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Abstract
The solution to many science and engineering problems includes iden-

tifying the minimum or maximum of an unknown continuous function
whose evaluation inflicts non-negligible costs in terms of resources such as
money, time, human attention or computational processing. In such a case,
the choice of new points to evaluate is critical. A successful approach has
been to choose these points by considering a distribution over plausible
surfaces, conditioned on all previous points and their evaluations. In this se-
quential bi-step strategy, also known as Bayesian Optimization, first a prior
is defined over possible functions and updated to a posterior in the light
of available observations. Then using this posterior, namely the surrogate
model, an infill criterion is formed and utilized to find the next location to
sample from. By far the most common prior distribution and infill criterion
are Gaussian Process and Expected Improvement, respectively.

The popularity of Gaussian Processes in Bayesian optimization is par-
tially due to their ability to represent the posterior in closed form. Never-
theless, the Gaussian Process is afflicted with several shortcomings that
directly affect its performance. For example, inference scales poorly with
the amount of data, numerical stability degrades with the number of data
points, and strong assumptions about the observation model are required,
which might not be consistent with reality. These drawbacks encourage
us to seek better alternatives. This thesis studies the application of Neural
Networks to enhance Bayesian Optimization. It proposes several Bayesian
optimization methods that use neural networks either as their surrogates
or in the infill criterion.

This thesis introduces a novel Bayesian Optimization method in which
Bayesian Neural Networks are used as a surrogate. This has reduced the



computational complexity of inference in surrogate from cubic (on the num-
ber of observation) in GP to linear. Different variations of Bayesian Neural
Networks (BNN) are put into practice and inferred using a Monte Carlo
sampling. The results show that Monte Carlo Bayesian Neural Network
surrogate could performed better than, or at least comparably to the Gaus-
sian Process-based Bayesian optimization methods on a set of benchmark
problems.

This work develops a fast Bayesian Optimization method with an ef-
ficient surrogate building process. This new Bayesian Optimization al-
gorithm utilizes Bayesian Random-Vector Functional Link Networks as
surrogate. In this family of models the inference is only performed on
a small subset of the entire model parameters and the rest are randomly
drawn from a prior. The proposed methods are tested on a set of benchmark
continuous functions and hyperparameter optimization problems and the
results show the proposed methods are competitive with state-of-the-art
Bayesian Optimization methods.

This study proposes a novel Neural network-based infill criterion. In
this method locations to sample from are found by minimizing the joint
conditional likelihood of the new point and parameters of a neural network.
The results show that in Bayesian Optimization methods with Bayesian
Neural Network surrogates, this new infill criterion outperforms the ex-
pected improvement.

Finally, this thesis presents order-preserving generative models and uses
it in a variational Bayesian context to infer Implicit Variational Bayesian
Neural Network (IVBNN) surrogates for a new Bayesian Optimization. This
new inference mechanism is more efficient and scalable than Monte Carlo
sampling. The results show that IVBNN could outperform Monte Carlo
BNN in Bayesian optimization of hyperparameters of machine learning
models.
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Chapter 1

Introduction

In a great many domains, solving a problem involves a ”mission critical”
step in which there is a need to tune some set of parameters of the system
to get the best possible outcome. Often background knowledge is at a
premium and, as a result, this tuning has to be based predominantly on the
results of previous experience with particular settings. How might one ar-
rive at ”optimal”, or at least very good, settings without needing too much
experience? Heuristics and guess-work may be sufficient, but when the
expense of gaining that previous experience is high, the question of where
best to try next becomes important enough to warrant theoretical investiga-
tion in its own right. The resulting field, known as Bayesian Optimization,
has made heavy use of machine learning models, however, it has not been
obvious how to use one in particular despite its general popularity, namely
neural networks. This thesis introduces novel methods using which neural
networks can be leveraged in pursuit of the best samples when tuning a
system.

1.1 Problem Statement

Optimization is the task of finding the maximum or minimum value of
some objective function over the set of allowable inputs. It has been ex-

1



2 CHAPTER 1. INTRODUCTION

tensively studied for for a long time [200, 115, 126], not least because it
has applications in various parts of science and engineering, and many
algorithms have been identified for different types of problem.

When the objective function is differentiable, also known as smooth,
some form of gradient descent is commonly used, which leads to a local
optimum, i.e., while there is a guarantee that the solution found is optimal,
this only holds within a local neighbourhood, not over the entire function
range. A stronger guarantee, of global optimality, can be given in the case
where the function and set of potential solutions are both convex.

Global optimization of non-convex black-box functions has been broadly
studied over the previous decades [171]. Black-box in this context means
that neither there is initially an analytical insight into the function, nor
its derivatives are accessible. Whereas, the non-convexity implies that
the function might possibly have multiple locally optimal points. If such
an objective function is cheap to evaluate, then an extensive number of
function evaluations can be made, and a variety of established approaches
are available.

However, the focus of this thesis is on global optimization of black-box
where the objective function is expensive to evaluate, i.e., the time and re-
sources required for calculation of the target values are non-negligible under
a limited budget. Consequently, in such problems the use of conventional
global optimization methods is very much restricted, if feasible at all. This
gives rise to a family of Sequential Model-based Optimization methods [99] in
which the goal is to find the global optimum of the target function in an
efficient way, i.e., to locate the optimum, while minimizing the total costs of
the optimization. This is known as Efficient Global Optimization [107].

Sequential Model-based Optimization methods have been studied in de-
sign and simulation of engineering experiments, where the target functions
are mostly computationally intensive codes germane to the simulation of
complex systems [58]. A plethora of these applications exist, with examples
ranging from speech recognition [209], robot gait optimization [20, 197, 133]
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and clinched joints enhancement [182] to design of automotive body struc-
ture [155] and sub-orbital space planes [47]. More recently, in the Machine
Learning community, this optimization strategy has been applied for Auto-
mated Machine Learning, where it has proven effective in hyperparameter
tuning of machine learning models [108, 55, 207].

Assumptions about properties of the expensive target function are natu-
rally application dependent. The most simplistic assumption is to consider
the objective function as deterministic, i.e., the output values (observations)
are error free. However, this assumption is often wrong, for example if the
observations are collected from a physical process where the measurements
are not %100 accurate. In such circumstances, it is reasonable to assume the
target function to be stochastic and hence include a noise model to account
for these inaccuracies in the optimization.

When a large number of direct evaluations is not possible, a success-
ful practice is to maintain a cheap-to-evaluate interpolating model of the
expensive objective function [154]. This so-called surrogate or meta-model
acts as a proxy for the costly objective function and entails the most current
assumptions and information about the characteristics of the objective func-
tion. Then, by using the information summarized in the surrogate model,
an acquisition mechanism suggests new points that are directly evaluated
under the expensive target function. Using this acquisition mechanism, the
underlying function is only sampled where a new observation is expected
to contribute in identifying its global optimum.

The general scheme of such an optimization is as follows: at the onset
of the process, the surrogate model is trained based on an initial set of
already-evaluated samples that are selected using a formalized space-filling
strategy. Then, the search proceeds by sequentially 1) finding a new sample,
termed an infill point, 2) evaluating it under the expensive target function
and 3) including the result into the meta-model. The infill point is obtained
by doing a thorough search over the surface of an acquisition function, also
known as infill criterion, which itself is a wrapper around the surrogate
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model.

The simplest form of this optimization scheme uses a deterministic
regression model, such as Support Vector Regressor [59], Radial Basis Function
[56, 178] and polynomial model, also known as a response surface [7]. As
these surrogate models could only provide point estimates for their inputs,
the infill criterion used with them is simply the model function. In this case,
infill points are extrema of the model surface - for instance minima in case
of minimization.

The performance of a sequential model-based optimization method is
very much contingent on its ability to maintain a balance between the local
and global elements of the search. The global element element (exploration)
is the mechanism to obtain knowledge about the characteristics of the
objective function, whereas the local element (exploitation) is the process of
using this knowledge to find the best possible point. In sequential model-
based optimization algorithms with deterministic surrogate, the space-
filling strategy is the only exploratory phase in the whole search procedure.
If not performed properly, the search method may quickly be deceived and
get stuck in local optima. This inherent weakness is due to their inability
to represent uncertainty about the surface of target function. As a result,
they do not possess the very essential characteristics of a global search
method, i.e., having the ability to pay attention to less-explored regions of
the search space [106]. However, if the surrogate model is able to provide
an uncertainty measure with its prediction, then a set of infill criteria can
be defined, which utilizes this uncertainty to drive the exploration.

The Bayesian formalism is the de-facto approach to incorporate uncer-
tainty assumption into modelling. Under this framework, it is possible
to incorporate our knowledge about the characteristics of the objective
function into the meta-model. This can easily be done by defining an a
priori distribution over the possible target functions. The advantages of
using Bayesian models in optimization are three-fold. First, they can cope
with inaccuracies in the target function values, making them suitable for
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modelling both deterministic and stochastic target functions. Second, they
could provide an uncertainty measure with their predictions based on
clear and simple a priori assumptions about the characteristics of the objec-
tive function. Subsequently, a set of theoretically motivated infill criteria
is defined which could potentially balance the trade-off between explo-
ration and exploitation. Last but not least, they can provide an adequate
termination condition for the optimization process.

Methods that use Bayesian surrogate models have constantly appeared
in the optimization literature under various titles of Bayesian Optimization
[15], Efficient Global Optimization [107], Gaussian Process Optimization [61]
and Kriging-Based Optimization [106]. Provided that correct priors are used,
the Bayesian approach to optimization could not only locate the global
optimum of any continuous target function in an asymptotic regime, but
also minimize a deviation from the global optimum for any fixed number
of observations [152]. Due to these advantages, it is assumed that Bayesian
Optimization methods are generally at least as good as, or even superior to,
other global optimization methods especially when the evaluation budget
is limited [151].

This thesis concerns utilizing Neural Networks (NN) under a Bayesian
framework in Bayesian Optimization (BO) in order to enhance its charac-
teristics; Neural Networks (NN) possess several desirable qualities which
make them appealing candidates to be used in Bayesian optimization. For
example, they have time and space complexities that are lower than Gaus-
sian processs (GP), the most commonly used models in BO. Interestingly,
in a Bayesian framework, NNs behave similarly and under certain cir-
cumstances are proven to be equal to GPs [143, 125, 158, 104]. However, as
opposed to GPs whose inference has a simple analytical solution, for Neural
Networks, as well as the majority of other statistical models, conventional
Bayesian inference techniques are either intractable or too complex. Conse-
quently, until recently, methods beyond Gaussian Process have not been
approached by Bayesian optimization researchers. Recent advancements in
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computation power and parallel processing solutions as well as emergence
of more efficient general purpose Bayesian inference techniques, encourage
us to investigate this possibility.

1.2 Motivation

In this section, we first go through the major challenges in the optimization
of expensive-to-evaluate functions and elaborate shortcomings of the clas-
sical Bayesian optimization in face of them. Then, we elaborate our reasons
for using NNs as a potential solution to these challenges.

1.2.1 Challenges of Gaussian Process Optimization

Bayesian optimization algorithms have been shown to be useful in a wide
range of applications from experiments which involve interaction with
the physical world, such as therapeutic spinal electro-stimulation [195], to
the ones that comprised of computationally intensive simulation code, for
example simulation of Computational Fluid Dynamics for aircraft aerody-
namic design [216]. The set of assumptions about the characteristics of the
objective function might vary largely between different applications. In the
simplest scenario, it could be a deterministic, continuous and stationary (
i.e. the covariance between two outputs is invariant to translations in input
space) function defined on a low dimensional domain. However, there
are more complicated cases where the observations from the expensive
function are noisy, also known as aleatoric uncertainty. In a more drama-
tized situation the noise rate might be position dependent, that is referred
to as heteroscedasticity. It is possible that the continuity assumption is
violated, for example if the underlying objective function is from the class
of neural networks or regression trees. The stationarity assumption might
not be applicable and the covariance structure might change depending
on the location in the input space, for example in the optimal design of
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NASA rocket booster [73]. Last but not least, the objective function might
be defined on a high dimensional domain.

A desirable Bayesian optimization method should be able to cope
with the above-mentioned complications while keeping the model build-
ing/update cost reasonably lower than the cost imposed by evaluating the
underlying objective function. Classic Bayesian optimization, i.e., Bayesian
optimization with an Expected Improvement (see section 2.4.3) infill criteria
and Maximum likelihood inference for the Gaussian Process, is unable to
overcome most of these difficulties. It also contains some problems that are
inherent to its own model structure. In the following, a brief explanation is
given to some of these problems and their state-of-the-art workarounds.

As a non-parametric model, one of the most obvious shortcomings
of Gaussian Process is the computational cost of performing inference.
Exact inference in a Gaussian Process requires inversion of the covariance
matrix which, using standard methods, scales cubically with the number
of observations. If the covariance function is parametrized, as it usually is,
optimization of the (hyper)parameters involves inversion of an extended
covariance matrix with each new observation. This is very unfavourable
in the efficient global optimization realm as the computational cost of
model-fitting soon exceeds the cost of evaluating the objective function and
makes the rest of optimization inefficient. A wide range of approximating
methods has been introduced to address this problem including using
subset of data [188] sparse approximations [42, 64, 213, 172, 103, 212, 53],
low-rank and sparse covariance functions [145, 17, 87], variational inference
[199, 82, 123], distributed learning [35, 140] and random feature expansions
[33, 174]. Although efficient, these solutions are approximates methods,
and therefore utilizing them in the optimization framework adds a new
source of inaccuracy to the surrogate model.

In Bayesian optimization, exploitation and exploration are performed
by looking at regions with low prediction mean and high prediction vari-
ance, respectively. A major problem with classical Bayesian optimization is
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that it is biased towards exploitation rather than exploration. The problem
has roots in the way that the GP underestimates the prediction variance,
whose calculation includes the assumption that covariance values are in-
dependent of model output. However, when parametrized covariance
functions are used, this assumption is violated and the model parameters
(covariance values) are tied to the model output via tunable hyperparame-
ters. Furthermore, values for these hyperparameters are usually computed
in the light of data by maximizing a (possibly) multi-modal likelihood. All
these defects result in a biased variance that may even worsen when the
dimensionality of the model increases.

To obtain a robust and unbiased variance in a Gaussian process, one
can either consider a fully Bayesian method, define priors and perform
sampling in the hyperparameter space, or carry out resampling over the
observation set. Despite their effectiveness, Bayesian optimization algo-
rithms that use these techniques are less efficient than the classic version as
they impose the overhead of creating multiple Gaussian processes.

Many problems contain non-stationary objective functions where the
smoothness varies across the input domain. However, classical Bayesian
optimization is not able to fully model this behaviour, as vanilla Gaussian
process, GP with maximum likelihood estimate over its hyperparameters,
uses a stationary covariance function in which the value of hyperparam-
eters (length scales) are set for the entire search space. Solutions to this
problem usually end up with multiple local Gaussian processes defined in
either the hyper-parameter space or the underlying search space. Need-
less to say, performing inference for several additional Gaussian processes
at each search step of the Bayesian optimization drastically reduces the
efficiency of the method. Moreover, omitting the possible discrepancies
between these local Gaussian processes might require additional effort.

Bayesian Optimization is primarily designed to work with deterministic
objective functions. However, it is possible that observations gathered from
a physical environment are polluted with noise. When the noise rate is
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constant throughout the search space, Bayesian optimization is able to
handle it with a small modification in its infill criterion [91]. However, this
condition does not always hold; in many applications the noise variance is
a function of the input data, but GPs can only deal with Gaussian white
noise. The noise variance is mostly treated as a hyperparameter. Hence,
the solution is similar to the ones for input dependent smoothness, e.g.,
in [112] a Gaussian process prior is used to model noise rate variations
over the search space. This approach is advantageous because it can be
integrated in any version of a Gaussian process although it imposes some
computation overhead to the expensive optimization steps.

1.2.2 Why Neural Networks

Neural Networks (NN) are powerful function approximators with suc-
cessful applications in a wide range of machine learning (ML) tasks, such
as image classification [48, 79], visual recognition [78, 69, 215, 1], speech
recognition [75, 74] and sequence modelling [28]. Based on approxima-
tion theory, any continuous function defined over a compact space can be
approximated to arbitrary accuracy using standard feed-forward neural
networks [32, 88] with a finite number of parameters, provided that the
selected architecture for the neural network has enough expressive power.

Regression models such as random forests [31, 130, 66] and other en-
semble methods [146] have the ability to provide uncertainty with their
prediction. However, this uncertainty is rather heuristic, whereas the
Bayesian framework provides a principled way to deliver the same quality.
A Bayesian Neural Network is built by defining a prior over the weight
space of a feed-forward neural network and then updating it in the light of
observations.

Training a neural network usually consists of finding a single neural
network (specified by the weights of the connections between neurons) able
to represent the available data to sufficient accuracy. However, in a Bayesian
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treatment, the goal is instead to infer a distribution over all possible models
that express the available observations equally well and whose parameters
comply with the prior assumptions. The term Bayesian neural networks refers
to a set of neural networks sampled from this distribution. The connection
between neural networks with random parameters and Gaussian processes
is well-established, and the asymptotic equality of the posterior distribution
represented by a fully connected neural network and Gaussian process is
proven in the limit as the width or depth of the network goes to infinity
[125, 143, 156]. Despite this similarity, neural networks have some desirable
properties that could give them an advantage over Gaussian processes in
building potentially more capable Bayesian optimization methods.

To begin with, as opposed to Gaussian processes (in which the num-
ber of parameters grows with the size of training set), neural networks
have a fixed set of parameters. Hence, their inference time scales only
linearly with the number of observations. Moreover, in neural networks the
under-estimated variance problem, which was previously mentioned as
being present in maximum-likelihood Gaussian processes, is easily rectified
by applying Bayesian inference method under appropriate assumptions.
Using Bayesian methods in neural networks leads to an expressive family
of distributions with a rich multi-modal posterior. Last but not least, with
neural networks it is possible to incorporate background knowledge, about
the specifications of the problem, into the design of the model architectural.
For example, the locality and hierarchical structure of the correlations in
images suggest that a convolutional layer [124] is a better choice than a
fully connected layer in an image classification problem. Accordingly, in
circumstances where the noise (aleatoric uncertainty) and smoothness (co-
variance structure) are functions of the input (they are position dependent),
this could potentially be included into the neural network architecture and
addressed using only a single model.
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1.3 Research Objectives

The overall goal of the work presented in this dissertation is to enrich the
Bayesian Optimization framework by introducing algorithms that entail
potential solutions to the problems imposed by using Gaussian processes
in classical Bayesian Optimization. This research proposes several Bayesian
optimization methods in which Neural Network models are used as a
main or complementary component of the algorithm. The overall goal of
this study requires the fulfilment of the following intermediate research
objectives:

1. Developing a new Bayesian Optimization method with a computational
complexity lower than and a performance which is competitive to classical
BO’s.

The objective of this work is to replace the GP surrogate of the BO
with neural network-based alternatives without compromising its
performance. The direct implication of replacing Gaussian processes
with Neural Network-based models is reducing the computational
complexity of the surrogate building process. Moreover, since Gaus-
sian process priors are quite different from the ones represented by
Neural Networks (with finite number of hidden units), we expect
the new Bayesian Optimization method to behave differently from
their Gaussian process-based counterparts and aim at studying their
differences.

2. Developing a fast and simple neural network -based Bayesian Optimization
method with an efficient surrogate building procedure.

Despite the theoretical advantages of Bayesian Neural Networks over
Gaussian processes in terms of computational and space complexity,
in practice the efficiency of their inference is highly dependent on
their inference method. Traditionally, Markov Chain Monte Carlo
(MCMC) sampling methods are the baseline Bayesian inference tech-
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nique used in learning Bayesian neural networks. However, sampling
methods are known to be slow and scale poorly as the dimensional-
ity of the input increases. This work aims at using neural network
based-surrogates with a fast training procedure that still fits into the
Bayesian inference scheme.

3. Enhanceing the classical Bayesian Optimization by improving on its infill
criterion

The objective of this work is to enhance the performance of Bayesian
Optimization via introducing an infill criteria which is more robust to
the possible inaccuracies in the surrogate model. The commonly used
infill criteria, such as Expected Improvement, are defined based on
the the assumption that the most recent surrogate is a correct model
of the underlying function and does not contain any mis-specification
or inaccuracy. This is a strong assumption which is not always valid
and since infill criteria do not include a mechanism to handle such an
inaccuracies, their results are largely affected by them. This problem
was first mentioned in [106] and has been largely ignored for a long
time. In this work, we provide a solution to this problem using an
infill criterion in which, in order to be robust to the inaccuracies in
the surrogate, a neural network model is used to find infill points.

4. Developing a fast and scalable inference for Bayesian Neural Network surro-
gates in Bayesian Optimization.

Variational inference is an optimization-based, scalable, fast alterna-
tive to the Monte Carlo sampling. However, while the latter guaran-
tees an asymptotically exact recovery of the true posterior, the former
provides a biased estimation of the underlying posterior. One of the
factors that affect the quality of approximations produced by a varia-
tional inference method is the assumption that the designer makes
on the family of the underlying distribution. This work presents a
Bayesian Optimization algorithm in which a Variational Bayesian
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neural network is used as surrogate. To be able to get as close as pos-
sible to the posterior, it is assumed that the posterior distribution over
the neural network weights comes from a rich neural network-based
distribution. In this objective, rather than replacing the Bayesian neu-
ral network surrogate of the Bayesian Optimization with a simpler
model, the focus is on improving the efficiency and effectiveness of
the inference method.

1.4 Major Contributions

1. We propose simple and fully Bayesian neural networks as alternatives
to Gaussian processes in the Bayesian optimization framework. The
computational complexity of the surrogate building process in the
proposed BO is significantly lower than classical BO’s. In this work,
we use a sampling-based inference method, namely Monte Carlo sam-
pling, to build Bayesian Neural Networks. The advantage of using
Monte Carlo sampling is that they are able to produce asymptoti-
cally exact approximations to the posterior of the model parameters.
Moreover, this study investigates the possibility of using an ensemble
of Random Neural Networks, also known as Extreme Learning Ma-
chines, as a surrogate and introduces the empirical Expected Improve-
ment as an infill criterion for ensemble-based surrogate models. As
opposed to the analytical Expected Improvement, which is bound to
a certain family of posterior distributions, the proposed infill criteria
can be used with any posterior probability over a function space with-
out deviating from the main definition of the Expected Improvement.
The methods are compared against classical Bayesian Optimization
on a set of benchmark continuous test functions. The experiments
demonstrate that Bayesian optimizations with a Bayesian neural net-
work surrogate perform better than or are at least competitive with
classical Bayesian optimization on a number of test functions.
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2. We propose a Bayesian Optimization algorithm using Bayesian Ran-
dom Vector Functional-link Networks (BRVFL). These are shallow
neural network models with a Bayesian final layer and randomly
set values for the parameters of the first layer. Although the com-
putational complexity of inference in Bayesian Neural Network is
theoretically lower than GP’s, in practise Monte Carlo-based infer-
ence methods are not scalable and need considerable amount of time
to get a decent approximation of the posterior. In this research, we
address this problem by reducing the number of parameters used
in the inference. While in a Bayesian Neural Network we look for
the posterior over the entire parameter space, in BRVFL the inference
is recast as a Bayesian linear inverse problem over a subset of the
model parameters. We describe a simple and effective initialization
scheme for relu BRVFLs. To the best of our knowledge, this is the first
time BRVFLs are used in a Bayesian optimization framework. We
also investigate the possibility of utilizing a Bayesian ensemble of
Random Vector Functional-link Networks formed using theoretically
sound randomization technique. Proposed methods are compared
to the state-of-art Bayesian optimization methods on a set of bench-
mark synthetic functions and hyperparameter optimization problems.
These experiments show that BRVFL-based BO could outperform
state-of-the-art state-of-art Bayesian optimization methods.

3. We propose a new infill criterion based on the notion of maximum
a posteriori estimation. This contribution is based on the idea of con-
ditional maximum likelihood in single-stage optimization [106] and
extends it to enable it to be included in an infill criterion. The pro-
posed acquisition function finds the expected optimum value of the
target function using the Expected Improvement and then locates
new infill points by computing a conditional maximum a posteriori
solution over the joint space of the parameters of a neural network
and location of the optimum. This process reduces the sensitivity
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of the infill criterion to the inaccuracies in the surrogate model. Ex-
periments with Benchmark hyperparameter optimization problems
shows that in Bayesian Optimization methods with Bayesian Neural
Network surrogates the proposed acquisition function is superior to
Expected Improvement.

4. We propose a Bayesian optimization algorithm that uses Implicit
Variational Bayesian Neural Networks (IVBANN) as surrogate. In
this study, we utilize Neural Network-based generative models in a
Variational Bayesian context to approximate the posterior over the
parameters of the Neural Network-based surrogate in BO. Inference
in the proposed surrogate is faster and more scalable than Monte
Carlo sampling-based Bayesian Neural Networks. This is due to the
use of a novel extension to the deep implicit distributions, that we
introduce as Order-preserving Generative Models, with the ability
to preserve order between the input (latent space) and output (un-
derlying) distributions. In Bayesian Optimization, Order-preserving
Generative Models enables us to get better approximations of the
posterior distribution compared to non-order preserving deep im-
plicit distribution. In a broader context, this new inference scheme is
useful where one requires control over how to sample from a neural
network-based generative model. This research shows that the new
Bayesian Optimization method outperforms the state-of-the-art on a
set of benchmark hyperparameter optimization problems.

1.5 Organization of the Thesis

The remainder of the dissertation is organized as follows. Chapter 2 covers
the background work on Bayesian inference and Bayesian Optimization.
Chapter 3 to 5 include the main contributions of this study. The focus
of Chapter 3, 4 and 6 is on the enhancement of Bayesian Optimization
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Figure 1.1: The overall structure of the thesis contributions.

by improving on its surrogate model, whereas Chapter 5 concerns with
achieving this objective by introducing a new infill criterion. The overall
organisation of the contributions of this research is shown in Figure 1.1



Chapter 2

Background and Literature
Review

2.1 Introduction

Bayesian and sample-efficient global optimization has been a subject of
study for many years. In this chapter we review the background material
and existing work in this field. Section 2.2 provides a brief introduction to
sample-efficient global optimization and its building blocks. Section 2.3 is
devoted to the Bayesian modeling and inference for regression and covers
both parametric and non-parametric models. In section 2.4, we introduce
various existing possibilities for the acquisition function as a building block
for Bayesian optimization. Finally, a conclusion is given in section 2.5.

