When the usage rate is given, the cumulative usage at any time t is the deterministic

function m(t|R = r) = rt, so that the usage at first failure is

[U|R = r] := m(T|R = r) = r [T|R = r] . (8.34)

The notation [.|R = r] is used to emphasize that the distributions of the variables are condi-

tional on the usage rate R = r (where this is obvious, we will simply use U = rT).

According to this one-dimensional approach, it is assumed that the usage rate for any

particular system remains constant throughout the lifetime of the system, i.e. for all t > 0,

dm(t|R = r)/dt = r. Therefore, given the usage rate R = r, the relationship between the
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usage and the time at system failure is

[Un|R = r] := m(Tn|R = r) = r [Tn|R = r] , (8.35)

for all n ∈ N+. That is, given the usage rate of the system, all failure points of the system

lie on the same line. Therefore, when the usage rate is given, the failure process reduces to a

point process in one dimension (here, time).

Distribution of the first failure point. The distribution of the first failure point (T,U) can

be viewed as an average across the population of systems used at different rates [58], i.e.

P{T ≤ t,U ≤ u} = ER

[
P{T ≤ t,U ≤ u|R}

]

=

∞∫

0

P{T ≤ t,U ≤ u|R = r} dFR(r) =

∞∫

0

P{T ≤ t, T ≤
u

r
|R = r} dFR(r)

=

u/t∫

0

P{T ≤ t|R = r} dFR(r) +

∞∫

u/t

P{T ≤
u

r
|R = r} dFR(r) ,

(8.36)

where FR(.) is the distribution function of the usage rate R. This joint distribution can also

be derived as follows:

P{T ≤ t,U ≤ u} =

t∫

0

P{U ≤ u|T = s} dFT(s) =

t∫

0

P{R ≤
u

s
|T = s} dFT(s)

=

t∫

0

( u/s∫

0

fR|T(r|s) dr

)
dFT(s) =

t∫

0

u/s∫

0

fT|R(s|r) fR(r) dr ds ,

(8.37)

where FT(.) is the marginal distribution of T, fR(.) is the density function of the usage rate

R, fT|R(.|r) is the density function of the conditional variable [T|R = r], and fR|T(.|s) is

the density function of the usage rate R conditional on the time to first failure T = s. The

representation in (8.37) has a straightforward interpretation: for any given s ≤ t, the point

(T,U) = (s, v) will be inside the rectangle (0, t]× (0, u], when r ≤ u/s; see Figure 8.2 for an

illustration.

The expression in (8.36) can be easily simplified to arrive at the expression in (8.37),

by changing the order of integration in both summands. However, to compare this one-

dimensional approach to the proposed two-dimensional approach (from Chapter 7), we will

mostly refer to the form in (8.36).
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Figure 8.2: Illustrations of the first failure point (T,U) = (s, v), given the usage rate R = r, where
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s (middle); r > u
s (right).

Distribution of the consecutive failure points. The joint distribution of the (n + 1)-th

failure point (Tn+1,Un+1) is derived as follows [cf. (8.36)]:

P{Tn+1 ≤ t,Un+1 ≤ u} =

u/t∫

0

P{Tn+1 ≤ t|R = r} dFR(r) +

∞∫

u/t

P{Tn+1 ≤
u

r
|R = r} dFR(r)

=

u/t∫

0

t∫

0

. . .

t2∫

0

P{Tn+1 ≤ t|T1 = t1, . . . , Tn = tn, R = r} fTn|R(t1, . . . , tn|r) dt1 . . . dtn dFR(r)

+

∞∫

u/t

u/r∫

0

. . .

t2∫

0

P{Tn+1 ≤
u

r
|T1 = t1, . . . , Tn = tn, R = r} fTn|R(t1, . . . , tn|r) dt1 . . . dtn dFR(r) ,

(8.38)

for t, u ∈ R+, where the conditional distribution P{Tn+1 ≤ t|R = r}, for n ∈ N+, also

depends on previous failure points and the degrees of the corresponding repairs. The

function fTn|R(t1, . . . , tn|r) is the density of the conditional random vector [Tn|R = r] :=

[(T1, . . . , Tn)|R = r] at the point (t1, . . . , tn), and can be derived as follows:

fTn|R(t1, . . . , tn|r) = fTn|Tn−1,R(tn|t1, . . . , tn−1, r) . . . fT2|T1,R(t2|t1, r) fT1|R(t1|r) . (8.39)

In general, for n ∈ N+, the conditional density function is the derivative of the correspond-

ing conditional distribution function, i.e.

fTn+1|Tn,R(t|t1, . . . , tn, r) =
∂

∂t
P{Tn+1 ≤ t|T1 = t1, . . . , Tn = tn, R = r} , (8.40)

defined for t > tn.

The distribution function in (8.38) can also be simplified to resemble the form in (8.37),

which may be a more intuitive representation. On Substituting for the conditional distribu-
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tion function, we get

P{Tn+1 ≤ t,Un+1 ≤ u} =

=

u/t∫

0

t∫

0

( tn+1∫

0

. . .

t2∫

0

fTn+1|Tn,R(tn+1|t1, . . . , tn, r) fTn|R(t1, . . . , tn|r) dt1 . . . dtn

)
dtn+1 dFR(r)

+

u/t∫

0

u/r∫

0

( tn+1∫

0

. . .

t2∫

0

fTn+1|Tn,R(tn+1|t1, . . . , tn, r) fTn|R(t1, . . . , tn|r) dt1 . . . dtn

)
dtn+1 dFR(r) ,

(8.41)

which is defined only when the ordering of the failure points is as follows: 0 < t1 < · · · <

tn < tn+1 < . . . , for n ∈ N+. Then, on changing the order of integration of the two outer

integrals (the integrals with respect to r and tn+1), we get

P{Tn+1 ≤ t,Un+1 ≤ u} =

=

t∫

0

u/t∫

0

( tn+1∫

0

. . .

t2∫

0

fTn+1|Tn,R(tn+1|t1, . . . , tn, r) fTn|R(t1, . . . , tn|r) dt1 . . . dtn

)
dFR(r) dtn+1

+

t∫

0

u/tn+1∫

u/t

( tn+1∫

0

. . .

t2∫

0

fTn+1|Tn,R(tn+1|t1, . . . , tn, r) fTn|R(t1, . . . , tn|r) dt1 . . . dtn

)
dFR(r) dtn+1

=

t∫

0

u/tn+1∫

0

( tn+1∫

0

. . .

t2∫

0

fTn+1|R(t1, . . . , tn, tn+1|r) dt1 . . . dtn

)
fR(r) dr dtn+1

=

t∫

0

u/tn+1∫

0

fTn+1|R(tn+1|r) fR(r) dr dtn+1 .

(8.42)

The above expression can be interpreted as follows: the (n+ 1)-th failure point (Tn+1,Un+1) =

(tn+1, un+1) will be within the rectangle (0, t] × (0, u], when r ≤ u/tn+1, for each tn+1 ≤

t. Given that the points are ordered and on the same line, if the (n + 1)-th point is in

(0, t]× (0, u], then the n previous points are also within this rectangle; see Figure 8.3.

The exact expressions for the conditional density and distribution functions in the above

equations depend on the chosen general repair model. In general, for n ∈ N+ and t > tn,

the conditional distribution function has the following form:

P{Tn+1 ≤ t|T1 = t1, . . . , Tn = tn, R = r} = 1− P{Tn+1 > t|T1 = t1, . . . , Tn = tn, R = r}

= 1− e
−

t∫
tn

λ̃r(s|hs) ds

,

(8.43)
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where λ̃r(t|ht) is the conditional intensity function at time t, given the history Ht = ht , of

the conditional failure process {NX(t|r); t ∈ R+} (see Section 3.1.1.2 for more on univariate

intensity functions). Note that, the random variable NX(t|r) counts the number of failures

of a system before time t, when the usage rate is R = r; see Section 6.2.1.

Given the conditional distribution function in (8.43), the corresponding conditional den-

sity function is of the form

fTn+1|Tn,R(t|t1, . . . , tn, r) = λ̃r(t|ht) e
−

t∫
tn

λ̃r(s|hs) ds

, (8.44)

which is defined for t > tn and n ∈ N+.

An age reduction model for the one-dimensional approach . In the previous chapter, we

proposed bivariate virtual age and usage functions to describe the effect of general repairs;

see Section 7.2.1. In order to compare the one-dimensional approach to our two-dimensional

modeling approach, we will use a similar univariate age reduction (or virtual age) model

here. Let A(t|r) denote the virtual age at time t, given the usage rate R = r. Then, this

function is defined as follows:

A(t|r) = t−
NX(t

−|r)

∑
i=1

δi A(Ti|r) , (8.45)

where, for simplicity, we have used the notation A(Ti|r) for the virtual age at [Ti|R = r]. For

NX(t
−|r) = n and given the associated failure points Ti = ti, i ∈ {1, . . . , n}, we have the
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following realization of the virtual age function:

an(t|r) = t−
n

∑
i=1

δi ai−1(ti|r)

= t− δ1 t1 − δ2 (t2 − δ1t1)− · · · − δn (tn − δ1 t1 − δ2 (t2 − δ1t1)− . . . ) ,

(8.46)

defined for t > tn. Then, the corresponding conditional intensity function at time t, given

this history, is given by λ̃r(t|ht) = λ0(an(t|r)|r), where λ0(.|r) is the baseline intensity

function of the conditional stochastic process {NX(t|r); t ∈ R+}. When all n repairs be-

fore time t are minimal, then λ̃r(t|ht) = λ0(t|r); and when all n repairs are perfect, then

λ̃r(t|ht) = λ0(t− tn|r). Note that, an(.|r) is a decreasing function of each degree of repair.

Therefore, when all repairs are imperfect, the function value is bounded between the two

extremes t− tn and t, i.e. t− tn < an(t|r) < t; see Section 3.2.3 for more on univariate age

reduction models.

Substituting this conditional intensity function in (8.43), for t > tn, we get the following

conditional distribution function:

P{Tn+1 ≤ t|T1 = t1, . . . , Tn = tn, R = r} = 1− e

−
t∫

t+n

λ0(an(s|r)|r) ds

= 1− e

−
an(t|r)∫

an(t
+
n |r)

λ0(x|r) dx

= 1− P{[T|R = r] > an(t|r) | [T|R = r] > an(t
+
n |r)}

≡ 1− P{T > an(t|r) | T > an(t
+
n |r), R = r}

= 1−
P{T > an(t|r) | R = r}

P{T > an(t
+
n |r) | R = r}

.

(8.47)

The sequence of expressions in (8.47) is due to the baseline intensity function being equal

to the failure rate function of the original conditional lifetime [T|R = r]. Then, an exponent

term of the form exp
{
−

t∫
0

λ0(s|r) ds
}
represents the probability that the original system

(used at rate R = r) does not fail prior to time t. Note that, we have used t+n in the lower limit

of the first integral. This is because the virtual age function is defined as a left-continuous

function, and therefore, the effect of all n previous repairs are taken into account only after

the last failure, i.e. at t+n . The realization an(t|r), which represents the virtual age function

when n failures have occurred prior to t, is therefore defined only for t ≥ t+n .

The above conditional distribution function can be interpreted as follows: the probability

that the system fails for the (n+ 1)-th time in the interval (tn, t] is equivalent to an identical

system failing for the first time in the interval (an(t+n |r), an(t|r)], given that both systems

have been used at the same usage rate R = r.
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Now, on substituting for the conditional distribution function in (8.38), we get the fol-

lowing (unconditional) distribution function for the (n+ 1)-th failure point (Tn+1,Un+1):

P{Tn+1 ≤ t,Un+1 ≤ u}

=

u/t∫

0

t∫

0

. . .

t2∫

0

(
1−

P{T > an(t|r) | R = r}

P{T > an(t
+
n |r) | R = r}

)
fTn |R(t1, . . . , tn|r) dt1 . . . dtn dFR(r)

+

∞∫

u/t

u/r∫

0

. . .

t2∫

0

(
1−

P{T > an(
u
r |r) | R = r}

P{T > an(t
+
n |r) | R = r}

)
fTn|R(t1, . . . , tn|r) dt1 . . . dtn dFR(r) ,

(8.48)

for n ∈ N+. These joint distributions can be used to find the distribution of the counts

{N(t, u); t, u ∈ R+}; see Section 6.2.1.

8.3.2 Two-Dimensional ApproachReduced toOne-Dimensional Ap-

proach

In the preceding section, we derived the distribution of failure points using the one-dimensional

approach to modeling failures in two dimensions. In this section, we will show that the

one-dimensional approach is a special case of our two-dimensional approach (proposed in

Chapter 7).

The distribution function of the (n+ 1)-th failure point, for the proposed two-dimensional

approach, is given by

Fn+1(t, u) =P{Tn+1 ≤ t,Un+1 ≤ u}

=

t∫

0

u∫

0

. . .

t2∫

0

u2∫

0

Fn+1(t, u|tn,un) fn(tn,un) du1 dt1 . . . dun dtn

=

t∫

0

u∫

0

. . .

t2∫

0

u2∫

0

VF([a(t
+
n , u

+
n ), a(t, u)]× [b(t+n , u

+
n ), b(t, u)])

F̄(a(t+n , u
+
n ), b(t

+
n , u

+
n ))

fn(tn,un) du1 dt1

. . . dun dtn ,

(8.49)

where tn = (t1, . . . , tn) and un = (u1, . . . , un); we derived this function in Section 7.3.1. Our

goal is to prove that (8.48) is a spacial case of (8.49). Therefore, we will show that, in (8.49),

when Ui
set
= r Ti, for all i ∈ N+, then the distribution function in (8.49) will reduce to the

distribution function in (8.48).

We split the proof into two parts: (i) we first individually derive the expressions for the
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bivariate virtual age and usage functions and the bivariate conditional distribution function;

(ii) we then substitute these expressions in equation (8.49) and simplify to arrive at (8.48).

The virtual age and usage functions. According to the assumptions of the one-dimensional

approach, for any given system, the usage rate between failures does not change. Then,

when at least one failure of the system is observed, the usage rate can be computed, since

ui/ti = r, for all i ∈ N+, where (ti, ui) is the realization of the i-th failure point of the system.

