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Abstract

This thesis considers the analysis of matched filtering (MF) processing in mas-

sive multi-user multiple-input-multiple-output (MU-MIMO) wireless com-

munication systems. The main focus is the analysis of system performance

for combinations of two linear processers, analog maximum ratio combin-

ing (MRC) and digital MRC. We consider implementations of these process-

ing techniques both at a single base-station (BS) and in distributed BS lay-

outs. We further consider extremely low complexity distributed variants of

MRC for such systems. Since MRC relies on the massive MIMO properties

of favourable propagation (FP) and channel hardening, we also present a de-

tailed analysis of FP and channel hardening. This analysis employs modern

ray-based models rather than classical channel models as the models are more

reliable for the large arrays and higher frequencies envisaged for future sys-

tems.

The importance of MRC processing is being driven by the emergence of

massive MIMO and millimetre wave as strong candidates for next genera-

tion wireless communication systems. Massive MIMO explores the spatial

dimension by providing significant increases in data rate, link reliability and

energy efficiency. However, with a large number of antennas co-located in a

fixed physical space, correlation between the elements of antennas may have

a negative impact. Distributed systems, where the total number of antennas

are divided into different locations, make this problem less serious. Also,

linear processing techniques, analog MRC and digital MRC, due to their sim-

plicity and efficiency, are more practical in massive MU-MIMO systems. For



these reasons we consider MRC processing in both co-located and distributed

scenarios.

Although distributed systems reduce the adverse impact of correlation

caused by closely-spaced large antenna arrays by dividing the antennas into

multiple antenna clusters, the correlation within the cluster still exists. Thus,

we extend MRC analysis for massive MIMO to correlated channels. Approxi-

mations of expected per-user spectrum efficiency (SE) with correlation effects

for massive MIMO systems with analog MRC and digital MRC are derived.

Useful insights are given for future system deployments. A convergence anal-

ysis of the interference behaviour under different correlation models is pre-

sented.

Furthermore, a distributed fully cooperative system, where all the received

signals are sent to the central processor, offers attractive performance gains

but at the cost of high computational complexity at the central node. Thus,

we propose four low-complexity, two-stage processors, where only processed

signals after local processing (first-stage) are transmitted to the global pro-

cessing node (second-stage). We present analytical expressions for the ex-

pected per user SINR in an uplink distributed MU-MIMO system with two-

stage beamforming. This leads to an approximation of expected per-user SE.

The analysis of both millimetre wave and massive MIMO systems requires

a strong link to the physical environment and ray-based models are more

practical and suitable for such systems. However, it is unclear how the key

properties in conventional MIMO systems, such as FP and channel harden-

ing, will behave in a ray-based channel model. In this thesis, remarkably sim-

ple and general results are obtained demonstrating that: a) channel hardening

may or may nor occur depending on the nature of the channel models; b) FP

is guaranteed for all models as long as the ray angles are continuous random

variables; c) we also propose a novel system metric, denoted large system po-



tential (LSP) as the ratio of the mean desired signal power to the total mean

interference power, where both the numbers of antennas and end-users are

growing to infinity at a fixed ratio. We derive simple approximations to LSP

and demonstrate that LSP will not normally hold as the mean interference

power usually grows logarithmically relative to the mean signal power.
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1
Introduction

A brief introduction is presented in this chapter with an overview of multiple-

input-multiple-output (MIMO), multi-user MIMO (MU-MIMO), and massive

MIMO techniques for future generation wireless communication systems. Then,

the research motivation and problem statements are provided followed by the

contributions of the thesis and a list of publications thus far.

Looking at the current vision for communication, there is an expectation

of access to any information at any time and in any place, leading to an ex-

ponential demand for data transfer via wireless networks. It has been re-

ported that the data generated in 2018 is a 6-fold increase over 2014 [1]. In

order to meet the demand for an ever-increasing data rate (10 Gbps for 5G

systems [2]), massive MIMO and millimetre wave are strong candidates for

future commercial wireless communication systems.

Massive MIMO, scaling up the number of system antennas by at least

an order of magnitude over current MU-MIMO systems, can improve the

communication system’s data rate, energy efficiency and link reliability [3,

4]. In addition, the desired channel properties of massive MIMO, such as

favourable propagation (FP) and channel hardening, arise when operating

with large arrays of antennas as a result of asymptotic random matrix theory

[5]. FP means that users’ channels become mutually orthogonal with an in-

1
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crease of the number of antennas [6, 7], under which condition linear signal

processing techniques such as matched-filtering (MF) and zero-forcing (ZF)

benefit, resulting in near maximum transmission rates [8, 9]. Channel hard-

ening [10], refers to the situation where the entries of channel matrices begin

to become deterministic and well conditioned, bringing the advantages of

simplified precoding design and system analysis [7]. However, these ideal-

istic channel properties are largely studied under the assumptions of an in-

dependent and identically distributed (i.i.d) channel and an infinite number

of antennas. The physical size of massive MIMO arrays has been an obsta-

cle for implementation for decades due to physical constraints. However,

with the adoption of millimetre wave, where the antenna spacing is propor-

tional to the wavelength the antenna array size becomes much smaller when

operating in these high frequencies. Hence, massive MIMO is now receiv-

ing enormous research attention both in academia and industry. The channel

bandwidth of 2 GHz will become common for systems operating at above

60GHz [11]. Current wireless systems operate on a relatively small range

of microwave frequencies which are usually from a few hundred MHz to a

few GHz corresponding to wavelengths in the range of several centimetres

up to a metre [2]. This precious microwave bandwidth is almost fully occu-

pied. Even though there are some advanced signal processing techniques like

cognitive radio or small cells which can unleash some spectrum, they cannot

meet the required Gbits/s data rates. The main motivation for moving cel-

lular communication systems to the millimetre wave band (30-300GHz) is to

take advantage of the large bandwidth available at high frequencies [12], as-

signing users a larger communication bandwidth and enabling higher user

data rates. Even though massive MU-MIMO can enable multi-user commu-

nications in the same frequency band, some beamforming techniques, e.g.,

maximum ratio combining, are unable to handle a large number of users due
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to their inability to mitigate interference among users. Thus, frequency reuse

will need to be used alongside MU-MIMO to cut down on interference.

1.1 Motivation

Very large numbers of antennas are needed to obtain enough beamforming

(BF) gains for next generation wireless communication systems. The large

number of antennas deployed at the transmitter will cause high hardware

costs, power consumption, and correlation. Some hardware components, like

analog-to-digital converters (ADC), make it difficult to dedicate a separate

RF chain for each antenna because they are high in power consumption and

cost. A new design is required to meet this challenge and analog, digital and

hybrid BF, in which the processing is divided between the analog and digital

domains, are currently being proposed. Thus, low-complexity BF techniques

for massive MIMO arrays are of great importance. In particular, the simplicty

of MF makes it an attractive candidate. Moreover, distributed systems pro-

vide good coverage and reduce the negative effects of correlation encountered

with large antenna arrays. This motivates the central topic of the thesis, the

performance analysis of MU-MIMO using low complexity MF based meth-

ods.

Within this area of research, the emergence of millimetre wave is making

certain aspects of the communication channel more important. Millimetre

wave channels can be highly correlated so the thesis takes a close look at

the effects of correlation on MF. Also, millimetre wave channels are built on

physical ray-based models. Although such models have also been used for

microwave channels, ray-based models have become increasingly popular as

they are essential for millimetre wave. Hence, the thesis looks at the signal

power and interference power found in ray-based channels using MF. This
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relates to the basics of massive MIMO, namely FP and channel hardening.

Hence, although the thesis is not focused on millimetre wave, these recent

trends have guided the direction of the work. In fact, the thesis is not tied

to any band although the millimetre wave band is one of the motivations

for massive MIMO and hybrid beamforning (HBF). Nevertheless, ray-based

models and massive MIMO and anlog processing are also being considered

at microwave frequencies. The specific research problems based on this broad

motivation are described below.

1.1.1 Low-complexity Beamforming (BF) Analysis in Distributed

Systems

Due to the large antenna arrays required, one trend for future cellular systems

is to separate the base station (BS), dividing the antennas into multiple an-

tenna clusters. This is known as a collaborative BS system [13], also referred

to as a distributed system, leading to a different system architecture com-

pared with the centralized or co-located systems. Such distributed systems

have the advantage of providing greater coverage than a single, co-located,

antenna cluster as they both reduce the minimum and average distance to a

specific user and consequently increase the average received signal-to-noise-

ratio (SNR) [14]. Considering hardware costs, massive MIMO systems re-

quire a simple and low power-consumption BF design. In recent years, many

works have been focused on analog beamforming design and antenna se-

lection methods. Analog beam training approaches have been developed

in [15–18]. The lens-based analog BF in [19] takes advantage of beamspace

expressions to achieve near-optimal digital BF performance. A novel soft an-

tenna selection approach through RF signal processing has been proposed

in [20]. In [21], an analog BF algorithm aimed at maximizing the average SNR

has been developed to jointly design the transmitter and receiver analog BF
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weights. Maximal ratio combining (MRC) not only maximizes the received

signal power, but also requires no central control and can be deployed in-

dependently at each antenna in a distributed BS layout [22]. Thus, there is

a need to analyse the performance of analog MRC distributed systems com-

pared with centralized conventional systems. We contribute to this analysis

in Chapter 4 and Chapter 5.

1.1.2 Spatial Correlation for Distributed and Co-located Sys-

tems

Distributed BSs with large antenna array have aroused great interest not only

because they provide good coverage but also as they provide the additional

benefit of reduced spatial correlation relative to large co-located arrays [22].

Since there are more antennas which are closely-spaced in one physical loca-

tion, massive MIMO suffers more from spatial correlation than conventional

MIMO systems [23–26]. Although distributed systems reduce this adverse

impact by dividing the antennas into multiple antenna clusters, the correla-

tion within the cluster still exists. Hence, the performance of large antenna ar-

rays operating under correlated fading is of great interest [27–32]. While digi-

tal MU-MIMO MRC is well understood, relatively few analytical results exist

for analog MU-MRC in distributed systems with correlation effects. Thus, in

Chapter 4 and Chapter 5, we also focus on the impact of different correlation

models on the distributed and co-located systems performance.

1.1.3 Distributed Hybrid MRC in Two Stage MU-MIMO Sys-

tems

Distributed systems provide the benefits of reduced spatial correlation [22]

and greater coverage than conventional co-located systems [13]. However, in
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a distributed system, interference among users is a major barrier to meet the

required data rate. Thus, some degree of centralized processing, which co-

ordinates the received signals from the distributed antennas [33], is required

to either maximize the desired signal power or reduce the inter-user inter-

ference. The processing is done at a central node which has access to the

signals received at all distributed antennas [22, 33]. The importance and lim-

itations of coordinated antennas are further discussed in [14, 22] and refer-

ences within. In fully cooperative distributed systems, where all the received

signals are sent from the antenna clusters to a central processor, attractive per-

formance gains are achieved compared to the equivalent non-cooperative net-

work [22,33]. In [13], full cooperation is evaluated in the downlink with dirty

paper coding and zero forcing (ZF). However, taking communication over-

heads and complexity into consideration, simplified processing is required.

Hence, maximum ratio combining (MRC) with user grouping was proposed

in [22]. To relieve the need for centralized knowledge of all the signals, two-

stage processing is proposed in [33]. Here, only the output signals after local

(first stage) processing are sent to the (second stage) central processing node.

However, there is very little work in the literature on very low complexity

two-stage BF techniques for both local and central processing. Thus, in Chap-

ter 6 we further reduce the complexity and hardware requirements of local

and central processing by considering analog and digital MRC.

1.1.4 Asymptotic Behaviour for Distributed Systems

There are many published results concerning asymptotic analysis in central-

ized systems. Asymptotic capacities are derived in [7] based on digital ZF

and MRC for downlink MU-MIMO where the number of users and anten-

nas grow to infinity simultaneously but at a fixed ratio. A thorough analysis

with several linear precoders and detectors in a multi-cellular massive MIMO
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system is presented for both uplink and downlink in [34]. In [27], the asymp-

totic channel matrix behaviour is studied with digital ZF and MRC precoders.

However, there is no published work analysing the difference between analog

and digital MRC with large antenna arrays in distributed systems and with

different correlation models. This convergence analysis for distributed sys-

tems is discussed in Chapter 5 and Chapter 6. The massive MIMO asymptotic

behaviour for ray-based channels is investigated in Chapter 7 and described

in more detail below.

1.1.5 Massive MIMO for Ray-based Channels

The bulk of the theoretical work on FP and channel hardening has employed

classical statistical channel models. However, accurate modelling of large di-

mensional and millimetre wave channels requires a strong link to the prop-

agation environment, which is usually obtained through ray-based models.

These models are more physically based, extensively validated by measure-

ments, have a closer link to the array architecture and are widely used ir-

respective of the frequency band [35–37]. Most of the published work con-

cerning FP and channel hardening are under specific assumptions about the

underlying angular distributions, such as a uniform distribution approxima-

tion [9, 38]. Hence, a general analysis of FP for ray-based models with arbi-

trary ray distributions is almost entirely lacking. In Chapter 7, we investigate

the properties of FP and channel hardening for ray-based models with the

most basic assumptions concerning physical phenomena rather than statisti-

cal parameters. In addition, we extend this analysis to the asymptotic regime

where both the numbers of antennas and the number of users grow to infin-

ity at a fixed ratio (double-sided massive MIMO). Here, the equivalent ques-

tion concerns whether the total interference power caused to the desired user

dominates the signal power. In order to investigate this behavior, we define
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large system potential (LSP) as the ratio of the mean desired signal power to

the total mean interference power.

Since the thesis considers channels which have user specific statistics and

vary from i.i.d Rayleigh, through correlated Rayleigh, Ricean and ray-based,

we use the term heterogeneous in the thesis title to denote the breadth of

channel models considered.

1.2 Contributions

The contributions of this thesis, listed by chapter, are as follows.

1.2.1 Analysis of Analog MRC for Distributed MU-MIMO

Systems (Chapter 4)

• Novel analytical expressions of expected per-user signal power and in-

terference for both uplink MRC and downlink MF in distributed an-

tenna systems are derived. The derivation is robust to changes in sys-

tem dimension and correlation models.

• We analyse the system performance of digital and analog MRC/MF for

three BS layouts. We show that while digital MRC benefits from in-

creased BS decentralization, the same does not hold for analog MRC.

• Simulation based investigations of the impact of different Rice K fac-

tors on both centralized and distributed systems with analog and digi-

tal MRC are presented. We show that the performance of analog MRC

approaches that of digital MRC when increasing the K factor in a cen-

tralized system, while the performance gap between the two techniques

remains in a distributed system.
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1.2.2 Analysis of Analog and Digital MRC in Massive MU-

MIMO Systems over Correlated Channels (Chapter 5)

• We derive analytical expressions of signal-to-noise and interference-ratio

(SINR) for uplink analog MRC and digital MRC under different corre-

lation scenarios when the number of antennas and users grows to infin-

ity. The asymptotic behaviours of these cases are analysed. The find-

ings suggest that the system performance is improved where there is

perfect correlation within one user’s channel but a random phase distri-

bution among users. Thus, in some cases, correlation is beneficial and

can help system performance. From the derived expression of SINR for

i.i.d Rayleigh fading, around 21.5% performance loss occurs with ana-

log MRC compared with digital MRC. The system performance analysis

under perfect correlation suggests that digital and analog MRC would

have the same asymptotic behaviour.

• We derive a signal-to-interference-ratio (SIR) expression based on an

exponential correlation model, which takes both correlation coefficient

and phase into consideration. The 3D surface plots based on this expres-

sion give great insight into why high correlations with random phases

improves system performance. We also show the similar system be-

haviour under a one-ring correlation model.

• The interference behaviour under perfect correlation with two special

correlation models, exponential and one-ring are studied. We find that

the asymptotic behaviour of interference mainly depends on the angu-

lar distribution of users.
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1.2.3 Hybrid MRC with Imperfect CSI in Two Stage Distributed

MU-MIMO Systems (Chapter 6)

• Novel analytical expressions for the expected spectral efficiency (SE) for

uplink A-D and D-D are derived.

• We analyse the system performance of A-D and D-D for two- and four-

cluster BS layouts. We show that D-D benefits from increased cluster

decentralization.

• Simulation results for A-ZF and D-ZF allow a performance compari-

son of A-D, D-D, A-ZF, and D-ZF. We show that MRC is a reasonable

alternative to ZF in the second stage even at moderate SNR levels. Fur-

thermore, A-D only requires phase shifters in the local processing and a

few RF chains at central processing. Thus, A-D is a very low complex-

ity technique for distributed systems which reduces hardware costs and

power consumption.

• We show that A-D has an asymptotic performance loss of approximately

21.5% compared to D-D in centralized systems. For distributed systems,

the performance comparison depends on the pattern of user link gains.

1.2.4 Massive MIMO Asymptotics for Ray-Based Channels

(Chapter 7)

• We show that channel hardening may or may not occur depending on

the nature of the model.

• We show that FP is guaranteed for all models where the ray angles are

continuous random variables (as assumed by all models to date).
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• For LSP, we derive remarkably simple expressions which relate the asymp-

totic interference behavior to system size, antenna spacing and the ray

distribution. We demonstrate that LSP will not normally hold as the

interference power grows logarithmically relative to the power of the

desired user channel as the system size increases.

• Analytical results are verified via simulation and using special cases for

specific angular distributions where analytical results are possible.

• Despite the lack of LSP, the implications for massive MIMO are excel-

lent. Although the interference eventually dominates the desired chan-

nel, the growth is very slow and is further attenuated by practical factors

such as the likely propagation environment and the typical array pat-

terns employed. In addition, we prove that trivial scheduling schemes

can retain LSP.

1.3 Thesis Outline

The reminder of the thesis is organized as follows:

• Chapter 2 provides a theoretical background, including the key proper-

ties of wireless communication channel models, MIMO and MU-MIMO

channel models.

• Chapter 3 examines the system architectures and beamforming tech-

niques for massive MIMO systems. Three system architectures are dis-

cussed: analog, digital, and hybrid. Linear beamforming techniques for

both single user MIMO and MU-MIMO are also included.

• Chapter 4 investigates the performance analysis for uplink analog MRC

and downlink MF in a correlated Rayleigh fading channel for both cen-

tralized and distributed MU-MIMO systems.
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• Chapter 5 extends the work in Chapter 4 to asymptotic analysis with

different correlation models.

• Chapter 6 proposes four low-complexity, two-stage BF techniques to im-

prove the system performance in Chapter 4 and reduce hardware costs

and power consumption.

• Chapter 7 investigates FP and channel hardening properties for ray-

based channels with two antenna topologies: uniform linear array (ULA)

and uniform plannar array (UPA).

• Chapter 8 concludes the thesis with key contributions and future re-

search directions.
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2
MU-MIMO Channel Modelling

As the performance of wireless communication is highly dependent on the

channels that users experience, it is important that we have a thorough un-

derstanding of the various types of wireless communication channels and

modelling methods. These methods can be categorised into two main types,

statistical and ray-based. Most of the other channel models are either ex-

tended or transformed versions of these two. Firstly, this chapter presents a

general overview of the propagation properties related to wireless channels,

such as large-scale and small-scale fading. Then an introduction to statistical

and ray-based channel models is given followed by a discussion of uplink

and downlink MU-MIMO systems. Beamforming techniques, which are in-

troduced in the following chapter, require channel information. Thus, a brief

discussion of two widely used methods of attaining channel knowledge in

modern wireless communication systems is given. As some of the work in

the thesis looks at the asymptotic behaviour of large antenna systems, the

properties of massive MIMO are also introduced.

