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Abstract
Automated web service composition is one of the ultimate goals of service-
oriented computing. It loosely couples web services to accommodate
users’ complex requirements. Evolutionary Computation (EC) techniques
combined with AI planning have been successfully proposed to efficiently
produce composite services with near-optimal Quality of Semantic Match-
making (QoSM) and/or Quality of Service (QoS), which measure the sat-
isfaction of the functional and non-functional requirements from users,
respectively. Despite some recent progress, both the effectiveness and
efficiency of existing approaches need further improvement to enhance
the competitive advantage of service providers. The overall goal of this
thesis is to propose novel EC-based fully automated service composition
approaches that can effectively and efficiently solve challenging single-
objective, multi-objective, and dynamic service composition problems.

Firstly, this thesis proposes two novel Estimation of Distribution Algo-
rithm (EDA) based approaches (called EDA-NHM and EDA-EHM) and
one memetic EDA-based approach with four different local search op-
erators to single-objective fully automated web service composition that
jointly optimizes QoSM and QoS. EDA-NHM and EDA-EHM are pro-
posed with novel permutation-based and DAG-based representations to
model the distribution of composition solutions with respect to varied
service composition workflows. Two sampling techniques are also stud-
ied in EDA-NHM and EDA-EHM to effectively and efficiently sample
new promising permutations and functionally valid DAGs, respectively.
These two EDA-based approaches are compared to state-of-the-art works.
The comparisons reveal that EDA-NHM produces better-quality compos-
ite services than EDA-EHM and the state-of-the-art works. On the other



hand, EDA-EHM achieves the highest efficiency among all the competing
EC-based methods, delivering moderate effectiveness. Furthermore, one
proposed memetic approaches built upon EDA-NHM (called MEEDA-
LOP) pushes the cutting-edge performance in terms of effectiveness and
efficiency.

Secondly, this thesis studies two categories of multi-objective service
composition problems: one category aims to generate a set of approxi-
mated Pareto optimal solutions for users to choose from, while the other
category aims to generate multiple composite services for multiple user
segments with distinctive preferences on QoSM. To effectively and effi-
ciently handle the first category of problems, a memetic approach based on
Non-dominated Sorting Genetic Algorithm II (NSGA-II), called MNSGA2-
EDA, is proposed by enhancing NSGA-II with EDA-based local search.
The novelty of this method lies in the innovative use of EDA for effec-
tive and efficient local improvements, rather than for global exploration.
MNSGA2-EDA is compared to state-of-the-art multi-objective works, for
studying its performance. We found that MNSGA2-EDA achieves much
higher effectiveness and efficiency in finding Pareto optimal solutions.
The second category of problems can be naturally treated as multitasking
problems. Two novel multi-factorial evolutionary algorithms (called PM-
FEA and PMFEA-EDA) are proposed to effectively and efficiently solve
this category of problems. These two algorithms implicitly or explicitly
learn and share the knowledge of good solutions evolved so far for dif-
ferent tasks. We compare PMFEA and PMFEA-EDA with state-of-the-art
works. We found that both PMFEA-EDA and PMFEA are performed at the
cost of only a fraction of time compared to the single-tasking state-of-the-
art works, which solve one task at a time. We also found that PMFEA-EDA
yields solutions with the highest quality, confirming that learning and
sharing knowledge explicitly is superior to learning and sharing knowl-
edge implicitly.

Thirdly, this thesis studies a new dynamic service composition prob-



lem, focusing on handling stochastic service failures. We effectively han-
dle this problem via two stages — the design stage and the execution
stage. Particularly, two accurate robustness measures are proposed based
on Monte Carlo sampling and a lower bound estimation, respectively.
These robustness measures are utilized in two proposed GA-based ap-
proaches (called GA-MC and GA-RE) at the design stage, to generate base-
line composite solutions with high robustness. These baseline solutions
can cope with the stochastic service failures robustly via a repairing pro-
cess that supports continued high-quality execution of a composite service
at the execution stage. Meanwhile, we propose a GA-2Stage algorithm by
introducing a new adaptive evolutionary control mechanism, which sup-
ports two sequential evolutionary stages with two different fitness evalu-
ation methods. These approaches are compared to each other to deter-
mine the most suitable method. Our experimental comparisons reveal
that GA-RE algorithm with lower bound estimation outperforms GA-MC
algorithm with Monte Carlo sampling estimation in finding composition
solutions with high robustness, regardless of the size of the service repos-
itories. Besides, compared to GA-RE, GA-2Stage achieves the highest effi-
ciency with a negligible impact on the effectiveness at the execution stage,
regardless of the service repositories’ size.



iv



List of Publications

1. WANG, C., MA, H., CHEN, A., AND HARTMANN, S. Comprehen-
sive quality-aware automated semantic web service composition. In
AI 2017: Advances in Artificial Intelligence (2017), Springer, pp. 195–207

2. WANG, C., MA, H., CHEN, G., AND HARTMANN, S. GP-based
approach to comprehensive quality-aware automated semantic web
service composition. In Simulated Evolution and Learning (2017),
Springer, pp. 170–183

3. WANG, C., MA, H., AND CHEN, G. EDA-based approach to com-
prehensive quality-aware automated semantic web service composi-
tion. In Proceedings of the Genetic and Evolutionary Computation Con-
ference Companion (2018), GECCO ’18, ACM, pp. 147–148

4. WANG, C., MA, H., CHEN, G., AND HARTMANN, S. Knowledge-
driven automated web service composition — an EDA-based ap-
proach. In Web Information Systems Engineering – WISE 2018 (2018),
Springer, pp. 135–150

5. WANG, C., MA, H., CHEN, G., AND HARTMANN, S. Towards fully
automated semantic web service composition based on estimation of
distribution algorithm. In AI 2018: Advances in Artificial Intelligence
(2018), Springer, pp. 458–471

6. WANG, C., MA, H., CHEN, G., AND HARTMANN, S. A memetic
NSGA-II with EDA-based local search for fully automated multi-

v



vi

objective web service composition. In Proceedings of the Genetic and
Evolutionary Computation Conference Companion (2019), GECCO ’19,
ACM, pp. 421–422

7. WANG, C., MA, H., AND CHEN, G. Using EDA-based local search
to improve the performance of NSGA-II for multiobjective semantic
web service composition. In Database and Expert Systems Applications
(2019), Springer, pp. 434–451

8. WANG, C., MA, H., CHEN, G., AND HARTMANN, S. Evolutionary
multitasking for semantic web service composition. In 2019 IEEE
Congress on Evolutionary Computation (CEC) (2019), pp. 2490–2497

9. WANG, C., MA, H., CHEN, A., AND HARTMANN, S. Towards robust
web service composition with stochastic service failures based on a
genetic algorithm. In AI 2019: Advances in Artificial Intelligence (2019),
Springer, pp. 445–459

10. WANG, C., MA, H., CHEN, A., HARTMANN, S., AND ONG, Y.-S. Us-
ing an Estimation of Distribution Algorithm to achieve multitasking
semantic web service composition. ACM Transactions on Evolutionary
Learning and Optimization (Major revision)

11. WANG, C., MA, H., CHEN, A., AND HARTMANN, S. Memetic
EDA-based approaches to comprehensive quality-aware automated
semantic web service composition. IEEE Transactions on Services
Computing (Submitted)

12. WANG, C., MA, H., CHEN, A., HARTMANN, S., AND BRANKE, J.
Robustness estimation and optimisation for semantic web service
composition with stochastic service failures. IEEE Transactions on
Emerging Topics in Computational Intelligence (Major revision)



Acknowledgments

I would like to express my deepest gratitude to my supervisors, A/Prof.
Hui Ma, Dr. Gang Chen and Prof. Sven Hartmann (external supervi-
sor) for their invaluable assistance and encouragement throughout my
studies. My supervisors convincingly guided and encouraged me to be
professional when the road got tough. Without their persistent help, the
goal of my studies would not have been realized. I am thankful to other
participants of my research works: Prof. Ong, Yew-Soon, and Prof. Jürgen
Branke. I would also like to pay my special regards for the nurturing
and supportive environment at Victoria University of Wellington, the
Evolutionary Computation Research Group (ECRG) led by Prof. Mengjie
Zhang and the Evolutionary Computation for Combinatorial Optimiza-
tion (ECCO) subgroup.

I am deeply grateful to my family, in particular, my mother, Chunyun
and my father, Jianxiang, for giving me the opportunity to pursue this de-
gree at Victoria University of Wellington. I would also like to acknowledge
the support and great love of my girlfriend, Wendy. They kept me going
on, and this work would not have been possible without their encour-
agement. Last but not least, thank you to all my friends and colleagues,
including those not explicitly listed, who assisted me in this journey: Dr.
Alexandre Sawczuk da Silva, Atiya Masood, Boxiong Tan, Dr, Harith Ai-
Sahaf, Dr. Julian Mackay, Dr. John Park, Soheila Sadeghiram, Dr. Lily
Chanida, Dr. Yi Mei, Dr, Yiming Pei and Dr. Ying Qu.

vii



viii



Contents

1 Introduction 1
1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Research Goals . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4 Major Contributions . . . . . . . . . . . . . . . . . . . . . . . 19

1.5 Organization of Thesis . . . . . . . . . . . . . . . . . . . . . . 25

2 Background and Literature Review 27
2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.1 Web Service . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.2 Web Service Composition . . . . . . . . . . . . . . . . 30

2.1.3 An Overview of EC Techniques . . . . . . . . . . . . . 41

2.1.4 An Overview of AI Planning . . . . . . . . . . . . . . 53

2.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.2.1 Semi-Automated Web Service Composition . . . . . . 58

2.2.2 Fully Automated Web Service Composition . . . . . . 68

2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3 Single-Objective Fully Automated Web Service Composition 81
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.2 Chapter Organization . . . . . . . . . . . . . . . . . . . . . . . 88

3.3 The WSC-CQ Problem . . . . . . . . . . . . . . . . . . . . . . 89

3.4 Pre-processing of A Service Repository . . . . . . . . . . . . . 92

ix



x CONTENTS

3.5 The EDA-NHM Algorithm . . . . . . . . . . . . . . . . . . . . 94

3.5.1 Outline of EDA-NHM . . . . . . . . . . . . . . . . . . 95

3.5.2 A novel permutation-based representation . . . . . . 97

3.5.3 Application of NHM Construction and NHBSA . . . 99

3.6 The EDA-EHM Algorithm . . . . . . . . . . . . . . . . . . . . 101

3.6.1 Outline of EDA-EHM . . . . . . . . . . . . . . . . . . 102

3.6.2 Discovery of Service Dependency . . . . . . . . . . . 103

3.6.3 Application of EHM Construction . . . . . . . . . . . 105

3.6.4 GEHBGSA for sampling . . . . . . . . . . . . . . . . . 107

3.7 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . 110

3.7.1 Comparing EDA-NHM and EDA-EHM with PSO,
FL, SearchPath . . . . . . . . . . . . . . . . . . . . . . 111

3.8 A Memetic Algorithm Based on EDA-NHM . . . . . . . . . . 117

3.8.1 Outline of the Memetic Algorithm . . . . . . . . . . . 118

3.8.2 Application of Uniform Distribution Schema . . . . . 119

3.8.3 Stochastic Local Search Operators . . . . . . . . . . . 121

3.9 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . 126

3.9.1 Comparing Memetic EDA-based Methods with EDA-
NHM and MEFL . . . . . . . . . . . . . . . . . . . . . 127

3.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

4 Multi-Objective Fully Automated Web Service Composition 137

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.1.1 Introduction to the WSC-MO Problem . . . . . . . . . 138

4.1.2 Introduction to the WSC-MQP Problem . . . . . . . . 140

4.2 Chapter Organization . . . . . . . . . . . . . . . . . . . . . . . 145

4.3 The WSC-MO Problem . . . . . . . . . . . . . . . . . . . . . . 145

4.4 The MNSGA2-EDA Algorithm . . . . . . . . . . . . . . . . . 146

4.4.1 An overview of MNSGA2-EDA . . . . . . . . . . . . . 147

4.4.2 Outline of MNSGA2-EDA . . . . . . . . . . . . . . . . 148

4.4.3 Genetic Operators . . . . . . . . . . . . . . . . . . . . 150



CONTENTS xi

4.4.4 Identify a Cluster Representative of Each Cluster . . 151

4.4.5 Learn a NHM Based on Cluster Representatives . . . 152

4.5 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . 153

4.5.1 Parameters sensitivity . . . . . . . . . . . . . . . . . . 154

4.5.2 Comparing MNSGA2-EDA with NSGA-II, Hybrid
and Hybrid-L . . . . . . . . . . . . . . . . . . . . . . . 156

4.6 The WSC-MQP Problem . . . . . . . . . . . . . . . . . . . . . 162

4.7 The PMFEA Algorithm . . . . . . . . . . . . . . . . . . . . . . 164

4.7.1 Outline of PMFEA . . . . . . . . . . . . . . . . . . . . 165

4.7.2 Permutation-based representation . . . . . . . . . . . 167

4.7.3 Assortative Mating . . . . . . . . . . . . . . . . . . . . 167

4.7.4 Task Selection for Evaluations . . . . . . . . . . . . . . 168

4.8 The PMFEA-EDA Algorithm . . . . . . . . . . . . . . . . . . 169

4.8.1 Outline of PMFEA-EDA . . . . . . . . . . . . . . . . . 171

4.8.2 NHMs Learning and Sampling Solutions . . . . . . . 173

4.8.3 NHBSA for Multitasking Evolutionary Search . . . . 174

4.8.4 Skill Factor Transmission . . . . . . . . . . . . . . . . 175

4.9 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . 176

4.9.1 Comparing PMFEAs with FL . . . . . . . . . . . . . . 177

4.9.2 Comparing PMFEA-EDA with PMFEA-EDA-WTO,
PMFEA, EDA-NHM, and FL . . . . . . . . . . . . . . 182

4.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

5 Evolving Robust Composite Services for Dynamic Semantic Web
Service Composition 189

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

5.2 Chapter Organization . . . . . . . . . . . . . . . . . . . . . . . 195

5.3 The RWSC-SF Problem . . . . . . . . . . . . . . . . . . . . . . 195

5.4 GA-MC Algorithm to RWSC-SF . . . . . . . . . . . . . . . . . 198

5.4.1 Robustness Estimation . . . . . . . . . . . . . . . . . . 198

5.4.2 Outline of GA-MC . . . . . . . . . . . . . . . . . . . . 199



xii CONTENTS

5.4.3 Robustness Estimation based on Monte Carlo Sam-
pling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

5.5 GA-2Stage Algorithm to RWSC-SF . . . . . . . . . . . . . . . 203
5.5.1 Robustness Estimation . . . . . . . . . . . . . . . . . . 205
5.5.2 Outline of GA-2Stage . . . . . . . . . . . . . . . . . . . 206
5.5.3 Archive-based adaptive evolutionary control . . . . . 208
5.5.4 Robustness Estimation based on a Lower Bound . . 209

5.6 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . 213
5.6.1 Comparing GA-MC against FL . . . . . . . . . . . . . 213
5.6.2 Comparing GA-2Stage with GA-RE, GA-MC and FL 218

5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

6 Conclusions 231
6.1 Achieved Objectives . . . . . . . . . . . . . . . . . . . . . . . 232
6.2 Main Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 236

6.2.1 Explicit Distribution Models for Fully Automated
Service Composition . . . . . . . . . . . . . . . . . . . 236

6.2.2 Neighbourhood Structure of Composite services . . . 237
6.2.3 Local Improvements on Pareto Solutions Using EDA 238
6.2.4 Using EDA to Achieve Effective and Efficient WSC-

MQP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
6.2.5 The Application of Two-stage Robust Service Com-

position . . . . . . . . . . . . . . . . . . . . . . . . . . 239
6.3 Practical Guidelines . . . . . . . . . . . . . . . . . . . . . . . . 240
6.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

6.4.1 Miscellaneous Distribution Models and Sampling
Techniques . . . . . . . . . . . . . . . . . . . . . . . . . 241

6.4.2 Miscellaneous Decoding Strategy for Permutations . 241
6.4.3 Many-Objective Optimisation . . . . . . . . . . . . . . 242
6.4.4 Robustness estimation . . . . . . . . . . . . . . . . . . 243



List of Figures

1.1 Research objectives and sub-objectives. . . . . . . . . . . . . 14

2.1 Functional properties of a web service. . . . . . . . . . . . . . 29

2.2 Semi-automated web service composition process [123]. . . . 31

2.3 An example of service composition for a travel agency. . . . 33

2.4 An example of a component service for demonstrating QoSM. 34

2.5 Input and output-related concepts and instances described
for MapGeneration service in Fig. 2.4. . . . . . . . . . . . . . 34

2.6 Sequence construct and calculation of its QoS [221]. . . . . . 37

2.7 Parallel construct and calculation of its QoS [221]. . . . . . . 38

2.8 Choice construct and calculation of its QoS [221]. . . . . . . . 38

2.9 Loop construct and calculation of its QoS [221]. . . . . . . . . 39

2.10 An example of a vector-based representation in GA. . . . . . 43

2.11 Examples of crossover and mutation in GA. . . . . . . . . . . 43

2.12 Examples of probabilistic models in EDA [139]. . . . . . . . . 47

2.13 Crowding distance calculation based on points marked
with filled circles [54]. . . . . . . . . . . . . . . . . . . . . . . 49

2.14 Fast non-dominated sorting strategy in NSGA-II [54]. . . . . 50

2.15 An overview of the literature review. . . . . . . . . . . . . . . 56

3.1 An example of pre-processing of service repository for a ser-
vice request T . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.2 A process of generating composite services as permutations. 98

xiii



xiv LIST OF FIGURES

3.3 A different permutation produced by a decoding and en-
coding process. . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3.4 An example of labeled O. . . . . . . . . . . . . . . . . . . . . 105

3.5 An example of a DAG generated by GEHBGSA. . . . . . . . 109

3.6 A comparison of the convergence curves of EDA-NHM,
EDA-EHM, PSO, FL over execution time on WSC08-6 (the
left) and WSC09-5 (the right). . . . . . . . . . . . . . . . . . . 116

3.7 An example of a constrained one-point swap on [1, 2, 3 | 0, 4]. 122

3.8 An example of two-point swap on [1, 2, 3 | 0, 4]. . . . . . . . . 123

3.9 An example of one constrained block-swap on [1, 2, 3 | 0, 4]. . 123

3.10 An example of layer-based one-point swap operation on
[1, 2, 3 | 0, 4]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

3.11 An example of layer order breached by constrained one
swap operation. . . . . . . . . . . . . . . . . . . . . . . . . . . 126

3.12 A comparison of the average convergence rate of EDA-
NHM, EDA-EHM, PSO, FL over execution time (the left)
and generation (the right) for WSC09-2. . . . . . . . . . . . . 132

3.13 A comparison of the percentage of better neighbours pro-
duced by four memetic algorithms along generations over
30 runs for WSC08-03. . . . . . . . . . . . . . . . . . . . . . . 133

4.1 Two composite booking services produced by TripPlanner. . 141

4.2 Generation updates in MNSGA2-EDA. . . . . . . . . . . . . . 147

4.3 Examples of crossover and mutation for parents. . . . . . . . 150

4.4 An example of identifying two cluster representatives. . . . 151

4.5 Mean hypervolume over time for non-dominated solutions,
for WSC09-3 (left) and WSC09-5 (right) (Note: the larger the
hypervolume the better). . . . . . . . . . . . . . . . . . . . . . 161

4.6 Mean IGD over time for non-dominated solutions, for
WSC09-3 (left) and WSC09-5 (right) (Note: the smaller the
IGD the better). . . . . . . . . . . . . . . . . . . . . . . . . . . 161



LIST OF FIGURES xv

4.7 Pareto optimal solutions obtained for tasks WSC09-3 (left)
and WSC09-5 (right). . . . . . . . . . . . . . . . . . . . . . . . 162

4.8 An example of a DAG-based solution decoded from a given
permutation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

4.9 An example of neighborhood structure over four tasks. . . . 169
4.10 Generation updates in PMFEA-EDA. . . . . . . . . . . . . . . 170
4.11 Mean fitness over generations for tasks 1-4, for WSC09-3

(Note: the larger the fitness the better). . . . . . . . . . . . . . 181
4.12 Mean fitness over generations for tasks 1-4, for WSC09-2

(Note: the larger the fitness the better). . . . . . . . . . . . . . 185

5.1 Two-stage robust web service composition system. . . . . . . 197
5.2 A new permutation produced based on a sampled scenario. 202
5.3 Generation updates with an adaptive evolutionary control

in GA-2Stage. . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
5.4 A new permutation produced based on a sampled scenario. 212
5.5 Mean fitness values tested on near-optimal solutions found

by GA-MC over a set of increasing N for OWLS-TC 03 . . . . 215

6.1 A decision tree to guide practitioners for choosing algorithms240



xvi LIST OF FIGURES



List of Tables

2.1 Summary of web service composition approaches. . . . . . . 57

3.1 QoS calculation for a composite service expression C. . . . . 91

3.2 Mean fitness values for EDA-NHM and EDA-EHM in com-
parison to PSO, FL and PathSearch. (Note: the higher the
fitness the better) . . . . . . . . . . . . . . . . . . . . . . . . . 113

3.3 Summary of statistical significance tests for fitness, where
each column shows win/draw/loss score of an approach
against others. . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

3.4 Mean execution time (in s) for EDA-NHM and EDA-EHM
in comparison to PSO, FL and PathSearch. (Note: the
shorter the time the better) . . . . . . . . . . . . . . . . . . . . 115

3.5 Summary of statistical significance tests for execution time
(in s), where each column shows win/draw/loss score of
an approach against others. . . . . . . . . . . . . . . . . . . . 115

3.6 Mean fitness values for our memetic EDA algorithms in
comparison to EDA-NHM and MEFL. (Note: the higher the
fitness the better) . . . . . . . . . . . . . . . . . . . . . . . . . 129

3.7 Summary of statistical significance tests for fitness, where
each column shows win/draw/loss score of an approach
against others. . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

xvii



xviii LIST OF TABLES

3.8 Mean execution time (in s) for our memetic EDA algorithms
in comparison to EDA-NHM, MEFL. (Note: the shorter the
time the better) . . . . . . . . . . . . . . . . . . . . . . . . . . 131

3.9 Summary of statistical significance tests for execution time
(in s), where each column shows win/draw/loss score of
an approach against others. . . . . . . . . . . . . . . . . . . . 131

4.1 Mean IGD of MNSGA2-EDA with three groups of param-
eter settings over WSC08-3 (Note: the lower the IGD the
better). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

4.2 Mean Hypervolume of MNSGA2-EDA with three groups
of parameter settings over WSC08-03 (Note: the higher the
hypervolume the better). . . . . . . . . . . . . . . . . . . . . . 155

4.3 Mean execution time (in seconds) for our method in com-
parison to the baseline NSGA-II, and to Hybrid (Note: the
shorter the time the better). . . . . . . . . . . . . . . . . . . . 157

4.4 Summary of statistical significance tests for the execution
time, where each column shows the win/draw/loss score
of one method against a competing one for all tasks of
WSC08 and WSC09. . . . . . . . . . . . . . . . . . . . . . . . . 157

4.5 Mean IGD for our method in comparison to the baseline
NSGA-II, and to Hybrid (Note: the lower the IGD the better). 158

4.6 Summary of statistical significance tests for IGD, where
each column shows win/draw/loss scores of one method
against a competing one for all tasks of WSC08 and WSC09. 159

4.7 Mean Hypervolume for our method in comparison to the
baseline NSGA-II, and to Hybrid (Note: the higher the hy-
pervolume the better). . . . . . . . . . . . . . . . . . . . . . . 159

4.8 Summary of the statistical significance tests for hypervol-
ume, where each column shows win/draw/loss scores of
one method against a competing one for all tasks of WSC08
and WSC09. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160



LIST OF TABLES xix

4.9 Mean fitness values for our approach in comparison to
FL [47] (Note: the higher the fitness the better). . . . . . . . . 178

4.10 Mean execution time (in s) for our approaches in compari-
son to FL (Note: the shorter the time the better). . . . . . . . 180

4.11 Mean fitness values of solutions per task for our approaches
in comparison to PMFEA, EDA-NHM and FL [47] (Note:
the higher the fitness the better). . . . . . . . . . . . . . . . . 183

4.12 Mean execution time (in s) over all the tasks for our ap-
proaches in comparison to PMFEA [185], EDA-NHM and
FL [47] (Note: the shorter the time the better). . . . . . . . . . 184

5.1 Mean fitness values tested based on the baseline solutions
for our approach in comparison to FL. (Note: the higher the
fitness the better) . . . . . . . . . . . . . . . . . . . . . . . . . 215

5.2 Mean execution time (in seconds) observed for our ap-
proach in comparison to FL at the design stage. (Note: the
shorter the time the better) . . . . . . . . . . . . . . . . . . . . 217

5.3 Mean execution time (in milliseconds) per scenario by lo-
cal search based on the baseline solutions found by our ap-
proach in comparison to FL. (Note: the shorter the time the
better) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

5.4 Mean fitness values tested based on the baseline solutions
for GA-2Stage in comparison to GA-RE, FL and GA-MC.
(Note: the higher the fitness the better) . . . . . . . . . . . . . 221

5.5 Summary of statistical significance tests for mean fitness
values, where each column shows the win/draw/loss score
of one method against a competing one for all tasks of
OWLS-TC, WSC08 and WSC09. . . . . . . . . . . . . . . . . . 222

5.6 Mean execution time (in s) observed for GA-2Stage in com-
parison to GA-RE, FL and GA-MC at the design stage.
(Note: the shorter the time the better) . . . . . . . . . . . . . 224



xx LIST OF TABLES

5.7 Mean execution time (in ms) per scenario by local search
based on the baseline solutions found by GA-2Stage in com-
parison to GA-RE, FL and GA-MC. (Note: the shorter the
time the better) . . . . . . . . . . . . . . . . . . . . . . . . . . 225

5.8 Summary of statistical significance tests for mean execu-
tion time of the design stage, where each column shows the
win/draw/loss score of one method against a competing
one for all tasks of OWLS-TC, WSC08 and WSC09. . . . . . . 226

5.9 Summary of statistical significance tests for mean execution
time per scenario for local search at the execution stage,
where each column shows the win/draw/loss score of one
method against a competing one for all tasks of OWLS-TC,
WSC08 and WSC09. . . . . . . . . . . . . . . . . . . . . . . . . 226

5.10 Results of three statistical correlation tests using Pearson,
Kendall’s tau, and Spearman’s rho. . . . . . . . . . . . . . . . 227



Glossary of Terms

We provide a brief definition on some recurrent terms in this thesis as
follows:

Abstract service A slot that specifies inputs and outputs of concrete
web services.

Abstract service workflow A pre-defined service execution work-
flow that chains abstract services.

Assortative mating A breeding method of multi-factorial evolution-
ary algorithm, and it employs two genetic operators — crossover and
mutation to produce offspring for multiple tasks.

Constructs Basic structures of composite services that determine
how services are associated with each other.

Crossover A genetic operator that can generate two child solutions
by exchanging some parts of two selected parent solutions.

Decoding An interpretation of a candidate solutions from indirect
representation (e.g., vectors or permutations) to execution work-
flows of services (e.g., directed acyclic graphs).

Estimation of Distribution Algorithm (EDA) An evolutionary com-
putation technique that learns probabilistic models over a set of
promising candidate solutions. These models are adjusted itera-
tively with the aim to sample fitter candidate solutions.

xxi
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Evolutionary Multi-objective Optimization (EMO) A collection of
evolutionary algorithms that simultaneously optimize more than
one objective function in the field of multi-objective optimization
paradigms.

Evaluation A process that uses functions to measure the fitness (i.e.,
goodness) of candidate solutions.

Evolutionary computation A family of optimization techniques that
are inspired by Darwinian evolutionary principles. Based on a pop-
ulation of solutions that is subject to natural selection, new fitter so-
lutions are produced in the next generation.

Fully automated service composition A strategy of performing ser-
vice composition, it constructs workflows of composite services si-
multaneously with selections of atomic services.

Genetic algorithm (GA) An evolutionary computation technique
that evolves fitter candidate solutions with the help of genetic oper-
ators.

Hypervolume A performance evaluation metric for multi-objective
optimizations algorithms. Hypervolume measures the dominated
volume covered by a reference point (e.g., a point (1, 1) utilized in
a minimization problem) and the front evolved by a multi-objective
algorithm. The higher the Hypervolume, the better the algorithm.

Individual A candidate solution in a population.

Inverted generational distance (IGD) A performance evaluation
metrics for multi-objective optimization algorithms. IGD measures
the distance from the nearest point of the non-dominated set pro-
duced by an multi-objective algorithm to a true Pareto front. The
lower the IGD, the better the algorithm.
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Local search A heuristic method for solving optimization prob-
lems. It aims to generate good neighbouring solutions by apply
local changes on a given candidate solution until a stopping crite-
rion is met.

Multi-factorial evolutionary algorithm (MFEA) An evolutionary
optimization algorithm that can efficiently evolve candidate solu-
tions for solving multiple tasks concurrently via implicit parallelism
of population-based search.

Mutation A genetic operator that generates a child candidate solu-
tions by apply a small change on a selected parent solution, main-
taining the diversity of a population from generation to generation.

Neighbourhood A set of individuals that are generated based on a
given individual via small modifications.

Non-dominated sorting genetic algorithm II (NSGA-II) A multiob-
jective form of GA that aims to produce a set of approximated Pareto
solutions. The key idea of this algorithm is a fast non-dominated
sorting strategy based on the concept of Pareto dominance and the
crowding distance.

Ontology Semantic descriptions that are used to describe the inputs
and the outputs of web services. By utilizing these semantic descrip-
tions, semantic web service can be matched based on the inputs and
outputs.

Pareto dominance A vector ~x dominates another vector ~x′ if all the
objectives values of ~x are better or equal to those of ~x′, and at least
one objective value of ~x is better than those of ~x′. Otherwise, these
two vectors are non-dominated to each other.

Pareto front A set of candidate solutions are non-dominated to each
other based on multiple objectives, the number of which is more than
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one.

Quality of semantic matchmaking (QoSM) A quality measurement
on the matchmaking of any two web services via their functional
properties, i.e., inputs and outputs.

Quality of service (QoS) A quality measurement on the non-functional
properties of any web service. It often refers to four quality criteria,
i.e., time, cost, availability and reliability.

Representation A key component of EC techniques that is used to
represent an individual. A properly designed representation always
has a proper mapping between the phenotype and genotype spaces,
which is critical for EC techniques.

Reproduction A genetic operator that clones a parent candidate so-
lution as an offspring for the next generation.

Service repository A set of services available over a network.

Service discovery A process of identifying services, satisfying the
required inputs and outputs.

Skill factor The skill factor of an individual denotes the most effec-
tive task among multiple tasks in multi-factorial evolutionary algo-
rithm.

Semi-automated service composition. A strategy of performing ser-
vice composition, it selects a suitable atomic service for each abstract
service slot of a pre-defined abstract service workflow.

Task A composition task (also called a service request) that consists
of a set of provided task inputs and a set of required task outputs.

T-test A most commonly used statistical hypothesis test that consists
of one-sample T-test and two-sample T-test. In one-sample T-test,
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it is used to determines whether there is a significant difference be-
tween a given mean value and the mean of one group of sample. In
two-sample T-test, it is used to determine whether there is a signif-
icant difference between the means of two group samples. Often, a
normal distribution is assumed to be followed by these samples.

Vertical cultural transmission In the multi-factorial evolutionary al-
gorithm, the offspring is allowed to imitate the skill factor of any one
of their parents.

Wilcoxon rank-sum test Similar to T-test, but Wilcoxon rank-sum
test does not assume that a normal distribution is followed by the
samples.

Web service A software module that are self-describing, self-contained
and available over the internet.

Web service composition A set of web services that are loosely cou-
pled via their inputs and outputs, providing more complex function-
alities for users.

WSC-CQ A fully automated semantic Web Service Composition
problem that aims to optimize Comprehensive Quality (i.e., a com-
bination of QoSM and QoS) of composite services.

WSC-MO A fully automated semantic Web Service Composition
problem for Multiple conflicting Ojectives. This problem aims
to simultaneously optimize multiple conflicting quality criteria in
comprehensive quality and produces a set of approximated Pareto-
optimal composite services.

WSC-MQP A fully automated semantic Web Service Composition
problem for Multiple user segments with distinctive QoSM Preferences.
This problem aims to simultaneously optimize comprehensive qual-
ity with distinctive QoSM preferences for different user segments
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and produces a set of near-optimal composite services, each of which
serves one user segment.

RWSC-SF A novel Robust Web Service Composition problem for han-
dling stochastic Service Failures. This problem aims to construct
baseline composite services by explicitly considering stochastic ser-
vice failures at the design stage. These baseline composite services
can cope with unexpected service interruptions in a robust manner
to resume the high quality at the execution stage.



Chapter 1

Introduction

1.1 Problem Statement

Service-oriented computing (SOC) is a popular computing paradigm that
employs services as fundamental elements to achieve the agile devel-
opment of cost-efficient and integrable enterprise applications in het-
erogeneous environments [133, 134]. It aims to be platform-neutral
and language-agnostic, enabling integrable and seamless communica-
tion among those existing or newly-built independent services. Service-
Oriented Architecture (SOA) could abstractly implement a service-oriented
paradigm of computing. During the ongoing development, SOA has been
contributing to the reuse of software components, from functions to units,
and from units to services [22, 129]. SOA can be implemented with web
services, which are designated as “modular, self-describing, self-contained
applications that are available on the Internet” [39]. Service providers,
such as AWS (Amazon Web Services [212]), advertise web services us-
ing formal description standards. These standards play a significant role
in registering, invoking, and grounding web services on the web. For
example, UDDI [38] and WSDL [99] are commonly used standards.

Since users’ requirements cannot always be satisfied by some atomic
web service, web service composition aims to loosely couple a set of web

1
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services to provide a value-added composite service that accommodates
users’ requirements. To perform service composition with valid function-
ality, interoperability of services becomes the first essential requirement for
web services to be composed [61]. The interoperability of web services
presents challenges to syntactic and semantic descriptions. The syntac-
tic descriptions can often be addressed by XML-based standards [219],
such as WSDL. Particularly, services can be composed together based on
the syntactical matches of input-output parameters of web services. Com-
pared to syntactic descriptions, semantic descriptions enable better collab-
oration via ontology-based semantics [128], in which many standards are
established, such as OWL-S [119], WSMO [100], SAWSDL [94], and SWSO
[141]. When input-output parameters of web services cannot be matched
syntactically, they could be matched semantically. Web service composi-
tion that aims to find composed services with optimal semantic matches of
inputs and outputs, gives birth to semantic web services composition. There-
fore, the quality of semantic matchmaking (QoSM) becomes an essential
functional quality concern for service users, raising researchers’ interest in
searching for composite services with high QoSM.

In addition to the functional aspect of QoSM, it is also important to
take the non-functional aspect into account while performing web service
composition. This non-functional aspect is often measured by Quality of
Service (QoS) [61], which often refers to four commonly used quality cri-
teria, i.e., cost, time, reliability, and availability. Different from semantic
web services composition discussed above, QoS-aware service composition aims
to find composite services with optimized QoS. Such solutions with opti-
mized QoS are preferred by users because they can fulfill users’ functional
requirements with good QoS, such as low price and short response time.
In practice, when users have clear preferences on each quality aspect in
QoS, i.e., the importance of each quality can be weighted by users, a single
composite service can often be returned for a service composition request.
Such a solution is optimized with a QoS score measured by a weighted
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aggregation of all quality criteria in QoS. Service composition that aims
to construct such a solution is referred as single-objective QoS-aware ser-
vice composition. In contrast, multi-objective QoS-aware service composition fo-
cuses on finding a set of optimized trade-off solutions (i.e., approximated
Pareto solutions) because users could have no clear preferences on QoS
before they see the trade-offs of the solutions. For example, users might
be willing to trade one objective, cost, for another objective, response time
[113], where cost and response time are conflicting QoS criteria that can
be optimized independently. In a nutshell, both single-objective QoS-aware
service composition and multi-objective QoS-aware service composition are im-
portant research areas that serves users’ different needs.

Services available for composition can experience QoS changes over
time. On the one hand, new services are published, and old ones are modi-
fied or removed due to the changes in users’ demands or service providers
[96]. In fact, newly published services might be more suitable because they
could be faster, cheaper, and aggregate multiple functionalities of a com-
posite service. On the other hand, services being composed can become
unavailable at the time of execution, which may be due to service over-
load, software/hardware failures, and network issues [81]. Such changes
may render existing composite services invalid or present new opportuni-
ties for building more preferable composite services.

Delivering composite services with reliable QoS is a critical and signif-
icant challenge. This dynamic problem is often referred to as dynamic web
service composition. In practice, QoS changes can be related to many differ-
ent quality criteria in QoS [48], such as response time, throughput, failure
probability, availability, price, and popularity. Among these QoS criteria,
the failure probability of web services is the most critical uncertainty [23].
This is because the composite services constructed at the design stage can
become completely useless at the time of its execution if any component
service fails. Service failure probability can be often approximated by divid-
ing the number of failed invocations by the total number of invocations
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conducted in the past [232].

Different service composition approaches [6, 30, 42, 45, 72, 80, 101, 108,
117, 145, 152, 192, 221] have been proposed to cope with the composition
challenges discussed above. These works can be grouped into two main
categories: semi-automated web service composition and fully automated web
service composition with two different assumptions based on whether work-
flows of service composition are known in advance [147]. The first group
of research works assumes that users know an abstract service composi-
tion workflow, and all the composite services produced by the composi-
tion system must strictly obey this workflow. Therefore, semi-automated
QoS-aware web service composition turns to select concrete services for
each abstract service in the given workflow to achieve the best possible
QoS. Due to the tremendous growth in enterprise applications, the num-
ber of web services has increased dramatically at an unprecedented pace
[5]. The process of designing abstract workflows manually is fraught with
difficulties. The second group of research works on fully automated web
service composition does not rely on any existing workflow. Instead, a com-
posite service workflow will be constructed from scratch while selecting
and connecting concrete atomic services from the service repository [147].
Therefore, this construction process not only selects services to achieve
best QoS but also searches for the optimal service workflows. Apparently,
compared to semi-automated web service composition, fully-automated
web service composition is more difficult, but it also opens new opportu-
nities to improve QoS and QoSM without being restricted to pre-defined
workflows.

The different service composition approaches discussed above can also
be classified based on the assumptions on QoS, i.e., QoS of a web service
is either static or dynamic. The first group, namely static web service com-
position, assumes that the QoS of web services seldom changes or does not
change at all. In this group, QoS often refers to the mean values of the his-
torical QoS, which is accessible to service users [89]. In contrast, the second
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group, namely dynamic web service composition, focuses on handling dy-
namic QoS. In this group, dynamic QoS values vary in bounded-interval
values [9, 125, 190] or can be estimated based on the past QoS distribu-
tions [6, 30, 80, 108]. Apparently, these two groups of works handle QoS
in different ways, but they still attract many ongoing research works in
both areas.

The service composition problems discussed above are known to be
NP-hard (i.e., Non-deterministic Polynomial-time Hard) problems [123],
which means it might be difficult to find optimal solutions. To cope with
such a complexity, a variety of techniques have been investigated to solve
this problem. In the literature, these techniques can always fall into three
categories — exact optimization methods, heuristic methods and meta-heuristic
methods. Firstly, exact optimization methods, such as 0-1 Linear Program-
ming [130], can produce optimal solutions when the searching space is
small. However, they also have critical disadvantages, such as poor scala-
bility and high consumption of computation resources. Compared to the
exact optimization methods, heuristic methods can improve the scalabil-
ity to some extent, but they can be easily trapped in a local optimum. For
example,A? search is used to efficiently find a near-optimal composite ser-
vice [151]. Lastly, meta-heuristic methods can reach a good trade-off be-
tween quality of composite services and computational time of algorithms.
The existing work mainly focuses on developing meta-heuristic methods
to find near-optimal composite services efficiently. Particularly, Evolution-
ary Computation (EC) techniques are widely studied in combinatorial opti-
mization for web service composition [42, 45, 47, 117, 140, 152, 221]. EC
techniques are particularly useful in practice as they can efficiently find
”good enough” (i.e., near-optimal) composite services. For example, Par-
ticle Swarm Optimization (PSO) is utilized to find an optimized queue of
services (i.e., a permutation), which can be decoded into a corresponding
composite service [45].

A variety of EC techniques have been demonstrated to be highly
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promising in solving the QoS-aware web service composition problem. Partic-
ularly, direct and indirect representations have been carefully investigated
since they could significantly affect the performance of EC-based ap-
proaches. Direct representations, such as tree- and graph-based represen-
tations [41, 152], represent composite services intuitively from the human
perspective, displaying actual execution flows of composite services. By
contrast, indirect approaches [47, 45] often represent composite services
as permutations, which require a decoding process to build up actual
execution workflows. Apart from EC-based approaches, hybridized ap-
proaches that combine Artificial Intelligence (AI) planning-based approaches
and EC techniques are introduced [137, 191]. AI planning is mainly uti-
lized to solve the fully-automated web service composition problem via
a plan-making process. For example, given a service composition request
(consisting of provided inputs and required outputs), a composite ser-
vice can be a planning process, with the inputs as the initial state and the
outputs as the desired goal state, and the component services as actions
triggered by one state and resulted in another state. Combining EC with
AI planning techniques can ensure the valid functionality of compos-
ite services in the context of fully automated service composition while
optimizing the QoS of composite services [42, 117].

In this thesis, we will focus on developing EC-based techniques with
AI planning algorithms to efficiently find near-optimized composite ser-
vices with valid functionalities in the context of fully automated web
service composition. To find near-optimal composite services, we will
consider both QoSM and QoS so as to cope with both the functional re-
quirements and non-functional preferences from users. We aim to address
this fully automated web service composition problem in single-objective,
multi-objective, and dynamic contexts. The motivations related to these
contexts will be discussed in Section 1.2.
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1.2 Motivations

The motivations of this proposed research lie in four key aspects that
simultaneously account for: 1. Simultaneously handling QoSM and QoS.
2. Multi-objective semantic service composition. 3. Dynamic semantic service
composition. 4. Hybridized techniques for automated web service composition.
These key aspects will be discussed in more detail below.

Comprehensive Quality of Semantic Web service Composition

QoS is often utilized to measure and distinguish composite services based
on users’ non-functional preferences. Besides QoS, outputs of web services
often do not perfectly match inputs of web services [103]. Thus, QoSM
becomes a critical measure of the validity of composite services. In fact,
many different composite services can meet a user request but differ in
both QoS and QoSM. Let’s consider an example of a service request for
a weather forecasting service, which provides weather information (i.e.,
weather info) of a given city (i.e., city). Suppose that two services can be
considered for this purpose. One service S1 produces an output weather
info by giving an input location at a price of 6.72 cents. The other service
S2 produces an output weather info by giving an input city at a price of
16.87 cents. According to the semantic descriptions regarding the inputs
and the outputs, city better matches the service request than location, so S2

clearly enjoys better QoSM than S1. However, S2 has a negative impact
on the QoS of the composite service because its price is much higher. One
can easily imagine that similar challenges frequently occur when looking
for service compositions. Hence, a good balance between QoSM and QoS
should be studied in service composition problems.

The majority of existing works on service composition address QoS
and QoSM separately. For QoSM, many related works fall into the context
of service discovery, which aims to find a concrete atomic service with the
best semantically matched inputs and outputs. Other works [16, 25, 122]
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do consider service composition but they focus on minimizing the number
of component services in a composite service. However, QoS of a compos-
ite service is not only determined by the number of component services
but also QoS of its component services. Therefore, these approaches can-
not guarantee an optimized QoS. On the other hand, many efforts have
been devoted to studying QoS-aware web service composition [41, 45, 72,
117, 145, 221] in the past few years. Among these works, some works
consider the differences between semantic matchmaking types (e.g., Ex-
act and Plugin matches [132], see details in Sect.2.1.2) when they compose
services. However, they treat different matchmaking types equally and do
not evaluate the QoSM of composite services during the search process.
Few works address both QoSM and QoS for the web service composition
problem. To the best of our knowledge, [58, 101, 143] report about the
first attempts that consider both QoSM and QoS, but these works can only
support semi-automated web service composition. To address the limita-
tions discussed above, a comprehensive quality model that jointly consid-
ers QoSM and QoS should be proposed. Meanwhile, this model should
support easy computation of QoS and QoSM for composite services with
varied workflow structures in fully automated service composition.

Multi-Objective Web Service Composition

In this subsection, we discuss the motivations of two different categories
of the multi-objective web service composition problem. The first cate-
gory of multi-objective web service composition is different from single-
objective web service composition. This is because the number of objec-
tive functions used in the multi-objective web service composition is more
than one. In single-objective approaches, one composite service is often
returned for a composition request, where the preferences of each quality
criteria in QoS are provided by users. A weighted sum of different quality
criteria is often used to form such a single objective. However, users do
not always have clear preferences for different quality criteria before they
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see trade-off solutions. Therefore, multi-objective optimization becomes a
natural way to generate a set of trade-off solutions that cope with conflict-
ing quality criteria. The majority of existing works on multi-objective ser-
vice composition [113, 172, 213, 214] can only support semi-automated ser-
vice composition while handling conflicting objective functions on QoS.
That is, they purely focus on selecting atomic services into the abstract
service slots to achieve the best possible overall QoS. However, to our best
knowledge, [40, 46] report the first two attempts to solve fully automated
multi-objective service composition. Particularly, two hybrid approaches
[40] (called Hybrid and Hybrid-L) that combines the use of two multi-
objective optimization algorithms, i.e., NSGA-II and MOEA/D, achieves
outstanding performances in finding good Pareto solutions. Particularly,
Hybrid-L further extends Hybrid by incorporating local search. Despite
this recent success, the large number of decomposed subproblems is pre-
defined (e.g., 500 subproblems in Hybrid and Hybrid-L in [40]), and a
simple form of local search (i.e., so-called one-point “swap” in Hybrid-
L) is ineffective and inefficient to make local improvements because it is
randomly applied to subproblem representatives without focusing on the
most suitable candidate solutions. Meanwhile, each one-point “swap” lo-
cal search searches solutions in the space of candidate solutions based on
only one solution (i.e., selected subproblem representative), ignoring any
information of other promising candidate solutions that could be jointly
used for guiding the local search. Therefore, the effectiveness and effi-
ciency of the local search need to be further improved in our thesis.

The second category of multi-objective web service composition con-
siders multiple objectives, which jointly optimize QoSM and QoS with
segment users’ distinctive preferences on QoSM. Such a multi-objective
problem can be treated as a multitasking problem that simultaneously
searches for solutions for multiple service composition requests of differ-
ent user segments. Although multiple service requests can be tackled sep-
arately as multiple purely single-objective problems. However, simulta-
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neously solving them can save a large amount of computation time. Fur-
thermore, during the process of searching for solutions over multiple re-
quests, good solutions for one request can be helpful to evolve solutions
for the other requests. That is, some knowledge of good solutions can
be shared for different requests. Existing service composition algorithms
are designed primarily to solve each service composition request indepen-
dently [152, 42, 182, 221], ignoring similarities between different requests
that could be dealt with collectively. Therefore, there is a lack of research
works in handling such a category of multi-objective web service compo-
sition problem.

Herein we briefly introduce the second category of multi-objective web
service composition problem: Due to a significant increase in service com-
position requests, many requests have similar functional requirements
(i.e., input and output) requirements. In a market-oriented environment,
to distinguish different types of users, service developers often strategi-
cally group all the users (i.e., service requesters) into several segments,
e.g., platinum, gold, silver, and bronze users, and provide different com-
posite services for different segment users with distinct QoSM. Although
different segment users have distinctive preferences on QoSM, their re-
quests share the same functional requirements. Therefore, these requests
can be dealt with collectively as a multitasking problem.

Dynamic Semantic Web Service Composition

Web services can experience QoS changes over time [197]. These changes
are prevalent over the internet. Therefore, remedy actions must be taken
if the QoS and the functional validity of the original composite services
cannot be guaranteed any further [106].