Let an(t, u) and bn(t, u) denote respectively the realizations of the virtual age and virtual

usage at time t and usage u, where n failures have occurred in the rectangle (0, t] × (0, u],

at the points (ti, ui), i ∈ {1, . . . , n}, for n ∈ N+; see Section 7.2.1. Suppose we use the n-th

point to compute the usage rate, i.e. r = un/tn. Then, the following sets of information are

equivalent:

{(t1, u1), . . . , (tn, un)} ⇔ {t1, . . . , tn, r = un/tn} . (8.50)

The bivariate virtual age function at the point (t, u), when the number and points of

previous failures are given, is given by

an(t, u) = t−
n

∑
i=1

δi ai−1(ti, ui)

= t− δ1 t1 − δ2 (t2 − δ1 t1)− · · · − δn (tn − δ1 t1 − δ2 (t2 − δ1 t1)− . . . )

= an(t|r) ,

(8.51)

for t > tn and u > un, where r = un/tn, n ∈ N+. Similarly, the bivariate virtual usage

function at the point (t, u), when we set γi = δi, for all i ∈ N+, becomes

bn(t, u) = u−
n

∑
i=1

γi bi−1(ti, ui) = u−
n

∑
i=1

δi bi−1(ti, ui)

= u− δ1 u1 − δ2 (u2 − δ1 u1)− · · · − δn (un − δ1 u1 − δ2 (u2 − δ1 u1)− . . . )

= u− δ1 rt1 − δ2 (rt2 − δ1 rt1)− · · · − δn (rtn − δ1 rt1 − δ2 (rt2 − δ1 rt1)− . . . )

= r

[
u

r
− δ1 t1 − δ2 (t2 − δ1 t1)− · · · − δn (tn − δ1 t1 − δ2 (t2 − δ1 t1)− . . . )

]

= r an
(u
r
|r
)
,

(8.52)

for t > tn and u > un, and n ∈ N+. Therefore, when ui is set to r ti, for all i ∈ N+, then

both the virtual age and virtual usage functions can be expressed in terms of the conditional

virtual age function in (8.46), when the number and points of previous failures are given.
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The conditional distribution function. The bivariate conditional distribution function for

the two-dimensional approach is defined in (7.16) on page 156, and is given by

Fn+1(t, u|tn,un) =
VF([an(t

+
n , u

+
n ), an(t, u)]× [bn(t+n , u

+
n ), bn(t, u)])

F̄(an(t
+
n , u

+
n ), bn(t

+
n , u

+
n ))

=
F(an(t, u), bn(t, u))− F(an(t+n , u

+
n ), bn(t, u))− F(an(t, u), bn(t+n , u

+
n )) + F(an(t+n , u

+
n ), bn(t

+
n , u

+
n ))

F̄(an(t
+
n , u

+
n ), bn(t

+
n , u

+
n ))

=
F̄(an(t+n , u

+
n ), bn(t

+
n , u

+
n ))− F̄(an(t+n , u

+
n ), bn(t, u))− F̄(an(t, u), bn(t+n , u

+
n )) + F̄(an(t, u), bn(t, u))

F̄(an(t
+
n , u

+
n ), bn(t

+
n , u

+
n ))

= 1−
F̄(an(t+n , u

+
n ), bn(t, u)) + F̄(an(t, u), bn(t+n , u

+
n ))− F̄(an(t, u), bn(t, u))

F̄(an(t
+
n , u

+
n ), bn(t

+
n , u

+
n ))

;

(8.53)

see Section 7.2.2 for details. Notice that, we have expressed the conditional distribution

function in terms of the original reliability function instead of the distribution function, so

that the expression matches the form in (8.47).

Since ui = r ti, for all i ∈ N+, we can construct the usages ui, i ∈ {1, . . . , n− 1}, when

we have the failure times ti, i ∈ {1, . . . , n} and the n-th usage un (equivalently, the usage rate

r = un/tn). Therefore, we will drop the redundant terms from the conditional distribution

function Fn+1(., .|tn,un) in (8.53). Now, given the above virtual age and usage functions,

this conditional distribution function can be expressed in terms of the conditional virtual

age function an(.|r), given in (8.46), as follows:

Fn+1(t, u|t1, . . . , tn, un) := Fn+1(t, u|tn,un)

= 1−
F̄(an(t+n |r), r an(

u
r |r)) + F̄(an(t|r), r an(

u+n
r |r))− F̄(an(t|r), r an(

u
r |r))

F̄(an(t
+
n |r), r an(

u+n
r |r))

= 1−
F̄(an(t+n |r), r an(

u
r |r)) + F̄(an(t|r), r an(t+n |r))− F̄(an(t|r), r an(

u
r |r))

F̄(an(t
+
n |r), r an(t

+
n |r))

,

(8.54)

for t > tn and u > un, where an(t+n , u
+
n ) = a(t+n |r) is the virtual age immediately after the n-

th repair, and bn(t+n , u
+
n ) = r an

( u+n
r |r
)
is the virtual usage immediately after the n-th failure

at (tn, un), for n ∈ N+. This virtual usage can be expressed as r times the conditional virtual

age immediately after the n-th repair, since

an
(u+n
r
|r
)
= lim

ǫ→0
an
(un + ǫ

r
|r
)
= lim

ǫ→0
an
(
tn +

ǫ

r
|r
)
= lim

∆→0
an
(
tn + ∆|r

)
= an

(
t+n |r

)
, (8.55)

and therefore, in the last summand of (8.54), we have substituted an
(
t+n |r

)
for an

( u+n
r |r
)
.

Next, we need to show that this function reduces to the conditional distribution function

200



from the one-dimensional approach, which is given in (8.47). Since U = rT and given the

usage rate r = un/tn, the reliability function that appears in (8.54) is the reliability function

of the point (T,U) given that U = rT. That is, for any t > tn and u > un, we have

F̄(an(t|r), r an(
u

r
|r)) = P{T > an(t|r), U > r an(

u

r
|r) | R = r}

= P{T > an(t|r), T > an(
u

r
|r) | R = r}

= P{T > max
(
an(t|r), an(

u

r
|r)
)
| R = r}

=





P{T > an(t|r) | R = r} , t > u
r

P{T > an(
u
r |r) | R = r} , t ≤ u

r ,

(8.56)

since t > (≤) u/r is equivalent to an(t|r) > (≤) an(
u
r |r), which follows from the definition

of the virtual age function. Similarly,

F̄(an(t
+
n |r), r an(t

+
n |r)) = P{T > an(t

+
n |r) | R = r} ; (8.57)

F̄(an(t
+
n |r), r an(

u

r
|r)) =





P{T > an(t+n |r) | R = r} , t+n > u
r

P{T > an(
u
r |r) | R = r} , t+n ≤ u

r ;
(8.58)

and, for all t ≥ t+n ,

F̄(an(t|r), r an(t
+
n |r)) =





P{T > an(t|r) | R = r} , t > t+n

P{T > an(t+n |r) | R = r} , t ≤ t+n

= P{T > an(t|r) | R = r} .

(8.59)

For the one-dimensional approach, in deriving the unconditional distribution function

in (8.48), we have considered the following two cases: (i) r ≤ u/t, and (ii) r > u/t. We now

need to determine the conditional distribution function in (8.54) for each of the two cases,

by using the appropriate expressions from (8.56) - (8.59).

When r ≤ u/t, which is equivalent to t ≤ u/r, and in turn implies that t+n ≤ u/r (since

t > tn), the conditional distribution function in (8.54) becomes

Fn+1(t, u|t1, . . . , tn, un)

= 1−
P{T > an(

u
r |r) | R = r}+ P{T > an(t|r) | R = r} − P{T > an(

u
r |r) | R = r}

P{T > an(t
+
n |r) | R = r}

= 1−
P{T > an(t|r) | R = r}

P{T > an(t
+
n |r) | R = r}

,

(8.60)
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where r = un/tn, for n ∈ N+.

When r > u/t, which is equivalent to t > u/r, the conditional distribution function in

(8.54) becomes

Fn+1(t, u|t1, . . . , tn, un)

= 1−
P{T > max

(
an(t+n |r), an(

u
r |r)

)
|R = r}+ P{T > an(t|r) |R = r} − P{T > an(t|r) |R = r}

P{T > an(t
+
n |r) | R = r}

= 1−
P{T > max

(
an(t+n |r), an(

u
r |r)

)
| R = r}

P{T > an(t
+
n |r) | R = r}

.

(8.61)

Having derived the expressions for the conditional distribution function, we now pro-

ceed to the second stage of the proof, which is substituting for this conditional distribution

function in (8.49) and simplifying the expression to arrive at the one in (8.48).

The distribution function. In terms of the conditional distribution function, the (uncondi-

tional) distribution function in (8.49) can be expressed as follows:

Fn+1(t, u) = P{Tn+1 ≤ t,Un+1 ≤ u}

=

t∫

0

. . .

t2∫

0

u∫

0

Fn+1(t, u|t1, . . . , tn, un)

( un∫

0

. . .

u2∫

0

fn(tn,un) du1 . . . dun−1

)
dun dt1 . . . dtn

=

t∫

0

. . .

t2∫

0

u∫

0

Fn+1(t, u|t1, . . . , tn, un)

( un∫

0

. . .

u2∫

0

fUn−1|Tn,Un
(u1, . . . , un−1|t1, . . . , tn, un) du1 . . . dun−1

)

fUn |Tn

(un|t1, . . . , tn) fTn
(t1, . . . , tn) dun dt1 . . . dtn

=

t∫

0

. . .

t2∫

0

u∫

0

Fn+1(t, u|t1, . . . , tn, un) P{Un−1 ≤ un, . . . ,U1 ≤ u2|T1 = t1, . . . , Tn = tn,Un = un}

fUn |Tn

(un|t1, . . . , tn) fTn
(t1, . . . , tn) dun dt1 . . . dtn ,

(8.62)

where the function fUn−1|Tn,Un
denotes the density function of the first n− 1 usagesUn−1 =

(U1, . . . ,Un−1), given the values of the n failure points Tn = (T1, . . . , Tn) and the n-th usage

Un. We have used similar notations for the other two density functions.

Since, when t1, . . . , tn, and un are given, the other n− 1 usages are also given, and since

the order 0 < u1 < u2 < · · · < un−1 < un < . . . always holds, the probability function in

(8.62) is unity, i.e.

P{Un−1 ≤ un, . . . ,U1 ≤ u2|T1 = t1, . . . , Tn = tn,Un = un} = 1 . (8.63)
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We know that the density of the n-th usageUn, given the n failure times is the derivative

of the corresponding distribution function, i.e. for u > un and n ∈ N+,

fUn|Tn

(u|t1, . . . , tn) =
∂

∂u
P{Un ≤ u | T1 = t1, . . . , Tn = tn}

=
∂

∂u
P{R ≤

u

tn
| T1 = t1, . . . , Tn = tn}

=
∂

∂r
P{R ≤ r | T1 = t1, . . . , Tn = tn}

∂

∂u

u

tn

=
1

tn
fR|Tn

(r|t1, . . . , tn) ,

(8.64)

where fR|Tn

(.|t1, . . . , tn) is the density function of the usage rate R, given the failure times.

Using (8.63) and (8.64), the distribution function of (Tn+1,Un+1) in (8.62) can be further

simplified to

Fn+1(t, u) =

t∫

0

. . .

t2∫

0

u/tn∫

0

Fn+1(t, u|t1, . . . , tn, r) fR|Tn

(r|t1, . . . , tn) fTn
(t1, . . . , tn) dr dt1 . . . dtn

=

t∫

0

. . .

t2∫

0

u/tn∫

0

Fn+1(t, u|t1, . . . , tn, r) fTn|R(t1, . . . , tn|r) fR(r) dr dt1 . . . dtn ,

(8.65)

since dun = tn dr; un ≤ u implies that r ≤ u/tn; and

fR|Tn

(r|t1, . . . , tn) fTn
(t1, . . . , tn) = fTn|R(t1, . . . , tn|r) fR(r) . (8.66)

Note that, Fn+1(t, u|t1, . . . , tn, r) ≡ Fn+1(t, u|t1, . . . , tn, un), since ui = r ti, for all i ∈ N+.

Continuing with the process of simplification, the distribution function in (8.65) becomes

Fn+1(t, u) =

t∫

0

. . .

t2∫

0

u/t∫

0

(
1−

P{T > an(t|r) | R = r}

P{T > an(t
+
n |r) | R = r}

)
fTn |R(t1, . . . , tn|r) fR(r) dr dt1 . . . dtn

+

t∫

0

. . .

t2∫

0

u/tn∫

u/t

(
1−

P{T > max
(
an(t+n |r), an(

u
r |r)

)
| R = r}

P{T > an(t
+
n |r) | R = r}

)
fTn|R(t1, . . . , tn|r) fR(r) dr

dt1 . . . dtn ,

(8.67)

where we have split the inner integral (the integral with respect to r) into the two cases

r ≤ u/t and u/t < r ≤ u/tn, and also substituted for the conditional distribution function

using (8.60) and (8.61).

Now, by changing the order of integration between the innermost integral (the integral
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wrt r) and the outermost integral (the integral wrt tn), we get

Fn+1(t, u) =

u/t∫

0

t∫

0

. . .

t2∫

0

(
1−

P{T > an(t|r) | R = r}

P{T > an(t
+
n |r) | R = r}

)
fTn |R(t1, . . . , tn|r) dt1 . . . dtn dFR(r)

+

∞∫

u/t

u/r∫

0

. . .

t2∫

0

(
1−

P{T > max
(
an(t+n |r), an(

u
r |r)

)
| R = r}

P{T > an(t
+
n |r) | R = r}

)
fTn|R(t1, . . . , tn|r) dt1 . . . dtn

dFR(r) ,

(8.68)

since (i) for tn ∈ (0, t], the possible range of the usage rate r is limtn→0[u/t, u/tn) = [u/t,∞);

and (ii) u/t < r ≤ u/tn implies that tn ≤ u/r < t.

Since tn ≤ u/r, the conditional probability in the second summand of (8.68) becomes

1−
P{T > max

(
an(t+n |r), an(

u
r |r)

)
| R = r}

P{T > an(t
+
n |r) | R = r}

=





1−
P{T>an(

u
r |r)|R=r}

P{T>an(t
+
n |r)|R=r}

, tn < u
r

1− P{T>an(t+n |r)|R=r}

P{T>an(t
+
n |r)|R=r}

= 0 , tn ≥ u
r .

(8.69)

Finally, when (8.69) is inserted into (8.68), the distribution function becomes

Fn+1(t, u) = P{Tn+1 ≤ t,Un+1 ≤ u}

=

u/t∫

0

t∫

0

. . .

t2∫

0

(
1−

P{T > an(t|r) | R = r}

P{T > an(t
+
n |r) | R = r}

)
fTn |R(t1, . . . , tn|r) dt1 . . . dtn dFR(r)

+

∞∫

u/t

u/r∫

0

. . .

t2∫

0

(
1−

P{T > an(
u
r |r) | R = r}

P{T > an(t
+
n |r) | R = r}

)
fTn|R(t1, . . . , tn|r) dt1 . . . dtn dFR(r) ,

(8.70)

which is exactly the distribution function in (8.48), derived for the one-dimensional ap-

proach. This completes our proof.

Therefore, our two-dimensional approach, under the assumption that the cumulative

usage is a linear function of time, is equivalent to the one-dimensional approach tomodeling

failures in two dimensions (by Blischke & Murthy [2]).

