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Abstract

Successful reinforcement learning requires large amounts of data, com-
pute, and some luck. We explore the ability of abstraction(s) to reduce
these dependencies.

Abstractions for reinforcement learning share the goals of this abstract:
to capture essential details, while leaving out the unimportant. By throw-
ing away inessential details, there will be less to compute, less to explore,
and less variance in observations. But, does this always aid reinforcement
learning?

More specifically, we start by looking for abstractions that are easily
solvable. This leads us to a type of linear abstraction. We show that, while
it does allow efficient solutions, it also gives erroneous solutions, in the
general case.

We then attempt to improve the sample efficiency of a reinforcment
learner. We do so by constructing a measure of symmetry and using it
as an inductive bias. We design and run experiments to test the advan-
tage provided by this inductive bias, but must leave conclusions to future
work.
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Chapter 1

Introduction

Reinforcement learning has an efficiency problem: AlphaGo [1], the Go
playing AI that beat world champion Lee Sedol, played 1.28 million games,
with extra supervision from another 29.4 million positions, using 50 GPUs.
Libratus [2], the poker playing AI that beat a table of professionals, con-
structed its poker-playing strategy over 15 million processor-core-hours.
OpenAI Five [3], the Dota 2 playing AI that beat OG, the winners of The
International 8 and 9, was trained over 10 months, at its peak, it collected
900 years of experience per day using 128,000 CPUs and 256 GPUs.

Is reinforcement learning fundamentally inefficient, or can we do bet-
ter?

1.1 Our Motivation

We think (more) efficient reinforcement learning might be achieved by the
use of abstraction. Abstractions allow a learner to preserve essential struc-
ture, while discarding inessential details.

By throwing away inessential details, there is less to compute.
By throwing away inessential details, we don’t need to explore them.

1



2 CHAPTER 1. INTRODUCTION

By throwing away inessential details, we reduce the variance of our
observations (allowing quicker learning).

Thus, the main goal of this thesis is to:

understand how abstractions can increase the efficiency of reinforce-
ment learning.

1.2 Overview

Given the goal above, we pick Markov Decision Problems as our setting
for studying abstractions1and give a slightly non-standard, but general
introduction to them, see section 2. Then we explore abstractions and ex-
isting theory for understanding abstraction and attempt to organise it in to
a framework, see section 3.1. Next, we analyse an existing method of ab-
straction for efficient control and find that it does not work in general, see
section 3.2. Finally, we build an abstraction using symmetries, see section
3.3.

1.3 Contributions

In this thesis, we;

• Clarify that a well cited method of linear abstraction doesn’t work in
general. See section 3.2.4
• Evaluate a method of combining symmetric abstractions and Thomp-

son sampling. See section 3.3.3
• Explore the iteration complexity, effect of discounting, and the den-

sity of the Value functional polytope. See section A.3

1In general, when we state abstractions, we mean abstractions for reinforcement learn-
ing.
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• Provide a way to visualise the dynamics of learning an Markov de-
cision problem in higher dimensions. See section A.5
• Formulate a type of model based learner, which has some serious,

but potentially solvable, issues with scaling to larger problems. See
section A.4
• Explore a new task for understanding a learner’s ability to gener-

alise. See section B.4



4 CHAPTER 1. INTRODUCTION



Chapter 2

Markov Decision Problems

Reinforcement learning (RL) refers to the set of solutions to a type of prob-
lem. This general, reinforcement learning set, has two main properties;
”trial-and-error search and delayed rewards” [4].

Unlike supervised learning, which gives the learner feedback (Student:
”I think that digit is a 5”. Teacher: ”No, it’s a 6”), in RL the learner only
receives evaluations (Student: ”I think that digit is a 5”. Teacher: ”No.”). This
means the learner needs to explore the possible answers via some trial-
and-error search. (Student: ”Is it a 4?”. Teacher: ”No.” Student: ”How about
a 0?”. Teacher: ”No.” ... Student: ”A 6?”. Teacher: ”Yes.”)

On top of terse teachers, many actions may be taken before any evalu-
ation is received, thus requiring credit to be assigned to past actions, (Stu-
dent: ”Is it a 4? How about a 0? A 6? Maybe a 7?”. ... Teacher: ”No”.) often
leaving the learner wondering: ”what did I do to deserve this?” (see pigeon
superstition for an amusing example of credit assignment gone wrong [5]).

The above definition of reinforcement learning is quite general. There
are many different dimensions to problems that require trial-and-error
search and give delayed rewards. For example we could make a RL prob-
lem that is;

• Observable or un-observable [6]

5
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• Deterministic or stochastic [7]
• Synchronous or asynchronous [8]
• Terminating or infinite [7]
• Discrete versus continuous [8]
• Given knowledge of the underlying model or not [9]

But, which setting should we study?1

A better question might be: What is the simplest setting we
can consider that still poses a challenge to the ML and / or RL
communities?

Markov decision problems (MDPs) appear to be a good candidate. Let’s
go through some definitions so we an more clearly understand how they
can be used as a simple setting to analyse RL.

Formally, a MDP, which is a type of sequential decision problem, is
defined as a tuple, {S,A, τ, r, γ, d0}. Where S is the set of possible states
(for example arrangements of chess pieces), A is the set of actions (the different
possible moves, left, right, diagonal, L-shaped step, ...), τ : S × A → ∆(S)2is
the transition function which describes how the environment acts in re-
sponse to the current state and to actions (You play pawn to pawn to D4, in
response your opponent moves, knight to D4, taking your pawn.). Next is the
reward function, r : S × A → R, (whether you won (+1) or lost (-1) the game
). Lastly, the policy, π : S → ∆(A), is what the learner gets to choose, aka
the learners strategy. It decides which action to take in different states.

The objective when solving a MDP is to find a policy that maximises
the expected cumulative discounted reward V π (aka the value). This can
be written as, maximising the expected return.

1I will often start a chapter / section / paragraph with a question like this. These
questions are not meant as research questions. Rather, they are designed to orient the
reader.

2The notation ∆(S) represents a distribution over S.
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V π = E
ζ∼D(π,τ)

[R(ζ)] (state value)

π∗ = max
π

V π

Where, d0 is the initial state distribution, γ is the discount rate, ζ col-
lects the (st, at, rt) triples of a game (aka trajectory or rollout) 3, R(ζ) =∑H

t=0 γ
tζrt is cumulative discounted reward (aka the ’return’ of a single

game), and D is the probability of a trajectory under the chosen policy
and MDP.

ζ = {(st, at, rt) : t ∈ [0, H]} (trajectory)

D(ζ, π, τ, d0) = d0(ζs0)
∞∏
t=1

π(ζat |ζst )τ(ζst+1|ζst , ζat ) (p(ζ))

2.1 Sequential decision problems

A general intuition for the problem of solving a sequential decision prob-
lem is: actions (aka decisions) are made sequentially (e.g. First we put on
our socks then we put on our shoes). These actions need to be conditioned on
the current state of the world (e.g. It is morning and time to go to work.). The
goal is to take actions that achieve higher rewards (e.g. Lying in bed is quite
rewarding...). While instantaneous rewards are good, we really care about
long term cumulative rewards (e.g. Having a job and thus being able to afford
a bed is more rewarding.).

What does the M in MDP really mean?

When we say a decision problem is Markovian, we mean that the tran-
sition function generates a Markov chain [10]. The next transition step

3We allow ζ to be indexed by time and {s, a, r}. For example; ζst = st.
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depends only on the current state and action. It is invariant to any and all
histories that do not change the current state. 4

This is not to say that past actions do not effect the future. Rather, it is
a special type of dependence on the past. Where the dependence is totally
described by changes to the state, s ∈ S. We can return to chess for an
example: in chess there are no hidden pieces, or private knowledge about
the current state. I know everything there is to know.

2.2 Solving a MDP

What does it mean to solve a MDP?

A MDP is considered solved when we have found the ’optimal’ policy.
As above, the ’optimal’ policy is the policy that gives the highest expected
return (value). This notion of optimality is defined;

π∗ : V π∗(s) ≥ V π(s) ∀π ∈ Π ∀s ∈ S

But, how can we (efficiently) find the optimal policy?

If we randomly pick policies and evaluate them, we would need to test
(in the worst case), all the deterministic policies, O(|A||S|) . However, we
can use the Bellman equation to guide our search. The expected return can
be rewritten in a recursive manner, to give the Bellman equation.

Qπ(s, a) = r(s, a) + γ E
s′∼τ(·|s,a)

[V π(s′)] (Bellman equation)

V π(s) = E
a∼π(·|s)

[Qπ(s, a)]

4Or another way of saying the same thing, there is no hidden state that effects future
transitions.
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Where Q is the state-action values. The Bellman equation is sometimes
written as an operator, T .

T (Qπ) = r(s, a) + γ E
s′∼τ(·|s,a)

E
a′∼π(·|s′)

[Q(s′, a′)]

2.2.1 Complexity

How hard is it to find the optimal policy?

The complexity of estimating the value of a state-action under the opti-
mal policy, ie solving the Bellman optimality equation, can be glimpsed if
we unroll its recursive definition. Here we can see a series of nested max-
imisation problems, where the former maximisation problems are condi-
tional on the results of the latter maximisation problems.

Qπ(s0, a0) = r(s0, a0) + γmax
a1

E
s1∼p(·|s0,a0)

[

r(s1, a1) + γmax
a2

E
s2∼p(·|s1,a1)

[
r(s2, a2) + γmax

a3
E

s3∼p(·|s2,a2)

[
. . .
]]]

For the final maximisation problem we need to find the best action (|A|)
for each potential final state we might be in (|S|). Then we need to do
this again for each maximisation problem (of which there are |S|). So the
computational complexity is O(|S|2|A|).

2.3 A tabular representation of MDPs

Back to constructing a simple RL setting.
Imagine a MDP that can be described with tables (aka arrays). A table

of three dimensions can describe the transition probabilities, P [st+1, st, at],
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and a table of two dimensions can describe the rewards, r[st, at]: the states
and actions act as indexes to locations in the tables. Let’s formally define
our tabular MDP. 5

M = {S,A, P, r, γ} (the MDP)

S = [0 : n− 1] (the state space)

A = [0 : m− 1] (the action space)

τ ∈ [0, 1]n×n×m, ∀j, k :
∑
i

τ [i, j, k] = 1 (the transition fn.)

r ∈ Rn×m (the reward fn.)

A result of this formulation is that we concisely write and solve the
(Bellman equation). However, it should be noted that the ability to solve
the Bellman equation analytically (via the value functional) does not allow
us to solve for the optimal policy analytically. The value functional allows
us to evaluate a single policy. To find the optimal policy, we many need to
make many evaluations.

V = rπ + γτπV (tabular Bellman eqn)

V = (I − γτπ)−1rπ (Value functional)

The values are written as a vector, V ∈ Rn. The reward under a given
policy is written rπ[s, a] = π[s, a]r[s, a]. And the transitions under a given
policy is written τπ[s′, s] =

∑
a τ [s′, s, a]π[s, a].

An alternative derivation of the value functional, which is more ver-
bose and more enlightening, can be found in A.1.

But why is the tabular MDP considered ’simple’ enough?

5It should be noted that this tabular MDP setting ignores an important aspect of RL:
exploration, estimation error.
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Consider a MDP with deterministic actions, where τ(st+1|st, at) ∈ {0, 1}.
This RL problem can be efficiently solved by non-statistical methods: dy-
namic programming and related planning techniques [8]. This setting is
too simple.

Rather, a MDP with stochastic actions, τ(st+1|st, at) ∈ [0, 1], seems to re-
tain much of the complexity we care about: this setting does not allow ef-
ficient solutions via dynamic programming. Further, it can be approached
with algorithms that are used for state-of-the-art deep RL such as; policy
gradients [11] and Q-learning [12].
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Before going further with our quest for efficient RL. Let’s try to under-
stand some properties of our setting, tabular MDPs.
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2.4 The value function polytope

The Value Function Polytope [13] provides intuition about the structure
of a MDP and the dynamics and complexity of solvers. Let’s take a look:
consider a two state, two action MDP.

Figure 2.1: The simplest possible MDP has two states and two actions.
(Any simpler setting is entirely uninteresting. A single state means actions
do nothing. A single action means all policies are the same.).

The space of possible policies is a 2D surface in a 4D space. For each
state, we can pick action1 or action2, with some probability, p. For
more intuition about this policy space see A.2. And for a method of visu-
alising higher dimensional policies, see A.5.

π =

[
p(a = a1|s = s1) p(a = a2|s = s1)

p(a = a1|s = s2) p(a = a2|s = s2)

]

=

[
p(a = a1|s = s1) 1− p(a = a1|s = s1)

p(a = a1|s = s2) 1− p(a = a1|s = s2)

]

Since the policies are a 2D space, we can visualise them. This square of
all possible policies is not particularly interesting.

