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Abstract

There are distinct differences between classes of matroids that
are closed under principal extensions and those that are not.
Finite-field-representable matroids are not closed under principal
extensions and they exhibit attractive properties like well-quasi-ordering
and decidable theories (at least for subclasses with bounded
branch-width). Infinite-field-representable matroids, on the other
hand, are closed under principal extensions and exhibit none of these
behaviours. For example, the class of rank-3 real representable matroids
is not well-quasi-ordered and has an undecidable theory. The class
of matroids that are transversal and cotransversal is not closed under
principal extensions or coprincipal coextentions, so we expect it to behave
more like the class of finite-field-representable matroids. This thesis is
invested in exploring properties in the aforementioned class.

A major idea that has inspired the thesis is the investigation of
well-quasi-ordered classes in the world of matroids that are transversal
and cotransversal. We conjecture that any minor-closed class with
bounded branch-width containing matroids that are transversal and
cotransversal is well-quasi-ordered. In Chapter 8 of the thesis, we prove
this is true for lattice-path matroids, a well-behaved class that falls in this
intersection.

The general class of lattice-path matroids is not well-quasi-ordered as it
contains an infinite antichain of so-called ‘notch matroids’. The interesting
phenomenon that we observe is that this is essentially the only antichain
in this class, that is, any minor-closed family of lattice-path matroids that
contains only finitely many notch matroids is well-quasi-ordered. This
answers a question posed by Jim Geelen.



Another question that drove the research was recognising fundamental
transversal matroids, since these matroids are also cotransversal. We
prove that this problem in general is in NP and conjecture that it is
NP-complete. We later explore this question for the classes of lattice-path
and bicircular matroids. We are successful in finding polynomial-time
algorithms in both classes that identify fundamental transversal matroids.
We end this part by investigating the intersection of bicircular and
cobicircular matroids. We define a specific class - whirly-swirls -
and conjecture that eventually any matroid in the above mentioned
intersection belongs to this class.
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Chapter 1

Introduction

Representable matroids have been in the limelight since the inception of
matroid theory by Hassler Whitney in 1935 [7]. There is a vast literature
to show that finite-field matroids are well behaved and infinite-field
matroids are not. For example, finite-field matroids of bounded
branch-width exhibit the well-quasi-ordering property under the minor
relation [15]. This result has now been proved without the restriction on
branch-width (although the proof is not published) by the same authors.
The same cannot be said for infinite fields. Also, any minor-closed
class of F-representable matroids, where F is a finite field, has finitely
many excluded minors [14]. This statement was recently proved by
Geelen, Gerards, and Whittle, and includes as a special case Rota’s famous
conjecture. If F is an infinite field, then the anti-chain of excluded minors is
not only infinite, but maximal [24]. This means that every F-representable
matroid is contained as a minor in an excluded minor for the class. For
another example of the contrast between these classes, we consider the
property of being characterisable in a logical language. If F is finite, the
class of F-representable matroids can be characterised in monadic second
order logic whereas if F is infinite, this is not true [25].

Furthermore finite-field-matroids of bounded branchwidth have a
decidable monadic-second-order theory whereas infinite-field-matroids
have an undecidable theory, even for matroids of rank 3 (and hence
branch-width 3) [12]. This points in the direction that finite-field matroids
lie at the ’nice’ end of a spectrum, and infinite-field matroids lie at the
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2 CHAPTER 1. INTRODUCTION

’bad’ end. The question that got us interested is where the matroids that
are transversal and cotransversal lie? We conjecture it is in the middle, but
closer to ’nice’ than to ’bad’.

Another property that can help categorise matroids is being closed
under principal extensions. There is a clear distinction between
classes that are closed under principal extensions, and those that are
not. Finite-field-representable matroids are not closed under principal
extensions and, you guessed it right, infinite-field-representable matroids
are. This is at the heart of the proof that the anti-chain of excluded minors
for real representability is maximal, as recognised by Matus [23].

Transversal matroids were first investigated by Edmonds and Fulkerson
[10] and soon proved to be an important class of matroids contributing
both to transversal theory and matroid theory. That said, the class
of transversal and cotransversal matroids remains quite mysterious.
Testing the membership of this class is non-trivial. In particular, we
do not know of a polynomial-time algorithm to decide if a transversal
matroid is cotransversal. We observe that the class of transversal
matroids is not closed under principal extensions, but is closed under
co-principal co-extensions. Hence, we suspect that they behave more
like infinite-field-matroids and rightly so. Note that corank-3 transversal
matroids (which therefore have branch-width at most 3) are not
well-quasi-ordered, and have an undecidable monadic theory. This
implies transversal matroids behave badly, and so do cotransversal.
However, we think the intersection of these classes is well-behaved. This
is supported by the fact that the class of matroids that is transversal
and cotransversal is not closed under principal extensions or co-principal
co-extensions. We delve deeper into this idea by exploring classes that fall
in this intersection.

The class that forms the intersection of transversal and cotransversal
matroids is not well-quasi-ordered. However, we believe the following
to be true:

Conjecture 1.1.1. Any minor-closed class with bounded branch-width
containing only matroids that are transversal and cotransversal is
well-quasi-ordered.
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We prove this is true for the class of lattice-path matroids in Chapter 7.
Lattice-path matroids are matroids that are transversal and cotransversal.
They can be easily visualised as lattice-path presentations that are made
of paths in the integer lattice (Figure 1.1). Each element in the matroid is a
‘staircase’ in the presentation.

Figure 1.1: A lattice-path presentation where the corresponding matroid
has 11 elements. The staircase in red corresponds to element 6.

Their rich structural properties led us to an elegant proof of the following
theorem:

Theorem 1.1.2. Any class of lattice-path matroids with bounded branch-width
is well-quasi-ordered.

A second class of matroids that spiked our interest was the the class of
bicircular matroids. They arise from graphs similar to graphic matroids
but differ in the set of circuits. While the circuits of graphic matroids
are the cycles in the graph, the dependent sets of bicircular matroids
are minimal connected sets of edges that have at least two cycles. By
virtue of arising from graphs, the class of bicircular matroids is also
well-quasi-ordered even though the minor relation varies slightly. This
result is illustrated in Chapter 6.

Another property that can be used to measure the richness of a class is
being pigeonhole. If each matroid in a class can be decomposed by a
ternary tree in such a way that only a bounded amount of information
flows across displayed separations, then the class has bounded
decomposition-width. A class is said to be pigeonhole if every subclass
with bounded branch-width also has bounded decomposition-width [12].
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Assume U is a k-separating set. Let X and X
′

be subsets of U. We say
X is equivalent to X

′
if and only if X ∪ Z is independent implies X

′ ∪ Z is
independent, for all Z ⊆ E(M)−U.

If for every k, there is a number f (k) such that there are at most f (k)
equivalence classes in a k-separating set U, then the class of matroids has
the strong pigeonhole property. Again, any class of finite-field-representable
matroids is strongly pigeonhole. The property of being strongly
pigeonhole is stricter than being pigeonhole and the former implies the
latter. We now suspect the following is true and hence conjecture:

Conjecture 1.1.3. The class of transversal and cotransversal matroids is strongly
pigeonhole.

This has been proved for the class of fundamental transversal matroids
in [13]. Classes with the strong pigeonhole property tend to have good
algorithmic properties as is illustrated by the next conjecture:

Conjecture 1.1.4. A class of tranversal and cotransversal matroids with bounded
branch width has a decidable monadic-second-order theory.

A theory is a set of sentences - closed formulas - that is closed under logical
consequences. A theory is decidable if there is a polynomial-time algorithm
to determine whether a given formula belongs to the theory.

Fundamental transversal matroids are prime examples of matroids that
are transversal and cotransversal and it only seems natural to question
when transversal matroids are fundamental. We find that this problem is
in NP and conjecture that it is NP complete. Note that the matroid is input
as a corresponding bipartite graph.

That said, we find that for the subclasses of lattice-path and bicircular
matroids, there exist polynomial-time algorithms to determine whether
the given matroid is fundamental.

These conjectures have directed this thesis. Even though they remain
conjectures at the end of the thesis, we have made ample progress in
understanding the class of fundamental tranversal matroids and hope to
have shed some light on its interesting behaviour.
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1.1.1 Structure of thesis

In Chapter 2, we introduce and explain background information necessary
for a smooth reading of the thesis. The thesis is then divided into
three parts. The first part explores the concepts of definability and
recognisability in the context of transversal and cotransversal matroids.
Lattice-path matroids are defined in monadic second order logic with rank
(denoted as MS+

0 ) and fundamental transversal matroids are defined in
monadic second order logic (denoted as MS0) in the initial chapters. As a
result, we have the two following theorems:

Theorem 1.1.5. Lattice-path matroids are axiomatisable in MS+
0 .

Theorem 1.1.6. Fundamental matroids are axiomatisable in MS0.

In the last chapter of this part, we summarise the recognisability via oracle
algorithms of all the classes considered in this thesis.

In the second part, we investigate the property of well-quasi-ordering and
first show that bicircular matroids exhibit this pattern by virtue of arising
from graphs. We then prove that though lattice-path matroids do not form
a well-quasi-ordered class, certain restrictions help model this behaviour.
We introduce the notion of ‘square-width’ which is almost the same as
branch-width for lattice-path matroids. This notion provided us with the
following result:

Theorem 1.1.7. The class of lattice-path matroids of bounded branch-width is
well-quasi-ordered.

Notch matroids form a subclass of lattice-path matroids where the lower
bounding path in the presentation has at most one ‘notch’. A special
subclass of the notch matroids, namely the presentations where there
is exactly one notch at the top and the bottom (see Figure 1.2) receives
significant attention. These are exactly the lattice-path presentations of the
sparse paving matroids with exactly two circuit-hyperplanes that partition
the ground set. We conclude this part by proving that this subclass of
notch matroids essentially forms the unique anti-chain for lattice-path
matroids. This resolves a question posed by Jim Geelen.
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Figure 1.2: Examples of notch matroid presentations

The last part of the thesis deals with the elusive class of fundamental
transversal matroids. The initial chapter deals with the complexity of
recognizing the property of being fundamental in a transversal matroid
and this results in the following (note that the input in both cases is a
bipartite graph that corresponds to the matroid):

Theorem 1.1.8. The question of recognising fundamental transversal matroids
is in NP.

Conjecture 1.1.9. The question of recognising fundamental transversal matroids
is NP-complete.

The last chapters are devoted to finding algorithms that can recognise
when a matroid is fundamental in the classes of bicircular and lattice-path
matroids. We prove that there exist polynomial-time algorithms to
recognise the same.

Theorem 1.1.10. There exists a polynomial-time algorithm to check whether a
lattice-path matroid is fundamental.

Theorem 1.1.11. There exists a polynomial-time algorithm to check whether a
bicircular matroid is fundamental.

We end the discussion by exploring the intersection of bicircular and
cobicircular matroids. We define a class of matroids - whirly-swirls - that
is both bicircular and cobicircular. We conjecture that any matroid in the
intersection is eventually a whirly-swirl (that is, any large-enough matroid
in this intersection is a whirly-swirl,) and close with the following result:

Theorem 1.1.12. If G has a loop at every vertex and the corresponding bicircular
matroid is 3-connected, bicircular and cobicircular, then G is a whirly-swirl.



Chapter 2

Preliminaries

2.1 Transversal matroids

Let E be a set and B = (Ni : i ∈ J) be an indexed family of subsets of E,
where J = {1, . . . , r} and r is a positive integer. Let X = {e1, . . . , er} be a
subset of E where each ei is unique. Then X is defined to be a transversal
of (E, B) if ei ∈ Ni for every i. Alternatively, X is a transversal of (E, B) if
there is a bijection φ : J → X such that φ(i) ∈ Ni for every i ∈ J. A subset
Y of E is a partial transversal of (E, B) if Y is a transversal of (E, B

′
) where

B
′
= (Ni : i ∈ K) for some subset K of J. Then, the partial transversals of

(E, B) form the the independent sets of a matroid M on the ground set E
[28, Ch. 1, Sec. 6]. This is defined to be a transversal matroid.

Another way to understand transversal matroids is via matchings in
bipartite graphs. Let E and B be as defined above. Let G(E, B) be a
bipartite graph with with partition (E, B) where x ∈ E is adjacent to Ni

if and only if x ∈ Ni. (When considering bipartite graphs, it is natural for
B to be a multiset.) Then X ⊆ E is a partial transversal of (E, B) if and only
if there is a matching in G(E, B) in which every edge has one endpoint in
X. Figure 2.1 shows a bipartite graph and a partial transversal in it.

7
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Figure 2.1: A bipartite graph with a matching that corresponds to a partial
transversal on the left and a matching that corresponds to a transversal
on the right. Hence, {1, 4, 7} and {2, 3, 4, 7} are independent in the
corresponding transversal matroid. Moreover {2, 3, 4, 7} is a basis as it
is a maximum matching.

Transversal matroids have a very elegant geometric representation. A
rank r transversal matroid can be represented on an r-simplex. Cyclic flats
help us understand this better.

Definition 2.1.1. A flat F in a matroid is cyclic if it is a (possibly empty) union
of circuits.

Then the following theorem [3] states how we can represent a transversal
matroid geometrically and Figure 2.2 provides an illustration for the same:

Theorem 2.1.2. A matroid M is transversal if and only if it has a geometric
representation on a simplex ∆ in which each cyclic flat F of M consists of the set
of elements in some r(F)-vertex face of ∆.

Figure 2.2: A transversal matroid M represented as a bipartite graph on
the left and on a simplex on the right. Each Ni in the graph is a vertex in
the simplex. If e ∈ E is adjacent to N1, . . . , Nk in the graph, then it is on the
k-vertex face covered by the corresponding vertices.



2.1. TRANSVERSAL MATROIDS 9

2.1.1 Minors, duals and more

The class of transversal matroids is not closed under contraction and hence
does not form a minor-closed class. Neither is it closed under duality even
though we will soon see that it has sub-classes that exhibit one or both of
these properties. Figures 2.3 and 2.4 illustrate this property.

Figure 2.3: A transversal matroid M on the left, and the dual on the right

Consider the matroid represented on the right in Figure 2.3. It is a rank-2
matroid with 6 elements. In the geometric representation of a transversal
matroid on a simplex, a parallel pair must be placed on a vertex, otherwise
known as a 0-face, of the simplex. Since a 2-simplex only has two vertices,
this is impossible in the dual of the transversal matroid considered in
Figure 2.3.

Duals of transversal matroids are called cotransversal or strict gammoids. A
gammoid is any matroid that is the restriction of a strict gammoid.

Figure 2.4: A transversal matroid M on the left, and M/e on the right

Tranversal matroids are closed under deletion but not under contraction.
Figure 2.4 gives an example of a transversal matroid M, where M/e is no
longer transversal, the reason for which is explained above.
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2.2 Fundamental transversal matroids

Fundamental transversal matroids form a sub-class of transversal
matroids with appealing properties. We first define a fundamental basis.

Definition 2.2.1. Let B be a basis of a matroid M. Then, B is said to be
fundamental if whenever Z is a cyclic flat, the intersection of B and Z spans
Z.

Definition 2.2.2. A matroid with a fundamental basis is said to be a
fundamental matroid.

We have already seen that transversal matroids can be represented by
placing the elements of the matroid freely on the faces of a simplex,
with all dependencies evident from the structure of the simplex. Every
cyclic flat F in a transversal matroid is represented on a r(F)-face of
the simplex. Then, fundamental transversal matroids are exactly those
transversal matroids that can be represented with an element on each
vertex of the simplex.

In the following paragraphs, we define another notion that helps explain
what it means to be a fundamental basis.

Definition 2.2.3. Let F be a flat of the matroid M. Let e be an element in F. We
say that e is free in F if: whenever Z is a cyclic flat containing e, Z contains F.

The following lemma is an elementary result that follows from the above
definition and has not appeared in the literature before.

Lemma 2.2.4. B is a fundamental basis of a matroid M if and only if for every
element e not in B, e is freely placed in the flat spanned by the fundamental circuit
C(e, B).

Proof. Let B be a fundamental basis. Assume that there exists an element
e /∈ B such that e is not freely placed in the flat F = cl(C(e, B)) spanned
by the fundamental circuit C(e, B). Then there exists a cyclic flat Z that
contains e but does not contain F. Now B ∩ Z spans Z. So let B

′ ⊆ B
be such that B

′
is a basis of M|Z. Since B

′
spans e, B

′ ∪ e contains a
circuit. Then, by uniqueness of the fundamental circuit, this is C(e, B)
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which contradicts the fact that Z does not contain C(e, B). Hence, the
forward direction is proved.

Now, we assume that every element e /∈ B is freely placed in cl(C(e, B)).
We again employ proof by contradiction and assume that B is not
fundamental. Then there exists a cyclic flat Z such that B∩Z does not span
Z. Hence, we can let e be in Z but not in cl(B ∩ Z). Since, e is freely placed
in cl(C(e, B)), Z contains cl(C(e, B)). But this implies that B ∩ Z contains
C(e, B)− e, which in turn implies that B ∩ Z spans e, a contradiction.

Next, we prove a lemma that has, strangely enough, not appeared in the
literature before.

Lemma 2.2.5. A fundamental matroid is transversal.

Proof. Let E be the ground set of a matroid M and let B = {b1, . . . , br} be
a fundamental basis. We construct the bipartite graph G consisting of the
bipartition V ∪ E, where V = {v1, . . . , vr}, as follows: Join each bi to vi by
an edge. Now, consider e ∈ E− B. Let Be = {bi1 , . . . , bit} be the subset of
B such that C(e, B) = Be ∪ e. Then we construct an edge between e and
every vi1 , . . . , vit . We complete the construction of G when we repeat the
process for every e ∈ E− B.

Now, let N be the corresponding transversal matroid that arises from G.
We show that every rank-k cyclic flat of M is a rank-k cyclic flat of N and
vice versa, as matroids are defined by cyclic flats and their ranks. Let Z be
a rank-k cyclic flat of M. Then |B ∩ Z| = k. If e ∈ Z− B is adjacent to a vi

that is not a neighbour of any element in B ∩ Z, then Z does not contain
clM(CM(e, B)) (by virtue of construction of G). Since Z is cyclic, there exists
a circuit C ⊆ Z such that e ∈ C. So cl(C) ⊆ cl(Z) but cl(C(e, B)) *
cl(C). Then e is not free in clM(CM(e, B)), which leads to a contradiction
by Lemma 2.2.4.

Also, if e /∈ B is adjacent only to neighbours of B∩Z, then e is in clM(B∩Z)
and hence e ∈ Z. This leads us to the conclusion that Z consists of
all elements in Z ∩ B and the elements in Z − B are adjacent only to
neighbours of Z ∩ B. Moreover, every element in Z ∩ B is contained in
some fundamental circuit C(e, B) where e ∈ Z − B. If not, z ∈ B ∩ Z is
not in any fundamental circuit. Then, (B ∩ Z) − z spans Z − B. But z is
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in the span of Z − z, and hence it is in the span of (B ∩ Z) − z, which
is impossible. Hence, N|Z has no coloops. Thus, there exists H ⊆ V
such that H = N(Z ∩ B), the set of neighbours of Z ∩ B. Let Hc be the
complement of H in V. Then, Z is the complement of the neighbourhood
of Hc. In other words, Z = E− N(Hc). Observe that any rank-k cyclic flat
is represented on a k-vertex face on the simplex. So in the graph G, a cyclic
flat is the complement of a neighbourhood of a subset of V. Thus, Z is a
cyclic flat of N. Since N is spanned by B ∩ Z in N, it is also a rank-k cyclic
flat.