Comments. The one- and two-dimensional approaches are two different descriptions of

the physical space of the problem and require different sets of assumptions, which lead to

two different models. From an application point of view, the one-dimensional approach

is the simpler of the two, but requires that, for any given system in the population, cu-

mulative usage be a deterministic, linear function of time. The proposed two-dimensional
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approach does not treat time and usage at failure as necessarily having a functional rela-

tionship, but models them simply as correlated bivariate random variables. In this sense,

the two-dimensional approach is a generalization of the one-dimensional approach, so that

when the cumulative usage is modeled as a deterministic, non-decreasing, linear function

of time, and the distribution of the usage rate is known, then the two-dimensional model

reduces to the one-dimensional model. In order to apply the models, it must first be de-

termined which model’s assumptions are met. For instance, given failure data on a sample

of systems, if a linear trend is visible in the sequence of times and usages at failure of each

system, then the one-dimensional approach is an appropriate choice, but if no such trend is

present, then the two-dimensional approach is more suitable.

8.4 Chapter Conclusion

In this chapter, we discussed the properties of the two-dimensional general repair model

proposed in Chapter 7. We showed that the conditional reliability of the system improves as

each component of the bivariate degree of repair increases, when all remaining parameters

are fixed. Here, the conditional bivariate reliability function is used as an indicator of the

working condition of the system.

Next, we proved that, when the usage at failure is defined as a linear function of the

corresponding failure time, then the proposed failure process in two dimensions reduces

to the process constructed using the one-dimensional approach (which was discussed by

Blischke & Murthy [2]).

In the following chapter, we illustrate the behavior of the failure (or general repair) pro-

cess, through simulations of the process trajectories for various degrees of repair.

205



206



Chapter 9

Simulating the Failure Process with

Applications in Warranty Cost

Analysis

In this chapter, we suggest a procedure for simulating the failure or general repair pro-

cess (proposed in Chapter 7) in two dimensions. We illustrate the effect of general repairs

through simulations of the failure process for various degrees of repair. We also illustrate

applications of the repair model in the context of two-dimensional warranty cost analysis.

This chapter is arranged as follows. In Section 9.1, we review the simulation methods

that are used to generate observations from a bivariate distribution. In Section 9.2, we detail

the steps involved in simulating the general repair process. In Section 9.3, we simulate

the failure process to illustrate the properties of the general repair model and provide a

numerical example of the application of the model in estimating warranty servicing costs

using the simulation approach. In Section 9.4, we conclude with a chapter summary.

9.1 Generating Bivariate Observations

The literature on generating random variates from bivariate distributions is vast; see for

instance Balakrishnan & Lai [67] and the references therein. In this section, we will briefly

describe only those approaches used in this study for simulating the failure process in two

dimensions.
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9.1.1 Bivariate Simulation Approach: Conditioning Method

Let (X,Y) denote a bivariate lifetime random variable, i.e. (X,Y) ∈ R
2
+. Let f (., .), F(., .)

and F̄(., .) denote respectively the joint density, distribution and reliability functions of X

and Y. The relationships between the three bivariate functions is as follows:

F(x, y) = P{X ≤ x,Y ≤ y} = 1− F̄(x, 0)− F̄(0, y) + F̄(x, y) , (9.1)

F̄(x, y) = P{X > x,Y > y} = 1− F(x,∞)− F(∞, y) + F(x, y) , (9.2)

f (x, y) =
∂2

∂x ∂y
F(x, y) =

∂2

∂x ∂y
F̄(x, y) . (9.3)

for x, y ≥ 0.

In order to generate a point (x, y) from the distribution F, we use the conditioning ap-

proach, where:

(i) a Y variate is generated from its marginal distribution;

(ii) an X variate is then generated from its conditional distribution, given Y = y.

The order in which the variates are generated can be reversed, so that an X variate is gener-

ated first and a Y variate is then generated conditional on X = x [67].

For the conditioning approach, we require the marginal and conditional distributions.

Let fY(.) and fX|Y(.|.) denote respectively the marginal density function of Y and the condi-

tional density function of X given Y. Then, the corresponding reliability functions are given

by

F̄Y(y) := F̄(0, y) = P{Y > y} =

∞∫

y

fY(v) dv , (9.4)

and

F̄X|Y(x|Y = y) := P{X > x|Y = y} =

∞∫

x

fX|Y(s|y) ds =

∞∫

x

f (s, y)

fY(y)
ds , (9.5)

respectively (assuming the density functions exist). The corresponding marginal and con-

ditional distribution functions are given by FY(y) = 1 − F̄Y(y) and FX|Y(x|Y = y) = 1−

F̄X|Y(x|Y = y), respectively.

Note that, we have used the notation F̄X|Y(.|Y = y) in order to distinguish this condi-

tional reliability function from the conditional reliability function of X given Y > y, which

we denote by F̄X|Y(.|y). The reliability function of X given Y > y can be derived from the
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joint bivariate reliability function: F̄(x, y) = F̄X|Y(x|y) F̄Y(y). For this simulation approach,

the conditional distribution of interest is the one with reliability function given in (9.5).

The conditioning method of generating observations form a bivariate distribution re-

duces the problem to generating variates from two univariate distributions: the marginal

distribution and the conditional distribution.

9.1.2 Univariate Simulation Approach: Inverse Transformation

The univariate simulation approach that we will use to simulate variates from the marginal

and conditional distributions is the inverse transformation method.

Let F(.) denote a continuous distribution function with support S ∈ R, and letU denote

a random variable uniformly distributed on the interval (0, 1). Then, the random variable Z

has distribution function F(.), if Z = F−1(U), since

P{Z ≤ z} = P{F−1(U) ≤ z} = P{U ≤ F(z)} = FU(F(z)) = F(z) , (9.6)

where the distribution function of U is FU(u) = u, for all 0 ≤ u ≤ 1. The above expression

follows from F(.) being a monotone increasing function, so that the following events are

equivalent [13]:

{F−1(U) ≤ z} ⇔ {U ≤ F(z)} . (9.7)

The inverse transformationmethod is also valid when the reliability function F̄(.) is used

in place of the distribution function, i.e. when Z = F̄−1(U). Since the reliability function

F̄(.) is monotone decreasing, the following events are equivalent:

{F̄−1(U) > z} ⇔ {U < F̄(z)} , (9.8)

and therefore, F̄(.) is the reliability function of Z, if Z = F̄−1(U):

P{Z > z} = P{F̄−1(U) > z} = P{U < F̄(z)} = FU(F̄(z)) = F̄(z) . (9.9)

Algorithm 1: inverse transformation method. The algorithm for generating Z variates

using the inverse transformation method is as follows:

(i) a U variate is generated from a uniform distribution over the interval (0, 1);
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(ii) the transformation F−1(U) is used to compute the Z variate– one can equivalently use

the transformation Z = F̄−1(U).

When the inverse of the distribution function F(.) can be expressed in closed form, then

the solution to the equation F(Z) = U is Z = F−1(U). When the inverse of the distribution

function cannot be expressed in closed form, numerical methods can be used to find the

approximate solution to the equation F(Z) = U; see for instance Abate et al. [72] and

Devroye [73].

In our numerical illustrations, we come across situations where the inverse of the distri-

bution (or reliability) function cannot be expressed in closed form. To generate variates from

such distributions, we use the secant method, which is used when the distribution function

F(.) is not invertible, and therefore, the solution to F(Z) = U is sought numerically [73].

Algorithm 2: secant method. The algorithm for finding the approximate solution Z̃ to

F(Z) = U using the secant method is as follows:

(i) a U variate is generated from a uniform distribution over the interval (0, 1);

(ii) an interval [a, b] to which the solution to F(Z) = U belongs is found;

(iii) Z̃ is set to a+ U−F(a)
F(b)−F(a)

(b− a);

(iv) if F(Z̃) ≤ U, then a is assigned the Z̃ value, otherwise b is assigned the Z̃ value;

(v) steps (iii) and (iv) are repeated until b − a ≤ ∆ (where ∆ > 0 is some preassigned

tolerance).

With this approach, the approximate solution is found by continually narrowing the in-

terval [a, b], which contains the exact solution, until an acceptable width is reached. Suppose

that Z⋆ is the exact solution to F(Z) = U. When the tolerance ∆ is small (close to zero), then

the approximate solution Z̃ derived from this method converges to the true solution Z⋆, if

F(Z) = U has a unique solution (which is the case for a monotonically increasing F(.) func-

tion). Note that, when we use 1
2 in place of the proportion U−F(a)

F(b)−F(a)
, then the secant method

becomes what is known as the bisection method, which also converges when the tolerance is

set to a value close to zero; see Devroye [73]. When the reliability function F̄(.) is used in-

stead of the distribution function F(.), then steps (ii) - (iv) in Algorithm 2 need to be replaced

by the following steps:

(ii) an interval [a, b] to which the solution to F̄(Z) = U belongs is found;
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(iii) Z̃ is set to a+ F̄(a)−U
F̄(a)−F̄(b)

(b− a);

(iv) if F̄(Z̃) > U, then a is assigned the Z̃ value, otherwise b is assigned the Z̃ value.

The secant method assumes that the distribution function F(.) is available in closed form.

When the distribution function is available only as the integral of the density function, we

use numerical approximation to compute the values of the distribution function.

9.1.3 Simulation Check: Empirical Distribution Functions

In order to test the simulation approach, at each stage, wewill plot the empirical distribution

function of the generated data and compare this to the corresponding theoretical distribu-

tion function.

The univariate empirical distribution function, denoted by F̂(.), is computed as follows:

F̂(u) =

m

∑
i=1

I{yi≤u}

m
, (9.10)

for u ≥ 0, where m is the number of Y variates generated, {y1, . . . , ym} is the sequence of

generated variates, and I. is an indicator function defined as follows:

I{yi≤u} =





1 , yi ≤ u

0 , otherwise .
(9.11)

To plot the univariate empirical distribution function, we compute the function at equidis-

tant points {u1, . . . , uq} in an interval [0, L] (which includes the range of the generated

variates). The chosen distance L/q between these points will depend on the number and

range of the generated variates. Empirical distribution functions are usually plotted as step-

functions. To get a good approximation for the distribution of the generated variates, it is

important that the number of variates generated is large and the distance L/q is small.

The bivariate empirical distribution function, denoted by F̂(., .), is computed as follows:

F̂(u, v) =

m

∑
i=1

I{xi≤u & yi≤v}

m
, (9.12)

for u, v ≥ 0, where m is the number of generated data points, {(x1, y1), . . . , (xm, ym)} is the
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sequence of generated data points, and I. is an indicator function defined as follows:

I{xi≤u & yi≤v} =





1 , xi ≤ u and yi ≤ v

0 , otherwise .
(9.13)

To plot the bivariate empirical distribution function, we compute the function at grid points
{
(ui, vj); i ∈ {1, . . . , q}, j ∈ {1, . . . , p}

}
in the region [0, L]× [0,K] (which includes the gen-

erated data points). The area of the grid cells is L
q
K
p . For a closer approximation of the dis-

tribution of generated data points, we generate a large number of points and choose small

grid cells.

9.2 Simulating the Failure or General Repair Process

In this section, we describe the steps involved in simulating the failure process. After the

first failure of the system, the distribution of any given failure point depends on the degree

(effectiveness) of all preceding general repairs; see Section 7.2. Therefore, we begin with de-

scribing the process of generating the point of first failure (Section 9.2.1); then, we describe

the process of generating a failure point following general repair(s) (Section 9.2.2); and fi-

nally, we will outline the steps involved in generating the consecutive failure points, where

each failure is followed by a general repair (Section 9.2.3).

9.2.1 Generating the Original Bivariate Lifetime

Let the point (X,Y) denote the first failure of the system, where X is the time at first fail-

ure and Y is the usage at first failure. The point (X,Y) is the original bivariate lifetime of

the system. The reliability function of the original lifetime (X,Y), that will be used in the

numerical illustrations, is of the following form:

F̄(x, y) = e−RX(x) e−RY(y) e− θ RX(x) RY(y)

= F̄X(x) F̄Y(y) e
− θ RX(x) RY(y) ,

(9.14)

for x, y ≥ 0, where θ ∈ [0, 1]. The functions RX(.) and RY(.) are the marginal cumulative

failure rate functions with respect to time and usage respectively, and F̄X(.) and F̄Y(.) are the

corresponding marginal reliability functions; see Section 7.4 for details.

The chosen marginal distributions are both IFR Weibull distributions, i.e. the marginal
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cumulative failure rate functions are defined as follows:

RX(x) =

(
x

α1

)β1

; RY(y) =

(
y

α2

)β2

, (9.15)

for x, y ≥ 0, where α1, α2 > 0 and β1, β2 > 1.

The joint density function corresponding to the bivariate reliability function in (9.14) is

given by

f (x, y) = fX(x) fY(y) e
− θ RX(x) RY(y)

{
1+ θ

(
RX(x)+RY(y)+ θ RX(x) RY(y)− 1

)}
, (9.16)

for x, y ≥ 0, where fX(.) and fY(.) are the marginal density functions of X and Y, respec-

tively.

In order to generate a bivariate observation from this distribution, we will first generate

a Y variate from its marginal distribution, and then we will generate an X variate from its

conditional distribution given the Y variate; see Section 9.1.1.

9.2.1.1 Generating from the Marginal Distribution of Y

The marginal distribution of the usage Y at first failure is Weibull, which has an easily in-

vertible distribution/reliability function, and therefore, we use the inverse transformation

method to generate a Y variate; see Algorithm 1 in Section 9.1.2. Given a U variate and the

Weibull marginal, we solve for Y in the following equation:

e
−

(
Y
α2

)β2

= U , (9.17)

to get the transformation of interest. Note that, we have used the reliability function to

derive the transformation:

e
−

(
Y
α2

)β2

= U ⇔

(
Y

α2

)β2

= − lnU

⇔

(
Y

α2

)
=
(
− lnU

)1/β2

⇔ Y = α2

(
− lnU

)1/β2 .

(9.18)

Note that, since U is in the interval (0, 1), − lnU is in the interval (0,∞), and therefore Y is

non-negative.
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The density function of the above Weibull distribution, denote by fY(.), is given by

fY(y) = −
d

dy
F̄Y(y)

=
β2

α2

(
y

α2

)β2−1

e
−
(

y
α2

)β2

.

(9.19)

Example 1: We generate 1000 variates from the marginal distribution of Y, with parame-

ter values set to: α2 = 1.75 and β2 = 1.5. In Figure 9.1, we have plotted the empirical

distribution function and histogram of the generated data, together with the theoretical dis-

tribution and density functions. The empirical distribution function F̂(.) is computed at all

u ∈ {0, 0.05, 0.1, . . . , 8}. �
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Figure 9.1: Plots of the histogram (left) and the empirical distribution function (right) of 1000 variates
generated from the marginal distribution of Y. The theoretical density and distribution
functions are superimposed.

9.2.1.2 Generating from the Conditional Distribution of X given Y = y

To generate an X variate given Y = y, we need the associated conditional distribution. For

x, y ≥ 0, the conditional density fX|Y(.|.) at (x, y) is the ratio f (x, y)/ fY(y), where f (., .)

is the joint density function in (9.16) and fY(.) is the marginal density function in (9.19).