Rather, we can evaluate (calculate the expected return) each policy (us-
ing the (Value functional)). Since there are two states, the evaluation re-
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turns a 2D vector of values, one value for each state. Therefore, we can
visualise the value of each policy.

Figure 2.2: For every policy, we can plot a dot that represents the value of
that policy. The red dots are deterministic policies.

Dadashi et al. [13] explored a few properties of the polytope. Specifi-
cally they focused on its geometry and dynamics.

Geometry of the polytope

Dadashi et al. remark; the polytope gives a clear illustration of the follow-
ing classic results regarding MDPs [14].

1. (Dominance of V ∗) The optimal value function V ∗ is the unique dom-
inating vertex of V ;

2. (Monotonicity) The edges of V are oriented with the positive orthant;
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3. (Continuity) The space V is connected.

Let’s try to understand these.

Dominance By the definition of the optimal policy, ∀s : V π∗(s) ≥ V π(s).
Imagine there is some other policy, π′ and state s′, such that V π∗(s′) ≤
V π′(s′). This is a contradiction. Thus, the optimal value function must
have the largest value in all states, meaning it will be the ’dominating’
vertex.

Monotonicity If V (s2) increases then V (s1) must either increase or stay
the same. This can be seen in the last equation below;

V (s1) = E
a∼π(·|s1)

r(s, a) + γ E
s′∼

∑
a τ(·|s,a)π(·|s)

V (s′)

=
∑
a

π(a|s1)r(s, a) + γ
∑
s′

∑
a

τ(s′|s1, a)π(a|s)V (s′)

=
∑
a

π(a|s1)r(s, a) + γ
∑
a

τ(s1|s1, a)π(a|s)V (s1) + γ
∑
a

τ(s2|s1, a)π(a|s)V (s2)

If
∑

a τ(s2|s1, a)π(a|s) = 0 (i.e. s1 and s2 are not connected) then V (s1)

stays the same, yielding a constant vertical line on the polytope. If
∑

a τ(s2|s1, a)π(a|s) >
0 (i.e. there is some change of transitioning from s1 to s2) then V (s1) in-
creases with V (s2), yielding a ’positive orthant’.

∑
a τ(s2|s1, a)π(a|s) < 0 is

not possible.

Continuity The policy space is connected by definition, and the value
function is a continuous function. Therefore the value space, the polytope,
is connected.

Dynamics on the polytope

Furthermore, Dadashi et al. [13] were interested in three aspects of differ-
ent algorithms’ learning dynamics;
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• the path taken through the value polytope,
• the speed at which they traverse the polytope,
• any accumulation points that occur along this path.

They consider value iteration, policy iteration, policy gradients, en-
tropy regularized policy gradients, natural policy gradients and the cross
entropy method.

Their results are intriguing. They show that different RL algorithms
traverse the polytope in vastly different ways. Some are not even con-
strained to the polytope. This raises the question;

How does a search algorithm interact with its search space to
yield efficient search?

In A.3 you can find further exploration of other properties of the value
polytope, such as; the density of policies, and the effect of the discount
rate.
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2.5 Search spaces for MDPs

We want to efficiently find the optimal policy for a given MDP. But where
and how should we search for this policy? We could search within;

• the set of potentially optimal policies, the |A||S| discrete policies,
• the set of all possible policies π ∈ R|S|×|A| :

∫
a
π(a|s) = 1∀s

• the set of possible state-action value functions, R|S|×|S|, (which we
could then use to construct the optimal policy),
• Or maybe some other space?

Which space is best? Which space allows us to find the optimal
policy in the ’cheapest’ manner?

Naively, we often think smaller search spaces are better. We would
rather search for our keys in a few rooms, rather than many. But added
structure (for example, ordering) can be exploited to yield faster search,
even when there are infinitely more states to search. For example, we
might be able to order the rooms based on how recently we visited them.
This should help us retrace our steps and find our keys, rather than arbi-
trarily picking rooms to search.

2.5.1 Policy search

We can search through policies. In my opinion, this is the most ’natural’
type of search for RL. As, after all, we are searching for the optimal policy.

Searching through the space of policies supports a couple of modes of
travel: policy iteration and policy gradients.

Policy iteration

In policy iteration (PI), we search for the optimal policy by evaluating our
current policy and then acting greedily. In our tabular setting, policy iter-
ation can be written as:
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Algorithm 1 Policy iteration

1: procedure PI(τ, r, γ)
2: t = 0

3: πt ∼ N . Initialise randomly
4: while not converged do
5: Vt = (I − γτπt)−1rπt . Evaluate policy
6: Qt = r + γτ ·s′ Vt . Bellman operator
7: πt = greedy(Qt) . Greedy update
8: t = t+ 1

9: return πt

The greedy operator picks the actions that give the highest state-action
return, and sets their probability to be 1. greedy(Q) = onehot(argmaxaQ[s, a], |A|).

This iteration converges because the state-action values capture coun-
terfactuals, Qπ(s, a). What would the return be if I took an action, a, not nec-
essarily chosen by the current policy, then I followed the current policy. If there
exists an action that achieves higher return than the current policy’s choice
of action, then (because of the greedy step) the PI updates to pick that ac-
tion.
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Figure 2.3: The optimal policy is shown by the cross. Each color shows PI
applied to a different policy initialisation. The labels denote the number
of iterations to reach convergence. The arrows point from the current to
the next policy. As we can see, PI jumps between the deterministic policies
(the vertices of our polytope). This is because of the greedy update step.

Policy gradients

Policy gradients (PG) are closely related to the deep learning / end-to-end
paradigm. Simply write down what you want (the loss function), estimate its
derivative and apply gradient descent. In our case, the loss function is the
state value function. We can estimate the derivative by differentiating the
Value functional with respect to the policy.

To ensure the optimisation problem is constrained properly (that the
policy returns a distribution over actions), we pick θ as our parameters
and construct the policy using π = σ(θ), where σ is the softmax function.
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Algorithm 2 Policy gradients

1: procedure PG(τ, r, γ, η)
2: t = 0

3: θt ∼ N . Initialise randomly
4: while not converged do
5: θt+1 = πt + η∇θV (σ(θt)) . Gradient update
6: t += 1
7: return σ(θt)

To mitigate stability / convergence issues, it is common to add weak
regularisation, which maximises the entropy of the policy. This forces poli-
cies away from the edges of the polytope, where gradients are not defined.

Figure 2.4: Examples of policy gradients: observe that most of the trajec-
tories are purple, indicating that the majority of progress is made in the
first 20% of training. They converge very slowly once close to the optimal
policy.
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2.5.2 Value search

Alternatively, we can search through possible state values, then infer the
policy that achieves that value. But how can we ensure that our search
will converge to a value that corresponds to a realisable policy? We can
use Bellman’s optimality operator to constrain the search.

(For similar reasons to why policy iteration converges) The greedy step
using the state-action values will find actions with higher value.

Algorithm 3 Value iteration

1: procedure VI(τ, r, γ, η)
2: t = 0
3: Vt = N . Initialise randomly
4: while not converged do
5: V̂ = maxaT (Q) . Bellman optimality
6: Vt+1 = Vt + ηV̂ − Vt . Average temporal difference
7: t+ = 1

8: π = argmaxπ rπ + γτπVt

9: return π
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Figure 2.5: Observe that the value iterations are not constrained to map
to a realisable policy (they can go out side of the polytope), but they do
converge to a realisable policy, the optimal one.

Thus, there are different classes of search space: each imbued with spe-
cial structure from the Bellman equation or expected return. Each with
different types of search they support.

Which spaces support efficient search for the optimal policy? Can we
characterise the properties of each space?

For further exploration of search spaces (their iteration complexity and
dynamics) see appendix A.6.



Chapter 3

Abstraction

What is an abstraction?

A recipe is an abstraction. For example, pumpkin soup:

1. Boil stock (6 cups), garlic (1 clove), thyme (0.5 tsp) and pumpkin (4
cups) in a pot for 30 mins.

2. Puree the mixture.
3. Simmer for 30 minutes and then add cream (0.5 cups).

This is an abstraction because it captures the essential details: from this
recipe, you could make pumpkin soup. While it ignores inessential details:
the recipe doesn’t tell you; where or what to cook in, where to get the
ingredients, which species of pumpkin to use, how to do the many actions
needed to actually puree something, ... etc. It also doesn’t mandate; the
time of day to perform this recipe, what clothes to wear, the style of music.

We can make this notion more formal using, a homomorphism. Con-
sider a ground space, X , (the reality of what needs to be done. all the details),
and an abstract space Y (our recipe). We are looking for a transformation
between X and Y preserves only the essential structure in X . This can be
written as f : X → Y such that;

23

https://en.wikipedia.org/wiki/Homomorphism
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f(x ◦G y) = f(x) ◦A f(y)

Where the ◦ is the preserved structure.1

For example, we might want to preserve the ordering of objects x ≤
y ≤ z (or the ordering of the steps in our recipe; boil, puree, then simmer).
We can achieve this by picking ◦ (the preserved structure) to be the less-
than operator, ≤. Thus, any homomorphism that preserves ≤ gives us an
’abstracted’ description of our original set.

In general, there are three steps to using abstraction to help solve a
problem:

1. Transform the problem to the ’abstract’ domain. f : X → Y

2. Solve the problem S : Y → Z

3. ’Lift’ the solution back to the original domain g : Z → X

3.1 Abstractions for RL

There are a few different types of abstraction that can be considered for
RL: state abstractions [15, 16, 17, 18, 19, 20, 21, 22, 1], action abstractions
[23, 24, 25, 26], state-action abstractions [27, 28], temporal abstractions [29,
30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44]. These abstractions are
often built for two goals; efficient exploration (sample complexity) and /
or efficient optimisation (computational complexity).

3.1.1 Exploiting abstractions

Given an abstraction, how might a learner use it?

1Something that might not be clear is that you need to be able to define ◦ on both
X and Y . These definitions might be different from each other. For example one space
might be continuous and the other discrete.

https://en.wikipedia.org/wiki/Sample_complexity
https://en.wikipedia.org/wiki/Computational_complexity_theory
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Within RL, there are broad classes of abstraction exploitation. To con-
struct these classes, consider the central functions within RL; the state-
action value function, Q, and the policy, π. How can we build an abstrac-
tion into these functions?

Let X, Y , refer to abstract spaces. We can generalise the notion of a
state-action value function and policy to work on abstracted spaces. QA :

X × Y → R, πA : X → ∆(Y ). We can now construct different classes of
learners by giving them access to different types of abstraction.

Abstraction X Y Value fn Policy

State φ : S → X A Q(φ(s), a) π(a|φ(s))

Action S ψ : A→ Y Q(s, ψ(a)) π(ψ−1(y)|s)
State and action 2 φ : S → X ψ : A→ Y Q(φ(s), ψ(a)) π(ψ−1(y)|φ(s))

State-action ϕ : S × A→ X × Y Q(ϕ(s, a)) argmaxaQ(ϕ(s, a))

Temporal (goal like)3 S f : S → Y Q(s, f(s)) π(f(s)|s)
Temporal (option like) S g : A? → Y Q(s, g(ω)) π(g−1(y)|s)

Examples

State abstraction groups together ’similar’ states. For example, a 20
NZD note. There are many different 20 NDZ notes that, for all intents and
purposes (and actions), are the same. Someone may have written a mes-
sage on the note, the note may have been folded, it might have different
serial codes, it might be an older version, ... etc.

Rather than describing these inessential details, we can abstract away
from them.

3If the Q fn is a linear function of the ϕ(s, a) representation, then this is known as the
successor representation [27, 28]

3Goal like abstraction is actually a lot more general than is. But, it is easiest to under-
stand when goals are picked to be states.
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Figure 3.1: A 20 NZD note.

Figure 3.2: An artist’s abstract rendering. This state abstraction only shows
the essential details; 20, New Zealand, ...

Action abstraction groups together ’similar’ actions. For example, both
action i and action j might yield the same rewards and change in state, in
which case, we can just relabel them as the same action.

Figure 3.3: Consider a hungry caterpillar. It wants to move towards the
leaf. But this is a complicated task! Move your 3rd leg up, your 7th leg
down, 11th leg slightly forward, etc... To specify an action it needs to pick
from 812 possible actions - 8 actions per leg, 12 legs.
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Figure 3.4: But, what if the caterpillar could specify actions in another
way? Rather than specifying leg movements, it could pick a direction to
move, which would specify the movement of multiple legs. Note, we are
not including any temporal abstraction here.

State-action abstraction groups together ’similar’ state-actions. This class
of abstraction should be more powerful than state and action abstraction.
Consider a mirror symmetric maze.

Figure 3.5: A symmetric maze, the goal(s) are shown in red. Consider two
different, but ’similar’ positions, shown in blue and green.

