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Abstract

Atrial Fibrillation is an abnormal arrhythmia of the heart and is a growing
concern in the health sector affecting 1% of the population. The incidence
of atrial fibrillation increases with age and has been found to be more detri-
mental to long term cardiac health than previously thought. Sufferers are
five times more likely to experience a stroke than others. Often, atrial fib-
rillation is asymptomatic and is frequently discovered only when a patient
visits a hospital for other reasons. The detection of paroxysmal atrial fib-
rillation can be difficult. Holter monitors are used to record the ECG over
long periods of time, but the resulting recording still needs to be analysed.
This can be a time consuming task and one prone to errors. If a miniature,
low-power, wearable device could be designed to detect and record when
a heart experiences atrial fibrillation, then health professionals would have
more timely information to carry out better, more cost effective courses of
treatment. This thesis presents progress towards development of such a
device.

Atrial fibrillation is characterised by random RR interval, missing P
wave and presence of atrial activity. The detection of the P wave and atrial
activity can be unreliable due to low signal levels and differences in wave-
form morphology between subjects. The random RR interval appears to
be a more reliable method of detection. By analysing the ECG signal in
both the frequency and time domains, feature sets can be extracted for the
detection process. In this research, the Discrete Wavelet Transform is used
to generate several sub-bands for analysing waveform morphology, and a
number of RR interval metrics are created for analysing the rhythm. All
features are further processed and presented to a support vector machine



classification stage for the ultimate detection of atrial fibrillation. Forty
eight files from the MITDB database of the PhysioNet online ECG reposi-
tory were downloaded and processed to form separate training and test-
ing data sets. Overall classification accuracy for normal sinus rhythm was
93% sensitivity and 95% specificity, and for atrial fibrillation, 95% sensitiv-
ity and 93% specificity.

These results were found to be sensitive to the ECG morphology of
the individual subjects. This means that the system either needs to be
trained on a greater number of ECG morphologies or perhaps trained on
the morphology of the individual under investigation. Putting this issue
aside, the research to date shows that it is reasonable to expect a small, low
powered, wearable device, to be capable of automatically detecting when
a heart experiences atrial fibrillation.
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Chapter 1

Introduction

Medicine has advanced considerably over the past century, but surpris-
ingly there is one diagnostic tool that has remained little changed in that
time: the electrocardiogram (ECG). The ECG is used to measure the elec-
trical activity of the heart and, along with 100 years of accumulated knowl-
edge, is still an extremely valuable tool for diagnosing heart complaints.

With an ageing population and changing lifestyle, society is now facing
increased health issues caused by over-eating, poor diets and little physi-
cal activity [7]. These issues can show up in heart related problems such as
cardiovascular disease and cardiac arrhythmia [16]. Current practices can
pick up cardiac problems when symptoms present, but this can be too late
for some subjects that have asymptomatic cardiac problems. Often car-
diac issues are discovered as a by-product of a hospital visit [16, 22]. One
cardiac arrhythmia problem that is often discovered by accident is Atrial
Fibrillation (AF) [16] . The purpose of this research is to design a real time
detector of AF that is useful in detecting asymptomatic AF and that can
help management of known cases.

1
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1.1 The Electrocardiogram

The electrocardiogram, or electrocardiograph, is the output of an instru-
ment that measures the electrical activity of the heart muscle. Electrodes
are placed on predetermined points of the thorax, in such a way as to de-
tect the electrical current generated by the heart muscle as it goes through
its pumping cycle [2]. The signals generated are used to create a graph
showing a waveform pattern. Knowledge that has been gained over the
last century is used to diagnose heart problems by interpreting the mor-
phology of the waveform produced.

1.2 History and development

As long ago as the late 17th century, scientists have been aware of the
relationship between electricity and the activation of muscles in the body.
First insights into the physical reaction of a muscle to an electrical stimulus
were observed in 1668 by Jan Swammerdam [1], although it is unlikely he
understood that it was electricity causing the reaction. It wasn’t until the
late 18th century, when electricity was better understood, that the effects
of electricity on muscle activity was more widely known and the ability to
measure electrical activity became possible.

In the beginning of the 19th century, new devices for measuring electri-
cal current flow were developed including the galvanometer named after
Italian researcher Luigi Galvani [1]. The first ECG type machines using the
galvanometer were developed in the early 1800’s. However, it wasn’t until
1887 that physiologist Augustus Desiré Waller first recorded the electrical
activity of the human heart using such a galvanometer [1]. He continued
his work and coined the phrase ‘electrogram’ referring to the action of
recording the electrical activity of the heart. This phrase was later mod-
ified by Einthoven [1] to ‘electrocardiogram’. Einthoven developed the
string galvanometer in 1903, an improved form of the device, and started
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its manufacture by Edelmann and Sons of Munich, and subsequently, the
Cambridge Scientific Instrument Company of London. Surprisingly, the
first instance of an ECG being transmitted over telephone wires was ac-
complished in 1905 by Einthoven [1]. Vacuum tubes were used to ampli-
fier the ECG signal in 1928, and 1949 saw the advent of the Holter monitor,
a ‘portable’ backpack version of the ECG monitor developed by Norman J.
Holter [1]. Weighing 34 kgs, it was carried around by the patient to record
cardiac activity. With the discovery of semiconductor transistors, many
new devices have been developed making the recording and analysis of
the ECG commonplace in medicine. Modern integrated electronic circuits
have enabled the measuring of the ECG to be easy, accurate and afford-
able. New systems and technologies are now being developed with these
modern devices.

1.3 Current technology

Current development in semiconductor electronics has produced at least
two examples of integrated circuits (IC) that are designed specifically for
ECG recording. These are the Texas Instruments ADS119x/129x [19] and
Analogue Devices ADAS1000 family of ECG analogue front end ICs [11].
Both units have the necessary analogue and digital circuitry to detect,
amplify and digitise the ECG signal, and offer very small form factor
along with low power consumption necessary for miniature portable de-
vices. Coupled with an appropriate microcontroller and associated soft-
ware, they have the ability to detect, record and interpret the ECG wave-
form.

There are many ECG monitoring devices currently available, ranging
from small portable Holter monitors to very large, sophisticated patient
monitoring suites that monitor multiple patients, carrying out real time
ECG interpretation. A few examples of Holter monitors include the Philips
DigiTrak XT [29], Midmark IQholter [27] and the Schiller Medlog AR12plus
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[35]. Examples of large monitoring suites are the Surveyor Central by
Mortara using the S12/S19 bedside monitors along with the X12+/T12S
wireless transmitters and VERITAS ECG algorithms [28] and the Philips
ECG system using the TC70 ECG monitors with wireless communications,
combined with the DXL-16 ECG algorithm [30] .

Using advances in mathematics and digital signal processing, auto-
matic interpretation of the ECG has become feasible. Philips have devel-
oped the computer based ‘DX algorithms’ [30] to automatically interpret
ECG data and similarly Bionet have developed the ‘EKG Plus II’ algorithm
[3].

1.4 Goals

In this thesis, it is shown that the ECG signal can be used as the basis
for fully automatic detection of atrial fibrillation. The fundamental sig-
nal processing steps to achieve this are presented, including Mathematical
Morphology, the Hilbert Transform, the Discrete Wavelet Transform and
the Teager-Kaiser Energy Operator. It is shown that the ECG associated
with AF has distinctive features that allows AF to be distinguished from
normal sinus rhythm and from other cardiac arrhythmia.

The thesis starts with a discussion of Cardiology in Chapter 2, followed
by Mathematics in Chapter 3. Proposed new methods for the detection
of AF in real time are presented in Chapter 4, and Chapter 5 details the
tests involved to validate the proposed new methods and discusses re-
sults. Chapter 6 describes the target implementation of these methods and
finally, concluding remarks and ideas for future research are provided in
Chapter 7.



Chapter 2

Cardiology

Introduction

The heart, in simple terms, is a muscle much like other muscles of the
body. However, it has some major physiological differences that allow it
to carry out its primary function as a pump. It has a very sophisticated
electrical system that controls the activities of the cardiac muscle, synchro-
nising the two top chambers (the atria) with the two bottom chambers (the
ventricles) to create an efficient pumping mechanism [2]. The pumping
cycle is initiated by an electrical impulse generated within the sino-atrial
(SA) node causing the atrial muscles to contract, pumping blood from the
atria into the ventricles. This electrical impulse travels across the atria in
a wavelike fashion and is detected by the atrio-ventricular (AV) node and
channelled down the Bundle of His to the ventricles. A small delay in
conduction allows the ventricles to fill with blood before contracting and
pumping blood to the lungs and the rest of the body [15].

5



CHAPTER 2. CARDIOLOGY 6

2.1 Cardiac Physiology

Figure 2.1 shows a cut away view of the heart displaying the two top
chambers, the Atria, the two bottom chambers, the ventricles, the SA node,
the AV node and the Bundle of His including the Left and Right Bundle
Branches.

Figure 2.1: Cardiac Physiology. (Courtesy:www.studyblue.com)

Contraction and relaxation of the heart muscle is caused by changes in
electric potential between the inside and outside of the muscle cell. This
‘action’ potential is controlled by ion channels that manipulate the flow
of calcium (Ca2+), Sodium (Na+) and Potassium (K+) ions into and out
of the cell structure [2]. Figure 2.2 (bottom trace, solid line) shows the
four phases of action potential as the heart muscle cells contract and re-
lax. In phase 0, rapid de-polarisation occurs where opening of the fast
sodium channels causes inward movement of Na+ ions. Phase 1 sees the
sodium channels close. In Phase 2, the long plateau is sustained by in-
ward movement of Ca2+ ions through the Calcium channels and outward
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movement of K+ ions through the slow Potassium channels. During Phase
3, re-polarisation occurs by closing the Calcium channels but keeping the
Potassium channels open. Phase 4 is the resting phase of the cycle and pro-
duces a potential difference of around -90mV [2]. The cycle is triggered by
impulses from adjacent cells.

Cells in the SA node and other pacemaker sites operate slightly dif-
ferently, see the dashed trace in Figure 2.2 . They are able to de-polarise
automatically as the action potential in Phase 4 doesn’t remain at -90mV.
Instead the action potential rises slowly and upon reaching a threshold
potential of about -40mV triggers the cycle initiating a heartbeat [2].

Figure 2.2: Action Potential. The bottom trace shows the action potential
of contractile cells (solid line) in the ventricle muscle and pace-
maker cells (dashed line) in the atrial muscle, with the top trace
showing the resultant ECG.
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2.2 ECG recording

The normal ECG waveform is composed of three basic components, the
P-wave, the QRS complex and the T-wave (see Figure 2.3). As the electro-
chemical processes involved in heart muscle contraction occur, electrical
current is passed through body tissue and is detected by ECG electrodes
placed on the skin [2].

