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Abstract

The Chatham Rise is a highly productive deep-sea ecosystem that supports numer-

ous substantial commercial fisheries, and is therefore a likely candidate for an ecosys-

tem based approach to fisheries management in New Zealand. This thesis describes

model construction, calibration and validation, for the first end-to-end ecosystem

model of the Chatham Rise, New Zealand. The work extends beyond what has

previously been done for validating such models, and explores uncertainty analyses

through bootstrapping the oceanographic variables, perturbing the model’s initial

conditions, and analysing species interaction effects, with the results further anal-

ysed with respect to known data gaps. This enables the inclusion of uncertainty

in simulated scenarios using the Chatham Rise Atlantis model, thus providing an

envelope of results with which to analyse and understand the likely responses of the

Chatham Rise ecosystem. The model was designed with 24 dynamic polygons, 5

water column depth bins, 55 species functional groups, and used 12-hour timesteps.

The transfer of energy was tracked throughout the system using nitrogen as the

model’s main currency. The model simulated the system from 1900–2015, preceded

by a 35 year burn-in period. The model produced very similar biomass trajectories

in response to historical fishing to corresponding fisheries stock assessment models

for key fisheries species. Population dynamics and system interactions were consid-

ered realistic with respect to growth rates, mortality rates, diets and species group

interactions. The model was found to be generally stable under perturbations to the

initial conditions, with lower trophic level species groups having the most variabil-

ity. The specification of the Spawning Stock Recruitment curve was explored, as it

relates to the multi-species and ecosystem models within which it is now applied.

Close attention needs to be given to population dynamics specific to multi-species

interactions such as predation-release, in particular the Spawning Stock Recruitment

curve. Potentially misleading dynamics under predation-release were identified, and

the simple solution of applying a cap to recruitment when biomass exceeds virgin



levels was explored. The population dynamics of myctophids under fishing induced

predation release were analysed with and without limiting recruitment to virgin lev-

els. The effects were evident in several ecosystem indicators, suggesting unintentional

mis-specification could lead to erroneous model results. It raises several questions

around the specification of the Spawning Stock Recruitment relationship for multi-

species models, and more generally, whether the concept of ‘virgin’ (or ‘unfished’)

biomass should be reconsidered to reflect dynamic natural mortality and potentially

changing unfished states. The model components that had knowledge gaps and were

found to most likely to influence model results were the initial conditions, oceano-

graphic variables, and the aggregate species groups ‘seabird’ and ‘cetacean other’. It

is recommended that applications of the model, such as forecasting biomasses under

various fishing regimes, should include alternatives that vary these components, and

present appropriate levels of uncertainty in results. Initial conditions should be per-

turbed, with greater variability applied to species groups modelled as biomass-pools,

and age-structured species groups that have little data available from the literature.
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Chapter 1

General introduction

The Chatham Rise, a submarine ridge running eastwards about 1000 km from New

Zealand, is perhaps New Zealand’s most productive fishing ground (Ministry for

Primary Industries, 2019). It supports many commercially important fisheries, in-

cluding several with MSC (Marine Stewardship Council) certification (Deepwater

Group, 2018). The subtropical front (STF), a relatively broad permanent feature

where warmer, more saline, and nutrient poor subtropical water from the north meets

nutrient rich subantarctic water from the south, extends up the east coast of South

Island, and then eastwards along Chatham Rise (Heath, 1985; Uddstrom and Oien,

1999). The demersal fish assemblage on Chatham Rise has the highest fish species

richness in New Zealand waters (Leathwick et al. 2006). The range of habitats and

depths, and the influence of the STF, are expected to provide a wide variety of for-

aging opportunities for demersal and pelagic organisms (Dunn et al., 2010; Stevens

and Dunn, 2011). There is a wealth of data and knowledge on the Chatham Rise

Ecosystem, from trawl (O’Driscoll et al., 2011) and acoustic surveys (Escobar-Flores

et al., 2019), diet studies (e.g. Dunn et al., 2010; Stevens et al., 2011b), fisheries data

(Ministry for Primary Industries, 2019), and oceanography (e.g. Rickard et al., 2016;

Law et al., 2017; Hadfield et al., 2007). The body responsible for fisheries manage-

ment in New Zealand, Fisheries New Zealand, is seeking to move away from single

species management towards a more ecosystem approach, both to fulfil Fisheries Act

obligations and Marine Stewardship Council (MSC) expectations (Ministry for Pri-
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mary Industries, 2019; Marine Stewardship Council, 2014). The Chatham Rise is a

good place to start for establishing an ecosystem approach to fisheries management

in New Zealand, due to its commercial importance, and extensive data and knowl-

edge currently available.

The need for ecosystem approaches to fisheries management is well established

globally (Borja et al., 2016; Collie et al., 2016; Patrick and Link, 2015; Hilborn, 2011;

Pikitch et al., 2004; Link, 2002). How to achieve it is still developing, but there is

agreement that ecosystem models have the potential to be very helpful (Collie et al.,

2016; Plagányi, 2007; Pikitch et al., 2004; Botsford et al., 1997). Marine ecosystems

are complex, and they are challenging to study. In the somewhat famous words of

Prof. John Shepherd (University of Southampton), ‘Managing fisheries is hard: it’s

like managing a forest, in which the trees are invisible and keep moving around’. It

follows that managing whole ecosystems is even harder because there are even more

things moving around that we can’t see, which are interacting, and we can’t see that

either. This is where models can help, as tools to explore complex systems, and to

understand the implications of what we do.

While there is a lot of enthusiasm for ecosystem models and the roles they could

and are playing in understanding ecosystem-wide effects, there are also sceptics of

ecosystem models (Rose, 2012). There are many aspects of ecosystem models that

provoke scepticism: they are complex; there are more parameters and processes than

we have information and data to inform; model validation is yet to do justice to

the complexities of the models; and there has been little progress in addressing un-

certainty. There has been a lot of progress on the structure of ecosystem models

(Broekhuizen et al., 1994; Baretta-Bekker, 1996; Walters et al., 1997; Murray and

Parslow, 1997; Shin and Cury, 1999; Fulton, 2001; Christensen and Walters, 2004;

Fulton et al., 2004a), and it is natural that the development of the models has pre-

ceded the development of validating them. Structurally, ecosystem models did not

have to start from scratch; they incorporated theory already developed for other areas
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of modelling, such as population dynamics, fisheries dynamics, and bio-physical pro-

cesses. Fisheries models, which are well established for supporting the management

of fisheries, have a solid base of theory and many decades of application. Much of

fisheries theory still used today was developed by scientists in the 1950s such as Bev-

erton and Holt (1957), Ricker (1954) and Schaefer (1957), with a greater emphasis on

statistical methods by the end of last century (Kimura, 1980; Chang, 1982; Cerrato,

1990; Hilborn et al., 1992). Fisheries models are generally statistically optimised to

fit data available, and integrated models will fit to multiple datasets simultaneously.

With advancements in computing power, Bayesian approaches to fisheries models

became available, with sample spaces explored using MCMC (Markov Chain Monte

Carlo) algorithms. Bayesian approaches are statistical methods that allow for the in-

corporation of prior information with present data. MCMC algorithms are designed

to explore sample space of a probability distribution. Models developed for fisheries

are still improving and advancing —there are new methods like Vector Autoregressive

Spatio-Temporal (VAST) that model fisheries dynamics spatially (Thorson, 2019),

and multi-space and multi-species approaches are now available (Plagányi et al.,

2014; Doonan et al., 2016). As fisheries models include more ecosystem dynamics,

and ecosystem models become more stochastic, both branches of modelling can learn

a lot from each other, and it seems likely the gap between them will lessen.

Atlantis is an end-to-end ecosystem modelling approach that can be used to cre-

ate an environment in which different scenarios can be played out to test for different

results and learn how a system may be reacting to changes within it (Audzijonyte

et al., 2017b). Reviewed as one of the best modelling frameworks for exploring

‘what-if’ type questions (Plagányi, 2007), it includes the ability to compare social,

conservation, and economic outcomes. With sufficient data, this modelling approach

can be extremely useful for management strategy evaluation (Plagányi, 2007), and

has been applied to multiple marine systems (from single bays to millions of square

kilometres) in Australia, the United States, Europe, and South Africa (Savina et al.,

2005; Fulton et al., 2007; Link et al., 2010; Ainsworth et al., 2015; Smith et al., 2015;
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Sturludottir et al., 2018; Ortega-Cisneros et al., 2017). Atlantis is a deterministic

simulation model such that for a given parameter set and model specification, the

model outputs are identical. Atlantis models are too complex to statistically fit to

observations, although subsets of key parameters can be estimated using statistical

methods outside of the model. Analysing and understanding the model dynamics

and potential weaknesses is essential before the model can be used to learn about

the system.

This thesis largely focuses on end-to-end models using Atlantis, developed by Dr.

Beth Fulton (CSIRO), with specific application to the Chatham Rise, New Zealand.

The thesis follows the path of model construction, calibration, sensitivity and skill

assessments, scenarios for system understanding, and tool development. The work

extends beyond what has currently been done with respect to exploring and under-

standing model dynamics. Some components of the thesis, in particular Chapter

3, adds to our understanding of fundamental dynamics relating to ecosystem and

multi-species models, affecting a broad range of models.

1.1 Model construction

Constructing an ecosystem model largely consists of specifying its structure, defining

functional forms, and estimating parameters and initial conditions. The structure is

defined early on in model development, and is influenced by the intended or likely

use of the model, key components that are likely to be important for system dynam-

ics, and availability of data and information. The structure relates to the physical

structure of the model (boxes and depth layers in an Atlantis model), temporal (size

of time-steps and timeframe covered), biological (specification of species functional

groups, and age-structure within these), and harvest (specification of fishing fleets,

and characteristics such as gear types, target species and catchabilities associated

with them) (Audzijonyte et al., 2017a).
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The spatial extent of the model should be sensible with respect to available data

and information. For example, the Guam Atlantis model was restricted by depth to

the shallower waters based on availability of data and information only extending

patchily into the deeper waters (Weijerman et al., 2014). Within the defined model

area, many systems have key areas of habitat that influence the spatial structure, or

physical features that may influence currents and upwelling. For example, Link et al.

(2010) based the physical structure on previously defined sub-regions with distinct

geological, bathymetric, physical, chemical and biological properties, and at a finer

scale within these to allow for hydrodynamic and biotic processes for the North-

east United States Atlantis model. Similarly, the Guam Atlantis model was defined

based on benthos, oceanographic, bathymetry and substrate, with consideration also

of marine protected areas and survey data (Weijerman et al., 2014).

Timesteps in Atlantis models are often 12 hours to account for differences in

behaviour between night and day (Ainsworth et al., 2011; Weijerman et al., 2014),

although many of the reports and papers describing Atlantis models do not seem

to make reference to the size of the time steps. It is possible to set it smaller than

12 hours which may be important if modelling a tidal area and wanting to focus on

dynamics of the inter-tidal zone. The historical period of Atlantis models varies with

Weijerman et al. (2014) starting at 1985, Ainsworth et al. (2011) extending back to

1980, Porobic et al. (2019) and Sturludottir et al. (2018) around 60 years, to some

over 100 years (Ortega-Cisneros et al., 2017). The choice of historical period seems

to depend largely on the lifespan of animals in the system, and the availability of

data to inform the state of the historical system.

Species functional groups consist of biomass-pool species groups which are gen-

erally used to capture most invertebrate species, and age-structured species groups,

which are typically used to model vertebrates species and key exploited invertebrate

species such as cephalopods (Audzijonyte et al., 2017a). The specification of species
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functional groups at the lower trophic level is similar between Atlantis models. All

must have three types of detritus (labile detritus, refractory detritus and carrion), and

most models have two types of bacteria (sediment and pelagic), and two types of phy-

toplankton (large and small). These functional groups are similar to the group struc-

ture used in typical NPZD (Nutrient-Phytoplankton-Zooplankton-Detritus) models

(e.g. (Fasham et al., 1990) uses phytoplankton, zooplankton, bacteria, detritus and

nutrients, and (Kishi et al., 2007) uses small and large phytoplankton, small, large

and predatory zooplankton, and nutrients including nitrogen and silicate). Beyond

these common species functional groups, Atlantis models diverge a little, although

most will have a few zooplankton groups either split by size or function, several

benthic invertebrate groups such as filter feeders, carnivores and grazers, and some

primary producer groups such as macroalogae, microphytobenthos, seagrass and di-

noflagellates. The higher trophic levels vary more, for example Weijerman et al.

(2014) includes turtles as they are a tourism attraction as well as trophically con-

nected; lobsters are a focus group in Porobic et al. (2019) due to the artisanal lobster

fishery; the Icelandic model has four species groups of whales, with the potential to

use this model to explore scenarios regarding whaling (Sturludottir et al., 2018); and

the south eastern Australia Atlantis model has seven species groups of sharks, and

shark fisheries in operation (Fulton et al., 2007). The number of species functional

groups ranges from around 30 (Porobic et al., 2019; Ortega-Cisneros et al., 2017) to

more than 90 (Ainsworth et al., 2015).

Earlier accounts of model construction for complex end-to-end models using At-

lantis tended to reside in technical reports rather than published journal articles due

to the enormity of technical details that are not relevant to a very wide audience.

Four key examples of technical reports are Link et al., 2010; Ainsworth et al., 2011;

Weijerman et al., 2014 and Ainsworth et al., 2015, all of which are around 200 pages

long and include around 100 tables and figures. These earlier technical reports in-

clude many large tables with values used to inform the model, figures that could be

condensed, and many details and equations that relate to Atlantis, and are not spe-
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cific to the implementation being presented. The publication of an Atlantis Manual

(Audzijonyte et al., 2017a) has helped with the latter as it now suffices to reference

the manual, and only mention relevant specifics such as which functional forms were

selected, and values of estimated parameters. More recent implementations of At-

lantis models have tended to present succinct accounts of the model construction,

such as Porobic et al., 2019; Sturludottir et al., 2018 and Ortega-Cisneros et al.

(2017), with details such as parameter values available as supplementary informa-

tion. Similarly, the presentation of the Chatham Rise Atlantis model construction

and design in this thesis has been condensed into 14 pages, seven tables, and six

figures. The concise and succinct account of model construction and development

presented here communicates the key aspects of this process, at a level of detail that

should retain interest to readers not necessarily reproducing the model, with the

GitHub (a software development platform) repository (McGregor, 2018) providing

the additional level of detail required for reproducibility. The newer minimalistic

presentation of Atlantis models may downplay the enormity of developing such com-

plex models for those not familiar with what is involved, but it also encourages the

focus in the literature to progress from model development to other aspects such as

model exploration and validation (Figure 1.1).

1.2 Model calibration and fitting to history

Model calibration is required when statistically fitting to data is not possible due to

the complexity of the model. Statistical techniques used to find optimal parameter

sets that best fit available data are only an option if there exists a globally optimal

solution, and even in single species fisheries models, these can at times struggle with

the optimiser producing solutions that are locally optimal, but not global. Complex

end-to-end ecosystem models such as Atlantis may have multiple solutions, and it

would be very difficult to write an optimising algorithm that would be effective over

such a complex space. Hence, rather than seeking optimal solutions for Atlantis

models, realistic solutions are sought through the process of calibration. The goals
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of calibration are stated in Audzijonyte et al. (2017a) as:

1. Prevent all species present in the model from going extinct (unless they do so

in the time series being fit to)

2. Have age structured groups grow such that size-at-age is reasonable (within

20% of initial conditions, typically)

3. For species with historical data are available, have the model recreate observa-

tions of abundance from surveys or assessments

4. For species with no historical data, the model should yield reasonable time se-

ries of abundance (especially under perturbation such as environmental forcing

or fishing pressure)

5. Capturing observed spatial distributions
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Figure 1.1: The model process as applied for Atlantis models in the literature with

approximate, qualitatively defined levels of development with respect to time. Ear-

lier implementations of Atlantis focused more on the first 3 steps (framework, model

development and calibration), while the last step (sensitivity analyses) has become

more of a focus since 2016, with also a higher level of model skill assessments pre-

sented from this time.
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There has been general agreement on the calibration goals of model stability and

minimal extinctions, from before Atlantis was Atlantis (Fulton et al., 2004b,a), to

some of its earlier applications in the United States (Horne et al., 2010; Link et al.,

2010; Ainsworth et al., 2011) and more recently developed models (Sturludottir et al.,

2018; Porobic et al., 2019). The ability to replicate historic biomass trends (and/or

catch trends if sufficient effort data are available) is often calibrated for once fishing

is included in the model, with model outputs compared to relevant assessments of

surveys (Link et al., 2010; Horne et al., 2010; Ainsworth et al., 2011; Weijerman

et al., 2014; Ortega-Cisneros et al., 2017). Stable growth has been mentioned for

some models, analysed using timeseries of weights for each age-class from the model

output (Ainsworth et al., 2015; Weijerman et al., 2014). While this method for

analysing growth does assess stability of growth, it does not easily assess realism

of growth, especially if any burn-in period (period at the beginning of the model

time that are not considered part of the model period due to the settling of initial

dynamics that may be unrealistic) has been discarded. Analysing size-at-age would

make the realism of growth more transparent and could be evaluated with respect

to von Bertalanffy growth parameters (Von Bertalanffy, 1938) if these are available.

Interestingly, realistic trophic connections or realised diets have only had sporadic

mention for Atlantis models. These parameters were analysed for the southeast Aus-

tralia Atlantis model (Fulton et al., 2007), the Iceland Atlantis model (Sturludottir

et al., 2018), and the Chile Atlantis model (Porobic et al., 2019). Realised diets were

mentioned in Weijerman et al. (2014) but did not feature in the results of analyses

presented. Other models gave almost no mention to trophic connections for calibrat-

ing or assessing the model (Brand et al., 2007; Horne et al., 2010; Link et al., 2010;

Ainsworth et al., 2011, 2015; Ortega-Cisneros et al., 2017). Brand et al. (2007) did

suggest future work could calibrate the model to observed time series of diets such

as from trawl surveys. Realised natural mortality rates only feature through the

quest for stable densities by age-class. Similarly to growth rates, the stable density

diagnostics do not assess realistic mortality rates if presented as time series because

it is very difficult to assess the presence let alone the steepness of an exponential
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decay curve. Weijerman et al. (2014) stated exponential decay curves were evident

based on time series trajectories of densities for each age-class, although it was not

clear in this presentation format.

The most commonly tuned parameters during calibration have been those re-

lating to growth, the feeding functional parameters (clearance and handling time,

although the latter is often referred to as growth, but is parameterised in Atlantis

as 1/handling time) and non-predation natural mortality (Fulton et al., 2004b,a;

Brand et al., 2007; Fulton et al., 2007; Link et al., 2010; Ainsworth et al., 2011,

2015). Recruitment parameters have also been key tuning parameters in at least two

Atlantis models (Ainsworth et al., 2011, 2015; Ortega-Cisneros et al., 2017). It is

unclear whether the realised Spawning Stock Recruitment (SSR) curves (these deter-

mine density-dependent dynamics relating expected recruitment to existing spawning

stock biomass) were assessed in response to changing recruitment parameters. The

SSR relationship is important in terms of the dynamics it produces when the model

is not in equilibrium (such as when exploring scenarios). Tuning recruitment param-

eters during calibration without the examining the resulting SSR relationship could

easily bring in unrealistic dynamics when the model is used to explore scenarios.

Mentioning which parameters were tuned during calibration seems to have become

a thing of the past, as the more recent Atlantis models published don’t seem to

mention them (Sturludottir et al., 2018; Ortega-Cisneros et al., 2017; Porobic et al.,

2019; McGregor et al., 2019b).

Kaplan and Marshall (2016) define standards for end-to-end ecosystem models

such as Atlantis:

1.) Biological functional groups should persist throughout the model run

2.) The model should achieve equilibrium under fixed environmental forcing with

no fishing

3.) The hindcast biomass trends should be compared to survey and stock assess-
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ment time-series

4.) Qualitative model comparisons to surveys and stock assessments

5.) The model should reproduce temporal dynamics of abundant species

6.) Most functional groups should qualitatively match expected productivity

7.) Natural mortality (M) as a function of age should be realistic

8.) Age and length structure with respect to age should match data

9.) Diet composition of the functional groups should match diet data

These standards seem to cover the breadth of model calibration goals from the

literature, with the appropriate addition of realistic natural mortality, matching age

and length structure to data, and matching expected productivity. Productivity

is defined as FMSY (the fishing pressure expected to give the long-run maximum

sustainable yield), but could be extended to encompass inspection of the Spawning

Stock Recruitment curve, as these are generally defined for stock assessments (e.g.

Bull et al., 2012, Fournier et al., 1998 and Methot Jr and Wetzel, 2013).

1.3 Model sensitivity and skill

Nearly 10 years ago, Fulton (2010) noted the handling of uncertainty of end-to-end

ecosystem models to be both necessary and challenging, with the large numbers of

parameters and feedback loops key reasons for the challenge. There have been recent

advancements in assessing the skill of ecosystem models (Olsen et al., 2016), but so

far only using rather simple metrics which do not do justice to the complexity of an

end-to-end ecosystem model. Sensitivity analyses are still not generally carried out

for ecosystem models (Hansen et al., 2019), even with advancements in computing

power and data science. Skill assessments on their own assess a model’s accuracy,

but they do not assess its precision. A model output that is exact but wrong would

not be useful, but neither would one where the results are so imprecise such that no
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clear result can be ascertained. If accounting for uncertainty in the model yields no

clear results, this is important to present. It may still be possible to subset out the

uncertainty or tighten uncertainty bounds until results become coherent, but again,

it would be important to report on this process.

Over the last few years, Atlantis models have been presented with greater ef-

forts at assessing the skill of the model, often following Olsen et al. (2016), and ac-

counting for at least some of the model’s uncertainty. For example, Ortega-Cisneros

et al. (2017) included a sensitivity analysis on zooplankton growth, and a skill as-

sessment on biomass, catch and spatial distribution of the species for which there

were sufficient observation data; Sturludottir et al. (2018) included a skill assess-

ment using three metrics applied to biomass trajectories of five species functional

groups and landings of 12 species functional groups, and included a sensitivity anal-

ysis on the feeding functional response parameters; and Hansen et al. (2019) per-

turbed recruitment, mortality, prey consumption and growth by +/- 25% for nine

biomass-dominating key species. There has also been some progress on addressing

uncertainties in Object-oriented Simulator of Marine Ecosystems (OSMOSE) models,

an alternative ecosystem modelling framework based on agent-based representations

(Shin and Cury, 1999). In OSMOSE, stochasticity is incorporated through the spa-

tial distribution of species, and with the stochastic feeding algorithm that samples

prey for a given predator-prey interaction based on spatial overlap, gape-size, and

feeding preferences (Grüss et al., 2016a,b). There are still parameters that are tuned

through calibration, and an initial state for the model needs to be defined. It is not

apparent that sensitivities to initial conditions have been explored for any end-to-end

ecosystem models in the literature.
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1.4 Scenarios for system understanding

Tuning parameters for the calibration of the model in equilibrium runs the risk of

inappropriately specifying the model for evaluating flow-on effects when we perturb

the system. In a complex model, there are many ways realistic biomass trends and

dynamics of individual species groups can be produced, and not all of these will

be realistic. Perturbing the model in different ways and analysing the flow-on ef-

fects as they play out is one way of gaining understanding of the dynamics of the

system, its parts as they relate to each other, and whether predicted responses are

realistic/plausible, but there appears to have been little formal discussion on this in

the literature (though it is a widely know approach amongst experienced modellers).

The sensitivity analyses on zooplankton and phytobenthos growth in the model of

Ortega-Cisneros et al. (2017) were analysed with respect to the model’s sensitivity

to these parameters, but the results were not analysed with respect to what could be

learnt about the behaviour of the model. Whether the species groups that responded

most strongly to these sensitivity analyses were sensible based on knowledge of the

system, was not addressed. The sensitivity analyses on the Norwegian Sea Atlantis

model did relate the results to dynamics of the system (Hansen et al., 2019), although

the scope of the study was fairly limited. All perturbations were by 25%, thus no

lessons could be learnt from analysing variability, as there was no randomness to the

study design. Further, it was concluded by Hansen et al. (2019) that top predators

responded more to perturbations to their parameters rather than to parameters of

other species groups, but only two top predators in the model were perturbed, which

is not a sufficiently large sample-size for drawing this conclusion.

1.5 Tool development

R is a software development environment specifically aimed at data and statisti-

cal analyses (R Core Team, 2013). There are some R packages for use during

Atlantis model calibration (Audzijonyte et al., 2017a), which have been developed

36



to assist modellers with limited coding ability to develop Atlantis models without

being limited to Excel and text editors to more manually explore model outputs.

Given the multi-dimensional nature of complex ecosystem models, and the huge

range of possible ways to explore the model, the more flexibility in analysing the

model outputs and inputs the better. As an experienced R user from my work

as a stock assessment scientist and my studies in Statistics, as well as training in

software development, I developed fit-for-purpose R scripts throughout this work.

The code I’ve developed is extensive, with approximately 1600 scripts. The R code

specifically used for the analyses as presented in this thesis are available on github

(https://github.com/mcgregorv). Additional scripts written for understanding par-

ticular aspects during calibration are also on github

(https://github.com/mcgregorv/AtlantisRscripts), although there are many of them,

many of an ad-hoc nature. Additional scripts were also written during development

to solve a particular problem. For example, if a specific predator-prey interaction

was failing to occur, I would have written fprintf statements in the Atlantis source

code, then R scripts to analyse the resulting outputs, until I resolved the issue. Some

of the more general scripts I’ve written have been used by other Atlantis modellers,

especially those around predator-prey dynamics such as gape-size effects, and spatial

and temporal overlap.

1.6 General methodology and approach

The Chatham Rise was chosen as the focus area of this research due to the large

amount of data and information available, its many commercially important fish-

eries, and the appetite for an ecosystem approach to fisheries management of this

system.