15
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2.1 The Propagation Properties of Wireless Com-

munication Channels

Unlike wired communication, where the signal is usually transmitted over

wired-based media, such as copper, or optical fibre, the wireless radio channel

is a much more challenging environment. Wireless channel effects include

fading, interference, noise, and reflection and diffraction by obstacles. The

received signal power is attenuated badly by the artefacts above and shows

considerable randomness. There are three main factors that have the most

important impact on radio channels and can be classified as large-scale fading

(Sec. 2.1.1), small-scale fading (Sec. 2.2), and blockage and outage (Sec. 2.1.2).

2.1.1 Distance-Based Path Loss and Shadowing

Consider transmitting a signal between a transmitter and a receiver. A popu-

lar distance-based model for path loss is [39]

PL(d)[dB] = α + 10β log10(d) + ξ, ξ ∼ CN (0, σ2
SF), (2.1)

where PL(d) is the path loss of a link at distance d and ξ is shadowing. De-

pending on the scenario, some values of parameters α and β can be found

in [39]. When β = 2 and there is no uncertainty, ξ = 0, (2.1) can be converted

to the free-space Friis’ law [40]

P = GrGt

(
λ

4πd

)2

Pt, (2.2)

where P is the received power, Pt is the transmit power, Gt and Gr are the

transmit and the receive antenna gains respectively, and λ is the wavelength.

As we know, λ = v
f

, where v is the speed of light and f is the carrier frequency.
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Thus, the received power, P , has an inverse square law decay with f . At high

frequencies, the much smaller wavelength not only means high path loss, but

it also means that more antennas can be closely spaced into the same physical

area [11], which creates possibility BF and antenna gains to counteract the

large path loss. Thus, large array systems which are equipped with large

directional antenna arrays can have reasonable coverage. The measurements

conducted in New York City [41, 42] have inspiring results to support this.

Due to obstacles, which cause scattering, absorption, diffraction and re-

flection, the received signal power experiences a great deal of randomness.

All the factors above introduce a random component into the path loss (see

(2.1.1)), which is often modelled as a log-normal random variable. In partic-

ular,

ϕ = 10(ξ/10), (2.3)

where ξ is the zero mean Gaussian variable in (2.1) and σSF is the shadowing

standard deviation in dB.

2.1.2 Blockage and Outage

The theoretical high path loss over millimetre wave bands can be partly com-

pensated for by directional antennas. Blockage is another big challenge which

can attenuate signals by as much as 30dB to 80dB depending on different

blocking materials [41, 42]. For high frequency, diffraction is less significant

while LoS is more significant, making blockages more important. However,

small wavelengths due to high frequency increase the effective roughness of

materials, which results in more scattering, an important mechanism in en-

abling coverage via NLOS paths. Several models can be used to evaluate the

effect of blocking, like a two-state model considering the scenarios: line of

sight (LOS) and NLOS, and a three-state model including LOS, NLOS, and

signal outage [41, 42]. Such models can help to analyse the coverage and ca-
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pacity in large antenna array systems.

2.2 Statistical Channel Models

Due to the complexity of the small scale fading phenomenon in wireless chan-

nels it can be difficult to describe wireless links via simple, physically based

models. Hence, statistical channel models are often used which represents a

simplified view of the actual environment. In this section, we introduce two

widely used statistical channel models, i.i.d. Rayleigh and i.i.d. Ricean, which

are also the building blocks of many more complicated channel models.

2.2.1 I.I.D Rayleigh

The i.i.d Rayleigh model is commonly used in urban areas, where rich scat-

tered replicas of the transmitted signals arrive at the receiver and no direct

path is assumed. Here, the normalized received signal’s amplitude has the

probability distribution function (PDF) given by [40, 43]

fR(r) = 2re−r
2

, r ≥ 0, (2.4)

and the phase angle has a uniform distribution from 0 to 2π. The simplicity

of this model allows closed-form analysis in many applications.

2.2.2 I.I.D Ricean

We employ a Ricean channel model [40, 43] when there is rich scattering, as

in the Rayleigh model, but also a line-of-sight (LoS) path between transmitter

and receiver. The channel is described by two parameters: K and Ω, where

K is the ratio of the deterministic power to the scattered components and Ω

represents the total power of the two kinds. The amplitude of the received
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signal has the PDF

fR(r) =
2(K + 1)r

Ω
exp

(
−K − (K + 1)r2

Ω

)
I0

(
2

√
K(K + 1)

Ω
r

)
, r ≥ 0, (2.5)

where I0 is the zeroth order modified Bessel function of the first kind.

2.3 Narrowband MIMO Channel

In this section, we discuss both single-user (also known as point-to-point)

MIMO and multi-user narrow band MIMO channels. MIMO exploits and

takes advantage of diverse channels between the transmitter and the receiver,

where both sides are equipped with multiple antennas [44]. The independent

channels that MIMO systems can use gives rise to multiplexing gain, which

can improve system performance massively and has been already deployed

in current wireless communication systems [45].

2.3.1 Narrowband Single-user MIMO Channel

Single-user MIMO refers to the system where there are Nt transmit antennas

at the BS, serving only one user equipped with Nr antennas. This system can

be simply represented as [40]

y = Hx + n, (2.6)

where H =


h11 · · · h1Nt

... . . . ...

hNr1 · · · hNrNt

 is the Nr × Nt channel matrix and hij repre-

sents the channel gain from transmit antenna j to receive antenna i. These

channels can have various distributions, such as i.i.d Rayleigh in Sec. 2.2.1,

i.i.d Ricean in Sec. 2.2.2 or more complex distributions. In (2.6), x is the trans-
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mitted symbol vector (Nt × 1), y is the received vector (Nr × 1) and n is the

Nr × 1 noise vector.

2.3.2 Narrowband Multi-user MIMO Channel

Multi-user MIMO (also know as MU-MIMO) systems use the same time and

frequency resource to serve multiple users simultaneously. This technique

not only improves system performance with limited resources, but also can

adopt simple signal processing techniques such as MF with growing numbers

of antennas [46]. The users served can be equipped with multiple antennas,

as described in Sec. 2.3.1, or just with one single antenna. In our work, we

only consider MU-MIMO with a single antenna at the user equipment (UE).

Uplink Multi-user Channel

Now consider uplink transmission for a MU-MIMO system as shown in Fig. 2.1.

The base station is in the middle of a cell, and users are distributed within the

cell. Hence, the uplink multi-user global channel is

H = [H1H2 · · ·HK ], (2.7)

where K is the total number of users and Hi is the channel for user i.

Downlink Multi-user Channel

Downlink transmission for a multi-user system is as shown in Fig 2.2. Simi-

larly, the downlink multi-user global channel is

H = [HH
1 HH

2 · · ·HH
K ]H, (2.8)

where K is the total number of users and Hi is the channel for user i. .
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   1 2 ... Nr

UE K-1

UE KUE 1

UE 2

Figure 2.1: Uplink multi-user channel

2.4 Ray-based MIMO Channel Models

In order to model diffraction and reflection effects, ray-based models have

been used for decades in mobile terrestrial channel [47]. Due to the physical-

based nature and close link to the array architecture, ray-based models are

widely used for system analysis [35–37]. Especially when the wavelength

is relatively small, the total channel behaves like the sum of narrow beams

or rays [47]. Thus ray-based channel models are vital for next generation

wireless communication systems as high frequencies are more likely to be

used such as millimetre wave, whose wavelength is relatively small, leading
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1 2 ... Nt

UE 1

UE 2 UE K-1

UE K

Figure 2.2: Downlink multi-user channel

to different propagation effects and possibly a smaller number of rays. The

typical parameters of low frequency systems, such as angle spread, time de-

lay spread, etc., will have different values in millimetre wave environments.

Many measurements [39] show that the millimetre wave channel tends to

have only a few clustered paths which are sparse in the angular domain [11].

Many other popular channel models, such as the 3GPP standardization exer-

cise [35] and Saleh-Valenzulela (SV) type [48] channel models are variations of

such ray-based models. The ray-based MIMO channel can be described either

by a 2D or a 3D multipath channel model. For a 2D channel model, the an-

tenna array steering vectors only consider azimuth angles; whereas both az-
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imuth and elevation angles will be used for a 3D channel model. We assume

the channel is narrowband block-fading. Note that our work can be applied

to both microwave and millimetre wave systems. The narrowband assump-

tion based on the use of orthogonal frequency-division multiplexing (OFDM)

is a well-accepted assumption in microwave systems. However, in higher

frequency bands, this assumption is controversial due to the high peak-to-

average power ratio (PAPR) problem with OFDM compared to single-carrier

systems [49, 50]. [51] shows that single-carrier with minimum mean-squared

error (MMSE) performs close to OFDM, but with a lower PAPR. Also, in [49],

it is shown that OFDM is similar to single-carrier if amplifier non-linearities

can be handled, but worse than single-carrier otherwise. Thus, both OFDM

and single-carrier techniques remain candidates for higher frequency bands.

However, OFDM remains the chosen technique for future generation systems

in the 3GPP standards1. Hence, the channel for a single antenna UE can be

represented by [42]

h =
1

CL

C∑
c=1

L∑
l=1

gcla(φcl), (2.9)

whereC is the number of clusters; L is the number of subpaths in each cluster;

if only considering azimuth domain, each subpath contains azimuth angle

φcl, and φcl = φc (cluster central angle) + ∆ (subarray offest angle); gcl is the

complex small-scale fading gain on the lth subpath of the cth cluster. The ray-

based channel in azimuth domain is shown in Fig. 2.3. The elevation angle

is shown in Fig. 2.4. This model is applied in Chapter 7 using the simplified

notation

hi =
P∑
r=1

γira(φir), (2.10)

where i is the user number, P is the total number of paths (P = CL), γir

corresponds to some gcl/(CL) and φir is one of the φcl angles. 3D channel

13GPP TR 21.915 V15.0.0, http://www.3gpp.org/.
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models also include elevation angles which are defined in terms of clusters in

a similar manner to Fig. 2.3. This is described in more detail in Chapter 7.

CLUSTER C
φ c

φ cl

ray cl

Central 
azimuth angle

Yaxis

Xaxis

Figure 2.3: Ray-based channel model showing a generic cluster in the azimuth
domain with the azimuth central angle of the cluster and the offset of a given
ray.

2.5 Spatial Correlation

MIMO techniques exploit the spatial aspect of communication channels [47].

Spatial correlation of two or more channels may occur in such a structure,

which in turn may have an impact on MIMO system performance. Thus, to

characterize the spatial properties of a MIMO system it is important to con-

sider the channel correlation structure. Here, we discuss spatial correlation

at the transmitter, but this can also be applied to the receiver. We define the
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CLUSTER C

ray cl

Central elevation angle Zaxis

Yaxis

Ɵ cl Ɵc

Figure 2.4: Ray-based channel model showing a generic cluster in the eleva-
tion domain with the elevation central angle of the cluster and the offset of a
given ray.

spatial correlation coefficient between two transmit antenna elements q and

q
′ as Rq,q′ , which satisfies 0 6 |Rq,q′ | 6 1. If |Rq,q′ | = 1, we say that the two

antenna element channels are fully correlated, while Rq,q′ = 0 implies that the

channels are uncorrelated [47,52]. Many factors, such as the numbers of clus-

ters and subpaths, angular spread in (2.9) and various antenna topologies will

change the level of correlation. We give two widely-used correlation models,

Exponential and One-ring in Sec. (2.5.1) and Sec. (2.5.2), separately.
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2.5.1 Exponential

The exponential spatial correlation model is the simplest, common model for

correlation, widely adopted as in [53,54]. This model is ideal for analysis due

to its use of a single parameter to characterize the level of correlation. The

exponential correlation matrix at the BS (similarities applies to the receiver)

can be described by

R =


1 ρ · · · ρNt−1

ρ∗ 1 · · · ρNt−2

...
... . . . ...

(ρNt−1)∗ (ρNt−2)∗ · · · 1

 , (2.11)

where ρ is the decay parameter and |ρ| 6 1. The correlation effect decays ex-

ponentially as the distance of two elements increases. Hence, it is best applied

to linear arrays. Large |ρ| indicates a high correlation effect.

2.5.2 One-ring

The one-ring correlation model is proposed based on the characteristics of

the physical environment [55–60]. This type of correlation matrix captures

the differences in the dominant propagation channel to each terminal, which

are mainly characterized by two physical quantities: (1) the local scattering

environment and (2) the antenna spacing distance at the transmit array [43,

61, 62]. The coefficients of a one-ring correlation matrix for a uniform linear

array (ULA) array can be described [63] as

[R]i,j =
1

2π

∫ 2π

0

ej2πds(i,j)sin(θ)dθ. (2.12)

where ds(i, j) is the distance between antenna i and antenna j.
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2.5.3 Correlated MIMO Channel

The principle of modelling a correlated MIMO channel is usually to apply the

correlation matrix such as those in Sec. 2.5.1 or in Sec. 2.5.2 at either the BS or

the receiver or both sides. The channel can be described via the Kronecker

product model as Ĥ = R
1/2
R Hi.i.dR

1/2
T where RT (Nt ×Nt) describes the corre-

lation effect among the transmit antennas and RR (Nr ×Nr) is the correlation

matrix at the receiver [8,57]. The matrix, Hi.i.d, is an i.i.d channel matrix. Note

that this is usually only valid for generating correlated Rayleigh channels.

2.6 Channel State Information (CSI)

MIMO is well-known for its advantages in increasing data rates by multiplex-

ing or improving system performance by diversity techniques [40]. Most of

these gains require channel knowledge at either the receiver or the transmitter

or both. There are two typical methods that can provide CSI at the transmitter,

which are feedback and channel reciprocity [64]. In this work, we assume a

time-division duplex (TDD) system, and hence the transmitter knows the CSI

via reciprocity as described in Sec. 2.6.1. Note that arrays with large numbers

of antennas can be deployed in both TDD and frequency-division duplexing

(FDD) systems, although there are problems with both systems. The effective-

ness of the TDD system relies on the assumption that the channel coherence

time is relatively long (compared with the duration of the data frame), which

is proportional to
wavelength

speed
. Thus, for a high frequency, high speed sce-

nario, this assumption may become invalid. In [65], with a carrier frequency

of 3.7 GHz, and a bandwidth TDD of 20MHz, acceptable prototype results

were obtained up to a maximum speed of 29 km/h. As the frequency is in-

creased further, it may be that lower maximum speeds are required. Although

FDD avoids this problem, the heavy overhead of CSI acquisition in massive
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MIMO systems makes FDD undesirable. Many published works for massive

MIMO still assume a TDD system [66] (and references within).

2.6.1 Feedback

Feedback is an approach to obtain CSI at the TX in which the receiver es-

timates the channel via pilots and communicates the channel back to the

TX [64]. Only the essential information is transmitted as the bandwidth of

the feedback link is often limited. However, for millimetre wave system with

large antenna arrays, the overhead may be too much as feedback grows with

the number of antennas [67].

2.6.2 Reciprocity

In TDD single-frequency systems, downlink and uplink channels use the same

carrier frequency for transmission. The channel for the uplink is the transpose

of the channel for the downlink. The transmitter can measure CSI directly

without the need of feedback from the receivers [67]. Note that the 3GPP LTE

TDD mode has been used in cellular systems [67].

2.7 Massive MIMO Properties

MIMO techniques are widely used in current wireless communication sys-

tems like WLAN (IEEE 802.11n/ac) and cellular systems (3GPP LTE and LTE

Advanced) [11] which operate at microwave frequencies with only a small

number of antennas (up to eight, but two is most common). In recent years,

it has become commonly accepted in information theory [68, 69], industry

[70, 71] and international standards [72, 73] that large systems, also known

as massive MIMO, are a key enabler for high data rate wireless commu-

nication. Such systems communicate with many users simultaneously us-
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ing large numbers of antennas [73, 74], achieving the benefits of high data

rates, high power efficiency and reliability with linear signal processing tech-

niques [38]. The number of transmit antennas and receive antennas are sig-

nificantly scaled up by at least an order of magnitude in a massive MIMO

system compared with the conventional MIMO systems that are currently

being used. Note that all the theoretical properties that conventional MIMO

systems have, also apply to the massive MIMO systems. However, there are

many benefits only arising from massive MIMO systems. The mathemati-

cal principles behind the large system benefits can be found using random

matrix theory. Two key principles behind the success of massive MIMO are

favourable propagation (FP) [3, 38], and channel hardening [75]. For the fol-

lowing description, hi is the channel vector for user i which has a single an-

tenna.

• Favourable Propagation

FP relates to the orthogonality of hi and hj and was originally defined

in three flavours [38]: exact FP where hH
i hj = 0; approximate FP where

hH
i hj ≈ 0 and asymptotic FP where hH

i hj/N → 0 as N → ∞. Since

the majority of the literature and the important properties of FP concern

asymptotic FP, for simplicity we refer to asymptotic favourable propa-

gation as FP. Here, FP denotes asymptotic FP where hH
i hj/N

a.s.−→ 0 as

N → ∞ [38]. When the number of the BS antennas becomes large, FP

occurs when users’ channels become orthogonal [6]. This enables sim-

ple, linear processing techniques, such as MF and ZF, to maximize the

system capacity.

• Channel Hardening

Channel hardening refers to the property that the entries of the elements

of
hH
i hi
Nt

becomes deterministic as Nt →∞ [75]. This leads to simplified

system analysis and precoder design since easy matrix computation be-
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comes available [46].

Furthermore, millimetre wave MIMO envisages the use of 32 to 256 an-

tennas. These large antenna arrays have three advantages, especially for mil-

limetre wave systems: (1) they provide BF and antenna gains to overcome

large pathloss; (2) they establish reliable links; (3) they improve spectral effi-

ciency and can approach system capacity [76].

.



3
System Architectures and Beamforming

Techniques For Massive MU-MIMO Wireless

Communications

In order to meet the demand for an ever-increasing data rate (10 Gbps for

5G systems [2]), millimetre wave has become a strong candidate for future

commercial wireless communication systems. It is envisaged that channel

bandwidth of 2 GHz will become common for systems operating at above 60

GHz [11]. The current wireless systems operate on a relatively small range of

microwave frequencies which are usually from a few hundred MHz to some

GHz with wavelengths in the range of several centimetres up to a metre [2].

This precious microwave bandwidth is almost fully occupied. Even though

there are advanced signal processing techniques like cognitive radio or small

cells which can unleash some spectrum, they cannot meet the required Gbps

data rates. The main motivation for moving cellular communication systems

to the millimetre wave band (30-300 GHz) is to take advantage of the large

bandwidth available at high frequencies [12], assigning users a larger com-

munication bandwidth thus enabling higher user data rates. Large antenna

arrays, however, result in large precoding and receive combining matrices,

which increase system complexity, and also boost the training overhead for

31



32

channel estimation. Furthermore, the large number of antennas deployed

at the transceiver will cause high hardware costs and power consumption.

Some signal components, like analog-to-digital converters (ADCs), make it

difficult to dedicate a separate RF chain for each antenna because of their

high power consumption and hardware costs. Thus, three system architec-

ture candidates for massive MIMO have been proposed as in [67] to explore

the trade-off between system performance and cost. Fig. 3.1, Fig. 3.2, and

Fig. 3.3 show these three important system architectures with a 1-D planar

array and the corresponding BF strategies are shown in Fig. 3.4. NBS is the

total number of antennas at the BS. Ns is the number of data streams, and NRF

is the number of RF chains..