The P-wave is indicative of the depolarisation of the two top chambers;
the Atria. The SA node is responsible for generating the regular electrical
impulse that initiates the contraction of the Atria and, consequently, the
observable P-wave of the ECG trace. This ‘electrical spark’ from the SA
node causes adjacent heart muscle cells to initiate their own depolarisation
thus causing an electrical wave to travel throughout the atria triggering
more cells to depolarise, manifesting heart muscle contraction. The overall
effect is to eject blood from the atria to fill the two bottom chambers, the
ventricles.

Figure 2.3: ECG waveform showing features used in interpretation.

The QRS complex is made up of three distinct waveforms, the Q, R and
S waves, but not all are necessarily present on the ECG recording. The
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QRS complex, in whatever form, is the observable indication of the depo-
larisation of the ventricles. The electrical stimulus for this action is derived
from the impulse generated by the SA node being detected by the AV node
and transmitted via the the Bundle of His for distribution throughout the
ventricles. There is an inherent delay in the conduction time of the im-
pulse through the Bundle of His that allows the ventricles to fill before
contracting and pumping blood to the rest of the body. This conduction
delay can be observed in the ECG waveform as the time between the P-
wave and the onset of the QRS complex, called the PR segment (PRseg in
Figure 2.3). The T-wave is indicative of the re-polarisation of the ventri-
cles. The ECG waveform shown in Figure 2.3 is commonly referred to as
Normal Sinus Rhythm (NSR), i.e., a normal rhythm initiated by the SA
node. The re-polarisation of the atria occurs concurrently with ventricular
de-polarisation and is therefore not visible on the ECG.

To measure the electrical activity of the heart, it is standard practice to
use the 12 Lead ECG and place the electrodes in the positions depicted in
Figure 2.4. Nine electrodes are used to generate the 12 Lead ECG. Three
electrodes, Right Arm (RA), Left Arm (LA) and Left Leg (LL) are used to
generate Leads I, II, III and augmented Leads aVL, aVF, aVR using the
following formulae.

VI = VLA − VRA

VII = VLL − VRA

VIII = VLL − VLA

VaVR = VRA − V 1
2

(LA+LL)

VaVL = VLA − V 1
2

(RA+LL)

VaVF = VLL − V 1
2

(RA+LA)



CHAPTER 2. CARDIOLOGY 10

Figure 2.4: Placement of electrodes for 12 Lead ECG.
(Courtesy http://nuclearcardiologyseminars.com)

The electrical centre of the heart is generated by averaging the signal of all
three electrodes and is called the Wilson Central Terminal (WCT).

VWCT =
1

3
(VRA + VLA + VLL)

Effectively, the three electrodes placed on the skin give a total of six
views of the hearts electrical activity called Leads. Because of the place-
ment of the three electrodes, a two dimensional view of the electrical ac-
tivity of the frontal or anterior plane is created [2]. A highly skilled cardiac
specialist can interpret the angles of propagation of the various ECG mor-
phologies and determine normal or abnormal electrical activity. The same
is true for the six Pre-cordial Leads, V1...V6 in the horizontal, or transverse
plane measured with respect to the WCT.
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(a) Leads I, II, III. (b) Axis orientation, anterior plane.

Figure 2.5: Six Lead ECG showing electrode connection and resultant six
Lead axis orientation.

2.3 Changes to ECG due to arrhythmia

Irregular heart beat, known as arrhythmia, can be caused by a number
of conditions. Following is a brief description of various arrhythmias
grouped by their origin.

• Sinus: The sino-atrial (SA) node, is a group of specialised cells that
reside in the right atrium. Their biological make up causes them
to automatically depolarise and re-polarise at about 80 times per
minute and it is this action that starts the electrical sequence of events
producing the pumping action of the heart [18]. The timing of the
electrical pulses created by the SA node can be altered by the sympa-
thetic and parasympathetic nervous systems allowing external con-
trol of the heart rate. When functioning correctly, the heart rate
caused by the SA node is called ‘normal sinus rhythm’ [2].

Sick sinus syndrome occurs when the SA node fires at a much slower
rate or fails to fire at all [15]. This results in bradycardia and sinus
pauses.
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• Atrial: Imperfections in the atria can cause a number of arrhythmia
problems such as atrial fibrillation, atrial flutter and Premature Atrial
Contractions (PAC) [2]. In AF, the SA node loses focus and the reg-
ular contractions of the atria are reduced to random activity causing
irregular heart beat. With atrial flutter, the SA node again loses focus,
but the atria beat at a regular, much faster rate than SA node gener-
ated impulses. Premature atrial contractions occur when the atria
contract prematurely, unsynchronised with the SA node impulses.
These may be lone occurrences or if more than two consecutive PACs
occur then this is called atrial tachycardia.

• Junctional: The combination of the AV node and the Bundle of His
form what is referred to as the junction between atria and ventri-
cles and any heartbeat initiated by electrical activity in this region is
called Junctional arrhythmia. The QRS complex looks normal, but
the P-wave is abnormal and is inverted due to depolarisation of the
atria being propagated in the opposite direction [18].

• Ventricular: Ventricular arrhythmia is caused by impulses created
from within the ventricles and is characterised by a wide, bizarre
shaped QRS complex due to the irregular speed and direction of
propagation of depolarisation [15].

• Atrio-ventricular blocks: AV blocks are characterised by either pro-
longed conduction through the AV node or partial or full conduction
block [18]. First degree AV block occurs when there is a prolonged
PR interval but otherwise normal beat sequence. This arrhythmia
is often asymptomatic. Second degree AV block is an intermittent
block of conduction via the AV node and third degree AV block is
full, permanent block of conduction with no electrical impulses from
the atria being passed to the ventricles. In this case the atria and ven-
tricles beat independently and at their own respective rates.
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• Bundle Branch blocks: Bundle Branch block is described as a con-
duction blockage of the Bundle of His either just below the AV node
or within either the left or right bundle [2]. Because of the block the
depolarisation of the ventricles takes longer and so the QRS complex
becomes wider and abnormal in morphology.

2.4 Changes to ECG due to other causes

Other changes to the ECG morphology can be caused by various condi-
tions of the heart. A description of some of these follows, but it is outside
the scope of this research to study them in depth.

• Pre-excitation: On rare occasions secondary conduction pathways
exist between the atria and ventricles, short circuiting the AV node/
bundle conduction pathway [2]. This shows up on an ECG as a
widened QRS complex having a distinctive ’delta’ wave on the lead-
ing edge of the complex.

Figure 2.6: An example of the Delta wave caused by pre-excitation of the
ventricles.
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• Chemical imbalances: As previously discussed, the heart muscle un-
dergoes contraction and relaxation due to the flow of chemical ions
into and out of the heart muscle cells. These are ions of calcium,
sodium and potassium, and any deficiency or excess of these elec-
trolytes can cause changes to the cardiac action and thus the ECG
morphology [18].

• Pulmonary disease: Disease of the lungs causes strain on the heart
that in time effects the ability of the heart to function correctly [15].

• Myocardial disease: Often with heart diseases, blood pressure in-
creases causing the enlargement (increased volume) and hypertro-
phy (increased wall thickness) of the atria and ventricles. This results
in an associated change to the ECG morphology [18].

• Myocardial damage: Lack of blood supply to the heart muscle (the
myocardium) causes damage that results in changes to the ECG mor-
phology [18]. An experienced cardiac specialist is able to determine
how extensive the damage is and sometimes the location of the dam-
age. The damage to the heart muscle caused by low blood perfusion
can be temporary (myocardial ischemia), or permanent (myocardial
infarction) [2].

2.5 Atrial Fibrillation

The focus of this research is Atrial Fibrillation (AF). AF is seen in 1.0% of
the total population and accounts for 11% of all arrhythmias seen in pa-
tients presented to intensive care units [23]. Its prevalence increases with
age and is higher in the western world compared with that in Asia. AF
is a condition of the heart whereby the two top chambers of the heart,
the atria, are not beating in unison with the two bottom chambers of the
heart, the ventricles. More specifically, the Sino-atrial node (the hearts
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natural pacemaker) loses focus and the regular contractions of the atria
are reduced to random activity causing irregular heart beat. The result-
ing changes in fluid dynamics can create blood clots and studies show
that patients with AF are five times more likely to suffer from strokes [46]
than have without. In a study by Katz and Pick referred to by [23], 50,000
consecutive patients presented to hospital over a 25 year period showed
that the prevalent cardiac arrhythmias were Sinus tachycardia (18.7%), Si-
nus arrhythmia (16.6%), Premature systoles (14.3%) and Atrial fibrillation
(11.7%). In another study [33], 133 consecutive patients with arrhythmias
were monitored. Of those the most frequent arrhythmias found were Ven-
tricular tachycardia (48.6%) and Atrial fibrillation (29.8%)

The detection of AF is no trivial task. Electrocardiograph devices print
out a real time waveform for diagnostic purposes and these are interpreted
by highly trained cardiac specialists. However AF can often be paroxys-
mal and not always picked up when an ECG is recorded [25]. Devices are
available, such as the Holter monitor, that record the ECG over long pe-
riods, but the data collected still has to be analysed by a cardiac expert.
This is a lengthy process and one prone to errors. Systems are now avail-
able that automatically interpret ECG tracings saving time, but these are
expensive desktop units or computer based software.

Diagnosis of Atrial Fibrillation from ECG relies on detection of the fol-
lowing three indicators [8]

1. Missing P-wave.
2. Presence of abnormal atrial activity.
3. Highly variable RR interval.

Contractile cells (those that contract on de-polarisation) can change
and become inappropriate pacemaker cells, causing erratic contractions
of the atria. This causes the P-wave to disappear and abnormal atrial ac-
tivity appears on the ECG. Instead of one pacemaker, (i.e., the SA node
generating regular impulses) a number of sites cause multiple wave fronts
that travel throughout the atrial mass. These haphazard waves occur too
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Figure 2.7: ECG morphology: Atrial fibrillation showing irregular RR in-
terval and P-wave replaced by random atrial activity.

quickly for synchronised atrial contractions and thus produce the highly
variable RR intervals observed during AF (see Figure 2.7).

In this chapter the physiology of the heart has been examined and AF
described. In the following chapter a number of mathematical processes
that are useful in the analysis the of ECG signal are presented.



Chapter 3

Mathematical Background

In the previous chapter on cardiology, the ECG waveform was discussed
and arrhythmia, in particular atrial fibrillation, was described. Charac-
teristics of Normal Sinus Rhythm and Atrial Fibrillation were also sum-
marised. What was not mentioned was that various ECG waveforms have
certain characteristics both in the time and frequency domains. It is these
characteristics that are to be extracted and analysed using digital signal
processing techniques, allowing various arrhythmias to be detected and
distinguished. This is described in more detail in Chapter 4. In this chap-
ter, various mathematical processes are introduced that are suitable for the
construction of reliable, efficient algorithms for AF detection.