Studying the system was not the focus of this research, and Peter Horn (Fisheries

Biologist, NIWA) gathered much of the data on the system. The focus of this research
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was to develop the Atlantis model to best represent the Chatham Rise ecosystem for

the purpose of supporting an ecosystem approach for fisheries management, to un-

derstand the dynamics, strengths and limitations of the model, and to test, explore

and understand it. This work takes end-to-end ecosystem model testing, exploration

and validation to levels much beyond those presented in the literature to date.

Model development and calibration consumed much of the first two years of this

research. During the initial model development, I learnt out how the model would

use the inputs and what was required, and my colleague, Peter Horn, produced

data from the literature or in some cases from his own experience, that could be

used either directly as model inputs or to inform them. Some inputs went almost

directly into the model, such as catch histories, or spatial distributions, with only

minor changes to formatting and conversion of units. Others required more mod-

elling effort, such as diets and recruitment. Diets were available from the predators

perspective (what proportion of the diet is made up of a given prey), but enter

the model from the perspective of the prey (what proportion of the prey may be

eaten by a given predator). Further, as there are many dynamics that impact on

the realised diets of predators in Atlantis, (including spatial and temporal overlap,

gape-sizes and growth rates), obtaining appropriate realised diets went a long way

into model calibration. Recruitment parameters for the Spawning Stock Recruitment

curve were initially set using stock assessment parameters where they were available,

or were estimated using C++ Algorithmic Stock Assessment Laboratory (CASAL)

models (Bull et al., 2012) where there were sufficient data to do so, or approximated

based on similar species. Adjustments to these values were initially required due to

the quasi-version of Beverton-Holt recruitment in Atlantis. Investigations into this

quasi-functional form lead to 1.) re-specifying the relationship in the Atlantis source

code, and 2.) exploring the effects of the Spawning Stock Recruitment relationship

in a multispecies context (the subject of Chapter 3).
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1.7 This thesis

Chapters 2–4 are self-contained journal articles, two of which are published, and the

final one is submitted. These are very concise and succinct accounts of the work

undertaken for this thesis. Each chapter has its own Introduction section, while

the General Introduction provides more general context for the work, and discusses

aspects of the literature as they form the context for the overall thesis. The final

chapter, ‘Synthesising the process’ brings together lessons learnt from all chapters,

and discusses how the process applied to this work might look with the added benefit

of hindsight. I give recommendations for the development, exploration and valida-

tion of complex ecosystem models into the future.
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Chapter 2

From data compilation to model

validation: A comprehensive

analysis of a full deep-sea

ecosystem model of the Chatham

Rise

The following chapter is sourced from the open-source peer-reviewed article: Mc-

Gregor V.L., Horn P.L., Fulton E.A., Dunn M.R. 2019. From data compilation to

model validation: a comprehensive analysis of a full deep-sea ecosystem model of the

Chatham rise. PeerJ 7:e6517 DOI 10.7717/peerj.6517.

PeerJ is an open access publisher, and all content is published under a CC BY license

(https://creativecommons.org/licenses/by/4.0/).

2.1 Abstract

The Chatham Rise is a highly productive deep-sea ecosystem that supports numer-

ous substantial commercial fisheries, and is a likely candidate for an ecosystem based
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approach to fisheries management in New Zealand. I present the first end-to-end

ecosystem model of the Chatham Rise, which is also to be best of my knowledge,

the first end-to-end ecosystem model of any deep-sea ecosystem. I describe the pro-

cess of data compilation through to model validation and analyse the importance of

knowledge gaps with respect to model dynamics and results. The model produces

very similar results to fisheries stock assessment models for key fisheries species, and

the population dynamics and system interactions are realistic. Confidence intervals

based on bootstrapping oceanographic variables are produced. The model compo-

nents that have knowledge gaps and are most likely to influence model results were

oceanographic variables, and the aggregate species groups ‘seabird’ and ‘cetacean

other’. I recommend applications of the model, such as forecasting biomasses under

various fishing regimes, include alternatives that vary these components.

2.2 Introduction

The goal of incorporating a holistic approach to understanding the system-wide

repercussions of how we manage our marine resources is admirable and ambitious

(Long et al., 2015; Link and Browman, 2017). Ecosystem Based Management (EBM)

requires a range of tools, often including ecosystem models (Smith et al., 2017;

Stecken and Failler, 2016). Within ecosystems there are many processes at play,

and the models developed to support EBM vary in scope and complexity (Plagányi,

2007; Fulton, 2010; Collie et al., 2016). End-to-end ecosystem models that can deal

with bottom-up and top-down system controls have become popular for exploring

scenarios involving human induced impacts including fishing and climate change

(Rose, 2012).

The body responsible for fisheries management in New Zealand, Fisheries New

Zealand, is seeking to move away from single species management towards a more
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ecosystem approach, both to fulfil Fisheries Act obligations and Marine Steward-

ship Council (MSC) expectations (Ministry for Primary Industries, 2019; Marine

Stewardship Council, 2014). The Chatham Rise is the location of several nationally

important MSC certified fisheries (Deepwater Group, 2018), and a growing under-

standing of trophic interactions exists there (Stevens et al., 2011b; Dunn et al., 2009).

Chatham Rise is a submarine ridge running eastwards for about 1000 km from

the east coast of South Island, New Zealand, rising up from depths of about 3000

m, to about 50 m at the western end, and sea level around the Chatham Islands

at the eastern end (Figure 2.1). The subtropical front (STF), a relatively broad

permanent feature where warmer, more saline, and nutrient poor subtropical water

from the north meets nutrient rich subantarctic water from the south, extends up the

east coast of South Island, and then eastwards along Chatham Rise (Heath, 1985;

Uddstrom and Oien, 1999). The demersal fish assemblage on Chatham Rise has the

highest fish species richness in New Zealand waters (Leathwick et al. 2006). The

range of habitats and depths, and the influence of the STF, are expected to provide

a wide variety of foraging opportunities for demersal and pelagic organisms (Dunn

et al., 2010; Stevens and Dunn, 2011).

The Chatham Rise is perhaps New Zealand’s most productive fishing ground. It

supports substantial commercial fisheries for finfish and invertebrates, with notable

examples being: trawl fisheries for hoki (Macruronus novaezelandiae), orange roughy

(Hoplostethus atlanticus), hake (Merluccius australis), and black and smooth oreos

(Allocyttus niger, Pseudocyttus maculatus); a longline fishery for ling (Genypterus

blacodes); and a potting fishery for rock lobster (Jasus edwardsii) (Ministry for Pri-

mary Industries, 2019).

Analyses of trawl survey series and commercial fishery catch rates have shown that

marked variations over time have occurred in the relative abundance of some com-

mon species on Chatham Rise, e.g., hoki, hake, orange roughy, scampi (Metanephrops
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challengeri), and rock lobster (Maunder and Starr, 1995; Dunn et al., 2008; Stevens

et al., 2017). Some factors driving these fluctuations have been identified (i.e., high

exploitation levels, variation in recruitment) (Ministry for Primary Industries, 2019),

but there will certainly be other physical and biological factors that will influence

animal behaviour and survivability, resulting in changes to the ecosystem. A knowl-

edge of how particular biological and ecological changes could affect the abundance

and distribution of species will usefully inform the management of those species.

In an ecosystem, nothing exists independently. When assessing biological risks,

it is difficult to conceptualise risk to the whole system. A system-level model within

which different scenarios can be explored is an extremely valuable tool for gaining

conceptual understanding of economic and biological risks for a whole system, as

well as for individual parts.

Atlantis is an end-to-end ecosystem modelling approach that can be used to cre-

ate an environment in which different scenarios can be played out to test for different

results and learn how a system may be reacting to changes within it (Audzijonyte

et al., 2017b). Reviewed as one of the best modelling frameworks for exploring

‘what-if’ type questions (Plagányi, 2007), it includes the ability to compare social,

conservation, and economic outcomes. With sufficient data, this modelling approach

can be extremely useful for management strategy evaluation (Plagányi, 2007), and

has been applied to multiple marine systems (from single bays to millions of square

kilometres) in Australia, the United States, Europe, and South Africa (Savina et al.,

2005; Fulton et al., 2007; Link et al., 2010; Ainsworth et al., 2015; Smith et al., 2015;

Sturludottir et al., 2018; Ortega-Cisneros et al., 2017). Atlantis is a deterministic

simulation model such that for a given parameter set and model specification, the

model outputs are identical. Atlantis models are too complex to statistically fit to

observations, although subsets of key parameters can be estimated using statistical

methods outside of the model. Analysing and understanding the model dynamics

and potential weaknesses is essential before the model can be used to learn about
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the system.

In this chapter, I describe the first end-to-end ecosystem model for the Chatham

Rise, New Zealand (hereafter referred to as CRAM). I present analyses of the model,

comparing its state and dynamics to current knowledge. I identify and assess the

likely influence of current knowledge gaps and uncertainties.

In developing such models, knowledge gaps become evident, and we are provided

with the opportunity to analyse the importance of these gaps, thus guiding direction

of future research. The model was assessed for single species dynamics and inter-

species connectivity. I conducted a skill assessment on species groups for which we

have surveys capable of indexing abundance, and compared biomass trends as the

model responded to historical fishing for species groups that have stock assessments

or reliable catch per unit effort (CPUE) indices. I simulated changes in biomass

for each species group and analysed responses throughout the system. This latter

part formed the basis for analysing influence and importance of knowledge gaps, and

where a species group performed poorly in the skill assessment it often highlighted

a knowledge gap.
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Figure 2.1: Map of New Zealand with Chatham Rise marked, including 200 m, 500

m, and 1000 m isobaths.
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2.3 Methodological Approach

The process of developing this model was not linear, but rather iterative and incre-

mental. There were five main stages to the development, each of which was re-visited

until I was satisfied with the performance of the model and our understanding of its

dynamics. The main stages can be summarised as:

1.) Data and model inputs were collated and defined.

2.) The base historical model was calibrated without fishing such that this model had

stable biomass trajectories over the 1900–2016 model period, realistic diets, growth

rates, natural mortalities.

3.) Sensitivity analyses were carried out with respect to oceanographic variables and

simulations aimed at understanding connectivity and influence between the species

functional groups.

4.) Fishing was included in the model using forced catch removals.

5.) Skill assessment and comparisons to abundance indices and biomass estimates

were carried out.

Sections 2.4–2.8 cover each of these five main stages, followed by Section 2.9:

‘Bringing it together’, which discusses some of the implications of the models’ per-

formance, dynamics and data gaps.

2.4 Model design

An Atlantis model simulates the ecosystem through time, calculating each new state

based on the previous state and the events of the current timestep. This section de-

scribes the physical, biological, ecological, and fishing components of the Chatham

Rise Atlantis Model. Further details on Atlantis can be found in the Atlantis user

manual (Audzijonyte et al., 2017a).

46



2.4.1 Model area

The Chatham Rise Atlantis model area comprises waters from the shore-line around

Chatham Islands (but excluding estuaries on the islands) to depths of 1300 m along

the Chatham Rise, New Zealand (Figure 2.2). The western boundary of the area is

defined as the 400 m contour on the western edge of the Mernoo Gap, a trough that

separates the Chatham Rise from the coastal shelf off the mid east coast of South

Island. This area boundary includes the core trawl survey strata of depths 200–800

metres and the additional depth down to 1300 metres covered by some additional

strata added to the trawl survey in more recent years (Stevens et al., 2017).

An Atlantis model requires the modelled region to be split into polygons and

depth layers. Each polygon/depth layer is referred to as a cell. The intention of the

splits is to capture important aspects of the region but at a simplified level such that

modelling the region over many years becomes possible. If I was modelling a smaller

temporal scale, I may have considered a finer spatial scale. The polygons within the

modelled area are referred to as dynamic polygons, and these are surrounded by non-

dynamic polygons which define the boundary conditions for the modelled domain.

Several investigations of fish communities or fish species richness indicated that

the division of the Chatham Rise into polygons for Atlantis modelling should occur

primarily based on depth categories, with the northern and southern slopes separated

(owing to the different water masses and fish communities to the north and south of

the STF), and with some longitudinal differentiation as well. Species communities

were found to group in adjacent depth-defined strata, but with differences between

depths on the northern and southern Rise, as well as some longitudinal differentia-

tion (Tuck et al., 2009).

A large amount of data on the abundance and distribution of demersal fish and

invertebrate species has been collected from the series of trawl surveys of depths

200–800 m on Chatham Rise in January annually from 1992 to 2014 (Livingston
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et al., 2002, Stevens et al., 2017). Some of the more recent surveys in the series

also included strata to depths of 1300 m (Stevens et al., 2017). The survey area was

stratified by depth, latitude, and longitude. It was logical, therefore, to base the

Atlantis model polygon boundaries on the trawl survey strata boundaries. This area

definition is also helpful for informing the model spatially based on trawl surveys.

Consequently, the model area was divided into 24 dynamic polygons based on bot-

tom depth bins (< 200 m, 200–400 m, 400–600 m, 600–800 m, 800–1300 m), with

bins deeper than 400 m separated into northern and southern Rise polygons, and

with longitudinal separation (where trawl survey strata allowed) aimed at producing

western, central, and eastern polygons. The dynamic polygon area is surrounded by

6 additional non-dynamic polygons which allows for the exchange of water, nutrients

and biota into and out of the dynamic model domain. The final configuration of the

dynamic and non-dynamic polygons is shown in Figure 2.2.

All model polygons are further divided into water column depth layers, with

depth bins defined to align with trawl survey strata, ranging from one layer in some

near-shore polygons to five layers for the deepest polygons. Depth layers are also

defined in Figure 2.2. Each box also contains one epibenthic (consisting of epibenthic

invertebrates and habitat species functional groups) and one sediment layer.

2.4.2 Time

The model was run with a 35 year burn-in period (1865–1900) followed by a 115 year

modelled period (1900–2015). The burn-in period allows for the model to adjust from

potentially unstable initial conditions due to uncertainty of some of the parameters

and age distributions for the age resolved groups, to a state that is more stable. A 35

year period was chosen as it covered initial fluctuations of most functional groups in

the model. All results presented here are from the modelled period 1900–2015. The

model used 12 hour timesteps to allow for changes in temperature, light and feeding

patterns between night and day.
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Figure 2.2: Polygons as defined for CRAM with maximum depths for each polygon

shown by colour (left) and depth layer bins (right).

2.4.3 Oceanography

Salinity, temperature and water exchange between cells were forced in the Atlantis

model using outputs from a ROMS (Regional Oceanographic Modelling System)

model (Hadfield et al., 2007) that covered years 1996–2004. Water currents across

each box face cause the horizontal movement of nutrients (such as ammonia and

nitrate) available to primary producers. The speed and direction of currents in-

fluence the spatial distribution of plankton groups. Water temperatures influence

biological processes such as respiration (Hoegh-Guldberg and Bruno, 2010). Based

on sea surface temperatures (SST), the ROMS years (1996–2004) look to be fairly

representative of those properties from 1961–2017 (Figure 2.3). The base model pre-

sented here repeated the available ROMS variables as a nine-year cycle. Averaging

the ROMS variables was not sensible due to the water exchange between cells, as

these change every 12-hour timestep in strength and direction, and averaging them

could easily result in implausible physical dynamics. I ran sensitivities varying the

order of ROMS years or repeating one ROMS year to help understand the effects of

inter-annual oceanographic variability on this model.
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Figure 2.3: Sea surface temperature (SST) (o Celsius) weekly averages for 1981–2017

with ROMS years 1996–2004 shaded blue (left) and mean SST by month (right) from

the same data for 1981–2017 (black dashed line), with the subset from 1996–2004

(blue solid line), and additional historical SST data from 1961–1990, which were only

available as monthly averages (orange solid line).

2.4.4 Nutrients

Atlantis models use nitrogen, an important and often limiting nutrient in marine

systems (Moore et al., 2013), to track the transfer of energy throughout the system.

While carbon is also important (and is still tracked in Atlantis models), it is not

limiting in marine systems, which is why nitrogen is the currency used in Atlantis.

The nitrogen cycle can be seen in Figure 2.4. When biomass pools are tracked in

the model, they are done so in mg N m−3. When a fish (for example) eats another

fish, it is nitrogen that is transferred up the food chain, with some nitrogen going to

detritus and carrion, thus providing nitrogen to micro-organisms and filter feeders

to fuel the cycle over again.

Nutrient data

Oxygen (O2), nitrates (NO3), ammonium (NH+
4 ) and silica (SiO2) were simulated

in the model, and required spatially defined initial conditions (values for each cell in

the model domain). Table 2.1 has a summary of the data sources for these nutrients.
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Figure 2.4: Nutrient cycle as modelled in Atlantis.

I used values from the World Ocean Atlas (WOA) for initial conditions for nitrate

values down to 500 m, oxygen down to the full model depth of 1300 m, and silica

down to 1300 m. The WOA contains objectively analysed climatological fields of in

situ oxygen, temperature, salinity, and some nutrients (Locarnini et al., 2013; Zweng

et al., 2013; Garcia et al., 2013a,b). NO3 µmol/m
3 were converted to mg N/m3 by

multiplying by 14 as the molecular mass of nitrogen is 14 g/mol.

World Ocean Circulation Experiment (WOCE) (Deutsches Ozeanographisches Daten-

zentrum, 2006) data were used for nitrates at depths greater than 500 m, which were

not covered by WOA. WOCE data were also used to compare values for oxygen, to

inform initial conditions for silica, and to compare with salinity, temperature and

chlorophyll a.

Ammonium values were available from NIWA (National Institute of Water and

Atmospheric Research) oceanographic surveys, but only down to 50 m. This limited

depth range was not too concerning as ammonium is a small component of the ni-

trogen budget.
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Table 2.1: Sources of data for Oxygen, Nitrates, Ammonium and Silica.

WOA, World Ocean Atlas; WOCE, World Ocean Circulation Experi-

ment; NIWA, National Institute of Water and Atmospheric Research.

Variable Source Depth Latitude Longitude

Oxygen WOA 1300 m 42–47 S 172 E –170 W

Oxygen WOCE 1300 m 42.5 S 180 E

Nitrate WOA 500 m 42–47 S 172 E –170 W

Nitrate WOCE 1300 m 42.5 S 180 E

Silica WOCE 1300 m 42.5 S 180 E

Ammonium NIWA survey 0–50 m 43–46 S 172 E –180 E

2.4.5 Species groups

CRAM uses 55 functional groups to model the biological processes. Of these 55

groups, 15 vertebrates, and one invertebrate comprised single species; all other groups

comprised two or more species. The main component species of the groups are shown

in Tables 2.2 –2.5. Functional groups were defined based on broadly similar form,

habitat, and diet, and also considered which species or groups of species may be

important to investigate on their own. All vertebrate groups and five invertebrate

groups were modelled with age-structure using up to 10 age-classes and varying

number of years per age-class, depending on the longevity of the primary species

in the group. Within each age-class, the model simulated numbers of individuals

and the average weight (mg N) of individuals within each age class. Weights were

split into structural (SN) and reserve (RN) components following the definition in

Broekhuizen et al. (1994) where reserve weight is the part that can be used during

periods of starvation, which includes flesh, fat, reproductive components and other

soft tissue. Primary producers and remaining invertebrate groups were modelled as

biomass pools (mg N m−3) with no age-structure.
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Table 2.2: List of functional vertebrate groups for CRAM. Name is the

species group name which is the same as the main species name for

single-species groups but without punctuation. Lifespan is the assumed

maximum number of years an individual in that group may live. Ben,

benthic; Dem, demersal; invert, invertivore; pisc, piscivore.

Name Main species Lifespan (years)

Baleen whales Southern right whales (Eubalaena australis) 80

Basketwork eel Basketwork eels (Diastobranchus capensis) 30

Baxters dogfish Baxter’s dogfish (Etmopterus baxteri) 50

Ben fish deep Four-rayed rattail (Coryphaenoides subserrulatus) 20

Ben fish shal Oblique banded rattail (Coelorinchus aspercephalus) 10

Black oreo Black oreo (Allocyttus niger) 120

Bollons rattail Bollons’ rattail (Caelorinchus bollonsi) 20

Cetacean other Primarily sperm & pilot whales & dolphins 30

Dem fish pisc Giant stargazer (Kathetostoma giganteum) 20

Elasmobranch invert Primarily skates & dogfish 20

Elasmobranch pisc Primarily semi-pelagic sharks 50

Epiben fish deep Spiky oreo (Neocyttus rhomboidalis) 100

Epiben fish shal Common roughy (Hoplostethus atlanticus) 10

Ghost shark Dark ghost shark (Hydrolagus novaezealandiae) 20

Hake Hake (Merlucciidae) 30

Hoki Hoki (Macruronus novaezelandiae 20

Javelinfish Javelinfish (Coelorinchus australis) 10

Ling Ling (Genypterus blacodes) 30

Lookdown dory Lookdown dory (Cyttus traversi) 30

Mackerels Slender jack mackerel (Trachurus murphyi) 30

Orange roughy Orange roughy (Hoplostethus atlanticus) 120

Pelagic fish lge Southern bluefin tuna (Thunnus thynnus) 20

Pelagic fish med Barracouta (Thyrsites atun) 10

Pelagic fish sml Myctophids (Myctophidae) 4

Pinniped NZ fur seal (Arctocephalus forsteri) 20

Reef fish Blue cod (Parapercis colias) 20

Seabird Seabirds & shorebirds 20

Seaperch Seaperch (Helicolenus spp.) 50

Shovelnosed dogfish Shovelnosed dogfish (Deania calcea) 40

Smooth oreo Smooth oreo (Pseudocyttus maculatus) 100

Spiny dogfish Spiny dogfish (Squalus acanthias) 30

Warehou Silver, white & blue warehou 20
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Table 2.3: List of functional invertebrate groups for CRAM. Name is

the species group name which is the same as the species name for single-

species groups. Description includes main species. Lifespan is the maxi-

mum number of years an individual in that group may live. Those groups

with no value for lifespan are modelled as biomass pools and hence do

not have a lifespan defined as this is only relevant when modelling num-

bers. Zoo, zooplankton; Invert comm, commercial invertebrates; herb,

herbivore; scav, scavenger.

Name Description Lifespan (years)

Arrow squid Arrow squid 2

Benthic Carniv Benthic carnivores (0.9–90 mm)

Carniv Zoo Planktonic animals (size 2–20 cm)

Cephalopod other Squid & octopus 2

Deposit Feeder Detritivores and benthic grazers (0.9–200 mm)

DinoFlag Dinoflagellates

Filter Other Non-commercial benthic filter feeders (size 0.9–200 mm)

Gelat Zoo Salps, ctenophores, jellyfish

Invert comm herb Paua & kina (size 0.9–140 mm) 10

Invert comm scav Primarily scampi & crabs (size 0.9–500 mm) 14

Meiobenth Benthic organisms (size 0.1–1 mm)

MesoZoo Planktonic animals (size 0.2–20 mm)

MicroZoo Heterotrophic plankton (size 20–200 µm)

Rock lobster Rock lobster 12

Table 2.4: List of functional phytoplankton and algae groups for CRAM.

Name is the species group name which is the same as the main species

name for single-species groups. Description includes main species.

Name Description

Diatoms Diatoms (large phytoplankton)

Macroalgae Macroalgae (0.9 –2000 mm)

Microphytobenthos Unicellular benthic algae (2–200 µm)

Pico-phytoplankton Small phytoplankton (0.2–9µm)

Table 2.5: List of functional bacteria and detritus groups for CRAM.

Name is the species group name which is the same as the main species

name for single-species groups. Description includes main species.

Name Description

Carrion Dead and decaying flesh

Labile detritus Organic matter that decomposes at a fast rate

Pelagic bacteria Pelagic bacteria

Refractory detritus Organic matter that decomposes at a slow rate

Sediment bacteria Sediment bacteria
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Initial conditions and biological parameters for species groups

Initial biomasses for each species group were estimated using a single species stochas-

tic stock assessment model, CASAL (Bull et al., 2012). Biomass estimates for the

entire Chatham Rise were derived by using known biological parameters and a catch

history to project back from an absolute abundance estimate in 2003. Values of

relative abundance were available for most species groups from trawl surveys con-

ducted annually from 1992 to 2014 (see O’Driscoll et al. (2011)). For each survey,

these abundance estimates were converted to absolute values using trawl catchability

quotients (specific to each group) derived by Peter Horn’s (NIWA) expert opinion,

as fisheries scientists with experience dating back more than 30 years. Estimated

absolute abundance for each group in 2003 (the midpoint of the survey series) was

taken as the mean from all the survey estimates. For each species group, the initial

biomass estimate was distributed across polygons in proportion to the survey series

estimates (i.e., the mean proportion of total biomass by polygon over the survey se-

ries). The distribution of biomass by depth layer in each polygon was derived using

Peter Horn’s (NIWA) expert opinion. Where there was no available catch history

(e.g. seabirds), or no useful estimates of relative abundance from the trawl surveys

(e.g. rock lobster), initial biomasses (and their distribution by model polygon) were

estimated using Peter Horn’s (NIWA) expert opinion. For age-structured groups,

initial biomass estimates were assigned to age-classes using estimates of instanta-

neous natural mortality (M). Initial average weights at age were calculated using

Von Bertalanffy growth and length-weight conversion parameters. Values used for

these parameters are in Table 2.6. Weights at age were split into reserve and struc-

tural components using ratio RN : SN = 2.5 : 1. This allows for an individual’s body

mass to decrease by approximately 70% before starving, which is within the 60–80%

range suggested by Broekhuizen et al. (1994).

All age-structured groups were modelled with Beverton-Holt recruitment, the

steepness (h) values for which are in Table 2.6. These values are not ever well known,

and scenarios explored using this model should consider sensitivities for these.
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Table 2.6: Biological parameters assumed for age-structured species

groups. VB, von Bertalanffy; M, instantaneous natural mortality rate;

h, steepness value for the Beverton-Holt stock recruitment relationship.

Length-weight parameters are: W = aLb (weight W in g, length L in

cm). Where Reference is ‘Trawl db’ some data have been derived from

the NIWA trawl survey database (see Mackay (2000)). Species group

matches ‘Name’ in Tables 2.2 and 2.3 and are without punctuation.