2.2 Bayesian Optimization

For a long time Bayesian Optimization (BO) [150, 107, 163] has been the
de facto approach for solving engineering optimization problems in which
merely evaluating a solution carries significant cost [4, 100, 61, 109, 113,
39, 127, 102]. BO is a sequential strategy to find the global optima of a
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real-valued and possibly non-convex function whose analytical form is not
accessible, hence, it is a black-box and the only way of getting information
about its surface is by sampling. It is assumed that, under limited budget,
every evaluation of the function at suggested locations inflicts non-negligible
costs, therefore, the goal is to find the optimum point with the least num-
ber of evaluations. In practice, we usually limit the number of function
evaluations to a few hundreds and hope to get a near optimum solution.

In general, BO can be formulated as a standard function minimization
problem:

minimize f(x)

subject to x ∈ χ ⊂ Rd
(2.1)

where f : χ→ R is the real-valued and possibly nonlinear non-convex function
defined over a d dimensional space; χ denotes a compact set of Rd and the
ultimate goal of the optimization is to find a global minimum y∗ = f(x∗)

as well as its corresponding minimizer x∗.

To address this problem efficiently, BO methods maintain a distribution
over possible functions and uses this to select new points at which to make
evaluations [151]. They include two essential elements. First, there is a
Bayesian regression model which is built using the history of previously
sampled points and includes our prior assumptions about the characteris-
tics of the target function. This model acts as a cheap-to-evaluate surrogate
of the expensive target function and usually gets updated whenever a new
evaluated point is added to the history. The second element is a so-called
infill criterion or acquisition function which is a heuristic to acquire the next
sampling point. This function is a wrapper around the surrogate model’s
output and serves as a means to automatically balance exploration and
exploitation. In the following sections, we elaborate on these two elements.
First, the Bayesian treatment of statistical models is explained from differ-
ent points of view. Then, the existing infill criteria for these models are
covered.
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2.3 Bayesian Regression

Suppose we have a dataset of the form D = {(xi, yi)}ni=1, xi ∈ χ and yi ∈
R which can also be denoted in compact form as {X, y} where X =

[x1, ...,xn]ᵀ is the n× d the design matrix and y = [y1, ..., yn] is the random
vector of corresponding response values. The goal of regression is to find
a parametrized mapping function f : χ → R that can map input points
to their corresponding observations and also give accurate predictions for
any set of unseen data. To build such a mapping, non-Bayesian methods
only take the existing data into account with no assumption about the
parameters of the prediction model. In a Bayesian approach, however,
presumptions about the values of the mapping parameters are also included
into the model. These presumptions typically consist of simple criteria such
as a preference for smaller over large values for the parameters of the
mapping function. Often it is assumed that observations are noisy and the
data generating process has the following general form

yi = fθ(xi) + ε(xi) (2.2)

where xi ∈ χ is the input vector, fθ(.) is a parametrized function that can
take any linear or nonlinear form, θ ∈ Θ is the set of parameters for f, yi
denotes the function value at xi and ε(.) is the noise function.

2.3.1 Distribution over Parameters

The rationale behind modelling the mapping function is the assumption
that in the absence of noise the data generating process can be precisely
described by a parametrized deterministic function of a certain class. Con-
sequently, if the observations are noisy, the resulted residuals can be assumed
to be independently and identically distributed (i.i.d). A common choice of
error model in this case is zero centred Normal distribution. Hence, output
of ε(.) in 2.2 is independent of its input:

ε(xi) ∼ N (0, σ2
n) (2.3)
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where σ2
n is noise variance. For the sake of simplicity from here on we will

refer to ε(xi) as εi.
In the above scenario, the goal is to find the most probable set of values

for the function parameters. More ideally we might want to compute the
credibility of all possible parameter values w.r.t. observations as well as our
prior preference over possible parameters. To this end, we rewrite equation
2.2 as yi | xi ∼ N (fθ(xi), σ

2
n) by which it is possible to compute the proba-

bility of a single data point, given function parameters and noise variance.
Subsequently, the conditional probability of the whole dataset, viewed as
the likelihood, is computed as the product of individual probabilities:

p(y |X,θ, σ2
n) =

n∏
i=1

p(yi | xi,θ, σ2
n) =

n∏
i=1

1√
2πσ2

n

e
− |yi−fθ(xi)|

2

2σ2n (2.4)

When likelihood is used as credibility measure, the set of parameter values
found by maximizing the equation 2.4 is called maximum likelihood estimate
(MLE).

The model built by MLE can predict the existing dataset well. How-
ever, it does not guarantee that this regression model can produce good
estimations for unseen data. The problem is particularly exacerbated if the
dataset is small. The Bayesian treatment of this problem is to take our prior
assumptions about characteristics of the target function into account. We
have already imposed a part of this assumptions by choosing a specific
class of parametric models. We can take one step further and define a prior
over possible functions. This can be achieved indirectly by imposing a
preference over the model parameters, which usually consists of favoring
smaller parameter values so that the resulted model have a smoother out-
put. To this end, a prior distribution is defined over the function parameters
and is plugged into the model building process through Bayes rule. Having
a prior over parameters, p(θ), we can apply the Bayes formula to compute
their posterior distribution:

p(θ | y,X, σ2
n) =

p(y |X,θ, σ2
n)p(θ)

p(y |X)
(2.5)
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p(y |X) =

∫
θ

p(y |X,θ, σ2
n)p(θ) dθ (2.6)

where p(θ | y,X, σ2
n) is the posterior probability of the parameters, p(θ) is its

prior distribution and p(y |X) is a normalizing constant a.k.a the evidence or
marginal likelihood.

A common choice of prior is a zero mean Normal distribution:

p(θ) ∼ N (0,Σp) (2.7)

where Σp is the covariance matrix for the parameters, with non-diagonal
entries usually set to zero.

If point estimates are satisfactory for the purpose, predictions can
be performed using maximum a posteriori (MAP) model, i.e. finding the
single set of parameters which best represents the data. This can be
found by maximizing the posterior probability over parameter set θMAP =

argmaxθ∈Θ p(θ | y,X, σ2
n). However, the Bayesian way is to take into ac-

count all the posteriori probable models. Hence, for a new input point
like x̂, a probability distribution over possible output values, a.k.a posterior
predictive distribution (or predictive distribution for short), is computed by
integrating out the model parameters:

p(ŷ | x̂,y,X, σ2
n) =

∫
θ

p(ŷ | θ, x̂,y,X, σ2
n)p(θ | y,X, σ2

n) dθ (2.8)

Exact Inference

The availability of closed form expressions for the posterior and predictive
distributions is very desirable as it eliminates the complications of per-
forming numerical or approximate inference methods. Bayesian linear
regression models are the most basic types of Bayesian models. Despite
their limited expressiveness, they have a closed form posterior provided
that a suitable prior distribution is defined over their parameters. This
”proper” prior, a.k.a conjugate, is a distribution that when combined with
the likelihood gives a posterior of the same form. In noise-free linear re-
gression, f is simply a weighted sum of input variables fθ(x) = xᵀθ. In
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case of known noise variance σ2
n and a Gaussian prior, p(θ) = N (µp,Σp),

the parameters of the posterior distribution are computed as follows:

p(θ | y,X, σ2
n,µp,Σp) ∝ p(y |X,θ, σ2

n)p(θ) (2.9)

µ = Σ(σ−2
n X

ᵀy + Σ−1
p µp) (2.10)

Σ = (σ−2
n XX

ᵀ + Σ−1
p )−1 (2.11)

where µ and Σ denote the posterior mean and covariance matrix, respec-
tively. Consequently, the predictive distribution is also analytically avail-
able:

p(ŷ | x̂,y,X, σ2
n) ∼ N (µ(x̂), σ2(x̂))

µ(x̂) = x̂ᵀµ

σ2(x̂) = x̂ᵀΣx̂

(2.12)

The expressiveness of this simple linear model can be increased by
projecting the input space to a higher order feature space using a set of
basis functions. However, in order to have an analytic posterior the bases
are required to be fixed functions, i.e. independent of θ [211]. Therefore,
for the many regression models which do not satisfy this criterion, an
analytically tractable inference method does not exist.

Approximate Inference

In the absence of a closed form posterior distribution function, one could
choose from a large set of posterior approximation methods. In this section,
we will briefly go through some of the most widely used ones applicable to
Bayesian regression models.

One approach to cope with analytically intractable posterior probabil-
ities is to approximate them with a large set of representative samples
[120]. Having a set of n samples drawn from the posterior probability of
the model parameters, the predictive distribution can be approximated as
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follows:

p(ŷ | x̂;y,X, σ2
n) =

∫
p(ŷ | θ, x̂,y,X, σ2

n)p(θ)dθ

≈ 1

n

n∑
i=1

p(ŷ | θi, x̂,y,X)

θi ∼ p(θ | y,X, σ2
n)

(2.13)

To get a representative sample set, sampling methods known as Markov
chain Monte Carlo (MCMC) are applicable. MCMC methods can be applied
to sample from virtually any distribution. However, they are particularly
useful when the distribution density is only available up to a normalizing
constant. This is particularly advantageous in the task of approximating
a posterior probability distribution, as it enables us to do so using only
likelihood and prior probability, disregarding the awkward integral in its
denominator.

A simple yet powerful MCMC method is Metropolis Hastings (MH). In
this algorithm, the representative sample set is produced sequentially by
taking a random walk through the parameter space. The distribution we
want to sample from is usually called stationary or invariant distribution.
The algorithm starts from an arbitrary point. Each step in the random
walk consists of an attempt to move to a new randomly chosen adjacent
point. This new point is generated from a proposal distribution which is
symmetric and usually bell-shaped in order to give priority to small steps
rather than large ones. The transition succeeds if the new point has a higher
relative probability than the current position w.r.t the invariant distribution;
otherwise its success chance depends on how low its relative probability is.
MH algorithm steps are as follows:

The sequence of samples produced by MCMC usually needs some
post processing. First, the initial samples, a.k.a the Burn-in, are not good
representatives of the stationary distribution and should be discarded. If the
proposal distribution has tunable parameters, the Burn-in samples are also
used to tune them. Second, successive samples resulting from the random



24 CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

Algorithm 1: Metropolis Hastings
Input: number of samples M , starting point θ0, proposal distribution

Q(.), an unnormalized posterior distribution function p(.)
Result: a sequence of samples Θ

set Θ←− {}
set θ ←− θ0

for i =1,...,M do
sample θ′ ∼ Q(θ′ | θ)

with probability min(1, p(θ
′|y,X,σ2

n)
p(θ|y,X,σ2

n)
)

set θ ←− θ′

set Θ←− {θ}
end

walk are not independent, whereas we need i.i.d draws from the posterior.
To impose the i.i.d assumption a common practice is to only consider every
kth sample and discard the rest.

The simplicity of MH comes with a price. It has a very slow conver-
gence speed, staying in one region for a long time and producing highly
correlated samples. This poor mixing as well as low acceptance rate are
due to its random walk behavior which can be intensified if the posterior
probability is high dimensional or has a complicated multivariate density
function. An example of such a behavior is shown in Figure 2.2 where
MH is applied to draw 1000 samples from a ring-shaped distribution (see
Figure 2.1). As can be seen, as a result of poor mixing, MH has drawn
many samples from the vicinity of each position before moving to a new
region. Figure 2.3 corresponds to the sample values of the same sample-set
across each dimension. It clearly shows how the low acceptance rate has
caused the values of each variable to stay steady for long periods during
the simulation. It is also worth mentioning that the cost per independent
sample for MH is O(n2) [86], where n denotes the number of observations,
which could be considered high for a method with all these drawbacks.
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Figure 2.1: (a) A ring-shaped toy distribution and (b) 1000 samples directly
drawn from it via Inverse Transform Sampling. The sample set is a very
good representative of the underlying distribution. However, this is only
possible if the inverse of the underlying cumulative distribution function
(or a good approximation to it) is available.

A solution to MH shortcomings is presented in Hamiltonian Monte Carlo
(HMC) [157, 10, 43] where the random walk behavior is greatly reduced in
favour of deterministic, gradient-guided movements with q physical inter-
pretation originating in Newton’s law of motion. Furthermore, in HMC
the cost per independent sample is O(n5/4). HMC samples by imitating the
movement of a frictionless puck that moves freely over an uneven surface.
In Hamiltonian dynamics, a particle is defined by its position θ and mo-
mentum r. Movement is driven by the particle’s potential U(θ) and kinetic
energies K(r) which are summed up in the Hamiltonian function H(θ, r) to
form the particle’s total energy H(θ, r) = U(θ)+K(r). This quantity is con-
stant and known. As the puck moves through the time, the changes to its
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Figure 2.2: Set of 1000 samples, including 100 burn-ins, generated by MH
from the toy ring-shaped distribution of the Figure 2.1. The high rejection
rate has caused the sampler to cover only a small portion of the state-space
and produce many overlapping samples.

potential and kinetic energies are governed by the Hamiltonian equations:

d

dt
θi =

∂H(θ, r)

∂ri
=
∂K(r)

∂ri
d

dt
ri =

∂H(θ, r)

∂θi
=
∂U(θ)

∂θi

(2.14)

where θi is the ith component of θ.
The “Hamiltonian” can be considered as the negative log of a joint

probability distribution over position and momentum, and HMC uses the
Hamiltonian dynamics to sample from this distribution:

p(θ, r) = e−H(θ,r) (2.15)
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Figure 2.3: Sample values drawn using MH from a ring-shaped distribution
across each dimension. (Left) Kernel density plot of the sampled values
(Right) Sequence of values drawn during the simulation. It is clear that the
chain is poorly mixed, for example, x values are concentrated around 6.5
to 7.5 (upper left) and have not changed for long periods of time (upper
right). Similar phenomenon could be seen in y values.

In sampling from a posterior probability, p(θ | D), the potential energy
function, U(.), is proportional to the target probability density function
i.e. minus the log probability density of the posterior distribution over θ,
whereas the kinetic energy function, K(.), represents the negative log of an
auxiliary distribution function defined over the momentum. The kinetic
energy function is selected from a set of possible options depending on the
characteristics of the target distribution [10]. This choice has a significant
effect on the properties of the sampler [132]. The ’vanilla’ HMC uses an
Euclidean-Gaussian Kinetic energy:

K(r) = rᵀM−1r + log |M |+ const (2.16)

whereM , the mass matrix, is usually an identity matrix. The Hamiltonian
in the ’vanilla’ HMC is of the following form

− log p(θ, r) ∝ H(θ, r) = − log p(D | θ)p(θ) +
1

2
rᵀM−1r (2.17)

where p(θ, r) denotes the unnormalized joint probability of position and
momentum. Another popular choice of the energy function is the Riemannian-
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Gaussian energy [67, 68] which is more suitable if the target distribution has
a non-Gaussian form.

HMC has two important parameters, namely ε and L, that control the
step-size and trajectory length of each move, respectively. Similar to MH,
the algorithm starts from an arbitrary position θ0. At the onset of each
iteration, the momentum, which represents the direction of the next move,
is randomly drawn from a Gaussian r ∼ N (0,M ). Then, to reach the next
proposal point, L steps are taken by sequentially updating the momentum
by moving in the direction of the gradient of log posterior. Finally, an MH
accept/reject step decides the acceptance of the new proposal.

Pseudocode for HMC is presented in Algorithm 2 where OθU(θ) de-
notes the negative gradient of the logarithm of posterior probability of
θ. In the algorithm 2, the set of actions between two half-step changes to
the momentum variable inclusive are leapfrog steps. A single leapfrog step
consists of a half-step update to the momentum, followed by a full-step
update to the position variable and finally another half-step update to the
momentum variable:

r = r − ε

2
OθU(θ) (2.18)

θ = θ + εr (2.19)

r = r − ε

2
OθU(θ)

Elimination of the random walk behavior gives the HMC the power to
produce distant proposals. However, its efficiency is highly dependent on
a good choice of step size, ε, and trajectory length, L, which must be hand
tuned. This can be tricky as well as tedious and usually requires some
initial experiments and a bit of expertise. Moreover, it is problem-specific.
Therefore, any change to the shape of posterior probability density function
(e.g. due to availability of new observations) invalidates the currently
selected values of ε and L. Nevertheless, trajectory length has a significant
impact on the efficiency of the sampler – a too small value for L leads to
a highly correlated chain, whereas a too large value makes the sampling
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Algorithm 2: Hamiltonian Monte Carlo
Input: number of samples M , step size ε, trajectory length L, starting

point θ0, potential energy function U(.)

Result: a sequence of samples Θ

Set Θ←− {θ0}
for i =1,...,M do

sample rcurrent ∼ N (0,M )

set θcurrent ←− θi−1, θproposal ←− θi−1, rproposal ←− rcurrent
/* A half step for momentum at the begining */

rproposal ←− rproposal − ε
2
OθU(θproposal)

/* full steps for position and momentum */

for j=1,...,L do
θproposal ←− θproposal + εrproposal

if j < L then
rproposal ←− rproposal − εOθU(θproposal)

end

end
/* A half step for momentum at the end */

rproposal ←− rproposal − ε
2
OθU(θproposal)

/* MH accept/reject step */

With probability min
(
1,

p(θproposal,rproposal)

p(θcurrent,rcurrent)

)
:

Set θcurrent ←− θproposal
Set Θ←− Θ ∪ {θcurrent}

end

process unreasonably long by taking extra needless steps.

A solution to this problem is given by No U Turn Sampler (NUTS) [86]
in which the trajectory length is adaptively set. To this end, rather than
setting L to a prespecified number, the leapfrog steps are taken up until
the trajectory loops back on itself. More precisely, starting from a specific



30 CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

Figure 2.4: Example of incremental trajectory building process of NUTS in
a 2d space (figure adopted from [86]).

initial position, the trajectory is built incrementally by randomly flipping
the sign of gradient and taking 2j leapfrog steps, where j denotes the
increment number, i.e 2j steps are added to the beginning or end of the
current trajectory. This imitates going back or forth through the fictitious
time by 2j units per increment. The process is stopped when the distance
between the beginning and end of the trajectory does not increase any more.
This is detected by monitoring the derivative of half the squared distance
between the two ends of the trajectory w.r.t time, which is in turn equal to
the dot product between the momentum vector and the vector from the
initial position to the current position:

d

dt

(θcurrent − θ0)2

2
= (θcurrent − θ0)

d

dt
(θcurrent − θ0) = (θcurrent − θ0)rcurrent

(2.20)

The set of traversed states are leaves of an implicit balanced binary
tree which is built in a depth first manner (see Figure 2.4). The proposal
position is then drawn with uniform probability from this set of candidate
positions. To reduce the memory usage only a subset of these states are kept
in the memory. The proposal position is then drawn with uniform proba-
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Figure 2.5: Set of 1000 samples, including 100 burn-ins, generated by NUTS
from the toy ring-shaped distribution of the Figure 2.1. Compared with
MH, the sample set produced by NUTS is a much better representative of
the underlying distribution.
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Figure 2.6: Sample values drawn using NUTS from a ring-shaped distri-
bution across each dimension. (Left) Kernel density plot of the sampled
values (Right) Sequence of values drawn during the simulation. The result-
ing chain is well-mixed (samples are iid), thanks to the NUTS’s ability to
adaptively set the trajectory length and use the gradient information.

bility from this set of candidate positions provided that their probability
is higher than a certain amount. NUTS is capable of producing arbitrarily
long trajectory lengths which drastically reduces the dependence between
consecutive samples (see Figure 2.5 and Figure 2.6).

MCMC methods are able to produce asymptotically exact approxima-
tions, however, they are computationally expensive. Even HMC, in which
the sampling is guided by gradient information, could become impracti-
cally slow in data intensive problems, simply because evaluation of the
gradients of the potential energy requires going through the entire dataset.
Although it is possible to obtain noisy estimates of the gradients via sub-
sampling [25, 5, 23], the resulting approximation could be non-negligibly
inaccurate [9].

A widely used alternative strategy to MCMC sampling is Variational
Inference (VI) [203, 12, 60, 176]. Unlike MCMC, which results in an empirical
distribution, in VI the approximating distribution, also known as Variational
Distribution, is selected from a known family of densities defined over
the latent space. Restricting the space of approximating solutions to a
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certain family makes it possible to represent the inference as a variational
optimization problem, i.e. optimization over a functional space, where the
goal is to find the closest member of the family to the true posterior. By far,
the most popular closeness measure, also called variational objective, used in
VI is the Kullback-Leibler (KL) divergence. The VI problem is defined as:

q∗(θ) = argmin
q(θ)∈Ω

KL[ q(θ) | p(θ | D) ] (2.21)

where q(θ) denotes the variational distribution, Ω is the restricted family of
distributions, p(θ | D) is the posterior probability of the model parameters
and KL[ . | . ] is the KL divergence:

KL[ q(θ) | p(θ | D) ] =

∫
q(θ) log

q(θ)

p(θ | D)
dθ (2.22)

= Eq(θ)[ log q(θ)− log p(θ | D) ] (2.23)

From (2.23) it is clear that minimizing the KL distance of (2.21) requires
evaluation of the expectation of log p(θ | D) under the variational distribu-
tion. However, this evaluation entails computing the marginal likelihood
(2.5) which we have deemed to be impractical (otherwise we would have
been better off using an exact inference method). Fortunately, VI has a
workaround to this problem.

Let us rewrite the KL in (2.22) with a minor change: we multiply the
numerator and denominator of the fraction by the marginal likelihood
p(D):

KL[ q(θ) | p(θ | D) ] =

∫
q(θ) log

q(θ)

p(θ | D)

p(D)

p(D)
dθ

=

∫
q(θ) log

q(θ)

p(θ,D)
dθ + log p(D)

then we can rearrange it to the following form:

p(D)− KL[ q(θ) | p(θ | D) ] =

∫
q(θ) log

p(θ,D)

q(θ)
dθ (2.24)
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Clearly, the negative of the right hand side in (2.24) is equal to the KL
distance between the variational distribution and the posterior, albeit up to
a constant. Therefore, rather than a direct minimization of KL, the same
results can be achieved by maximizing the right hand side of (2.24) which
is a lower bound to the marginal likelihood, hence, known as the Evidence
Lower Bound (ELBO):

p(D) > L(q,D) =

∫
q(θ) log

p(θ,D)

q(θ)
dθ (2.25)

= Eq(θ)[log p(θ,D)− log q(θ) ] (2.26)

= Eq(θ)[ log p(D | θ)− Eq(θ)[ log q(θ)− log p(θ) ] ] (2.27)
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Figure 2.7: Incremental minimization of the KL distance between a Gaus-
sian variational distribution and a ring-shaped target distribution.
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Figure 2.8: Incremental minimization of the KL distance between the varia-
tional distribution and a ring-shaped target distribution. The variational
distribution is a Gaussian Mixture density with three components.

Restricting to a class of variational distributions results in a biased estima-
tion, however, this is the cost we pay to achieve tractability. As suggested
in [11] the variational distribution can be specified in two possible ways.
First, it can be chosen from the family of parametric distributions, qω(θ).
In this case, the ELBO is a function of ω. If the variational distribution is
chosen from conditionally conjugate exponential family, then the expecta-
tions Eqω(θ)[ . ] are analytically available [218], otherwise any off-the-shelf
optimization technique, such as gradient-based methods, can be used to
optimize the ELBO w.r.t the parameters of the approximating distribution,
L(ω,D).

Some of the most widely used parametric variational distributions con-
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sist of Multivariate Gaussians [136, 161, 118, 196, 114, 160], Finite Mixture of
distributions [144, 29, 204, 149, 65], and the ones based on invertible Neu-
ral networks, a.k.a Neural Flows such as models built using Normalizing
Flow [180, 137, 8, 119], Masked Autoregressive Flow [165], Block Neural Au-
toregressive Flow [34] and Neural Autoregressive Flow[90]. In the end, it is
worth mentioning that VI could also be performed using implicit genera-
tive models [153, 198, 166]. Figure 2.7 and Figure 2.8 show the VI process
using a Gaussian and Gaussian mixture model variational distributions,
respectively.

2.3.2 Distribution over functions

Another way of looking into the regression model of equation 2.2 is to
assume that the mapping function f does not have enough expressiveness.
Therefore, the function’s output is polluted by modelling error which is
not independent any more [30, 91]. This dependence shows up in the error
term in the form of off-diagonal elements of the covariance matrix:

ε(X) ∼ N (0,K + σ2
nI) (2.28)

where σ2
n is the noise variance; I is identity matrix; K is a n× n covariance

matrix with elements ki,j representing the correlation between modelling
errors in xi and xj input points. The kij values are computed using a
parameterized covariance function k(., .).

Having two parameterized terms in the regression model is undesirable
and makes the model-building task complicated. Furthermore, to the extent
that the error is modelled accurately, using a simplistic mapping function
(e.g. replacing it with a constant) suffices. In this way, we can remove the
mapping function and express the regression model fully in terms of the
error model y ∼ N (0,K + σ2

nI). Alternatively, the same result is obtained
by considering a GP prior over a set of n latent variables f = {f1, ..., fn}ᵀ

corresponding to the function value for the input points X as well as an
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independent likelihood:

p(f |X) ∼ N (0,K) p(y | f) = N (f , σ2
nI) (2.29)

Subsequently, the likelihood can be written as follows:

p(y |X,θ, σ2
n) =

1

(2π)
n
2 | K + σ2

nI |
1
2

exp(−1

2
yᵀ(K + σ2

nI)−1y) (2.30)

in which σ2
n is the noise variance and θ is the vector of the parameters of

the covariance function. In the absence of prior knowledge about these
parameters, a good estimate for their values is given by maximizing the
likelihood function. Equivalently, log-likelihood can be used for the same
purpose while numerically being more convenient:

log p(y |X,θ, σ2
n) = −n

2
log(2π)− 1

2
log(|K + σ2

nI|)−
1

2
yᵀ(K + σ2

nI)−1y

(2.31)

Making predictions for a new set of m data points, say X̂ , starts by
calculating its joint probability with previously observed points p(y, ŷ):[

y

ŷ

]
∼ N

(
0 ,

[
K + σ2

nI k

kᵀ K̂ + σ2
nI

])
(2.32)

This is equal to forming an augmented covariance matrix by computing
k, the covariance between error at new and old data points, as well as K̂,
the covariance matrix for new data point themselves. The only unknown
in the equation 2.32 is ŷ, i.e the vector of function values for the new data
points. Substituting the augmented covariance matrix in equation 2.31, an
augmented log-likelihood is acquired.