3.1 Analog BF Architecture

Due to low costs in both hardware and power consumption, the purely analog

architecture forms an attractive design option. Only one single RF chain with

NBS phase shifters is required in analog BF systems. As shown in Fig. 3.1,

for a downlink system with Ns = 1, NRF = 1, NBS = 4, the signal s1 passes

through the only RF chain and then splits into four sub-branches. These four

sub-branches adjust the phases, then transmit the signal s1 with the same am-

plitude, given by (FBB)11, but four different phases, given by (FRF)11, (FRF)21,

(FRF)31, and (FRF)41, on four different antennas.

Analog BF, employs a network of phase shifters to control and steer the

phase of the signal [77]. Due to the large number of antennas deployed at the

transmitter, the BF gains due to analog BF can be greatly increased, and the

beamwidth can be reduced, which has a positive effect on interference miti-

gation [78]. However, the hardware constraints of analog BF, such as the use

of phase shifters with no ability to change signal amplitudes, means that ana-
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log BF has a low performance compared with full digital BF [77, 79]. Today’s

indoor millimetre wave systems, which are usually short range and time in-

variant, adopt the analog BF method, including three key techniques: a sec-

tor level sweep to determine the best sector, beam refinement for sharpening,

and beam tracking [12]. Beam training approaches for analog BF, without

CSI assumption, have been developed in [15–18]. This method is based on

a closed-loop beam training process which starts at a wide beam and then

reduces the beamwidth until reaching a desired resolution without channel

knowledge [80].

Due to analog processing simplicity and low-cost, such architectures have

received great attention for massive MIMO and millimetre wave systems.

There have been many recent developments in analog architecture. The use

of low-resolution ADC in lens-based methods and its impact are investigated

in [81]. A novel soft antenna selection approach through RF signal processing

has been proposed in [20]. The indoor 60 GHz scenario has been considered

in [21, 82]. Sub-array architectures have been investigated in [83–87] for out-

door scenarios.

3.2 Digital BF Architecture

The digital BF approach requires a total number of NBS antenna RF chains

and the per-element BF weights are applied digitally. As shown in Fig. 3.2,

for a downlink system withNs = 1, NRF = 2, NBS = 2, signal s1 passes through

two RF chains and then is split into two sub-branches separately for each RF

chain.

Digital BF can achieve advanced transmission strategies and provide high

flexibility but at the expense of power, cost, and high system complexity — a

particularly important concern for massive MIMO and next generation wire-
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(FBB )11

s1

(FRF)21

(FRF)31

(FRF)41

RF Chain

(FRF)11

Figure 3.1: Analog system architecture, Ns = 1, NRF = 1, NBS = 4.

less communication systems. Conventional digital signal processing in the

baseband is a suitable approach for low frequencies, but when it comes to

high carrier frequencies with larger numbers of antennas, there are many

hardware constraints. Hardware costs, space limitations, power consump-

tion, and the complexity of large antenna arrays prevent the use of a separate

RF chain per antenna [11].

Analog MRC is basically digital equal gain combining. For analog MRC,

the differences in the weights across the antennas is controlled only by phase

shifters, giving the weight vector, wAMRC = [e−jφ1 , e−jφ2 , · · ·, e−jφNBS ], which co-

phases the signals on each branch to match the channel and then combines

them with equal weighting. This is the same as digital equal gain combining

as described [40, p. 212]. Due to analog MRC’s inability to match the ampli-
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tude of the signals (having only one RF chain), there is a performance loss

compared with digital MRC.

 

(FBB )11

(FRF)11

(FRF)21

(FRF)12

(FRF)22

RF Chain

+

+

(FBB )21

RF Chain

s1

Figure 3.2: Digital system architecture, Ns = 1, NRF = 2, NBS = 2.

3.3 Hybrid Analog-Digital Precoding Architecture

Hybrid precoding architecture offers a compromise between digital BF and

analog BF. The additional digital layer provides more freedom compared to

analog BF. Compared to the full digital design, the performance of the hybrid

architecture is lower but it requires fewer RF chains, and at the same time

provides more flexibility than the full analog design [12]. As shown in Fig. 3.3,

for a downlink system with Ns = 1, NRF = 2, NBS = 4, signal s1 is transmitted

by two RF chains and then split into four sub-branches separately for each
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RF chain. In [88], the relationship between the number of RF chains and the

number of data streams, is investigated and it is shown that if the number of

RF chains is twice or greater than the number of data streams, hybrid BF can

achieve full digital BF performance.

 

(FBB )11

(FRF)11

(FRF)21

(FRF)12

(FRF)22

RF Chain

+

(FBB )21

RF Chain

+

+

+

(FRF)31

(FRF)41

(FRF)32

(FRF)42

s1

Figure 3.3: Hybrid system architecture, Ns = 1, NRF = 2, NBS = 4.

3.4 The Relationship between Analog, Digital, and

Hybrid BF

Figure 3.4 shows the downlink (uplink is similar) precoding strategies un-

der the three different system architectures. The general idea of precoding

is to apply a linear processing matrix F to the transmitted signal vector. For
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the analog architecture, which is implemented in the RF domain using phase

shifters, F = FRF (NBS × NRF). For the digital architecture, which is imple-

mented in baseband, F = FBB (NRF × Ns). For the hybrid architecture, F =

FRFFBB (NBS ×Ns), is implemented in both RF and baseband domains.

Aanlog BF

Digital BF

Hybrid BF

FRF

FBB

FBBFRF

Figure 3.4: Precoding strategies under three system architectures

Our research work looks at the three BF strategies: pure analog MRC, pure

digital MRC, and hybrid analog (or digital) MRC and digital ZF. The perfor-

mance analysis of analog and digital MRC in centralized and distributed sys-

tems is given in Chapter 4 and its extended correlation and asymptotic anal-

ysis is presented in Chapter 5. Two-stage hybrid BF is analysed in Chapter

6.
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3.5 Linear Beamforming

The computational complexity of baseband processing will become imprac-

tical when a large number of antennas are deployed in a massive MIMO

system. Non-linear signal processing techniques, such as dirty-paper coding

(DPC) [89] and vector perturbation [90,91], which achieve better performance

than linear processing, also become too difficult for practical implementa-

tion. Thus, linear precoding techniques for a downlink system, zero-forcing

(ZF), MF, block diagonalization (BD) and signal to leakage and noise ratio

(SLNR) [92], have received significant attention, especially with various com-

plexity reduction techniques. There are many measurements which show that

ZF can achieve a high percentage of DPC performance even with a relatively

small antenna array [28, 93]. Also, as discussed in Sec. 2.7, linear processing

techniques of ZF and MF, can achieve satisfying system performance when

equipped with a large number of antennas. Similarly, simple, low-complexity

combining techniques for an uplink system, such as MRC and ZF, have the

same advantages as in downlink systems. There are two main categories of

beamforming techniques available when we refer to MIMO systems: single-

user and multi-user, which are introduced in Sec. 3.5.1 and Sec. 3.5.2, respec-

tively.

3.5.1 Single-user MIMO Beamforming

For the single-user case, in which no inter-user interference is present, the

optimal linear digital precoding is based on the well-known singular value

decomposition (SVD) of the channel. Any MIMO channel matrix, H, of di-

mension Nr ×Nt can be represented as

H = UD
1
2 VH, (3.1)
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where Nr and Nt are the number of the receiver antennas and transmitter

antennas, respectively. The matrix U, of dimension Nr × Nr, and the matrix

V, of dimensionNt×Nt, are unitary; D
1
2 is aNr×Nt diagonal matrix with non-

negative diagonal entries. The columns of V are the eigenvectors of HHH and

the columns of U are the eigenvectors of HHH. When the transmitter has CSI

and adopts water-filling power allocation, the optimal linear digital precoder

is VDwf (Dwf is the square root of a diagonal power allocation matrix) and

the optimal receiver combiner is UH [45, 94].

3.5.2 Multi-user MIMO Beamforming

MU-MIMO is a key technique for next generation wireless communication

systems due to its ability to serve many users in the same time and frequency

resource. However, serving many users simultaneously results in interfer-

ence. Hence, beamforming techniques, which can either maximize the de-

sired user’s signal power (such as MRC or MF) or mitigate users’ interference

(such as ZF) are of high interest. Thus, two main BF techniques, MRC/MF

and ZF, are considered for massive MIMO systems.

MRC

MRC aims to maximize the desired received signal power by multiplying the

received signal with the Hermitian transpose of the channel matrix, HH. From

the geometric perspective, MRC, in fact, projects the received signal on to

a direction which maximizes the projection length of the signal. Note that

independent Gaussian noise has the same projection length in any direction,

a property of isotropic noise, thus MRC only needs to maximize the projection

length of the signal. In other words, MRC aims to maximize SNR.
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ZF

ZF, in contrast to MRC, aims to minimize the interference by projecting the

signal on to the direction orthogonal to the interference by multiplying the

received signal by (HHH)−1HH. In other words, ZF aims to minimize the

interference. As ZF requires the matrix inverse, (HHH)−1, it is more compu-

tationally expensive than the MRC.

3.5.3 Spectral Efficiency

Capacity is an upper limit on the data rate which can be archived with ar-

bitrarily low error probability [95, p. 15]. SE is measured in bits/s/Hz and

is a lower bound on the capacity that can be achieved by a particular type

of processing where any interference is treated as noise [95, p. 14]. In this

work, we analyse low-complexity BF techniques, such as MRC in Sec. 3.5.2

and ZF in Sec. 3.5.2, where SE is a reasonable evaluation metric. SE is defined

as [95, Eq.1.4, p. 16]

SE = log2(1 + SINR), (3.2)

for a fixed channel and a particular type of processing which gives that par-

ticular SINR. For fading channels, the mean SE is usually of interest given

by [95, Eq.1.5, p. 16]

E[SE] = E[log2(1 + SINR)]. (3.3)
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Analysis of Analog MRC for Distributed

MU-MIMO Systems

In this chapter, we investigate the SE performance in distributed systems with

an MRC combiner for the uplink and MF for the downlink. The analysis

caters for both correlated and line-of-sight (LoS) channels, with the aim of de-

termining and characterising the impact of various antenna layouts. Expected

per-user signal power and interference power expressions are derived for

both uplink and downlink. Our analysis shows that system performance im-

proves with distributed antenna clusters for digital MRC while analog MRC

has a better performance in a centralized system. The impact of the Rice K

factor is analysed based on numerical results, and shows that a strong Rice K

factor shrinks the performance gap between analog MRC and digital MRC in

a centralized system.

4.1 Introduction

MU-MIMO systems have the ability to serve many users over the same time-

frequency resource via various beamforming techniques, significantly im-

proving the SE of wireless communication systems. However, high power

consumption and space constraints make the implementation of large an-

41
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tenna arrays difficult. Considering hardware costs, a purely analog architec-

ture at the BS forms an attractive design option. Furthermore, when adding

more antennas to a fixed total antenna space, inter-element antenna spac-

ing reduces, and causes spatial correlation between the antenna elements of

the array, which degrades system performance, especially for massive MIMO

systems. Thus, one design method to mitigate the adverse effects of spatial

correlation is to separate the BSs. This is called a collaborative BS [13] design

and is also referred to as a distributed system, leading to a different system ar-

chitecture compared with the centralized or co-located systems. Distributed

BSs with large antenna arrays are of great interest as they provide the addi-

tional benefit of improved coverage [13] and reduction of spatial correlation

relative to large co-located arrays [22]. MRC not only maximizes the received

signal power, but also requires no central control1 and can be deployed in-

dependently at each antenna cluster in a distributed BS layout [22]. Thus,

analog MRC is an ideal technique for a large distributed antenna array if the

performance is satisfactory.

In recent years, a number of works have analysed the simplest forms of di-

versity combining techniques, including MRC, equal-gain combining (EGC)

and selection combining (SC). Among these, the work in [96, 97] shows that

EGC is of practical interest as it outperforms SC and has a lower complex-

ity compared to digital MRC. In purely analog MIMO systems, MRC is not

feasible. The analog version of MRC is equivalent to EGC as analog process-

ing is not able to change the signal amplitude (see Sec. 3.1). Over the last

decade, many works have focused on analog beamforming design and an-

tenna selection methods. Analog beam training approaches have been devel-

oped in [15–18]. A novel soft antenna selection approach through RF signal

processing has been proposed in [20].

1MRC only requires the desired user’s CSI while ZF needs all users’ CSI.
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For single-user MIMO, most analytical work concerning analog MRC is

conducted from the perspective of modulation, outage probability and bit

error probability (BEP) (e.g., [98–104] and references within). The perfor-

mance of digital MRC in a distributed system is analysed in [22]. For uplink

MU-MIMO, a thorough performance analysis of digital MRC over Rayleigh

fading without spatial correlation effects is presented in [105]. Approxima-

tions of SINR and the ergodic sum SE of a MU-MIMO downlink system us-

ing digital MRC with correlation are presented in [106]. Closed-form anal-

yses based on Nakagami-m and gamma fading channels are presented in

[107–110]. A closed-from BEP equal gain transmission (EGT) analysis for MU-

MIMO based on a Nakagami-fading channel is presented in [111] and the en-

ergy efficiency of maximum ratio transmission for the downlink is analysed

in [112, 113]. A diversity analysis based on EGT for both single-user MIMO

and MU-MIMO was given in [114]. Despite the considerable body of work

described above, research work related to analog MRC in Ricean channels

is very limited, mainly focusing on system energy efficiency or system sum

rate [115, 116] in single-user MIMO systems. Thus, we present numerical re-

sults adopting a Ricean fading channel to analyse the system performance

with respect to different Ricean factors in a MU-MIMO system.

The primary aim of this chapter is to derive SINR results for analog MRC

in the uplink and downlink MF in a correlated Rayleigh fading environment

for both centralized and distributed MU-MIMO systems. Specifically, a thor-

ough analysis of the expected per-terminal SE based on different BS layouts

and the impact of system parameters is of great interest. The contributions of

this chapter can be summarized as follows:

• Novel analytical expressions of expected per-user signal power and in-

terference for both uplink MRC and downlink MF are derived. The

derivation is robust to changes in system dimension and correlation
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models.

• We analyse the system performance of digital and analog MRC/MF for

three BS layouts. We show that while digital MRC benefits from in-

creased BS decentralization, the same does not hold for analog MRC.

• Simulation based investigations of the impact of different Rice K fac-

tors on both centralized and distributed systems with analog and digi-

tal MRC are presented. We show that the performance of analog MRC

approaches that of digital MRC when increasing the K factor in a cen-

tralized system, while the performance gap between the two technique

remains in a distributed system.

4.2 System Model

We consider a MU-MIMO system with K single antenna users randomly lo-

cated within a single cell and a total of Nt antennas at the BS divided equally

amongstM cooperative antenna groups. Three different BS layouts are adopted

for system performance evaluation. Cen (Fig. 4.1) denotes a centralized sys-

tem where the BS is located at the centre of the cell with all Nt antennas; Dis4

(Fig. 4.2) is a distributed system, where antennas are divided equally amongst

four cooperative antenna sites with each site (half way from the centre to the

cell-edge and 90◦ from each other) equipped with Nt
4

antennas. Similarly, Dis2

(Fig. 4.3) denotes a system with two sites, each site (half way from the centre

to the cell-edge and 180◦ from each other) containing Nt
2

antennas.

The UL and DL system models are now described.
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Figure 4.1: Example of a centralized system (Cen) with Nt antennas at the
central BS and four single antenna users.

4.2.1 Uplink System Model

TheNt×1 channel vector for user i can be written as hi = R
1
2
i ui, where the en-

tries of ui are independent and identically distributed (i.i.d) Rayleigh fading

variables, ui ∼ CN (0, I); Ri is the Nt×Nt spatial correlation matrix for user i.

Assuming no correlation between antennas belonging to different groups, we

write Ri = diag(Ri1Ri2...RiM), Rim = β̄imΣim
2, where i indicates the user i and

m indicates the base station groupm. Σim contains the correlation coefficients

and β̄im models the effect of pathloss and shadowing of the mth group base

2The matrix Ri is actually the covariance matrix of the channel, Ri = E[hih
H
i ]. Hence, it

contains the powers (β̄im) as well as the correlations (Σim). We take out the parameter β̄im so
that Σim is a true correlation matrix with diagonal entries equal to one. This makes analysis
easier when using results in [117], which we use extensively. These results are based on unit
power Gaussians. Thus, Σim is more convenient.
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Figure 4.2: Example of a distributed system (Dis4) with four BSs, each BS
having Nt/4 antennas and two single antenna users.

station for the ith user. We consider β̄im = Aζim(d0/dim)γ , whereA is a unit-less

constant indicating the geometric attenuation at the reference distance d0, dim

is the distance between the ith user and the mth BS and γ is the pathloss atten-

uation exponent; ζim is a log-normal random variable, 10log10ζim ∼ N (0, σ2
sh),

to model the effect of shadowing between the the ith user and the mth BS.

Thus, H = [h1h2...hK ] denotes theNt ×K fast-fading channel matrix between

Nt antennas at the BS and K end users. Then, under the assumption of per-

fect channel knowledge at the BS and equal transmit power for each user, for

narrow-band transmission, the received signal at the BS can be expressed as

y =

√
P ul

t Hs + nul, (4.1)
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Figure 4.3: Example of a distributed system (Dis2) with two BSs, each BS
having Nt/2 antennas and four single antenna users.

where s is the K × 1 data symbol vector from the K end users and E[ssH] = I;

nul models the effect of white Gaussian noise, where the noise variance is

assumed to be one; P ul
t is the uplink transmit power per data stream. After

MRC processing, the combined signal for the ith user at the BS is given by

yi =

√
P ul

t gH
i hisi +

√
P ul

t

K∑
l=1
l 6=i

gH
i hlsl + gH

i nul, (4.2)

where gi = hi for digital MRC and gi = ĥi, ĥi = exp(j∠hi) for analog MRC,

where ∠hi represents the vector of angles of each element of hi. This results
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in the SINR for user i given by

SINRi =
P ul

t |gH
i hi|

2

P ul
t

{∑K
l=1
l 6=i
|gH
i hl|2

}
+ gH

i gi

. (4.3)

4.2.2 Downlink System Model

The K × Nt fast-fading channel matrix for the downlink can be written as

H = [hT
1hT

2 ...h
T
K ]T, where the 1×Nt channel vector for the ith user is hi = uiR

1
2
i ,

and ui and Ri are defined in Section 4.2.1 with the exception that ui is now

1×M . The received signal at the ith user can be expressed as

yi =

√
P dl

t higH
i si +

√
P dl

t

K∑
l=1
l 6=i

higH
l sl + ndl, (4.4)

where P dl
t is the downlink transmit power per data stream, ndl models the

effect of white Gaussian noise with unit variance, and gi =
hi
||hi||

for digital

MRC and gi = ĥi√
Nt

for analog MRC. Thus, the corresponding SINR for user i

is given by

SINRi =
P dl

t |higH
i |2

P dl
t

{∑K
l=1
l 6=i
|higH

l |2]

}
+ 1

. (4.5)

4.3 Approximations of Achievable Uplink and Down-

link Spectral Efficiency

In this section, we derive expressions for the expected per-user signal power

and interference power for both uplink and downlink analog MRC systems.