Species group VB Growth Length-weight M h Reference

Linf (cm) K T0 a b

Arrow squid 35 2.4 0 2.90E-02 3 4.6 0.8 Ministry for Primary Indus-

tries (2019)

Baleen whales 0.01 0.5

Basketwork eel 47.3 0.283 -1.294 2.35E-03 3.25 0.19 0.8 Trawl db

Baxters dogfish 64.4 0.06 -2.97 5.95E-03 3.068 0.08 0.3 Irvine et al. (2006a)

Ben fish deep 36 0.3 -1.1 7.28E-03 2.632 0.2 0.8 Stevens et al. (2010), Trawl

db

Ben fish shal 38 0.3 -1.1 2.35E-03 3.25 0.2 0.8 Stevens et al. (2010), Trawl

db

Black oreo 37 0.1 -2 7.80E-03 3.27 0.044 0.75 Ministry for Primary Indus-

tries (2019)

Bollons rattail 47.3 0.283 -1.294 2.35E-03 3.25 0.19 0.8 Stevens et al. (2010)

Cephalopod other 45 2.4 0 2.90E-02 3 4.6 0.8

Cetacean other 0.033 0.5

Dem fish pisc 69.8 0.17 -0.53 1.50E-02 3.01 0.19 0.8 Sutton (1999), Ministry for

Primary Industries (2019)

Elasmobranch invert 150.5 0.095 -1.06 2.68E-02 2.933 0.135 0.3 Ministry for Primary Indus-

tries (2019)

Elasmobranch pisc 84.7 0.1065 -4.56 1.50E-03 3.334 0.09 0.3 Irvine et al. (2006b)

Epiben fish deep 35.3 0.07 -0.5 2.83E-02 2.9322 0.05 0.75 Stewart and Smith (1994),

Trawl db

Epiben fish shal 24 0.18 -0.3 2.65E-02 2.9126 0.2 0.8 Trawl db

Ghost shark 97 0.09 -1.17 2.02E-03 3.274 0.35 0.3 Ministry for Primary Indus-

tries (2019)

Hake 95.9 0.279 0.05 2.00E-03 3.288 0.19 0.8 Horn (2013)

Hoki 100.8 0.164 -2.16 4.79E-03 2.89 0.275 0.75 McKenzie (2016), Ministry

for Primary Industries

(2019)

Invert comm herb 155 0.15 0 3.00E-05 3.303 0.15 0.8 Breen et al. (2003)

Invert comm scav 50 0.25 0 3.73E-04 3.145 0.2 0.8 Tuck (2016)

Javelinfish 51.2 0.216 -1.618 1.38E-03 3.13 0.35 0.8 Stevens et al. (2010)

Ling 135.2 0.105 -0.72 1.07E-03 3.336 0.14 0.84 McGregor (2015)

Lookdown dory 50 0.075 -1 2.35E-02 2.97 0.15 0.8 Stewart and Smith (1994),

Ministry for Primary Indus-

tries (2019)

Mackerels 74.25 0.111 -0.811 2.38E-02 2.7671 0.3 0.7 Cubillos et al. (1998),

Kochkin (1994)
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Orange roughy 37.2 0.065 -0.5 9.21E-02 2.71 0.045 0.75 Ministry for Primary Indus-

tries (2019)

Pelagic fish lge 182 0.205 0 1.88E-02 3.0078 0.2 0.8 Fournier et al. (1990), Min-

istry for Primary Industries

(2019)

Pelagic fish med 85.2 0.298 -0.45 7.40E-03 2.94 0.3 0.7 Horn (2002), Ministry for

Primary Industries (2019)

Pelagic fish sml 7 0.8 0 1.30E-02 2.81 1.58 0.7 Young et al. (1988), Trawl

db

Pinniped 0.07 0.5

Reef fish 51.7 0.087 -1.7 1.91E-02 2.9818 0.14 0.8 Ministry for Primary Indus-

tries (2019)

Rock lobster 85 0.15 0 4.16E-03 2.935 0.12 0.8 Ministry for Primary Indus-

tries (2019)

Seabird 0.11 0.5

Seaperch 45.6 0.08 -0.8 7.77E-03 3.22 0.07 0.8 Paul and Horn (2009), Min-

istry for Primary Industries

(2019)

Shovelnosed dogfish 106.4 0.106 -0.384 1.58E-03 3.192 0.13 0.3 Clarke et al. (2002), Trawl

db

Smooth oreo 46 0.07 -1.5 3.05E-02 2.885 0.063 0.75 Ministry for Primary Indus-

tries (2019)

Spiny dogfish 104.8 0.093 -3.17 1.30E-03 3.2639 0.2 0.3 Hanchet (1986), Beentjes

and Stevenson (2009)

Warehou 53.1 0.37 -0.88 8.28E-03 3.214 0.25 0.8 Horn and Sutton (1996),

Ministry for Primary Indus-

tries (2019)

2.4.6 Predation

Simulated predation was a four step process that occurred within each cell and at

each timestep. From the predator’s perspective the steps modelled can be sum-

marised as: 1.) Am I allowed to eat it? (specified using a prey-availability matrix)

2.) Is it in the same place at the same time as me? 3.) Does it fit in my mouth? 4.)

How much can I eat? Full details are in the Atlantis User’s Guide (Audzijonyte et al.,

2017a). Step 4 uses a feeding functional response, of which there are 12 options cur-

rently available in Atlantis. I have applied the Holling Type II functional response to

all age-structured species groups in this model, thus influencing the amount of prey

consumed by prey abundance, and the predators search rate and handling time.
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Diets of each species group were summarised in categories Algae, Bacteria, Bird,

Cetacea, Coelenterate, Crustacean, Detritus, Echinoderm, Elasmobranch, Microzoo-

plankton, Mollusc, Phytoplankton, Polychaete, Teleost, and Tunicate similar to that

done in the diet study of Stevens et al. (2011a) (Figure 2.5). While this summary

misses the temporal, spatial, age and size components of the predator-prey interac-

tions, it is useful to check overall diets. For example, warehou and smooth oreos eat

mostly salps (tunicates) as expected; Baxter’s dogfish eat mostly fish, crustaceans,

molluscs and tunicates as expected; and invertebrate herbivores (kina and paua) eat

mostly algae, although they should also eat some phytoplankton, which they do but

it is lost in the detail.
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Figure 2.5: Summary of the proportion of prey groups in the diets of species func-

tional groups (Tables 2.2 and 2.3) over model years 1900–2016 from the fished model

where the proportion is by mg N consumed.
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2.5 Calibration

Calibration of the model included ensuring stable biomass trajectories when apply-

ing no fishing; realistic realised diets; realistic growth and mortality (size-at-age and

proportions-at-age); and biomass decreasing with increasing trophic level following

the PREBAL (pre-balance) (Link, 2010) guidelines.

Biomass trajectories should reach a quasi-equilibrium when modelled with con-

stant oceanography and no fishing (Kaplan and Marshall, 2016). While oceanogra-

phy is not constant in our non-fishing model as it changes by year (Section 2.4.3),

most of the age-structured groups should still be fairly stable. This stability was

generally the case; all biomass trajectories remained within CVs of 20% over the

simulated 1900–2016 model period, except for invertebrate scavengers (commercial)

and seaperch. Invertebrate scavengers (commercial) are primarily scampi, and they

are likely responding to changes resulting from the oceanographic variables. Biomass

trajectories for all age-structured groups from the un-fished model are in Appendix

A. Seaperch biomass was trending downward initially, but they seem to have reached

an equilibrium by about 1950, with expected growth and mortality rates.

Atlantis simulates growth rates of age-structured groups as a function of con-

sumption. If growth is too slow, there may be insufficient food available, the feeding

search rate could be too low or handling time too high, and the reverse of these

when growth is too fast. Simulated growth rates of age-structured species groups

were assessed by comparing the simulated size-at-age with those expected based on

growth curve estimates from the literature (Table 2.6). The overlaid simulated and

‘observed’ figures were generally very similar (Appendix B). For each species group,

I estimated CVs required to satisfy the hypothesis that the modelled size-at-age were

not significantly different from the ‘observed’ with probability of 0.95. The required

CVs were all less than 30% except for epibenthic fish (deep and shallow), inverte-

brate herbivore (commercial), invertebrate scavenger (commercial), ling, rock lobster
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and small pelagic fishes. For all these groups, the first age class, and sometimes the

first few, were larger in size than expected. Deep epibenthic fish were larger than

expected at all age classes, but for all other groups the characteristic of larger than

expected size at age had been remedied by the time they were adults.

Natural mortality in the model consists of mortality intrinsic within the model

from predation, starvation, and light, oxygen or nutrient deprivation, and additional

forced mortality. The latter was applied for modelled species groups that would not

otherwise suffer sufficient natural mortality within the model, such as those that

have little known predation. Age-structured simulated natural mortality rates from

the stable base model were compared to estimates of M from the literature where

available (Table 2.6) by comparing the proportions-at-age. The overlaid simulated

and ‘observed’ figures were generally very similar (Appendix C), although rock lob-

ster and invertebrate herbivore commercial (primarily paua and kina) had slightly

more mortality in the model, and demersal piscivores, epibenthic fish small, pelagic

fish medium, and warehou had slightly less mortality.

I summarised biomass by trophic level for the base model as at 2016 on a log-

scale, and biomass reduced with increasing trophic level with a fitted slope of -1.6

(Figure 2.6). This slope was close to the recommended range of PREBAL of (-1.5,

-0.5). The biomass at trophic level 4 was slightly higher in this summary than in

the model, because the summary was based on adult trophic level and many of the

fish species are trophic level 4 as adults, but lower as juveniles. The use of adult

trophic levels resulted in the biomass of the juveniles for these fish adding to the

level 4 biomass whereas in the model they were perhaps functioning as a level 3.
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Figure 2.6: Biomass by trophic level with 95% confidence intervals from the

1900–2016 Chatham Rise Atlantis model simulation. The blue line is the fitted

linear model to the median biomasses by trophic level, the slope which is in blue.

The slopes of the linear models to fitted to the upper and lower 95% confidence

interval limits are given in brackets.

2.6 Sensitivity analyses

2.6.1 Oceanography

Oceanographic variables from a ROMS (Regional Oceanographic Modelling System)

model for years 1996–2004 were used to define temperature, salinity and flux (water

exchange). As my model spanned more than these years, I needed to recycle the

ROMS variables in some way. The purpose of this section has two parts: 1.) estab-

lishing confidence intervals for our model simulations with respect to oceanographic

variability; 2.) assessing the effect of repeating oceanographic variables from any one

year, and whether these take the model outside of the established confidence intervals.

To retain realistic within-year dynamics, the ROMS variables from each year were

kept together as a unit, and the years covered by the ROMS model were considered

the samples. I ran two sets of simulations: the first sampled ROMS years at random

with replacement for each model year simulated (bootstrapped the ROMS years) and
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repeated this for 50 model runs; the second repeated one ROMS year for all model

years simulated and did a separate model run for each of the nine ROMS years. In

both cases, the 2003 ROMS was repeated for a 35-year burn-in period, followed by

a 50 year simulation. The 2003 ROMS was chosen for the burn-in period as this

year had the closest sea temperatures to the means from all ROMS years (Figure

2.7). Bootstrapping the ROMS years was used to establish confidence intervals with

respect to between-year oceanographic variability. Repeating each ROMS year in

turn was testing the effect of multiple years being different to the other years in

some consistent way, such as cooler or warmer.

The established biomass confidence intervals were fairly narrow for most species

groups, with CVs < 10%. Of the exceptions, diatoms had the highest CV of 79%,

followed by carnivorous zooplankton (46%), labile detritus (23%), sediment bacteria

(13%), invertebrate scavengers (commercial) (12%), refractory detritus (12%), meso-

zooplankton (11%) and pelagic bacteria (11%). That these groups were found to be

most sensitive to oceanographic variability in the model is a plausible and sensible

result.

The years with cooler sea temperatures (1996, 1997, and 2004) when repeated for

50 years produced the most species groups that went above the established biomass

confidence intervals, with the on average warmer years (1999, 2000, and 2001) hav-

ing the most species groups that went below (Figure 2.8). These species groups af-

fected by warmer or cooler years had quite a bit of overlap, with meso-zooplankton,

meiobenthos, and black oreo most often affected. All of the species groups that went

lower in warm years also went higher in cool years. The reverse was not true; three

species groups (arrow squid, labile detritus, and ghost shark) went higher in the cool

years, but not lower in the warm years.

Years 2003 and 1998 were closest to the average sea temperatures and had the least

number of species groups outside the bootstrap confidence intervals. The Base Model

that repeated the ROMS from all nine years in order for the entire model simulation
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had 16 species groups that exceeded the bounds at some point (less than the warm

years) and six species groups that went below the bounds at some point (less than

the cool years) (Figure 2.8).
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Figure 2.7: Sea temperature (oC) from ROMS model outputs by day for each year

1996–2004 (dark blue line) and median sea temperature over all ROMS model years

1996–2004 (grey line).
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2.6.2 Connectivity and influence

Understanding which species groups are most influential or responsive in the model

is another test for realistic dynamics, and may be useful to help understand results

of scenarios explored using this model in the future. To do this, we need to per-

turb each species group in turn, then assess the responses of the other groups in the

system. This type of analysis is known as pulse perturbations (Pantus, 2007). For

each age-structured species group, I ran two simulations, one with a small additional

mortality and one larger; M(per year) + (0.1, 0.005). I assessed responses of the

groups with respect to the Base Model at the completion of 50-year simulations.

I analysed the ‘keystoneness’ and responsiveness of the groups based on biomasses

relative to the Base Model.

I calculated keystoneness using an adaption of the method in Libralato et al.

(2006). It is a measure of the effect the group has on the rest of the system (change

in biomass of the other species groups), that takes into account its proportion of the

total biomass. For example, if two species groups have the same effect, but one has

a large biomass and one a small biomass, the smaller would have a larger keystone-

ness. I used simulation outputs to estimate the total effect (ε) of each species group

(Equation 2.1) which used the change in biomass of each group relative to the Base

Model (Equation 2.2). The simulated change in biomasses (Sf,g) were used in place

of the mixed trophic impact values calculated from mass balanced models and used

by Libralato et al. (2006). As the additional mortality applied in my simulations

caused larger and smaller changes to the focus groups, I scaled the focus groups’

biomass proportions by their change in biomass (Sf,f in Equation 2.4). Hence, the

resulting keystoneness allowed for the effect changing each group had on the other

groups, the focus groups biomass as a proportion of the total, and the proportional

change in biomass of the focus group relative to the base model.
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εf =

√√√√ G∑
g 6=f

S2
f,g (2.1)

Sf,g =
Bf,g −Bb,g

Bb,g

(2.2)

κf = log(εf (1− pf )) (2.3)

pf =
Bb,f∑G
g=1Bb,g

× |Sf,f | (2.4)

εf , effect group f has on the other groups

Sf,g, proportional change in biomass of group g when group f was reduced, relative

to the Base Model

Bbg , Bbf , biomass in base model of group g, f

Bfg , biomass of group g in model with group f mortality increased

κf , keystoneness of group f

pf , biomass proportion of group f

There were four species groups that stood out as having more effect than the

other groups: orange roughy, hoki, pelagic fish small (primarily myctophids) and

spiny dogfish. These species groups remain the top four for keystoneness, but the

order changes due to the proportional biomasses (Figure 2.9).
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structured species groups, with numbers giving keystoneness ranking (1 is the most

influential using Equation 2.3). Colours indicate biomass proportion scaled by pro-

portional change in biomass (Equation 2.4).
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I calculated responsiveness in a similar way to keystoneness, but from the per-

spective of the response group (Equation 2.5).

Rg =

√√√√ G∑
f 6=g

(
m2
f,g × pf

)
(2.5)

Rg responsiveness of group g to increased mortality in all other groups

The most responsive group was pelagic fish small (primarily myctophids), fol-

lowed by smooth oreo, invertebrate scavengers commercial (primary scampi), and

pelagic fish medium (primarily barracouta) (Figure 2.10). The pelagic fish small

species group ranked high for keystoneness and responsiveness, and so may be most

important and influential in scenarios explored with this model.
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Figure 2.10: Responsiveness of age-structured species groups after 50 years of per-

turbation, as calculated in Equation 2.5.
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2.7 Fishing

Most of the fisheries on the Chatham Rise became established after the mid-1970s,

with the exception of the blue cod (Parapercis colias) (reef fish species group) fishery

which extends back to the early 1900s. Individual catch histories are in Appendix D

and Figure 2.11 presents a summary of catches from the Chatham Rise with the top

six species by total catch shown in colour and the others combined into an ’other’

category. Hoki had the largest total catch, followed by orange roughy, smooth oreo,

ling, black oreo, then barracouta. Orange roughy comprised the largest individual

fishery in the late-1970s–early-1990s after which it declined markedly; from the 1990s

hoki was the dominant fishery.

The fisheries were modelled with six fleets, defined in Table 2.7. The demersal line

fishery was dominant until mid–late 1960s when the demersal trawl fishery became

dominant, catching approximately 70 000 tonnes per year (Figure 2.12). The histor-

ical catches from these fleets were forced in the model using spatially and temporally

resolved inputs.
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Figure 2.11: Tonnes caught from Chatham Rise 1900–2014 for all species with top

six species groups by total catch coloured separately.
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Table 2.7: Fishing fleets defined for Chatham Rise Atlantis model. Num-

ber of species groups is the number of species groups that have been

caught by each fishing fleet; total catch is the total tonnes caught by

each fishing fleet from 1900–2014.

Code Description Number of species groups Total catch (t)

trawlDEM trawl on demersals and mesopelagics 33 2 850 000

lineDEM line on demersals and mesopelagics 16 1 200 000

snetDEM setnet on demersals and sharks 6 45 700

potIVS potting on lobster and blue cod 4 241 000

jigCEP jig on squid 1 1 700

diveIVH diving on paua and kina 2 158 000
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Figure 2.12: Total tonnes caught by fishing fleet from the Chatham Rise 1900–2014.

Descriptions for the fleet codes are in Table 2.7.
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2.7.1 Comparison with fisheries CPUE and Stock Assess-

ment indices

CRAM model estimates of biomass trends for key fisheries species were compared

to CPUE and/or stock assessment indices where these were available. The Atlantis

model captures the main biomass trends of hoki in response to historical fishing (Fig-

ure 2.13). Hoki are the largest fishery on the Chatham Rise, and has one of the most

complex stock assessment models in New Zealand, with multiple areas, intricately

defined migration, and annual recruitment deviates (McKenzie, 2016). The Atlantis

model results are very similar to the stock assessment model results for hake and ling,

and although the stock assessment models for these are not as complicated as hoki,

they still have between-year recruitment deviates (Horn, 2013; McGregor, 2015) that

are not present in the Atlantis model. The species group ‘Invertebrate scavengers

(commercial)’ is primarily scampi, and the matched increase in the late 1990s–early

2000s is particularly pleasing as catches were fairly constant over this time (Tuck,

2016), so the increase is coming from dynamics within the model. Orange roughy

is a close match to the stock assessment, even though this stock assessment model

also has between-year recruitment deviates (Dunn and Doonan, ress) that are not in

the Atlantis model. The magnitude of the stock assessment biomasses (unscaled) are

compared to the CRAM biomasses in the inset boxplots in Figure 2.13. Hoki, hake,

and invertebrate scavengers (commercial) were all close to one, indicating matched

magnitudes between the stock assessment and CRAM biomasses. Ling were generally

less than one, indicating the CRAM biomasses were larger than the stock assessment

biomasses. Orange roughy were greater than one, indicating CRAM biomasses were

smaller than the stock assessment biomasses.
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Figure 2.13: CRAM estimated spawning stock biomass (SSB) (black solid), stock

assessment estimated SSB (red dot-dash), and CPUE (blue dash) where available

for the hake (A), hoki (B), invertebrate scavengers (commercial) (primarily scampi)

(C), ling (D), and orange roughy (E) . CPUE and stock assessment SSB were rescaled

to match the mean of the CRAM estimated SSB. Inset boxplots show the range of

values for the corresponding unscaled stock assessment SSB divided by the CRAM

estimated SSB.
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2.8 Skill assessment

Quantitative skill assessments have become popular as part of assessing the per-

formance of Atlantis models (Sturludottir et al., 2018; Ortega-Cisneros et al., 2017;

Olsen et al., 2016). A quantitative skill assessment was carried out, comparing model

biomass estimates with those from trawl surveys where available (O’Driscoll et al.,

2011; Stevens et al., 2017). The trawl surveys target hoki, hake and ling, and as

such the biomass indices are most reliable for these three species. The metrics se-

lected were three of those suggested in Olsen et al. (2016) and Stow et al. (2009):

Modelling efficiency (MEF) used to asses model predictions relative to the mean of

the observations (Equation 2.6); Reliability index (RI) gives the average factor the

model predictions differ from observations (Equation 2.7); Pearson’s correlation (r)

assesses whether model predictions are correlated with observations (Equation 2.8).

The full set of CRAM biomass trajectories with historic catches and trawl survey

indices are in Appendix D.

MEF =

∑Y
y=1

(
Oy − Ō

)2 −∑Y
y=1 (Oy − Py)2∑Y

y=1

(
Oy − Ō

)2 (2.6)

RI = exp

√√√√ 1

Y

Y∑
y=1

(
log

Oy

Py

)2

(2.7)

r =

∑Y
y=1

(
Oy − Ō

) (
Py − P̄

)√∑Y
y=1

(
Oy − Ō

)2∑Y
y=1

(
Py − P̄

)2 (2.8)

where

Y is the number of years for which there are observations,

Oy is the observed biomass in year y,

Py is the model biomass in year y
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Each skill assessment metric was calculated using single point estimates from the

trawl survey, and variants on RI and MEF were calculated allowing for the trawl

survey estimated 95% confidence intervals. Both variants only penalised the skill

metric for terms outside of the 95% confidence intervals of the trawl survey.

An MEF close to one indicates a close match between model predictions and ob-

servations, with zero indicating the mean of the observations is as close as the model

predictions, and a negative value indicating the model predictions fit the observa-

tions worse than the mean of the observations. When the observed values are roughly

stationary about the mean, as was the case for Ling, it is difficult for the predictions

to improve on the mean of the observations. Ling stands out at approximately -2.5

when compared to the trawl survey point estimates, but as all the predicted points

for ling sit within the 95% confidence interval, it receives a score of one when taking

the bounds into account (Figure 2.14). Benthic invertivores (shallow) and lookdown

dory are slightly negative with respect to the trawl survey point estimates.

A reliability index (RI) of one indicates the model predictions are exactly equal

to the observations. RI greater than one (it cannot be less than one) indicates the

factor by which observations are on average different to predictions. Since log(O/P )

is equal to −log(P/O) and the RI squares these terms, an observation that is, for

example, half the prediction will contribute exactly the same to this index as an

observation that is twice a prediction. Hence, a RI of 2 indicates the observations

differ from the predictions on average by 2, but these could be generally twice as

big or half as big, or both. All groups had RIs between 1 and 1.5 (Figure 2.14),

indicating the observations are at worse on average 1.5× the predictions or (2/3)×

the predictions.

A Pearson’s correlation close to one indicates trends in the predictions vary with

those in the observations, close to zero indicates there is little relationship between

the trends, and negative indicates the predicted trends tend to be opposite from
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the observed trends. Hake and hoki had good correlation, close to 0.8. The other

groups were either close to zero or negative (Figure 2.14). These low correlations

were neither surprising nor concerning as the trawl survey estimates for these groups

tend to have high variability and high CVs which are not taken into account here.

The trawl survey design is optimised for hoki and hake, and so there are tighter CVs

on these trawl survey estimates.
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Figure 2.14: Skill assessment metrics MEF (A), RI (B) and Pearson’s correlation

(C) for CRAM species groups that have trawl survey indices for abundance. Metric

definitions in Equations 2.6–2.8. The black bars are the skill metrics with respect to

single point estimates from the trawl survey. The orange bars are the skill metrics

with respect to the trawl survey 95% confidence intervals. The grey horizontal lines

in the MEF and RI figures mark the value for a perfect fit, which is 1 for both of

these.

2.9 Bringing it together

I qualitatively graded the species groups by how well they performed in the model

and how well informed they were by data, information and other research (referred

to as ‘informance’). I compared these gradings with the keystone and responsiveness

from Section 2.6.2. Figure 2.15 gives a visual guide for how well the most influen-
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tial or responsive species groups did for informance and performance. While poor

knowledge may not be concerning if paired with high responsiveness providing key-

stoneness is low (since the effects may be more limited to this single species group),

the triple of highly responsive, a keystone species, and poorly defined may need con-

sideration for future scenarios.

The groups that were highest for keystoneness and highest for informance and

performance were hoki, orange roughy, benthic fish shallow (primarily oblique banded

rattail), and hake. These species groups all have abundance indices available, biolog-

ical parameters, diet information, and all perform well with respect to these in the

model. Hoki, orange roughy and hake (groups 1, 2, and 10 for keystoneness) have

full stock assessments, which the model matches well. These species groups are im-

portant groups for fisheries and will likely feature strongly in any fisheries scenarios

explored with this model.

Species groups Pelagic fish small (primarily myctophids) and Pelagic fish medium

(primarily barracouta) were both high with respect to keystoneness and responsive-

ness, and while both were fairly well defined, these had some areas of poor model

performance and do not have abundance indices to compare. The estimated length

at age 1 from CRAM for small pelagic fish is larger than expected. This size differ-

ence may be due to the size of recruits being larger than they should be, or the fish

eating (and hence growing) more than they should in this first year. These age-1’s

are not so big that the effect transfers to the age-2’s, as the age-2’s are the correct

size (Appendix B), so this is probably not influential on the model overall. Medium

pelagics have slightly less natural mortality in the model than they should (Appendix

C), and may be less responsive to fishing mortality as a result. Because this species

group are 7th with respect to keystoneness and high for responsiveness, they could

affect scenario outcomes and are worth considering when analysing results. Medium

pelagics make up approximately 1% of the age-structured biomass.

77



Spiny dogfish were third for keystoneness, and low for responsiveness. This species

group fit well to mortality and growth curves, but we do not have an index of abun-

dance with which to compare the model simulated biomass in response to historical

fishing. Spiny dogfish make up approximately 5% of the age-structured biomass.