The maximum of this function and its curvature give us the mean and
variance for predictive distribution respectively. To this end, we take the
first and second derivatives of the augmented log-likelihood w.r.t ŷ, set
them to zero and solve for ŷ [106]. Consequently, the resulting equations
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for the parameters of the Gaussian predictive distribution are computed as
follows:

µ̂ = k̂ᵀ(K + σ2
nI)−1y

Σ̂ = K̂− k̂ᵀ(K + σ2
nI)−1k̂

(2.33)

where µ̂ and and Σ̂ are predictive mean and covariance; K̂ is a m × m

matrix covariance between points in X̂ ; k̂ is a m× n matrix in which each
k̂ij is k(ε(x̂i), ε(xj)), x̂i ∈ X̂,xj ∈X . In practice, Cholesky decomposition,
an efficient method for solving systems of linear equations, is applied to
simplify the matrix inversions of equation 2.33. The resulting algorithm is
shown below [211].

Algorithm 3: Predictive mean, variance and log-likelihood for Gaus-
sian Process Regression

Input: X , y(observations), k(.,.) (covariance function), σ2
n (noise

variance), x̂ (new data point)
Result: µ̂ (predictive mean), σ̂2

n (predictive variance), logp
(log-likelihood)

Set L = cholesky(K + σ2
nI)

Set α = Lᵀ \ (L \ y)
Set µ̂ = k̂ᵀα

Set v = L \ k̂

Set σ̂2 = k(x̂, x̂)− vᵀv

Set log p(y |X) = −1
2
yᵀα−

∑
i logLii − n

2
log 2π

return µ̂, σ̂2, log p(y |X)

Covariance Functions

The performance of a GP is highly affected by the choice of its covariance
function. However, when the mean is set to zero, as in our case, the
covariance function is the only element that specifies a GP and carries our
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assumptions about the behavior of the underlying function. A multitude
of covariance functions exist in the literature. Here, we follow [211] to
highlight a few of them.

One of the most widely used covariance functions is the squared expo-
nential(SE), which is a stationary covariance function of the form

kSE(x,x′) = θ0 exp(−r2(x,x′)), r2(x,x′) =
d∑
i=1

(xi − x′i)2

2θ2
i

(2.34)

where xi is the value at ith dimension of the vector x, θ0 ∈ R+ is the scaling
factor denoting the variance of the function values and θi ∈ R+ is the
characteristic length scale of the ith dimension, specifying the smoothness
of the function in that direction. Due to having a separate length-scale
per dimension, this covariance function allows for automatic relevance
determination (ARD), however, setting θi = θj, 0 < i, j ≥ d leads to the
isotropic version of SE kernel. This covariance function is unrealistically
smooth and not appropriate in many applications. This has given rise to a
generalization of this kernel, namely Matérn class, with further parameters
that provide more control over the function smoothness:

kMatern(x,x′) = θ0
21−ν

Γ(ν)

(√
2νr(x,x′)

)ν
Kν

(√
2νr(x,x′)

)
(2.35)

where Kν(.) is the modified Bessel function and ν is a positive smoothing
parameter. Similar to SE covariance function, depending on how we treat
the length-scales, Matérn class kernels can be either isotropic or ARD. From
this family the ones with ν = 3/2 and ν = 5/2 are more frequently used in
the machine learning community:

kMatérn3/2
(x,x′) = θ0

(
1 +
√

3r(x,x′)

)
exp

(
−
√

3r(x,x′)

)
(2.36)

kMatérn5/2
(x,x′) = θ0

(
1 +
√

5r(x,x′) +
5

3
r2(x,x′)

)
exp

(
−
√

5r(x,x′)

)
(2.37)
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Figure 2.9: Samples from zero-centered GP priors with a) SE b) Maternν=3/2

and c) Maternν=5/2 covariance functions. GPs with SE covariance func-
tion entail much stronger smoothness assumption than the ones that use
Maternν=3/2 or Maternν=5/2. The degree of smoothness provided by SE is
very high, whereas Matern covariance functions are used to model func-
tions that are less smooth.

Another extension to the SE covariance function is the Rational Quadratic
kernel

kRQ = (1 +
||x− x′||2

2αθ
) (2.38)

in which α is the scale mixture parameter, and θ ∈ R+ is the characteristic
length-scale.

2.4 Infill Criteria

The BO task consists of iteratively building a regression model w.r.t the
observed data, finding a new promising point using the regression model,
evaluating the new point with the expensive objective function and finally
adding it to the set of observed points. Thus far, we have reviewed the
methods to build a Bayesian regression model. The next step is to define a
basis, a.k.a infill criterion, upon which the next sampling point is selected.
As we deal with Bayesian models, infill criteria can benefit from using
parameters of a predictive distribution instead of only point estimates. This
is mostly useful to create a balance between local and global search, a.k.a
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Figure 2.10: Samples from the posterior of a zero-centered GP with a) SE
b) Maternν=3/2 and c) Maternν=5/2 covariance functions given a set of five
points from a toy sinusoidal function.

exploitation and exploration. Below we follow author [106] and [58] to
explain some of the well-known infill criteria. Unless specified, all these
functions are based on the assumption of a Gaussian predictive distribution.

2.4.1 Statistical Lower Bound

Recalling that our problem is a minimization problem, the next point to
sample can be simply found by minimizing the sum of prediction mean and
standard deviation. To better control the rate of exploration we can weight
the standard deviation with a positive coefficient. The resulting criterion,
the Statistical Lower Bound a.k.a Upper Confidence Bound (UCB), has the
following form:

UCB(x) = µ(x)− k σ(x), k > 0 (2.39)

in which µ(x) denotes the (mean) prediction of the regression model at
x, σ(x) is its standard deviation, and k controls the exploration/exploitation
rate. By setting k to a small value, the next point is very likely to be close to
the previous ones. On the other hand, setting k to large values makes the
effect of µ(x) negligible, consequently, the search becomes similar to pure
exploration. Using this criterion, the important question is how to pick a
proper value for k. Unfortunately, this is not clear in advance and depends
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Figure 2.11: From left to right three consecutive snapshots of optimization
over a one dimensional sinusoidal function using UCB criterion. The upper
row shows the underlying function (dashed black line), available observa-
tions (red points), the mean (solid red line) and 2 times standard deviation
(gray area) of the GP and the next points to sample from, proposed by
UCB’s with various ks. The lower row shows the surface of UCB formed
using each of four k values.

on the accuracy of the error estimate which is varying during the search
process. Figure 2.11 shows how the value of k affects the distance between
the next sampling point and the best observation so far. In this example,
the proposals produced by four values of k are shown. When k = 0.5 the
next proposal is exactly the same as the previous best.

2.4.2 Probability of Improvement

It is reasonable to measure the quality of a candidate point by comparing it
to the best observation found so far, xmin. If the function value in a given
point is lower than the best observed value so far, f(x) < ymin = f(xmin),
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then sampling at this point leads to an improvement with its magnitude
being the difference between predicted function value for the point and
observed value of the best so far I(x) = ymin − µ(x).

A more flexible approach is to replace ymin with a user defined target
value T ≤ ymin. Subsequently, the probability of improvement (POI) is
computed w.r.t this target value:

POI(x) = p(I(x) > 0) = Φ
(
T−µ(x)
σ(x)

)
(2.40)

where Φ(.) is the Gaussian cumulative distribution function, T is the target
value, and µ(.) and σ(.) are the regression model’s predictive mean and
standard deviation for a given point x. A target value can be set w.r.t the
best observation so far:

T = ymin − α|ymin| , α ≥ 0 (2.41)

in which α controls the minimum amount of improvement, e.g. α = 0.5

Figure 2.12: Probability of Improvement (α = 0

).

means search is performed amongst points with at least 50% improvement.
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Setting the value of T plays an important role in the search process.
Small values produce a bias towards local search where a multitude of infill
points are samples from around the best point before starting to move to the
global search. On the other hand, if T is set to a large value, the algorithm
spends most of its time doing a global search and fails to fine-tune its
solutions. One way to cope with this problem is to use several values for T
and perform multiple parallel searches per iteration, each corresponding to
a different target value. Target values must be set so the spectrum of local
and global search is considered. This results in a good combination where
the searches that use large target values suggest globally good solutions
and the ones with low T fine-tune solutions around these points. Although
this solution might work well, similar to the previous infill criterion, its
dependence on a hand-tuned parameter is a downside which we try to
avoid. Figure 2.12 shows the area whose integral is the POI in the point
x = −0.16.

2.4.3 Expected improvement

Parameter free criteria are always preferable to the heuristic ones with
hand-tuned parameters. This is perhaps the reason behind popularity of
the expected improvement (EI) criterion. Given the regression model’s
prediction mean µ(x) and variance σ(x) at a given point, x, the likelihood
of improvement I(x), according to its definition in the previous section,
has the following probability distribution function [15]:

1√
2πσ

exp
(
−ymin−I(x)−µ(x)

2σ2
n

)
(2.42)
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Integrating over this density function gives us the EI equation:

EI(x) = E[min(0, ymin − µ(x))]

=

∫ ymin

−∞
[ymin − µ(x)]p(µ(x))dµ(x)

=

∫ +∞

0

I(x).
(
−ymin−I(x)−µ(x)

2σ2
n

)
dI(x)

= σ(x)[uΦ(u) + φ(u)]

u =
ymin − µ(x)

σ(x)

(2.43)

where µ(x) and σ(x) are prediction mean and standard deviation at x,
respectively; p(.) is a normal distribution N ( µ(x), σ(x) ); I(x) is improve-
ment; Φ(.) and φ(.) are normal cumulative distribution and density func-
tions respectively. Using equation 2.43, the next sampling point is selected
by maximizing the EI. Figure 2.13 demonstrates three successive steps of
GPO over a one-dimensional toy function. The top row depicts changes to
the mean and variance of the GP surrogate along with the observed and
sampling points proposed by EI, POI and SLB. The bottom row shows the
corresponding EI surfaces.

Finding the global minimum is guaranteed by utilizing EI [106]. More-
over, it is a parameter free criterion, as opposed to the criteria presented
previously. It also provides a natural termination condition for the opti-
mization – stop when the expected improvement becomes zero. However,
this method is very sensitive to the accurate estimation of standard error.
Gaussian Processes can greatly underestimate standard deviation if sam-
ples are adversely chosen during the initial steps of optimization. Under
this condition, obviously the balance between local and global optimization
is lost in favour of the latter.

2.4.4 Information-theoretic Infill Criteria

The surface created by the previous Infill criteria could be considered as
unnormalized probability density functions of the optimum point. Hence,
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Figure 2.13: Expected Improvement

optimization of these acquisition functions provides a way to sample from
the expected position of the global optimum at each optimization step. This
is not necessarily the most efficient sampling strategy if the goal is to find
the global optimum at the horizon of N function evaluations, rather than
the current step. Using information-theoretic infill criteria [80, 83, 202],
however, the next query point can be selected such that the information
about the position of the global optimum is maximized and consequently
the likelihood of reaching it at the horizon is increased.

Entropy Search

In Entropy Search (ES) this is achieved by minimizing the expected dif-
ferential entropy of the conditional distribution of the global optimum
[80]:

ES(x) = H[p(x∗ | D)]− Ep(y|x,D)[H(x∗ | D ∪ {x, y})] (2.44)

where p(x∗ | D) = p(x = argminx∈χ f(x) | D) denotes conditional distri-
bution of the global optimum and H(.) is its differential entropy. Since
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both terms on the RHS of (2.44) are not analytically available, for this
computation to be tractable several trade-offs are needed.

Predictive Entropy Search

Predictive Entropy Search (PES) is another method to compute the same
quantity in an easier way by rewriting it in terms of mutual information:

PES(x) = H[p(y | x,D)]− Ep(x∗|D)[H[p(y | x,x∗,D)]] (2.45)

where H[p(y | x,D)] is the entropy of the predictive distribution at x
and p(y | x,x∗,D) =

∫
p(y | f(x))p(f(x | x∗,D))df(x) is the prediction

distribution at x, given the location of the optimum. Using PES, the first
term on the RHS can be computed in closed form and the second one can
be approximated after applying a series of simplifications [83].

2.4.5 Noisy Infill Criteria

While dealing with noisy functions, most of the common infill criteria might
show a sub-optimal performance as no consideration about the noise has
been explicitly made in their design. For example, calculation of the EI
acquisition function (2.43) relies on ymin whose true value is not accessible
if the underlying function is noisy.

Augmented Expected Improvement

In the first attempt to address this, [210] adapted the definition of Improve-
ment to noisy environments by replacing ymin with the model prediction at
the best point found so far

In(x) = µ(xmin)− µ(x) (2.46)

where µ(.) is the predictive mean of the surrogate model. The EI using
this definition accounts for the uncertainty in the function value of the best
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solution so far. Yet, using this definition the value of the EI at x becomes
zero, EI(xmin) = 0, therefore, it does not allow for repetitive evaluations in
xmin, which should naturally be possible in a noisy environment in order
to reduce the uncertainty about the function value.

To address this, Augmented Expected Improvement (AEI) is presented in
[91] as an extension of EI which is suitable for noisy environments:

AEI(x) = E[min(0, µ(xebs)− µ(x))]

(
1− σn√

σ2(x) + σ2
n

)
(2.47)

Here σn is the standard deviation of noise, σ2(.) denotes the predictive
variance and xebs is called effective best solution and is determined by using
a separate utility function u(.)

xebs = argmax
x∈X

(u(x)), u(x) = −µ(x)− kσ(x) (2.48)

where X contains the available set of observed locations. Obviously, in
a noise-free environment where σ2

n = 0 AEI and EI are equal. However,
with a non-zero noise variance AEI promotes exploration by putting more
weight on locations in which the predictive variance is higher.

Expected Quantile Improvement

Another variant of EI with the ability to deal with i.i.d noise is Quantile-based
EI [170, 185]. It is based on a new definition of improvement for stochastic
functions: Improvement is defined as the decrease from the lowest β-quantile
of the current observed points. The β-quantile, β ∈ [0.5, 1], at an existing or
new location x is computed by using the posterior predictive distribution
as follows

q(x) = inf{u ∈ R, p(f(x) < u) ≥ β} = µ(x) + Φ−1(β)σ(x) (2.49)

where Φ(.) is Normal cumulative distribution function, µ(.) the predictive
mean and σ(.) the predictive standard deviation. The minimum β-quantile



2.4. INFILL CRITERIA 49

of the available observed points at nth stage of optimization is then com-
puted as qmin = minx∈X [q(x)]. Subsequently, the quantile improvement
function is defined as follows

IQ = min(0, qmin −Q(x)) (2.50)

in which Q(.) is the random β-quantile based on the available observations
and a new unobserved location x. Then, the expected quantile improvement
(EQI) can be defined as

EQI(x, σ2
n) =

(
qmin − µQ(x)(x)

)
Φ

(
qmin − µQ(x)

σQ(x)

)
+ σQ(x)φ

(
qmin − µQ(x)

σQ(x)

)
(2.51)

where σ2
n is the variance of the future noise and the EQI depends on it

through Q(.). Here µQ(x) and σQ(x) denote the conditional expectation and
standard deviation of Q(x), respectively.

2.4.6 Goal Seeking

All the above infill criteria can fail. The problem lies in the two-stage nature
of the process. In the first stage, a regression model is trained over available
data. Although this model might not be a good representative of underlying
objective function, its correctness is taken for granted. Accordingly, its
predictions are used to form an infill criterion in the second stage.

The Goal seeking method tries to bypath this weakness by integrating
these two steps into one. However, to do so at least we need an idea of
the (expected) function value or improvement in the current optimization
iteration. For now, suppose that this extra information is provided by
an oracle in the form of an observed value for the yet unseen data point,
say ygoal. Now, we can consider the unseen point, Xgoal, as a set of free
parameters and maximize the log-likelihood equation 2.30 over θ ∪Xgoal

to find the position of next infill point i.e. Xgoal. In reality, ygoal is not
accessible a priori. Instead, analogous to probability of improvement, we
may use several different values for ygoal.
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2.5 Conclusion

In this chapter, we explained the basic background and material required
for understanding Bayesian Optimization and the rest of the thesis. A brief
explanation of BO and its components was given. Since the BO machinery
is largely based on Bayesian regression methods, we detailed the modeling
and inference process in Gaussian Processes, as they are non-parametric
Bayesian regression models with extensive use in BO as well as parametric
models. Moreover, we introduced several existing infill criteria used in BO.



Chapter 3

Bayesian Optimization Using
Bayesian Neural Networks

3.1 Introduction

Although GP is the most common choice of surrogate in Bayesian Optimiza-
tion algorithms, it is not the only possibility. In fact, any type of regression
model whose output resembles a distribution is a potential surrogate. Here
we consider Artificial Neural Networks (NN) as alternative models to GP.
These are parametric models in which the cost of learning grows linearly
with the number of observations [191].

Our contributions in this chapter are two-fold. (1) We introduce a set of
BO algorithms in which simple and fully Bayesian Neural Networks (BNN)
are used as surrogate. In BNN the learning process is given a probabilistic
interpretation and the product of learning is an ensemble of networks with
plausible parameter values [139]. In this study, BNNs are inferred using
Monte Carlo sampling. (2) We study the application of surrogates formed
from ensembles of Random Feed-Forward Neural Networks, also called
Extreme Learning Machines (ELM), in BO. In these models, the weights
in the final layer are learned whereas the parameters of the first layers are
randomly sampled from a prior distribution. (3) We propose Empirical

51
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Expected Improvement, a simple approximation to the EI infill criterion.
Although EI is available in closed form for a small number of distributions,
it can only be applied if the predictive distribution is known in advance.
The proposed empirical EI has no such restriction and can be used for
any model that represents a probability distribution in function space.
(4) We perform benchmarking and compare our proposed methods with
classic BO using BBOB-2015, a testbed for comparison of real-parameter
global optimisers. Although this benchmarking platform is very popular in
evolutionary computing community, to our best knowledge this is the first
time it is being used for benchmarking and comparison of BO methods.

3.2 Bayesian Neural Networks

In this study, we investigate the use of a prior that is different from the
standard GP, i.e., we will use a prior represented by a Bayesian NN in
its most commonly used configuration, namely a multi-layer Perceptron
(MLP) consisting of a single hidden layer. The network function we use
has the following form:

f(x) = ψ(x ·W ih + bih) ·who + bho (3.1)

where x indicates the input vector, ψ(.) is a non-linearity, W ih ∈ Rm×h,
bih ∈ R1×h, who ∈ Rh×1 and bho ∈ R are input-to-hidden and hidden-to-
output weights and biases, receptively, with m being the dimensionality
of the input and h the number of units in the hidden layer. To build a
Bayesian NN, we define a prior p(θ) over the parameters of the model
θ = {W ih, bih,who, bho}, consider the support of data through the like-
lihood function p(D | θ) and compute the posterior using Bayes rule
p(θ | D) ∝ p(D | θ) p(θ). For a new point x, the predictive distribu-
tion can be computed in principle by integrating out the latent parameters
p(y | x,D) =

∫
θ
p(y | x,θ)p(θ | D)dθ. A neural network architecture to-

gether with a prior over weights and a scheme for doing this integral is
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termed a Bayesian Neural Network (BNN).

Although a Bayesian NN with an infinite number of hidden units re-
verts to a Gaussian Process prior [158], with a finite number of hidden
units it represents a prior with different characteristics, which may suit
optimization problems in which the specifications of underlying function
could be better modeled by a NN rather than a GP. For example, as can be
seen in Figure 4.1, realizations from a Bayesian NN prior will typically ex-
hibit large plateau regions, which are very different from the wavy-shaped
samples drawn from a GP prior with stationary covariance function.

Figure 3.1: 500 NN samples from a simple Bayesian NN prior with 50
hidden units in a single layer. Weights and biases are drawn from zero-
mean normal distributions with standard deviation of 100: N (0, 100). Each
dark line is the prediction of one NN sample. Solid and dashed red lines
show mean and ±3 standard deviations of the predictions over all 500
samples.

For a Bayesian neural network (BNN), the MLP function is substituted
for f(.) in the regression model of equation 2.2, and we set zero-mean
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Gaussian priors over each set of network parameters as in [158]:

wj
ih ∼ N (0, σ2

wih
Ih), bih ∼ N (0, σ2

bih
Ih)

who ∼ N (0, σ2
who

Ih), bho ∼ N (0, σ2
bho

),
(3.2)

where wj
ih is the jth row of the input-to-hidden weight matrix W ih, σ2

z is
variance of the Gaussian prior over the set of parameters in θ indicated
by z ∈ θ and Ih is a h × h identity matrix. In simple Bayesian Neural
Networks (SBNN) hyperparameters are set to constant values. However,
instead of making assumptions about their correct values, we can let them
be set with respect to the observations and build a Hierarchical BNN
(HBNN). Here, Gamma priors are defined over the standard deviations of
the hyperparameters:

σbho ∼ Gamma(αbho , βbho) σwho ∼ Gamma(αwho , βwho)

σbih ∼ Gamma(αbih , βbih) σwih ∼ Gamma(αwih , βwih)

σn ∼ Gamma(αnoise, βnoise)

(3.3)

in which αz and βz are shape and rate parameters, respectively. In BNNs
the posterior is analytically intractable. Therefore, approximate inference
methods need to be applied. Historically, Hamiltonian Monte Carlo (HMC)
[157] has been the most popular sampling method used in BNNs. However,
its performance is very sensitive to a proper initialization of its two user-
specified parameters, namely step size and number of steps, which are
normally set by carrying out a number of initial experiments. This makes
HMC inappropriate for the Expensive Optimization application, where new
observations are incrementally added and the surrogate model undergoes
change in each iteration. Fortunately, the No-U-Turn-Sampler (NUTS) [86],
an adaptive version of HMC, resolves this limitation by eliminating the
need for setting the number of steps in advance.
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3.3 Random Feed Forward Neural Networks

A Random Feed Forward Neural Network, often called an Extreme Learn-
ing Machine (ELM) [187, 94, 95, 92, 221, 93, 147], is an MLP with a single
hidden layer in which the input-to-hidden weights and biases are sampled
from some known distribution, and not modified in response to the data.
Only the parameters of the output layer are fitted to data, by finding the
smallest norm least-squares solution of this linear system:

ŵho = H†y (3.4)

where H is the matrix of hidden layer outputs and each of its elements
hij is the output of the jth hidden unit for the ith observed point; H† is
Moore-Penrose generalized inverse of matrix H, i.e H† = (HTH)−1HT if
HTH is non-singular otherwise H† = HT (HHT )−1.

In ELMs, to have a predictive distribution it is sufficient to form an
ensemble whose members are built by sampling the parameters of their
first layer from some known distribution.

3.4 Empirical Expected Improvement

Having an ensemble of regressors sampled from p(f(x) | D), an approxi-
mation to EI(x) is simply computed by averaging over all improvements
yielded by ensemble members at point x:

EI(x) =
1

N

∑
θ∈Ω

[ymin − f(x,θ)] , Ω = {θ | fθ(x) < ymin} (3.5)

where Ω is the subset of regressors whose prediction results in improve-
ment. In our case the base regressors are NNs, however, empirical EI could
be used with any type of regressors, e.g regression trees, and is invariant
under changes to the type of predictive distribution.
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Figure 3.2: Mean (solid red) and prediction variance (dashed red) in GP
(left), HBNN (middle) and ensemble of ELMs (right). All three Models are
built using 3 observations from a sinusoidal function (solid blue).

3.5 Experiments

All have a single hidden layer where due to performance considerations
the number of hidden units is limited to 10.

Six different optimization methods were formed from combinations of
SBNN, HBNN and ELM surrogates with Gaussian and Empirical EI criteria.
All surrogate models had similar structures of a single hidden layer where
due to performance considerations the number of hidden units is limited
to 10. SBNN and HBNN used sigmoid hidden units, whereas ELMs used
tanh activation functions, as in our initial experiments we found ELMs-
based optimizers to perform better with tanh rather than sigmoid units. To
emulate a very low noise, with an expected standard deviation of 0.001,
both SBNN and HBNN used Gamma priors over noise with shape and
rate parameters being 2.0 and 200, respectively. In SBNN, standard errors
of priors were set to 100, i.e., σbho = σwho = σbih = σwin = 100, whereas
to have non-informative hyperpriors in HBNN the shape and rate of the
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Gamma distribution of the priors over standard deviations of the network
parameters were set to 2 and 0.02, respectively. Statistical modelling was
performed using pyStan library [194, 21] and NUTS sampler (the adaptive
version of HMC) was utilized as the inference mechanism. To prevent the
sampler from stalling (exploring the posterior very slowly), the maximum
tree-depth of NUTS was set to 8. For both SBNN and HBNN, a total of 3500
samples were generated, with each sample representing the parameters of
an NN. The first 2500 samples of the chain were considered as burn-in and
discarded, whereas the remaining samples were thinned by 2 and used to
form the Bayesian model. The ELM surrogate consists of 500 NNs with
input-to-hidden weights drawn from [-10,10] and the same topology as the
BNN approach.

Table 3.1: Function Categories.