3.1 Mathematical Morphology

Mathematical Morphology (MM) is the discipline of analysing geometrical
shapes using techniques from a number of mathematical fields including
Set theory, Lattice theory, Topology and Discrete Mathematics. It origi-
nated from work done at the École des Mines de Paris by Jean Serra and
Georges Matheron [13] during the mid 1960’s. More often associated with
image processing, MM is becoming more common in one dimensional sig-
nal processing especially where the morphology of the presented signal is

17
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being investigated. In this section we limit our discussion to one dimen-
sional signals only.

Mathematical morphology has been used to remove baseline wander
in the ECG signal [34] , and as a QRS complex detector [47]. Also, ECG
feature extraction and heartbeat classification has been implemented using
mathematical morphology [39]. Two fundamental MM operators are:

Erosion

(f 	B)(n) = min
m=0,...,M−1

{
f(n− M − 1

2
+m)−B(m)

}
Dilation

(f ⊕B)(n) = max
m=0,...,M−1

{
f(n− M − 1

2
+m) +B(m)

}
where

n =

{
M − 1

2
, ..., N − M + 1

2

}
and B is a symmetric structuring element of M points having value zero.

More complex operators can be constructed from erosion and dilation.
Following are two very common operators:

Opening

f ◦B = f ⊕B 	B

Closing

f •B = f 	B ⊕B
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In simple terms, opening can be understood as sliding the structur-
ing element beneath the signal producing the highest points reached by
any part of the structuring element, effectively suppressing peaks. With
a longer structuring element, more of the peak is removed; with a shorter
structuring element, less of the peak is removed. Closing can be under-
stood as sliding the structuring element above the signal producing the
lowest points reached by any part of the structuring element, effectively
suppressing valleys. In the same way as described above for the opening
operator, the closing operator removes valleys to a greater or lesser extent,
see Figure 3.1

Figure 3.1: Opening operation showing elements and removed peaks.

By combining operators, more sophisticated signal manipulation can
be accomplished. The use of Mathematical Morphology for baseline re-
moval is explained in more detail in section 4.2.

3.2 Wavelet Transform

The Fourier Transform is ubiquitous in modern signal processing appli-
cations. Originally devised by Joseph Fourier in 1822 for the analysis of
heat flow, it is now used extensively in signal processing to resolve the
frequency composition of electronic signals. Its ability to transform a sig-
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nal represented in the time domain to the same signal represented in the
frequency domain has given scientists and engineers a valuable tool for
signal and systems analyses. However, its main drawback has been its in-
ability to separate signals in the frequency domain, with respect to time.
This is due to the infinite support of the basis functions, sine and cosine. By
using the Short Time Fourier Transform this limitation has been partially
overcome but unfortunately it has fixed frequency and time resolution [6].
A more natural process would provide good time resolution for high fre-
quencies and good frequency resolution for low frequencies. The Wavelet
Transform overcomes the deficiencies of the Fourier Transform in this re-
spect by separating out the frequency spectrum of a signal with respect to
time, and providing appropriate scaling in time and frequency domains.

3.2.1 Brief history

Work done by Alfred Haar (orthonormal basis functions, 1909) and Al-
berto Caldéron (harmonic analysis, 1964) paved the way for further re-
search into wavelets. In the late 1970’s Jean Morlet, a French geophysicist,
proposed a method of analysing signals that had short duration high fre-
quency components, and long duration of low frequencies components,
by using dilation and compression of a prototype function to create a set
of windowing functions, in this case a Gaussian window [32]. Working
with Alex Grossmann, a theoretical physicist, they formalised the trans-
form and inverse transform in 1980. It was Yves Meyer that noticed the
similarity of work done by Morlet and Grossmann to that of Caldéron and
consequently constructed new wavelets with better localisation proper-
ties. More research by Ingrid Daubechies and Stéphane Mallat lead to the
development of the discretised version of the continuous wavelet trans-
form. It was latter works of Daubechies that laid the foundations of mod-
ern wavelet theory and created a set of useful signal processing tools to be
used by scientists, engineers and economists. [10, 32]
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3.2.2 Continuous Wavelet Transform

Essentially the prototype wavelet function is a filter like any other, how-
ever it is used as a template to create a family of filters for resolving differ-
ent frequency components within a signal.

The Continuous Wavelet Transform (CWT) takes the form

Υ(s, t) =

∫
f(t)Ψ∗s,t(t)dt,

when the wavelet function Ψ is

Ψ∗s,τ (t) =
1√
s
ψ
(t− τ

s

)
where signal f(t) is transformed into a two dimensional function Υ, with
τ and s being the translation and scaling factors respectively.

Using dilation and compression of the prototype (the mother wavelet),
a series of wavelets is created, each inheriting the fundamental properties
of the mother wavelet, but having differing frequency and time domain
characteristics. For these relationships to exist the mother wavelet must
have the following properties.

Admissibility:

A function that is square integrable and satisfies the following admissibil-
ity condition can be used to decompose and reconstruct a signal without
losing any information ∫ ∞

−∞

|Φ(ω)|2

|ω|
dω < +∞

where Φ(ω) is the Fourier Transform of ψ(t).

This also means that the Fourier Transform of ψ(t) is zero, i.e. vanishes,
at zero frequency.

|Φ(ω)|2 |ω=0= 0
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Wavelets have a band-pass like spectrum. A zero at zero frequency, means
that the average value of the wavelet is zero, i.e.,∫ ∞

−∞
Ψ(t)dt = 0

and shows that the wavelet is oscillatory in nature.

Regularity:

It is an advantage for the wavelet to be local in the time and frequency
domains. Although this is not necessary, it is an important property. The
time-bandwidth product of the wavelet transform is the square of the sig-
nal (viz. a one-dimensional signal transforms into two dimensions and a
two dimensional signal transforms into four dimensions), which is unde-
sirable. To overcome this adverse effect, other conditions are imposed on
the wavelet functions so they decrease rapidly with decreasing scaling fac-
tor s. Vanishing moments are a measure of quality of the wavelet function
and provides reduced computation time and allows detection of higher
order derivatives. The moments of a wavelet Mp are defined as∫ ∞

−∞
tkψ(t)dt = 0, 0 ≤ k < P

Mp =

∫ ∞
−∞

tpψ(t)dt

For a wavelet having P vanishing moments, the wavelet function Ψ,
is orthogonal to polynomials up to degree P − 1, and the detail signal
produces no energy for polynomials up to degree P − 1.

In summary, admissibility gives a wave like function and regularity gives
a smooth function with fast decay, i.e., local in both the time and fre-
quency domains. However, the Continuous Wavelet Transform has three
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major disadvantages for use in real world applications. Firstly, having
the wavelet function continuously shifted over the whole signal results in
much redundant information. Secondly, by having a continuously vari-
able wavelet function, an infinite number of wavelets is created. Thirdly,
most of the functions of the wavelet transform can only be calculated nu-
merically and have no analytical solution. To overcome these issues the
Discrete Wavelet Transform was devised. [9, 31, 37, 38, 41, 42, 43]

3.2.3 Discrete Wavelet Transform

The Discrete Wavelet Transform has wavelets that are scaled and trans-
lated in discrete steps, effectively making it a piecewise continuous func-
tion. The discrete wavelet function Ψ takes the form

Ψ∗s,τ (t) =
1√
sj
ψ
(t− kτsj

sj

)
where τ = 1, j = 0..n and s = 2, giving the dyadic implementation of the
transform, i.e. dyadic sampling of the frequency and time axis (see Figure
3.2).

Figure 3.2: The dyadic grid, time-scale representation.

For perfect reconstruction, Ingrid Daubechies [9] showed that it is a
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necessary and sufficient condition that the energy of the wavelet lie be-
tween two positive bounds

A‖f‖2 ≤
∑
j,k

|〈f,Ψj,k〉|2 ≤ B‖f‖2

where ‖f‖2 is the energy of f(t), 0 < A < B < ∞ and A,B are indepen-
dent of f(t). The set Ψj,k is then said to be a frame. If A = B, then the
frame is said to be tight and the discrete wavelets have similar properties
to an orthonormal basis. When A 6= B, perfect reconstruction can still be
achieved, but the decomposition and reconstruction wavelets are dissimi-
lar.

The wavelet effectively acts like a band-pass filter and subsequent di-
lations produces a family of band-pass filters, each filter having half the
bandwidth of the previous. Because the ratio of bandwidth to centre fre-
quency remains constant, the resulting family of filters is called a constant
Q filter bank.

Figure 3.3: The dyadic implementation of the DWT filter bank showing
high pass (wavelet) and low pass (scaling) filters with follow-
ing decimators. D1..Dn are the detail outputs which are effec-
tively the outputs of a series of band-pass filters, each having
half the bandwidth and half the number of coefficients as the
previous.
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3.2.4 Filter design

Once the scaling function (φ, the decomposition low pass filter) has been
designed, it is relatively easy to create the wavelet function (ψ, the decom-
position high pass filter) by creating a filter that is the Quadrature Mirror
Filter (QMF) of the scaling function. Figures 3.4–3.5 show the resulting fil-
ters for decomposition and reconstruction of a signal in the time domain
and frequency domain, respectively. The wavelet function (decomposition
high pass filter) is defined as

g1[n] = (−1)ng0[N − 1− n]

being the QMF of g0 (the decomposition low pass filter). The reconstruc-
tion low pass filter is defined as

h0[n] = g0[N − 1− n]

being the mirror of g0, and the reconstruction high pass filter

g1[n] = (−1)ng0

is the quadrature of g0.

In the Z domain the respective filters become

G1[n] = Z−NG0(−Z−1)

H0[n] = Z−NG0(Z
−1)

H1[n] = G0(−Z1)

see Figure 3.5.

The Discrete Wavelet Transform is used in this research for filtering the
ECG signal into a series of frequency sub-bands for further analysis. See
sections 4.4 and 4.5
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(a) Decomposition low pass filter (b) Decomposition high pass filter

(c) Reconstruction low pass filter (d) Reconstruction high pass filter

Figure 3.4: Daubechies db11 wavelet filter construction (Time domain).
Quadrature mirror left to right, mirror (time reversal) top to
bottom.

(a) Decomposition low pass filter (b) Decomposition high pass filter

(c) Reconstruction low pass filter (d) Reconstruction high pass filter

Figure 3.5: Daubechies db11 wavelet filter construction (Frequency do-
main). Quadrature mirror left to right, mirror (time reversal)
top to bottom.
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3.3 Hilbert Transform

The Hilbert Transform is used in many signal processing applications in-
cluding envelope detection, magnitude estimation, decay time estimation
and propagation delay measurements, and also finance and economic anal-
ysis. It has also been used as an edge detector in 2 dimensional images
[26]. The transform defines h(t), an analytic signal, i.e., a signal having no
”negative” frequencies [20], from a real valued time signal deriving g(t) so
that h(t) = f(t) + jg(t). The transform takes the form

g(t) =
1

π

∫ ∞
−∞

f(τ)

t− τ
dτ

However, as can be seen the integral is improper with a singularity at
t = τ . It is more properly defined as

g(t) =
1

π
P.V.