This is used to enable analysis of uplink and downlink achievable rates. For
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example, the achievable uplink rate is given by

[Rul] ≈ log2

1 +

P ul
t

Nt

[
|wH

i hi|2
]

P ul
t

Nt

[∑K
l=1
l 6=i
|wH

i hl|2
]

+ 1

 . (4.6)

To enable the analysis, we apply a commonly used approximation as fol-

lows: ifX =
∑
Xi and Y =

∑
Yi are both sums of non-negative random vari-

ables, then E
[
log2

(
1 + X

Y

)]
≈ log2

(
1 + E[X]

E[Y ]

)
[105]. Independence between

X and Y is not required and the result becomes more accurate when the num-

ber of the summation terms inX and Y is large [105]. This behaviour is due to

the law of large numbers [105] where both the numerator and denominator

approach their mean values (after normalising) and their variances become

small. For the uplink system, substituting the analog MRC precoder into (4.3)

gives the approximation of per-user spectral efficiency as

E[Rul] ≈ log2

1 +

P ul
t

Nt
E
[
|ĥ

H
i hi|2

]
P ul

t

Nt
E
[∑K

l=1
l 6=i
|ĥ

H
i hl|2

]
+ 1

 , (4.7)

whereas for the downlink, we have

E[Rdl] ≈ log2

1 +

P dl
t

Nt
E
[
|hiĥ

H
i |2
]

P dl
t

Nt
E
[∑K

l=1
l 6=i
|hiĥ

H
l |2]

]
+ 1

 . (4.8)

The achievable rates in (4.7) and (4.8) give the UL and DL SE values which

are particularly useful as they link the achievable rates to particular types of
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processing. While capacity is the ultimate limit on error-free rate it assumes

the ability to employ processing of any complexity. In contrast, the SE gives

a rate which is achievable for practical processing schemes such as MF, ZF,

MMSE, etc. While simulations can always be used to simulate the SEs, we

prefer to seek analytical approximations as these may able to provide further

insights. For example, we use the analytical results in Sec. 4.3.2 to explain why

equal correlation is the worst case. Also, in other chapters, many insights are

derived from analytical results, such as Sec. 5.3, Sec. 6.3.2 and Theorem 1 in

Chapter 7. We now derive the expectation of the signal and interference

terms in Sec. 4.3.1 and Sec. 4.3.2, respectively.

4.3.1 Expected Signal Power

We derive the expected signal power for analog MRC on the uplink in de-

tail, while for the downlink we only give the final result as a similar analysis

applies. The expected signal power for the uplink can be derived as follows,

E
[∣∣∣ĥH

i hi
∣∣∣2] = E

∣∣∣∣∣
N∑
j=1

ĥ∗ijhij

∣∣∣∣∣
2
 = E

[
N∑
j=1

|hij|2
]

+ E

 N∑
j=1

N∑
k=1

j 6=k

|hij||hik|

 ,

= E

[
Nt∑
j=1

|hij|2
]

+ E

 Nt∑
j=1

Nt∑
k=1

j 6=k

|hij||hik|

 ,
=

Nt∑
j=1

βij +

Nt∑
j=1

Nt∑
k=1

j 6=k

√
βijβikE[|vij||vik|],

(4.9)
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where βij is the link gain from the ith user to the jth antenna and hij =
√
βijvij .

In (6.7), vij and vik are two correlated complex Gaussian variables, and can

be rewritten as vij = r1exp(jθ1) and vik = r2exp(jθ2). Thus |vij| = r1 and

|vik| = r2. From [117, p. 97], we know that,

E[r1r2] =
π

4
√

(S11S22)
(1− λ2

12)2F1

(
3

2
,
3

2
, 1;λ2

12

)
, (4.10)

where 2F1 is the Gaussian (or ordinary) hypergeometric function; S11 and S22

are entries of the inverse covariance matrix, S, of vij and vik, where

S =

S11 S12

S21 S22

 =

 1
1−|ρ|2

−ρ
1−|ρ|2

−ρ∗
1−|ρ|2

1
1−|ρ|2

 . (4.11)

Also, λ2
12 =

|S12|2

S11S22

= |ρ|2 and ρ is the correlation between vij and vik. Apply-

ing this result gives

E[|vij||vik|] =
π

4

(
1− |ρijk|2

)2
2F1

(
3

2
,
3

2
, 1; |ρijk|2

)
, (4.12)

where ρijk is the correlation obtained from the jkth entry of Ri. When j and k

correspond to different BS groups, there is no correlation, ρijk = 0, and

E[|vij||vik|] = E[|vij|]2 = Γ

(
3

2

)2

. (4.13)

Hence, the final result is,
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E{|ĥ
H
i hi|2} =

Nt∑
j=1

βij +

Nt∑
j=1

Nt∑
k=1

j 6=k

√
βijβikδjk, (4.14)

where

δjk =

Γ(3
2
)2, j, k /∈ Bk

π
4

(1− |ρijk|2)
2

2F1

(
3
2
, 3

2
, 1; |ρijk|2

)
, j, k ∈ Bk

(4.15)

andBk is the set of antennas at the same site as antenna k. The expected signal

power can be derived similarly for the downlink, resulting in

E{|hiĥ
H
i |2} =

Nt∑
j=1

βij +

Nt∑
j=1

Nt∑
k=1

j 6=k

√
βijβikδjk, (4.16)

where

δjk =

Γ(3
2
)2, j, k /∈ Bk

π
4

(1− |ρijk|2)
2

2F1

(
3
2
, 3

2
, 1; |ρijk|2

)
, j, k ∈ Bk

(4.17)

4.3.2 Expected Interference Power

The interference power for the uplink from the lth user to the ith user can be

derived as follows,
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E
[
|ĥ

H
i hl|2

]
= E{|(ĥ∗i1ĥ∗i2...ĥ∗iN)(hl1hl2...hlN)T |2}

= E{ĥ
H
i hlhH

l ĥi}

= E
[
ĥ

H
i E
[
R

1
2
l uluH

l R
1
2
l

]
ĥi
]

= E
[
ĥ

H
i Rlĥi

]
= E

{(
h∗i1
|hi1|

h∗i2
|hi2|

...
h∗iN
|hiN |

)
Rl

(
hi1
|hi1|

hi2
|hi2|

...
hiN
|hiN |

)T}

= E

[
Nt∑
j=1

Nt∑
k=1

h∗ij
|hij|

(Rl)kj

(
hik
|hik|

)]

=

Nt∑
j=1

Nt∑
k=1

(Rl)kjE
[
v∗ij
|vij|

vik
|vik|

]
. (4.18)

Reusing the notation, vij = r1exp(jθ1) and vik = r2exp(jθ2), we have E
[
v∗ij
|vij |

vik
|vik|

]
=

E[ej(θ1−θ2)]. From [117, p. 100],

E
{
ej(θ1−θ2)

}
=
π

4
ρ(1− ρ2)2F1

(
3

2
,
3

2
, 2; |ρ|2

)
. (4.19)

Thus,

E{|ĥ
H
i hl|2} =

Nt∑
j=1

(Rl)jj +

Nt∑
j=1

Nt∑
k=1

j 6=k

(Rl)kj
π

4
ρijk(1− |ρijk|2)

× 2F1

(
3

2
,
3

2
, 2; |ρijk|2

)
,

=

Nt∑
j=1

βlj +

Nt∑
j=1

Nt∑
k=1

j 6=k

(Rl)kjκijk, (4.20)
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where

κijk =

0, j, k /∈ Bk

π
4
ρijk(1− |ρijk|2)2F1(3

2
, 3

2
, 2; |ρijk|2), j, k ∈ Bk.

(4.21)

Similarly, the downlink expected interference power is,

E{|hiĥ
H
l |2} =

Nt∑
j=1

(Ri)jj +

Nt∑
j=1

Nt∑
k=1

j 6=k

(Ri)kj
π

4
ρljk(1− |ρljk|2)

×2F1

(
3

2
,
3

2
, 2; |ρljk|2

)
,

=

Nt∑
j=1

βij +

Nt∑
j=1

Nt∑
k=1

j 6=k

(Ri)kjκlkj, (4.22)

where

κlkj =

0, j, k /∈ Bk,

π
4
ρljk(1− |ρljk|2)2F1

(
3
2
, 3

2
, 2; |ρljk|2

)
, j, k ∈ Bk.

(4.23)

Thus, substituting (4.14), (4.15), (4.20) and (4.21) into (4.3), we obtain the

per-user spectral efficiency for the uplink. Similarly substituting (4.14), (4.15),

(4.22) and (4.23) into (4.5), we obtain the per-user spectral efficiency for the

downlink. Not only do (4.20) and (4.22) provide the value of uplink and

downlink interference, they also provide an important insight into MU-MIMO

with analog processing. When the users all have the same correlation matrix,

then (Rl)kj × ρijk = |ρijk|2 > 0 and (Ri)kj × ρljk = |ρljk|2 > 0, which max-

imizes the interference in (4.20) and (4.22) as all summation terms are posi-
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tive. Hence, equal correlation matrices is the worst case, as shown in [106]

for digital MRC. This is the first demonstration of this property for analog

processing.

4.4 Numerical Results

In this section, numerical results with the following parameters are presented.

Four users each with a single antenna are uniformly located in a circular cell

with the radius of 100 meters, as depicted in Fig. 2.1 and Fig. 2.2. The unit-

less geometric attenuation is A = 30 dB and the reference distance is d0 = 1

meter. The total number of antennasNt = 32; the pathloss attenuation γ = 3.5

and the standard deviation of shadowing ζ = 6 dB. The transmit power Pt

is chosen to guarantee that 95% of the time the SNR, defined by the ratio of

the received power to the noise power in a single-user single-antenna system,

exceeds 0 dB. As our approximations of SINR are accurate for arbitrary corre-

lation models, two popular correlation models are considered. For the expo-

nential correlation model in [118], the correlation matrices required for user i

are defined by (Σim)rs = [ρexp(jφim)]|r−s|. Here, ρ is the common magnitude

of the correlation between adjacent antennas and φim ∼ U [0, 2π] is a user spe-

cific phase at each antenna group. We also consider the one-ring correlation

model [57], with an angle spread of 30◦ and a different central azimuth angle

with a uniform distribution within [0, 2π] for each user at each antenna group.

We refer to this model as OR.uni. As LoS will play an important role in up-

coming systems, we are also interested in the impact of Rice K factors on the

BS layouts. The model for the uplink Ricean channel for the ith user can be

written as

hi =

√
Ki

Ki + 1
ūi +

√
1

Ki + 1
R

1
2
i ui,
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where Ki is the Rice factor, ūi is the specular (LoS) component and ui (Nt× 1)

is the diffuse (scattered) component. ūi (Nt × 1) is governed by the transmit

and receive array response vectors [42]. As we only consider a uniform linear

array (ULA) with a single antenna at the receiver, the uplink LoS vector can be

written as, ūi = utx(θtx
i ), utx(θtx

i ) = [1, ej2πdcos(θi), ej2πd2cos(θi), ..., ej2πd(Nt−1)cos(θi)]T,

where d is the normalized antenna spacing, assumed to be half the carrier

wavelength. Finally, θi is the angle of arrival, θi ∼ U [0, 2π].

Fig. 4.4 illustrates the CDF of the uplink expected per-user spectral effi-

ciency based on the Dis4 system architecture with three different correlation

models. The expectation is computed over the fast-fading and the CDF de-

picts the impact of the variations in large-scale fading link gains. Exp.0.95fixed

denotes the Clarke correlation model [55] with a fixed correlation coefficient

ρ = 0.95 and no random phase; OR.uni denotes the one-ring correlation model;

Exp0.7random denotes the exponential correlation with uniformly distributed

phase on [0, 2π] and ρ = 0.7. In this figure we compare the CDF of the derived

analog per-user spectral efficiency approximation with its simulated coun-

terparts. As we can see, the derived approximations are tight for all three

correlation models considered.

In Fig. 4.5 we present the performance comparison of analog and digital

MRC for three system layouts: Cen, Dis2, Dis4. Using the same propagation

parameters as in Fig. 4.4 and the OR.uni correlation model, the CDFs of per-

user spectral efficiency are shown. Generally, digital MRC outperforms ana-

log MRC in all three systems. This is mainly due to the fact that analog MRC

is incapable of changing the amplitude of the incoming signals. For digital

MRC, the system benefits from greater antenna distribution. However, the

trend is opposite for analog MRC, where Dis2 and Cen have almost the same

performance and both outperform Dis4. Digital MRC benefits from a more

distributed system where there is a higher probability of a strong link gain to
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Figure 4.4: Expected per-user spectral efficiency CDFs of analog MRC for an
uplink Dis4 system with three correlation models.

one of the antenna clusters. Analog MRC, however, is not able to benefit the

users by optimising the receive SNR over different link gains. This is because

analog MRC is equivalent to equal gain combining. Thus the centralized sys-

tem results in the strongest signal power compared with distributed systems

when adopting analog MRC processing.

We show numerical results for the Ricean channels for the Cen and Dis4

systems in Fig. 4.6 and Fig. 4.7, respectively. The trends in Fig. 4.6 and Fig. 4.7

illustrate that increasing the Rice K factors can actually increase per-user spec-

tral efficiency in both Cen and Dis4 systems as LoS reduces channel fading

fluctuations and also the MRC inter-user-interference as shown in [105]. The

gap between analog and digital MRC diminishes to zero in a Cen system when
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Figure 4.5: Performance comparison of expected per-user spectral efficiency
CDFs between analog and digital MRC for uplink.

the Rice K is greater than 5 dB, where the strong LoS results in low diversity

of signals for which analog and digital MRC have almost the same perfor-

mance. This is not the case for the Dis4 system due to the link gain diversity

from which digital MRC benefits.

Finally, in Fig. 4.8 we consider the downlink system. The figure not only

shows the accuracy of the approximations, but also that digital MRC in Dis4

significantly outperforms the Cen system. This is mainly due to the high di-

versity of link gains in a distributed system as the per-user spectral efficiency

is affected by the desired user’s link gains at different sites. Examining the

derivations of (4.14) and (4.22), both the numerator and denominator of the

derived SINR for the downlink are affected by the same desired user’s link
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Figure 4.6: Expected per-user spectral efficiency CDFs of analog and digital
MRC for an uplink Cen system.

gain, β̄im, which is the same for both the numerator and denominator in the

centralized system. Dividing by β̄im for both the numerator and denominator

in (4.5), we see that variations in the CDF of the expected per-user SINR are

limited, reflected in Fig. 4.8 by the steep curves of the Cen system. On the

other hand, in the distributed system β̄im takes on different values for the nu-

merator and denominator of the SINR, leading to more diversity in the Dis4

system for digital MRC. For analog processing, the CDFs for the centralized

and distributed cases have a cross-over, with distributed being better at low

SINR and centralized being better at high SINR. At the low end this is due

to the advantage of distributed processing in having power diversity at the

different locations which helps to limit the cases where the signal strength is

low at every location. At the high end, when the centralized location has very

good signal strength, centralized processing has a greater SINR as the dis-
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Figure 4.7: Expected per-user spectral efficiency CDFs of analog and digital
MRC for an uplink Dis4 system.

tributed processing will average over the other locations which are likely to

have lower strength. Note that this is true for analog processing as it cannot

make use of the variations in signal strength. Another cross-over in Fig. 4.8

is between distributed analog and centralized digital processing. Usually,

digital processing is better, but at the low end we have the same property

discussed above. The distributed analog system can outperform centralized

digital processing due to the protection of multiple locations which avoids the

occasional very low signal strength which can occur in the centralized case.
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Figure 4.8: Expected per-user spectral efficiency CDFs of analog and digital
MRC for downlink Dis4 and Cen systems. Derived results are for the analog
case.

4.5 Conclusion

We have derived approximations to per-user SINR for analog MRC/MF for

uplink/downlink systems, leading to an insightful comparison of analog and

digital processing for three different BS layouts. While digital MRC bene-

fits from increased BS decentralization, the same does not hold for analog

MRC. We present an analysis of the impact of different Rice K factors on both

centralized and distributed systems with analog and digital MRC technique.

When increasing the K factor in a centralized system, the performance of ana-

log MRC approaches that of digital MRC, while the performance gap between

the two technique remains in a distributed system. Analog MRC is a compro-
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mise technique for massive MIMO when digital MRC is either expensive or

complicated for system design.



5
Analysis of Analog and Digital MRC in Massive

MU-MIMO Systems over Correlated Channels

While digital multi-user MRC (MU-MRC) is well understood, relatively few

analytical results exist for analog MU-MRC. For example, it was recently

shown that MU system performance is highly dependent on the correlation

model used [119], but the scope of this work is limited to digital processing

(including MRC). Thus, in this chapter, we look into the impact of various

channel correlation models on MU-MIMO system performance, SINR, ana-

lytical asymptotic expressions of which are derived for analog MRC and dig-

ital MRC. We begin by deriving the expected signal and interference power,

demonstrating that the signal-to-interference (SIR) ratio decreases with corre-

lation when users have the same correlation matrices, while it increases when

their correlation matrices are different. These finite system results are then ex-

tended by deriving asymptotic SINR expressions for both analog and digital

MRC for benchmark scenarios of uncorrelated and fully correlated Rayleigh

channels. Here, we once again demonstrate that the performance is critically

dependent on the correlation scenario. We show that for uncorrelated fading

the SINR converges to a constant. For fully correlated channels, and users

with equal correlation matrices, SINR converges to zero, whereas for unequal

63
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correlation matrices SINR converges to zero or a constant, depending on the

correlation model. New insights are provided, indicating that in certain cir-

cumstances, high correlation can improve system performance. The reason is

explained via 3D surface plots based on exponential and one-ring correlation

models.

5.1 Introduction

MRC in particular offers low computational complexity, while eliminating (in

its digital form) interference by taking advantage of favourable propagation

in large systems. An additional benefit of MRC is its suitability for distributed

systems - the processing can be performed independently at each antenna

cluster, without additional information exchange [7]. Hence, a study of digital

and analog MRC is given in this chapter.

It is well known that due to practical constraints on array size, correlation

will significantly impact the favourable propagation characteristics of mas-

sive MIMO systems [120]. The asymptotic behaviour of large systems with

correlation (equal for all users) has been well studied (see [7, 27, 34]). Studies

of correlation impact on linear precoding [121, 122] demonstrate that corre-

lation reduces system performance. This is in contrast to early work on SU

MIMO-MRC [123,124] which has shown that correlation can increase the sys-

tem performance.

The above studies consider the classical Kronecker model, and assume

equal correlation among users. Recently, the impact of correlation on sys-

tem performance has been shown to be highly dependent on the correla-

tion model. The authors of [125] contrast the Kronecker and Wichselberger

models, where the former predicts a more severe performance degradation.

In [119] it has been shown that the classical exponential correlation model
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gives a pessimistic performance prediction relative to that given by the one-

ring model. Furthermore, [119] demonstrates that system heterogeneity, in-

cluding correlation variability among users, enhances the MU system perfor-

mance. Backed by measurement results demonstrating the variability in user-

specific angular propagation parameters, [119] highlights the importance of

considering such heterogeneity in system modeling.

In this chapter we provide new insights on the impact of correlation (in-

cluding its heterogeneity) on the SINR and SE behaviour of digital MRC and

the first such results for analog MRC. Specifically,

• We derive analytical expressions of SINRs for uplink analog MRC and

digital MRC under different correlation scenarios when the number of

antennas and users goes to infinity. The asymptotic behaviours of these

cases are analysed. The findings suggest that the system performance

is improved where there is perfect correlation within one user’s chan-

nel but a random phase distribution among users. Thus, in some cases,

correlation is beneficial and can help system performance. From the de-

rived expression of SINR for i.i.d Rayleigh fading, around 21.5% perfor-

mance loss occurs with analog MRC compared with digital MRC. The

system performance analysis under perfect correlation suggests that dig-

ital and analog MRC would have the same asymptotic behaviour.

• We derive a SIR expression based on an exponential correlation model,

which takes both correlation coefficient and phase into consideration.

The 3D surface plots based on this expression give great insight into

why high correlations with random phases improve system performance.