Functions Group Description

f1 − f5 G1 5 separable functions

f6 − f9 G2 4 functions with low or moderate conditioning1

f10 − f14 G3 5 functions with high conditioning, unimodal

f15 − f19 G4 5 multi-modal functions with adequate global structure

f20 − f24 G5 5 multi-modal functions with weak global structure

Gaussian Process Optimization (GPO) is considered as the baseline
method. The underlying GP uses the scikit-learn [169] implementa-
tion of Gaussian Process regression, with an anisotropic square exponen-
tial covariance function. To find the maximum-likelihood values of the
hyperparameters, after each new function evaluation the fmin cobyla al-
gorithm from scipy.optimize is applied with 50 random restarts. Opti-

1Conditioning or condition number of a function indicates the amount of change in the
output of a function for a small change in the input.
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mization over the EI surface is performed using L-BFGS-B [19] with 150 ran-
dom restarts. L-BFGS-B is a variant of Broyden–Fletche–Goldfarb–Shanno
(BFGS), a local optimization algorithm from the family of quasi-Newton
methods where the search is guided by an estimate of the inverse Hessian
matrix, and is used when the search space is constrained within a bounding
box. Unlike other quasi-Newton methods, BFGS and its variants are able to
produce acceptable results even if the underlying function is non-smooth.

We evaluate the optimization methods on the BBOB-2015 noiseless
testbed, which consists of 24 functions divided into five groups in terms of
difficulty (see Table 3.1). These functions are a part of Comparing Continu-
ous Optimizers framework (COCO) [77], which is a popular benchmarking
testbed for continuous black-box optimization algorithms and allows for
comprehensive evaluation of optimization methods over a set of functions
with a wide range of characteristics (please refer to [57] for more details on
the benchmark and specifications of each function). Due to the limitation
of time and resources, only 15 independent trials were preformed for each
method on each function in a set of two, three, five, and ten dimensional
problems. It is a common practice to limit the number of function evalu-
ations to a few hundred [122, 128, 189]. Here, we assumed test functions
to be expensive enough to limit the budget of each trial to 100 function
evaluations. In each trials, the first two samples were drawn randomly
and used to initialize the surrogate model. Hence, the results of the ex-
periments also reflect the sensitivity of the algorithms to the position of
the initial observations. The optimization process was terminated if the
target function value of the underlying function was met, a previously
evaluated point was revisited, or the allocated budget was fully used. If
the allocated budget was not fully used at termination, the optimization
was allowed to restart. To compare the performance of our algorithms,
we utilized a hierarchical combination of the Mann-Whitney U test, with
family-wise significance level αF = 0.001, and Area Under Curve (AUC)
metrics of best-seen objective value. As we compare 7 different methods,
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αF = 0.001 could be satisfied by setting α = 0.0005 for the significance level
of the pairwise tests (see [38] for more details on how to compute pairwise
significance levels).

Using the Mann-Whitney U test for each test function and optimization
step, a partial ranking amongst our optimization methods is computed.
Following [38], the resulted ranks are then aggregated over each dimension
and function category based on two schemes: Borda and the number of first
place finishes.

Borda Count [131, 36, 214, 141, 3, 110] (or Borda for short) is a well-
known ”positional” rank aggregation method, in which a cumulative score
is computed for each candidate based on its positions in a set of rank lists.
Given a set of ranks r1, . . . , rNr for a group of candidates c1, . . . , cNc , a Borda
score Src is assigned to a candidate per each rank list which corresponds to
the number of items ranked below that item in the list.

Src =
Nc∑
i=1

1[rir < r
c
r], c 6= i, c ∈ [1, Nc], r ∈ [1, Nr] (3.6)

where 1[.] is the indicator function and rir denotes the rank of ith candidate
in the rth rank list. Then sum of these individual Borda scores is computed
as the Borda count of each candidate Sc =

∑Nr
r=1 S

r
c .

3.6 Results and Discussion

The experimental results are summarized in Figure 3.3, Figure 3.4 and
Figure 3.5 in the form of aggregated ranks of the optimization algorithms.
Figure 3.3 contains histograms of the Borda scores and number of first place
finishes of the optimization methods at the end of 100 function evaluations,
in four different dimensions and five function groups. Figure 3.4 and
Figure 3.5 show how these ranks change against the consumed budget
during the optimization process. As can be seen in Figure 3.3, at the end of
optimization, the overall performance of the BNN-based methods is better
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Figure 3.3: Histograms demonstrating the aggregated ranks of the proposed
methods and GPO after 100 function evaluations. Top row: results of
rank aggregation over five different function categories using (left) Borda,
(right) number of first place finishes schemata. Bottom row: results of rank
aggregation over 2, 3, 5 and 10 dimensional functions using (left) Borda and
(right) number of first place finishes schemata. Each bin shows the score
from the corresponding aggregation schema.

than the GPO in the majority of the cases, whereas ELM-based optimizers
have completely failed to compete. HBNN with Gaussian EI calculation
is, by and large, the best amongst all, whether considered across different
dimensions or across different function groups.

Nonetheless, GPO performed exceptionally well in the set of separable
functions, G1, as well as two- and three-dimensional problems. In G1, GPO
scores highest in terms of the both aggregation schemata, while its number
of first place finishes is comparable with HBNN with Gaussian EI. It also
has the highest Borda score and the second highest number of first place
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Figure 3.4: Aggregated ranks of different optimization methods over 100
optimization epochs, separated by dimensionality. The figures are germane
to the number of first place finishes in partial ranks obtained from hierarchi-
cal application of the Mann-Whitney U test over best function values and
AUCs. The plots contain results for 2 (upper left), 3 ( upper right), 5 (lower
left), and 10 (lower right) dimensional test functions, respectively.

finishes in 2D functions.

Increasing the dimensionality, however, causes both HBNN and SBNN
to start outperforming GPO. In three dimensional functions, for example,
GPO ranks second after HBNN (Gaussian EI) with respect to both aggre-
gation schemata, comparable with SBNN (Gaussian EI) in its Borda score
and HBNN (Empirical EI) in the number of first place finishes. However,
in 5D and 10D functions all BNN-based methods outperform GPO in terms
of Borda score as well as number of first place finishes. Almost the same
pattern could be seen in the more challenging functions in Table 3.1. While
GPO outperforms all other methods in the easiest family of functions (G1),
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its superiority fades away in G2, G4 and G5, where all BNN-based optimiz-
ers rank higher. Amongst BNN-based optimizers, the ones with Gaussian
EI clearly outperform their Empirical counterparts in the majority of the
cases and HBNN methods have a slight edge over SBNN ones.

Figure 3.4 and Figure 3.5 demonstrate the changes to the ranks of op-
timization algorithms throughout the optimization. We noticed that the
difference in how Borda and number of first place finishes rank the op-
timization algorithms is minor, hence only figures related to the latter is
presented here. It can be seen in Figure 3.4 that HBNN (Gaussian EI) main-
tains a high rank during the optimization process almost everywhere and
ELM-based methods show disappointing performance by being the worst,
even in the early stages of the optimization. The graphs show that with an
increase in the amount of budget, BNN-based methods perform better than
GPO. Moreover, GPO starts to lose ground to BNN-based methods earlier
and more consistently as the dimensionality of the functions increases.

In the 2D functions, the difference between performance of the opti-
mization methods is not significant. GPO ranks slightly higher, sometimes
similar to other BNN-based optimizers until around the 50th epoch, from
which HBNN (Gaussian EI) starts to perform either comparably to or better
than GPO. Increasing the dimensionality causes the difference between
performance of the BNN-based methods to become less significant, e.g.,
although HBNN and SBNN with Empirical EI perform poorly in 2D func-
tions, they start to behave similarly to their Gaussian counterparts for 5D
and 10D problems.

Figure 3.5 shows the aggregated ranks of the optimizers during opti-
mization over each function category. Overall, we can discern that BNN-
based methods mostly rank higher than GPO in the entire optimization
process across all function groups, except G1, where none of the proposed
methods could consistently maintain their rank above GPO up to the end
of optimization. In all function groups, ELM-based methods were inferior
to the others for the entire duration of the optimization except for the initial
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few epochs. In groups G2 to G5, most of the time the SBNN and HBNN
rank higher than GPO and as we approach the end of the process the dif-
ference between the performance of the methods becomes more evident.
However, none of the optimizers have complete superiority over the others
in all function groups. In G1 to G3, for example, HBNN (Gaussian EI) ranks
higher than the others especially in the second half of the optimization and
in G4 all BNN-based methods are equally good throughout the process,
while GPO ranks as poorly as ELM-based optimizers. In G5, which is the
most difficult group, optimizers with Empirical EI rank slightly higher
than the rest. Moreover, ELM-based methods with Gaussian and empirical
EIs are ranked almost identically during the optimization over all func-
tion groups, whereas similar patterns could not be seen in BNN-based
optimizers.

A possible explanation for the superiority of the HBNN and poor per-
formance of ELM-based methods, particularly in higher dimensional and
more complicated problems, may lie in their predictive variance. As can
be seen in Figure 3.2, HBNN has the largest predictive variance. Although
this does not seem to be an advantage in optimization of simple low di-
mensional functions, it provides the HBNN-based methods with a more
powerful global search element and enables them to perform well in higher
dimensions and over more complicated underlying functions, while reduc-
ing their sensitivity to poor choice of initial points. On the other hand, ELM
has a small predictive variance in comparison with GP, therefore, it mainly
exploits rather than explores. Apparently, this lack of an effective global
search element prevents ELM-based optimizers from performing as well as
other methods, even for the simpler functions.

A surprising observation arises when comparing empirical with Gaus-
sian EIs. We expected the optimizers with Empirical EI to perform better,
or at least as well as, those with Gaussian EI. However, except for the ELM-
based methods, the graphs show that the latter have higher final ranks
and were more stable during the optimization process. For example, in
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both Figure 3.4 (2D functions) and Figure 3.5 (G3), towards the end of the
optimization the performance of both BNN-based methods with Empirical
EI starts to degrade, whereas the same methods with Gaussian EI continue
to maintain their ranks. We expect this to be a result of poor mixing and
sub-optimal behavior of the MCMC method rather than an inherent prob-
lem of the empirical EI. To prevent the NUTS sampler from stalling we
have put a limitation on its tree-depth parameter. This implicitly restricts
the sampler’s trajectory length and might prevent it from reaching a U turn
[86] before each draw. Consequently, the correlation between successive
samples increases, and to get a fair estimate of the posterior a larger sample
size is required. On the other hand, to build the surrogate model in a timely
manner we have used a relatively small sample size and short chain as well
as warm-up period. As ELMs do not face this problem, their performance
with either of the EI versions is similar.

Although in most cases this study ranks HBNN and SBNN more highly
than GPO and ELM, the difference between the aggregated rank values is
not significant. This is due to the high number of ties in the Mann-Whitney
U tests. Looking at raw function values output by the optimizers over
each function/dimension, we can see that in the majority of the cases the
performance of the presented optimizers is quite similar and occasionally
even disagrees with their aggregated ranks. Figure 3.6–3.8 contain the com-
parison graphs of the median function values outputted by the optimizers
over these function/dimension pairs. As it can be seen, GPO performs well
on the 5 and 10 dimensional f1 (Sphere) and f5 (Linear Slope) problems
from G1. It is also significantly better than other optimizers over f1, where
it converges to a near optimum solution through a few steps. In 10D f12
(Bent Cigar) from G3, again GPO achieves a better final result.

Even in the most difficult category of functions, G5, GPO performs
outstandingly well on 10D f21, f22 and f23, i.e., Gallaghers Gaussian 101-
me and 21-hi as well as Katsuura functions, respectively. However, in this
category, HBNN is mostly the overall best method. Interestingly, ELM-
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based optimizers had the best final results for the 2D and 3D functions
of f2 (Ellipsoidal), their non separable counterpart f10, f12, as well as on
the three-dimensional f5. ELM also performs very well on f6 (Attractive
Sector) and f10 in 5D and 10D spaces. As can be seen from the 2D plots of
the functions surfaces (first row in figures 3.6-3.8 ), this suggests that ELM
might perform well on smooth functions with anisotropic or ridge-like
structures.

3.7 Conclusion

This chapter made the following contributions:

• BNNs for Bayesian optimization. We introduced a novel Bayesian
optimization method in which simple and hierarchical Bayesian Neu-
ral Networks are used as surrogate. It was illustrated that BOs that
use a BNN surrogate are able to outperform GPO on a selected set
of benchmark function. This is significant due to the fact that the
computational complexity of inference in BNNs only scales linearly
with the number of observations, whereas in GP it is cubic on the
number of data points.

• Ensemble of ELMs for Bayesian optimization. For the first time
we studied the application of ensemble of random neural networks
as surrogate in BO. Although in this work ELM-based BO showed
a poorer performance compared with other BO methods, the low
computational cost of their inference encourages us to look for more
effective methods of using random neural networks as surrogates in
BOs.

• New EI measure. We proposed empirical expected improvement as
a novel way to approximate EI in ensemble-based surrogates and
models with non-Gaussian predictive distribution. Comparing the
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performance of the proposed method with EI revealed that (Gaussian)
EI outperforms the empirical one, probably due to the poor mixing of
the the BNN surrogates.

• Evaluation. We formed a set of six optimization methods using pos-
sible combinations of empirical and Gaussian EI with each of the
proposed surrogates. We compared these methods with GPO over a
set of 24 noise-free benchmark functions. Our studies showed that
even optimization methods with small Bayesian Neural network sur-
rogates performed better than, or at least comparably to, GPO on a
number of test functions. The performance difference was clearer in
higher dimensions and with more complicated functions, where the
effect of under-estimated predictive variance in GP was intensified.
Moreover, hierarchical Bayesian NN surrogates that were built using
the No U-Turn sampler showed the most promising results in com-
parison with other presented models, whereas ELM-based surrogates
were shown not to be competitive with GPO.
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Figure 3.5: Aggregated ranks of different optimization methods over 100
optimization epochs, separated by function category. The figures are ger-
mane to the number of first place finishes in partial ranks obtained from
hierarchical application of Man-Whitney U test over best function values
and AUCs of optimizers in each function group from G1 to G5.
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Figure 3.6: Median of function values found during the optimization over
the f1, f2 and f5 test functions in 2, 3, 5 and 10 dimensional space. f1 is to
compare the best convergence rates, whereas f2 and f5 show the relative
ability of optimizers in exploitation of separability and going outside the
initial convex hull of solution, respectively. The first (upper) row depicts
the functions’ structures in 2D space.
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Figure 3.7: Median of function values found during the optimization over
the f6, f10 and f12 test functions in 2, 3, 5 and 10 dimensional space. The
figures show the effect of increase in the dimensionality on the relative per-
formance of the optimization methods over a highly asymmetric landscape
(f6), a non-separable function (f10) and a smooth and narrow ridge (f12).
The first (upper) row depicts the functions’ structures in 2D space.
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Figure 3.8: Median of function values found during the optimization over
the f21, f22 and f23 test functions in 2, 3, 5 and 10 dimensional space. The
figures show the effect of increase in the dimensionality on the relative
performance of the optimization methods over surfaces that 1) have no
global structure (f21), 2) have no global structure but higher condition than
f21 (f22), 3) are highly rugged and highly repetitive (f23). The first (upper)
row depicts the functions’ structures in 2D space.



Chapter 4

Cheap Surrogate Building Using
Randomization

4.1 Introduction

This chapter explores a family of methods aimed at getting the benefits of
Bayesian NNs while avoiding their high costs.

From the theoretical point of view Bayesian NNs exhibit several advan-
tages over Gaussian Processes, notably:

1. their inference time grows only linearly with the number of observa-
tions,

2. by using them one could relax continuity assumptions, and

3. they are inherently multi-output and thus lend themselves for use
in multi-objective optimization scenarios (each output is devoted to
modelling one of the objective functions).

From a practical perspective, however, Bayesian inference in NNs [158]
is not a trivial task. To begin with, the posterior distribution of the model
parameters is not analytically available and classic inference methods
based on Markov Chain Monte Carlo, i.e Hybrid Monte Carlo [43], are

71
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prohibitively slow. Furthermore, other computationally less expensive
approaches such as Bayes by Backprop [13] and MC-Dropout [63] pro-
duce overconfident models. Finally, despite the recent advancements in
Variational Inference [137, 119, 90, 166], approximating the full posterior
distribution over the weights of moderate to large NNs imposes high com-
putational costs.

One solution to the scalability problem of Bayesian NNs is to only
perform probabilistic inference in the final layer of the NN and use point-
wise estimates to set the rest of the parameters. In this so-called adaptive basis
regression, first, a deep NN is fully trained on the available observations to
get a maximum a posterior estimate over its parameters. The training could be
performed using one of the many variations of stochastic gradient decent,
with (only) the last layer being replaced by a Bayesian linear regressor.
Such a model has been successfully used as a surrogate in BO to perform
optimization on expensive-to-evaluate functions [190]. Yet, in this model
the training is performed on the entire space of the model parameters. Here
we take one step further in developing the above idea by using random
basis regression, i.e linear combination of randomized functions [72]. In
this scheme, the training is only performed on a small subset of the model
parameters, therefore, the inference process is more efficient than adaptive
basis regression.

Recent studies show that randomization is an effective alternative to
optimization [183, 174, 81, 217, 22]. In fact, it is shown that under certain
conditions, a model that consists of weighted sum of random functions is
as effective as methods in which the function parameters are fitted [175].
Hence, in many applications the strict necessity of performing the training
in the entire parameter space of NNs is under question. In fact, a large
class of functions are approximated with high accuracy using models in
which most of the parameters are set at random and the training is only
performed in the linear final layer. This has given rise to a family of ran-
domized feed-forward networks. As an example of such models, Random
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Vector Functional Link (RVFL) [97] is a class of single layer feed-forward
NNs (SLFN) in which the parameters of the first (input-to-hidden) layer
are constants randomly set from a prespecified distribution, whereas the
second (hidden-to-output) layer is a ridge regression model [142].

Ensemble learning is another means to build regression models with
the ability to provide uncertainty with their predictions. Recent studies
have revealed the existence of strong links between ensembles of NNs and
Bayesian inference [24, 121, 138, 162]. It has been shown that an ensemble
of MAP solutions independently trained over a noisy loss could be used
as an approximation to the posterior [168]. One of the most notable ben-
efits of such an approach is the ability to parallelize the training. In fact,
even ensemble models with no Bayesian interpretation can be remarkably
successful in BO [100].

Our contributions in this chapter are as follows:

1. We propose an extremely lightweight surrogate for BO which is based
on randomized shallow NNs [187]. Hence, rather than a GP prior the
BO uses a prior represented by a Bayesian RVFL, i.e. a Random Vector
Functional Link mapping in which the second (hidden-to-output)
layer is a Bayesian Linear model [186].

2. We present a simple and effective scheme for initialization of random
parameters in an RVFL.

3. We present experiments with a BO where GP is replaced with a prior
represented by an ensemble of RVFLs.

4. We perform extensive evaluation and benchmarking on synthetic
functions as well as hyper-parameter optimization of Machine Learn-
ing models.
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(b) Fully Bayesian GP
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(c) Bayesian NN with HMC
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(d) Bayesian NN with Dropout
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(e) BRVFL (relu)
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(f) BRVFL (tanh)

Figure 4.1: Posterior over function produced by a) GP b) Fully Bayesian
GP c) Bayesian NN inferred by Hamiltonian Monte Carlo d) Bayesian NN
produced using MC dropout NN e) Bayesian RVFL with relu d) Bayesian
RVFL with tanh
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4.2 Random Vector Functional Link Networks

RVFLs are a class of shallow NNs with an extremely fast training algorithm.
A RVFL Network with d input nodes, n hidden units and a single scalar
output, g : Rd → R, is defined as a SLFN of the form:

g(x) =
n∑
i=1

wiψi(x)

ψi(x) = φ(vᵀix+ bi)

(4.1)

where vi ∈ Rd and bi ∈ R are weights and biases into the ith hidden unit, φ(.)

is a monotonically increasing activation function and wi ∈ R is the output
weight of the ith hidden unit. In addition to the architecture, RVFLs also
share the same universal approximation properties and error bound with
SLFNs [164]. Moreover, it has been shown that adding a direct link from the
input to the output of a RVFL greatly boosts its performance [220]. What
makes RVFLs different from other types of SLFN is that in RVFLs the input-
to-hidden weights and biases are chosen randomly, e.g. from a uniform
distribution or a random subset of training points, and set to be constants.
Therefore, the training is only performed on the parameters of the final
layer. This reduces learning to a convex optimization problem, for which
the optimal weight values can be computed in a pre-deterministic number
steps using fast quadratic optimization techniques [101, 164]. Given a set
of points from a target function with characteristics specified in section 2.2
the maximum likelihood (ML) solution is obtained by taking the gradient
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of the log likelihood and setting it to zero [11]:

p(yt | Xt,V ,w, b, β) =
t∏
i=1

N (yi | wᵀψ(xi),V , b, β)

wML = argmax
w

log p(yt | Xt,w,V , b, β) ∝ −
t∑
i=1

[yi −wᵀψ(xi)]
2

The gradient of the log likelihood is

∇ log p(yt | Xt,w,V , b, β) =
t∑
i=1

[yi −wᵀψ(xi)]ψ(xi)

and setting this to zero leads to the ML solution:

wML = Ψ†yt (4.2)

where Xt = [x1, ...,xt] is the input, V = [v1, ...,vn] is the matrix of weights
and b is the vector of biases in the first layer, w = [w1, ..., wn]ᵀ denotes
the vector of the weights in the final layer, ψ(x) = [ψ1(x), ..., ψn(x)]ᵀ is the
output vector of the first layer and Ψ the design matrix for the final layer:

Ψ =


ψ1(x1) ψ2(x1) · · · ψn(x1)

ψ1(x2) ψ2(x2) · · · ψn(x1)
...

... . . . ...
ψ1(xt) ψ2(xt) · · · ψn(xt)


ψi(xj) element corresponds to the output of the ith hidden unit for the jth

input and Ψ† is the pseudo-inverse of Ψ which is (ΨᵀΨ)−1Ψ.

4.3 RVFL-based Bayesian Optimization

In this section, we explain our RVFL-based BO. We posit our prior assump-
tion about the target function in the form of a Bayesian RVFL. In Bayesian
RVFL the final layer is considered to be a Bayesian regression model, i.e. a
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prior distribution (usually a Gaussian) is defined over the parameters of
the final layer:

p(w) = N (µ0,Σ0)

where µ0 ∈ Rn is the mean vector and Σ0 ∈ Rn×n
+ is the symmetric positive

semi-definite covariance matrix of the Gaussian prior.
Consequently, the exact posterior could be computed as follows [11] :

p(w | α, β,V ,Dt) = N (µ, Σ)

µ = (Σ−1
0 + βΨᵀΨ)−1(Σ−1

0 µ0 + βΨᵀyt)

Σ−1 = Σ−1
0 + βΨᵀΨ

(4.3)

Where µ ∈ Rn and Σ ∈ Rn×n
+ are mean and covariance matrix of the

posterior probability density function, respectively. As a common prac-
tice the prior is usually chosen to be a zero-mean isotropic Gaussian,
p(w) = N (0, α−1I) where α is the precision of the prior, which simplifies
the posterior to a Gaussian of the following mean and covariance:

µ = (
α

β
I + ΨᵀΨ)−1Ψᵀyt

Σ−1 = αI + βΨᵀΨ
(4.4)

To get the posterior predictive distribution at a new point x∗ then we
may integrate over w:

p(y∗ | x∗,V ,Dt) =

∫
p(y∗ | x∗,w)p(w | α, β,V ,Dt)dw

= N ( µ(x∗), σ
2(x∗) )

µ(x∗) = µᵀΨ(x∗)

σ2(x∗) =
1

β
+ Ψ(x∗)

ᵀΣΨ(x∗)

(4.5)

It is easy to see that, due to the existence of matrix inversions in equation
(4.4) and (4.5), the above solution is computationally constrained by the
number of observations as well as hidden units. Moreover, as it does not
entail any uncertainty about the values of the random parameters in the
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hidden units, we generally expect it to produce overconfident predictions.
To understand the importance of the latter, it is rather simple to show that
a set of independently trained RVFLs with different random values for
the parameters of hidden units is able to quantify uncertainty similar to
a Bayesian RVFL (see Figure 4.2) provided that the random generating
distribution for these parameters is selected meticulously. If an appropriate
random generating distribution is identified in advance, this method is
extremely efficient and enjoys a high level of parallelization, however, if
it is not set in a principled way, there is no guarantee that the produced
uncertainty measure is calibrated or even fruitful in BO task.
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Figure 4.2: Predictive distribution produced by 3 ensembles of RVFLs
with similar random generating distribution for input-to-hidden weights
w ∼ uniform[−1, 1] and biases uniformly generated from a) [-1, 2], b) [-2,
3], c) [-3, 4].

To take advantage of this parallelization and yet retain the benefits of
the Bayesian approach, we draw on a rather informal interpretation of
the posterior sampling [138] i.e. a set of samples from the model space
which comply with both observations and prior beliefs about uncertain
quantities of the model. This interpretation is the basis for a set of Bayesian
approximate inference methods in which posterior sampling is performed
by training models over different noisy versions of a mutual loss [6, 138,
208]. Here we have employed randomized anchored MAP sampling [167],
a general algorithm based on the above scheme, applicable for NNs and
models in which the posterior is dominated by the prior. This algorithm
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allows for an efficient, simple and fully parallelizable inference of a Bayesian
ensemble of RVFLs.

To form a Bayesian ensemble of RVFLs using randomized anchored MAP
sampling, as in the Bayesian RVFL we define a prior over the weights of
the final layer, p(w) where each RVFL is trained by:

1. sampling the parameters of the hidden nodes from their correspond-
ing random distributions vi ∼ p(v), bi ∼ p(b);

2. optimizing the per-model log-posterior to get the weight values of
the final layer:

wi = argmax
w

[log p(yt | Xt,w,V i, bi, β) + log pi(w)] (4.6)

where pi(w) is the per-model prior.