Now consider a rank-k cyclic flat Z in N. We show that Z is a rank-k
cyclic flat in M too. Clearly, clN(B ∩ Z) = Z. Let F = clM(B ∩ Z). If
b ∈ B − Z, then b /∈ F, as otherwise B contains a circuit of M. Every
e ∈ F − B is in a circuit C ⊆ (B ∩ Z) ∪ e. Let b ∈ B ∩ Z. Since Z is a
cyclic flat of N, b is joined by a path of length two to some z ∈ Z− B. So
b ∈ CM(z, B)− z ⊆ (B ∩ Z). This implies that

Z =
⋃

e∈Z−B
CN(e, B) =

⋃
e∈Z−B

CM(e, B) = F

and hence F is a cyclic flat of rank-k.

We have seen that the class of transversal matroids is not closed under
duality. On the other hand, fundamental transversal matroids form a
dual-closed class. [7]

Theorem 2.2.6. [7] The dual of a fundamental transversal matroid is a
fundamental transversal matroid.

This fact was derived from the more illuminating idea that is stated below
in [7]:

Lemma 2.2.7. Let B be a fundamental basis in M, where M is a matroid on
ground set E. Then E\B is a fundamental basis in M∗.

Similar to transversal matroids, the class of fundamental matroids is not
minor-closed, as is evident from Figure 2.4. Furthermore, this class is not
closed under deletion.
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Since transversal matroids do not have unique representations as
simplices or bipartite graphs, it makes it rather difficult to figure out when
a given transversal matroid is fundamental. Even though they have a
unique maximal bipartite presentation [3], this does nothing to reduce the
complexity of this problem. This is the problem we address in Section 9.

2.3 Lattice-path matroids

The class of lattice-path matroids is an attractive class with nice structural
properties discovered by Bonin, de Mier and Noy [6]. It is a subclass of
transversal matroids, but surprisingly is closed under duality and minors,
unlike the class of transversal matroids. Interestingly enough, lattice-path
matroids are not well-quasi-ordered (for examples, refer to Chapter 7).
However, we later prove that they are well-quasi-ordered when certain
restrictions are placed on the class.

The class of lattice-path matroids can be best understood in terms
of lattice-paths in the 2-dimensional integral grid. All lattice-paths
considered here start at (0, 0) and use the steps E = (1, 0) (or moving
right) and N = (0, 1) (or moving up), which are called East and North
respectively. The paths are written as words or strings in the alphabet
{E, N}.

In the definitions following, if X is a lattice-path with m + r steps, then
prei(X) denotes the first i steps of X and sufi(X) denotes steps i + 1
to m + r. Hence, we can consider the path P as P = prei(P) sufi(P),
where juxtaposition indicates concatenation of strings. Also if X is any
lattice-path, then r(X) = number of North steps in X, and m(X) = number
of East steps in X. Note that we use the notation [n] to denote {1, 2, . . . , n}
and [m, n] to denote {m, m + 1, . . . , n}.

Let P = p1p2 . . . pm+r and Q = q1q2 . . . qm+r be two lattice-paths from (0, 0)
to (m, r), where P never goes above Q. In other words, for every i, the
number of North steps in prei(P) is never more than that in prei(Q) (and
the number of East steps in prei(Q) is never more than that in prei(P)).
Let pu1 , pu2 , . . . , pur be the set of North steps of P, with u1 < u2 < · · · < ur.
Let ql1 , ql2 , . . . , qlr be the set of North steps of Q, with l1 < l2 < · · · < lr.
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Note that li ≤ ui for all i by virue of definition of P and Q. Let Ni be the
interval [li, ui] of integers. Let M[P, Q] be the transversal matroid that has
ground set [m + r] and presentation (Ni : i ∈ [r]). A lattice path matroid is
a transversal matroid that is isomorphic to M[P, Q] for some such pair of
lattice-paths P and Q.

We say that [P, Q] is a lattice path presentation that corresponds to the
matroid M[P, Q]. The size of a presentation is nothing but the size of the
ground set of the corresponding matroid. We use r and m to denote the
rank and corank of M[P, Q] respectively. We blur the distinction between
the path presentation [P, Q] and the matroid M[P, Q] when doing so will
not create confusion.

Figure 2.5: A lattice-path presentation [P, Q], where the paths P and Q
start at (0, 0) and end at (9, 6)

Figure 2.5 gives an illustration of a lattice-path presentation. Here P =

EENENEEENENEENN and Q = NENNENEENEENEEE. Also N1 =

[1, 3], N2 = [3, 5], N3 = [4, 9], N4 = [6, 11], N5 = [9, 14] and N6 = [12, 15].

When thought of as arising from the particular presentation of bounding
paths P and Q, the elements are in their natural order. However this order
is not evident in the matroid structure.

Let X be a subset of the ground set [m + r] of the lattice-path matroid
M[P, Q]. The lattice-path P(X) is the word s1s2 . . . sm+r in the alphabet
{E, N}, where

si =

N, if i ∈ X

E, otherwise.

This leads to the following characterisation of bases of lattice-path
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matroids:

A subset B of [m + r] with |B| = r is a basis of M[P, Q] if and only if
P(B) stays in the region bounded by P and Q (Theorem 3.3, [6]). That
is, prei(P(X)) has no more North steps than prei(Q) for all i, and no
more East steps than prei(P) for all i. Note that the paths P and Q also
stay in the desired region and hence correspond to bases. Alternatively,
from the transversal definition of a lattice-path matroid, it follows that
B = {b1, b2, . . . , br} is a basis of M[P, Q] if bi ∈ Ni for all i ∈ {1, . . . , r}.

2.3.1 Minors, duals and more

Lattice-path matroids are closed under minors, duals and direct sums
(Theorem 3.1, [5]) but are not closed under the operations of truncation,
elongation and free extension. The dual of a lattice-path matroid M[P, Q]

is M[Q, P]. Visually, this corresponds to finding the reflection of the
presentation along the line y = x as seen in Figure 2.6.

Figure 2.6: A lattice-path matroid on the left and its dual on the right

Let [P, Q] be a lattice-path presentation. Single element deletions and
contractions in M = M[P, Q] can be described in terms of bounding paths
of [P, Q] as follows: A coloop is an element x for which some Ni is {x}. So,
to delete or contract x, delete the corresponding North step from both the
bounding paths. Correspondingly, to delete or contract a loop, which is an
element that is in no set Ni, delete that East step from both the bounding
paths.

If x is neither a loop nor a coloop, the upper bounding path of M\x is
formed by deleting from Q the first East step that is at or after x and the
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lower bounding path is obtained by deleting from P the last East step that
is at or before x. Dually, the upper bounding path of M/x is formed by
deleting from Q the last North step that is at or before x and the lower
bounding path is obtained by deleting from P the first North step that is
at or after x.

Figure 2.7: Deleting e: We erase the step corresponding to e, then slide the
remaining presentation parts horizontally and erase any bits that stick out

We define a lattice-path presentation to be a minor of another if it can
be obtained by the operations of deletions and contractions, as described
above, from the other.

Figures 2.7 and 2.8 shows a lattice-path presentation [P, Q] with P =

ENEEENNENNEN and Q = NNENNENENEEE. In Figure 2.7, we
delete e to obtain P = ENEENNENNEN and Q = NNENNNENEEE.
In Figure 2.8, we contract e to obtain P = ENEEENENNEN and Q =

NNENENENEEE.

Nested matroids form a subclass of lattice-path matroids that has
appeared under different names in varying contexts. A nested matroid
is obtained from the empty matroid by iterating the operations of adding
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Figure 2.8: Contracting e: We erase the step corresponding to e, then slide
the remaining presentation parts vertically and erase any bits that stick out

co-loops and taking free extensions. Bonin and de Mier [5] defined them
in terms of lattice-path matroids as a matroid of the form M[P, Q], where
P = EmNr and named them generalised Catalan matroids. They later
proved that nested matroids are well-quasi-ordered (Theorem 5.4, [4]).

2.4 Bicircular matroids

Bicircular matroids are a natural class of matroids that arise from graphs.
Even though cycle matroids were studied from the conception of matroid
theory, bicircular matroids were not introduced until four decades later
by Simões Pereira [31]. Bicircular matroids can be approached in two
different ways: as a matroid defined on the edge set of a graph and as
a subclass of transversal matroids. We use the former approach first.

Let G be a graph. Note that all graphs mentioned may have loops or
parallel edges. Consider two distinct vertices u and v. A theta subgraph
is the union of three internally disjoint paths that start and end at u and
v. A loose handcuff is formed when two disjoint cycles are joined by a
minimal path and a tight handcuff is formed when two cycles share exactly
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one vertex (see Figure 2.9). Then the matroid B(G) where the set of circuits
is the collection of all theta subgraphs, loose handcuffs and tight handcuffs
is a matroid defined on the edge set of G [31]. Equivalently, the set of
independent sets is the collection of sets X such that every component of
G[X] contains at most one cycle [22].

Figure 2.9: The different circuits in a bicircular matroid

Alternatively, we can also view B(G) as a transversal matroid. The
following theorem [22] makes it clear:

Theorem 2.4.1. Let G be a graph and for each v ∈ V(G), let Av be the set
of edges incident with v. Then B(G) is isomorphic to the transversal matroid
M(AG), where AG = (Av : v ∈ V(G)).

Correspondingly, in the simplex representation, every element will either
be on a vertex or on a line.

Figure 2.10: A graph on the left and the bipartite presentation of the
corresponding bicircular matroid

Deleting an element e in B(G) is the same as deleting the corresponding
edge in G and finding the new bicircular matroid. In other words,
B(G)\e ∼= B(G\e). The same does not hold true for contraction.
Contracting a non-loop edge in G is the same as contraction in graphs.
But if e is a loop, then we have to take a different path. Prior to that, we
acknowledge that bicircular matroids do not form a minor-closed class.
But the following theorem [22] shows that it does behave well to an extent:
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Theorem 2.4.2. Any loopless minor of a bicircular matroid is bicircular.

Loopless minors are obtained when we delete an element or when we
contract a non-parallel element in B(G). Now, we demonstrate how to
contract a loop. Let v be the vertex incident with the loop and e1, . . . , ek

be the edges incident with v and v1, . . . , vk respectively. Since we are
contracting a non-parallel edge, none of e1, . . . , ek is a loop in G. Then,
to contract e, we delete e and v while replacing every edge ei with a loop
at vi.

2.5 Algorithms and Complexity

A problem is in NP if whenever there is a positive answer, then there is
a polynomial-time verifiable certificate that shows the answer is positive.
Let σ be a finite alphabet. Let σ∗ be the set of finite words. A language is
a subset of σ∗. Let L be a language. We say L is in P if there is a Turing
machine, running in time that is polynomially bounded by |w| (|w| is the
the length of the word), which will take any word in σ∗ as input, and
accept it if and only if it is in L. Say that R is a relation from σ∗ to σ∗ such
that whenever (w, w′) is in R, w is in L. Also, whenever w is in L, there
exists w′ such that (w, w′) is in R and there is a polynomial-time Turing
machine which will take any pair (w, w′) as input, and decide if it is in R.
Then we say L is in NP. We think of w′ as being a certificate that w is in L.

For example consider the problem HAMILTONIAN CYCLE described as
follows:

INPUT: A graph G

QUESTION: Is G Hamiltonian?

To prove that the problem is HAMILTONIAN CYCLE in NP, one has to
show that there exists a Turing machine T that works in polynomial-time
such that given a graph G and a y, T accepts if and only if y ”witnesses”
that G has a Hamiltonian cycle. The machine T(G, y) does the following:
it assumes that y is a sequence of nodes in G. For each vi, vi+1 in this
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sequence, T checks that there is an edge from vi to vi+1 in G. If this is the
case for all i and if the last vertex is equal to the first one, and if the vertices
of G are in the list, T(G, y) accepts, and otherwise it rejects.

In the discussions following, we prove that the question of deciding
when a transversal matroid is fundamental is in NP and conjecture that
is NP-complete.



Part I

Definability and Recognisability
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In this part, we start by describing monadic second-order logic and
developing atomic formulas, abbreviations and rewriting definitions that
are relevant to the chapters that follow.
In Chapter 4, we further develop monadic second-order logic to equip
it with machinery required to axiomatise lattice-path and fundamental
matroids. We then successfully achieve the same in the said chapter. We
end with a conjecture on the definability of transversal matroids in MS+

0 .
Finally in Chapter 5, we comment on the existing literature that
disproves recognisability for the classes of transversal, fundamental and
lattice-path matroids and provide an alternate proof that there exists no
polynomial-time algorithm to test whether a given matroid is bicircular.
The concept of an independence oracle is explored along with its
significance in proving these results.
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Chapter 3

Monadic second-order Logic

Whitney’s axioms for matroids are written in a logical language that
quantifies over subsets of the ground set. For example, we say for every
subset I and I′, if I′ ⊆ I and I is an independent set, then I′ is independent.
In this section we make such a language formal and consider its expressive
power. The language we describe here is called monadic second order logic
and is almost the same as the language used in [19] and [26].

A property is said to be definable in a language if there is a sentence that
can define the said property. Representable matroids are not definable
in monadic second order logic [25] but families of matroids with finitely
many excluded minors can be defined. That said, even though the class
of lattice path matroids has infinitely many excluded minors, we prove in
Chapter 4 that they can be defined in MS0 with the rank function (which
we denote by MS+

0 henceforth). We further conjecture that it is definable
in MS0. Later, in Chapter 4, we prove that fundamental matroids are also
definable in MS+

0 .

MS+
0 for matroids is a formal language constructed from the following

symbols:

1. Variables X1, X2, X3, . . .

2. Unary predicates Ind and Sing

3. Binary predicates ⊆ and ≤

25
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4. Connectives ¬ and ∧

5. Quantifier ∃

6. Function symbols r(X), + and | · |

We will think of Ind(X) as being true when X is independent and Sing(X)

as being true when X is a singleton set.

Now we construct the language MS+
0 recursively.

Terms: Let T be the set of terms. We define the elements of this set, or in
other words, the terms in T , and the corresponding set of variables. If T is
a term, then Var(T) stands for the set of variables in that term.

1. For every variable X, r(X) and |X| are terms and

Var(r(X)) = Var(|X|) = {X}.

2. For every term T, we have that T + r(X) and T + |X| are also terms
and

Var(T + r(X)) = Var(T + |X|) = Var(T) ∪ {X}.

Formulas: Now we recursively define formulas in MS+
0 , and

simultaneously define their sets of variables. If φ is a formula, then Var(φ)
is the set of variables of the formula and Fr(φ) is the set of free variables
as is going to be defined recursively below. The following four statements
define expressions known as atomic formulas.

1. If X is a variable, then Sing(X) is an atomic formula and

Var(Sing(X)) = Fr(Sing(X)) = {X}.

2. If X is a variable, then Ind(X) is an atomic formula and

Var(Ind(X)) = Fr(Ind(X)) = {X}.
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3. If X and Y are variables, then X ⊆ Y is an atomic formula and

Var(X ⊆ Y) = Fr(X ⊆ Y) = {X, Y}.

4. If T1 and T2 are terms, then T1 ≤ T2 is an atomic formula and

Var(T1 ≤ T2) = Fr(T1 ≤ T2) = Var(T1) ∪Var(T2).

We now define the non-atomic formulas. Let φ1 and φ2 be formulas.

1. ¬(φ1) is a formula where Var(¬φ1) = Var(φ1) and Fr(¬φ1) = Fr(φ1).

2. If

Fr(φ1) ∩ (Var(φ2)− Fr(φ2)) = Fr(φ2) ∩ (Var(φ1)− Fr(φ1)) = ∅,

then φ1 ∧ φ2 is a formula with

Var(φ1∩φ2) = Var(φ1)∪Var(φ2) and Fr(φ1∩φ2) = Fr(φ1)∪ Fr(φ2).

3. If X ∈ Fr(φ1), then ∃φ1 is a formula where Var(∃φ1) = Var(φ1) and
Fr(∃φ1) = Fr(φ1)− {X}.

A sentence is a formula with no free variables. We often omit brackets
where doing so will not create confusions.

Definition 3.1.1. MS0 is the language constructed as above without any atomic
formula of the form T1 ≤ T2.

Thus MS0 is the same language as the language used in [26].

Interpretations: A structure is a triple (E, I , σ), where E is a finite set, I is
a subset of the power set of E and σ is a function such that σ : 2E → R.

Let φ be a formula and M = (E, I , σ) be a structure. An interpretation of φ

in M is a function θ : Fr(φ)→ 2E. When T is a term, we recursively define
θ(T) as follows:

1. If T is r(X), then θ(T) = σ(θ(X)).
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2. If T is |X|, then θ(T) = |θ(X)|.

3. If T is T
′
+ r(X), then θ(T) = θ(T

′
) + σ(θ(X)).

4. If T is T
′
+ |X|, then θ(T) = θ(T

′
) + |θ(X)|.

We define what it means for M to satisfy φ (under θ). If φ is an atomic
formula, then the following holds:

1. If φ is Sing(X), then M satisfies φ if |θ(X)| = 1.

2. If φ is Ind(X), then M satisfies φ if θ(X) ∈ I .

3. If φ is X ⊆ Y, then M satisfies φ if θ(X) ⊆ θ(Y).

4. If φ is T1 ≤ T2, then M satisfies φ if θ(T1) ≤ θ(T2).

Now we assume that φ is non-atomic. We define satisfiability as follows:

1. If φ = ¬ψ, then M satisfies φ under θ if it does not satisfy ψ under θ

2. If φ = ψ1 ∧ ψ2, then M satisfies φ under θ if it satisfies ψ1 under the
restriction θ|Fr(ψ1)

and it satisfies ψ2 under θ|Fr(ψ2).

3. If φ = ∃Xψ, then M satisfies φ under θ if there is some Y ⊆ E such
that M satisfies ψ under the function θ∪{(X, Y)}, where we consider
any function to be a set of ordered pairs.

Abbreviations: For brevity, we make frequent use of the following
abbreviations:

1. We use φ1 ∨ φ2 to denote ¬(¬φ1 ∧ ¬φ2)

2. We use φ1 → φ2 to denote ¬φ1 ∨ φ2

3. We use φ1 ⇐⇒ φ2 to denote (φ1 → φ2) ∧ (φ2 → φ1)

4. We use ∀φ1 to denote ¬∃X(¬φ1)

5. We use X * Y to denote ¬(X ⊆ Y)

6. We use X = Y to denote (X ⊆ Y) ∧ (Y ⊆ X)
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7. We use X 6= Y to denote ¬((X ⊆ Y) ∧ (Y ⊆ X))

8. We use T1 = T2 to denote T1 ≤ T2 ∧ T2 ≤ T1

9. We use T1 < T2 to denote T1 ≤ T2 ∧ ¬(T1 = T2)

Rewriting definitions in MS+
0 :

We reuse certain formulas enough times that it is useful to have shortcuts
to refer to them.

• Uni(X, Y, Z) = ∀WSing(W) → (W ⊆ Z ⇐⇒ (W ⊆ X ∨W ⊆ Y))
is satisfied by an interpretation that takes Z to the union of X and Y.

• Int(X, Y, Z) = ∀WSing(W) → (W ⊆ Z ⇐⇒ (W ⊆ X ∧W ⊆ Y))
is satisfied by an interpretation that takes Z to the intersection of X
and Y.