Given this setting, we can construct a representation of the state 4where,
we have Qπ(s, a) = Q−π(−xs,−a),∀π. Where the negative operator −x
only effects the horizontal (x) axis s = (x, y),−xs = (−x, y). And −π :=
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π(−a| −x s). 5

State abstraction would not be able to group together the blue and
green positions. As moving left from blue is not equivalent to moving
left from green.

Temporal abstraction groups together ’similar’ goals / options. For ex-
ample, the pumpkin recipe above: for the many ways there are to boil
broth (in pot, in a jug, over a wood fire, in the oven, ...), group them to-
gether. For the many ways to puree pumpkin (with a rolling pin and some
vigour, with a blender, ...), group them together.

The intuition behind both goal-like and option-like temporal abstrac-
tions is that we can decompose a sequential decision problem into a set of
shorter, easier to solve, parts.

3.1.2 Evaluating abstractions

Which class of abstraction should we use? Which class of sim-
ilarity measure should we use? We need to be able to evaluate
choices.

Ideally, we would pick the most ’coarse’ abstraction, as a coarse ab-
straction means we have grouped together many objects. Thus it has po-
tential for the greatest increases in computational and sample efficiency.
However, coarseness is not the only property of an abstraction we care
about. An abstraction must also allow us to represent near optimal poli-
cies and it must allow us to efficiently find those near optimal policies.

5The trade off is that with state-actions, now we need to keep track of (|S|×|A|) ·(|S|×
|A| − 1) similarities, rather than |S| · (|S| − 1) + |A| · (|A| − 1) similarities.

5To construct this representation, we set the state to be centered around the mirror
plane. So the blue player is at location (−3, 9) and the green player is at location (3, 9).
We equip the players with the actions (+1, 0), (−1, 0), (0,−1), (,+1) (aka; up, down, left,
right).
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Ideally, we would be able to summarise the ’coarseness’, ’sub-optimality’
and ’efficiency’ all in a single number. Then we could try to optimise it.
But for now, let’s define these constraints on ’good’ abstractions.

Coarse abstractions

Coarse (as opposed to fine) is a notion from topology. A (more) coarse
abstraction describes an abstraction that has a looser notion of similarity
(more things are considered similar). 6

We say [state abstraction] φ2 is coarser than [state abstraction] φ1, denoted
φ1 ≥ φ2, iff for any states s1, s2 ∈ S, φ1(s1) = φ1(s2) implies φ2(s1) = φ2(s2)

[16]

Any time s1 and s2 are considered similar in an abstraction, then a
coarser abstraction will also consider them to be similar, and there might
also be other similar states7.

Why are coarse abstractions desirable?

By grouping together more states, there fewer states over all, and thus;

• there is less to compute,
• there is less to explore,
• there is less variance in our observations and thus allow quicker

learning.

These arguments have been formalised in the case of symmetries and
are described in B.3.1.

6Coarseness captures concepts such as a ’high level’ abstraction or a ’general’ abstrac-
tion.

7So the most coarse abstraction would be where everything is mapped to the same
abstract state. ∀si, sj ∈ S : φ(si) = φ(sj).
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Near optimal abstractions

Imagine we have a state abstraction, a road is a road, there is no real dif-
ference between them; gravel, winding, motorway, cliffs-on-either-side...
One of the first things we want to know about the abstraction is: is it pos-
sible for me to act optimally using this abstraction? If not, what’s the dam-
age? In this example, does driving 100kph on every road – because all
roads are pretty-much-the-same – lead to suboptimal results? Probably.
More precisely, we want know to whether the optimal policy can be ap-
proximately represented within an abstracted MDP.

This notion of near-optimality, ε, (aka sub-optimality) can be formalised
as the representation error of the optimal policy. [22] Given an abstraction,
we want to know how well the abstraction can represent the optimal pol-
icy.

∀s∈S | V π∗(s)− V π∗A(s) |≤ ε (3.1)

Where π∗ is the optimal policy, and π∗A is the lifted optimal policy found
using the abstraction.

This notion can be generalised to other types of abstraction, for exam-
ple Nachum et al. 2018 [44] extend this concept of near optimal represen-
tation of the optimal policy to goal-like temporal abstraction8.

8To do this, Nachum et al. 2018 [44] quantify how many of the possible low level
behaviours can be produced by different choices of goal. This is roughly a measure of
the invertability of the ’low level’ policy from state-goals to temporally extended actions.
This allows them to reason about which behaviours are representable using goals, and
thus whether a ’high level’ policy choosing these goals can approximate the optimal pol-
icy.
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Efficiently solvable abstractions

Just because a near optimal policy exists (under our abstraction), that does
not mean it will be easy to find. We might require large amounts of data
or computation.

Efficient control: What is needed for efficient control? And, when is ’it’
preserved?

We want to preserve our ability to use the Bellman equation to effi-
ciently guide the search for optimal controls. But, what is necessary or
sufficient to preserve the Bellman equation’s ability to guide search? It
appears that: Preserving the value of the optimal action is sufficient to
preserve the Bellman equation’s ability to guide search[45, 16, 22].

Consider an abstraction that has preserved the value of the optimal ac-
tion. When constructing the abstraction, we may have grouped together
states that don’t have similar transitions, or similar value under all poli-
cies, ... etc. For example we might have: si ∼ sj despite Q(si, ak) −
Q(sj, ak) > ε, ak 6= a∗. But this doesn’t matter as Q(s, a∗) must still be
larger than Q(s, ak). Thus, when applying a greedy update to the Bellman
equation, we will be pull towards the ’true’ value of the optimal policy9.

Efficient exploration: What is needed for efficient exploration? And,
when is ’it’ preserved?

ForQ-learning, Jin et al. [46] show that efficient exploration (O(
√
H3SAT ))10can

be achieved with a UCB-Bernstein type exploration bonus, compared to
the inefficient exploration (O(

√
H4SAT )), achieved by the UCB-Hoeffding

type exploration bonus. The details of these algorithms is not too impor-
tant in this discussion. The important part is that: the UCB-Bernstein type
exploration bonus needed to incorporate an estimate the variance of the

9However, this argument does not take into account how the topology of the Q values
may have changed.



32 CHAPTER 3. ABSTRACTION

values, while the Hoeffding exploration bonus relies only on visitation
counts.

This tells us that, if we want to preserve our ability to efficiently explore
(in the sense above) we need to preserve the ability to accurately estimate
the variance of the value function.

The complexity of abstraction

We hope to build learners capable of discovering and exploiting an ab-
straction to efficiently solve the problems they are given. But, the effi-
ciency gains of using an abstraction (as measured by its evaluation, see
3.1.2) must offset the cost of discovering that abstraction! Else, why did
we bother...?

”The challenge in the single-task case is overcoming the additional
cost of discovering [an abstraction]; this results in a narrow opportu-
nity for performance improvements, but a well-defined objective. In
the ... transfer case, the key challenge is predicting the usefulness of a
particular [abstraction] to future tasks, given limited data.”[47]

For arbitrary problems, as often as we guess right about ”the best ab-
straction for this task” or ”the usefulness of a particular abstraction to fu-
ture tasks”, there will be another set of future tasks where we are wrong.
This is a result of the no free lunch theorem [48]. However, we can hope
for good performance on restricted classes of problems.

To evaluate an abstraction for the single task case we need to compare
the complexity of finding a solution via abstraction (abstract, solve, lift)
against the performance against solvers that do not abstract.

10O(
√
H3SAT ) tells us that the expected regret scales, in the worst case, as a function

of
√
H3SAT . Where H is the planning horizon, S is the size of the state space, A is the

size of the action space and T = KH , where K is the total number of episodes played.
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In the transfer case, we need to construct a set of tasks. Then we accu-
mulate; the complexity of discovering the abstraction, and the complexity
of solving and lifting the abstraction for each new task.

3.1.3 Discovering abstractions

Where do abstractions come from?

Earlier, we considered how an agent might use a given abstraction.
But, where did that abstraction come from? Did someone construct it? Or
can abstractions be discovered automatically?

To build an abstraction, you need a notion of how two objects might be
similar (or a notion of what it is you want to preserve). This allows you to
group the ’similar’ objects together, building an abstraction. In RL there
are many possible notions of similarity. Which ones are sensible? Which
ones allow us to efficiently find the optimal policy?

Classes of similarity for RL

Li et al. [16] give five classes of state abstraction in which they group states
based on various similarities 11;

intuitively, φmodel preserves the one step model, φQπ preserves the state-action
value function for all policies, φQ∗ preserves the optimal state-action value, φ∗a
preserves the optimal action and its value, φπ∗ preserves the optimal action.

We can construct a family of similarity functions for building abstrac-
tions for RL. To do so, we can measure the similarity between two ’RL

11Similarity and preservation are dual notions. Similarity tells us which objects we can
group together, ’preservation’ tells us which objects we group together to preserve (for
lack of a better word...) a notion of similarity. For example, the ”preservation of the one step
model” means: two states can be considered similar if they have the same one step model.
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objects’12as: for different objects, x and x′, how similar are their likely fu-
tures starting from those objects. Where we evaluate the similarity under
(potentially) many different policies. Let’s make this formal.

Let c(s, a, r) be a cumulant, and let C be the discounted sum of that
cumulant under a given trajectory13. Then C is the expected value of C
under a given policy.

C(ζ) =
∞∑
t=0

γtc(ζt+1)

C(x, π) = E
ζ∼D(·|π,x)

[C(ζ)]

χ(x, x′) =

∫
π∈B

e−‖C(x,π)−C(x′,π)‖2dπ

Where we construct D(·|π, x) as the probability distribution over tra-
jectories, given that we started at x and followed π.

Examples Consider: an abstraction that preserves the n-step model, and
another that preserves the value of the optimal state-actions. We show that
these abstractions are captured by our family 1.

Preserving the n-step model: We start with x = (s, a), x′ = (s′, a′). Set
the cumulant be the next states and the rewards, c(ζt) = [st+1, rt]. Then
the expected discounted cumulant, C = [N, V ], represents the discounted
state visitation count, N , and the state value V . if x and x′ have the same
state visitation and value for all policies must have the same transitions14.

Preserving the optimal state-action value: Again, we start with x = (s, a), x′ =

(s′, a′). Next, we pick c(ζt) = rt which means C(x, π) = Qπ(s, a). Finally,

12Where RL objects could be one of; states, actions, state-actions, action-rewards, or
state-action-rewards, ... etc.

13This is is closely related to the notion of a general value function [49]
14This statement assumes we have encoded the states as onehots. Also, it does not

seem so obvious that it doesn’t need proof.
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we only integrate over the optimal policy. Thus, x and x′ are similar if
Qπ(s, a) ≈ Qπ(s′, a′).

Inference of the similarity

How might we infer that two objects are similar?

In the RL setting, we are often not given the transition or the reward
function. Thus, we must infer similarities from (noisy) observations. There
are two ways we can do this;

We can infer that two objects are similar because we have observed
it, we have sufficient data (/ experience) to allow us to conclude that, with
high certainty, xi and xj are similar (with probability δ, f(xi)− f(xj) ≤ ε ).

Alternatively, we can infer that two objects are similar because we
have found a pattern. For example, we might have seen that rotations
of 45, 90, 135, 180, 225, are all similar, therefore we guess that rotations of
270, 315 are also similar. This motivates our work on symmetric abstrac-
tions (in section3.3). Because of the structure in a symmetry, some similar-
ities can imply others. Thus we can generalise.

Note: if we are relying on inferring similarity from data, and (say)
f(xi) = Qπ∗(si, ai). Then learning that xi and xj are similar doesn’t help.
Because, to estimate that xi and xj are similar, we needed to know,Qπ∗(si, ai)

and Qπ∗(sj, aj). Rather, we care about (correctly) guessing that xi and xj

are similar, so we can exploit that knowledge that to improve efficiency,
for example, we want to use the knowledge of Qi = Qπ∗(si, ai) to help us
learn Qπ∗(sj, aj).
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3.2 Efficiently solvable abstractions

Abstractions for efficient control.

In optimisation for supervised learning we know that linear models
can be solved analytically and convex problems converge quickly. What
makes an RL problem easy to solve? Is there linearity or convexity within
RL problems that we can use to find solutions more efficiently?

While some interesting work has been done exploring convex RL [50,
51], we choose to explore linear RL.

3.2.1 Linear Markov decision problems (LMDPs)

Why linear MDPs?

Imagine if your life were linear, in the sense of effort and achieving
goals. More work equals proportionally more rewards. This makes deci-
sion making a lot more simple. Pick the most rewarding activity, and work
hard.

What do we mean by a linear MDP?

Do we mean that the value function is a linear function of (say) a policy?
Of the reward function? Of the transition function? Previous research has
tried to incorporate linearity into MDPs in a few different ways.