A variety of strategies [8, 18, 93, 124, 157, 173, 215] have been devel-
oped to cope with dynamic web service composition, once negative QoS
changes and/or service failures (i.e., any component service of composite
services can not be executed) are detected. Many of them work on ser-
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vice reconfiguration techniques. For example, some approaches [8, 18, 93]
extend WS-BPEL (i.e., a standard executable language for specifying ser-
vice composition) with Event Condition Action to guide the operations
for the reconfiguration of executable composite services. However, such
approaches are difficult to manage and error-prone because its success
strongly relies on dynamic events that are manually enumerated and con-
figured using WS-BPEL. EC techniques have shown promise in dealing
with dynamic optimization problems via a re-optimization process [210].
Particularly, existing works [6, 9, 30, 80, 108, 125, 190] track the optimum
of composite services with respect to QoS changes. For example, some
works [9, 125, 190] continuously re-optimize QoS of composite services.
However, the frequency of the re-optimization is assumed to happen peri-
odically (e.g., every few generations [190] or every period of time [9, 125]).
A few works [6, 30, 80, 108] assume that the changes of QoS follow some
historical patterns and can be predicted for the future. In reality, services
often fail sporadically in a highly unpredictable manner, and sufficient his-
torical data is not always available for newly registered web services for
building up a reliable a prediction model. Other works [124, 157, 173, 215]
utilize decision tree learning, reinforcement learning and Rtree query tech-
niques for re-selecting suitable component services. These re-selection
strategies do not allow any changes to the workflow structure of any com-
posite service. In other words, they can only cope with semi-automated
service composition. Apart from the discussed limitations above, existing
works only focus on handling dynamic changes at the execution stage, ig-
noring the potential benefits of handling such changes at the design stage.
Therefore, it would be very interesting and motivating to deal with QoS
changes at both the planning stage and the execution stage.

Hybridized methods for Web Service composition

Various techniques have been utilized to solve service composition, such
as AI planning, local search, and EC techniques [60, 136, 145, 192]. AI
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planning ensures the functional validity of composite services. However,
optimizing QoS is not its focus. Local search often exhaustively searches
neighboring solutions from a starting solution point, until a stopping cri-
terion is met, such as an optimal solution found or a time-bound reached.
This technique can make fine-grained local improvements, but can easily
be trapped in local optima. EC techniques are good at solving global op-
timization problems and are less prone to premature convergence in com-
plex search spaces [52]. They often utilize knowledge, which is defined
as useful information acquired through experience (i.e., promising com-
posite services) to evolve new solutions. Such knowledge can be implicit
or explicit based on a practical or theoretical understanding of promis-
ing solutions. By iteratively updating and utilizing the knowledge, new
candidate solutions are generated until the best solutions are found. Hy-
bridized methods can outperform methods that utilize a single technique
only in finding high-quality solutions because they are designed to com-
bine the advantages of each single technique [70]. For example, they could
benefit from escaping local optima more easily and improving the rate of
convergence [149]. However, hybridized methods often consume more
computation time for their execution.

Many researchers only use a single AI planning technique for service
composition problems based on classical planning algorithms [118, 137]
(e.g., GraphPlan [20] and Enhanced Planning Graph (EPG) [109]). To sup-
port optimization in AI planning, a combined Graphplan and Dijkstra’s
algorithm [60] is proposed to find a functionally valid solution with the
aim to minimize the number of component services or optimize a single
criteria in QoS. To cope with multiple quality criteria in QoS, some re-
searchers combine AI planning with both EC techniques and local search
for solving QoS-aware service composition [44, 136]. Despite some recent
successes in hybridized methods, opportunities remain to further improve
the performance of such hybridized methods, such as reducing the execu-
tion time of the hybridized methods while retaining or improving their
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ability of finding high-quality composite services.

1.3 Research Goals

The overall goal of this thesis is to develop novel, effective and efficient EC-
based hybrid approaches for comprehensive quality-aware fully automated seman-
tic web service composition. More specifically, the research focus will be on:
(1) developing single-objective EC-based approaches that jointly optimize
QoS and QoSM in our proposed comprehensive quality, (2) developing
multi-objective EC-based approaches for optimizing multiple quality cri-
teria involved in our comprehensive quality, and (3) developing EC-based
composition approaches to dynamic web service composition in consider-
ation of stochastic service failures. Our research aims to develop EC-based
approaches combined with local search and/or AI planning techniques
for effectively and efficiently handling the service composition problems
listed as (1), (2) and (3) above. The research goal described above will
be achieved by completing the following set of objectives, which are also
outlined in Fig. 1.1.

1. To develop EC-based approaches to comprehensive quality-aware
fully automated semantic web service composition that simulta-
neously optimizes both QoSM and QoS. Particularly, we extend
existing works on QoS-aware service composition by jointly opti-
mizing QoSM and QoS, which will be formalized through a compre-
hensive quality model. In addition, representations of the composite
services are a key aspect of EC-based approaches. Previous stud-
ies have shown that permutation-based representation of compos-
ite services contributes to excellent performance in searching high-
quality solutions for QoS-aware web service composition [44, 45],
and graph-based representation is capable of presenting the informa-
tion of QoSM and QoS on a weighted directed acyclic graph (DAG)
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to Large-Scale Robust 
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Fig. 1.1: Research objectives and sub-objectives.

[101] as the most intuitive way of presenting semantic composite
services. We will investigate the effectiveness of both representa-
tions in solving single-objective comprehensive quality-aware fully
automated semantic web service composition. Apart from represen-
tations, conventional EC techniques have been used to solve QoS-
aware web service composition, such as GA, GP and PSO, which
implicitly use the knowledge of good solutions from previous gen-
erations. To effectively use the knowledge explicitly from good solu-
tions, Estimation of Distribution Algorithm (EDA) samples promis-
ing solutions from the knowledge encoded by a probabilistic model
based on the distribution of a sub-population, which is formed from
a set of parent individuals. It has been suggested for other com-
binatorial optimization problems, such as arc routing and assembly
flow-shop scheduling [189, 195], information revealed by the explicit
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knowledge, in particular, distributions and dependencies of vari-
ables in permutation-based solutions, can make the searching abil-
ity of EDA more effective and efficient [29]. Therefore, we inves-
tigate EDA-based service composition approaches by determining
suitable probabilistic models and proposing sampling methods for
effectively and efficiently solving fully automated service composi-
tion. We will investigate the following sub-objectives to handle this
objective.

(a) To propose a comprehensive quality model that addresses QoSM and
QoS simultaneously to reach a desirable compromise. This sub-
objective is to establish a quality model for computing QoSM
and QoS of composite services. Such quality model can be
evaluated on service composition tasks using the most pop-
ular benchmark datasets, e.g., WSC-08 [15], WSC-09 [92] and
OWLS-TC [97].

(b) To propose an EDA-based approach with an indirect representation
for fully automated comprehensive quality-aware web service compo-
sition. This sub-objective is to propose an EDA-based approach
with a novel permutation-based representation that captures
the information of service positions in composite services. The
permutation-based representation should allow reliable and ac-
curate learning of a suitable distribution of composite services
with varied workflows in fully automated service composition.
Such a distribution can be used to sample new promising can-
didate solutions with near-optimal comprehensive quality.

(c) To propose an EDA-based approach with a direct representation for
fully automated comprehensive quality-aware web service composi-
tion. This sub-objective is to propose an EDA-based approach
that uses a graph-based representation to learn a suitable distri-
bution of composite services that is different from the one talked
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above. This distribution must naturally capture the essential in-
gredients for building graph-based composite services, i.e., ser-
vice dependencies of promising graph-based solutions. This is
because any graph-based solution can be disassembled into a
set of service dependencies. In addition, to ensure the func-
tional validity of sampled composite services, a novel sampling
technique must be proposed to sample such solutions from the
learned distribution.

(d) Extend our EDA-based approach with a local search for fully auto-
mated comprehensive quality-aware web service composition. This
sub-objective is to extend one of the above EDA-based ap-
proaches (that presents the highest effectiveness) by introduc-
ing local search into its evolutionary process, called memetic
EDA-based approaches. To achieve this goal, we will develop
a novel strategy for effective interactions between our EDA-
based approach and local search procedures. Moreover, we
will propose domain-specific local search operators, which can
properly form the neighborhood of composite services.

2. To develop multi-objective approaches to fully automated compre-
hensive quality-aware semantic web service composition. In this
objective, we study two different categories of the multi-objective
service composition problem. The first one refers to independently
optimizing multiple conflicting quality criteria (i.e., QoS and QoSM)
in our comprehensive quality model, producing a set of approxi-
mated Pareto composite services. Despite some recent successes,
opportunities still remain to improve both the effectiveness and ef-
ficiency of the state-of-the-art fully automated and multi-objective
service composition approaches, such as Hybrid and Hybrid-L dis-
cussed in Sect 1.2, by addressing their limitations. The second cat-
egory of multi-objective service composition is related to multiple
objectives that aim to jointly optimize QoSM and QoS with segment
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users’ distinctive preferences on QoSM, as discussed in Sect 1.2. Par-
ticularly, we will formulate these objectives as multiple optimiza-
tion tasks, which can be solved via multi-factorial evolutionary algo-
rithms (called MFEAs, see the introduction to MFEAs in Sect. 2.1.3).

(a) To develop an EMO-based approach with a local search for multi-
objective fully automated semantic web service composition. This
sub-objective corresponds to the first category of multi-objective
semantic web service composition. Particularly, we employ a
popular EMO technique in [40, 46], namely, NSGA-II, to multi-
objective web service composition by incorporating a novel
model-guided local search based on EDA. This local search is
expected to address the limitations of a simple form local search
(i.e., so-called one-point “swap”) in Hybrid-L [40] discussed in
Sect 1.2, and make effective local improvements on Pareto so-
lutions found by NSGA-II via sampling. We expect that our
new approach can achieve high performance in finding better
approximated Pareto composite services efficiently.

(b) To develop fully automated multi-objective web service composition
approaches subject to multiple segment users’ preferences. This sub-
objective corresponds to the second category of multi-objective
semantic web service composition. We treat this sub-objective
as a multitasking problem. Particularly, the multiple objectives
that aim to jointly optimize QoSM and QoS with segment users’
distinctive preferences on QoSM are formulated as multiple in-
dependent service requests. Each request (i.e., a composition
task) is formulated as a request from one user segment with
its corresponding QoSM preferences. Subsequently, to simul-
taneously solve the multiple requests, we will propose novel
MFEAs with permutation-based representations. Meanwhile,
to improve the effectiveness of MFEAs in finding high-quality
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solutions with respect to the multiple requests, we will inves-
tigate both implicitly and explicitly learning and sharing the
knowledge of good solutions for multiple service requests, in-
spired by assortative mating of MFEA (see the concept of assor-
tative mating in Sect. 2.1.3).

3. To develop EC-based approaches to effectively and efficiently
solve dynamic semantic web service composition with respect to
service failures.

The execution of composite services obtained from the design stage
may fail due to unexpected QoS changes at the execution stage. In
this objective, we will handle the most critical uncertainty in web
service composition — stochastic service failures. Although current
works take potential service failures into account, these works han-
dles service failures only at the execution stage, ignoring the poten-
tial efforts that could be made at the design stage. In fact, for a ser-
vice composition system, more computation time can be easily allo-
cated to the design stage for handling this problem. Furthermore, the
assumption of periodical changes or sufficient historical QoS data
for predicting QoS changes poses noticeable feasibility challenges
in these works. This is because services often fail sporadically in
a highly unpredictable manner in the real world. To cope with these
limitations, we propose an novel robust service composition prob-
lem with the goal of building robust composite services at the design
stage via EC techniques. These composite services are expected to ef-
fectively and efficiently handle service failures in a robust manner.

(a) To propose an EC-based approach to robust service composition with
stochastic service failures. In this sub-objective, we firstly aim to
propose a novel robust service composition problem that specif-
ically handles stochastic service failures, targeting both the de-
sign stage and execution stage. GA is a popular EC technique
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that has successfully solved several challenging service compo-
sition problems [44, 47]. Therefore, we will propose a GA-based
approach with a novel robustness evaluation method to gener-
ate robust baseline solutions (i.e., composite services). Particu-
larly, the robustness of composite services in terms of expected
comprehensive quality (i.e., a combination of QoSM and QoS)
is estimated via an application of Monte Carlo sampling as a
fitness function. In the event of stochastic service failures, the
composite services with high robustness are expected to con-
tinue to work reliably or be easily repaired with a negligible
impact on the quality at the execution stage.

(b) To propose an EC-based approach to large-scale robust service com-
position with stochastic service failures. In this sub-objective, we
propose a novel, effective and efficient robustness estimation
method, which is expected to work reliably for large-scale ro-
bust service composition. The large-scale refers to a significant
increase in the size of the service repository. The method is
employed as a fitness function that allows composite services
evolved by GA to be accurately ranked during the evolution-
ary process. To further reduce the overall computation time of
our GA-based approach while maintaining its effectiveness in
finding composite service with high robustness, an evolution-
ary control strategy is introduced into the evolutionary process
of the GA-based approach.

1.4 Major Contributions

This thesis proposes three major contributions to the state-of-the-art fully
automated web service composition:

1. This thesis proposes two EDA-based and memetic EDA-based ap-
proaches for fully automated web service composition. The two
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EDA-based approaches, namely EDA-NHM and EDA-EHM, use
permutation- and graph-based representations, respectively, with
different distribution models and sampling techniques. EDA-NHM
exploits a novel permutation-based representation, supporting re-
liable and accurate learning of the Node Histogram Matrix in the
domain of fully automated service composition. EDA-EHM learns
a suitable distribution in the form of the Edge Histogram Matrix by
considering service dependencies based on the graph-based rep-
resentations. We also propose a novel guided edge histogram-
based backward graph sampling algorithm to effectively sample
functionally valid candidate composite services with high compre-
hensive quality. The findings were that EDA-NHM outperforms
EDA-EHM and the state-of-the-art approaches, such as a PSO-based
approach [175], FL [47] and PathSearch [32], in finding near-optimal
solutions. In addition, EDA-EHM achieves the highest efficiency
among the competing EC-based approaches, delivering moderate
effectiveness in finding high-quality composite services. Because of
the apparent advantage of EDA-NHM over EDA-EHM in terms of
the effectiveness, we further propose more effective memetic EDA-
based approaches based on EDA-NHM. Particularly, one memetic
EDA-based approach with the constrained layer-based one-point
swap (called MEEDA-LOP) achieves significantly better effective-
ness and efficiency, compared to a state-of-the-art memetic approach,
such as MEFL [47], our proposed memetic EDA-based approaches
that excludes MEEDA-LOP, and the baseline EDA-NHM.

This contribution has been published in:

(a) WANG, C., MA, H., CHEN, A., AND HARTMANN, S. Compre-
hensive quality-aware automated semantic web service com-
position. In AI 2017: Advances in Artificial Intelligence (2017),
Springer, pp. 195–207
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(b) WANG, C., MA, H., CHEN, G., AND HARTMANN, S. GP-based
approach to comprehensive quality-aware automated semantic
web service composition. In Simulated Evolution and Learning
(2017), Springer, pp. 170–183

(c) WANG, C., MA, H., AND CHEN, G. EDA-based approach
to comprehensive quality-aware automated semantic web ser-
vice composition. In Proceedings of the Genetic and Evolutionary
Computation Conference Companion (2018), GECCO ’18, ACM,
pp. 147–148

(d) WANG, C., MA, H., CHEN, G., AND HARTMANN, S. Knowledge-
driven automated web service composition — an EDA-based
approach. In Web Information Systems Engineering – WISE 2018
(2018), Springer, pp. 135–150

(e) WANG, C., MA, H., CHEN, G., AND HARTMANN, S. Towards
fully automated semantic web service composition based on es-
timation of distribution algorithm. In AI 2018: Advances in Arti-
ficial Intelligence (2018), Springer, pp. 458–471

(f) WANG, C., MA, H., CHEN, A., AND HARTMANN, S. Memetic
EDA-based approaches to comprehensive quality-aware auto-
mated semantic web service composition. IEEE Transactions on
Services Computing (Submitted)

2. This thesis studies two categories of multi-objective web service
composition problem. The first one aims to find a set of approx-
imated Pareto composite services in consideration of QoSM and
QoS. The second one has the goal of simultaneously finding multi-
ple solutions with optimized QoSM and QoS, each of which serves
the request of one user segments with distinctive user preferences.
For the first problem, we proposed a novel memetic NSGA-II with
an EDA-based local search (called MNSGA2-EDA) to fully auto-
mated multi-objective semantic web service composition for explor-
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ing trade-offs between QoSM and QoS. The novelty of this memetic
method is: (1) to employ a clustering technique to select suitable
candidate solutions from solutions evolved by NSGA-II for local
search, and (2) to propose a EDA-based local search that constructs
distribution models from the selected solutions and other good can-
didate solutions evolved by NSGA-II for sampling new solutions.
Empirical comparisons between MNSGA2-EDA, NSGA-II and Hy-
brid and Hybrid-L show that MNSGA2-EDA achieves the highest
effectiveness and efficiency in finding Pareto solutions. For the sec-
ond problem, we formulate multiple service requests for diverse
user segments with distinct QoSM preferences as a multitasking
problem. We proposed two novel Permutation-based Multi-factorial
Evolutionary Algorithms (called PMFEA and PMFEA-EDA) to solve
this problem. The main novelty of PMFEA and PMFEA-EDA lies in
that they either implicitly or explicitly learn and share the knowl-
edge of good solutions evolved so far for different tasks. PMFEA,
PMFEA-EDA, and two single-tasking approaches (i.e., EDA-NHM
and FL [47]) are compared to each other. Our experiment showed
that PMFEA-EDA is found to be more effective than PMFEA and
other single-tasking methods, confirming that learning and sharing
knowledge explicitly is superior to learning and sharing knowledge
implicitly, and that PMFEA-EDA can achieve better effectiveness
than single-tasking service composition approaches. We also found
that both PMFEA-EDA and PMFEA are performed at the cost of
only a fraction of time compared to the single-tasking approaches,
which solve one task at a time.

This contribution has been published in:

(a) WANG, C., MA, H., CHEN, G., AND HARTMANN, S. A memetic
NSGA-II with EDA-based local search for fully automated mul-
tiobjective web service composition. In Proceedings of the Ge-
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netic and Evolutionary Computation Conference Companion (2019),
GECCO ’19, ACM, pp. 421–422

(b) WANG, C., MA, H., AND CHEN, G. Using EDA-based local
search to improve the performance of NSGA-II for multiobjec-
tive semantic web service composition. In Database and Expert
Systems Applications (2019), Springer, pp. 434–451

(c) WANG, C., MA, H., CHEN, G., AND HARTMANN, S. Evolu-
tionary multitasking for semantic web service composition. In
2019 IEEE Congress on Evolutionary Computation (CEC) (2019),
pp. 2490–2497

(d) WANG, C., MA, H., CHEN, A., HARTMANN, S., AND ONG, Y.-
S. Using an Estimation of Distribution Algorithm to achieve
multitasking semantic web service composition. ACM Transac-
tions on Evolutionary Learning and Optimization (Major revision)

3. This thesis proposes a new dynamic service composition problem for
specifically handling stochastic service failures. This problem aims
to build robust composite services that serve as baseline composite
services, coping with stochastic service failures. In particular, in the
event of service failures, these baselines can continue to work reli-
ably or be easily repaired with a negligible impact on the quality
through fast local search. Afterwards, we propose a novel GA-based
approach (called GA-MC) to solve this robust web service compo-
sition problem. Particularly, two essential techniques jointly form
an effective method for searching robust composite services in GA.
The first technique is to adopt the Monte Carlo sampling technique
[153] to effectively approximate the robustness of any composite ser-
vices. The second technique is to use an efficient re-optimization
method (i.e., local search) to repair composite services in response
to arbitrary service failures. The finding is that GA-MC can pro-
duce baseline composite services with significantly higher robust-
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ness compared to FL [47], which is reported to achieve outstand-
ing performance in finding near-optimal solutions without consid-
ering the robustness. Furthermore, we study a large-scale robust
web service composition problem with a large service repository. We
propose a new robustness approximation method based on a lower
bound of the expected quality of QoS and QoSM over service fail-
ure scenarios. This is achieved by carefully selecting the scenarios
based on service repositories. Furthermore, a two-stage GA-based
approach (called GA-2Stage) is proposed with an adaptive evolu-
tion control to support two sequential evolutionary stages by using
two different fitness evaluation methods. One GA-based approach
that employs the lower bound robustness estimation throughout the
generations (called GA-RE), GA-2Stage and GA-MC are compared
to each other to determine the most suitable method for large-scale
robust service composition. Our experiment comparisons reveal that
GA-RE can outperform GA-MC in finding composite services with
high robustness regardless of the size of the service repository. This
indicates that the lower bound estimation is more effective and ac-
curate than the Monte Carlo sampling for the robustness measures.
Furthermore, compared to GA-RE, GA-2Stage achieves much better
efficiency with a negligible impact on the effectiveness.

This contribution has been published in:

(a) WANG, C., MA, H., CHEN, A., AND HARTMANN, S. Towards
robust web service composition with stochastic service failures
based on a genetic algorithm. In AI 2019: Advances in Artificial
Intelligence (2019), Springer, pp. 445–459

(b) WANG, C., MA, H., CHEN, A., HARTMANN, S., AND BRANKE,
J. Robustness estimation and optimisation for semantic web
service composition with stochastic service failures. IEEE Trans-
actions on Emerging Topics in Computational Intelligence (Major re-
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vision)

1.5 Organization of Thesis

The remainder of the thesis is organized as follows:

Chapter 2 introduces some fundamental concepts related to web
service and web service composition. Afterwards, we review some re-
lated works on automated service composition in single-objective, multi-
objective, and dynamic contexts.

Chapter 3 proposes two EDA-based approaches and one memetic
EDA-based approach with four different local search operators to solve
the single-objective web service composition problem. The first approach
is an EDA-based approach with permutation-based representation that
explicitly learns the distributions of composite services in NHM. The sec-
ond approach is an EDA-based approach with graph-based representation
that explicitly learns the distributions of composite services in EHM. The
last approach is a memetic EDA-based approach that extends one of the
EDA-based approaches with different stochastic local search operators.

Chapter 4 proposes three approaches to solve two categories of multi-
objective service composition problem. For one problem that refers to si-
multaneously optimizing multiple conflicting quality criteria, an NSGA-II
with EDA-based local search is proposed with a novel way of making lo-
cal improvements on Pareto solutions. For the other problem that refers
to concurrently solving multiple service requests with distinctive prefer-
ences from user segments, two approaches are proposed based on two dif-
ferent ways of learning and sharing the knowledge of composite services
for multiple service requests.

Chapter 5 proposes a novel dynamic web service composition prob-
lem that specifically handles stochastic service failures in a robust manner.
Particularly, two important robustness estimation methods are proposed
and employed in two novel GA-based approaches, which are proposed
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for small-scale and large-scale dynamic web service composition, respec-
tively.

Chapter 6 discusses the objectives achieved in this thesis, the main con-
clusions reached by our contribution chapters and insights that guide the
future work.



Chapter 2

Background and Literature
Review

This chapter presents some basic concepts of web service composition and
related works in this field. We start by introducing some background
knowledge in Sect. 2.1, including the functional and non-functional prop-
erties of both web service and web service composition, and an overview
of both EC and AI planning techniques. Subsequently, in Sect. 2.2, we
review some related works in web service composition, addressing the ar-
eas of interests in single-objective, multi-objective and dynamic contexts.
Finally, Sect. 2.3 summarizes the reviews in these works and some limita-
tions.

2.1 Background

2.1.1 Web Service

Web services are self-describing, self-contained software modules available
over the internet [56]. As described in [56], web services are loosely cou-
pled software modules, where service interfaces enable applications to
work cooperatively regardless of the platforms, operation systems and

27
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programming languages. Besides that, Web services can communicate
with each other via internet protocols, e.g., HTTP, and are described by
standard description languages, e.g., WSDL (Web Services Description
Language) [99]. These description languages are mainly used to describe
functional properties of Web services in terms of service inputs and service
outputs, and provide mechanisms to users for searching desired services.

Web services are classified into two groups based on their functionali-
ties: information-providing services and world-altering services [120]. The first
type of services expects some data to be returned by giving inputs or noth-
ing. For example, an air velocity transducer web service reads the wind
speed and returns the velocity. This service does not require any inputs.
In contrast, a city weather web service requires a city name and returns
weather information of that city. Information-providing services do not
produce any side effect on the world. The second type of services not only
provide data information but also alters the status of the world by produc-
ing side effects. For example, a PayPal service may cause a reduction in the
balance of users’ bank account. Both types of Web services requires inputs
and produces outputs, sometimes causing sides affects. As the majority
of existing works does in the literature, the functionalities of Web services are
described as inputs and outputs. Side effects are not considered because it
does not affect how we composes services at the design stage. Therefore,
we do not consider side effects in our thesis.

On the one hand, the functional attributes determine what the service
does. On the other hand, the non-functional attributes often refer to some
quality criteria, which are utilized to rank services [3]. For example, when
several services provide the same functionality, users would prefer a ser-
vice at a lower cost. Herein, we will demonstrate both the functional and
non-functional properties in the following subsections.



2.1. BACKGROUND 29

Functional Properties of Web Services

The operational characteristics of web services are related to the functional
properties, which demonstrate the behaviours of web services, i.e., what
information is needed to invoke a service successfully and what informa-
tion will be returned after their execution. In other words, a set of inputs
I are required by a service and a set of outputs O are returned by a ser-
vice. For semantic web services, one or more Ontologies are employed to
describe the functional properties of web services semantically, enabling
better interoperability (i.e., QoSM between inputs and outputs) between
semantic web services, compared to those web services that are described
syntactically. The functional properties of web services are demonstrated
in Fig. 2.1.

Web 
Service

𝐼 𝑂

Fig. 2.1: Functional properties of a web service.

Non-functional Properties of Web Services

Apart from the functional properties of Web services discussed above, the
non-functional properties of Web services refer to QoS, playing an impor-
tant part in composing services. For example, customers always prefer a
web service with the lowest execution cost and the highest response time
and reliability. According to [226], the four most often considered QoS
criteria are listed as follows:

• Response time (t) comprises of the execution time and waiting time
[121], and it measures the expected delay in seconds between the



30 CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

moment when a request is sent and the moment when the results are
received.

• Cost (ct) is the amount of money that a service requester has to pay
for executing a web service.

• Reliability (r) is the probability that a request is correctly responded
within the maximum expected time, which often refers to the execu-
tion time.

• Availability (a) is the probability that a web service is operational and
accessible when it is required for use.

2.1.2 Web Service Composition

Since an atomic web service may not satisfy users’ complex functional
requirements, web service composition composes existing web services
collectively to produce a complex functionality to meet users’ require-
ments. Composing service composition manually is very time-consuming
and less productive. Therefore, many approaches have been developed
to achieve semi-automated or fully automated service composition. The
semi-automated service composition is inspired by business processes
that require prior knowledge to build up abstract workflows [123]. These
workflows consist of abstract services, each of which is defined by a pair
of inputs and outputs. Therefore, semi-automated service composition fo-
cuses on service selections, which select a concrete atomic web service for
each abstract service in the workflows. Fig. 2.2 shows five typical stages
in the process of semi-automated service composition. The details of the
service composition process are discussed as follows:

1. Service request: The first step is to collect users’ requirements for a
composition goal that comprises of the functional and non-functional
requirements. This step is achieved by building up an abstract work-
flow, including a series of service discovery tasks for each abstract
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Goal

Service composition 
Instances

Business Process

Stage 1: Service Request Stage 4: Service Execution

Stage 2: Service Discovery

Composite Service

Stage 3: Service Selection

Stage 5: Service Maintenance
and Monitoring

Update composition 
Instances

Fig. 2.2: Semi-automated web service composition process [123].

service with required functionalities. These tasks could be com-
pleted by selecting proper concrete services to reach the desired
QoS. This service request is different from what we discussed in the
fully automated service composition, which does not include an
abstract workflow.

2. Service discovery: Once the goal is clearly specified, concrete Web ser-
vices will be selected for each task regarding its functional require-
ment. Often, more than one concrete web service is likely to be found
to match each service discovery task. Those matched Web services
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are always different in QoS [89].

3. Service selection: At this stage, many techniques have been studied to
select Web services to best match each service discovery task for the
satisfaction of functional requirement and overall QoS of the busi-
ness process (i.e., composite service). Therefore, a near-optimal com-
posite service is created ahead of its execution.

4. Service execution: The composite service created at the service selec-
tion stage is executed as instances at the run time.

5. Service maintenance and monitoring: The composite service is moni-
tored for any changes or services failures during its execution. In
this stage, some actions, e.g., service reconfiguration [173], are taken
for adapting these changes.

There is a distinction between semi-automated and fully automated
approaches. In the context of semi-automated service composition, a com-
plete workflow must be designed before the service selection. In addition,
it could be impractical to design an optimal workflow manually. In fully
automated service composition, a given workflow is not required in ad-
vance. Instead, AI planning algorithms (e.g., Graphplan algorithm [20])
can be utilized to achieve service composition, where service workflow is
gradually built up along with the service discovery and service selection.

Fig. 2.3 shows a popular example of a composite service for a travel-
ling domain. In this example, travelling agencies provide customers with
a serial of services for booking flights, accommodations and buses, and
generating tourist maps for the conference city. In Fig. 2.3, TaskInput (i.e.,
TravelDepartureDate, TravelReturnDate, HomeCity and Conference

City) are gathered from customers, and TaskOutput (i.e., BusT icket,
Flight T icket, HotelReservation and StreepMap) are expected to be re-
turned. The component services are gradually discovered and selected to
construct a workflow from the TaskInput node to the TaskOutput node
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if the inputs of the selected services are fulfilled with TaskInput and any
outputs of the previously selected services (i.e., predecessors). Therefore,
the inputs of all the component services are satisfied. In this example, we
begin by executing the FlightBooking service and GenerateMap service
whose inputs can be immediately fulfilled by the task input, the Flight-
Booking service books the flights and determines an arrivalDate. Then,
using the arrivalDate together with other provided information in the
task input, we can book the hotel and bus, and generate a Map for the
conference city. Consequently, these four services are properly chained
together, producing TaskOutput for customers.

TaskInput: 
TravelDepartureDate

TravelReturnDate
HomeCity

ConferenceCity

Flight 
Booking

Hotel 
Reservation

BusService

TaskOutput: 
BusTicket, 

FlightTicket, 
HotelReservation

StreetMap

Ar
riv
alD
ateConferenc

eCity HotelReservation

Map 
Generation 

Fig. 2.3: An example of service composition for a travel agency.

In this thesis, we will concentrate on fully automated semantic web service
composition, where service discovery and service selection are considered as in-
terrelated tasks. The importance of pursuing this research direction is due
to two reasons: (1) an abstract service composition workflow may be not
known in advance, and (2) designing an optimal abstract workflow man-
ually is fraught with difficulties when the number of services is large.
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Functional Properties of Semantic Web Service Composition

We have demonstrated an example of a service composition in Fig. 2.3. In
this example, two crucial characteristics are addressed for the functional
validity of web service composition: every component service must be
fulfilled for its inputs, and task output must be a subset of the outputs of
the involved component Web services.

Generate 
Map 

𝐼: 𝐌𝐚𝐩𝐩𝐞𝐝𝐋𝐨𝐜𝐚𝐭𝐢𝐨𝐧 𝑂:StreetMapProvided Inputs: 
ConferenceCity

Fig. 2.4: An example of a component service for demonstrating QoSM.

Map
Inst: TouristMap

Map
Inst: StreetMap

RuralMap

Thing

Location
Inst: MappedLocation

subclass subclass

subclass subclass

City
Inst: ConferenceCity

subclass

Fig. 2.5: Input and output-related concepts and instances described for
MapGeneration service in Fig. 2.4.

Often, the inputs of a component service cannot be exactly matched
by the provided inputs (that combines the inputs of composition task
and the outputs produced by its predecessors). In Fig. 2.5, we consider
a component service (i.e., MapGeneration service) from a composite ser-
vice in Fig. 2.3. This component service requires inputs MappedLocation

and produces output StreetMap. These inputs and outputs are seman-
tically described using an Ontology shown in Fig. 2.5. Particularly,
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ConferenceCity is an instance of City, MappedLocation is an instance of
Location, and City v Location. Based on these semantic descriptions,
ConferenceCity does not exactly match MappedLocation. Therefore,
QoSM between the given information ConferenceCity and the required
input MappedLocation is relatively low.

Many works [16, 101, 102, 104, 148, 193] utilize description logic (DL)
reasoning between input and output parameters of Web services for mea-
suring QoSM, where four matchmaking types have been considered for
measuring the QoSM. Given two concepts a, b in ontology O, the four
commonly utilized matchmaking types are used to describe the level of
semantic matches [132]:

• exact: if a and b are equivalent (denoted as a ≡ b),

• plugin: if a is a sub-concept of b (denoted as a v b),

• subsume: if a is a super-concept of b (denoted as a w b),

• fail: if none of previous matchmaking types is returned.

Apart from the matchmaking types, other quality criteria have also
been studied in the literature [102, 143, 160] for measuring QoSM. We will
discuss these methods as follows:

For the first method, QoSM is measured by two quality criteria, i.e.,
matchmaking types and common description rate [102]. In addition to the
four commonly used matchmaking types, matchmaking type interaction,
denoted as a u b, is considered. In this work, QoSM is represented as a
causal link sli,j

.
= 〈Si, SimT (Out si, In sj), Sj〉 that is created between the

inputs of service Si and outputs of Sj . In particular, both exact match and
plugin match are presented as robust causal links, while both subsume match
and intersection match are presented as valid casual links. However, valid
casual links are not specific enough to be utilized as the input of Web ser-
vices. Thus, Extra Description, denoted as In sx \ Out sy, is required to
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enable proper service composition using Eq. 2.1. By using Extra Descrip-
tion, subsume and intersection are transferred to be exact and plugin re-
spectively to formulate a robust link. Consequently, common description
rate, qcd(sli,j)is calculated based on Extra Description and Least common
subsume, denoted as lcs(In sx, Out sy), using Eq. (2.2).

In sx \Out sy
.

= min
�d
{B|B uOut sy ≡ In sx}, since Out sy w In sx (2.1)

qcd(sli,j) =
lcs(In sx, Out sy)

In sx \Out sy + lcs(In sx, Out sy)
(2.2)

The second method for measuring QoSM utilizes a similarity measure-
ment based on information retrieval. In [143], the similarity is calculated
by an average value of similarity between two matched output Si.outk and
input Sj.ink, denoted as F Measure(Si.outk, Sj.ink). It is calculated based
on precision and recall between these two matched inputs and outputs.

The third method for measuring QoSM utilizes a semantic similarity
measure proposed in [160]. The semantic similarity of two concepts a, b in
O, denoted as sim(a, b), is calculated based on an edge counting method
over an Ontology tree using Eq. (2.3). This method has the advantages of
a simple calculation with good accuracy for measuring QoSM. In Eq. (2.3),
Na, Nb and Nc measure the distances from concept a, concept b, and their
closest common ancestor c to the top concept of the ontology O, respec-
tively. L is the shortest distance between the two concepts, a and b, while
D is the depth of the ontology tree. Also, λ is set to 1 for the neighbour-
hood concepts or 0 for the concepts from the same hierarchy.

sim(a, b)=
2Nc · e−λL/D

Na +Nb

(2.3)

In this thesis, we are only interested in service composition, where only robust
causal links (i.e., exact and plugin matches) are considered as most of existing
works do [45, 72, 117, 41, 145, 221]. We suggest to consider the semantic simi-
larity of concepts when comparing different plugin matches. As argued in [101],
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plugin matches are less preferable than exact matches due to the overheads
associated with data processing

Nonfunctional Properties of Web Service Composition

The non-functional properties of web service composition is determined
by QoS of all the component Web services in the composed composite ser-
vices. The aggregation value of QoS for Web services composition varies
with respect to different constructs, which determines how services are
associated with each other in a composite service [226].

• Sequence construct: Service composition executes each atomic service
associated with a sequence construct in a sequential order. The ag-
gregated time (T ) and execution cost (CT ) is computed as a sum of
time and cost of Web services involved, respectively. The aggregated
availability and reliability in a sequence construct are calculated by
multiplying the availability and reliability of each component web
service. This construct is shown in Fig. 2.6.

𝐴
=𝑆$ 𝑆%. . . 

T =
m∑
n=1

tn CT =
m∑
n=1

ctn A =
m∏
n=1

an R =
m∏
n=1

rn

Fig. 2.6: Sequence construct and calculation of its QoS [221].

• Parallel construct: Web services in a parallel construct are executed
concurrently. The aggregated execution cost, availability and relia-
bility are calculated in the same way as those for the sequence con-
struct, while the aggregated time (T ) is determined by the most time-
consuming path in the composite flow. This construct is presented
in Fig. 2.7.
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𝐴
=𝑆$

𝑆%
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T = MAX{tn|n ∈ {1, . . . ,m}}

CT =
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n=1
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m∏
n=1

an R =
m∏
n=1

rn

Fig. 2.7: Parallel construct and calculation of its QoS [221].

• Choice construct: Only one service path is executed in a choice con-
struct depending on the satisfaction of the conditions on each path.
In Fig. 2.8, assuming the choice construct has n branches, p1, . . . , pn

with
d∑

k=1

pk = 1 denote the probabilities of the different branches be-

ing selected. For example, the aggregated total cost CT is obtained
by summing the multiplication of the total cost of each branching
and the corresponding branch possibility, p, over all branches.

𝐴
=𝑆$

𝑆%

. . . 

𝑝$

𝑝%

T =
m∑
n=1

pn · tn CT =
m∑
n=1

pn · ctn A =
m∏
n=1

pn · an R =
m∏
n=1

pn · rn

Fig. 2.8: Choice construct and calculation of its QoS [221].

• Loop construct: Web services composed with a loop construct are ex-
ecuted repeatedly until a certain condition is satisfied. In Fig. 2.9,
assuming the average number of iterations is `, and t, ct, r, and a are
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corresponding aggregated value of a composite service. Therefore,
for a loop construct, aggregated response time (T ) and execution cost
(CT ) are ` · t and ` · ct respectively, while aggregated availability A

and reliability R are the `th power of the value of one iteration, i.e.,
A = a` and R = r`.

𝑙

𝐴
=𝑆% 𝑆&. . . 

T = ` · t CT = ` · ct A = a` R = r`

Fig. 2.9: Loop construct and calculation of its QoS [221].

In this thesis, we mainly focus on two constructors, sequence and parallel con-
structs, similar as in most automated service composition works [31, 32, 33, 41,
42, 45, 75, 85, 209, 117], where composite services can be represented as DAGs.

Web Service Discovery

To generate a composite service, mechanisms must be provided for ser-
vice discovery as a fundamental technique in all service composition ap-
proaches. Agarwal et al. [2] summarize three mechanisms for semantic
web service discovery: classification-based, functionality-based and hy-
brid mechanisms. Those service discovery mechanisms are further ex-
plained as below.

The classification-based mechanism makes use of classes provided by
service semantic annotation using WSMO-Lite language [171]. Therefore,
service requesters can use class names to express the desired web ser-
vice, which is a straightforward method. However, classes without a clear
semantic definition could lead to incomprehensibility issues. For exam-
ple, several classes may be declared in either different terms for the same
meaning (e.g., content and joy can be used for the same meaning of hap-
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piness) or the same term is used for different meanings (e.g., content can
be used for either information or happiness).

The functionality-based mechanism does not take classes into account
but considers the functional properties of a web service. In particular, the
desired functionality is defined by both inputs and outputs of web ser-
vices. A discovery algorithm must be developed to handle matches of
inputs and outputs that are described semantically under a given Ontol-
ogy. The key idea of this matchmaking is to check whether services ac-
cept all the inputs provided by users and whether the desired outputs are
delivered by services. One advantage of this technique is that it poten-
tially meets the demands of all the comprehensible discovery, but lacks
efficiency and scalability.

The hybrid mechanism combines classification and functionality-based
mechanisms. Particularly, a classification hierarchy is proposed to achieve
automatic semantic reasoning regarding the classes, inputs and outputs
provided by different services. For example, a class can be associated
with super-classes and sub-classes, where more general functionality and
more specific functionality are presented, respectively. Meanwhile, to en-
sure consistency of the classification hierarchy, the inputs and outputs of
a class must subsume the inputs and outputs of its sub-classes. This ap-
proach can benefit from both classification-based and functionality-based
mechanisms. However, the classification hierarchy demands heavy main-
tenance work to remain consistent when a new web service is published
or updated.

As discussed above, the classification-based and the hybrid mecha-
nisms are considered to be less effective or require researchers to build up
Ontologies for supporting the class hierarchy along with functional prop-
erties. Therefore. We propose to use the functionality-based technique. That
is, Ontologies are utilized to facilitate semantic matchmaking on the functional
aspect of service approaches in our thesis.
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2.1.3 An Overview of EC Techniques

Based on the principles of Darwin natural selection, the natural evolution
and selection of individuals in a population are virtualized and simulated
in the EC techniques. In particular, a population of individuals are ini-
tialized for direct or indirect representation of the solutions. Those indi-
viduals are evolved and evaluated using a fitness function to evaluate the
degree of how good (or bad) each individual is. Therefore, it is possible to
find a solution with a near-optimal fitness value. EC techniques have been
showing their promises in solving combinatorial optimization problems
[13], achieving good flexibility for encoding many different problems, and
good performances for efficiently finding good enough solutions.

EC techniques can be divided into two categories — conventional EC
techniques and probabilistic model-building EC techniques [159]. Con-
ventional EC techniques generate new candidate solutions using implicit
knowledge via one or more variation operators on selected parent so-
lutions. For example, GA produces new candidate solutions by using
crossover operated on two selected parent individuals. Probabilistic
model-building EC techniques use explicit distribution models to sam-
ple new promising solutions. For example, EDA uses explicit knowledge
encoded by the distribution of a set of parent individuals, which often
refers to a superior sub-population.

EC techniques have become increasingly popular in solving service
composition problems in the contexts of single-objective, multi-objective,
and dynamic contexts [158, 9, 125, 190]. For example, GA and PSO have
shown to be particularly useful in the single-objective context [47, 175].
NSGA-II (Non-dominated Sorting Genetic Algorithm II) is very suitable
for handling the first category of multi-objective service composition [46,
40], and MFEA(Multi-Factorial Evolutionary Algorithm) can be very use-
ful to solve the second category of multi-objective service composition.
These EC techniques are discussed as follows:
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Genetic Algorithm

GA evolves a population of solutions that are encoded as vectors via
crossover, mutation and reproduction. One basic structure of GA is shown
in ALGORITHM 1. It starts with initializing a population of candidate so-
lutions, and the fitness of the candidate solutions are then evaluated.
Afterwards, an iteration procedure begins until a stopping criterion is
met. In each iteration, new solutions are produced by crossover, mutation
and reproduction, forming a new population. These newly produced so-
lutions are evaluated, and the best solution with the best fitness values is
recorded and updated. Lastly, we return the solution with the best fitness
value at the end of the iteration process.

ALGORITHM 1. Basic Structure of GA.
1: Population Initialization;
2: Evaluate each solution in the population;
3: while stopping criteria are not met do
4: Populate new population through the use of genetic operators;
5: Evaluate each solution in the newly formed population;

6: Return the solution with the best fitness;

One vector-based representation utilized in GA is a fixed-length binary
vector. Such a vector can be initialized randomly. For example, the well-
known 0-1 knapsack problem can be solved by GA with this vector-based
representation, where each position of the vector is associated with a type
of item that is restricted as zero or one (see an example in Fig 2.10). The
evaluation of such a vector is often performed by checking the restrictions
on positions of the vectors from left to right.

Crossover, mutations and reproduction can modify the vectors. As
shown in Fig. 2.11a, two children are produced by exchanging two parts
of two selected parents. In mutation, a new child can be produced by flip-
ping a bit in one position of a selected parent, shown in Fig. 2.11b. The
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1 1 0 0 1 0

Fig. 2.10: An example of a vector-based representation in GA.

1 1 0 0 1

0 0 1 1 0

1 1 1 1 1

0 0 0 0 0

Parent 1: 

Parent 2: 

Child 1: 

Child 2: 

0

0

0

0

(a) Crossover

1 1 0 0 1

Parent 1: 

0

1 1 0 1 1

Child 1: 

0

(b) Mutation

Fig. 2.11: Examples of crossover and mutation in GA.

reproduction operator simply copies a selected solution and put it into the
next generation.

Memetic Algorithm

Memetic Algorithms (MAs), coined by Moscato [91] for the name of
memetic, are a class of augmented global search heuristics that combine
evolutionary algorithms with local search techniques for improving the
quality of evolved solutions. These algorithms have shown its promise
in solving a variety of problems, such as combinatorial optimization and
multi-objective optimization problems.

Local search is a heuristic method that uses neighbourhood relations to
iteratively examines a set of solutions, starting from one current solution,
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and replace the current solution with a better neighbor if one exists. AL-
GORITHM 2 shows a basic structure of local search. It starts with a starting
solution best. Afterwards, the iteration procedure will be carried out until
a stopping criterion is met. This criterion is often defined as the number of
steps that explores the neighbourhood via some move operator (i.e., local
search operator). During the iteration procedure, a next neighbouring so-
lution nb is produced by the application of the move operator. If the fitness
of nb is better than the fitness of best, we set best with nb. Consequently,
best is returned at the end of the iteration process.

ALGORITHM 2. Basic Structure of Local search.
1: Set a starting solution as best;
2: while stopping criteria are not met do
3: Generate the next neighboring solution nb;
4: if nb is better than best then
5: set best with nb;

6: Return best;

In the design of memetic GA, practitioners typically choose to only ap-
ply local search once to the offspring. ALGORITHM 3 shows a basic struc-
ture of Memetic GA. Steps 1 to 5 follow its baseline GA in ALGORITHM 1
while Steps 4 to 8 are a local search procedure. From steps 4 to 8, a set
of individuals, noted as Set, are selected from the newly formed popula-
tion. Often two types of selection schemes (i.e., random selection scheme
and statistical scheme) have been utilized for selecting suitable individu-
als for local search [34]. Afterwards, each of the selected individual un-
dergoes local search with Lamarckian or Baldwinian scheme [73]. Lamar-
ckian scheme uses the improved neighbouring individual to replace the
original one in the population while Baldwinian scheme uses the fitness
function of the neighbouring solution to evaluate the original solution. As
discussed in [19], it is hard to decide which one is better for solving a par-
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ticular problem, but it brings many possibilities to fine tune the memetic
evolutionary algorithm.

ALGORITHM 3. Basic Structure of Memetic GA.
1: Population Initialization;
2: Evaluate each solution in the population;
3: while stopping criteria are not met do
4: Populate new population through the use of genetic operators;
5: Evaluate each solution in the newly formed population;
6: Select a set of individuals, Set, from the new population;
7: foreach individual in Set do
8: Perform local search with Lamarckian or Baldwinian

scheme.

9: Return the solution with the best fitness;

Estimation of Distribution Algorithm

EDA relies on an explicit probabilistic model that represents distributions
learned from a set of promising candidate solutions. During the evolu-
tionary process, the probabilistic model is adjusted in every generation
with the aim to sample better candidate solutions. The basic structure of
EDA is shown in ALGORITHM 4. It starts with a population of random
candidate solutions. Afterwards, an iterative procedure begins and the
procedure will not terminate until a stopping criterion is met. In each it-
eration, we evaluate each solution in the population and select a set of
promising solutions among them. These selected solutions will be used to
build a probability model, which is used to sample new candidate solu-
tions. Consequently, a solution with the best fitness value is returned at
the end of the iteration process. The key components of EDA are a class
of probability models to capture the distribution of candidate solutions, a
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procedure for learning this model and a procedure for sampling solutions
from this model.

ALGORITHM 4. Basic Structure of EDA.
1: Initialize a population;
2: while stopping criteria are not met do
3: Evaluate the population;
4: Select a set of promising solutions from the population;
5: Estimate the probability model;
6: Sampling new candidate solutions;

7: Return the best solution;

The probabilistic models in EDA can be classified based on how they
decompose the problems, for which graphical models can represent un-
conditional or conditional dependencies. Particularly, no dependencies,
pairwise dependencies, multivariate dependencies and full dependence
are four types of graphical models [139]. No dependencies models (e.g.,
a univariate model in Fig. 2.12a) assume that each problem variable is in-
dependent of each other. Different from no dependencies models, chain
and forest models are examples of pairwise dependencies models (see
Fig. 2.12b and Fig. 2.12c). For example, a forest model is a collection of
trees, and each tree can be modelled based on the conditions on their par-
ent variables except for the root. DAGs or undirect graphs are multivari-
ate models (e.g., Bayesian network and Markov network in Fig. 2.12e and
Fig. 2.12f). In addition, the marginal product model is a specific mul-
tivariate model, where problem variables fall into disjoint clusters (see
Fig. 2.12d). In our thesis, we suggest to use a univariate model because learning
a reliable univariate model does not require a large number of instances, compared
to other models.