• GroundSet(X) = ∀Y(Sing(Y) → Y ⊆ X) is satisfied when X is the
entire set E.

• Bas(B) = Ind(B) ∧ ∀B
′
(B ⊆ B

′ → (B = B
′ ∨ ¬Ind(B

′
))) is satisfied

if B is interpreted as a maximal subset of E with respect to being in I.

• Bas(B, X) = B ⊆ X ∧ Ind(B) ∧ ∀B
′
((B ⊆ B

′ ∧ B
′ ⊆ X) → (B =

B
′ ∨ ¬Ind(B

′
))) is satisfied if B is interpreted as a maximal subset of

X with respect to being in I.

We define M = (E, I , σ) to be legitimate if it satisfies the sentence

∀X∀B(Bas(B, X)→ |B| = σ(X)).

Consider the axioms below:

(i) ∃XInd(X)

(ii) ∀X1X2((Ind(X1) ∧ X2 ⊆ X1)→ Ind(X2))

(iii) ∀X1X2((Ind(X1) ∧ Ind(X2) ∧ |X1| < |X2|) → (∃X(Sing(X) ∧ X *
X1 ∧ X ⊆ X2 ∧ ∀X

′
(Uni(X1, X, X

′
)→ Ind(X

′
))))))
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If M = (E, I , σ) is a legitimate structure satisfying the above axioms, then
(E, I) is a matroid and σ is the rank function of this matroid. The following
result was proved recently:

Theorem 3.1.2. [19] Any minor-closed class with finitely many excluded minors
can be characterised by a sentence in MS0.

Since Rota’s conjecture is now being proved to be true, combining it with
the above result, we can now define finite-field matroids in this language.
By way of contrast, there is no sentence that can define the class of
matroids that are representable over at least one field [25]. Similarly, for an
infinite field, there is no sentence that defines the matroids representable
over that field [25].



Chapter 4

Definability in classes of
transversal matroids

In this chapter, we use MS+
0 to define lattice path matroids and

fundamental matroids. Recent work on bicircular matroids has proved
that they are definable in MS0 [Private communication with Funk,
Mayhew and Newman].

4.2 Defining lattice-path matroids

We continue rewriting definitions that are used in the context of matroids,
especially ones that will help with defining lattice path matroids in this
language:

1. Cir(C) = ¬Ind(C) ∧ ∀C
′
(C
′ ⊆ C → (C = C

′ ∨ Ind(C
′
))) is satisfied

when C is a circuit.

2. Flat(F) = ∀B(Bas(B, F)→ (∀WSing(W) ∧W * F →
(∀XUni(B, W, X)→ Ind(X))))

is satisfied if F is a flat. Note that F is a flat if and only if for every
basis B of F and for every element e not in F, B ∪ e is in I .

31



32CHAPTER 4. DEFINABILITY IN CLASSES OF TRANSVERSAL MATROIDS

3. Part(Y, Z, X) = ∀W((Sing(W) ∧W ⊆ X)→ (W ⊆ Y ∨W ⊆ Z))∧
((Sing(W) ∧W ⊆ Y)→ (W ⊆ X ∧W * Z))∧
((Sing(W) ∧W ⊆ Z)→ (W ⊆ X ∧W * Y)))∧
∃U(Sing(U) ∧U ⊆ Y) ∧ ∃V(Sing(V) ∧V ⊆ Z)

is satisfied by an interpretation that takes Y and Z to sets that
partition X. Note that Y, Z partition X if and only for every element
x in X is exactly in one of Y or Z.

4. Conn(X) = ∀YZ(Part(Y, Z, X)→ ∃C(Circuit(C) ∧ ∃C1C2(Sing(C1)∧
Sing(C2) ∧ (C1 ⊆ C ∧ C1 ⊆ Y) ∧ (C2 ⊆ C ∧ C2 ⊆ Z)))

is satisfied when X is connected. We use the fact that X is connected
if and only if for every bipartition Y, Z of X, there is a circuit that has
non-empty intersection with both Y and Z. Thus the restriction to X
is a connected matroid.

5. SpanCirc(C) = Circ(C) ∧ ∃B(B ⊆ C ∧ Bas(B)) is satisfied by an
interpretation that takes C to a spanning circuit.

6. Span(Z, X) = Z ⊆ X ∧ ∃B(B ⊆ Z ∧ Bas(B, X)) is satisfied by an
interpretation that takes Z to a spanning set of X.

7. Fund(F) = Conn(F) ∧ Flat(F) ∧ (∃X∃YSing(X) ∧ Sing(Y)∧
X 6= Y ∧ X ⊆ F ∧Y ⊆ F) ∧ (¬∃BBas(B) ∧ B ⊆ F)∧
∃C(SpanCir(C) ∧ ∀Z(Int(F, C, Z)→ Bas(Z, F)))

is satisfied when F is interpreted as follows: F is a connected flat that
has at least two elements such that it does not contain a basis and
there is a spanning circuit C such that F ∩ C is a basis of F.

8. ConnComp(X) = Conn(X) ∧ (∀Y(X ⊆ Y → X = Y ∨ ¬Conn(Y)))
is satisfied when X is a connected component. Note that this holds
true if and only if X is connected and every proper superset is not
connected.

A flat satisfying the condition stated in 7 above is defined to be a
fundamental flat.

If N is a matroid, then there is a sentence in MS0 which is satisfied exactly
by the matroids with N as a minor [19]. It was noted at the end of Chapter



4.2. DEFINING LATTICE-PATH MATROIDS 33

3 that if F is an infinite field, then there is no sentence in MS0 that can
characterise the class of F-representable matroids.

On the other hand, nested matroids can be characterised even though
the class has infinitely many excluded minors. In order to prove such a
characterisation exists, we need the following result from [4]:

Theorem 4.2.1. A matroid is nested if and only if the lattice of cyclic flats form a
chain.

We make use of the following formula to rewrite the above statement in
MS+

0 :

CycFlat(Z) = Flat(Z) ∧ ∀W((Sing(W) ∧W ⊆ F) → ∃C(Circ(C) ∧W ⊆
C ⊆ Z)).

Thus rewriting Theorem 4.2.1, we obtain the following:

∀ZZ
′
(CycFlat(Z) ∧ CycFlat(Z

′
)→ (Z ⊆ Z

′ ∨ Z
′ ⊆ Z))

We are now in shape to characterise the class of lattice path matroids in
MS+

0 . We refer to [5] in order to achieve this.

Recall that we denote the co-rank of a matroid with m. We use η to denote
the nullity |X| − r(X) of a flat. Note that the initial segment [h] of [m +

r] is a proper nontrivial connected flat, and hence a fundamental flat, if
and only if the upper path Q has an EN corner at h [5] in a lattice-path
presentation [P, Q]. Similarly, the final segment [k, m + r] of [m + r] is a
fundamental flat of M[P, Q] if and only if P has a NE corner at k− 1. The
flats that are initial segments form a chain, say F1 ⊆ F2 ⊆ · · · ⊆ Fh, and
the final segments form another chain, say G1 ⊆ G2 ⊆ · · · ⊆ Gk.

Theorem 4.2.2. [5] A connected matroid M is a lattice path matroid if and only
if the fundamental flats form at most two disjoint chains under inclusion, say
F1 ⊆ F2 ⊆ · · · ⊆ Fh and G1 ⊆ G2 ⊆ · · · ⊆ Gk, and the following properties
hold:

(i) If Fi ∩ Gj 6= φ, then Fi ∪ Gj = E(M).

(ii) The proper nontrivial connected flats of M are precisely the following:

(a) F1, F2, . . . , Fh, G1, G2, . . . , Gk, and
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(b) intersections Fi ∩ Gj for which the inequality m < η(Fi) + η(Gj)

holds.

(iii) The rank of the flat Fi ∩ Gj of item (ii:b) is r(Fi) + r(Gj)− r(M)

It is only necessary to characterise connected lattice path matroids as we
can characterize when X is a connected component and the class of lattice
path matroids is closed under direct sums.

We are now in shape to characterise lattice path matroids in MS+
0 .

Theorem 4.2.3. Lattice-path matroids are axiomatisable in MS+
0 .

Proof. Rewriting the Theorem 4.2.2 in MS+
0 , we obtain the following:

(Please note that the first two conditions in the following characterisation
are in fact one sentence as they are both in the scope of ∃WtWb. The
sentence has been broken apart for better understanding of each condition
separately.)

1. ∃WtWb(Sing(Wt) ∧ Sing(Wb) ∧ (Wt 6= Wb) ∧ ∀FFund(F) → ((Wt ⊆
F ∧Wb * F) ∨ (Wb ⊆ F ∧Wt * F)) ∧ ∀FF

′
(Fund(F) ∧ Fund(F

′
)) →

((Wt ⊆ F ∧Wt ⊆ F
′
) → (F ⊆ F

′ ∨ F
′ ⊆ F)) ∧ ((Wb ⊆ F ∧Wb ⊆

F
′
)→ (F ⊆ F

′ ∨ F
′ ⊆ F))

Here we use the top and bottom elements of the lattice path matroid
to differentiate between the two chains of fundamental flats. As the
matroid itself is not a fundamental flat, every fundamental flat in one
chain contains the top element but not the bottom element and every
fundamental flat in the other chain contains the bottom element but
not the top one.

2. ∀FF
′
Fund(F)Fund(F

′
)(∃X(Sing(X) ∧ X ⊆ F ∧ X ⊆ F

′
) ∧Wt ⊆

F ∧Wt * F
′ ∧Wb ⊆ F

′ ∧Wb * F)→ ∀ZSing(Z)(Z ⊆ F ∨ Z ⊆ F
′
))

Here we make use of two elements to ensure that we have one
fundamental flat from each chain and use a third element to show
that they have non empty intersection. We then illustrate that the
union is the ground set.
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3. ∀F((Conn(F) ∧ Flat(F)) → (Fund(F) ∨ ∃F1F2(Fund(F1) ∧
Fund(F2) ∧ Int(F1, F2, F) ∧ (∀EGroundSet(E) → |E| + r(F1) +

r(F2) < |F1|+ |F2|) ∧ (∀B(Bas(B) ∧ r(F) + |B| = r(F1) + r(F2))))))

Here we state that every connected flat is either a fundamental flat
or a flat that obeys a certain rank inequality condition. We also state
the rank of such flats.

We conclude this section stating the conjecture mentioned in the
introduction:

Conjecture 4.2.4. Lattice path matroids are axiomatisable in MS0.

The current literature on lattice path matroids may not be sufficient to
prove this conjecture right. But we have faith in the rich structural
properties exhibited by this subclass of transversal matroids.

4.3 Defining fundamental matroids

We continue to work towards defining fundamental matroids. By Lemma
2.2.4, we know that B is a fundamental basis of matroid M if and only
if for every e not in B, e is free in its fundamental circuit with respect to
B. In other words, M is fundamental if and only if there exists a basis B
such that for every e not in B, every circuit C, and every cyclic flat Z, if C
contains e and is contained in B ∪ e, and Z contains e, then Z contains C.

We first define the term required to denote a cyclic flat and then use MS0

to rewrite the above definition of a fundamental matroid.

CycFlat(Z) = Flat(Z) ∧ (∀XSing(X) → (X ⊆ Z → ∃C(Circ(C) ∧ X ⊆
C ∧ C ⊆ Z) is satisfied by an interpretation that takes Z to a cyclic flat.

Now, we are ready to define a fundamental matroid in MS0.

Theorem 4.3.1. Fundamental matroids are axiomatisable in MS0.
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Proof. A matroid M is fundamental if and only if it satisfies the
following condition: ∃BBas(B)∀eSing(e)(e * B → (∀CCir(C) →
(∀CycFlat(Z)((e ∈ C ∧ ∀Uni(B, e, B′)C ⊆ B′ ∧ e ∈ Z)→ (Z ⊆ C)))))

The famous Mason-Ingleton theorem (stated below, as cited in [3]) is a
rank inequality characteristaion for transversal matroids.

Theorem 4.3.2. A matroid M is transversal if and only if for all nonempty F ⊆
Z(M),

r(∩F ) ≤ ∑
F ′⊆F

(−1)|F
′ |+1r(∪F ′)

But this cannot be expressed in monadic second order logic even with the
rank function as it would involve considering all the different families of
flats in any given matroid. This leads us to the following conjecture:

Conjecture 4.3.3. Transversal matroids are not definable in MS+
0 .



Chapter 5

Oracle algorithms

An oracle is a subroutine that an algorithm can access in any single
step to solve decision problems. These decision problems can be of any
complexity. The most common oracle that matroid algorithms use is
an independence oracle. In an independence oracle, we imagine that we
have a subroutine INDEPENDENCE[X], which we can use to query the
independence of the set X. This makes life easier as we do not have to be
concerned with how we input our matroid. Some well-studied classes of
examples have efficient ways in which we can achieve this, but this cannot
be said of a general matroid. Thus making use of oracles avoids inputs that
consist of long lists of bases or circuits, for example.

In this section, we ask whether there is a program which can solve matroid
recognisability problems in polynomial time. Imagine we have a matroid
property, and we can find pairs of matroids (M1, N1), (M2, N2), . . . such
that each Mi has the property we investigate, and each Ni does not and
furthermore deciding whether the matroid described by the oracle is Mi

or Ni takes more than a polynomial number of calls to the oracle. Then,
there cannot be a polynomial-time algorithm for testing said property.
This is the approach employed by Jensen and Korte [20]. By the results
in that paper, there is no polynomial-time oracle algorithm for testing
whether a matroid is transversal or fundamental transversal. Bonin et
al. [5] claim that the same result applies to the class of lattice path
matroids. Chen and Whittle [8] prove that this is true for frame matroids.
Since the proof employs bicircular matroids, the proof can also imply
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that there is no polynomial time algorithm for testing the property of
being a bicircular matroid. We arrive at the same conclusion via the
aforementioned technique of Jensen and Korte.

Theorem 5.1.1. There exists no polynomial-time algorithm to test whether a
given matroid is bicircular.

Proof. We claim that there are two classes of matroids, M and N , where
M consists solely of bicircular matroids and N does not, such that no
polynomial time algorithm can differentiate between both. Let M be
the class of all bicircular matroids B(Gr), where Gr is a graph that is a
cycle of size r with every edge replaced by a parallel pair and a loop at
every vertex. Now, we consider N as the class of all matroids Nr such
that every B(Gr) is a relaxation of Nr, that is a basis of B(Gr) is now a
circuit hyperplane of Nr. Clearly, there is no polynomial algorithm to
differentiate between B(Gr) and Nr as any such algorithm will have to
go through all the bases/circuits of matroids in both classes. We observe
that an oracle also does not simplify the situation at hand and proving that
M contains bicircular matroids, we can surely conclude that there exists
no polynomial-time oracle algorithm to test whether a given matroid is
bicircular.

We observe that the geometric presentation of B(Gr) is a polygon with r
lines where every line has four elements and the loop elements are placed
at the vertices. (See Figure 5.1 for an example.)

Figure 5.1: The graph G5 and geometric representation of B(G5)

In Nr, one of the bases of B(Gr) is now a circuit and this involves adding
an extra circuit in the geometric representation of B(Gr). (See Figure 5.2
for an example.)
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Figure 5.2: N5-this is a 4-dimensional picture where the inner polygon
forms a circuit-hyperplane of the matroid

Now, in the bicircular representation of Nr, we have to add a dependent
Hamiltonian cycle to Gr, which is impossible in a graph presentation of a
bicircular matroid. Hence, Nr is not bicircular.
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Part II

Well-quasi-ordering
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This part is probably the most intense of all three parts with some beautiful
results. Chapter 6 examines why we care about the well-quasi-ordering
property and illustrates how it is a focal point of some of the best results
in the past decades. We end this chapter by proving that bicircular
matroids are well-quasi-ordered basically due to the fact that graphs are
well-quasi-ordered.
In Chapter 6, we prove that lattice-path matroids are not
well-quasi-ordered. In Chapters 7 and 8 however, we find subclasses
of lattice-path matroids that are well-quasi-ordered. In Chapter 7, we
introduce square-width - a notion similar to branch-width - and prove
that any class of lattice-path matroids with bounded square-width is
well-quasi-ordered.
In Chapter 8, we investigate the relevance of a subclass of notch matroids
- square notch matroids - and prove that they are essentially the only
antichain in the class of lattice-path matroids. Hence, avoiding infinitely
many of these in a collection of lattice-path matroids would guarantee a
well-quasi-ordering.
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Chapter 6

Well-quasi-ordering

Well-quasi-ordering is at the heart of major projects undertaken in discrete
mathematics in recent years. A quasi-ordering is a relation, say ≤, that
is reflexive and transitive. A well-quasi-ordering is a quasi-ordering with
the property that, if a0, a1, . . . is an infinite sequence in the set A that we
consider, then there exists i < j such that ai ≤ aj.

A sequence (possibly infinite) a1, a2, . . . is called an anti-chain when there
does not exist i and j such that ai ≤ aj. Also, a sequence a1, a2, . . . is
infinitely strictly decreasing if ai > ai+1 for i ≥ 1. Equivalently, a quasi-order
is a well-quasi-order if and only if there exists no infinite anti-chain or
infinite decreasing sequence (see, for example, [9], Prop 12.1.1).

The expansive Robertson-Seymour graph-minors project was a major
accomplishment in discrete mathematics. It was a gigantic feat spanning
over 500 pages that proved that graphs are well-quasi-ordered under the
minor relation.

Recently, Geelen, Gerards and Whittle announced a proof (Theorem 6,
[14]) that the class of F-representable matroids is well-quasi-ordered under
the minor relation, where F is any finite field. This is connected to their
proof of Rota’s conjecture. One of the crucial steps that edged them
closer to the proof of the former conjecture was their 2002 proof [15]
that a class of F-representable matroids with bounded branch-width is
well-quasi-ordered. We will accomplish the same goal for the class of
lattice path matroids.
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Observation 6.1.0.1. Transversal matroids, on the other hand, do not behave so
well under those same restrictions.

To observe this, consider the well-known polygon matroid anti-chain
(Example 14.1.2, [28]) that starts with the matroids represented in Fig 6.1.

Figure 6.1: The first four matroids in the polygon matroid anti-chain

This is a class of rank-3 matroids, and hence bounded branch-width (at
most 3). Since branch-width of the dual of a matroid is same as that of
the original matroid, the dual class of this matroid class also has bounded
branch-width. Since strict gammoids are exactly the duals of transversal
matroids (Corollary 2.4.5, [28]), it is enough to show that this infinite class
indeed consists of strict gammoids.

Let G be a directed graph with X and Y being subsets of the vertex set V
of G. We say that X is linked to Y if |X| = |Y|, and there are |X| disjoint
directed paths whose initial vertex is in X and final vertex is in Y. For
B0 ⊆ V, we say that X is linked into B0 if X is linked to a subset of B0.
When B0 is fixed, L(G, B0) denotes all subsets of V that are linked to B0.
Then L(G, B0) is the set of independent sets of a strict gammoid on V.

Hence, if we find directed graphs that correspond to the matroid class in
Fig 6.1, then we are done. For this, we consider the class of directed graphs
as seen in Figure 6.2. In each directed graph, let B0 be the set of hollow
vertices marked. Then, this is exactly the class of matroids that were
represented in Fig 6.1 and we have found an infinite class of transversal
matroids of bounded branch-width that form an anti-chain.