• Todorov constructs a linearised MDP that is linear in the ’control’ (a
proxy for the policy) [52].
• Jin et al. construct a MDP where the value is a linear function of a

state-action representation and of a policy embedding [53].
• Levine et al. construct a learner that assumes a linear transition func-

tion, allowing the use of LQR solvers [54].
• Pires et al. construct a factored linear MDP that allows the TD oper-

ator to be applied in a lower dimensional space [55].

https://en.wikipedia.org/wiki/Linear%E2%80%93quadratic_regulator
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Todorov’s formulation appears to be the most powerful. By having a
linear relationship between the value and the control, we can easily search
for controls that are optimal. For the rest of this work we will refer to these
as LMDPs.

Constructing a LMDP

Figure 3.6: Solving the LMDP

To build a LMDP that acts similarly to a MDP, Todorov [52] incorporate
a few changes to the typical MDP setting;

• allow the agent to pick actions in the space of possible transitions,
which they name ’controls’, u : S → S.
• ensure that chosen controls are possible under the given transition

function, a new reward is added. Controls are rewarded if they are
close to the ’unconstrained dynamics’, p(s′|s).
• maximise the exponentiated cumulative rewards. maxu Eζ∼D(u) e

R(ζ)

[56] (rather than maximizing the cumulative reward).

The intuition behind these changes seems to be; we have allowed the
learner to pick an arbitrary control. This simplifies the optimisation prob-
lem. But, now the learner might pick a control that is not possible under
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the given transition function. So we incentivise controls that are close to
the underlying dynamics.

”It is reminiscent of a linear programming relaxation in integer pro-
gramming” [57].

Putting these changes together, a linear Markov decision process can
be formulated as; LMDP = {S, U, p, q, γ}. Where S is the state space, U
is the space of possible controls (i.e. any transitions), p : S → S is the
unconditioned dynamics, and q ∈ R|S| is state rewards. Our goal is to find
the control, u : S → S, that gives the highest exponentiated cumulative
reward z ∈ R|S|+ .

log zu∗(s) = max
u

q(s)− KL(u(·|s) ‖ p(·|s)) + γ E
s′∼u(·|s)

log zu(s
′) (1)

u∗(·|s) =
p(·|s) · zu∗(·)γ∑
s′ p(s

′|s)zu∗(s′)γ
(2)

zu∗ = eq(s) · pzγu∗ (3)

By definition, a linearised Bellman equation is constructed as (1). After
some algebra, it can be shown that the optimal policy has the form in (2).
Most importantly! We can solve for the value of the optimal control by
solving the linear equation in (3). (see B.1.1 for further explanation and a
derivation of a LMDP).

Let’s try and understand this LMDP that has been constructed.

The unconstrained dynamics and state rewards

What do p and q do?

Rather than state-action rewards r : S ×A→ R, we have state rewards
q : S → R. How can state rewards direct behaviour? They can’t, and they
can. State rewards are not capable of directly giving rewards for actions
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taken. Rather, the action dependent part of the reward is captured by the
KL divergence between the control and the unconstrained dynamics (this
relationship is shown in rewards). But, they do implicitly direct behaviour
through their presence in the exponentiated value function zu∗ .

While it may seem intuitive to think of the unconstrained dynamics as
the expected result of using random policy p(s′|s) =

∫
a
τ(s′|s, a)U(a|s) (a

random walk using the transition function). This turns out to be wrong.
The unconstrained dynamics are responsible for rewarding actions.

The optimal policy

What can we interpret about the form of the optimal control?

u∗(·|s) =
p(·|s) · zu∗(·)γ∑
s′ p(s

′|s)zu∗(s′)γ

Interpreting the equation above, the optimal control is the control that
transitions to new state, s′, with a probability proportional to the dis-
counted exponentiated value of that state, z(s). That seems reasonable,
and is closely related to the RL as inference framework [58], which picks
actions with probability proportional to their exponentiated Q values.

π(·|s) ∝ eQ(s,·)

Solving for the optimal value

What can we interpret about the form of the value estimate?

zu∗ = eq(s) · pzγu∗
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In the undiscounted case (aka first exit case), where γ = 1, this turns
into an eigen value problem z = QPz = Az, where Q = eq(s). As these are
linear problems, they are efficiently solvable. Similarly, in the discounted
case, the exponentiated value, z, is guaranteed to converge quickly [57].

3.2.2 Solving a MDP

Figure 3.7: Solving a MDP

So, LMDPs can be easily solved. But how does solving a LMDP
help us solve a MDP?

We need a way to transform a MDP into a LMDP, while preserving
the ‘structure’ of the original MDP. But what do we mean by a MDP’s
structure? According [57], the LMDP should be able to represent the same
transition dynamics as the original MDP, and give the the same rewards
was the original MDP.

∀s, s′ ∈ S,∀a ∈ A,∃ua such that;

τ(s′|s, a) = ua(s
′|s)p(s′|s) (transition dynamics)

r(s, a) = q(s)− KL(τ(·|s, a) ‖ ua(·|s)) (rewards)
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So, given a reward function, r, and a transition function, P , (from an
MDP), we can use the transition dynamics and rewards to solve for the un-
conditioned dynamics p and a state reward q. This transformation, from
P, r → p, q requires |S| × |A| computations, as for each state in the MDP
we need to satisfy constraints for each action. For a derivation and expla-
nation see appendix B.1.2.

However, an important condition is missing! We should preserve the
value of optimal actions (as discussed in 3.1.2). Alternatively, we might
settle for preserving the optimal policy.

∀s, s′ ∈ S,∀a ∈ A,∀π ∈ Π

zuπ(s) = eVπ(s) (value)

τ(s′|s, a) · π∗(a|s) = u∗(s′|s) (optimal policy)

Where zuπ is the value (as evaluated by the LMDP) of the control uπ(s′|s) =

τ(s′|s, a) · π(a|s), and Vπ is the expected return of policy π as evaluated by
the original MDP.

It seems that Todorov hopes that the constraints transition dynamics,
rewards, will be sufficient to give value, optimal policy. But he does not
prove it. This is a problem that we will return to in 3.2.3.

3.2.3 Lifting the optimal LMDP policy

How can we use the optimal control, u∗, to construct a policy
that is optimal in the original MDP, πu∗?

The LMDP has disentangled the search for the optimal controls (solve
the LMDP) (go to this or that state) from the search for the optimal policy
(how to actually realise that control).

This decomposition is reminiscent of goal conditioned approaches to
hierarchical RL. Where a higher level agent gives goals (go to this or that
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Figure 3.8: Lifting the LMDP’s solution to the MDP

state) to a lower level agent, who must figure out how to achieve that goal
[59].

This decomposition within the LMDP can be seen as the optimal con-
trol decoding step (currently being considered). We know which states
we want to be in, the z∗/u∗, from solving the LMDP, but, we do not know
how to implement those controls with the actions we have available in the
original MDP. We can formulate this problem as;

τπ(·|s) =
∑
a

τ(·|s, a)π(a|s)

π = argmin
π

KL
(
u(·|s)) ‖ τπ(·|s)

)
We would hope that the knowledge of u∗ would make it easy to find

the optimal actions. But, this optimisation problem has very little structure
for us to exploit. In the worst case it has complexity O(|S|2|A|) (which is
the same as solving a MDP).

We have now built a way to solve a MDP with a LMDP. We have a
method to transform a MDP to a LMDP 3.2.2. We can solve the LMDP



3.2. EFFICIENTLY SOLVABLE ABSTRACTIONS 43

3.2.1. Finally, we can lift the solution to the original MDP 3.2.3. Let’s try it
out.

Optimality of solutions via LMDPs

Do these two paths lead to the same place?

One of the main questions we have not addressed yet is; if we solve
the MDP directly, or we linearise then solve then lift, do we end up in the
same place? This is a question about the sub-optimality of our abstraction
3.1.2. Can our abstraction approximately represent (and find) the same
solutions that the original can? We can formalise this question as the dif-
ference between the optimal values or optimal policies.

ε =‖ Qπ∗ −Qπu∗ ‖∞

We answer this question using experiments, described in figures 3.9
and 3.10.

We also investigate the sensitivity of the LMDP’s optimal control given
different MDPs. The optimal control is very sensitive to the sign and mag-
nitude of the rewards, as can be seen in 3.11 and 3.12.
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Figure 3.9: For the same MDP, shown is a comparison of the linear tem-
poral difference operator (left), versus the true, Bellman, temporal differ-
ence operator (right). As expected, the temporal difference operator points
towards the optimal value. But, the linear temporal difference operator
points elsewhere.

3.2.4 Discussion

Unfortunately, Todorov [52, 57] never actually produced any experiments
that use the linear bellman equation to solve a MDP. His experiments were
with Z-learning, the linearised counterpart to Q-learning.
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z̃(s) = eq(s)z(s′)γ (linearised bellman eqn)

zt+1(si) = (1− η)zt(si) + ηz̃(si) (Z iteration)

He makes this work by hand picking q so that the optimisation will
converge to the optimal value. Then he evaluates the accuracy of the value
estimates. They do not give a general way of constructing q from a MDP
that actually works (in the sense of yielding the same optima). Nor do
they give an efficient way to map an optimal control to an optimal policy.

Because there are no benchmarks that we can validate our implementa-
tion on, there is some doubt about whether I implemented the LMDP cor-
rectly. While the LDMP solution strategy does occasionally pick the cor-
rect optimal policy, more often than not, its outputs are seriously wrong.

Linearity in MDPs

Todorov’s formulation of LMDPs does not seem to allow a MDP to be to
reliably embed a LMDP. Despite this, it might still be possible to construct
a linear MDP given different assumptions.

Let’s reconsider Jin et al.’s approach [53]: construct a MDP where the
value is a linear function of a state-action representation and of a policy
embedding. It is important to note that, not every (policy) embedding can
be realised as a policy, so to constrain the search dynamics properly we
must use the Bellman equation.

And this captures the essence of the problem. We need the Bellman
equation for efficient search, but it is not linear in the policy. So, we can
linearise a MDP, but we will lose the ability to use the Bellman equation to
guide the search for the optimal policy.
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Figure 3.10: A comparison between the optimal control u∗(s′|s) (shown
in the left column) and the dynamics of the optimal policy (MDP)∑

a τ(s′|s, a)π∗(a|s) (shown in the right column). Because the optimal con-
trol, and dynamics of the optimal policy can be written as 2 × 2 matrices,
we can plot them. Yellow indicates high probability, purple indicates low
probability. But the main thing to observe is that the optimal control is
often not the same as the dynamics of the optimal policy.
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Figure 3.11: A chain problem [60] with zero reward on all states except the
last two. A small negative reward, then a large positive one. The optimal
control to this problem is not realisable: in every state, jump to the state
with positive reward.

Figure 3.12: The same chain problem as above, but with an positive reward
added to all states. We can see that the structure of the transition function
has now made it into the optimal control! The LMDP’s control can be
decoded into a realisable policy.
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3.3 Symmetric abstractions

Symmetry is a concept from pure mathematics, which has found major
success in physics (for example, see Noether’s theorem). Symmetry has
also had success in machine learning. For example, the notion has led to;
data augmentation strategies [61], understanding of convolutional neural
networks [62], and a definition of disentanglement [63]. We are interested
in using symmetry to build abstractions for RL. But first, what do we mean
by symmetry?

Definition

We say that an object is symmetric if it has ’group’ structure.
A group is a set, G (say the set of rotations, {0, 90, 180, 270}), and an op-

eration ◦ that combines any two elements a and b to form another element
(rot 90 composed with rot 180 is rot 270, or a ◦ b = a + b mod360). To qualify
as a group, the set and operation, (G, ◦), must satisfy four requirements;

• Closure: For all a, b ∈ G, the result of the operation a ◦ b is also in G.
(every composition of two rotations, must also be a rotation)
• Associativity: For all a, b, c ∈ G, (a ◦ b) ◦ c = a ◦ (b ◦ c).
• Identity element: There exists and element e ∈ G such that, for every

element a ∈ G, the equation e ◦ a = a ◦ e = a holds. (there must exist a
rotation that doesn’t rotate)
• Inverse element: For each a ∈ G, there exists an element b ∈ G,

commonly denoted a−1, such that a ◦ b = b ◦ a = e. (we must be able to
undo any rotation)

How can symmetries be used to build abstractions?

We can use a group structure to define a similarity (aka an equivalence
relation), a ∼G b iff ∃g ∈ G : a = g ◦ b. For some examples of symmetries
within RL see B.2.3. Therefore, we can use this notion of similarity, as we
did in 3, to construct abstractions.

https://en.wikipedia.org/wiki/Noether%27s_theorem
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3.3.1 A symmetric inductive bias

In 3.1.3 we considered using similarities to build an abstraction. But, learn-
ing pairwise similarities does not give you the ability to generalise15. To
generalise you need (accurate) priors [48].