In EDA, candidate solutions can be represented by fixed-length strings,
which can be used to learn some models discussed previously [139]. For
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(a) Univariate model (b) Chain model (c) Forest model

(d) Marginal product

model
(e) Bayesian network (f) Markov network

Fig. 2.12: Examples of probabilistic models in EDA [139].

example, a univariate model can be supported by a binary string [14].
Such a string can be generated by a probability vector (p1, p2, . . . , pk, . . . , pn),
where n is the size of bits in the string, and pk denotes the probability that
a 1 appears in the kth position. A chain model can also be supported by
the binary string [50]. For example, a chain distribution can be learnt by:
(1) position orders in the string, (2) a probability that a 1 appears in the
first position and (3) conditional probabilities of other positions based on
their predecessors.

Other representations that extend the fixed-length strings are real-
valued vectors and permutations. Particularly, permutations can be nat-
urally used to present the candidate solution in many problems, such as
scheduling or resource allocation problems. EDA often utilizes permuta-
tions to capture two types of information: the first one is the absolute po-
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sition of variables and the second one is the relative ordering of variables.
In the quadratic assignment problem, these two types of information are
equally important to learn. Unlike permutations, real-valued vectors are
not suitable for dealing with the discrete problem directly, where a map-
ping is required to interpret real-valued representations to a discrete one.
[138].

Non-dominated Sorting Genetic Algorithm II

NSGA-II was introduced in [54], and it is one of the most popular algo-
rithm for solving Multi-objective optimization problem (MOP), which can
be defined as:

Minimize ~f(~x) = [f1(~x), f2(~x), . . . , fk(~x)]

subject to C ∈ Z
(2.4)

~f(~x) is a vector function and Z is a feasible solution space.

The key idea of NSGA-II is the fast non-dominated sorting strategy
for sorting solutions with respect to multiple objectives. This strategy
includes two important steps: The first step is to rank the candidate so-
lutions from the mating pool (that combines current population and the
promising candidates from the last generation) based on the concept of
Pareto dominance. Pareto dominance can be defined as: a vector ~x dominates
~x′ (denoted by ~x ≺ ~x′ ) if fi(~x) ≤ fi (~x

′) for all the i functions involved
in ~f(~x) and there is at least one i such that fi(~x) < fi (~x

′). Therefore, a
vector ~x∗ is Pareto optimal if not exists a vector ~x′ ∈ Ω such that ~x′ ≺ ~x∗.
This Pareto dominance strategy in NSGA-II allows us to find a set of non-
dominated vectors, forming the Pareto front (also called the first front),
which can be defined as: a Pareto optimal set PF ∗ = {~x∗ ∈ Ω}, where
~x∗ is Pareto optimal. Following this idea, the second front can be formed
based on the remaining individuals, and its rank is lower than the first
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front. Motivated by this strategy, we can rank all the candidates according
to the ranks associated with the fronts.

The second step is to use crowding distance [54] for sorting the candi-
dates if they have the same rank. The crowding distance is an indicator
for measuring the diversity of candidate solutions in the front. It can be
calculated as the average side length of the cuboid, shown in Fig. 2.13. In
this example, a cuboid is formed based on the nearest neighbours of the
ith solution on the Pareto front. By using crowding distance, a candidate
solution with a larger crowding distance is more likely to be kept.

𝑓!

𝑓"

Cuboid
i

i-1

i-1

0

Fig. 2.13: Crowding distance calculation based on points marked with
filled circles [54].

Fig. 2.14 demonstrates a process of the non-dominated sorting strategy
in NSGA-II. Particularly, n promising solutions are selected from a mat-
ing pool of 2n to form population P t+1 using non-dominated sorting and
crowding distance sorting.

ALGORITHM 5 shows the basic structure of NSGA-II, starting with ini-
tializing a population of n candidate solutions. These solutions are eval-
uated regarding every objective. Afterwards, the iteration part will be re-
peated until a stopping criterion is met. During the iteration, n promising
solutions are selected from the current population based on the fast non-
dominated sorting strategy discussed previously. We apply the genetic
operator to produce new offspring based on the n promising solutions.
These newly produced solutions are combined with the n promising so-
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Fig. 2.14: Fast non-dominated sorting strategy in NSGA-II [54].

ALGORITHM 5. Basic Structure of NSGA-II.
1: Initialize a population of n candidate solutions;
2: Evaluate each solution with respect to each objective;
3: while stopping criteria are not met do
4: Choose n solutions over the population using the

non-dominated sorting strategy;
5: Populate new offspring through the use of genetic operators ;
6: Form a mating pool by combining new offspring and the n

solutions;
7: Evaluate each solution in the mating pool;

8: Return solution set with highest rank in the last generation;

lutions to form an updated mating pool of size 2n. After the iteration, a
set of solutions with the highest rank is returned from the last generation.
The representation and genetic operators in NSGA-II is similar to those of
GA. Therefore, we do not discuss them again.

Multi-Factorial Evolutionary Algorithm

Different from single-tasking EC techniques, MFEA is a new evolutionary
paradigm, optimizing K optimization tasks concurrently, where each task
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contributes a factor that affects the evolution of a single population. In
other words, searching for solutions for one task may contribute to prob-
lem solving on related tasks. In MFEA, a unified representation allows a
unified search space made of the search spaces of the K tasks. This uni-
fied representation can be decoded into solutions for each individual task.
The following definitions are also defined in [71], which capture the key
attributes associated with each individual Π in MFEA. For simplicity, we
assume all the tasks are maximization problems.

Definition 1: The factorial cost fΠ
j of individual Π measures the fitness

value with respect to the K tasks, where j ∈ {1, 2, . . . , K}.
Definition 2: The factorial rank rΠ

j of individual Π on task Tj , where
j ∈ {1, 2, . . . , K}, is the index of Π in the population sorted in descend-
ing order according to their factorial cost with respect to task Tj .

Definition 3: The scalar fitness ϕΠ of individual Π is calculated based
on its best factorial rank over the K tasks, which is given by ϕΠ =
1/minj∈{1,2,...,K}rΠ

j
.

Definition 4: The skill factor of individual Π denotes the most effective
task among the K tasks, and is given by τΠ = argminj{rΠ

j }, where j ∈
{1, 2, . . . , K}.

Based on the scalar fitness, evolved solutions in a population can be
compared across the K tasks. In particular, an individual associated with
a higher scalar fitness is considered to be better. Therefore, multifactorial
optimality is defined as below:

Definition 5: An individual Π? associated with factorial cost {f ?1 , f ?2 , . . . ,
f ?K} is optimal iff ∃j ∈ {1, 2, . . . , K} such that f ?j ≥ fΠ

j , where Π denotes
any solution on task Tj .

The basic structure of MFEA is outlined in ALGORITHM 6. It starts with
generating a population of candidate solutions, and each of them is evalu-
ated for its factorial cost regarding K tasks. After computing the factorial
cost, we can compute factorial rank, scalar fitness, and skill factor of candi-
date solutions. Subsequently, the iteration process will be carried out until
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ALGORITHM 6. Basic Structure of MFEA.
1: Initialize a population of candidate solutions;
2: Evaluate each candidate solutions for its factorial cost with respect

to K tasks;
3: Compute factorial rank, scalar fitness, and skill factor of each

candidate solution;
4: while stopping criteria are not met do
5: Populate offspring using assortative mating, see

ALGORITHM 7;
6: Evaluated each solution for its factorial cost based on the

selected task, see ALGORITHM 8;
7: Combine the offspring and current population;
8: Update factorial rank, scalar fitness, and skill factor of the

combined candidates;
9: Form next population by selecting fittest candidates from the

combined candidates;

10: Return the best solutions for K tasks;

stopping criteria are met. During the iteration, new offspring are produced
by assortative mating for breeding offspring for K tasks. In particular,
crossover and mutation operators in assortative mating will be employed,
see details in ALGORITHM 7. Once a new offspring is generated, each can-
didate solution in the new offspring is only evaluated for its factorial cost
based on the selected task. The selected task is determined by vertical
cultural transmission using ALGORITHM 8. We then combine the current
population and assortative mating offspring population. These combined
candidate solutions are evaluated for factorial rank, scalar fitness, and skill
factor. Consequently, we form the next population by selecting the fittest
candidates from the combined candidates. When the stopping criteria are
met, we return the best candidate solution for each task. The key compo-
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nents of PMFEA are assortative mating and vertical cultural transmission,
which are further discussed as follows:

The procedure of assortative mating for breeding offspring for K tasks
is outlined in ALGORITHM 7. In particular, two randomly selected parent
candidates undergo crossover if they have the same skill factors. Other-
wise, a randomly generated probability, rand, is used to balance exploita-
tion and exploration across tasks. That is, crossover is performed over the
parent candidates with different skill factors, or mutation is performed on
each parent.

ALGORITHM 7. Assortative Mating [71].

1: Randomly select two parents Πg
a and Πg

b from Pg;
2: rand← Rand(0, 1);
3: if τΠg

a = τΠg
b or rand < rmp then

4: Perform crossover on Πg
a and Πg

b to generate two children Πg
c

and Πg
d;

5: else
6: Perform mutation on Πg

a to generate one child Πg
e;

7: Perform mutation on Πg
b to generate one child Πg

f ;

Vertical cultural transmission is proposed to allow the offspring to im-
itate the skill factor of any one of their parents. As illustrated in ALGO-
RITHM 8, any child produced by assortative mating is only evaluated on
one selected task based on the skill factors of its parents.

2.1.4 An Overview of AI Planning

AI planning is a branch of AI that concerns action sequences to be executed
for reaching the desired outcome. In general, three key components are
often described in a planning problem [137]: a description of the initial
state for the environment, a description of the possible actions that can be



54 CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

ALGORITHM 8. Vertical Cultural Transmission [71].

1: if Πg
k is produced by two parents Πg

a and Πg
b then

2: Generate a random rand between 0 and 1;
3: if rand < 0.5 then
4: Πg

k imitates the skill factor τΠg
a of Πg

a;
5: Πg

k is only evaluated on task T
τΠ

g
a
;

6: else
7: Πg

k imitates the skill factor τΠg
b of Πg

b ;
8: Πg

k is only evaluated on task T
τ

Π
g
b
;

9: else
10: Let Πg

e be the only one parent of Πg
k;

11: Πg
k imitates the skill factor τΠg

e of Πg
e;

12: Πg
k is only evaluated on task T

τΠ
g
e
;

executed in the environment, and a description of the desired goal that
specifies the desired state of the environment.

Existing works on AI planning can be classified into four groups: state-
space based planning, graph-based planning, partial order refinement planning,
and satisfiability and logic programming based planning[137]. The state-space
based planning aims to solve a planning problem by searching a set of pos-
sible states that achieves the desired goal. This search can be conducted
in both a forward or backward way. Particularly, the forward state search
starts with the initial state, towards the state that satisfies the desired goal,
while the backward state search begins with a state that satisfies the de-
sired goal, towards the initial state. The graph-based planning is to construct
a directed levelled graph, where three typical levels, i.e., proposition level,
action level and another proposition level, are associated with the graph.
Particularly, the first proposition level is used to decide the satisfaction
of the precondition of the actions in the second level, and the third level
updates the proposition by considering the effects caused by the actions
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in the second level. The Partial order refinement planning is different from
the previous two planning techniques. The major differences lie in that
a partially ordered plan is produced, resulting in different linearizations
that achieve the desired goal. The satisfiability and logic programming based
planning transfer planning problem as a reasoning problem.

In the domain of web service composition, a graph building tech-
nique based on state-space based planning, e.g., Graphplan [20, 155], have
shown to be very useful for constructing composite services automati-
cally [40, 47, 174, 192, 200] . The basic structure of Graphplan is shown in
ALGORITHM 9.

ALGORITHM 9. Basic structure for Graphplan [20, 155].
Input : an initial state, a set of actions, a goal state
Output: a sequence of actions

1: Initial a planning graph with one level that contains an initial
state;

2: while goal state is not reached do
3: Identify actions that are satisfied by states in current level;
4: Append the graph with a new level that contains states

reached by the actions;

5: return a sequence of actions extracted from the initial state to the
goal state;

The key idea of Graphplan is to build up a graph with levels, whose
nodes represent states and edges represent actions. From the graph, a se-
quence of actions, i.e., a composite service, is expected to be identified
by extracting actions from the graph. Graphplan takes three inputs: an
initial state, a set of actions, and a goal state. It starts with constructing
a graph with one level, where only the start state is contained. As long
as the goal state is not reached, we expand the structure of the graph by
adding a new level, which consists of new states that are caused by pos-
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sible actions taken from the previous state. Consequently, one solution is
extracted from the graph once the goal state is reached. Such a solution
contains a set of actions represented by a set of edges, starting from the
initial state to the goal state. In our thesis, we will keep utilizing this Graph-
plan technique because it has shown its promise in building composite services in
the literature.

2.2 Literature Review

2.2.1 Semi-automated
Service Composition

2.2.2 Fully-automated
Service Composition

Single-objective 
Semi-automated Service 

Composition

Multi-objective 
Semi-automated Service 

Composition

Dynamic
Semi-automated Service 

Composition

Single-objective 
Fully-automated Service 

Composition

Multi-objective 
Fully-automated Service 

Composition

Dynamic
Fully-automated Service 

Composition

2.2 Literature Review

Fig. 2.15: An overview of the literature review.

As discussed in Sect. 2.1.2, web service composition is performed using
two strategies: this first one assumes a pre-defined service composition
workflow is known, and it consists of abstract service slots that specify the
required functionalities for atomic web services; the second one does not
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strictly follow any workflow, and it constructs workflows simultaneously
with atomic service selections. These two strategies result in two groups
of works: semi-automated web service composition and fully web service
composition, respectively. In this section, we review some recent works
in these two groups in the context of single-objective, multi-objective and
dynamic optimizations. Fig. 2.15 shows a diagram to guide our discus-
sion on the related works for the literature review. These works are also
summarized in Table 2.1 based on 91 recent papers.

Category Semi automated Fully automated

Single-objective Genetic algorithm [26, 27, 28, 58, 64,
101, 167, 188, 191, 198]
Particle swarm optimisation [7, 76, 82,
112, 127, 196, 194, 207, 199, 231]
Clonal selection algorithm [143, 208]
Ant colony optimisation [35, 37, 218]
Articial bee Colony [11, 206]
Differential evolution algorithm [144]
Cukoo search [24, 36, 66]
Integer linear programming
[62, 63, 67, 216]
Dynamic programming [77, 204]

Genetic Programming
[42, 117, 126, 152, 182, 202, 221, 222]
Graph-based Genetic
Programming [41, 43]
Genetic algorithm [44, 47, 156]
Particle swarm optimisation
[47, 45, 175]
Graph search [31, 32, 33, 57, 75, 85, 209]

Multi-objective The First Category:
Multi-objective GA [113, 172]
Multi-objective PSO
[110, 150, 214, 228]
Multi-objective ACO [187, 220, 230]
Many-objective NSGA-II [51]

The Second Category:
Multi-factorial Evolutionary
Algorithm [17]

The First Category:
NSGA-II [46]
Hybrid [40]

The Second Category:
No related works

Dynamic Bounded-interval [9, 125, 190]
Predicted approaches [6, 30, 80, 108]
Service reconfiguration
approaches [23, 111, 124]
Robust approaches [65, 173]

No related works

No optimization AI planning [77, 146, 174, 192]
ER model-based approach [205]

Table 2.1: Summary of web service composition approaches.
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2.2.1 Semi-Automated Web Service Composition

Single-Objective Semi-Automated Approaches

The majority of the existing works treat service composition problems as
single-objective optimization problems. The single objective is handled
based on users’ concerns in different ways: the first one is to optimize the
number of component services in a composite service [12, 126, 152, 174];
the second one is to optimize QoS based a combined score [24, 117, 202,
221, 222], e.g., a weighted QoS score based on a simple additive weighting
(SAW) technique [79]; the third one is to jointly optimize QoS and QoSM
[36, 58, 101]. These different objectives are optimized using many different
algorithms, which will be discussed separately as follows:

GA is an effective searching technique for solving combinatorial op-
timization problems [163], and it has been popularly applied to single-
objective semi-automated web service composition with vector-based rep-
resentations [26, 27, 28, 58, 64, 101, 167, 188, 191, 198]. In general, vectors
utilized in GA represent composite services, and each element of vectors
corresponds to one abstract service slot of a given composition workflow.
Genetic operator, such as crossover and mutation, are performed on vec-
tors to generate new vector-based candidate solutions. For example, [26]
proposes a GA-based approach with an objective to optimize a combined
QoS score. They experimentally find out that when the number of service
candidates increases, their GA-based approach is preferable to a Integer
Linear Programming based approach for finding high-quality composite
services. To enhance the performance of GA, the hybridization of GA and
other techniques, such as local search, are also explored. For example,
[167] proposes a hybrid approach utilizing GA and local search. In partic-
ular, a local optimizer is performed at the beginning of GA, and it aims to
improve the quality of candidate solutions that are randomly generated in
the initial population. This GA method with local optimizer contributes
to better performance compared to GA without the local optimizer. The
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success of GA is due to the use of the vector-based representation, which
is a straightforward way of presenting composite services that strictly fol-
low a fixed composition workflow. However, such representation can not
directly cope with composite services over varied workflows in the fully
automated service composition.

PSO has been widely used as a service selection technique for solving
single-objective semi-automated web service composition problem [7, 76,
82, 112, 196, 194, 207, 199, 231]. Compared to GA, a different vector-based
presentation is utilized in PSO as particles’ positions, and each dimension
of the particle corresponds to one abstract service slot of a given compo-
sition workflow. To improve the efficiency of PSO, a recent work [207]
proposes a chaotic PSO algorithm based on the predatory search strategy
for semi-automated service composition, where a cotangent sequence with
chaotic characteristics is introduced into PSO, instead of a random search-
ing strategy. The hybridization of PSO and other techniques, such as GA,
are also explored. For example, Liu et al. [112] propose a hybrid Genetic
PSO method for handling semi-automated service composition. Particu-
larly, PSO is hybridized with GA for the purpose of local exploitation via
crossover operators. Besides that, the number of generations in both PSO
and GA is properly balanced to reach a good exploration and exploitation.
Another recent work [127] investigates the use of an agent-based frame-
work to compose web services by identifying the QoS parameters, and
employs PSO for service selection over abstract services of composition
workflows. Although PSO is originally designed for effectively tackling
continuous optimization problems [114], proper modifications are made
in these PSO-based approaches for solving the discrete optimization prob-
lem on service composition.

Clonal Selection Algorithm (CSA) is an Artificial Immune System
(AIS) technique for solving optimization problems. The principle of CSA
lies in the features of immune memory, affinity maturation. In particular,
the antigen is considered as a fitness function. A proportion of antibody,
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rather than the best affinity antibody, are chosen to proliferate. Further-
more, the speed and accuracy of the immune responses grow higher
and higher after each infection, even confronting cross-reactive response.
Apart from that, hypermutation and receptor editing contribute to avoid-
ing local optimization and selecting optimized solution respectively. CSA
has also been proposed for solving semi-automated service composition
[143, 208]. For example, Yan et al. [208] encoded composite service using
a binary string as an antibody for evaluating the affinity value of the anti-
gen (i.e., fitness function), and the antibody with low concentration will be
selected for crossover and mutation. The hybridization of CSA and other
techniques, such as AI planning, are also explored. For example, Pop et
al. [143] combined an enhancing planning graph (EPG) and CSA to han-
dle single-objective semi-automated web service composition. The EPG
model is constructed with actions and layers involved in multiple stages,
where each action represents clustered Web services, and each layer rep-
resents inputs/outputs. During the clonal selection process, the antigen
is represented as a fitness function, and the antibody is represented as a
binary alphabet to encode EPG. Despite some success in CSA, the speed
of convergence often suffers due to the high diversity of the population
preserved by the cloning of antibodies [158].

Ant Colony Optimisation (ACO) is utilized to tackle semi-automated
service composition [35, 37, 218]. The idea of ACO-based approaches is
to perform a path construction from a planning graph, e.g., two-layered
graph. This planning graph is modelled based on an abstract composi-
tion workflow and a set of candidate solutions for each abstract service
slot. The goal of these approaches is to find an optimized path by travers-
ing on the planning graph using a group of ants. In every iteration of
ACO, every ant constructs a path by selecting edges of the graph accord-
ing to the strength of the pheromone left by other ants. This pheromone
is associated with every edge of the planning graph. Once an ant con-
structs a solution, the pheromone is updated along with the evaporation
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strategy on the edges. For example, [37] proposes an ant-inspired selec-
tion method based on an EPG, which extends the classical planning graph
[154] with clusters of services and service inputs/outputs. This method is
tested over a few instances of EPGs with different complexities. ACO is a
very intuitive way of demonstrating the optimization process of a service
composition problem. However, ACO can consume a large memory when
a complex planning graph is constructed.

Other EC methods have also been investigated to tackle web service
composition problems. For example, Artificial Bee Colony (ABC) is an
optimization technique that simulates the foraging behaviour of honey
bees, and has been used for service selections in single-objective semi-
automated web service composition [11, 206]. For example, a recent work
[11] proposes an Integrated Probability Multi-search and Solution Accep-
tance Rule-based Artificial Bee Colony Optimization Scheme, named IPM-
SAR-ABCOS, to optimize transaction and QoS characteristics. The rule in
IPM-SAR-ABCOS can enhance the rate of diversification and intensifica-
tion in the employee bee phase and the onlooker bee respectively, prevent-
ing from being easily trapped into the local optimal. Unlike GA, Differen-
tial Evolution algorithm (DE) is designed for solving optimization prob-
lems with variables in continuous domains. It has been utilized to solve
a discrete service composition problem with the help of a genome encod-
ing [144]. Cuckoo search is introduced in [211], which is inspired based
on cuckoo species which lay their eggs in the nests of other host birds.
For example, cuckoo search has been adopted for solving QoS-aware se-
mantic service composition problem over a searching space represented
by an EPG [36]. To further consider the distributed network environment,
a cuckoo search based approach [66] is proposed to find composite ser-
vices with optimized QoS and network QoS over geo-distributed cloud
environments.

Other approaches (without utilizing EC techniques) do not rely on
bio-inspired techniques. They target optimal composite services by some
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other methods, such as Integer Linear Programming (ILP), dynamic pro-
gramming, and local search. Integer Linear Programming is used to
achieve single-objective semi-automated web service composition. Gener-
ally, an ILP model is created with three inputs: a set of decision variables,
an objective function and a set of constraints. The outputs of ILP are
decision variables and values of maximized/minimized objective func-
tion. ILP is flexible for handling QoS constraints and optimizing problems
for semi-automated QoS-aware service composition [62, 63, 67, 216]. For
example, Gao et al. [63] define a zero-one ILP model for web service
composition based on an abstract service workflow, where services with
the same functionality but different QoS are classified into the same class
and are selected for each abstract service slot. Yoo et al. [216] formulate
the web service composition problem based on a zero-one ILP model in-
troduced in [63]. A very recent work [67] proposes a LP-based approach,
named “LP-WSC”, to QoS-aware web service composition in a geograph-
ically distributed cloud environment. These works take both QoS and
constraints on QoS into account. However, due to an increase in the
number of decision variables, ILP may lead to exponentially increased
complexity and cost in computation [107]. Besides that, QoS of composite
services in ILP-based approaches is calculated by summing up the indi-
vidual QoS score of every component services. Such a QoS calculation
is not always appropriate [158]. For example, the availability of compos-
ite services should be calculated by multiplying the availability of every
component service.

Dynamic Programming Approach is an effective method for solving
optimization problems that can be broken into subproblems, avoiding
solving them repeatedly. This technique is also utilized for handling
single-objective semi-automated service composition [77, 204]. For ex-
ample, in [77], an efficient pruning approach is developed combing three
techniques — a forward filtering algorithm for searching task-related
services, a modified dynamic programming approach for handling a sub-
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problem (i.e., a problem on the satisfaction of each concept pool of every
graph layer ), and a backward-search method for searching optimal com-
posite services. Xu et al. [204] worked on large-scale service composition
problem with a guarantee in QoS, where a dynamic programming algo-
rithm is developed to optimize every subproblem (i.e., a service path).
To derive an execution plan, a depth-first search is utilized to trace back
paths with the aim to optimize QoS.

Multi-Objective Semi-Automated Approaches

To solve the first category of multi-objective service composition dis-
cussed in Sect. 1.2, many evolutionary multi-objective techniques [35, 110,
150, 113, 172, 187, 201, 214, 217, 220, 230] have been developed based on
the idea of ranking a set of optimized solutions based on the dominance
relationship. The aim of the first category multi-objective techniques is to
find a set of non-dominant solutions, i.e., Pareto Front (also called Pareto
solutions).

Multi-objective GA has been widely used for the semi-automated
web service composition [113, 172]. For example, Liu et al. [113] propose
a service composition model, i.e., multi-constraint and multi-objective op-
timal path, where only the sequence composition construct is supported.
In their work, different paths, i.e., composite services, are searched by GA.
Wada et al. [172] investigate a semi-automated approach with a vector-
based representation. Each vector presents three composite services for
three user groups. Two multi-objective GAs (called E3-MOGA and X-E3)
are proposed in this work. Particularly, E3-MOGA is designed to search
for equally distributed Pareto-optimal solutions in the multi-objective
space, while X-E3 is designed to search for Pareto-optimal solutions that
can reveal the maximum range of trade-offs, covering extreme solutions
in the search space.

Multi-objective PSO is another interesting technique that handles
semi-automated service composition [110, 150, 214]. For example, Yin et
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al. [214] combines genetic operators and a PSO optimization algorithm
together to tackle multi-objective semi-automated web service composi-
tion. In particular, the updates of each particle’s velocity and position are
achieved by the introduced crossover operator. Furthermore, a mutation
strategy is introduced to increase the diversity of the particles, and it is
performed on the gbest particle when the diversity of the proposed swarm
indicator is below a certain value. A recent work [228] studies the service
level agreement aware service composition problem, where resource shar-
ing property is considered to decrease the cost for service deployment.
To find trade-off composite services that considers the cost and other QoS
attributes in this problem, a multi-objective PSO is employed with a novel
particle position form. This form is proposed to cope with the multi-level
demands from the resource sharing.

Multi-objective ACO is used to solve multi-objective semi-automated
service composition [187, 220, 230]. For example, Zhang et al. [230] em-
ploy a “divide and conquer” strategy, which decomposes a given abstract
workflow into multiple abstract execution paths without overlapped ab-
stract services. This decomposing strategy results in a much smaller length
of the execution paths, compared to the decomposition method proposed
in [220]. This is due to that the decomposing strategy in [220] allows over-
lapped abstract services appear in the decomposed paths. Both two works
employ an ACO algorithm, where the phenomenon is presented as a k-
tuple for k objectives, rather than a single value. Wang et al. [187] in-
cludes a trust degree into non-functional attributes of Web services and
proposes an adaptive ant colony optimization algorithm with a dynami-
cally adjusted coefficient of pheromone strength.

Few works, such as [51], report on many-objective and semi-automated
service composition. For example, De et al. [51] employ NSGA-II to
optimize five different quality criteria (i.e., runtime, price, reputation,
availability and reliability) simultaneously.

To solve the second category of multi-objective service composition
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discussed in Sect. 1.2, MFEA can naturally cope with it through solving
multiple combinatorial optimization tasks concurrently, producing mul-
tiple solutions, with one for each task. MFEA searches a unified search
space based on a unified random-key representation over multiple tasks
and sharing the implicit knowledge of promising solutions through the
use of assortative mating across multiple tasks. It has shown its effi-
ciency and effectiveness in several problem domains [17, 59, 225, 233].
For example, Yuan et al. [225] employ MFEA to concurrently handle four
optimization problems with different local search operators. The success
of this work is due to the use of permutation-based representations and
the local search. Compared to the default random-key representation in
MFEA, permutation-based representations are often effective for deal-
ing with permutation-based problems, such as TSP, QAP, LOP, and JSP
[225]. In the context of service composition, to meet the efficiency and
cost requirements, [17] reported the first attempts that employ MFEA to
solve two service composition tasks together using MFEA. This method
achieves competitive results compared to single-objective EC techniques.
However, due to the design of their representation, this work can only
cope with semi-automated service composition. Furthermore, the number
of tasks to be optimized concurrently is relatively small.

Dynamic Semi-Automated Approaches

Dynamic service composition do not assume that QoS remains static. In
fact, it focuses on handling dynamic QoS. In the literature, such QoS is
handled via different QoS models, such as a QoS model that assumes QoS
values vary in bounded-intervals or can be estimated based on the past
QoS distributions.

Bounded interval-based approaches rely on the bounded-interval
QoS values to simulate periodically changed QoS and re-optimize com-
posite services periodically [9, 125, 190]. For example, one work [190]
employs ACO to handle QoS changes. Particularly, a newly proposed
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pheromone updating strategy is used in the event of QoS changes. The
idea of this updating strategy ensures that new solutions can be con-
structed by resetting pheromone information on the edges of their plan-
ning graph. Mostafa et al. [125] combine multi-objective optimization and
Reinforcement Learning (RL) technique to solve multi-objective service
composition problem in an uncertain and dynamic environment. RL is
a popular machine learning technique for solving sequential decision-
making problems with the aim to maximize some long-term rewards. It is
utilized to deal with how actions are taken in an uncertain environment.
In the dynamic service composition context, this uncertain environment
is related to the dynamic QoS. In this work, web service composition is
modelled based on the Partially Observable Markov Decision Process,
and solutions to services composition are considered to be a set of de-
cision policies. Each decision policy is obtained through a procedure of
service selection towards constructing a composite service. They propose
a method to learn an optimal selection policy to build near-optimal so-
lutions. Several concurrent works, e.g., [83], propose a fuzzy-based QoS
model based on the bounded-interval QoS values to measure the uncer-
tainties in QoS. This fuzzy-based measure is used to rank preferences of
candidate solutions evolved by GA. In a nutshell, QoS changes in the
works discussed above are assumed to happen every fixed time. This
assumption is the victim of idealization.

Predicted approaches are alternative approaches that assume QoS
changes follow some historical patterns and can be predicted in the future
[6, 30, 80, 108]. Some works [30, 80] assume that QoS follows a known
probability distribution, and can be estimated based on the past QoS val-
ues. For example, [80] consider QoS as a discrete random model, and
search for near-optimal composite services using simulated annealing.
Different from [80], [30] employs stochastic models, i.e., quantile func-
tion [68] and Tchebysheff’s inequality [135], for the estimation of QoS
over the cases that the probabilistic distribution is known or unknown,
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respectively. However, these approaches do not consider the impact of
time on QoS. To address this limitation, [165] consider time-varying
QoS by proposing a time-series prediction model while optimizing the
predictive QoS of composite services. This problem is recently studied
again as predictive-trend-aware service composition by the same authors
[166]. They further conduct extensive case studies with diverse randomly-
generated composition workflows. Although these works are capable of
handling QoS in a predictive manner, they often require sufficient histor-
ical data. However, sufficient historical data are not always available for
newly registered web services. In such cases, building an accurate and
reliable prediction model may not be feasible.

Service reconfiguration approaches [23, 111, 124, 173] have been inves-
tigated by searching for a replacement of the component services that can-
not be executed or have negative impacts on QoS. However, those meth-
ods are only effective for the semi-automated service composition, where
a service composition workflow is known. Some of these works also aim
to identify services for the replacement without violating the end-to-end
QoS constraints. However, optimizing QoS in the event of service failures
is not their focus. For example, [173] proposes a method to cluster ser-
vices based on their functional properties. This method determines a set
of backup services for service failures. Meanwhile, a multi-objective tech-
nique with GA is employed to select a suitable service from the backups.
To minimize the number of backups for the selection, decision tree learn-
ing is used for the prediction of the performance based on QoS [124]. This
technique outperforms other classification techniques investigated in this
work, such as backpropagation neural network, support vector machine
probabilistic neural network, and regression tree. In a nutshell, service re-
configuration approaches assume many backup services exist in advance,
and they focus on developing effective and efficient methods for selecting
proper services for the replacement of component services in the semi-
automated context.
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Robust approaches explore an interesting idea of handling service fail-
ures through distributed service deployment [65, 173]. In these works, a
sufficient number of duplicated services can be jointly deployed to prevent
service failures. They assume that sufficient services do exist in advance,
and can be used for replacing the component services. These works are
related but are clearly targeted to address a different robust problem than
our thesis. Our robust problem focuses on constructing composite ser-
vices with high robustness at the design stage. Such composite services
are expected to be easily repaired in the event of service failures.

As summarized here, semi-automated dynamic service composition
takes potential service failures, or QoS changes into account, focusing on
the execution stage. These techniques assume that QoS changes period-
ical or can be predicted based on the historical data. In reality, services
often fail sporadically in a highly unpredictable manner, and the lack of
historical QoS data poses noticeable feasibility challenges. Other works
focus on reselecting component services of composite services, assuming
a sufficient number of services with compatible functionalities exist in ad-
vance. In reality, such an assumption is not always satisfied. Technically,
all these approaches do not allow the changes of composition structures.

2.2.2 Fully Automated Web Service Composition

Single-Objective Fully Automated Approaches

Genetic Programming has been widely used for supporting fully auto-
mated service composition [42, 117, 126, 152, 182, 202, 221, 222] with direct
representations. Particularly, tree-based representations could be ideal for
practical use, since they can present all composition constructs (discussed
in Sect. 2.1.2) as inner nodes of trees. GP is utilized for searching opti-
mal solutions represented as trees. [152] proposes a context-free gram-
mar for randomly initializing tree-based composite services with correct
structures of composite services. In contrast, [221] randomly initializes
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tree-based service composite services completely, but they develop adap-
tive crossover and mutation rates according to the diversity of the pop-
ulation for accelerating the speed of convergence. The two approaches
[152, 221] discussed above utilize a penalization method for filtering in-
correct solutions in their fitness functions. The hybridization of GP and
other techniques, such as local search, are also explored. For example,
to overcome the premature and proneness of GP, Tabu search is combined
with GP to solve QoS-aware data-intensive web service composition [223].
Other works [42, 117] utilize a greedy search to create functionally valid
DAG-based composition services, which are mapped to tree-based ones.
During the evolutionary process, the correctness of the solutions is en-
sured by specific crossover and mutation operators. However, the tree-
based composite services suffer a scalability issue since many replicas of
subtrees are produced from the mapping process. To overcome this issue,
[182] proposes a tree-like representation, on which the replicas of subtrees
are handled by removing them, and inserting edges from the root of the
replicas to the roots of the copies.

Graph-based Genetic Programming also attracts researchers’ interests
for solving fully automated service composition with direct representa-
tions [41, 43], such as DAGs. For example, GraphEvol is introduced in
[41] with graph-based genetic operators, which are utilized to evolve indi-
viduals represented by DAGs. GraphEvol is compared to the previously
discussed GP-based approaches [42, 117], and their experiment shows
that graph-based approaches can produce composite services with much
higher QoS. DAG-based representation can hardly present some compo-
sition constructs, such as loop and choice. To support choice construct,
one recent work [43] investigates DAG-based representation supporting
branches (i.e., choice) using GraphEvol [41]. However, this method has
a big limitation, i.e., any nested choice composition construct is not sup-
ported.

GA has been widely used to solve fully automated service composi-
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tion with indirect representations, e.g., permutation-based representations
[44, 47, 156]. Such permutations need to be interpreted into service compo-
sition workflows using a decoding strategy. For example, [47] investigates
a fixed-length or a variable-length permutation-based representation, and
propose corresponding genetic operators to search the solutions evolved
by GA. They find out that the fixed-length GA method outperforms the
variable-length GA and GraphEvol [41]. Furthermore, the fixed-length
GA enhanced by an exhaustive local search can achieve the best perfor-
mance among all the competing methods, including two baseline methods
(the variable-length GA and the fixed-length GA), GraphEvol [41], and a
memetic variable-length GA. However, the neighbours produced by the
exhaustive local search operators are likely to be decoded into the same
composite solution. Therefore, both the effectiveness and efficiency of this
local search operator demands further improvement.

PSO has also been introduced to tackle fully automated service com-
position, where composite services are represented as vectors, which are
then decoded into solutions represented as DAGs [47, 45, 175]. For ex-
ample, [45] proposes a PSO-based fully automated approach to generate
a composite service from an optimized particle location. The idea is to
translate the particle location into a service queue that can be decoded
into a composite service. Therefore, finding an optimal composite solu-
tion is to discover an optimal location of the particle in the search space.
Our recent work extends [45] to jointly optimize QoSM and QoS, where a
weighted DAG is decoded, where edge weights correspond to QoSM be-
tween services. This work is not covered in this thesis because it does not
achieve outstanding results in terms of effectiveness. However, it will be
compared with our EDA-based methods in Sect. 3.7.

Graph search [31, 32, 33, 57, 75, 85, 209] is an alternative approach to
fully automated service composition, compared to all the previously dis-
cussed EC-based approaches. Graph search works on searching composite
services, which are constructed by subgraphs or paths from a service de-
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pendency graph based on service dependencies. However, constructing
such a service dependency graph could suffer a scalability issue when
dealing with a large service repository with complexity service depen-
dencies. This issue can get even worse when QoS optimization is con-
sidered [90]. For example, A? search [164] is utilized to search composite
services presented as paths, which are constructed from a sub-graph of
a service dependency graph [151]. This sub-graph is extracted based on
service requests. A recent work [57] transforms each search step on the
service dependency graph as a dynamic knapsack problem, and proposes
a knapsack-variant algorithm to effectively and efficiently generate com-
posite services with minimal number of component services. However,
these two works [57, 164] only focus on minimizing the number of com-
ponent services in composite services without considering QoS or QoSM.
Besides that, the scalability of this method suffers when the service repos-
itory grows. To address this critical issue, [31] proposes an QoS-aware ser-
vice composition via a scalable way of pruning dependency graphs, and a
novel path-based construction and selection method. This method can ef-
ficiently construct near-optimal composite services. However, it only con-
siders a single quality criterion in QoS. To consider multiple quality cri-
teria in QoS, a recent work [32] proposes an improved path-based search
method based on [31]. Particularly, a node (i.e., an atomic service) asso-
ciated with a higher rank is preferred in a path construction, and nodes
are ranked based on the concept of dominance over multiple QoS quality
criteria.

In summary, with the help of conventional EC techniques, indirect
approaches, such as permutation-based representations with decoding
strategies, can often reach better quality, compared to direct approaches
with DAG and tree-based representations. Furthermore, an indirect
memetic approach, e.g., a fixed-length memetic GA, has reported its
outstanding effectiveness in finding high-quality composite solutions.
Despite recent success in indirect approaches, new composite services
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are produced using conventional EC techniques, relying on the implicit
knowledge of promising solutions. As discussed previously, EDA is
different from conventional EC techniques, it can explicitly learn the
knowledge of promising solutions. Therefore, new permutation-based
representations combined with EDA can be further studied to handle
single-objective fully automated service composition.

Multi-Objective Fully Automated Approaches

Very limited works have ever proposed EC-based approaches to the first
category of multi-objective fully automated service composition ap-
proaches, but many works on multi-objective semi-automated service
composition have been reported [35, 110, 150, 113, 172, 187, 201, 214, 217,
220, 230]. To the best of our knowledge, [40, 46] are the two recent at-
tempts on fully automated service composition with the aim of handling
two quality criteria in QoS. [46] develop a multi-objective method using
NSGA-II and a fragmented tree-based representation. However, this frag-
mented tree-based representation does not show its effectiveness for find-
ing better Pareto solutions in their experiment, comparing to an indirect
representation. To improve the performance of NSGA-II, the hybridiza-
tion of NSGA-II and other techniques are also explored. For example, the
same authors in [46] later proposed two hybridized methods [40], called
Hybrid and Hybrid-L, with the indirect representation. Both methods are
proposed based on a hybridization of NSGA-II and MOEA/D. In addition,
based on Hybrid, Hybrid-L introduces local search to the decomposed
subproblems. The limitations of this work have already been addressed
in Section 4.1. For example, a large number of decomposed subproblems
is pre-defined, and a simple form of local search is not effective to be per-
formed on each subproblem. Despite achieving some promising results,
opportunities still exist to address these limitations. One work [224] is
reported as the first attempt on many-objective and fully automated ser-
vice composition problem. Particularly, a many-objective optimization
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algorithm, NSGA-III [53] is employed with a tree-based representation.
To the best knowledge of us, no works have been conducted for solving

the second category of multi-objective fully automated service compo-
sition problem, but one previously discussed worked [17] is reported to
cope with a similar problem but in a semi-automated way.

Dynamic Fully Automated Approaches

Although many techniques for semi-automated dynamic service composi-
tion have been explored, these techniques do not support fully automated
service composition. In addition, they ignore the importance of consider-
ing dynamic changes when constructing composite services at the design
stage. In line with this issue, it is important to consider the robustness
of solutions at the design stage. This robustness is defined as the expected
quality of a composite service across all possible scenarios for the dynamic
changes. However, it is difficult to enumerate the scenarios. Therefore,
fitness approximation becomes an important technique for measuring the
robustness [87] under the frame of EC. Besides that, evolutionary control is
a technique that manages fitness approximation on the evolved solutions
by EC. Herein we will review these two important techniques as follows:

Fitness approximation has been widely used to solve computationally
expensive single-objective and multi-objective problems [87, 86]. Exist-
ing fitness approximation techniques can be classified into three types:
problem approximation, data-driven functional approximation, and fit-
ness inheritance [87, 86]. Problem approximation often uses an approx-
imate, easier-to-solve problem to replace the original problem. For ex-
ample, Monte Carlo sampling, instead of complete sampling, is used to
measure the robustness of solutions. Data-driven functional approxima-
tion trains explicit models (also called meta-models or surrogates) based
on historical solutions using various meta-modelling techniques, such as
polynomials or Gaussian processes. Fitness inheritance estimates the fit-
ness of one individual by the fitness of other similar individuals. In the
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literature, fitness approximation has been utilized to find solutions with
optimized robustness in many problems, such as aggregate production
planning [105] and flexible job-shop problems [203]. Such problems are
called robust optimization problems. In fact, decision-makers are not only
concerned the performance of the solution but also the sensitivity of per-
formance with respect to small changes.

Evolutionary control is a technique to manage fitness approximation
for the evaluations on individuals. It aims to achieve a good trade-off be-
tween the accuracy of an evaluation and computational cost. Techniques
in evolutionary control can be grouped into the individual-based and the
generation-based [87, 86]. In the individual-based, some of the individ-
uals are evaluated using the fitness approximation while the others are
evaluated using the real fitness function. For example, [69] proposed an
evolutionary control that ensures individuals with good estimated fitness
values will be re-evaluated on the real fitness function. These good in-
dividuals are selected from each individual cluster of each population.
In contrast, in the generation-based evolutionary control, individuals in
one generation are either evaluated using the fitness approximation or the
real fitness function. Recently, much attention has been paid to adaptive
adjustment on the frequency of fitness approximation in both individual-
based and generation-based evolutionary control. This is due to that a
fixed evolutionary control frequency can be ineffective as the fidelity of
the approximate model may vary significantly during the optimization
[87]. For example, an adaptive generation-based evolutionary control is
proposed based on the error of the fitness approximation [88].

Like many real-world robust optimization problems, “real fitness func-
tion” actually does exist for measuring the robustness of composite ser-
vices. However, it is not feasible to compute the robustness over all possi-
ble events of service failures. Proposing an effective and accurate robust-
ness measure for composite services has not been studied in the literature.
In addition, evolutionary control techniques that manage the robustness
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estimation also need to be studied to achieve a good trade-off between the
accuracy and computation cost.

Service Composition Approaches without Handling Optimization

A few techniques do not focus on optimization. Instead, they focus on con-
structing functionally valid composite services. AI planning techniques
have been widely employed in service composition for such a purpose
[137]. Various AI planning approaches [77, 146, 174, 192] have been pre-
sented to solve semantic web service composition problems using Graph-
plan algorithm [20]. For example, [192] employs Graphplan to secure the
functionally valid composite services, where atomic web services are con-
cretely selected and accurately matched for the desired functionality. The
pitfalls of this approach are procuring linear sequences of actions only,
without dealing with optimization. Some other approaches [102, 162] rely
on frameworks supported by particular agent programming languages,
such as Golog [162] and SHOP2 [161]. For example, in [162], a composi-
tion framework supported by Golog is used to describe the properties of
services and users’ preferences. Therefore, Golog can effectively perform
a search for constructing a preferable composite service. As summarized
here, on the one hand, AI planning techniques may suffer scalability is-
sues when large service repositories are given [137], not capable of han-
dling optimization. To overcome these limitations, the hybridization of
AI planning techniques and other techniques, such as EC, have been pro-
posed in effectively and efficiently handling optimization in web service
composition [36, 37, 47, 117, 143].

Most small and medium business rely on relational database systems
to manage information and data. By utilizing the database systems, one
work introduces an Entity-Relationship (ER) model based approach for
web service composition [205]. This work relies an ER model to trans-
form existing knowledge into ontology in OWL for the service annotation,
which allows discovery, reasoning and composition of semantic web ser-
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vices. However, loop and switch constructs cannot be effectively handled
in their approach, and they do not deal with optimization at all.

2.3 Summary

This chapter presents a background knowledge in web service compo-
sition and an overview of related techniques in the areas of EC and AI
planning. It also reviews some recent works conducted in the context of
single-objective optimization, multi-objective optimization, and dynamic
optimization for both semi-automated and fully automated service com-
position. The first related area is semi-automated web service composi-
tion, where an abstract workflow of service execution is given in advance
and is strictly followed by all the candidate composite services. There-
fore, semi-automated web service composition focuses on selecting proper
services to fit each abstract slot of the composition workflow [123]. Vari-
ous techniques have been investigated and treat service requests as single-
objective optimization problem [7, 24, 26, 27, 28, 35, 36, 37, 58, 62, 63, 64,
76, 77, 82, 101, 112, 143, 144, 167, 188, 191, 194, 198, 196, 199, 204, 216, 207,
208, 206, 218, 231], multi-objective optimization problem [51, 110, 113, 150,
172, 187, 214, 220, 230], and dynamic optimization problem [9, 6, 30, 23, 65,
80, 108, 125, 190, 111, 124, 173]. Particularly, the single-objective optimiza-
tion problem aims to find composite services with a minimized number of
component services [12, 126, 152, 174], or with an optimized score based
on QoS [24, 117, 202, 221, 222], or with an optimized score based on both
QoS and QoSM [36, 58, 101]. The multi-objective optimization problem
aims to find a set of approximated Pareto solutions that present differ-
ent trade-offs. The dynamic optimization problem aims to efficiently find
high-quality composite services that can cope with frequent QoS changes
or unexpected service failures. The most critical limitation of the semi-
automated works is that they do not allow the changes of composition
structure, overlooking other workflow structures that lead to better qual-
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ity. In addition, very limited number of works, i.e., [36, 58, 101], is reported
to jointly consider QoSM and QoS of composite services.

The second related area is fully automated web service composition,
which gradually build service composition workflows while selecting web
services without strictly obeying any composition workflow. In the con-
text of single-objective fully automated web service composition, var-
ious techniques have been explored for this purpose. Particularly, GP
with tree and graph-based representations has been studied for fully au-
tomated web service composition, where trees and DAGs are evolved
with corresponding genetic operators for the searching candidate solu-
tion with optimized QoS [41, 42, 43, 117, 126, 152, 182, 202, 221, 222].
On the other hand, GA with indirect representation, such as permuta-
tions, has shown its advantage in finding higher quality composite ser-
vices [44, 47, 156], compared to GP-based approaches. However, it often
consumes more computation time as decoding strategies are required to
decode permutations into functionally valid DAGs. Apart from GP and
GA, PSO is also employed to solve this service composition problem with
a similar decoding strategy utilized in GA [47, 45, 175]. Furthermore, al-
ternative composition approaches based on Graph search can also cope
with fully automated service composition, searching composite services
represented as paths or sub-graphs based on a service dependency graph
[31, 32, 33, 75, 85, 209]. Despite some recent successes, existing fully au-
tomated EC-based approaches use implicit knowledge of promising solu-
tions to search for near-optimal composite services. The performance of
using explicit knowledge of promising solutions remains to be studied.
EDA is different from most conventional EC techniques and uses explicit
knowledge encoded by a probabilistic model based on the distribution of
a set of parent individuals. This technique will be studied in Chapter 3
with the aim to jointly optimize both QoSM and QoS, and it is compared
to some state-of-the-art EC-based techniques and graph search techniques.