∫ ∞
−∞

f(τ)

t− τ
dτ

where P.V. is the Cauchy’s Principle Value i.e., the transform can be written
as

g(t) = lim
ε→0

[∫ t−ε

−∞

f(τ)

t− τ
dτ +

∫ ∞
t+ε

f(τ)

t− τ
dτ

]
The Hilbert Transform can be considered as the convolution of the real

valued signal with 1
πt

, namely g(t) = f(t) ∗ 1
πt

which has a singularity at
t = 0.

By obtaining the Hilbert Transform of an input signal, the amplitude
of a signal f(t) can be found using

A(t) =
√
f(t)2 + g(t)2

where g(t) is the Hilbert Transform of f(t), and the corresponding phase
can be found using

θ = tan−1
(
g(t)

f(t)

)
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A number of methods can be used to obtain the Hilbert Transform of
a signal. One method is taking the Fourier Transform of signal f(t), set-
ting all negative frequencies in the frequency domain to zero, then taking
the inverse Fourier Transform. However a simpler approximation can be
achieved by creating an All-pass filter with a -90◦ phase shift. The Hilbert
Transform must exhibit three important characteristics [24], namely

• Continuous and Differentiable

• Linear, i.e., multiplying by a constant retains the phase and frequency.

• Harmonic correspondence. For a simple sinusoid, the amplitude and
frequency should be retained, i.e., the Hilbert Transform of a cos(ωt+

θ) is a sin(ωt+ θ) for any a, ω, θ.

The Hilbert transform is used in this research as a signal energy detector
and its use is described in more detail in section 4.3.

3.4 Teager-Kaiser Energy Operator

The energy content of a signal is an important measure for signal process-
ing purposes. Signal energy is the measure of energy of a signal that does
not extend to ±∞, whereas the power of a signal is the energy per unit
time of a signal that does extend to ±∞. Signal energy is defined as

Es =

∫ ∞
−∞
|x(t)|2dt

whereas signal power is

Ps = lim
T→∞

1

T

∫ +T
2

−T
2

|x(t)|2dt
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Signal energy described above is not strictly the same as the measure-
ment of energy in the physics sense. For simple harmonic motion the
kinetic energy for a signal A cos(ωn + θ) is proportional to the velocity
squared of the object i.e.,

K(t) =
1

2
mA2ω2 sin2(ωt− φ)

and hence the average kinetic energy is proportional to the square of both
the frequency and the amplitude. i.e.,

K(t) ∝ A2ω2 (3.1)

It is this ’physical‘ paradigm that has given rise to the Teager-Kaiser En-
ergy Operator (TKEO) for signal energy detection.

3.4.1 The continuous operator

The Teager-Kaiser energy operator [12, 24, 40] was derived from work by
Teager and later Kaiser [21]. In the continuous domain the operator is
defined as

Ψ{x(t)} = ẋ(t)2 − x(t)ẍ(t)

The effectiveness of this operation can be demonstrated on an example
signal x(t) = A cos(ωt)

The TKEO is then

Ψ{x(t)} = (−Aω sin(ωt))2 − (A cos(ωt)(−Aω2 cos(ωt))

= A2ω2 sin2(ωt) + (A2ω2 cos2(ωt))

= A2ω2(sin2(ωt) + cos2(ωt))

= A2ω2
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3.4.2 The discrete operator

The discrete operator takes the form of

Ψ{x[n])} = x[n]2 − x[n− 1]x[n+ 1]

For example, if

x[n] = A cos(Ωn+ θ), and Ω =
2πf

Fs

and f is the analogue frequency, Fs the sampling frequency, and θ is the
phase, then

x[n] = A cos(Ω(n) + θ)

x[n− 1] = A cos(Ω(n− 1) + θ)

x[n+ 1] = A cos(Ω(n+ 1) + θ)

Using indentities

cos(α + β) cos(α− β) =
1

2
[cos(2α) + cos(2β)]

cos(2α) = 2 cos2(α)− 1 = 1− 2 sin2(α)

then it follows that

x[n− 1]x[n+ 1] = (A cos(Ω(n− 1) + θ))(A cos(Ω(n+ 1) + θ))

= A2 cos2(Ωn+ θ)− A2 sin2(Ω)

It can be seen that the first term is in fact x[n]2, and so

x[n]2 − x[n− 1]x[n+ 1] = A2 cos2(Ωn+ θ)− A2 cos2((Ωn+ θ) + A2 sin2(Ω))

= A2 sin2 Ω
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For small, Ω sin Ω ≈ Ω and hence A2 sin2 Ω = A2Ω2

So

Ψ{x[n])} = x[n]2 − x[n− 1]x[n+ 1]

can be used as the discrete TKEO

3.4.3 Cross Teager-Kaiser Energy Operator

The Cross Teager-Kaiser Energy Operator (CTKEO) is a non-linear mea-
sure of the interaction between two (real) signals and can be used as a
measure of how much of one signal is present in the other. [4, 5]. The
CTKEO takes the from

Ψ{x(t), y(t)} = ẋ(t)ẏ(t)− x(t)ÿ(t)

or

Ψ{y(t), x(t)} = ẏ(t)ẋ(t)− y(t)ẍ(t)

Note that

ẋ(t)ẏ(t)− x(t)ÿ(t) 6= ẏ(t)ẋ(t)− y(t)ẍ(t)

and hence the operator is not commutative. The operator may be viewed
as a non-linear version of cross correlation and used in the same context.

The Teager Energy Operator is used in this research as a simple signal
energy detector and its use is described in more detail in section 4.3.
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3.5 Support Vector Machine

The Support Vector Machine is a learning machine that can be used as a bi-
nary classifier to determine whether a set of input data belongs to known
class or not. Originally conceived by Vapnik and Cortes [36], the SVM is a
classifier that possesses a high level of generalisation, accuracy compara-
ble to other classifiers, and ease of implementation as an online classifier
in the target device. As a linear classifier, the SVM calculates the weighted
sum of a function relating the input data to support vectors to determine
whether the input data is of one class or another. The SVM takes the form

ŷ = sign
(∑

i∈s

αiyiK(si, x) + b
)
, (3.2)

where ŷ is the output class, y are the input classes, α the weight of the sup-
port vector, and b the bias. The kernel function K is a measure of similarity
between the support vectors, si and the input data, x. For a linear classifier
this is the inner product of the support vector, si and the input data, x.

K(si, x) =< si, x >

Figure 3.6 shows the linear separation of two data sets, class 1 and class
2. The samples of data lying on the dashed lines are the ’support vectors’
and the central dividing line (a hyperplane in higher dimensional exam-
ples), partitions the two classes. The distance between the two dashed
lines (the margin) is the maximum distance between the two classes. Dur-
ing training, the classifier maximises this distance by minimising the fol-
lowing

τ(w) =
1

2
‖w‖2

This creates a ‘hard margin’ whereby no points are allowed to occur inside,
or beyond, the margin. w is the distance between the hyperplane and the
sample point. However, classifying with such tight constraints can be dif-
ficult. For classifiers that are not so rigid, a ‘soft margin’ can be instigated
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Figure 3.6: SVM showing linear separation of two classes with points on
dashed lines being support vectors.

whereby points are allowed inside, or beyond, the margin and therefore
open to misclassification. During training, the classifier minimises the fol-
lowing

τ(w,ε) =
1

2
‖w‖2 +

C

M

M∑
i=1

ξi,

subject to
yi = (wTxi + b) ≥ 1− ξi, ξi ≥ 0.

where, w is the distance between the hyperplane and the sample point,
M is the number of data points, ξ is the loss function (see Figure 3.6) and
C regulates the ”capacity” of the learning i.e., the trade off between the
margin and the loss. By altering C the loss function will have a greater or
lesser effect on overall training. If C is large, the system over-trains and
will not generalise well to unseen data.
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The inner product is a suitable kernel for linearly separable data, how-
ever for high dimensional data, other kernels can be utilised that take ad-
vantage of what is called the ‘kernel trick’. This allows the use of a kernel
function that carries out the inner product of the two data sets in a higher
dimension, without having to map the input data to that higher dimen-
sion. An example of this trick is the Radial Basis Function

K(xi, x) = e
−
(
‖si−x‖

2

2σ20

)
.

To explain this concept, consider the Taylor series expansion of the
exponential function. This expansion has an infinite number of coeffi-
cients, and the series is effectively the inner product of the two data sets.
Thus, the result is the equivalent of calculating the inner product with
infinite dimensions weighted in a particular way. This kernel maps the
Euclidean distance of zero (when perfectly matched) to one, and a non-
zero Euclidean distance (when badly matched) to a number less than 1.
[0...∞] 7→ [1...0].

Other suitable kernels include the Polynomial kernel:

K(si, x) = (sT
i x+ b)d

the Laplacian kernel

K(si, x) = e
−
(
‖si−x‖
2σ20

)
.

and the Cosine kernel

K(si, x) =
ai

(‖si − x‖+ a2i )
1
2

For this research, the Radial Basis Function has been used for classifi-
cation. The chapter on implementation describes how the kernel function
is implemented in the target device. Training and testing of the classifiers
has been carried out using this kernel.
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In this chapter, a number of mathematical processes have been discussed
that may be of use fulfilling the goal of developing algorithms to detect
atrial fibrillation. The next chapter discusses methods of carrying out the
detection process by using the mathematics discussed above.



Chapter 4

Research

Introduction

This chapter describes how, with knowledge gained from chapters 2 and
3, the ECG signal can be analysed to automatically detect AF. The premise
is that AF can be accurately and reliably detected by extracting feature sets
using digital signal processing techniques, and classifying using a Support
Vector Machine, all on a low power, miniature ECG monitoring device.

A number of avenues of research were followed, some that showed
promise while others were discarded as being too difficult to implement
on the target device. During this phase of research, it was always re-
membered that any methods of feature extraction or classification chosen,
needed to be implemented on a resource constrained microcontroller. By
applying the previously discussed mathematical processes, it was hoped
that new methods of signal feature identification could be found. Firstly,
timing of the RR interval and, secondly, the frequency spectrum of the
ECG signal, were analysed by using appropriate mathematical methods
previously described. The waveform and rhythm feature sets created were
then brought together in the last stage of research, classification, to see if
detection of AF was realisable. Finally, implementing the desired detec-
tion scheme in the target device’s native assembly language was carried

36
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out.