We also show that similar system behaviour occurs under a one-ring

correlation model.

• The interference behaviour under perfect correlation with two special
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correlation models, exponential and one-ring are studied. We find that

the asymptotic behaviour of interference mainly depends on the angu-

lar distribution of users.

5.2 System Model

We consider an uplink massive MIMO system with N co-located antennas

serving K single antenna users. The N × 1 channel vector for each user can

be written as hi = R
1
2
i ui, where ui ∼ CN (0, I), Ri = βiΣi and Σi is the N ×N

spatial correlation matrix. βi is the large-scale link gain for the ith user. The

fast-fading channel matrix can be written as H = [h1h2...hK ]. We assume

perfect channel knowledge at the BS and equal transmit power, Pt, for each

user. Thus, the received signal at the BS can be expressed as

y =
√
PtHs + n, (5.1)

where n ∼ CN (0, σ2
n) is white Gaussian noise, s is the data symbol vector

from the K users and E[ssH ] = I. Without loss of generality, σ2
n is assumed to

be 1. The signal after combining at the BS to detect the ith user is given by

ỹi =
√
PtgH

i hisi +
√
Pt

K∑
l=1,l 6=i

gH
i hlsl + gH

i n, (5.2)

where gi = hi for digital MRC and gi = ĥi for analog MRC, where ĥi =

exp(j∠hi) and ∠hi indicates the vector of angles of hi. The corresponding

SINR is given by

SINRi =
Pt|gH

i hi|
2

Pt
∑K

l=1,l 6=i |gH
i hl|2 + gH

i gi
. (5.3)
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For digital MRC, the mean signal and interference in (5.3) are given by

E
[
Pt|gH

i hi|
2
]

= Ptβ
2
i [tr(Σ

2
i ) +N2], (5.4)

E
[
Pt

∑
l 6=i

|gH
i hl|2

]
= Ptβi

∑
l 6=i

βltr(ΣiΣl). (5.5)

The relationship between correlation and performance is seen in (5.4) and

(5.5) via the terms tr(Σ2
i ) and tr(ΣiΣl). To explore this relationship, consider

the exponential correlation model in [118] where (Σi)rs = ρ|s−r|exp(j(s− r)φi)

so that users have the same amplitude correlation parameter, ρ, but user spe-

cific phases, φi where φi ∼ U [0, 2π]. Using this model, some straightforward

algebra allows tr(ΣiΣl) to be written as

{2ρ2N+2
(
cos((N + 1)∆)− 2ρ2cos(N∆) + ρ4cos((N − 1)∆)

)
+N(1− ρ8)

(5.6)

+ 4ρ4 + cos(∆)
(
(2N − 2)ρ6 − (2N + 2)ρ2

)
}/(1− 2ρ2cos(∆) + ρ4)2,

where ∆ = φi−φl. Obviously, tr(ΣiΣl) is a function of both ρ and ∆, but what

is interesting is that the relationship between interference and ρ is different for

different values of ∆. To see this, consider two special cases of (5.6)

tr(ΣiΣl) =
2ρ2N+2 +N(1− ρ2)(1 + ρ2)− 2ρ2

(1− ρ2)2
, ∆ = 0, (5.7)

tr(ΣiΣl) =
N + 4ρ4 −Nρ8 − 4(−1)N/2ρ2N+4

(1 + ρ4)2
, ∆ = π/2, (5.8)

where (5.8) is for the case of even N . When the phase parameters are aligned

(∆ = 0), the two correlation matrices are identical and (5.7) shows that the

interference grows with ρ. When the two phases are orthogonal (∆ = π/2),

(5.8) shows that the interference decreases with ρ. Hence, increasing the size

of the correlation can have opposite effects when users experience the same
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correlation matrix (φi = φl) and when the correlation matrices differ (φi−φl =

π/2). Equivalent results to (5.4) and (5.5) for analog MRC are available in [126]

but are given in terms of Gaussian hypergeometric functions which make

further analysis difficult. Hence, we look at the extreme cases of zero and

perfect correlation in Sec. 5.3 below.

5.3 Asymptotic SINR Analysis

We derive the asymptotic SINR for analog and digital MRC under two bench-

mark scenarios of i.i.d. and perfectly correlated Rayleigh fading. We assume

N and K grow at the same rate, α = N
K

is fixed. The derivations require the

strong law of large numbers, a suitable version of which follows.

Result 1. If X1, X2, ... are independent with finite means µ1, µ2, ... and variances

σ2
1, σ

2
2, ..., then 1

L

∑L
n=1

Xn
as−→ µ, as L −→ ∞, where µ = limL→∞

(
1
L

∑L
n=1

µn

)
if∑L

n=1
1
L2 Var(Xn) < ∞ [127, Theorem 5.4.3], where as−→ denotes almost sure conver-

gence [128, p.405]. Almost sure convergence is defined as a property of a sequence of

random variables, X1, X2, X3, · · ·, Xn, where Xn converges almost surely to a ran-

dom variable, X , shown by Xn
as−→ X , if P ({s ∈ S : limn→∞Xn(s) = X(s)}) = 1.

In this notation, s denotes an element in the sample space and S is the entire sample

space.
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5.3.1 Asymptotic analysis for i.i.d. Rayleigh fading

First, for digital MRC, from (5.3), the interference power is,

Pt

K∑
l=1
l 6=i

|hH
i hl|2 = Pt

K∑
l=1
l 6=i

hH
l hihH

i hl (5.9)

= Pt

K∑
l=1
l 6=i

hH
l Φ


hH
i hi

. . .

0

Φhl

≡ Pt

K∑
l=1
l 6=i

βiβl|ul1|2uH
i ui,

where Φ is unity matrix and ≡ denotes statistical equivalence. We say that

a random variable, X , is statistically equivalent to another random variable,

Y , if the distributions of X and Y are the same. Any i.i.d Gaussian vector

multiplied by a unity matrix is statistically equivalent to the original random

vector. In (5.9), ul1 is the first element of ul and the second equality follows

from the rank-1 eigen-decomposition of hihH
i . The desired signal power is

Pt

(
hH
i hi
)2

= Ptβ
2
i (uH

i ui)2 and the noise power is hH
i hi = βiuH

i ui. Substituting

these powers into (5.3) and simplifying we obtain

SINRD
i =

PtβiuH
i ui/N

Pt(K−1)
N

∑K
l=1
l 6=i

βl|ul1|2
K−1

+ 1
N

, (5.10)

where D denotes digital MRC. Using Result 1, the numerator and denomi-

nator of (5.10) both converge almost surely, giving

lim
N→∞

SINRD
i =

βi
β̄
α, (5.11)
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where β̄ = limN→∞
∑K

i=1 βi/K is the asymptotic mean of the link gains. For

analog MRC, similar steps lead to the result

SINRA
i =

Ptβi|ûH
i ui/N |

2

Pt(K − 1)

K − 1

∑K
l=1
l 6=i

βl

∣∣∣∣∣ ûH
i ul
N

∣∣∣∣∣
2

+
1

N

, (5.12)

where ĥi =
√
βiûi. For the numerator, from Result 1 we have 1

ûH
i ui
N

=
N∑
r=1

|uir|
N

as−→ E(|uir|) =

∫ ∞
0

|uir|e−|uir|
2

d|uir|2 = Γ

(
3

2

)
=

√
π

2
. (5.13)

For the interference term, we note that

K∑
l=1,l 6=i

βl|ûH
i ul|2 ≡

K∑
l=1,l 6=i

βl|ul1|2N, (5.14)

which follows from the rank-1 eigen-decomposition of ûiû
H
i . Thus, from Re-

sult 1, the interference term in (??) is

Pt
K − 1

N

K∑
l=1,l 6=i

βl
|ul1|2

(K − 1)

as−→ Pt
β̄

α
. (5.15)

Substituting (5.13) and (5.15) into (??), we obtain

lim
N,K→∞

SINRA
i =

πβi
4β̄

α. (5.16)

Compared with digital MRC, analog MRC suffers a (1 − π
4
) × 100 ≈ 21.5%

performance loss in the asymptotic SINR.

1Γ (n) =
∫∞
0
xn−1e−xdx.



71

5.3.2 Asymptotic analysis, perfect correlation, equal matrices

Consider the perfectly correlated channel where Ri = βiΣi and all the ele-

ments of Σi equal one. Here, hi = hi1[11...1]T and ĥi = exp(j∠hi1)[11...1]T .

Substituting the perfectly correlated channels and associated combiners into

(5.3) gives:

SINRD
i = SINRA

i =
βi|ui1|2∑K

l=1,l 6=i βl|ul1|2 + 1/PtN
. (5.17)

Dividing the numerator and denominator by K and using Result 1 gives

SINRA
i = SINRD

i
as−→ 0. (5.18)

5.3.3 Asymptotic analysis, perfect correlation, unequal matri-

ces

Here we investigate two types of correlation structures for uniform linear ar-

rays. The exponential2 correlation model in [118] has a user specific phase,

φ ∼ U [0, 2π], for the correlation parameter and for perfect correlation (am-

plitude 1), the correlation matrix is defined by (Σi)rs = exp(j(s − r)φi). The

second model is the classic one-ring model [57]. For this model, taking the

limit as the angle spread vanishes gives a perfectly correlated correlation ma-

trix also defined by (Σi)rs = exp(j(s − r)φi) but here, φi = 2πdsin(θi) where

d is the antenna spacing and θi is the angle of departure for user i. For both

models, defining ai = [1 exp(−jφi) exp(−j2φi) ... exp(−j(N − 1)φi)]
T allows

the channel vectors to be written as hi = hi1ai. Following the steps in Sec.

2Here, exponential refers to a correlation structure that has an exponential decay in am-
plitude. Here, with perfect correlation, the amplitude is one so that the decay is not obvious.
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5.3.2 the corresponding SINRs are

SINRA
i = SINRD

i =
|hi1|2∑K

l=1
l 6=i
|hl1|2

∣∣∣∣aHi al
N

∣∣∣∣2 +
1

PtN

. (5.19)

From (5.19), we see that the SINR depends on the limiting behaviour of the

interference component denoted by I . We explore this limiting behaviour by

deriving E(I):

E(I) =
K − 1

N
E(|hl1|2)

1

N
E[|aHi al|2]

−→ µ∞I =
1

α
lim
N→∞

1

N
E[|aHi al|2]

=
1

α
lim
N→∞

1

N

N−1∑
h=0

N−1∑
k=0

E
[
ej(h−k)φi

]
E
[
e−j(h−k)φl

]
=

1

α
lim
N→∞

1

N

N−1∑
r=−(N−1)

(N − r)|E
[
ejrφi

]
|2

=
1

α
lim
N→∞

{
1 + 2

N−1∑
r=1

(1− r

N
)|E[ejrφi ]|2

}
. (5.20)

Next, we derive |E[ejrφi ]| for the two correlation models.

Exponential Correlation

The model in [118] has φi ∼ U [0, 2π] for which E[ejrφi ] = 0 and E(I) −→ 1
α

. For

the more general case where φi ∼ U [a, b] we have

|E[ejrφi ]| =
∣∣∣∣(b− a)−1

∫ b

a

ejrφidφi

∣∣∣∣ =
2|sin[0.5r(b− a)]|

r(b− a)

≤ 2

r(b− a)
. (5.21)
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Substituting (5.21) into (5.20) we have

µ∞I ≤
1

α

{
1 +

8

(b− a)2
lim
N→∞

{
N−1∑
r=1

1

r2
− 1

N

N−1∑
r=1

1

r

}}

≤ 1

α

{
1 +

4π2

3(b− a)2

}
,

since
∑N−1

r=1
r−2 → π2/6 and

∑N−1
r=1

(Nr)−1 → 0. Hence, for all uniform distri-

butions, the mean interference is finite.

One-ring Correlation

Here, we have φi = 2πdsinθi, where θi ∼ U [0, 2π]. Hence,

E[ejrφi ] =
1

2π

∫ 2π

0

ejr2πdsin(θi)dθi = J0(2πdr). (5.22)

Substituting (5.22) into (5.20) we have µ∞I = 1
α

(1 + 2S), where

S = lim
N→∞

{
N−1∑
r=1

(
1− r

N

)
[J0(2πdr)]2

}
. (5.23)

From [129, Eq. 10.17.3], for large arguments3 J0(z) =
√

2/πzcos(z − π/4) +

O(z−3/2). Hence, S exists (is finite) if and only if S1 exists where

S1 = lim
N→∞

1

π2d

N−1∑
r=1

(
1

r
− 1

N

)
cos2

(
2πrd− π

4

)
≥ lim

N→∞

1

π2d

N−1∑
r=1

1

r
cos2

(
2πrd− π

4

)
− 1

π2d
. (5.24)

3Note that the sum in (5.23) will always be finite for a finite number of terms. The only
thing that can make it explode is the behaviour of the later terms when r is large. This means
we are interested in large r which means a large argument as the argument is 2πdr.
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Using the double angle formula, the first summation in (5.24) can be written

as

N−1∑
r=1

1

r
cos2

(
2πrd− π

4

)
=

1

2

N−1∑
r=1

1

r
+

1

2

N−1∑
r=1

1

r
sin(4πrd). (5.25)

Note that
∑N−1

r=1
1
r
− log(N − 1)→ C, where C is the Euler constant [130, p. 3].

Hence, the asymptotic behaviour of
∑N−1

r=1
1
r

is logarithmic in N . From [131,

p. 43], the second sum in (5.25) is finite,

1

2

N−1∑
r=1

1

r
sin(4πrd) =

π

2
− 2πd (mod 2π). (5.26)

Since the first term in 5.25 is logarithmic in N and the second term is finite,

we see that the growth of S1 is also logarithmic in N . 1
2

∑N−1
r=1

1
r

diverges

logarithmically. Thus, S1 diverges, causing both S and µ∞I to diverge. The

simulation results in Sec. 5.4 also support this claim.

5.3.4 Analog MRC correlation analysis

Next, we consider analog MRC and repeat some of the results from Chapter

4 for the co-located scenario considered here. The expected desired signal

power after analog MRC processing [126] is,

E{|ĥ
H

i hi|2} = Ntβi + βi

Nt∑
j=1

Nt∑
k=1

j 6=k

δijk, (5.27)

where
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δijk =
π

4

(
1− |ρijk|2

)2
2F1

(
3

2
,
3

2
, 1; |ρijk|2

)
, (5.28)

and ρijk is the (jk)th element of Σi. The expected total interference power after

analog MRC processing is,

E{|ĥ
H

i hl|2} = Ntβl +

Nt∑
j=1

Nt∑
k=1

j 6=k

(Rl)kjκijk (5.29)

where

κijk =
π

4
ρijk(1− |ρijk|2)2F1

(
3

2
,
3

2
, 2; |ρijk|2

)
. (5.30)

From [132, Eq.15.3.3, p. 559], we have

2F1(α, β, γ;Z) = (1− Z)γ−α−β2F1(γ − α, γ − β, γ;Z). (5.31)

Hence, δijk and κijk can be rewritten as δijk = (π/4)2F1

(
−1

2
,−1

2
, 1; |ρijk|2

)
and

κijk =
(
π
4
ρijk
)

2F1(1
2
, 1

2
, 2; |ρijk|2). Substituting these expressions in (5.27) and

(5.29) gives

E{|ĥ
H

i hi|2} = Ntβi +
π

4
βi

Nt∑
j=1

Nt∑
k=1

j 6=k

2F1

(
−1

2
,−1

2
, 1; |ρijk|2

)
, (5.32)
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and

E{|ĥ
H

i hl|2} = Ntβl +
π

4
βl

Nt∑
j=1

Nt∑
k=1

j 6=k

(ρlkjρijk)2F1(
1

2
,
1

2
, 2; |ρijk|2). (5.33)

Now, using known results on hypergeometric functions, 2F1

(
−1

2
,−1

2
, 1;Z

)
and 2F1(1

2
, 1

2
, 2;Z) are monotonic increasing in Z [132, Eq.15.2.1, p. 557],

2F1

(
−1

2
,−1

2
, 1; 0

)
= 2F1

(
1
2
, 1

2
, 2; 0

)
= 1 [132, Eq.15.1.1, p. 556] and

2F1

(
−1

2
,−1

2
, 1; 1

)
= 2F1

(
1
2
, 1

2
, 2; 1

)
= 4/π [132, Eq.15.1.20, p. 556]. Hence, δijk

increases smoothly from π/4 to 1 as |ρijk| increases form 0 to 1. Similarly, κijk

increases smoothly from 0 to 1 as |ρijk| increases form 0 to 1. This makes (5.32)

and (5.33) easier to interpret. We see that the mean signal power in (5.32) is

an increasing function of |ρijk|. The interference behaviour depends on the

similarity of the correlation matrices. If Σi = Σl, then ρlkjρijk = |ρijk|2 > 0

and interference also grows with |ρijk|. However, if Σi 6= Σl, then ρlkjρijk is

a complex constant and the double summation in (5.33) will not necessarily

grow with |ρijk| as terms may cancel. Again, we are seeing the important

property where correlation is detrimental with equal correlation across users

but correlation can be beneficial with sufficient variation across users.

5.4 Numerical Results

The limiting results in Sec. 5.3 such as (5.11) and (5.16) depend on the link

gains, βi. Hence, in order to demonstrate convergence issues, we do not use

the classic path-loss, log-normal shadowing models because the large varia-

tion will mask the limiting effects. We adopt a link gain model similar to that

in [27] to counter this problem. We also consider two scenarios for βi: equal

and unequal for each user. The equal link gain case serves as a reference and

here we assume βi = 1 for all users. For the unequal case, we set βi = 1 for
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the desired user and generate βl for the interfering users from the exponential

decay function Ae−λzl with a mean value of 1
K−1

∑
l 6=i βl = 1. We guarantee

a minimum link gain by truncating the exponential decay so that the weak-

est user is 10% of the strongest. The resulting model is βl = A exp (− (l−1)λ
(K−1)

)

where λ = −log(0.1) which gives K − 1 evenly spread values of βl following

an exponential decay over [ 1
10
A,A].

In Fig. 5.1, we present simulation results of the mean SINR vsN for analog

and digital MRC in i.i.d. Rayleigh fading with Pt = 1, α = 2 and as discussed

above, β̄ = βi = 1. With these parameters (5.11) and (5.16) give the limits 2

and π/2 which are verified in the figure. The unequal power case converges

slightly more slowly as the power variation gives less averaging and stability

compared to the equal power case. Also in Fig. 5.1 we give equivalent results
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E
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i.i.d. ( =0), equal , digital
i.i.d. ( =0), unequal , analog
i.i.d. ( =0), unequal , digital
perfect correlation ( =1), equal , digital
perfect  correlation ( =1), equal , analog
perfect  correlation ( =1), unequal , analog
perfect  correlation ( =1), unequal , digital

Figure 5.1: E[SINR] vs N for analog and digital MRC; i.i.d. and perfect corre-
lation, equal and unequal link gains.

with the same parameters for the case of perfect correlation with equal corre-

lation matrices considered in Sec. 5.3.2. As shown in (5.18), the limiting SINR
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is zero for both analog and digital MRC. In Fig. 5.2 similar results are shown

for both SINR and interference with perfect correlation and unequal corre-

lation matrices based on the exponential correlation structure considered in

Sec. 5.3.3. The parameters, Pt = 50 dB, α = 2, and φi ∼ U [0, 2π] are used

and equal link gains are assumed. The analysis predicts a finite limiting in-

terference, E(I) −→ 1
α

= 1
2

and a corresponding finite and non-zero SINR. Both

results are verified in Fig. 5.2.
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Figure 5.2: E[SINR] and E[I] vs N ; perfect correlation, exponential model,
unequal correlation matrices.