For the first category of multi-objective fully automated web service
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composition, two recent works [40, 46] report the first two attempts to
cope with this problem. One of the reported works that proposes two hy-
bridized approaches, namely, Hybrid and Hybrid-L [40], outperforms the
other recent work [46] and NSGA-II in finding much better Pareto solu-
tions. Both Hybrid and Hybrid-L combine the use of two optimization
algorithms, i.e., NSGA-II and MOEA/D. Particularly, Hybrid-L allows the
local search to be performed on numerous decomposed single-objective
scalar optimization subproblems. Despite this success, two drawbacks of
this method can be addressed: (1) a large number of decomposed sub-
problems needs to be pre-defined, and (2) a simple form local search (i.e.,
so-called one-point ”swap”) is less effective and efficient to make local
improvements. This is because their local search is randomly applied to
every subproblem without focusing on the most suitable candidate solu-
tions in each generation. These drawbacks are addressed by proposing a
novel memetic method in the first part of Chapter 4 in the thesis. For the
second category multi-objective fully automated web service composi-
tion, one recent work reports the first attempt to employ MFEA to solve
the second category of multi-objective web service composition but in a
semi-automated way. Besides that, the number of composition tasks to be
optimized is very small, i.e., two. To address these limitations, the second
part of Chapter 4 will introduce two novel MFEAs.

The last related area is dynamic fully automated service composition.
To the best of our knowledge, no works have been reported in this area.
Instead, many works have been reported on semi-automated dynamic ser-
vice composition, handling QoS changes via different QoS models, such as
bounded-intervals [9, 125, 190] or prediction models [6, 30, 80, 108]. One
key limitation of these bounded-interval based approaches is that they as-
sume QoS changes happen periodically. Meanwhile, prediction-based ap-
proaches often require sufficient historical data, which is not always avail-
able for newly registered web services. Other approaches, such as ser-
vice reconfiguration approaches [23, 111, 124, 173] and robust approaches
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[65, 173], do not point out how and when QoS changes exactly happen.
They assume that their methods can be applied once QoS changes are
detected. They also assume that a large number of services exist in ad-
vance for every abstract service slot of composition workflows. In reality,
such assumptions are not always satisfied. Apart from each specific lim-
itation associated with different approaches, all these approaches ignore
the importance of handling QoS changes at the design stage. To address
all these limitations, Chapter 5 will introduce a new dynamic service com-
position problem and propose novel EC-based methods to effectively and
efficiently solve this problem.
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Chapter 3

Single-Objective Fully
Automated Web Service
Composition

3.1 Introduction

The two most notable challenges for semantic web service composition,
discussed in Chapter 1, are to ensure interoperability of services and
achieve Quality of Service (QoS) optimisation. These two challenges give
birth to semantic web services composition that enables a good interoperabil-
ity for chaining semantic web services via functional attributes [170, 227],
and QoS-aware service composition that aims to find composite services with
optimised QoS [158], respectively. Existing works on service composition
focus mainly on addressing only one of the two challenges above, ignoring
the importance of addressing these two challenges jointly. In fact, compos-
ite services could be ranked not only by the well-known non-functional
attributes (i.e., QoS), but also by the functional attributes (i.e., QoSM) as
an indicator of functional fit [101]. In this chapter, we will address these two
challenges jointly by introducing a comprehensive quality model. We will focus
on fully automated semantic Web Service Composition with the aim to

81
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optimize Comprehensive Quality (i.e., a combination of QoSM and QoS)
of composite services (henceforth referred to as WSC-CQ).

In the literature, huge efforts have been devoted to QoS-aware web
service compositions in the domain of semi-automated web service composi-
tion [26, 27, 28, 64, 101, 167, 188, 191, 198]. These works produce composite
services that strictly follow a pre-defined service composition workflow.
In the past few years, fully automated service composition has been a promis-
ing research field, and it constructs service workflows automatically with
service selections, without strictly obeying any specific workflows [147].
Fully automated service composition problem is an NP-hard problem
[123]. To efficiently find “good enough” composite services, many ap-
proaches [45, 72, 117, 41, 145, 221] employ EC techniques to automatically
generate composite services with high QoS.

The successes of the EC-based service composition approaches rely on
the use of knowledge, which is defined as useful information acquired
through experience (i.e., promising composite services) [131]. Based on a
practical or theoretical understanding of promising solutions, the knowl-
edge can be implicit (e.g., recombining genetic information of two selected
parent solutions) or can be explicit (e.g., learning distribution models from
a set of promising solutions). By iteratively updating and utilizing the
knowledge, new candidate solutions are generated until the most desired
solution is found [74].

Conventional EC techniques use implicit knowledge of promising so-
lutions to successfully achieve QoS-aware web service composition [117,
152, 175, 221], where new candidate solutions are generated by one or
more evolution operators on parent individuals. For example, GA pro-
duces new candidate solutions by crossover, operated on two selected
parent individuals. Whereas, EDA is different from most conventional
EC techniques. As we discussed in Sect. 2.1.3, EDA uses explicit knowl-
edge encoded by a probabilistic model based on the distribution of a set
of parent individuals, which often refers to a superior subpopulation. Par-
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ticularly, permutations are often utilized in EDA, and they can naturally
present solutions for many problems.

Despite recent successes on applications of EDA [189, 195], such as arc
routing and assembly flow-shop scheduling, how can EDA to be used to
successfully solve the WSC-CQ problem remains an important research
question. To the best of our knowledge, two approaches [140, 142] utilize
EDA for solving semi-automated service composition problems. [142] em-
ploys a binary representation to encode composite services, and it learns
a set of independent probabilities where 0 or 1 appears at each bit of
the binary representation. Different from [142], a different distribution
model based on Restricted Boltzmann Machine is learned based on a sim-
ilar binary representation [140]. These two works can only cope with
semi-automated service composition because their binary representations
are designed to encode solutions with a fixed structure of composition
workflows. Learning distributions over a pre-defined fixed structure is
relatively less challenging. To support learning distributions over varied
structures of composite services, opportunities still exist to further inves-
tigate new representations with suitable distribution models that can cap-
ture useful knowledge for achieving fully automated service composition.
In addition, effective sampling algorithms may need to be investigated
for sampling solutions from these distribution models. Therefore, we will
propose EDA-based approaches for fully automated service composition, where the
comprehensive quality of composite services (see details in Sect. 3.3) is to be opti-
mized. These approaches will be compared to some state-of-the-art works
[47, 32, 175] that were proposed to solve the same or similar problem.

EDA stresses more on global exploration, rather than local exploitation
[195]. This is because the distribution model in EDA focuses on explor-
ing more promising regions in the entire solution space, without attempt-
ing to improve the quality of any specific solutions evolved previously.
However, the optimization performance can often be improved directly
through local modifications on promising solutions. By restricting the tar-
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get region for local search and avoiding most of the randomness involved
in sampling directly from the distribution model, it can potentially expe-
dite the search of optimal solutions. Therefore, memetic EDA can improve
the competency of EDA in finding more effective solutions by introducing
local search. It has been successfully applied to many optimization prob-
lems, such as arc routing and assembly flow-shop scheduling [189, 195].

Despite some recent successes in memetic EDA, those memetic ap-
proaches [189, 195] cannot be simply applied to our web service com-
position problems. This is because their local search operators are de-
signed to exploit the neighbourhood of solutions, which are encoded by
problem-specific representations. Besides that, local search operators are
often proposed based on domain-specific knowledge for making effective
local improvements. To develop a memetic EDA with local search that
works effectively and efficiently for the WSC-CQ problem, several chal-
lenges remain to be addressed:

Firstly, a composite service is commonly represented as a DAG [41, 45].
Exploring the neighbourhood of a DAG, especially large DAGs, is com-
putationally infeasible [1]. Therefore, researchers [47, 98] often indirectly
define the neighbourhood of a composite service represented in the form
of a permutation, which can be converted to a DAG through a separate
decoding process. For example, so-called ‘swap’ operators proposed in
[44] can produce neighbours by swapping two random elements in a per-
mutation. Consequently, a neighbourhood is defined by a collection of
permutations obtainable through a number of swaps performed on any
given permutation. However, such neighbourhood often contains a large
proportion of neighbouring permutations with inferior quality. For effec-
tive local search, the neighbourhood must be refined to exclude most of
the clearly unwise swapping choices by exploiting domain-specific knowl-
edge.

Secondly, as we know, it is very challenging to determine which candi-
date solutions are to be selected for local search. Particularly, some ques-
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tions always need to be answered while developing memetic algorithms:
Should an equal chance be given to all the candidate solutions or should
only elite solutions be considered for local search? What are elite solu-
tions, and how many of them should be modified locally? It is difficult
to answer these challenging questions, because answers often vary due to
many factors, such as EC algorithms.

Third, a traditional strategy that exclusively explores the whole neigh-
bouring space of composite services can incur high computation cost. For
example, if a swap operator is utilized for exploring the neighbourhood
of a permutation of length n, the size of neighbourhood over this permu-
tation is n(n−1)

2
, based on all possible combinations for pair swaps [98]. In

[44], this neighbourhood size is reduced to n− 1 by restricting all the pair
swaps to always include a selected position. In the context of service com-
position, the length of such a permutation is usually equivalent to the size
of the service repository. When the size of the service repository is very
large, e.g., a maximum of 15211 web services are contained in WSC-09
benchmark [92], exploiting the neighbourhood of size n− 1 becomes very
expensive for practical use.

Fourth, one proportion of promising solutions are likely to be repeti-
tively sampled from an adjusted probability distribution model through-
out generations. These repeatedly sampled solutions also require compu-
tation time for repetitive decoding and evaluations, which are very costly.
However, these solutions are often favourable to users since they are can-
didate solutions with high quality, and help the distribution model to
get converged along with the generations. Therefore, reducing computa-
tion time caused by the repetitive sampling while helping the distribution
model to converge is very challenging.

To address these challenges above, we will propose memetic EDA-based
approaches with the aim to optimize the comprehensive quality of the composite
services. For the purpose of investigating the effectiveness of several neigh-
bourhood structures of composite services, we propose several domain-
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specific local search operators. Experimental study on the effectiveness
of employing these different local search operators in EDA is conducted.
Particularly, one proposed memetic EDA achieves the highest effective-
ness and efficiency among all the competing approaches. The following
objectives are sought in this chapter:

1. To propose a comprehensive quality model that addresses QoS and
QoSM to reach a desirable compromise.

2. To learn a suitable distribution that can capture the positions of com-
ponent services over varied service composition structures, and to
produce composite services with optimized comprehensive qual-
ity, we propose an EDA-based approach based on Node Histogram
Matrix (henceforth referred to as EDA-NHM). Particularly, we first
transform the service composition problem into a permutation-
based problem with a novel fixed-length, permutation-based rep-
resentation. This representation enables reliable and accurate learn-
ing of the underlying probability distribution model. Subsequently,
we employ histogram-based sampling [168] to sample promising
permutations, which also demand to be decoded into DAG-based
composite services. Furthermore, we utilize an archiving technique
to reserve promising composite services. By including these solu-
tions in the next generation for learning a NHM, we not only can
save computation time in sampling new solutions, but also better
trace promising searching areas.

3. To learn a suitable distribution that can naturally capture the infor-
mation of service dependencies for constructing effective composite
services, and to produce composite services with optimized com-
prehensive quality, we propose an EDA-based approach based on
the Edge Histogram Matrix (henceforth referred to as EDA-EHM).
Particularly, to initialize correct entries of EHM, we develop an
ontology-based querying technique for efficiently querying all the
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possible service dependencies among all the services in the service
repository. Subsequently, we propose a way of using EHM to learn
service dependencies from a set of promising composite services.
Consequently, to effectively and efficiently sample functionally
valid high-quality composite services from EHM directly, we pro-
pose a Guided Edge Histogram-Based Backward Graph Sampling
Algorithm (henceforth referred to as GEHBGSA).

4. To demonstrate the effectiveness of EDA-EHM and EDA-NHM,
we first create a more challenging, augmented version of the ser-
vice composition benchmarks based on WSC-08 [15] and WSC-09
[92]. In particular, the new benchmarks extend WSC-08 and WSC-
09 with QoS attributes in QWS dataset [4]. Moreover, the number
of web services in the service repository is doubled as new bench-
marks (with much bigger searching space) to demonstrate that our
EDA-based approaches can maintain high performance on large
problems. These two benchmarks have been made freely available
online 1. We experimentally compare EDA-EHM and EDA-NHM
with some state-of-the-art methods that have been recently pro-
posed to solve the same or a similar service composition problem
using the new benchmark. These state-of-the-art methods include
a PSO-based approach [175] (henceforth referred to as PSO), a fixed
length GA-based approach [47] (henceforth referred to as FL), and a
non-EC deterministic approach based on a path construction and se-
lection method from the service dependency graph [32] (henceforth
referred to as PathSearch). Our experimental results illustrate that
EDA-NHM can outperform all the competing methods in finding
composite services with high comprehensive quality, while EDA-
EHM can achieve the highest efficiency among all the competing
EC-based methods with a reasonable trade-off in the comprehensive

1Two augmented benchmarks for automated web service composition is available
from https://github.com/chenwangnida/Dataset
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quality.

5. To further improve the performance of EDA-NHM, we propose
memetic EDA-based approaches by introducing an effective local
search. Particularly, we first propose several neighbourhood struc-
tures for permutations. These neighbourhoods are created by de-
veloping several novel domain-specific local search operators, based
on constructing and swapping building blocks of composite ser-
vices. Secondly, to significantly reduce the computation time of our
proposed memetic EDA-based approach, an efficient local search
strategy is introduced by combining a fitness uniform distribution
scheme for selecting suitable solutions and stochastic local search
operators for effectively and efficiently exploiting neighbours.

6. To evaluate the performances of our proposed memetic EDA-based
approaches, we experimentally compare them with one state-of-the-
art memetic GA method [47] (henceforth referred to as MEFL) and
EDA-NHM as a baseline. MEFL was recently proposed to solve sim-
ilar service composition problems, achieving the highest effective-
ness in finding high-quality composite services with the help of lo-
cal search. Meanwhile, EDA-NHM is chosen as a baseline because
it achieves the best effectiveness without local search in our previ-
ous experiment. Our experimental results illustrate that one of our
proposed memetic EDA-based approaches can achieve cutting-edge
performance.

3.2 Chapter Organization

The remainder of this chapter is organized as follows: Sect. 3.3 formu-
lates the WSC-CQ problem with a comprehensive quality model. Sect. 3.4
presents an initial step, i.e., re-processing service repository, for all service
composition algorithms discussed in our thesis. Sect. 3.5 and Sect. 3.6
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present our EDA-NHM and EDA-EHM algorithms to the WSC-CQ prob-
lem. Sect. 3.7 outlines the experimental design and results for evalu-
ating the performance of EDA-NHM and EDA-EHM. Sect. 3.8 present
our memetic EDA algorithms. Sect. 3.9 outlines the experimental design
and results for evaluating the performance of memetic EDA algorithms.
Sect. 3.10 summarises this chapter.

3.3 The WSC-CQ Problem

A semantic web service (service, for short) is considered as a tuple S =

(IS, OS, QoSS) where IS is a set of service inputs that are consumed by
S, OS is a set of service outputs that are produced by S, and QoSS =

{tS, ctS, rS, aS} is a set of non-functional attributes of S. The inputs in IS

and outputs in OS are parameters modeled through concepts in a domain-
specific ontologyO. The attributes tS, ctS, rS, aS refer to the response time,
cost, reliability, and availability of service S, respectively, which are four
commonly used QoS attributes [226].

A service repository SR is a finite collection of services supported by a
common ontology O.

A composition task (also called service request) over a given SR is a tuple
T = (IT , OT ) where IT is a set of task inputs, andOT is a set of task outputs.
The inputs in IT and outputs in OT are parameters that are semantically
described by concepts in the ontology O.

Two special atomic services Start = (∅, IT , ∅) and End = (OT , ∅, ∅) are
always included in SR to account for the input and output of a given
composition task T .

We use matchmaking types to describe the level of a match between out-
puts and inputs [132]. For concepts a, b inO the matchmaking returns exact
if a and b are equivalent (a ≡ b), plugin if a is a sub-concept of b (a v b),
subsume if a is a super-concept of b (a w b), and fail if none of the pre-
vious matchmaking types is returned. As discussed in Sect. 2.1.2, we are
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only interested in exact and plugin matches for robust compositions. As
argued in [101], plugin matches are less preferable than exact matches due
to the overheads associated with data processing. For plugin matches, the
semantic similarity of concepts is suggested to be considered when com-
paring different plugin matches.

A robust causal link [103] is a link between two matched services S and
S ′, denoted as S → S ′, if an output a (a ∈ OS) of S serves as the input b
(b ∈ OS′) of S ′ satisfying either a ≡ b or a v b. For concepts a, b in O,
the semantic similarity sim(a, b) is calculated based on the edge counting
method in a taxonomy like WorldNet [160]. Advantages of this method are
simple calculation and accurate measure [160]. Therefore, the matchmaking
type and semantic similarity of a robust causal link is defined as follows:

typelink =

1 if a ≡ b (exact match)

p if a v b (plugin match)
(3.1)

simlink = sim(a, b) =
2Nc

Na +Nb

(3.2)

with a suitable parameter p, 0 < p < 1, and with Na, Nb and Nc, which
measure the distances from concept a, concept b, and the closest common
ancestor c of a and b to the top concept of the ontology O, respectively.
However, if more than one pair of matched output and input exist from
service S to service S ′, typee and sime will take on their average values.

The QoSM of a composite service is obtained by aggregating over all
the robust causal links as follows:

MT=
m∏
j=1

typelinkj (3.3)

SIM=
1

m

m∑
j=1

simlinkj (3.4)

Formal expressions as in [116] are used to represent service composi-
tions. The constructors •, ‖, + and ∗ are used to denote sequential com-
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position, parallel composition, choice, and iteration, respectively. The set
of composite service expressions is the smallest collection SC that contains all
atomic services and that is closed under sequential composition, parallel
composition, choice, and iteration. That is, whenever C0, C1, . . . , Cd are in
SC then •(C1, . . . , Cd), ‖ (C1, . . . , Cd), +(C1, . . . , Cd), and ∗C0 are in SC, too.
Let C be a composite service expression. If C denotes an atomic service S
then its QoS is given by QoSS . Otherwise the QoS of C can be obtained

inductively as summarized in Table 3.1. Herein, p1, . . . , pd with
d∑

k=1

pk = 1

denote the probabilities of the different options of the choice +, while `
denotes the average number of iterations. Therefore, QoS of a composite
service, i.e., availability (A), reliability (R), execution time (T ), and cost
(CT ) can be obtained by aggregating aC , rC , tC and ctC as in Table 3.1.

Table 3.1: QoS calculation for a composite service expression C.

C = rC = aC = ctC = tC =

•(C1, . . . , Cd)
d∏

k=1

rCk

d∏
k=1

aCk

d∑
k=1

ctCk

d∑
k=1

tCk

‖ (C1, . . . , Cd)
d∏

k=1

rCk

d∏
k=1

aCk

d∑
k=1

ctCk
MAX{tCk

|k ∈ {1, ..., d}}

+(C1, . . . , Cd)
d∏

k=1

pk · rCk

d∏
k=1

pk · aCk

d∑
k=1

pk · ctCk

d∑
k=1

pk · tCk

∗C0 rC0
` aC0

` ` · ctC0 ` · tC0

As discussed in Sect. 2.1.2, we mainly focus on two constructors, se-
quence • and parallel ‖, similar as most automated service composition
works [117, 42, 41, 45] do, where composite services are represented as
DAGs. We can easily calculate QoS of a composite service that is repre-
sented as a DAG according to Table 3.1.

When multiple quality criteria are involved in decision making, the
fitness of a solution is defined as a weighted sum of all individual criteria
in Eq. (3.5), assuming the preference of each quality criterion based on its
relative importance is provided by the user [79]:
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Fitness(C) = w1M̂T+w2
ˆSIM+w3Â+w4R̂+w5(1− T̂ )+w6(1−ĈT ) (3.5)

with
∑6

k=1 wk = 1 (wk > 0). This objective function is defined as a com-
prehensive quality model for service composition. We can adjust the weights
according to the user’s preferences. M̂T , ˆSIM , Â, R̂, T̂ , and ĈT are nor-
malized values calculated within the range from 0 to 1 using Eq. (3.6). To
simplify the presentation, we also use the notation (Q1, Q2, Q3, Q4, Q5, Q6)

= (MT,SIM,A,R, T, CT ). Q1 and Q2 have a minimum value of 0 and a
maximum value of 1. The minimum and maximum value of Q3, Q4, Q5,
andQ6 are calculated across all the relevant services, which are discovered
using a greedy search technique, see the following Sect. 3.4

Q̂k =


Qk−Qk,min

Qk,max−Qk,min
if k = 1, . . . , 4 and Qk,max −Qk,min 6= 0,

Qk,max−Qk

Qk,max−Qk,min
if k = 5, 6 and Qk,max −Qk,min 6= 0,

1 otherwise.

(3.6)

The goal of comprehensive quality-aware service composition is to find a
composite service expression C? that maximizes the objective function in
Eq. (3.5). C? is hence considered as the best possible solution for a given
composition task T .

3.4 Pre-processing of A Service Repository

Pre-processing of a service repository is an initial step for building com-
posite services. We achieve two goals at this pre-processing stage: (1) re-
duce the size of the service repository SR by keep only those that are rel-
evant to the service composition task T , and (2) identify service layers of
these relevant services. The service layers will be utilized in our proposed
sampling technique in EDA-EHM in Sect. 3.6.4 and a proposed stochastic
local search operator in Sect. 3.8.3.
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ALGORITHM 10 outlines the pre-processing of a service repository
using a greedy search that repeatedly searches services in SR. Particu-
larly, it starts with searching services in SR that can be fully satisfied by
OutputSet, which is initialized with IT . Subsequently, services fulfilled
by OutputSet are included into the first layer, denoted as L1, and are
removed from SR. OutputSet is then updated with the outputs of the ful-
filled services found in the first iteration. This searching process will stop
when no additional services can be fulfilled by the updated OutputSet.
Finally, suppose n services layers are found, service layers (denoted as
L =

⋃
l∈{1,...,n}

Ll) are returned. Besides that, an updated SR is returned by

combining all the services in each layer.

ALGORITHM 10. Pre-processing of a Service Repository.
Input : T , SR, l← 1

Output: an updated SR and service layers L
1: Initial layer Ll with an empty web service set;
2: Initial OuputSet with IT ;
3: while at least one S satisfied by OutputSet do
4: Put satisfied services into layer Ll and remove them from SR;
5: Add all outputs of the satisfied services to OutputSet;
6: l← l + 1;

7: L =
⋃

l∈{1,...,n}
Ll ;

8: return service layers L and an updated SR;

Example 1. We consider a composition task T = ({a, b}, {i}) and a SR con-
sisting of seven atomic services. S0 = ({b}, {i}, QoSS0), S1 = ({a}, {f, g}, QoSS1),
S2 = ({a, b}, {h}, QoSS2), S3 = ({f, h}, {i}, QoSS3), S4 = ({a}, {f, g, h}, QoSS4),
S5 = ({a, c}, {f, g, h}, QoSS4) and S6 = ({c, d, e}, {f, g, h}, QoSS4). The two
special services Start = (∅, {a, b, e}, ∅) and End = ({i}, ∅, ∅) are defined by
the given composition task T . Fig. 3.1 shows an example of discovering relevant
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services and service layers over a service request T , where five related services
(i.e., S0, S1, S2, S3, and S4) and two layers (i.e., L1 and L2) are found. In L1,
S0, S1, S2, and S4 can be immediately satisfied by the task inputs IT , i.e., {a, b},
of task T , and they have the same distance to Start (Note that the distance is
measured by the number of predecessors). Different from the services in L1, S3 in
L2 requires additional inputs provided by services in L1, with a longer distance
to Start.

𝑆" 𝑆# 𝑆$𝑆%

𝑆& 𝑆' 𝑆(

𝑆𝑅

𝑆" 𝑆#

𝑆$

𝑆%

𝑆&

Updated 𝑆𝑅

𝑇 = ( 𝑎, 𝑏 , 𝑖 )

𝐿" 𝐿#

𝑆&

𝑆%

𝑆"

𝑆#

𝑆$𝑆𝑡𝑎𝑟𝑡

+

+

Fig. 3.1: An example of pre-processing of service repository
for a service request T .

3.5 The EDA-NHM Algorithm

In this section, we present our EDA-NHM algorithm for the WSC-CQ
problem. We will start with an outline of EDA-NHM in Sect. 3.5.1. Sub-
sequently, we discuss two proposed ideas behind this approach: the first
idea is to introduce a novel permutation-based representation for present-
ing composite services, allowing reliable and accurate learning of NHM
from promising solutions (see details in Sect. 3.5.2); the second idea is to
apply NHM for learning the knowledge of promising solutions (see details
in Sect. 3.6.3).
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The EDA strategy has been applied with some success to optimization
problems where candidate solutions can be represented as permutations
[29]. The success, however, strongly depends on the ability to define a
suitable probability distribution model for the problem domain under in-
vestigation. One idea would be representing a service composition as a
queue of services, i.e., a permutation of atomic services indexes from the
service repository SR. Such a permutation can be interpreted. For ex-
ample, Graphplan [20, 155] has been widely used to decode permutations
into DAGs automatically [40, 47, 174, 192, 200]. However, permutations
could lead to conflicts in learning the knowledge of service index posi-
tions for composite services because different permutations could often be
decoded into an identical DAG-based composite service. To reduce the
chances of conflicts, we aim to efficiently produce a unique and more reli-
able permutation for the identical DAG-based composite service. In other
words, a bi-directional map is ensured between permutations and DAGs,
see details in Sect. 3.5.2.

To better trace promising searching areas, we need to consider the
past good experience for constructing a new NHM in future genera-
tions. Therefore, an archive technique is introduced to reserve half the
population-size of elite individuals to the next generation. Meanwhile,
reserved individuals can also significantly reduce the overall computation
time for their evaluation in the future.

3.5.1 Outline of EDA-NHM

EDA-NHM is outlined in ALGORITHM 11. To begin with, we initialize
the initial population P0 by randomly generating m permutations. After-
wards, each permutation will be evaluated based on its decoded DAG-
based solution, Ggk . Note that each permutation can be interpreted as a
DAG through the use of a forward decoding technique (i.e., Graphplan
[20, 155]). Next, we encode each individual inP0 with a different permuta-
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ALGORITHM 11. EDA-NHM for the WSC-CQ problem.
Input : composition task T , service repository SR
Output: a composite service

1: Initialize P0 with m random permutations as a Πg
k (where

k = 1, . . . ,m);
2: Evaluate each Πg

k by decoding it into a DAG-based solution, Ggk ;
3: Replace each solution in P0 with a corresponding encoded Π?g

k;
4: Create an archive with the top m

2
best solutions in P0;

5: Generate NHM0 from the top m
2

best solutions in P0;
6: Set generation counter g ← 0;
7: while g < maximum number of generations do
8: Populate Pg+1 with m

2
solutions Πg+1

k sampled from NHMg;
9: Form Pg+1 with additional m

2
solutions from the archive;

10: Empty the archive;
11: Evaluate each Πg+1

k by decoding it into a DAG-based solution,
Gg+1
k ;

12: Replace each solution in Pg+1 with a corresponding encoded
Π?g+1

k ;
13: Update the archive with the top m

2
best solutions in Pg+1;

14: Generate NHMg+1 from the top m
2

best solutions in Pg+1;
15: Set g ← g + 1;

16: Let solopt be the best solution over all the generations;

tion Π?g
k, which is the new presentation proposed in EDA-NHM algorithm

(see details in Sect. 3.5.2). In Step 4 and 5, based on the fitness value, only
the top m

2
best solutions are used to generate NHMg (following the basic

structure of EDA in [168]) and reserved into an archive. The iterative part
(Step 7 to 15) will be repeated until the maximum number of generations is
reached. During each iteration, NHBSA [168] is employed to sample m

2
so-

lutions fromNHMg for the next population Pg+1, see details in Sect. 3.5.3.
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Afterwards, we form the Pg+1 with additional solutions reserved from the
archive. This archive will be cleared up for the use of the next generation.
Step 11 to 14 are similar to Step 2 to 5. Lastly, we return the best solu-
tion sampled over all the generations. In a nutshell, our proposed method
introduces a novel permutation-based representation Π?g

k that requires an
decoding and encoding process, and an archive technique that reserves m

2

elite solutions in each generation.

3.5.2 A novel permutation-based representation

Composite services are commonly represented as DAGs [41, 45]. Let G =

(V,E) be a DAG-based composite service from Start to End, where nodes
correspond to the services and edges correspond to the QoSM between
two connected services (Often, V does not contain all services in SR). As
discussed previously, we present composite services as permutations, and
we ensure a bi-directional map between permutations and DAGs. Let
Π? = (π0, . . . , πt, πt+1, . . . , πn−1) be a permutation, elements of which are
{0, . . . , t, t + 1, . . . , n − 1} such that πi 6= πj for all i 6= j. Particularly,
{0, . . . , t} are service indexes (i.e., id number) of the component services
in the corresponding G, and is sorted based on the longest distance from
Start to every component services of G. While {t+1, . . . , n−1} be indexes
of remaining services in SR are not utilized by G. Note that the longest
distance between the services and Start can ensure that all the inputs of
these services can be fulfilled. Meanwhile, multiple services could be asso-
ciated with the same distance to Start. These services are sorted randomly
because no information can be extracted from the DAG to determine the
order of these services. We use Π?g

k to present the kth (out of m, m is pop-
ulation size) composite service, and Pg = [Π?g

0, . . . ,Π
?g
k, . . . ,Π

?g
m−1] to rep-

resent a population of composite services at generation g. To summarize a
process of producing the new permutations in EDA-NHM, we outline this
process in Fig. 3.2.
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If 𝑔 = 0, randomly Initialize permutations
If 𝑔 > 0,	sample permutations from an NHM

Decode each permutation into a DAG

Evaluate each permutation based on its corresponding DAG

Encode each DAG into a different permutation

Learn an NHM from the encoded permutation

Fig. 3.2: A process of generating composite services as permutations.

Example 2. Let us consider a composition task T = ({a, b}, {e, f}) and a service
repository SR consisting of six atomic services. S0 = ({e, f}, {g}, QoSS0), S1 =

({b}, {c, d}, QoSS1), S2 = ({c}, {e}, QoSS2), S3 = ({d}, {f}, QoSS3), and S4 =

({a}, {h}, QoSS4). The two special services Start = (∅, {a, b}, ∅) and End =

({e, f}, ∅, ∅) are defined by a given composition task T . Fig. 3.2 illustrates an
example of producing permutation [1, 2, 3, 0, 4] from a DAG, which is decoded
from a given permutation [4, 1, 0, 2, 3].

As an example in Fig. 3.3, take a permutation as [4, 1, 0, 2, 3]. This ser-
vice index queue is decoded into a G, representing a composite service that
satisfies the composition task T . Note that, such a decoding process can
ensure the functional validity of a solution. Afterwards, the G is mapped
to a permutation Π? = [1, 2, 3 | 0, 4]. Herein, each position on the left side
of | corresponds to a service discovered by a BFS on G from Start. While
the right side corresponds to the remaining atomic services in SR, but not
in G. Note that | is just displayed for the courtesy of the reader, rather than
being part of the permutation-based representation. Furthermore, we also
permit the encoding [1, 2, 3 | 4, 0], as no information can be extracted from
G to determine the order of 0 and 4.
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Fig. 3.3: A different permutation produced by
a decoding and encoding process.

A permutation-based populationPg can be created withm permutation-
based solutions. Consider m = 6, Pg could be represented as follows:

Pg =



Π?g
0

Π?g
1

Π?g
2

Π?g
3

Π?g
4

Π?g
5


=



1 2 3 | 0 4

0 | 1 2 3 4

0 | 1 2 3 4

4 3 | 0 1 2

4 3 | 0 1 2

2 1 3 | 0 4


=



1 2 3 0 4

0 1 2 3 4

0 1 2 3 4

4 3 0 1 2

4 3 0 1 2

2 1 3 0 4



3.5.3 Application of NHM Construction and NHBSA

This section presents a method for constructing a NHM and an applica-
tion of node histogram-based sampling [168] for sampling solutions from
the NHM. Using the novel permutation-based representation for candi-
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date composition services, we are now able to apply this method to our
problem.

The node histogram matrix (NHM) at generation g, denoted by NHMg,
is an n× n-matrix with entries egi,j as follows:

egi,j =
m−1∑
k=0

δi,j(Π
?g
k) + ε (3.7)

δi,j(Π
?g
k) =

1 if πi = j

0 otherwise
(3.8)

where i, j = 0, 1, . . . , n − 1, and ε = m
n−1

bratio is a predetermined bias.
Roughly speaking, entry egi,j counts the number of times that service in-
dex πi appears in position j of the permutation over all permutations in
population Pg.

Example 3. Consider Pg in Example 2, the size of population m equals 6, the
dimension size of each individual (i.e., permutation) n equals 5, and bratio = 0.2,
we calculate NHMg as follows:

NHMg =


2.3 1.3 1.3 0.3 2.3

0.3 3.3 1.3 2.3 0.3

2.3 0.3 2.3 2.3 0.3

2.3 2.3 0.3 2.3 0.3

0.3 0.3 2.3 0.3 4.3


We pick up an element in the NHMg as an example to demonstrate

the meaning of each element in the NHM. For example, eg0,0(that equals
2.3) is made of integer and decimal parts: 2 and 0.3. The integer number 2

means that service index π0 appears at the first position 2 times, while the
decimal number 0.3 is a ε bias, calculated by 6

5−1
0.2.

Once we have computed NHMg, following ALGORITHM 12, we can
sample a new candidate solution Πg+1

k (with k = 0, . . . ,m − 1) from a
NHM g for generation g + 1. Particularly, NHBSA starts with sampling
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ALGORITHM 12. NHBSA for sampling a permutation-based com-
posite service [168]

Input : NHM g

Output: Πg+1
k

1: Generate a random position index permutation r[] of [0,1, ..., n-1];
2: Generate a candidate list C = [0, 1, ..., n− 1];
3: Set the position counter p← 0;
4: while p < n− 1 do

5: Sample node x with probability
eg
r[p],x∑

j∈C e
g
r[p],j

;

6: Set c[r[p]]← x and remove node x from C;
7: p← p+ 1;

8: Πg+1
k ← c[];

9: return Πg+1
k ;

an element for a random position of a permutation with a probability cal-
culated based on the elements of NHM g. Then, it recursively continues
sampling other elements for other positions in the permutation. Once a
new permutation Πg+1

k is returned, the same decoding part discussed in
Sect. 3.5.2 will be performed on Πg+1

k to produce a functionally valid com-
posite service in the DAG form.

3.6 The EDA-EHM Algorithm

In this section, we introduce our EDA-EHM method for the WSC-CQ
problem. We first outline our EDA-NHM method in Sect. 3.6.1. Sub-
sequently, we discuss three ideas behind this approach: (1) a proposed
ontology-based querying technique for querying service dependency in
Sect. 3.6.2, (2) an application of EHM for learning service dependency in
Sect. 3.6.3, and (3) a proposed sampling technique for building composite
services in Sect. 3.6.4.
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As presented in Sect. 3.5, EDA-NHM learns the distribution of each
service index in SR at each absolute position of a permutation. How-
ever, many service indexes at the end of sampled permutations do not
contribute to constructing DAGs. Therefore, we should focus on useful
services (i.e., component services of DAGs), which can be captured by a set
of service dependencies that forms DAGs. Meanwhile, distribution on the
set of service dependencies can be easily presented in EHM. Consequently,
we suggest learning EHM from promising composite services. In partic-
ular, we start with proposing an ontology-based querying technique for
querying dependencies of services in SR (see details in Sect. 3.6.2). This
technique can be utilized to initial valid entries of EHMs. Afterwards, we
construct an EHM from a set of promising DAG-based composite services
represented by a set of services dependencies (see details in Sect. 3.6.3).

Furthermore, to efficiently sample functionally valid DAG-based com-
posite services from EHM, we propose a GEHBGSA by effectively using
some information, such as services dependencies and service layers, to
guide the sampling process (see details in Sect. 3.6.4).

3.6.1 Outline of EDA-EHM

We outline our proposed EDA-EHM in ALGORITHM 13. We start with
labeling an ontology, O, with task-related web services using ALGO-
RITHM 14 in Sect. 3.6.2, Next, we initialize a population P0 with m DAG-
based candidate solutions Ggk by decoding m random permutations Πg

k

(where k = 1, . . . ,m) into DAGs. Those candidate solutions are eval-
uated using Eq. 3.5. Then, the top half best solutions are stored in an
archive, and are also used to generate a EHMg (where g = 0), see details
in Sect. 3.6.3. Step 6 to 13 will be repeated until the maximum number
of generations is reached: we sample m

2
new DAG-based solutions from

EHMg using our proposed GEHBGSA (see details in Sect. 3.6.4). These
newly sampled solutions are combined with the archive to form the next
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ALGORITHM 13. EDA-EHM for the WSC-CQ problem.
Input : composition task T , service repository SR and g = 0

Output: a near-optimal composite service Gopt

1: Label O with task-related web services using ALGORITHM 14;
2: Initialize Pg with m DAG-based solutions, each solution

represented as a Ggk (where k = 1, . . . ,m);
3: Evaluate each solution in Pg using Eq. 3.5;
4: Create an archive with the top m

2
of best solutions in P0;

5: Generate EHMg from the top m
2

of best solutions in P0;
6: while g < maximum number of generations do
7: Sample m

2
Gg+1
k from EHMg using ALGORITHM 15;

8: Populate Pg+1 with the sampled solutions and additional m
2

solutions from the archive;
9: Empty the archive;

10: Evaluate each solution in Pg+1 using Eq. 3.5;
11: Update the archive with the top m

2
of best solutions in Pg+1;

12: Generate EHMg+1 from the top m
2

of the best solutions in Pg+1;
13: Set g ← g + 1;

14: Let Gopt be the best solution over all the generations;

population Pg+1, which will be evaluated and selected to learn EHMg+1.
The archive is cleared up for the next generation. At last, the best solu-
tion, Gopt over all the generations is returned. In summary, we propose a
way of learning EHM from high-quality solutions evolved by EDA and
a novel sampling technique, GEHBGSA, for sampling functionally valid
DAG-based composite services.

3.6.2 Discovery of Service Dependency

Service dependency represents a relationship between two services (e.g.,
service Sj and service Si) that are determined by the existence of robust
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causal links between these two services. In other words, one service, Sj ,
can be either partially or fully satisfied by its predecessor Si, denoted as
Si → Sj .

To identify service dependencies regarding each service, we propose
an ontology-based querying technique to efficiently find all the predeces-
sor of any service in SR. We first create labels for concept nodes of a tax-
onomy tree in O with task-related services using ALGORITHM 14. In this
algorithm, we mark each tree node with two sets of services, i.e., OC and
IC , where service dependencies can be established from services in OC to
services in IC . We can query the predecessors of one service S by looking
at a union of OC on the concept nodes, which are the concepts related to
the inputs of S. We will demonstrate this technique in Example 4.

ALGORITHM 14. Labeling Services on a taxonomy tree in O
Input : SR and O
Output: labeled O

1: foreach concept C in taxonomy tree in O do
2: label two empty service set IC and OC in relation to inputs and

output;

3: foreach S in SR do
4: foreach IS of S do
5: find concepts C of IS on taxonomy tree in O;
6: foreach C in C ∪ its child concepts do
7: put S to IC of C;

8: foreach OS of S do
9: find concepts C of OS on taxonomy tree in O;

10: foreach C in C ∪ its parent concepts do
11: put S to OC of C;

12: return labeled O;
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Example 4. Suppose we have a service repository SR consisting of a single
service S0 = ({c, d}, {e}, QoSS0). Let us consider a service request T =

({a, b}, {i}). Two special services Start = (∅, {a, b}, ∅) and End = ({i}, ∅, ∅)
are defined by the given composition task T . Concepts related to a, b, c, d, e, and
i are Dog, Artificial Data, Data, Canine, Animal Robot and Robot respectively.
These concepts are represented and labeled with services in an taxonomy tree in
Fig. 3.4. The predecessor of End is S0, which is a service in ORobot of concept
Robot related to i. The predecessor of S0 is Start, which is a service in an union
of OData and OCanine related to c and d respectively.

𝐼"#$#% :𝑒𝑛𝑑	
𝑂"#$#% : 𝑆-Animal

Mammal

Canine Feline

Dog Wolf CatTiger

Animate

Robot

Thing

Humanoid Robot Animal Robot

Inactive

Data

Artificial Data

𝐼.#/:	𝑆-
𝑂.#/: 𝑆𝑡𝑎𝑟𝑡 ,
	

𝐼45678 :	𝑆-
𝑂45678 : 𝑆𝑡𝑎𝑟𝑡	

𝐼95::5; :		
𝑂95::5; : 𝑆𝑡𝑎𝑟𝑡 	

𝐼<67:5; :		
𝑂<67:5; : 𝑆𝑡𝑎𝑟𝑡

𝐼<67:5%8:		
𝑂<67:5%8: 𝑆𝑡𝑎𝑟𝑡 , 𝑆-

𝐼=>76/:		
𝑂=>76/: 𝑆𝑡𝑎𝑟𝑡, 𝑆-

𝐼<?%7@7A75;.5%5:	𝑆-
𝑂<?%7@7A75;.5%5: 𝑆𝑡𝑎𝑟𝑡 	

𝐼.5%5:	𝑆-
𝑂.5%8: 𝑆𝑡𝑎𝑟𝑡 	

𝐼B65A%7C8 :		
𝑂B65A%7C8 : 𝑆𝑡𝑎𝑟𝑡

𝐼DE:56#7F	"#$#%: 𝑒𝑛𝑑	
𝑂DE:56#7F	"#$#%: 

𝐼<67:5;	"#$#% :𝑒𝑛𝑑	
𝑂<67:5; 	"#$#% : 𝑆-	

Fig. 3.4: An example of labeled O.

3.6.3 Application of EHM Construction

LetD = {Si → Sj} be the set of all existing service dependencies among all
possible pairs of services in SR (Note that the size of D is not big because
only task-related services are considered, and not every pair of services
has service dependencies). Let G be a DAG-based composite service con-
sisting of a set of service dependencies, satisfying G ⊂ D. Consequently,
Ggk represents the kth (0 ≤ k < m) DAG-based composite service, and
Pg = [Gg0 , . . . ,G

g
k , . . . ,G

g
m−1] is represented as a population of composite
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services at generation g. We will use an example to demonstrate the con-
struction of an EHM based on a set of G below.

Example 5. Suppose we have a service repository SR consisting of five services
S0 = ({c, d}, {e}, QoSS0), S1 = ({a}, {f, g}, QoSS1), S2 = ({a, b}, {h}, QoSS2),
S3 = ({f, h}, {i}, QoSS3) and S4 = ({a}, {f, g, h}, QoSS4). Let us consider the
same service request T = ({a, b}, {i}) as in Example 4.

A permutation-based population P0 can be created withmDAG-based
solutions. Consider m = 6, P0 could be represented as follows:

P0 =



G0
0

G0
1

G0
2

G0
3

G0
4

G0
5


=



{Start→ S1, Start→ S2, S1 → S3, S2 → S3, S3 → End}
{Start→ S0, S0 → End}
{Start→ S0, S0 → End}

{Start→ S4, S4 → S3, S3 → End}
{Start→ S4, S4 → 3, S3 → End}

{Start→ S1, Start→ 2, S1 → S3, S2 → S3, S3 → End}


The edge histogram matrix at generation g (denoted by EHMg) is a ma-

trix with entries egi,j (where i, j = Start, 0, 1, · · · ,m− 1, End) as follows:

egi,j =


∑m−1

k=0 δi,j(G
g
k) + εi,j if i 6= j

0 otherwise
(3.9)

δi,j(Ggk) =

1 if Si → Sj ∈ Ggk
0 otherwise

(3.10)

εi,j =

 bratio
|D|

∑m−1
k=0 |G

g
k | if Si → Sj ∈ D

0 otherwise
(3.11)

Herein, bratio is a predetermined constant (called bias ratio), |Ggk | denotes
the number of service dependencies in Ggk , while |D| denotes the number of
all service dependencies in SR. Roughly speaking, entry egi,j counts how
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often a service dependency Si → Sj occurs in all composition services in
population Pg.

Consider theP0 in Example 5, where the size ofP0, m, equals 6, and the
length of permutation, n, equals 5, bratio = 0.2, |D| = 9, and

∑m−1
k=0 |G

g
k | = 20.

We calculate EHMg as follows:

EHM0 =



i \ j Start 0 1 2 3 4 End

Start 0 2.44 2.44 2.44 0 2.44 0

0 0 0 0 0 0 0 2.44

1 0 0 0 0 2.44 0 0

2 0 0 0 0 2.44 0 0

3 0 0 0 0 0 0 4.44

4 0 0 0 0 2.44 0 0

End 0 0 0 0 0 0 0



3.6.4 GEHBGSA for sampling

The proposal of GEHBGSA is inspired by the Edge Histogram-Based Sam-
pling Algorithm (EHBSA) [169]. Instead of sampling permutations using
EHBSA, GEHBGSA aims to sample functionally valid DAG-based com-
position services from a constructed EHM. To effectively sample DAGs,
we utilize some useful information to guide the sampling process in
GEHBGSA. This information includes: only row indexes of non-zero
entries in EHMg are to be sampled, and layer information is used to ver-
ify sampled predecessors for preventing cycles in solutions. GEHBGSA
builds a DAG backwards as it has been suggested that backward graph
building has its advantage over the forward graph building since it does
not create dangling services (i.e., services do not contribute the required
output of a service request) [47]. This sampling algorithm is summarized
in ALGORITHM 15.

In ALGORITHM 15, we first initialize a DAG-based solution G with an
empty set of service dependencies, and a set of service, SerSet, with End.
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ALGORITHM 15. GEHBGSA for sampling a functionally valid
DAG-based composite service

Input : EHMg, layers Lp, where p = 0, . . . , q

Output: a composite service G
1: initial G = { } and SerSet = {End};
2: foreach Sj in SerSet do
3: if SerSet does not only contains start and Sj is not fully satisfied

then
4: identify Lp s.t. Sj ∈ Lp ;
5: determine a set SC of row indexes for non-zero entries in

{egx,j}
n−1

x=0
;

6: while inputs of Sj is not fully satisfied and SC is not empty do

7: sample one predecessor x with probability
egx,j∑

i∈SC e
g
i,j

;

8: identify Lp′ s.t. Sx ∈ Lp′ ;
9: if p′ ≤ p and any unsatisfied input of Sj is fulfilled by Sx

then
10: put Sx → Sj into G ;
11: foreach Sj? in SerSet do
12: identify Lp? s.t. Sj? ∈ Lp? ;
13: if p′ ≤ p? and any unsatisfied input of Sj? is fulfilled

by Sx then
14: put Sx → Sj? into G ;

15: add Sx to SerSet;

16: remove x from SC;

17: remove Sj from SerSet;

18: return G;

For SerSet, the satisfactions on the inputs of services in SerSet are re-
quired to be checked. The following steps (i.e., Step 2 to 17) are repeated if
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SerSet does not only contains Start or any service in SerSet are not fully
satisfied: for each service Sj in SerSet, we identify its layer Lp. Mean-
while, we initialize a set, SC, consisting of row indexes of non-zero entries
in {egx,j}

n−1

x=0
. Afterwards, another repeated sampling process is used to

produce predecessors of Sj until Sj is fully satisfied (Step 6 to 16). During
the sampling, let Sx be a sampled service, if the layer that contains Sx is
ahead of or the same to that of Sj , and any unsatisfied inputs of Sj can be
fulfilled by Sx (Step 9), we create a dependency Sx → Sj and put it into
G (Step 10). Meanwhile, we also check the satisfaction of other services
in SerSet in the similar way that we create the dependency with Sj (Step
11 to 14). Later on, the sampled predecessor Sx is added to SerSet and
sampled x is removed from SC. Once Sj is fully satisfied, we remove it
from SerSet, and repeat creating dependencies for newly added services
in SerSet. Lastly, a G is returned after the iteration.

Consider EHM0 calculated in in Example 5, we present a process of
sampling a candidate solution in Fig. 3.5 using GEHBGSA.

𝑆!

𝑆"

𝑆# 𝐸𝑛𝑑𝑆𝑡𝑎𝑟𝑡

1st
2nd

3rd

4th

5th

Fig. 3.5: An example of a DAG generated by GEHBGSA.
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3.7 Experimental Evaluation

In this section, we conduct an experiment to study the performance of our
proposed EDA-based methods for the WSC-CQ problem. Particularly, we
compare EDA-EHM and EDA-NHM with the state-of-the-art automated
service composition approaches discussed in Sect. 3.1, i.e., PSO [175],
FL [47], PathSearch [32].