It is proven that [167] in linear models, e.g. RVFLs, with normal likeli-
hood and prior such as in equation (4.3), the correct per-model prior is a
normal pi(w) = N (µ0i,Σ0) whose mean is sampled from the following
distribution:

µ0i ∼ N (0, λI + λ2βΨᵀΨ), λ =
α

β
(4.7)

Where Σ0 is the prior covariance, α is the precision of the prior and β is the
precision of the noise. A faster, but coarser, approximation to the posterior
could be given by sampling the mean of the per-model prior from p(w).
However, in this work we rely on equation (4.7) to compute pi(w)s.

An important, but largely ignored, question in working with RVFLs is
how to randomly generate the parameters of the hidden units in a plausible
way. Since symmetry of the random generating distribution is the only
criterion to guarantee the universal approximation properties of RVFLs
[97], prior work has tended to stick to this recipe. Most work on random
shallow networks simply selects the weights and biases of the hidden units
uniformly from [−1, 1] and [0, 1] intervals, respectively, i.e. independent
of the character of the data distribution. However, this could hardly be
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considered an optimal strategy as it might be prone to highly correlated
hidden units, e.g. when the activation regions fall far from the input points.
This has resulted in a set of works [45, 44, 46, 205] with the goal of devising
good initialization strategies for the parameters of NNs with random units.

To circumvent this problem, here we utilize weight normalization [184].
Weight normalisation is a reparametrization method that has been primar-
ily used to accelerate optimization in NNs. In the present case, however, it
allows us to decouple the norm of the weight vectors from their direction.
In RVFLs the L2 norm of the hidden-unit weights is essentially redun-
dant, since the hidden unit output values are subsequently re-scaled by
the hidden-to-output weights during the training. The input-to-hidden
mapping merely projects the input onto a line whose direction is uni-
formly distributed (due to the Gaussian being spherically symmetric). By
L2-normalising the input-to-hidden weights, they only vary in terms of
directions in input space. The bias is then precisely the distance from the
origin in input space. This allows us to select the biases randomly from the
input distribution, i.e a zero-mean unit-variance normal when the input
has been standardized.

4.4 Experiments

To see how BO methods based on RVFL stack up against other BO methods,
we compared them with the existing hyperparameter optimization (HPO)
methods from the RoBO library [117]. These were Random Search and
four other BOs with different surrogate models, namely GP, Fully Bayesian
GP (GPmcmc), Random Forest and Hamiltonian Monte Carlo Neural Net
(Bohamiann). The experiments were performed on the set of synthetic
functions as well as surrogate benchmarks of HPOlib2 hyper-parameter
optimization library [49, 51]. HPOlib2 is a benchmarking library for HPO al-
gorithms and allows us to test the proposed BOs on both synthetic functions
and hyper-parameter optimization for machine learning models. Eight vari-
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ations of RVFL-based BO were created using Bayesian and ensemble RVFLs.
The differences are due to the type of activation function used, and whether
or not a skip connection was included between input and output, as shown
in Table 4.1.

Table 4.1: Different variations of RVFL-based BO

Index Type Activation Skip Conn.

BRVFL1

Bayesian RVFL

tanh 7

BRVFL2 tanh !

BRVFL3 relu 7

BRVFL4 relu !

ERVFL1

Ensemble of RVFLs

tanh 7

ERVFL2 tanh !

ERVFL3 relu 7

ERVFL4 relu !

In all experiments we have used RVFLs with 300 hidden units and
left the parameters of all HPO methods other than RVFL-based BOs to
their default values. The number of hidden units were chosen so that the
algorithms could consume their budget (maximum number of optimization
steps) before hitting the time limit.

4.4.1 Synthetic Functions

RVFL-based BO with Fixed Hyperparameters

In the first set of experiments on the synthetic benchmark functions preci-
sions of the noise distribution as well as the prior over hidden-to-output
weights are chosen to be fixed and their values are selected according
to a set of initial observations on a one dimensional toy problem. Since
the functions are noise-free, the noise precision is set to a large value,
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α = 1000. Furthermore, as recommended in [158] the standard devia-
tion of the weights prior is scaled w.r.t the the number of hidden units,
α−

1
2 = σw = σ̂w|w|−

1
2 . Hence, we set σ̂w = 0.02 and σ̂w = 0.001 for the

relu and tanh networks, respectively. RVFL inputs are standardised and
as noise and prior distributions are fixed, the model output is also stan-
dardised to prevent unreasonably under(over)-confident models that are
disproportionate to the function range.

For each HPO method the experiments consist of 30 independent trials
per benchmark function. In each trial, the optimization method is initialised
with two random observations. Furthermore, 90 hours of CPU-time is
allocated to each trial within which they could perform a maximum of
200 function evaluations (The HPOlib2’s default budget for its synthetic
benchmark). During the trial, the absolute regret, i.e. the absolute difference
between the best function value found so far (by the optimization method)
and the function value of the optimum point is recorded in each step and
used as a means to compare the performance of different HPO methods.
The performance of these methods is ranked over each function using
the Friedman test1 [62]. Subsequently, Borda counts are computed from
these ranks to get the overall performance of each method over the whole
benchmark.

Figure 4.3 contains the Borda scores of the under-experiment HPO
methods after 200 function evaluations aggregated over the whole set of
benchmark functions. As can be seen, BO with GPmcmc over its hyperpa-
rameters has been ranked highest over the synthetic benchmark functions
where Bohamiann and GP are the first and second runner-ups, respec-
tively. RVFL-based methods generally showed a poor performance, worse
than random forest. The weakest methods amongst all were ERVFL1 and

1 Mann-Whitney U test, used in the previous chapter, is more suitable for pairwise
comparisons, therefore applying it to compare multiple methods requires special care and
some adjustments. However, Friedman test is designed for circumstances were multiple
method are being compared over several attempts, hence, fits our application better.
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Figure 4.3: Performance evaluation of RVFL-based BOs with fixed hyper-
parameters. Borda scores are obtained from applying Friedman test to the
final regret values after 200 function evaluations.
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ERVFL2 with their overall rank being lower than random search. However,
this is not the whole perspective.

Table 4.2: Evaluation of RVFL-based BO (fixed α) over Bohachevsky, Branin
and Camelback functions. Figures represent means and standard devia-
tions of the final regrets after 200 function evaluations aggregated over 30
independent optimization runs. For each function the best result (bold font)
as well as the first and second runner-ups (underlined) are pointed out.

Method
Bohachevsky
mean ± std

Branin
mean ± std

Camelback
mean ± std

BRVFL1 7.85± 1.35× 101 2.86× 10−3± 2.19× 10−3 7.44× 10−3± 7.20× 10−3

BRVFL2 6.71± 1.28× 101 2.52× 10−3± 1.73× 10−3 6.71× 10−3± 6.29× 10−3

BRVFL3 3.89× 103± 4.07× 103 4.16× 10−3± 4.02× 10−3 1.08× 10−2± 8.10× 10−3

BRVFL4 3.64× 103± 3.70× 103 3.70× 10−3± 2.74× 10−3 1.60× 10−2± 1.27× 10−2

ERVFL1 1.53× 102± 1.39× 102 9.09× 10−2± 7.78× 10−2 3.86× 10−2± 2.78× 10−2

ERVFL2 1.84× 102± 1.67× 102 6.14× 10−2± 4.72× 10−2 5.12× 10−2± 3.65× 10−2

ERVFL3 4.94× 103± 3.22× 103 3.90× 10−2± 3.89× 10−2 2.76× 10−2± 2.08× 10−2

ERVFL4 3.73× 103± 3.03× 103 3.73× 10−2± 2.75× 10−2 2.63× 10−2± 2.16× 10−2

Bohamiann 3.31 × 10−1± 2.16 × 10−1 1.40× 10−3± 2.73× 10−3 1.99× 10−3± 2.36× 10−3

GP 1.60× 101± 8.72× 101 5.16× 10−2± 2.82× 10−1 4.42× 10−2± 2.29× 10−1

GPmcmc 1.75× 102± 9.58× 102 2.61 × 10−5± 3.46 × 10−5 2.78 × 10−5± 3.30 × 10−5

RandomForest 1.54× 101± 1.42× 101 4.52× 10−2± 8.22× 10−2 3.16× 10−2± 1.00× 10−1

RandomSearch 9.68× 101± 8.06× 101 2.28× 10−1± 2.16× 10−1 9.18× 10−2± 7.62× 10−2

Looking at the mean and variance of the regret values corresponding
to the best points found by each optimization method over each function
during (Figure 4.4) and at the end of optimization (Table.4.2 to Table.4.5)
reveals that use of RVFL-based methods in BO is not bluntly out of question.
In fact, considering the mean regret, in 7 out of 12 functions at least one
RVFL-based method has appeared among the top-three. Best performance
of RVFL-based methods was given in 10 dimensional Levy in which GPmcmc-
based BO could not even finish the trials within the time budget, however,
BRVLF3, followed by BRVLF4, ranked highest from around 75th step of the
optimization onwards and ERVFL4 took the third top position at the end of
optimization. On the other hand, in Goldstein-Price the top three positions
are taken by GPmcmc, Bohamiann and GP, respectively. Nevertheless, RVFL-
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Table 4.3: Evaluation of RVFL-based BO (fixed α) over Goldsteinprice, Hart-
mann3 and Hartmann6 functions. Figures represent means and standard
deviations of the final regrets after 200 function evaluations aggregated
over 30 independent optimization runs. For each function the best result
(bold font) as well as the first and second runner-ups (underlined) are
pointed out.

Method
Goldsteinprice

mean ± std
Hartmann3
mean ± std

Hartmann6
mean ± std

BRVFL1 2.79× 103± 2.84× 103 2.32× 10−3± 2.04× 10−3 1.16± 6.11× 10−1

BRVFL2 3.05× 103± 3.02× 103 2.14× 10−3± 1.58× 10−3 1.05± 3.97× 10−1

BRVFL3 3.18× 103± 3.26× 103 1.76× 10−3± 9.45× 10−4 7.51× 10−1± 2.94× 10−1

BRVFL4 3.11× 103± 3.27× 103 1.91× 10−3± 1.43× 10−3 7.83× 10−1± 3.34× 10−1

ERVFL1 3.36× 102± 4.50× 102 2.87× 10−3± 1.70× 10−3 1.18± 4.90× 10−1

ERVFL2 2.81× 102± 3.79× 102 2.93× 10−3± 2.48× 10−3 1.27± 4.34× 10−1

ERVFL3 1.88× 103± 1.77× 103 1.95× 10−3± 1.61× 10−3 6.92× 10−1± 2.68× 10−1

ERVFL4 1.66× 103± 1.66× 103 1.82× 10−3± 1.22× 10−3 7.41× 10−1± 2.83× 10−1

Bohamiann 4.91± 8.20 5.63× 10−4± 1.40× 10−3 5.22× 10−2± 5.56× 10−2

GP 6.34± 1.27× 101 6.20× 10−2± 8.18× 10−2 5.17 × 10−2± 6.83 × 10−2

GPmcmc 2.85± 9.35 5.41 × 10−7± 1.41 × 10−6 1.22× 10−1± 1.50× 10−1

RandomForest 3.07× 101± 3.39× 101 1.97× 10−1± 7.25× 10−1 1.48× 10−1± 8.84× 10−2

RandomSearch 1.26× 101± 1.12× 101 1.49× 10−1± 1.08× 10−1 1.01± 3.34× 10−1
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Table 4.4: Evaluation of RVFL-based BO (fixed α) over Levy (2d and 10d)
as well as Hartmann6 functions. Figures represent means and standard
deviations of the final regrets after 200 function evaluations aggregated
over 30 independent optimization runs. For each function the best result
(bold font) as well as the first and second runner-ups (underlined) are
pointed out.

Method
Levy10d

mean ± std
Levy2d

mean ± std
Levy5d

mean ± std

BRVFL1 1.21× 102± 2.62× 101 1.11× 10−2± 2.34× 10−2 1.72× 101± 7.01

BRVFL2 1.28× 102± 2.55× 101 1.15× 10−2± 1.60× 10−2 1.61× 101± 6.31

BRVFL3 1.04± 3.17 × 10−1 1.09× 10−2± 1.12× 10−2 1.11± 8.30× 10−1

BRVFL4 1.21± 3.60× 10−1 1.26× 10−2± 1.36× 10−2 9.26× 10−1± 7.74× 10−1

ERVFL1 9.73× 101± 2.05× 101 7.30× 10−2± 6.57× 10−2 1.61× 101± 5.36

ERVFL2 1.04× 102± 1.96× 101 9.12× 10−2± 6.43× 10−2 1.70× 101± 4.18

ERVFL3 3.09× 101± 1.98× 101 3.81× 10−2± 3.53× 10−2 3.44± 2.90

ERVFL4 2.54× 101± 2.42× 101 4.44× 10−2± 4.17× 10−2 2.43± 2.21

Bohamiann 2.97× 101± 9.37 6.13× 10−4± 7.26× 10−4 8.44× 10−1± 4.63× 10−1

GP 3.31× 101± 4.46× 101 7.13× 10−3± 3.77× 10−2 8.23± 2.36× 101

GPmcmc N/A 3.45 × 10−6± 5.01 × 10−6 3.44 × 10−1± 3.60 × 10−1

RandomForest 2.69× 101± 1.05× 101 1.01× 10−1± 2.13× 10−1 4.53± 3.43

RandomSearch 4.34× 101± 9.55 2.07× 10−1± 1.31× 10−1 7.90± 3.82
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Table 4.5: Evaluation of RVFL-based BO (fixed α) over Rosenbrock (2d and
5d) as well as 2 dimensional sine functions. Figures represent means and
standard deviations of the final regrets after 200 function evaluations aggre-
gated over 30 independent optimization runs. For each function the best
result (bold font) as well as the first and second runner-ups (underlined)
are pointed out.

Method
Rosenbrock2d

mean ± std
Rosenbrock5d

mean ± std
Sintwo

mean ± std

BRVFL1 1.27× 103± 1.29× 103 6.79× 104± 3.19× 104 5.67× 10−3± 3.98× 10−3

BRVFL2 1.54× 103± 1.71× 103 6.55× 104± 2.94× 104 6.63× 10−3± 3.37× 10−3

BRVFL3 1.15× 103± 1.36× 103 7.75× 104± 3.58× 104 5.43× 10−3± 3.52× 10−3

BRVFL4 1.69× 103± 2.16× 103 7.14× 104± 3.28× 104 6.45× 10−3± 4.08× 10−3

ERVFL1 1.17× 102± 1.62× 102 4.51× 104± 2.05× 104 9.72× 10−3± 4.65× 10−3

ERVFL2 1.76× 102± 3.08× 102 4.06× 104± 2.01× 104 1.07× 10−2± 5.88× 10−3

ERVFL3 9.50× 102± 1.19× 103 5.54× 104± 2.55× 104 4.87× 10−3± 2.98× 10−3

ERVFL4 7.56× 102± 1.05× 103 5.66× 104± 2.45× 104 4.34× 10−3± 2.88× 10−3

Bohamiann 8.23× 10−1± 7.76× 10−1 3.01 × 102± 2.47 × 102 3.13× 10−3± 4.13× 10−3

GP 1.00 × 10−1± 2.38 × 10−1 5.67× 103± 1.41× 104 1.36× 10−2± 4.48× 10−2

GPmcmc 3.78× 10−1± 1.00 1.65× 103± 5.75× 103 4.86 × 10−5± 7.63 × 10−5

RandomForest 4.25± 5.14 1.76× 103± 1.36× 103 4.76× 10−3± 4.85× 10−3

RandomSearch 3.05± 2.89 3.05× 103± 3.12× 103 7.47× 10−3± 4.72× 10−3
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based BOs show their worst performance over these functions where none
of them could do better than random search.

Due to the varying performance of RVFL-based BOs over different
functions and the fact that at least on a number of synthetic functions
they actually did as well as or better than the others, we hypothesised
that rather than being inherently flawed their poor performance is due to
the lack of proper values for their hyper-parameters. When the selected
hyper-parameter values are far from their correct values, the predictive
uncertainty is either heavily overestimated or underestimated. This creates
an imbalance between the local and global elements of the search and shifts
the optimization towards either pure exploitation or exploration. One of
the quantities that we have set fixed in all previous experiments is the
prior distribution over w where its parameters are selected based on a toy
problem whose characteristics might be far from the ones we have used
to evaluate our methods. A more relevant approach would be to let the
hyper-parameter values vary based on the available observations.

RVFL-based BO with Evidence Approximation

In this section we present a new set of experiments over the synthetic
functions using RVFL-based BOs whose hyper-parameters are learned from
the observations. As in the previous experiments, we have set the parameters
of the noise distribution to constant values. But, the precision of the prior
overw, is fine-tuned using evidence approximation i.e. by maximising the log
marginal likelihood [11]. This is achieved by initialising αwith a reasonable
value and then iteratively going through equations (4.8) and (4.9):

γ =
∑ λi

α + λi
(4.8)

α =
γ

µᵀµ
(4.9)

where λi is the ith eigenvalue of the Hessian matrix of the log marginal
likelihood. In the case of ERVFLs, we have performed this procedure for
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the first member of the ensemble and used the α to set the priors for all
other members.
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Figure 4.5: Comparing the performance of RVFL-based BOs (learned α)
with other RoBO HPO methods during the optimization over synthetic
benchmark functions. Note that y-axis is log-scaled.

Figures 4.5 and 4.6 and Tables 4.6 to 4.9 contain the experimental re-
sults from comparing GP, GPmcmc, Random Forest, Bohamiann and random
search with RVFL-based BOs whose prior precision, α, is optimised using
evidence approximation. As shown in Figure 4.5 none of the methods were
able to beat GPmcmc. BRVFL-based methods have enjoyed an elevation in
their rank due to the optimization of prior precision. This enhancement
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Table 4.6: Evaluation of RVFL-based BO over Bohachevsky, Branin and
Camelback functions. Figures represent means and standard deviations
of the final regrets after 200 function evaluations aggregated over 30 inde-
pendent optimization runs. For each function, the best result (bold font) as
well as the first and second runner-ups (underlined) are pointed out. Prior
precision, α, of BRVFLs derived using evidence approximation.

Method
Bohachevsky
mean ± std

Branin
mean ± std

Camelback
mean ± std

BRVFL1 2.71× 10−1± 1.89× 10−1 9.54× 10−4± 6.57× 10−4 3.01× 10−4± 3.78× 10−4

BRVFL2 3.88× 10−1± 2.24× 10−1 8.66× 10−4± 9.85× 10−4 1.92× 10−4± 2.28× 10−4

BRVFL3 1.33 × 10−3± 1.29 × 10−3 1.29× 10−3± 9.35× 10−4 1.60× 10−3± 1.52× 10−3

BRVFL4 1.41× 10−3± 1.44× 10−3 1.11× 10−3± 6.61× 10−4 1.61× 10−3± 1.56× 10−3

ERVFL1 2.27× 102± 2.06× 102 4.54× 10−1± 3.50× 10−1 2.33× 10−1± 1.46× 10−1

ERVFL2 2.30× 102± 2.73× 102 4.19× 10−1± 3.35× 10−1 3.44× 10−1± 2.68× 10−1

ERVFL3 4.91× 101± 4.39× 101 2.86× 10−1± 2.22× 10−1 7.27× 10−2± 5.55× 10−2

ERVFL4 4.00× 101± 4.36× 101 3.03× 10−1± 2.49× 10−1 6.68× 10−2± 7.83× 10−2

Bohamiann 3.31× 10−1± 2.16× 10−1 1.40× 10−3± 2.73× 10−3 1.99× 10−3± 2.36× 10−3

GP 1.60× 101± 8.72× 101 5.16× 10−2± 2.82× 10−1 4.42× 10−2± 2.29× 10−1

GPmcmc 1.75× 102± 9.58× 102 2.61 × 10−5± 3.46 × 10−5 2.78 × 10−5± 3.30 × 10−5

RandomForest 1.54× 101± 1.42× 101 4.52× 10−2± 8.22× 10−2 3.16× 10−2± 1.00× 10−1

RandomSearch 9.68× 101± 8.06× 101 2.28× 10−1± 2.16× 10−1 9.18× 10−2± 7.62× 10−2
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Table 4.7: Evaluation of RVFL-based BO over Goldsteinprice, Hartmann3
and Hartmann6 functions. Figures represent means and standard devia-
tions of the final regrets after 200 function evaluations aggregated over 30
independent optimization runs. For each function, the best result (bold
font) as well as the first and second runner-ups (underlined) are pointed
out. Prior precision, α, of BRVFLs derived using evidence approximation.

Method
Goldsteinprice

mean ± std
Hartmann3
mean ± std

Hartmann6
mean ± std

BRVFL1 8.64± 1.12× 101 1.77× 10−3± 1.00× 10−3 6.97× 10−1± 3.22× 10−1

BRVFL2 1.10× 101± 1.06× 101 1.81× 10−3± 9.05× 10−4 6.32× 10−1± 2.32× 10−1

BRVFL3 9.44± 1.73× 101 1.39× 10−2± 9.47× 10−3 7.50× 10−1± 3.30× 10−1

BRVFL4 1.10× 101± 2.16× 101 1.17× 10−2± 8.19× 10−3 7.34× 10−1± 3.50× 10−1

ERVFL1 5.53× 101± 3.84× 101 1.96× 10−1± 1.33× 10−1 3.66× 10−1± 1.19× 10−1

ERVFL2 3.43× 101± 2.80× 101 2.11× 10−1± 1.09× 10−1 3.46× 10−1± 1.35× 10−1

ERVFL3 7.34± 5.33 5.80× 10−3± 3.56× 10−3 2.87× 10−1± 8.19× 10−2

ERVFL4 7.72± 7.28 4.06× 10−3± 2.68× 10−3 2.61× 10−1± 8.63× 10−2

Bohamiann 4.91± 8.20 5.63× 10−4± 1.40× 10−3 5.22× 10−2± 5.56× 10−2

GP 6.34± 1.27× 101 6.20× 10−2± 8.18× 10−2 5.17 × 10−2± 6.83 × 10−2

GPmcmc 2.85± 9.35 5.41 × 10−7± 1.41 × 10−6 1.22× 10−1± 1.50× 10−1

RandomForest 3.07× 101± 3.39× 101 1.97× 10−1± 7.25× 10−1 1.48× 10−1± 8.84× 10−2

RandomSearch 1.26× 101± 1.12× 101 1.49× 10−1± 1.08× 10−1 1.01± 3.34× 10−1
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Table 4.8: Evaluation of RVFL-based BO over Levy (2d and 10d) as well as
Hartmann6 functions. Figures represent means and standard deviations
of the final regrets after 200 function evaluations aggregated over 30 inde-
pendent optimization runs. For each function the best result (bold font) as
well as the first and second runner-ups (underlined) are pointed out. Prior
precision, α, of BRVFLs derived using evidence approximation.

Method
Levy10d

mean ± std
Levy2d

mean ± std
Levy5d

mean ± std

BRVFL1 5.82± 1.55× 101 9.77× 10−2± 2.90× 10−1 2.17± 2.51

BRVFL2 1.19± 2.50× 10−1 8.36× 10−3± 1.90× 10−2 3.53± 3.61

BRVFL3 1.11± 1.96× 10−1 3.34× 10−3± 6.83× 10−3 6.30× 10−1± 2.14× 10−1

BRVFL4 1.09± 2.22 × 10−1 3.87× 10−3± 6.92× 10−3 6.32× 10−1± 4.03× 10−1

ERVFL1 1.54± 9.48× 10−1 3.29× 10−1± 3.21× 10−1 1.46× 101± 5.91

ERVFL2 1.83± 1.17 2.65× 10−1± 2.03× 10−1 1.66× 101± 6.38

ERVFL3 2.38± 4.86 3.08× 10−1± 1.59× 10−1 9.06± 5.43

ERVFL4 2.03± 1.30 2.29× 10−1± 1.80× 10−1 8.21± 4.92

Bohamiann 2.97× 101± 9.37 6.13× 10−4± 7.26× 10−4 8.44× 10−1± 4.63× 10−1

GP 3.31× 101± 4.46× 101 7.13× 10−3± 3.77× 10−2 8.23± 2.36× 101

GPmcmc N/A 3.45 × 10−6± 5.01 × 10−6 3.44 × 10−1± 3.60 × 10−1

RandomForest 2.69× 101± 1.05× 101 1.01× 10−1± 2.13× 10−1 4.53± 3.43

RandomSearch 4.34× 101± 9.55 2.07× 10−1± 1.31× 10−1 7.90± 3.82
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Table 4.9: Evaluation of RVFL-based BO over Rosenbrock (2d and 5d) as
well as 2 dimensional sine functions. Figures represent means and standard
deviations of the final regrets after 200 function evaluations aggregated over
30 independent optimization runs. For each function, the best result (bold
font) as well as the first and second runner-ups (underlined) are pointed
out. Prior precision, α, of BRVFLs derived using evidence approximation.

Method
Rosenbrock2d

mean ± std
Rosenbrock5d

mean ± std
Sintwo

mean ± std

BRVFL1 1.33± 1.96 2.27× 102± 3.06× 102 3.70× 10−3± 3.96× 10−3

BRVFL2 1.42± 2.00 1.42× 102± 2.24× 102 2.69× 10−3± 2.56× 10−3

BRVFL3 2.95± 4.12 1.46× 102± 1.80× 102 3.79× 10−3± 2.49× 10−3

BRVFL4 3.02± 4.37 1.41 × 102± 1.76 × 102 3.29× 10−3± 2.10× 10−3

ERVFL1 1.03× 101± 1.07× 101 1.54× 104± 1.02× 104 7.69× 10−3± 4.44× 10−3

ERVFL2 1.11× 101± 1.09× 101 1.56× 104± 9.85× 103 9.92× 10−3± 4.53× 10−3

ERVFL3 4.38± 3.38 1.45× 104± 9.46× 103 3.15× 10−3± 1.78× 10−3

ERVFL4 6.23± 7.26 1.10× 104± 7.29× 103 3.21× 10−3± 1.97× 10−3

Bohamiann 8.23× 10−1± 7.76× 10−1 3.01× 102± 2.47× 102 3.13× 10−3± 4.13× 10−3

GP 1.00 × 10−1± 2.38 × 10−1 5.67× 103± 1.41× 104 1.36× 10−2± 4.48× 10−2

GPmcmc 3.78× 10−1± 1.00 1.65× 103± 5.75× 103 4.86 × 10−5± 7.63 × 10−5

RandomForest 4.25± 5.14 1.76× 103± 1.36× 103 4.76× 10−3± 4.85× 10−3

RandomSearch 3.05± 2.89 3.05× 103± 3.12× 103 7.47× 10−3± 4.72× 10−3
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in the performance is more notable in BRVFL2 which has ranked third,
higher than GP and with a small margin lower than Bohamiann. Moreover,
BRVFL4 performance is almost as good as GP with the Borda score of 108
against 109 in GP. BRVFL1 and BRVFL3 have performed very similarly but
slightly worse than the ones with skip-connections. The effect of evidence
approximation on ERVFL methods is mostly negligible with ERVFL1 and
ERVFL2 still standing lower and ERVFL3 and ERVFL4 ranking higher than
Random Search. This suggests that the proposed method for setting the
prior precision of all ensemble members based on only one member is not
effective probably due to the fact that the parameters of prior in ensemble
members are not similar.