Therefore, for x, y ≥ 0,

fX|Y(x|y) = fX(x) e
− θ RX(x) RY(y)

{
1+ θ

(
RX(x) + RY(y) + θ RX(x) RY(y)− 1

)}
(9.20)

where fX(.) is the marginal density function of X, which is also Weibull, and is given by

fX(x) =
β1

α1

(
x

α1

)β1−1

e
−
(

x
α1

)β1

. (9.21)
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We can derive the corresponding conditional distribution function as follows:

FX|Y(x|Y = y) =

x∫

0

fX|Y(s|y) ds

=

x∫

0

fX(s) e
− θ RX(s) RY(y)

{
1+ θ

(
RX(s) + RY(y) + θ RX(s) RY(y)− 1

)}
ds .

(9.22)

The conditional reliability function is simply F̄X|Y(x|Y = y) = 1− FX|Y(x|Y = y).

This conditional distribution function cannot be expressed in closed form, and therefore,

numerical integration is used to approximate the definite integral in (9.22). Also, the inverse

of this function cannot be derived in closed form, and therefore, we use the secant method

for simulating the X variates; see Algorithm 2 in Section 9.1.2.
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Figure 9.2: Plots of the histogram (left) and the empirical distribution function (right) of 1000 vari-
ates generated from the conditional distribution of X given Y = y, for y = 0.5 (top row)
and y = 1.5 (bottom row). The theoretical density and distribution functions are super-
imposed.

Example 2: For each y ∈ {0.5, 1.5}, we generate 1000 variates from the conditional distribu-

tion of X given Y = y, with parameter values set to: α1 = 2, β1 = 1.4, α2 = 1.75, β2 = 1.5,

and θ = 0.7. In Figure 9.2, we have plotted the empirical distribution function and histogram

215



of the generated X variates, along with the theoretical distribution and density functions

given in (9.20) and (9.22). For the stopping rule b− a ≤ ∆, the tolerance is set to ∆ = 0.0001.

The empirical distribution function F̂(.) is computed at all u ∈ {0, 0.05, 0.1, . . . , 10}.

Notice that, in Figure 9.2, when the systemusageY at failure increases from 0.5 (top row)

to 1.5 (bottom row), the distribution of the generated points is more skewed to the right. If

the usage at failure is high, then it is likely that the system fails earlier in time. �

9.2.1.3 Generating Bivariate Observations (X,Y)

In the preceding sections, we demonstrated how to generate variates from the marginal

distribution of Y and the conditional distribution of X given Y = y. To generate points from

the bivariate distribution, for each generated Y = y, we generate one X variate.

The bivariate distribution function of the point (X,Y) of the first failure of the system

(i.e. the original lifetime) is given by

F(x, y) = 1− F̄X(x)− F̄Y(y) + F̄(x, y) , (9.23)

for x, y ≥ 0, where F̄(., .) is the bivariate reliability function in (9.14), and F̄X(.) and F̄Y(.) are

the marginal reliability functions of X and Y respectively, which are both IFRWeibull.
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Figure 9.3: Plots of the empirical distribution function (left) of 1000 generated (X,Y) points and the
theoretical distribution function (right).

Example 3: We generate 1000 points from the bivariate distribution of (X,Y), using the

conditioning method. The parameter values are set to: α1 = 2, β1 = 1.4, α2 = 1.75, β2 =

1.5 and θ = 0.7. In Figure 9.3, we have plotted the empirical distribution function of the
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generated data points (left), along with the theoretical bivariate distribution function F(., .)

in (9.23) (right).

In Figure 9.3, both the empirical (left) and theoretical (right) distribution functions are

computed at grid points (u, v) ∈ {0, 0.1, 0.2, . . . , 10} × {0, 0.1, 0.2, . . . , 10}. The smooth ap-

pearance of the empirical distribution (left plot) is because the function is not plotted as a

step function, but instead linearly interpolated between its values at the grid points.

Notice that, in Figure 9.3, the (empirical) distribution of the generated data is close to the

theoretical distribution from which the data was generated. �

9.2.2 Generating the Bivariate Inter-failure Lifetimes

Let (Tn,Un) denote the n-th failure point and (Xn+1,Yn+1) denote the (n + 1)-th bivariate

inter-failure lifetime, for n ∈ N+. Then, (X1,Y1) = (T1,U1) is the original lifetime (or point

of first failure) of the system. For n ∈ N+, Tn is the time and Un is the usage at the n-

th failure, Xn+1 is the time between the n-th and (n + 1)-th failures, and Yn+1 is the usage

accumulated between the n-th and (n+ 1)-th failures. The relationship between the failure

points and inter-failure lifetimes is as follows:

(Tn,Un) =
(
X1 + · · ·+ Xn, Y1 + · · ·+ Yn

)
, (9.24)

for n ∈ N+. Note that, since the components of the inter-failure lifetimes are positive, the

failure points are ordered such that:

0 < T1 < T2 < · · · < Tn < . . .

0 < U1 < U2 < · · · < Un < . . . .
(9.25)

In Section 9.2.1, we discussed the procedure for generating the point (T1,U1) = (X1,Y1)

(≡ (X,Y)) of first failure. In this section, we discuss the steps involved in generating the

consecutive failure points {(Tn+1,Un+1); n ∈ N+}, where each failure is immediately fol-

lowed by an instantaneous general repair. As before, we use the conditioning method for

generating the bivariate observations; see Section 9.1.1.

To generate the failure points, we first generate the bivariate inter-failure lifetimes, and

then compute the failure points using the relationship in (9.24). The distributions that we

require in order to generate the bivariate lifetime (Xn+1,Yn+1), for n ∈ N+, are:

(i) the marginal distribution of Yn+1, given all previous failure points (t1, u1), . . . , (tn, un);
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(ii) the conditional distribution of Xn+1, given Yn+1 = yn+1 and all previous failure points

(t1, u1), . . . , (tn, un).

Note that, these marginal and conditional distributions depend on all previous failures and

the degrees of the corresponding general repairs.

To derive these distributions, we need the joint distribution of Xn+1 and Yn+1, for n ∈

N+, given all previous failure points. We derived and discussed this joint distribution in

Section 7.3.2. Here, we use this joint reliability function to derive the marginal and condi-

tional distributions of interest.

Given the previous n failure points, the conditional reliability function of (Xn+1,Yn+1)

at the point (x, y) is equal to the conditional reliability function of (Tn+1,Un+1) at the point

(t, u), where x = t− t+n ≥ 0 and y = u− u+n ≥ 0, for n ∈ N+. The point (t+n , u
+
n ) is used

to denote the earliest possible instance of the (n + 1)-th failure point (Tn+1,Un+1), where

Tn+1 > Tn = tn and Un+1 > Un = un [cf. (9.25)]. Then, for x, y ≥ 0, the conditional

reliability function of the bivariate inter-failure lifetime (Xn+1,Yn+1), given the n previous

failure points, is given by

Ḡn+1(x, y|tn,un) = F̄n+1(t
+
n + x, u+n + y | tn,un)

=
F̄(an(t+n + x, u+n + y), bn(t+n + x, u+n + y))

F̄(an(t
+
n , u

+
n ), bn(t

+
n , u

+
n ))

=
F̄(x+ an(t+n , u

+
n ), y+ bn(t+n , u

+
n ))

F̄(an(t
+
n , u

+
n ), bn(t

+
n , u

+
n ))

,

(9.26)

where tn = (t1, . . . , tn), un = (u1, . . . , un), and F̄n+1(., . | tn,un) denotes the conditional

reliability function of the (n + 1)-th failure point (Tn+1,Un+1) given all previous failures;

see Sections 7.2.2 and 7.3.2 for details. The function F̄(., .) is the original reliability function

given in (9.14). The quantities an(t+n , u
+
n ) and bn(t+n , u

+
n ) denote respectively the virtual age

and usage immediately following the n-th repair. The last expression in (9.26) follows from

the definitions of the virtual age and usage functions: for x = t− t+n ≥ 0 and y = u− u+n ≥ 0,

the virtual age at the point (t, u) is

an(t, u) = t−
n

∑
i=1

δi ai−1(ti, ui)

= t− t+n + t+n −
n

∑
i=1

δi ai−1(ti, ui)

= x+ an(t
+
n , u

+
n ) ,

(9.27)
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and the virtual usage at this point is

bn(t, u) = u−
n

∑
i=1

γi bi−1(ti, ui)

= u− u+n + u+n −
n

∑
i=1

γi bi−1(ti, ui) = y+ bn(t
+
n , u

+
n ) ,

(9.28)

where (δi,γi) denotes the degree of the i-th repair, i ∈ {1, . . . , n}; see Section 7.2.1. It must

be noted that, when the number of failures before the point (t, u) is given, the virtual age

function depends only on the failure times and the virtual usage function depends only on

the failure usages; see Sections 7.2.1 and 8.3.2.

For a given sequence of failure points {(t1, u1), . . . , (tn, un)}, the virtual age and usage

immediately after the n-th repair are constant with respect to x and y. To make the ex-

pressions appearing in the remainder of this chapter more concise, we will henceforth use

an and bn to denote the virtual age and usage immediately following the n-th failure: i.e.

an(t+n , u
+
n ) =: an and bn(t+n , u

+
n ) =: bn, for n ∈ N+. With this new notation, the reliability

function in (9.26) can be expressed as follows:

Ḡn+1(x, y|tn,un) =
F̄(x+ an, y+ bn)

F̄(an, bn)
. (9.29)

Then, the joint density function corresponding to this conditional reliability function is given

by

gn+1(x, y|tn,un) :=
∂2

∂x ∂y
Ḡn+1(x, y|xn,yn)

=

∂2

∂x ∂y F̄(x+ an, y+ bn)

F̄(an, bn)
=

f (x+ an, y+ bn)

F̄(an, bn)
,

(9.30)

since the denominator is a constant with respect to both x and y, and the derivatives of the

virtual age an = an(t+n , u
+
n ) and virtual usage bn = bn(t+n , u

+
n ), with respect to x and y, are 0.

The function f (., .) is the original bivariate density function given in (9.16).

Next, using the above joint reliability and density functions, we derive the marginal

distribution of Yn+1 and the conditional distribution of Xn+1, given Yn+1 = yn+1, and given

the previous n failures, for n ∈ N+.

9.2.2.1 Generating Observations from the Marginal Distribution of Yn+1

Let ḠYn+1
(.|tn,un) denote the marginal reliability function of the (n+ 1)-th inter-failure us-

ageYn+1, given all previous failure points (or equivalently all previous bivariate inter-failure
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lifetimes), for n ∈ N+. This reliability function can be derived from the joint reliability func-

tion in (9.29), by simply setting x = 0. That is, for n ∈ N+,

ḠYn+1
(y|tn,un) := Ḡn+1(0, y|tn,un)

=
F̄(an, y+ bn)

F̄(an, bn)

=
e−RX(an) e−RY(y+bn) e− θ RX(an) RY(y+bn)

e−RX(an) e−RY(bn) e− θ RX(an) RY(bn)

=
e−RY(y+bn)

[
1+θ RX(an)

]

e−RY(bn)
[
1+θ RX(an)

] ,

(9.31)

where RX(.) and RY(.) are the cumulative failure rate functions of the original lifetime vari-

ables X and Y respectively, given in (9.15). Note that, except for RY(y+ bn) in the numerator

of the last expression in (9.31), all other quantities are constant with respect to y.

To further simplify expressions, we introduce the constants (with respect to y) k1 and k2,

where

k1 := 1+ θ RX(an) , (9.32)

and

k2 := e−RY(bn)
[
1+θ RX(an)

]
= e−k1 RY(bn) . (9.33)

Then, using k1 and k2, the marginal reliability function in (9.31) can be written as follows:

ḠYn+1
(y|tn,un) =

e−k1 RY(y+bn)

k2

=
e
−k1

(
y+bn

α2

)β2

k2
.

(9.34)

This function is easily invertible, and therefore, we use the inverse transformationmethod

to generate Yn+1 variates. The solution Y to the equation ḠYn+1
(Y|tn,un) = U, is derived as

follows:

e
−k1

(
Y+bn

α2

)β2

k2
= U ⇔ e

−k1

(
Y+bn

α2

)β2

= k2 U

⇔ k1

(
Y + bn

α2

)β2

= − ln(k2 U)

⇔
Y + bn

α2
=

(
− ln(k2 U)

k1

)1/β2

⇔ Y = α2

(
− ln(k2 U)

k1

)1/β2

− bn .

(9.35)
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Since the virtual age an and the virtual usage bn depend on all n previous failure points

{(t1, u1), . . . , (tn, un)} and the degrees {(δ1,γ1), . . . , (δn,γn)} of the corresponding repairs,

we require these values to generate the Yn+1 variates. Once we compute the values of an

and bn, we compute the values of k1 and k2, and then use the transformation

Yn+1 = α2

(
− ln(k2 U)

k1

)1/β2

− bn (9.36)

to generate the Yn+1 variates; see Algorithm 1 on page 209.

Note that, Yn+1 in (9.36) is positive, since α2

(
− ln(k2 U)

k1

)1/β2

≥ bn; the proof is as follows.

We know that, the U variate is uniform on (0, 1), and therefore, the value of − lnU = | lnU|

(which is a monotone function of U) is in the interval (0,∞). Then, using the definitions of

k2 in (9.33) and RY(.) in (9.15), we have

α2

(
− ln(k2 U)

k1

)1/β2

= α2

(
− ln k2 + | lnU|)

k1

)1/β2

= α2

(
k1 RY(bn) + | lnU|)

k1

)1/β2

= α2

(
RY(bn) +

| lnU|)

k1

)1/β2

= α2

((
bn
α2

)β2

+
| lnU|)

k1

)1/β2

,

(9.37)

which decreases to bn when | lnU| approaches 0 (or equivalently, when U approaches 1).

When all repairs are perfect (i.e. have degree (1, 1)), then the distributions of the inter-

failure usages Yn+1, n ∈ N, are identical to the original marginal distribution with reliability

function F̄Y(y) = exp{−(y/α2)β2}. When all repairs are perfect, an = bn = 0 and k1 = k2 =

1, and therefore, the transformation in (9.36) reduces to the transformation in (9.18).

The marginal density function of the inter-failure usage Yn+1, given all previous failure

points, is given by

gYn+1
(y|tn,un) := −

∂

∂y
ḠYn+1

(y|tn,un) = −

∂
∂y F̄(an, y+ bn)

F̄(an, bn)

=
e−RX(an)

[
1+ θ RX(an)

]
rY(y+ bn) e

−RY(y+bn)
[
1+θ RX(an)

]

e−RX(an) e−RY(bn)
[
1+θ RX(an)

]

=
k1 rY(y+ bn) e−k1 RY(y+bn)

k2
,

(9.38)

221



for n ∈ N+, where k1 and k2 are defined in (9.32) and (9.33), and rY(.) is the marginal failure

rate function, which is the derivative of the corresponding cumulative failure rate function,

i.e. for u ≥ 0,

rY(u) =
d

du
RY(u) =

(
β2

α2

) (
u

α2

)β2−1

. (9.39)

Example 4: We generate 1000 observations from the marginal distribution of the second

inter-failure usage Y2, given the point of first failure (t1, u1) = (x1, y1) = (1.1, 2.3). In Figure

9.4, we have plotted the histogram and empirical distribution function of the Y2 variates,

generated using the transformation in (9.36). In Figure 9.4, in the top row, the degree of

the first repair is set to (δ1,γ1) = (0.3, 0.5), and in the bottom row, the degree of the first

repair is set to (δ1,γ1) = (1, 1). The other parameter values are set to: α1 = 2, β1 = 1.4,

α2 = 1.75, β2 = 1.5, and θ = 0.7. The empirical distribution functions are computed at all

u ∈ {0, 0.02, 0.04, . . . , 8}.
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Figure 9.4: Plots of the histogram (left) and empirical distribution function (right) of 1000 variates
generated from the marginal distribution of Y2, given the previous failure point (t1, u1) =
(1.1, 2.3). The degree of repair is: (δ1, γ1) = (0.3, 0.5) (top row); (δ1, γ1) = (1, 1) (bottom
row). The respective theoretical density and distribution functions are superimposed.