As mentioned earlier, lattice path matroids are not well-quasi-ordered.
There is a subclass of lattice path matroids named ‘notch matroids’
by Bonin and de Mier [5]. Their paper includes an excluded minor
characterisation for notch matroids (Theorem 8.8, [5]). Among the
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Figure 6.2: Directed graphs corresponding to the polygon matroid
anti-chain

excluded minors are three infinite families of lattice path matroids, which
are listed below:

• for n ≥ 4, the rank-n matroid Fn := Tn(Un−2,n−1 ⊕Un−2,n−1),

• for n ≥ 2, the rank-n matroid Gn := Tn(Un−1,n+1 ⊕Un−1,n+1), and

• for n ≥ 3, the rank-n matroid Hn := Tn(Un−2,n−1 ⊕Un−1,n+1),

where Tn denotes the truncation to rank n (See Fig 6.3). Thus we conclude
that these infinite families each form an anti-chain in the class of lattice
path matroids and hence the class is not well-quasi-ordered.

Figure 6.3: (a) F6 (b) G6 (c) H6

In Chapters 7 and 8, we prove that imposing certain conditions on the class
of lattice path matroids ensures the class is well-quasi-ordered. We would
like to note here that the class of bicircular matroids is well-quasi-ordered,
primarily due to the fact that they arise from graphs.

Theorem 6.1.1. Bicircular matroids are well-quasi-ordered.

Proof. Let, if possible, there exist an antichain in the class of bicircular
matroids, say B(G1), B(G2), . . .. Then, consider the corresponding class
of graphs G1, G2, . . .. Since this is an infinite collection of finite graphs,
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there exists Gi and Gj, for some i 6= j, such that Gi is a minor of Gj. This
minor is obtained by the usual graph deletion and contraction. Since,
B(G\e) = B(G)\e for any element e and B(G/e) = B(G)/e for any
non-loop element e, we delete any loop elements in Gj that are not in Gi,
following this with deletion and contraction of all non-loop elements in Gj

that are not in Gi. Now, B(Gi) is a minor of B(Gj) under the minor relation
in bicircular matroids, a contradiction.



Chapter 7

Are lattice path matroids
well-quasi-ordered?

7.1.1 Square-width

Let [P, Q] be a pair of lattice paths that correspond to the lattice path
matroid M[P, Q]. We say that [P, Q] is a path presentation that corresponds
to the matroid M[P, Q]. Recall that the size of a presentation is nothing but
the size of the ground set of the corresponding matroid. We use r and
m, as mentioned previously to denote the rank and co-rank of M[P, Q]

respectively. We use |[P, Q]| to denote the number of elements in the
presentation [P, Q].

We say that [P, Q] has a k× k square at i ∈ [m + r] when prei(P) has exactly
k more East steps than prei(Q). Note that in this case prei(Q) has exactly
k more North steps than prei(P). This corresponds to a k× k square in the
region of the integer lattice bounded by P and Q. A k × k square at i is
proper if i ∈ [k + 1, m + r − k− 1]. We say that [P, Q] has a k× k square at
the top if the last k steps of P are North and the last k steps of Q are East.
Similarly, [P, Q] has a k × k square at the bottom if the first k steps of P are
East and those of Q are North.

In Figure 7.1, P = EEENEENNNENEN and Q = NNENNEN ENEEEE,
with a 3× 3 square at 7 as P7 = EEENEEN and Q7 = NNENNEN.
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Figure 7.1: The square at 2 is a 2× 2 square whereas the square at 7 is a
proper 3× 3 square

A lattice path presentation is said to have square-width k when the largest
square it contains is a k× k square. Square-width is closely associated with
branch-width of a matroid as we aim to prove using the next three results.
This concept has a key role in conjectures like Rota’s Conjecture. We cite
the definition of branchwidth as appears in [28].

A tree is subcubic if every vertex that is not a leaf has degree three. A
branch-decomposition of a matroid M consists of a cubic tree T with at
least |E(M)| leaves together with a labelling of |E(M)| leaves by different
elements of E(M). For each edge e of such a branch-decomposition T of M,
the graph T\e has exactly two components. Thus the set of labelled leaves
of T, and hence E(M), is partitioned into two subsets X and E(M) − X,
say. We say X and E(M)− X are displayed by the edge e. The width w(e)
of the edge e is defined to be w(e) = r(X) + r(E − X) − r(M) + 1. The
width w(T) of the tree T is the maximum of the widths of the edges of T.
The branch-width of M, bw(M) is the minimum of the width of T over all
such labelled cubic trees T.

Lemma 7.1.1. Let [P, Q] be a path presentation with a k × k square. Then
M[P, Q] has a Uk,2k-minor.

Proof. Let M[P, Q] be a minimal counter-example to our hypothesis, with
P and Q being lattice paths from (0, 0) to (m, r). Let the corners of the
k × k square be at (i, j), (i + k, j), (i, j + k) and (i + k, j + k). If i > 0,
then the first element is not part of the k × k square. This implies that
M[P, Q]\1 contains a k × k square, which in turn implies that M[P, Q]\1
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contains a Uk,2k-minor. But then so would M[P, Q], which contradicts our
assumption. Thus i = 0. Similarly, j = 0 as otherwise, M[P, Q]/1 would
contain a k× k square.

Now, if 2k < m + r, the path presentation of either M[P, Q]\m + r
or M[P, Q]/m + r contains a k × k square , which again leads to a
contradiction. Hence, 2k = m + r. Also, since k ≤ min{m, r}, it follows
that m = r = k. Thus P and Q bound a k× k square, and so M[P, Q] is in
fact isomorphic to Uk,2k and the proof is complete.

Corollary 7.1.2. Let M = M[P, Q] be a lattice path matroid and assume that
bw(M) ≤ k. Then the square-width of [P, Q] is less than d3k/2e.

Proof. Assume that the square width of [P, Q], say j, is at least d3k/2e.
Then by Lemma 7.1.1, M[P, Q] has a Uj,2j minor. But the branch-width of
Uj,2j is d2j/3e + 1 (Exercise 14.2.5, [28]), and hence the branch-width of
Uj,2j is at least k + 1. But this is a contradiction to our assumption that the
branch-width of M[P, Q] is at most k.

Lemma 7.1.3. Let M[P, Q] be a lattice path matroid, where the largest proper
square of [P, Q] has size k× k. Then bw(M) ≤ k + 1.

Proof. Consider the branch decomposition of M([P, Q]) represented in Fig
7.2.

Figure 7.2: A branch decomposition of M[P, Q]

The displayed sets are all of the form {1, . . . , i} or {i + 1, . . . , m + r}. Then

r([1, i]) ≤ number of North steps in prei(Q), and

r([i + 1, m + r]) ≤ number of North steps in sufi(P).
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Also r(M[P, Q]) = number of North steps in P. Then the connectivity
function λ is given by

λ([1, i]) = r([1, i]) + r([i + 1, m + r])− r(M[P, Q])

≤ number of North steps in prei(Q) + number of North steps in sufi(P)

− number of North steps in P

≤ k,

or else there is a square larger than k × k. Since bw(M[P, Q]) = min
(width) over all branch decompositions of M[P, Q], we conclude that
bw(M[P, Q]) ≤ k + 1.

Combining the above results, we obtain the following corollary:

Corollary 7.1.4. A class of lattice path matroids has bounded branch-width if
and only if the corresponding class of presentations has bounded square-width.

Definition 7.1.5. Let [P, Q] be a lattice path presentation on [m + r] with a
proper k× k square at i. Then we define two new lattice path presentations from
[P, Q] as follows:

Bi(P) = prei(P)Nk

Bi(Q) = prei(Q)Ek

and

Ti(P) = Ek sufi(P) and

Ti(Q) = Nk sufi(Q).

Note that M([Bi(P), Bi(Q)]) is a lattice path matroid on the ground set
[i + k] but we relabel M([Ti(P), Ti(Q)]) to be a lattice path matroid on the
ground set [i− k, m+ r], so as to retain the same elements as in the original
matroid. This will prove beneficial in the gluing operation that follows.

In Figure 7.3, pre7(P) = EEENEEN, pre7(Q) = NNENNEN, suf7(P) =

NNENEN and suf7(Q) = ENEEEE. Thus B7(P) = pre7(P)N3, B7(Q) =

pre7(Q)E3, T7(P) = E3 suf7(P) and T7(Q) = N3 suf7(Q).
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Figure 7.3: (a) A proper k × k square in [P, Q] at 7 (b) [T7(P), T7(Q)] (c)
[Bi(P), Bi(Q)]

An intuitive property of these new path presentations is proved below :

Lemma 7.1.6. Let [Bi(P), Bi(Q)] and [Ti(P), Ti(Q)] be as in Definition 7.1.5.
Then [Bi(P), Bi(Q)], [Ti(P), Ti(Q)] are minors of [P, Q].

Proof. We know that P = prei(P) sufi(P) and Q = prei(Q) sufi(Q), where
1 < i < m + r. Since there is a k × k square at i, prei(P) has k more
East steps than prei(Q). Hence, sufi(Q) has k more East steps than
sufi(P). Similarly, sufi(P) has k more North steps than sufi(Q). Recall
that deletion requires the removal of East steps from both paths, and
contraction requires removal of North steps from both paths.

Let J be the subset of {i + 1, . . . , m + r} such that P contains E at exactly
those steps. Let [P′, Q′] be [P, Q]\J. Then, sufi(P

′
) contains no East

steps but sufi(Q
′
) has exactly k. Now let I be the set of positions after

i where Q
′

contains N. Define [P
′′
, Q

′′
] to be [P

′
, Q

′
]/I. So sufi(Q

′′
)

contains no North steps and sufi(P
′′
) contains exactly k. Hence, [P

′′
, Q

′′
] =

[prei(P)Nk, prei(Q)Ek]. Then [P
′′
, Q

′′
] is nothing but [Bi(P), Bi(Q)].

The same deductions as above imply that [Ti(P), Ti(Q)] is a minor of
[P, Q].

Definition 7.1.7. If we have a pair of lattice path presentations [PB, QB] and
[PT, QT] such that the following conditions are satisfied:
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(i) The last k steps in PB are North steps, that is, PB = P
′
BNk

(ii) The last k steps in QB are East steps, that is, QB = Q
′
BEk

(iii) The first k steps in PT are East steps, that is, PT = EkP
′
T

(iv) The first k steps in QT are North steps, that is, QT = NkQ
′
T.

Then we define GL([PB, QB], [PT, QT]) to be [P, Q], where P = P
′
BP
′
T, and

Q = Q
′
BQ

′
T. When they are defined as above, we say that [PB, QB] has a

k × k square at the top and [PT, QT] has a k × k square at the bottom and that
GL([PB, QB], [PT, QT]) is obtained by gluing [PB, QB] and [PT, QT].

In other words, if we start with a lattice path [P, Q] and ‘pull them apart’
at a k × k square to give rise to two new lattice paths [Bi(P), Bi(Q)] and
[Ti(P), Ti(Q)], then GL([Bi(P), Bi(Q)], [Ti(P), Ti(Q)]) will lead us back to
the lattice path [P, Q] that we originally had. This fact is illustrated in the
following lemma:

Lemma 7.1.8. Let [P, Q] be a path presentation with a k× k square at i, where
P = prei(P) sufi(P) and Q = prei(Q) sufi(Q). Construct the two lattice paths
[Bi(P), Bi(Q)] and [Ti(P), Ti(Q)]. Then GL([Bi(P), Bi(Q)], [Ti(P), Ti(Q)]) =

[P, Q].

Proof. By Definition 7.1.5, paths Bi(P), Bi(Q), Ti(P) and Ti(Q) satisfy
conditions (i) - (iv) in Definition 7.1.7. Thus P

′
B = prei(P), Q

′
B = sufi(P),

P
′
T = sufi(P) and Q

′
T = sufi(Q). Thus P

′
BP
′
T = prei(P) sufi(P) = P and

Q
′
BQ

′
T = prei(Q) sufi(Q) = Q. This completes the proof.

7.1.2 The importance of square-width

A square presentation is a lattice path presentation where P = ErNr and
Q = NrEr. Observe that a square presentation does not have a proper
square.

We say an element in a matroid is protected when we do not allow that
element to be deleted or contracted to produce a minor.
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Definition 7.1.9. Let k be a positive integer. Let Uk be the class of all triples
(L, t, b), where L = [P, Q] is a lattice-path presentation of square-width at most
k on {1, . . . , m + r}and {t, b} ∈ {0, 1}.

The definition can be interpreted as t = 1 when the top (or last) k
elements are protected and b = 1 when the bottom (or first) k elements
are protected.

We say that (L, t, b) is a lattice triple. The dual of (L, t, b) is (L∗, t, b) where
L∗ is the dual of L. Then (L, t, b) is in Uk if and only if (L∗, t, b) is in Uk.

Definition 7.1.10. Let (L, t, b) and (L
′
, t
′
, b
′
) be lattice triples in Uk, where L

has rank r and co-rank m. We say that (L
′
, t
′
, b
′
) � (L, t, b), that is, (L

′
, t
′
, b
′
)

is a triple minor of (L, t, b), if there exists disjoint subsets I, J of {1, . . . , m + r}
such that L

′
is isomorphic to L/I\J and if t = 1, I ∪ J contains none of the last k

elements and if b = 1, I ∪ J contains none of the first k elements.

We now define the gluing together operation for lattice triples as follows:

Definition 7.1.11. Let [PB, QB] and [PT, QT] be defined such that
GL([PB, QB], [PT, QT]) is well-defined. If B = ([PB, QB], tB, bB) and
T = ([PT, QT], tT, bT) are lattice triples, then GL(B, T) is defined to be the
lattice triple (GL([PB, QB], [PT, QT]), tT, bB).

We are now well-equipped to prove a central lemma.

Lemma 7.1.12. Let [P, Q] be a path presentation with a proper k × k square
at i and let L be the lattice triple ([P, Q], tL, bL) in Uk. Let [Bi(P), Bi(Q)]

and [Ti(P), Ti(Q)] be as in Definition 7.1.5 and B, T be the lattice triples
([Bi(P), Bi(Q)], tB, bB) and ([Ti(P), Ti(Q)], tT, bT) respectively, where tB =

bT = 1, bB = bL and tT = tL. Let B
′
= ([PB, QB], tB′ , bB′ ) and T

′
=

([PT, QT], tT′ , bT′ ) be triple minors of B and T respectively and be in Uk with
a k × k square at the bottom and top respectively. Then GL([B

′
, T
′
]) is a triple

minor of L.

Proof. We prove this by induction on n, where n is the sum of size
differences of {B, B

′} and {T, T
′}. Note that [Bi(P), Bi(Q)] has a k × k

square at the top and [Ti(P), Ti(Q)], has a k × k square at the bottom as
tB = bT = 1 and they are both in Uk.



56CHAPTER 7. ARE LATTICE PATH MATROIDS WELL-QUASI-ORDERED?

When n = 1, either {[PB, QB], [Bi(P), Bi(Q)]} or {[PT, QT], [Ti(P), Ti(Q)]}
differ by a single element in the ground set. Let the former be true,
in which case, an element, say e, was deleted or contracted from
[Bi(P), Bi(Q)] to obtain [PB, QB]. If [PT, QT] and [Ti(P), Ti(Q)] differ by a
single element, the same reasoning can be used to see that for e > i, the
same operation can be carried out after gluing. By duality, the case when
e is contracted is similar to when e is deleted. So we can assume that e was
deleted. Now, since tB = 1, e < i and e is a step in the sub-strings prei(P)
and prei(Q). Also, when bB = 1, k < e ≤ i. We consider the different
cases where e is a North step and an East step in the sub-strings prei(P)
and prei(Q).

Case (i): e is an East step in both sub-strings

We can decompose the paths as P = P0EP1 sufi(P) and Q =

Q0EQ1 sufi(Q), where P0EP1 = prei(P), Q0EQ1 = prei(Q) and the East
steps represent the eth position. Then, it is obvious that we have to remove
the East steps from both paths. Thus,

[Bi(P), Bi(Q)] = [prei(P)Nk, prei(Q)Ek] = [P0EP1Nk, Q0EQ1Ek].

Therefore,

[Bi(P), Bi(Q)]\e = [P0P1Nk, Q0Q1Ek] = [PB, QB].

Also,
[PT, QT] = [Ti(P), Ti(Q)] = [Ek sufi(P), Nk sufi(Q)].

Hence,

GL([PB, QB], [PT, QT]) = [P0P1 sufi(P), Q0Q1 sufi(Q)].

On the other hand,

[P, Q] = [P0EP1 sufi(P), Q0EQ1 sufi(Q)] and thus

[P, Q]\e = [P0P1 sufi(P), Q0Q1 sufi(Q)] = GL([PB, QB], [PT, QT]).
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∴ GL(B
′
, T
′
) = (GL([PB, QB], [PT, QT]), tT′ , bB′ ) � ([P, Q], tL, bL)

Case (ii): e is an East step in P, but a North step in Q

The [Bi(P), Bi(Q)] in this case can be presented as :

[Bi(P), Bi(Q)] = [prei(P)Nk, prei(Q)Ek] = [P0EP1Nk, Q0NQ1Ek].

Clearly, it is enough to remove the East step from P. Now, Q =

Q0NQ1 sufi(Q). Then, Q1 will contain an East step. Else, suppose that
Q1 does not contain any East step. Then, prei(Q) = Q0N . . . N and
Bi(Q) = Q0N . . . NEk. Now, when we delete e from prei(Q), we are
essentially removing an East step from the last k East steps in Bi(Q). But
this is impossible as QB has a k × k square at the top and thus the last k
steps are East steps. Thus we will be able to find an East step in Q1 which
can be removed. Then we rewrite prei(Q) as prei(Q) = Q

′
0EQ

′
1, where E

is the first East step in Q1. Hence,

[Bi(P), Bi(Q)] = [P0EP1Nk, Q
′
0EQ

′
1Ek] and

[Bi(P), Bi(Q)]\e = [P0P1Nk, Q
′
0Q

′
1Ek].

Similar to the case above,

GL([PB, QB], [PT, QT]) = [P0P1 sufi(P)
′
, Q

′
0Q

′
1 sufi(Q)].

Also,

[P, Q]\e = [P0P1 sufi(P)
′
, Q

′
0Q

′
1 sufi(Q)] = GL([PB, QB], [PT, QT]).

Case (iii): e is a North step in P, but an East step in Q

Similar to the argument above, if prei(P) = P0NP1, then P0 will have an
East step. If P0 has no east step, then prei(P) is N . . . NP1, which means
that the first i steps are coloops and thus Q has no East step at i or before
it. This contradicts our hypothesis. Note that, if bB = 1, then this East step
is a position greater than i in Q. Thus, rewriting prei(P) as P

′
0EP

′
1, where
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E is the last East step in P0, we obtain that

[P, Q]\e = [P
′
0P
′
1 sufi(P), Q0Q1 sufi(Q)] = GL([PB, QB], [PT, QT]).

Case (iv): e is a North step in both P and Q

Suppose, P0 does not each contain an East step, where prei(P) = P0NP1

and prei(Q) = Q0NQ1. Then Q0 also does not contain an East step. But
this implies that the North step at position e is a co-loop. Since deletion
of a co-loop involves deletion of the corresponding North step from both
paths, we can remove e from both prei(P) and prei(Q). Then,

[Bi(P), Bi(Q)]\e = [P0P1Nk, Q0Q1Ek], and

GL([PB, QB], [PT, QT]) = [P0P1 sufi(P), Q0Q1 sufi(Q)] = [P, Q]\e.