4.1 Arrhythmia

To effectively distinguish between arrhythmia types an understanding of
how each type of arrhythmia originates is necessary. AF is a chaotic fir-
ing of a number of abnormal pacemakers in the atrial mass. This causes
random firing of the AV node and consequently random activation of the
ventricles. Therefore, the RR interval is random. Contrast this with other
types of arrhythmia such as bigeminy or trigeminy where irregular RR
intervals are generated by Premature Atrial Contractions (PAC) or Prema-
ture Ventricular Contractions (PVC) that have more predictable timing.

Bigeminy is defined as a PAC or PVC every second beat while trigeminy
is a PAC or PVC every third beat. See Figure 4.1 for a visual aid to the three
types of arrhythmias, along with normal sinus rhythm. As can be seen,
the RR intervals of AF are random, but the waveform type is considered
normal, i.e., the QRS complex and T wave are of NSR morphology, even
though the P wave is missing. Compare this with ventricular bigeminy
or trigeminy. In these instances only the ’N’ type beats have normal NSR
morphology, but the premature beats have QRS complexes and T waves
that differ considerably from NSR morphology. Also, the timing of ven-
tricular bigeminy or trigeminy is far more consistent. The n-n, n-v and
v-n intervals are consistent and curiously the time period n-v-n is approxi-
mately equal to 2n. This is due to the ventricles needing time to re-polarise
between beats and their inability to be reactivated by the first normal beat
immediately following the premature beat. In the case of atrial bigeminy
or trigeminy, the morphology of the normal and premature beat are the
same, i.e., normal. This creates a problem in determining the exact type of
rhythm.

As discussed in Section 2.5 on cardiology, key indicators for AF are:

1. Missing P-wave.
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2. Presence of abnormal atrial activity.
3. Highly variable RR interval.

Detection of the presence, or absence, of the P wave is problematic.
There can be large morphological differences between subjects ECGs, and
the amplitude and shape can vary widely depending on lead placement
and electrode impedance. The same applies to the detection of abnormal
atrial activity. The key indicator to AF then, is the highly variable RR inter-
val. As discussed above, there are a number of other arrhythmia that can
cause variable RR intervals so methods to distinguish between them need
to be devised. This thesis looks at using only the RR interval variations for
detecting AF. Future work will include P wave and atrial activity detectors
to determine the effect they have on overall accuracy and reliability of AF
detection.

(a) Normal Sinus Rhythm (b) Bigeminy

(c) Atrial Fibrillation (d) Trigeminy

Figure 4.1: Rhythm types showing (a) NSR with P-wave present, (b)
Bigeminy with a premature beat for every normal beat, (c)
AF with random RR intervals and absent P wave, and (d)
Trigeminy with premature beat for every two normal beats.
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With the above knowledge, it is proposed that the AF detection scheme
include two important feature sets. Firstly, the timing of the RR intervals
will be analysed to determine their randomness, and secondly, the type of
QRS complex will be found in order to more accurately decide on the type
of arrhythmia being presented. A classification system is proposed to de-
cide whether the heart is in NSR or experiencing some form of arrhythmia,
such as AF.

Five areas to be investigated are:

• Signal pre-processing

• QRS complex detection

• Rhythm analysis

• Waveform morphology analysis

• Classification and detection of rhythm type

The following sections describe each of the areas of research.

4.2 Signal pre-processing

The accurate, reliable detection of the QRS complex, subsequently referred
to as R peak detection, is paramount for accurate measurement of the RR
interval. All statistics concerning RR interval and arrhythmia classifica-
tion will be carried out on information derived from R peak detection.
Consequently, a reliable, accurate R peak detector must be utilised. This
exposes a number of problems that need to be resolved before the RR in-
terval can be calculated. Firstly, short bursts of noise can emulate the high
frequency content of the QRS complex and trigger false detections, and
secondly, baseline wander, or movements in the underlying DC compo-
nent of the ECG signal, can create signal threshold problems. Precondi-
tioning of the ECG signal to remove low frequency baseline wander and
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higher frequency noise needs to be carried out. Two methods of baseline
wander removal are presented here.

4.2.1 Baseline wander removal: Mathematical morphology.

As briefly discussed in section 3.1, mathematical morphology can be used
to remove baseline wander. The algorithms are easy to implement and
are effective in removing baseline wander and sudden changes in signal
bias. Baseline wander removal, shown in Figure 4.2, is accomplished by
applying the following operations

Vb = Vs −
((Vs ◦B1 •B3) + (Vs •B2 ◦B3))

2

where Vb is the signal with baseline removed, Vs is the original signal and
B1, B2, B3 are appropriate structuring elements, in this case 31, 17 and 24
sample periods in length, respectively. The size of the structuring elements
B effects the degree of signal peak and valley removal thus affecting the
value of the final signal peak and valley amplitudes. See section 3.1 for
a more detailed description of how the structuring element length affects
peak and valley removal.

Figure 4.2: Baseline wander removal using morphological mathematics.
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4.2.2 Baseline wander removal: Discrete Wavelet Transform.

Another method of baseline removal is to remove the low frequency com-
ponents causing the variations in the baseline. The Discrete Wavelet Trans-
form as discussed in section 3.2 is used for this purpose. At a sampling
frequency of 128s/s, the first six sub-band outputs of the DWT are details
D1 [32–64 Hz], D2 [16–32 Hz], D3 [8–16 Hz], D4 [4–8 Hz], D5 [2–4 Hz] and
D6 [1–2 Hz]. By eliminating frequencies below 1Hz, significant portions of
baseline wander are removed. It is also convenient at this time to suppress
noise in the signal. By excluding DWT details D1, much noise and also
50/60 Hz hum is removed from the R peak detection process, increasing
reliability and accuracy. By using only details D2–D5 of the DWT, baseline
wander and high frequency noise is removed from the ECG signal making
it more suitable for the next stage of processing i.e., QRS detection.

Figure 4.3: Baseline wander removal using discrete wavelet transform.

It is proposed here to use the DWT method of baseline wander removal, as
it has a number of benefits. First, not only is the baseline wander removed,
so is higher frequency noise and 50/ 60 Hz hum. Second, all DWT details
D1–D6 produced, are available for further processing. Also, being a linear
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transform, the ECG signal can be easily reconstructed if required.

4.3 QRS complex detection

As mentioned in the previous section on signal pre-processing, the accu-
rate, reliable detection of the QRS complex (referred to as R peak detec-
tion), is critical for all subsequent rhythm calculations. After the removal
of unwanted signal anomalies such as baseline wander and noise, the RR
interval can be evaluated with far more confidence. Two methods of R
peak detection are discussed, both using mathematical processes to find
the amplitude peak of the QRS complex. They are the Hilbert Transform
(section 3.3) and the Teager-Kaiser energy operator (section 3.4) .

4.3.1 R peak detection: Hilbert Transform.

The Hilbert transform is applied to DWT details D2–D5 to obtain a set of
imaginary signals. The real and imaginary signals are then used to find
the respective signals energy using A(t)2 = VR(t)2 + VI(t)

2. All four signal
energy levels are then added, with appropriate scaling, to form a signal
(Rpeak), for locating the QRS complex.

4.3.2 R peak detection: Teager-Kaiser Energy Operator.

A second method of R peak detection is to apply the TKEO to DWT details
D2–D5, providing an estimate of each signals energy. This is a relatively
efficient process compared to applying the Hilbert Transform. Again, all
four signal energy levels are added, with appropriate scaling, to form the
Rpeak signal to locate the QRS complex.
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It is proposed here to use the Hilbert Transform method of R peak de-
tection. Although this method is more complex compared to using the
TKEO, the imaginary signal produced will be useful for waveform feature
creation as discussed in section 4.5.

4.3.3 R Peak location.

The location of the QRS complex is now found by a simple peak detector
algorithm applied to the Rpeak signal. By finding the ’difference of the
sign of the difference’ of the Rpeak signal, a simple, effective R peak de-
tector is created with positive one indicating positive peaks, negative one
indicating negative peaks and zero indicating no peak detected. From this,
positive peak positions can be determined, see Figure 4.4.

Figure 4.4: R peak detection showing ECG signal (—), D2 peak (– –) using
Hilbert Transform, and D2 peak using TKEO (- · -).
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4.3.4 R Peak validation.

For all positive peak locations, the amplitude of the R peak is taken and
if it exceeds a predetermined threshold, the peak is considered to be a
valid R peak for timing purposes. Having a constant threshold value for
R peak detection is a simple approach. A more sophisticated approach
is to use adaptive thresholding. In this way, timing of subsequent heart
beats can be determined statistically. For instance, a premature beat can
occur no less than about 200ms after a previous beat, so it is unlikely a
beat will occur within that time frame because the ventricles do not have
time to re-polarise; the threshold can be raised during that period. Also, if
a certain rhythm is in progress, then it is more likely that that rhythm will
be sustained, so any beats detected outside the current rhythm pattern are
more likely to be invalid R peaks. The R peak threshold can be adapted,
as the rhythm changes over time, to more accurately detect R peaks and
reject noise and motion artefact, see Figure 4.5. By combining the inverse
of the ever changing rhythm PDF, Figure 4.7, with the PDF mask, Figure
4.6, an adaptive threshold is created

Up to this point, this chapter has concentrated on the preconditioning of
the ECG signal ready for rhythm detection. Baseline wander removal and
noise reduction has been discussed, and methods of R peak detection have
been proposed. Next, methods of arrhythmia detection are examined and
final arrhythmia classification is discussed.

4.4 Rhythm analysis

After preprocessing and QRS complex detection, the RR interval metrics
can be evaluated. Figure 4.7 shows the Probability Density Functions
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Figure 4.5: R peak adaptive threshold showing R peaks (—) and threshold
(– –). R peaks greater than threshold will be detected as valid R
peaks, those below are ignored. This example shows two dips
in the threshold due to the presence of Bigeminy.

Figure 4.6: R peak adaptive threshold mask. The closer to the previous R
peak (to the left in this diagram), the greater the threshold and
the less likely a beat will be detected.

(PDFs) of four rhythms. In these examples, six consecutive RRint samples
are taken and smoothed with an eight point Gaussian window. NSR is
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(a) Normal Sinus Rhythm. (b) Atrial Fibrillation.

(c) Bigeminy. (d) Trigeminy.

Figure 4.7: Various Rhythm PDF’s using a 6 sample frame (bars) and
smoothed with 8 point Gaussian window (—) .

shown as a narrow, high peak distribution similar to a Gaussian curve. AF
is seen as a wider, more flat distribution, whereas bigeminy and trigeminy
have a two and three bump distributions, respectively. Although these
plots are useful for visualising the different arrhythmia, simpler metrics
need to be obtained for implementation. Heart rate variability is calcu-
lated by simply taking the difference (dRRint) of consecutive RR intervals.
This signal shows interesting characteristics. Normal sinus rhythm should
have a small amount of variability indicating the constant shift in control
of the heart rate by the opposing sympathetic and parasympathetic ner-
vous systems [2]. No heart rate variability signifies problems with these
autonomous nervous systems [2]. If the variability is high, then arrhyth-
mia is present. By creating a number of RR interval metrics, the type of
arrhythmia becomes detectable.