Epibenthic fish shallow (primarily common roughy) were 8th for keystoneness,

but low for responsiveness. This species group compare reasonably well to the trawl

survey abundance index (Appendix D), but have less natural mortality in the model

than they should. Epibenthic fish shallow make up approximately 1% of the age-

structured biomass.

Species groups ‘Seabird’ and ‘Cetacean other’ are both poorly defined and rank

within the top 10 for keystoneness, although lower for responsiveness. These species

groups are both composite groups, with Seabird consisting of all sea and shore birds,

and Cetacean other consisting primarily of sperm whales, pilot whales and dolphins

(Table 2.2). Scenarios explored in the future may benefit from sensitivity analysis

with respect to these two groups to understand their effect on the outcomes, or per-

haps some more work to better define them.
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Figure 2.15: Keystoneness (x-axis) and responsiveness (y-axis) with numbers showing

keystoneness ranking and colours how well each species group was informed and/or

performed in the model (legend).
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2.10 Discussion

Ecosystem-based fisheries management is most likely to be achievable with the best

information and modelling available (Heymans et al., 2010). The Chatham Rise At-

lantis model presented here uses the wealth of data and information available for the

Chatham Rise and its fisheries, and one of the best ecosystem models for exploring

‘what-if’ type questions (Plagányi, 2007) and ecosystem-level management strategy

evaluation (Fulton et al., 2014). This comprehensive ecosystem model with realistic

population dynamics and flow-on effects has the potential to be a valuable tool for

understanding potential system-wide responses to fisheries management strategies in

one of New Zealand’s largest fishing grounds Ministry for Primary Industries (2019).

Some key aspects of this model performed convincingly well, such as responses

of key fisheries species under fishing, realised diets, and the keystone rankings. That

the key fisheries species results were very similar to the corresponding stock assess-

ment results gives confidence that the model can respond to fishing in a way that is

realistic, and that the ecosystem effects relative to these species are realistic. The

stock assessment models fit data such as proportions at length and biomass indices

with the help of between-year recruitment deviates, which are not present in the

Chatham Rise Atlantis model. Conversely, the stock assessment models do not have

time-varying natural mortality or growth rates, which are present in the Chatham

Rise Atlantis model. As such, both modelling approaches achieve similar results

but in very different ways. It is possible that the recruitment deviates in the stock

assessments are proxies for the other ecosystem dynamics that the Atlantis model

is able to capture (or vice versa). However, the Atlantis model is too complex to

fit comprehensively to data and is entirely deterministic. Hence, the Chatham Rise

Atlantis model’s ability to achieve the same results as the stock assessment models,

that were fitted to data, is the best outcome.

Realistic diets and the influence of species groups on the rest of the ecosystem
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are key to the model’s potential to explore and gain understanding of flow-on and

cascading effects. It may be possible, for example, for a species to have realistic

growth rates, but it is not very useful in an ecosystem modelling context if they

do so by eating the wrong things. While they might respond realistically to direct

pressure such as fishing, the flow-on effects would not likely reflect reality. Due to

the complex nature of the Atlantis model, the summary of realised diets, together

with analysing the keystoneness and responsiveness, are appropriate for determining

whether species interactions are generally realistic, at a level of complexity that can

be comprehensible. The Chatham Rise Atlantis model has realistic diet summaries

for all species groups, and the top keystone species groups were all those that made

sense to NIWA biologists Peter Horn and Matthew Dunn. These positives are not

to say the model could not benefit from further future work examining the realised

diets at a finer scale - spatially, temporally, and by age-class.

It is worth noting that the trawl survey that provides much of our data particu-

larly for diets, is a summer survey and always carried out in January (Stevens et al.,

2017). Hence, if there are shifts in diet through out the year, these are unlikely

to be known. Within-year shifts in diet are something we could explore with this

model for plausibility. For example, given timing and location of known spawning

events, we may be able to explore hypotheses that could connect these events to prey

abundance and distribution, and predator behavior.

Exploring the models sensitivity to initial conditions, while not an insignificant

amount of work, will be worth doing to add to our understanding of the models

stability and persistence of dynamics. Initialisation uncertainty has not, to the best

of our knowledge, been done for Atlantis or OSMOSE models, likely due to the

enormous complexity and computing resources required for the task. Sensitivities

to initial conditions have been explored using Ecopath (Essington, 2007) and Eco-

path with Ecosim (EwE) (Steenbeek et al., 2018). We are in the early stages of

developing an EwE (Ecopath with Ecosim) verison of the Chatham Rise Atlantis
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model at NIWA, and it may be more feasible to explore ranges of initial conditions

within the EwE framework, with the possibility of then adapting the analyses to the

Atlantis model. Sensitivities of high-ranking keystone species, such as spiny dogfish,

would be simpler to implement and may produce greater understanding of the model.

While there are some knowledge gaps, I have identified those most likely to influ-

ence scenario outcomes through analysing how influential (keystoneness) and influ-

enced (responsiveness) the species groups are on and to each other. The composite

groups ‘cetacean other’ and ‘seabirds’ were highly influential while poorly specified.

Two solutions would be to a.) split these groups into smaller groups that can be

better specified; b.) run sensitivities with respect to these groups when exploring

scenarios using this model. As option a.) would require more data than we currently

have available, option b.) is the only currently viable option.

The oceanographic variables based on years 1996–2004 were found to be influ-

ential on the simulated biomasses of the species groups, and the order they were

repeated changed the results, with CVs of up to nearly 80%. This influence suggests

scenarios carried out using this model need to consider oceanographic variability in

simulated results, using multiple runs with different oceanographic years repeated or

changing the order. This influence from the oceanographic variables may be true for

many ecosystem models, but I am unaware of similar analyses completed elsewhere.

Further work understanding which species groups and/or spatial areas of the model

are most affected by oceanographic variability might be helpful in understanding

potential impacts on scenario results.

As Atlantis is spatially resolved, there is scope for a greater emphasis on the

effects of features such as habitats, depth, and oceanographic features on responses

to fisheries management scenarios. Kaplan et al. (2012) explored spatially resolved

fisheries management scenarios using an Atlantis model of the California Current,

including areas closed to bottom-contact fishing gear, and varying spatial manage-
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ment specification relating to Marine Protected Areas (MPAs). In the Chatham

Rise ecosystem, it may be that repeating cooler or warmer years such as carried out

in this study could influence the spatial distribution of some species. These effects

could in turn influence the range of plausible responses to fisheries management sce-

narios that have a spatial aspect, such as MPAs, the effects of different fishing gear,

serial depletion of fishing grounds, and potential effects on by-catch species that may

overlap spatially with species that are targeted by fisheries.

The Chatham Rise Atlantis model will most likely to initially be used for exploring

scenarios that relate to fisheries. Fishing scenarios currently of interest include fishing

at current levels, or at current limits; exploring historical prey shifts in response to

fishing; effects of gear selectivity; and effects of area closures. There is interest from

Fisheries New Zealand in these scenarios.

2.11 Conclusions

The analyses presented in this chapter are intended to set the stage for an understand-

ing of how the model is specified and how it behaves, but it is not exhaustive. The

model produces similar results to fisheries stock assessment models for key fisheries

species, and the population dynamics and system interactions are realistic. Confi-

dence intervals based on bootstrapping oceanographic variables were fairly narrow

for most species groups, with diatoms, carnivorous zooplankton and labile detritus

having the largest CVs. The species groups with the highest keystoneness were or-

ange roughy, hoki, pelagic fish small (primarily myctophids) and spiny dogfish. The

model components that have knowledge gaps and are most likely to influence model

results were oceanographic variables, and the aggregate species groups ‘seabird’ and

‘cetacean other’. I recommend applications of the model include alternatives that

vary these components. It is expected that any future use of the model will add first

to our understanding of the model, and then possibly to our understanding of the

ecosystem.
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Chapter 3

Spawning Stock Recruitment

creates misleading dynamics under

predation release in ecosystem and

multi-species models

The following chapter is sourced from the open-source peer-reviewed article: McGre-

gor, V. L., Fulton, E. A., Dunn, M. R., 2019a. Spawning stock recruitment creates

misleading dynamics under predation release in ecosystem and multi-species models.

PeerJ 7, e7308. DOI 10.7717/peerj.7308

PeerJ is an open access publisher, and all content is published under a CC BY license

(https://creativecommons.org/licenses/by/4.0/).

3.1 Abstract

Ecosystem and multi-species models are used to understand ecosystem-wide effects

of fishing, such as population expansion due to predation release, and further cas-

cading effects. Many of these models are based on fisheries models that focus on

a single, depleted population, and may not always behave as expected in a multi-
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species context. The Spawning Stock Recruitment relationship, a curve linking the

number of juvenile fish to the existing adult biomass, can produce dynamics that

are counter-intuitive and change scenario outcomes. I analysed the Beverton-Holt

Spawning Stock Recruitment curve and found a population with low resilience when

depleted becomes very productive under persistent predation release. To avoid im-

plausible increases in biomass, I propose limiting recruitment to its unfished level.

This modification allows for specification of resilience when a population is depleted,

without sudden and excessive increase when the population expands. I demonstrate

this dynamic and solution within an end-to-end ecosystem model, focusing on myc-

tophids under fishing-induced predation release. I present one possible solution, but

the specification of stock-recruitment models should continue to be a topic of discus-

sion amongst multi-species and ecosystem modellers and empiricists going forward.

3.2 Introduction

The advent of multi-species and ecosystem models is beginning to extend and aug-

ment the fisheries management advice provided by single-species population models,

as part of a global move towards ecosystem-based fisheries management (Pikitch

et al., 2004, Skern-Mauritzen et al., 2016, Collie et al., 2014). A variety of ecosystem

modelling approaches are now available (Plagányi, 2007), and whilst some are highly

complex full-ecosystem (end-to-end) models, all have numerous simplifying assump-

tions to remain tractable, and many include components for population dynamics

that were developed for single-species population models for fisheries. Examples of

end-to-end models suitable for addressing broad questions include Atlantis (Fulton

et al., 2011), EwE (Ecopath with Ecosim) (Christensen and Walters, 2004, Pauly

et al., 2000), and GADGET (Globally Applicable Disaggregated General Ecosystem

Toolbox) (Begley and Howell, 2004), and simpler models include multispecies size-

based models (Blanchard et al., 2014, Pope et al., 2006) and Models of Intermediate
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Complexity for Ecosystems (MICE) (e.g., Plagányi et al., 2014 Doonan et al., 2016),

the latter of which are used for providing more tactical advice.

The model relating a population’s Spawning Stock Biomass (SSB) to subsequent

recruitment, the Spawning Stock Recruitment (SSR) curve, is one component that

has transferred from fisheries population models into ecosystem and multispecies

models. Spawning stock is usually measured as biomass by weight, and recruitment

as numbers at age 1, such that the relationship describes the number of individuals

expected in recruitment for a given mature biomass. The Beverton-Holt (Beverton

and Holt, 1957) is the most commonly used SSR curve (Shertzer and Conn, 2012),

which assumes that recruitment increases with spawning stock size to an asymptote,

and therefore it does implicitly assume some density-dependent ecosystem effect, in-

cluding competition for resources, although the form of this effect is non-specific.

While it is possible for some ecosystem models to model the larval stage in sufficient

detail such that a SSR relationship is not assumed but is an emergent property (e.g.

OSMOSE; Shin and Cury, 2004), most ecosystem and multispecies models do not

include sufficient detail for this, and hence a SSR curve is still assumed.

The Beverton-Holt SSR (Equation 3.1) is defined such that when the SSB is at

its unfished level (B0), the number of recruits produced is R0. These parameters are

not the upper limit for biomass or recruitment as these are also influenced by natural

mortality. The asymptote of the Beverton-Holt SSR curve is greater than R0, hence

if the SSB exceeds B0 as it may when mortality is low, recruitment will exceed R0.

Once recruitment joins a population, the amount retained for future years, and hence

contributing to the SSB, will also be influenced by natural mortality.

R =
αS

β + S
(3.1)

where

R is the number of recruits
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S is the SSB

When modelling a population with low resilience, the curve can be specified

such that the initial part of the curve does not increase as steeply, thus when the

population is depleted, it will take longer to recover. The resilience aspect will not

affect the unfished state of the population providing the point (B0, R0) remains the

same. In fisheries modelling, resilience at low biomass levels is defined using the

term steepness (h), which is the proportion of R0 recruited when SSB is 20% B0

(Mace and Doonan, 1988, Francis, 1992, Haddon, 2001, Lee et al., 2012). From this

definition, Haddon (2001) showed the derivation of α and β in terms of h, R0 and

B0 (Equations 3.2 and 3.3).

α =
4hR0

5h− 1
(3.2)

β =
B0(1− h)

5h− 1
(3.3)

The initial slope of the curve is steeper when defined with a high h and shallower

when defined with a low h. To preserve the populations unfished state, the curve

passes through (B0, R0) for all values of h (Figure 3.1). When S is greater than B0,

R will exceed R0 (Equations 3.4–3.11). Both the preservation of the unfished state

and the specification of resilience when the population is depleted are important as-

pects of the SSR for fisheries modelling whether in a multi- or single-species context.

Unfortunately, it is these two aspects that lead to counter-intuitive model behaviour

when a population expands beyond its unfished state. As the curve is defined to

pass through the point (B0, R0), a slow initial increase results in a steeper increase

near (B0, R0). Hence, when a populations biomass exceeds its unfished level (B0),

the effect of h reverses and a population defined to have low resilience when depleted

will increase more rapidly as it passes B0. Changing the initial slope of the curve

while keeping the recruitment asymptote unchanged, would require the virgin state

of the population to change, and hence I have not explored it in this chapter.
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R =

(
4hR0S

5h− 1

)
/

(
B0(1− h)

5h− 1
+ S

)
(Equations 3.2 & 3.3 into 3.1) (3.4)

=
4hR0S

B0(1− h) + S(5h− 1)
(3.5)

R

R0

=
4hS

B0(1− h) + S(5h− 1)
(3.6)

R > R0 iff
R

R0

> 1 (3.7)

1 <
4hS

B0(1− h) + S(5h− 1)
(3.8)

B0(1− h) + S(5h− 1) < 4hS (3.9)

B0(1− h) < S(1− h) (3.10)

B0 < S (3.11)
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Figure 3.1: Beverton-Holt SSR curve with h = 0.4 (A, blue line) and h = 0.8 (B,

green line), with B0 and R0 (black dot-dashed lines) and 20%B0 and R0.2 (grey

dot-dashed lines).

The switching of the steepness effect has not been such a concern for fisheries

assessment models due to stochasticity, statistical fitting to data, and depleted pop-

ulations. When used in a stochastic population model for fisheries assessments, the

SSR curve is combined with recruitment deviates that allow for between year variabil-

ity. Both the deviates and unfished recruitment (R0) are estimated using statistical

methods to best fit data, hence reducing the concern of implausible recruitment

dynamics (e.g. Bull et al. (2012), Fournier et al. (1998), Methot Jr and Wetzel
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(2013)). When used for projections, the situation is similar to that in multi-species

and ecosystem models, except the population modelled is likely in a depleted state

due to fishing and unlikely to exceed its unfished state during the model projection,

typically only around five years.

Understanding the impacts of fishing on ecosystems requires careful specification

relating to flow-on or cascading effects as it is not just the direct effects on a sin-

gle exploited species that we are capturing. Inherent in ecosystem and multispecies

models is time-varying natural mortality, the sources of which may include preda-

tion, disease or starvation (e.g. Fulton et al., 2011, Christensen and Walters, 2004,

Pauly et al., 2000, Begley and Howell, 2004). When natural mortality decreases such

as from predation release resulting from fishing pressure, a populations biomass may

increase beyond its unfished level (B0). As I demonstrate here, it is possible for

a population’s biomass to increase to an unrealistic amount in response to fishing

pressure on its’ predators, and without careful inspection of the SSR curve, the cause

of this could remain a mystery. Worse still, such increases could be accepted as valid

responses and erroneously affect ecosystem indicators giving misleading results to

fisheries scenarios.

A simple solution to large population increases under low steepness may be to

cap recruitment at R0, such that the SSR relationship is the same for all steepness

values when the population exceeds its virgin level. There may be other solutions,

perhaps involving damping, switches or smoothers, but it seems a simple solution is

a good place to start. There may also be other solutions using the Ricker SSR model

(Ricker, 1954), although this model brings with it different assumptions around the

SSR relationship. Similar to the Beverton-Holt curve, the Ricker model can be pa-

rameterised in terms of steepness, and the effect of steepness switches when biomass

increases beyond B0, but it also has additional complexity due to all curves going

below R0 when biomass is greater than B0. It is the simple solution of capping re-

cruitment at R0 using the Beverton-Holt SSR curve, that is explored in this study.
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While it may not be the best solution for all situations—there may be populations

that require recruitment to vary when a population is larger than its virgin level, the

simplicity of this solution makes exploration of its application clearer.

One of the most abundant and widespread groups of fish this SSR dynamic could

affect in ecosystem or multi-species modelling are myctophids (also called lantern-

fishes). Myctophids make up roughly 65% of all deep-sea fish biomass in the oceans

(Paxton et al., 1998), are a key prey of many commercially important fisheries species

globally (Irigoien et al. (2014), Koz (1995), Clark (1985), Collins et al. (2008), Young

et al. (2010)) and have fairly low fecundity rates (Catul et al., 2011). These school-

ing forage fish are critical to a healthy marine ecosystem both in terms of energy

flows within the food web, and nutrient recycling as they act as a biological pump

through their feeding-motivated daily vertical migrations (Hernández-León et al.,

2010). As such, myctophids may be influential in ecosystem indicators used to eval-

uate ecosystem-wide effects of fisheries scenarios within ecosystem and multispecies

models.

In this chapter, I first explore the Beverton-Holt SSR curve under varying natural

mortality with different steepness values using a simple population model. I then

present fishing-induced predation release of myctophids using an end-to-end ecosys-

tem model of the Chatham Rise, New Zealand (McGregor et al., 2019b). I compare

resulting biomass trajectories from the end-to-end ecosystem model of myctophids

under predation release using different steepness values, with and without capping

recruitment. In addition, I calculate key ecological indicators from fishing scenarios

with and without capping recruitment.
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3.3 Simple population model with varying natural

mortality

I explored the effect of Beverton-Holt SSR on population abundance with time-

varying mortality and different steepness values by simulating a simple population

(Equation 3.12). I used case study values of B0 = 600 tonnes, R0 = 800 thou-

sand individuals and ran 13 simulations, each with a different h from 0.35–0.95.

Base instantaneous natural mortality rate (M) was calculated to produce a constant

population where the number of deaths match the number of recruits and held the

population at B0 (Equation 3.13), with N0 the product of B0 and the average weight

of spawning stock individuals (set at 500 grams). Time-varying mortality was con-

structed using the sine curve to include a period of high mortality followed by a

period of low mortality, and with random variability added using random variable

X ∼ N(0, 0.005) (Equation 3.14 and Figure 3.2).

Nt = (Nt−1 +Rt−1)e
−M (3.12)

where

Nt is the abundance in numbers at time t

Rt is the recruitment in numbers at time t

M = − ln

(
N0

N0 +R0

)
(3.13)

Mt = 0.8M × sin

(
πt

100

)
+M +X (3.14)

where t is the timestep (year), M is the base M ,

X ∼ N(0, 0.005)
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Figure 3.2: Time-varying mortality (M) used for simple population model. The hori-

zontal dashed line is the base mortality (base M) that would result in the population

staying at B0.

The effect of h on the simulated SSB was as expected when M was high and

the population depleted; the effect was reversed when M was low and the popula-

tion increased beyond B0 (Figure 3.3). SSB trajectories were lower when SSR was

parameterised with low steepness (h) during the period of high mortality, as is the

intended effect of steepness —a population with low h is less resilient and if depleted

it will take longer to recover. SSB trajectories during the period of low mortality

were higher when SSR was parameterised with low h, which is not the intended effect

of steepness. Thus, a population deemed to have the least resilience when depleted

is the most productive when mortality is reduced. The SSR curve coloured to reflect

different values of h shows the cause; recruitment is greater for a given SSB when

SSB> B0 (Figure 3.3).

I applied a cap to recruitment at R0 and re-simulated the same simple population

for each steepness value (Figure 3.4). The resulting biomass trajectories were iden-

tical to the un-capped version when mortality was high and SSB< B0 because this

part was not affected by the recruitment cap. During the period of low mortality,

the trajectories almost converged to the same curve, rather than increasing further

when using lower steepness. Hence, when applying a cap of R0 to recruitment, the

steepness value defined to reflect resilience when the population is depleted will be
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inconsequential when the population increases beyond B0.
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Figure 3.3: Beverton-Holt SSR curves (A) and resulting biomass trajectories (B)

from a simple population model using different steepness, h, ranging from 0.35 –0.95

and time-varying mortality as in Figure 3.2. B0 shown with vertical red dash line

(A) and horizontal red dashed line (B); R0 shown with horizontal red dashed line

(A).
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Figure 3.4: Beverton-Holt SSR curves with recruitment capped at R0 (left) and

resulting biomass trajectories (right) from a simple population model using different

steepness, h, ranging from 0.35 –0.95 and time-varying mortality as in Figure 3.2. B0

shown with vertical red dash line (A) and horizontal red dashed line (B); R0 shown

with horizontal red dashed line (A).
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3.4 Fishing induced predation release

I tested the Beverton-Holt SSR dynamics within an end-to-end ecosystem model of

the Chatham Rise, New Zealand, using Atlantis (McGregor et al., 2019b; Fulton

et al., 2011). The Chatham Rise Atlantis model can be run with forced catches, al-

lowing me to analyse the resulting model estimates of biomass. This model consists of

55 species functional groups, 37 of which were modelled with age-structure, and the

remainder as biomass pools. Myctophids (modelled with age-structure) were selected

as the case-study species group for recruitment dynamics as they are an abundant

prey species of many key fisheries species in this area, including hoki (Macruronus

novaezelandiae), black oreo (Allocyttus niger), orange roughy (Hoplostethus atlanti-

cus), and medium pelagic fish (primarily barracouta (Thyrsites atun)). Myctophids

are also an abundant prey species globally (Irigoien et al., 2014), and have fairly

low fecundity (Catul et al., 2011) suggesting resilience of their population when it is

depleted to low levels may be low.

Catch histories for the Chatham Rise Atlantis Model are available as supple-

mentary materials to McGregor et al. (2019b). Species with stock assessments have

catch histories that were reconstructed under the review of technical fisheries working

groups, including hoki (McKenzie, 2016), orange roughy (Dunn and Doonan, ress),

hake (Merluccius australis) (Horn, 2013) and ling (Genypterus blacodes) (McGre-

gor and Horn, 2015). Catch histories for species without a stock assessment were

reconstructed using commercial catch and effort data from the ’Warehou’ database

administered by Fisheries New Zealand (1989–present day), the Fisheries Statistics

Unit (FSU) database administered by NIWA (1974–1989), and from Annual Reports

on Fisheries (1900–1973). While the reliability of these data varies across species

and time, and the quality of data reporting likely improved with the introduction of

New Zealand’s Quota Management System (QMS) in 1986, these catch histories are

a sufficiently accurate representation both in trend and magnitude.
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I simulated the Chatham Rise Atlantis model with alternate SSR specification

for myctophids consisting of all combinations of steepness h ∈ {0.5, 0.6, 0.7, 0.8, 0.9}

and recruitment capped at R0 or not —10 model simulations in total. From the mid-

1970s when many of the Chatham Rise fisheries became established (Figure 3.5), the

effects of predation release on myctophids in the model become apparent (Figure

3.6). Their biomass increased beyond B0 and increased more with lower recruitment

steepness (h), with low h producing the greatest resulting biomass. When I capped

recruitment at R0, the biomass was still able to increase as we may expect under pre-

dation release, but the increase was the same regardless of h. This modified dynamic

allows for the specification of a species that is less resilient when depleted without

it increasing more rapidly when released. The effect on the myctophid population

dynamics was similar to the low-mortality response in the simple population model

of the previous section in which I controlled time-varying natural mortality. The At-

lantis model simulations gave a brief period of high mortality (near 1980), and this

only affected the biomass when steepness was lowest and recruitment was capped at

R0 (yellow line, right plot, Figure 3.6). When recruitment was not capped, the low

steepness simulation kept biomass above B0 when the capped version was not able

to do this.

Steepness was converted to α and β for each simulation, with the modified α

and β used as parameters for the model. The cap was implemented within the At-

lantis source code in the Get Recruits function, within the SSB BevHolt recruit case

(predcase 19 in the Atlantis parameter input file). I calculated R0 and B0 using the

initial conditions of the model, but assuming that the initial conditions were actually

slightly below B0 (I took B0 = S/0.9). Then, if any recruitment R exceeded R0 I

overwrote it with R0. It would have been more efficient to calculate and store R0 on

model initialisation, but for the purpose of this work it was convenient to have all

the code modified within one function.
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total catch coloured separately (McGregor et al., 2019b).
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Figure 3.6: Hindcast biomass trajectory for the myctophids species functional group

with different recruitment steepness (h) and no cap on recruitment (left) and with

recruitment capped at R0 (right).

3.5 Ecological indicators

I evaluated a range of ecological indicators intended to assess the effect of fishing on an

ecosystem and tested for sensitivity in the response to recruitment steepness of myc-

tophids and whether their recruitment was capped at R0. To do these tests, I used

the outputs from the Chatham Rise Atlantis model, including estimated biomass,

numbers-at-age, and size-at-age. The ecological indicators selected (descriptions and
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references in Table 3.1) were those that have gained traction in the literature due

to ease of application and usefulness, and which were also suited to the Chatham

Rise (Tuck et al., 2009). Kempton’s species diversity index measures the number of

species relative to the total biomass. I used the modification of Kempton’s species

diversity index by Ainsworth and Pitcher (2006) which uses species groups rather

than individual species and the 10th percentiles to eliminate any very small or large

species groups in terms of biomass (Equation 3.15). All indicators were calculated for

the hindcast period (1900–2016) for six models consisting of three steepness values

(0.5, 0.7, 0.9) and either capped or not capped recruitment for myctophids, and for

projections using all of these models under three catch scenarios (zero catch, status

quo catch, half catch), giving 18 projections. Status quo catch was taken to be the

average from the most recent five years (2012–2016) for each fished species group,

and half catch was half the status quo catch.