If P0 does contain an East step, then so should Q1, as argued in the
preceding cases, and deletion would be removal of the last East step in
P0 and first East step in Q1. Then rewriting prei(P) as P

′
0EP

′
1 and prei(Q)

as Q
′
0EQ

′
1 (following the convention above), we obtain

[Bi(P), Bi(Q)]\e = [P
′
0P
′
1Nk, Q

′
0Q

′
1Ek] = [PB, QB] and

GL([PB, QB], [PT, QT]) = [P
′
0P
′
1 sufi(P), Q

′
0Q

′
1 sufi(Q)] = [P, Q]\e.

Thus we conclude that when e < i, GL([PB, QB], [PT, QT]) is a minor of
[P, Q].

So the result holds true when n = 1. Assume that it holds true for n = j.
We prove the result for n = j + 1.

Let B, T, B
′

and T
′

be as described in the statement of the lemma. We
then need to prove that GL(B

′
, T
′
) is a minor of GL(B, T). Since B

′
, T

′

are minors of B, T respectively, [PB, QB] = [Bi(P), Bi(Q)]\I/J, for disjoint
sets I and J. Also, [PT, QT] = [Ti(P), Ti(Q)]\I

′
/J
′
for disjoint sets I

′
and J

′
.
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Since
(|B| − |B′ |) + (|T| − |T′ |) = j + 1,

one of I, J, I
′
, J
′
is non-empty. Without loss of generality, let I be non-empty

as the cases when J, I
′

or J
′

are non-empty are identical.

Let e ∈ I. Then
(|B| − |B\e|) + (|T| − |T|) = 1

and hence by the case proved for when n = 1, GL(B\e, T) is a minor of
GL(B, T). Also,

(|B\e| − |B′ |) + (|T| − |T′ |) < j + 1.

Thus, by our induction hypothesis, GL(B
′
, T
′
) is a minor of GL(B\e, T)

which is already a minor of GL(B, T). This finishes the proof for the case
n = j + 1 and completes our induction argument.

With the aid of the above lemma, we are now ready to prove that the class
of lattice path matroids with bounded square-width is well-quasi-ordered.
We use a minimal bad sequence argument in the proof of the same. An
infinite sequence a1, a2, a3, . . . is bad if there does not exist an i and j such
that ai ≤ aj. Otherwise, the sequence is good. Also, a subsequence
(ai1 , ai2 , . . .) is bad if it is a bad sequence. In essence, a graph class or
matroid class is well-quasi-ordered if and only if it does not have a bad
sequence, as graph and matroid classes do not contain infinite decreasing
sequences. We require a lemma about bad sequences to explain the
minimal bad sequence argument.

Lemma 7.1.13. Let a1, a2, . . . , be an infinite sequence with no bad subsequences.
Then there exists i1 < i2 < i3 < . . ., such that ais ≤ ais+1 for every s.

Proof. We begin by constructing a directed graph as follows: if ais < ait

and there does not exist a k such that s, t 6= k and ais ≤ aik ≤ ait , then we
have a directed edge from vertex ais to vertex ait .

Now, G has to be a directed graph with finitely many connected
components. Else, suppose that G has infinitely many connected
components G1, G2, . . .. Then selecting a vertex from each component
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provides us with infinitely many vertices ai1 , ai2 , . . . such that there does
not exist s, t where ais ≤ ait , which contradicts our assumption that
a1, a2, . . . , does not have a bad subsequence.

Clearly, at least one among the finite components of G must have infinite
number of vertices. Hence, by König’s Lemma [21](see also [11]), this
infinite graph either contains a vertex of infinite degree or an infinite
simple path. If there exists such a vertex, then the elements corresponding
to the adjacent infinite number of vertices form a bad sequence. Thus G
cannot contain a vertex of infinite degree. Hence it contains a simple path
which completes our proof.

This minimal bad sequence argument led Nash-Williams [27] to a very
elegant proof for the following theorem:

Theorem 7.1.14. Finite trees are well-quasi-ordered with respect to the graph
minor relation.

The proof is briefly sketched here:

Proof. Suppose the class of finite trees is not well-quasi-ordered. Then
there exists a bad sequence of trees. Let T1 be the smallest tree that can
start such a sequence. Following this we choose T2 to be the smallest tree
in position 2 among all sequences that start with T1, and hence Tk will be
the smallest tree in position k among all sequences that start with T1, T2, . . ..
Then T1, T2, . . . is a bad sequence too.

Now, let T
′
i be the tree obtained from Ti by deleting any branch from the

root, and T
′′
i be the branch deleted. Since T1, T2, . . . is the minimal bad

sequence T
′
1, T

′
2, . . . does not contain a bad subsequence. Hence by Lemma

7.1.13, there exists Ti1 , Ti2 , . . . such that Tis ≤ Tis+1. Similarly T
′′
1 , T

′′
2 , . . . is

not contain a bad subsequence. Thus there exists s < t such that T
′′
is ≤ T

′′
it .

But this implies that T
′
is ≤ T

′
it and hence Tis ≤ Tit , which is a contradiction.

For an arbitrary set Σ, let Σ∗ be the set of all finite sequences of Σ.
Any quasi-order ≤ on Σ defines a quasi-order � on Σ∗ as follows:
(a1, a2, . . . , am) � (b1, b2, . . . , bn) if and only if there is an order-preserving
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injection f : {a1, . . . , am} → {b1, . . . , bn} with ai ≤ f (ai) for each i. Then
Higman’s Lemma [18] states that (Σ∗,�) is a well-quasi-order if (Σ,≤) is
a well-quasi-order.

A nested matroid is a matroid that can be obtained from the empty
matroid by iterating the operations of adding isthmuses and taking free
extensions. Thus nested matroids are also lattice path matroids M[P, Q]

with presentations that can be represented as [P, Q] = [EmNr, Q] when
M is a rank-r matroid with co-rank m. We use M([Q]) to denote a
nested matroid M([EmNr, Q]) and omit the lower bounding path. Nested
matroids form a well-quasi-ordered class [4] and we further prove the
following lemma:

Lemma 7.1.15. Let C be the set of triples ([Q], t, b) where M[Q] is a nested
matroid. Then C is well-quasi-ordered under �.

Proof. If M[Q] is nested, then we can assume that P = EmNr for
non-negative integers m and r. Let Q and Q

′
be lower bounding paths

which implies that they are strings made up of N and E steps. If Q
′

is a
subsequence of Q, then [Q

′
] is a minor of [Q].

Consider an infinite antichain in C. Since there are only 2k possible
starting and ending k-character strings, we can assume that infinitely
many sequences in the antichain start and end with the same k characters.
But binary strings are well-quasi-ordered under the subsequence relation,
by an application of Higman’s Lemma [18]. Therefore, there are two
sequences in the antichain, Q

′
and Q, where Q

′
is a subsequence of Q,

and they have the same first and last k characters. By contracting any N in
Q but not in Q

′
, and deleting any E in Q but not Q

′
, we see that [Q

′
] is a

minor of [Q], obtained without removing any of the protected elements at
the beginning or the end.

Theorem 7.1.16. Let Uk be the class as defined in 7.1.9 with the relation�. Then,
Uk is well-quasi-ordered under �.

Proof. We prove this by induction on k. When k = 0, the path presentations
in the first component arise from when P = Q. Since k = 0, we
do not protect any elements, which implies t = 0 and b = 0. Thus
the corresponding lattice path presentations can be represented by a
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combination of horizontal lines that go right or vertical lines that go
up. Then these matroids correspond to nested matroids, which are
well-quasi-ordered as mentioned above. Since t = b = 0, U0 is also
well-quasi-ordered.

Now, let k be the smallest number such that Uk is not well-quasi-ordered.
Then there exists a bad sequence in Uk. Clearly, every bad sequence
has only finitely many path presentations that belong to Uk−1 as by
the induction hypothesis, any infinite collection of Uk−1 cannot be an
antichain. Thus we can safely remove this finite subsequence from the
bad sequence without altering the property of being bad. Also, as there
are only finitely many square presentations with square-width at most
k, we only consider bad sequences that are made up entirely of triples
that contain path presentations of square width k, that are not square
presentations.

The size of a triple is the size of the corresponding presentation. We now
construct a minimal bad sequence as follows: Assume we have chosen
(L1, t1, b1), . . . , (Li−1, ti−1, bi−1) to be the initial segment of our minimal
bad sequence. Then, (Li, ti, bi) is the next triple in the sequence if it
is the smallest triple such that there exists a bad sequence that starts
with (L1, t1, b1), . . . , (Li−1, ti−1, bi−1), (Li, ti, bi). We denote this sequence
by U1, U2, U3, . . ., where Ui = (Li, ti, bi). It can be seen easily that
U1, U2, U3, . . . is a bad sequence in itself. If not, there exists i < j such
that Ui � Uj. By virtue of construction of the minimal bad sequence, Uj

is the smallest triple in the jth position among all bad sequences that start
with U1, . . . , Uj−1. Thus Ui is a minor of Uj, which contradicts the fact that
U1, U2, . . . Uj appears at the beginning of a bad sequence. Each Ui consists
of a lattice path presentation that has a proper k + 1 square because it is
not a rectangular presentation. Say Li has a proper k + 1 square at j(i).

We apply the pulling apart operation as defined in Definition 7.1.5 to the
path presentations in the triple of the sequence U1, U2, U3, . . . to obtain two
new sequences B1, B2, B3, . . ., where Bi = (Bj(i)(Li), 1, bi) and T1, T2, T3, . . .,
where Ti = (Tj(i)(Li), ti, 1). Since the sequence U1, U2, U3, . . . is the
minimal bad sequence, B1, B2, B3, . . . cannot contain a bad subsequence.
This can be seen as follows: let there exist a bad subsequence of
B1, B2, B3, . . ., say Bi1 , Bi2 , Bi3 , . . ., then U1, . . . , Ui1−1, Bi1 , Bi2 , . . . is a bad
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sequence. If it were not a bad sequence, then there would exist Uk and
Bij such that Uk ≤ Bij , for some k ≤ i1 − 1. We can easily observe from the
proof of Lemma 7.1.6 that Bi ≤ Ui, for any i. Hence, Uk ≤ Bij ≤ Uij . Now,
Bi1 is smaller than Ui1 which contradicts the fact that U1, U2, U3, . . . is the
minimal bad sequence.

Thus in B1, B2, B3, . . ., there exists no bad subsequence. Hence by Lemma
7.1.13, there exists a subsequence i1 < i2 < i3 < . . . such that Bi1 ≤
Bi2 ≤ Bi3 ≤ . . .. By the definition of bad sequences, for some s < t,
Tis ≤ Tit , or else Ti1 , Ti2 , Ti3 , . . . would be a bad sequence, which leads to a
contradiction as before. Thus Bis ≤ Bit and Tis ≤ .Tit . By Lemma 7.1.12,
GL(Bis , Tis) = Uis is a minor of GL(Bit , Tit) = Uit . This is a contradiction
to our assumption that U1, U2, U3, . . . is a bad sequence. Thus Uk+1 is
well-quasi-ordered.

Corollary 7.1.17. The class of lattice-path matroids of square-width at most k is
well-quasi-ordered.

Proof. Assume there is an infinite antichain of lattice-path matroids with
square-width at most k. Let M1, M2, M3, . . . be such an anti-chain
where [Pi, Qi] is a corresponding lattice path presentation. But then
(M1, 0, 0), (M2, 0, 0), (M3, 0, 0), . . . is an infinite anti-chain in Uk. This
contradicts Theorem 7.1.16 and thus (Mi, 0, 0) ≤ (Mj, 0, 0) for some i <

j, meaning there are disjoint subsets I, J of E(Mj) such that Mj/I\J is
isomorphic to Mi . This is impossible since Mi is not isomorphic to a minor
of Mj.

Recall that we proved earlier in the section that a class of lattice path
matroids has bounded branch-width if and only if it has bounded
square-width. By proving the above result we have now proved
Conjecture 1.1.1 for the class of lattice path matroids.
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Chapter 8

Notch matroids and
Well-Quasi-Ordering

This chapter is the result of an intriguing question posed by Jim Geelen
during the birthday conference of James Oxley held in Baton Rouge in July
2019. While presenting the results of the previous section, Jim was curious
as to whether the anti-chain presented, square notches (defined below),
is essentially the unique anti-chain in the class of lattice path matroids.
We gave this further thought and had an enlightening discussion with Jim
soon after. We answer the question in the affirmative in this section. We
are indeed grateful to Jim Geelen for asking the right question as he always
does!

Let t ≥ 3 be an integer. We define a square notch matroid to be the matroid
M(Nt) where Nt is the presentation

[E(t−1)NEN(t−1), N(t−1)ENE(t−1)]. These matroids form a subclass of
the notch matroids introduced in [5]. Figure 8.1 depicts the lattice path
presentations N3, N4 and N5.

We note that the class of square notch matroids forms an anti-chain in the
class of lattice path matroids. This is justified by the observation that once
we fix k, deletion/contraction of any element in Nk destroys the ‘notch’ at
the top/bottom that is characteristic of the presentations in this class. We
prove that square notches essentially form the only anti-chain in the class

65
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Figure 8.1: N3, N4 and N5 respectively

of lattice path matroids. We state this theorem below:

Theorem 8.1.1. Let M be a minor-closed class of lattice path matroids that
contains only finitely many square notch matroids. Then M is well-quasi-ordered.

We need a few definitions before we can prove the above statement.

Definition 8.1.2. Let [P, Q] be a path presentation. Then notch-width of [P, Q]

is said to be the largest k such that Nk is a minor of [P, Q]. If no such minor exists,
then we define the notch-width to be 0.

Definition 8.1.3. Let k be a non-negative integer. Then, we let Nk be the set
of lattice triples ([P, Q], t, b), where [P, Q] is a lattice-path presentation with
notch-width at most k, and t, b are either 0 or 1. When t = 1, the last k elements
of L are being protected and when t = 0, none of the last k elements are protected.
Similarly, when b = 1, the first k elements are protected, and when b = 0, none
of these elements are being protected.

Let ([P
′
, Q

′
], t
′
, b
′
), ([P, Q], t, b) ∈ Nk. We say that ([P

′
, Q

′
], t
′
, b
′
) �

([P, Q], t, b), that is, ([P
′
, Q

′
], t
′
, b
′
) is a triple minor of ([P, Q], t, b), if there

exists disjoint subsets I, J of {1, ..., m + r} such that [P, Q]/I\J = [P
′
, Q

′
],

and if t = 1 then I ∪ J has no element in {m+ r− k+ 1, ..., m+ r− 1, m+ r},
and if b = 1, then I ∪ J has no element in {1, ..., k}.

We now prove a lemma regarding squares in a lattice path matroid that
will prove beneficial for the proof of our main result. Note that [P, Q] has
a k× k square at i if and only if the dual of [P, Q] does.

Lemma 8.1.4. Assume that [P, Q] is not a rectangle, and that [P, Q] has a minor
with a proper k× k square. Then [P, Q] has a proper k× k square.
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Proof. Let [P, Q] be a smallest counterexample, so m + r is as small as
possible with respect to the lemma failing.

Up to duality, we can assume that [P, Q]\e has a minor with a proper k×
k square. By minimality, [P, Q]\e has a proper k × k square and let this
proper k× k square be at i.

We can recover [P, Q] from [P, Q]\e by inserting a copy of E into P before,
say position p, and inserting E into Q after, say position q, where p ≤
q + 1. Furthermore, any character in [P, Q]\e in either the top or bottom
path in position greater than or equal to p but no more than q must be
N. After these two insertions, we can recover [P, Q]\e by deleting any
position between the two new copies of E, including the positions where
they have been inserted.

If i ≤ p then [P, Q] has a proper k× k square at i. If i ≥ q, then [P, Q] has a
proper k× k square at i + 1.

Now we assume p < i < q. Because there are only copies of N between
p and i, and between i and q, [P, Q]\e has a k × k square at p − 1, and
also at q. If either of these is proper, then we are done by the previous
paragraph. So now we assume that p − 1 = k, and k = m + r − q. This
implies that P = E(k+1)N(m+r−k−1) and Q = N(m+r−k−1)E(k+1), which is a
contradiction, as [P, Q] is not a rectangle.

Theorem 8.1.5. Let Nk be as defined in 8.1.3 with the relation �. Then Nk is
well-quasi-ordered.

Proof. Assume that the theorem fails for k, where k is as small as possible.

By Lemma 7.1.15, any bad sequence in Nk can only contain finitely many
triples of the form ([P, Q], t, b) where M[P, Q] is a nested matroid. Hence,
we consider only the bad sequences in Nk where every triple in the bad
sequence contains (Nt, 0, 0) as a minor for some t ≥ 3. We do so as any
non-nested matroid contains a square notch [29].

Assume that a bad sequence inNk contains infinitely many triples that do
not have (Nk, 0, 0) as a minor in the order �. Then all such triples are in
Nk−1 and they form an anti-chain in Nk−1. But this contradicts our choice
of k. So any bad sequence of Nk can be assumed to contain only triples
that have notch width k.
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Now, we construct a minimal bad sequence as was done in the proof of
Theorem 7.1.16. Let it be L1, L2, L3, . . . where each Lj = ([Pj, Qj], tj, bj).
Because every presentation in a triple in the bad sequence has notch
width k, it has an Nk minor. Then, since Nk has a proper (k − 2) ×
(k − 2) square, by Lemma 8.1.4, every presentation has a (k − 2) ×
(k − 2) square, say at j(i). Let B1, B2, B3, . . . be a sequence where each
Bj = ([Bi(j)(P), Bi(j)(Q)], 1, bj) and T1, T2, T3, . . . be a sequence where each
Tj = ([Ti(j)(P), Ti(j)(Q)], tj, 1) and [Bi(j)(P), Bi(j)(Q)],[Ti(j)(P), Ti(j)(Q)] are
as in Definition 7.1.5. Since the sequence L1, L2, L3, . . . is a minimal bad
sequence, B1, B2, B3, . . . cannot contain a bad subsequence.

Hence by Lemma 7.1.13, there exists a subsequence i1 < i2 < i3 < . . .
such that Bi1 � Bi2 � Bi3 � . . .. By the definition of bad sequences, for
some s < t, Tis � Tit , or else Ti1 , Ti2 , Ti3 , . . . would be a bad sequence,
which leads to a contradiction as before. Thus Bis � Bit and Tis � Tit . By
Lemma 7.1.12, GL(Bis , Tis) = Lis is a minor of GL(Bit , Tit) = Lit . This is a
contradiction to our assumption that L1, L2, L3, . . . is a bad sequence. Thus
Nk is well-quasi-ordered.

Corollary 8.1.6. Any minor-closed family of lattice-path matroids that has
bounded notch-width is well-quasi-ordered.

Proof. Assume there is an infinite antichain of lattice-path matroids
with notch-width at most k. Let M1, M2, M3, . . . be such an anti-chain
where [Pi, Qi] is a corresponding lattice path presentation. But then
(M1, 0, 0), (M2, 0, 0), (M3, 0, 0), . . . is an infinite anti-chain in Nk. For
otherwise, (Mi, 0, 0) ≤ (Mj, 0, 0) for some i < j, meaning there are disjoint
subsets I, J of E(Mj) such that Mj/I\J is isomorphic to Mi . This is
impossible since Mi is not isomorphic to a minor of Mj.

This proves that the class of square notch-matroids are to be ‘avoided’ in
well-quasi-ordered classes of lattice path matroids. Hence we have the
following result:

Corollary 8.1.7. A minor-closed class of lattice-path matroids is
well-quasi-ordered if and only if it contains only finitely many square notch
matroids.