In Fig. 5.34 we show the divergence of the interference with perfect cor-

relation and unequal correlation matrices based on the one-ring model in

4The top figure is plotted against N and the logarithmic pattern is hard to see. Hence,
the results are shown again in the lower figure on a log scale where a linear plot shows
logarithmic behaviour. The reason for plotting the derived results and not simulations is that
the scale goes up to a very large numbers of antennas for which simulation is problematic.
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Sec. 5.3.3. Equal link gains and user specific angles, θi ∼ U [0, 2π], are as-

sumed. In the upper figure we see that the derived interference (obtained

by substituting (5.22) into (5.20)) agrees well with the simulated interference.

The slow growth of interference with N is clear here and this is made precise

in the lower figure which demonstrates the logarithmic relationship predicted

in the analysis (see (5.25)).
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E
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Figure 5.3: E[I] vsN and log(N) for perfectly correlated Rayleigh fading with
unequal correlation matrices (one-ring model).

Next, we consider general levels of correlation between the benchmark re-

sults of i.i.d. and perfectly correlated channels. From (5.4) and (5.5), we see

that Tii = tr(Σ2
i ) and Til = tr(ΣiΣl) control the effect of correlation on signal

power and interference. For the exponential correlation model, Tii and Til are

given by (5.6) which is a function of ρ, N and ∆ = φi − φl. Hence, in Fig. 5.4

and Fig. 5.5 we plot Til and Tii/Til against ρ and ∆ for N = 32. The first mea-
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sures interference while the second gives the size of the signal term relative

to interference. The interaction between the amplitude of the correlation pa-

rameter (ρ) and the difference in the phases of the correlation parameters (∆)

is clear. Large amplitude correlation helps the signal relative to interference,

thus enhancing SINR, unless the phases are very similar (∆ ≈ 0 or ∆ ≈ 2π)

when the SINR is adversely affected by large interference. Hence, as long

as there is diversity in the phase parameters, increasing correlation is bene-

ficial to performance. The same trends are observed for the one-ring model

where reducing the angle spread (corresponding to increased correlation) is

beneficial as long as there is diversity in the central angles of the users.

In Fig. 5.6 we show the simulated spectral efficiency CDFs for analog

MRC assuming the exponential correlation structure. The system model in-

cludes path loss and lognormal shadowing effects. The link gains are given

by βi = Aζi(d0/di)
γ , where di is the distance to the BS and ζi is lognormal

shadowing. There are four users each with a single antenna uniformly lo-

cated in a circular cell with the radius of 100 meters. The unit-less constant is

A = 30 dB, the reference distance is d0 = 1 meter, Nt = 32, the pathloss expo-

nent is γ = 3.5 and the standard deviation of shadowing is 6 dB. The transmit

power Pt is chosen to guarantee that 95% of the time the SNR exceeds 0 dB. As

predicted by the analysis, for a fixed correlation parameter (equal correlation

matrices for the users) increasing the correlation decreases spectral efficiency

whereas for differing correlation parameters (unequal correlation matrices for

the users), correlation improves the spectral efficiency.

5.5 Conclusion

We have presented the first analysis of the effects of correlation on analog

processing, compared analog to digital MRC and demonstrated that hetero-
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Figure 5.4: Til (dB) vs ρ and ∆; N = 32, exponential correlation.

geneous correlation effects extend to analog MRC. We have derived the ex-

pected signal and interference power, demonstrating that SIR decreases when

the user correlation matrices are identical, but increases when they are differ-

ent. We derived asymptotic SINR expressions for both analog and digital

MRC for benchmark scenarios of uncorrelated and fully correlated Rayleigh

channels, demonstrating that the performance is critically dependent on the

correlation scenario. We have shown that for uncorrelated fading the SINR

converges to a constant. For fully correlated channels SINR converges to zero

for equal correlation matrices, whereas for unequal correlation matrices SINR

converges to zero or a constant, depending on the correlation model.
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Figure 5.5: Tii/Til vs ρ and ∆; N = 32, exponential correlation.
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Figure 5.6: Spectral efficiency CDFs for fixed and uniformly distributed phase
parameters and N = 32.



6
Hybrid MRC

In this chapter, we present analytical expressions for the expected per user

SINR in an uplink distributed multi-user multiple input multiple output sys-

tem with two-stage beamforming. This leads to a tight approximation of ex-

pected per-user spectrum efficiency. System analysis is carried out for two-

and four-cluster BS layouts, and four beamforming strategies. The local beam-

forming (first stage) considers either analog or digital MRC, followed by the

global processing (second stage) of either digital MRC or digital ZF. We de-

note the resulting beamforming schemes as A-D, D-D, A-ZF and D-ZF. We

also present the asymptotic behaviour of A-D and D-D strategies. Our analy-

sis demonstrates a π/4 performance ratio in a centralized configuration1. For

the distributed layout, we show that the relative performance of A-D and D-D

varies depending on the distribution of interference powers among the base

stations. Here, when the dominant interferer powers are scattered among

the BS clusters, D-D significantly outperforms A-D (with a gap greater than

π/4). On the other hand, A-D outperforms D-D when the dominant inter-

ferer powers from all users happen to coincide at one BS cluster. Our analysis

also shows that the MRC/ZF performance cross-over is delayed for two-stage

beamforming (relative to single-stage), due to stage one reducing interference

1The performance ratio of AD to DD is π/4 for centralized systems. The ratio is less than
one as digital processing is more powerful.

83
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levels by a factor which is proportional to the number of antennas per clus-

ter. Furthermore, we show that the performance gap between A-D and D-D

increases with the number of BS clusters.

6.1 Introduction

MU-MIMO systems with a single BS deploy a large number of antennas in

one physical location. Distributed systems (dividing the antennas into mul-

tiple antenna clusters) provide the benefits of reduced spatial correlation [22]

and greater coverage than conventional co-located systems [13]. In fully co-

operative distributed systems, where all the received signals are sent from

the antenna clusters to a central processor, attractive performance gains are

achieved compared to the equivalent non-cooperative network [22, 33]. In

[13], full cooperation is evaluated in the downlink with dirty paper coding

and ZF. However, taking communication overheads and complexity into con-

sideration, simplified processing is required. Hence, MRC with user group-

ing was proposed in [22]. To relieve the need for centralized knowledge of

all the signals, two-stage processing is proposed in [33]. Here, only the out-

put signals after local (first stage) processing are sent to the (second stage)

central processing node. Using linear minimum mean squared error (MMSE)

detection, [33] shows that the gap between the fully cooperative system and

two-stage processing system is small.

In this paper, we adopt the promising two-stage procesing scheme and

further reduce the complexity and hardware requirements of local and central

processing by considering analog and digital MRC. These techniques require

no central control [22] and analog MRC only requires phase-shifters. The per-

formance analysis of analog and digital MRC for centralized and distributed

MU-MIMO systems is given in [133]. We propose four types of two-stage
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processing, where either analog or digital MRC in stage one, is followed by

digital MRC or digital ZF in stage two. We denote the resulting beamforming

schemes as A-D, D-D, A-ZF and D-ZF.

To the best of our knowledge, there exist no closed-form SINR results for

A-D, D-D in the uplink in a distributed MU-MIMO systems, nor any perfor-

mance comparison with A-ZF and D-ZF. Hence, to fill this gap, we present a

thorough analysis of the four two-stage BF processing techniques providing

the following contributions:

• Novel analytical expressions for the expected SE for uplink A-D and

D-D are derived.

• We analyse the system performance of A-D and D-D for two- and four-

cluster BS layouts. We show that D-D benefits from increased cluster

decentralization.

• Simulation results for A-ZF and D-ZF allow a performance comparison

of A-D, D-D, A-ZF, and D-ZF. We show that MRC is a reasonable alter-

native to ZF in the second stage even at moderate SNR levels.

• We show that A-D has an asymptotic performance loss of approximately

21.5% compared to D-D in centralized systems. For distributed systems,

the performance comparison depends on the pattern of user link gains.

6.2 System Model

Consider a MU-MIMO system withK single antenna users randomly located

in a single cell served by Nt BS antennas divided equally among M antenna

clusters. We consider two different BS layouts: four- and two-cluster. The

antennas in the four-cluster distributed system are divided equally amongst

four cooperative antenna sites with each site (half way from the centre to the
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cell-edge and 90◦ from each other) equipped withN = Nt
4

antennas. Similarly,

the two-cluster system has two sites, each (half way from the centre to the

cell-edge and 180◦ from each other) with N = Nt
2

antennas.

We consider an uplink system based on MMSE channel estimation with

i.i.d Rayleigh fading. Based on the received pilot signal at one cluster, MMSE

estimation is applied to obtain the channel estimates ĥi (the N × 1 estimated

channel vector for user i). The properties of the estimates are given in [134]

and are summarized here. The true channel vector is denoted by hi and

has the distribution CN (0,Σi), where Σi = βiI. The estimation error ei =

hi − ĥi has the covariance matrix Ci. For i.i.d Rayleigh channels, Ci = βiI −

γpβ
2
i [(γpβi + 1)I]−1 = β2

i /
(
1 + γpβi

)
I, where γp = Pτp/σ

2, τp is the num-

ber of pilots, P is the transmit power, and σ2 is the noise power. The re-

sulting estimated channel has the distribution CN (0,Ri), where Ri = β̃iI,

β̃i = γpβ
2
i /
(
1 + γpβi

)
. We consider βi = Aζi(d0/di)

γ , where A is a unit-less

constant representing the geometric attenuation at the reference distance d0, di

is the distance between the ith user and the cluster, γ is the path loss exponent

and ζi is a log-normal random variable, 10log10ζi ∼ N (0, σ2
sh), to model the

effect of shadowing between the the ith user and the cluster. Equal transmit

power for each user and narrow-band transmission are assumed throughout

this work.

6.3 Approximations of Achievable Uplink Spectral

Efficiency

In this section, we derive expressions for the expected per-user signal power

and interference power for the A-D and D-D beamforming schemes.
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6.3.1 Two-stage SINR for A-D and D-D

The received signal at BS k is given by

rk =
K∑
j=1

hjksj + nk, (6.1)

where s = {s1, s2, ..., sK}T is the K × 1 data symbol vector from the K users

and E[ssH] = I; nk models the white Gaussian noise, nk ∼ CN (0, σ2I). At

BS k we have the channel estimates ĥ1k, ĥ2k, ..., ĥKk. To detect user i at BS k,

the first stage uses the linear combiner wik, which is designed based on the

estimated channels, and here, can be either analog or digital MRC. Hence, the

output signal at BS k is

r̃k = wH
ikrk = wH

ik

[
hiksi +

∑
j 6=i

hjksj + nk

]
,

= wH
ikĥiksi + wH

ikeiksi +
∑
j 6=i

wH
ikhjksj + wH

iknk,

= αiksi + δiksi +
∑
j 6=i

αijksj + vik, (6.2)

where αik = wH
ikĥik, δik = wH

ikeik, αijk = wH
ikhij , and vik = wH

iknk. Stacking the

outputs, r̃k, k = 1, 2, ...,M , gives

r̃i = aisi + δisi +
∑
j 6=i

aijsj + vi, (6.3)

where ai = [αi1, αi2, ..., αiM ]T, δi = [δi1, δi2, ..., δiM ]T, aij = [αij1, αij2, ..., αijM ]T,

and vi = [vi1, vi2, ..., viM ]T represent the signal, channel estimation error, inter-

ference and noise terms, respectively. At the second stage, we perform digital
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processing with the combiner ui to detect the desired signal si, giving

s̃i = uH
i r̃i = uH

i aisi + uH
i δisi + uH

i

∑
j 6=i

aijsj + uH
i vi. (6.4)

From (6.4) we obtain the SINR for user i as

SINRi =
|uH
i ai|2Es

E
[
|uH
i δi|2

]
Es +

∑
j 6=i |uH

i aij|2Es + E
[
uH
i vivH

i ui
] . (6.5)

After averaging over the signal, noise, and estimation error using standard

results, (6.5) can be rewritten as

SINRi =
|uH
i ai|2Es∑M

s=1 |uis|2wH
is(EsCis + σ2I)wis +

∑
j 6=i |uH

i aij|2Es

, S/(T1 + T2). (6.6)

In the following, we compute exact expressions for the mean signal, interfer-

ence, estimation error, and noise powers.

Expected Desired Signal Power

E[S] = EsE
[
|uH
i ai|2

]
= EsE

[
|aH
i ai|2

]
,

= Es

M∑
r=1

M∑
r=1

E
[∣∣∣wH

irĥir

∣∣∣2 ∣∣∣wH
isĥis

∣∣∣2] ,
= Es

{
M∑
r=1

E
[∣∣∣wH

irĥir

∣∣∣4]+
∑
r 6=s

E
[∣∣∣wH

irĥir

∣∣∣2 ∣∣∣wH
isĥis

∣∣∣2]} .
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Expected Interference and Estimation Error Power

Defining EsCis + σ2I = εisI, we have

E[T1] =
M∑
s=1

E
[
|uis|2wH

is(EsCis + σ2I)wis

]
,

=
M∑
s=1

εisE
[
wH
isĥisĥ

H
iswisw

H
iswis

]
. (6.7)

Expected Noise Power

E[T2] =
∑
j 6=i

EsE
[
|uH
i aij|2

]
=
∑
j 6=i

EsE
[
|aH
i aij|2

]
,

=
∑
j 6=i

Es

M∑
r=1

βjrE
[
ĥH
irwirw

H
irwirw

H
irĥir

]
.

By defining, M1(i, r) = E
[
|wH

irĥir|2
]
, M2(i, r) = E

[∣∣∣wH
irĥir

∣∣∣4], and M3(i, r) =

E
[
ĥH
irwirw

H
irwirw

H
irĥir

]
, we can rewrite E[S], E[T1], and E[T2] as

E(S) = Es

M∑
r=1

M2(i, r) + Es

∑
r 6=s

M1(i, r)M1(i, s). (6.8)

E(T1) =
M∑
s=1

M3(i, s)εis. (6.9)

E(T2) =
∑
j 6=i

Es

M∑
r=1

βjrM3(i, r). (6.10)

Next, we require the values of M1(·), M2(·), and M3(·) for A-D and D-D pro-

cessing.
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A-D SINR

For A-D, wir = ∠ĥir, where ∠p = (p1/|p1|, p2/|p2|, ..., pn/|pn|)T for vector

p = (p1, p2, ..., pn)T records only the phase information in p. Thus, wH
irĥir =

β̃
1/2
ir

∑N
q=1 |Zq|, where Zq ∼ CN (0, 1) and Z1, Z2, ..., ZN are i.i.d. Using this

formulation and wH
irwir = N , gives

M1(i, r) = β̃ir {N +N(N + 1)π/4} . (6.11)

M2(i, r) = β̃2
ir {2N + {3π/2}N(N − 1)}

+ β̃2
ir {3N(N − 1) + {3π/2}N(N − 1)(N − 2)}

+ β̃2
ir

{
(π2/16)N(N − 1)(N − 2)(N − 3)

}
. (6.12)

M3(i, r) = Nβ̃ir {N +N(N + 1)π/4} . (6.13)

Defining c1(N) = N(3N−1)+(3π/2)N(N−1)2 +(π2/16)N(N−1)(N−2)(N−

3), c2(N) = N + N(N − 1)π/4, and c3(N) = N [N +N(N − 1)π/4], the final

expression is

E[SINRAD
i ] ≈ (6.14)

Es

c1(N)
M∑
r=1

β̃2
ir + c2(N)

( M∑
r=1

β̃ir

)2

−
M∑
r=1

β̃2
ir


c3(N)

M∑
s=1

εisβ̃is + Esc3(N)
∑
j 6=i

M∑
r=1

βjrβ̃ir

,

using the approximation E[X/Y ] ≈ E[X]/E[Y ] motivated by [105] and shown

to be accurate for moderate to large numbers of antennas [105,133]. Thus, we

have the SE for user i as

E[SEi] ≈ log2

(
1 + E[SINRAD

i ]
)
. (6.15)
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D-D SINR

For D-D, wir = ĥir and thus wH
irĥir = 1

2
β̃irχir, where χir ∼ χ2

2N is a Chi-

squared random variable with 2N degrees of freedom. The moments of χir

are known, so we can write Mk(i, r), k = 1, 2, 3 for D-D as follows:

M1(i, r) = β̃2
irE[χ2

ir] = β̃2
irN(N + 1). (6.16)

M2(i, r) = β̃4
irE[χ4

ir] = β̃4
irN(N + 1)(N + 2)(N + 3).

M3(i, r) = β̃3
irE[χ3

ir] = β̃3
irN(N + 1)(N + 2).

The final expression can then be written as

E[SINRDD
i ] (6.17)

≈

Es

b1(N)
M∑
r=1

β̃4
ir + b2(N)

( M∑
r=1

β̃2
ir

)2

−
M∑
r=1

β̃4
ir


b3(N)

M∑
s=1

εisβ̃
3
is + Esb3(N)

∑
j 6=i

M∑
r=1

βjrβ̃
3
ir

,

where b1(N) = (N+2)(N+3), b2(N) = N(N+1), and b3(N) = N+2. Similarly,

we have the SE for user i as

E[SEi] ≈ log2

(
1 + E[SINRDD

i ]
)
. (6.18)

6.3.2 Asymptotic Analysis of A-D and D-D

In this section, we derive the performance gap between A-D and D-D when

N grows large. Note that in Sec. 6.3.1, c1(N) and c2(N) are quartic in N and

c3(N) is cubic. Hence, (6.14) can be rewritten as

E[SINRAD
i ] ∼ (π/4)ηADN, (6.19)



92

where ηAD =
Es(
∑M

r=1β̃
2
ir)N∑M

s=1εisβ̃is + Es
∑

j 6=i
∑M

r=1 βjrβ̃ir
. Similarly, for large N ,

E[SINRDD
i ] ∼ ηDDN, (6.20)

where ηDD =

Es


M∑
r=1

β̃4
ir +

(
M∑
r=1

β̃2
ir

)2

−
M∑
r=1

β̃4
ir


M∑
s=1

εisβ̃
3
is + Es

∑
j 6=i

M∑
r=1

βjrβ̃
3
ir

. For a co-located system

ηAD and ηDD simplify to give

lim
N→∞

E[SINRAD
i ]

E[SINRDD
i ]
∼ π

4
. (6.21)

For a distributed system, the ratio in (6.21) changes according to variation in

the link gains. This is explained in Sec. 6.4.

6.3.3 A-ZF and D-ZF SINR

Due to the intractable nature of ZF at the second stage, we only derive an

SINR expression for ZF and use simulations to average over the fast fading.

We first rewrite (6.3) as

r̃i = aisi +
∑
j 6=i

fijsj + δisi +
∑
j 6=i

gijsj + vi, (6.22)

using aij = fij+gij , fij = [wH
i1ĥj1, ...,w

H
iM ĥjM ]T, and gij = [wH

i1ej1, ...,w
H
iMejM ]T.

The first two terms in (6.22) represent the known coefficients of s = [s1, s2, ..., sK ]T

and are written as Ais. The remaining terms in (6.22) are due to noise and es-

timation error and are denoted by the vector, ηi. Hence, r̃i = Ais + ηi and

standard ZF gives the combiner ui as the ith column of Ai

(
AH
i Ai

)−1 with the

SINR
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SINRZF
i =

Es

E
[∣∣uH

i ηi
∣∣2] =

Es

uH
i E
[
ηiη

H
i

]
ui
, (6.23)

where the expectation in (6.23) is over signal, noise, and estimation error.