Plotting the dRRint signal, Figure 4.8, shows interesting relationships
between consecutive RR intervals for different types of rhythm. NSR for
instance, has low variability whereas bigeminy shows large, symmetrical
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Figure 4.8: RR interval difference showing episodes of NSR, bigeminy and
trigeminy. The positive and negative magnitudes are tracked
using a three sample MM operator.

positive and negative magnitudes. Contrast that with trigeminy having
asymmetrical positive and negative magnitudes, usually in a ratio of 2:1.
AF, on the other hand, has larger variability in positive and negative mag-
nitudes. These differences may be useful in determining the type of ar-
rhythmia present.

By using a mathematical morphology operator to track the positive and
negative amplitudes of dRRint signal, useful indicators of rhythm are cre-
ated. Bigeminy requires at least a two point structuring element to track
the positive and negative dRRint values as it is characterised by two values
that alternate between positive and negative. Trigeminy requires at least
a three point structuring element as it is characterised by one positive dR-
Rint value followed by two negative values. The dRRint peak tracking for
bigeminy is not affected by using a three point structuring element instead
of two, consequently a three point structuring element can be used to track
both bigeminy and trigeminy, creating a signal dRRint(3). The opening op-
erator is used to track the positive peaks and the closing operator is used
to track the negative peaks.

To detect arrhythmia a number of rhythm metrics are calculated. First,
a moving average (RRmean) of the RRint is obtained by using a 16 point
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Gaussian window applied to the RRint signal. Second, the difference in
RR interval (dRRint) is taken and from that an asymmetrical envelope
tracker is used to create a signal dRRint(3) as described in the previous
paragraph. When interpreting the ECG signal, it is customary not to recog-
nise a change in rhythm until two or more consecutive sequences of the
new rhythm are detected. To take this into account, a further simple met-
ric is created using MM operators with a six sample structuring element.
This creates a signal that tracks dRRint when more than two sequences of
bigeminy or trigeminy occur, and creates a signal dRRint(6) in a manner
similar to dRRint(3). In total, seven rhythm features are extracted includ-
ing RRint, RRmean, dRRint, ± dRRint(3), ± dRRint(6).

(a)

(b)

Figure 4.9: RR interval difference showing (a) RR interval difference± dR-
Rint(3). (b) RR interval difference ± dRRint(6).
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However, it is not always that clear cut. Bigeminy and trigeminy can be
caused by either PAC’s or PVC’s. It may not be necessary to distinguish
between the two for the purposes of detecting AF, but it would be advan-
tageous. PAC’s, being premature atrial contractions, show normal sinus
morphologies, whereas PVC’s, being premature ventricular contractions,
show QRS complex and T wave morphologies that are very different from
that of sinus derived waveforms. To distinguish the difference between
the two, the waveform morphology must be determined. This opens up
the possibility of distinguishing between other, more rare types of arrhyth-
mia and making AF determination far more reliable and accurate.

4.5 Waveform morphology analysis

In the previous section the RR interval was used to determine the rhythm
of the heart beat and thus distinguish between arrhythmias. However
it was noted that the ability to distinguish between different heart beat
morphologies would be of great advantage, increasing the accuracy and
reliability of AF detection. Following is a discussion on methods for deter-
mining the morphology of the heart beat waveform. Two approaches are
considered:

• The amplitudes and positions of each of the DWT detail peaks with
respect to the R peak location.

• The amplitudes of the Real and Imaginary outputs of the Hilbert
Transform for each of the DWT details at specific sample periods
from the R peak location.
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4.5.1 DWT detail peak amplitude and position

The ECG signal was first decomposed into sub-bands using the discrete
wavelet transform. The first six sub-bands were considered adequate as
lower frequency bands included unacceptable levels of baseline wander.
The peak amplitudes of the six frequency sub-bands were plotted (left col-
umn of Figure 4.10), along with the relative position of the peak about the
centreline of the detected QRS complex (centre column of Figure 4.10). For
interest, a two dimensional image depicting the amplitude vs. position of
each peak was created (right column of Figure 4.10)

The left column depicts amplitudes of each type of waveform for DWT
details in order of lowest frequency (D6) to highest frequency (D1). The
plots demonstrate that differing waveform morphologies have differing
frequency spectrum. The position of these peaks with respect to the lo-
cated R peak is shown in the centre plots. A cursory look at the plots
suggests that these may be useful features for an appropriate artificial in-
telligence classifier to determine waveform morphology.

4.5.2 DWT detail Real and Imaginary amplitudes

By applying the Hilbert Transform to the ECG signal and then using the
resulting real and imaginary signals, features for waveform classification
can be developed. To gauge the validity of this approach, a number of po-
lar plots of the real vs. imaginary ECG signals were created and shown in
Figures 4.12. They show the magnitude vs. phase for each ECG waveform
types of Normal, PAC, Left Bundle Branch Block (LBBB), Right Bundle
Branch Block (RBBB), and PVC. Differences can be detected in the plots
for the five waveform types shown, however, it wasn’t considered neces-
sary to convert to polar form for feature generation. The same information
is present in the original real and imaginary signals.
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Figure 4.10: Frequency spectrum of 5 waveform morphologies. The left
column shows relative peak amplitude and the centre column
the relative position of the peak with respect to the R peak
centre. The right column is a two dimensional representation
of peak amplitude vs. peak position. Morphologies shown
are: A (PAC), N (NSR), R (Right bundle branch block), L (Left
bundle branch block), V (PVC)

4.5.3 Waveform features extraction.

It was decided to pursue the second option of feature generation, the
Hilbert transform. Although more complex than determining the DWT
detail peak and location, it was considered more mathematically robust.
Values of each of the real and imaginary signals at the R peak location
were used for features giving a total of 12 features for classification pur-
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poses. However, as will be discussed in the next section, it was found that
better classification was accomplished when two values, four sample pe-
riods each side of the R peak location were used. This gave a total of 24
features for waveform morphology classification, see Figure 4.11.

Now that the rhythm and waveform features have been extracted from
the ECG signal, they are ready to be presented to the classifier section for
ultimate rhythm determination.

(a) Details D1 (32–64 Hz) (b) Details D2 (16–32 Hz)

(c) Details D3 (8–16 Hz) (d) Details D4 (4–8 Hz)

(e) Details D5 (2–4 Hz) (f) Details D6 (1–2 Hz)

Figure 4.11: ECG waveform features showing ECG signal (light solid), six
real (dark solid) and six imaginary details (dark dashed). The
black bars show the positions of the feature points four sam-
ples either side of the R peak centre.



CHAPTER 4. RESEARCH 53

(a) Premature atrial contraction.

(b) Normal sinus.

(c) Left bundle branch block.

(d) Right bundle branch block.

(e) Premature ventricular contraction.

Figure 4.12: Polar plots derived from the Hilbert transform of the ECG sig-
nal, showing relative magnitude and phase with respect to the
R peak location for each DWT detail for five ECG morpholo-
gies.
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4.6 Classification and detection of rhythm type

In the previous two sections, ECG rhythm and waveform feature extrac-
tion was described. Here a classification method is proposed to determine
the rhythm of the signal.

4.6.1 ECG Arrhythmia Classification

In section 3.5, the support vector machine was described in detail and is
used here to determine the rhythm of an ECG signal by passing the ECG
feature set onto the classifier stage shown in Figure 4.13.

Figure 4.13: Classifier stage showing five Waveform classifiers, five
rhythm classifiers and the final arrhythmia classifier.

The classification stage is made up of a number of individual classi-
fiers. For rhythm detection, five classifiers are used to detect the presence
of the following rhythms; Normal Sinus, Atrial Fibrillation, Atrial Flutter,
Bigeminy and Trigeminy. For waveform detection, another five classifiers
are used to detect the presence of the following morphologies; Normal
Sinus, Premature Atrial Contraction, Premature Ventricular Contraction,
Left Bundle Branch Block and Right Bundle Branch Block. The regression
values of these 10 classifiers are then passed as inputs to the final classifica-
tion stage for ultimate determination of rhythm. The final stage comprises
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of two classifiers, one for NSR and the other for AF, with the binary output
indication shown in Table 4.1.

NSR AF Class

0 0 Other rhythm
1 0 Normal sinus rhythm
0 1 Atrial Fibrillation
1 1 Classification error

Table 4.1: Final Classification.

The idea behind the classification stage design is to provide feature sets re-
lated to both the rhythm and the waveform morphology to improve over-
all classification performance. The design is similar to that of radial basis
function neural network [17], the difference being the final layer here is
another set of non-linear classifiers instead of the usual linear summation
layer. By passing the regression values from the first set of classifiers to
the second, the second stage has a set of pertinent features enabling better
rhythm determination.

4.6.2 Training and testing procedures

For training and testing of the system classifiers, files from the PhysioNet
[14] online repository are used . A number of databases are available for
use including the following:

• MIT-BIH Normal Sinus Rhythm Database (NSRDB).

• MIT-BIH Atrial Fibrillation Database (AFDB).

• Long Term Atrial Fibrillation Database (LTAFDB).

• MIT-BIH Arrhythmia Database (MITDB).
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All databases have annotations provided to describe each beat (i.e., ECG
waveform type) with the MITDB also having rhythm annotations. Because
of this, the MITDB is used for all training and testing of the system clas-
sifiers. This database includes 48 files of 30 minutes each with a variety
of waveforms and rhythms including normal sinus, PAC and PVC wave-
form morphologies and NSR, AF rhythms. Initial training and testing was
carried out at annotated R peak locations rather than at the detected R
peak locations. This was done to set a standard for comparison in testing
subsequent R peak detectors.

This chapter has described the various methods employed to extract the
necessary features required for classifier training and testing. The follow-
ing chapter describes in more detail how the features were extracted and
the testing regimes used. Results of the testing are presented.



Chapter 5

Results and Discussion

In previous chapters, mathematics and methods that form components
of a system to detect AF were presented. Here, testing of the proposed
system is carried out and the results discussed.