Part III

Fundamental and bicircular
matroids
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This part focuses on fundamental transversal matroids and bicircular
matroids. Even though the class of fundamental matroids is not closed
under minors, it lies in the intersection of transversal and cotransversal
and this makes the class worthy of further investigation. The fact that
it has an intuitive geometric representation only adds to its appeal. The
first chapter in this part explores the question of recognising fundamental
matroids in the class of transversal matroids. The same exercise is repeated
in Chapters 10 and 11 in the classes of lattice-path matroids and bicircular
matroids respectively.
In the last chapter, we examine the intersection of the classes of bicircular
and cobicircular matroids. We define whirly-swirls and conjecture that for
large enough matroids, these are the only members in this intersection.
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Chapter 9

The problem FUNDAMENTAL
TRANSVERSAL MATROID

In this chapter we explore the class of fundamental transversal matroids.
We aim to recognize when a given transversal matroid is fundamental.
Even though it is quite challenging in general, we strive to do so for special
sub-classes. We also investigate the complexity of this question in general.

Consider the problem FUNDAMENTAL TRANSVERSAL MATROID as
follows:

FUNDAMENTAL TRANSVERSAL MATROID

INPUT: A transversal matroid M represented by a bipartite graph

QUESTION: Is M fundamental?

Recall that by Theorem 2.1.2, every transversal matroid M has a
representation on a simplex with rank(M) vertices and every cyclic flat
F can be represented as a rank(F)-vertex face of this simplex. By the
definition of a fundamental basis, the elements on the vertices of this
simplex form a fundamental basis X. If we are given a geometric
representation in which there is an element on each vertex of the simplex,
then this is easy to recognise, but there may be many possible geometric
representations as the simplex representation for a transversal matroid
is not unique. This poses a difficulty in trying to identify fundamental
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matroids in general. We first prove a lemma that will help in classifying
this problem as NP.

Lemma 9.1.1. Let G be a bipartite presentation of the transversal matroid M. Let
F be a flat in M and let e be an element in F. Let v1, . . ., vt be the neighbours of
vertices in F. Then e is not freely placed in F if and only if there exists a vertex vi

such that e is contained in a circuit in the transversal matroid represented by the
bipartite graph Gi = G− (vi ∪ N(vi)).

Proof. Let there exist a vertex vi such that e is contained in a circuit C in the
transversal matroid, N, represented by the bipartite graph Gi. We claim
that clN(C) = clM(C). If not, then there exists f ∈ clM(C) − clN(C).
Clearly, f ∈ E(M) − E(N). Also, f is adjacent to vi which implies
that rM(C ∪ f ) = rM(C) + 1 as no element of C is adjacent to vi. This
contradicts the fact that f ∈ clM(C) − clN(C). Hence, clM(C) = clN(C).
Thus cl(C) does not contain F but contains e, which implies that e is not
free.

Now, let e not be freely placed in F. That is, there exists a cyclic flat Z that
contains e but not F. Then, there exist C ⊆ F such that e ∈ C but cl(C)
does not contain F. Since C − e is independent, it can be matched in G,
so C has at least |C − e| neighbours in G. But C is dependent, so Hall’s
Theorem [16] tells us that some subset of C has fewer neighbours than
its cardinality. This subset can only be C. Hence, C has exactly |C| − 1
neighbours. If every vertex in v1, . . . , vt is a neighbour of some vertex in
C, then F is in the closure of C, a contradiction. Hence there is some vk that
is not a neighbour of a vertex in C. Hence in the bipartite graph Gk, e is
contained in C. Thus proved.

If we combine the above lemma and Lemma 2.2.4, then it becomes possible
to efficiently check whether B is a fundamental basis.

Theorem 9.1.2. The problem FUNDAMENTAL TRANSVERSAL MATROID
is in NP.

Proof. Let M be a transversal matroid. The certificate that helps us is a
basis B that is fundamental. By Lemma 2.2.4, we are only required to check
that every element e that is not in B is free in its fundamental circuit C(e, B).



75

We can find the fundamental circuit C(e, B) by proceeding through every
element x in M and using a matching algorithm to test whether (B− x)∪ e
is a basis. This can be done in polynomial time. Then, by Lemma 9.1.1, this
implies that we find every neighbour of e in G and check whether in every
graph Gi (as described in the statement of the lemma), e is a coloop, which
can again be achieved in polynomial time. If this turns out to be true, then
M is fundamental.

The following theorem [2] is a characterisation of fundamental matroids.
Since, this characterisation involves checking every subfamily of cyclic
flats of a matroid, we cannot expect it to lead to a polynomial time
algorithm.

Theorem 9.1.3. A transversal matroid M is fundamental if and only if for all
non-empty subsetsF ofZ(M), the collection of all cyclic flats of M, the following
holds true :

r(∩F ) = ∑
F ′⊆F

(−1)|F
′ |+1r(∪F ′)

Thus we end with the following conjecture:

Conjecture 9.1.4. The problem FUNDAMENTAL TRANSVERSAL
MATROID is NP-complete.
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Chapter 10

Recognising fundamental lattice
path matroids

If a transversal matroid M is not fundamental, then it does not have a
fundamental basis. In other words, for every basis X, there exists a cyclic
flat F such that F∩X does not span F. Finding out whether a fundamental
basis exists is not an easy task in the case of a general transversal matroid,
as we saw above. But the elegant structural properties that lattice path
matroids possess, makes the hunt for a fundamental basis relatively
simpler and much more fun in this class!

Let M be a rank-r lattice path matroid on the set [1, n], where N1, . . . , Nr

are intervals in [1, n] such that each Ni = [li, ui], where l1 < · · · < lr and
u1 < · · · < ur. Let E = [1, n] and B = {N1, . . . , Nr}. We can then identify
the sets E and B with the partition of the set of vertices of a bipartite graph
G(E, B), where i is adjacent to Nj if and only if i ∈ Nj. Hence, M is
the transversal matroid on ground set E. Figure 10.1 is an example of a
lattice path matroid that is fundamental transversal and Figure 10.2 gives
an example of one that is not fundamental transversal.

Figure 10.1: A lattice path matroid that is also fundamental transversal
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Figure 10.2: A lattice path matroid that is not fundamental transversal

A basis, say X, of M is a subset i1, . . . , ir of [1, n], such that i1 < · · · < ir
and ij ∈ Nj, for every j.

The class L, of lattice path matroids, L is closed under minors, whereas
the class of fundamental transversal matroids is not closed under deletion
or contraction. Also note that neither class is contained in the other. We
have seen above in Figure 10.2 an example of a lattice path matroid that is
not fundamental transversal. The 3-whirl,W3, is an excluded minor for L
but is a fundamental transversal matroid as seen below [1].

Figure 10.3: The 3-whirl as represented in a bipartite graph and on a
simplex

It is well-known that every cyclic flat of a transversal matroid has the form
E− N(Z), where Z ⊆ B and N(Z) is the set of vertices adjacent to some
vertex in Z. Note that not every set of the form E − N(Z) is cyclic. For
example, consider the matroid represented by the bipartite graph in Figure
10.4. If Z is the set of vertices in the box, then E− N(Z) is not cyclic as 1
and 2 are both co-loops in M|{1, 2, 6, 7}.
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Figure 10.4: If Z is the set of vertices in the box, then E−N(Z) is not cyclic

In a transversal matroid, the following theorem illustrates what a degree
one vertex in B signifies. Note that if Ni = {x}, then the bounding paths
P and Q contain a common vertical edge in the lattice path presentation.

Proposition 10.1.1. If Ni = {x}, then x corresponds to a coloop in M.

Proof. Let X be a maximum matching, which corresponds to a basis of
M. If the neighbour of Ni, say x, is not matched in X, then adding the
edge {Ni, x} to the matching yields a bigger matching than X. This is
a contradiction to the fact that X is maximum, and hence x is in every
basis.

In general, a coloop in a transversal matroid need not be a degree-one
vertex. For example, consider Kn,n, a bipartite presentation for Un,n. Every
element is a coloop in Un,n but every vertex in Kn,n has degree n. On the
other hand, for lattice path matroids we have the following result that
makes it easier to identify coloops, and hence cyclic flats from the structure
of the bipartite presentation.

Proposition 10.1.2. In a lattice path matroid, any coloop corresponds to a
degree-one vertex in B.

Proof. Let x in E be such that x is a coloop of M. Note that x is in
every basis X of M. This implies that, in the corresponding lattice path
presentation, we are forced to go North at step x. If after traversing
x − 1 steps, we have two possible arrival points, then from the left most
destination we can travel East for step x. But this cannot be the case as x is
a coloop. Hence, we arrive at a unique point after x− 1 steps and the next
step possible is only a North step. Then, in the bipartite presentation this
corresponds to a degree one vertex in B which has an edge incident to x.
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When x = 1 is a coloop of M, the first step has to be a North step, and this
again corresponds to N1 having degree-one in G(E, B). Hence proved.

Corollary 10.1.3. In a lattice path matroid M, if Z is a subset of B, then E −
N(Z) is cyclic if and only if there exists no degree-one vertex in B in the subgraph
G(E, B)− (Z ∪ N(Z)).

Proof. Note that, deleting N(Z) from a lattice presentation yields another
lattice path presentation. In a lattice path matroid M, E− N(Z) is cyclic
if and only if there exists no coloop in the matroid M|(E − N(Z)). By
Propositions 10.1.1 and 10.1.2 this is true if and only if there exists no
degree-one vertex in B after deleting Z.

The above results specific to lattice path matroids help us develop the
following definitions that will later prove useful in defining fundamental
lattice-path matroids.

Definition 10.1.4. A subset Z of B is said to be cyclic if E− N(Z) is a cyclic
flat and B has no isolated vertices in G(E, B)− (Z ∪ N(Z)).

Definition 10.1.5. Let X be a basis of M. A cyclic subset Z of B is said to be
good (with respect to X) if X − N(Z) spans E− N(Z) in M. Otherwise Z is
bad.

Note that a basis is fundamental if and only if every cyclic subset is good
relative to it.

Remark 10.1.6. If Z is cyclic and X is a basis, then N(Z) contains at least |Z|
elements that are also in X. If it contains exactly that, then it is good, else it is
bad. Note that in a bipartite presentation of a lattice path matroid, any maximum
matching will saturate B.

Proposition 10.1.7. If Z is any good cyclic subset of B (with respect to X), then
X ∩ N(Z) spans N(Z).

Proof. Since X is a basis of M, it must be matched to B. So the number of
vertices in X and N(Z) is at least |Z|. But, this is also an upper bound on
the rank of N(Z).
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Definition 10.1.8. A segment in a sequence of subsets A1, A2, . . . , Ak is defined
to be a subsequence of subsets Ai, . . . , Ai+j for some non-negative integer j, where
1 ≤ i ≤ k and i + j ≤ k.

Note that B = N1, . . . , Nr and hence a segment of B is of the form
Ni, . . . , Ni+j.

Lemma 10.1.9. If B has a bad subset Z (with respect to X), then Z has a bad
subset that is a segment in N1, . . . , Nr.

Proof. Let Z be a bad subset of B. We will prove by an induction argument
that Z has a bad segment. Note that Z can certainly be considered to be
a union of segments. Assume the lemma fails for Z, where Z is chosen to
have the smallest number of segments.

Note that Z has at least two segments. Let (ZL, ZR) be a partition of Z
such that there exists k with the property that Nk ∈ Z and if Ni ∈ Z, then
i ≤ k implies that Ni ∈ ZL, else Ni ∈ ZR. In particular Nk+1 is not in Z.
Then there exists a vertex in B that lies in between ZL and ZR. If ZL and
ZR have common neighbours, then every vertex in B that lies between
ZL and ZR has degree 0 in G − (Z ∪ N(Z)), which implies that Z is not
cyclic. Hence ZL and ZR have no common neighbours. But, if the set of
neighbours of ZL and ZR have no elements in common, then ZL and ZR

are both cyclic, unless the last neighbour of ZL is exactly one less than the
first neighbour of ZR. In this case, every z ∈ B that is in between ZL and
ZR, has degree zero after deleting N(Z). This is again impossible by the
previous argument, as it would imply that Z is not cyclic.

Assume that neither of ZL and ZR are bad subsets of B. Then, X − N(ZL)

and X− N(ZR) span E− N(ZL) and E− N(ZR) respectively. Thus, r(E−
N(ZL)) = |X ∩ (E − N(ZL))| and r(E − N(ZR)) = |X ∩ (E − N(ZR))|.
Hence, r(N(ZL)) = |ZL| and r(N(ZR)) = |ZR|, as |X ∩ ZL| = |ZL| and
X is independent. Then, r(N(Z)) = r(N(ZL ∪ ZR)) ≤ |ZL|+ |ZR| = |Z|,
which is a contradiction, as this implies that r(N(Z)) = |Z| which makes
Z good. Hence, one of ZL or ZR is a bad subset. By induction, this implies
that either ZL or ZR has a bad segment. Hence proved.
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Definition 10.1.10. A basis X of E, where |X| = r is defined to be good going
forwards if for every Z ⊆ B, such that Z is cyclic and Z = {N1, . . . , Ni}, for
some 1 < i < r, Z is good relative to X.

A subset X of E, where |X| = r is defined to be good going backwards if for
every Z ⊆ B, such that Z is cyclic and Z = {Ni, . . . , Nr}, for some 1 < i < r,
Z is good.

Lemma 10.1.11. If X is a basis that is good going backwards and forwards, then
{N1, . . . , Nr} has no bad subsets (with respect to X).

Proof. By Lemma 10.1.9, if there exists a bad subset, then there exists a bad
segment. Let Z = Ni, . . . , Nj be a bad segment of B. Then Z1 = N1, . . . , Nj

and Z2 = Ni, . . . , Nr are also cyclic subsets of B. But, since X is good
going backwards and forwards, X ∩ N(Z1) and X ∩ N(Z2) span N(Z1)

and N(Z2) respectively. Thus |X ∩ N(Z1)| = |Z1| and |X ∩ N(Z2)| = |Z2|.
Hence, |X ∩ Z| = |X ∩ (Z1 ∩ Z2)| = |X ∩ N(Z1)| + |X ∩ N(Z2)| − |X ∩
(N(Z1)∪N(Z2))| = |Z1|+ |Z2| − |X| = |B|+ |Z| − |B| = |Z|. This implies
that X − N(Z) spans E− N(Z), which is a contradiction to the fact that Z
is bad.

With the aid of the above results, we are now ready to devise an algorithm
that can check whether a given lattice path matroid is fundamental
transversal. This polynomial time algorithm runs as follows:

Algorithm: FUNDAMENTAL LATTICE PATH MATROID
Input: A bipartite presentation corresponding to the lattice path matroid
M
Output: A fundamental basis X, if such a basis exists

(1) Let ZFi be the smallest cyclic forward segment of the form
{N1, . . . , Nj} that contains N1 ∪ . . . ∪ Ni. Similarly, let ZBi be the
smallest cyclic backward segment of the form {Nj, . . . , Nr} that
contains Ni ∪ . . . ∪ Nr. This is easy to find due to Corollary 10.1.3.

(2) Let F1 = N(ZF1) and for i > 1, Fi = N(ZFi) − N(ZFi−a), where a
is the smallest positive integer such that ZFi−a 6= ZFi . If no such a
exists, then Fi = F1. Similarly, Br = N(ZBr) and for i < r, Bi =
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N(ZBi)− N(ZBi+a), where a is the smallest positive integer such that
ZBi+a 6= ZBi . If no such a exists, then Bi = Br.

(3) Initialise X to be empty. For each i, choose xi from the set (Ni ∩ Fi ∩
Bi)− X. (Note that there might be more than one choice for xi and
in this case we choose the first one in the set.) If at any stage xi does
not exist, then terminate the algorithm. Else, output X.

(4) If the algorithm terminates without an output, then M is not a
fundamental transversal matroid. Else, X is a fundamental basis of
M and hence M is fundamental.

Theorem 10.1.12. There exists a polynomial time algorithm to check whether
a lattice path matroid is fundamental, when the matroid is input as the
corresponding bipartite graph.

Proof. Consider the algorithm FUNDAMENTAL LATTICE PATH
MATROID and let M be a lattice path matroid. We prove that a lattice
path matroid is fundamental if and only if we can find a basis that satisfies
the algorithm.

By Lemma 10.1.11, finding a fundamental basis boils down to finding a
basis that is good going backwards and forwards. Assume the algorithm
finds a set X. Note that if the algorithm finds such a set, then each xi ∈ X
is in Ni, by construction, so X is indeed a basis. If X is not a fundamental
basis, then by Lemma 10.1.11 there is a cyclic set Z that is either bad going
backwards or forwards. Assume Z = ZFi is bad with ZFi = N1, . . . , Ni. (If
ZFi 6= N1, . . . , Ni, then we keep going ’forwards’ to find an i where this is
true.) Note that ZFi contains elements x1, . . . , xi by virtue of construction.
Now, as it is also bad, N(ZFi) contains more than i elements of X and hence
contains xj where j > i and xj ∈ (Nj ∩ Fj ∩ Bj). If ZFi 6= ZFj , then there

exists i ≤ i
′
< j such that Fj = N(ZFj) − N(ZF

′
i ). But this implies that

N(ZF
′
i ) contains N(ZFi) which contains xj. This leads to a contradiction as

xj is in Fj and ZF
′
i . Thus ZFi = ZFj which leads to another contradiction as

ZFi = N1, . . . , Ni and does not contain Nj which is in ZFj .

Similarly, if Z is ZBi = Ni, . . . , Nr, then there exists j < i such that ZBi

contains xj ∈ (Nj ∩ Fj ∩ Bj). If ZBi 6= ZBj , then there exists i
′

such that
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j < i
′ ≤ i and Bj = ZBj − ZB

i′ . Thus, xj is in N(ZB
′
i ) as it contains N(ZBi)

and in Bj, which is a contradiction. Hence, ZBi = ZBj , which leads to a
contradiction as above. Therefore, whenever the algorithm returns a set, it
is a fundamental basis.

For the converse, assume that M is a fundamental lattice path matroid.
Then, there exists a fundamental basis X and let xi be an element in X ∩Ni

for every i. We claim that the algorithm can find xi for every i. Assume this
does not hold true and let i be the first integer for which this fails, that is,
the algorithm finds x1, . . . , xi−1 but not xi. Then xi is either not in Fi or not
in Bi. If it is the former case, then since xi ∈ Ni, it is also in N(ZFi). Thus,
xi ∈ ZF

i−a, where a is the smallest positive integer such that ZFi−a 6= ZFi .
The minimality of a implies that ZFi−a = N1, . . . , Ni−a and ZFi−a is a cyclic
set. Then ZFi−a contains x1, . . . , xi−a and xi. But this implies that ZFi−a

is a bad cyclic set contradicting the fact that X is a fundamental basis.
Similarly assume that xi is not in Bi. Then, since x ∈ Ni, x ∈ N(ZBi) and
xi ∈ ZB

i+a, where a is the smallest positive integer such that ZBi+a 6= ZBi .
Again, the minimality of a implies that ZFi+a = Ni+a, . . . , Nr and ZBi+a is
a cyclic set. Then ZBi+a contains xi+a, . . . , xr and xi. But this implies that
ZBi+a is a bad cyclic set contradicting the fact that X is a fundamental basis.
Hence, the algorithm returns a fundamental basis if there exists one.

We first illustrate how the algorithm works for a lattice path matroid
M1 that is also fundamental (See Figure 10.5). Here, E = [1, 7] and
B = {[1, 2], [2, 4], [3, 5], [5, 7]}. For the sake of brevity, we denote N1, . . . , Ni

as N1...i.