Existing approaches to estimating similarity can generalise if the (mea-
sure of) similarity encodes priors. For example: If our measure of similar-
ity is parameterised as a CNN, then the CNN implicitly encodes a prefer-
ence for continuous and local functions[64]. If our measure of similarity
is trained using SGD, SGD implicitly encodes a preference for low rank
solutions [65].

In this section we explore how to construct a prior that says:

We believe that the problems we are given will have group
structure.

This symmetric prior allows us to impose abstract structure on poten-
tial similarities, without specifying the ’details’ of these similarities.

3.3.2 A measure of symmetry

To build this prior, we need to be able to measure symmetries.

We need to construct a measure of symmetry, S : X → [0, 1], that re-
turns higher values for ’more’ symmetric objects. We can then use this
measure to bias a learner towards more symmetric guesses (see 3.3.3).

Given an object, x ∈ X , we want to know, how symmetric is that ob-
ject? But, what makes something more or less symmetric? We define the
amount of symmetry to be: the order 16of the largest group that x is invari-
ant to.

15Knowing that a and b are similar tells you nothing about c and / or d.
16The order of a group is defined as the cardinality of the set of group elements, which

is written |G|.
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For example, xab = [a, a, b, b] should be considered more symmetric
than xabc = [a, a, b, c] because, xab is invariant to actions17of S2 × S2, while
xabc is (only) invariant to actions of S2.

Note, the larger the group order, the coarser the abstraction we can
build. We can group together xab[0] ∼ xab[2], xab[1] ∼ xab[3], thus building
an abstraction of size 2.

We write this measure of symmetry as;

G∗ = max
G
|G| (pick the largest group)

s.t. ∀g ∈ G, x = φ(g, x) (that x is invariant to)

S(x) = e−‖n−|G
∗|‖1 (transform so S(x) ∈ [0, 1])

While this measure of symmetry captures some of what we want, it
does not work on inputs of interest. It only considers exact symmetries.

Approximate symmetries

Our intuition tells us that x = [1, 1.001, 2, 2] is close to being as symmetric
as x = [1, 1, 2, 2]. So rather than asking: is x invariant toG?, we can ask How
close is x to being invariant to G? We can write this as;

C(x) = min
G

∑
gi∈G

‖ x− φ(gi, x) ‖2 −β ‖ n− |G∗| ‖1

S(x) = e−C(x)

Implementation issues

In its current state, this measure of approximate symmetry has two main
implementation issues; the search over groups, the representation of the
action(s).

17An action is defined as φ : G × X → X such that φ(e, x) = x and φ(g ◦ h, x) =

φ(g, φ(h, x)).
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Searching through groups: For a given order, the number of possible
groups is roughly equal to the number of integer factorisations of the order
itself. We could try to explicitly construct these groups, however, there are
many special cases (known as the sporadic groups [66]). This complicates
their construction18.

Representations of actions: The function φ is not unique. There can be
many ways a group acts on X . As the dimensionality of X grows, the
number of possible group actions also grows quickly.

Consider the representation of group actions as permutation matrices,
φ(gi, x) = Pi · x where Pi ∈ 0, 1d×d and P · 1 = 1. Then there are d! possible
permutations. And checking that a collection of actions is closed requires
O(d!× d!) compositions.19

As an example, we construct the possible actions of S2 and S2 × S2 in
B.3.2.

For these reason, we start with a restricted family of groups: the groups
which can be constructed by direct products of S2. By using this family of
groups as a prior, we are saying: we prefer objects that are invariant to flips /
reflections.

The actions of these groups can be easily constructed (the permutations
that swap n-grams20), and (more importantly) their order can be identi-
fied by the existence of idempotent permutations generated by an n-gram
swap.

Still, the number of actions of this restricted family grows quickly. We
are constrained to consider small problems.

18Complicated from a program design perspective, not a computational perspective.
19Why is this so expensive? The reason is that we treat each dimension as independent

from the others. They are discrete, unordered and unrelated.
20For example, a 1-gram swap could be 0↔ 1, a 2-gram swaps could be (0, 1)↔ (2, 3).

Where these numbers represent the indicies of a vector.
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2 3 4 5 6 7 8 9 10

S2 1 3 6 10 15 21 28 36 45
S2 × S2 0 0 3 15 45 105 210 378 630

S2 × S2 × S2 0 0 0 0 15 105 420 1260 2150
In the table above, we count the total number of possible actions (mi-

nus the identity) for different groups (rows) andXs of different dimension
(columns).

Topology

Let’s try to understand this measure we have constructed. How
does it behave? Does it give us the properties we wanted?

What properties did we want?

1. Approximate symmetries should be measured as ’less symmetric’
than exact symmetries.

2. Larger symmetries should be preferred.

These two properties have been met. When using 3.3.2 as our sym-
metry measure, we get; S([1, 1.001, 2, 2]) = 0.956 < 1 = S([1, 1, 2, 2]) and
S([1, 1, 2, 2]) = 1 > 0.026 = S([1, 1, 2, 3]).

A final decision, is whether to normalise the distance measure (see
3.13). As, we believe the measure of symmetry should be invariant to
changes in norm. For example, if we scale an object by a constant, it should
have the same measure of symmetry, S(10 · x) = S(x).
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Figure 3.13: A final decision is about whether we want to normalise the
distances, ‖ x − P · x ‖ (shown on the left), or leave the unnormalised
(shown on the right).

Figure 3.14: A visualisation of our measure of symmetry applied to eight
dimensional vectors. We have randomly picked linear projections from
the eight dimensions, to two dimensions. Each pixel represents a vector in
the 8D space. Lighter color is more symmetric.
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Symmetric Rejection Sampling

How can we use this measure of symmetry as a prior?

We can use rejection sampling to bias produce distributions biased to-
wards symmetric samples, or in other words, we can use rejection sam-
pling to incorporate our symmetric prior. Let’s see how.

Rejection sampling allows you to generate samples from a target dis-
tribution, p(·) (which we cannot efficiently sample from) and a ’related’
distribution that we can easily sample from, q(·). The notion of related-
ness of p(·) and q(·) is captured by k = maxx

p(x)
q(x)

. This value, k tells us, the
average number of rejections before accepting a sample. Thus, to closely
related distributions will have k ∼ 1. [67, 68]

Algorithm 4 Rejection sampling

1: procedure RS(p, q, k)
2: t = 0

3: while not accepted do
4: x ∼ U([0, 1])

5: if x < p(x)
kq(x)

then
6: Break

7: t+ = 1

8: return x

Incorporating a prior: We might have some belief over parameters val-
ues θ, given some data, Dt, which we write as p(θ|Dt) (the posterior). We
might also have a prior about likely parameter values, in this case, our
belief that they should be symmetric Psym(θ). Therefore, we can construct
the ’target’ distribution using Bayes rule.
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q(θ|Dt) =
p(Dt|θ)Psym(θ)

p(Dt)

Thus we have a distribution over parameters, q(θ|Dt), which we can
optimise using maximum a posteriori.

Fortunately, we don’t need to construct Psym(θ), we only need an un-
normalised function that it is proportional to [68]. Meaning, we can use
our measure of symmetry Psym(θ)→ S(x).

Consider an example: we might have some estimate of a parameter’s
value, µ, σ, which follows a Gaussian distribution p(·). But, we believe
the parameters should be symmetric. Therefore, we can construct a new
distribution, q(x|Dt) = p(µ, σ|x)S(x). We can use rejection sampling to
generate samples from q(x|Dt). See the results below.

Figure 3.15: On the left we can see a Gaussian distribution of mean zero
and variance one, q(x). On the right, we have used rejection sampling
generate samples from our symmetry biased distribution, p(x).

These results only confirm that we have implemented rejection sam-
pling correctly, and it works as described.
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Figure 3.16: Here we have samples from the ’sample distribution’, q(x),
and the ’target distribution’, p(x). We can see that the rejection sampling
with the symmetry augmented target distribution was successful in pro-
ducing, on average, more symmetric samples.

3.3.3 Biased Thompson Sampling

We have a way to apply a symmetric prior to a distribution.
How can we use that to make RL more efficient?

Here we consider how to use a symmetric prior to make Thompson
sampling more sample efficient21.

Thompson sampling

What is Thompson Sampling?

Thompson sampling is an algorithm for online decision problems where
actions are taken sequentially in a manner that must balance between
exploiting what is known to maximize immediate performance and
investing to accumulate new information that may improve future
performance.[69]

21For a more general picture of the combination of symmetry and RL see B.2.1.
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Less cryptically, Thompson sampling estimates the model, P r. We
then act optimally with respect to the estimated model. However, the es-
timate uncertainty, so ...? We can write this as follows.

Algorithm 5 Thompson Sampling

1: procedure TS(γ)
2: t = 0

3: while not converged do
4: (s, a, r, s′) . Observe
5: Ht ← (s, a, r, s′, a′) . Update history
6: τ, r ∼ P (·|Ht) . Sample a model
7: Qt+1(s, a) = r(s, a) + γτ(s′|s, a)Qt(s

′, a′) . Bellman operator
8: πt = greedy(Qt+1) . Act greedily
9: t+ = 1

10: return πt

Where Ht is the history of observations, {(si, ai, ri, s′i) : ∀i ∈ [0, t]}.
Further, we construct the estimate of the model as independent distribu-
tions of the transition and reward functions P (τ, r|Ht) = P (τ |Ht) ·P (r|Ht).
Where P (τ |Ht) is modelled as the normalised state transition counts. And
P (r|Ht) is modelled as a isotropic Gaussian. These can be estimated by
storing state-action-state transition counts and the incremental mean and
variance of the rewards.

Note that we act greedily with respect to the Q function. Normally,
this would lead to sub optimal behaviour, because no exploration is be-
ing done. But, Thompson sampling directs exploration through its uncer-
tainty in the model, τ, r. Thus, exploration occurs by acting greedily with
respect to a sampled model.

Biased Thompson Sampling

Given uncertainty, prefer symmetry
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The difference between Thompson Sampling and Biased Thompson Sam-
pling is how we construct the distribution over models, P (τ, r|D).

We believe that the states will have group structure, a symmetry. We
use the symmetric rejection sampling method, outlined above (3.3.2) to
bias the distribution over models towards more symmetric models.

To simplify, we estimate Psym(τ, R) as Psym(R). That is, we believe there
will be symmetries in the reward function, not necessarily in the transition
function.

Experiments

We want to demonstrate that Biased Thompson Sampling 3.3.3 has greater
sample efficiency (when applied to problems with a symmetry present)
than Thompson Sampling 3.3.3. And therefore that this learner can exploit
symmetries present in a RL problem22.

We ran experiments with symmetric n-armed bandit problems, and
symmetric grid worlds B.3.2, the results are shown in figures 3.17 and 3.18.

These figures show that Biased Thompson Sampling provides no ad-
vantage in sample efficiency (while using a lot more compute). However,
we cannot conclude that Biased Thompson Sampling provides no advan-
tage. This is because we also tested a Biased Thompson Sampler given
explicit knowledge of the symmetry within a MDP, and it, also, did not
show any advantage (see 3.18). This result tell us that our method of bi-
asing a distribution over models (via rejection sampling) does not seem to
help RL. It says nothing about the utility of similarity measure.

Also, we expect the advantage should become clearer as we scale to
larger state spaces (as there is more benefit to symmetry, there are more
similar states). However, we were unable to scale to larger problems due
to the computational complexity of building the family of symmetries (see
3.3.2).

22Note, we explore another, more complicated, setting to test a learners ability to ex-
ploit symmetries in B.4.
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Figure 3.17: A 9 state symmetric grid world problem. We can see that
Biased Thompson sampling, using our symmetry measure, does not per-
form better than Thompson sampling in any significant sense.

Figure 3.18: A 25 state symmetric grid world problem. This Biased
Thompson Sampler was given explicit knowledge of the underlying sym-
metry. Despite this, we can see that Biased Thompson sampling does not
perform better in any significant sense.
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Chapter 4

Final remarks

4.1 Summary

To build abstractions for reinforcement learning, we need notions of how
to objects can be similar. But, where does these notions of similarity come
from? And how do we pick one over the other? While there are many
unanswered questions (below), most importantly, there is no well defined
way to evaluate an abstractions (in the general case), and thus there is no
way to compare them.

Linear Markov Decision Problems attempt to preserve the space of
transition dynamics and the rewards. But, they failed to preserve the value
of the optimal actions, and thus cannot guarantee performance in general.
Ultimately, this was because the Bellman equation is non-linear.

We develop a measure of symmetry, and use it to give reinforcement
learners a preference towards symmetry, a prior. Our experiment did not
show any advantage by using this prior, but due to computational and
temporal1constraints, we were unable to conclude that there is no advan-
tage.

1Temporal constraints meaning: A masters is a finite amount of time.