The population size is set to 200, the number of generations equals 100.
The bias ratio, bratio, is set to 0.0002 for EDA-NHM and EDA-EHM. For
other settings of the competing methods, we strictly follow their settings
reported in their papers. In FL, the crossover rate is set to 0.95, and the
mutation rate is set to 0.05. In PathSearch, the parameterK (i.e., number of
services considered in the path construction at each step) associated with
this algorithm is set to 7, which maximizes the performance of PathSearch
in their paper. The weights of the fitness function in Eq. (3.5) are simply
configured to balance the QoSM and QoS. In particular, we set bothw1 and
w2 to 0.25, and w3, w4, w5 and w6 all to 0.125. More experiments have been
conducted and show that all our methods work consistently well under
different weight settings. The p of typelink in Eq. (3.1) is determined by
the preference of users, and is recommended as 0.75 for the plugin match
according to [101].

We run the experiment with 30 independent repetitions for all the EC-
based approaches. All the methods are run on a PC with an Intel Core
i7-4770 CPU (3.4GHz) and 8 GB RAM. This hardware configuration will
also be used for all the methods presented in our thesis.
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3.7.1 Comparing EDA-NHM and EDA-EHM with PSO, FL,

SearchPath

Comparison of the Fitness

We employ an independent-sample T-test with a significance level of 5%
to verify the observed differences in performance concerning fitness value.
In particular, we use a pairwise comparison to compare all competing ap-
proaches, and then the top performances are highlighted in a green color
in Table 3.2. Note that those methods that consistently find the best-known
solutions over 30 runs with 0 standard deviations are also marked as top
performances. The pairwise fitness comparison results are summarized in
Table 3.3, where win/draw/loss shows the scores of one method compared
to all the others, and displays the frequency that this method outperforms,
equals or is outperformed by the competing method. This testing and
comparison methods are also used in Sect. 3.9.1.

One objective of the experiment is to evaluate the effectiveness of EDA-
NHM and EDA-EHM comparing to PSO, FL and PathSearch. By analyz-
ing the results in Table 3.2 and 3.3, we can conclude the observations about
the effectiveness of these methods as follows:

Firstly, EDA-NHM consistently find composite services with the high-
est quality among all the methods. This observation indicates that EDA-
NHM is more competent at improving the quality of composite services by
effectively utilizing the knowledge via NHMs, compared to other meth-
ods.

In contrast, PathSearch achieves the worst performance in finding
high-quality solutions. This is because PathSearch is designed to make a
locally best choice over the K services at each step, towards a gradually
built path-based composite service.

In addition, FL significantly outperforms EDA-EHM in finding high-
quality solutions. This observation agrees with the findings in a recent
study [47] on the representations of composite services, i.e., graph-based
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representations are less effective, compared to permutation-based repre-
sentations.

Furthermore, regarding two different EDA-based approaches, EDA-
NHM achieves better performance compared to EDA-EHM methods in
finding high-quality solutions. These findings indicate that considering
service dependencies can be less effective than considering service posi-
tions for enhancing the effectiveness of EDA. This might be due to the
performance of our service composition problem may depend mainly on
absolute positions of services in permutations.

Lastly, we can observe that EDA-EHM can outperform PSO in finding
high-quality solutions. Different from the permutation-based representa-
tion utilized in EDA-EHM, EDA-NHM and FL, a vector-based represen-
tation made of real numbers (ranges from 0 to 1) is utilized in PSO for
representing particles’ positions. Instead of optimizing the order of ser-
vices indexes in a permutation, PSO indirectly optimized particle’s posi-
tions (i.e., continuous search space), which are mapped to the permuta-
tions (i.e., discrete search space). Apparently, optimizing positions is less
effective, compared to optimzing the permutations directly.

In summary, we sort all the competing approaches based on the effec-
tiveness in descending order: EDA-NHM > FL > EDA-EHM > PSO >

PathSearch. Apparently, EDA-NHM can be the most suitable algorithm
when the design stage can be ensured with sufficient computation time
for running algorithms.
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Comparison of the Execution Time

The second objective of our experiment is to study the efficiency of EDA-
NHM and EDA-EHM comparing to PSO, FL, and PathSearch. Table 3.4
shows the mean value of the execution time and the standard deviation
for all EC-based approaches over 30 repetitions, and execution time con-
sumed by PathSearch over one run. The pairwise comparison results for
the execution time are summarized in Table 3.5. By analyzing the results
in these tables, we can conclude the observations about the execution time
of these methods as follows:

First, PathSearch requires the least execution time because this method
prunes pre-stored service dependency graphs, on which it only searches
K best services at each step, towards a gradually built path (i.e., a compos-
ite service). Despite of the highest efficiency achieved by PathSearch, the
effectiveness of this method is the worst.

Second, among all EC-based approaches (excluding PathSearch), we
can observe that EDA-EHM requires the lowest execution time. The find-
ing agrees with our expectation that the proposed ontology-based query
technique and GEHBGSA in NHM-EHM can contribute its outstanding
efficiency.

Third, EDA-NHM consumes less execution time compared to PSO and
FL. This might be due to two reasons: (1) solutions evolved by EDA-NHM
are likely to have all useful services required to build a suitable DAG
placed at the very front of the service queue, and (2) the archive utilized
in EDA-NHM stores promising solutions, saving execution time from pre-
venting many promising solutions to be evaluated.

In summary, we sort all the competing approaches based on the exe-
cution time in ascending order: PathSearch > EDA-EHM > EDA-NHM
> PSO > GA. Despite the lowest execution time consumed by PathSearch,
PathSearch may not be suitable for practical use since it presents the lowest
effectiveness for producing high-quality composite services at the design
stage.
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Comparison of the Convergence Curve

The third objective of our experiment is to study the convergence curves
of EDA-NHM, EDA-EHM, FL, and PSO. We have used WSC08-6 and
WSC09-5 as two examples to illustrate the performance of all the com-
peting methods. Note that WSC-09-5 is a more challenging task than
WSC08-06 as its search space is much bigger.
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Fig. 3.6: A comparison of the convergence curves of EDA-NHM,
EDA-EHM, PSO, FL over execution time on WSC08-6 (the left) and

WSC09-5 (the right).

Fig. 3.6 exhibits the evolution of the mean fitness value of the best solu-
tion found along the generation over 30 independent runs for EDA-NHM,
EDA-EHM, FL, and PSO. For both composition tasks, we observe a signif-
icant increase in the fitness value towards the optimum over all the meth-
ods. These methods eventually reach different levels of plateaus, given
the same number of evaluations.

For the more challenging composition task (WSC09-5), EDA-NHM and
FL converge much slower against EDA-EHM and PSO. Although EDA-
EHM and PSO reach plateaus much faster than EDA-NHM and FL, EDA-
NHM and FL eventually reach much higher plateaus.
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For the less challenging composition task (WSC08-6), EDA-NHM and
PSO start to converge faster at the early stage than EDA-EHM and FL, but
EDA-NHM and FL eventually outperform EDA-EHM and PSO methods.

For both WSC08-6 and WSC09-5, EDA-NHM consistently reaches the
highest plateaus among all the competing methods.

3.8 A Memetic Algorithm Based on EDA-NHM

In this section, we present our memetic algorithms based on EDA-NHM
for the WSC-CQ problem. We start by giving an overview of our memetic
algorithms. Subsequently, we will discuss a selection method based on
a uniform distribution schema and stochastic local search operators in
Sect. 3.8.2 and Sect. 3.8.3, respectively. In our memetic algorithms, several
key ideas are jointly proposed to build our algorithms:

1. As discussed in Sect. 3.5.2, EDA-NHM represents composite services
as permutations, which are mapped from their corresponding DAG-
based form. Such permutations enable a suitable distribution to be
learned via NHM and new promising permutations to be sampled
from the learned NHM. Apart from that, it is straightforward to de-
fine the neighbourhood on permutations by so-called swap opera-
tors [47]. As discussed previously, the complexity of such a swap
over a permutation of length n is n − 1 in [44]. Although this com-
plexity is not high, this swap operator cannot effectively exploit the
neighbours of a permutation. This is because many produced neigh-
bours can be decoded into the identical DAG. Hence, we will pro-
pose more effective swap operators based on the domain knowledge
of service composition. These swap operators aim to effectively ex-
ploit neighbours, which are likely to be decoded into different DAGs.

2. To significantly decrease the computation time of the local search
procedure, it is crucial to select a restricted number of suitable can-
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didate solutions. As we know, fitness can present the importance
of different candidate solutions. Moreover, the local search should
be performed on solutions with distinctive importance. Therefore,
we strategically group candidate solutions based on their fitness val-
ues according to a uniform distribution scheme, which allows a ran-
dom candidate solution from each group to be selected for the local
search.

3. It is not efficient to exhaustively explore the whole neighbours in
the conventional local search [47]. Instead, stochastically searching
the neighbouring solutions not only can significantly reduce com-
putation cost without exploring the whole neighbours but can also
escape the local optimal easily using the randomness [189]. There-
fore, we introduce a stochastic local search strategy to effectively and
efficiently exploit the neighbourhood of the selected candidate com-
posite services.

3.8.1 Outline of the Memetic Algorithm

Our memetic algorithm follows EDA-NHM in ALGORITHM 11 with an
additional local search procedure outlined in ALGORITHM 16. This pro-
cedure is performed between Step 3 and 4, and between Step 13 and 14
in ALGORITHM 11. In a local search procedure, we apply a local search
to a restricted number of suitable candidate solutions, which are selected
via a fitness uniform selection scheme over the current population (see
details in Sect. 3.8.2). Furthermore, for each selected solution, a stochastic
local search operator is employed to create new permutations as its neigh-
bours, where the best neighbour is identified based on the fitness value
(see details in Sect. 3.8.3).

This local search procedure, illustrated in ALGORITHM 16, takes three
inputs: the gth population Pg, the number of selected individuals for local
search nset, and the number of neighbours nnb. In this algorithm, we start
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by selecting a small fixed number nset of candidate solutions to form a
subset SelectedIndiSet of the current populationPg using ALGORITHM 17.
The local search is performed on the solutions in SelectedIndiSet. For
each solution Π in SelectedIndiSet, we produce nnb neighbours from Π

by local search, and then we identify the best neighbour Πbest from the
produced neighbours. Consequently, we replace the solution Π with the
best neighbour Πbest. Eventually, we return an updated Pg.

ALGORITHM 16. A local search procedure
Input : Pg, nnb and nset

Output: an updated Pg

1: Select a small number nset of individulals to form a subset
SelectedIndiSet of Pg using ALGORITHM 17;

2: for each Π in SelectedIndiSet do
3: Generate a size nnb of neighbours from Π by local search;
4: Identify the neighbour Πbest with the highest fitness;
5: replace Π with Πbest;

6: return an updated Pg;

3.8.2 Application of Uniform Distribution Schema

Two types of selection schemes (i.e., random selection scheme and statis-
tical scheme) have been studied for selecting suitable individuals for local
search [34]. The random selection scheme is a primary selection method,
where a local search is potentially applied to all individuals with a pre-
defined probability. However, it can be less effective as it does not assign
local search to the most suitable candidate solutions, and it is more time-
consuming when the population size is huge. This statistical scheme is
capable of choosing suitable individuals, which can be determined based
on the statistical information of the current population.
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ALGORITHM 17. Fitness uniform selection scheme
Input : Pg and nset

Output: selected solutions SelectedIndiSet
1: SelectedIndiSet← {};
2: Sort Pg in descending order based on the fitness;
3: Put the first individual in Pg into SelectedIndiSet;
4: Calculate fitness range for nset − 1 groups based on a uniform

interval between maxfitness and minfitness;
5: Assign each permutation in Pg to nset − 1 groups based on the

fitness value;
6: Random select one permutation from each group and put it in

SelectedIndiSet;
7: return SelectedIndiSet;

Our selection scheme, inspired by [78], is proposed based on the statis-
tical information to select a restricted number of suitable individuals based
on the idea, discussed at the beginning of Sect. 3.8. This selection scheme
is presented in ALGORITHM 17. This algorithm applied a local search to
a set of selected individuals SelectedIndiSet. The size of SelectedIndiSet,
nset, is a pre-defined parameter. SelectedIndiSet consists of one elite indi-
vidual and nset − 1 individuals from nset − 1 groups of individuals in each
generation. Particularly, we calculate a fitness interval based on the max-
imal fitness value, maxfitness, and minimal fitness value, minfitness, of
the current populationPg. Therefore, the population is divided into nset−1

groups based on the calculated fitness interval. Consequently, each group
represent distinct importance, and individuals in a group represent similar
importance. Note that, for every generation, the actual number of selected
individuals for local search could be less than nset, because no individuals
could fall into one group.
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3.8.3 Stochastic Local Search Operators

To investigate an appropriate structure of neighbourhood, suitable local
search operators must be proposed by utilizing domain knowledge to
guide swap operators on permutations. We can then repeatedly assign
these local search operators to SelectedIndiSet for exploring their neigh-
bouring solutions. Apart from that, to reduce the computation time and
escape local optimal easily, a random subset of the entire large neigh-
bourhood is explored by performing stochastic local search. Based on
the proposed novel permutation-based representation (also called a tidy-
up permutation) in Sect. 3.5.2, our swap operators inspired by the swap
operator in [47] are developed. In particular, we propose four different
stochastic swap operators:

1. Constrained One-Point Swap: For a tidy-up permutation Π? = (π0,

. . . , πt, πt+1, . . . , πn−1), two service indexes πa, where 0 ≤ a ≤ t, and
πb, where t+ 1 ≤ b ≤ n− 1, are selected and exchanged.

The constrained one-point swap local search operator is inspired by
[47], which swaps a pair of service indexes in a permutation. In [47],
local search exclusively explores the neighbourhood based on one
selected index of the permutation. Therefore, the size of the neigh-
bourhood associated with the index is n− 1. However, it can be very
computationally expensive because the number of swaps becomes
significant for a large n. Besides that, it can be less flexible as the
neighbourhoods are just focusing on those neighbourhoods in rela-
tion to one selected index.

To perform the constrained one-point swap, we pre-determine a
fixed, relatively small number of neighbours nnb to be produced for
a considerable computational time for local search. Meanwhile, we
randomly produce nnb neighbours by swapping two randomly se-
lected indexes, rather than by swapping n−1 indexes with one fixed
index. We expect that swapping two randomly selected indexes is
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1 2 3 0 4

A permutation:
Unused servicesUsed services

2 3 4

Neighbor 1:

10

Fig. 3.7: An example of a constrained one-point swap on [1, 2, 3 | 0, 4].

more effective within a budget computation time for making local
improvements. In addition, we constrain the two randomly selected
indexes that they must be before | and after | respectively in every
swap because these swaps exclude those that have lower opportuni-
ties for local improvements. For example, one neighbour is created
by swapping one pair of used service indexes. This swap operation
has a high chance to produce the same DAG-based solution. Fig.
3.7 shows an example of constrained one-point swap for a selected
permutation [1, 2, 3 | 0, 4].

2. Constrained Two-Point Swap: For a tidy-up permutation Π? = (π0,

. . . , πt, πt+1, . . . , πn−1), four service indexes πa1 , πa2 , πb1 , and πb2 are
selected, where 0 ≤ a1 ≤ t, 0 ≤ a2 ≤ t, t+ 1 ≤ b1 ≤ n− 1, t+ 1 ≤ b2 ≤
n − 1, a1 6= a2, and b1 6= b2. πa1 and πb1 are exchanged. Likewise, πa2

and πb2 are exchanged.

Based on the constrained one-point swap proposed above, we cre-
ated a constrained two-point swap operator by combing two con-
strained one-point swap into a single operator. Particularly, this op-
erator produces only one neighbour by two consecutive constrained
one-point swaps. Compared to the constrained one-point swap, con-
strained two-point swap is more likely to make local changes on a
candidate solution given the same number of swaps. Fig. 3.8 shows
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3

Neighbor 1:

10 4 2

1 2 3 0 4

A permutation:
Unused servicesUsed services

Fig. 3.8: An example of two-point swap on [1, 2, 3 | 0, 4].

an example of a constrained two-point swap for a selected permuta-
tion [1, 2, 3 | 0, 4].

3. Constrained One-Block Swap: For a tidy-up permutation Π? = (π0,

. . . , πt, πt+1, . . . , πn−1), two sub-blocks {πa, . . . , πt}, where 0 ≤ a < t

and {πb, . . . , πn−1}, where t + 1 ≤ b < n − 1, are selected and ex-
changed.

StartPos1 StartPos2

2 31 0

EndPos1 EndPos2

Neighbor 1:

01

4

4 2 3

A permutation:
Unused servicesUsed services

Fig. 3.9: An example of one constrained block-swap on [1, 2, 3 | 0, 4].

A constrained one-block swap is proposed based on the concept of
a block, i.e., consecutive service indexes in a permutation. In this
swap, two blocks are built up, starting with two randomly selected
points, πa (i.e., a point must be selected before |) and πb (i.e., a point
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must be selected after |), on a permutation, respectively. Fig. 3.8
shows an example of a constrained one-block swap for a permuta-
tion [1, 2, 3 | 0, 4], where one block is built up from the start position
StartPos1 to the last position of used services, and another block is
built up from the start position StartPos2 to the last position of the
permutation.

4. Layer-Based Constrained One-Point Swap: For a tidy-up permu-
tation Π? = (π0, . . . , πt, πt+1, . . . , πn−1), one service index πa, where
0 ≤ a ≤ t, is selected, and one layer L′, where L′ s.t. πa ∈ L′, is
identified. Afterwards, another service index πb is randomly selected
from the index set L′ ∩ {πt+1, . . . , πn−1}. Consequently, πa and πb are
exchanged.

1 2 3 0 4

A permutation:
Unused servicesUsed services

Selected service from the intersection

1

Layer: 𝐿"

04

1 2

2 3 4

Neighbor 1:

10 4

4

1 2

∩
Unused services

Layer: 𝐿"

0

0

+

Selected service

Fig. 3.10: An example of layer-based one-point swap operation
on [1, 2, 3 | 0, 4].

A layer-based one-point constrained swap is proposed by extending
the constrained one-point swap while considering the layer informa-
tion, introduced in Sect. 3.4. The benefit of considering layers allows
us to identify a suitable pair of service indexes for a swap, compared
to a constrained one-point swap. Such a pair of service indexes not
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only comes from two different parts of a permutation (i.e., before and
after |) but also comes from the same layer. By doing these, a layer-
based one-point constrained swap operator is more likely to produce
different neighbours in the DAG form. Herein, we propose a layer-
based one-point swap operator: we first select one service index and
identify its associated layer, and then select another service index
randomly from a set of indexes, i.e., an intersection of the indexes of
the identified layer and the indexes of unused services. (Note that
when the intersection is an empty set, it indicates that the identified
layer only contains one service index, so we re-select the first service
index πa). Consequently, two service indexes are exchanged. Fig.
3.10 shows an example of layer-based constrained one-point swap
for creating one neighbour from a selected permutation [1, 2, 3 | 0, 4].

Since the layer-based constrained one-point swap is proposed based
on the constraint one-point swap, we use an example to analyze dif-
ferences between them in Fig. 3.11. Fig. 3.11 exhibits an example
of two corresponding neighbours produced by the constraint one-
point swap. In the example, one identical solution can be decoded
from both a permutation and two of its neighbours. This indicates
that the constrained one-point swap does not properly exploit the
neighbours of the permutations. In contrast, these two swaps are
not permitted in the layer-based constraint one-point swap, where
any produced neighbour must strictly follow the layer order on the
permutation before |.

In the example, the permutation [1, 2, 3 | 4, 0] is highlighted with two
layers (i.e., L1 and L2) in ascending order. Particularly, S1, S2 ∈ L1

and S3 ∈ L2. When the constrained one-point swap is performed, S3

in the permutation are replaced with S4 or S0 in the produced neigh-
bour 1 and neighbour 2 respectively. However, L2 is destroyed in the
produced neighbours because of S4 ∈ L1 and S0 ∈ L1. Apparently,
the layer-based constrained one-point swap can prevents these two
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𝐿"

𝐿"

A permutation: 

1 2 3 4 0 1 2 4 3 0

Layer-based constrained one-point swap

1 2 0 4 3

Neighbor 1:

Neighbor 2:

𝐿" 𝐿# 𝐿"

𝐿"
𝑆"

𝑆#

𝑆% 𝐸𝑛𝑑𝑆𝑡𝑎𝑟𝑡

Constrained one-point swap

Layer-based constrained one-point swap
Constrained one-point swap

Decoding Decoding

Decoding

Fig. 3.11: An example of layer order breached by constrained one swap
operation.

neighbours from being exploited.

3.9 Experimental Evaluation

In this section, we conduct experiments to evaluate the performances
of our memetic EDA-based algorithms, i.e., memetic EDA with the con-
strained one-point swap (henceforth referred to as MEEDA-OP), memetic
EDA with the constrained two-point swap (henceforth referred to as
MEEDA-TP), memetic EDA with the constrained layer-based one-point
swap (henceforth referred to as MEEDA-LOP) and memetic EDA with
the constrained one-block swap (henceforth referred to as MEEDA-OB).
These memetic EDA-based approaches are compared to MEFL [47], and
the best performer found in Sect. 3.7, i.e., EDA-NHM, in finding high-
quality solutions.

We follow the same experimental setting in Sect. 3.7 for the popula-
tion size, the number of generations, bratio, for EDA-NHM, MEEDA-OP,
MEEDA-TP, MEEDA-OB and MEEDA-LOP. For the local search proce-
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dure, a pair of parameters, i.e., the number of selected solutions for local
search, Selected IndiSet, and the number of swaps, nnb, are set to 6 and
20, respectively. We have tuned this pair of parameters slighty by consid-
ering other pairs, such as Selected IndiSet equals 4 and nnb equals 30, and
SelectedIndiSet equals 8 and nnb equals 15. We found that 6 and 20 present
a better parameter setting for SelectedIndiSet and nnb than the others in
finding high-quality solutions. For other competing methods, we strictly
follow their settings reported in their papers. For example, the crossover
rate and mutation rate of MEFL are set to 0.95 and 0.05, respectively, and
the local search rate is 0.05. The weights in the fitness function in Eq. (3.5)
and the p of typelink in Eq. (3.1) follow our suggestion in Sect. 3.7.

3.9.1 Comparing Memetic EDA-based Methods with EDA-

NHM and MEFL

Comparison of the Fitness

The second experiment aims to evaluate the effectiveness of all the pro-
posed memetic EDA-based approaches comparing to MEFL and EDA-
NHM. Note that, the same independent sample T-test and pairwise com-
parison methods utilized in Sect. 3.7.1 will be employed in this section.
Table 3.6 shows the mean value of the fitness and the standard deviation
over 30 repetitions for MEEDA-OP, MEEDA-TP, MEEDA-OB, MEEDA-
LOP, EDA-NHM and MEFL. The pairwise comparison results of the fit-
ness value are summarized in Table 3.7. Note that any “−” in the tables
means that results cannot be collected when the corresponding method
has been running for 7 days. By analyzing the results in these tables, we
can conclude the observations about the effectiveness of all the competing
methods as follows:

Firstly, all the memetic EDA algorithms, including MEEDA-OP, MEEDA-
TP, MEEDA-OB, and MEEDA-LOP, significantly outperform the baseline
method EDA-NHM. This observation corresponds well with our expecta-
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tion that the exploitation ability of EDA can be enhanced by hybridizing
it with local search.

Secondly, MEEDA-LOP is identified as the best performer in find-
ing high-quality composite services. This observation corresponds well
with our assumption that the layer-based constrained one-point swap
is more effective than other swap operators. Meanwhile, MEEDA-LOP
has achieved extremely stable performance in most runs with 0 standard
deviations.

Lastly, MEEDA-OP, MEEDA-TP outperform MFEA, while MEEDA-OB
and MFEA are comparable to each other. This is becasue EDA-NHM (i.e.,
the baseline method of MEEDA-OP, MEEDA-TP) is more effective than FL
(i.e., the baseline method of MFEA), as discussed in Sect. 3.7.1. The effec-
tiveness of MEEDA-OB does not meet our expectation. This is because
swapping building blocks can potentially ruin the learned knowledge of
promising solutions, resulting in poor searching behaviour.

In summary, we sort all the competing approaches based on the effec-
tiveness in descending order: MEEDA-LOP > MEEDA-TP = MEEDA-OP
> MEEDA-OB = MEFL > EDA-NHM. Apparently, the layer-based con-
strained one-point swap operator is the most effective swap for enhancing
EDA-NHM in terms of effectiveness.
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Comparison of the Execution Time

The second objective of this experiment is to study the efficiency of all
the proposed memetic EDA-based algorithms comparing to MEFL and
EDA-NHM. Table 3.8 shows the mean value of the execution time and
the standard deviation over 30 repetitions for MEEDA-OP, MEEDA-TP,
MEEDA-OB, MEEDA-LOP, EDA-NHM and MEFL. The pairwise compar-
ison results for the execution time are summarized in Table 3.9. By analyz-
ing the results in these tables, we can conclude the observations about the
execution time of all the competing methods as follows:

First, EDA-NHM requires the least execution time because this method
does not involve local search. Among all the memetic methods, we ob-
serve that MEEDA-LOP requires consistently less execution time than
other memetic approaches. This remarkable observation further confirms
the best effectiveness of MEEDA-LOP, resulting in sampled permutations
that are likely to have useful services to be put in the front. Such permuta-
tions can be decoded in DAGs much faster than those produced by other
approaches.

Second, MEFL requires the highest execution time because its local
search are performed on all the candidate solutions based on a pre-defined
probability. In addition, its swap operator exclusively searches the whole
neighbourhood of candidate solutions. This poor execution time confirms
that the local search strategy in MEFL is very time-consuming.

In summary, we sort all the competing methods based on the execu-
tion time in ascending order: EDA-NHM > MEEDA-LOP > MEEDA-OP
> MEEDA-TP > MEEDA-OB > MEFL. Despite the least execution time
consumed by EDA-NHM, EDA-NHM cannot outperform any memetic
method. Therefore, MEEDA-LOP becomes the most suitable method since
it not only consumes the second least execution time but also achieves the
best effectiveness.
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Comparison of the Convergence curve

The third objective of our experiment is to study the convergence curves
of all the algorithms. We use WSC09-2 as an example to illustrate the con-
vergence curves of all the compared methods.

Fig. 3.12 depicts the evolution of the mean fitness values of the best
solutions found by MEEDA-OP, MEEDA-TP, MEEDA-OB, MEEDA-LOP,
EDA-NHM and MEFL with respect to both the execution time and gener-
ation over 30 independent runs. As MEFL requires much longer time for
execution, we set a threshold for the execution time scale for WSC09-2 to
easily observe their differences in Fig. 3.12a.
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Fig. 3.12: A comparison of the average convergence rate of EDA-NHM,
EDA-EHM, PSO, FL over execution time (the left) and generation (the

right) for WSC09-2.

First, we observe a significant increase in the fitness value towards the
optimum over all the algorithms excluding MEFL in Fig. 3.12a. Particu-
larly, given the same budget of execution time, memetic EDA-based algo-
rithms happen to converge significantly faster than MEFL. In Fig. 3.12b,
all algorithms happen to converge fast along the generations. These algo-
rithms eventually reach different levels of plateaus.
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Second, MEFL suffers from the scalability issue when the size of the
service repository is doubled in our new benchmark. The complexity of
the local search in MEFL strongly depends the length of the permutation.
In Fig. 3.12a, we can observe that MEFL does not even converge at all
when the same amount of execution time is assigned.

Lastly, MEEDA-LOP is consistently ranked as a top performer among
all the competing algorithms. The convergence rate of MEEDA-OP and
MEEDA-TP presents a very similar pattern. MEEDA-OB happens to con-
verge slower than the others, but it eventually reaches comparable results
compared to MEEDA-OP and MEEDA-TP.

Comparison of local search operators
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Fig. 3.13: A comparison of the percentage of better neighbours produced
by four memetic algorithms along generations over 30 runs for

WSC08-03.

To demonstrate which swap-based local search operator is more likely
to produce better solutions, we investigate how often the mean fitness
of neighbours is better than the fitness of their original permutation in
MEEDA-OP, MEEDA-TP, MEEDA-LOP, and MEEDA-BP. Herein we use
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the composition task WSC0803 as an example to demonstrate the percent-
age of better neighbours produced by our four memetic EDA-based ap-
proaches along generations over 30 runs in Fig. 3.13. The result shows
that MEEDA-BP and MEEDA-TP are less likely to produce better solu-
tions, while MEEDA-OP and MEEDA-LOP are highly comparable to each
other.

3.10 Summary

The overall goal of this chapter is to propose EDA-based fully automated
service composition approaches to generate composite services with near-
optimized comprehensive quality in terms of QoSM and QoS. We have
achieved this goal with the following contributions: (1) A comprehensive
quality model is proposed to represent users’ requirements in terms of
both QoSM and QoS. (2) An EDA-NHM algorithm is proposed along with
a novel permutation-based representation, which allows learning a suit-
able distribution via NHM. This distribution learns the positions of com-
ponent services over varied structures of composite services. In addition,
NHBSA is employed to effectively sample new promising permutations.
(3) An EDA-EHM algorithm is proposed along with a DAG-based repre-
sentation that is presented as a set of service dependencies. These service
dependencies contribute to learning a suitable distribution via EHM. This
distribution can capture the essential ingredients (i.e., distribution of ser-
vice dependencies) for building DAG-based composite services. In addi-
tion, a GEHBGSA is proposed to sample functionally valid and promising
DAG-based composite services. (4) To demonstrate the performance of
EDA-NHM and EDA-EHM, EDA-NHM and EDA-EHM are compared to
some state-of-the-art service composition approaches, i.e., PSO [175], FL
[47], and SearchPath [32]. (5) Memetic EDA-based approaches (that in-
cludes MEEDA-OP, MEEDA-TP, MEEDA-OB and MEEDA-LOP) are pro-
posed based on EDA-NHM, which is chosen because of its better effective-
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ness in finding high-quality composite services, compared to PSO, FL, and
SearchPath. Particularly, an effective and efficient local search procedure is
proposed with an application of uniform distribution schema for selecting
suitable solutions for local search and stochastic local search operators for
effectively and efficiently exploiting neighbours. We investigate different
local search operators, each of which is combined with EDA-NHM to form
different variations of memetic EDA-based approaches. These approaches
are compared to a state-of-the-art memetic GA, i.e., MEFL [47] and their
baseline EDA-NHM.

The development of new algorithms and their experimental study
leads to several major findings: (1) EDA-NHM achieves significantly bet-
ter performance in finding composite services with high comprehensive
quality, compared to EDA-EHM and other algorithms, such as PSO, FL,
and SearchPath. This result indicates that NHM that captures positions
of component services can be more effective than EHM that captures ser-
vice dependencies. (2) EDA-EHN could deliver moderate effectiveness in
finding high-quality composite services with the highest efficiency among
all the EC-based approaches. (3) The uniform distribution schema and the
layer-based constrained one-point swap jointly form a very effective and
efficient memetic EDA algorithm, i.e., MEEDA-LOP, achieving cutting-
edge performance in terms of both effectiveness and efficiency.
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Chapter 4

Multi-Objective Fully Automated
Web Service Composition

4.1 Introduction

The previous chapter presented EC-based approaches to single-objective
fully automated semantic web service composition, which aims to opti-
mize QoSM and QoS using an aggregated fitness function with different
weights associated to different quality criteria. Such weights are defined
based on the importance of these quality criteria, and are set by users. In
other words, we assume the users have clear preferences on these qual-
ity criteria. Although the single-objective optimization is a very effective
strategy, users often do not have clear preferences on trade-off solutions
before they see the trade-offs of the solutions [46, 40]. This chapter fo-
cuses on Multi-objective Comprehensive Quality-aware semantic web ser-
vice composition Problem (MOCQP, for short). Particularly, the two cate-
gories of MOCQP, discussed in Chapter 1.2, are to be studied in this chap-
ter. The first one refers to semantic Web Service Composition problem
for Multiple independent Ojectives (henceforth referred to as WSC-MO).
WSC-MO aims to simultaneously optimize multiple conflicting quality
criteria in our comprehensive quality model and produces a set of ap-

137
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proximated Pareto-optimal composite services. The second one refers to
semantic Web Service Composition problem for Multiple user segments
with distinctive QoSM Preferences (henceforth referred to as WSC-MQP).
WSC-MQP aims to simultaneously optimize the comprehensive quality
with distinctive QoSM preferences for different user segments and pro-
duces a set of near-optimal composite services, each of which serves one
user segment. The introduction to WSC-MO and WSC-MQP are discussed
in Sect. 4.1.1 and Sect. 4.1.2, respectively.

4.1.1 Introduction to the WSC-MO Problem

WSC-MO aims to find a set of approximated Pareto-optimal solutions by
simultaneously considering both QoSM and QoS. For example, some users
may be willing to trade QoS for QoSM. In the literature, similar multi-
objective service composition problems [40, 46] have been coped with via
evolutionary multi-objective algorithms, such as NSGA-II [54]. For exam-
ple, a very recent work [40] proposed two hybridized methods (called Hy-
brid and Hybrid-L) to tackle two objectives related to QoS criteria (i.e., one
objective combines time and cost, another objective combines availability
and reliability). Particularly, Hybrid and Hybrid-L effectively combine
the use of two evolutionary optimization algorithms, i.e., NSGA-II and
MOEA/D. They takes advantage of the fast non-dominated sorting strat-
egy in NSGA-II and “divide and conquer” strategy in MOEA/D. Moreover,
Hybrid-L allows local search to be performed on numerous decomposed
single-objective optimization subproblems. Hybrid and Hybrid-L have
successfully enhanced the performance of its baseline NSGA-II via local
search, achieving outstanding effectiveness in finding Pareto solutions.

Despite this recent success, a large number of decomposed subprob-
lems is predefined (e.g., 500 subproblems) in Hybrid and Hybrid-L [40],
and a simple form of local search (i.e., so-called one-point ”swap”) is
less effective and efficient to make local improvements in Hybrid-L be-
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cause it is randomly applied to every subproblem without focusing on the
most suitable candidate solutions in each generation. Furthermore, each
”swap”-based local search procedure exploit the neighbourhood of one
solution (i.e., a subproblem representative), ignoring any information of
other promising candidate solutions that could be jointly used to guide
the local search. Therefore, new memetic approaches must be developed
to address these limitations. Besides that, to the best of our knowledge,
existing EC-based multi-objective fully automated approaches only fo-
cus on QoS, overlooking QoSM of composite services. In practice, some
customers often demand highly accurate outputs of composite services
(i.e., the QoSM of this composite service is high), and are willing to trade
QoS for QoSM. In contrast, a proportion of customers may prefer highly
responsible composite services at an affordable cost (i.e., the QoS of this
composite service is high). To address the limitations above, we propose a
novel memetic NSGA-II with EDA-based local search (henceforth referred to as
MNSGA2-EDA) for multi-objective fully automated semantic service composi-
tion, achieving substantially high performances in both effectiveness and
efficiency. In addition, MNSGA2-EDA tackles two practical objectives,
i.e., QoSM and QoS, with respect to the functional and non-functional
quality aspects. The following objectives are sought in the first part of this
chapter:

1. To avoid pre-determining a large number of single-objective sub-
problems in advance, we propose a new clustering technique to se-
lect candidate Pareto-optimal solutions for local search. This tech-
nique is performed separately and concurrently in different regions
of the Pareto front, contributing to wide and uniformly distributed
near-optimal Pareto solutions produced by our MNSGA2-EDA.

2. To perform an effective local search using the useful information of
good candidate solutions in each generation, we propose a model-
guided local search. Such a local search does not rely on any man-
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ually pre-defined local search operator to form the neighborhood of
the selected solutions. Instead, our local search first constructs dis-
tribution models from suitable Pareto front solutions and other good
candidate solutions selected by our proposed clustering technique,
and then samples effective solutions from the distribution models.

3. Considering two independent objectives on QoSM and QoS, we
empirically evaluate NHSGA2-EDA by comparing it with NSGA-
II, Hybrid and Hybrid-L [40]. Our experiment results show that
NHSGA2-EDA is much more effective and efficient. We keep us-
ing the new benchmark dataset proposed in Chapter 3 to show that
MNSGA2-EDA can maintain high performance on the WSC-MO
problem with significantly larger sizes.

4.1.2 Introduction to the WSC-MQP Problem

WSC-MQP aims to optimize QoSM and QoS of a set of composite services
subject to multiple user segments with distinctive QoSM preferences. As
discussed in Sect. 1.2, to distinguish different types of users, service com-
posers often strategically group relevant service composition requests into
several user segments (e.g., platinum, gold, silver, and bronze user seg-
ments), and each user segment is associated with distinctive preferences
on QoSM. Therefore, one composite service for a user segment can com-
fortably satisfy requirements from all users belonging to the same seg-
ment. In other words, any new service requests arising from the same seg-
ment will be immediately served by the same composite service designed
a priori for that segment.

Herein we use an example to demonstrate composites services for two
user segments (Note that the number of segments could be more than two
in the real world). TripPlanner is a service composition design system
that produces composite booking services for many travelling companies.
See an example of two composite booking services (i.e., composite book-
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Fig. 4.1: Two composite booking services produced by TripPlanner.
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ing service A and composite booking service B) produced by TripPlanner
in Figure. 4.1. Both two composite services can be used to book airlines,
hotels, and local transportation for travellers. In Fig. 4.1, some compo-
nent services in composite booking service A (i.e., Service 2: City Hotel
Reservation Service and Service 3: Taxi Service) are different from those
in composite booking service B (i.e., Service 4: City Luxury Hotel Service
with Transportation). Apparently, Service 4 aggregates the functionalities
of Service 2 and Service 3, providing high-quality hotel and taxi services.
Apart from that, the cost of executing Service 4 (i.e., 32 cents ) is much
higher than that of Service 2 and Service 3 (i.e., 8 + 5 = 13 cents). There-
fore, these two composite booking services differ in QoSM and QoS. It is
important to cater for different users with varied QoSM and QoS require-
ments. For example, large international travel companies (i.e., platinum
segment users of TripPlaner) often care about their customers’ needs more
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than small local travelling companies (i.e., bronze segment users of Trip-
Planer), by providing high-quality services. These high-quality services
contribute to reliable and accurate information required by users. In other
words, composite services with high QoSM, such as the composite book-
ing service B in Fig. 4.1, are preferably considered by the platinum seg-
ment users. In contrast, composite services with low QoSM with a trade-
off in cost, such as the composite booking service A, is preferred by bronze
segment users. From the perspective of service developers, they should
distinguish different types of companies and provide different segment
offers (i.e., composite services) to different segment.

We perceive the problem discussed above as a multi-tasking problem,
i.e., multiple similar service composition requests from different user seg-
ments with distinctive QoSM preferences. Our goal is to solve these mul-
tiple requests simultaneously.

Existing service composition algorithms are designed primarily to
solve each service composition request independently by using either
single-objective [152, 42, 221] or multi-objective approaches [35, 214, 40,
46], ignoring similarities between different requests that could be dealt
with collectively.

Recently, Gupta et al. [71] introduce a new EC computing paradigm,
namely, multi-factorial evolutionary algorithm (MFEA) [71] with a unified
random-key representation to search solutions for multiple tasks (or opti-
mization problems) simultaneously. MFEA transfers implicit knowledge
of promising solutions through the use of simple genetic operators across
multiple tasks. These genetic operators allow two randomly selected par-
ents to undergo crossover or mutation with certain conditions on the tasks.
This genetic mechanism is called assortative mating [71]. Besides, the off-
spring is only evaluated on one selected task determined by its parents
based on vertical cultural transmission. MFEA has shown its efficiency and
effectiveness in several problem domains [17, 59, 225, 233].

Very recently, [17] reported the first attempt to search solutions with
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high QoS for two unrelated composition tasks concurrently using MFEA,
outperforming some basic single-objective EC techniques. Despite this re-
cent success, this work [17] can only handle semi-automated service com-
position problems, i.e., a specific service workflow must be given in ad-
vance and strictly obeyed. Meanwhile, QoSM requirements are not con-
sidered in their work. In addition, the number of composition tasks that
are optimized concurrently is very small (e.g., two tasks in [17]). Lastly,
test cases used for the experiments are small (e.g., each test case only
contains 2507 atomic web services in [17]). The findings of their experi-
ments are based on comparisons with some basic EC techniques, overlook-
ing state-of-the-art service composition approaches. To address the limita-
tions above, we propose a novel Permutation-based Multifactorial Evolutionary
Algorithm (called PMFEA) to solve the WSC-MQP problem.

Based on PMFEA, we conduct a further study on improving the ef-
fectiveness of assortative mating in promoting constructive inter-task
knowledge sharing. Different from the implicit learning and sharing
via crossover in PMFEA, we will propose a new technique to explicitly
learn and share knowledge via a series of NHMs. The learned NHMs
can be further utilized by EDA to search for multiple near-optimal so-
lutions simultaneously with respect to multiple service requests. Note
that existing EDA-based approaches for service composition have never
been designed to extract and utilize knowledge from multiple tasks. In
this chapter, we will propose the first Permutation-based Multi-factorial
Evolutionary Algorithm based on EDA (called PMFEA-EDA) to simulta-
neously solve the WSC-MQP problem. PMFEA-EDA features the use of
innovative inter-task knowledge sharing techniques and sampling tech-
niques for producing promising composite services for multiple tasks.
The following objectives are sought in the second part of this chapter:

1. To handle the WSC-MQP problem, we are the first in the literature to
formulate this problem as a multi-tasking and fully automated ser-
vice composition problem. To effectively and efficiently solve this



144 CHAPTER 4. MULTI-OBJECTIVE SEMANTIC WSC

problem, we propose PMFEA with a permutation-based representa-
tion and an assortative mating with domain-specific crossover and
mutation introduced in [47]. This assortative mating allows implicit
knowledge to be learned and shared across tasks. Furthermore, we
introduce a neighbourhood structure over multiple tasks to allow
newly evolved solutions to be additionally evaluated on the neigh-
bouring tasks. The use of this neighbourhood structure has a severe
impact on the effectiveness as well as the efficiency of PMFEA for
optimizing more than two tasks concurrently.

2. To explore the performance of PMFEA and two of its variations (i.e.,
PMFEA with evaluations on Neighboring Tasks, called PMFEA-
NT, and PMFEA with evaluations on All Tasks, called PMFEA-AT),
we compare them against a state-of-the-art single-tasking single-
objective approach, i.e., FL [47]. For the experiments, we use the
benchmark datasets proposed in Chapter 3. The evaluation shows
that all PMFEA approaches are performed at the cost of only a frac-
tion of time. In particular, PMFEA-NT achieves the best performance
in terms of both effectiveness and efficiency.

3. Different from the previously proposed PMFEAs, a new method,
namely PMFEA-EDA, is proposed with an explicit knowledge learn-
ing and sharing technique for solutions across multiple service re-
quests. Particularly, PMFEA-EDA iteratively builds a set of single-
tasking NHMs. Each NHM captures the knowledge of good solu-
tions with respect to one task. Meanwhile, to facilitate knowledge
sharing across different tasks, PMFEA-EDA also learns multi-tasking
NHMs in association with every two tasks with similar preferences
on QoSM (i.e. neighbouring tasks). To balance the exploration and
exploitation of the evolutionary search process in a multi-tasking
context, we propose a new sampling mechanism, inspired by the
principle of assortative mating [71], to construct new composite ser-



4.2. CHAPTER ORGANIZATION 145

vices based on single-tasking NHMs and multi-tasking NHMs. By
using this mechanism, we can also effectively prevent our method
from pre-mature convergence.

4. To demonstrate the effectiveness and efficiency of our PMFEAs
using either implicit or explicit knowledge learning and sharing
technique, we conduct experiments to evaluate the performance of
four algorithms, i.e., PMFEA, PMFEA-EDA, and two single-tasking
single-objective algorithms (i.e., EDA-NHM proposed in Chapter 3,
and FL [47]). Meanwhile, we also study the effectiveness of explicit
knowledge sharing across neighbouring tasks in PMFEA-EDA in
terms of its impact on the quality of obtained solutions for all the
tasks. This is achieved by experimentally comparing PMFEA-EDA
with PMFEA-EDA-WOT that does not permit knowledge sharing.

4.2 Chapter Organization

The remainder of this chapter is organized as follows: Sect. 4.3 describes
the WSC-MO problem. Sect. 4.4 presents our MNSGA2-EDA algorithm
for the WSC-MO problem. Sect. 4.5 outlines the experimental design and
results for evaluating the performance of MNSGA2-EDA. Sect. 4.6 de-
scribes the WSC-MQP problem. Sect. 4.7 and 4.8 present our two methods,
namely, PMFEA and PMFEA-EDA, for solving the WSC-MQP problem.
Sect. 4.9 outlines the experimental design and results for different compar-
isons with PMFEA and PMFEA-EDA. Lastly, Sect. 4.10 summarises this
chapter.

4.3 The WSC-MO Problem

WSC-MO concerns the quality of composite services in both functional
(i.e., QoSM) and non-functional (i.e., QoS) aspects. However, according to
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our knowledge, no attempts have ever been reported in literature to ad-
dress this problem in a multi-objective setting where QoSM and QoS are
optimized separately. Herein, we formulate WSC-MO based on two ob-
jectives that reflect the functional (i.e., QoSM) and non-functional quality
criteria (i.e., QoS) as follows:

Minimize ~f(C) = (f1(C), f2(C))

subject to C ∈ Z
(4.1)

f1(C) = w1(1− M̂T ) + w2(1− ˆSIM) (4.2)

f2(C) = w3(1− Â) + w4(1− R̂) + w5T̂ + w6ĈT (4.3)

whereZ denotes the set of all composite services over a given repository of
atomic services, and f1, f2 are two objective functions that capture QoSM
and QoS, respectively, for every service C in Z . In particular, QoSM is
calculated based on the normalized semantic matching type M̂T and the
semantic similarity ˆSIM while QoS is calculated based on the normalized
availability Â, reliability R̂, response time T̂ , and execution cost ĈT , see
calculations in Sect. 3.3. M̂T , ˆSIM , Â and R̂ are offset by 1, so that lower
scores correspond to better quality.

WSC-MO is to find the set of Pareto optimal composite services PF ? =

{C? ∈ Z}, where C? is Pareto optimal if @C ′ ∈ C, such that C? ≺ C ′.
Note that C? ≺ C ′ means C ′ dominates C? if f1(C?) ≥ f1(C ′) and f2(C?) >

f2(C ′) or if f1(C?) > f1(C ′) and f2(C?) ≥ f2(C ′).

4.4 The MNSGA2-EDA Algorithm

In this section, we present MNSGA2-EDA for solving the WSC-MO prob-
lem, starting with an overview of MNSGA2-EDA in Sect. 4.4.1. Subse-
quently, we discuss the outlines of MNSGA2-EDA in Sect. 4.4.2. Further-
more, we present the genetic operators of MNSGA2-EDA in Sect. 4.4.3.
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Lastly, we discuss two important components in our EDA-based local
search, consisting of identifying a cluster representative and learning an
NHM based on the representative in Sect. 4.4.4 and 4.4.5, respetively.

4.4.1 An overview of MNSGA2-EDA

Current population Genetic offspring population

Local search
offspring population 

Next population

Distributions based on 
cluster  representatives

Clustered Population with determined  
cluster  representatives

Genetic
operations

Clustering

Pareto 
ranking

Combined Population

Learn
Distributions Sampling

Fig. 4.2: Generation updates in MNSGA2-EDA.

MNSGA2-EDA enhances NSGA-II by EDA-based local search, where
EDA is used to exploit better solutions based on several non-dominated
solutions generated by NSGA-II. These solutions are selected separately
and concurrently in different regions of the Pareto front for each genera-
tion. These regions are created by grouping the current Pareto front into
multiple clusters.