Table 3.1: Ecological indicators evaluated for hindcast simulations and

catch scenario projections, with key references for each indicator.

Indicator References

Kempton’s species diversity index Ainsworth and Pitcher (2006)

Mean trophic level Pauly and Watson (2005), Shin et al. (2018)

Biomass/landings Shin et al. (2010), Shin et al. (2018)

Landings/biomass of primary producers Link (2005)

Biomass of pelagic fishes/biomass total Link (2005)

Biomass trophic level 4 and above/biomass trophic level 3 Link (2005)

Q =
0.8ψ

log(ρ2/ρ1)
(3.15)

Q is the adapted Kempton’s species diversity index from Ainsworth and Pitcher

(2006)

ψ is total number of functional species groups

ρ1, ρ2 are the lower and upper 10th percentiles in the cumulative abundance distri-

bution
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All indicators except landings/primary productivity had different responses to

both recruitment steepness and recruitment cap in either or both the hindcast sim-

ulations and the catch scenario projections (summarised as ‘sensitivity’ in Table

3.2). These indicators may help understand the effect of fishing on the ecosystem

- whether the effect is positive, negative, or perhaps caused by a shift in the sys-

tem. The indicators focus on different aspects of the system, and hence may give

different impressions on the state of the ecosystem. Imposing a cap on recruitment

for myctophids generally suggested more favourable responses of the ecosystem to

fishing, except for biomass over catch which was reduced. The full set of figures for

ecosystem indicators are in Appendices A–E, with subsets in the text (Figures 3.7

–3.11) that most effectively illustrate the analyses.

Table 3.2: Sensitivity (indicated by 3) of ecological indicators to steep-

ness and recruitment cap in the hindcast and/or catch scenario projec-

tions.

Indicator Steepness Recruitment cap

Kempton’s species diversity index 3 3

Mean trophic index 3 3

Biomass/catch 3 3

Landings/biomass of primary producers - -

Biomass of pelagic fishes/biomass total 3 3

Biomass trophic level 4 and above/biomass trophic level 3 3 3

Kempton’s Q, a measure of diversity as adapted for ecosystem models by Ainsworth

and Pitcher (2006), suggested the models with no cap on myctophid recruitment were

more likely to suffer a drop in diversity earlier (Figure 3.7, and Appendix A). The

models with a cap on myctophid recruitment indicated the system would not recover

in terms of diversity within the next 30 years in any of the three catch scenarios,

but the uncapped models recovered providing fishing was at that the status quo. In

the un-capped models, recovery occurred earlier when steepness was lower. It seems

counter-intuitive the status quo catch scenarios would recover in terms of diversity

and the reduced catch scenario (half catch) would not. Given the higher catch sce-

nario brings recovery and the timing is earlier for lower myctophid steepness, this
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counter-intuitive dynamic is likely due to the additional myctophids in the system

due to predation release and the reversed effect of steepness.
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Figure 3.7: Kempton’s Q calculated from Chatham Rise Atlantis model simulations

with recruitment steepness set at 0.5 for myctophids, no cap on recruitment (left),

recruitment capped at R0 (right), and three catch scenarios: 1.) Zero catch; 2.)

Status quo catch; 3.) Half catch, for the 2010–2016 hindcast period and 2016–2046

projection period. The red dashed vertical line marks the last hindcast year, 2016.

The grey region shows the range of values from the period 1900–1970 when fishing

was non-existent or very small.

Mean trophic level was calculated for the age-structured species groups in the

model. This index was affected by steepness in the hindcast models with no cap on

recruitment and the corresponding projections, although the effect was not linear.

Mean trophic level was lowest when myctophids had highest steepness (0.9) and there

was little difference between steepness of 0.5 and 0.7, although the latter was slightly

higher (Figure 3.8 and Appendix B). There is some feedback within the model with

medium and large pelagic fishes increasing in biomass with myctophids, and this is

likely to come through in this trophic level indicator. All the models with capped

recruitment gave higher mean trophic levels both in the hindcast and projections.
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Figure 3.8: Mean trophic level of age-structured species groups calculated from

Chatham Rise Atlantis model simulations with no cap on recruitment (A, C), re-

cruitment capped at R0 (B, D), recruitment steepness values h ∈ (0.5, 0.7, 0.9) for the

1970–2016 hindcast period (A, B) and h set at 0.9 for myctophids, with three catch

scenarios: 1.) Zero catch; 2.) Status quo catch; 3.) Half catch, for the 2016–2046

projection period (C, D). The red dashed vertical line marks the last hindcast year,

2016. The grey region shows the range of values from the period 1900–1970 when

fishing was non-existent or very small.
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Biomass over catch was calculated using the biomass of age-structured species

groups as this covers the species that may be fished. This index was affected by

recruitment steepness when recruitment was not capped, although the effect was

fairly subtle, and perhaps dwarfed by the large and sudden increase in this ratio

when catches were halved (Figure 3.9 and Appendix C). In all cases, halving the

catches resulted in the biomass/catch ratio increasing suddenly, as expected. The

ratio was highest when recruitment was not capped, and steepness was lowest. While

this pattern was present in all hindcast and projections, it was most evident when

steepness was 0.5 and recruitment was not capped. When recruitment was capped,

there was a dip in the ratio in the 1980s–mid-1990s in the low-steepness model. This

reduction due to low steepness is a more plausible effect as I would expect there to

be less myctophids when they are defined with low steepness. As I have not included

biomass-pool species groups in this index, the main prey groups of myctophids were

excluded. Hence, a reduction in myctophids was not offset in the index by an in-

crease in their prey.

While biomass of pelagic fishes over total biomass exceeded previous levels under

status quo fishing for all recruitment scenarios, it was highest when steepness was

lowest (0.5) and recruitment was not capped (Figure 3.10 and Appendix D). For

this recruitment scenario, the ratio for both status quo and half catch projections

went above the previous highest level by approximately 20%. This effect is a direct

response to the higher myctophid biomass as the low-steepness recruitment model

expands under predation release.

Ratio of biomass at trophic level 4 and higher over biomass at trophic level 3

was sensitive to recruitment cap and steepness in the projections. The ratio was

reduced when steepness was lower, and recruitment was not capped. In all status

quo projections with no recruitment cap, the ratio went below the previous lowest

level, and was lower when steepness was lower (Figure 3.11 and Appendix E). In all

projections with recruitment capped, the ratio remained within pre-fishing bounds.
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Figure 3.9: Biomass of age-structured species groups over catch calculated from

Chatham Rise Atlantis model simulations with no cap on recruitment (A, C), re-

cruitment capped at R0 (right), recruitment steepness values h ∈ (0.5, 0.7, 0.9) for

the 1970–2016 hindcast period (B, D) and h set at 0.9 for myctophids, with three

catch scenarios: 1.) Zero catch; 2.) Status quo catch; 3.) Half catch, for the

2016–2046 projection period (bottom). The red dashed vertical line marks the last

hindcast year, 2016. The grey region shows the range of values from the period

1900–1970 when fishing was non-existent or very small.

The warning and limit reference points for this indicator as defined by Link (2005)

were concerned with the ratio becoming too high, with the suggested control rule to

alleviate fishing on trophic level 3 species. As fishing pressure on the Chatham Rise

is high on trophic level 4 species and level 3 species, this ratio becoming too low may

also be of interest or concern as it relates to the balance of the ecosystem.

102



0.
1

0.
3

0.
5

B
io

m
as

s 
ra

tio
: p

el
ag

ic
/a

ll

20
10

20
15

20
20

20
25

20
30

20
35

20
40

20
45

Zero catch
Status quo
Half catch

A: No cap, h=0.5

0.
1

0.
3

0.
5

B
io

m
as

s 
ra

tio
: p

el
ag

ic
/a

ll

20
10

20
15

20
20

20
25

20
30

20
35

20
40

20
45

Zero catch
Status quo
Half catch

B: Cap, h=0.5

Figure 3.10: Biomass of pelagic fishes over biomass of all age-structured species

groups from Chatham Rise Atlantis model simulations with recruitment steepness

set at 0.5 for myctophids, no cap on recruitment (A), recruitment capped at R0 (B),

and three catch scenarios: 1.) Zero catch; 2.) Status quo catch; 3.) Half catch, for

the 2010–2016 hindcast period and 2016–2046 projection period. The red dashed

vertical line marks the last hindcast year, 2016. The grey region shows the range of

values from the period 1900–1970 when fishing was non-existent or very small.
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Figure 3.11: Biomass ratio of trophic level 4 and higher over trophic level 3 from

Chatham Rise Atlantis model simulations with recruitment steepness set at 0.5 for

myctophids, no cap on recruitment (A), recruitment capped at R0 (B), and three

catch scenarios: 1.) Zero catch; 2.) Status quo catch; 3.) Half catch, for the

2010–2016 hindcast period and 2016–2046 projection period. The red dashed vertical

line marks the last hindcast year, 2016. The grey region shows the range of values

from the period 1900–1970 when fishing was non-existent or very small.
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3.6 Discussion

SSR parameter ‘steepness’ that reflects a populations resilience when depleted, is an

influential and often unknown parameter in fisheries stock assessment models and is

often used in ecosystem and multi-species models (Lee et al., 2012). Regardless of

whether we define resilience using the fisheries term steepness or not, this attribute of

the SSR curve still exists and is important for specifying the dynamics of a modelled

population. It is important to be able to define the slope of the initial increase of the

recruitment curve without changing the level of recruitment expected when there is

no fishing (R0).

I found the effect of changing steepness in the Beverton-Holt SSR model is re-

versed when SSB is greater than the unfished biomass. This effect matters when

modelling populations where mortality may be reduced such as from predation re-

lease, as this has the potential to allow a population to increase beyond its unfished

level, as demonstrated in this chapter. Using the Beverton-Holt SSR model, a highly

productive population with a high steepness value would become less productive

when SSB exceeds unfished biomass than a population that has a low steepness

value, even though both are defined with the same unfished recruitment and biomass.

When recruitment is capped at its unfished level, a population may still increase

beyond its unfished state under reduced mortality, but it will not increase more with

lower steepness. Hence, steepness will only affect a population when it is depleted.

This modification is an improvement on the effect of steepness being reversed, but

there may be an alternative that allows for a population with low steepness to con-

tinue to be less productive, for situations when this dynamic is appropriate.

I explored the ecosystem wide responses to fishing with varying steepness and

capping or not capping recruitment for the myctophids species group. This group

are abundant in marine ecosystems including the Chatham Rise, and they are prey
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to many key fisheries species. Even though I was only changing recruitment in one

species group, this did result in changes in ecosystem indicators. Scenarios mod-

elled without a cap on myctophid recruitment were more likely to suggest a shift in

the ecosystem through increased biomass of pelagic fishes with respect to the total

biomass, and more likely to suggest the systems diversity would recover if fishing

remained high. Scenarios modelled with a cap on myctophid recruitment were less

likely to suggest reduced average trophic level in the system in response to fishing,

and the diversity of the system took longer to decline.

The results of ecosystem indicators with respect to positive or negative effects of

fishing do not tell us much about whether recruitment should be capped or not, but

they do flag some situations that may be in danger of misleading results if we do

not. The shift in the system due to an increase in pelagic species biomass beyond

previous levels is one example of potentially misleading results. It does not make

sense for the expansion of pelagic fishes to be more extreme when they are specified

as less resilient. The recovery of diversity under the highest catch scenario when re-

cruitment was not capped and not in the lower catch scenario, with earlier recovery

for lower steepness, could be concerning.

The decision of whether to cap recruitment or not –or to apply a different solution,

may be different across models, population dynamics, and perhaps intended model

use. There may be information in data or the literature to inform reasonable or

likely population growth in such situations as predation release, in which case these

may be used to inform this decision. If there is nothing available as a guide, then

sensitivity analyses are a sensible option, at least to ascertain the possible responses

of the modelled system to an explored scenario. This approach is not unique to the

specification of the SSR curve; it holds for all model development and exploration.

It is the responsibility of the modeller to understand the dynamics of the model they

are creating, not just from comparing biomass trends to observations, but actually

understanding the dynamics relating to flow-on effects, and the implications that
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come with every parameterisation and specification of their model. Where there are

uncertainties in the model, results from explored scenarios need to reflect these.

There is traction in the literature for controlling fishing effort on different trophic

levels such as through balanced harvesting (Jacobsen et al. (2014), Reid et al. (2016),

and critiqued in Froese et al. (2015)). Key to this idea is the response of prey species

under predation release, as it aims to replace this predation mortality with fishing

mortality, thus taking more total catch with little negative effect to the ecosystem.

An example is the study Smith et al. (2011) where comparisons are drawn between

scenarios in which lower trophic levels are not fished and those where they are. As I

have shown in this study, such comparisons may be misleading. Careful consideration

needs to be taken for the population dynamics under scenarios involving predation

release.

Key to this work is that natural mortality varies with respect to time in ecosystem

and multi-species models, and this may change how we think of ‘unfished’ biomass

and recruitment. While we can adjust the SSR model to cope with increased biomass

beyond its unfished level, it does raise the question ‘should we?’ Perhaps when

biomass increases beyond unfished biomass, B0 and R0 should change, and hence

the specification of the SSR curve should also change. But would this additional

dynamic complexity help a model in its ability to fit to or replicate historical data,

and predict future trends? There are times in single species fisheries models where

natural mortality varies with time and the SSR relationship remains fixed (Nielsen

and Berg (2014), Deroba and Schueller (2013), Johnson et al. (2014)). The species

in focus is most likely kept below its unfished level due to fishing mortality, so the

steepness effect for biomass greater than unfished biomass is irrelevant. However,

the meaning of unfished biomass and recruitment perhaps should be reconsidered.

The purpose of the SSR model for fisheries models is to allow for dynamics at the

larval stage that are not otherwise captured in the model. In reality, while there is
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evidence of SSR relationships (e.g. Ye (2000), Wahle (2003)), recruitment between

years can also be highly variable due to environmental variability (Haddon, 2001).

Hence, the SSR used in a stochastic model such as Stock Synthesis (Methot Jr and

Wetzel, 2013) or CASAL (Bull et al., 2012) would provided the expected recruitment,

not the actual recruitment. The expected recruitment resulting from the SSR would

then be combined with yearly recruitment deviates that allow for the recruitment

each year to be higher or lower than the expected recruitment. Hence, for a stock

assessment model, the cause of variation in recruitment is not pursued, but the effect

is allowed for. There is potential with ecosystem models to model the variability in

recruitment by linking it to the dynamics of the model. For example, an Atlantis

model can include temperature effects on spawning success, and can also modify

the actual recruitment each year based on food availability through the condition of

animals in the spawning population (Audzijonyte et al., 2017a). The availability of

these dynamics in ecosystem models could be useful for assisting ecological sampling

design techniques aimed at understanding SSR and associated variability.

While some ecosystem models (e.g. OSMOSE, Shin and Cury (2004)) do not

require a SSR curve, as the relationship is emergent due to the explicit handling of

larval dynamics in the model, these models are in the minority. Ecopath with Ecosim

models require a recruitment function to relate recruitment to the adult numbers,

biomass and food consumption (Blanchard et al., 2002), although some of the density

dependent dynamics dealt with through a spawning stock recruitment relationship

that are also modelled more explicitly. These explicit dynamics include changes in

adult feeding rates and fecundity; changes in duration of the juvenile stage and hence

in total time exposed to relatively high predation risk; and changes in juvenile for-

aging time (and hence exposure to predation risk) with changes in juvenile feeding

rates (Christensen and Walters, 2004; Walters et al., 2000). Many size-based models

apply a spawning stock recruitment relationship to account for the density depen-

dent dynamics (Andersen et al., 2016). Gadget has two options for recruitment:

either a number of recruits are added each year, and the parameters determining the
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numbers added each year are obtained through optimisation (statistically fitting to

data); or a spawning stock recruitment relationship is applied (Begley and Howell,

2004). MICE models such as CASAL2 are closely related to fisheries models and

apply a spawning stock recruitment relationship (e.g. Doonan et al. (2016)).

Models sufficiently complex to have emergent relationships will not always be

appropriate, particularly when smaller or minimum realistic models are desired—for

example for rapid or tactical assessments. There are strong arguments for using the

simplest model sufficient for its purpose, and this extends even to ecosystem mod-

elling and has seen the growth in popularity of approaches such as MICE (Models of

Intermediate Complexity for Ecosystem assessments (Plagányi et al., 2014)). This

objective means that for the foreseeable future it is likely we will remain in need of

SSR models with consistent dynamics under varying natural mortality and recruit-

ment resilience. I propose one such variant here, but SSRs should continue to be a

topic of discussion amongst ecosystem modellers and empiricists going forward.
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Chapter 4

Chaotic or stable? Exploring

sensitivity to initial conditions of

an end-to-end ecosystem model

4.1 Abstract

Ecosystem models require the specification of initial conditions, and these initial con-

ditions have some level of uncertainty. It is important to allow for uncertainty when

presenting model results, because it reduces the risk of errant or non-representative

results. It is crucial that model results are presented as an envelope of what is likely,

rather than presenting only one instance. I perturbed the initial conditions of the

Chatham Rise Atlantis model developed in this thesis. I found the model dynamics

were not chaotic, as trajectories generally converged, but some species groups were

more sensitive to initial conditions that others. I fitted Generalised Linear Models

to the sensitivity of species groups to initial conditions, offering a range of possible

explanatory variables. I found trophic level explained much of the contrast, with

lower trophic level species groups generally more sensitive. I recommend that in any

set of scenarios explored using this model that associated uncertainty analysis in-

clude perturbations of the initial conditions, with greater changes applied to species

groups that were least well informed in model development.
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4.2 Introduction

The Chatham Rise is perhaps New Zealand’s most productive fishing ground, and

fishing of many fish species and some invertebrate species began from the mid-1970s

(Ministry for Primary Industries, 2017). These activities, and the notoriety of deep

marine systems as sensitive or vulnerable to disturbance (Clark and Rowden, 2009;

Norse et al., 2012 makes the area an interesting one in terms of defining effective

ecosystem based management. To assist this goal, an end-to-end ecosystem model

has been developed. One of the challenges in developing an end-to-end ecosystem

model is specifying the initial conditions. In the Chatham Rise Atlantis Model (Mc-

Gregor et al., 2019b), the initial conditions were specified to reflect the ecosystem

in its unfished, or virgin state. We have varying levels of understanding of the com-

ponents of this ecosystem in its unfished state, and as such, there are varying levels

of confidence around the estimates for the initial conditions, with all components

having some level of error. Hence, an important step towards understanding the

dynamics and implications of this model is to explore its sensitivity to changes in

the initial conditions. If we change the initial conditions slightly, does the model

produce very different results - i.e., is it chaotic? Or, if it is not chaotic, are some

aspects of the model more stable than others?

The effects of uncertainty in the initial conditions seems to have received little

attention in the development of end-to-end ecosystem models to date. In a review

paper, Payne et al. (2015) found generally marine ecosystem models have not explic-

itly addressed uncertainty of initialisation, and more recentely, Hansen et al. (2019)

noted it is not something that has been done for Atlantis models. Payne et al. (2015)

speculated as to the likely effects of initialisation uncertainty in end-to-end models

such as Atlantis, noting long-lived species might dampen effects, and short-lived
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species may amplify them.

Stability, chaos, and the importance of initial conditions do, however, feature

within ecological theory. There have been studies looking at what characteristics of

an ecosystem are linked with stability, both from a theoretical perspective, and from

observation. May (1972) showed mathematically, that while complex and diverse

systems can be stable, this does not hold true if either there are a large number of

connections or if the connections are too strong. However, there seem to be excep-

tions to this rule, as later studies have shown. Roberts (1974) argued that most

systems in practice appear to be more stable with more connections —contrary to

the mathematical analysis of May (1972). Roberts (1974) showed if only feasible

solutions are included in the analyses, such that no species may have a negative pop-

ulation, larger systems are actually more stable. May (1975) examined non-linear

difference equations with respect to chaotic, cylclic and stable biological dynam-

ics. Other aspects subsequently shown to increase stability of ecosystems include

negative pairwise correlations (Tang and Allesina, 2014), species dispersal (Allesina

and Tang, 2012), modularity (subsets of closely connected components) (Grilli et al.,

2016), predator-prey relationships (Tregonning and Roberts, 1979), a high proportion

of weak interactions (Olsen et al., 2016, May, 1972), and spatial structure (Fulton,

2001).

The Chatham Rise Atlantis model (McGregor et al., 2019b) is spatially defined,

although at a fairly coarse scale, using 24 dynamic polygons, and 5 water column

depth layers. Species are modelled using 55 species functional groups, which include

species of bacteria, detritus, phyto-plankton, invertebrates, fish, sharks, cetaceans

and birds. Some species groups were modelled as biomass pools, and some with age-

structure, using numbers-at-age and mean weight-at-age. For many of the species,

we have estimates of biomass, growth rates, age of maturity, natural mortality, spa-

tial distributions, and diets, although some species have more knowledge gaps than

others. McGregor et al. (2019b) characterised the species functional groups by key-
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stoneness, responsiveness, and informance, and these attributes may relate to sta-

bility. Keystoneness and responsiveness were quantified using model simulations

perturbing a single species functional group at a time, and analysing the flow-on ef-

fects to the rest of the system. Keystoneness measures the effect changes in biomass

of a species group has on the rest of the system; responsiveness measures how re-

sponsive a species group is to changes in biomass of other species groups within the

system. Informance was a qualitative measure used to reflect both how well informed

each species group was, and how well it performed in the model —were key dynamics

such as growth, mortality rates, diets, and responses to fishing, all realistic based on

what we ‘know’? While these analyses were carried out to provide insight into the

model’s strengths and weaknesses, and highlight which gaps are likely to be most

influential in model results, they are also useful for further analyses such as carried

out in this study —for perturbing initial conditions in a meaningful way based on

likely uncertainties, and to add further context when analysing the results.

This study goes beyond the question of whether the Chatham Rise Atlantis model

is unstable, and analyses what features of the Chatham Rise ecosystem, and how I

have modelled it, affect this answer. Stability for the purpose of this study is with

respect to sensitivity of the model to its initial conditions, rather than stability of the

models dynamics with respect to time. I discuss the likely impacts of my findings for

future use of this ecosystem model. I highlight areas of potential future research with

respect to model development, and to support decisions relating to the sustainable

use of the Chatham Rise marine ecosystem resources.

4.3 Methods

The analyses presented here were carried out in three main sections: 1.) the initial

conditions of the model were perturbed, and the resulting model simulations were

compared; 2.) components of the modelled system were characterised with respect to
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attributes that may affect stability; and 3.) correlations between model component

attributes and responses to perturbations of the initial conditions were analysed,

thus linking the first two sections.

4.3.1 Varying initial conditions

I varied the initial conditions for the number-at-age variables of age-structured

species groups, and the biomass of biomass-pool species groups. For the biomass-

pool species groups, biomass is the only option to perturb; age-structured species

groups could have errors in the specification of numbers-at-age and/or size-at-age,

both of which affect the biomass-at-age. In a stock assessment model, size-at-age

(or growth rates) are generally the same with respect to time, whereas there is likely

a difference in numbers with respect to time (especially before fishing compared to

after fishing). Hence, a different virgin biomass in a stock assessment model would

generally be made up of a different number of fish, rather than the same number of

fish but a different size. To align with this, I perturbed numbers rather than size for

the age-structured species groups. The resulting number of variables to perturb was

361, of which 341 were numbers-at-age, 18 were the nitrogen content of biomass-pool

species groups, and 2 were the silicate content of biomass-pool species (diatoms and

microphytobenthos). The numbers-at-age of all age-classes for a given species group

were scaled by the same amount for each simulation, such that the proportions-

at-age were preserved, thus preserving M (instantaneous natural mortality) in the

initial conditions. My intention was to explore the model’s sensitivity to its initial

conditions, not uncertainty around estimated parameters. Age-structured species

groups were modelled with between 2 and 10 age-classes, and were perturbed by

applying one scalar for all age-classes of a given species group. This method signif-

icantly reduced the number of scalars required to 57, of which 37 were for scaling

numbers-at-age for age-structured species groups.

Initially, I perturbed all initial conditions using the same scalar for all variables
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within each model run. The scalars I used were 0.5, 0.8, 0.9, 0.95, 1.05, 1.1, 1.2, 1.5.

These scalars were chosen to cover a range from slight (+/- 5%) to extreme (+/-

50%) errors in the initial conditions.

Because shifting all initial conditions by the same amount may not give an indi-

cation as to how robust or sensitive the model is to mis-specification of the initial

conditions where changes could vary in direction and magnitude, I next simulated

multiple model runs, with the initial conditions scaled with some random variability.

I scaled the initial conditions of each variable, sampling the scalar for each from a

normal distribution, N(0, σ) with σ chosen based on how large I assumed a plausible

change could be.

In total, I ran three sets of 35 simulations, and repeated each set with and without

fishing.

Set 1: All up or down. All initial conditions were scaled (numbers for age-structured,

biomass for biomass-pool) with the same scalar for each run;

scalars ∈ {0.5, 0.8, 0.9, 0.95, 1.05, 1.1, 1.2, 1.5}

Set 2: High uncertainty. All initial conditions were scaled (numbers for age-structured,

biomass for biomass-pool), with the scalars sampled from normal distributions

with µ = 0 and σ set based on the informance ratings defined in McGregor

et al. (2019b) (Figure 4.1). Biomass-pool species groups were assumed poorly

specified as these were not ranked in McGregor et al. (2019b), but would likely

come out as poorly specified if they had been assessed more formally.