The regret values during and at the end of optimization over each
function also show a significant improvement in BRVFL-based methods
compared with their fixed-precision counterparts. In 9 out of 12 functions,
the RVFL-based methods have been among the top three. BRVFL3 has
been the best once, on Bohachevsky, and BRVFL4 twice similar to GP, on
5d Rosenbrock and 10d Levy, whereas Bohamiann has never obtained the
first place.

4.4.2 Hyperparameter Optimization

To test the performance of the proposed RVFL-based BOs on HPO prob-
lems we chose to apply them on the set of surrogate benchmark problems
available in the HPOlib library [52]. Each problem in the benchmark cor-
responds to the application of a selected machine learning algorithm on a
specific dataset. The surrogate is built using performance data collected
from running the algorithm with various possible hyperparmeter configu-
rations on the dataset. Experiments consisted of 30 trials per method per
benchmark problem where each trial had a maximum budget of 50 itera-
tions which is the default value of the HPOlib library for HPO problems.
Table. 4.10 contains the complete list of model/dataset pairs. Due to the
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poor performance of ERVFL methods over the synthetic functions we opt
not to include them in the current set of experiments.

Table 4.10: Overview of models and datasets used for HPO benchmarking.

Model No. Parameteres Dataset

SVM 2 MNIST
Wide Resnet 2d 2 CIFAR10
CNN 5 CIFAR10

Paramnet 8

Adult
Higgs
Letter
MNIST
Optical Digists
Poker

The overall performance of BO methods is presented in Figure 4.7
in the form of aggregated Borda scores. To compute these scores each
experiment is performed for 30 independent runs. Each run is started from
a different random initial design with an allocated budget of 50 function
evaluations. At the end of the run the best validation error obtained during
the optimization is recorded and used to rank the methods.

As it is evident in Figure 4.7 Random Forest has been ranked higher
than all other methods except for GPmcmc, which has shown to have the
best overall performance in the HPO problems. On the other hand, BO
with Baysian NN surrogate has been ranked worst of all. Amid RVFL-
based methods BRVFL4, i.e. Bayesian RVFL with relu nonlinearity and
skip connection, has demonstrated a fairly good overall performance by
standing in the third place, higher than GP, whereas BRVFL1 has been the
least effective method. The results indicate that models with relu activation
functions are superior to the ones using tanh. On the other hand, presence
of skip connection also contributes to the performance of RVFL-based BOs.
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Figure 4.7: Aggregated Borda score of BOs method over the whole set of
benchmark problems as measure of their performance.
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Table 4.11: Validation errors induced by the best hyperparameter config-
urations found by BO methods for SVM, Wide Resnet and CNN models
over MNIST, and CIFAR10 datasets.

Method
svm-MNIST
mean ± std

wideresnet2d
mean ± std

cnn-cifar10
mean ± std

BRVFL1 2.0287× 10−2 ± 8.6405× 10−3 5.9018× 10−2 ± 7.7218× 10−3 1.6597× 10−1 ± 1.0822× 10−2

BRVFL2 1.9607× 10−2 ± 8.1780× 10−3 5.8747× 10−2 ± 7.6693× 10−3 1.7345× 10−1 ± 2.4775× 10−2

BRVFL3 3.2476× 10−2 ± 1.2293× 10−2 5.2432× 10−2 ± 5.5952× 10−5 1.6608× 10−1 ± 1.5268× 10−2

BRVFL4 3.2638× 10−2 ± 1.2371× 10−2 5.2441× 10−2 ± 6.5810× 10−5 1.6572× 10−1 ± 1.0659× 10−2

BOHAMIANN 1.8896× 10−2 ± 7.6396× 10−3 5.3460× 10−2 ± 9.8911× 10−4 1.7832× 10−1 ± 1.4038× 10−2

GP 1.5349× 10−2 ± 1.2611× 10−3 5.2382 × 10−2 1.6707× 10−1 ± 5.8834× 10−3

GPmcmc 1.5127 × 10−2 ± 4.4707 × 10−4 5.2382× 10−2 ± 5.0742× 10−7 1.6194 × 10−1 ± 6.9072 × 10−3

Random Forest 4.4614× 10−2 ± 1.6035× 10−1 5.2912× 10−2 ± 2.2700× 10−3 1.6203× 10−1 ± 5.4784× 10−3

Random Search 1.5754× 10−2 ± 1.4833× 10−3 5.2382× 10−2 ± 6.9149× 10−7 1.6928× 10−1 ± 9.1168× 10−3

Table 4.12: Validation errors induced by the best hyperparameter configu-
rations found by BO methods for Paramnet model over Adult, Higgs and
Letter datasets.

Method
paramnet-adult

mean ± std
paramnet-higgs

mean ± std
paramnet-letter

mean ± std

BRVFL1 1.4896× 10−1 ± 6.2342× 10−4 2.8692× 10−1 ± 2.9132× 10−3 4.3942× 10−2 ± 6.5744× 10−3

BRVFL2 1.4911× 10−1 ± 1.1029× 10−3 2.8671× 10−1 ± 3.0866× 10−3 4.3070× 10−2 ± 6.2588× 10−3

BRVFL3 1.4882× 10−1 ± 9.1561× 10−4 2.8354× 10−1 ± 1.6313× 10−3 4.2939 × 10−2 ± 5.7651 × 10−3

BRVFL4 1.4852 × 10−1 ± 1.0830 × 10−3 2.8386× 10−1 ± 2.1194× 10−3 4.8070× 10−2 ± 2.3188× 10−2

BOHAMIANN 1.4961× 10−1 ± 7.8405× 10−4 2.8608× 10−1 ± 2.1377× 10−3 5.5965× 10−2 ± 1.1644× 10−2

GP 1.4921× 10−1 ± 8.6069× 10−4 2.8734× 10−1 ± 3.0183× 10−3 4.9495× 10−2 ± 1.0114× 10−2

GPmcmc 1.4911× 10−1 ± 6.4692× 10−4 2.8508× 10−1 ± 2.8941× 10−3 4.4366× 10−2 ± 6.9121× 10−3

Random Forest 1.4883× 10−1 ± 1.1818× 10−3 2.8352 × 10−1 ± 2.3782 × 10−3 4.7895× 10−2 ± 1.0485× 10−2

Random Search 1.4927× 10−1 ± 9.0122× 10−4 2.8505× 10−1 ± 2.1943× 10−3 6.6122× 10−2 ± 2.4308× 10−2
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Table 4.13: Validation errors induced by the best hyperparameter config-
urations found by BO methods for Paramnet model over MNIST, Optical
Digists and Poker datasets.

Method
paramnet-MNIST

mean ± std
paramnet-optdigits

mean ± std
paramnet-poker

mean ± std

BRVFL1 1.6938× 10−2 ± 7.6159× 10−4 1.7729 × 10−2 ± 1.0232 × 10−3 8.3931× 10−3 ± 1.5176× 10−2

BRVFL2 1.6960× 10−2 ± 6.4255× 10−4 1.7908× 10−2 ± 1.2213× 10−3 4.5599× 10−3 ± 9.1412× 10−3

BRVFL3 1.6876 × 10−2 ± 6.1069 × 10−4 1.8445× 10−2 ± 2.0566× 10−3 1.5174 × 10−3 ± 1.4230 × 10−3

BRVFL4 1.8994× 10−2 ± 8.0493× 10−3 1.8396× 10−2 ± 3.9608× 10−3 1.5971× 10−3 ± 1.3639× 10−3

BOHAMIANN 1.8313× 10−2 ± 1.5784× 10−3 2.0971× 10−2 ± 2.9924× 10−3 1.5116× 10−2 ± 1.8334× 10−2

GP 1.7609× 10−2 ± 1.1851× 10−3 1.8099× 10−2 ± 1.2732× 10−3 2.4774× 10−2 ± 3.1478× 10−2

GPmcmc 1.7380× 10−2 ± 1.2299× 10−3 1.7973× 10−2 ± 1.5034× 10−3 7.8420× 10−3 ± 1.3995× 10−2

Random Forest 1.9257× 10−2 ± 4.7268× 10−3 1.8276× 10−2 ± 1.9074× 10−3 1.4926× 10−2 ± 3.2396× 10−2

Random Search 1.7830× 10−2 ± 1.5579× 10−3 2.0373× 10−2 ± 2.5240× 10−3 1.2285× 10−2 ± 1.4672× 10−2

Tables 4.11 to 4.13 contain the performance data at a finer resolution, i.e.
the mean and standard deviations of the final validation errors obtained by
each BO method over each problem. As it could be seen, GP, GPmcmc and
Random Search are the three methods which could find configurations with
lowest expected validation error in two-dimensional problems (Table. 4.11).
GPmcmc has been the best on SVM/MNIST and with a very small margin
the second best after GP on Wide Resnet/CIFAR10. In both cases, Random
Search could find configurations with third best expected validation error.
In 5 dimensional CNN/CIFAR10 again GPmcmc has dominated the rest,
however, on this model/dataset pair Random Forest and BRVFL4 have
produced the second and third best results, respectively. Yet, experiments
over Paramnet model (Table. 4.12 and Table. 4.13) show the domination
of BRVFL methods over the rest. In all mode/dataset pairs but Param-
net/Higgs where Random Forest has got the least mean validation error,
the best results are produced by one of BRVFL methods. In this set of 8
dimensional problems, BRVFL3 has shown to be the most successful BO
method in terms of mean validation error.
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4.5 Discussion

The class of priors represented by Neural Networks have favourable char-
acteristics which make them promising to be used as surrogate models in
BO. However, Bayesian NN, as the most commonly used member of this
class in the context of BO, has some practical limitations whose sources
are rooted in the fact that most of inference algorithms are troubled when
it comes to models with high number of parameters. A solution to this
problem would be to only perform inference on a selected subset of the
NN parameters. Our experiments show that Bayesian RVFLs as surrogate
models in BO could perform comparably to GPs and Bayesian NNs in the
optimization of Hyper parameters as well as synthetic functions. This is
significant since similar results, in terms of quality, could be obtained using
a surrogate with much cheaper inference procedure.

Our experiments show an absolute superiority of RVFLs with learned
hyperparameters over the ones in which they are fixed. Moreover, among
the RVFL-base methods the best overall results were given by models with
skip-connection, i.e BRVFL2 and BRVFL4 in the synthetic functions and
HPO problems, respectively. This is in line with the findings of [220] about
the advantages of adding skip-connection to RVFLs. We also found that
Bayesian RVFLs performed relatively well on higher dimensional problems.
However, the reasons of this phenomenon need to be studied.

The overall performance of the relu networks was mostly better than
tanh ones. This is interesting since in Bayesian RVFLs with relu nonlineari-
ties by going further from the observed points the predictive variance gets
larger and, unlike GPs and models with tanh activation, does not level-
off. We expect this to exacerbate the boundary over-exploration effect [46],
which already exists in GP-based BOs, by promoting the BO even more
to sample close to the boundaries. Nevertheless, zero-mean GP and tanh
Bayesian RVFLs create large plateaus in the regions of the search space
that are far from current sample points. Whereas, these plateaus do not
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exist in relu networks. Having said that, we could think of two probable
reasons for the superiority of relu networks. On one hand, it is possible
that the none-existence of plateaued regions might have overshadowed
the downsides of the boundary over-exploration effect. On the other, it
might be the result of our random parameter assignment method. While
our weight normalization and bias assignment scheme works perfectly
well with relu nonlinearities, it might not work as well if tanhs are used. In
fact, in models with sigmoid activation functions we might have been better
off with a random weight-generating methods such as the one presented in
[46] which are specifically tailored for those nonlinearities.

4.6 Conclusion

This chapter addressed the scalability problem and high computational
cost of using Monte Carlo-inferred BNNs in BO. It studied a set of BOs in
which RVFLs are utilized as surrogates with efficient inference processes
and introduced a novel Bayesian RVFL-based BO whose performance is
better than or on par with the state-of-the-art BO methods on a set of
synthetic functions and HPO problems. Furthermore, this work presented
a simple scheme for initialization of the random parameters involved in
RVFL networks.

This study examined the use of Bayesian RVFLs and (Bayesian) ensem-
ble of MAP RVFLs as surrogates models in BO. Through the experiments it
was shown that RVFL-based BOs whose hyper-parameter values were spec-
ified a priori had a poor overall performance, compared with BO methods
that utilized Bayesian NN, GP or Random Forest surrogates. This included
both Bayesian RVFL with constant prior precision and Bayesian ensemble
of MAP RVFLs. However, in Bayesian RVFL this problem was resolved by
inferring the hyperparameters from the observations. It was shown that
BO with a Bayesian RVFL surrogate and evidence approximation over the
hyperparameters outperforms the ones with Random Forest and GP (with
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ML over its hyperparameters) over synthetic functions. Furthermore, the
overall performance of such a BO was better than Bayesian NN-based BO
over the set of HPO problems.

In this study we used low dimensional benchmark problem. It would
be insightful to see how they could be compared with the existing methods
over higher dimensional HPO problems. Moreover, we found that (relu)
Bayesian RVFLs and ensemble of MAP RVFLs (with hyperparameters set
fixed) have comparable performance. Although in this work we did not
come up with a principled method for refining the hyperparameters of
Bayesian ensemble of MAP RVFLs, the simplicity and parallelizablility of
their training encourages further research in this direction. In a possible
future work we are interested in observing the possible enhancement in
the performance of the BO if a hyperparamter inference method is used
along with the ensemble method. Another extension to the current work
would be to apply a fully Bayesian method to infer the posterior over the
parameters of the final layer.
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Chapter 5

A Conditional Likelihood
Acquisition Function

5.1 Introduction

In principle, if Bayesian optimization uses the Expected Improvement
infill criterion and GP prior (Vanilla BO) under certain assumptions it
will find the global optimum in continuous non-convex problems in an
asymptotic regime (see M. Locatelli’s seminal work on this [134] and also
[201]). That is, in a noiseless environment, regardless of the initial design,
it can eventually find the global optimum of a function with 100% certainty.
However, in scenarios where the budget is limited, the convergence is
not guaranteed. Therefore, performance of the BO is strongly contingent
on having a good initial design. In other words, if the initial points are
not representative of the properties of the underlying function, BO may
fail to produce good results. Consequently, we might face circumstances
in which BO could even be beaten by simple methods, such as trivial
random search with only twice the budget [116, 129, 105]. The potential
for deception by misleading initial points is a fundamental flaw of Vanilla
BO and is germane to the two-stage process of its Optimization steps,
in which the errors propagated from one stage to the next one remain

105
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undealt. To circumvent this problem, in this chapter we study a new type
of acquisition function for Bayesian Optimization which employs NNs to
cope with inaccuracies that are propagated forward from the surrogate
building process.

• We apply the notion of conditional maximum likelihood as an infill
criterion to find new points in BO.

• We investigate the composition of the new acquisition function with
different surrogate models and compare it with EI over a set of HPO
benchmark problems.

5.2 Conditional Maximum Likelihood in GP

The source of the susceptibility of Vanilla BO to deception is said to be
[18] that the hyperparameters are inferred solely from the available ob-
servations. A possible solution is therefore to somehow include a new
(unobserved!) point into the hyperparameter estimation process involved
in each optimization step. One way to achieve this, known as the single
stage optimization method, has been suggested as a replacement for vanilla
Bayesian optimization in [106]. If the function value for the global opti-
mum , y∗, is known in advance, we could use the conditional likelihood
as a credibility measure, and by maximizing it, simultaneously compute
the hyperparameter values as well as the location of the next point to be
evaluated. To this end, given a dataset of observations, D = (xi,yi)

n
i=1 and

the function value of the optimum point, y∗, we assume that the underlying
function passes through the previous n points as well as a new point (x̂, y∗)
with unknown location x̂ which at this stage we expect to be the global
optimum. The location of x̂ and the model hyperparameter values are
inferred by optimizing their joint conditional likelihood:

x̂, θ̂ = argmax
x,θ

p(x,θ | D, y∗) (5.1)
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In a zero-mean GP this conditional likelihood could be computed ana-
lytically as follows[173]:

p(x,θ |X,y, y∗, σ2
n) =

1

(2π)
n
2 | C + σ2

nI |
1
2

exp(−1

2
ȳᵀ(C + σ2

nI)−1ȳ) (5.2)

C = K− k̂k̂ᵀ , ȳ = y − k̂.y∗

where K and k̂ are defined as in section 2.3.2. For numerical reasons,
maximizing the conditional log-likelihood is preferred to a direct use of the
equation (5.1):

log p(x,θ |X,y, y∗, σ2
n) = −n

2
log(σ̂2)−1

2
log(|C|)−1

2
ȳᵀ(C+σ2

nI)−1ȳ (5.3)

where µ̂ and σ̂2 are computed as follows:

¯̂
k = 1− k̂

µ̂ =
¯̂
kᵀC−1ȳ
¯̂
kᵀC−1 ¯̂

k
(5.4)

σ̂2 =
1

n
(ȳᵀ − ¯̂

kµ̂)C−1(ȳ − ¯̂
kµ̂) (5.5)

In practice, (5.3) could be simplified further to get the concentrated form
[173]:

L(x̂,θ) = −n
2

log(σ̂2)− 1

2
log(|C|), θ ∈ R (5.6)

In an ideal scenario, where y∗ is given, each optimization step would con-
sists of a) going through equations (5.4),(5.5) and (5.6) until convergence
condition is satisfied; b) evaluating the computed x̂ using the target func-
tion. Nevertheless, the assumption of having access to y∗ is far fetched in
many cases, therefore, in [106] it is suggested that in each optimization
step the above process in performed multiple times, and each time y∗ is
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subsumed by an arbitrary value that is smaller than the function value of
the best point found so far, y < ymin.

This is a somewhat tedious process since in each optimization step
the conditional maximum likelihood solution should be computed several
times. Moreover, as reported in [173] it is prone to numerical problems. The
problem is germane to GP with hyperparameters set via Maximum Likeli-
hood, as having sample points close to the current set of observations might
create an ill-conditioned covariance matrix. Interactions between x̂ and
θ further intensify the risk of ill-conditioning when using the conditional
maximum likelihood approach.

In the following we will explain our proposed infill criterion, which
also entails the solution to the above problems.

5.3 Conditional Maximum a Posteriori in Neural

Networks

In the optimization problem of section 5.2, it was seen that Neural Net-
works have at least two advantages over Gaussian Processes. Firstly, using
them we could easily sample from any location in the search space with-
out worrying about numerical issues. Secondly, optimization of the loss
function could be performed in a neat way using gradient descent via
backpropagation. Here we present a method based on NNs for the same
task. To this end, given a dataset of previously observed points D and the
function value for the optimum point, y∗, we could find the next evaluation
point by maximizing the joint posterior over the parameters of the Neural
net and x̂, the point corresponding to y∗, where a flat (uniform) prior is
defined over x̂ and NN’s trainable parameters have a Gaussian or elastic
net joint prior. This is equal to minimizing the regularized least square loss
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as follows:

L(x̂,w) = − log p(x̂,w |X,y, y∗) (5.7)

∝ 1

n+ 1

[ n∑
i=1

(fw(xi)− yi)2 + (fw(x̂)− y∗)2
]

+ λ0

m∑
i=1

w2
i + λ1

m∑
i=1

|wi|

(5.8)

where w is the vector of trainable parameters of NN, fw(.) denotes the
NN’s function and λ0 and λ1 are tuning parameters. The advantage of
using elastic net over l2 regularization is that it encourages sparsity. This is
specially desirable when the dimensionality of the input is higher than the
number of observations [222].

If the value of y∗ is unknown however (as is often the case), we would
like to know how one might estimate it in a sensible way. Fortunately,
vanilla BO gives us the means to compute the expected value of y∗:

E[y∗] = ymin −max
x∈χ

EI(x) (5.9)

where ymin denotes the best function value so far and EI(.) is the expected
improvement function. maxx∈χ EI(x) is obtained by performing a local
search using EI, as the second stage of the optimization in Vanilla BO.
Replacing y∗ in (5.8) with E(y∗) gives rise to a new acquisition function
which could enjoy the advantages of both single and double stage opti-
mization. Algorithm 4 shows the complete pseudo-code for a BO with the
new acquisition function.

5.4 Experiments and Results

In this section we explain our experimental setup and results. The exper-
iments are performed using HPOlib2 [50] on the set of hyperparameter
optimization problems which are provided as surrogates of the correspond-
ing (real) HPO problem. We have compared the new infill criterion with
EI in combination with three state-of-the-art surrogates, namely Bayesian
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NNs with Hamiltonian Monte Carlo as inference method (BOHAMIANN),
GP with MLE, and Random Forests. To compute the conditional maximum
a posteriori estimates we have used a feed-forward NN with 2 hidden layers
each having 50 tanh units. Both λ0 and λ1 are set to be 5.0 × 10−5. All
methods use random search to optimize EI, and the rest of the parameters
are left to their default values. Performance statistics for each experiment
are gathered from 30 independent runs, where each run consists of 50
optimization steps.

Table 5.1 contains the median of final validation errors resulting from
the combination of surrogates with each infill criterion. Methods that use
the new infill criterion are specified by cl subscript. As Table 5.1 shows, the
effectiveness of the new infill criteria changes from one surrogate mode to
another. In BO with Bayesian NN surrogate, the new infill criterion has
absolutely outperformed EI. In all benchmark problems BOHAMIANNcl

has resulted in validation errors which are lower than those produced
by BOHAMIANN. In the case of GP and Random Forests, however, this
superiority could not be seen. For example in GP-based BOs, in all problems
except for Paramnet-adult, either the original EI could reach to a better
result or both infill criteria performed equally well. Likewise, in Random
Forests, optimization of the hyperparameters of Convolutional NNs over
CIFAR10 dataset (cnn-cifar10) has given the lowest median validation
error, whereas in other problems EI has acted better than or as good as the
new infill criterion. The performance statistics of these methods during the
optimization process, presented in Figures 5.1 to 5.9, is almost in line with
the results in Table 5.1.

It is interesting to speculate whether better performance when using
the new acquisition function might be connected to the similarity between
the model used in the acquisition function with that of the surrogate model,
both of which are Bayesian NN in the successful cases. Another reason
might be the lower performance of BOHAMIANN with EI infill criteria in
comparison with the other BO methods.
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5.5 Conclusion

This chapter presented a novel infill criterion, building on the idea of
conditional maximum likelihood suggested in Jones’ single-stage optimization
method. As opposed to Vanilla BO in which it is assumed that the surrogate
model is an accurate model of the underlying function, the new infill
criterion complements EI with a method that utilizes NNs to cope with
possible inaccuracies in the surrogate model. In order to get a more precise
estimate for the location of the best infill point to try, the new infill criterion
uses the value of expected improvement to compute the conditional max a
posteriori solution over the join space of the location of the optimum and
parameters of a NN model.

To evaluate the proposed infill criteria, it was compared to EI on a set of
9 benchmark problems each of which includes hyperparameter optimiza-
tion of a machine learning model on a benchmark dataset. The surrogate
models used in the experiments consisted of Bayesian NNs (inferred by
Hamiltonian Monte Carlo), GP (with Maximum likelihood estimate over
its parameters) and Random Forests. Our studies showed that when used
with a Bayesian NN surrogate, the new infill criterion performed better
than EI. However, if used with GP or random-forest, the new infill criterion
does not provide any advantage over EI, probably because the surrogate
model and the NN used in the infill criteria represent different assumptions
about the smoothness characteristics of the underlying functions. This
study established a solution to utilize the idea of single-stage optimization
in a new acquisition function to cope with inaccuracies that are propagated
forward from the surrogate building process. Furthermore, it provided
a strait-forward way to accomplish this task using NNs. Although the
experiments did not indicate a decisive dominance of the proposed infill
criterion over EI, its limited success in BOs with NN-based surrogates en-
courages further research in this direction, for example by trying different
regularization methods for the infill criterion’s NN.
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Algorithm 4: Pseudo-code for BO with the new acquisition function
Input: f(.): the black-box function

D = (xi, yi)
n0

i=1: initial design
n: Number of optimization steps
p0(f): a prior over f
EI(.): Expected Improvement function
w: set of parameters of a NN

Output: xmin: next point to sample from
i← 0;
ymin ← min(y0, .., yn0);
while i < n do

Compute pi(f | D) given D and p0(f);
EImax ← max EI(f, pi(f | D));
E[y∗]← ymin − EImax;
xn0+i, ← argmaxx,w log p(x,w |X,y,E[y∗]);
D ← D ∪ {(xn0+i, f(xn0+i))};
if f(xn0+i) < ymin then

ymin ← f(xn0+i);
xmin ← xn0+i;

end
i← i+ 1

end
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Table 5.1: Comparison of performance of the new infill criterion with EI’s in
three different BO methods. Figures show the median of validation errors
from 30 independent runs. The best result in each row is depicted in bold.

method BOHAMIANN BOHAMIANNcl GP GPcl Random Forest Random Forestcl
benchmark

cnn-cifar10 0.174359 0.162855 0.166174 0.168873 0.161916 0.161756
paramnet-adult 0.149523 0.148949 0.149375 0.149323 0.148769 0.149287
paramnet-higgs 0.285667 0.284689 0.287129 0.289287 0.283275 0.285095
paramnet-letter 0.0548847 0.0487449 0.0479195 0.0513795 0.0459634 0.0489597
paramnet-mnist 0.018125 0.017715 0.01766 0.01799 0.01772 0.017765
paramnet-optdigits 0.0205953 0.0197506 0.0179002 0.0205149 0.018222 0.019469
paramnet-poker 0.00813595 0.00225279 0.00735737 0.0149929 0.0016057 0.00583595
svm-mnist 0.0174945 0.0150458 0.0150458 0.0150458 0.0150458 0.0150458
wideresnet2d 0.054226 0.052382 0.052382 0.052382 0.052382 0.052382



Chapter 6

Implicit models and order
preservation

6.1 Introduction

This chapter develops a novel and efficient way of building Bayesian neural
network surrogates in Bayesian Optimization. In this study, we propose
a new approach to reduce the computational cost of building Bayesian
Neural Network surrogates. To this end, rather than running an expensive
Markov Chain to infer the parameters of a Bayesian neural network, we
make use of the variational optimization and employ a highly expressive
approximate distribution from the family of deep generative models, also
known as an ”implicit” model. The contributions of this chapter are two-
fold. First, we present the notion of order-preserving implicit models, a
deep generative model in which the order of the level-sets in the distri-
bution defined over the latent space is kept consistent with the ones in
the target distribution - a desirable property for our application. Then,
we use order-preserving models under variational Bayesian framework
to infer the parameters of a Bayesian neural network surrogate. This new
inference scheme falls into the category of Hypernets, neural networks that
generate neural networks. We refer to the Bayesian NNs inferred using

123



124 CHAPTER 6. IMPLICIT MODELS AND ORDER PRESERVATION

this scheme as Implicit Variational Bayesian neural networks and show that
they usually out-perform MCMC Bayesian NNs in Bayesian optimization
of hyperparamters. To make this study more comparable with other works
in the literature of implicit models, we decided to adopt the naming con-
vention which is more commonly used in this context, rather than keeping
the notation consistent with the previous chapters.