The generation updates in MNSGA2-EDA is illustrated in Fig. 4.2.
From the current population, two offspring populations are produced —
genetic offspring population and local search offspring population. In
particular, genetic offspring population is produced by genetic operators,
including crossover and mutation (see details in Sect. 4.4.3); local search
offspring population is produced by sampling from the distribution mod-
els constructed from the most suitable cluster representatives of the Pareto
front (see details in Sect. 4.4.4 and 4.4.5).
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4.4.2 Outline of MNSGA2-EDA

MNSGA2-EDA is outlined in Algorithm 18. Initially, we randomly gener-
ate m permutations Πg

k as composite services for population Pg of gen-
eration g, where 0 ≤ k < m and g = 0. Each permutation is a ran-
domly ordered sequence of task-related service indexes. For example, let
Π = (π0, . . . , πt, . . . , πn−1) be a permutation-based composite service of ser-
vice indexes {0, . . . , t, . . . , n − 1} such that πi 6= πj for all i 6= j. f1, f2 in
Eq. (4.2) and Eq. (4.3) of any newly produced permutations will be evalu-
ated by decoding each permutation into a DAG-based solution, Ggk . Sub-
sequently, the following steps (Step 3 to 15) are repeated until a maximum
number of generation gmax is reached. Particularly, the production of the
first offspring population starts with a tournament selection in favor of
winners with higher dominance regarding ranks and sparsity suggested
in NSGA-II. The tournament winners will be processed by genetic opera-
tors (see details in Sub. 4.4.3) to produce genetic offspring population Pga
based on a predefined probability. Afterwards, offspring Pg will be clus-
tered into d clusters based on the values of f1, f2. For each cluster, we
start by identifying its cluster representative Repgcl, and then encode each
cluster member Ggk into a different permutation Π?g

k, element of which are
ordered based on Ggk (see details in Sect. 4.4.5). The process of produc-
ing this different permutation is exactly the same as that of producing the
novel permutation in Sect. 3.5.2. As discussed in Sect. 3.5.2, this permuta-
tion allows more reliable and accurate learning of a NHM of each cluster,
i.e., NHMg

cl. The contribution of each cluster member to the NHM is ad-
justed according to the Euclidean distance in the objective space between
the cluster member and Repgcl. Subsequently, NHMg

cl is used to sample
new local search offspring population Pgb (see details in Sect. 4.4.5). Con-
sequently, we produce the next population Pg+1 by combining the current
population Pg, genetic offspring population Pga and local search offspring
population Pgb . After evaluating newly generated solutions, we perform
the fast non-dominated sorting on Pg+1, and the top m individuals are re-
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served to form the next generation Pg+1. When the stopping criterion is
met, the non-dominated solutions in Pgmax are returned as the output of
MNSGA2-EDA.

ALGORITHM 18. MNSGA2-EDA for the WSC-MO problem.
Input : T , SR, d and gmax

Output: A set of solutions
1: Randomly initialize population Pg of m permutations Πg

k as
solutions (where g = 0 and k = 1, . . . ,m);

2: Evaluate f1, f2 of the permutations by decoding them into DAGs
Ggk ;

3: while g < gmax do
4: Use tournament selection based on the dominance;
5: Apply genetic operators to the tournament winners to form

genetic offspring population Pga ;
6: Divide the whole population Pg into d clusters;
7: Set cluster counter cl← 0;
8: while cl < d do
9: Identify the clth cluster representative Repgcl;

10: Encode each Ggk in the clth cluster into a different
permutation Π?g

k;
11: Learn NHMg

cl over the clth cluster based on the
representative Repgcl to form sampling local search
offspring population Pgb ;

12: Pg+1 = Pg ∪ Pga ∪ P
g
b ;

13: Evaluate f1, f2 of each permutation in Pg+1 by decoding it into
Ggk ;

14: Perform a fast non-dominated sorting on Pg+1;
15: Keep top m solutions in Pg+1;

16: Return non-dominated solutions in Pgmax ;
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4.4.3 Genetic Operators

One order crossover [49] and one one-point swap mutation [40, 98] are em-
ployed to produce the genetic offspring population. An example of this
crossover and mutation operator is illustrated in Fig. 4.3. The crossover
operator produces two children. Each child preserves part of the ele-
ments of one parent, while elements of another parent (excluding those
preserved elements by the child) fill the remaining parts of this child from
left to right. The mutation randomly swaps two elements of one parent to
produce a new permutation.

1 2 3 4 0

3 1 4 0 2

1 0 3 4 2

1 2 4 0 3

Crossover

Parent 1: 

Parent 2: 

Child 1: 

Child 2: 

1 2 3 4 0

1 4 3 2 0

Mutation

Parent 1: 

Child 1: 

Fig. 4.3: Examples of crossover and mutation for parents.

We produce genetic offspring population Pga more efficiently than that
in Hybrid and Hybrid-L [40]. Although two children are produced by one
crossover, only one child associated with a higher Tchebycheff score [229]
will be added to the offspring population in both Hybrid and Hybrid-L
[40]. Compared to [40], we put both children in population Pga . Therefore,
to produce an offspring population with an equal size, our method is more
efficient than Hybrid and Hybrid-L [40].



4.4. THE MNSGA2-EDA ALGORITHM 151

4.4.4 Identify a Cluster Representative of Each Cluster

Unlike single-objective optimization problems discussed in Chapter 3, it is
not straightforward to determine promising solutions for learning NHM
in EDA under the multi-objective optimization setting since they often
have two objectives. To select a small number of promising solutions,
we propose to define one cluster representative as a promising solution
based on the dominance relationships among all solutions in the cluster.
In particular, we cluster d groups of close individuals in one generation
using an existing clustering technique, i.e., K-means++ [10]. The sensitiv-
ity of parameter d is studied in Sect. 4.5.1. We infer a group of individuals
that represents close similarities measured by fitness values, f1 and f2 in
Eq. (4.2) and (4.3). With equal probability, we choose one solution that
is not dominated by any other solutions of the same cluster as a cluster
representative. Consequently, we can learn an NHM based on the cluster
representative, see details in Sect. 4.4.5.

Cluster representatives

Non-dominated 
solutions of cluster one

Cluster one

Cluster two

Non-dominated 
solutions of cluster two

𝑓"

𝑓#

Fig. 4.4: An example of identifying two cluster representatives.

An example of identifying promising solutions via a clustering tech-
nique is illustrated in Fig. 4.4. In Fig. 4.4, we consider one population
of eight individuals, which are clustered into two groups of individuals
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based on their objective values using K-mean++. Subsequently, for each
cluster, we can randomly pick up one non-dominant solution as the cluster
representative, see the marked cluster representatives in Fig. 4.4.

4.4.5 Learn a NHM Based on Cluster Representatives

In this subsection, we propose a method to learn a suitable distribution
model (i.e. NHM) based on the cluster representative with respect to each
cluster. This method consists of two main steps: permutation transforma-
tion and NHM learning.

We transfer every cluster member Πg
k into a new permutation Π?g

k based
on its decoded DAG form Ggk . The transformation process is exactly the
same as the process of producing the novel permutation in Sect. 3.5.2.
After the transformation, we can now learn a NHM based on the clus-
ter representative formed in this permutation. Different from the way of
learning a NHM in Sect. 3.5.3, we propose a new way of learning a NMH,
improving the chance of local improvements on the cluster representatives
through sampling. In particular, we use the Euclidean distances between
the cluster representative and other members of this cluster to weight the
influences of every cluster member on the NHM. This is because cluster
members far from cluster representative contribute less to the NHM.

The node histogram matrix (NHM) for the clth cluster with the cluster
representative Repcl in generation g is denoted as NHMg

cl, which is an
n× n-matrix with entries ei,j as follows:

ei,j =
m−1∑
k=0

δi,j(Π
?g
k) + ε (4.4)

δi,j(Π
?g
k) =

w(Π?g
k) if πi = j

0 otherwise
(4.5)

w(Π?g
k) = 1− ||~f(Π?g

k)− ~f(Repgcl)||2 (4.6)
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where i, j = 0, 1, . . . , n − 1, ε = m
n−1

bratio is a predetermined bias, and
||~f(Π?

g

k) − ~f(Repgcl)||2 measures a Euclidean distance between one cluster
member and the cluster representative. This distance value is offset by
1, so the higher values correspond to less weights in learning an NHM.
Roughly speaking, entry ei,j counts how often service index πi appears in
position j of all the permutations in the clth cluster. Meanwhile, the weight
of the frequency is penalized by Eq. (4.6). Afterwards, we can use NHBSA
[168] to sample local search offspring population Pgb for generation g + 1,
using ALGORITHM 12 in Sect. 3.5.3

4.5 Experimental Evaluation

We conduct experiments for studying the performance of our MNSGA2-
EDA approach using the new benchmarks, WSC-08 and WSC-09, pro-
posed in Chapter 3 to demonstrate that MNSGA2-EDA can maintain its
high performance on our problem with significantly larger sizes. We first
investigate the sensitivity of parameters, i.e., the number of clusters d and
their sampling size. In particular, we investigate three groups of settings
with increasing size of Pgb (see details in Sect. 4.5.1). The following exper-
iment further investigates the effectiveness and efficiency of MNSGA2-
EDA in comparison to the baseline method NSGA-II and to Hybrid and
Hybrid-L [40]. These approaches have recently been proposed to solve
a similar multi-objective fully automated service composition problem.
Note that Hybrid-L has employed a so-called swap operator on numerous
decomposed subproblems for local serach. However, Hybrid-L exhibit
very poor convergence rate in practice. We use two tasks WSC09-3 and
WSC09-5 to exemplify the poor performance of Hybrid-L in Fig. 4.5 and
4.6. Therefore, we do not further report on the performance of Hybrid-L
for the remaining tasks, when compared to MNSGA2-EDA.

We follow the settings in [40] for all approaches, where the size of both
Pg and Pga are set to 500. The maximum generation g is 51, and the prob-
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ability rates of crossover, mutation, and reproduction are 0.8, 0.1 and 0.1.
For EDA settings in MNSGA2-EDA, bratio of ε is set to 0.0002 according to
our suggestion in Sect 3.7. The weights in the fitness function Eq. (4.2) and
Eq. (4.3) are set to balance quality criteria in both QoSM and QoS, i.e., w1

and w2 are set to 0.5, and w3, w4, w5 and w6 to 0.25. We have also conducted
tests with other weights and parameters and generally observed the same
behavior.

IGD and hypervolume are commonly used performance evaluation met-
rics for multi-objective optimization algorithms [84]. IGD measures the
distance from the nearest point of the non-dominated set produced by
an approach to an approximated true Pareto front obtained by using all
approaches. Hypervolume measures the dominated volume covered by
a reference point (e.g., a point (1,1) is chosen in our case) and the front
evolved by each algorithm. In particular, we highlight IGD and hyper-
volume values of all the top performances in a green colour for all the
competing algorithms.

4.5.1 Parameters sensitivity

To determine suitable parameters of EDA-based local search in MNSGA2-
EDA, we use task WSC08-3 to perform parameters sensitivity tests over a
set of parameters with an increasing size of local search offspring popula-
tion Pgb in MNSGA2-EDA.

We use Wilcoxon rank-sum testing with a significance level of 5% to
verify the observed differences in IGD and hypervolume over 30 runs. This
test method is also used consistently to detect any noticeable differences
in the experiment results in Sect. 4.5.2.

In Table 4.1 and 4.2, the first column shows the size of Pgb . The sec-
ond and third column of Table 4.1 and 4.2 show a pair of parameters used
in EDA, which are the number of clusters d and their sampling size. The
fourth column of Table 4.1 and 4.2 show the mean values of IGD and hy-
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Table 4.1: Mean IGD of MNSGA2-EDA with three groups of parameter
settings over WSC08-3 (Note: the lower the IGD the better).

Size of Pgb d Sampling size MNSGA2-EDA

160

2 80 6e− 04± 3e− 04

4 40 2e− 04± 0

6 27 2e− 04± 1e− 04

200

2 100 4e− 04± 2e− 04

4 50 1e− 04± 0

6 34 2e− 04± 1e− 04

240

2 120 4e− 04± 3e− 04

4 60 1e− 04± 1e− 04

6 40 1e− 04± 0

Table 4.2: Mean Hypervolume of MNSGA2-EDA with three groups of
parameter settings over WSC08-03 (Note: the higher the hypervolume

the better).

Size of Pgb d Sampling size MNSGA2-EDA

160

2 80 0.2302± 1e− 04

4 40 0.2304± 1e− 04

6 27 0.2304± 1e− 04

200

2 100 0.2303± 1e− 04

4 50 0.2305± 0

6 34 0.2305± 1e− 04

240

2 120 0.2303± 1e− 04

4 60 0.2305± 1e− 04

6 40 0.2305± 0

pervolume and the corresponding standard deviation over 30 repetitions.

Table 4.1 and 4.2 show that 200 local search offspring population size
based on 4 clusters with 50 sampling size is the best-found parameter set-
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ting over all designed parameter settings for task WSC08-3. As shown in
Table 4.1 and 4.2, MNSGA2-EDA with this setting is highlighted as one
top performing algorithm in terms of both mean IGD and hypervolume.
We will use this setting in Sect. 4.5.2.

4.5.2 Comparing MNSGA2-EDA with NSGA-II, Hybrid

and Hybrid-L
Comparison of the Execution Time

Table 4.3 shows the mean execution times (in seconds) and the standard
deviation observed for the three methods MNSGA2-EDA, NSGA-II and
Hybrid over 30 repetitions. More specifically, Table 4.4 summarizes the
results of pairwise comparisons of the three methods without Bonferroni
correction. The table displays win/draw/loss of one method compared to
all other methods. That is, it is reported how often one method outper-
forms, equals or is outperformed by the competing method.

The mean execution time for MNSGA2-EDA and NSGA-II are very
comparable (but not equal) to each other for tasks in WSC08 and WSC09.
In comparison, Hybrid consistently takes twice the execution time for each
task. This observation does not agree with the findings in [40] that Hy-
brid and NSGA-II achieve competitive execution time. This is because
they do not point out the assumption that the evaluation time of every
candidate solution is indistinct. In our thesis, a more challenging bench-
mark is utilized for testing, and high computation resources are required
for computing QoSM of each solution. In addition, every crossover op-
erator in Hybrid requires two evaluations of two produced children in
order to keep a child with a higher Tchebycheff score. Instead, MNSGA2-
EDA and NSGA-II keep both of the two children. For example, 500 chil-
dren are required for the next generation using crossover, then Hybrid re-
quires 1000 evaluations while MNSGA2-EDA and NSGA-II only require
500 evaluations. Therefore, Hybrid consumes much more execution time
than MNSGA2-EDA and NSGA-II.
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Table 4.3: Mean execution time (in seconds) for our method in
comparison to the baseline NSGA-II, and to Hybrid

(Note: the shorter the time the better).

Task MNSGA2-EDA NSGA-II Hybrid [40]

WSC08-1 224± 12 190± 48 418± 65

WSC08-2 81± 17 58± 14 139± 32

WSC08-3 5539± 464 8095± 1437 20793± 4149

WSC08-4 210± 17 317± 58 805± 147

WSC08-5 4242± 562 6090± 1704 14735± 5166

WSC08-6 62966± 10943 65051± 8592 158737± 27171

WSC08-7 5489± 814 9132± 2578 23074± 6030

WSC08-8 9917± 3788 12443± 1818 33077± 6164

WSC09-1 198± 67 155± 76 327± 90

WSC09-2 5634± 679 6139± 1678 14634± 2816

WSC09-3 2968± 301 2820± 714 6527± 2403

WSC09-4 269207± 23542 255195± 28813 646897± 117538

WSC09-5 39370± 5125 35338± 8350 86281± 19944

Table 4.4: Summary of statistical significance tests for the execution time,
where each column shows the win/draw/loss score of one method

against a competing one for all tasks of WSC08 and WSC09.

Dataset Method MNSGA2-EDA NSGA-II Hybrid [40]

WSC08
(8 tasks)

MNSGA2-EDA - 2/1/5 0/0/8

NSGA-II 5/1/2 - 0/0/8

Hybrid [40] 8/0/0 8/0/0 -

WSC09
(5 tasks)

MNSGA2-EDA - 3/2/0 0/0/5

NSGA-II 0/2/3 - 0/0/5

Hybrid [40] 5/0/0 5/0/0 -
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Comparison of the IGD and Hypervolume

Tables 4.5 to 4.8 show the mean IGD and the mean hypervolume with the
standard deviations over 30 repetitions, and the corresponding summa-
rized results of pair comparisons for MNSGA2-EDA, NSGA-II, and Hy-
brid. We note that MNSGA2-EDA achieves the best-known values of IGD
for all tasks except for one task (i.e., WSC09-1) and the best-known values
of hypervolume for all tasks. On the other hand, NSGA-II only achieves
the best-known values of both IGD and hypervolume for 2 of the 13 tasks,
while Hybrid only obtained the best-known values of IGD and hypervol-
ume for 4 out of the 13 tasks and 3 out of the 13 tasks respectively. There-
fore, MNSGA2-EDA significantly outperforms NSGA-II and Hybrid mea-
sured by IGD and hypervolume.

Table 4.5: Mean IGD for our method in comparison to the baseline
NSGA-II, and to Hybrid (Note: the lower the IGD the better).

Task MNSGA2-EDA NSGA-II Hybrid [40]

WSC08-1 0± 0 1e− 04± 7e− 04 1e− 04± 5e− 04

WSC08-2 0± 0 0± 0 0± 0

WSC08-3 1e− 04± 0 0.001± 4e− 04 0.001± 3e− 04

WSC08-4 0± 0 3e− 04± 3e− 04 1e− 04± 1e− 04

WSC08-5 0.0029± 0.0014 0.0043± 0.0015 0.0027± 0.0011

WSC08-6 7e− 04± 3e− 04 0.0014± 3e− 04 0.0012± 3e− 04

WSC08-7 1e− 04± 2e− 04 0.002± 9e− 04 0.0015± 0.001

WSC08-8 0± 1e− 04 9e− 04± 5e− 04 6e− 04± 3e− 04

WSC09-1 0.0701± 0.0132 0.0731± 6e− 04 0.0654± 0.0199

WSC09-2 0.0055± 0.001 0.0065± 0.0011 0.0061± 9e− 04

WSC09-3 0.002± 9e− 04 0.0126± 0.0085 0.0107± 0.0076

WSC09-4 0.0025± 0.001 0.0061± 7e− 04 0.0056± 0.0012

WSC09-5 0.0025± 0.0014 0.0052± 0.0011 0.0045± 7e− 04
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Table 4.6: Summary of statistical significance tests for IGD, where each
column shows win/draw/loss scores of one method against a competing

one for all tasks of WSC08 and WSC09.

Dataset Method MNSGA2-EDA NSGA-II Hybrid [40]

WSC08
(8 tasks)

MNSGA2-EDA - 0/2/6 0/3/5

NSGA-II 6/2/0 - 4/4/0

Hybrid [40] 5/3/0 0/4/4 -

WSC09
(5 tasks)

MNSGA2-EDA - 0/0/5 1/0/4

NSGA-II 5/0/0 - 2/3/0

Hybrid [40] 4/0/1 0/3/2 -

Table 4.7: Mean Hypervolume for our method in comparison to the
baseline NSGA-II, and to Hybrid (Note: the higher the hypervolume the

better).

Task MNSGA2-EDA NSGA-II Hybrid [40]

WSC08-1 0.3825± 0 0.3824± 4e− 04 0.3825± 1e− 04

WSC08-2 0.5798± 0 0.5798± 0 0.5798± 0

WSC08-3 0.2305± 0 0.2298± 2e− 04 0.23± 1e− 04

WSC08-4 0.3217± 0 0.3213± 7e− 04 0.3215± 5e− 04

WSC08-5 0.278± 7e− 04 0.2752± 0.0022 0.2767± 0.0014

WSC08-6 0.2341± 1e− 04 0.2338± 2e− 04 0.2341± 2e− 04

WSC08-7 0.2808± 2e− 04 0.278± 0.0014 0.2788± 0.0014

WSC08-8 0.2475± 1e− 04 0.2465± 7e− 04 0.2471± 4e− 04

WSC09-1 0.4435± 0.0028 0.4424± 9e− 04 0.4434± 0.0031

WSC09-2 0.2751± 1e− 04 0.2742± 0.0016 0.2747± 7e− 04

WSC09-3 0.3693± 1e− 04 0.361± 0.0064 0.3618± 0.0054

WSC09-4 0.239± 0.0014 0.2346± 9e− 04 0.2355± 0.0017

WSC09-5 0.2376± 0.001 0.235± 5e− 04 0.2353± 5e− 04
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Table 4.8: Summary of the statistical significance tests for hypervolume,
where each column shows win/draw/loss scores of one method against

a competing one for all tasks of WSC08 and WSC09.

Dataset Method MNSGA2-EDA NSGA-II Hybrid [40]

WSC08
(8 tasks)

MNSGA2-EDA - 0/2/6 0/3/5

NSGA-II 6/2/0 - 5/3/0

Hybrid [40] 5/3/0 0/3/5 -

WSC09
(5 tasks)

MNSGA2-EDA - 0/0/5 0/0/5

NSGA-II 5/0/0 - 2/3/0

Hybrid [40] 5/0/0 0/3/2 -

Comparison of the Convergence Curve

To investigate the effectiveness and scalability of MNSGA2-EDA, NSGA-
II, Hybrid and Hybrid-L, we further investigate the convergence curves
for IDG and hypervolume over 30 repetitions using WSC09-3 and WSC09-
5 as two examples.

Fig. 4.6 and 4.5 depict the evolution of the mean values of the IGD and
hypervolume over the mean execution time for MNSGA2-EDA, NSGA-II,
Hybrid, and Hybrid-L. We cut the mean execution time to fit the maxi-
mal required time of Hybrid because Hybrid-L results in a much higher
order of magnitude in execution time, and it does not have a chance to
catch up with MNSGA2-EDA. For Hybrid, it converges much better than
Hybrid-L, but does not converge better than the baseline NSGA-II. In con-
trast, our MNSGA2-EDA approach achieves significantly better IGD and
hypervolume values with the fastest convergence rate.

Comparison of the Pareto Optimal Solutions

In Fig. 4.7, we present a plot of the Pareto optimal solutions of WSC09-
3 and WSC09-5 obtained by MNSGA2-EDA, NSGA-II and Hybrid over
30 independent runs. The Pareto optimal solutions are identified based
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Fig. 4.5: Mean hypervolume over time for non-dominated solutions, for
WSC09-3 (left) and WSC09-5 (right)

(Note: the larger the hypervolume the better).
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on the combined results of all 30 runs of each method. It is easy to ob-
serve that the Pareto front generated by MNSGA2-EDA is much more
widely distributed. In other words, extreme solutions are more likely to
be found by MNSGA2-EDA. For task WSC09-3, a trade-off solution at the
knee point of the Pareto front is found by MNSGA2-EDA. We hasten to
point out that it is highly important and desirable to discover a solution
like this. The other two methods (NSGA-II and Hybrid) fail to discover
this solution, which may be regarded as a weakness. For task WSC09-
05, much better Pareto optimal solutions are obtained by MNSGA2-EDA,
and these solutions consistently dominate all solutions obtained by other
methods.

Fig. 4.7: Pareto optimal solutions obtained for tasks WSC09-3 (left) and
WSC09-5 (right).
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4.6 The WSC-MQP Problem

We perceive WSC-MQP as a multitasking problem that aims to optimize
K composition tasks concurrently with respect to the K user segments.
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WSC-MQP has not been explicitly studied before, according to the litera-
ture review discussed in Sect. 2.2. Some concepts related to MFEA, such
as factorial cost fΠ

j , factorial rank rΠ
j , scalar fitness ϕΠ and skill factor of a indi-

vidual Π, introduced in Sect. 2.1.3, are also utilized in this chapter.
We extend composition task defined in Sect. 3.3 to cover distinctive

QoSM preferences from K user segments. The preferences of one user
segment is defined as an interval, such as QoSM ∈ (0.75, 0.1]. Therefore, a
composition task (also called a service request) over a given service repository
is a tuple Tj = (IT , OT , consj) where IT is a set of task inputs, and OT is
a set of task outputs. The inputs in IT and outputs in OT are parame-
ters that are semantically described by concepts in a ontology O. consj

is a QoSM preference, where consj is in the range of (QoSMa
j , QoSM

b
j ],

j ∈ {1, 2, . . . , K} and QoSMa
j , QoSM

b
j are lower and upper bounds of

QoSM that are unique for each user segment.
It is essential to include infeasible individuals (i.e., solutions that vio-

late the preference of one task) into a population, since infeasible compos-
ite services may help to find optimal solutions of other tasks. For example,
one solution is infeasible for T1 as it violates cons1, but it is feasible to T2

as it complies with cons2. This solution should be included for finding
optimal solutions for T2. Therefore, we allow infeasible individuals in the
population, but their fitness must be penalized. According to the fitness
function in Eq. (4.7) with respect to Tj , we guarantee that fΠ

j of an infea-
sible individual Π stays below 0.5 while fΠ

j of a feasible individual falls
above 0.5. Eq. (4.8) measures the comprehensive quality of a individual
Π (see our previous discussion in Sect. 3.3). Eq. (4.9) measures QoSM of a
individual Π. Based on Eq. (4.9), Eq. (4.10) measures the degree of viola-
tion of consj by calculating how far it is from QoSM(Π). In particular, an
infeasible individual that violates consj more should be penalized more.

fΠ
j =

0.5 + 0.5 ∗ F (Π) if QoSM(Π) ∈ intervalj ,

0.5 ∗ F (Π)− 0.5 ∗ Vj(Π) otherwise.
(4.7)
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F (Π) = w1M̂T + w2
ˆSIM + w3Â + w4R̂ + w5(1− T̂ ) + w6(1− ĈT ) (4.8)

QoSM(Π) = w7M̂T + w8
ˆSIM (4.9)

Vj(Π) =

QoSMa
j −QoSM(Π) if QoSM(Π) ≤ QoSMa

j ,

QoSM(Π)−QoSM b
j otherwise.

(4.10)

with
∑6

k=1wk = 1 (wk > 0) and
∑8

k=7 wk = 1 (wk > 0). We can adjust
the weights according to the preferences of each user segment. M̂T , ˆSIM ,
Â, R̂, T̂ , and ĈT are normalized values calculated within the range from
0 to 1 using Eq. (3.6) (see details in Sect. 3.3). The goal of WSC-MQP is
to find the K best possible solutions with one for each task, our goal is to
maximize the objective function in Eq. (4.7) concerning K tasks.

4.7 The PMFEA Algorithm

In this section, we present PMFEA to solve the WSC-MQP problem. We
begin with an outline of PMFEA in Sect. 4.7.1. Afterwards, we discuss
some critical components of PMFEA from Sect. 4.7.2 to 4.7.4.

Our proposed PMFEA is characterized by three novel aspects. Firstly,
we employ a permutation-based representation for composite services to
establish a common search space over K composition tasks (see details
in Sect. 4.7.2). As discussed in FL [47], their permutation-based represen-
tation has shown its promises in solving single-tasking single-objective
service composition problems. Therefore, we will study the effective-
ness of this permutation in solving the WSC-MQP problem. In addition,
the permutation-based crossover and mutation operators, discussed in
Sect. 4.4.3, are studied for their effectiveness in the assortative mating (see
details in Sect. 4.7.3).
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Secondly, we introduce a neighbourhood structure over multiple tasks
for more effectively evolving solutions in PMFEA. By evaluating evolved
solutions on neighbouring tasks, we increase the chance for a solution
evolved for one inherited task (determined through vertical culture trans-
mission) to participate in building the solutions of related tasks. In our
problem, the related tasks are tasks whose QoSM preferences are adjacent
to those of the inherited task. It is through this way that knowledge can be
exchanged effectively across multiple tasks, enabling our algorithm to ef-
fectively cope with a problem with more than two concurrent composition
requests (see details in Sect. 4.7.4).

Thirdly, we show that fitness evaluations of a solution on neighbor-
ing tasks are efficient in WSC-MQP because once the calculation of F (Π)

in Eq. (4.8) (i.e., a time-consuming calculation) is completed for the eval-
uation on the inherited task, it is not required to be calculated again for
the evaluations on the neighboring tasks. Moreover, we expect the over-
all execution time of PMFEA can be reduced by performing the evalua-
tions on neighbouring tasks. Due to the effective knowledge transforma-
tion across different tasks through the introduced neighborhood structure,
we increase the chances of evolving effective solutions through assortative
mating. Therefore, the process of decoding permutations could be accel-
erated by the better knowledge transformation (see details in Sect. 4.7.2).

4.7.1 Outline of PMFEA
The overview of PMFEA is summarized in ALGORITHM 19: we initially
generate m random permutations Πg

k, where 0 ≤ k < m and g = 0. Each
permutation will be decoded into a DAG-based solution, Ggk (see the de-
tails in Sect. 4.7.2). We evaluate fΠg

k , rΠg
k

j , ϕΠg
k and τΠg

k of Πg
k over Tj , where

j ∈ {1, 2, . . . , K}. Subsequently, the following steps (Step 4 to 9) are re-
peated until a maximum generation gmax is reached. During the iteration,
we apply assortative mating with crossover and mutation to breed off-
spring population Pga (see details in Sect. 4.7.3). Once Pga is generated,
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ALGORITHM 19. PMFEA for WSC-MQP.
Input : Tj , K, and gmax

Output: {Πopt
j }Kj=1

1: Randomly initialize population Pg of m permutations Πg
k as

solutions (where g = 0 and k = 1, . . . ,m);
2: Decode each Πg

k into DAG Ggk using a forward graph-building
technique;

3: Evaluate fΠg
k , rΠg

k
j , ϕΠg

k and τΠg
k of Πg

k over Tj , where
j ∈ {1, 2, . . . , K};

4: while g < gmax do
5: Apply assortative mating to the randomly selected individuals

to generate offspring population Pg+1
a ;

6: Assign offspring in Pg+1
a to the selected tasks and evaluate

fΠg+1
k on the tasks;

7: Pg+1 = Pg ∪ Pg+1
a ;

8: Update rΠg+1
k

j , ϕΠg+1
k and τΠg+1

k of offspring in Pg+1;
9: Keep top half of the fittest individuals in Pg+1 based on ϕΠg+1

k ;

10: Let {Πopt
j }Kj=1 be a set of best solutions over all the generations for

the K tasks;

individuals in Pga will be assigned to tasks based on vertical cultural trans-
mission ( see detail in ALGORITHM 8 in Sect. 2.1.3) and the correspond-
ing neighbouring tasks for evaluations (see details in Sect. 4.7.4). Conse-
quently, we produce the next population Pg+1 by combining the current
population Pg and assortative mating offspring population Pga . We up-
date rΠg

k
j , ϕΠg

k and τΠg
k of the combined population in Pg+1, and keep the

top half of fittest individuals in Pg+1 based on ϕΠg
k . In each generation, we

keep track of the fittest Πopt
j for each task Tj . When the maximal generation

gmax is met, we return a set of best solutions {Πopt
j }Kj=1 for the K tasks over

all the generations .
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4.7.2 Permutation-based representation

Different from the novel permutation introduced in Sect. 3.5.2, we simply
utilize random permutations introduced in FL [47]. Let Π = (π1, . . . , πt, . . . ,

πn) be a permutation-based composite service of service indexes {1, . . . ,
t, . . . , n} such that πi 6= πj for all i 6= j. Permutations must be decoded
into DAG-based solutions for easy of calculating the factorial cost and
presenting users a final execution workflow.

Fig. 4.8 illustrates an example of producing a DAG-based solution de-
coded from a permutation using a forward graph-building technique [175].
In the example, we take an arbitrary permutation [4, 3, 5, 1, 2] as an ex-
ample with composition task inputs IT and outputs OT . We check the
permutation from left to right, looking for services whose inputs can be
fulfilled by IT , so we remove them from the permutation and add them
to the graph. Afterwards, we go through the permutation from left to
right again and add services whose inputs can be fulfilled by IT and any
outputs of services in the graph. We continue this process until we can
add End to the graph (i.e., OT can be produced). Note that this process
may result in graphs that contain some services whose outputs does not
contribute to the satisfactions of the inputs of End, such as service S4.
These services will be removed.

4.7.3 Assortative Mating

PMFEA employs assortative mating to generate offspring for K tasks. In
particular, two randomly selected parent candidates undergo crossover
if they have the same skill factors. Otherwise, a pre-defined probability
rand is used to decide when knowledge should be implicitly shared across
tasks: crossover is performed over the parent candidates with different
skill factors or mutation is performed on each parent, see ALGORITHM 7 in
Sect. 2.1.3 for technical details. Note that the order crossover and one-point
swap mutation, discussed in Sect. 4.4.3, are employed for the purpose of
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Fig. 4.8: An example of a DAG-based solution decoded from a given
permutation.

assortative mating to generate permutations for K tasks.

4.7.4 Task Selection for Evaluations

MFEA [71] suggest that candidate solutions are only evaluated on the task
that is inherited from parents based on the vertical cultural transmission,
see details in ALGORITHM 8 in Sect. 2.1.3.

To effectively deal with more than two optimization tasks, we pro-
pose PMFEA-NT for evolving more effective solutions through careful se-
lections of tasks. In particular, we introduce a neighbourhood structure
over a set of tasks. We suggest identifying the neighbouring tasks of each
child’s inherited task, which is decided by vertical culture transmission.
Subsequently, we will assign each child to the neighbouring tasks for ad-
ditional evaluations.

Fig. 4.9 illustrates an example of neighborhood structure over four
composition tasks T1, T2, T3 and T4 with respect to four user segments.
These four composition tasks have the same input and output (i.e., IT and
IO) but different consj , where j ∈ {1, 2, 3, 4}. In particular, cons1 ∈ (0, 0.25],
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𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙) 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙* 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙+ 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙,

0 0.25 0.5 0.75 1

𝑇) 𝑇* 𝑇+ 𝑇,Tasks

Segment preferences

(𝐼0, 𝑂0 , 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙)) (𝐼0, 𝑂0 , 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙*) (𝐼0, 𝑂0 , 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙+) (𝐼0, 𝑂0 , 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙, )

Fig. 4.9: An example of neighborhood structure over four tasks.

cons2 ∈ (0.25, 0.5], cons3 ∈ (0.5, 0.75] and cons4 ∈ (0.75, 1], respectively.
The neighborhood structure is manually determined by following a rule,
i.e., tasks whose segment preferences on QoSM are adjacent to each other
are neighbours. For example, the neighboring tasks of task T2 are T1 and
T3 whose segment preference on QoSM (i.e., cons1 and cons3) are adjacent
to that of T2 (i.e., cons2).

We continue to demonstrate the benefits of our proposed neighbour-
hood structure in PMFEA-NT using the example in Fig. 4.9. Consider a
child derived from a parent that satisfies cons1 of T1, and this child can also
lead to the satisfaction of a neighbouring segment preference, i.e., cons2. If
this child is only evaluated on task T1 based on the vertical cultural trans-
mission, resulting in a poor fitness value, it is likely to be discarded. In
contrast, if we give this child a chance to be evaluated on the neighbour-
ing task, i.e., T2, resulting in a good fitness value, it can survive to the next
generation due to its good performance on T2. We hope such a situation
will help to diversify solutions in the population and make the evolution
process more effective.

4.8 The PMFEA-EDA Algorithm

We first present an outline of PMFEA-EDA for WSC-MQP in Sect. 4.8.1.
Subsequently, we will discuss the two main innovations of this method:
(1) constructing single-tasking and multitasking NHMs for effective ex-
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ploration of the solution space over multiple tasks in every generation,
and (2) a new sampling mechanism designed to balance the trade-off be-
tween exploration and exploitation in a multitasking context.

To learn a single-tasking NHM with respect to each task, we assign
composite services to different solution pools based on their skill factors.
Therefore, every solution pool stores promising solutions for one task. As
discussed in Sect. 4.7.4, solutions that are promising for one task can be
used to evolve new solutions for its adjacent tasks (i.e., neighbouring tasks
whose QoS preferences are close to each other). Due to this reason, we also
prepare additional solution pools to store solutions that are promising for
every two adjacent tasks. In other words, every pool contains solutions
whose skill factors are associated with two adjacent tasks. We assume
that every two adjacent tasks are the most suitable tasks for the knowl-
edge sharing. Therefore, learning multitasking NHMs of these additional
pools allow knowledge to be shared across adjacent tasks (see details in
Sect. 4.8.2).

Current population Solution pools

Combined Population

Sampled offspring population via multiple NHMs 

…

Single-tasking NHMs

Multi-tasking NHMs

Sampling Sampled offspring population 

Next population

Learn NHMs

Assign solutions

Fittest solutions

0 ⋯ 10
⋮ ⋱ ⋮
32 ⋯ 2

3 ⋯ 24
⋮ ⋱ ⋮
42 ⋯ 1

3 ⋯ 24
⋮ ⋱ ⋮
3 ⋯ 45
13 ⋯ 4
⋮ ⋱ ⋮
9 ⋯ 8

…

……

Fig. 4.10: Generation updates in PMFEA-EDA.

Moreover, we propose a sampling mechanism to balance exploration
and exploitation. Particularly, a random sampling probability (rsp) is pre-
defined to determine which NHM will be used to build new solutions.
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This mechanism is inspired by assortative mating [71], where a different
random probability is defined as the occurrence of crossover on two par-
ent solutions from the same skill factor or different skill factors.

The generation updates in PMFEA-EDA are illustrated in Fig. 4.10.
From the current population in Fig. 4.10, one sampled offspring popula-
tion is created and further combined with the current population to pro-
duce the next population by only keeping the fittest solutions. Particularly,
this sampled offspring population is formed from new solutions that are
sampled from both single-tasking and multitasking NHMs. These NHMs
are learned from multiple solution pools consisting of solutions assigned
based on their skill factors.

4.8.1 Outline of PMFEA-EDA

The outline of PMFEA-EDA is shown in ALGORITHM 20. We first ran-
domly initialize m permutation-based Πg

k solutions, where 0 ≤ k < m

and g = 0. Each permutation-based solution will be decoded into a DAG-
based solution Ggk for interpreting its service execution workflow. Based on
Ggk , we can easily determine fΠg

k
j , rΠg

k
j , ϕΠg

k and τΠg
k of Πg

k over task Tj , where
j ∈ {1, 2, . . . , K}. Afterwards, we encode each solution Πg

k in Pg into an-
other permutation Π?g

k based on its decoded DAG form Ggk . Note that the
decoding and encoding process for producing permutations is exactly the
same as that discussed in Sect.3.5.2. This newly decoded representation
enables reliable and accurate learning of a NHM over varied composition
workflows in the fully automated service composition. The iterative part
of PMFEA-EDA comprises of Step 6 to 12, which is repeated until a max-
imum generation gmax is reached. During each iteration, we generate an
offspring population Pg+1

a via multiple NMHs using ALGORITHM 21 (see
details in Sect. 4.8.2). Again, the same decoding and encoding process is
employed on the newly sampled solutions in Pg+1

a . Afterwards, we eval-
uate the factorial cost fΠg+1

k of solutions in Pg+1
a on the task related to the

imitated tasks skill factor. In particular, the skill factor of every newly
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ALGORITHM 20. PMFEA-EDA for WSC-MQP.
Input : Tj , K, and gmax

Output: {Πopt
j }Kj=1

1: Randomly initialize population Pg of m permutations Πg
k as

solutions (where g = 0 and k = 1, . . . ,m);
2: Decode each Πg

k into DAG Ggk using a decoding method;

3: Calculate fΠg
k

j , rΠg
k

j , ϕΠg
k and τΠg

k of Πg
k over Tj , where

j ∈ {1, 2, . . . , K};
4: Encode each solution Πg

k in Pg with another permutation Π?g
k;

5: while g < gmax do
6: Generate offspring population Pg+1

a via multiple NHMs
learning and sampling using ALGORITHM 21;

7: Decode solutions in Pg+1
a into DAG Gg+1

k using a decoding
method;

8: Calculate fΠg+1
k of solutions in Pg+1

a on the selected tasks
related to the skill factors determined in its corresponding
NHM;

9: Encode each solution Πg
k in Pg with an another permutation

Π?g
k;

10: Pg+1 = Pg ∪ Pg+1
a ;

11: Update rΠg+1
k

j , ϕΠg+1
k and τΠg+1

k of offspring in Pg+1;
12: Keep top half the fittest individuals in Pg+1 based on ϕΠg+1

k ;

13: Let {Πopt
j }Kj=1 be a set of best solutions over all the generations for

the K tasks;

sampled solution is determined based on its corresponding NHM using
ALGORITHM 22 (see details in Sect. 4.8.4). We then produce the next pop-
ulation Pg+1 by combining the current population Pg and the offspring

population Pga . Consequently, we update rΠg+1
k

j , ϕΠg+1
k and τΠg+1

k of the
combined population Pg+1, and only half of the fittest combined popula-
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tion Pg+1 are kept based on ϕΠg+1
k . In each generation, we keep track of the

fittest Πopt
j for each task Tj . When the maximal generation gmax is met, the

algorithm returns a set of best {Πopt
j }Kj=1 over all the generations for the K

tasks.

4.8.2 NHMs Learning and Sampling Solutions

ConsideringK composition tasks in PMFEA-EDA, we learn 2K−1 NHMs
from promising solutions for sampling new candidate solutions. Among
the NHMs, there are K single-tasking NHMs and K-1 multitasking NHMs.
With respect to each NHM, a separate solution pool will be maintained
by PMFEA-EDA to keep track of useful solutions for building the corre-
sponding NHM. For example, considering the example of the four com-
position tasks discussed in Sect. 4.7.4, i.e., T1, T2, T3 and T4, seven pools
must be initialized for the four composition tasks and three adjacent task
pairs (i.e., T1 and T2, T2 and T3, and T3 and T4).

Moreover, a parameter rsp is used to determine whether multitasking
or single-tasking NHMs are selected for sampling. Particularly, a value of
rsp close to 0 implies that single-tasking NHMs are more frequently used
to build new solutions, while a value close to 1 implies that multitasking
NHMs are used with high probability to build new solutions for two ad-
jacent tasks.

The outline of multiple NHMs learning and sampling over K tasks is
summarized in ALGORITHM 21. We first initialize a set of empty solution
pools Aq, where 1 ≤ q ≤ (2K − 1). Afterwards, we assign these encoded
solutions to these pools based on the solutions’ skill factors τΠ?g

k . For ex-
ample, if τΠ?g

k = 1, this solution Π?g
k is assigned to two pools, one for task

T1, and the other is for both task T1 and T2. Afterwards, we learn 2K − 1

NHMs from the 2K − 1 pools respectively (see details in Sect. 4.8.3). The
iteration part comprises of Step 4 to 11. This iteration will not stop until m
new solutions are constructed to form the offspring population Pg+1

a . Dur-
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ALGORITHM 21. Multiple NHMs learning and sampling over K
tasks.

Input : Pg

Output: Pg+1
a

1: Initialize a set of empty Aq for each task and every two adjacent
tasks;

2: Assign each solution Π?g
k in Pg to Aq based on its skill factor ϕΠ?g

k ;
3: Learn 2K − 1 NHMs NHMg

q from the 2K − 1 Aq;
4: while |Pg+1| ≤ m do
5: rand← Rand(0, 1);
6: if rand < rsp then
7: Select one NHM from multitasking NHMs randomly;
8: else
9: Select one NHM from single-tasking NHMs randomly;

10: Sample one solution Πg+1
k from the selected NHM and put the

solution into Pg+1;
11: Πg+1

k inherts the skill factor based on the selected NHM;

12: Return offspring population Pg+1
a ;

ing the iteration, rsp is used to determine whether one NHM is randomly
selected from the 2K − 1 single-tasking NHMs or multitasking NHMs.
The selected NHM is used to build one solution. Hence, the skill factor of
the newly created solution will also be determined by the associated tasks
with the chosen NHM, inspired by the principal of vertical culture trans-
mission [71]. After all iterations have been completed, ALGORITHM 21
returns the newly produced population Pg+1

a for Step 6 of ALGORITHM 20.

4.8.3 NHBSA for Multitasking Evolutionary Search

We employ the node histogram-based sampling [168] as a tool to create
new permutations from the selected NHMs in Step 7 and 9 in ALGO-
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RITHM 21.

An NHM learned from solutions in each pool Aq at generation g, de-
noted by NHMg

q , is an n× n-matrix with entries egi,r as follows:

egi,r =
m−1∑
k=0

δi,r(Π
?g
k ) + ε (4.11)

δi,r(Π
?g
k ) =

1 if πi = r

0 otherwise
(4.12)

where i, r = 0, 1, . . . , n − 1, ε = m
n−1

bratio is a predetermined bias, and
n = |SR|. Roughly speaking, entry egi,r counts how often the service index
πi appears in position r of the permutation over all solutions in pool Aq.

Once we have computed NHMg
q , we use NHBSA to sample new can-

didate solutions Πg+1
k for the population Pg+1

a , see technical details in AL-
GORITHM 12 in Sect. 3.5.3.

4.8.4 Skill Factor Transmission

Vertical transmission [71] allows every new solution to be evaluated only
on the selected tasks that it is most likely to perform well on. This design
significantly reduces the total number of fitness evaluations required. To
continue to support this design in PMFEA-EDA, we propose a simple skill
factor transmission method shown in ALGORITHM 22.

In ALGORITHM 22, every newly created solution assumes the skill fac-
tor according to the corresponding NHM. In particular, when a multitask-
ing NHM is selected to create a new solution, this solution will randomly
assume one of the two related tasks associated with the NHM as its skill
factor. On the other hand, if a solution is created based on a single-tasking
NHM, the skill factor of this solution is determined by the task associated
to the NHM.
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ALGORITHM 22. Skill factor transmission based on the NHM.
1: if Πg

k is created by any multitasking NHM then
2: Let Ta and Tb be two selected adjacent tasks of a multitasking

NHM;
3: rand← Rand(0, 1);
4: if rand < 0.5 then
5: Πg

k inherts the skill factor from task Ta;
6: Πg

k is only evaluated on Ta;

7: else
8: Πg

k inherts the skill factor from task Tb;
9: Πg

k is only evaluated on Ta+1;

10: else
11: Let Tc be one selected task associated with a single-tasking

NHM;
12: Πg

k inherts the skill factor from task Tc;
13: Πg

k is only evaluated on Tb;

4.9 Experimental Evaluation

The evaluations of our PMFEAs consists of two parts. In the first part, we
conduct experiments to evaluate the effectiveness and efficiency of PM-
FEA, and its two variations, PMFEA-NT and PMFEA-AT based on a quan-
titative evaluations in Sect. 4.9.1. These three approaches are compared
to one state-of-art single-tasking single-objective EC-based method, i.e.,
Fixed Length Genetic Algorithm (FL) [47], which is reported as a very ef-
fective method to find high-quality solutions. In the second part, we study
the performance of PMFEA-EDA. Particularly, we compare three multi-
tasking methods: PMFEA-EDA, PMFEA-WTO, PMFEA, and two single-
tasking methods (i.e., EDA-NHM proposed in Chapter 3 and FL [47]) in
Sect. 4.9.2. We keep using the new benchmark, WSC09, proposed in Chap-
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ter 3. This benchmark is extended with four pre-defined QoSM prefer-
ences with respect to four user segments: (0, 0.25], (0.25, 0.5], (0.5, 0.75],
and (0.75, 1]. Therefore, each multitasking method is utilized to find solu-
tions for the four composition tasks concurrently. Meanwhile, each single-
tasking method is utilized to find a solution for each task at a time, and its
execution time is the aggregation of the total time spent on all tasks. We
perform 30 independent runs of each algorithm for all the datasets.

The maximum generation gmax is 200. The size of the population m is
set to 30, which strictly follow the population size reported in FL [47]. For
PMFEA, PMFEA-NT, and PMFEA-AT, the assortative mating rand is set
to 0.3, following the popular evolutionary multitasking setting in [225].
For PMFEA-EDA, we define rsp as 0.2 so that every single-tasking NHM
and every multitasking NHM are expected to create 6 and 2 solutions re-
spectively for the population size of 30 (i.e., 6 × 4 single-tasking NHMs
+2×3 multitasking NHMs= 30). For any use of EDA, bratio is set to 0.0002,
following the setting suggested in Sect. 3.7. For other settings of our EDA-
NHM and the weights in the fitness function Eq. (4.8), we also follow the
suggestions in Sect. 3.7. Similar to the weights settings in Eq. (4.8), the
weights in Eq. (4.9) are set to balance all quality criteria in QoSM, i.e., w7

and w8 are set to 0.5. We have conducted tests with other weights and pa-
rameters, and observe similar results to those reported in Sect. 4.9.1 and
Sect. 4.9.2.

4.9.1 Comparing PMFEAs with FL

Comparison of the Fitness

We use an independent sample T-test with a significance level of 5% to
verify the observed differences in mean fitness over 30 runs. In particu-
lar, a pairwise comparison of different methods have been carried to rank
the performances of all the approaches based on the number of times they
have been found to be better, similar, or worse than other methods. We
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highlight the best performances and the worst performances in green and
red colors, respectively, for related values in the tables. Note that when
multiple values in a row are highlighted in green that implies that no sig-
nificant differences among all the approaches can be detected.

Table 4.9: Mean fitness values for our approach in comparison to FL [47]
(Note: the higher the fitness the better).