Set 3: High keystone species. These runs only scaled the initial conditions of

species groups likely to be most influential on the system. The species groups

that ranked in the top 10 for keystoneness in McGregor et al. (2019b), and

all biomass pool species groups were scaled using normally distributed scalars

sampled with µ = 0 and σ = 0.25, giving 95% confidence intervals of ≈ +/ −

0.5. All other species groups were unchanged (Figure 2.9).
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Figure 4.1: Set 2 scalars used to perturb initial conditions, with scalars sampled from

Normal distributions with µ = 0 and σ ∈ (0.025, 0.05, 0.1, 0.25) based on informance

levels 1–4 respectively where 1: ‘Poorly specified’ (gold); 2: ‘Some data gaps and/or

poor performance’ (magenta); 3: ‘Slight data gaps and/or poor performance’ (blue);

4: ‘No data gaps, performed well, abundance index available’ (green) (defined in

McGregor et al. (2019b)).
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Figure 4.2: Set 1 scalars used to perturb initial conditions for high keystone and

biomass-pool species groups, with scalars sampled from the Normal distribution with

µ = 0 and σ = 0.25.

I compared each model run with the base run at each year, and tested for corre-

lation between the initial condition scalars and the amount each model run differed

from the base model. At each year, I used a pairwise comparison at the level of model
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run and species group. I calculated Pearson’s correlation and Spearman’s rank cor-

relation to test for linearity in the relationship. If Spearman’s rank correlation is

high, and higher than Pearson’s correlation, the relationship is monotonic, but not

linear.

4.3.2 Characterising the system and its components

I calculated a subset of the ecosystem indicators analysed for the base model in Mc-

Gregor et al. (2019a) (Table 4.1) at each timestep for all model simulations. Mean

trophic level, diversity and the ratio of pelagic to total biomass were chosen as they

responded to fishing scenarios for the Chatham Rise Atlantis model (McGregor et al.,

2019a), but didn’t require catch for the calculation (so I could apply them to model

runs here with or without fishing included). I analysed the results for consistencies

or discrepancies in shifts of the ecosystem reflected through these indicators, with

particular focus on the response of the system when heavy fishing became established

during the mid-1970s.

Table 4.1: Key ecosystem indicators evaluated for responses to perturb-

ing the initial conditions.

Indicator References

Mean trophic level Pauly and Watson (2005); Shin et al. (2018)

Diversity (modified Kempton’s Q) Ainsworth and Pitcher (2006)

Biomass of pelagic fishes/biomass total Link (2005)

If certain species groups appear to be more stable than others, I wanted to be in

a position to investigate whether the more stable species groups have shared charac-

teristics —for example, are there links between sensitivities to changes in the initial

conditions and how connected each species group is in the system, how abundant

they are, or how long they live, or some combination of these.

To do this, I characterised species groups based on the base model so I could test

for links between these attributes of the species groups and sensitivities to changes
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in the initial conditions. I considered keystoneness, trophic level, biomass, animal

size, lifespan, background mortality, number of trophic connections, and proportion

of most dominant (‘top’) prey. All but the final three of these indices were available

from McGregor et al. (2019b). The proportion of diet made up by most dominant

prey, number of trophic connections, and the proportion of natural mortality that

was made up of additional mortality were calculated for this study using R version

3.4.3.

Proportion of top prey

For each species group, I calculated the proportion of its diet that was made up by

its top prey species group based on biomass consumed from the base model. This

calculation was to classify the extent to which each species group was eating as a

specialist or generalist as they are modelled. It is possible for a predator to perform

in the model as more of a specialist due to aggregation of species into groups —they

could predate on several prey species that are modelled in the same species group.

For each species group, I summed the prey eaten over the entire model region and

all modelled years 1900–2015, then selected the largest proportion of prey to classify

the species group.

Number of trophic connections

The number of primary trophic connections was calculated for each species group

(these are immediate predators or prey). A trophic connection was deemed to be

either a prey or predator of the species group. Because sometimes a predator may

eat a very small, negligible amount of a prey, I included a cut-off at 1%, such that a

prey or predator was not included in the connections count if they made up less than

1% of the total weight of prey consumed or predation pressure applied, respectively.

I calculated the number of secondary connections as the number of species that are

predated on or by any of the primary connections (prey or predators of the prey

or predators) (Figure 4.3), and the number of tertiary connections was calculated

similarly.
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Figure 4.3: Illustration of primary (green arrows) and secondary (orange arrows)

trophic connections for the species shaded blue.

Additional natural mortality

There is the option in Atlantis to apply additional natural mortality either as a

quadratic term, which is density dependent, or as a linear term (Audzijonyte et al.,

2017a). The balance between additional natural mortality and mortality coming

from dynamics within the model may affect the model’s stability. Higher levels of

additional mortality reduce the strength of connections in the model, with 100%

additional mortality effectively resulting in parallel single species models. Addi-

tional mortality was required for some species groups in the Chatham Rise Atlantis

model that did not suffer sufficient natural mortality through predation, starvation

or disease in the model to match estimates of mortality from the literature. For all

age-structured species groups in this model, linear rather than quadratic mortality

was applied because this is a close approximation to instantaneous natural mortality

(M). When M is small, as it is when applied at small time-steps, e−M can be ap-

proximated by 1−x using the first two terms of its Taylor series expansion. Hence, if

we take Nt to be the number of individuals at timestep t and Nt+δ to be the number
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at timestep t+ δ where δ is small we get

Nt+δ = Nte
−Mδ ≈ Nt(1−Mδ) (4.1)

As linear mortality, mL, is applied at every timestep (12 hours for this model),

we can use Mδ to approximate mL. This approximation is, however, complicated

by a temperature effect which is applied to mL in Atlantis. Additional mortality

in Atlantis is assumed to be related to metabolic rates, and hence are temperature

dependent. The temperature effect is applied as a scalar (Tcorr) calculated as a

function of the current water temperature (T ) (in a given cell at a given time)

relative to a base temperature, set at 15 oC (Equation 4.2).

Tcorr = 2(T−15)/10 (4.2)

As temperature varies spatially and temporally, so does the scaled mL. I calcu-

lated the additional applied mortality for each species group based on their spatial

distribution, mL values, and temperature corrections, using the median, upper and

lower quartile, and 95% confidence intervals for the applied additional mortality to

reflect the variability of temperature spatially and temporally. These were calculated

for both juveniles and adults as mL and spatial distributions were defined separately

for these life stages.

Total realised mortality rates were estimated from the model by fitting an expo-

nential decay curve to the proportions-at-age. By running the model with no fishing,

the realised mortality consisted entirely of natural mortality, including sources within

the model such as predation, as well as additional mortality from mL. I then com-

pared the total realised natural mortality with the range of additional mortality to

estimate what proportion of natural mortality was coming from dynamics within the

model, and what proportion was forced. I produced a weighted average for each

species group that combined the proportions for adults and juveniles, weighted by

the numbers of adults and juveniles respectively.
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4.3.3 Modelling stability

I analysed variability as a result of perturbing the initial conditions for each species

group by calculating the coeficient of variation (CV) of biomass between the runs. A

species group with high variability between model simulations relative to the mean

biomass from all simulations would have a high CV, and hence be considered highly

sensitive to perturbations to the initial conditions.

I analysed the effects of perturbing the initial conditions by fitting a GLM (Gen-

eralised Linear Model) to the CV for the biomass of each species group across model

runs. I used Atlantis model outputs following a 35-year burn-in period, to match the

burn-in used in McGregor et al. (2019b). Variables from characterising the species

groups (Table 4.2) were offered as possible explanatory variables, using a step-wise

selection algorithm, with each iteration selecting the variable (or pair of interaction

variables) that explained the largest proportion of the null deviance. This process

was repeated until the additional deviance explained was less than 10%. This cut-off

value was selected to limit the number of explanatory variables selected, while re-

taining most of the explained null deviance. I initially explored untransformed, and

log (base 10) and cubed root transformations of the response variable (CV), with

all modelled using the Gaussian distribution. The analyses presented here used the

cubed root transformation as I found this produced greater homogeneity of residuals

with respect to the fitted values.

I could not model the biomass-pool species group CVs with respect to all at-

tributes, as some attributes had not been analysed for biomass-pool groups (e.g.

Keystone and Response), and some attributes relate to individuals, such as maxi-

mum size and instantaneous mortality. Hence, I fitted three versions of the GLM:

1.) limited the species groups included in the analyses to species with age-structure

in order to consider the full list of explanatory variables; 2.) retained all species

groups, but limited the explanatory variables offered; 3.) limited the species groups

to biomass-pool species groups, with the limited the explanatory variables offered.
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Table 4.2 gives the full list of explanatory variables offered for biomass-pool (BP),

age-structured (AS), and all-species (ALL) versions of the model. All possible paired

interaction terms were also offered. PropByTopPrey was dropped from BP models

as nearly half (8/17) of the biomass-pool species groups were not predators, and this

variable only applies to predators.

I fitted the GLM to model outputs for each year (1900–2015) to test for temporal

shifts in the effects (a separate GLM was fitted at each year). To allow for influ-

ence from the method of perturbing the initial conditions (all up or down, based on

keystoneness, or based on uncertainty), I included this (‘ChaosAlt’) as a potential

explanatory variable. I also explored splitting out the fished model runs from the

unfished, or including this within ChaosAlt (Table 4.3).

I fitted a summary GLM for each version (ALL, AS, BP species; with/without

fishing included), using a subset of the years simulated by the models, where the

explanatory variables selected for models fitted at each timestep were roughly consis-

tent. I used these summary models to explore the effects of the selected explanatory

variables on between-run CVs. I analysed the residuals to check for trends or biases

in the model fits, and present these as well as the effects of selected explanatory

variables.
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Table 4.2: Explanatory variables offered to explain effects of perturbing

the initial conditions, and whether these were defined for age-structured

species groups or biomass-pool species groups, or all species groups.

BP= biomass-pool species groups; ALL= all species groups; AS = age-

structured species groups.

Variable Model BP Model ALL Model AS Type

1. Informance Categorical

2. TL Continuous

3. Keystone Categorical

4. Response Categorical

5. NumL1cons Categorical

6. Lifespan Categorical

7. propAdM Continuous

8. propJuvM Continuous

9. B0 Continuous

10. PropByTopPrey Continuous

11. Linf Continuous

12. ChaosAlt Categorical

Table 4.3: ChaosAlt definitions for perturbing the initial conditions,

and including fishing in the model or not. ChaosAlt was offered as an

explanatory variable to the GLMs.

ChaosAlt Description Included fishing

A All up or down

B All up or down

C Based on uncertainty

D Based on uncertainty

E Based on keystoneness

F Based on keystoneness

4.4 Results

4.4.1 Variability from initial conditions

Some species groups diverged while others converged, with biomass-pool groups more

likely to have persistent high CVs between model runs (Figure 4.4). Age-structured

groups typically had very tight CVs of less than 10% from 1970 onwards, particularly

with fishing turned on (Figure 4.4). Fishing reduced the between-model CVs for some

age-structured species groups, such as for hoki, but the effects of fishing were not ap-
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parent in any biomass-pool species groups—in biomass trajectories or CVs between

model runs (Figure 4.5 for two examples; Appendix A for the full set of figures.). Re-

sponses of age-structured species groups to fishing were generally consistent across

model runs. These responses included direct effects of fishing on a species (such

as hoki (Macruronus novaezelandiae), hake (Macruronus novaezelandiae), orange

roughy (Hoplostethus atlanticus) and ling (Genypterus blacodes)), and predation-

release responses (such as cephalopods and pelagic fish). Exceptions were invert

comm herb (primarily paua (Haliotis iris) and kina (Evechinus chloroticus)), invert

comm scav (primarily scampi (Metanephrops challengeri)), dem fish pisc (primarily

giant stargazer (Kathetostoma giganteum)), and seaperch (Helicolenus spp.), which

all gave varied responses with fishing included in the model.

The scalar applied to the initial conditions remained correlated to the difference

in the perturbed model to the base model at about 60% (Spearman’s) and 45%

(Pearson’s) for the not-fished species groups through to the completion of the model

runs (Figure 4.6). The difference between the Spearman’s and Pearson’s correlations

suggests that while the relationship remained fairly monotonic, it was not linear. The

fished species groups retained very little correlation to the initial condition scalars,

with Pearson’s correlation less than 10% 25 years into the model (1890), and Spear-

man’s correlation less than 10% by 1915 (Figure 4.6).
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Figure 4.4: Median (solid lines), and upper and lower quartiles (dot-dashed lines) for

CVs of age-structured species groups (A) and biomass-pool species groups (B) from

fished model runs (blue) and unfished model runs (orange). Density of CVs from

1970–2015 for age-structured species groups (C) and biomass-pool species groups

(D).
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4.4.2 Characterisation

Ecological indicators

Ecological indicators demonstrated variability from the perturbed initial conditions

that generally neither converged nor diverged throughout the model simulations.

However, the responses to heavy fishing from the mid-1970s were consistent across

runs, with a decline in mean trophic level, a slight increase in diversity, and an

increase in the ratio of pelagic biomass over total biomass (Figure 4.7). There was a

slight decline in mean trophic level from 1900–2015 in some of the unfished models,

although the decline was approximately 0.02 of a trophic level over 100 years, so

rather small.

Proportion of top prey

Some diets consisted almost entirely of one species group, but many others did not

have a dominant species with the ‘top’ prey making up less than 50% of the diet,

and there was quite an even spread in between, with top prey making up around

50–70% of many diets (Figure 4.8). Not all species groups predate, which is why

some species groups (such as sediment bacteria, macroalgae) do not have a highest

proportion of prey.

Number of trophic connections

The number of primary connections ranged from 1 through to 30, and with fairly

even spread in between (Figure 4.9). Most species groups were almost fully con-

nected by the third level, and all species groups had at least 43 tertiary connections,

of the 55 available species groups. Many of the species groups had more than 20

secondary connections, and those with fewer secondary connections generally had

fewer primary connections. The number of secondary and tertiary connections are

unlikely to be informative for stability between runs as there is little contrast.

127



1900 1950 2000

3.
62

3.
66

3.
70

M
ea

n 
tr

op
hi

c 
le

ve
l

A:

1900 1950 2000

3.
8

4.
0

4.
2

4.
4

4.
6

K
em

pt
on

's
 Q

B:

1900 1950 2000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

B
io

m
as

s 
ra

tio
:p

el
ag

ic
/a

ll C:

Unfished Fished

Figure 4.7: Ecological indicators, mean trophic level of age-structured species groups

(A), Kempton’s Q (B), and biomass ratio of pelagic fishes/all age-structured species

groups (C) calculated from model simulations with fishing included (blue lines), and

no fishing included (orange lines) from model years 1865–2015, which includes the
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Figure 4.8: Proportion of diet made up by top prey from the Chatham Rise Atlantis

model (base) 1900–2015 model outputs.
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Figure 4.9: Number of trophic level connections by species group for the Chatham

Rise Atlantis model (base) 1900–2015 model outputs. A: Number of groups (fre-

quency counts) by primary connections (green bars), secondary connections (blue

bars), and tertiary connections (orange bars); B: Number of primary connections by

species group (green bars), and number of secondary connections by species group

(blue asterisks, and using right-hand axis).

4.4.3 Additional natural mortality

The proportion of natural mortality forced with additional mortality through the

mL term ranged from just over 0.8 for spiny dogfish down to zero for several species
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(Figure 4.10). While baleen whales, cetacean other, pinnipeds and seabirds all have

zero additional mortality through mL, this does not mean their populations are en-

tirely constrained due to mortality within the model, as these groups all migrate out

of the model and their populations are restrained on re-entry into the model domain.

Pelagic fish small (primarily myctophids), arrow squid, cephalopods other, and in-

vert comm scav (primarily scampi) have all their natural mortality from sources such

as predation within the model. Just over half (19/37) of the age-structured species

groups had more than 80% of natural mortality forced as adults. Most age-structured

species groups (31/37) had less than 50% of natural mortality forced for juveniles.
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Figure 4.10: Proportion of natural mortality (M) forced as additional mortality

by species group from the Chatham Rise Atlantis model (base) 1900–2015 model

outputs.
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4.4.4 Modelling stability

GLMs fitted at each timestep

The models fitted at each timestep (year) with all species groups combined (ALL)

selected the interaction term ChaosAlt (the way in which the initial conditions were

perturbed) and trophic level, and explained just under 50% of the null deviance (Fig-

ure 4.11). The ChaosAlt:trophic level interaction term was also the most important

explanatory variable for biomass-pool (BP) only species group models (Figure 4.12),

and age-structured (AS) only species group models (Figure 4.13). BP models con-

sistently selected a second term; the interaction of the number of primary trophic

connections and virgin biomass (B0) and explained between 50% and 60% of the null

deviance (Figure 4.12). The AS models had different explanatory variables selected

at different timesteps, and these were also influenced by whether fishing was included

in the models. The interaction between ChaosAlt and the number of primary trophic

connections was the most consistently selected second explanatory variable for AS

models (Figure 4.13). The BP and AS models seemed to have a shift at around 1910.

Explanatory variables selected prior to 1910 did not include ChaosAlt, but trophic

level was important as an interaction with virgin biomass and the number of primary

trophic connections for BP models, and trophic level and informance for AS models

(Figures 4.12 and 4.13).
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Figure 4.11: R2 for GLMs fitted at each timestep to biomass CVs of all species

groups that resulted from perturbing the initial conditions, using all model runs (A),

only model runs with fishing (B), and only models without fishing (C), with bars

coloured by explanatory variable.
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Figure 4.12: R2 for GLMs fitted at each timestep to biomass CVs of biomass-pool

(BP) species groups that resulted from perturbing the initial conditions, using all

model runs (A), only model runs with fishing (B), and only models without fishing

(C), with bars coloured by explanatory variable.
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Figure 4.13: R2 for GLMs fitted at each timestep to biomass CVs of age-structured

(AS) species groups that resulted from perturbing the initial conditions, using all

model runs (A), only model runs with fishing (B), and only models without fishing

(C), with bars coloured by explanatory variable.
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Final GLMs

The GLMs fitted to all data from 1910–2015 selected similar explanatory variables

to the GLMs fitted at each timestep (Table 4.4). The interaction term ChaosAlt:TL

was selected first for all models, and was the only term selected for the ALL model.

The BP only species model also selected the interaction term NumL1cons:B0. The

AS species only model selected interaction ChaosAlt:NumL1cons whether fishing was

included or not, and a third term, interaction NumL1cons:Informance was selected

for the unfished AS model.

The Pearson’s residuals generally showed no concerning patterns against fitted

values or explanatory variables for the final GLMs (Figures 4.14–4.18). One ex-

ception was the residuals with respect to B0 for the BP model, which suggested

decreasing errors with increasing B0, and a possible outlier (Figure 4.15).

Table 4.4: Explanatory variables selected and corresponding r2 values for

GLMs fitted to ALL (all species groups) model CVs, BP (biomass-pool

species groups) only model CVs, and AS (age-structured species groups)

only model CVs, using model outputs from 1900–2015, with fished and

unfished versions for AS. ChaosAlt=the set of runs, grouped by method

for perturbing initial conditions and whether fishing was included or not;

TL=trophic level; PrimCons=number of primary trophic connections;

B0=virgin biomass; Inf=informance;

Model ChaosAlt:TL PrimCons:B0 ChaosAlt:PrimCons PrimCons:Inf Total r2

ALL 0.47 0.47

BP 0.38 0.53 0.53

AS 0.32 0.44 0.44

AS (fished) 0.33 0.45 0.45

AS (unfished) 0.31 0.44 0.54 0.54
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Figure 4.14: Pearson’s residuals for models fitted at each timestep to biomass CVs of

all (ALL) species groups that resulted from perturbing the initial conditions, using all

model runs, plotted against fitted values (A), TL (trophic level) (B), and ChaosAlt

(C).
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Figure 4.15: Pearson’s residuals for models fitted at each timestep to biomass CVs

of biomass-pool (BP) species groups that resulted from perturbing the initial condi-

tions, using all model runs, plotted against fitted values (A), TL (trophic level) (B),

ChaosAlt (C), Number of primary trophic connections (D), and B0 (virgin biomass)

(E).
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Figure 4.16: Pearson’s residuals for models fitted at each timestep to biomass CVs

of age-structured (AS) species groups that resulted from perturbing the initial con-

ditions, using all model runs, plotted against fitted values (A), TL (trophic level)

(B), ChaosAlt (C), and Number of primary trophic connections (D).
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Figure 4.17: Pearson’s residuals for models fitted at each timestep to biomass CVs

of age-structured (AS) species groups that resulted from perturbing the initial con-

ditions, using fished model runs, plotted against fitted values (A), TL (trophic level)

(B), ChaosAlt (C), and Number of primary trophic connections (D).
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Figure 4.18: Pearson’s residuals for models fitted at each timestep to biomass CVs of

age-structured (AS) species groups that resulted from perturbing the initial condi-

tions, using unfished model runs, plotted against fitted values (A), TL (trophic level)

(B), ChaosAlt (C), and Number of primary trophic connections (D), and informance

(E). Informance levels 1–4 where 1: ‘Poorly specified’ (gold); 2: ‘Some data gaps

and/or poor performance’ (magenta); 3: ‘Slight data gaps and/or poor performance’

(blue); 4: ‘No data gaps, performed well, abundance index available’ (green) (defined

in McGregor et al. (2019b)). Informance level ‘1’ did not feature in the results as

these data were dropped due to ‘NA’ values for other explanatory variables.
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Higher trophic level was found to be associated with lower biomass CVs for all

models and ChaosAlts (Figure 4.19). CVs were generally lower for ChaosAlt ‘A’ and

‘B’, which were the model runs with all initial conditions shifted up or down and

by the same scalar within each run. ChaosAlt ‘C’ and ‘D’, with initial conditions

perturbed based on species group uncertainty, generally had slightly higher CVs

across trophic levels (Figure 4.19). This effect was also apparent in the interaction

with primary connections in the AS model (Figure 4.20). Biomass CVs were found

to decrease with increased B0 and with increasing number of primary connections for

biomass pool species group (Figure 4.20). The number of primary connections had

the opposite effect for age-structured species groups, with more primary connections

correlated with larger biomass CVs, although these CV effects were smaller (max.

11%) than for biomass pool species groups (max. 18%) (Figure 4.20).
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Figure 4.19: GLM effects from the final GLMs fitted to CVs from 1910–2015 for in-

teraction term ChaosAlt:TL for ALL species groups (A), BP only species groups (B),

and AS only species groups (C). ChaosAlt ‘A’ and ‘B’ perturbed all initial conditions

by the same scalar for each run; ChaosAlt ‘C’ and ‘D’ perturbed initial conditions

by uncertainty; ChaosAlt ‘E’ and ‘F’ perturbed initial conditions by keystoneness;

ChaosAlt ‘A’, ‘C’, ‘E’ did not include fishing; ChaosAlt ‘B’, ‘D’, ‘F’ included fishing.

Shading indicates the additional CV expected for each value of the interaction, with

the darkest shading in each plot corresponding to the Max. CV (%) given in the

top-right corner of the plot.
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Figure 4.20: GLM effects from the final GLMs fitted to CVs from 1910–2015 for

interaction term PrimCons:B0 for BP only species groups (A), ChaosAlt:PrimCons

for AS only species groups (B). ChaosAlt ‘A’ and ‘B’ perturbed all initial conditions

by the same scalar for each run; ChaosAlt ‘C’ and ‘D’ perturbed initial conditions

by uncertainty; ChaosAlt ‘E’ and ‘F’ perturbed initial conditions by keystoneness;

ChaosAlt ‘A’, ‘C’, ‘E’ did not include fishing; ChaosAlt ‘B’, ‘D’, ‘F’ included fishing.

Shading indicates the additional CV expected for each value of the interaction, with

the darkest shading in each plot corresponding to the Max. CV (%) given in the

top-right corner of the plot.
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4.5 Discussion

Analysing sensitivities to initial conditions is an important part of developing com-

plex models (Rabier et al., 1996; Rosati et al., 1997; Payne et al., 2015; Cheung

et al., 2016). If small perturbations to the initial conditions produce vastly different

results, this may make interpreting results from the model challenging. Accounting

for model uncertainty provides an envelope of model results, which tells us about the

range of plausible outcomes rather than one possible instance. It is when the enve-

lope is so wide that no result can be ascertained that the model can be frustratingly

un-useful, and it is important we are aware when this is the case. For example, if

scenarios exploring reduced fishing effort improved the general state of the ecosystem

in some model runs, and deteriorated it in others, with all runs equally plausible,

then we would be left none the wiser. It would be misleading to present results of

only a subset or even a singular model run that does not adequately reflect the range

of plausible outcomes.

I found the Chatham Rise Atlantis model was not chaotic, in that I could perturb

the initial conditions by small, and even quite large (up to 50%) changes, and the

model produced very similar results with respect to biomass trends and ecosystem

indicators. The age-structured species groups typically had very tight CVs by the

end of the burnin period, which is a reassuring result given Atlantis models are still

fairly novel in the literature and have not yet undergone testing for chaotic dynam-

ics. While the values of ecosystem indicators did not converge over the model time

series, the response to fishing was consistent across model runs, suggesting system

dynamics were consistent under perturbed initial conditions. This result puts us in

a position to simulate scenarios using the Chatham Rise Atlantis model, including

uncertainty of the initial conditions, and obtain an envelope of results with which to

analyse and understand the likely responses of the Chatham Rise ecosystem.

While the system as a whole generally agreed within the range of results pro-
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duced, the biomasses of some species groups varied between model runs more than

others. The dynamics of some species groups appeared hyperstable as they promptly

converged, while others retained variability between the runs, and for some the vari-

ability increased. I found the species groups that were more likely to have high

biomass CVs (coefficient of variations) were those of lower trophic levels. In nature,

we expect to see more variability in the abundances of lower trophic level species,

but most relevant field experts would likely suggest those patterns derive from vari-

ability within the environment (Dippner et al., 2000, 2001; Molinero et al., 2008),

which I am not applying in this study. If I combined varying the initial conditions

with bootstrapping of the oceanographic variables, as carried out in McGregor et al.

(2019b), we would likely see even greater variability in the lower trophic levels.

The effects of uncertainty from the oceanographic variables explored in McGregor

et al. (2019b) had a greater range than those from perturbing the initial conditions.