Using standard properties of the noise term, vi, and the estimation errors,

ejk, in ηi we obtain E
[
ηiη

H
i

]
= Qi, where Qi = diag(qi1, qi2, ..., qiM) and

qir = wH
ir(Es

∑K
j=1 Cjr + σ2I)wir. Hence, we have

SINRZF
i =

Es
uH
i Qiui

. (6.24)

Substituting wir = ∠ĥir in ui and Qi in (6.24) gives SINRA-ZF
i and using wir =

ĥir in ui gives SINRD-ZF
i and the resulting mean SE, E[SEi] = E

[
log2

(
1 + SINRZF

i

)]
.

6.4 Numerical Results

In this section, the following parameters are used. Four users, each with a

single antenna, are uniformly located in a circular cell with a radius of 100

meters and reference distance, d0 = 1 meter. The pathloss exponent γ = 3.5

and the standard deviation of shadowing ζ = 6 dB. The SNR (E[|si|2]/σ2) is set

to 15 dB. The unit-less geometric attenuationA is chosen to guarantee that the

median of the desired user’s SINR is 8 dB with the system of A-D processing,

Nt = 64 and M = 4.

In Fig. 6.1, we show a performance comparison based on the CDFs of

E[SE]. The expectation is computed over the fast-fading and the CDF depicts

the impact of the variations in large-scale fading. We see that the analysis

in (6.15) and (6.18) agrees well with simulation results for six different sys-

tem settings. With increasing numbers of clusters, the performance gap be-

tween A-D and D-D becomes bigger. This is because digital MRC will benefit
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from more distributed systems as it can cater for the large variations in signal

strength across the clusters. This also explains why the system having A-D

four clusters with 16 antennas per cluster has almost the same performance

as the system having D-D 2 clusters with 32 antennas per cluster.
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Figure 6.1: Performance comparison of expected per-user SE CDFs between
A-D and D-D.

In Fig. 6.2, we demonstrate the performance cross-over between MRC and

ZF based second stage processing, using E[SEcell], defined as the expected per

user SE averaging over the cell. Four clusters with 16 antennas in each clus-

ter and four users are considered. For traditional MU-MIMO systems with

small numbers of antennas ZF is usually far superior to MRC. The exception

is at very low SNR where the interference becomes small and it is more im-

portant to boost signal strength making MRC preferable. This superiority of

MRC is not usually helpful as the low SNRs mean that system performance

is too low. However, in our system stage one processing achieves consider-
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able interference reduction which helps MRC. For simplicity consider stage

one with perfect CSI, analog MRC and normalized channels. The mean de-

sired signal power is E
[
|hH
i hi
∣∣2] = N + N(N + 1)π/4 (from (6.11)) and the

mean interference power from user j is E
[
|hH
i hj

∣∣2] = N . Hence, stage one

reduces interference levels relative to the signal by a factor proportional to

N (with the same trend for digital MRC). Due to this, MRC retains better or

similar performance to ZF in stage two even at reasonable SNR levels up to

5dB as shown in Fig. 6.2. Note that the ZF techniques remove interference

completely with perfect CSI, so their performance has no ceiling. In contrast,

the MRC only methods are interference limited and their performance has a

finite limit as the SNR is increased.
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Figure 6.2: Expected per-user SEcell vs SNR for four two-stage processing tech-
niques.
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In Fig. 6.32, we illustrate the asymptotic analysis in (6.19)-(6.21). We use

the same system parameters as in Fig. 6.2 except for the values of βij . E[SINR]

is defined in (6.14) and (6.17) for A-D and D-D systems, respectively. For the

co-located (COL) system with equal link gain scenario, we have βij = 1,∀i, j

and the desired user is user 1. From Fig. 6.3, we see a ratio of π/4 between

A-D and D-D. In distributed scenarios, the performance of A-D and D-D

depends on the profile of the links gains. Close inspection of (6.19)-(6.20)

shows that the performance of D-D relative to A-D is increased when the de-

sired user’s maximum link gain does not align with the interfering users’

maximum link gain (Scenario 1). This is shown in Fig. 6.3 using the val-

ues β1 = (1.6, 0.4, 0.8, 1.2), β2 = (0.4, 1.2, 1.6, 0.8), β3 = (0.4, 1.2, 0.8, 1.6),

β4 = (0.8, 1.6, 1.2, 0.4), where βi = (βi1, βi2, βi3, βi4). Here D-D offers a sub-

stantial improvement over A-D. For the opposite scenario (Scenario 2) where

the maximum link gains of users occur at the same cluster, we use β1 =

(1.6, 1.2, 0.8, 0.4), β2 = (1.6, 1.2, 0.4, 0.8), β3 = (1.6, 0.8, 0.4, 1.2),

β4 = (1.6, 0.4, 0.8, 1.2). Note that both scenarios use a linearly decaying set

of link gains with the same unit mean as the co-located case. For Scenario 2,

(6.19)-(6.20) show that the performance of A-D is improved relative to D-D

and Fig. 6.3 shows that A-D can outperform D-D. Note that the interference

term in A-D is quadratic, with the interfering user’s link gain scaled by the

desired link gain. Hence, when the strong link gains align, interference is

boosted. However, for D-D the interference term is quartic, with the inter-

fering link gain scaled by the cube of the desired gain. Hence, the effects of

aligned link gains are far more pronounced for D-D.

2The marker on the plot specifies that the AD to DD performance ratio is π/4 for the co-
located case. Numerically the ratio is very close to the exact value of π/4.
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Figure 6.3: Expected per-user SINR vs Ntotal for A-D and D-D in both co-
located and distributed systems.

6.5 Conclusion

In this chapter, we have analysed four low-complexity two-stage BF tech-

niques for a distributed system. We derive novel analytical expressions for

the SE for uplink A-D and D-D. The derivation is robust to changes in sys-

tem dimension. The system performance of A-D and D-D for two- and four-

cluster BS layouts is analysed, showing that -D benefits from increased clus-

ter decentralization. We show that A-D has an asymptotic performance loss

of approximately 21.5% compared to D-D in centralized systems. For dis-

tributed systems, the performance comparison depends on the pattern of user

link gains. We also show that MRC is a reasonable alternative to ZF in the sec-

ond stage even at moderate SNR levels.
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7
Massive MIMO for Ray-Based Channels

Favourable propagation and channel hardening are desired properties in mas-

sive MIMO systems. To date, these properties have primarily been analyzed

for classical statistical channel models, or ray-based models with very spe-

cific angular parameters and distributions. This chapter presents a thorough

mathematical analysis of the asymptotic system behavior for ray-based chan-

nels with arbitrary ray distributions, and considers two types of antenna array

structures at the cellular base station: a uniform linear array and a uniform

planar array (UPA). In addition to FP and channel hardening, we analyze the

LSP which measures the asymptotic ratio of the expected power in the de-

sired channel to the expected total interference power when both the antenna

and user numbers grow. LSP is said to hold when this ratio converges to

a positive constant. The results demonstrate that while FP is guaranteed in

ray-based channels, channel hardening may or may not occur depending on

the nature of the model. Furthermore, we demonstrate that LSP will not nor-

mally hold as the expected interference power grows logarithmically for both

ULAs and UPAs relative to the power in the desired channel as the system

size increases. Nevertheless, we identify some fundamental and attractive

properties of massive MIMO in this limiting regime.

99
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7.1 Introduction

Two key principles behind the success of massive MIMO are FP [3, 38], and

channel hardening [75], meaning that the normalized inter-user interference

power converges to zero, and that the normalized power in the desired chan-

nel becomes constant. With FP, the use of large numbers of antennas offers an

implicit interference reduction mechanism, and enables the use of low com-

plexity signal processing algorithms [3, 7, 135].

The bulk of the theoretical work on FP and channel hardening has utilized

classical statistical channel models. Here, the existence of FP has been demon-

strated for channel models of increasing complexity, progressing from i.i.d.

Rayleigh [38, 136], pure line-of-sight [38, 136], correlated Rayleigh [137, 138],

and independent Ricean [139] to correlated Ricean channels [140,141]. In par-

allel, with the theory, channel measurements have demonstrated that a large

fraction of the theoretical gains due to FP can be obtained [8, 142, 143].

This work is now mature, but incomplete in the sense that accurate mod-

eling of large dimensional channels requires a strong link to the propaga-

tion environment. This is usually obtained through ray-based models which

have been extensively validated by measurements and, for this reason, have

made their way to the 3GPP standardization process [35]. These models bet-

ter capture the physics of electromagnetic propagation, and have a closer link

to the array architecture and are widely used irrespective of the frequency

band [35–37]. The physical nature of the ray-based models also has some

advantages for system performance analysis in the sense that the analytical

conclusions are based on physical features of the system rather than statis-

tical modeling assumptions. For example, FP was considered in the recent

work [140] for very general heterogeneous, correlated Ricean channels. This

work gives wide ranging results on FP, but the inherent nature of these mod-
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els meant that the conclusions relied on various assumptions concerning the

correlation structure, line-of-sight direction, etc. In contrast, we are able to

prove FP for ray-based models with the most basic assumptions pertaining to

physical phenomena, such as distributions of ray directions.

Variations of such models have a proliferation of names including direc-

tional, spatial and Saleh-Valenzulela (SV) type [48] channel models. We prefer

the phrase ray-based, as the main requirement for our work is that the statis-

tical distributions of individual rays can be identified and analyzed1. This is

possible for a wide range of such channels. Important work has begun in this

area demonstrating the existence of FP with specific ray-based models for a

variety of antenna topologies, such as the ULA, UPA, and uniform circular

array (UCA) [144], [145]. However, the majority of this work relies on two

very special cases for the rays: an arbitrary ray must arrive with an azimuth

angle, φ, which satisfies φ ∼ U [0, 2π] [144–146] or sinφ ∼ U [−1, 1] [9, 38].

FP has also been demonstrated in [147] for the more complex case where az-

imuth angles have a uniform central angle and wrapped Gaussian sub rays

and the elevation angles are Laplacian. It is, critical2 to be able to predict the

system performance with practical, and more general distributions, making

our extension an important one in the context of our understanding of mas-

sive MIMO behavior. Hence, a general analysis of FP for ray-based models

with arbitrary ray distributions is almost entirely lacking. Further, while FP is

a desirable property for a communication system, it only implies that a finite

number of users can be served by increasing the number of antenna elements.

We refer to this as single-sided massive MIMO [144]. Ideally, as you grow the

number of BS antennas you would also serve more users, leading to a sys-

1We prefer this terminology, since our primary interest is not in identifying distributions
of rays across multiple clusters.

2This is important as unrealistic assumptions can lead to the opposite conclusions. For ex-
ample, the assumption that sinφ ∼ U [−1, 1] leads to the conclusion that the total interference
in a massive MIMO system converges. In contrast, we show in Theorem 1 that interference
diverges for realistic ray distributions.
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tem that becomes large both in users and antennas, i.e., double-sided massive

MIMO, the concept of which is defined in [148] . Hence, we define LSP as the

property that the fundamental ratio which measures the mean power in the

desired channel relative to the total mean interference power converges to a

positive constant as both the number of users (K) and the number of anten-

nas (N ) grow to infinity, with N/K → α as N → ∞. The analysis of LSP for

i.i.d. Rayleigh fading can be found in [7], although it is not explicitly defined.

In the first part of this chapter (and in [149]), channel hardening, FP, and LSP

analysis for ray-based channel models and a basic ULA antenna structure are

discussed. In the second part of the chapter, we extend this work to a UPA

structure. This is an important, yet non trivial, extension as the addition of

the elevation component in the ray based channel facilitates much greater ac-

curacy in predicting massive MIMO behavior, something which is rare in the

literature. Furthermore, the majority of the ongoing deployments of massive

MIMO in the C-band utilize UPAs, in order to effectively leverage the full

dimensional nature of the channel, and to maximize the beamforming gain

of the system via reciprocity-based processing. The mathematical complexity

of such an extension is also substantial, since our main aim is to obtain de-

tailed insights into the desirable properties of massive MIMO systems with

a model which is more closely in line with practice. We make the following

contributions for both ULA and UPA topologies:

• We show that channel hardening may or may not occur depending on

the nature of the model.

• We show that FP is guaranteed for all models where the ray angles are

continuous random variables (as assumed by all models to date).

• For LSP, we derive remarkably simple expressions which relate the asymp-

totic interference behavior to system size, antenna spacing and the ray
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distribution. We demonstrate that LSP will not normally hold as the

mean interference power grows logarithmically relative to the mean

power of the desired user channel as the system size increases.

• Analytical results are verified via simulation and using special cases de-

rived for specific angular distributions.

• Despite the lack of LSP, the implications for massive MIMO are excel-

lent. Although the interference eventually dominates the desired chan-

nel, the growth is very slow and is further attenuated by practical factors

such as the likely propagation environment and the typical array pat-

terns employed. In addition, we prove that trivial scheduling schemes

can retain LSP, and thus increase the robustness of massive MIMO per-

formance.

7.2 Channel Model and System Metrics

We consider an uplink massive MIMO system with N co-located antennas

at one BS simultaneously serving K single antenna users, where, for now,

N � K. We assume a narrowband flat fading channel model such that the

N × 1 channel vector for user i can be written as hi, and the composite N ×K

channel matrix is denoted by H = [h1h2...hK ]. We assume that the prop-

agation channel is known to both the users and the cellular BS. This is an

assumption in this study since we are concerned with analyzing the funda-

mental properties of a massive MIMO system using ray-based channels. In

practice, reciprocity-based beamforming may be used where uplink channel

estimates will be used for payload data transmission.
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7.2.1 Ray-based Channel Model

In general, the propagation channel to user i can be described as the super-

position of many individual rays possibly arriving in clusters from a set of

far-field scatterers. In simple terms, the channel is broken down into P inci-

dent rays at the BS3. Hence, for a ULA we have:

hi =
P∑
r=1

γira(φir), (7.1)

as described in Chapter 2 (see Fig. (2.3)), φir is the azimuth angle of the rth

ray, γir is a complex scaling factor for the magnitude and phase of the ray,

and a(φir) is the N × 1 array steering vector. In azimuth, the antenna array

broadside is at φir = 0, and end-fire is φir = ±π
2
. Common models for the

scaling factor include random phase models [35], where γir =
√
βirexp(jΦir),

βir is the power of the rth ray and Φir are i.i.d. U [0, 2π] phase offsets. Hence,

βi =
∑P

r=1 βir is the total link gain for user i. Also, complex Gaussian models

have been proposed in [37], where γir =
√
βiruir and uir ∼ CN (0, 1). For both

models, we note that E[γir] = 0, E[|γir|2] = βir and E[γ∗irγjs] = 0 for all pairs

(i, r) 6= (j, s). For a ULA with normalized inter-element spacing d, measured

in wavelengths, the steering vector is:

a(φir) =
[
1, e2πjdsinφir , e2πj2dsinφir , . . . , e2πj(N−1)dsinφir

]T
.

For a UPA, the total number of antennas, N , is divided into Nx and Ny an-

tennas in the x and y axes with inter-element spacings dx and dy, respectively.

3For ease of notation, we do not specifically itemize clusters, but the P paths include any
clustered rays. We note that since we are concerned with angular distributions of individual
rays contributing to the channel impulse response, it is not necessary to categorize the chan-
nel model in terms of clusters. Note that later analysis usually simplifies to a single ray from
two different users, so it does not matter how each ray is identified as a single ray using a
single subscript is equivalent to a single ray using a double subscript.
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The steering vectors can be represented by the Kronecker product of (Nx × 1)

ax and (Ny × 1) ay, which gives an NxNy × 1 vector, a(θir, φir) = airx ⊗ airy.

Note that

airx =
[
1, e2πjdxsinθircosφir , . . . , e2πj(Nx−1)dxsinθircosφir

]T
,

and

airy =
[
1, e2πjdysinθirsinφir , . . . , e2πj(Ny−1)dysinθirsinφir

]T
.

Note that this definition of the steering vectors follows the notation in [144]

where the array is defined to be in the (x, y)-plane. Hence, φir is the angle of

the rth ray for the ith user in the (x, y)-plane relative to the x-axis. The angle θir

is the angle of the rth ray for the ith user measured from the zenith direction

(z-axis). Note that a similar diagram to that in Fig. (2.3) defines the elevation

angle θir. With this definition, if the UPA is horizontally oriented then φir

is an azimuth angle and θir is an elevation angle. However, for vertically

located arrays, conventional θir and φir are defined relative to the z and x

axes, respectively. The kth elements of airx and airy are denoted by airxk and

airyk, respectively. In practice, each element has an active directional gain

pattern, which attenuates the radiated power by an amount as a function of

the steering direction. In order not to obfuscate the results and deviate our

focus from the asymptotic massive MIMO properties, in this study, for all

mathematical results, we assume that each element has an equal gain in all

directions (i.e., omni-directional), irrespective of the location of the element

in the array. However, we later briefly discuss the potential effects of non-

isotropic antennas.
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7.2.2 FP, Channel Hardening and Large System Potential

Here, FP denotes asymptotic FP where hH
i hj/N

a.s.−→ 0 as N → ∞ [38]. Chan-

nel hardening refers to the property that hH
i hi/N

a.s.−→ βi as N → ∞, which is

equivalent in our case to the definition in [75]. Now, FP and channel hard-

ening imply that the interference from one user to another vanishes relative

to the signal power almost surely as N → ∞. We extend this definition to

the asymptotic regime where N → ∞, K → ∞ and N/K → α (double-sided

massive MIMO). Here, the equivalent question concerns whether the total in-

terference power caused to user i dominates the signal power. In order to

investigate this behavior, we define

ζLSP = 4 E[|hH
i hi|2]∑K

j 6=i E[|hH
i hj|2]

=
E[|hH

i hi/N |2]∑K
j 6=i E[|hH

i hj/N |2]
. (7.2)

Now, ζLSP is a fundamental performance metric, measuring the ratio of the

desired mean channel power to the total mean interference power. We say

that LSP holds if ζLSP converges to a positive constant as N →∞ and N/K →

α. If channel hardening holds, then hH
i hi/N converges to a positive constant

and hence, the numerator of (7.2) also converges to a positive constant. Even

when channel hardening does not occur (see Sec. 7.3.1), the expectation in the

numerator of (7.2) will converge to a constant.

If channel hardening holds then the numerator of (7.2) converges to a pos-

itive constant. Hence, LSP depends on the limiting behavior of the denom-

inator of (7.2), namely E[ηi], where ηi =
∑K

j 6=i |hH
i hj/N |2 is the total normal-

ized interference. Note that the limiting regime used for LSP, which supports

double-sided massive MIMO, is far more challenging than traditional mas-

sive MIMO. In practice, the number of users will never grow without bound

4E[|hH
i hi|2] is the MRC signal power and

∑K
j 6=i E[|hH

i hj |2] is the total MRC interference
power.
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but the asymptotics are still useful in identifying the key properties of systems

which are large in both N and K.

7.3 ULA: Channel Hardening, FP and LSP

In this section, channel hardening, FP and LSP are considered for ray-based

channel models for a ULA. For ease of notation, let air be the steering vector

for user i, path r, so that air = a(φir) and the kth element of air is denoted airk.