61
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4.2 Future work

There is a large amount of future work to be done if we want to:

understand how abstractions can increase the efficiency of reinforce-
ment learning.

Our exploration of Abstractions, in 3.1, raises a few fundamental ques-
tions;

• What is the advantage, if any, of state and action abstraction versus
state-action abstraction 3.1.1?
• Of the two approaches to temporal abstraction, goal-like and option-

like temporal abstraction, is one strictly better that the other? If not,
then in which cases does goal-like temporal abstraction perform bet-
ter?
• Are the facets of evaluation, presented in 3.1.2, necessary and / or

sufficient for ’efficient’ performance of an abstraction in practice?
• Do many, or even all, abstractions of interest to RL live in the family

defined in 3.1.3?
• Is there a difference between trajectory based similarity measures

(that set the similarity χ(x, x′) to be built from distances between
the cumulants D(c(x, π), c(x′, π)), rather than expected discounted
cumulants D(C(x, π), C(x, π)))?
• What is necessary (rather than sufficient - which is proved in exist-

ing work) for the preservation of Bellman equation’s ability to guide
search? Can we weaken the requirements to: preserving the order-
ing of the value of optimal actions (rather than their absolute values
as in existing work)?
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Similarly, our results on LMDPs (3.2.4) leave a open few questions
about whether LMDPs whether can be saved from irrelvance;

• In which cases does the LDMP give the right solution?
• What are the properties that make a MDP easily solvable (via LDMPs)?
• Can easily solvable MDPs (via LDMPs) be easily identified?

Next, our results on symmetric abstractions (3.3) leave a few questions
unanswered;

• What is the (computational) efficiency of rejection sampling for sym-
metry biased distributions, and how does it scale with dimension?
And how much data (sample efficiency) does that computation buy?
• What happens if we use our measure of symmetry 3.3.2 as a regu-

lariser (as it is differentiable)?
• How can we use invariants B.2.3 of the transition and / or reward

and / or the value functions to identify symmetries?
• How can representations of states (or state-actions or ...) be ordered

or structured? And how does this structure reduce the combinatorial
space of possible symmetries?

Finally, the appendices (4.2) ask more questions than they answer;

• What is the significance of the projection of the value polytope onto
a single dimension when we increase the discount rate? A.4
• When attempting to evaluate the integral over all policies, how can

we exploit structure in the given MDP to reduce the computational
complexity. 1 Is there a way to intelligently (or randomly) pick which
mixtures of deterministic policies to evaluate (like compressed sens-
ing [70]).
• Convexity in optimisation problems allows efficient solutions to be

found, are there other properties that are mutual exclusive to con-
vexity that also allow efficient solutions. A.6.2
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• What is the cost of discovering temporal symmetries? How does
this cost scale with the length of time? Can we amortize this cost by
building symmetries from smaller symmetries in shorter sequences?
B.2.2
• How can we use invariant of the value function to identify symme-

tries? B.2.3
• Are there more methods of exploiting symmetries? Or would any

new method reduce to one listed in B.3.1. And which method of
exploiting symmetries is best?
• Explain difference between the Discrete and MultiBinary action spaces

in B.4.3 (as the hardness of learning a binary decoder is not sufficient
to explain it).
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As these appendices make up a significant amount of this thesis, it may
be worth having a guide.

• In A.1 we give an alternative derivation of the value functional, a
tabular form of the state valued Bellman equation.
• In A.2 we give some intuition about the abstract structure of policies.
• In A.3 we explore the density of policies and effect of discounting on

the value polytope.
• In A.4 we demonstrate a new (so far as we know) type of model

based reinforcement learner.
• In A.5 we present a method of visualising the search for the optimal

policy in high dimensions.
• In A.6 we ask questions about over-parameterisation and re-parameterisation

in the context of policy gradients.
• In B.1.1 we offer a modified derivation of a linear Markov decision

problem.
• In B.2.1 we explore related work combining symmetries and Markov

decision problem, and add a new definition of a temporal homomor-
phism.
• In B.2.3 we construct a set of symmetric reinforcement learning ex-

amples, in the hope of understanding how to identify relevant sym-
metries from invariants.
• In B.3.1 we review related work on symmetries in machine learning

and draw connections between some of these methods.
• In B.3.2 we provide an example of how there can be many (group)

actions for even a simple group.
• In B.3.2 we describe a toy problem used in testing our symmetry

biased reinforcement learner.
• In B.4 we describe experiments done to test a learner’s ability to ex-

ploit symmetries.
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Appendix A

MDPs

A.1 Tabular MDPs

It is possible to derive the value functional in another, possibly more en-
lightening way. But it takes a little more work. It requires a result from
real analysis, the Neumann series. This is simply the generalisation of a
geometric series to contractive linear operators, such as a matrix.

r ∈ (−1, 1)

(1− r)−1 = lim
n→∞

n∑
i=0

ri (Geometric series)

T ∈ Xk : det(T ) ∈ (−1, 1)

(I − T )−1 = lim
n→∞

n∑
i=0

T i (Neumann series)

We can expand the recursion in the Bellman equation to get an (infinite series).
We can then use the (Neumann series) (by setting T = γτπ) to give the nice
analytic form of the value functional.
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V = rπ + γτπV (Bellman eqn)

V = rπ + γτπ
(
rπ + γτπV

)
V = rπ + γτπ

(
rπ + γτπ

(
rπ + γτπV

)
)

= rπ + γτπrπ + γ2τπτπrπ + γ3τπτπτπV

=
∞∑
t=0

γtτ tπrπ (infinite series)

=
( ∞∑
t=0

γtτ tπ
)
· rπ

= (I − γτπ)−1rπ (value functional)

This proof is more satisfying because we can more clearly see the na-
ture of the value functional. It is a closed form of the infinite sum of dis-
counted future rewards.

A.2 Policies in high dimensions

Let’s try to gain intuition about the space of policies in higher dimensions.
For each state, we have a distribution (on a simplex), over the possible
actions.

Imagine what the geometry of the space of policies in the two state,
two action MDP. A policy tells us which actions should be taken when
in a given state. Therefore, there will be |A| × |S| entries in the policy.
However, because the policy returns a distribution over actions, the true
dimensionality of the policy is (|A| − 1)× |S|. Which in the two state, two
action case equals 2D.
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Figure A.1: (left) Given that you are in state, s, we have a simplex over
two actions {a1, a2}. (right) The policy must describe distributions over
actions for each state, so the policy space must describe the |S| possible
combinations of distribution over actions.

A.3 Other properties of the polytope

A.3.1 Distribution of policies

A potentially interesting question to ask about the value polytope is how
the values (of the policies) are distributed. We can calculate this density
analytically by using the probability chain rule: p(f(x)) =| det ∂f(x)

∂x
|−1

p(x). Where we set f to be our value functional and p(x) to be a uniform
distribution over policies. Thus we have;

p(V (π)) = | det
∂V (π)

∂π
|−1 · p(π) (density)

As we can see in A.3: for some polytopes, there is high density around
the optimal policy. In other polytopes, many of the policies are far away
from the optimal policy.

Consider the expected suboptimality of our MDP, which tells us how
far away the optimal policy is from the ’center of value’ of the polytope.
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Figure A.2: Here we are visualising the policy space of a three state, three
action, MDP. For each state, we must specify a distribution over actions.

µM(s) := E
π∼Π

[
V π
M(s)

]
ε∗(M) = max

s
V π∗

M (s)− µ(M)(s)

This suggests that MDPs with low expected suboptimality, ε∗(M), are
easier to solve than other MDPs. This is because we can simply sample
a random policy which is likely to be close to the optimal policy (or we
could sample many policies and pick the best, which would, with high
probability, be close(r) to the optimal policy).

However, this strategy will not scale to higher dimensions. As we in-
crease the state size or action size, the chance that there is high density
near the optimal policy (or a randomly sampled MDP) decreases with rate
proprtional to |A||S|.

A.3.2 Discounting

Another question you may have is: how does the shape of the polytope depend
on the discount rate? Given an MDP, we can vary the discount rate from 0

to 1 and visualise the shape of the value polytope.
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Figure A.3: Here we have visualised the value polytope for 2-state 2-action
MDPs. They are colored by the likelihood of each value under a uniform
distribution over policies. Lighter color is higher probability.
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Figure A.4: Here we have visualised the value polytope for 2-state 2-action
MDPs. The rows show how a MDP’s value polytope change with changes
in discount rate, ranging linearly from 0 (left), to 1 (right). Each column is
for a different MDP. The color map is represents the density of policies, as
in A.3.
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As we can see in A.4. As the discount rate tends to 1, all the policies are
projected into a 1D space. (is this 1D for 2D problems. is it always 1D?)

A.3.3 Derivation of derivative

We want to derive the derivative of the value functional.

V (π) = (I − γτπ)−1rπ (value functional)

= (I − γτ · π)−1r · π
∂V

∂π
=

∂

∂π
((I − γτπ)−1rπ)

= (I − γπτ)−1∂πr

∂π
+
∂(I − γπτ)−1

∂π
πr (product rule)

= (I − γπτ)−1r +−(I − γπτ)−2 · −γτ · πr

=
r

I − γπτ
+

γτ · πr
(I − γπτ)2

(rewrite as fractions)

=
r(I − γπτ) + γτπr

(I − γπτ)2
(common demoninator)

=
r

(I − γτπ)2
(cancel)
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A.4 Model search

As noted in 2.5, we can search through policy space or value space, each
with their own structure. There is a third search space we could consider,
the model parameters.

However, this problem is not a control problem like the search for val-
ues or policies. This is an inference problem, we are trying to infer the
model parameters. Once we know these parameters, we can apply con-
trol. In general, this is known as model-based RL.

We could search through models (τ, r) using supervision from next step
prediction. This is a common approach to model-based RL [71]. Rather,
we consider using the value estimation error to guide the search for model
parameters.

P̃ ∗, r̃∗ = argmin
τ̃ ,r̃

∫
Π

‖ Vτ,r(π)− Vτ̃ ,r̃(π) ‖∞

There is a main advantage and some disadvantages to this framework.
The advantage is that this approach focuses its resources only on ’relevant’
features of the model. The disadvantages are that it requires many pol-
icy evaluations (from the environment), and many estimates of a policy’s
value (simulated evaluations).

A.4.1 Relevant features of the model

Model iteration via value prediction error only focuses on ’relevant’ fea-
tures of the model 1. Relevant in the sense that they are useful for accu-
rately predicting state values.

Consider a problem where the reward is only determined by the first
feature of the state. We can add arbitrarily many extra features. A model-

1Model free approaches to RL also focus on ’relevant’ features, however, they do not
explicitly represent the underying model.
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Figure A.5: Model iteration applied to a 2-state, 2-action MDP. Blue shows
the value of policies when evaluated under the true model, τ, r, and Red
shows the estimated value of policies when evaluated under the learned
model at convergence, τ̃ , r̃. The purple trajectory shows the value of the
policy as it is learned.
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based learner that learns through next step prediction will attempt to ac-
curately predict all of these features. This unnecessarily spends resources.

More formally; let the state space be a subset of the reals S ⊂ Rd. And
construct a reward function that is only dependent on the first feature of
the state space, r(s, a) = f(s0, a). While the transition function is con-
structed so that, there exists a k dimensional subspace (that includes the
first feature) that is independent of the other d − k features, τ(s′|s, a) =

[g1(s0:k, a), g2(sk:d, a)].
An example with this structure, could be the addition of d − k ’noise’

features, which play no part in the transition dynamics, but only describe
inessential features (such as features that describe the positions of leaves
on a windy day).

A.4.2 Policy evaluations

We receive VP,r(π) from the environment. But we want to minimise the
number of these calls to the environment, as it can be expensive to evaluate
a policy with high accuracy.

Also, for each iteration of τ̃t, r̃t, we need to estimate the value of many
policies, ∀π;Vτ̃t,r̃t(π). This requires lots of compute.

Rather than integrating over all policies (thus requiring us to evaluate
all of them), we only need the deterministic policies. As, Bellamare et
al. 2019 show that ”the maximal approximation error measured over all value
functions is the same as the error measured over the set of extremal vertices [aka
deterministic policies]”[72]. However, this still requires us to evaluate |A||S|

policies, and to simulate T |A||S| policies. 2

2It should be possible to use off policy estimation techniques to further reduce the
required samples / compute. But we leave this for future work.
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A.5 Visualising higher dimensional MDPs

So this value polytope works well for 2D. And could be extended to 3D.
But, what about higher dimensions?

”To deal with a 14-dimensional space, visualize a 3-D space and say
’fourteen’ to yourself very loudly. Everyone does it.” Geoff Hinton

Is there intuition we might gain from visualising optimisation on MDPs
with the number of states and / or actions being greater than 3?