Similarly to the initial conditions uncertainty, the species most affected were also

lower trophic levels. Diatoms had the highest CV at 79%, followed by carnivo-

rous zooplankton CV at 46%. The effects of uncertainty from specification of the

spawning stock recruitment relationship as it was applied to the small pelagic fish

species group were explored in McGregor et al. (2019a). These effects were seen

right through to the ecosystem indicators, and would likely be more evident if more

than one species group were directly affected in the study. Further work explor-

ing the effects of parameter uncertainty ought to be carried out with the Chatham

Rise Atlantis model, and these effects compared to those from the initial conditions,

oceanographic variables and spawning stock recruitment already explored. One key

area of parameters to explore is the predator/prey interactions, including the feeding

functional response form and parameters. The effects of these will likely be noticed

more as the model is used and hence taken away from its calibrated balanced state,

where we might expect to see more variability in prey abundance.

An aspect not explored in this study is the effect of initialisation uncertainty on
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the model realised diets. There is plenty of scope for Atlantis diets to vary as they

are the result of spatial and temporal overlap, gap-size limits, growth rates, feed-

ing functional response, availability of other prey, predation from other predators,

habitat refuge and prey preferences. As ecosystem models are generally developed

to help understand flow-on effects within a system, understanding the effect of un-

certainties on the species interactions could be important, and we recommend future

work considers this aspect.

Another aspect of the trophic level effect on variability is the way in which I have

modelled the species groups in the Chatham Rise Atlantis model. First, we have the

difference between species modelled as biomass-pools and those modelled with age-

structure. Biomass-pool representations are more dynamic as there is little/no delay

structure built in—growth is pooled across its many forms (reproductive, somatic and

otherwise), so can effectively occur instantaneously, unlike in age-structured groups

where maturity may take years and specific events like spawning are restrained.

Given biomass-pool groups are also generally lower trophic level (with naturally

higher levels of productivity and turnover), the GLM fitted to CVs of all species

groups could pick up trophic level as an explanatory variable that also accounts for

this group structure. Within the age-structured species groups, trophic level could

also be confounded with the proportion of additional mortality. The additional forced

mortality would likely be a stabilising attribute, and the proportions applied were

greater for the higher trophic level species, as these were the ones with less predation

mortality in the system. That the stabilising aspect filters down through the trophic

levels, with the lower trophic levels retaining variability, could suggest the extent to

which this is a top-down controlled system.

The method used to perturb the initial conditions was found to be important in

explaining the CVs. The runs based on keystoneness did not result in the highest

CVs, even though these runs perturbed the initial conditions of the species groups

expected to have the greatest impact on the rest of the system. While Paine (1969)
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suggested keystone species have a stabilising effect on a system, it was more recently

suggested to be more complicated than that (Mills et al., 1993). In this study, the

possible stabilising effect of keystoneness could be due to additional mortality ap-

plied to some of the high keystone species, and hence exerting a stabilising effect on

the system. The runs perturbed based on uncertainty produced the greatest CVs.

The effects of other explanatory variables, such as higher CVs for lower trophic

levels, were consistent regardless of the method used to perturb the initial condi-

tions. Hence, the method was not influential in how the system responded, only in

how strongly it responded. It is possible the latter difference would diminish with

a greater number of runs simulated for each set. In future simulations, perturb-

ing the initial conditions based on uncertainty would seem appropriate, and should

encompass the variability we would expect to see from other methods of perturbation.

One of the age-structured species groups that was most sensitive to initial con-

ditions was the invert comm scav group (primarily scampi). When I account for

uncertainty from initial conditions, the response of this group to heavy fishing is

inconclusive. The heavy fishing on the system from the mid-1970s (Ministry for Pri-

mary Industries, 2017), some of which was targeted on scampi (Tuck, 2016), could

easily be positive or negative for scampi based on these model results, and CVs for

this species group remained high at just over 20%. In the base Chatham Rise At-

lantis model (McGregor et al., 2019b), scampi were shown to respond to fishing in

a very similar way to the fisheries stock assessment estimated biomass. The results

here illustrate that the base model result for this species group, while convincing

as it matched the fisheries models so well, was actually only one of many plausible

results using this ecosystem model.

In the quest to provide meaningful and realistic results to simulations explored

using complex ecosystem models, with high levels of uncertainty, we need to produce

result envelopes, not single trajectories. It is important we move in the direction

of simulating many instances of the model that account for its uncertainties, to
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understand how likely a given response is, and avoid presenting what may be er-

rant or non-representative results. We know there is uncertainty in defining initial

conditions of ecosystem models, so varying the initial conditions to reflect this un-

certainty in model results is crucial. It is not the only area of uncertainty; there

are many. Given the complexity of these models, exploring all possible uncertain-

ties explicitly is unlikely to be tractable. It may be possible, however, to address

subsets of uncertainty that encompass the broader range of the uncertainty of the

model by targeting its key dynamics. The key dynamics of an ecosystem model gen-

erally consist of growth, recruitment, mortality, trophic connections, environmental

effects, and initial state. Three of these (growth, mortality and trophic connec-

tions) relate directly to predation and consumption, and we could vary the feeding

response function to explore the effects of uncertainties in these dynamics. Initial

conditions were the topic of this study, and uncertainty from environmental effects

were explored through bootstrapping the oceanographic variables in McGregor et al.

(2019b). Recruitment/productivity remains, for which we could vary the spawning

stock recruitment parameters. The specifics of varying these will vary between mod-

els and systems, but accounting for uncertainty with respect to four main categories:

1.) initial conditions; 2.) environmental; 3.) feeding functional response; 4.) pro-

ductivity/recruitment, is likely to cover the broad range for most systems and models.
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Chapter 5

Synthesising the process

The development of complex ecosystem models, such as Atlantis, is not a linear

process, but rather iterative and incremental. This extends to the entire process

from initially building the model, to being in a position to use it. Atlantis models

presented in the literature historically focused most heavily on model development

and calibration (Link et al., 2010; Ainsworth et al., 2011; Weijerman et al., 2015).

More recent applications have also focused on formal skill assessment following the

recommendations of Olsen et al. (2016) and sensitivity analyses that provide greater

insight into the dynamics of the model (Ortega-Cisneros et al., 2017; Sturludottir

et al., 2018; Porobic et al., 2019). This study extends beyond what is currently done

in the literature with respect to exploring and understanding model dynamics, and

adds to the understanding of fundamental dynamics relating to multi-species and

ecosystem models. This synthesis chapter summarises the findings of the previous

chapters, then presents the path of model development, exploration and validation,

drawing on the benefits of hindsight gained through this study, and highlighting ar-

eas of understanding that remain less clear. There is still a lot of development yet

to happen in this space.

Chapter 2 presented the Chatham Rise Atlantis model, from data compilation to

model validation. This chapter synthesizes two years of work, and relates to ‘Model

construction’, ‘Model calibration and fitting to history’, ‘Model sensitivity and skill
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assessment’, ‘Scenarios for system understanding’, and ‘Tool development’. The

model was not just validated in this work; it was explored. In the model validation,

I assessed model results with observations from surveys and assessment, looking at

biomass time-series in response to historical fishing; size-at-age were compared to von

Bertalanffy curves defined from the literature; proportions-at-age were compared to

exponential decay curves defined from the literature; realised diet summaries were

compared to those from the literature. To further understand model dynamics, I

bootstrapped the oceanographic variables that are forced in the model, then anal-

ysed which species groups responded more or less across all bootstrap runs, and then

by warmer or cooler years. I perturbed each species group in turn and analysed

the flow-on effects in the model to gain understanding of how the dynamics were

connected. I analysed data gaps in the model with respect to the flow-on effects

and gave recommendations for sensitivities recommended when this model is used

for exploring scenarios.

Chapter 3 explored a structural component of ecosystem models that has trans-

ferred from fisheries modelling, the Spawning Stock Recruitment function. The dy-

namics of this relationship have only previously been given serious thought when

relating to the biomass of a depleted biomass, with the dynamic of interest being

the rate of recovery. I focused the work on the most commonly used Spawning Stock

Recruitment curve, the Beverton-Holt. There are three main attributes of this curve;

1.) the steepness of the curve when the population’s biomass is less than 20% of its

virgin level (referred to as ‘steepness’); 2.) the expected recruitment when biomass is

at its virgin level; 3.) the asymptotic value of the curve. We generally have the most

information about the virgin state of fish stocks as fisheries models are designed to

estimate back to virgin biomass and recruitment based on the time series of abun-

dance and fishing available. We generally have less information about the depleted

part of the curve, as the only way of really getting information on this is to deplete

the population below 20% which is what we are trying to avoid doing. So sensitivities

on steepness to understand the repercussions of different values on model results are
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often used. We might want to do something similar in a multispecies or an ecosystem

context, as it could be influential on model results here too. Set steepness too high,

and simulations may predict the ecosystem would recover much faster than would

actually be likely. Get it too low, and species may be more prone to extinction than

they would in reality. When we don’t know whether it should be high or low, we

need to present results that reflect this uncertainty. However, in varying the steep-

ness, we still want to keep the virgin state of the population the same. Retaining the

virgin population state and varying steepness means the asymptote changes, and it

does not take too much exploration to find it changes in the opposite direction to

the steepness change. A population defined to have low steepness when depleted will

have much higher asymptotic recruitment. But this doesn’t matter if the population

can’t exceed its virgin state, right? Well yes, and no. The virgin state of a population

is linked to an assumed level of natural mortality. If this level of natural mortality

remains the same, then without fishing effort, the population will end up at its virgin

level. Constant natural mortality is not a feature of ecosystem or multispecies mod-

els. It is possible that in the realm of time-varying natural mortality, the concept of

virgin state needs to change. While I discuss the concept of virgin state with respect

to time-varying natural mortality in the chapter, the analyses presented assume the

virgin state remains the same. I propose the simplest solution, which was to cap

recruitment at its virgin level, and I explored the effects of doing so both on a simple

population model, and within the Chatham Rise Atlantis model. The simplest solu-

tion was chosen to demonstrate the effects, but it may not always be an appropriate

solution. There are aspects of the Ricker Spawning Stock Recruitment model that

may be more appropriate, as this curve reaches its highest level of recruitment when

biomass is greater than the virgin level (and the maximum is higher if steepness is

low), but the curve then descends back towards zero, thus tending the population

back down below its virgin state. It is also quite plausible for a population to recover

slowly when depleted and have recruitment potential well above its virgin level —in

which case no change to the Beverton-Holt curve would be necessary. My concern

was not just in the specification of the Spawning Stock Recruitment for a species, but
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also for sensitivities on the steepness parameter, where exploring a range of steepness

values without the effect on the asymptote was otherwise not possible.

In chapter 4, my analyses focused on the Chatham Rise Atlantis model’s sen-

sitivity to initial conditions. We know there are uncertainties around the initial

conditions, and the implications of these should be considered in model results. In

Atlantis, there are many thousands of parameters for which initial conditions are

specified (several hundred just for species function groups, without considering spa-

tial structure), and all of them will have some level of error both in magnitude and

direction. Different combinations of perturbing the initial conditions may have dif-

ferent effects on the model outputs, so we need to account for that, but the number of

simulations required to explore this entire space of uncertainty is enormous. Hence,

my approach was to perturb the initial conditions in a way most likely to be repre-

sentative of the uncertainties we are trying to account for. Initially, I perturbed all

the species initial conditions by the same magnitude and direction for each simula-

tion. This approach allowed me to perturb a large number of initial conditions (all

those for species functional groups), but it did not offer any insight into the effect of

changes in multiple directions. In the second set I perturbed the initial conditions

of the species groups that were likely to be most influential on the rest of the system

- using the keystone ranking of Chapter 2. The third approach I used was to per-

turb the initial conditions by random amounts that accounted for both magnitude

and direction, and were more likely to be larger for species groups that were poorly

informed. Each of the three sets had 35 runs with fishing included, and 35 runs

without fishing; enough runs to allow me to analyse variance. My first curiosity was

whether the model was chaotic —from the work I had carried out so far, I could

not predict the outcome to this result. Would I adjust the initial conditions slightly

and find the model produced very difference biomasses and dynamics? While the

results did not produce generally very different biomasses and dynamics, there were

still interesting aspects; I noticed some biomass trajectories converged very quickly,

while others continued along separate paths. This difference prompted the second
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part of this chapter which modelled the variability between runs using species char-

acteristics such as lifespan or trophic levels as explanatory variables.

The path of model development as presented in this thesis can be thought of in

seven main stages. Figure 5.1 shows the stages in a spiral, reflecting the iterative and

incremental nature of the process. The smaller spirals that overlap with the large

spiral reflect the possibility of returning to the drawing board at any stage, and that

all of the stages are connected. Some activities likely occurred prior to these stages,

such as deciding a model was needed and for what purpose, and communicating

with relevant stakeholders, interest groups and experts. It would be beneficial for

the modeller to be involved in the pre-model development activities, such as was the

case for Porobic et al. (2019), as then the modeller gains more understanding of the

purpose of the model and has input on selecting an appropriate model framework.

It is not always the case, as project inception can occur prior to modeller involve-

ment, which was the situation here. The decision to develop an Atlantis model of

the Chatham Rise for the purpose of assisting an Ecosystem Approach to Fisheries

Management had been made prior to my involvement in the project.
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  Basic checks

Dynamics 
Interactions & responses

Sensitivities
Parameters, structure

& initial conditions

Build the model
Version # 1.0

Model calibration
Version # 1000.0

Scenario testing
Is it ready for its 

intended use?

Use it!!
But remember to keep testing 

and checking 

Figure 5.1: The model process as applied for the Chatham Rise Atlantis model. The

process begins in the centre of the spiral, then progresses towards the outer spiral,

but can at any stage return to an earlier part of the process, and no part of the

process is separate.
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The stages are:

Stage 1: Build the model, largely featured in Chapter 2, but it could be revisited

at any time—even during model use. The initial build includes model design as

well. Defining the physical structure of the model, deciding on timestep size, defin-

ing species functional groups, and all their parameters and functional forms, defining

fisheries, defining prey availabilities, feeding parameters and functional forms, mi-

gration parameters, and spatial distributions. Initially, it is a matter of putting it

all there and seeing what happens. The initial build of the model is a significant

amount of work, and yet is unlikely to produce much in the way of realistic dy-

namics —the whole system could crash within its first timestep, for example. It

requires patience, persistence, and perhaps optimism to develop and then calibrate

a complex ecosystem model. One lesson for this stage: Think carefully about the

spatial structure and the size of timesteps as they can’t be easily changed without

creating a new model. Most other aspects can be changed, including group structure.

Stage 2: Model calibration, links very closely with stage 1. The initial hurdle

is for the model to persist. A large imbalance in the nutrients, for example, will

cause the model to crash. Early on, the model dynamics can be very unrealistic—for

example, all the sharks could go extinct, or crabs could grow to 5 times their size

and proceed to take over the ecosystem. One lesson from calibrating a complex

ecosystem model: multiple model runs save time and lead to better model decisions.

Even if focusing on a component over short time periods, such as nutrient dynamics,

still always do multiple runs. They don’t have to be huge, but several parameters

varied by several scalars will tell you so much more about what is going on so much

more quickly than individual runs. During model calibration I wrote an R function

to change a given parameter for a given set of species groups, by a vector shifts that

were either absolute or proportional. This was used for exploring parameter space

during calibration. Matching this, I wrote an R function to read in multiple runs and

compare the outputs, either summarised over space, by polygon, or by cell (layer of a

polygon). Following from this, I wrote a wrapper to run all combinations of runs for a
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given set of species groups and a given vector of changes on a given set of parameters.

Stage 3: Basic checks overlaps with stage 2 (and hence stage 1) as these checks

are one of the things informing the calibration process, especially once the model

is not crashing. Species groups were checked for growth by inspecting realised

growth curves, and mortality through exponential decay curves fitted to the realised

proportions-at-age. Too much mortality and too much growth may not show up in

biomass trajectories if these balance each other out, but their dynamics in the system

will be different. The effects of fishing could change due to size selectivities, and it

will affect predator-prey interactions due to gape-sizes. The diets take a lot of at-

tention. I wrote approximately 50 R-scripts focused on predation, analysing spatial

and temporal overlap, gape sizes, growth rates of the predator, mortality rates of the

prey, comparing realised diets with the literature. Much of the work on diets included

becoming familiar with the Atlantis source code, in particular the function ‘Eat()’.

When I created a new fprintf statement in Atlantis, I often wrote a corresponding

R script to analyse the outputs, as these were often multi-dimensional. There was a

lot of repetition in basic checks and calibrations, which I’m sure could benefit from

automation. There is the idea that going through this process helps the modeller to

really learn and understand their model. I suspect the benefits of automation would

outweigh the disadvantages of model familiarity. It would allow the modeller time

to explore a well-functioning model with sensitivities. There is progress in this area,

with some colleagues in Europe working on optimisation routines for subcomponents

of Atlantis models, with the intention of running them using High Performance Com-

puting. It is possible that calibrating complex ecosystem models will become a thing

of the past, with calibration algorithms developed instead. There is risk involved

in automating more of the development and calibration process as the potential for

blindly creating complex models increases. Hopefully, standards for transparently

and coherently assessing the dynamics of complex ecosystem models will develop

ahead of processes for automating their development.
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Step 4: Dynamics involved in using the model system in some way and analysing

how it responded. As is typically done, applying fishing should reduce the biomass of

some affected species. In more recent years, there have been examples of comparing

the biomass trends with historical data using a skill assessment (Olsen et al., 2016;

Ortega-Cisneros et al., 2017; Sturludottir et al., 2018). I took this a little further

by comparing data outputs to trawl survey estimates, stock assessment estimates,

and CPUE (catch per unit effort) estimates of abundance. The latter two allowed

me to compare the ecosystem dynamics of these species with the single species dy-

namics. It was interesting they matched so well, as the stock assessment was using

between-year recruitment deviates, which are very influential on the resulting stock

size, but fixed natural mortality, where as the Atlantis model did not have recruit-

ment deviates, but did have time-varying mortality and growth rates through the

ecosystem dynamics. The interaction dynamics have not been explored in this way

for Atlantis models, although was based on theory behind some of the Ecopath with

Ecosim outputs (Libralato et al., 2006). This exercise was a communication interface

between the model dynamics and the ecosystem experts. While I did not know which

groups should be most influential (although myctophids were not a surprise), when I

presented the results to colleagues familiar with the Chatham Rise ecosystem, they

confirmed the results to be realistic. Had the results been implausible, I would have

needed to find out why. Turning the keystoneness equation around to calculate re-

sponsiveness was new from all ecosystem modelling, as was analysing the informance

of each species group with respect to their keystoneness and responsiveness ratings.

Step 5: Sensitivities is the area I would argue is most lacking in complex ecosys-

tem models. Sensitivity analyses can be analytical or empirical (Pantus, 2007),

although for complex ecosystem models such as Atlantis, analytical is not a viable

option. Some fairly tentative examples of empirical sensitivity analyses exist of per-

turbing a selection of parameters for a selection of species (Sturludottir et al., 2018;

Ortega-Cisneros et al., 2017; Hansen et al., 2019), but not analysed as resulting un-

certainty in model results. I would expect this level of sensitivity analyses to be
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explored during model calibration and basic checks. Sensitivities that account for

uncertainties require a more robust statistical approach, where perturbations have

some random variability. One lesson from this step is to do it earlier in the process.

When I presented biomass responses to fishing in Chapter 2, they should have in-

cluded uncertainty. This was particularly apparent in scampi which was presented

as a ’surprisingly good match’ in Chapter 2 only to find out it was more complicated

than that in Chapter 4. Once I accounted for uncertainty in the initial conditions,

the result disappeared in the noise of many different and equally plausible results.

It would have made sense to combine the oceanography variability with sensitivity

to the initial conditions, and it is my recommendation this is done when in Step 7:

Using the model. I suspect there is much more we can and should do to address un-

certainty, and I imagine we will see more development in accounting for uncertainty

in results of complex ecosystem models in the near future.

Step 6: Scenario testing involves testing components of a scenario for plausi-

ble responses. For example, are changes in the model dynamics reflected through

ecosystem indicators? This is useful to know ahead of running scenarios if outcomes

will be assessed using ecosystem indicators. It also suggests more development work

may be required if these indicators are unrealistic or unresponsive. The analyses I

presented assessing ecosystem indicators in response to fishing, when evaluating the

spawning stock recruitment curve, was also informative for scenario testing. Some

focused ecosystem response analyses exist in the literature: Masi et al. (2017) tested

responses of ecosystem indicators to fishing in the Gulf of Mexico Atlantis model,

and Ortega-Cisneros et al. (2017) presented a similar analyses but comparing an

Atlantis model and an EwE model. Assessing the realism of responses relating to

climate change scenarios is another example of scenario testing. Ortega-Cisneros

et al. (2018) explored model responses to temperature increases on species groups

prior to full climate change exploration using the Southern Benguela Atlantis model.

This could be taken further by exploring the effects as they flow-on from nutrients

and primary productivity. It may be possible to analyses these flow-on effects with
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respect to Earth System Models such as those analysed for New Zealand in Law et al.

(2017).

The model process for complex ecosystem models to date has generally consisted

of building the model, calibrating the model, some basic checks, the fisheries dynam-

ics tested, very little on sensitivities, with almost no uncertainty in model results,

almost no scenario testing, but quite a bit of model use. This thesis urges greater

emphasis on model dynamics, sensitivities, presenting uncertainties in model results,

and scenario testing.

Scenarios explored using the Chatham Rise Atlantis model need to consist of

multiple runs that vary the initial conditions based on uncertainty of the species

functional groups and sample the ROMS variables for each year simulated. Varying

the initial conditions based on the uncertainty levels of the species groups will bring

in more variability for the seabird and cetacean groups found to be poorly defined

and influential, however further perturbing these groups perhaps through their pro-

ductivity parameters could be explored. Scenarios should be explored with reduced

primary production to account for potentially lower levels, particularly in the spring

and autumn blooms, expected with climate change at the mid-and end of this cen-

tury (Law et al., 2017).

Recommendations for understanding results from complex ecosystem models:

• Always understand what in the model has produced a result before considering

what the result may tell us about the system. There are so many ways a result

could occur in a complex model.

• Don’t fall into the trap of accepting a model result just because you like it. It

is just as important to understand the results you like, as the results you don’t

like.

• Always test results with uncertainty. It is potentially misleading to present
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results from single model runs as they could be flukes or non-representative

• Incorporate random variability in uncertainty analyses, varying both direction

and magnitude.

• Ideally an ecosystem model should have two lead scientists; one an expert of the

model, and one an expert of the system. Ecologists or biologists are more likely

to understand the dynamics as they exist in the real world, and a modeller is

more likely to understand the mathematical equations and the statistical anal-

yses required for the abstraction of these dynamics into a computer simulation.

The ecologist can describe how they would sample the real system and what

they would expect to see, and the modeller can replicate this by sampling the

modelled system and comparing what they see.

• Always present multiple indicators. Biomasses and catches only show part of

the picture, and generally don’t reflect trophic interactions. Ecosystem indica-

tors come closer. Realised diets can be presented as a timeseries which can be

great for identifying predator/prey switching.

• Remember there are multiple dimensions. Results are often summarised over

space and time, but remember these are summaries and you may be missing

some key dynamics. Predator/prey dynamics all occur at a fine scale, so the

cause of prey-switching could be due to a shift in spatial distribution. Fine if

the switch is plausible, but if not then more work on this part of the model

may be required.

• Look at species population dynamics in different ways. For example, numbers

by age class will tell you about shifts in mortality, and size by age class will

tell you about shifts in food availability. Both are important aspects in under-

standing responses of a species group to a scenario, and may help understand

overall results too.

• Remember assumptions. There will be too many to remember each individu-
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ally, but the general areas of assumption (e.g. predator-prey response param-

eters, productivity, migration)

Recommendations for empiricists and the modelling community going forward

• Rethink the application of theory developed for exploited single-species fish

stocks to multi-species models. The Spawning Stock Recruitment curve is

one, and this raised the idea that ‘virgin state’ of a population should be

reconsidered when natural mortality varies with time.

• Predator/prey feeding response curve functional form and parameters could

benefit from some more attention. These are often changed during model

calibration, but model calibration is often focused on the model dynamics in or

close to equilibrium (due to the goal of stability under constant forcing). The

real purpose of the feeding response curve is to describe feeding behaviour at

different levels of prey availability, and this won’t be tested at equilibrium.

• Development or exploration of statistical techniques for analysing multi-dimensional

results that include uncertainty. Perhaps Brownian Motion for introducing

random variability, and Martingale Processes to separate the pattern from the

noise, or perhaps a simple difference of means test.

• Develop programs to automate at least some of the calibration and basic checks

parts of the process. Artificial Intelligence may assist in these developments.

Recommendations for fisheries and marine resource managers using ecosystem

models in the future

• Be extremely wary of results that are presented without uncertainty bounds.

• Complex ecosystem models are learning tools, where scenarios are explored

to help understand the dynamics of the system. To be useful, results from

ecosystem models need to be thought of differently to results from single-species
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fisheries models. For example, rather than seeking a probability of falling below

a threshold, we may be seeking the extent of impact.

• Single species reference points such as FMSY require a bit more thought in a

multi-species context because they don’t allow for interactions between species.

For example, a reduction of stock for one exploited species may change the

population dynamics and hence reference points of another exploited species.

Ecosystem modelling is exciting because of the potential of what it can offer, how-

ever, with this excitement comes the risk of haste—presenting results and outputs

from models that are not ready, or that are not well understood. On the other hand,

waiting for the perfect model would likely mean waiting forever. So, as a modelling

community, it is finding a balance between cautious optimism of where we are now,

and ambitious optimism as we strive for where we can be in the future.
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Echevarria, F., González-Gordillo, J. I., Hernandez-Leon, S., Agusti, S., Aksnes,

D. L., Duarte, C. M., and Kaartvedt, S. (2014). Large mesopelagic fishes biomass

and trophic efficiency in the open ocean. Nature communications, 5:ncomms4271.

171



Irvine, S. B., Stevens, J. D., and Laurenson, L. J. (2006a). Comparing external and

internal dorsal-spine bands to interpret the age and growth of the giant lantern

shark, Etmopterus baxteri (Squaliformes: Etmopteridae). Environmental Biology

of Fishes, 77(3-4):253–264.