In Figure 9.4, notice that, when the degree of the repair following the first failure is in-
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creased from (0.3, 0.5) (top row) to (1, 1) (bottom row), the distribution function approaches

1 at a lower rate. As the degree of repair increases, the reliability of the system further im-

proves, which results in the second failure point being less likely to happen close to the

first. This is observable in the density functions in the two rows: in the bottom row, longer

inter-failure usages are more likely.

It must be noted that, when the degree of repair is (δ1,γ1) = (1, 1) (bottom row in Figure

9.4), the system is in effect replaced by a new system following the first failure. Therefore,

a1 = a1(t
+
1 , u

+
1 ) = 0, b1 = b1(t

+
1 , u

+
1 ) = 0, and k1 = k2 = 1, which reduces the distribution of

Y2 to the distribution of Y1 ≡ Y, which is the usage at first failure; see Section 9.2.1.1. Notice

that, the density and distribution functions in Figure 9.4 (bottom row) and Figure 9.1 are

identical. �

9.2.2.2 GeneratingObservations from the Conditional Distribution of Xn+1 given

Yn+1 = y

For n ∈ N+, the conditional distribution of the (n + 1)-th inter-failure time Xn+1, given

Yn+1 = y and all previous failure points, can be derived from the corresponding joint and

marginal distributions discussed earlier. The conditional density function for this distribu-

tion is derived as follows:

gXn+1|Yn+1
(x|y; tn,un) :=

gn+1(x, y|tn,un)

gYn+1
(y|tn,un)

=
f (x+ an, y+ bn)/F̄(an, bn)

− ∂
∂y F̄(an, y+ bn)/F̄(an, bn)

=
f (x+ an, y+ bn)

− ∂
∂y F̄(an, y+ bn)

=
f (x+ an, y+ bn)

e−RX(an)
[
1+ θ RX(an)

]
rY(y+ bn) e

−RY(y+bn)
[
1+θ RX(an)

]

=
f (x+ an, y+ bn)

k1 rY(y+ bn) F̄(an, y+ bn)
,

(9.40)

where gn+1(., , |tn,un) denotes the density function of (Xn+1,Yn+1) given in (9.30) and the

function gYn+1
(.|tn,un) denotes the marginal density function of Yn+1 given in (9.38), both

conditional on all previous failure points. The expressions for the original joint reliability

and density functions, F̄(., .) and f (., .), are given in (9.14) and (9.16) respectively. Note that,

as before, an = an(t+n , u
+
n ), bn = bn(t+n , u

+
n ), and k1 = 1+ θ RX(an).
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The distribution function corresponding to the density function in (9.40) is given by

GXn+1|Yn+1
(x|Yn+1 = y; tn,un) =

x∫

0

gXn+1|Yn+1
(s|y; tn,un) ds

=

x∫

0

f (s+ an, y+ bn)

k1 rY(y+ bn) F̄(an, y+ bn)
ds ,

(9.41)

and the corresponding reliability function is given by

ḠXn+1|Yn+1
(x|Yn+1 = y; tn,un) := 1− GXn+1|Yn+1

(x|Yn+1 = y; tn,un) . (9.42)

The conditional distribution function cannot be expressed in closed form– the above

integral is computed numerically. To generate variates from this distribution, we will use

the secant method discussed in Section 9.1.2; see Algorithm 2 on page 210.
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Figure 9.5: Plots of the histogram (left) and empirical distribution function (right) of 1000 variates
generated from the conditional distribution of the 2-nd inter-failure time X2, given Y2 =
1.5 and first failure point (x1 = y1) = (1.1, 2.3). The degree of repair is: (δ1, γ1) =
(0.3, 0.5) (top row); (δ1, γ1) = (1, 1) (bottom row). The respective theoretical distribution
functions are superimposed.

Example 5: We generate 1000 variates from the conditional distribution of X2, given Y2 =
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1.5 and first failure point (t1, u1) = (x1, y1) = (1.1, 2.3). In Figure 9.5, we have plotted

the histogram and empirical distribution function, along with the theoretical density and

distribution functions given in (9.40) and (9.41). The degree of the repair following the first

failure is set to: (δ1,γ1) = (0.3, 0.5) in the top row and (δ1,γ1) = (1, 1) in the bottom row.

The chosen parameter values are: α1 = 2, β1 = 1.4, α2 = 1.75, β2 = 1.5, and θ = 0.7. The

empirical distribution functions are computed at equidistant points, set 0.02 units apart.

In Figure 9.5, as observed with the marginal distribution of Y2 in Figure 9.4, when the

degree (δ1,γ1) of the first repair increases from (0.3, 0.5) (top row) to (1, 1) (bottom row), the

next failure time T2 = X2 + x1 (for a given Y2) is less likely to be close to the first failure time

t1 = x1 (i.e. the second inter-failure time is more likely to be farther from zero).

Also, when the degree of the first repair is (1, 1) (i.e. perfect repair), the conditional

distribution of X2 given Y2 = y is equal to the conditional distribution of X1 = X given

Y1 = Y = y, discussed in Section 9.2.1.2. Notice that, the theoretical distributions in Figure

9.5 (bottom row) and Figure 9.2 (bottom row) are identical. �

9.2.2.3 Generating Bivariate Observations (Xn+1,Yn+1)

In the preceding sections, for a sequence of previous failure points {(t1, u1), . . . , (tn, un)}, we

demonstrated how to generate variates from the marginal distribution of Yn+1 and the con-

ditional distribution of Xn+1, given Yn+1 = y, both conditional on previous failure points,

for n ∈ N+. To generate points from the bivariate distribution of (Xn+1,Yn+1), for each

generated Yn+1 = y, we generate one Xn+1 variate.

The distribution function of the bivariate inter-failure lifetime (Xn+1,Yn+1), given all

previous failure points, is given by

Gn+1(x, y|tn,un) := 1− Ḡn+1(x, 0|tn,un)− Ḡn+1(0, y|tn,un) + Ḡn+1(x, y|tn,un) , (9.43)

for x, y ≥ 0 and n ∈ N+, where Ḡ(., .|tn,un) is the corresponding bivariate reliability func-

tion given in (9.26).

Example 6: We generate 1000 observations from the bivariate distribution of (X2,Y2), given

the point of first failure (t1, u1) = (1.1, 2.3). The chosen degree of the first repair is (δ1,γ1) =

(0.4, 0.6). The parameter values are set to: α1 = 2, β1 = 1.4, α2 = 1.75, β2 = 1.5, and θ = 0.7.

In Figure 9.6, we have plotted the empirical distribution function of the generated bivariate

observations (left), along with the theoretical bivariate distribution function G2(., .|x1, y1) in
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(9.43) (right). Both the empirical and theoretical distribution functions are computed at grid

points (u, v) ∈ {0, 0.05, 0.1, . . . , 10} × {0, 0.05, 0.1, . . . , 10}.
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Figure 9.6: The empirical distribution function (left) of 1000 points generated from the bivariate dis-
tribution (right) of the inter-failure lifetime (X2,Y2), given the previous failure point.

In Figure 9.6, the smooth appearance of the empirical distribution (left plot) is because

the function is not plotted as a step function, but instead linearly interpolated between its

values at the grid points. Notice that, the distribution of the generated data points (left) is

close to the theoretical distribution (right) from which the data points were generated. �

9.2.3 Generating Consecutive Failure Points (Failure Process)

In the previous sections, we discussed the procedures for generating variates from themarginal

and conditional distributions of the inter-failure lifetimes {(Xn,Yn); n ∈ N+}. Using these

procedures, we can now describe the steps involved in generating the consecutive failure

points {(Tn,Un); n ∈ N+} of the failure process in two dimensions. As discussed earlier,

generating the failure points is equivalent to generating the bivariate inter-failure lifetimes,

since the time and usage at failure are partial sums of inter-failure times and usages respec-

tively; see (9.24).

Algorithm 3: generating the failure process. The algorithm to generate a sequence of

failure points in a region (0,wt]× (0,wu] ⊂ R
2
+ is as follows:

(i) generate the first point (t1, u1) = (x1, u1) (see Section 9.2.1);
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(ii) set n = 1;

(iii) select the degree (δn,γn) of repair for the n-th failure, and compute the virtual age

an = an(t+n , u
+
n ) and the virtual usage bn = bn(t+n , u

+
n ) immediately following the n-th

repair (refer to (9.27) and (9.28) on page 218);

(iv) generate the (n+ 1)-th bivariate inter-failure lifetime (xn+1, yn+1)– the distributions of

the inter-failure lifetimes depend on the computed virtual age an and virtual usage bn

(see Section 9.2.2);

(v) compute the (n+ 1)-th failure point (tn+1, un+1) =
(
tn + xn+1, un + yn+1

)
;

(vi) if tn+1 > wt or un+1 > wu, stop– the number of failures in (0,wt]× (0,wu] is then n;

otherwise, set n = n+ 1, and return to step (iii); see Figure 9.7.

(0,0) time

usage

wt

x2

x1

x3

x4

y4

y3

y2

y1

(t1, u1)

(t2, u2)

(t3, u3)

(t4, u4)

wu

Figure 9.7: Illustration of 4 consecutive failure points {(t1, u1), . . . , (t4, u4)}, along with the inter-
failure times {x1, . . . , x4} and usages {y1, . . . , y4}, where the 4-th failure occurs outside
the region (0,wt]× (0,wu]. The simulation run terminates after the 4-th point.

Example 7: We generate multiple sample trajectories of the failure process in two dimen-

sions, using the above simulation procedures. In Figure 9.8, we have plotted the trajectories

for the following parameter values: α1 = 2, β1 = 1.4, α2 = 1.75, β2 = 1.5, and θ = 0.7.

Following each failure of the system, a general repair is performed, which affects the distri-

bution of the succeeding failure points. For this example, we have set the degrees of repair

to (δn,γn) = (0.5, 0.5), for all n ∈ N+.
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Figure 9.8: Plot of simulated trajectories of the failure process over the region (0, 10]× (0, 10]. The
numbers of points in each trajectory that are within the region range from 6 to 8.

In Figure 9.8, we have also plotted the first point outside the region of interest, which is

the point at which a simulation run terminates. To distinguish the individual trajectories,

we have plotted lines connecting the failure points from each run. �

9.3 Numerical Illustrations

In this section, we provide a numerical example to illustrate applications of the proposed

repair model and simulation approach in the context of two-dimensionalwarranty cost anal-

ysis. We use the simulation approach to also illustrate the effect of the bivariate degrees of

repair on the (expected) number of failures.

Two-dimensional warranties are characterized by a region W ⊂ R
2
+, with the axes rep-

resenting the variables of the warranty policy (here, time and usage). We consider the rect-

angular warranty coverage W = (0,wt] × (0,wu], where wt and wu denote the warranty

limits in terms of time and usage, respectively. With this type of warranty policy, the sys-

tem remains under warranty until either limit is exceeded. Also, the warranty considered

is a free-repair (or free-replacement) warranty, i.e. the manufacturer agrees to repair (or

replace) the failed system at no charge to the consumer; see Section 2.3. Most automobile

manufacturers offer this type of warranty, with usage quantified by the distance traveled:

for example, the warranty coverage ends when 5 years or 60, 000 miles is exceeded.
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9.3.1 Estimating Expected Number of Failures (Claims)

Failures of a system can lead to claims under warranty, which can result in additional costs

to the manufacturer (warrantor). Therefore, failure modeling is an important aspect of war-

ranty cost analysis. Often the process of modeling the number of claims made under war-

ranty is simplified to be equivalent to modeling the number of failures of the system under

warranty. The necessary assumptions are: (a) every failure of the system results in an im-

mediate and valid warranty claim (with processing time being negligible, i.e. equal to zero);

and (b) every claim is followed immediately by an instantaneous repair (or replacement);

see Section 2.4. Then, the expected number of failures of a system covered by a warranty

policy can serve as an estimate of the number of repairs (or replacements) performed under

warranty.

Let N(wt,wu) denote the number of failures in the warranty region (0,wt]× (0,wu]. To

estimate the expected number of failures, denoted by E[N(wt,wu)], we simulate the failure

process multiple times, using the simulation approach described earlier, and then compute

the sample average:

Ê[N(wt,wu)] =
1

m

m

∑
i=1

ni(wt,wu) , (9.44)

where m is the number of simulations (i.e. trajectories of the failure process), and ni(wt,wu)

is the number of failures for the i-th simulation run, where i ∈ {1, . . . ,m} and m ∈ N+. The

sample variance of the simulated numbers is given by

v̂ar[N(wt,wu)] =
1

m− 1

m

∑
i=1

(
ni(wt,wu)− Ê[N(wt,wu)]

)2
. (9.45)

The sample relative standard deviation (or estimated coefficient of variation), which we

denote by ĉv, can then be computed as follows:

ĉv =

√
v̂ar[N(wt,wu)]

Ê[N(wt,wu)]
. (9.46)

The purpose of this simulation is to illustrate the effect of the degrees of repair on the

expected number of failures. According to the general repair model, following a minimal

repair, the system is simply restored to an operational state and its working condition does

not change. The working condition of a system following a non-minimal repair is equivalent

to the working condition of an identical system at a younger age and lower usage– the

virtual age and usage of the system immediately following the repair depend on the degree
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of the repair. As the degree of repair increases (from (0, 0) for a minimal repair to (1, 1) for a

perfect repair), so does the reliability of the system, and therefore, it is reasonable to expect

fewer failures for higher degrees of repair; see Section 8.1.

As before, let (δn,γn) denote the bivariate degree of the general repair following the n-th

failure of the system, for n ∈ N+. For simplicity, we set (δn,γn) = (δ,γ), for all n ∈ N+,

where δ,γ ∈ [0, 1]. That is, the general repairs for any given failure process are all of the

same effectiveness (or degree).

For this illustration, we choose the following values for the components of the degree

of repair: D = {0.0, 0.1, 0.2, . . . , 1.0}. We set the warranty coverage limits to wt = 5 (years)

and wu = 6 (×10, 000 miles). Then, for each (δ,γ) ∈ D2, we simulate the process m =

10, 000 times and compute the average number of failures. The averages, along with the

corresponding sample relative standard deviations, are tabulated in Table 9.1.