How to construct them? Decompose the value of a policy as a convex
combination of the values of the deterministic policies.

α(π) = argmin
α∈∆n

‖ V (π)−
∑
i

(V (πi) · αi) ‖2
2 +H(α)

The entropy term ensures we prefer convex combinations with lower
entropy.
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Figure A.6: PI bounces between the nodes of the graph. So the search of
the optimal policy using PI can be visualised as the walk along a graph.
Note: the current policy is shown in yellow (close to the top right).

Figure A.7: Policy gradient traverses through non-deterministic policies.
So the search of the optimal policy using PG can be visualised the dynam-
ics of a graph signal.
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A.6 Deep policy gradients

From the search spaces section 2.5, we are left wondering;

• In which spaces can we (efficiently) calculate gradients?
• In which spaces can we do convex optimisation?
• In which spaces does momentum work (well)?

Currently, the most successful deep RL approaches are variants of pol-
icy gradient methods [73, 74]. Despite their efficacy in practice, we still
don’t have a good understanding of how policy gradient methods com-
bine with deep learning methods to give performant agents.

A key feature of deep learning is over parameterisation (among the
other features; hierarchies, non-linearity, smoothness, locality). There has
been recent work attempting to understand the effect of overparameteri-
sation [75].

Here we explore the effects of; overparameterising the seach space and
then using policy gradient methods, and reparameterising the loss func-
tion, thus yielding some other space to search through.

A.6.1 Overparameterisation

Recently there has been work investigating the properties of overparame-
terised search spaces. Arora et al. 2018 [75] prove that overparameterisa-
tion yields acceleration, however, their explanation of the acceleration is
not entirely convincing (as it requires first order assumptions).

More applied to RL, we want to know: how does overparameterisation
effect the search for optimal policies?

In figures A.8 and A.8 we can see that parameterisation can yield vastly
different training trajectories3to gradient descent,

3Is there any advantages to certain types of trajectory?
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Figure A.8: The optimisation dynamics of value iteration versus param-
eterised value iteration. Green is VI’s trajectory, and orange is parame-
terised VI’s trajectory.

Figure A.9: The optimisation dynamics of value iteration versus value it-
eration with momentum. Green is SGD’s trajectory, and orange is momen-
tum’s trajectory.
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In A.10 we can observe that there can be sharp boundaries between
neighboring policies. A kind of phase transition, between the optimal pol-
icy being easy to find, and not. (despite the fact that the we started from
neighboring points).

Figure A.10: Here we have visualised the value polytope a 2-state, 2-action
MDP. These value polytopes are colored by the iteration complexity (many
iterations - yellow, few iterations - purple) of parameterised policy gradi-
ents. Each polytope was generated using a different learning rates.
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A.6.2 Reparameterisation

If we are allowed to arbitrarily pick our optimisation space,
which should we pick?

Here we raise the question: should, and if so, how can, we rationally
pick the search space given knowledge of the loss function and likely start-
ing points?

Consider the simple convex problem;

x∗ = argmin
x

x2

We can pick some other space, Z, that we want to search in. And we
can map Z on to X using f : Z → X .

z∗ = argmin
z

f(z)2

x∗ = f(z∗)

If we pick some simple functions for f . What happens? Well, if f
is non-linear then we lose the guarantees convergence of convex search.
However, what is gained?

When z is the parameters of a deep neural network, the search space
has certain properties: for example it’s euclidean. An alternative could
be to search through a hyperbolic space, yielding ’hyperbolic neural net-
works’ (explored by [76]).
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Figure A.11: The convergence rate of different functions. Note that be-
cause some of these are non-linear, their convergence rate will be highly
dependent on the initialisation and different learning rate.

Figure A.12: The convergence rate of different functions. Note that be-
cause some of these are non-linear, their convergence rate will be highly
dependent on the initialisation and different learning rate.
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Appendix B

Abstraction

B.1 LMDPs

B.1.1 LMDP solutions

In the original Todorov paper [57], they derive the LMDP equations for
minimising a cost function. This maximisation derivation just changes a
few negative signs around.

95
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V (s) = max
u

q(s)− KL(u(·|s) ‖ p(·|s)) + γ E
s′∼u(·|s)

V (s′) (1)

= q(s) + max
u

[
E

s′∼u(·|s)
log(

p(s′|s)
u(s′|s)

+ γ E
s′∼u(·|s)

[
V (s′)

]]
(2)

log(zu∗(s)) = q(s) + max
u

[
E

s′∼u(·|s)
log(

p(s′|s)
u(s′|s)

+ E
s′∼u(·|s)

[
log(zu∗(s

′)γ)
]]

(3)

= q(s) + max
u

[
E

s′∼u(·|s)
log(

p(s′|s)zu∗(s′)γ

u(s′|s)
)

]
(4)

G(s) =
∑
s′

p(s′|s)zu∗(s′)γ (5)

= q(s) + max
u

[
E

s′∼u(·|s)
log(

p(s′|s)zu∗(s′)γ

u(s′|s)
· G(s)

G(s)
)

]
(6)

= q(s) + logG(s) + min
u

[
KL
(
u(·|s) ‖ p(·|s) · zu

∗(·)γ

G(s)

)]
(7)

u∗(·|s) =
p(·|s) · zu∗(·)γ∑
s′ p(s

′|s)zu∗(s′)γ
(8)

log(zu∗(s)) = q(s) + log
(∑

s′

p(s′|s)zu∗(s′)γ
)

(9)

zu∗(s) = eq(s)
(∑

s′

p(s′|s)zu∗(s′)γ
)

(10)

zu∗ = eq(s) · Pzγu∗ (11)

By definition, an LMDP is the optimisation problem in (1). We can
move the max in (2), as q(s) is not a function of u. Also in (2), expand the
second term using the definition of KL divergence, the negative from the
KL cancels the second terms negative. (3) Define a new variable, z(s) =

ev(s). Also, use the log rule to move the discount rate. (4) Both expectations
are under the same distribution, therefore they can be combined. Also,
using log rules, combine the log terms. (5) Define a new variable that will
be used to normalise p(s′|s)z(s′)γ . (6) Multiply and divide by G(s). This
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allows us to rewrite the log term as a KL divergence as now we have two
distributions, u(·|s) and p(·|s)z(·)γ

G(s)
. (7) The change to a KL term introduces

a negative, instead of maximising the negative KL, we minimise the KL.
Also in (7) the extra G(s) term can be moved outside of the expectation
as it is not dependent in s′. (8) Set the optimal policy to minimise the KL
distance term. (9) Since we picked the optimal control to be the form in
(8), the KL divergence term is zero. (10) Move the log. (11) Rewrite the
equations for the tabular setting, where z is vector, and the uncontrolled
dynamics are a matrix.

B.1.2 MDP Linearisation

The ability to solve LMDPs is great, but it’s only useful if we can map
MDPs into LMDPs, solve them, and map the solution back. Our goal here
is to find a LMDP that has ’similar’ structure to the original MDP we were
given.1

1This derivation is not the same as in Todorov. He sets ba 6= r, ba = r −
∑
P logP .
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∀s, s′ ∈ S,∀a ∈ A,∃ua such that; (1)

τ(s′|s, a) = ua(s
′|s)p(s′|s) (2)

r(s, a) = q(s)− KL(τ(·|s, a) ‖ ua(·|s)) (3)

r(s, a) = q(s)− KL(τ(·|s, a) ‖ τ(·|s, a)

p(·|s)
) (4)

r(s, a) = q(s)−
∑
s′

τ(s′|s, a) log(p(s′|s)) (5)

ms′ [s] := log p(s′|s) (6)

Das′ [s] := p(s′|s, a) (7)

cs′ [s] := q[s]1−ms′ [s] such that
∑
s′

ems′ [s] = 1 (8)

ra = Das′(q1−ms′) ∀s (9)

ra = Das′cs′ ∀s (10)

cs′ = raD
†
as′ ∀s (11)

q = log
∑
s′

ecs′ ∀s (12)

ms′ = q − cs′ ∀s (13)

We want to pick p, q such that the dynamics of every action in the orig-
inal MDP can be represented with a control (2), and every reward gener-
ated by an action, can be given by a combination of the state rewards and
the KL-divergence between the true dynamics and a control (3). Com-
bine (2), (3) to yield (4). Expand the definition of KL-divergence to get
(5). Now, we move to a tabular representation., where ms′ [s] and cs′ [s] are
vectors, and Das′ [s] is a matrix, defined in (6), (7), (8). With these new def-
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initions, we can rewrite equation (5) as (9). The expectation can be moved
to include q because it sums to one. Substitute equation (8) into (9) to get
(10). Solve the linear equation in (11) to get the value of cs′ . Use the value
of cs′ to calculate the state rewards and unconditioned dynamics by using
equations (12), (13) and (6).

B.2 Symmetries for RL

B.2.1 MDP homomorphisms

As pointed out in 3, the notion of an abstraction is captured by a homo-
morphism. Given this, it seems natural to extent the definition to MDPs.

A MDP homomorphism is a transformation of a MDP, H : M → M,
that preserves the transition and reward function [77]. We can describe
this MDP homomorphism asH = (f, g) such that;

τ(f(s′)|f(s), gs(a)) =
∑

s′′∈[s′]f

τ(s′′|a, s)

r(f(s), gs(a)) = r(s, a)

This MDP homomorphism framework yields state-action abstraction,
that uses a model based notion of similarity. However, as pointed out in
earlier sections, there are many other possible notions of abstraction and
similarity that can make sense for RL. Specifically, the MDP homomor-
phism framework could be generalised in the following ways;

1. approximate symmetries
2. complexity measure / inductive bias
3. inference of symmetries under uncertainty
4. temporal symmetries

Indeed, some work has extended the notion of symmetric model-based
abstraction (1) to approximately symmetric model-based abstraction [78].
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However, this has yet to be generalised to other types of symmetry with
(say) the state-action values.

Section 3.3 is our not-so-humble attempt to achieve a symmetric induc-
tive bias (2). And, as far as we know, little progress has been made on (3).

Finally, there has been at least one attempt [79] to build a framework
capable of exploiting temporal symmetries (4). And while their proposal
makes sense, we offer an alternative below.

B.2.2 Temporal symmetries

Consider a transformation on a MDP that takes sequences of actions, an
option, a1, a2, . . . , ak, and relabels them as actions in a new MDP.

Ωk : M →M

Ωk : {S,A, r, P, γ} → {S,Ak, T̂k(r), T̂k(P ), γ}

T̂k(r) =
t+k∑
i=t

γi−tr(si, ai)

T̂k(P ) =
t+k∏
i=t

τ(si+1|si, ai)

It seems easy to see that the transformation of the actions is bijective2(each
option is identified with one action), and therefore we have an isomor-
phism (which is a type of homomorphism).

We can now define a temporal homomorphism as the composition of
our temporal transformation and the MDP homomorphism.

2Although, care does need to be taken with the transitions and rewards. We must en-
sure that the transitions / rewards for an options are the same as the transition / reward
for the relabelled option (now a single action).
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H : M →M (MDP homomorphism)

Ωk : M →M (temporal transformation)

H ◦ Ωk : M →M (temporal homomorphism)

Rather than finding model-based symmetries in the state-actions. This
construction will find symmetries in state-options (of a specific length).

B.2.3 Invariants

An important property of a group is that they can be (uniquely) identified
by their invariant relations [80]. Together, the invariant relations and gen-
erators can be use to construct a group. For example, the cyclic groups can
be generated by a single element, which represents an action like +1. And
the invariant relation is (+1)n = e. This relation says, that after applying
the element to itself n times, it loops back to the identity element, e. Thus
it makes a cycle. And the group of order n, with only the single invariant
relation, an = e, must be the cyclic group of order n.

So, how can we use invariant relations (and the generators) to help
infer symmetries in reinforcement learning problems?

• What does an invariant in the transition function (or reward func-
tion) imply about the value function?
• Which symmetries can we identify by using invariants in the value

function?
• How hard is (computationally) it to find these invariants?

Cart pole

Let’s work through an example, the cart-pole control problem. The goal is
to balance a pole on a cart. Where, the cart can be moved left or right.



102 APPENDIX B. ABSTRACTION

The states of the cart pole problem are described by si = [pic, v
i
c, p

i
p, v

i
p]

3.
Where, pc is the position of the cart, vc is the velocity of the cart, pp is the
position of the pole, vp is the angular velocity of the pole. And the actions
are −1 for left and 1 for right.

Mirror Symmetry

We can ’flip’ the cart pole problem, and it remains the same problem.

Figure B.1: Two mirror symmetric state-actions of a cart pole.