Irvine, S. B., Stevens, J. D., and Laurenson, L. J. (2006b). Surface bands on deep-

water squalid dorsal-fin spines: an alternative method for ageing Centroselachus

crepidater . Canadian journal of fisheries and aquatic sciences, 63(3):617–627.

Jacobsen, N. S., Gislason, H., and Andersen, K. H. (2014). The consequences of

balanced harvesting of fish communities. Proceedings of the Royal Society B: Bi-

ological Sciences, 281(1775):20132701.

Johnson, K. F., Monnahan, C. C., McGilliard, C. R., Vert-pre, K. A., Anderson,

S. C., Cunningham, C. J., Hurtado-Ferro, F., Licandeo, R. R., Muradian, M. L.,

Ono, K., et al. (2014). Time-varying natural mortality in fisheries stock assess-

ment models: identifying a default approach. ICES Journal of Marine Science,

72(1):137–150.

Kaplan, I. C., Horne, P. J., and Levin, P. S. (2012). Screening california current fish-

ery management scenarios using the atlantis end-to-end ecosystem model. Progress

in Oceanography, 102:5–18.

Kaplan, I. C. and Marshall, K. N. (2016). A guinea pig’s tale: learning to review

end-to-end marine ecosystem models for management applications. ICES Journal

of Marine Science, 73(7):1715–1724.

Kimura, D. K. (1980). Likelihood methods for the von bertalanffy growth curve.

Fishery bulletin, 77(4):765–776.

Kishi, M. J., Kashiwai, M., Ware, D. M., Megrey, B. A., Eslinger, D. L., Werner,

F. E., Noguchi-Aita, M., Azumaya, T., Fujii, M., Hashimoto, S., et al. (2007). Ne-

muroa lower trophic level model for the north pacific marine ecosystem. Ecological

Modelling, 202(1-2):12–25.

172



Kochkin, P. (1994). Age determination and estimate of growth rate for the Peruvian

jack mackerel, Trachurus symmetricus murphyi . Journal of Ichthyology, 34(3):39–

50.

Koz, A. (1995). A review of the trophic role of mesopelagic fish of the family myc-

tophidae in the southern ocean ecosystem. CCAMLR Science, 2:71–77.

Law, C. S., Rickard, G. J., Mikaloff-Fletcher, S. E., Pinkerton, M. H., Behrens,

E., Chiswell, S. M., and Currie, K. (2017). Climate change projections for the

surface ocean around new zealand. New Zealand Journal of Marine and Freshwater

Research, pages 1–27.

Lee, H.-H., Maunder, M. N., Piner, K. R., and Methot, R. D. (2012). Can steep-

ness of the stock–recruitment relationship be estimated in fishery stock assessment

models? Fisheries Research, 125:254–261.

Libralato, S., Christensen, V., and Pauly, D. (2006). A method for identifying key-

stone species in food web models. Ecological Modelling, 195(3-4):153–171.

Link, J. S. (2002). What does ecosystem-based fisheries management mean. Fish-

eries, 27(4):18–21.

Link, J. S. (2005). Translating ecosystem indicators into decision criteria. ICES

Journal of Marine Science, 62(3):569–576.

Link, J. S. (2010). Adding rigor to ecological network models by evaluating a set

of pre-balance diagnostics: a plea for prebal. Ecological Modelling, 221(12):1580–

1591.

Link, J. S. and Browman, H. I. (2017). Operationalizing and implementing

ecosystem-based management. ICES Journal of Marine Science, 74(1):379–381.

Link, J. S., Fulton, E. A., and Gamble, R. J. (2010). The northeast us application

of atlantis: a full system model exploring marine ecosystem dynamics in a living

marine resource management context. Progress in Oceanography, 87(1-4):214–234.

173



Livingston, M., Bull, B., Stevens, D., and Bagley, N. (2002). A review of hoki

and middle depth trawl surveys of the ChathamRise, January 1992–2001. NIWA

Technical Report, 113.

Locarnini, R. A., Mishonov, A. V., Antonov, J. I., Boyer, T. P., Garcia, H. E., Bara-

nova, O. K., Zweng, M. M., Paver, C. R., Reagan, J. R., Johnson, D. R., Hamilton,

M., and Seidov, D. (2013). World ocean atlas 2013, volume 1: Temperature. Mis-

honov Technical Ed.; NOAA Atlas NESDIS 73, page 44.

Long, R. D., Charles, A., and Stephenson, R. L. (2015). Key principles of marine

ecosystem-based management. Marine Policy, 57:53–60.

Mace, P. M. and Doonan, I. (1988). A generalised bioeconomic simulation model for

fish population dynamics. MAFFish, NZ Ministry of Agriculture and Fisheries.

Mackay, K. (2000). Database documentation: trawl. Technical report, NIWA Internal

Report.

Marine Stewardship Council (2014). MSC Fisheries certification requirements and

guidance v2.0. page 528p.

Masi, M., Ainsworth, C., and Jones, D. (2017). Using a gulf of mexico atlantis model

to evaluate ecological indicators for sensitivity to fishing mortality and robustness

to observation error. Ecological indicators, 74:516–525.

Maunder, M. and Starr, P. (1995). Rock lobster standardised cpue analysis. new

zealand fisheries assessment research document 95/11. 28 p. Unpublished report

held in NIWA Greta Point library, Wellington.

May, R. M. (1972). Will a large complex system be stable? Nature, 238(5364):413.

May, R. M. (1975). Biological populations obeying difference equations: stable

points, stable cycles, and chaos. Journal of Theoretical Biology, 51(2):511–524.

174



McGregor, V. (2015). Stock assessment of ling (Genypterus blacodes) on the

Chatham Rise (LIN 3&4) for the 2014–15 fishing year. New Zealand Fisheries

Assessment Research Document, 82.

McGregor, V. and Horn, P. L. (2015). Factors affecting the distribution of highly

migratory species in New Zealand waters.

McGregor, V. L. (2018). CRAM data and code for exploration and validation of

historic Atlantis model of Chatham Rise.

McGregor, V. L., Fulton, E. A., and Dunn, M. R. (2019a). Spawning stock re-

cruitment creates misleading dynamics under predation release in ecosystem and

multi-species models. PeerJ, 7:e7308.

McGregor, V. L., Horn, P. L., Fulton, E. A., and Dunn, M. R. (2019b). From

data compilation to model validation: a comprehensive analysis of a full deep-sea

ecosystem model of the chatham rise. PeerJ, 7:e6517.

McKenzie, A. (2016). Assessment of hoki (Macruronus novaezelandiae) in 2015. New

Zealand Fisheries Assessment Report, 01:88.

Methot Jr, R. D. and Wetzel, C. R. (2013). Stock synthesis: a biological and sta-

tistical framework for fish stock assessment and fishery management. Fisheries

Research, 142:86–99.
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Chapter 7

Appendices

Appendix A: Simulated biomass by species group

from no-fishing model

Simulated biomass from the un-fished model (black line) with 95% confidence inter-

vals based on 20% CVs (Coefficient of Variation) shaded orange by species group.

7.0.1 Additional background:

Biomass trajectories were referred to in Chapter 2. These are from the base Chatham

Rise Atlantis model were produced to check the model’s stability, following the rec-

ommendations of Kaplan and Marshall (2016). The base model presented in this

study has oceanographic variables repeated on a nine year cycle, rather than just

one year, and this could bring in some instability. The fluctuating biomass of the

invertebrate scavengers commercial species group (primarily scampi) could be due

to oceanographic variability. Most of the biomass trajectories remain within the

20%CV bands over the 1900–2015 timespan simulated. The timespan inspected is

over 100 years due to the long life-span of some of the species, such as orange roughy

(Hoplostethus atlanticus) and the oreos (Allocyttus niger, Pseudocyttus maculatus)

that live for more than 100 years. There was a burn-in period of 35 years, which
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doesn’t come close to the lifespan of many species, but did seem to be long enough

for the system dynamics to settle.
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Appendix B: Size-at-age

Size-at-age using values based on literature (Table 2.6) where available (orange

shaded shows 95% confidence intervals using CV 10%) and from CRAM simulated

years 1900–2015 (boxplots).

7.0.2 Additional background:

These figures are referred to in Chapter 2. They show the size-at-age of age-

structured species groups from the base Chatham Rise Atlantis model outputs from

1900–2015, compared to the von Bertalanffy curves with parameters from the lit-

erature. The variability from the model outputs are shown in the distributions of

the boxplots. As the base model was designed to be fairly stable, there is not much

variability in most groups, and almost none in some (apparent with flat horizontal

lines rather than boxes). Evaluating base Atlantis models for stability in growth has

been done before (e.g. Weijerman et al. (2014)), but only as a time series, which

cannot be easily compared to a von Bertalanffy curve. The outputs used from At-

lantis for these figures were the average weights (reserve mg N and structural mg N)

for each age class in each cell at each timestep. I converted these to grams using the

conversion used in Atlantis (Equation 7.1).

Wgrams = (RN + SN)× 20× 1e− 3× 5.7 (7.1)

where

20 is the wet-dry weight conversion,

1e-3 converts mg to g,

5.7 is the Redfield ratio for converting nitrogen to carbon.

The weights were then converted to length using L = aW b, with a and b param-

eters from the literatures.

187



0
10

20
30

Age (years)

Le
ng

th
 (

cm
)

1 2

Arrow squid

0
40

80

Age (years)

Le
ng

th
 (

cm
)

3 6 9 15 21 27

Basketwork eel
●●●●●●●●●●●●●

●●●●●●●●●●●●●●

0
20

40
60

Age (years)

Le
ng

th
 (

cm
)

5 15 25 35 45

Baxters dogfish

● ● ● ● ● ● ● ●

0
10

20
30

Age (years)

Le
ng

th
 (

cm
)

2 4 6 8 12 16 20

Ben fish deep

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●● ●●● ●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●

0
10

30

Age (years)

Le
ng

th
 (

cm
)

12 36 60 84 108

Black oreo

0
20

40

Age (years)

Le
ng

th
 (

cm
)

2 4 6 8 12 16 20

Bollons rattail

●●●

0
20

40

Age (years)

Le
ng

th
 (

cm
)

1 2

Cephalopod other

0
20

40
60

Age (years)

Le
ng

th
 (

cm
)

2 4 6 8 12 16 20

Dem fish pisc

0
40

80
Age (years)

Le
ng

th
 (

cm
)

2 4 6 8 12 16 20

Elasmobranch invert 

●● ●●●●●● ● ●●●●●●
●●●●●●●●●●●●

0
20

60

Age (years)

Le
ng

th
 (

cm
)

5 15 25 35 45

Elasmobranch pisc 
●●● ●●●●●●●●●●●●

0
10

20
30

Age (years)

Le
ng

th
 (

cm
)

10 30 50 70 90

Epiben fish deep

●●

● ●

0
5

10
20

Age (years)

Le
ng

th
 (

cm
)

1 2 3 4 5 6 7 8 9

Epiben fish shal

0
20

60

Age (years)

Le
ng

th
 (

cm
)

2 4 6 8 12 16 20

Ghost shark

0
40

80

Age (years)

Le
ng

th
 (

cm
)

3 6 9 15 21 27

Hake

●●

●●●●●●●●●●●●●●●

0
40

80

Age (years)

Le
ng

th
 (

cm
)

2 4 6 8 12 16 20

Hoki

0
50

10
0

Age (years)

Le
ng

th
 (

cm
)

2 4 6 8 10 12 14

Invert comm herb

●

●●●

0
20

40

Age (years)

Le
ng

th
 (

cm
)

1 2 3 4 5 6 7 8 9

Invert comm scav

0
20

40

Age (years)

Le
ng

th
 (

cm
)

1 2 3 4 5 6 7 8 9

Javelinfish

188



0
40

80

Age (years)

Le
ng

th
 (

cm
)

3 6 9 15 21 27

Ling

0
10

30

Age (years)

Le
ng

th
 (

cm
)

3 6 9 15 21 27

Lookdown dory

●●●
●●●●●● ●●●●●● ●●●●●●●● ●●●●●●●●●●●●●

0
20

40
60

Age (years)

Le
ng

th
 (

cm
)

3 6 9 15 21 27

Mackerels

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●
●●●●●●●●●●

0
10

30

Age (years)

Le
ng

th
 (

cm
)

12 36 60 84 108

Orange roughy

●

●

●
●●●

●●●●
●●●●●●● ●●●● ●●

0
50

15
0

Age (years)

Le
ng

th
 (

cm
)

2 4 6 8 12 16 20

Pelagic fish lge

●●●

● ●

0
20

60

Age (years)

Le
ng

th
 (

cm
)

1 2 3 4 5 6 7 8 9

Pelagic fish med

●

0
2

4
6

Age (years)

Le
ng

th
 (

cm
)

1 2 3 4

Pelagic fish sml

●

●

●
●

●
●

●
●

● ●

0
20

40

Age (years)

Le
ng

th
 (

cm
)

2 4 6 8 12 16 20

Reef fish

●●●●

0
20

60
Age (years)

Le
ng

th
 (

cm
)

2 4 6 8 10 12

Rock lobster

●●●●●●

●●●

●●●●●●
●●●●●●

0
20

40

Age (years)

Le
ng

th
 (

cm
)

5 15 25 35 45

Seaperch
●●●●●●●●●

●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●

0
40

80

Age (years)

Le
ng

th
 (

cm
)

4 8 16 24 32 40

Shovelnosed dogfish

●●●

●●●●

●●●●●
●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●

0
20

40

Age (years)

Le
ng

th
 (

cm
)

10 30 50 70 90

Smooth oreo

0
40

80

Age (years)

Le
ng

th
 (

cm
)

3 6 9 15 21 27

Spiny dogfish

●●●●●●●

0
20

40

Age (years)

Le
ng

th
 (

cm
)

2 4 6 8 12 16 20

Warehou

189



Appendix C: Proportion-at-age

Proportions at age using M based on literature (Table 2.6) where available (orange

shaded shows 95% confidence intervals using CV 10%) and from CRAM simulated

years 1900–2015 (boxplots).

7.0.3 Additional background:

These figures are referred to in Chapter 2. They show the proportions-at-age of

age-structured species groups from the base Chatham Rise Atlantis model outputs

from 1900–2015, compared to the exponential decay curve using M (instantaneous

natural mortality) values from the literature. As these are from the base model with

no fishing, they reflect natural mortality in the model, and hence should be similar to

the curve from the literature if I have adequately captured the population dynamics

of each species. The variability from the model outputs are shown in the distribu-

tions of the boxplots. As the base model was designed to be fairly stable, there is

not much variability in most groups, and almost none in some (apparent with flat

horizontal lines rather than boxes). Evaluating exponential decay curves was men-

tioned by Weijerman et al. (2014), but showed as timeseries plots of densities by age

class, within which the decay curve is not apparent and its shape is not clear.
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Appendix D: Observed vs estimated

Observed biomass estimated from trawl surveys (red), estimated biomass from CRAM

(black) and forced catch history (grey) for all groups with trawl survey estimates.

7.0.4 Additional background:

These figures are referred to in Chapter 2. They show biomass trajectories from

the base Chatham Rise Atlantis model with fishing included, overlaid with both

the forced historic catches and the trawl survey estimated abundance where avail-

able. The trawl survey is designed for hoki (Macruronus novaezelandiae) and hake

(Merluccius australis) and these have the tightest CVs match the Atlantis model

outputs well. Ling (Genypterus blacodes) and seaperch (Helicolenus) also match

well, although the survey CVs are larger. I did not have to do much tuning of the

model once the base model had been calibrated without fishing. Once the species

groups had appropriate growth rates, mortality rates, and trophic interactions, the

responses to fishing followed to be appropriate. Rock lobsters (Jasus edwardsii) were

an exception, as they crashed under fishing in the initial runs. I eased off the pre-

dation on rock lobsters until they no longer crashed under fishing, but still responded.
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Appendix E: Kempton’s Q

Kempton’s Q calculated from Chatham Rise Atlantis model simulations with no cap

on recruitment (left), recruitment capped at R0 (right), recruitment steepness values

h ∈ (0.5, 0.7, 0.9) for the 1970–2016 hindcast period (top) and h set at 0.5 (second

to top), 0.7 (second to bottom), and 0.9 (bottom) for myctophids, with three catch

scenarios: 1.) Zero catch; 2.) Status quo catch; 3.) Half catch, for the 2016–2046

projection period (bottom). The red dashed vertical line marks the last hindcast

year, 2016. The grey region shows the range of values from the period 1900–1970.
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Appendix F: Mean trophic level

Mean trophic level of age-structured species groups calculated from Chatham Rise

Atlantis model simulations with no cap on recruitment (left), recruitment capped at

R0 (right), recruitment steepness values h ∈ (0.5, 0.7, 0.9) for the 1970–2016 hindcast

period (top) and h set at 0.5 (second to top), 0.7 (second to bottom), and 0.9

(bottom) for myctophids, with three catch scenarios: 1.) Zero catch; 2.) Status quo

catch; 3.) Half catch, for the 2016–2046 projection period (bottom). The red dashed

vertical line marks the last hindcast year, 2016. The grey region shows the range of

values from the period 1900–1970.

3.
60

3.
65

3.
70

M
ea

n 
tr

op
hi

c 
le

ve
l

19
70

19
75

19
80

19
85

19
90

19
95

20
00

20
05

20
10

20
15

Steepness

0.5
0.7
0.9

A: No cap

3.
60

3.
65

3.
70

M
ea

n 
tr

op
hi

c 
le

ve
l

19
70

19
75

19
80

19
85

19
90

19
95

20
00

20
05

20
10

20
15

Steepness

0.5
0.7
0.9

B: Cap

3.
60

3.
65

3.
70

M
ea

n 
tr

op
hi

c 
le

ve
l

20
10

20
15

20
20

20
25

20
30

20
35

20
40

20
45

Zero catch
Status quo
Half catch

C: No cap, h=0.5

3.
60

3.
65

3.
70

M
ea

n 
tr

op
hi

c 
le

ve
l

20
10

20
15

20
20

20
25

20
30

20
35

20
40

20
45

Zero catch
Status quo
Half catch

D: Cap, h=0.5

3.
60

3.
65

3.
70

M
ea

n 
tr

op
hi

c 
le

ve
l

20
10

20
15

20
20

20
25

20
30

20
35

20
40

20
45

Zero catch
Status quo
Half catch

E: No cap, h=0.7

3.
60

3.
65

3.
70

M
ea

n 
tr

op
hi

c 
le

ve
l

20
10

20
15

20
20

20
25

20
30

20
35

20
40

20
45

Zero catch
Status quo
Half catch

F: Cap, h=0.7

3.
60

3.
65

3.
70

M
ea

n 
tr

op
hi

c 
le

ve
l

20
10

20
15

20
20

20
25

20
30

20
35

20
40

20
45

Zero catch
Status quo
Half catch

G: No cap, h=0.9

3.
60

3.
65

3.
70

M
ea

n 
tr

op
hi

c 
le

ve
l

20
10

20
15

20
20

20
25

20
30

20
35

20
40

20
45

Zero catch
Status quo
Half catch

H: Cap, h=0.9

197



Appendix G: Biomass over catch

Biomass of age-structured species groups over catch calculated from Chatham Rise

Atlantis model simulations with no cap on recruitment (left), recruitment capped at

R0 (right), recruitment steepness values h ∈ (0.5, 0.7, 0.9) for the 1970–2016 hindcast

period (top) and h set at 0.5 (second to top), 0.7 (second to bottom), and 0.9

(bottom) for myctophids, with three catch scenarios: 1.) Zero catch; 2.) Status quo

catch; 3.) Half catch, for the 2016–2046 projection period (bottom). The red dashed

vertical line marks the last hindcast year, 2016. The grey region shows the range of

values from the period 1900–1970.
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Appendix H: Biomass pelagic over all

Biomass of pelagic fishes over biomass of all age-structured species groups calculated

from Chatham Rise Atlantis model simulations with no cap on recruitment (left),

recruitment capped at R0 (right), recruitment steepness values h ∈ (0.5, 0.7, 0.9) for

the 1970–2016 hindcast period (top) and h set at 0.5 (second to top), 0.7 (second

to bottom), and 0.9 (bottom) for myctophids, with three catch scenarios: 1.) Zero

catch; 2.) Status quo catch; 3.) Half catch, for the 2016–2046 projection period

(bottom). The red dashed vertical line marks the last hindcast year, 2016. The grey

region shows the range of values from the period 1900–1970.
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Appendix I: Biomass trophic level 4 and higher over

trophic level 3

Biomass ratio of trophic level 4 and higher over trophic level 3 calculated from

Chatham Rise Atlantis model simulations with no cap on recruitment (left), recruit-

ment capped at R0 (right), recruitment steepness values h ∈ (0.5, 0.7, 0.9) for the

1970–2016 hindcast period (top) and h set at 0.5 (second to top), 0.7 (second to bot-

tom), and 0.9 (bottom) for myctophids, with three catch scenarios: 1.) Zero catch;

2.) Status quo catch; 3.) Half catch, for the 2016–2046 projection period (bottom).

The red dashed vertical line marks the last hindcast year, 2016. The grey region

shows the range of values from the period 1900–1970.

200



0.
0

0.
1

0.
2

0.
3

0.
4

B
io

m
as

s 
ra

tio
: T

L 
4+

 / 
T

L 
3

19
70

19
75

19
80

19
85

19
90

19
95

20
00

20
05

20
10

20
15

Steepness

0.5
0.7
0.9

A: No cap

0.
0

0.
1

0.
2

0.
3

0.
4

B
io

m
as

s 
ra

tio
: T

L 
4+

 / 
T

L 
3

19
70

19
75

19
80

19
85

19
90

19
95

20
00

20
05

20
10

20
15

Steepness

0.5
0.7
0.9

B: Cap

0.
0

0.
1

0.
2

0.
3

0.
4

B
io

m
as

s 
ra

tio
: T

L 
4+

 / 
T

L 
3

20
10

20
15

20
20

20
25

20
30

20
35

20
40

20
45

Zero catch
Status quo
Half catch

C: No cap, h=0.5

0.
0

0.
1

0.
2

0.
3

0.
4

B
io

m
as

s 
ra

tio
: T

L 
4+

 / 
T

L 
3

20
10

20
15

20
20

20
25

20
30

20
35

20
40

20
45

Zero catch
Status quo
Half catch

D: Cap, h=0.5

0.
0

0.
1

0.
2

0.
3

0.
4

B
io

m
as

s 
ra

tio
: T

L 
4+

 / 
T

L 
3

20
10

20
15

20
20

20
25

20
30

20
35

20
40

20
45

Zero catch
Status quo
Half catch

E: No cap, h=0.7

0.
0

0.
1

0.
2

0.
3

0.
4

B
io

m
as

s 
ra

tio
: T

L 
4+

 / 
T

L 
3

20
10

20
15

20
20

20
25

20
30

20
35

20
40

20
45

Zero catch
Status quo
Half catch

F: Cap, h=0.7

0.
0

0.
1

0.
2

0.
3

0.
4

B
io

m
as

s 
ra

tio
: T

L 
4+

 / 
T

L 
3

20
10

20
15

20
20

20
25

20
30

20
35

20
40

20
45

Zero catch
Status quo
Half catch

G: No cap, h=0.9

0.
0

0.
1

0.
2

0.
3

0.
4

B
io

m
as

s 
ra

tio
: T

L 
4+

 / 
T

L 
3

20
10

20
15

20
20

20
25

20
30

20
35

20
40

20
45

Zero catch
Status quo
Half catch

H: Cap, h=0.9

201



Appendix J: Biomass trajectories

Biomass trajectories from models with fishing included (blue lines) and no fishing

(orange lines) for each species group, with CVs from across the model runs by time

from fished models (aqua asterisks) and unfished models (cerise asterisks) overlaid

and using the right-hand axis.
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Appendix K: Parameters tuned during model cali-

bration

Table 7.1: Parameters tuned and/or edited during model calibration.

Parameter Description General purpose of tuning

pPREY prey availability Tuned for realistic realised diets,

growth rates and mortality rates

mum (biomass pool species) Growth of biomass pool species

groups

Tuned to provide sufficient food for

predators

mQ (biomass pool species) Quadratic (density depen-

dent)additional mortality

Tuned to limit biomass expansion

in cells with less predation pressure

mL (age-structured species

groups)

Linear additional mortality Adjusted to obtain realistic decay

curves in the absence of fishing

mum, ht, C (age-structured

species, predacse 8)

Maximum growth, handling time

and clearance rate used in Holling

Type II feeding response

Explored and adjusted, but only

with respect to feeding rates and

growth rates in the base case

KLP, KUP (age structured

species groups)

Upper and lower gape sizes Explored and adjusted with respect

to size-at-age of predator and their

prey, and obtaining realistic re-

alised diets

KI (primary producers) Light saturation Explored and adjusted with respect

to light levels and food required

FSM, FSMG (migratory

species)

mortality and growth applied on re-

entering the model

Adjusted with respect to growth

and mortality curves of migrating

species groups

Appendix L: Experts consulted during model de-

sign and development

Peter Horn (NIWA, now retired) was the main expert on the system and data inputs

Beth Fulton (CSIRO) provided feedback and assistance on the Atlantis modelling

Matt Dunn (NIWA) also provided information and feedback regarding species and

dynamics of the system

Mark Hadfield (NIWA) developed the ROMS model

Bec Gorton (CSIRO) converted the ROMS model outputs into Atlantis model inptus

Suzanne Rosier (NIWA) and Dave Frame (VUW) helped me understand light atten-

uation in water and the atmosphere
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Graham Rickard and Cliff Law (NIWA) helped with accessing nutrient data and

converting units

Rosemary Hurst (NIWA) provided feedback on the model particularly with respect

to the fisheries

Moira Decima and Andres Gutierrez Rodriguez (NIWA) provided guidance on zoo-

plankton growth rates

Ian Tuck (NIWA) provided feedback on the scampi population dynamics, based on

the stock assessment which he has been the lead modeller on

Andy McKenzie (NIWA) provided feedback and migratory information on hoki,

based on the stock assessment which he has been the lead modeller on.
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