Table 9.1: Estimates Ê[N(5, 6; δ, γ)] of the expected number of failures under warranty, along with
the corresponding relative standard deviations ĉv, for various repair degrees (δ, γ) ∈ D2

γ

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

δ

0.0
6.198 5.130 4.527 4.161 3.831 3.610 3.451 3.300 3.142 3.041 2.921

0.5898 0.5276 0.5037 0.4834 0.4838 0.4759 0.4740 0.4774 0.4844 0.4834 0.4840

0.1
5.511 4.708 4.237 3.918 3.639 3.438 3.248 3.141 3.013 2.906 2.805

0.5428 0.5042 0.4862 0.4675 0.4634 0.4623 0.4634 0.4633 0.4618 0.4634 0.4695

0.2
4.984 4.404 4.004 3.697 3.443 3.256 3.151 3.003 2.889 2.787 2.670

0.5234 0.4884 0.4732 0.4606 0.4596 0.4589 0.4506 0.4591 0.4549 0.4532 0.4570

0.3
4.635 4.158 3.787 3.509 3.327 3.152 2.995 2.873 2.757 2.682 2.575

0.5105 0.4847 0.4690 0.4586 0.4489 0.4482 0.4428 0.4494 0.4514 0.4491 0.4493

0.4
4.371 3.949 3.590 3.392 3.181 3.017 2.890 2.783 2.672 2.574 2.493

0.5152 0.4796 0.4672 0.4477 0.4478 0.4441 0.4390 0.4368 0.4414 0.4504 0.4444

0.5
4.170 3.757 3.497 3.262 3.075 2.929 2.776 2.693 2.565 2.493 2.409

0.5094 0.4740 0.4602 0.4483 0.4451 0.4443 0.4394 0.4375 0.4461 0.4437 0.4472

0.6
3.966 3.612 3.326 3.126 2.948 2.799 2.693 2.604 2.511 2.415 2.352

0.5087 0.4773 0.4605 0.4512 0.4470 0.4428 0.4349 0.4350 0.4359 0.4409 0.4302

0.7
3.852 3.449 3.254 3.030 2.838 2.728 2.619 2.519 2.424 2.333 2.271

0.5037 0.4920 0.4571 0.4530 0.4497 0.4426 0.4411 0.4375 0.4351 0.4374 0.4337

0.8
3.630 3.361 3.115 2.938 2.787 2.612 2.541 2.456 2.363 2.281 2.203

0.5196 0.4873 0.4709 0.4526 0.4486 0.4478 0.4346 0.4335 0.4325 0.4337 0.4420

0.9
3.459 3.208 2.975 2.814 2.689 2.554 2.441 2.356 2.282 2.219 2.138

0.5284 0.4969 0.4739 0.4638 0.4494 0.4493 0.4462 0.4405 0.4398 0.4319 0.4387

1.0
3.330 3.057 2.844 2.677 2.560 2.439 2.353 2.274 2.210 2.136 2.080

0.5276 0.5003 0.4870 0.4733 0.4617 0.4616 0.4459 0.4471 0.4405 0.4391 0.4397
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Each cell of Table 9.1 corresponds to simulation runs of the failure (or general repair)

process {(Tn,Un); n ∈ N+} characterized by the corresponding degree of repair, (δ,γ) ∈

D2. In each cell, the first number is the average number of failures, Ê[N(5, 6; δ,γ)], over the

m = 10, 000 simulations of the failure process; and the second number (smaller font size) is

the sample relative standard deviation ĉv. Here, we use the notation Ê[N(wt,wu; δ,γ)] to

specify that the estimates are for a process where all repairs are of a given degree (δ,γ). To

improve the readability of the table, the diagonal cells (where the components of the degree

of repair are both equal) are colored.

Notice that, as the bivariate degree (δ,γ) of the general repairs increases (along the di-

agonal), the estimated expected number of failures decreases, from 6.090 for all-minimal

repairs to 2.077 for all-perfect repairs. This is due to the increased improvement in the re-

liability of the system following repairs of higher degrees. As discussed in Section 8.1, at

any point, the conditional reliability of the system following an imperfect repair is bounded

between the conditional reliabilities following minimal and perfect repairs. This improved

reliability also occurs when either component δ or γ of the bivariate degree of repair is fixed

and the other is increased. The trend is observed in Table 9.1, where the average number of

failures in each column (row) decreases along the rows (columns).

We have plotted the estimates from Table 9.1 in Figure 9.9, where the effects of the com-

ponents δ and γ of the degrees of repair are more discernible. Notice that, the average

number of failures decreases as δ and γ, for (δ,γ) ∈ D2, increase.
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Figure 9.9: Plot of the estimates Ê[N(5, 6; δ, γ)] from Table 9.1 against δ ∈ D and γ ∈ D along the x-

and y-axes. The interpolated values of Ê[N(5, 6; δ, γ)] are represented by the gray surface.
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The estimates in Table 9.1 are each computed from 10, 000 simulations of the failure pro-

cess. Additional simulation runs may be necessary to get more accurate estimates. For this

illustration, we chose m = 10, 000 based on the elementary test in Table 9.2, where we com-

puted the estimates Ê[N(5, 6; δ,γ)] for δ = γ ∈ D and for an increasing sequence of num-

bers of simulations and stopped at 10, 000 runs, since the difference between the estimates

was small. Each column in Table 9.2, corresponds to a varying number m of simulations of

a failure process, where all repairs are of degree (δ,γ), such that δ = γ ∈ D. The estimates

in the last column of Table 9.2 are the estimates in the diagonal cells of Table 9.1.

Table 9.2: Estimates Ê[N(5, 6; δ, γ)] of the expected number of failures under warranty, along with
sample relative standard deviations ĉv, for repair degree components δ = γ ∈ D and an
increasing number m of simulations

number of simulations: m

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

(δ,γ)

(0.0,0.0)
6.044 6.088 6.127 6.136 6.155 6.177 6.181 6.176 6.221 6.198

0.6084 0.5997 0.5936 0.5895 0.5864 0.5860 0.5894 0.5910 0.5872 0.5898

(0.1,0.1)
4.647 4.742 4.752 4.705 4.716 4.705 4.705 4.702 4.706 4.708

0.5209 0.4994 0.4976 0.5011 0.5012 0.5045 0.5045 0.5051 0.5056 0.5042

(0.2,0.2)
4.017 3.962 3.970 3.997 3.998 3.997 4.000 4.002 4.011 4.004

0.4697 0.4795 0.4771 0.4757 0.4754 0.4737 0.4707 0.4718 0.4713 0.4732

(0.3,0.3)
3.543 3.534 3.535 3.507 3.526 3.518 3.511 3.511 3.517 3.509

0.4465 0.4452 0.4432 0.4512 0.4482 0.4519 0.4548 0.4560 0.4576 0.4586

(0.4,0.4)
3.206 3.196 3.182 3.193 3.185 3.188 3.192 3.185 3.184 3.181

0.4353 0.4377 0.4477 0.4436 0.4436 0.4444 0.4439 0.4456 0.4476 0.4478

(0.5,0.5)
2.896 2.904 2.897 2.931 2.928 2.927 2.921 2.920 2.917 2.929

0.4631 0.4556 0.4504 0.4433 0.4423 0.4420 0.4444 0.4452 0.4475 0.4443

(0.6,0.6)
2.663 2.685 2.684 2.681 2.673 2.668 2.671 2.674 2.685 2.693

0.4351 0.4352 0.4335 0.4358 0.4378 0.4387 0.4393 0.4384 0.4360 0.4349

(0.7,0.7)
2.565 2.521 2.534 2.538 2.544 2.538 2.530 2.525 2.522 2.519

0.4269 0.4365 0.4332 0.4299 0.4310 0.4340 0.4356 0.4359 0.4376 0.4375

(0.8,0.8)
2.382 2.415 2.400 2.385 2.374 2.362 2.363 2.361 2.365 2.363

0.4275 0.4223 0.4281 0.4306 0.4336 0.4359 0.4343 0.4327 0.4329 0.4325

(0.9,0.9)
2.210 2.204 2.216 2.219 2.223 2.221 2.221 2.217 2.213 2.219

0.4242 0.4375 0.4354 0.4341 0.4340 0.4345 0.4349 0.4328 0.4330 0.4319

(1.0,1.0)
2.074 2.057 2.075 2.066 2.069 2.076 2.076 2.077 2.078 2.080

0.4491 0.4448 0.4467 0.4441 0.4442 0.4458 0.4430 0.4419 0.4416 0.4397

It must be noted that, for the bivariate case, the ordering of the effectiveness of the gen-

eral repairs, unlike the univariate case, is not complete. For instance, whether an imper-

fect repair of degree (0.3, 0.5) is more (or less) effective than an imperfect repair of degree

(0.5, 0.3) depends on the parameters of the original bivariate distribution; see Section 8.1.
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9.3.2 Estimating Expected Total Warranty Servicing Costs

In the context of warranty cost analysis, the expected cost of repairs under warranty is used

as an estimate of the total cost of servicing the warranty. This expected cost is a function

of the number of failures occurring while the system is under warranty. In the previous

section, we illustrated estimating the expected number of failures under warranty using the

suggested simulation approach. In this section, we illustrate estimating the expected total

warranty servicing costs for pre-assigned degrees of repair.

Let Ci denote the cost of the general repair following the i-th failure of the system, for

i ∈ N+– this cost can be stochastic or fixed. Then, the total warranty servicing cost, for the

rectangular warranty coverage (0,wt]× (0,wu], is given by

C(wt,wu) =
N(wt,wu)

∑
i=1

Ci , (9.47)

where N(wt,wu) denotes the number of failures under warranty. When the repair costs are

stochastic, the expected total warranty servicing cost is derived as follows:

E[C(wt,wu)] = E

[
E

[
N(wt,wu)

∑
i=1

Ci

∣∣∣∣∣N(wt,wu)

]]

=
∞

∑
n=1

E

[
n

∑
i=1

Ci

]
P{N(wt,wu) = n} ,

(9.48)

where the inner expectation is with respect to the random repair costs and the outer ex-

pectation is with respect to the number of failures N(wt,wu). The expected cost is zero for

n = 0. When the repair costs are fixed, then the inner expectation in (9.48) can be dropped,

i.e. E
[ n

∑
i=1

Ci

]
=

n

∑
i=1

Ci.

For this illustration, we assume that the cost of a general repair is a deterministic func-

tion of its bivariate degree of repair, so that when the degree of the general repair is given,

its cost is fixed (i.e. not stochastic). Let cmin and cper denote the cost of a minimal repair

(degree (0, 0)) and a perfect repair (degree (1, 1)), respectively. The minimum cost of a gen-

eral repair is set to cmin and the maximum cost is set to cper. These costs are constants and

represent aggregates of the various costs (e.g. claims processing, transport, servicing, etc.)

of a repair/replacement under warranty; see Blischke & Murthy [2].

We suggest the following example cost function for the cost of a general repair with
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degree (δ,γ), for δ,γ ∈ [0, 1]:

c(δ,γ) = cmin + cTD δ + cUD γ , (9.49)

where cTD, cUD ≥ 0. Then, when (δ,γ) = (0, 0), we have

c(0, 0) = cmin , (9.50)

and when (δ,γ) = (1, 1), we have

c(1, 1) = cmin + (cTD + cUD) = cper . (9.51)

Therefore, the cost of a perfect repair is cTD + cUD units in addition to the cost of a minimal

repair. The costs cTD and cUD can be viewed as the costs of removing all time-related damage

and usage-related damage, respectively. When we set cTD = cUD = 0, then the cost of a

general repair is independent of its degree, i.e. constant for all repairs. When cTD < (>) cUD,

the cost of removing time-related damage is less (higher) than the cost of removing usage-

related damage.

The example cost function in (9.49) is set up such that the cost of an imperfect repair is

bounded between the costs of minimal and perfect repairs, i.e. for (δ,γ) ∈ [0, 1] × [0, 1] \

{(0, 0), (1, 1)},

0 < cmin = c(0, 0) ≤ c(δ,γ) ≤ cper = c(1, 1) < ∞ . (9.52)

Since cTD ≥ 0 and cUD ≥ 0, the cost function is increasing in each component of the degree of

repair (δ,γ), when the other is fixed.

Given the example cost function and the bivariate degrees of repair, the expected total

warranty servicing cost in (9.48) becomes

E[C(wt,wu)] =
∞

∑
n=1

(
n

∑
i=1

c(δi,γi)

)
P{N(wt,wu) = n}

=
∞

∑
n=1

(
n

∑
i=1

(
cmin + cTD δi + cUD γi

)
)

P{N(wt,wu) = n} .

(9.53)

This expected cost, for pre-assigned degrees of repair, can be estimated by: (i) simulating

the associated failure process using the simulation approach described in Section 9.2.3; (ii)
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computing the sum of the costs of the repairs for each trajectory of the process (i.e. total cost

per run); and (iii) computing the sample average over the total costs.

When we have a constant cost for all general repairs, then the expected total warranty

servicing cost is simply the product of the cost of an individual general repair and the ex-

pected number of failures under warranty, i.e.

E[C(wt,wu)] = crep E[N(wt,wu)] , (9.54)

for a constant cost of repair crep > 0. Consider, for instance, the numerical example in

Section 9.3.1, where we set (δi,γi) = (δ,γ), for all i ∈ N+. For any given (δ,γ) ∈ [0, 1]2, the

expected cost in (9.53) reduces to

E[C(wt,wu; δ,γ)] =
∞

∑
n=1

(
n

∑
i=1

(
cmin + cTD δ + cUD γ

)
)

P{N(wt,wu) = n}

=
(
cmin + cTD δ + cUD γ

) ∞

∑
n=1

n P{N(wt,wu) = n}

=
(
cmin + cTD δ + cUD γ

)
E[N(wt,wu; δ,γ)] .