Let the group g ∈ S2 act on the

• state space as g ◦ s = −s
• action space as g ◦ a = −a

Therefore, we can write the;

• policy as g ◦ π(a|s) = π(g ◦ a|g ◦ s) = π(a|s).
• transition function as (g ◦ τ)(·|s, a) = τ(·|g ◦ s, g ◦ a) = τ(·|s, a).
• reward function as (g ◦ r)(s, a) = r(g ◦ s, g ◦ a) = r(s, a).
• state-action values as (g ◦Qπ)(s, a) = Qg◦π(g ◦ s, g ◦ a) = Qπ(s, a).

3Where the cart’s position is centered around some fixed starting point. And the rota-
tions are measured relative up being upright.
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So, what are some invariants we might care about in the RL context?

Qπ(s, a) = (g ◦Qπ)(s, a) (expected return)

T (Qπ)(s, a)−Qπ(s, a) = T (g ◦Qπ)(s, a)− (g ◦Qπ)(s, a)

(Bellman residual)

E
s′∼τ(·|s,a)

(s′ − s) = g ◦ E
s′∼(g◦τ)(·|s,a)

(s′ − g ◦ s) (change in state)

So, the cart pole problem is invariant to S2. But, how could this have
been identified from the invariants above?

Translational Symmetry

The problem is essentially the same if we move to the left or right.

Figure B.2: Two similar cart poles, which are a translation different from
each other.

Define the action of g ∈ G on the

• state space g ◦ s = [g + pc, vc, pp, vp]

• action space g ◦ a = a
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Therefore, we can write the;

• policy as g ◦ π(a|s) = π(a|g ◦ s) = π(a|s).
• transition function as (g ◦ τ)(·|s, a) = τ(·|g ◦ s, a) = τ(·|s, a).
• reward function as (g ◦ r)(s, a) = r(g ◦ s, a) = r(s, a).
• state-action values as (g ◦Qπ)(s, a) = Qg◦π(g ◦ s, a) = Qπ(s, a).

So, what are some invariants we might care about in the RL context?

Qπ(s, a) = (g ◦Qπ)(s, a) (expected return)

T (Qπ)(s, a)−Qπ(s, a) = T (g ◦Qπ)(s, a)− (g ◦Qπ)(s, a)

(Bellman residual)

E
s′∼τ(·|s,a)

(s′ − s) = g ◦ E
s′∼(g◦P )(·|s,a)

(s′ − g ◦ s) (change in state)

Despite two different groups acting on the cart pole problem, they have
the same invariants (that we considered). Which other invariants should
we be measuring, and how would they help us narrow the possible syme-
tries?

We consider some other examples as well. But don’t construct their
invariants.

Transition Symmetry

Despite starting in different states, and applying different actions, we
might end up in the same next state.

If we allow actions to be continuous, where we get to choose the im-
pulse a ∈ [−c, c]. Then we we get a new set of invariants of the transition
function τ(s′|s, a) = τ(s′|g ◦ (s, a)). But what do these invariants of the
transition function imply about invariants in the state (and action) values?
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Figure B.3: Invariants of the transition function. Two different actions take
two different states to the same one. Roughly, the intuition is; a small
push of a fast moving object achieves the same results a large push of a
slow moving object.

Temporal Symmetry

There exist multiple ways of achieving the same thing.

This is a temporally extended version of the Transition Symmetry (above).

Υ(st|s, a1, . . . , at) =
∑

s1,s2,...st−1

t∏
i=0

τ(st|st−1, at−1)

Υ(s′|s, a1, . . . at) = Υ(s′|s, g ◦ (a1, . . . at))
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Figure B.4: Temporal invariants. For example, we might be able to reorder
actions, without changing the effect (putting your left sock on before you put
on your right sock). Or we might be able to use different numbers of actions
to achieve the same thing (three left turns makes a right).

Pong

The states of Pong are described by s = [p1, v1, p2, v2, p
x
b , p

y
b , v

x
b , v

y
b ] (all of

these are centered around the middle of the table). Where, p1 is the posi-
tion of player 1’s paddle, v1 is the velocity of player 1’s paddle, pxb is the x
position of the ball, vyb is the y component of the ball’s velocity. And the
actions are −1 for left and 1 for right.

Pong also has mirror symmetry in the same sense as the cart pole prob-
lem. And, it has another type of mirror symmetry.

Mirror symmetry (player perspective / horizontal) Because Pong is a
zero sum, two player game, there is a symmetry of perspective. Whether
you are playing as player 1 or player two, you are still playing the same
game of Pong, but with inverted pay-offs.

Let G = ({e, g}, ◦). And define the action of g on the;

• state space g◦[p1, v1, p2, v2, p
x
b , p

y
b , v

x
b , v

y
b ] := [p2, v2, p1, v1,−pxb , p

y
b ,−vxb , v

y
b ]

• action space g ◦ a := a

• rewards g ◦ r(g ◦ s, g ◦ a) := −r(g ◦ s, g ◦ a)
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Figure B.5: The invariants of a shift in player perspective.

Therefore, we can write the;

• policy to be g ◦ π(a|s) = π(g ◦ a|g ◦ s) = π(s, a).
• transition function to be (g◦τ)(s′|s, a) = τ(g◦s′|g◦s, g◦a) = τ(s′|s, a).
• value function is (g ◦ Qπ)(s, a) = g ◦ r(s, a) + γ(g ◦ τ)(s′|s, a)(g ◦
Q)π(s, a) = Qπ(s, a)

B.3 Symmetry and machine learning

All of these methods rely on a similar type of method: use the symmetry
to construct orbits, and then average or pick a representative.

B.3.1 Exploitation

Once we have discovered a symmetry, how might we exploit
that discovery?

Similar to how we considered how to exploit an abstraction in section
3.1.1, let’s review some existing methods for exploiting the knowledge of
a symmetry.
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Exploiting symmetry for efficient control

If we have a MDP,M1, then solving it via value iteration requiresO(ε|S|2|A|)
iterations. However, if we know that there exists symmetry of order k in
the state space, then we can ’minimise the model’, by applying the MDP
homomorphism H : M → M. This new, minimised, MDP, M2 has a
smaller state space, as |SM2| =

|SM1
|

k
and essentially the same dynamics

and rewards. Thus we can solve M2, with cost O(ε |S|
2|A|
k2

) and then lift the
solution back to M1. [81, 82]

Exploiting symmetry for efficient inference

There has been a large amount of work (that we are familiar with) explor-
ing the exploitation of symmetries for faster learning. The essence of the
idea is ”invariance reduces variance” [83].

Possibly the most famous exploitation strategy is data augmentation
[61]. But, there are other techniques;

• Use the known symmetries to build invariant network architectures
[84, 85]
• By sharing weights according to group structure [64, 86]
• Output coupling [87, 84]
• Gradient coupling

Gradient coupling Inspired by the view of neural network updates as
being controlled by a ’neural tangent kernel’ [88], here we present another
way to exploit symmetries for machine learning.

Let f : X → Y be some trainable function.

ẏj =
∑
i 6=j

αij∇θ`(yi, θ)

Then neural networks share updates between examples according to
the neural tangent kernel αij = 〈∇θ`(xi, θ),∇θ`(xj, θ)〉. However, we could
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pick another way to do this update. Possibly using the symmetries to
group xis and xjs.

A note about discovery

The discovery of symmetries within data has had little success. However,
with the framing of data augmentation as a form of symmetry exploita-
tion, this implies that automated data augmentation [89, 90, 91, 92] is a
form of symmetry discovery.

These methods discover which symmetries apply to a given domain,
and at what magnitude. They tend to frame the optimisation problem
as picking the probability of a set of given op and their magnitude. For
instance, [89] provides a small set of operations (aka symmetries): Identity,
AutoContrast, Equalize, Rotate, Solarize, Color, Posterize, Contrast, Brightness,
Sharpness, ShearX, ShearY, TranslateX, TranslateY. Validation error is then
used as a reward for learning.

While this approach does work, like other ’meta-learning techniques’,
it does not scale well.

B.3.2 Actions

Let G be a group. Where we represent the action of g ∈ G on the real
vectors, x ∈ Rn as permutation matrices, φ(g, x) = Pg ◦ x, where the com-
position operator ◦ becomes matrix multiplication, ·. Therefore e = In and
g can be one of many possible actions. For example, consider the repre-
sentations of the n-gram swaps 4of g when applied R4.

4There are no others. Proof by construction. Enumerate all permutations and check
which ones are idempotent.
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
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0




1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1




1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0




0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1




0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 1




0 0 0 1

0 1 0 0

0 0 1 0

1 0 0 0




0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0




0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0




0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0



The first two rows contain permutations that swaps (two) elements of
the vector (a ↔ b), these are the possible actions of S2. The last row con-
tains permutations that swaps pairs ((a, b) ↔ (c, b)), this entire row is the
only representation of S2 × S2.

Race grid world

We want to construct a simple symmetric problem to test our learners. The
intuition behind this toy problem comes from a 100m sprint. It doesn’t
matter which lane you are in, you should run forwards, not sideways...
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Figure B.6: The purple nodes represent the starting states. The green-teal
nodes represent states wth reward 1. There are 5 actions, left, right, up,
down, none. Starting from the leftmost purple node: Left moves clockwise
to the next purple node. Up moves to the blue node. Down doesn’t result
in movement. None doesn’t result in movement.

B.4 n-dimensional Cart pole

How can we test a learners ability to detect symmetries and exploit
them?

We propose a simple test, the n-dimensional cart pole: a generalisation
of the cart pole problem to n dimensions. Rather than receiving observa-
tions in R4 (the position, velocity, angle and angular velocity), observa-
tions are in R4×n. And the action space is generalised from {0, 1} (left and
right), to {0, 1}n.

B.4.1 How is this problem symmetric?

The n-dimensional cart pole problem can be reduced to n, one dimensional
cart pole problems. Where each of these one dimensional cart pole prob-
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lems is easy to solve.
In a more formal sense. This problem is symmetric because the optimal

policy and its (Q) values are invariant to the actions of the permutation
group of order n, Sn.

g ◦ sj = g ◦ [x0, . . . , xi, . . . , xn−1]

= [x1, x0, . . . , xi, . . . , xn−1]

gi ◦ ak = g ◦ [u0, . . . , ui, . . . , un−1]

= [u1, u0 . . . , ui, . . . , un−1]

g ◦ τ(s′|s, a) = τ(g ◦ s′|g ◦ s, g ◦ a)

g ◦R(s, a) = R(g ◦ s, g ◦ a)

g ◦ π∗(a|s) = π∗(g ◦ a|g ◦ s)

= π∗(a|s) (invariance of the optimal policy)

g ◦Qπ∗(s, a) = Qπ∗(g ◦ s, g ◦ a)

= Qπ∗(s, a) (invariance of the optimal values)

We describe a state as sj = [x0, . . . , xi, . . . , xn−1], where xi = (pic, v
i
c, p

i
p, v

i
p).

Where, pc is the position of the cart, vc is the velocity of the cart, pp is the
position of the pole, vp is the angular velocity of the pole. We describe ac-
tions as ak ∈ {0, 1}n. Let g ∈ Sn be the pairwise permutation, swapping
the first two elements (0→ 1).

B.4.2 An advantage

What advantage is provided by exploiting symmetries?

If a learner has inferred that the n-dimensional cart pole problem can be
decomposed into n identical sub problems, then that means it is gathering
n times the data for the one-dimensional cart pole problem. So, we should
see a factor of n speed up in learning. This is the same argument made
here [quotient groups appendix...].
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For a learner that doesn’t know of the symmetries. How is this problem
hard? The more dimensions there are, the more ways there are to fail.
Consider how exploration is done. In a single dimension, actions are taken
with probability is taken with some chance of exploring instead. Maybe
you correctly balanced the pole in all dimensions except one. To bad, you
don’t get any reward.

B.4.3 Experiments

We use OpenAI’s Gym [93] and Baselines [94] to test this environment.
Note: ’Average mean reward’ refers to the fact that we have averaged

(n=5) the mean reward (per episode). Also note: This reward is the train-
ing performance.

As mentioned in the previous section, we expected learning to become
much harder for a learner that doesn’t exploit symmetries. These results
suggest either of two possibilities: that PPO2 can discover and exploit
symmetries, our setting does not test what we think it does.

While investigating this further, we realised that the given action space,
MultiBinary, provides a large amount of information. We ran another test
with a Discrete action space. Where the learner gets to choose a ∈ Zn. This
action then gets (binary) decoded to the MultiBinary format.

A learner that exploits the permutation symmetries in the n-dimensional
cart pole problem should learn n times quicker. However, the cost of dis-
covering this permutation symmetry is unknown.
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Figure B.7: Default PPO2 solving the nd cartpole problem with access to
a MultiBinary action space. Each color corresponds to a the average mean
return of different, n, the number of repeated cart pole problems.
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Figure B.8: Default PPO2 solving the nd cartpole problem with access to a
Discrete action space. Each color corresponds to a the average mean return
of different, n, the number of repeated cart pole problems.
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