6.2 Deep Generative Models

Variational inference (VI) is an instrumental part of the Bayesian inference
toolkit and a computationally efficient alternative to Markov Chain Monte
Carlo methods. This efficiency comes from the fact that in VI the inference
is performed by means of optimization rather than sampling, the approach
taken by MCMC. However, the decision on picking one over another is
usually a compromise on efficiency over accuracy. On one hand, MCMC
methods are able to produce an asymptotically exact estimation of a target
(posterior) distribution, but are short on scalability. On the other hand,
although VI is scalable and fast, compared to MCMC, it usually results
in biased estimates. A combination of two factors, and their interaction,
contribute to the sub-optimal behaviour of VI. (1) The application of strong
over-simplified assumptions on the characteristics of the true posterior.
(2) The use of KL-divergence to measure the closeness of the variational
distribution to the true posterior.

Recalling from 2.3.1, in VI, assumptions about the characteristics of
the true posterior are expressed by selecting a parametric form for the
approximating distribution. Then, inference is performed by fine-tuning
the parameters of this distribution in order to minimize the KL-divergence
between the approximating and the true distributions. Traditionally, to
reduce the complexity of the variational optimization, the approximating
distribution is chosen from a factorized family. This prohibits them from
being able to recover complicated posteriors due to their limited expres-
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sive power. Furthermore, the KL-divergence encourages the variational
distribution to prioritize high probability regions of the true posterior. In
other words, the representational capacity of the variational distribution
is devoted to recovering as much probability mass (from the posterior) as
possible. If the gap between the complexity of the true posterior and the ca-
pacity of the variational distribution is wide, variational optimization leads
to the so-called ’mode-seeking’ behaviour [179, 148, 218], meaning that
the limited capacity of the approximating distribution is only enough to
encompass the probability mass around the posterior’s modes. Depending
on the complexity of the true posterior, the effectiveness of VI is thus greatly
dependent on the representational power of its approximating distribution.

Amongst many approximating models that have been studied in VI,
deep neural density estimators [41, 165, 90, 34] have the advantage of being
both scalable and yet highly expressive (they are able to provide complex
representations of data or distributions). Therefore, they have attracted
considerable attention and have become a means to construct arbitrarily
complex approximating distributions that could asymptotically recover
the target distribution. This high level of complexity is usually achieved
by squashing (transforming) a simple probability distribution (such as
an isotropic Gaussian) through a parametric transformation of the form
Gβ : Rm → Rd, specified by a deep NN:

θ = Gβ(z), z ∼ p(z) (6.1)

z ∈ Rm, is a random variable from a simple distribution ( p(z) could be
treated as either noise or latent variable [198]), transformed to a variable
from the target domain, θ ∈ Rd, through a nonlinear generator function, Gβ,
with β being its vector of parameters. Subsequently, the corresponding
transformed density qβ(θ) is defined as the derivative of the cumulative
distribution function [153]:

qβ(θ) =
∂

∂θ1

. . .
∂

∂θd

∫
{Gβ(z)≤θ}

p(z) dz (6.2)
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mean-field
(Gaussian)

flow-based implicit

Representational Power 3 33 333

Tractable qβ(θ) 3 3 7

Tractable p(θ). 33 33 3

Intractable p(θ). 7 7 3

Table 6.1: Comparison of mean-field, flow-based and implicit variational
inference. The representational power of implicit models is deemed to be
higher than flow-based models as they are able to encompass information
from a high dimensional space into a low dimensional input space. How-
ever, implicit models are only able to deal with tractable target distribution,
if only they have a tractable sampling process.

in which θi is the ith element of θ.

Based on the specifications of Gβ(.), deep generative models could be
divided into two main classes: prescribed and implicit models [40]. Prescribed
models, also known as flow-based generative models [84], have tractable
probability distribution functions, as qβ(θ) is analytically computed from
equation (6.2). This tractability is attained when the transformation satisfies
a set of conditions: (1) it has an equidimensional input and output, m = d, (2)
it is invertible and smooth, and (3) the determinant of the Jacobian is cheap
to compute [180]. The application of flow-based models in VI is relatively
straightforward - during the variational optimization, expectations are
taken under the approximating distribution and evaluation is performed
using both the approximating as well as the target distributions. In this
inference scheme, the density of the target distribution is available up
to a normalizing constant, but it does not need to be an easy-to-sample
distribution.

Implicit models are alternatives to flow-based models, with the well-
known Generative Adversarial Network (GAN) [71] being the most famous
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member of the family. The transformations used in implicit models do not
have the restrictions imposed on flow-based models: Gβ(.) does not need to
be invertible, and the dimensionality of the random variable z at the ”input”
is usually much lower than dimensionality of the transformed one: m <<

d. As a consequence however, the specifications of the approximating
distribution are not explicitly parameterised, and its density function qβ(θ)

is intractable.

6.3 Likelihood-free Inference

Implicit models are primarily used in likelihood-free inference problems [153,
198, 14] where the goal is to approximate intractable or unknown likelihood
functions. This is a challenging scenario since both the approximating and
the target distributions have intractable densities. This is despite there
being a tractable data-generating process, meaning that samples could be
drawn from both distributions. However, a direct evaluation of the density
for samples (from either density) is not possible.

To this end, in an iterative two-step process, first an adversarial model is
trained using samples drawn from both distributions. This model, namely
discriminator or critic, is usually a feed-forward NN and acts as an approx-
imation to the divergence between the two distributions. Subsequently,
training the generator/implicit model using the critic reduces the diver-
gence measure between the approximating and the target distribution.
Common forms of loss for the critic and the implicit model are presented
in equations (6.3) and (6.4), respectively.

L(C;G) = Eqβ(θ)[log σ(Cγ(θ))] + Ep(θ)[log 1− σ(Cγ(θ))] (6.3)

L(G; C) = −Eqβ(θ)[Cγ(θ)] (6.4)

in which C denotes a critic parameterised by γ, G is the implicit model,
L(C;G) denotes the loss of the critic given the generator function (implicit
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model) and its parameters, p(θ) is the target distribution and σ(.) is a
transfer function.

Two of the most broadly used divergence measures in this learning
scheme are Jensen–Shannon and Kullback–Leibler divergences. The former is
attained by employing a logistic regression model as critic and setting σ(.)

to be the identity function, σ(x) = x, whereas, for the latter C and σ(.) are
required to be a regression model and sigmoid function, respectively. Along
with these two, any statistical divergence from the class of f-divergence is
available to the adversarial training strategy as well [159].

One aspect of this GAN-style adversarial training is that the implicit
distribution’s objective function depends solely on the critic’s output [193],
which does not put any restriction on how the implicit model’s input is
mapped into its output space [26]. For example, there is no guarantee that
a sample located near the mode of the implicit model’s input distribution,
p(z), is mapped to a high probability region of the target distribution.
Besides, several input locations might be mapped to the same output
location. This is the root to some of the most well known pathological
behaviors of implicit models such as mode collapse, in which the implicit
model only recovers some of the modes of the target distribution, and
highly entangled input space, where there is no semantically meaningful
correspondence between information in each dimension of the input space
and characteristics of the target distribution.

6.4 Order-preserving Implicit Models

For some problems, in addition to the generated samples, there is more
information about the target distribution. This extra information could
be available through pairwise preferences [111], also known as implicit
feedbacks. This suggests that even though direct access to the target dis-
tributions density is impossible, a coarser level of information could be
attained from a noisy pairwise comparison function which assigns binary
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Figure 6.1: Using a order-preserving implicit model, points under a simple
input distribution p(z) (bottom) are mapped to the ones under a more
complex transformed distribution qβ(θ) (top) in a manner that the order
between level sets is not changed under the transformation (level sets
are demonstrated using colors). As it can be seen, samples around the
mode of p(z) are mapped to points close to the modes of the transformed
distribution. Likewise, low probability regions of the input distribution are
also mapped to a low probability region under the target density .

preferences {0, 1}, termed duels [2, 70], to pairs of competing samples [θ,θ′]

generated by the implicit model.

These pairwise preferences could be used in building an order-preserving
implicit model where, under an asymptotic regime, the order of the density
level-sets is kept intact under the transformation of p(z) to qβ(θ) through
Gβ(.). In such a model, mode-collapse is prevented to a high degree and
since the relationship between distributions in the input and output of
the generator function is fully specified, sampling can be performed in a
controlled manner.

For a probability density function, p(x), defined over a continuous
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Figure 6.2: In the examples, p(z) is chosen to be a unidimensional standard
Gaussian. Consequently, each level set in qβ(θ) is (at most) covered by two
zs.

domain, x ∈ χ ⊆ Rk, a λ-level set is the set of all point whose probabilities
are equal to λ [27]:

G(λ; p(x)) = {x ∈ χ : p(x) = λ}, λ ≥ 0 (6.5)

Subsequently we give our definition of the order-preserving implicit
model as a generative neural sampler whose generator function satisfies
the following conditions:

G(ν; p(θ)) = Gβ(G(λ; p(z)))

∀λi, λj ≥ 0 : λi ≥ λj ⇒ νi ≥ νj
(6.6)

in which G(ν; p(θ)) denotes the ν-level set resulted from projecting mem-
bers of the λ-level set into the θ space using the generator function Gβ(.).

To get more insight into the behaviour of order-preserving implicit mod-
els, lets assume we are approximating a multi-modal target distribution
using a model with a unidimensional Gaussian input (see Figure 6.1). At
the end of the training, one might wish to sample from the modes of the
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Figure 6.3: Comparison of order-preserving (center) and a simple (right)
implicit distributions on a grid shaped target distribution, p(θ). (a) Ground
truth. (b) Samples from an order-preserving implicit distribution. (c)
Samples from a simple implicit distribution trained over p(θ) using KL-
divergence. Colors indicate the probability of the generated samples under
p(z).

approximating distribution. Under an order-preserving model, mode of
the input distribution, p(z), is likely to be mapped into the modes of the
target distribution. Hence, repeatedly transforming argmax p(z) through
Gβ(.) should result in a mode-hopping effect under qβ(θ). With some abuse
of notation, these are the points θ ∼ Gβ(G(λ; p(z))) where λ = max p(z).
Clearly, in this example (and other similar circumstances) qβ(θ | z) is not
a point mass, consequently Gβ(.) is required to be an stochastic function.
An alternative approach is to use a deterministic generator but inject the
stochasticity into its input [26]. In such a case, the input space could be
decomposed into a latent factor, z ∼ p(z), and a noise part, ε ∼ p(ε), which
results in a generator function of the form Gβ(z, ε). Figures 6.3, 6.4, 6.5, and
6.6 compare such an order-preserving model and simple implicit ones in
approximating three target distributions with different structures. Models
in all three examples use 2d inputs where the values of the first and second
input dimension are sampled from a standard Gaussian (see Figure 6.2) and
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Figure 6.4: Comparison of order-preserving (center) and a simple (right)
implicit distributions on a p(θ) which is a mixture of 2d Gaussians with
various standard deviations. (a) Ground truth. (b) Samples from an order-
preserving implicit distribution. (c) Samples from a simple implicit distribu-
tion trained over p(θ) using KL-divergence. Colors indicate the probability
of the generated samples under p(z).

uniform distribution in [0, 2π], respectively. In the order-preserving models
(Figures 6.3-b, 6.4-b and 6.5-b), the first input dimension is considered to
contain the latent code, however, in the simple implicit model both inputs
are treated the same.

6.4.1 Modeling Pairwise Preferences

One way to model pairwise preferences is through using a utility function
which induces a complete order over its input space [96]. This function is
used to assign a utility to each member of a duel [70]. These utilities could
be arbitrarily interpreted as the level of desirability of samples with respect
to some criteria. Using utilities associated with each member of a duel, an
unobservable joint utility is produced for the pair. Here we assume this
quantity to be the difference between individual utilities of the pair:

r(θ,θ′) = u(θ′)− u(θ) (6.7)
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Figure 6.5: Comparison of order-preserving (center) and a simple (right) im-
plicit distributions on a mixture of 2d Gaussians positioned on the perimeter
of a circle. (a) Ground truth. (b) Samples from an order-preserving implicit
distribution. (c) Samples from a simple implicit distribution trained over
p(θ) using KL-divergence. Colors indicate the probability of the generated
samples under p(z).

where u : Rd → R+ denotes a utility function and r : Rd × Rd → R is the
joint utility. We assume that the value of the joint utility is unobserved and
the utility system is susceptible to noise. Therefore, the response from the
joint utility function is modelled as a Bernoulli random variable with the
following distribution:

p(b = 1 | [θ,θ′]) = ρ([θ,θ′])

p(b = 0 | [θ,θ′]) = ρ([θ,θ′])
(6.8)

where ρ([θ,θ′]) is an inverse link function and specifies the probability that
θ has a higher preference than θ′. Clearly, this function satisfies ρ([θ,θ′]) =

1− ρ([θ′,θ]). Therefore, we could assume it to be a logistic function:

ρ([θ,θ′]) =
1

1 + e−r([θ,θ
′])

(6.9)

Since the output of ρ( . ) could be interpreted as a degree of confidence in
preferring the first member of a duel to the second, it is also referred to as
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Figure 6.6: Level sets of order-preserving approximating distributions that
are obtained by setting z to fixed values and moving around in the input
noise space, ε. Here, per z value, 100 samples are taken from ε on equal
intervals in range of [0, 2π]. Level sets shown in (a), (b) and (c) correspond
to the order-preserving models of Figure 6.3-b, Figure 6.4-b and Figure 6.5-b,
respectively.

preference function. This method of modeling pairwise preferences allows
us to reformulate the problem of order-preservation in an implicit model
as a binary classification [89, 96, 54].

6.4.2 Order-Preserving Loss

To enforce order preservation, we assign a binary label to each pair of
samples from an implicit model, [θi,θj], i 6= j, by comparing the proba-
bilities of their corresponding latent code through an indicator function
1[p(zi) ≥ p(zj)]. This label denotes the desired order between p(θi) and
p(θi) under the target distribution. We assume that the preference function
could evaluate the existence of such an order in a probabilistic manner.
Subsequently, the disagreement between the order of the level sets in the
latent space and the output of the implicit model could be expressed using
binary cross entropy.
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Based on this principle, we add a new term to (6.4) to penalize the
discrepancy between the order of the level sets in the input, and output
of generator function. For a set of M samples θi = Gβ(zi, εi), i = 1, . . . ,M

in a batch, a set of M/2 pairs (θi,θj), i 6= j are formed and the loss term is
computed as follow:

Lo(Gβ) = − 2

M

M/2∑
1

1[p(zi) ≥ p(zj)] log ρ([θi,θj])+

(1− 1[p(zi) ≥ p(zj)]) log(1− ρ([θi,θj)]) (6.10)

in which 1[.] is the indicator function.
Using (6.10) the new generator loss (6.4) becomes:

L(G; C) = −Eqβ(θ)[Cγ(θ)] + κ.Lo(Gβ), κ ≥ 0 (6.11)

where κ is a hyperparameter.
Input latent code z could be chosen from any arbitrary distribution and

no restriction is put on its dimensionality. A reasonable choice, however,
would be a one-dimensional truncated Normal. By doing so, after perform-
ing inference in an ideal scenario, each point in the z space is expectedly
mapped into a level set in the output space. This suggests that ε is uni-
formly sampled from a bounded range so that no preference is given to a
specific region on a level set. Then, for any two points θ and θ′:

θ ∼ p(θ | zi) ∧ θ′ ∼ p(θ | zi) =⇒ qβ(θ) = qβ(θ′)

If ε ∼ U(0, 2π.I) then the combination of z and ε resembles a polar coor-
dinate in which z represents distance from the origin and ε is the angle.
Consequently, generating points on a λ-level set in the θ space corresponds
to sampling from the surface of a hyper-sphere in the generator function’s
input. In practice, we found that using a 1dNormal (rather than a truncated
distribution) results in a faster convergence and better recovery of the level
sets.
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6.5 Implicit Variational Bayesian Neural Networks

A major field of application for implicit models is implicit variational inference
(IVI) where the target distribution has a tractable density while having an
intractable data-generative process, for example when it is the posterior
over a set of global (or local) latent variables. IVI uses a two-step adversarial
training, similar to the likelihood-free inference [98], however, due to the
intractability of the sampling, it is necessary to use KL-divergence (2.23) as
the only available criterion from the set of f -divergances [198]. If the target
distribution is the posterior probability distribution over the weight space
of another neural network, then the idea of deep implicit models coincides
with the concept of what are called HyperNetworks.

A Hypernetwork [76, 16, 219, 135] is a neural network trained to generate
learnable parameters of another neural network, termed the main network.
Traditionally, Hypernetworks are meant to produce point estimates, that
is a single best setup for the parameters of the main-network under ML
or MAP regime. Nevertheless, using a generative model (whether im-
plicit [206, 37, 177] or flow-based [119]) as a Hypernetwork upgrades it to
a powerful inference schema for Variational Bayesian Neural Networks
(VBNN)s whose performance is on a par with BNNs inferred using slow
MCMC methods [119, 166]. Next, we explain Implicit Variational Bayesian
Neural Networks (IVBNN)s, i.e. Bayesian neural networks Inferred using
IVI. We utilize them in a BO context for hyperparameter optimization of
ML models.

Inference is performed by optimization of the variational objective
aided by a GAN-style adversarial training. To this end, given a set of noisy
observations D = {X,y} from a continuous function (see 2.3) the ELBO
(2.27) for the IVBN is rewritten as follows:

L(β,D) = Eqβ(θ)[log p(y |X,θ, σn)]− Eqβ(θ)[log
qβ(θ)

p(θ)
] (6.12)

where σn denotes the standard deviation of the noise, θ is the vector of
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trainable parameters of the main network and p(θ) is an (implicit or ex-
plicit) prior defined over these parameters. The first term on the RHS is
simply the expected log-likelihood and the second term in (6.12) is the
prior-contrastive term, that is the KL-distance between the approximating
and prior distributions. Intractability of the KL term suggests the use of
an adversarial optimization scheme. Hence, a critic is trained with the
loss in (6.3) and used as an approximation to the log ratio between the
approximating and the prior distribution. Subsequently, the ELBO for the
implicit model (6.12) can be maximized by minimization of the following
loss over the parameters of the generator function:

L(G; C,D) = −Eqβ(θ)[Cγ(θ)]− Eqβ(θ)[log p(y |X,θ, σn)] (6.13)

While this loss, which represents the KL-distance between the approxi-
mating and the posterior distributions, could serve for building an IVBNN,
the estimation of ratios using adversarial units is prone to instability in
high dimensional spaces [198], such as the space of the weights of a neural
network. However, using this loss, we could also assign a noisy value to
each sample generated by qβ(θ) which represents the divergence of the ap-
proximating distribution from the posterior p(θ | y,X) from that sample’s
point of view. These values could be used as utilities to form a preference
function:

u(θ) = −Cγ(θ)− log p(y |X,θ, σn) (6.14)

Subsequently, an order-preserving term is added to the generator’s loss:

L(G; C,D) = −Eqβ(θ)[Cγ(θ)]− Eqβ(θ)[log p(y |X,θ, σn)] + κ.Lo(Gβ), κ ≥ 0

(6.15)
For the IVBNN we have chosen the hypernetwork from the class of

deep implicit models (DIM) [181, 198, 85]. DIM is a rich class of generative
models which entails the advantages of both probabilistic graphical models
and generative adversarial networks. What makes DIM different from the
most commonly used ”simple” implicit model is that in the latter the noise
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only appears in the input of the generator and therefore the generator
function is deterministic. In the DIM version, noise is injected into every
second layer of the generative network, creating an alternating sequence of
deterministic and stochastic layers. As a result, their training is easier than
simple implicit models [198]. The general structure of a DIM is as follows
[198]:

z(L) = gL(ε(L) | βL) (6.16)

z(L−i) = gL−i(ε
(L−i) | z(L−i+1),βL−i), i = 1, . . . , L− 1 (6.17)

θ = g0(z(1) | β0), ε(`) ∼ p(ε(`)) (6.18)

where gL is a nonlinear transformation, β` is the vector of its parame-
ters, ε(`) and z(`) denote noise and latent variable corresponding to the `th

transformation, respectively. While gL and g0 are deterministic transforma-
tions, gL−i denotes a deterministic transformation of z(L−i+1) followed by a
stochastic one in which ε(L−i) is used as the source of variation.

Since in our case an order-preserving loss is to be used, the input to
the first layer of the DIM is divided into a noise part and a latent code.
Consequently, (6.16) is replaced by the following transformation:

z(L) = gL(ε(L), z(o) | βL) (6.19)

in which z(o) denotes a latent code.
Using a set of latent variables z1, . . . ,zL, DIM hyper-networks are able

to encompass interactions between parameters in the highly correlated
weight space of neural networks. However, as it can be seen in (6.18),
regardless of the placement of a weight in the main network, values of
the weights in the weight vectors generated by DIM are conditionally
dependent on these latent variables, and only marginally independent.
Contrast this with the case of a regular (feed forward) neural network,
in which a direct conditional dependence exists between the weights of
successive layers. Hence, a more natural way to represent these conditional
dependencies is to include them into the architecture of the hyper-network,
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essentially as prior knowledge. Accordingly, rather than using a single
output layer, we modify the DIM to have a sequence of output layers, each
of which is responsible for generating the weights of a single layer in the
main network, as follows:

θ(i) =

g0,i(z
(i) | β0,i), i = 1

g0,i(θ
(i−1) | β0,i), i > 1,

(6.20)

where θ(i) is the weight vector of the ith layer of the main network, and g0,i

denotes the ith output layer parameterized by β0,i. Subsequently, using the
chain rule, the approximating distribution can be written as:

qβ(θ) = q(θ(1) | z(1))

Nl∏
i=1

q(θ(i) | θ(i−1)), θ = ∪Nli=1{θ
(i)} (6.21)

in which Nl is the number of the layers of the main network.
Figure 6.7 shows a schematic of the complete architecture: an order-

preserving IVBNN with an deep implicit hypernetwork.

6.6 Bayesian Optimization using IVBNN

Despite theoretical advantages of Bayesian neural networks over GPs,
the slow convergence rate of MCMC methods has limited their usage in
BO. Methods that deal with this issue usually make some simplifying
assumptions about the characteristics of the model. As an almost inevitable
consequence of these simplifications, recovery of the true posterior becomes
out of reach. Although in many applications, some deviation from the
true posterior is tolerable, the whole machinery of BO depends on the
preciseness of the inferred posterior. Using IVBNN,there is no need to
compromise the quality of the posterior for the speed. Here, we use IVBNN
as a surrogate model in BO.

Figure 6.8 gives an illustrative example of an IVBNN generating a
predictive distribution given 4 data points in 1 dimension.
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To the best of our knowledge, all previous NN-based BOs maintain a
model with a fixed number of parameters during the optimization. The
structure of the model is selected (in advance) in the hope that it holds
enough capacity to derive the optimization for some finite number of
steps. For example, suppose that at the onset of the optimization just two
initial observations are available. In this case, a Bayesian linear model has
sufficient representational capacity to accommodate the whole information
provided by these points, whereas a higher capacity model might represent
a misleading perspective. However, after a few optimization steps, new
observations are added to the available data and their modeling might be
beyond the capacity of a linear model.

Following this line of thinking, we argue that maintaining a model with
a fixed number of parameters is absolutely unnecessary in BO, and suggest
instead that the model capacity be adjusted in proportion to the amount of
information available about the underlying function.