5.1 Datasets and testing

To test the waveform and rhythm classifiers, files from the PhysioNet MIT-
BIH arrhythmia database were used. In total the database consisted of 48
files from 48 individual patients, each 30 minutes in duration and having a
total of 109,000 beats (approx. 2200 per file). Each file was processed to ex-
tract 31 features made up of 24 waveform features and 7 rhythm features,

The waveform features were made up of values extracted from the
DWT of the signal. Six frequency bands of the DWT (D1–D6) were used
and further processed to produce the 24 features. This processing con-
sisted of generating the Hilbert Transform of each of the DWT details and
obtaining the amplitude of the resulting real and imaginary signals at a
number of locations either side of the detected R peak. Initial tests showed
that only two points at ±4 sample points from the designated R peak lo-
cation were required to produce reasonable results. More samples points
only marginally increased performance. With two points at ±4 for each of

57
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the six DWT details for each of the Real and Imaginary signals, giving a
total of 24 waveform features.

The rhythm features were generated from the interval between succes-
sive R peaks. RR intervals (RRint) of each ECG file were calculated and
a 16 point moving average (RRmean) produced. From the first difference
(dRRint) of the RR interval, four more features were created by apply-
ing an asymmetrical envelope detector using mathematical morphology
operators with structuring elements three and six heart beats in length,
see section 4.4 for a more detailed explanation. In total, seven rhythm
related features were generated including the RRint, RRmean, dRRint, ±
dRRint(3), ± dRRint(6). A training set of 10,000 randomly chosen beats
(waveform and rhythm features sets) were extracted from the 48 individ-
ual files and used for training of the classifiers. For testing, the remainder
of the 109,000 beats were used.

5.2 Results

Waveform and Rhythm classifiers

Table 5.2 shows the classification ability of the waveform classifiers. The
number of support vectors retained ranged from 8% to 23% of those pre-
sented for training. Premature Atrial Contractions (the A type waveform)
was the most difficult to classify and this is not surprising as the A type
waveform morphology is similar to the N type. What was surprising was
the relative ease that the other classifiers identified their respective wave-
form types considering they were set up for one-against-the-rest classifi-
cation.

Table 5.1 shows the classification ability of the rhythm classifiers. The
number of support vectors retained ranged from 15% to 30% of those pre-
sented for training. Most show sensitivity and specificity in the high 80%
range with NSR being the worst case with sensitivity of 79%.
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Rhythm Type Sensitivity Specificity C σ

Atrial Fibrillation (AFIB 0.90 0.90 1 0.5
Atrial Flutter (AFL 0.88 0.88 1 1
Bigeminy (B 0.88 0.94 1 1
Normal sinus rhythm (NSR 0.79 0.89 3 0.5
Trigeminy (T 0.89 0.88 1 2

Table 5.1: Rhythm Classification, σ is radial basis function parameter and
C is the capacity control parameter, with 0 ≤ α ≤ C.

Waveform Type Sensitivity Specificity C σ

Premature atrial contract. A 0.74 0.99 6 4
Left bundle branch block L 0.97 0.99 6 4
Normal sinus beat N 0.98 0.93 6 4
Right bundle branch block R 0.98 0.99 6 4
Premature ventricular contract. V 0.93 0.99 6 4

Table 5.2: Waveform Classification.

The final two classifiers provided the results shown in tables 5.3 and
5.4. Receiver operating characteristic (ROC) curves for the two final clas-
sifiers are shown in Figure 5.1. These curves were created by adjusting
the bias (b in equation 3.2) during the testing phase. Both exhibit good
classification ability. Table 5.3 shows the accuracy of the final classification
stage when only the classes of the previous stage are passed as features to
the final stage, whereas table 5.4 shows the accuracy when the regression
values of the previous stage are passed as features to the final stage. This
shows an improvement in overall classification when using the regression
values as opposed to just the classes.
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Final Rhythm Class Sensitivity Specificity C σ

Atrial Fibrillation (AFIB 0.91 0.91 1 3
Normal sinus rhythm (NSR 0.91 0.92 1 3

Table 5.3: Overall Rhythm Classification using classes from previous clas-
sification stages.

Final Rhythm Class Sensitivity Specificity C σ

Atrial Fibrillation (AFIB 0.94 0.93 1 3
Normal sinus rhythm (NSR 0.93 0.95 1 3

Table 5.4: Overall Rhythm Classification using regression values from pre-
vious classification stages.

(a) Normal Sinus Rhythm (b) Atrial fibrillation

Figure 5.1: Final Classifier ROC curves. The bias (b equation 3.2) was ad-
justed to generate different points of the ROC curve.
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To determine the necessity of the waveform classifiers, tests were car-
ried out without the waveform feature set, using only the seven rhythm
features. Final classification accuracy decreased showing that the wave-
form features do in fact help classification accuracy and reliability, com-
pare tables 5.5 and 5.4

Final Rhythm Class Sensitivity Specificity C σ

Atrial Fibrillation (AFIB 0.92 0.88 1 3
Normal sinus rhythm (NSR 0.82 0.88 1 3

Table 5.5: Overall Rhythm Classification using only rhythm features and
regression values from previous classification stages.

All the tests above were carried out by randomly choosing features
from all 48 patient files for the training and testing of the classifiers. To
determine classifier generalisation, further tests were carried out whereby
classifier training used random features from 47 of the 48 files, and clas-
sifier testing used random features from the remaining unused file, in a
leave-one-out training scheme. Tables 5.7 and 5.6 show the classification
accuracy of the five rhythm and the five waveform classifiers.

Rhythm Type Sensitivity Specificity C σ

Atrial Fibrillation (AFIB 0.75 0.87 1 0.5
Atrial Flutter (AFL 0.73 0.88 1 1
Bigeminy (B 0.71 0.90 1 1
Normal sinus rhythm (NSR 0.73 0.89 3 0.5
Trigeminy (T 0.73 0.89 1 2

Table 5.6: Rhythm Classification using 47 of 48 files for training
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Waveform Type Sensitivity Specificity C σ

Premature atrial contract. A 0.2 0.96 6 4
Left bundle branch block L 0.04 0.98 6 4
Normal sinus beat N 0.81 0.92 6 4
Right bundle branch block R 0.76 0.95 6 4
Premature ventricular contract. V 0.76 0.93 6 4

Table 5.7: Waveform Classification using 47 of 48 files for training.

The classifiers show some degradation in accuracy which is expected,
but the waveform classifiers now have difficulty in distinguishing prema-
ture atrial contractions and left bundle branch block waveform morpholo-
gies.

5.3 Discussion

The initial tests showed good classification ability of the AF detection
scheme. In all the above tests, the R peak centre used is the annotated
R peak associated with each occurrence of the QRS complex. The anno-
tations were provided by PhysioNet and positioned by hand by cardiac
experts. The next stage of research will automatically detect the R peak as
described in section 4.3, generate the feature sets and carry out the same
series of tests for comparison. By doing so, the effectiveness of the overall
AF detection scheme will be measured.

The waveform classifiers showed reduced generalisation ability when
using 47 of 48 files for training in a leave-one-out training scheme. This
could be due to the fact that all QRS complexes of one type (e.g., N),
for one patient, are almost exactly the same morphology. In the future,
to overcome this issue the waveform classifiers will trained by using any
number of PhysioNet files that have annotated QRS complexes. This will
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train the classifier with a more diverse set of waveform morphologies and
improve generalisation. Another view of looking at this problem would
be to carry out online training of the classifiers to tune them to a specific
patients morphologies, but this would require more advanced algorithms
and consequently more advanced digital signal processors. The rhythm
classifiers showed good classification ability even when trained with 47 of
48 files and tested with the remaining file.

The final classifier stage was tested with two sets of feature sets, one
including waveform and rhythm features from the previous classification
stage, and the second, using only the rhythm features from the previous
stage. The second test showed a small decline in classification accuracy
over the first. This begs the question on whether the waveform features
are really necessary for AF detection. Further research will likely answer
this question, however as discussed in section 4.1, various arrhythmia are
associated with particular waveform types.

This chapter discussed the tests carried out to determine the ability of the
proposed AF detection scheme to detect AF. The following chapter de-
scribes the implementation of this detection scheme on the target device.



Chapter 6

Implementation

This Chapter describes implementation of the proposed AF detection pro-
cess on the target device. Throughout the research and design of the mon-
itor, attention has always been paid to the end goal of implementing the
theory using integer and fixed-point mathematics. Without the accuracy
of floating point arithmetic, many of the processes are approximated, thus
creating errors that must be managed so that the end result of reliable AF
detection is achieved.

6.1 Hardware

Following is a description of the design and implementation of the hard-
ware used in the target device. Key design criteria for hardware imple-
mentation include small form factor and low power consumption. How-
ever, this is in contrast to having enough processing power to carry out
the intensive digital signal processing required for the task at hand. Usu-
ally DSPs require high clock speeds with corresponding increased power
consumption. DSPs also come with high pin count for use in applications
involving many digital/analogue input/outputs. As a compromise so-
lution, a device with a hardware multiplier and low power design with
minimal pin count would suffice. For detecting the ECG signal, an appli-

64



CHAPTER 6. IMPLEMENTATION 65

cation specific Analogue Front End (AFE) would be necessary to reduce
component count and power consumption. These devices would also add
enhanced resources desirable for the application.

6.1.1 ECG AFE

There are two low power, small form factor ECG front end ICs currently
available: the Texas Instruments ADS119x/129x and the Analogue De-
vices ADAS1000 family of ECG ICs. The Texas Instruments ADS1298 was
chosen for this research. Briefly, this AFE has all the necessary analogue
amplifiers, analogue-to-digital converters and digital circuitry necessary
to detect, amplify and digitise the ECG signal. It has eight ECG channels,
more than adequate for this research. Digital output is via a three wire
SPI port that easily integrates with many micro-controllers. The ability to
program the numerous on-board features is very desirable and allows the
trade off between circuit complexity and power consumption.

6.1.2 Micro-Controller

There are many micro-controllers on the market that have the abilities re-
quired for this research. The TI MSP4305528 microcontroller was chosen
for its low power consumption, modest clock speed (25MHz maximum)
and internal hardware multiplier capable of carrying out a 32 x 32 bit fixed
point multiply and accumulate instruction, which is preferred for digital
signal processing. A modest pin count of 64 gives sufficient number of
input and outputs for the target device design, and it has features such as
two SPI ports, a USB port and a JTAG port for system programming and
debugging. The memory mapped hardware multiplier also has the ability
to be controlled by a Direct Memory Access controller that allows faster
filter convolution processing.
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6.1.3 PCB design and layout

Other support electronics include keypad, LCD display, non-volatile flash
memory, four digital to analogue converters for debugging, and power
supply regulators along with a Li-Pol battery charger. The PCB was de-
signed in house and all manufacturing was carried out by specialised con-
tract manufacturers. During the PCB design phase, particular attention
was paid to reducing interference by separating the low level analogue
signals from the high noise digital circuitry.

6.2 Software

Following is a description of the implementation of the various software
modules in the target device, each performing a specialised mathematical
function.