(9.55)

To estimate this expected total warranty servicing cost, we can use the estimated expected

number of failures:

Ê[C(wt,wu; δ,γ)] =
(
cmin + cTD δ + cUD γ

)
Ê[N(wt,wu; δ,γ)] . (9.56)

Table 9.3: Estimates Ê[C(5, 6; δ, γ)] of the expected total warranty servicing cost computed using
the estimates of the expected number of failures from Table 9.1, where cmin = 100 ($) and
cTD = cUD = 10 ($)

γ
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

δ

0.0 619.85 518.18 461.79 428.61 398.39 379.00 365.79 353.10 339.39 331.43 321.33

0.1 556.58 480.25 436.37 407.42 382.13 364.44 347.49 339.24 328.38 319.71 311.31

0.2 508.36 453.59 416.39 388.23 364.96 348.35 340.26 327.28 317.81 309.31 299.03

0.3 477.43 432.47 397.68 372.00 355.99 340.42 326.43 316.05 306.06 300.35 290.99

0.4 454.61 414.66 380.56 362.97 343.58 328.83 317.85 308.88 299.23 290.87 284.20

0.5 437.84 398.25 374.18 352.27 335.21 322.18 308.14 301.60 289.86 284.15 277.08

0.6 420.38 386.50 359.24 340.74 324.27 310.72 301.63 294.21 286.22 277.76 272.83

0.7 412.20 372.51 354.71 333.31 315.07 305.58 296.00 287.21 278.74 270.58 265.68

0.8 392.05 366.39 342.62 326.12 312.12 295.16 289.65 282.46 274.10 266.83 259.93

0.9 377.04 352.87 330.27 315.22 303.88 291.18 280.67 273.25 267.01 261.79 254.43

1.0 366.30 339.29 318.49 302.51 291.80 280.51 272.98 266.01 260.82 254.21 249.59
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As an illustration, in Table 9.3, we present the estimates (averages) of the total war-

ranty servicing costs corresponding to Table 9.1, for cost parameters cmin = 100 and cTD =

cUD = 10 (which makes the cost of a minimal repair $100 and the cost of a perfect repair

$120). Each cell in Table 9.3 is Ê[C(5, 6; δ,γ)] = (100+ 10 δ + 10γ) Ê[N(5, 6; δ,γ)], where

Ê[N(5, 6; δ,γ)], for (δ,γ) ∈ D2, whereD = {0.0, 0.1, 0.2, . . . , 1.0}, are tabulated in Table 9.1.

Notice that, in Table 9.3, the ordering of the estimates is the same as the ordering of

the estimates of the expected number of failures in Table 9.1. This is because the value of

the minimum cost cmin = 100 is large in comparison to the value of the additional cost

cTD + cUD = 20. When cmin is relatively large, the estimated expected numbers of failure are

in effect being multiplied by a positive constant, and therefore, the ordering is preserved.

δ

0.0
0.2

0.4
0.6

0.8
1.0γ

0.0 0.2 0.4 0.6
0.8

1.0

^ E
[C

(5
,6

 ; 
  ,

  )
]

δ
γ

200

300

400

500

600

700

δ

0.0
0.2

0.4
0.6

0.8
1.0

γ
0.0

0.2
0.4

0.6
0.8

1.0

^ E
[C

(5
,6

 ; 
  ,

  )
]

δ
γ

200

300

400

500

600

700

(i) cmin = 100; cTD = 10; cUD = 10 (ii) cmin = 25; cTD = 150; cUD = 150

δ

0.0
0.2

0.4
0.6

0.8
1.0γ

0.0 0.2 0.4 0.6
0.8

1.0

^ E
[C

(5
,6

 ; 
  ,

  )
]

δ
γ

200

300

400

500

600

700

δ

0.0
0.2

0.4
0.6

0.8
1.0γ

0.0
0.2

0.4
0.6

0.8
1.0

^ E
[C

(5
,6

 ; 
  ,

  )
]

δ
γ

200

300

400

500

600

700

(iii) cmin = 100; cTD = 10; cUD = 100 (iv) cmin = 100; cTD = 100; cUD = 10

Figure 9.10: The estimated expected warranty servicing costs Ê[C(5, 6; δ′, γ′)], plotted with actual
estimates at grid points (δ, γ) ∈ D2, and interpolated values between grid points. The
cost parameters are displayed under each plot.
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To illustrate some possible trends, in Figure 9.10, we have plotted the estimates for vari-

ous values of the cost parameters. Note that, the values of Ê[C(5, 6; δ′,γ′)], as a function of

(δ′,γ′) ∈ [0, 1]2, are interpolated between the grid points (δ,γ) ∈ D2.

9.4 Chapter Conclusion

In this chapter, we developed a simulation procedure to simulate the failure (or general

repair) process and estimate the expected number of failures from the simulated trajectories,

for various values of the bivariate degrees of repair. We observed that, as the degrees of the

general repairs increase, the estimated expected number of failures decreases. As shown

in the previous chapter, the reliability of the system further improves as the value of either

component of any degree of repair increases (when all other parameters are fixed), which

leads to a decrease in the expected number of failures.

We also discussed an application of the proposed general repair process in the context

of warranty cost analysis, where we used the simulation approach to estimate the expected

cost of servicing a free-replacement warranty having a rectangular coverage.
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Part IV

Conclusion
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Chapter 10

Conclusion

It is well-known that general repairs, along with returning a failed system to a operational

state, often improve the working condition of the system, and thus, increase its reliability

which affects the rate of future failures of the system. General repair models provide a

unified framework for the realistic modeling of consecutive failures of repairable engineered

systems. These models have broad applications in many fields, such as reliability modeling

and warranty cost analysis. The overall goal of this study was

to advance the state of the art in modeling consecutive failures of a repairable system, by

modeling the effect of general repairs on the working condition of the system.

In this study, two specific types of repairable system were considered:

(I) systems whose working condition initially improves with age or usage, and whose

lifetimes are modeled as univariate random variables having a bathtub-shaped failure

rate function;

(II) systems whose working condition deteriorates with age and usage, and whose life-

times are modeled as bivariate random variables having a decreasing conditional reli-

ability function.

The main contributions of the thesis were arranged in two parts, with each part corre-

sponding to one of the two types of system outlined above. For each case, the modeling

procedure involved the following steps:

(i) The system: we began with describing a characterization of the system in terms of its

working condition and the variables affecting it;
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(ii) The lifetime distribution: we described the class of lifetime distributions used to

model the lifetime of the original system (i.e. before its first failure);

(iii) The general repair model: we proposed a model to reflect the effect of repairs on the

working condition of the system following the repairs; the model involved defining

the effect of each repair in terms of either the failure rate function or the conditional

reliability function of succeeding lifetimes (i.e. lifetimes between consecutive failures);

(iv) The model properties: we examined the effect of the parameters (here, degrees of

repairs) of the proposed general repair model on the reliability of the system;

(v) The failure (or general repair) process: we described the associated failure process and

derived the distributions of the consecutive failure points and inter-failure lifetimes by

applying the proposed general repair model.

In each of the two cases, to simplify the modeling process, the following assumptions

were made:

(a) each failure of the system is followed by an immediate repair, i.e. the time between the

failure and undertaking the repair is set equal to zero;

(b) all repairs are instantaneous, i.e. the downtime of the system is set equal to zero.

Under these assumptions, consecutive failure points of the system are the only points at

which repairs are performed. Therefore, the point process associated with the sequence of

failures is the same as the process associated with the sequence of consecutive repair points.

Having developed the models, we then demonstrated the applications of each of the two

models in the context of warranty cost analysis, where failure modeling is essential to the

accurate estimation of the expected number of warranty claims and the associated costs.

10.1 Remarks on the One-Dimensional Repair Model

The first problem that we considered in this studywas modeling the effect of repairs (and hence,

consecutive failures) of a system whose working condition is initially improving with age (or with

usage). The lifetime distribution used to model the time to first failure of such systems is a

univariate distribution with a bathtub-shaped failure rate function.

Most of the existing literature on modeling repairs performed on this type of system

assume that all initial failures of the system are rectified by minimal repair, and only when
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the system begins to deteriorate, general repairs of higher degree are performed following

failures. Here, we proposed a model to describe the effect of general, non-minimal repairs

performed while the working condition of the system is still improving.

Modeling approach. We modeled the effect of general repairs as changes in the condi-

tional intensity function of the corresponding failure process, such that, following each

non-minimal repair, the conditional reliabilities associated with the succeeding lifetimes in-

creased. A distinguishing characteristic of the proposedmodel is that perfect repairs– which

are assumed to be the most effective of general repairs– were not modeled simply as a re-

placement of the failed systemwith a new and identical system. Since the system is initially

improving, a replacement is not always the most effective rectification action.

Model properties. The degree of a general repair reflects the effectiveness of the repair

and a repair that is more effective is expected to result in greater reliability improvement.

Illustrations of the proposed general repair model showed that the conditional reliability

and mean residual lifetime functions are both increasing in each degree of repair, when all

other parameters of the functions are fixed. As expected, since the reliability improvement

increased as the degree of any given repair increased, the expected number of consecutive

failures of the system, where each failure was rectified by a general repair, decreased.

Research contributions. The following are the main contributions of the first part of this

research.

(1.1) We developed a new model to describe the effect of general repairs on the working

condition of systemswhose lifetimes can be modeledwith a distribution having a bathtub-

shaped failure rate function (e.g. systems that initially improve with age/usage before

beginning to wear out).

(1.2) We formalized a definition of perfect repair, which for systems that are initially im-

proving is not equivalent to a replacement. By removing the initial decreasing failure rate

phase, the model reduces to a renewal process, where perfect repair is equivalent to re-

placement.

(1.3) We investigated the properties of the proposed general repair model: the conditional

reliability and mean residual lifetime functions following repairs are both increasing in

each degree of repair (when all other parameters are fixed).
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(1.4) We derived the distributions of the consecutive failure points and inter-failure life-

times of the associated failure process.

(1.5) We suggested warranty servicing strategies, and derived the expected costs using the

proposed general repair model.

10.2 Remarks on the Two-Dimensional Repair Model

The second problem that we considered in this study was modeling the effect of repairs (and

hence, consecutive failures) of a system whose working condition deteriorates with both age and usage.

The bivariate lifetime distribution used to model the point of first failure of such systems is

a distribution having the bivariate increasing failure rate property.

Failures of a system can be attributed to changes in more than onemeasure of its working

condition– here, we chose age and usage as the two variables of interest. In the literature,

general (imperfect) repair models for systems whose lifetime is modeled with a bivariate

distribution generally involve reducing the failure process to a one-dimensional process by,

for instance, assuming a relationship between age and usage or by defining a composite

scale. Then, univariate repair models are used to describe the effect of repairs. Here, we

proposed a new approach to model the effect of general repairs performed on a system

whose lifetime is modeled as a bivariate random variable.

Modeling approach. We modeled the effect of repairs as changes in the bivariate condi-

tional reliability function, such that, following a general repair, the system is at least as

reliable as a system that has not failed (or a minimally repaired system). Specifically, the

effect of a general repair is modeled as a possible decrease in the virtual age and the virtual

usage of the system, which is equivalent to replacing the failed system with an identical

system at a younger age and with lower usage. The proposed general repair process is a

generalization of the renewal (replacement) process in two dimensions and it also includes

the minimal repair process in two dimensions as a special case. Therefore, when all repairs

are perfect, the bivariate inter-failure lifetimes are independent and identically distributed.

When repairs are minimal or imperfect, the bivariate inter-failure lifetimes are neither in-

dependent nor identically distributed– the distribution of any of these bivariate lifetimes

depends on all failure points and the degrees of the general repairs before it.
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Model properties. The bivariate increasing failure rate property implies that the corre-

sponding components of the hazard gradient vector are both increasing. Following each

general non-minimal repair, the reliability of the system is increased, and hence, the com-

ponents of the hazard gradient vector associated with the succeeding bivariate inter-failure

lifetime decrease. The effectiveness of a general repair is modeled with a bivariate degree

of repair, where the first component represents the proportion of decrease in the virtual age

and the second component represents the proportion of decrease in the virtual usage. The

improvement in system reliability following a failure is proportional to the bivariate degree

of repair, for subsets of the degrees of repair for which there is complete ordering (for in-

stance, when both components of the degree of repair are equal). For subsets of the degrees

of repair where there is no complete ordering, the effectiveness of a repair depends among

others on the parameters of the chosen lifetime distribution. Simulations of the failure (or

general repair) process showed that, for a given region, the expected numbers of failures

corresponding to an increasing sequence of bivariate degrees of repair are decreasing.

Research contributions. The following are the main contributions of the second part of

this research.

(2.1) We developed a new model to describe the effect of general repairs on the working

condition of systems whose lifetimes can be modeled with a bivariate distribution having

the bivariate increasing failure rate property (e.g. systems that deteriorate with age and

usage).

(2.2) The model generalized to two dimensions the one-dimensional virtual age models

proposed by Kijima [27]. It is also a generalization of both the renewal process in two

dimensions proposed by Hunter [61] and the minimal repair process in two dimensions

proposed by Baik et al. [64].

(2.3) We investigated the properties of the proposed general repair model with respect to

the suggested bivariate degrees of repair: the bivariate reliability function and the compo-

nents of the associated conditional reliability and mean residual vectors are all increasing

functions of either component of any degree of repair; and the components of the asso-

ciated hazard gradient vector are both decreasing functions of either component of any

degree of repair (when all other parameters are fixed).

(2.4) We derived the distributions of the bivariate failure points and inter-failure lifetimes

associated with the failure process in two dimensions.
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(2.5) We suggested an approach to simulate trajectories of the failure process in two dimen-

sions, using the conditional distributions of the bivariate inter-failure lifetimes. The sim-

ulated trajectories can be used to estimate the expected number of failures and expected

warranty servicing costs for various strategies.

10.3 Possible Future Research

(i) Inmodeling the consecutive failures of the system,we assumed that the general repairs

are instantaneous (i.e. the time to repair the system was set to zero). This assumption

is reasonable in the context of reliability analysis, if it can be assumed that the system

does not deteriorate during downtime (while being repaired). In the context of cost

analysis however, there may be penalties associated with the downtime of the system.

For instance, while the system is being repaired, a temporary replacement systemmay

be required which results in additional costs. In this case, setting the duration of the

downtime to zero does not provide one with accurate cost estimates– modeling system

downtime following failures as non-zero random variables may be more appropriate.

One possible research direction is to develop models for non-zero repair times.

(ii) A second open question, which relates to systems with lifetime distributions having

bathtub-shaped failure rate function, is to determine when a repair is more beneficial

than the replacement of the system (this may be based on cost analysis as well as sys-

tem reliability analysis). According to the proposed repair model, for a certain period

of time immediately following a general repair, the repaired system performs “better”

(in terms of system reliability) than a replaced (new) system. If the system becomes

obsolete before this period ends, then a general repair may be more beneficial than a

replacement (assuming that the cost of the repair is less than the cost of the replace-

ment); however, if the system is in use after this period, a replacement may be more

appropriate.

(iii) For one-dimensional repair models, there is complete ordering of the (univariate) de-

grees of repair, i.e. a repair of higher degree is more effective than a repair of lower

degree. For the two-dimensional model however, where the degrees of repair are bi-

variate, the ordering of the degrees of repair in terms of their effectiveness (improve-

ment is system reliability) is partial. A possible study can be conducted to determine

some form of complete ordering of the bivariate degrees, so that there is a one-to-one
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correspondence between the degrees of repair and their effectiveness in improving sys-

tem reliability.

(iv) In this study, the degrees of the repairs were assumed to be pre-assigned (known)– they

can also be modeled as bivariate random variables with some dependence structure or

as parameters of the lifetime distributions. Possible research can include investigating

methods to model and estimate the degrees of repair in the proposed general repair

models using failure data.