6.7 Experimental Setup

The IVBNN used for BO has a single-hidden layer main network with tanh
activation functions. To make a more efficient use of computational re-
sources, unlike the previous chapters, here we do not utilize a model whose
structure is fixed during the whole optimization. Instead, we gradually
increase the complexity of the surrogate model according to the number
of observations. Therefore, at each optimization step a width of twice the
number of observations is considers for the hidden layer. Data appearing
in the input as well as output of the main network is standardized. The
Hypernetwork is a three-layer DIM whose widths are equal to the number of
hidden units in the main network; the input latent variable to the implicit
model z(o) is a five-dimensional standard Normal and a unidimensional
Gaussian noise is injected to the input as well as every other layer of the
DIM. This architecture was set based on a set of initial trials on a toy prob-
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lem. The Hypernetwork weights are initialized using a variance scaling
initializer with the standard deviation equal to 2.0. The critic also has three
hidden layers whose widths are equal to the number of the parameters
in the main network. The prior defined over the parameters of the main
network is a mixture of two zero-centered isotropic Gaussians: the first
component has a mixing probability of 0.2 and standard deviation of 1.0,
whereas the second one has a standard deviation equal to 5.0. In other
words, although we prefer the weights to have small values (generated
from standard Gaussians), we still do not reject the possibility of larger
values. The likelihood noise σn starts at 1.0 and is annealed over the course
of training to a lower bound of 0.002. We found this method to be more
effective than fixing the noise standard deviation to a fixed value. During
training, samples are generated in batches of 100. The BNN used in BO is
formed from 30 individual NNs. κ = 2.0, the learning rate for the generator,
and critic is set to 3e− 5 and in each full training step of the implicit model,
the critic is trained for 40 iterations.

Experiments are performed using the Surrogate Benchmark for hyper-
parameter optimization [51] which is a part of HPOlib Hyperparameter
Optimization Benchmark [49]. As before, for each algorithm 30 indepen-
dent runs are done on each benchmark problem where each run has a
budget of 50 evaluations, the default maximum budget of HPO problems
in HPOlib. A run begins with an initial design of size two. Since we have
limited the number of initial points to such a small number, the results also
reflect the sensitivity the models to the location of initial points.

6.8 Results and Discussion

The main comparison we wish to make is between the IVBNN and BO-
HAMIANN, since they use similar surrogate models (a Bayesian neural
network) but a different inference method (stochastic gradient Hamilto-
nian Monte Carlo [192]). Figure 6.9 shows this for the 9 hyperparameter
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optimization problems in HPOlib (other algorithms are omitted from 6.9
to avoid clutter but are shown in later tables).

As the figure shows, performance of our implicit variational surrogate
is considerably better than Monte Carlo running on the same underly-
ing architecture in all cases except one. In no case does BOHAMIANN
dominate IVBNN in the early stages. In some cases in [CNN(CIFAR10),
Paramnet(MNIST) and Paramnet(Letter)] performance is about the
same early on, but after 10-20 samples IVBNN comes to the fore. In almost
all cases IVBNN is exploring better points in the search space over the
majority of the trajectory.

The sole exception is SVM(MNIST), in which IVBNN never moves far
from its initial condition: with this setup, the implicit model’s NN is never
generating samples that are suitably dense in the high probability regions
of the posterior (whereas the MCMC approach is).

Summary results for IVBNN against a variety of opposition are shown
in Tables 6.2, 6.3 and 6.4, for the position after 50 samples. At that point,
the main competition is (predictably) GPmcmc. Most importantly, and as
is seen in Figure 6.9, the new method is better than BOHAMIANN in all
cases except one. One might reasonably exclude Paramnet (Adult),
Paramnet (Higgs) and Wide Resnet (2d), as results are very close
and even the random search algorithm is competitive after 50 samples. Of
the remainder, IVBNN is always among the top 3 (usually second behind
GPmcmc). While these results do not indicate that one should abandon (say)
GPmcmc for the new algorithm, they do show that a completely orthogonal
approach to the use of neural nets in BO is feasible and can reliably out-
perform the existing one.

6.9 Conclusion

We introduced order-preserving implicit models which are useful in scenar-
ios where in addition to the generated samples, there is more information
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Table 6.2: Validation errors ( averaged over 50 trials) induced by using six
different BO methods to find the best set of hyperparameter configurations
for CNN and Paramnet models. CNN is trained on CIFAR10 and the
Paramnet is trained on Adult and Higgs datasets. In each column, the best
result is shown in bold and the first and second runner-ups are underlined.

Benchmark CNN (CIFAR10) Paramnet (Adult) Paramnet (Higgs)
Method

IVBNN 1.66× 10−1 ± 1.38× 10−2 1.49 × 10−1± 9.74 × 10−4 2.85× 10−1 ± 2.98× 10−3

Bohamiann 1.75× 10−1 ± 1.40× 10−2 1.49× 10−1± 9.79× 10−4 2.86× 10−1 ± 2.69× 10−3

GP 1.65× 10−1± 5.82× 10−3 1.49× 10−1± 5.52× 10−4 2.87× 10−1± 3.59× 10−3

GPmcmc 1.63 × 10−1± 5.53 × 10−3 1.49× 10−1± 9.22× 10−4 2.85× 10−1± 2.73× 10−3

RandomForest 1.70× 10−1± 1.66× 10−2 1.49× 10−1± 9.69× 10−4 2.84 × 10−1± 3.32 × 10−3

RandomSearch 1.68× 10−1± 5.20× 10−3 1.49× 10−1± 9.93× 10−4 2.85× 10−1± 1.67× 10−3

about the target density that can only be obtained in the form of inaccu-
rate pairwise preferences. In such a case, the proposed model can utilize
this information to impose the order over the density level sets from the
distribution defined over its input latent space to the approximating dis-
tribution. A further advantage of the order-preserving models over the
simple implicit models is that in the former mode collapse is prevented to a
high degree. We used these new models as hypernetworks in a variational
Bayesian inference scheme to infer the posterior over the weights of a BNN.
We applied this implicit variational BNN, namely IVBNN, as the surrogate
in a BO scenario. Preliminary evaluations over a set of benchmark hyper-
parameter optimization problems show dominance of IVBNN over BNNs
inferred using stochastic Hamiltonin Monte Carlo in BO.
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Table 6.3: Validation errors ( averaged over 50 trials) induced by using six
different BO methods to find the best set of hyperparameter configurations
for Paramnet model trained over Letter, Mnist and Optical Digits datasets.
In each column, the best result is shown in bold and the first and second
runner-ups are underlined.

Benchmark Paramnet (Letter) Paramnet (Mnist) Paramnet (Optical Digits)
Method

IVBNN 4.44 × 10−2± 1.12 × 10−2 1.75× 10−2± 3.43× 10−3 1.83× 10−2± 1.98× 10−3

Bohamiann 5.51× 10−2± 1.43× 10−2 1.83× 10−2± 1.67× 10−3 1.98× 10−2± 1.52× 10−3

GP 4.79× 10−2± 6.12× 10−3 1.76× 10−2± 1.41× 10−3 1.82 × 10−2± 1.40 × 10−3

GPmcmc 4.55× 10−2± 7.18× 10−3 1.71 × 10−2± 7.78 × 10−4 1.85× 10−2± 1.35× 10−3

RandomForest 4.89× 10−2± 1.26× 10−2 1.80× 10−2± 3.80× 10−3 1.93× 10−2± 6.35× 10−3

RandomSearch 6.16× 10−2± 1.79× 10−2 1.77× 10−2± 1.21× 10−3 2.01× 10−2± 2.12× 10−3

Table 6.4: Validation errors ( averaged over 50 trials) induced by using six
different BO methods to find the best set of hyperparameter configurations
for Paramnet model (over Poker dataset), SVM (over Mnist) and Wide
Resnet. In each column, the best result is shown in bold and the first and
second runner-ups are underlined.

Benchmark Paramnet (Poker) SVM (Mnist) Wide Resnet (2d)
Method

IVBNN 1.37× 10−2± 4.83× 10−2 1.32× 10−1± 3.04× 10−1 5.24× 10−2± 7.66× 10−6

Bohamiann 2.00× 10−2± 2.76× 10−2 2.13× 10−2± 8.91× 10−3 5.39× 10−2± 1.14× 10−3

GP 2.06× 10−2± 2.24× 10−2 1.52× 10−2± 6.20× 10−4 5.24 × 10−2± 0.00

GPmcmc 8.50 × 10−3± 1.16 × 10−2 1.51 × 10−2± 4.47 × 10−4 5.24× 10−2± 6.91× 10−7

RandomForest 1.67× 10−2± 4.51× 10−2 1.56× 10−2± 1.57× 10−3 5.24× 10−2± 0.00

RandomSearch 1.73× 10−2± 2.48× 10−2 1.63× 10−2± 1.78× 10−3 5.24× 10−2± 5.07× 10−7
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Figure 6.8: IVBNN trained using 4 observations (from a 1-dimensional
sinusoid, shown in blue). Note the well-behaved ”error bars” as the pre-
dictor moves away from data points. In this case, those errors grow more
rapidly on the right than the left as a consequence of the slope between two
leftmost points being gentler than the one between the two on the right.
(Note this would not happen with a vanilla Gaussian Process).
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Chapter 7

Conclusion

This thesis introduced novel methods in which Neural Networks are used
to enhance Bayesian Optimization. In this respect, several such algorithms
were developed, tested and compared to the state-of-the-art on benchmark
problems. Bayesian Optimization algorithms essentially consist of two
elements: a surrogate model capable of representing uncertainty, and an
acquisition function that uses the surrogate to suggest new sample points.
The work covered here has introduced improved alternatives for both ele-
ments. The proposed methods were evaluated against currently available
Bayesian optimization algorithms on sets of benchmark problems, includ-
ing standard numerical tests and genuinely expensive hyperparameter
optimization tasks.

We now revisit the contributions outlined in Chapter One and summa-
rize each contribution.

7.1 Accomplished Objectives

The following objectives were accomplished in this thesis:

• We developed a new Bayesian Optimization algorithm in which
Bayesian Neural Networks were used as a replacement for Gaussian

149
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Process models. The computational complexity of the model build-
ing process in the new BO is lower than that classical BO’s. Both
simple and fully Bayesian Neural Networks were evaluated against
the Gaussian Process using the commonly used squared exponential
covariance function. The Bayesian Neural Network models were
inferred using an adaptive version of Hamiltonian Monte Carlo in
which the need for setting the number of leap frog steps is eliminated.
Extensive benchmarks of different variations of the proposed method
against Gaussian Process based Bayesian Optimization showed that
they could perform on par with or better than classical BO in the
optimization of a variety of continuous functions with different levels
of difficulty as well as dimensionality. We also developed a new BO
where an ensemble of random Neural Networks, namely Extreme
Learning Machines, was used as surrogate. This BO method, however,
demonstrated a poor performance compared to the other available BO
methods. Last but not least, we introduced a new empirical Expected
Improvement infill criteria that can be used with any ensemble-based
surrogate model and in cases where sampling is computationally
cheaper than computing the posterior.

• We introduced a fast and simple Bayesian Optimization algorithm
using Bayesian Random Vector Functional-link Networks. The moti-
vation behind the use of these models was their small number of train-
able parameters and fast inference process compared with Bayesian
Neural Networks. We also evaluated an ensemble of MAP RVFLs.
Moreover, a simple and efficient random initialization method was
proposed that interoperates well with Relu RVFLs. We performed
extensive evaluation of the proposed methods using various con-
figurations on both a set of benchmark synthetic functions as well
as machine learning hyperparameter optimization problems. This
showed that Bayesian Optimization using Bayesian RVFLs surro-
gates equipped with evidence approximation for hyperparameter
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tuning performs on par with many state of art Bayesian Optimization
algorithms, while having the advantage of fast inference.

• We introduced a new infill criterion based on the notion of maximum
a posteriori estimation. Motivated by the weakness of the double stage
optimization approach in which infill points are selected based on a
sequence of error-prone assumptions, the new model-based infill cri-
teria uses a Neural Network model to correct possible inaccuracies of
the expected improvement acquisition function. To this end, the pro-
posed infill criterion utilizes a ”single-stage optimization” based on a
conditional maximum likelihood method. We evaluated a combina-
tion of different surrogate models and the proposed infill criteria and
compared it against expected improvement on a number of machine
learning hyperparameter optimization problems. The evaluations
showed advantages of using this acquisition function with Neural
network-based surrogates over Expected improvement infill criterion.

• We developed order-preserving implicit models as an alternative to
simple implicit models, such as Generative Adversarial Networks
(GAN)s, where along with the tractable sampling process some (noisy)
information about the density of the target distribution can be ob-
tained in the form of inaccurate binary preferences. As opposed
to other GAN-style generative models, the new model can use this
preference information to impose an order over the density level
sets from its input latent distribution to the approximating distribu-
tion. Moreover, in the presence of the ”preference” information, the
order-preserving model can prevent mode-collapse to a high degree.

We also introduced an approach to Bayesian optimization using im-
plicit variational Bayesian neural networks (IVBNN). In this approach a
rich class of implicit distributions are used as Hypernetwork to approx-
imate the posterior over the weights of a Bayesian Neural Networks,
which is then utilized as a surrogate in the BO context. The new
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model enjoys the advantages of asymptotically exact Monte Carlo-
based sampling methods as well as fast optimization-based varia-
tional inference techniques. Preliminary evaluations on a set of hyper-
parameter optimization benchmark problems show the dominance
of IVBNN over Bayesian Neural Networks inferred by Hamiltonian
Monte Carlo.

In conclusion, and as a high-level summary, this thesis has explored
the application of neural networks to the Bayesian Optimization problem.
Several new algorithms were introduced, with promising results. We
believe this thesis can provide both a useful guide for those who wish to
apply neural networks to difficult black-box optimization problems, as well
as a starting point for future research in this important area.
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[78] HE, K., GKIOXARI, G., DOLLÁR, P., AND GIRSHICK, R. Mask r-cnn.
In Proceedings of the IEEE international conference on computer vision
(2017), pp. 2961–2969.

[79] HE, K., ZHANG, X., REN, S., AND SUN, J. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition (2016), pp. 770–778.

[80] HENNIG, P., AND SCHULER, C. J. Entropy search for information-
efficient global optimization. Journal of Machine Learning Research 13,
Jun (2012), 1809–1837.

[81] HENRIQUEZ, P. A., AND RUZ, G. A. An empirical study of the hid-
den matrix rank for neural networks with random weights. In 2017
16th IEEE International Conference on Machine Learning and Applications
(ICMLA) (2017), IEEE, pp. 883–888.

[82] HENSMAN, J., FUSI, N., AND LAWRENCE, N. D. Gaussian processes
for big data. arXiv preprint arXiv:1309.6835 (2013).
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[126] LEMARÉCHAL, C. Nondifferentiable optimization. Handbooks in
operations research and management science 1 (1989), 529–572.

[127] LEVESQUE, J.-C., GAGN, C., AND SABOURIN, R. Bayesian Hyperpa-
rameter Optimization for Ensemble Learning. CoRR abs/1605.06394
(2016).

[128] LI, C., GUPTA, S., RANA, S., NGUYEN, V., VENKATESH, S., AND

SHILTON, A. High dimensional bayesian optimization using dropout.
arXiv preprint arXiv:1802.05400 (2018).

[129] LI, L., JAMIESON, K., DESALVO, G., ROSTAMIZADEH, A., AND

TALWALKAR, A. Hyperband: A novel bandit-based approach to
hyperparameter optimization. arXiv preprint arXiv:1603.06560 (2016).

[130] LIAW, A., WIENER, M., ET AL. Classification and regression by
randomforest. R news 2, 3 (2002), 18–22.

[131] LIN, S. Rank aggregation methods. Wiley Interdisciplinary Reviews:
Computational Statistics 2, 5 (2010), 555–570.

[132] LIVINGSTONE, S., FAULKNER, M. F., AND ROBERTS, G. O. Kinetic
energy choice in hamiltonian/hybrid monte carlo. Biometrika 106, 2
(2019), 303–319.

[133] LIZOTTE, D., WANG, T., BOWLING, M., AND SCHUURMANS, D.
Automatic gait optimization with gaussian process regression. In in
Proc. of IJCAI (2007), pp. 944–949.



168 BIBLIOGRAPHY

[134] LOCATELLI, M. Bayesian algorithms for one-dimensional global
optimization. Journal of Global Optimization 10, 1 (1997), 57–76.

[135] LORRAINE, J., AND DUVENAUD, D. Stochastic hyperparameter
optimization through hypernetworks. arXiv preprint arXiv:1802.09419
(2018).

[136] LOUIZOS, C., AND WELLING, M. Structured and efficient varia-
tional deep learning with matrix gaussian posteriors. In International
Conference on Machine Learning (2016), pp. 1708–1716.

[137] LOUIZOS, C., AND WELLING, M. Multiplicative normalizing flows
for variational bayesian neural networks. In Proceedings of the 34th
International Conference on Machine Learning-Volume 70 (2017), JMLR.
org, pp. 2218–2227.

[138] LU, X., AND VAN ROY, B. Ensemble sampling. In Advances in Neural
Information Processing Systems (2017), pp. 3258–3266.

[139] MACKAY, D. J. Probable networks and plausible predictions—a
review of practical bayesian methods for supervised neural networks.
Network: Computation in Neural Systems 6, 3 (1995), 469–505.

[140] MAIR, S., AND BREFELD, U. Distributed robust gaussian process
regression. Knowledge and Information Systems 55, 2 (2018), 415–435.

[141] MARCHANT, T. Valued relations aggregation with the borda method.
Journal of Multi-Criteria Decision Analysis 5, 2 (1996), 127–132.

[142] MARQUARDT, D. W., AND SNEE, R. D. Ridge regression in practice.
The American Statistician 29, 1 (1975), 3–20.

[143] MATTHEWS, A. G. D. G., ROWLAND, M., HRON, J., TURNER, R. E.,
AND GHAHRAMANI, Z. Gaussian process behaviour in wide deep
neural networks. arXiv preprint arXiv:1804.11271 (2018).



BIBLIOGRAPHY 169

[144] MCGRORY, C. A., AND TITTERINGTON, D. Variational approxima-
tions in bayesian model selection for finite mixture distributions.
Computational Statistics & Data Analysis 51, 11 (2007), 5352–5367.

[145] MELKUMYAN, A., AND RAMOS, F. T. A sparse covariance function
for exact gaussian process inference in large datasets. In Twenty-First
International Joint Conference on Artificial Intelligence (2009).

[146] MENDES-MOREIRA, J., SOARES, C., JORGE, A. M., AND SOUSA, J.
F. D. Ensemble approaches for regression: A survey. Acm computing
surveys (csur) 45, 1 (2012), 10.

[147] MICHE, Y., SORJAMAA, A., BAS, P., SIMULA, O., JUTTEN, C., AND

LENDASSE, A. Op-elm: optimally pruned extreme learning machine.
Neural Networks, IEEE Transactions on 21, 1 (2010), 158–162.

[148] MINKA, T., ET AL. Divergence measures and message passing. Tech.
rep., Technical report, Microsoft Research, 2005.

[149] MISHRA, H. K., AND SEKHAR, C. C. Variational gaussian mixture
models for speech emotion recognition. In 2009 Seventh International
Conference on Advances in Pattern Recognition (2009), IEEE, pp. 183–186.

[150] MOČKUS, J. On bayesian methods for seeking the extremum. In Opti-
mization Techniques IFIP Technical Conference (1975), Springer, pp. 400–
404.

[151] MOCKUS, J. The Bayesian approach to global optimization. Springer,
1982.

[152] MOCKUS, J. Application of bayesian approach to numerical methods
of global and stochastic optimization. Journal of Global Optimization 4,
4 (1994), 347–365.

[153] MOHAMED, S., AND LAKSHMINARAYANAN, B. Learning in implicit
generative models. arXiv preprint arXiv:1610.03483 (2016).



170 BIBLIOGRAPHY

[154] MORALES-ENCISO, S., AND BRANKE, J. Tracking global optima in
dynamic environments with efficient global optimization. European
Journal of Operational Research 242, 3 (2015), 744–755.

[155] MOUSTAPHA, M., SUDRET, B., BOURINET, J.-M., AND GUILLAUME,
B. Adaptive kriging reliability-based design optimization of an au-
tomotive body structure under crashworthiness constraints. 12th
International Conference on Applications of Statistics and Probability
in Civil Engineering, 2015, Kanada.

[156] NEAL, R. M. Priors for infinite networks. In Bayesian Learning for
Neural Networks. Springer, 1996, pp. 29–53.

[157] NEAL, R. M. MCMC using hamiltonian dynamics. Handbook of
Markov Chain Monte Carlo 2 (2011).

[158] NEAL, R. M. Bayesian learning for neural networks, vol. 118. Springer
Science & Business Media, 2012.

[159] NOWOZIN, S., CSEKE, B., AND TOMIOKA, R. f-gan: Training genera-
tive neural samplers using variational divergence minimization. In
Advances in neural information processing systems (2016), pp. 271–279.

[160] ONG, V. M.-H., NOTT, D. J., AND SMITH, M. S. Gaussian varia-
tional approximation with a factor covariance structure. Journal of
Computational and Graphical Statistics 27, 3 (2018), 465–478.

[161] ORMEROD, J. T., AND WAND, M. P. Gaussian variational approxi-
mate inference for generalized linear mixed models. Journal of Com-
putational and Graphical Statistics 21, 1 (2012), 2–17.

[162] OSBAND, I., ASLANIDES, J., AND CASSIRER, A. Randomized prior
functions for deep reinforcement learning. In Advances in Neural
Information Processing Systems (2018), pp. 8626–8638.



BIBLIOGRAPHY 171

[163] OSBORNE, M. A., GARNETT, R., AND ROBERTS, S. J. Gaussian
processes for global optimization. In 3rd international conference on
learning and intelligent optimization (LION3) (2009), vol. 2009.

[164] PAO, Y.-H., PARK, G.-H., AND SOBAJIC, D. J. Learning and gen-
eralization characteristics of the random vector functional-link net.
Neurocomputing 6, 2 (1994), 163–180.

[165] PAPAMAKARIOS, G., PAVLAKOU, T., AND MURRAY, I. Masked au-
toregressive flow for density estimation. In Advances in Neural Infor-
mation Processing Systems (2017), pp. 2338–2347.

[166] PAWLOWSKI, N., BROCK, A., LEE, M. C., RAJCHL, M., AND

GLOCKER, B. Implicit weight uncertainty in neural networks. arXiv
preprint arXiv:1711.01297 (2017).

[167] PEARCE, T., ZAKI, M., BRINTRUP, A., AND NEEL, A. Uncer-
tainty in neural networks: Bayesian ensembling. arXiv preprint
arXiv:1810.05546 (2018).

[168] PEARCE, T., ZAKI, M., AND NEELY, A. Bayesian neural network
ensembles. arXiv preprint arXiv:1811.12188 (2018).

[169] PEDREGOSA, F., VAROQUAUX, G., GRAMFORT, A., MICHEL, V.,
THIRION, B., GRISEL, O., BLONDEL, M., PRETTENHOFER, P., WEISS,
R., DUBOURG, V., VANDERPLAS, J., PASSOS, A., COURNAPEAU,
D., BRUCHER, M., PERROT, M., AND DUCHESNAY, E. Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research 12
(2011), 2825–2830.

[170] PICHENY, V., GINSBOURGER, D., RICHET, Y., AND CAPLIN, G.
Quantile-based optimization of noisy computer experiments with
tunable precision. Technometrics 55, 1 (2013), 2–13.



172 BIBLIOGRAPHY
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[216] YONDO, R., ANDRÉS, E., AND VALERO, E. A review on design of
experiments and surrogate models in aircraft real-time and many-
query aerodynamic analyses. Progress in Aerospace Sciences 96 (2018),
23–61.

[217] YU, F. X. X., SURESH, A. T., CHOROMANSKI, K. M., HOLTMANN-
RICE, D. N., AND KUMAR, S. Orthogonal random features. In
Advances in Neural Information Processing Systems (2016), pp. 1975–
1983.

[218] ZHANG, C., BUTEPAGE, J., KJELLSTROM, H., AND MANDT, S. Ad-
vances in variational inference. IEEE transactions on pattern analysis
and machine intelligence (2018).

[219] ZHANG, C., REN, M., AND URTASUN, R. Graph hypernetworks for
neural architecture search. arXiv preprint arXiv:1810.05749 (2018).

[220] ZHANG, L., AND SUGANTHAN, P. N. A comprehensive evaluation
of random vector functional link networks. Information sciences 367
(2016), 1094–1105.

[221] ZHU, Q.-Y., QIN, A. K., SUGANTHAN, P. N., AND HUANG, G.-B.
Evolutionary extreme learning machine. Pattern recognition 38, 10
(2005), 1759–1763.

[222] ZOU, H., AND HASTIE, T. Regularization and variable selection via
the elastic net. Journal of the royal statistical society: series B (statistical
methodology) 67, 2 (2005), 301–320.


	Introduction
	Problem Statement
	Motivation
	Challenges of Gaussian Process Optimization
	Why Neural Networks

	Research Objectives
	Major Contributions
	Organization of the Thesis

	Background and Literature Review
	Introduction
	Bayesian Optimization
	Bayesian Regression
	Distribution over Parameters
	Distribution over functions

	Infill Criteria
	Statistical Lower Bound
	Probability of Improvement
	Expected improvement
	Information-theoretic Infill Criteria 
	Noisy Infill Criteria
	Goal Seeking

	Conclusion

	Bayesian Optimization Using Bayesian Neural Networks
	Introduction
	Bayesian Neural Networks
	Random Feed Forward Neural Networks
	Empirical Expected Improvement
	Experiments
	Results and Discussion
	Conclusion

	Cheap Surrogate Building Using Randomization 
	Introduction
	Random Vector Functional Link Networks
	 RVFL-based Bayesian Optimization 
	Experiments
	Synthetic Functions
	Hyperparameter Optimization

	Discussion
	Conclusion

	A Conditional Likelihood Acquisition Function
	Introduction
	Conditional Maximum Likelihood in GP
	Conditional Maximum a Posteriori in Neural Networks
	Experiments and Results
	Conclusion

	Implicit models and order preservation
	Introduction
	Deep Generative Models
	Likelihood-free Inference
	Order-preserving Implicit Models
	Modeling Pairwise Preferences
	Order-Preserving Loss

	Implicit Variational Bayesian Neural Networks
	Bayesian Optimization using IVBNN
	Experimental Setup
	Results and Discussion
	Conclusion

	Conclusion
	Accomplished Objectives