6.2.1 Pre-processing (Discrete Wavelet Transform)

From discussions above on the DWT, see section 3.2, it can be seen that
ultimately, the DWT is simply a series of bandpass filters. Implementation
is therefore straight forward. Six Finite Impulse Response (FIR) filters are
used, each having half the bandwidth of the previous. Filter coefficients
were created in Matlab and rounded to provide 16 bit values. Code for
the convolution algorithm is relatively simple with a loop that is executed
once for every filter coefficient, see Listing 6.1
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convolve c l r &MPYS ; c l ea r h /w m u l t i p l i e r
c l r &OP2

nex t tap mov @R8+,&MACS ; m u l t i p l y and accumulate
mov @R6+,&OP2
cmp R6,R7 ; f i n i s h e d ?
jne nex t tap ; no , get next tap
mov &RES1, R10 ; yes , save r e s u l t
r e t

Listing 6.1: Assembly code for FIR filter convolution algorithm.

6.2.2 R peak detector

Each of the FIR filter outputs D2–D5, are passed to the TKEO algorithm
thus producing four energy level estimations. These are added, with ap-
propriate scaling, to produce the R peak signal used for determining the
location of the QRS complexes. See Listings 6.2 and 6.3

TKEO mov R5,&MPYS
mov R5,&OP2 ; square s ( n )
negate R6 ; negate s ( n−k )
mov R6,&MACS ; m u l t i p l y & accumulate s ( n+k )
mov R4,&OP2 ; s ( n)ˆ2−s ( n−k )∗ s ( n+k )
r e t

Listing 6.2: Assembly code for TKEO.
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Rpeak sub @R9+ ,Raddr (R9) ; d i f f e r e n c e
and #8000h , Raddr (R9) ; s ign
sub Raddr (R9) , Raddr−2(R9) ; d i f f e r e n c e
cmp #08000h , chan1 RPK+8 ; not−peak i f 0
jne not peak
cmp #1000h , chan1 rpk+8 ; compare to th resho ld
j l not peak

Listing 6.3: Assembly code for R peak detector.

6.2.3 Support Vector Machine

One of the more difficult mathematical processes to implement in assem-
bly is the Gaussian Kernel used by the SVM. There are three common
methods of approximation of the exponential function, which is required
for the RBF kernel.

• Taylor series expansion

• CORDIC algorithms

• Table lookup

Each has advantages and disadvantages. Taylor series expansions can
provide accuracy but at the cost of computation time. CORDIC arithmetic
is accurate and efficient. The algorithms were developed by Jack E. Volder
[44] and later expanded by John Stephen Walther [45] of Hewlett Packard
for the calculation of many common functions such as sine, cosine, and
exponential on small, resource constrained computers. These algorithms
were designed to use only add/ subtract and left-shift/ right-shift, as
hardware multipliers were not available. For the SVM, high accuracy is
not required. In simple terms, the kernel maps the squared Euclidean dis-
tance [0,∞] to [1, 0] before further processing. A table lookup suffices as
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long as the results are repeatable. Off line training of the SVM was carried
out using a lookup table, instead of the built-in exponential function, to
emulate the target device.

Another issue that arises using the SVM is that of feature scaling. Dur-
ing off-line training, the training algorithm uses the common practise of
normalising all inputs by subtracting the mean and dividing by the stan-
dard deviation. On the target device, normalising can be problematic.
Firstly, division is computationally expensive and secondly the resulting
values still need to be scaled to [-32768, +32767]. This can create a loss
of resolution. It would be better to not scale the input features, but this
also creates its own problems, especially when differing feature sets have
different ranges. Consider the waveform features (discrete wavelet trans-
form outputs) having range [-32768, +32767] and the rhythm features (RR
interval timing) having range [0, 256]. By using different classifiers for dif-
ferent feature sets, each classifier is presented with features that have the
same range. The outputs of all the first stage classifiers are in the range of
[-32768, +32767], effectively normalising the inputs for the final classifier
stage.

The exponential algorithm uses a simple but efficient lookup and in-
terpolate mechanism. The input value, in this case the squared Euclidean
distance, is split into two values. The most significant 4 bits (ms4) are used
to index into two tables, one providing the slope information (m) and the
other the intercept point (b), whereas the least significant 12 bits (ls12) of
the input value (x) are used to interpolate between the values,

y = mx+ b

For this application, only values [0 – -11.09] were needed for approxima-
tion. The exponential then maps [0 – -11·09] to [1, 0·5, 0·25 – 0·00001526].
By scaling up the input values by 5909.28 the input range becomes [0 –
65536] in 16 steps of 4096, and by scaling the output range up by 65535
then the table look up algorithm maps [0 – 65536] to [65535 – 0], all values
now within the 16 bit (216) limitation of the target device, see Figure 6.1.
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Figure 6.1: Exponential lookup table mapping [0–65536]7→[65535–0].

The exponential look up algorithm simply becomes,

expLookUp mov R10 , R11
and #0F000h , R10 ; e x t r a c t ms4
swpb R10
rrum #4 ,R10
and #00FFFh , R11 ; e x t r a c t ls12 ( x )
mov #1,&MPYS ; load 1
mov b (R10) ,&OP2 ; load b
mov R11,&MACS ; load x
mov m(R10) ,&OP2 ; load m
mov &RES1, R11 ; r e s u l t = mx + b
r e t

Listing 6.4: Assembly code for exponential lookup.
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Conclusions

A number of mathematical processes were investigated in this research
project including mathematical morphology, the discrete wavelet trans-
form, the Teager-Kaiser energy operator and the support vector machine
classifier. These are basic digital processing techniques employed in many
signal processing applications and have shown to be helpful in this inves-
tigation. Could more sophisticated processes such as the Kalman Filter
for adaptive filtering of the ECG signal, genetic programming for finding
better feature extraction algorithms, and more sophisticated classifiers for
accurate determination of rhythms be employed, and can they be imple-
mented in small form factor devices? The use of a low power device such
as the MSP430 micro-controller may have been too constraining, and per-
haps moving up to a true digital signal processor may produce superior
results. This would enable the use of floating point arithmetic in the sen-
sitive area of classifier implementation, and increase throughput with the
higher clock speeds. Not only that, by using a higher level language such
as C would allow faster and more accurate implementation of the system.
However, this would be at the expense of greater power consumption and
shorter operating times.
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Cardiac Interpretation

Some important problems have been highlighted with regard to automatic
detection of AF, and more broadly with regard to automatic interpretation
of the ECG signal. A number of ECG files supplied by PhysioNet seem
to have inconsistent rhythm annotations. This is in no way a reflection on
PhysioNet, but on the way cardiac experts classify the types of beat mor-
phology and rhythm instances. It appears that some arrhythmia can be
very difficult to interpret with underlying issues that are hard to distin-
guish. This became obvious when a section of MITDB record 219 (14:50-
15:00) was analysed, see Figure 7.1. To the untrained eye, this section of
ECG tracing appears to be bigeminy in nature, but was annotated as nor-
mal. Subsequent communications with PhysioNet showed that the inter-
pretation was carried out by two cardiac specialists and that the rhythm
annotation was ’agreed’ upon due to other complex underlining indica-
tors. However, PhysioNet kindly located a similar example where a num-
ber of experts could not agree upon the interpretation. The example pro-
vided ( http://ecgguru.com/ecg/bigeminal-rhythm), see Figure 7.2, em-
phasised the difficulty in interpreting ECG tracings. Here, four experts
couldn’t agree upon the cardiac problems presented. In fact, one expert
contradicted that of another. If the experts can’t agree on the interpreta-
tion, it makes it extremely unlikely that an automated system can be de-
signed to do so. How can a classification system be designed, trained and
tested if the classifications used for training and testing are inconsistent?

Another issue highlighted in the research is the standard practice of
not indicating a change in rhythm unless more than two consecutive beats
of the new rhythm have occurred. Waveform and rhythm detectors tuned
for waveform morphology and rhythm detection would have to be more
complex in structure or a more abstract view of rhythm detection would
have to be employed. Perhaps other methods of categorising heart beat
waveforms and rhythms need to be devised so hardware and software
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Figure 7.1: MITDB record 219 showing bigeminal rhythm classified as nor-
mal sinus rhythm.

Figure 7.2: Example of bigeminal rhythm where experts cannot agree on
diagnoses.

algorithms can be more easily defined.
That being said, these two issues also highlight how incredible the hu-

man mind is at carrying out interpretation of the ECG tracing. If the hu-
man mind can analyse and detect tiny nuances in ECG signals and come
up with plausible diagnoses, is it reasonable to expect an artificial intelli-
gence classifier to do the same, especially when the ECG signal from dif-
ferent subjects can look so different? Perhaps a better view of miniature,
automatic interpretation devices would be for them to provide pertinent
indicators to enhance further decision making by experts i.e., complement
the cardiologist, rather than replace. For a small, miniature device, such as
the one investigated in this thesis, to ably carry out rhythm detection, per-
haps it is enough to detect basic rhythm changes and report these anoma-
lies, thereby notifying cardiac specialists that something is amiss needing
further investigation. In that case, the classifier would need to reliably
and accurately detect normal sinus rhythm. Anything else would be an
anomaly needing attention.
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Implementation

One difficulty uncovered by this research is the implementation of the
SVM classifier in the target device. By choosing fixed point arithmetic, the
realisation of the SVM classifier proved challenging. The issue involved
the normalisation of the feature sets before classification. Research into
other classifiers and, in particular, distance measuring functions, could
resolve this problem. Here the Radial Basis Function was used as the ker-
nel. By using a table lookup scheme, the exponential was approximated
with reasonable accuracy. However, is it possible to conceive simpler clas-
sifiers that could be more readily implemented in small, resource con-
strained devices? Or, perhaps, better online normalisation of data could
be achieved. Division in small micro-controllers is computationally ex-
pensive and would have to be sparingly used. Are there other methods
of normalisation that could be employed in such applications? Or could
normalisation be eliminated by using new types of classifiers or even the
transformation of feature sets into more abstract forms? The structure pre-
sented here of using multiple classifiers helps, and has the advantage of
increasing classification ability, but at a cost of running 12 classifiers. Is
that necessary?

Summary

Even though this research has uncovered some difficulties, it has still shown
that complex systems of this nature can be created in small form factor, low
power devices. Creating algorithms that approximate complex mathemat-
ical processes in an efficient manner is the key. The table lookup scheme
depicted in Listing 6.4 is an example. With only ten lines of assembly code
and no conditionals, the exponential function is estimated. Also, the FIR
filter convolution algorithm, shown in Listing 6.1, with eight lines of code
and one conditional, and the Teager-Energy Operator with only six lines
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of code, all being compact in size and fast in execution making it plausi-
ble to carry out sophisticated mathematical functions in small, low power
devices. Although the detection of AF from analysing the ECG signal on
such a device is challenging, this thesis shows that it is achievable. How-
ever, time is money and is it realistic to do so?
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