Task 1

Method PMFEA-AT PMFEA-NT PMFEA FL [47]

WSC09-1 0.192631± 0.00475 0.19291± 0.003977 0.192864± 0.003543 0.193947± 0.003276

WSC09-2 0.146518± 0.003685 0.146975± 0.005269 0.148709± 0.00488 0.146254± 0.002946

WSC09-3 0.152277± 0.003385 0.152809± 0.003959 0.150053± 0.003885 0.15355± 0.002688

WSC09-4 0.141319± 0.000747 0.140892± 0.000836 0.140255± 0.00073 0.141451± 0.000515

WSC09-5 0.144593± 0.001096 0.144193± 0.00102 0.143447± 0.000946 0.144942± 0.000705

Task 2

Method PMFEA-AT PMFEA-NT PMFEA FL [47]

WSC09-1 0.810555± 0.00638 0.808541± 0.006982 0.809369± 0.007696 0.807483± 0.005398

WSC09-2 0.748537± 0.006183 0.749583± 0.00816 0.752848± 0.006956 0.74895± 0.006425

WSC09-3 0.765014± 0.007071 0.764333± 0.007089 0.760746± 0.006192 0.761924± 0.006194

WSC09-4 0.739807± 0.000696 0.73975± 0.000825 0.739866± 0.000853 0.739826± 0.000692

WSC09-5 0.73927± 0.00081 0.739328± 0.00073 0.73936± 0.001217 0.739467± 0.000735

Task 3

Method PMFEA-AT PMFEA-NT PMFEA FL [47]

WSC09-1 0.820082± 0.00571 0.820097± 0.004829 0.820107± 0.007241 0.819418± 0.003768

WSC09-2 0.230114± 0.006103 0.231639± 0.007691 0.234557± 0.00651 0.22968± 0.004616

WSC09-3 0.788258± 0.003952 0.788829± 0.00307 0.789012± 0.002968 0.788726± 0.002576

WSC09-4 0.224035± 0.001628 0.224026± 0.001827 0.224278± 0.001957 0.224127± 0.001467

WSC09-5 0.221114± 0.001512 0.221319± 0.001286 0.221169± 0.002244 0.221102± 0.001248

Task 4

Method PMFEA-AT PMFEA-NT PMFEA FL [47]

WSC09-1 0.222976± 0.007486 0.223659± 0.008279 0.219863± 0.013342 0.221582± 0.00946

WSC09-2 0.105114± 0.006103 0.10656± 0.007747 0.109708± 0.00659 0.10468± 0.004616

WSC09-3 0.215947± 0.00718 0.215877± 0.007496 0.217783± 0.005575 0.216698± 0.00533

WSC09-4 0.099035± 0.001628 0.098941± 0.001889 0.099276± 0.001935 0.099127± 0.001467

WSC09-5 0.096114± 0.001512 0.096312± 0.001287 0.096085± 0.002181 0.096102± 0.001248

First, all the multitasking approaches, i.e., PMFEA, PMFEA-NT, and
PMFEA-AT, outperform FL [47] since the most values related to FL [47] in
Tables 4.9 are marked in red color. This observation shows that multitask-
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ing is more competent at improving the quality of solutions by utilizing
the knowledge of other tasks through assortative mating. Such an obser-
vation further agrees with the findings in MFEA [71]

Second, the quality of solutions produced by PMFEA-NT is consis-
tently high since all the solutions are marked as the best performance ex-
cept one that is marked with an average performance in Table 4.9. This
corresponds well with our expectation that the careful selections of the
neighbourhood structure in PMFEA-NT will lead to effective search of
good solutions. This indicates that useful knowledge of solutions (i.e.,
the order of services used for composition) on one task can be effectively
transferred to the neighbouring tasks, and the skill factor of these solutions
have a chance to be updated with respect to the neighbouring tasks.

Third, PMEFA and PMFEA-AT are comparable to each other, and both
are less favourable to PMFEA-NT. We can see that the performances of
both algorithms vary on different tasks, i.e., 16 out of 20 tasks as the best
performance and 4 out of 20 tasks are marked as the worst performance
in Table 4.9. MEFA strictly follows the vertical cultural transmission, so it
loses the chance to transfer knowledge to other tasks. On the other hand,
although PMFEA-AT assigns candidate solutions to all tasks for evalu-
ations, it does not outperform PMFEA. It may be due to that candidate
solutions only inherit the most effective task of all the tasks and make a
locally optimal choice each time. Such a greedy strategy can easily lead to
local optima, resulting in no improvement in terms of the effectiveness.

Comparison of the Execution Time

Table 4.10 shows the execution times observed for PMFEA-NT, PMFEA-
NT, MFEA and FL [47] on the four tasks as a whole. Again, an independent
sample T-test has been conducted over 30 runs of these algorithms.

PMFEA, PMFEA-NT, and PMFEA-AT require significantly less execu-
tion time while FL [47] consistently takes four times the execution time
of PMFEA, PMFEA-NT and PMFEA-AT approximately in the worst cases
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Table 4.10: Mean execution time (in s) for our approaches
in comparison to FL (Note: the shorter the time the better).

All tasks (Task 1, Task 2, Task 3 and Task 4)

Method PMFEA-AT PMFEA-NT PMFEA FL [47]

WSC09-1 54± 52 44± 32 79± 87 150± 151

WSC09-2 1900± 1032 1925± 702 2371± 804 8479± 3002

WSC09-3 1479± 1257 1542± 1159 1821± 740 5926± 3199

WSC09-4 64311± 16843 60925± 16311 71903± 19042 250146± 55355

WSC09-5 12943± 6615 12456± 6094 13689± 6723 47879± 16126

(e.g., the mean execution time for WSC09-3). It is due to that FL [47] is a
single-tasking EC technique that optimizes four tasks separately.

PMFEA-NT achieves the shortest execution time for each dataset con-
sistently. Meanwhile, PMFEA and PMFEA-AT are very comparable to
each other. These observations correspond well with our expectation that
the execution time of PMFEA can be reduced due to the effective knowl-
edge transformation across different tasks through the introduced neigh-
borhood structure over multiple tasks.

Comparison of the Convergence Curve

We investigate the convergence curves of PMFEA-AT, PMFEA-NT, PM-
FEA, and FL [47] on the four tasks over 30 runs, and use WSC09-3 as an
example to illustrate the performance of all the compared methods.

Fig. 4.11 shows the evolution of the mean fitness value of the best so-
lutions found along 200 generations for all the approaches. Among all the
four tasks, we observe a significant increase in the fitness values towards
the optimum for all the approaches, which eventually reach a plateau with
more stable improvements. In particular, PMFEA consistently converges
slower than all the other approaches. In contrast, FL [47] consistently con-
verge very fast than all the other approaches. In addition, PMFEA-NT
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Fig. 4.11: Mean fitness over generations for tasks 1-4, for WSC09-3 (Note:
the larger the fitness the better).
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and PMFEA-AT converge faster than PMFEA and are comparable to each
other. This observation indicates that evaluating an offspring on neigh-
bour tasks, or all tasks can contribute to more effective assortative mating,
accelerating the convergency speed.
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4.9.2 Comparing PMFEA-EDA with PMFEA-EDA-WTO,

PMFEA, EDA-NHM, and FL

Comparison of the Fitness

An independent sample T-test is employed at a significance level of 5% to
verify the observed differences in mean fitness of PMFEA-EDA, PMFEA-
WTO, PMFEA, EDA-NHM and FL, over 30 runs. Particularly, pairwise
comparisons of all the competing methods are carried out to count the
number of times they were found to be better, similar, or worse than the
others. Consequently, we can rank all the competing methods and high-
light the top performance in a green color.

Table 4.11 shows the mean value of the solution fitness and the stan-
dard deviation over 30 runs for each task. We observe that the comprehen-
sive quality of the solutions produced by using PMFEA-EDA, and EDA-
NHM are generally higher than those obtained by PMFEA and FL [47].
This corresponds well with our expectation that learning the knowledge
of promising solutions explicitly can increase the chance of finding high-
quality composite services.

Furthermore, PMFEA-EDA performs better than single-tasking EDA-
NHM. This observation indicates that addressing multiple tasks collec-
tively is often more effective than addressing each task individually. Par-
ticularly, compared to single-tasking EDA, multitasking methods are more
likely to evolve a well diversified population of solutions because solu-
tions with different skill factors are kept in such a population. Conse-
quently, we can easily prevent the evolutionary process from converging
prematurely.

Lastly, PMFEA-EDA also significantly outperforms PMFEA-EDA-
WTO and achieves consistently top performance among all the tasks. This
corresponds well with our expectation that knowledge sharing through
multitasking NHMs can significantly increase the chance of finding high-
quality solutions.
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Comparison of the Execution Time

An independent sample T-test at a significance level of 5% is also em-
ployed to verify the observed differences in mean execution time (in sec-
onds) over 30 runs.

Table 4.12: Mean execution time (in s) over all the tasks for our
approaches in comparison to PMFEA [185], EDA-NHM and FL [47]

(Note: the shorter the time the better).

Tasks T1, T2, T3 and T4

Method PMFEA-EDA PMFEA-EDA-WTO PMFEA [185] EDA-NHM FL [47]

WSC09-1 54± 8 52± 11 79± 87 184± 12 150± 151

WSC09-2 1571± 181 1533± 218 2371± 804 7058± 369 8479± 3002

WSC09-3 1085± 186 975± 122 1821± 740 5057± 885 5926± 3199

WSC09-4 57788± 6902 50310± 7535 71903± 19042 202464± 9366 250146± 55355

WSC09-5 9671± 1092 8834± 819 13689± 6723 39257± 1885 47879± 16126

Table 4.12 shows the mean value of the execution time and the standard
deviation over 30 repetitions for all the tasks. PMFEA-EDA, PMFEA-EDA-
WTO, and PMFEA appear to be very efficient than EDA-NHM and FL [47].
This is because EDA-NHM and FL [47] are single-tasking methods that
have to solve each composition task one at a time.

Moreover, compared to PMFEA-EDA, PMFEA-EDA-WTO requires
slightly less execution time for WSC09-03 to WSC09-05. This is because
PMFEA-EDA demands more time in learning NHMs when the service
repository SR becomes larger. However, the extra time incurred in
PMFEA-EDA is not substantial compared to PMFEA-EDA-WTO.

Comparison of the Convergence Curve

We also studied the convergence curves of PMFEA-EDA, PMFEA-EDA-
WTO, PMFEA, EDA-NHM, and FL [47]. In Fig. 4.12, we show the be-
haviours of effectiveness of all the methods using WSC09-2 as an example.
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Fig. 4.12: Mean fitness over generations for tasks 1-4, for WSC09-2 (Note:
the larger the fitness the better).
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Fig. 4.12 shows the evolution of the mean fitness value of the best so-
lutions found along 200 generations for all the approaches. We can see
that PMFEA-EDA converges much faster than other methods in most tasks
(Task 1, 2 and 3). Besides that, PMFEA-EDA converges much faster than
PMFEA-EDA-WTO, and eventually reaches the highest plateau. This ob-
servation matches well with our expectation that the explicit knowledge
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sharing across tasks is very effective.

4.10 Summary

The overall goal of this chapter is to propose effective EC-based meth-
ods to solve two categories of MOCQP: WSC-MO and WSC-MQP. We
have achieved the first goal of solving WSC-MO by completing the fol-
lowing: (1) We model the WSC-MO problem with two objectives, which
are related to the functional and non-functional aspects of composite ser-
vices, i.e., QoSM and QoS. (2) One memetic multi-objective fully auto-
mated web service composition approach, namely, MNSGA2-EDA, was
proposed. Particularly, NSGA-II algorithm is combined with a novel EDA-
based local search, which is performed separately and concurrently in dif-
ferent regions of the Pareto front via multiple NHMs. These NHMs are
learned based on suitable Pareto front solutions selected by a clustering
technique and other good candidate solutions evolved by NSGA-II. (3) Us-
ing the challenging benchmark datasets proposed in Chapter 3, MNSGA2-
EDA was compared to the-state-of-the-art methods, such as Hybrid [40],
Hybrid-L [40], and a baseline algorithm, NGSA-II, in terms of both ef-
fectiveness and efficiency. Our experimental results show that MNSGA2-
EDA can efficiently produce composite services with much better Pareto
optimal solutions than Hybrid, Hybrid-L and NGSA-II.

The development of MNSGA2-EDA and the experimental study leads
to several major findings for the WSC-MO problem: (1) The clustering
technique in MNSGA2-EDA can select less, but more suitable candidate
solutions for local search, compared to the randomly selected subprob-
lem representatives in the Hybrid and Hybrid-L. (2) Our EDA-based local
search can make substantial performance improvement for NSGA-II, com-
pared to the single-objective local search operator introduced in Hybrid-L.

We have also achieved the second goal of solving WSC-MQP by com-
pleting the following: (1) We formulate the WSC-MQP problem as a multi-
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tasking service composition problem, which collectively handles multiple
requests for multiple user segments. These requests have the same func-
tionality (i.e., inputs and outputs), but have distinctive quality preferences
on QoSM. (2) Two multi-factorial evolutionary algorithms, namely, PM-
FEA and PMFEA-EDA are proposed in this chapter. The first algorithm,
PMFEA, is proposed based on MFEA with a permutation-based repre-
sentation and corresponding genetic operators in the assortative mating,
allowing implicit knowledge of promising solutions to be learned and
shared. In addition, we explored two variations of PMFEA, i.e., PMFEA-
NT and PMFEA-AT, which permit evaluations on the neighbourhood
tasks and all the task, respectively. The experimental results show that
all the PMFEAs performed significantly better than one single-tasking
single-objective EC-based method, FL [47], using only a fraction of time.
Meanwhile, PMFEA-NT achieves the best effectiveness and efficiency
among all the competing method by performing additional evaluations
on the neighbouring tasks. (4) The second algorithm, PMFEA-EDA, was
proposed with a different permutation-based representation. Meanwhile,
a set of single-tasking and multitasking NHMs are constructed to al-
low explicit knowledge of promising solutions to be learned and shared.
Furthermore, a sampling mechanism is proposed to effectively sample
new promising candidate solutions via a set of NHMs for multiple tasks.
(5) PMFEA-EDA was compared with PMFEA-EDA-WT to examine its
effectiveness of the knowledge sharing of solutions across different com-
position requests, and with PMFEA and the state-of-the-art single-tasking
single-objective algorithm (i.e., FL and NHM-EDA proposed in Chapter 3)
to test its performance in terms of effectiveness and efficiency.

The development of PMFEAs and PMFEA-EDA and their experimen-
tal study leads to several major findings for the WSC-MQP problem: (1)
Our multitasking approaches can produce solutions with much higher
quality than the solutions produced by the single-tasking single-objective
approaches. This finding indicates that the solutions evolved for one re-



188 CHAPTER 4. MULTI-OBJECTIVE SEMANTIC WSC

quest can help the solutions to be evolved for the other requests. (2) The
proper use of the neighbourhood structure can enhance the effectiveness
of MFEAs. Such finding motivates us to propose more effective PMFEA-
EDA that allows knowledge to be explicitly shared among neighbouring
tasks. (3) The explicit learning and sharing mechanism in PMFEA-EDA is
more effective than the implicit knowledge learning and sharing in PM-
FEAs. Particularly, we found that PMFEA-EDA can consistently achieve
outstanding performance in both effectiveness and efficiency, compared to
other PMFEAs and single-tasking EC approaches (i.e., FL [47] and EDA-
NHM).



Chapter 5

Evolving Robust Composite
Services for Dynamic Semantic
Web Service Composition

5.1 Introduction

The previous chapter studied two categories of MOCQP: WSC-MO and
WSC-MQP. WSC-MO aims to find a set of approximated Pareto composite
services by simultaneously considering QoSM and QoS. WSC-MQP aims
to concurrently find a set of composite services with optimized compre-
hensive quality for multiple user segments with distinctive QoSM prefer-
ences. We also propose novel EMO and MFEA algorithms to effectively
and efficiently solve WSC-MO and WSC-MQP, respectively. All the previ-
ous studies reported in this thesis share a common assumption that QoS of
web services seldom changes or does not change at all. Researchers in this
group often follow the average values of the historical QoS to find high-
quality composite services. However, the composite services generated
by these approaches may not perform well when QoS of their component
services changes. In a worst-case scenario, they can become inexecutable
due to the failures of their component services.

189
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As discussed in Sect. 1.1, QoS is changing dynamically in the real
world, due to various reasons, e.g., software/hardware failures, and net-
work issues [81]. Although QoS criteria (such as response time, through-
put, failure probability, availability, price and popularity [48]) advertised
by service providers are often used to match the needs of service re-
questers, it can be very risky because no service provider can guarantee
the advertised QoS under all circumstances [89]. In fact, a composite
service may suffer from various changes. In Particular, stochastic ser-
vice failures constitute the most critical uncertainty because component
services can fail unexpectedly, causing unforeseeable interruptions to a
composite service created at the design stage. For this reason, stochastic
service failures are the central focus of this chapter.

To design composite services, we must take potential service fail-
ures into account to avoid abandoning a composite service completely.
Some existing works [9, 125, 190] propose to use re-optimization tech-
niques at the service execution stage (see the differences between execu-
tion stage and design stage in Sect. 2.1.2). Particularly, the frequency of
re-optimization is scheduled to cope with changes of QoS, which are as-
sumed to happen periodically (e.g., every a few generations [190] or every
period of time [9, 125]). In fact, [6, 108] recommends proactive use of
re-optimization techniques in response to anticipated future QoS changes
based on sufficient historical data. These re-optimization techniques dis-
cussed above can also be used to handle stochastic service failures.

While re-optimization techniques can help to cope with stochas-
tic service failures to some extent, these approaches ignore the impor-
tance of building robust composite services at the design stage. More-
over, the assumption of periodical changes in QoS or sufficient historical
QoS data poses noticeable feasibility challenges. In reality, periodical
re-optimization techniques may not be fast enough to cope with QoS
changes, since services often fail sporadically in a highly unpredictable
manner. Meanwhile, newly registered services may not have sufficient
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historical QoS data for training a reliable prediction model. To address these
limitations, we will introduce a Robust Web Service Composition problem
for handling stochastic Service Failures (henceforth referred to as RWSC-SF)
via two stages, namely, the design stage and the execution stage in this chapter.
In the design stage, RWSC-SF constructs baseline composite services by
explicitly considering stochastic service failures. At the execution stage,
the baseline composite services can cope with unexpected service inter-
ruptions in a robust manner with an efficient and effective local search to
resume the high quality of the composite services.

It is difficult to measure the robustness of any composite service in
terms of the expected QoS and QoSM subject to stochastic service failures,
due to the difficulty of enumerating all the possible failure scenarios (see
definition of scenario in the following Sect. 5.3). As discussed in Sect. 2.2.2
fitness approximation methods must be developed to estimate the robust-
ness. Particularly, problem approximation, data-driven functional approx-
imation and fitness inheritance are usually used for the estimation [86, 87].

Problem approximation is preferable, compared to the data-driven
functional approximation and fitness inheritance. This is because: (1)
adopting data-driven functional approximation that trains explicit mod-
els (also called meta-models or surrogates), requires sufficient historical
data that maps between the design parameters and the quality of the de-
sign [86]. However, we often do not have sufficient historical data for
training reliable models, and (2) fitness inheritance estimates the fitness of
one individual by the fitness of other similar individuals. However, it is
hard to define a similarity or distance measure between any two compos-
ite services in our problem. This is because composite services that serve
the same functionality can differ in both the component services and
workflow structures. Moreover, when the dimension of decision variables
increases, distance measures can become less useful.

Monte Carlo sampling is one popular method of problem approxima-
tion and it is often employed to approximate the robustness of candidate
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solutions effectively via a number of simulated dynamic scenarios. How-
ever, it remains an important research question regarding how to use a
small number of simulated scenarios on service failure to accurately esti-
mate the robustness of any composite service. Moreover, GA is a popular
EC technique that has enabled many researchers to tackle several challeng-
ing service composition problems [44, 47]. Therefore, in this chapter, GA
will be utilized to construct composite services with optimized robustness
at the design stage.

In this chapter, we will first investigate a Monte Carlo sampling-based tech-
nique [153] for estimating the robustness of candidate composite services. Subse-
quently, we will propose a GA-based method based on the Monte Carlo sampling
technique (henceforth referred to as GA-MC) and conduct our initial study on
a small-scale RWSC-SF problem using a small benchmark (i.e., OWLS-TC [97]
that contains a maximum of 946 web services in a service repository).

When dealing with large-scale RWSC-SF problem over a large service
repository (e.g., the maximum size of a service repository is 15211 using
WSC09 [92] benchmark), the complexity of the fitness landscape will in-
crease dramatically [55]. It may lead to the deterioration of the perfor-
mance in robustness estimation. For example, this complexity makes it
hard to accurately estimate the robustness of composite services through
the Monte Carlo sampling-based technique. This is because Monte Carlo
sampling requires a large number of sampling size to ensure the estimated
robustness is sufficiently accurate.

To cope with the robustness measure for the large-scale RWSC-SF prob-
lem, we will propose an alternative robustness approximation method. We
expect this method can work efficiently and accurately when the size of the
service repository increases. In addition, evolutionary control is used to
decide whether an actual or approximation method should be utilized for
robustness evaluations [87]. As discussed in Sect. 2.2.2, generation-based
evolutionary control can achieve good performance with fewer control in-
terventions on generations, compared to the individual-based one. Mean-
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while, an adaptive frequency over the generations should be considered
because the fidelity of the approximate model of the evaluations may vary
significantly during the optimization [87]. Therefore, we will propose a two-
stage GA algorithm with an adaptive generation-based evolutionary control over
two consecutive evolutionary stages for finding composite services with high ro-
bustness. Particularly, the two evolutionary stage employ different methods for
the robustness estimation. We will conduct our study on a large-scale RWSC-SF
problem using large service composition benchmarks, i.e., WSC-08 and WSC-09.
The following objectives are sought in this chapter:

1. We introduce a new dynamic service composition problem for han-
dling stochastic service failures. This problem is formulated as a
novel two-stage service composition, consisting of a design stage
and a execution stage. Particularly, the robustness of composite ser-
vices in terms of expected QoS and QoSM is explicitly considered
and optimized at the design stage. These composite services can be
repaired easily with the help of an efficient local search technique so
that their execution can be resumed at the execution time with neg-
ligible impact on QoS and QoSM.

2. We propose a GA-MC method to solve the small-scale RWSC-SF
problem. Particularly, we introduce two key techniques that jointly
form an effective fitness function for searching robust composite ser-
vices. The first technique is to adopt the Monte Carlo sampling tech-
nique [153] to accurately approximate the robustness in terms of the
expected QoS and QoSM of any given composite services. The sec-
ond technique is an application of re-optimization technique (i.e., lo-
cal search) that effectively repairs composite services in response to
arbitrary service failures.

3. To conduct experiments to explore the performance of GA-MC on
a small-scale RWSC-SF problem, GA-MC is compared to a Fixed
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Length GA [47] (henceforth referred to as FL), which achieves out-
standing performance in finding high-quality solutions. Our exper-
imental results show that GA-MC can produce baseline composite
services with significantly higher robustness, compared to FL.

4. To improve the efficiency and accuracy of Monte Carlo sampling-
based method for measuring the robustness, we introduce a new ro-
bustness estimation method based on a lower bound of the expected
QoS and QoSM. Notably, this method aims to reduce the variance
of the estimated robustness by carefully selecting scenarios based on
service repositories. Moreover, to leverage the importance of each
selected scenario, the probability of the selected scenario to be sam-
pled is considered as the weight.

5. To further reduce the computation time of GA and maintain its ef-
fectiveness, a two-stage GA, denoted GA-2Stage, is proposed with
an adaptive evolution control mechanism. Particularly, in stage one,
we do not consider service failures, and an efficient evaluation (i.e.,
the comprehensive quality) is employed to find good solutions that
are likely to present high robustness for the preparation of stage two.
In stage two, these solutions can be further evolved to improve their
robustness using our proposed lower bound robustness estimation
method. Moreover, to balance the computation resources assigned
to the two stages, an adaptive archive-based evolutionary control is
proposed. Particularly, it determines at which generation stage two
should start. Meanwhile, the first generation of stage two is initial-
ized with the archive, which stores good solutions found in stage
one.

6. To demonstrate the effectiveness and efficiency of our GA-2Stage al-
gorithm for the large-scale RWSC-SF problem, we conduct experi-
ments to compare GA-2Stage against three GA-based approaches:
one method only employs GA with the lower bound robustness esti-
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mation throughout all the generations (henceforth referred to as GA-
RE), the GA-MC algorithm and FL [47]. Our experiment results show
that GA-2Stage can produce highly robust composite services consis-
tently in the case of stochastic service failures, regardless of the size
of the service repository.

5.2 Chapter Organization

The remainder of this chapter is organized as follows. Sect. 5.3 introduces
the RWSC-SF problem. Sect. 5.4 and 5.5 present our new methods, GA-
MC and GA-2Stage, to solve the RWSC-SF problem. Sect. 5.6 outlines the
experimental design and results for evaluating the performances of GA-
MC and GA-2Stage. Sect. 5.7 provides a summary of this chapter.

5.3 The RWSC-SF Problem

In this section, we extend the definition of a semantic web service (i.e., a
tuple S = (IS, OS, QoSS), introduced in Sect. 3.3 ) by considering service
failure probability, prS . In particular, IS is a set of service inputs that are
consumed by S, OS is a set of service outputs that are produced by S,
and QoSS = {tS, cS, rS, aS, prS} refer to the response time, cost, reliability,
availability, service failure probability of S.

In practice, the execution of a composite service is usually confronted
with stochastic service failures [48]. A service failure probability prS can be
approximated by dividing the number of failed invocations by the total
number of invocations conducted in the past on service S [232]. Also, prS
of newly published web services can be estimated as the prS of web ser-
vices hosted by the same service providers in the same location. Moreover,
for any service in the service repository, its failure probability is assumed
to be independent of each other.
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Herein we model the RWSC-SF problem as a two-stage web service
composition problem, consisting of the design stage and execution stage.
At the design stage, it aims to construct baseline composite services (i.e.,
composite services to be executed) with optimized robustness by explic-
itly considering stochastic service failures. The baseline solution is further
executed at the execution stage. Such a solution is expected to continue
working reliably or be easily repaired during its execution.

To explicitly consider robustness at the design stage, problem approx-
imation is utilized to estimate the robustness via a set of simulated sce-
narios with respect to service failures. It has been employed in many
other problems for measuring the robustness via the use of a continu-
ous or discrete scenarios set [105]. We define the robustness of a compos-
ite service in the presence of stochastic service failures captured by a set
of scenarios Q. A scenario Q ∈ Q corresponds to a set of services {Sj}
that remain accessible during the execution of a composite service, where∑

Q∈Q Pr(Q) = 1. Let L (Π, Q) be a local search operator (i.e., an efficient
re-optimization technique) that produces a new feasible composite service
Π′ for Q through applying local changes to Π. The robustness is defined as
the expected quality of a composite service across all possible scenarios as
follows:

r(Π) =
∑
Q∈Q

fcq(L (Π, Q))Pr(Q) (5.1)

fcq(Π
′) =


w1M̂T + w2

ˆSIM + w3Â+ w4R̂+

w5(1− T̂ ) + w6(1− ĈT ) if Π′ ⇒ G

0 otherwise

(5.2)

where Π′ ⇒ G denotes that a permutation Π′ that corresponds to L (Π, Q)

can be decoded into a functionally valid G. Otherwise, no composite ser-
vice can be decoded from the permutation Π′. In other words, the compre-
hensive quality, fcq, of Π′ equals 0.
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Fig. 5.1: Two-stage robust web service composition system.

Our two-stage robust web service composition system is illustrated in
Fig. 5.1. This composition system requires three inputs: a composition
task initialised by the service requester, a service repository provided by
the service providers, and an ontology defined by the domain experts.
At the design stage, a global searching technique, such as GA, can be
utilised to search for a baseline solution Π with high robustness measured
by Eq. (5.1). This baseline service Π serves as an output of the robust ser-
vice composition system. At the execution stage, the baseline solution will
be executed if none of its component services fails. Otherwise, this base-
line solution will be repaired through a local search technique to resume
its feasibility thereafter. This repairing process does not guarantee that the
solution Π can always be repaired because a service request might not be
satisfied with the remaining available services. Note that the robustness
measure in Eq. 5.1 requires a local search for every scenario. The same
local search is also suggested to be used at the execution stage.
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5.4 GA-MC Algorithm to RWSC-SF

In this section, we first present our new robustness estimation method in
Sect. 5.4.1. Subsequently, we present our GA-MC algorithm for solving
the RWSC-SF problem in Sect. 5.4.2. Consequently, we demonstrate the
details of the robustness estimation in Sect. 5.4.3.

Due to the difficulty of enumerating all the possible failure scenar-
ios for measuring the robustness, Monte Carlo sampling-based technique
[153] can be adopted to estimate the robustness. One advantage of this
robustness estimation method is that it can perform a cheap but not nec-
essarily accurate fitness estimation in the frame of evolutionary computa-
tion. In other words, the estimated robustness should be accurate enough
for reliably ranking individuals with respect to the robustness.

GA has been successfully utilized as a global searching technique for
effectively searching service composition with optimized QoS and/or
QoSM [47]. However, the success of GA must rely on an “accurate
enough” fitness function for ranking evolved composite services by GA.

5.4.1 Robustness Estimation

As shown in Eq. (5.1), the robustness is defined as the expected quality
of a composite service across all possible scenarios and can be directly
estimated through Monte Carlo sampling [153] as follows:

r(Π) =
∑
Q∈Q

fcq(L (Π, Q))Pr(Q)

≈ 1

N

N∑
i=1

fcq(L (Π, Qi))

(5.3)

where N is the sample size. Particularly, in Eq. (5.3), Π is evaluated N

times based on N sampled scenarios {Qi}Ni=1.
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5.4.2 Outline of GA-MC

ALGORITHM 23. GA-MC method for robust service composition.
Input : composition task T , Ontology O, service repository SR,

sample size N , and the number of neighbors nnb
Output: a baseline solution

1: Initialize P0 with m randomly permutations, each represented as a
Πg
k (where k = 1, . . . ,m);

2: Evaluate each permutation in P0 against the stochastic service
failures based on N simulations in Eq. (5.3);

3: Set generation counter g ← 0;
4: while g < gmax do
5: Populate Pg+1 with m permutations from Pg through the use

of genetic operators;
6: Evaluate each permutation in Pg+1 against the stochastic

service failures based on N simulations in Eq. (5.3);
7: Set g ← g + 1;

8: Select the best solution Πopt in Pg as a baseline;

GA-MC for evolving robust composite services is outlined in ALGO-
RITHM 23. It follows a state-of-the-art service composition approach, i.e.,
FL [47] except in Step 2 and Step 6. This algorithm takes five inputs:
service composition task T = (IT , OT ), an ontology O that describes all
the parameters of the web services, a service repository SR, sampling
size N , and the number of neighbours nnb to be exploited for repairing
each solution in a scenario. We begin with initializing population P0

with m randomly generated permutations Πg
k (where k = 1, . . . ,m). This

permutation-based representation is exactly the same as that in Sect. 4.7.2.
Particularly, each permutation can be interpreted as a DAG through the
use of the same decoding algorithm introduced in Sect. 4.7.2. In step 2, we
evaluate the fitness values of each permutation against N randomly sam-
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pled scenarios, see details in Sect. 5.4.3. The iterative steps (Step 4 to 7) will
be repeated until the maximum number of generations, gmax, is reached.
During each iteration, m permutations are produced from the same ge-
netic operators, discussed in Sect. 4.4.3, to form the next generation Pg+1.
This newly created population is then evaluated by following the same
process in Step 2. Consequently, the best solution with the highest fitness
is returned by GA-MC.

5.4.3 Robustness Estimation based on Monte Carlo Sam-

pling

ALGORITHM 24. Robustness estimation based on Monte Carlo
sampling (Step 2 and 6 in ALGORITHM 23).

Input : population Pg, the number of neighbor nnb, sample size
N , and service repository SR

Output: evaluated Pg

1: foreach Π in Pg do
2: Sample N scenarios based on prS of each S in SR;
3: foreach scenario Q in the N sampled scenarios do
4: Produce another permutation Π′ that encodes Π based on

Q;
5: Generate a size nnb of neighbors from Π? (i.e., an encoded

solution of Π′) by local search operator;
6: Identify the best neighbor Π′ with the highest fitness

measured by Eq. (3.5);

7: Set the fitness of Π as an averaged fitness value of N best
neighbours using Eq. (5.3);

8: return evaluated Pg;

Our proposed fitness function in Eq. (5.3) approximates the robustness
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of every candidate solution subject toN randomly sampled scenarios with
fast local search for each scenario. This robustness estimation process is
provided in ALGORITHM 24. Particularly, Step 4 and Step 5 play a crucial
role. In Step 4, we produce another permutation Π′ that encodes Π based
on a sampled Q. This produced permutation allows some promising com-
ponent services that belong to the composite service Π to be re-used by
Π′. In Step 5, we exploit the neighbourhood of Π′, starting from a new
permutation Π? encoded from Π′ for performing local search. We will use
Example 6 to demonstrate the main steps in ALGORITHM 24.

Example 6. Let us consider a composition task T = ({a, b}, {e, f}) and a ser-
vice repository SR consisting of six atomic services. S0 = ({e, f}, {g}, QoSS0),
S1 = ({b}, {c, d}, QoSS1), S2 = ({c}, {e}, QoSS2), S3 = ({d}, {f}, QoSS3),
S4 = ({a}, {h}, QoSS4) and S5 = ({c}, {e, f}, QoSS5). The two special services
Start = (∅, {a, b}, ∅) and End = ({e, f}, ∅, ∅) are defined by a given composi-
tion task T . Fig. 5.2 illustrates a process of producing another permutation Π′

that encodes a candidate permutation Π for a randomly sampled scenario. This
permutation Π′ is further encoded as permutation Π? for performing local search.

We firstly sample a scenario based on the service failure probability
prS of each service S in a service repository SR. Let {S0, S1, S2, S3, S4} be
a sampled scenario based on prS of each S in SR, so {0, 1, 2, 3, 4} is a set
of service indexes that corresponds to the sampled scenario in Fig. 5.2. In
this example, we also take an arbitrary permutation Π = [4, 1, 0, 2, 3, 5] as
a candidate solution. Based on the sampled scenario, we produce another
permutation Π′ that encodes permutation Π for the scenario by only re-
moving the service indexes of failed services (i.e., 5) from the permutation
Π while other service indexes remain unchanged in the permutation Π. By
doing these, the newly produced permutation Π′ can keep some promis-
ing component services (e.g., 1) from the candidate Π in the corresponding
DAG, i.e., G ′. This can be observed from two decoded DAGs, i.e., G and
G ′, that have a service index 1 in common. In addition, service index 4, is
removed since its outputs are not used in the composition.
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Once the permutation Π′ is produced, we begin with generating a start-
ing permutation Π? for a repairing process (i.e., local search). We encoded
Π′ into Π? as [1, 2, 3, |4, 0] ( | is just displayed for the courtesy of the reader,
but not part of the representation). The detail of producing Π? is exactly
the same as the decoding part introduced in Sect. 3.5.2.

Consequently, our previously proposed stochastic local search with
layer-based constrained one-point swap operator in Sect. 3.8.3 can now
be performed on the new permutation Π?. We expect that this local search
can help the permutation Π to maintain good comprehensive quality in
the sampled scenario via effective neighbourhood exploitation.

5.5 GA-2Stage Algorithm to RWSC-SF

In this section, we first present our new robustness estimation method
in Sect. 5.5.1. Subsequently, we present our GA-2Stage algorithm to the
RWSC-SF problem in Sect. 5.5.2. Furthermore, we discuss the archive-
based adaptive evolutionary control in Sect.5.5.3, Lastly, we demonstrate
the details of our robustness estimation in Sect.5.5.4.

Monte Carlo based robustness estimation, introduced in Sect. 5.4.1,
must determine its sampling size to ensure a good trade-off between the
accuracy and computation time. However, when the size of the service
repository increases, Monte Carlo sampling becomes computationally ex-
pensive for achieving an accurate robustness estimation. This is because
a large sampling size is required to ensure that candidate composite ser-
vices evolved by GA can be accurately ranked by the estimated robust-
ness. Therefore, a new robustness estimation method with fewer sampled
scenarios should be developed to achieve an ideal trade-off among accu-
racy and sampling cost. Particularly, we introduce a lower bound of the
expected fitness as an estimated robustness. We expect that the improve-
ment in lower bound leads to the improvement in true robustness with a
high probability. This is achieved by carefully selecting different scenar-
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ios, each of which only considers one service failure that is more likely
to happen. Consequently, the robustness is estimated based on these se-
lected scenarios with probabilities that measure their weights (see details
in Sect. 5.5.1).

Current Generation Archive

No

Improvement 
on the Robustness
in 𝑔!"# Generations, 

Starting from 𝑔∗?

Fitness Evaluation 
on Comprehensive 
Quality

Current Generation

Breed

Yes

Evolutionary Control 

Update

Stage One Stage Two

Next Generation Next Generation

Breed

Initialize

Fitness Evaluation 
on Robustness

Fig. 5.3: Generation updates with an adaptive evolutionary control in
GA-2Stage.

Moreover, to further reduce the computation time without hurting al-
gorithm effectiveness, a GA-2Stage algorithm will be introduced with two
consecutive evolutionary stages and two different evaluation methods.
The robustness of evolved composite services in the first stage is estimated
with a high level of noise based on individuals’ comprehensive quality,
without considering any service failure. However, the robustness of solu-
tions in the second stage are more accurately estimated based on the lower
bound robustness estimation method. More specifically, stage one tries to
efficiently find good individuals that are more likely to have high robust-
ness, i.e., composite services with a small number of component services.
Such composite services are unlikely to be affected in the event of service
failures due to their relatively small number of component services. They
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will be stored in an archive and utilized to initialize the first population of
stage two.

The generation updates with an adaptive evolutionary control over
the two consecutive evolutionary stages in GA-2Stage are illustrated in
Fig. 5.3. In stage one, an archive is updated by storing distinct and promis-
ing composite services evolved by the comprehensive quality. This archive
is utilized to measure solution improvement in terms of their average ro-
bustness thereafter. Once the archive does not have any improvement on
the robustness in ginc consecutive generations, starting from generation g?,
stage two will start by re-initializing the current generation with solutions
in the archive.

5.5.1 Robustness Estimation

As shown in Eq. (5.3), the robustness is defined as the expected quality of
a composite service across all possible scenarios. As discussed previously,
we use a lower bound of expected fitness as an estimated robustness as
follows:

r(Π) =
∑
Q∈Q

fcq(L (Π, Q))Pr(Q)

>
∑
Q?∈Q?

fcq(L (Π, Q?))Pr(Q?)

=
∑
Q?∈Q?

fcq(L (Π, Q?))prSi

∏
j 6=i

(1− prSj
) (5.4)

where Q? ⊆ Q are selected scenarios that only have one service failure, and
any Q? ∈ Q? are not identical to each other. Therefore, the total number
of scenarios in Q? equals to |SR|. Let Si be the failed service in every sce-
nario, Pr(Q?) can be calculated based on a joint probability of services in
SR. Note that, when a service repository is very big, this joint probability
might result in an arithmetic numerical overflow. To avoid this issue, we
can calculate this joint probability in a logarithmic space. Thus, it becomes
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a sum of the logarithms of each individual probability.

5.5.2 Outline of GA-2Stage

GA-2Stage is outlined in ALGORITHM 25. GA-2Stage takes six inputs: ser-
vice composition task T = (IT , OT ), an ontology O that describes all the
parameters of the web services, a service repository SR, the generation
counter g, the generation g? at which stage two begins, and the number of
neighbours nnb to be exploited for repairing each solution in a scenario. In
ALGORITHM 25, we start with setting the generation counter g to 0. Af-
terwards, we continue initializing an empty archive A that plays the role
of evolutionary control, and population P0 with m randomly generated
permutations Πg

k (where k = 1, . . . ,m). The same permutation-based rep-
resentation, discussed in Sect. 4.7.2, is utilized in this algorithm. In Step
3, we evaluate each permutation in the initialized population by decod-
ing it into a functionally valid DAG. The DAG enables an easy evaluation
on the comprehensive quality defined in Eq. (3.5). The purpose of utiliz-
ing this evaluation method has already been discussed at the beginning
of Sect. 5.5. The iterative steps (Step 5 to 15) will be repeated until the
maximum number of generations has been reached. During each itera-
tion, we start with updating both the archive and the generation number
g?, at which stage two begins, based on an evolutionary control using AL-
GORITHM 26 (see details in Sect. 5.5.3). In particular, g? can be adaptively
updated to control the lengths of stage one (when g < g?) and stage two
(when g ≥ g?). In stage one, we produce m new permutations to form
the next generation Pg+1 via genetic operators, introduced in Sect. 4.4.3.
All the permutations in the newly formed population are then evaluated
using Eq. (3.5). The initial population in stage two is constructed from
the archive, and all the permutations in Pg+1 are then evaluated using
Eq. (5.4). Afterwards, the breed process of stage two is similar with that of
stage one, but populated permutations are evaluated using Eq. (5.4). After
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the iteration, the best solution Πopt in Pg is returned as a baseline solution
for the design stage.

ALGORITHM 25. GA-2Stage for the RWSC-SF problem.
Input : composition task T , Ontology O, service repository SR,

the generation counter g, the generation g?, generation
increment step ginc, and the number of neighbors nnb

Output: a baseline solution
1: Set generation counter g ← 0;
2: Initialize an empty archive A and a Pg with m random

permutations, each represented as a Πg
k (where k = 1, . . . ,m);

3: Evaluate each permutation in Pg using Eq. (3.5) based on its
decoded DAG, Ggk ;

4: while g < gmax do
5: Set g? based on an evolutionary control using ALGORITHM 26 ;
6: if g < g? then // stage one

7: Populate Pg+1 with m permutations from Pg through the
use of genetic operators;

8: Evaluate each permutation in Pg+1 using Eq. (3.5);

9: if g = g? then // stage two starts

10: Populate Pg+1 with m permutations from A;
11: Evaluate each permutation in Pg+1 using Eq. (5.4);

12: if g > g? then // stage two

13: Populate Pg+1 with m permutations from Pg through the
use of genetic operators;

14: Evaluate each permutation in Pg+1 using Eq. (5.4);

15: Set g ← g + 1;

16: Select the best solution Πopt in Pg as a baseline;
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5.5.3 Archive-based adaptive evolutionary control

The archive-based evolutionary control proposed in our GA-2Stage algo-
rithm is used to adaptively update the generation number g?, at which
stage two should begin. Specifically, g? should be increased by ginc gen-
erations based on the robustness changes in the archive, starting with a
predefined generation number. Such an updating mechanism for g? al-
lows evolved solutions at the updated generation g? achieve the highest
possible robustness with the least computation resources due to the cheap
evaluation method assigned to stage one.

ALGORITHM 26. Generating g? based on an adaptive archive-
based evolutionary control.

Input : archive Awith maximal size m, population Pg,
generation counter g, initial generation number g? and
generation increment step ginc

Output: generation number g?

1: if g < g? then
2: Update Awith Pg;

3: if g = g? then
4: Evaluate each permutation in A using Eq. (5.4);
5: Calculate average robustness R for permutations in A;
6: Update Awith Pg;
7: Evaluate each permutation in A using Eq. (5.4);
8: Calculate average robustness R

′
for permutations in A;

9: if R
′
> R then

10: g? ← g? + ginc;

11: return g?;

This evolutionary control is outlined in ALGORITHM 26. This algorithm
takes three inputs: an archive of size m that stores good individuals, the
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current population Pg, the generation g? at which stage two should start,
and generation increment step ginc for g?. When g < g?, this algorithm up-
dates the archive by storing all distinct composite services from Pg based
on the comprehensive quality in a descending order. Subsequently, when
g = g?, we evaluate the robustness of each permutation in the archive us-
ing Eq. (5.4) and calculate the average robustness of all the permutations
as R. After calculating the average robustness R, we calculate the average
robustness again as R

′
after updating the archive. The archive is updated

in the same way as we discussed above. Consequently, we increase g? by
ginc if R

′
> R. Otherwise, g? remains unchanged.

5.5.4 Robustness Estimation based on a Lower Bound

In ALGORITHM 27, we outline the process of calculating the robustness of
each permutation Π in a population Pg through Eq. (5.4). We firstly pro-
duce |SR| scenarios, each of which only considers the failure of a different
service. For each scenario, we identify the best-repaired solution (i.e., a
neighbouring solution with the highest comprehensive quality) through
exploiting nnb neighbours (Step 4 to 6). Afterwards, we calculate Pr(Q)

as the weight of each scenario. Consequently, the comprehensive qual-
ity of all the repaired solutions for all the scenarios are summed up with
different weights Pr(Q) using Eq. (5.4).

Example 7. Let us consider a composition task T = ({a, b}, {e, f}) and a ser-
vice repository SR consisting of six atomic services. S0 = ({e, f}, {g}, QoSS0),
S1 = ({b}, {c, d}, QoSS1), S2 = ({c}, {e}, QoSS2), S3 = ({d}, {f}, QoSS3),
S4 = ({a}, {h}, QoSS4) and S5 = ({c}, {e, f}, QoSS5). The two special services
Start = (∅, {a, b}, ∅) and End = ({e, f}, ∅, ∅) are defined by a given compo-
sition task T . Fig. 5.4 illustrates a process of producing another permutation
Π′ that encodes a candidate permutation Π for the two sampled scenario. This
permutation Π′ is further encoded as permutation Π? for performing local search.

Based on the size of the given service repository SR, we can produce
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ALGORITHM 27. Robustness estimation based on a lower bound
(Step 11 and 14 in ALGORITHM 25).

Input : population Pg, the number of neighbor nnb and service
repository SR

Output: evaluated Pg

1: for each Π in Pg do
2: Sample |SR| scenarios based on the number of S in SR;
3: foreach scenario Q in the |SR| sampled scenarios do
4: Produce another permutation Π′ that encodes Π based on

Q;
5: Generate a size nnb of neighbors from Π? (i.e., an encoded

solution of Π′) by local search operator;
6: Identify the best neighbor Π′ with the highest fitness

measured by Eq. (3.5);
7: Calculate Pr(Q) as the weight for scenario Q;

8: Set the robustness of Π as a weighted-sum fitness value of |SR|
Π′ based on Eq. (5.4);

9: return evaluated Pg;

six scenarios. Let {S1, S2, S3, S4, S5} be a produced scenario with S0 be-
coming inaccessible. Therefore, {1, 2, 3, 4, 5} is a set of service indexes
corresponding to the produced scenario in Fig. 5.4. In a similar way,
{0, 1, 2, 3, 4} is a set of service indexes corresponding to another produced
scenario with the failure of S5. To demonstrate the repairing process,
we also take an arbitrary permutation Π = [4, 1, 0, 2, 3, 5] as an example.
To encode the two scenarios for the permutation Π, we produce another
permutation Π′ for each scenario by only removing the service indexes
of failed services from the permutation, keeping the order of other ele-
ments in the permutation. This encoding process for scenarios is exactly
the same as that in Sect. 5.4.3. Therefore, two permutations, Π′, with two
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decoded DAGs, G ′, are created for encoding two scenarios Q1 and Q6 re-
spectively. In the two decoded DAGs, we can see that the decoded DAG
G ′ that corresponds to Q1 remains the same as the original G, as the failure
of S0 has no impact on the execution of the original G. In such a case, a
repairing process is not involved. In contrast, the decoded DAG G ′ that
corresponds to Q6 is not identical to the original G, as the failure of S5

prevents the successful execution of the original G. Therefore, a repairing
process will be involved by preparing a starting point, permutation Π?,
see our previous discussion in Sect. 5.4.3.
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5.6 Experimental Evaluation

In this section, we conduct two experiments to test GA-MC and GA-2Stage
for solving the small-scale and large-scale RWSC-SF problem, respectively.
In particularly, for the first experiment, we compare GA-MC with FL on a
small benchmark, see details in Sect. 5.6.1. For the second experiment, we
compare GA-2Stage with GA-RE, GA-MC and FL on both small and large
benchmarks, see details in Sect. 5.6.2.

5.6.1 Comparing GA-MC against FL

Experimental Design

We use five composition tasks with corresponding service repositories for
testing the small-scale RWSC-SF problem. These tasks (i.e., OWL-S TC1
to OWL-S TC5 utilized in [117, 152]) contain real-world web services and
composition tasks originally collected from OWLS-TC [97]. Each service in
the service repository is extended with real-world QoS attributes obtained
from the QWS dataset [4]. Apart from that, each service is also associated
with a separate service failure rate. The failure rate of a service is gener-
ated from the normal distribution N (µ, σ2) truncated in the interval [0, 1]

with mean µ and variance σ2. According to the failure rates reported in
[232] and by using 15 000 failure probabilities observed by 150 users on
100 web services, µ and σ are set to 0.0405 and 0.1732.