Figure 10.5: M1 represented as a bipartite graph, on a simplex and as a
lattice path presentation

(1) (ZF1 , . . . , ZF4) = (N1, N123, N123, N1234) and (ZB1 , . . . , ZB4) =
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(N1234, N1234, N1234, N4).

(2) Now (F1, . . . , F4) = ([1, 2], [3, 5], [3, 5], [6, 7]) and (B1, . . . , B4) =

([1, 4], [1, 4], [1, 4], [5, 7]).

(3) Then X = {1, 3, 4, 6}.

(4) Hence, {1, 3, 4, 6} is a fundamental basis for M.

So a fundamental representation of M1 on a simplex would be as
illustrated in Figure 10.6.

Figure 10.6: A fundamental representation of M1

We now illustrate how the algorithm works for a lattice path matroid
M2 that is not fundamental (See Figure 10.7). Here, E = [1, 11] and
B = {[1, 3], [3, 6], [5, 7], [6, 9], [8, 11]}. For the sake of brevity, we again
denote N1, . . . , Ni as N1...i.

Figure 10.7: M2 represented as a bipartite graph and as a lattice path
presentation

The algorithm works as follows:
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(1) (ZF1 , . . . , ZF5) = (N1, N123, N123, N1234, N12345) and (ZB1 , . . . , ZB5) =

(N12345, N2345, N345, N345, N5).

(2) Now (F1, . . . , F5) = ([1, 3], [4, 7], [4, 7], [8, 9], [10, 11]) and
(B1, . . . , B4) = ([1, 2], [3, 4], [5, 7], [5, 7], [8, 11]).

(3) Then the algorithm terminates without an output as the intersection
(N4 ∩ F4 ∩ B4) is empty. Hence there exists no fundamental basis.

We observe that this matroid does not satisfy the condition in 9.1.3.
Consider the two cyclic flats F1 = [1, 7](= E− N(N5)) and F2 = [8, 11](=
E − N(N123)). Then, 0 = r(F1 ∩ F2) 6= r(F1) + r(F2) − r(F1 ∪ F2) =

4 + 2− 5 = 1.



Chapter 11

Fundamental bicircular matroids

Even though bicircular matroids arise naturally from graphs, many
properties have yet to be studied. We add to the literature by
exploring the following natural question: what is the intersection of
fundamental matroids and bicircular matroids? In other words, is there
a polynomial-time algorithm to determine when a bicircular matroid is
fundamental? This section answers this question positively.

We begin by proving a basic lemma about fundamental matroids.

Lemma 11.1.1. If B is a fundamental basis in M and x is in B, then B− x is a
fundamental basis of M/x.

Proof. Let, if possible, M/x not be fundamental. Then there exists an
element e that is in E− B that is not freely placed in the flat spanned by the
fundamental circuit CM/x(e, B

′
) where B

′
= B− x. Let Z be a cyclic flat of

M/x such that e is in Z but CM/x(e, B
′
) * Z. Note that either Z or Z ∪ x is

a cyclic flat in M that contains e. Also, the fundamental circuit of e in M is
either CM/x(e, B

′
), or it is CM/x(e, B

′
) ∪ x. But this contradicts the fact that

M is fundamental as it implies that e is not free in CM(e, B).

We now define two structures that are crucial in characterising bicircular
matroids that are fundamental. Note that when X is a set of edges, G[X] is
the subgraph induced by X, whose edge set is X and vertex set is the set
of vertices that are endpoints of edges in X.
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Definition 11.1.2. Let G be a graph. A spider is a set of edges X, such that
G[X] contains a single loop and no other cycles. Furthermore, if v is the vertex
incident with the loop, every vertex in G[X] other than v is joined to v by a single
edge in X. Also, if u is in G[X] and is not v, there is at most one edge incident
with u but not v.

Note that if G is a graph with minimum degree at least three, then
the vertices adjacent to the loop-vertex in the spider are joined to the
loop-vertex by at least two edges each.

Figure 11.1: An example of a spider X. The purple edges are in X while
the orange edges are in G but not X.

Definition 11.1.3. A hammock consists of two edges joining distinct vertices u
and v, where there is at most one edge incident with u but not v, and at most one
edge incident with v but not u.

Figure 11.2: An example of a hammock X. The purple edges are in X while
the orange edges are in G but not X.

We blur the distinction between a set of edges X and G[X] when doing so
will not create confusion.

Definition 11.1.4. A good component of a graph G is either a spider or a
hammock. A good basis B of B(G) is one in which every component of G[B] is
good.
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We now prove an inductive connectivity tool that will prove useful in
the main theorem. This lemma can be derived as a corollary from [33].
However we provide an independent proof here.

Theorem 11.1.5. Let M be a 3-connected matroid up to parallel pairs and loops.
Let B be a basis. There exists x ∈ B such that M/x is 3-connected up to parallel
pairs and loops.

Proof. Let x be an arbitrary element in B. Then we assume that M/x has
a 2-separation (U, V) with r(U), r(V) > 1, else there is nothing to prove.
Clearly, (U∩ x, V) and (U, V∪ x) are 3-separations of M with r(U), r(V) >

2 and x ∈ cl(U)∩ cl(V). Neither U nor V is spanning and we have chosen
x so that |U| is as small as possible. Consider y ∈ (U ∩ B)− cl(V). Such
an element exists as V is not spanning. Then there exist 3-separations
(U

′
, V
′ ∪ y) and (U

′ ∪ y, V
′
) of M with y ∈ cl(U

′
) ∩ cl(V

′
). Assume

without loss of generality that x ∈ U
′

.

Case 1: |V ∩V
′ | ≥ 2.

This implies that V ∪ V
′

is a 3-separation by Lemma 2.1 [30]. Thus, the
complement (U ∩ U

′
) ∪ {x, y} is also a 3-separation. We also have |V ∩

(V
′ ∪ y)| ≥ 2. Then, by the same reasoning as above, V ∪ V

′ ∪ y and
(U ∩U

′
)∪ x are 3-separating. In a similar fashion, we can prove that (U ∩

U
′
) ∪ y and U ∩U

′
are 3-separating sets.

By Lemma 2.3 [30], y ∈ cl(U ∩ U
′
) or y ∈ cl∗(U ∩ U

′
). Also, since y ∈

cl(V
′
), y ∈ E− ((U ∩U

′
)∪ y). But this implies y /∈ cl∗(U ∩U

′
) by Lemma

2.2 [30], which in turn implies that y ∈ cl(U ∩U
′
).

Now, (U ∩ U
′
, V ∪ V

′ ∪ y) and ((U ∩ U
′
) ∪ y, V ∪ V

′
) are 3-separations

in M, where y is in cl(U ∩ U
′
) ∩ cl(V ∩ V

′
). Our choice of |U| implies

U ∩ U
′
= U which in turn implies that U ⊆ U

′
and thus V

′ ⊆ V. But
y ∈ cl(V

′
) and y ∈ cl(V), which is a contradiction.

Case 2: |V ∩V
′ | ≤ 1

Then, |U′ ∩ V| ≥ 2 (as r(V) ≥ 2). Hence, U ∪ V
′

and (U ∪ V
′
) ∪ y

are 3-separations by similar arguments as the previous case. Hence, by
Lemma 2.3 [30] again, y ∈ cl(U ∩ v

′
) or y ∈ cl∗(U ∩V

′
). Since, y ∈ cl(U

′
),

y ∈ E − ((U ∩ V
′
) ∪ y). Thus y /∈ cl∗(U ∩ V

′
) and this implies that

y ∈ cl(U ∩V
′
).
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Again, by our choice of U, we obtain that U = U ∩ V
′

which implies that
U
′

is a subset of V. Then, cl(U
′
) ⊆ cl(V). But this leads to the false

conclusion that y ∈ cl(V) as y ∈ cl(U
′
).

We are in good shape to characterise fundamental bases in bicircular
matroids. We begin with 3-connected matroids. Note that the term digon
is used to refer to two element cycles.

Theorem 11.1.6. Let G be a graph with no cut vertex, and minimum degree at
least three. Then B is a fundamental basis of B(G) if and only if B is good.

Proof. Let B be a basis of the bicircular matroid B(G). Note that a
component of G[B] is bad if it is not good. Let X be a bad component of
G[B]. Then X must satisfy one of the following (In the following figures,
red edges are in X and green edges are in G− B):

• X contains a cycle with more than two edges.

• X contains a cycle of two edges, and X contains more than two edges.

• X consists of a cycle of two edges, joining u to v, where u is incident
with two edges that are not incident with v.

• X contains a loop incident with vertex v and u is a vertex in G[X]

that is not joined to v by an edge in X.
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• X contains a loop incident with v, and every vertex in G[X] is
adjacent to v in G[X], but there exists a vertex u in G[X] such that
u is incident with two edges that are not incident with v.

We first prove that contracting an element outside a bad component does
not affect the ‘badness’ of that component after contraction.

Claim 11.1.6.1. Let G be a graph with no cut vertex and minimum degree at least
three. If X is a bad component of a basis B of B(G), and x is in B− X, then X is
a bad component of B− x in G/x.

Proof. Let x be in a component X
′

of B. We examine each of the different
types of bad components mentioned above and verify that X is a bad
component of G/x:

(i) Let X contain a cycle with more than two edges. Then B − x still
contains the same cycle X in G/x.

(ii) Let X contain a cycle with two edges with a total of more than two
edges. Then contracting x keeps the cycle intact and does not affect
any of the edges that are in X but not in the cycle. Hence, B− x still
has a bad component in G/x.

(iii) Let X consist of a cycle of two edges, joining u to v, where u
is incident with two edges that are not incident with v. Again
contracting x does not affect the parallel pair and the multiple edges
incident with one of the end vertices.
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(iv) X contains a loop at vertex v and there exists a vertex u in X not
adjacent to v in X. Then, contracting x will not affect the loop nor
the path of length two in X and hence X remains the same bad
component.

(v) X contains a loop incident with v, and every vertex in G[X] is
adjacent to v in G[X], but there exists a vertex u in G[X] such that
u is incident with two edges that are not incident with v. In this case,
the contraction of x may affect one or more of the edges adjacent to
u, converting them into loops. But this still does not change the fact
that u is adjacent with more than one edge that are not adjacent to v.

Now, let G be a minimal counterexample to Theorem 11.1.6 and B be a
fundamental basis of G. Clearly, G[B] must contain a bad component, say
H.

If e is an edge not in B, then G\e has either a cut-vertex, or a vertex with
degree two, due to the minimality of G. This holds true because B is a
fundamental basis in B(G)\e and B still has a bad component in G\e.

The following observation will greatly simplify the structure of parallel
classes in G:

Claim 11.1.6.2. All parallel classes of G have size at most two.

Proof. Assume that G has a parallel class of size at least three, with the
end vertices labelled u and v. Clearly at most two edges of the parallel
class can be part of B. Let x be an edge joining u and v that is not in B. If
there exists a degree two vertex in G\x, it has to be either u or v. Assume
without loss of generality that it is u. In G, u is only incident with the two
edges in B joining u to v and x as u has degree two in G\x. This implies
that v is a cut-vertex in G\x which in turn implies that v is a cut-vertex in
G, a contradiction. Hence, deleting an edge in this parallel class does not
create a graph with a vertex with degree two.

We further observe that deleting x cannot create a graph with a cut-vertex
either as follows: Suppose that G\x has a cut-vertex, say c. Then, we can
find vertices a and b such that every path from a to b passes through c.
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Let P be a path from a to b in G that does not use c. Such a path exists
as G has no cut vertices. If this path does not contain x, then P is a path
that avoids c in G\x too, a contradiction. Since x is in a parallel pair, if P
contains x, then G\x contains a path that connects a and b and avoids c, a
contradiction.

Claim 11.1.6.3. Let x be an edge in B such that G/x has no cut-vertex, and
minimum degree at least three. Then any bad component of G[B] must contain x.

Proof. Let X be a bad component of B such that x is not in X. Then, by
Lemma 11.1.6.1, X is still a bad component of B − x in G/x. But, G/x
has no cut-vertex and has minimum degree three. This contradicts the
minimality of G. Hence, x is an edge in the bad component X.

The above claim implies that there is exactly one bad component of G[B].
This component, say H, contains x, which is an edge that can be contracted
to obtain a minor with no cut-vertex and has minimum degree at least
three by Theorem 11.1.5.

Claim 11.1.6.4. Every component of G[B] other than H is a single loop.

Proof. Assume otherwise. Let H
′

be a hammock in B. Assume that
contracting an edge in H

′
, say y, produces a graph with a cut-vertex, say

c. Then, there exists vertices a and b in G/y such that every path from a
to b passes via c. But if C is a cycle that contains a and b, the existence
of which is guaranteed by the fact that G has no cut-vertices, then y is a
chord in C. This implies that u and v have at least three neighbours in G,
which is a contradiction. Thus, contracting any edge in H

′
leaves a graph

with no cut-vertex, and minimum degree at least three which is another
contradiction. This is illustrated in Figure 11.3.
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Figure 11.3: H
′

on the left and the resulting component in G/x. All of v,
y1 and y2 have degree at least 3 in G and its minor.

This implies that any other component is a spider. Assume that a spider
contains a non-loop edge, x

′
. Let v be the loop vertex and u be the other

end-vertex of x
′
. Let, if possible, c be a cut vertex of G/x

′
. Then there exist

vertices a and b such that every path through a and b passes thorugh c.
And by similar argument as above, x

′
is a chord in the cycle that contains

a and b in G. This is a contradiction as u is joined to at most one vertex
that is not v. Thus, G/x′ has no cut vertex, and minimum-degree at least
three, which is another contradiction. Hence the claim holds.

We now analyse each of the different types of bad components.

Case 1. H contains a cycle with more than two edges.

Since G/x has no bad component, H must be a triangle. H/x is a good
parallel pair in G/x, so there are at most two edges joining vertices in H
to vertices not in H. We refer to Figure 11.4 for edge labels. Note that x
cannot join u to v, or else, G/x has a cut-vertex.
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Figure 11.4: Blue edges are in H, green edges in B − H and the yellow
edges are not in B

There has to exist an edge y as there are no degree two vertices in G. Also,
there is no loop incident with u or v, by the definition of a hammock.
Now, the fundamental circuit of y with respect to B is the theta graph
consisting of edges x, y, x1, x2. Then the closure of the loose handcuff that
contains the edges y, y1, y2 does not span the fundamental circuit of y
which is a contradiction to the fact that B is a fundamental basis.

Case 2. H contains more than two edges along with a cycle of two edges.

Let u and v be the end vertices of the two-cycle. Then there is at least
one more edge in H incident to one of u or v, say y. Then H/y forms
a good component in G/y if and only if H/y is a hammock. Say y is
incident with w. Then H has three edges and w has degree at most two in
G (by definition of hammock), a contradiction. Hence, H/y does not form
a good component in G/y. So we choose one of the edges in the two-cycle,
say x. Then H/x is a good component in G/x. We refer to Figure 11.5 for
labels.
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Figure 11.5: Blue edges are in H, green edges in B − H and the yellow
edges are not in B

Consider e that is in parallel with an edge from H. Such an edge exists,
else H/x will not be a spider. Then the fundamental circuit of e is the
tight handcuff that consists of x, the edge in H parallel to x, e and the
edge in H parallel to e. Consider the loose handcuff that consists of e, the
edge in H parallel to e, f and f ′. This circuit shows that e is not free in its
fundamental circuit which is a contradiction.

Case 3. H consists of a cycle of two edges, joining u to v, where u is incident
with at least two edges that are not incident with v.

Clearly x is an edge in the parallel pair and H − x is a spider in G/x. We
refer to Figure 11.6 for labels.

Figure 11.6: Blue edges are in H, green edges in B − H and the yellow
edges are not in B

We have three possible situations in this case: (i) either one end vertex, u in
the figure, is joined to a vertex that is not v by a parallel pair or (ii) an end
vertex of the parallel pair, v in the figure, is joined to at least two distinct
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vertices or (iii) an end vertex, u in the figure, is incident with a loop and
another edge.

Consider the first situation. Here e is an edge in the parallel pair incident
with u and the fundamental circuit of e consists of the edges x, the edge in
parallel with x, e and y2. But the tight handcuff formed by e, y1 and y2 is
evidence that e is not free in this fundamental basis.

In the second scenario, consider f , an edge incident with v. Then the
fundamental circuit of f consists of x, the edge parallel to x, f and y4.
Now consider the loose handcuff that consists of y3, f ′, f and y4. This is a
circuit that contains f whose closure does not span the fundamental circuit
of f which is a contradiction.

In the final case, let e′ be the loop incident with u. Then u has to be
incident with a second edge for H to be bad. If this edge is a loop, then
u is incident with two loops outside B and this makes v a cut-vertex in
G, a contradiction. Hence, u is incident with e′ and non-loop edge, say e.
Then the fundamental circuit C(e′, B) is the tight handcuff that consists of
x, its parallel edge and e′. But this circuit is not in the closure of the span
of {e, e′, y1}, which is a circuit containing e′, a contradiction.

Case 4. H contains a loop and a vertex that is not joined to the loop-vertex
by an edge in the component

In this case, we will argue in the following paragraphs, that avoiding
degree two vertices and making sure that there is an edge x such that H− x
is a good component of G/x gives rise to a set of edges as in Figure 11.7.

Figure 11.7: Blue edges are in H, green edges in B − H and the yellow
edges are not in B

The existence of e is justified by the minimum degree condition imposed
on G. We aim to obtain a spider after contracting x, which implies that
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we cannot have a path of length two beginning at the loop-vertex in
H/x. Note that x cannot be the edge parallel to e as contracting x would
imply that u is a cut-vertex in G/x. Thus x is the edge incident with the
loop-vertex and the edge in H that it is not incident with the loop-vertex.
We also argue that the edge x′ is not an apt choice for x as we prove that
if G

′
, the graph obtained by contracting x′, has no cut-vertices and has at

least minimum degree 3, then so does G/x. As explained in Chapter 2,
contracting the loop of a graph corresponding to a bicircular matroid is
different to edge contraction in graphs. Essentially, x′ is deleted and every
edge adjacent with x′ is now a loop at the other end vertex. Assume that
G
′

has no cut-vertices. Then there exists no vertex v such that every path
through a pair of vertices passes through v. Thus, if G/x has a cut-vertex,
it has to be the loop vertex. This implies that G has a cut-vertex, which
is a contradiction. Now assume that G

′
has no vertex of degree less than

three. Clearly, if this is the case, then the same is true for G/x and hence
the claim holds true.

Now, considering the edge e, we observe that the fundamental circuit
is the loose handcuff that consists of e, the edge in H parallel with e, x
and x′. But the loose handcuff y2, y1, e and the edge in H parallel with e
contradict the fact that e is free in B.

Case 5. H contains a loop, and every vertex in the component is joined to
the loop-vertex by an edge of the component and there exists a vertex u in
the component such that u is incident with two edges that are not incident
with the loop-vertex.

In this case, we have a vertex u that can be incident with a combination of
a loop, a parallel pair and a single edge such that u is incident with at least
two vertices that are not the loop-vertex. This is pictured in Figure 11.8.
We use the labels in the said figure to complete the argument.
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Figure 11.8: Blue edges are in H, green edges in B − H and the yellow
edges are not in B

Again, x′ is not chosen to be contracted because x is a better choice as
argued previously.