(v) With both general repairmodels, the systemconsideredwas in effect a single-component

system. Most real-world systems are multi-component with components that may or

may not be dependent. A possible study can include extending the proposed models

to multi-component systems.
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List of Acronyms

BCR bivariate conditional reliability

BDFR bivariate decreasing failure rate

BDMRL bivariate decreasing mean residual life

BFR bathtub-shaped failure rate

BIFR bivariate increasing failure rate

BIMRL bivariate increasing mean residual life

BNBU bivariate new-better-than-used

BNBUE bivariate new-better-than-used in expectation

BNWU bivariate new-worse-than-used

BNWUE bivariate new-worse-than-used in expectation

CFR constant failure rate

CW combination warranty

DFR decreasing failure rate

DMRL decreasing mean residual life

FR failure rate (ordering of distributions)

FRW free-replacement (or free-repair) warranty

IFR increasing failure rate

IMRL increasing mean residual life

MR mean residual (ordering of distributions)

MRL mean residual lifetime

MRT mean residual time

MRU mean residual usage

NBU new-better-than-used

NBUE new-better-than-used in expectation

NWU new-worse-than-used

NWUE new-worse-than-used in expectation
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PRW partial rebate warranty

PrW pro-rata warranty

RW rebate warranty

ST stochastic (ordering of distributions)

UFR U-shaped failure rate
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Notation

A(.) age modification function: A(t) is the modified age at time t

A(t|r) conditional virtual age at time t, given usage rate R = r

A(t, u) virtual age at time t and usage u

A(T+
n ) modified age immediately after the repair following the n-th failure

of the system at time Tn

A(T+
n |r) conditional virtual age immediately after the repair following the n-

th failure of the system at time Tn (given system usage rate R = r)

A(T+
n ,U+

n ) virtual age immediately after the repair following the n-th failure of

the system at time Tn and usage Un

A′
2 second change-point of themodified baseline intensity function λ1(.)

a(t, u) realization of the virtual age A(t, u)

a(t+n ) realization of the modified age A(T+
n ) immediately after the n-th re-

pair

a(t+n |r) realization of the conditional virtual age A(T+
n |r) immediately after

the n-th repair

a(t+n , u
+
n ) realization of the virtual age A(T+

n ,U+
n ) immediately following the

n-th repair

a1 first change-point of a BFR function

a2 second change-point of a BFR function

a′2 realization of the change-point A′
2

an(t) realization of the age modification function A(.) at time t, given n

failures before t

an(t|r) realization of the conditional virtual age A(t|r), given n failures be-

fore time t

an(t, u) realization of the virtual age A(t, u), given n failures before time t

and usage u
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B(t, u) virtual usage at time t and usage u

B(T+
n ,U+

n ) virtual usage immediately after the repair following the n-th failure

of the system at time Tn and usage Un

b(t, u) realization of the virtual usage B(t, u)

b(t+n , u
+
n ) realization of the virtual usage B(T+

n ,U+
n ) immediately following the

n-th repair

bn(t, u) realization of the virtual usage B(t, u), given n failures before time t

and usage u

C(w) total cost of servicing a warranty having warranty period (0,w]

C(wt,wu) total cost of servicing a warranty having warranty region (0,wt] ×

(0,wu]

c(t; δt) cost of a general repair performed at time t, having degree δt

c(δ,γ) cost of a general repair with bivariate degree of repair (δ,γ)

cmin cost of a minimal repair

cper cost of a perfect repair

F∗∗Fn convolution of F with Fn

F(.) distribution function of the lifetime X ≡ T of the original system

F(., .) distribution function of the bivariate lifetime (X,Y) ≡ (T,U) of the

original system

Fn(.) distribution function of the n-th failure time Tn

Fn(., .) distribution function of the n-th failure point (Tn,Un)

Fn+1(.|t1, . . . , tn) distribution function of the (n+ 1)-th failure time Tn+1, given the n

previous failure times (t1, . . . , tn)

Fn+1(., .|tn,un) distribution function of the (n+ 1)-th failure point (Tn+1,Un+1), given

the n previous failure points (times and usages) {(t1, u1), . . . , (tn, un)}

Ft(t+ x) conditional distribution function of the original system at time t+ x,

given the system is operational at time t

FZ(.) marginal distribution function of random variable Z

FZ|V(.|v) conditional distribution function of random variable Z, given ran-

dom variable V > v

FZ|V(.|V = v) conditional distribution function of random variable Z, given ran-

dom variable V = v

F̄(.) reliability function of the lifetime X ≡ T of the original system
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F̄(., .) reliability function of the bivariate lifetime (X,Y) ≡ (T,U) of the

original system

F̄n(.) reliability function of the n-th failure time Tn

F̄n(., .) reliability function of the n-th failure point (Tn,Un)

F̄n+1(.|t1, . . . , tn) reliability function of the (n + 1)-th failure time Tn+1, given the n

previous failure times (t1, . . . , tn)

F̄n+1(., .|tn,un) reliability function of the (n+ 1)-th failure point (Tn+1,Un+1), given

the n previous failure points (times and usages) {(t1, u1), . . . , (tn, un)}

F̄t(t+ x) conditional reliability function of the original system at time t + x,

given the system is operational at time t

F̄t(t+ x|Ht) conditional reliability function of the original system at time t + x,

given the system is operational at time t, conditional on the history

Ht of the failure process (i.e. taking into account the effect of repairs

performed before time t)

F̄Z(.) marginal reliability function of random variable Z

F̄Z|V(.|v) conditional reliability function of random variable Z, given random

variable V > v

F̄Z|V(.|V = v) conditional reliability function of random variable Z, given random

variable V = v

f (.) density function of the lifetime X ≡ T of the original system

f (., .) density function of the bivariate lifetime (X,Y) ≡ (T,U) of the orig-

inal system

fn(.) density function of the n-th failure time Tn

fn(., .) density function of the n-th failure point (Tn,Un)

fn(t1, . . . , tn) joint density function of the first n failure times {T1, . . . , Tn}, at the

point (t1, . . . , tn)

fn(tn,un) joint density function of the first n failure points {(T1,U1), . . . , (Tn,Un)},

at (t1, u1, . . . , tn, un)

fn+1(.|t1, . . . , tn) conditional density function of the (n+ 1)-th failure time Tn+1, given

the n previous failure times (t1, . . . , tn)

fn+1(., .|tn,un) conditional density function of the (n+ 1)-th failure point (Tn+1,Un+1),

given the n previous failure points {(t1, u1), . . . , (tn, un)}

fZ(.) marginal density function of random variable Z
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fZ|V(.|v) conditional density function of random variable Z, given random

variable V > v

fZ|V(.|V = v) conditional density function of random variable Z, given random

variable V = v

Gn(.) distribution function of the n-th inter-failure lifetime Xn

Gn(., .) distribution function of the n-th bivariate inter-failure lifetime (Xn,Yn)

Gn+1(., .|tn,un) conditional distribution function of the (n + 1)-th bivariate inter-

failure lifetime (Xn+1,Yn+1), given the n previous failure points (times

and usages) {(t1, u1), . . . , (tn, un)}

GYn+1
(.|tn,un) conditional distribution function of the (n+ 1)-th inter-failure usage

Yn+1, given the n previous failure points {(t1, u1), . . . , (tn, un)}

GXn+1|Yn+1
(.|y, tn,un) conditional distribution function of the (n+ 1)-th inter-failure time

Xn+1, given the n previous failure points {(t1, u1), . . . , (tn, un)} and

given the (n+ 1)-th inter-failure usage Yn+1 = y

Ḡn(.) reliability function of the n-th inter-failure lifetime Xn

Ḡn(., .) reliability function of the n-th bivariate inter-failure lifetime (Xn,Yn)

Ḡn+1(., .|tn,un) conditional reliability function of the (n+ 1)-th bivariate inter-failure

lifetime (Xn+1,Yn+1), given the n previous failure points (times and

usages) {(t1, u1), . . . , (tn, un)}

ḠYn+1
(.|tn,un) conditional reliability function of the (n + 1)-th inter-failure usage

Yn+1, given the n previous failure points {(t1, u1), . . . , (tn, un)}

ḠXn+1|Yn+1
(.|y, tn,un) conditional reliability function of the (n + 1)-th inter-failure time

Xn+1, given the n previous failure points {(t1, u1), . . . , (tn, un)} and

given the (n+ 1)-th inter-failure usage Yn+1 = y

gn(.) density function of the n-th inter-failure lifetime Xn

gn(., .) density function of the n-th bivariate inter-failure lifetime (Xn,Yn)

gn+1(., .|tn,un) conditional density function of the (n+ 1)-th bivariate inter-failure

lifetime (Xn+1,Yn+1), given the n previous failure points (times and

usages) {(t1, u1), . . . , (tn, un)}

gYn+1
(.|tn,un) conditional density function of the (n+ 1)-th inter-failure usageYn+1,

given the n previous failure points {(t1, u1), . . . , (tn, un)}

gXn+1|Yn+1
(.|y, tn,un) conditional density function of the (n+ 1)-th inter-failure time Xn+1,

given the n previous failure points {(t1, u1), . . . , (tn, un)} and given

260



the (n+ 1)-th inter-failure usage Yn+1 = y

H(., .) cumulative bivariate hazard rate function: H(t, u) = − ln F̄(t, u)

Ht history of the failure process in one dimension, available at time t

Ht,u history of the failure process in two dimensions, available at time t

and usage u

ht realization of the failure process historyHt

ht;n realization of the failure process historyHt, given n failures (repairs)

before time t

ht,u realization of the failure process historyHt,u

h(t, u) hazard gradient vector at time t and usage u: h(t, u) = ▽H(t, u)

hn+1(t, u; tn,un) conditional hazard gradient vector at time t and usage u, given the

first n system failures (defined for t > tn and u > un)

hT(t, u) time component of the hazard gradient vector h(t, u): hT(t, u) =

∂H(t, u)/∂t (also denoted by hX(t, u))

hXn+1
(t, u; tn,un) time component of the hazard gradient vector hn+1(t, u; tn,un)

hU(t, u) usage component of the hazard gradient vector h(t, u): hU(t, u) =

∂H(t, u)/∂u (also denoted by hY(t, u))

hYn+1
(t, u; tn,un) usage component of the hazard gradient vector hn+1(t, u; tn,un)

IB indicator function of event B (which is 1 when B occurs, and is 0

otherwise)

N set of natural numbers {0, 1, . . . }

N+ set of positive integers {1, 2, . . . }

N(t) number of system failures in the interval (0, t] (before time t)

N(t, u) number of system failures in the region (0, t] × (0, u] (before time t

and usage u)

N(A) number of system failures in the region A (which is usually of the

form A = (x1, x2]× (y1, y2])

NX(t) number of system failures before time t (marginal count)

NY(u) number of system failures before usage u (marginal count)

NX(t|r) number of failures in the interval (0, t], of a system used at rate R = r

R real line (−∞,∞)

R+ set of non-negative real numbers [0,∞)

R(.) cumulative univariate failure rate function: R(t) = − ln F̄(t)
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RZ(.) marginal cumulative failure rate function of random variable Z

r(.) univariate failure rate function: r(t) = dR(t)/dt = f (t)/F̄(t)

r(., .) bivariate failure rate function of Basu [45]: r(t, u) = f (t, u)/F̄(t, u)

rZ(.) marginal failure rate function of randomvariable Z: rZ(t) = dRZ(t)/dt

rT(.|U > u) failure rate function of time T to first failure, given usage at first fail-

ure is U > u: rT(t|U > u) = hT(t, u)

rU(.|T > t) failure rate function of usage U at first failure, given time to first

failure is T > t: rU(u|T > t) = hU(t, u)

T time to first failure of the original system (also denoted by X)

Tn time of the n-th failure of the system

Tn vector of the first n failure times: Tn = (T1, . . . , Tn)

tn realization of the time Tn of the n-th system failure

tn realization of the vectorTn of the first n failure times: tn = (t1, . . . , tn)

U usage at first failure of the original system (also denoted by Y)

Un usage at the n-th failure of the system

Un vector of the first n failure usages: Un = (U1, . . . ,Un)

un realization of the usage Un at the n-th system failure

un realization of the vectorUn of the first n failure usages: un=(u1, . . . , un)

VF(B) F-volume of the set B = [x1, x2] × [y1, y2], which is defined as fol-

lows: VF(B) = F(x2, y2)− F(x2, y1)− F(x1, y2) + F(x1, y1)

w end (limit) of the one-dimensional warranty period

wt time limit of the two-dimensional, rectangular warranty region

wu usage limit of the two-dimensional, rectangular warranty region

X time to first failure of the original system (also denoted by T)

Xt residual lifetime of the system at time t: Xt = [X − t|X > t]

Xn+1 time between the n-th and (n+ 1)-th failures of the system: Xn+1 =

Tn+1 − Tn, where X1 = T1

Y usage at first failure of the original system (also denoted by U)

Yn+1 usage accumulated between the n-th and (n + 1)-th failures of the

system: Yn+1 = Un+1 −Un, where Y1 = U1

γn usage component of the n-th bivariate degree (δn,γn) of repair, for

the repair process in two dimensions

δn time component of the n-th bivariate degree (δn,γn) of repair, for
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the repair process in two dimensions; or degree of the n-th general

repair, for the repair process in one dimension

Λ(.) cumulative intensity function of the failure process in one dimen-

sion: Λ(t) = E[N(t)]

Λ(., .) cumulative intensity function of the failure process in two dimen-

sions: Λ(t, u) = E[N(t, u)]

λ0(.) baseline intensity function of the failure process in one dimension

(equal to the failure rate function r(.) of the original lifetime)

λ0(.|r) baseline intensity function of the conditional failure process in one

dimension, given the system usage rate R = r

λ0(., .) baseline intensity function of the failure process in two dimensions

λ1(.) modified baseline intensity function (which is a BFR function with

change-points a1 and A′
2)

λ̃(t|Ht) intensity function of the failure process in one dimension, condi-

tional on the history Ht of the process at time t

λ̃(t, u|Ht,u) intensity function of the failure process in two dimensions, condi-

tional on the history Ht,u of the process at point (t, u)

µ(t) mean residual lifetime function at time t: µ(t) = E[Xt]

µ(t|Ht) mean residual lifetime function at time t, conditional on the history

Ht of the failure process in one dimension

µ(t, u) mean residual vector at time t and usage u

µn+1(t, u; tn,un) conditional mean residual vector at time t and usage u, given the

first n failures of the system (defined for t > tn and u > un)

µT(t, u) time component of the mean residual vector µ(t, u) (also denoted by

µX(t, u))

µXn+1
(t, u; tn,un) time component of the mean residual vector µn+1(t, u; tn,un)

µU(t, u) usage component of the mean residual vector µ(t, u) (also denoted

by µY(t, u))

µYn+1
(t, u; tn,un) usage component of the mean residual vector µn+1(t, u; tn,un)

Ta1 endpoint of the DFR phase of the univariate conditional intensity

function λ̃(t|Ht) = λ1(A(t))

τa1 realization of the endpoint Ta1

φF̄(s, v; t, u) conditional reliability vector at point (t + s, u + v), given that the
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system is in an operational state at time t and usage u

φF̄n+1
(s, v; t, u, tn,un) conditional reliability vector at point (t + s, u + v), given that the

system is in an operational state at time t and usage u, and given n

failures (repairs) before point (t, u)
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