To perform the comparisons between GA-MC and FL, we follow the
popular parameter settings in the literature [47, 95]: population size is set
to 30, crossover and mutation rate are set to 0.95 and 0.05 respectively,
tournament size is set to 2 and elitism is set to 2. We set the maximum
generation to 100. For the robustness estimation in Eq. (5.3), a set of sam-
ple size N (i.e., 10, 30, 50, 70 and 90) is to be investigated in Sect. 5.6.1,
and the number of local search steps (i.e., nnb) is set to 10 that empirically
produces a good compromise between computation cost and service qual-
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ity. The weights settings in Eq. (3.5) follow our previous suggestion in
Sect. 3.7. We have also conducted tests with other weights and parameters
and generally observed the same behavior.

We run both GA-MC and FL 30 times with 30 different random seeds.
We then test each baseline composite service obtained by every run of ev-
ery algorithm over 200 simulated scenarios. Note that, a large number of
sampled scenarios (e.g., 200) is taken into account for testing while a small
number of sampled scenarios N is used at the design stage. This differ-
ence is important for the design stage in order to remain highly efficient,
whereas we want to accurately measure the robustness of any composite
service during the execution stage. Subsequently, we use an independent
sample T-test with a significance level of 5% to verify the observed differ-
ence in the mean fitness values obtained on the baselines found by GA-MC
and FL.

Parameters sensitivity

To evaluate the impact ofN in Eq. (5.3) on the testing performance, we per-
form parameters sensitivity tests on OWL-S TC3 using different settings of
N in GA-MC.

In Fig. 5.5, we present a box plot of the testing performance from testing
baseline solutions found by GA-MC with varied settings of N (i.e., 10, 30,
70 and 90) across 30 independent algorithm runs. It is easy to observe that
the performance boxes tend to reduce their sizes when N increases. This
observation agrees with our expectation that a more accurate fitness eval-
uation with large N will enhance the reliability of our algorithm. Mean-
while, we can also observe that the medium values in these boxes are also
positively correlated to N . This observation further confirms that more
accurate fitness evaluations contribute to better algorithm performance.
In the remaining experiments in Sect. 5.6.1, we set N to 50 according to
Fig. 5.5, since 50 presents the ideal trade-off between the algorithm perfor-
mance and sample cost.
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Fig. 5.5: Mean fitness values tested on near-optimal solutions found by
GA-MC over a set of increasing N for OWLS-TC 03

Comparison of the effectiveness

Table. 5.1 shows the mean fitness values and standard deviations obtained
with respect to the evolved baseline solutions. We verify the significant
differences in the fitness values using an independent sample T-test, and
the winner is highlighted in a green colour.

Table 5.1: Mean fitness values tested based on the baseline solutions for
our approach in comparison to FL.

(Note: the higher the fitness the better)

Task GA-MC FL [47]

OWL-S TC1 0.922799± 0.000304 0.922791± 0.000311

OWL-S TC2 0.930779± 0.000998 0.929618± 0.005009

OWL-S TC3 0.864505± 0.001448 0.854218± 0.00779

OWL-S TC4 0.790862± 0.003172 0.779121± 0.012348

OWL-S TC5 0.82504± 0.005556 0.812852± 0.012388
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At the execution stage, GA-MC can produce composite services that
are clearly more robust to stochastic service failures as evidenced by the
performance summarized in Table 5.1. Particularly, baseline solutions
produced by GA-MC achieved significantly higher mean fitness values
against 200 random scenarios for 3 out of 5 tasks. Therefore, composite
services produced by GA-MC is more likely to maintain a good quality in
the event of stochastic service failures. This finding matches well with the
objective of the design stage for GA-MC.

Moreover, for the two tasks (i.e., OWL-TC1, OWL-TC2), GA-MC and
FL are comparable to each other. Particularly, both GA-MC and FL can
maintain very high quality over all tested scenarios with very small stan-
dard deviations. This is because the search space of feasible solutions in
OWL-TC1, OWL-TC2 is small, and these two methods can always find
high-quality solutions through local search in the event of service failures
at the execution stage.

Comparison of the efficiency

Table 5.2 and 5.3 show two groups of execution time observed for the de-
sign stage and execution stage, respectively, using both GA-MC and FL
[47]. We keep using an independent sample T-test to detect any noticeable
differences in the experiment results in efficiency.

For the design stage, we note that FL consistently takes significant
less execution time (in seconds) for all the tasks. This is because the fit-
ness evaluation in FL through Eq. (3.5) is far more efficient than GA-MC
through Eq. (5.3). In contrast, GA-MC consistently requires much more
execution time. This observation indicates a sensible trade-off because the
frequency of producing the baseline is far less frequent than that of repair-
ing the baseline solutions by local search. Furthermore, although GA-MC
consumes much longer execution time at the design stage, GA-MC gains
much higher quality against the stochastic service failures at the execution
stage.
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Table 5.2: Mean execution time (in seconds) observed for our approach in
comparison to FL at the design stage.
(Note: the shorter the time the better)

Task GA-MC FL [47]

OWL-S TC1 221.854233± 63.968435 2.279767± 0.594116

OWL-S TC2 51.851± 34.814491 1.502733± 0.163235

OWL-S TC3 27.075967± 14.63108 1.4005± 0.132212

OWL-S TC4 468.054967± 342.97007 13.785767± 21.966587

OWL-S TC5 901.813933± 598.884817 19.577733± 71.642104

Table 5.3: Mean execution time (in milliseconds) per scenario by local
search based on the baseline solutions found by our approach in

comparison to FL.
(Note: the shorter the time the better)

Task GA-MC FL [47]

OWL-S TC1 0.155067± 0.06195 0.194944± 0.095481

OWL-S TC2 0.456811± 0.323291 1.173133± 1.618681

OWL-S TC3 0.788439± 0.574859 1.363739± 0.892455

OWL-S TC4 9.315556± 7.508798 10.824494± 5.943972

OWL-S TC5 12.694856± 10.350321 22.812806± 21.672252

For the execution stage, GA-MC requires significantly less execution
time (in milliseconds) than FL for 3 out of 5 tasks per scenario. This ob-
servation indicates that baseline solutions produced by GA-MC are more
likely to have services, required to build a robust DAG placed at the very
front of the corresponding permutations. This can potentially accelerate
the process of decoding from permutations to DAGs.
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5.6.2 Comparing GA-2Stage with GA-RE, GA-MC and FL

Experimental Design

In addition to the OWL-S TC benchmark used in Sect. 5.6.1, two more
benchmarks, WSC-08 [15] and WSC-09 [92], are used in this experiment
for testing the performance of competing methods on large-scale RWSC-
SF problem. Unlike OWL-S TC, WSC-08 and WSC-09 includes eight and
five composition tasks respectively with web services that are simulated
for the Web Service Challenges competition. Particularly, WSC-08 con-
tains 8 composition tasks with an increasing size of service repository, i.e.,
158, 558, 608, 1041, 1090, 2198, 4113, and 8119, and WSC-09 contains 5 com-
position tasks with an increasing size of service repository, i.e., 572, 4129,
8138, 8301, and 15211, respectively. Following our discussion in Sect. 5.6.1,
each service in WSC-08 and WSC-09 are also extended with the QoS and
failure rate in the same way.

To perform fair comparisons among GA-2Stage, GA-RE, GA-MC and
FL, we follow the parameter setting suggested in Sect. 5.6.1: population
size m is set to 30, tournament size is set to 2 and elitism is set to 2. The
crossover and mutation rates are inspired by Koza’s operator settings [95]
and are set to 0.95 and 0.05, respectively. In Eq. (5.4), the number of sce-
narios equals the size of the service repository, and the number of scenar-
ios that trigger local search equals to the number of component service
utilized by the solution. Therefore, to ensure a fair comparison with GA-
2Stage and GA-MC, the number of scenarios N in Eq. (5.3) for GA-MC
does not follow the suggested size, 50, in Sect. 5.6.1. Instead, we ensure
a doubled number of scenarios that employ local search in GA-MC for
a more reliable estimation of robustness. To do that, we keep sampling
scenarios randomly until twice the number of scenarios are triggered by
local search. Other settings, such as nnb for the neighbourhood size and
weights in Eq. (3.5), follow our suggestion in Sect. 5.6.1. In addition, for
the archive-based evolutionary control, the initial generation number g?
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and increased generation number ginc are set to 60 and 6 respectively. The
parameters sensitivity of g? and ginc have been studied by considering dif-
ferent pair of parameters. This setting present the idea trade-off between
the effectiveness and efficiency in GA-2Stage.

Following how the comparisons are conducted in Sect. 5.6.1, we run
GA-2Stage, GA-RE, GA-MC and FL 30 times with 30 different random
seeds. We then test each baseline composite service obtained by every
run of every algorithm over 200 different simulated scenarios. Note that,
scenarios considered at the design stage are different from those 200 simu-
lated scenarios sampled for testing, such differences are important because
we want to accurately measure the robustness of any composite service
during the execution stage. Subsequently, we use an independent sample
T-test with a significance level of 5% to verify the observed difference in
the effectiveness and execution time with respect to GA-2Stage, GA-RE,
GA-MC and FL. Lastly, we also compare the accuracy of lower bound ro-
bustness estimation in Eq. (5.4) to that of the Monte Carlo estimation in
Eq. (5.3). Particularly, we demonstrate their accuracy in ranking candi-
date solutions evolved by GA using three most popular rank correlation
methods, i.e., Pearson, Kendall’s tau and Spearman’s rho [21], with a sig-
nificance level of 5%.

Comparison of the effectiveness

To study the effectiveness of GA-2Stage, GA-RE, FL and GA-MC in find-
ing robust baseline solutions, Table 5.4 shows the mean fitness values and
standard deviations obtained from testing on baseline solutions for GA2-
Stage, GA-RE, FL and GA-MC over 30 runs, and each run is tested over
200 random scenarios of service failures at the execution stage. We ver-
ify the significant differences in the fitness values using an independent
sample T-test, and the winner is highlighted in the table. In particular, we
use pairwise comparisons among GA-2Stage, GA-RE, GA-MC and FL us-
ing an independent-sample T-test with a significance level of 5% to verify
the observed differences in performance concerning fitness values. After-
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wards, the top performances are identified, and its related value is high-
lighted in a green color in Table 5.4. The pairwise comparison results
for fitness are summarized in Table 5.5, where win/draw/loss shows the
scores of one method compared to all the others, and displays the fre-
quency that this method outperforms, equals or is outperformed by the
competing method. Note that all the P-values are lower than 0.001, and
any “−” in the tables means results cannot be collected since the related
testing instances has been running for more than 16 days.

Compared to FL and GA-MC, GA-2Stage and GA-RE outperform them
as evidenced by the performance, summarised in Table 5.5. Particularly,
baseline solutions produced by GA-2Stage and GA-RE both achieve con-
sistently good performance for all the tasks in OWLS-TC, WSC-08, and
WSC-09 as top performers regardless of the size of the service repository.
In other words, composite services produced by GA-2Stage and GA-RE
are more likely to maintain a good quality in the event of stochastic ser-
vice failures. This finding matches well with our expectation that our ro-
bustness estimation methods in GA-2Stage and GA-RE is very effective in
dealing with service requests over both small and large service reposito-
ries.

In addition, the effectiveness of GA-2Stage and GA-RE are very com-
parable to each other. This observation agrees with our expectation that
GA-2Stage can maintain the effectiveness of GA-RE in finding robust com-
posite services by two different evaluation methods over two consecutive
evolutionary processes.

Moreover, for the two baseline methods FL and GA-MC, GA-MC out-
performs FL in OWLS-TC benchmark while the same performance cannot
be clearly observed from WSC-08 and WSC-09 benchmarks. This is be-
cause the robustness measure using Eq. (5.3) by GA-MC presents low vari-
ances for the OWLS-TC benchmarks. Therefore, for large-scale RWSC-SF
problem, the robustness measure in GA-MC presents high variances and
cannot be reliably used by GA to produce robust composite services.



5.6. EXPERIMENTAL EVALUATION 221

Ta
bl

e
5.

4:
M

ea
n

fit
ne

ss
va

lu
es

te
st

ed
ba

se
d

on
th

e
ba

se
lin

e
so

lu
ti

on
s

fo
r

G
A

-2
St

ag
e

in
co

m
pa

ri
so

n
to

G
A

-R
E,

FL
an

d
G

A
-M

C
.

(N
ot

e:
th

e
hi

gh
er

th
e

fit
ne

ss
th

e
be

tt
er

)

Ta
sk

G
A

-2
St

ag
e

G
A

-R
E

FL
[4

7]
G

A
-M

C

O
W

LS
-T

C
1

0
.9

2
2
7
8
8
±

0
.0

0
0
1
7
9

0
.9

2
2
8
6
2
±

0
.0

0
0
1
8

0
.9

2
2
7
9
1
±

0
.0

0
0
3
1
1

0
.9

1
0
6
2
3
±

0
.0

3
3
1
2
2

O
W

LS
-T

C
2

0
.9

3
1
5
8
6
±

0
.0

0
2
1
0
7

0
.9

3
2
0
9
5
±

0
.0

0
0
2
7
7

0
.9

2
9
6
1
8
±

0
.0

0
5
0
0
9

0
.9

1
5
5
5
8
±

0
.0

2
5
3
2
7

O
W

LS
-T

C
3

0
.8

6
3
5
1
8
±

0
.0

0
3
6
2
3

0
.8

6
3
0
6
1
±

0
.0

0
7
2
5

0
.8

5
4
2
1
8
±

0
.0

0
7
7
9

0
.8

6
2
4
5
9
±

0
.0

0
3
4
0
3

O
W

LS
-T

C
4

0
.7

8
9
3
9
6
±

0
.0

0
8
5
7

0
.7

9
1
1
7
4
±

0
.0

0
4
4
5
1

0
.7

7
9
1
2
1
±

0
.0

1
2
3
4
8

0
.7

8
9
1
0
1
±

0
.0

0
5
5
9
6

O
W

LS
-T

C
5

0
.8

2
6
7
3
1
±

0
.0

0
5
0
5
4

0
.8

2
6
5
0
9
±

0
.0

0
5
2
7
5

0
.8

1
2
8
5
2
±

0
.0

1
2
3
8
8

0
.8

2
4
2
9
6
±

0
.0

1
3
0
7
8

W
SC

08
-1

0
.3

9
7
9
7
1
±

0
.0

0
2
9
7
5

0
.3

9
8
8
9
6
±

0
.0

0
3
5
3
8

0
.3

9
5
1
9
4
±

0
.0

0
2
7
8
2

0
.3

8
3
5
2
3
±

0
.0

0
5
4
3
3

W
SC

08
-2

0
.5

7
6
4
1
7
±

0
.0

0
3
7
8

0
.5

7
6
7
1
6
±

0
.0

0
2
8
9

0
.5

6
8
1
6
6
±

0
.0

0
5
3
6
2

0
.5

7
2
7
0
7
±

0
.0

0
6
9
0
5

W
SC

08
-3

0
.0

2
5
4
9
4
±

0
.0

0
2
9
5

0
.0

2
5
0
1
±

0
.0

0
1
4
1
5

0
.0

2
5
1
1
8
±

0
.0

0
1
3
3
3

0
.0

2
5
0
9
±

0
.0

0
1
4
2
4

W
SC

08
-4

0
.2

7
4
7
8
8
±

0
.0

0
2
9
5

0
.2

7
5
6
3
1
±

0
.0

0
2
8
7
2

0
.2

7
1
1
1
2
±

0
.0

0
4
1
3
3

0
.2

6
8
9
0
6
±

0
.0

0
3
4
9
2

W
SC

08
-5

0
.2

7
5
5
1
3
±

0
.0

0
2
1
0
7

0
.2

7
5
8
1
4
±

0
.0

0
3
1
4
7

0
.2

7
5
2
5
9
±

0
.0

0
2
6
2
5

0
.2

7
2
3
9
4
±

0
.0

0
3
4
1
2

W
SC

08
-6

0
.0

7
2
1
7
8
±

0
.0

0
2
0
4
7

0
.0

7
2
0
3
6
±

0
.0

0
1
6
0
5

0
.0

7
2
0
1
7
±

0
.0

0
2
1
1
4

0
.0

7
1
4
9
6
±

0
.0

0
2
0
2
8

W
SC

08
-7

0
.2

1
6
9
0
9
±

0
.0

0
3
1
1
1

0
.2

1
7
9
5
7
±

0
.0

0
3
2
2

0
.2

1
6
3
2
1
±

0
.0

0
3
1
6
2

0
.2

1
4
1
7
7
±

0
.0

0
3
3
3

W
SC

08
-8

0
.0

5
3
5
9
6
±

0
.0

0
2
0
4
7

0
.0

5
4
2
5
9
±

0
.0

0
1
9
0
9

0
.0

5
3
6
±

0
.0

0
2
0
0
7

0
.0

5
3
4
0
6
±

0
.0

0
1
9
9
2

W
SC

09
-1

0
.5

1
4
0
3
2
±

0
.0

0
5
8
0
5

0
.5

1
4
3
8
9
±

0
.0

0
6
2
6
3

0
.5

0
1
9
5
7
±

0
.0

0
5
4
3
5

0
.5

0
9
0
5
3
±

0
.0

0
7
4
9
3

W
SC

09
-2

0
.2

7
2
4
4
5
±

0
.0

0
3
0
9

0
.2

7
2
2
1
7
±

0
.0

0
2
6
5
3

0
.2

7
2
9
0
5
±

0
.0

0
2
8
8
6

0
.2

6
9
5
1
3
±

0
.0

0
3
5
1
6

W
SC

09
-3

0
.3

8
7
6
7
2
±

0
.0

0
3
0
1
4

0
.3

8
6
7
1
2
±

0
.0

0
2
3
5
6

0
.3

8
4
8
7
9
±

0
.0

0
2
5
6
2

0
.3

7
8
0
3
6
±

0
.0

0
5
3
1
8

W
SC

09
-4

0
.0

6
8
1
3
9
±

0
.0

0
2
2
2
3

0
.0

6
7
3
2
8
±

0
.0

0
1
9
6
8

0
.0

6
7
5
1
5
±

0
.0

0
2
2
1
4

-
W

SC
09

-5
0
.1

0
8
8
4
5
±

0
.0

0
2
6
0
2

0
.1

0
9
3
4
7
±

0
.0

0
2
6
1
9

0
.1

0
7
8
0
9
±

0
.0

0
2
0
1
1

0
.1

0
8
0
5
6
±

0
.0

0
2
0
6
7



222 CHAPTER 5. ROBUSTNESS OPTIMIZATION IN DYNAMIC WSC

Table 5.5: Summary of statistical significance tests for mean fitness values,
where each column shows the win/draw/loss score of one method

against a competing one for all tasks of OWLS-TC, WSC08 and WSC09.

Dataset Method GA-2Stage GA-RE FL [47] GA-MC

OWLS-TC
(5 tasks)

GA-2Stage - 0/5/0 0/1/4 0/3/2
GA-RE 0/5/0 - 0/1/4 0/3/2
FL [47] 4/1/0 4/1/0 - 2/3/0
GA-MC 2/3/0 2/3/0 0/3/2 -

WSC08
(8 tasks)

GA-2Stage - 0/8/0 0/5/3 0/3/5
GA-RE 0/8/0 - 0/5/3 0/3/5

FL 3/5/0 3/5/0 - 0/3/5
GA-MC 5/3/0 5/3/0 5/3/0 -

WSC09
(5 tasks)

GA-2Stage - 0/5/0 0/3/2 0/1/4
GA-RE 0/5/0 - 0/2/3 0/1/4
FL [47] 2/3/0 3/2/0 - 1/1/3
GA-MC 4/1/0 4/1/0 3/1/1 -

Comparison of the efficiency

To study the efficiency of GA-2Stage, GA-RE, FL and GA-MC at both the
design stage and execution stage, Table 5.6 and 5.7 show execution times
observed for the design stage and execution stage, respectively, over 30
runs. We keep utilizing the pairwise comparisons with an independent
sampled T-test to detect any noticeable differences in the algorithm run-
ning time, see Table 5.8 and 5.9.

At the design stage, see Table 5.6 and Tables 5.8, we can observe that
FL consistently takes significantly less execution time (in seconds) compar-
ing to all the other methods. This is because the fitness evaluation in FL
through Eq. (3.5) is far more efficient than GA-Stage, GA-RE and GA-MC.

Furthermore, GA-MC consistently requires the longest execution time
in the design stage, while GA-RE requires the second longest execution
time in the design stage. This is because a single evaluation of one can-
didate solution involves N calculations of comprehensive quality using
Eq. (5.3). This N is much larger than the number of scenarios required by
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GA-RE in Eq. (5.4). As discussed previously, we increase N in Eq. (5.3) to
allow more accurate robustness estimation in GA-MC. However, GA-MC
still does not outperform GA-2Stage for finding high-robustness solutions
on large benchmarks, such as WSC-08 and WSC-09.

In addition, GA-RE requires less significant execution time at the de-
sign stage, compared to GA-MC. This is because the efficiency of evolving
robust composite services is further improved with the help of the lower
bound robustness estimation in GA-RE.

Lastly, GA-2Stage further improves the efficiency of GA-RE by intro-
ducing a two-stage optimization process with the adaptive evolutionary
control. This is because the majority of the generations in GA-2Stage em-
ploy a cheap evaluation on the comprehensive quality of each solution
using Eq. (3.5), while the rest of the generations employ the fitness ap-
proximation using Eq. (5.4). Notably, GA-2Stage can still maintain high
effectiveness in finding high-robustness baseline solutions.

At the execution stage, see Table 5.7, no results are highlighted in the
tables since we do not observe any significant difference among any two
competing methods. This indicates that baseline solutions produced by all
the methods for every task need a similar amount of time to be repaired
in the event of service failures. The amount of repair time is independent
of the design stage. Moreover, the amount of repair time is much less than
the execution time of the design stage, and the frequency of producing
baseline solutions at the design stage is also far less than that of repairing
the baseline solutions at the execution stage.
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Table 5.8: Summary of statistical significance tests for mean execution
time of the design stage, where each column shows the win/draw/loss
score of one method against a competing one for all tasks of OWLS-TC,

WSC08 and WSC09.

Dataset Method GA-2Stage GA-RE FL [47] GA-MC

OWLS-TC
(5 tasks)

GA-2Stage - 0/0/5 5/0/0 0/0/5
GA-RE 5/0/0 - 5/0/0 0/0/5
FL [47] 0/0/5 0/0/5 - 0/0/5
GA-MC 5/0/0 5/0/0 5/0/0 -

WSC08
(8 tasks)

GA-2Stage - 0/0/8 8/0/0 0/0/8
GA-RE 8/0/0 - 8/0/0 0/0/8

FL 0/0/8 0/0/8 - 0/0/8
GA-MC 8/0/0 8/0/0 8/0/0 -

WSC09
(5 tasks)

GA-2Stage - 5/0/0 0/0/5
GA-RE 5/0/0 - 5/0/0 0/0/5
FL [47] 0/0/5 0/0/5 - 0/0/5
GA-MC 5/0/0 5/0/0 5/0/0 -

Table 5.9: Summary of statistical significance tests for mean execution
time per scenario for local search at the execution stage, where each

column shows the win/draw/loss score of one method against a
competing one for all tasks of OWLS-TC, WSC08 and WSC09.

Dataset Method GA-2Stage GA-RE FL GA-MC

OWLS-TC
(5 tasks)

GA-2Stage - 0/5/0 0/5/0 0/5/0
GA-RE 0/5/0 - 0/5/0 0/5/0

FL 0/5/0 0/5/0 - 0/5/0
GA-MC 0/5/0 0/5/0 0/5/0 -

WSC08
(8 tasks)

GA-2Stage - 0/8/0 0/8/0 0/8/0
GA-RE 0/8/0 - 0/8/0 0/8/0

FL 0/8/0 0/8/0 - 0/8/0
GA-MC 0/8/0 0/8/0 0/8/0 -

WSC09
(5 tasks)

GA-2Stage - 0/5/0 0/5/0 0/5/0
GA-RE 0/5/0 - 0/5/0 0/5/0

FL 0/5/0 0/5/0 - 0/5/0
GA-MC 0/5/0 0/5/0 0/5/0 -
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Comparison of the accuracy in robustness estimation

To study the accuracy of the lower bound robust estimation (called rLB)
in Eq. (5.4) and the Monte Carlo estimation (called rMC) in Eq. (5.3), we
compare each of them with the testing results, which serve as the “ground
truth” of the robustness of any composite service in this study. Partic-
ularly, we are interested in how accurate different estimation methods
are capable of ranking multiple composite services. For this purpose,
we firstly record the fitness values of 30 composite services measured
by the lower bound robust estimation, Monte Carlo estimation, and the
“ground truth”, for WSC09-1. Afterwards, we calculate the rank correla-
tion between the rLB and the “ground truth”, and between the rMC and
the “ground truth”, using Pearson, Kendall’s tau and Spearman’s rho.

Table 5.10: Results of three statistical correlation tests using Pearson,
Kendall’s tau, and Spearman’s rho.

Method rLB rMC

Pearson
Correlation coefficient 0.611078 0.426510

P-value 0.000334 0.018756

Kendall’s tau
Correlation coefficient 0.452137 0.310345

P-value 0.000468 0.016017

Spearman’s rho
Correlation coefficient 0.615333 0.493215

P-value 0.000296 0.005615

Table 5.10 shows the correlation coefficient values and P-values of
Pearson, Kendall’s tau and Spearman’s rho over two pairs of ranks, i.e.,
rLB and the “ground truth”, and rMC and the “ground truth”. We can
see that both two correlation tests reject the null hypothesis that the two
ranks are uncorrelated because all the P-values are less than 0.05. In ad-
dition, we can observe that the correlation coefficient between rLB and
the “ground truth” is consistently higher than that between rMC and the
“ground truth”. This indicates that lower bound robust estimation is more
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accurate than the Monte Carlo robust estimation.

5.7 Summary

The overall goal of this chapter is to propose GA-based approaches
to effectively and efficiently handle the RWSC-SF problem. We have
achieved this goal by completing the following: (1) We propose to deal
this problems via two stages, design stage and execution stage. At the
design stage, robust composite services should be built to serve as the
blueprint/baseline. These baseline composite services can cope with un-
expected interruptions robustly via a repairing process (i.e., local search)
while maintaining high QoS and QoSM at the time of execution. (2) A new
GA-MC algorithm is developed to search for such robust composite ser-
vices using a fitness function, which estimates the robustness of candidate
composite services based on Monte Carlo sampling. (3) We studied the re-
liability of GA-MC in regard to the impact of sample size N , and conduct
a study on the small-scale RWSC-SF problem. We compare the effective-
ness of GA-MC with FL, which only focuses on searching high-quality
solutions. (4) Different from the Monte Carlo sampling-based robustness
estimation, we proposed a more accurate robustness estimation method
based on a lower bound of the expected fitness. (5) We developed GA-
2Stage to effectively and efficiently produce baseline solutions with high
robustness. In stage one of GA-2Stage, without considering any service
failure, a cheap robustness estimation with a high level of noise (i.e., com-
prehensive quality) is performed in GA to find good solutions that are
likely to be robust. In stage two, these solutions can be further evolved to
improve their robustness using the expensive but accurate robustness es-
timation based on the lower bound of the expected quality. (6) We conduct
another study on the large-scale RWSC-SF problem and test the perfor-
mances of GA-2Stage on this problem using additional large benchmark
datasets, WSC-08, and WSC-09. In addition, GA-MC, GA-RE (i.e., a GA
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method that utilize the lower bound robustness method throughout the
generations), and FL are compared against GA-2Stage.

The development of new algorithms and their experimental study
leads to several major findings: (1) For the Monte Carlo sampling-based
estimation, we learned that the sampling size has a big impact on the ac-
curacy of Monte Carlo sampling-based robustness estimation. The larger
the sampling size is, the more accurate the fitness evaluations are and the
higher robustness of the evolved composite services are. However, we also
learned that Monte Carlo sampling becomes computationally expensive
for approximating the robustness of solutions for large-scale RWSC-SF
problem with large service repositories. Therefore, Monte Carlo sampling
is not suitable for service composition problems with large repositories.
(2) For the lower bound robust estimation, we learned that this estima-
tion could successfully reduce the variance of the robustness estimation.
We also found out that lower bound robust estimation is more accurate
than the Monte Carlo sampling for ranking different composite services.
On the other hand, the Monte Carlo sampling can be more efficient and
accurate enough for the small RWSC-SF problem by utilizing a small
but suitable sampling size N . (3) We learned that the success of our GA
method in finding composite services relies on how accurate the fitness
functions measure the robustness of composite services. Particularly, we
found that GA-RE with the lower bound robust estimation is more effec-
tive and efficient than GA-MC Monte Carlo sampling-based estimation
for finding solutions with high robustness. (4) Compared to GA-RE, GA-
2Stage could achieve much higher efficiency at the design stage with a
negligible impact on the effectiveness, with the help of both the adaptive
evolutionary control over two consecutive evolutionary stages and two
different involved robustness estimation methods.
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Chapter 6

Conclusions

The overall goal of this thesis is to propose fully automated web service
composition approaches that can produce functionally valid composite
services with optimized QoSM and QoS. This goal has been achieved
successfully with the development of innovative algorithms that com-
bine AI planning and EC techniques to find such composite services in
the context of single-objective, multi-objective and dynamic problems.
Notably, to effectively and explicitly extract, and utilize the knowledge
about promising solutions, we start by proposing three single-objective
EDA-based approaches (including the use of local search) that sample
promising solutions from different distribution models, supporting direct
and indirect representations. Subsequently, we propose fully automated
service composition approaches to handle two categories of MOCQP:
WSC-MO and WSC-MQP. WSC-MO aims to simultaneously produce a
set of approximated Pareto-optimal composite services in consideration
of both QoSM and QoS. In particular, MNSGA2-EDA is proposed based
on NSGA-II with a model-guided local search to effectively and efficiently
find high-quality solutions for WSC-MO. WSC-MQP aims to concurrently
produce a set of optimized composite services with distinctive preferences
on QoSM. In particular, two multi-factorial evolutionary algorithms, PM-
FEA and PMFEA-EDA, have been proposed to effectively and efficiently
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solve WSC-MQP based on implicit and explicit knowledge learning and
sharing, respectively. Finally, a new RWSC-SF problem with separate
design and execution stages has been proposed to handle stochastic ser-
vice failures. To handle this dynamic problem, two EC-based approaches
have been developed with the goal of building robust composite services,
which can effectively handle service failures at the execution stage.

The remainder of this chapter is organized as follows: Sect. 6.1 outlines
the objectives that are achieved in this thesis. Sect. 6.2 presents the main
conclusions made in this work. Sect. 6.4 explores possible future research
directions based on the contributions in this thesis.

6.1 Achieved Objectives

The achieved objectives of the thesis are listed below:

1. This thesis proposed two EDA-based approaches (i.e., EDA-NHM
and EDA-EHM) for single-objective automated Web service com-
position. To effectively optimize the comprehensive quality, EDA-
NHM and EDA-EHM rely on two different distribution models (i.e.,
NHM and EHM) and sampling techniques. Furthermore, memetic
EDA-based approaches based on EDA-NHM was proposed to en-
able the use of several local search operators (see Chapter 3). For
EDA-NHM, we introduced a novel permutation-based representa-
tion, allowing NHM to be learned from varied structures of can-
didate composite services. For EDA-NHM, EDA-EHM employs a
graph-based representation that presents a set of service dependen-
cies. Such dependencies can be efficiently queried with the help
of our ontology-based querying technique. The novelty of EDA-
NHM lies in employing EHM to capture the distributions of the
service dependencies for building DAG-based composite services,
and proposing the GEHBGS technique to efficiently sample promis-
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ing and functionally valid DAG-based composite services. Experi-
ments showed that EDA-NHM can outperform PSO, FL, PathSearch
and our proposed EDA-EHM in finding composite services with
much higher comprehensive quality. In contrast, EDA-EHN can
achieve the highest efficiency among all the competing EC-based
approaches, while maintaining reasonable effectiveness. Since the
effectiveness is our focus, we further proposed memetic EDA-based
approaches based on EDA-NHM by introducing an efficient and ef-
fective local search procedure. This local search procedure combines
a uniform distribution schema with several local search operators.
The schema is used to select a small number of suitable individuals
to be considered for local search, and the local search operators are
used to exploit the neighbouring solutions effectively. One proposed
memetic EDA with the layer-based constrained one point swap (i.e.,
MEEDA-LOP) achieves significantly better effectiveness and effi-
ciency, compared to MEFL, other our proposed memetic EDA-based
approaches, and the baseline EDA-NHM. This indicates that the
layer-based constrained one point swap is more effective than all the
other local search operators utilized in the competing methods.

2. This thesis proposed EC-based approaches to solve two categories
of MOCQP: WSC-MO and WSC-MQP (see Chapter 4). WSC-MO
aims to identify a set of approximated Pareto-optimal solutions by
simultaneously considering both QoSM and QoS. To effectively and
efficiently handle this problem, we proposed a memetic service com-
position approach (i.e., MNSGA2-EDA) that employs EDA to make
local improvements on the composite services found by NSGA-II.
The novelty of this method lies in the innovative use of EDA for ef-
fective and efficient local improvements, rather than for global ex-
ploration. This local search is performed by sampling candidate
composite services via multiple NHMs, which are constructed sepa-
rately and concurrently in different regions of the Pareto front along
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with some good candidate composite services. The selected Pareto
solutions and the regions are identified through the use of a cluster-
ing technique. Our experiment showed that MNSGA2-EDA is much
more effective and efficient in finding Pareto optimal solutions, com-
pared to Hybrid and Hybrid-L. WSC-MQP focuses on finding a set
of solutions by optimizing both QoSM and QoS, subject to differ-
ent QoSM preferences from multiple user segments. In this thesis,
we formulated the WSC-MQP problem as a multitasking problem
and proposed two multi-factorial evolutionary algorithms, i.e., PM-
FEA and PMFEA-EDA, based on implicit and explicit knowledge
learning and sharing (see Chapter 4). PMFEA is proposed based on
the standard MFEA, but with a permutation-based representation
and corresponding genetic operators. Two variations of PMFEA,
i.e., PMFEA-NT and PMFEA-AT, have been proposed by perform-
ing additional evaluations based on neighbouring tasks and all tasks,
respectively. Our experiment showed that all PMFEAs can be per-
formed at the cost of only a fraction of time compared to one single-
tasking EC-based method. Besides that, the proper use of the neigh-
bourhood structure over multiple tasks in PMFEA-NT can enhance
the effectiveness of PMFEA. Furthermore, PMFEA-EDA is proposed
with single-tasking and multitasking NHMs, which are constructed
to learn explicit knowledge of promising solutions for each task and
every two adjacent tasks, respectively. Meanwhile, a new sampling
mechanism, motivated by assortative mating, is proposed to balance
the exploration and exploitation of the evolutionary search process
for multiple tasks. Our experiment showed that the explicit learning
mechanism in PMFEA-EDA can perform knowledge learning and
sharing better, compared to PMFEA.

3. This thesis proposed two EC-based approaches (GA-MC and GA-
2Stage) for the small-scale and large-scale RWSC-SF problems, re-
spectively (see Chapter 5). To the best of our knowledge, we are
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the first to formulate such a dynamic problem as a two-stage pro-
cess for robust composite service design and execution. The de-
sign stage aims to build robust composite services that serve as the
blueprint/baseline. These baseline composite services can cope with
unexpected interruptions robustly via a repairing process (i.e., local
search) for maintaining high quality at the execution stage. Two ap-
proaches, GA-MC and GA-2Stage, have been proposed for finding
robust composite services at the design stage. In addition, a base-
line GA-based method, called GA-RE, was proposed for the purpose
of comparison. Particularly, the contribution of GA-MC and GA-RE
lies in developing reliable fitness functions that can accurately esti-
mate the robustness of evolved composite services throughout all the
generations. Particularly, two robustness estimation methods have
been proposed by using Monte Carlo sampling and a lower bound
of the expected fitness, respectively. Our experiment showed that
GA-RE can outperform GA-MC in finding composite services with
high robustness, for both the small-scale and large-scale RWSC-SF
problems, while GA-MC can perform very efficiently over service re-
quests for the small-scale RWSC-SF problem. We observed that the
Monte Carlo sampling-based method could present high variances
for the robustness estimation when the size of the service reposi-
tory becomes large. However, the lower bound robust estimation
can successfully reduce such variances. Apart from GA-MC and
GA-RE, GA-2Stage is proposed to achieve high algorithm efficiency
with a negligible impact on the effectiveness, regardless of the ser-
vice repository size. The contribution of GA-2Stage lies in proposing
an adaptive evolutionary control mechanism to support two consec-
utive evolutionary stages by using two different fitness evaluation
methods. Stage one tries to efficiently find good composite services
that are likely to have high robustness based on a cheap evaluation
method with a high level of noise, i.e., comprehensive quality, as-
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suming no services fail. Particularly, this evaluation method can
produce composite services with a small number of component ser-
vices, which are less likely to be affected in the events of service fail-
ures. The solutions found in the first evolutionary stage are utilized
to initialize the population in the second stage that uses the lower
bound estimation. Our experiment results further confirmed that
GA-2Stage is very comparable to GA-RE in terms of the effective-
ness, and it also achieves much higher efficiency compared to GA-RE
via the use of evolutionary control.

6.2 Main Conclusions

This section outlines the main conclusions of this thesis.

6.2.1 Explicit Distribution Models for Fully Automated

Service Composition

This thesis proposed two novel ways to explicitly learn the knowledge
of promising composite services, which are presented as two distribution
models based on NHM and EHM. These two distribution models can be
iteratively adjusted with the help of EDA for searching composite ser-
vices with high comprehensive quality. To effectively learn a distribution
model in the form of NHM from multiple composite services with var-
ied workflow structures, we proposed a new permutation-based repre-
sentation that is encoded from a DAG-based representation. Conversely, a
DAG-based representation is decoded from randomly initialized or sam-
pled permutations from the NHM. Distribution models based on EHM
can naturally capture service dependencies of promising DAGs. In addi-
tion, with the help of EHM, we can build up a composition graph from
the service dependencies. To prevent cycles in DAGs, general knowledge
about service workflows has been utilized to guide the sampling process.
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For example, only row indexes of non-zero entries in EHM are to be sam-
pled, and layer information is used to verify sampled predecessors. EDA-
EHM is found to be very efficient with competitive effectiveness in finding
high-quality composite services, while the EDA-NHM is less efficient, but
is found to yield the best quality composite services.

6.2.2 Neighbourhood Structure of Composite services

This thesis investigates appropriate structures of the neighbourhood for
composite services to be explored by the newly developed local search
operators. Particularly, our local search operators extend “swap” opera-
tors on permutation-based representations. In this thesis, we investigate
four different problem-specific swap operators. Our local search oper-
ators include constrained one-point swap, constrained two-point swap,
constrained one-block swap, and layer-based constrained one-point swap.
Out of all of them, the layer-based constrained one-point swap is identi-
fied as the most effective operator to enhance the exploitation ability of
EDA via local search. The layer-based constrained one-point swap oper-
ator is proposed by extending the constrained one-point swap with the
layer information. The advantage of this swap is due to two reasons: two
points (i.e., position indexes) to be swapped must be before | and after
| respectively, resulting in a neighbouring permutation that has a high
chance to use the services after | to build a different DAG. The layer infor-
mation can effectively select more suitable services after |, increasing the
chance for building a different DAG significantly. In other words, given
the same computation budget on local search, the layer-based constrained
one-point swap can potentially exploit more different DAGs, and is more
likely to reach a better neighbouring solution.
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6.2.3 Local Improvements on Pareto Solutions Using EDA

This thesis proposed MNSGA2-EDA with EDA-based local search, search-
ing for Pareto optimal solutions with respect to QoSM and QoS. The con-
tribution of this method is in the novel way of using EDA to perform a
local search, rather than for global exploration. This local search is per-
formed separately and concurrently in different regions of the Pareto front.
Such regions are identified by a clustering technique to select multiple can-
didate Pareto solutions for local improvements and other good candidate
solutions in each region for building NHMs. To make local improvements
on the selected solutions, we propose an effective method to learn multiple
NHMs. Particularly, we use the Euclidean distances in the objective space
between the candidate Pareto solution and other members in this region
to weight the influences of every chosen solution on NHM. This is because
members far from the candidate Pareto solution should contribute less to
the distribution model that we aim to learn. Our proposed MNSGA2-EDA
can outperform Hybrid, Hybrid-L and the baseline NSGA-II in finding
better Pareto composite services, without sacrificing the efficiency.

6.2.4 Using EDA to Achieve Effective and Efficient WSC-

MQP

Solving one composition request at a time poses difficulty in meeting the
efficiency target due to a large quantity of requests generated by a growing
number of users [17]. In our thesis, multitasking service composition ap-
proaches have been proposed to deal with multiple composition requests
concurrently in an efficient way. To solve multiple service requests with re-
spect to several pre-determined user segments simultaneously, this thesis
proposed PMFEA-EDA that explicitly learns and shares knowledge across
composite services for several different service requests. The contribution
of this method lies in iteratively building a set of single-tasking and multi-
tasking NHMs for the purpose of effective knowledge learning and shar-
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ing. Particularly, each single-tasking NHM can capture the knowledge of
good solutions with respect to one task. At the same time, multitasking
NHM can facilitate knowledge sharing across pairs of neighbouring tasks.
Our experiment shows that PMFEA-EDA takes much less execution time
than existing single-tasking service composition approaches that process
each service request separately. Furthermore, PMFEA-EDA also produces
composite services with much higher quality, compared to PMFEA that
implicitly learns and shares knowledge across composite services based
on assortative mating and the existing single-tasking service composition
approaches, such as FL and our proposed EDA-NHM. The core observa-
tion is that explicitly learning and sharing knowledge is more effective
than implicit learning and sharing through the use of MFEA.

6.2.5 The Application of Two-stage Robust Service Com-

position

This thesis proposed a new dynamic service composition problem with a
key focus on stochastic service failures. This problem involves a two-stage
robust service composition process, consisting of a design stage and an
execution stage. The novelty of this problem lies in that the design stage
constructs baseline composite services with high robustness (in terms of
expected QoS and QoSM), which are likely to continue to work reliably
or be efficiently re-optimized with negligible impact on the quality at the
execution stage. To effectively and efficiently generate such baseline so-
lutions, we employ EC techniques to evolve composite services with op-
timized robustness. One key concern is to create an accurate robustness
estimation method. We have proposed two robustness estimation meth-
ods: one based on Monte Carlo sampling and the other based on a lower
bound of the expected robustness. The lower bound estimation method
is found to yield the highest accuracy in ranking candidate composite ser-
vices regardless of the size of the service repository. Furthermore, com-
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pared to GA-MC and GA-RE, our proposed GA-2Stage turns out be much
more efficient at the design stage with a negligible impact on the quality at
the execution stage. This is realized by using a new adaptive evolutionary
control mechanism.

6.3 Practical Guidelines

In practise, no single algorithm can fit all customers’ requirements. Before
choosing a service composition algorithm, practitioners need to have a
clear picture of their customers’ needs. In Fig. 6.1, we use a decision tree to
guide practitioners to choose one of our proposed algorithms based on the
characteristics of users’ requirements. These characteristics include: (1)
quality preferences (i.e., weights) on each quality criteria that are involved
into the fitness function; (2) whether service failures can be recovered in a
timely manner; (3) algorithm performances in terms of effectiveness and
efficiency; (4) scales of the service composition problem; (5) multiple con-
straints (e.g., multiple user segment preferences on QoSM).

Quality 
Preferences

Clear

Not Clear

Algorithm 
Performance

Highly efficient

Highly effective

EDA-ENM 
Algorithm

MEEDA-LOP 
Algorithm

Service
Failures

No timely response to 
service failure recovery

Timely response to 
service failure recovery

No constraints

Constraints handling

MNSGA2-EDA 
Algorithm

PMFEA-EDA 
Algorithm

GA-2Stage 
Algorithm

Problem 
Scale Large Scale

Small Scale
GA-MC 

Algorithm

Constraints
on Quality

Fig. 6.1: A decision tree to guide practitioners for choosing algorithms
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6.4 Future Work

This thesis reveals several additional avenues to be investigated further
for automated Web service composition. In this section, we will discuss
some potential future research directions.

6.4.1 Miscellaneous Distribution Models and Sampling

Techniques

The success of EDA strongly relies on suitable distribution models that are
used for learning the explicit knowledge of promising candidate compos-
ite services. The NHM and EHM utilized in EDA-NHM and EDA-EHM
can effectively capture the distributions of component service positions
or service dependencies, respectively. In addition to the two distribu-
tion models, we can investigate other suitable generative models for ef-
fectively learning the knowledge of composite services, such as variation
auto-encoder. Such models may be more effective at extracting complex
high-level knowledge from evolved composite services, potentially help-
ing to enhance the performance of EDA. These models are out of the scope
of this thesis because we focus on univariate models. Apart from the dis-
tribution models, we have not investigated the impacts of sampling tem-
plates. For example, a permutation template fixes the elements for a part
of the positions on new permutations to sampled. The proper use of a
template can guide the search effectively via sampling. Therefore, an ef-
fective strategy for selecting suitable templates can be crucial for effective
sampling. This strategy is related to EDA, but it is not in the scope of our
thesis.

6.4.2 Miscellaneous Decoding Strategy for Permutations

Permutation-based representations are used in our EDA-based approaches,
such as EDA-NHM and PMFEA-EDA. Such permutation-based represen-
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tations always require a decoding strategy to create DAG-based composite
services. This decoding must be performed on all the permutation-based
solutions in order to evaluate their QoS and QoSM. Therefore, the decod-
ing strategy has a high impact on the overall execution time of EC-based
algorithms. In our thesis, a forward-decoding strategy is often used to
build up a DAG, starting from the Start node, based on a permutation.
Particularly, a DAG is gradually built up by adding service indexes in the
permutation from left to right, following a sequential order. Note that
this decoding process can be more computationally expensive when the
length of ordered service indexes is very large. Therefore, future work
in this area could investigate alternative decoding strategies. For exam-
ple, instead of following sequentially ordered services for decoding, one
possible improvement could be to cache all the service dependencies and
design a decoding strategy guided by the service dependencies.

6.4.3 Many-Objective Optimisation

This thesis studies multi-objective semantic web service composition with
the aim to optimize two objectives, i.e., QoSM and QoS. However, each ob-
jective still combines more than one quality criteria in QoSM or QoS. These
quality criteria might be conflicting with each other. For example, cost and
response time in QoS. Future work could investigate many-objective opti-
mization techniques and optimize each individual criterion in QoSM and
QoS rather than a combined criterion. Simultaneously optimizing many
(more than three) quality criteria is a challenging task, requiring further
studies on existing many-objective optimization techniques to cope with
this goal. For example, when more objectives are considered, selecting
appropriate individuals for the next generation that can help the popu-
lation toward the Pareto optimal set is very difficult [115]. Despite some
recent success in tackling this issue in EC-based algorithms, we cannot
simply use these algorithms because proper modifications are needed to
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cope better with our problem.

6.4.4 Robustness estimation

This thesis proposes two different methods to approximate the robustness
of composite services. One is based on Monte Carlo sampling, and the
other one is based on a lower bound of the expected fitness. The lower
bound estimation has been empirically shown to be more accurate than
the Monte Carlo technique when ranking composite services according
to their robustness during the evolutionary process. However, the lower
bound estimation introduces bias on the robustness estimation because the
lower bound is computed based on a manually-created rule for selecting
scenarios. In the future, instead of manually selecting scenarios, we can
automatically learn a rule to guide scenario selection. For example, GP has
been widely used to generate scheduling policies in job shop scheduling
problems. Motivated by the successful use of GP in this field, we could use
GP to evolve problem specific rules. We expect such rules can be effective
for selecting suitable scenarios, contributing to more accurate and efficient
estimation of the robustness.
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[102] LÉCUÉ, F., AND DELTEIL, A. Making the difference in semantic
web service composition. In Proceedings of the National Conference
on Artificial Intelligence (2007), vol. 22, Menlo Park, CA; Cambridge,
MA; London; AAAI Press; MIT Press; 1999, p. 1383.
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C., FRIEDRICH, T., LEHRE, P. K., SUDHOLT, D., SUTTON, A. M.,
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