Consider an edge e in a parallel pair incident with u. Then the
fundamental circuit C(e, B) consists of y1, e, x and x′. But the closure of
the tight handcuff that consists of the parallel pair that contains e and y1

does not contain C(e, B), this is a contradiction.

Now consider an edge f that is a single edge incident with u. Then there
is either a loop, say g, or a non-loop edge, say f ′ incident with u. Then, the
fundamental circuit C( f , B) consists of y4, f , x and x′. But, neither of the
closures of the loose handcuffs g, f , y4 or y3, f ′, f , y4 spans C( f , B) which
leads to another contradiction.

Finally, consider a loop g incident with u. Then there is another edge, say e
incident with u. The fundamental circuit of g is the loose handcuff g, x, x′.
If e is a loop, then the closure of the tight handcuff e, g does not contain
C(g, H), which is a contradiction. If e is a non-loop edge, then the loose
handcuff y1, e, g does not span C(g, H) which is another contradiction and
rules out this case.

With this we come to the conclusion of the case analysis. We have arrived
at a contradiction for each of the possible bad components.

To prove the converse, that is, a good basis is fundamental, we describe
the fundamental circuits relative to a good basis, and observe that every
element is free in its fundamental circuit. Any edge whose fundamental
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circuit is a loose handcuff with loops at either end, will be free in
this circuit as any cyclic flat will contain the span of this fundamental
circuit. Else, if an edge has a fundamental circuit that is a loose handcuff
consisting of digons at the end, then every cyclic flat contains the closure
of this loose handcuff. Otherwise, if an edge has a fundamental circuit that
is a loose handcuff with a spider at one end and a digon at the other, then
this element is again free in the span of its fundamental circuit.

Clearly, if an edge e is in a parallel class that contributes to a hammock in
the basis, then any circuit closure that contains e will also contain the theta
graph that consists of the hammock and edge e, which is the fundamental
circuit of e. Lastly, if e has a tight handcuff as its fundamental circuit,
then it is a non-loop edge that is in a parallel class with an edge in the
spider. Since the parallel class is incident with exactly one other edge that
is not incident with the loop vertex, any cyclic flat that contains this edge,
contains the fundamental circuit too.

We have now characterised 3-connected bicircular fundamental matroids.
Before moving on and characterising fundamental bicircular matroids,
we devise a simple algorithm that will construct a fundamental basis in
a bicircular matroid if the same exists or otherwise terminate with no
output. Let G be a graph and B(G) be its bicircular matroid. Then the
algorithm ss the following:

Algorithm: FUNDAMENTAL 3-CONNECTED BICIRCULAR
MATROIDS
Input: The graph G
Output: A fundamental basis, X of B(G)

Step I Initialise X to be empty. Scan every vertex of the graph and if any
vertex has a single loop adjacent to it, this loop is added to the set X.

Step II Scan the vertices that are not incident with any edge in X. If it has
exactly two neighbours: a vertex joined by a single edge and another
vertex by a parallel pair whose other end vertex is incident with
exactly a single edge, then the parallel pair is added to X. Otherwise,
if it has degree 2 by being adjacent to a vertex by a single edge and
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another vertex by a parallel class whose other end vertex is incident
with a loop in X, then an edge of the parallel class is added to X.

Step III If there is a vertex that is still not incident with an edge in X, then
B(G) is not a fundamental matroid. Else, X is a fundamental basis of
B(G).

If there is a basis consisting of spiders and hammocks, this algorithm will
find it. Otherwise, no such basis exists. This polynomial time algorithm
works in about O(n) time (where n is the number of vertices in G) and we
now aim to achieve the same for matroids that are not 3-connected. We
first consider graphs that have no cut-vertices, and hence are 2-connected,
but have a degree-2 vertex. Clearly, such vertices are incident with edges
in a series pair. We now prove results about fundamental bases in matroids
with series pair. We essentially prove that having a series pair does not
affect the fundamental nature of a matroid.

Lemma 11.1.7. Let {x, y} be a series pair in a matroid M. Then M is
fundamental if and only if M/x is fundamental.

Proof. Let M be a fundamental transversal matroid and B be a
fundamental basis. Then, as {x, y} is a cocircuit and intersects every basis,
B∩{x, y} is non-empty. Since M/x and M/y are isomorphic, then without
loss of generality let x ∈ B ∩ {x, y}. Then, by Lemma 11.1.1, M/x is
fundamental.

Now assume that M/x is fundamental and let B be a fundamental basis.
Then every element e in E − (B ∪ x) is freely placed in the span of
CM/x(e, B). We want to show that it is freely placed in the span of
CM(e, B ∪ x). Assume otherwise, that is, e is not free in the span of its
fundamental circuit relative to B ∪ x. Note that if C is a circuit in M/x,
then either C or C ∪ x is a circuit in M. Hence, if Z is a cyclic flat in M/x,
then either Z or Z ∪ x is a cyclic flat in M. Conversely, if C is a circuit of M
containing x, then C− x is a circuit in M/x. If C does not contain x, then
C is a union of circuits in M/x. Let Z be a cyclic flat in M. If x is in Z, then
Z− x is a cyclic flat of M/x. If x is not in Z, then Z is a cyclic flat in M/x.
Let C = CM/x(e, B) be the fundamental circuit of e in M/x. Hence, in M,
its fundamental circuit, C

′
, is either C or C ∪ x. Let Z be a cyclic flat M
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such that e is in Z, but C
′
is not contained in Z. Then, Z or Z− x is a cyclic

flat in M/x that contains e but does not contain C, which is a contradiction
to the fact that B is a fundamental basis of M/x.

The following corollary follows easily from the above lemma:

Corollary 11.1.8. Let G be a graph and G
′

be the graph obtained by contracting
all but one edge from each series class in B(G). Then, B(G) is fundamental if and
only if B(G

′
) is fundamental.

Thus, to find a fundamental basis in a 2-connected graph with vertices of
degree 2, we contract the series pairs until we are left with a graph that
has minimum degree 3. Then, we can apply the previously mentioned
algorithm to find a fundamental basis if it exists.

Now we move on to finding a fundamental basis in graphs that have
cut vertices. We do so by considering the block-cut-vertex tree of the
corresponding graph.

Definition 11.1.9. Let G be a graph. A block of G is a maximal 2-connected
subgraph. A block-cut-vertex tree of G, bc(G) is a tree where every vertex is
either a cut-vertex or a block of G and a block vertex is adjacent to a cut-vertex if
and only if the cut-vertex is in the block.

Now we prove a lemma that will help simplify the proof of
characterisation of fundamental bicircular matroids. This

Lemma 11.1.10. Let M be a connected matroid with a fundamental basis B.
Also, let M = M1 ⊕2 M2 along the base-point e . Then, up to relabelling, e is in
a parallel pair with e′ in M1, e′ ∈ B and B ∩ E(M1) is a fundamental basis of
M1 and (B ∩ (M2)) ∪ e is a fundamental basis of M2.

Proof. Without loss of generality, let B ∩ E(M1) span E(M1) − e in M.
Since rM((M1 ∪ M2)\e) = rM1(M1) + rM2(M2) − 1, this implies that
rM(B ∩ E(M1)) = rM1(M1) and hence rM(B ∩ E(M2)) = rM2(M2) − 1.
Then B ∩ M2 spans a hyperplane of M2. But clM(E(M2) − e) is a cyclic
flat of M. But B ∩ E(M2) does not span this flat. Hence clM(E(M2) − e)
contains an element of B ∩ E(M1), say e′. Then e′ is parallel to e in
M1. Now every element in E(M) − B is free in its fundamental circuit
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relative to B. Hence, every element in E(M2)− B is free with respect to its
fundamental circuit in M2 relative to the basis (B ∩ E(M2)) ∪ e. Similarly,
every element in E(M1)− B is free with respect to its fundamental circuit
in M1 relative to the basis (B ∩ E(M1)).

We can now prove the main result in this section: finding a fundamental
basis in a bicircular matroid.

Theorem 11.1.11. Let G be a graph and B a basis of B(G). Then B is a
fundamental basis of B(G) if and only if B ∩ E(H) is a fundamental basis of
H for each block H and B contains a loop incident with each cut-vertex incident
with H.

Proof. Let B be a basis of B(G). We begin by assuming that each block H
of G has a fundamental basis BH = B ∩ E(H) with a loop at every vertex.
We want to show that the union of all BH, B, is indeed a fundamental basis
of B(G). Consider the block-cut-vertex tree of G. Consider an element e
in H. Then, as BH is a fundamental basis of H, e is free in CH(e, BH), the
fundamental circuit of e with respect to BH. Thus, any cyclic flat in H that
contains e, contains C(e, BH). Since B ∩ H spans B(H), the fundamental
circuit C(e, B) is equal to CH(e, BH). Also, if Z is a cyclic flat of M, then Z|H
is a cyclic flat of B(H) (this relies on having a loop at every cut-vertex).
Now, BH = B ∩ H and hence, CB(e, B) = CH(e, BH). Since e is free in
CH(e, BH), e is now free in CB(e, B) too. This proves that B is a fundamental
basis.

Now assume that B is a fundamental basis of B(G). We aim to prove
that B ∩ E(H) is a fundamental basis for each block E(H) and B contains
a loop incident with each cut-vertex incident with H. We prove this by
induction on the number of vertices, n, in the block-cut-vertex tree of G.
We begin with G that has a single block. Then by Theorem 11.1.6, G has a
fundamental basis that consists of spiders and hammocks.

We proceed by assuming that the result holds true for n and we aim to
prove this for n + 1. Being a tree, we can always find a leaf in bc(G) that
corresponds to a block H in G such that it is joined to the rest of G by a
single cut-vertex. Then H and H

′
, where H

′
is the union of every block in

G that is not H, form two subgraphs of G, both of which have less than
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n + 1 cut-vertices. Then, two blocks of G joined together by the cut-vertex
is a 2-sum in the corresponding matroid B(G). Thus by the induction
hypothesis and Lemma 11.1.10, B ∩ H and B ∩ H

′
are fundamental bases

for H and H
′
respectively with a loop at the cut-vertex that joins H and H

′
.

Hence proved.

Corollary 11.1.12. Let B(G) be a bicircular matroid on graph G. Then, B(G)

is a fundamental matroid if and only if each block has a fundamental basis that
includes a loop at every cut-vertex.

The above corollary helps us devise an algorithm to find out whether a
given bicircular matroid B(G) is fundamental. To do so, we check whether
there is a loop at each cut-vertex. (We can use network flow algorithms to
find whether a pair of vertices is contained in a cycle. This determines
the blocks of G.) Then decompose G into blocks, while suppressing series
pairs, and apply the algorithm we discussed earlier.



Chapter 12

Bicircular and cobicircular
matroids

The intersection of bicircular and cobicircular matroids is another class of
transversal and cotransversal matroids that is worthy of attention. In this
chapter, we have made some progress towards characterising the matroids
that belong to this class.

Definition 12.1.1. A whirly-swirl is a bicircular matroid B(G) where G has
minimum degree at least three and has a cycle as the underlying simple graph
where every parallel class has size at most two and no vertex is incident with
more than one loop.

Figures 12.1, 12.2 and 12.3 represent G for some whirly-swirls B(G). Note
that all whirls and free swirls are members of this family.

Figure 12.1: A whirly-swirl with every edge in a cycle graph doubled and
every vertex incident with a loop
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Figure 12.2: A whirly-swirl with every edge in a cycle graph doubled and
no vertex incident with a loop. Note that this is also the rank-5 free swirl

Figure 12.3: A whirly-swirl with some edges in a cycle graph doubled and
some vertices incident with a loop

Clearly, whirly-swirls are bicircular matroids. To prove that they are
cobicircular, we first denote the digons (two element cycles) of G as {ai, bi}
where 1 ≤ i ≤ s for some positive integer s. Let the loops in G be l1, . . . , lt.
Say e1, . . . , en is the cyclic ordering of edges in a1, . . . , as, l1, . . . , lt. Let G∗

be the graph with the underlying cycle that has edges e1, . . . , en, in cyclic
order. The edges in every {ai, bi} that is not part of the cycle e1, . . . , en is
now added as a parallel edge to the corresponding element in G∗. Hence
every loop is now a link (not in a digon) in G∗. Now let x be a link in G
that is not in a parallel class and is between ei and ei+1. Then, x is a loop
in G∗ such that x is incident with the vertex that is incident with ei and
ei+1. This construction also guarantees that every vertex in G∗ has degree
at least three as the same is true in G. Figure 12.4 illustrates this fact.

In this figure, {a1, b1} = {a, b}, {a2, b2} = {e, f }, {l1, . . . , l4} = {c, g, i, k}
and (e1, . . . , e6) = (a, c, e, g, i, k). Following the construction mentioned
above, we get that (a, c, e, g, i, k) is now the underlying cycle of G∗ and all
loops in G are now links in G∗ that are not in parallel classes. Also, d is in
between c and e in the cyclic order e1, . . . , e6 and in G∗, d is a loop at the
vertex that is incident with c and e. It is now easy to use our construction
of G∗ to prove the following result, that is, B(G∗) = B∗(G) and:
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Figure 12.4: The underlying graph of a whirly-swirl on the left and its dual
on the right

Lemma 12.1.2. A whirly-swirl is a bicircular and cobicircular matroid.

Now we are ready to formally state our conjecture:

Conjecture 12.1.3. There exists a positive integer n such that when |E(M)| > n
and M is 3-connected, bicircular and cobicircular, then M is a whirly-swirl.

For small ranks we have examples of matroids that are both bicircular and
cobicircular and yet do not belong to the whirly-swirl family. It is our firm
belief that these examples will eventually fade away and whirly-swirls
would be the only matroids that fit the category.

The list of uniform matroids that are bicircular and cobicircular:
U2,5, U3,5, U2,6, U4,6 and U3,6. All matroids that have less than six elements
and are bicircular and cobicircular are either the uniform matroids
mentioned above or a whirly-swirl. The six-element matroid that is
neither uniform nor a whirly-swirl and lie in this intersection is P6.

The 3-connected seven-element matroids that are both bicircular and
cobicircular are listed in Figure 12.5. Note that the first two matroids do
not belong to the class of whirly-swirls - we explain why in the following
paragraph - whereas the last three matroids are whirly-swirls. This points
in the direction of the conjecture being true.

To see that the first matroid in the list is not a whirly-swirl, we observe that
any graphical representation will have a parallel class of four elements
that corresponds to the four-element line. Assume that this is not the case.
Then, the four-element line will be represented as a parallel class with loop
at at least one end. But this will create triangles in the graph that do not
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exist in the matroid when the remaining three edges are added along with
the third vertex. For the second matroid, we observe that representing
two disjoint three-point lines will ensure that we have at least one parallel
class of size three. Else, we have two parallel pairs sharing a vertex and
one loop at each of the other end-vertices but this creates triangles in the
graph that do not exist in the matroid. This implies that the matroid is not
a whirly-swirl. Further, we have the following result that strengthens the
conviction in the above mentioned conjecture being true.

Figure 12.5: The first column is the geometric representation of each
matroid, the second gives an underlying bicircular graph and the third
column lists a graph of the dual.

Theorem 12.1.4. If G has a loop at every vertex and B(G) is 3-connected,
bicircular and cobicircular, then B(G) is a whirly-swirl.
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Proof. Let B(G) be a bicircular and cobicircular matroid. Then for the sake
of ease in notation, we use G∗ to denote a graph such that B∗(G) = B(G∗).
Let B be the set of all loops in G. Then B is a basis of B(G) and for every e
not in B, the size of the fundamental circuit C(e, B) is at most three. We
arrive at this conclusion by observing that the fundamental circuit for
every e ∈ B is the loose handcuff that consists of the two loops at each
end vertices of e and e itself. Also, E− B is a basis of B∗(G) and whenever
e ∈ E− B, the fundamental cocircuit C∗(e, B) has size at most three.

Now, every component of G∗[E− B] has a unique cycle. Let e be in E− B
and let H be the component of G∗[E, B] that contains e. We observe that
H\e contains at least one acyclic component, say H1. The fundamental
cocircuit of e consists of e along with all elements of B that are incident
with H1.

We claim that H1 has at most two vertices. Assume otherwise. If H1 has
three or more leaves, then since every leaf must be incident with an edge
of C∗(e, E− B), at least one of these leaves has degree two in G∗. This is
not possible as B(G) and B(G∗) are 3-connected. Then, if H1 is a path with
internal vertices, the same reasoning mentioned above applies and either
a leaf or an internal vertex has degree two in G∗. Hence, the claim holds
true and H1 is either a single edge or a vertex.

Then, H1 ∪ e is either

(i) a digon,

(ii) a loop incident with a single edge,

(iii) a loop,

(iv) a path with two edges, or

(v) a single edge.

We prove that the first two scenarios and are valid and the others are
impossible. We also describe what H is in both these situations.

(i) If H1 ∪ e is a digon, then H = H1 ∪ e. Assume otherwise. Then, H
is a digon attached to a path and by above reasoning, for any e ∈ H,
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H− e should contain a path of length at most one. Since e is either in
the digon or in the path, H has at most two edges. Thus, if H1 ∪ e is
a digon, then H is a digon too.

(ii) If H1 ∪ e is a loop incident with a single edge, H = H1 ∪ e again as
argued above. Let u and v be the end vertices of e. Then, the sum of
degrees of u and v is at most three. Let the loop be at vertex u. This
implies that there are two links incident with e. If both the links are
at vertex v, then u is a cut-vertex of G∗. Else, if there is exactly one
link at v, this is a degree two vertex in G∗ which is also impossible.
Thus, H is not a loop incident with an edge.

(iii) If H1 ∪ e is a loop, then H is either a loop (and H = H1 ∪ e) or H is
a loop with an edge incident with the loop-vertex, which we have
already seen is impossible.

(iv) If H1 ∪ e is a path with two edges, then H = H1 ∪ e by above
reasoning. Let the vertices in H be u, v, and w, with u adjacent
with v and v adjacent with w. Then, since every cocircuit has
size at most three, the sum of degrees of u, v, and w minus the
degrees contributed by H cannot exceed three. Thus, u, v and w
are connected in one of the ways as shown in Figure 12.6. If it is
the case as in (a), then u and w have degree two, which contradicts
the fact that B(G∗) is 3-connected. The same is true for u in (b). In
the last case (c), v is a cut-vertex in G∗, which produces the same
contradiction as in cases (a) and (b).

Figure 12.6: The red edges are in H and the cyan edges are the other edges
in G∗ that are incident with u, v or w.

(v) If H1 ∪ e is a single edge, then H is a cycle with a forest attached to
it. Note that H is not a digon since removal of any edge in a digon
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leaves a single edge and thus H1 ∪ e is a digon. Since H1 has at most
two vertices after the removal of any edge, H in this case has to be a
single edge attached to a loop. Then, H has at most two more edges
incident with it in G∗. But this implies that one of the end vertices of
H1 ∪ e has degree two in G∗, which is impossible.

In conclusion, H is either a loop or digon and thus G∗[E− B] consists of
loops and digons alone.

Now, in G∗, every vertex must have degree at least three, since B(G∗) is
3-connected. Thus, a loop component of E − B must be incident with at
least two non-loop edges, or else G∗ has a cut-vertex. We observe that
the loop is incident with exactly two non-loop edges as otherwise, the
fundamental cocircuit has more than three elements. Similarly, both end
vertices of a digon in E− B are incident with exactly one non-loop edge.
Therefore, we see that G∗ is obtained by ’stringing together’ the loops and
digons in E− B by non-loop edges. Hence, G∗, and consequently G, are
whirly-swirls.
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