7.3.1 Channel Hardening

Consider the term, hH
i hi/N , for a ULA. We have

hH
i hi
N

=
1

N

P∑
r=1

γ∗ira
H
ir

P∑
s=1

γisais (7.3)

=
P∑
r=1

|γir|2 +
1

N

P∑
r=1,r 6=s

P∑
s=1

γ∗irγisa
H
irais

= Xi + Ei,

where Xi =
∑P

r=1 |γir|2 is independent of N . Thus the limiting value depends

entirely on limN→∞Ei, which in turn depends on limN→∞ aH
irais/N , where r 6=

s. Now,

∣∣∣∣aH
irais
N

∣∣∣∣ =

∣∣∣∣∣ 1

N

N−1∑
n=0

e−j2πdnsinφirej2πdnsinφis

∣∣∣∣∣
=

1

N

∣∣∣∣sin (Nι/2)

sin (ι/2)

∣∣∣∣ a.s.−→ 0, (7.4)

where ι = 2πd[sinφis − sinφir], using simple results on geometric series. Al-

most sure convergence follows from the fact that convergence is guaranteed

unless sinφir = sinφis, an event having probability zero for continuous an-
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gular variables5. Thus, we have hH
i hi/N

a.s.−→ Xi as N → ∞. Note that for

random phase models, Xi = βi and traditional channel hardening occurs

where hH
i hi/N

a.s.−→ βi, a deterministic limit. In contrast, for complex Gaus-

sian models, |γir|2 = βir|uir|2, which gives a random limit, as Xi =
∑P

r=1 |γir|2

is a weighted sum of exponential variables. Hence, we see that the existence

of channel hardening depends on the nature of the model for the ray coef-

ficients. Note that the channel hardening analysis in [146] was for arbitrary

array topologies but relied on uniform angles.

7.3.2 FP (Single-Sided Massive MIMO)

In terms of FP, results are simple following the same methodology as for chan-

nel hardening. First, we write

hH
i hj
N

=
1

N

P∑
r=1

P∑
s=1

γ∗irγjsa
H
irajs, (7.5)

and then we use (7.4) to show that∣∣∣∣aH
irajs
N

∣∣∣∣ =
1

N

∣∣∣∣sin (Nτ/2)

sin (τ/2)

∣∣∣∣ a.s.−→ 0, (7.6)

as N → ∞, where τ = 2πd[sinφjs − sinφir]. Hence, FP is proven very simply

for all ray-based models where sinφir = sinφis has probability zero. A simple

condition for this to hold is that the angles are continuous random variables,

a property held by all models proposed 6. Therefore, FP, the key property en-

5Our model (including that in [35] and 3GPP, 3GPP TR 21.915 V15.0.0,
http://www.3gpp.org/) and all other such ray-based models [48] assume a finite number
of unique angles for the rays. The probability of two angles being identical is zero if the
angle distributions are continuous. This follows as P (X = Y ) = 0 for all distinct, continuous
random variables X and Y [150, p. 76]. Our analysis is limited to this scenario and does
not cover possible models which could explain a ”single” ray as a continuum of rays over a
small angular width.

6This was demonstrated in [144], but only for the case of a uniform distribution. In con-
trast, the result in (7.6) is general.
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abling single-sided massive MIMO, holds for all ray distributions considered

to date, such as uniform, wrapped Gaussian, and Laplacian.

7.3.3 Large System Potential (Double-Sided Massive MIMO)

In this section, we analyze the LSP of ray-based channels in the limiting

regime where K →∞, N →∞ and N/K → α.

Ray-based Models

The ratio ζLSP in (7.2) has a numerator satisfying E[|hH
i hi|

2
/N2]

a.s.−→ E[X2
i ] from

Sec. 7.3.1 and E[X2
i ] is finite. Hence, LSP depends on the asymptotic proper-

ties of the denominator, E[ηi]. Here, we write,

E [ηi] = E

 1

N

K∑
j=1,j 6=i

1

N

∣∣∣∣∣
P∑
r=1

P∑
s=1

γ∗irγjsa
H
irajs

∣∣∣∣∣
2
 ,

=
1

N

K∑
j=1,j 6=i

P∑
r=1

P∑
s=1

E
[
|γir|2

]
E
[
|γjs|2

] 1

N
E
[∣∣aH

irajs
∣∣2]

= βi

(∑K
j=1,j 6=i βj

N

)
µULA, (7.7)

using the basic properties of the γir terms and the notation

µULA ,
1

N
E
[∣∣aH

irajs
∣∣2] (7.8)

=
1

N

N−1∑
n=0

N−1∑
m=0

E
[
ej2πd(m−n)sinφir

]
E
[
ej2πd(n−m)sinφjs

]
=

1

N

N−1∑
n=0

N−1∑
m=0

∣∣E [ej2πd(m−n)sinφir
]∣∣2 .

This relies on the fact that the scaling factors are independent and azimuth

angles are i.i.d random variables. Hence, the steering vectors in µULA are two

generic but independent vectors and the subscripts ir and js are not strictly
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necessary. Now, we set φ̂ir = 2πdsinφir, and rewrite (7.8) as

µULA =
1

N

(
N−1∑
n=0

1 +
N−1∑∑

m,n=0,m 6=n

∣∣E [ej2πd(m−n)sinφir
]∣∣2) , (7.9)

= 1 +
2

N

N−1∑
s=1

(N − s)
∣∣E [e−j2πdssinφir

]∣∣2 ,
= 1 + 2

N−1∑
s=1

(
1− s

N

)
|E[e−jsφ̂ir ]|2.

In a typical drop of random locations for the users, the strong law of large

numbers ensures that
∑K

j=1 βj/K converges to β̄ asK →∞, where β̄ is a finite

mean power. Hence, we have limN→∞ E [ηi] = (βiβ̄/α) limN→∞{µULA}. Hence,

the asymptotic behavior of E [ηi] depends on µULA which in turn depends

on how quickly |E[e−jsφ̂ir ]|2 decays. In the following theorem we present a

general answer to this question.

Theorem 1. The term E[e−jsφ̂ir ] decays as s−
1
2 as s → ∞ with the asymptotic

representation:

E[e−jsφ̂ir ] ∼ 1√
ds

(
fφ

(
−π

2

)
ej(2πds−

π
4

) + fφ

(π
2

)
e−j(2πds−π

4 )
)
, (7.10)

where fφ(·) is the probability density function (PDF) of φir.

Proof. The proof is given in Appendix 9.1.

Implications of Theorem 1

Equation (7.10) in Theorem 1 is a remarkable result with a simple and intu-

itive interpretation, wide generality and important implications for massive

MIMO:

• In terms of generality, (7.10) only requires the angular PDF, fφ(·), not to

have singularities which are worse than O(x−1/2) at x = 0. This covers
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all proposed models. Certainly, all proposed models thus far are contin-

uous, so this condition is easily satisfied.

• Interpreting (7.10) we see that if the end-fire direction has no energy,

fφ(±π/2) = 0, then E[e−jsφ̂ir ] = 0. Alternatively, if some end-fire ra-

diation occurs then fφ(±π/2) > 0 and E[e−jsφ̂ir ] = O(s−1/2). From the

above, it follows that if there is no end-fire radiation, µULA is finite and

the mean interference cannot dominate the mean power of the desired

channel.

• Further, if there is end-fire radiation, then LSP does not hold as µULA →

∞. This conclusion holds by inspection of (7.9). When E[e−jsφ̂ir ] is

O(s−1/2), then
∑N

s=1 |E[e−jsφ̂ir ]|2 is O(logN) using well known proper-

ties of the series
∑N

s=1
1
s
. Also,

∑N
s=1

s
N
|E[e−jsφ̂ir ]|2 is finite, so that µULA

grows to infinity, but at a very slow logarithmic rate. Note that this inter-

ference growth can be described as critical as E[e−jsφ̂ir ] decays at exactly

the critical rate (s−1/2) required for logarithmic growth. Any reduction

at all in the decay rate would deliver finite interference and therefore

would enable LSP to hold.

• The importance of the end-fire direction can be understood in the fol-

lowing way. For a ULA, it is not the proximity of two incoming ray

angles that drives the interference, but the difference in the sines of the

angles (see τ in (7.6)). For angles close to broadside the difference in

sines is largest and for angles near end-fire the difference is smallest,

resulting in greater interference.

• We note that LSP does hold for i.i.d. Rayleigh fading channels. To see

this we use the results in [7] to give ζLSP = βiβ̄/α. Hence, ray-based

models differ from classical statistical channel models in this regard.
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• Overall, the result in (7.10) is extremely positive for double-sided mas-

sive MIMO. We have shown that in the challenging scenario where both

K and N grow large, the interference, relative to the power of the de-

sired channel, grows very slowly (logarithmically). Also, the scaling

of this growth factor is very small, since a large amount of end-fire ra-

diation is unlikely, and practical deployments typically employ patch

elements which have average look angles on the order of +/− 45◦ (de-

signed according to the downtilt angle of the array as well as the envi-

ronment) [151]. This substantially attenuates the end-fire (or near by)

radiation since the patterns create explicit nulls to reject the incoming

wavefronts in those directions. Although not shown in the thesis, fol-

lowing the approach in [35] the effect of antenna patterns can be mod-

elled as a multiplicative scaling of the ray powers which varies accord-

ing to the angle . This causes the typical end-fire reduction.

Given the power of these results, it is useful to validate the conclusions

with some special cases. Note that although uniform and von-Mises (VM) an-

gular distributions are not derived from measurements in real environments

they are useful, both for validating Theorem 1 and providing exact asymp-

totics which are not perturbed by simulation error.

Special Cases: Uniform Distribution

When φir ∼ U [0, 2π], fφ(x) =
1

2π
for −π ≤ x ≤ π and (7.10) becomes

E[e−jsφ̂ir ] ∼ 1

π
√
ds

cos
(

2πds− π

4

)
. (7.11)

This limiting value is verified in the uniform case where the exact solution is

known as E[e−jsφ̂ir ] = E[e−js2πdsinφir ] = J0(2πds) [132, p. 375]. For large values

of s, J0(2πds) ∼ cos(2πds− π
4
)/π
√
ds [132, p. 364], which agrees with (7.10).
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Hence, the general asymptotic analysis in (7.10) is supported and the exact

value of E[e−jsφ̂ir ] can be used in (7.9) to give the exact value of µULA.

Special Cases: Von-Mises Distribution

The VM distribution has also been used in angular modeling [152] and has

the PDF given by

fφ(x) =
eκcos(x−µ)

2πI0(κ)
, −π ≤ x ≤ π, (7.12)

where µ is a measure of location and κ is a measure of concentration. Substi-

tuting the VM PDF into (7.10) we obtain

E[e−jsφ̂ir ] ∼ ej2πds√
ds

(
eκcos(−π

2
−µ)

2πI0(κ)
e−j

π
4 +

eκcos(π
2
−µ)

2πI0(κ)
ej

π
4

)
. (7.13)

The exact solution can be found by integration, giving

E[e−jsφ̂ir ] =
I0

(√
κ2cos2(µ) + (κsin(µ)− j2πds)2

)
I0(κ)

. (7.14)

Further analysis shows that (7.14) is asymptotically equal to (7.13). This is

briefly explained as follows. For large q, the argument of I0(·) in the numera-

tor of (7.14) is approximately κsin(µ)−j2πdq. Then we use the large argument

approximation of I0(κsin(µ)− j2πdq) [132, p. 364] and simplify to give (7.13).

Hence, for the VM case also, we have verified (7.10) and given an exact solu-

tion for E[e−jqφ̂ir ].

Hence, for the VM case also, we have verified (7.10) and given an exact

solution for E[e−jsφ̂ir ].
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7.3.4 Avoiding Interference Growth

Since the logarithmic interference growth predicted by Theorem 1 is critical,

it can be removed by simple methods. For example, LSP can be assured by

trivial scheduling methods based on user separation. This is shown in the

following.

Expanding ηi =
∑K

j 6=i |hH
i hj/N |2 in terms of the steering vectors gives

ηi =
∑
j 6=i

1

N2

∑
r,s

∑
r′ ,s′

γ∗irγjsγir′γ
∗
js′

aH
iraisa

H
js′

air′ . (7.15)

From (7.4), ηi can be rewritten as

ηi =
∑
j 6=i

∑
r,s,r′ ,s′

Γijrsr′s′
1

N

∣∣∣∣sin (Nτ1/2)

sin (τ1/2)

∣∣∣∣ 1

N

∣∣∣∣sin (Nτ2/2)

sin (τ2/2)

∣∣∣∣ , (7.16)

where
∑

r,s,r′ ,s′ =
∑

r,s

∑
r′ ,s′ and Γijrsr′s′ = γ∗irγjsγir′γ

∗
js′

, τ1 = 2πd[sinφjs −

sinφir] and τ2 = 2πd[sinφir′ − sinφjs′ ]. Note that
∑

r,s,r′ ,s′ Γijrsr′s′ is finite and

for τi 6= 0,
∣∣∣∣sin (Nτi/2)

sin (τi/2)

∣∣∣∣ is bounded for i = 1, 2. Hence, for finite K, ηi → 0

for τ1 6= 0, τ2 6= 0 as the number of terms in the sum is equal to K − 1 but the

summand is O(N−2). Since P (τ1 = 0) = P (τ2 = 0) = 0 for continuous angular

variables, it follows that ηi
a.s.−→ 0 and LSP holds.

Next, consider the asymptotic case where the number of users is growing

but users are only scheduled together if the sines of their ray angles are sep-

arated by more than a given fixed protection level, ε > 0. Hence, |τi| > 2πdε

for i = 1, 2. Using this inequality in (7.16) gives

ηi ≤
1

N2sin2(πdε)

∑
j 6=i

∑
r,s,r′ ,s′

Γijrsr′s′ . (7.17)

Since the right hand side of (7.17) converges to zero as N →∞ it follows that

ηi
a.s.−→ 0 and LSP holds.
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7.4 UPA: Channel Hardening, FP and LSP

In this section, we extend the ULA results on channel hardening, FP and LSP

to a UPA. Throughout the work on LSP for a UPA we assume that Nx → ∞

and Ny →∞ as N →∞.

7.4.1 Channel Hardening

The channel hardening results presented in (7.3) for a ULA remain valid for

any array structure. Hence, hH
i hi/N

a.s.−→ Xi if aH
irais

a.s.−→ 0. For the UPA we

have

aH
irais
N

=
1

N
(airx ⊗ airy)

H(aisx ⊗ aisy)

=
1

N
(aH

irxaisx)(a
H
iryaisy), (7.18)

from basic properties of Kronecker products. Now, the cross products aH
irxaisx

and aH
iryaisy have a similar form to the ULA. Hence, from (7.3) we can deduce

that ∣∣∣∣aH
irais
N

∣∣∣∣ =
1

Nx

∣∣∣∣sin (Nxτx/2)

sin (τx/2)

∣∣∣∣ 1

Ny

∣∣∣∣sin (Nyτy/2)

sin (τy/2)

∣∣∣∣ , (7.19)

where τx = 2πdx(sinθiscosφis − sinθircosφir) and τy = 2πdy(sinθissinφis −

sinθirsinφir). As in Sec. 7.3.1, aH
irais/N converges to zero unless τx = 0 or τy =

0, an event having probability zero. Hence aH
irais/N

a.s.−→ 0 and hH
i hi/N

a.s.−→ Xi.
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7.4.2 FP (Single-Sided Massive MIMO)

The ULA results in (7.5) and (7.6) show that for any array, FP occurs if
aH
irajs
N

a.s.−→

0 as N →∞. Following the same calculation as in (7.19) gives∣∣∣∣aH
irajs
N

∣∣∣∣ =
1

Nx

∣∣∣∣sin (Nxτx/2)

sin (τx/2)

∣∣∣∣ 1

Ny

∣∣∣∣sin (Nyτy/2)

sin (τy/2)

∣∣∣∣ , (7.20)

where τx = 2πdx(sinθjscosφjs − sinθircosφir) and τy = 2πdy(sinθjssinφjs −

sinθirsinφir). Since P (τx = 0) = P (τy = 0) = 0 for continuous angular vari-

ables, it follows that ηi
a.s.−→ 0 and FP holds.

7.4.3 Large System Potential (Double-Sided Massive MIMO)

The existence of LSP for a UPA depends on whether the expression µUPA =

1
N
E
[
|aH
irajs|2

]
converges or not. This is analyzed in Theorem 2.

Theorem 2. The term µUPA for a UPA antenna structure grows logarithmically with

the following representation:

µUPA =
Nx−1∑
v=1−Nx

Ny−1∑
w=1−Ny

(
1− |v|

Nx

)(
1− |w|

Ny

)
|Mv,w|2, (7.21)

where Mv,w = E[e−j2πνv,wsin(θ)cos(φ−∆v,w)], νv,w =
√
v2d2

x + w2d2
y,

and ∆v,w = tan−1

(
wdy
vdx

)
.

Proof. The proof is given in Appendix 9.2.

Implications of Theorem 2

As in the ULA case, Appendix 9.2 shows that the interference growth is crit-

ical and any reduction in the rate of interference accumulation will lead to

LSP holding. The result holds for any continuous angular distribution so it is
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extremely general. Note that a ULA would normally aim to null the end-fire

direction (see (7.10)) and perfect nulling would avoid the interference growth.

In contrast, a similar argument using (9.19) shows that fθ(x) must equal zero

for x in {−π/2, 0, π/2} in order to avoid interference growth. For a verti-

cal UPA, to null the broadside direction is clearly unsuitable as it requires

nulling the dominant azimuth plane (θ = 0). In general for all types of UPA, a

more symmetric structure means that there are no sets of special angles which

avoid interference growth and for which the radiation is unwanted. Since the

proof is complex, it is instructive to look at the spherical uniform case where

µUPA can be derived and shown to grow logarithmically as in Theorem 2. This

is shown in the following.

Special Case: Uniform Distribution

We derive an equation for µUPA in the simplest uniform case, where the az-

imuth angle is φir ∼ U [0, 2π] and the elevation angle is θir ∼ U [−π
2
, π

2
]. In this

scenario, the following result applies.

Result 1. The value of µUPA for spherically uniform angles is given by

µUPA =
1

N

Nx∑
rx=1

Ny∑
ry=1

Nx∑
sx=1

Ny∑
sy=1

J4
0

(
π
√
d2
y(ry − sy)2 + d2

x(rx − sx)2
)
, (7.22)

where the proof is given in Appendix 9.3. In Appendix 9.4, this result is used

to demonstrate the logarithmic growth of µUPA.

Avoiding Interference Growth

As for the ULA, interference growth can be avoided by using finite K or sim-

ple scheduling. This is shown in the following. For a UPA, substituting the
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associated steering vectors into (7.15) gives

ηi =
∑
j 6=i

1

N2

∑
r,s,r′ ,s′

Γijrsr′s′a
H
irxaisxa

H
iryaisya

H
js′x

air′xa
H
js′y

air′y. (7.23)

As in (7.19), all of the four cross products of steering vectors in x and y do-

mains have representations as ratios of sine functions. Hence,

ηi =
∑
j 6=i

1

N2

∑
r,s,r′ ,s′

Γijrsr′s′

∣∣∣∣sin (Nxτx/2)

sin (τx/2)

∣∣∣∣ ∣∣∣∣sin (Nyτy/2)

sin (τy/2)

∣∣∣∣
∣∣∣∣∣sin

(
Nxτ

′
x/2
)

sin (τ ′x/2)

∣∣∣∣∣
∣∣∣∣∣sin

(
Nyτ

′
y/2
)

sin
(
τ ′y/2

) ∣∣∣∣∣ ,
where τx and τy are defined in Sec. 7.4.2, τ ′x = 2πdx(sinθis′cosφis′−sinθir′cosφir′ )

and τ
′
y = 2πdy(sinθjs′sinφjs′ − sinθjr′sinφjr′ ). In the asymptotic case where

K → ∞, consider scheduling using a similar protection threshold as used in

Sec. 7.3.4 where users are only selected if min(τx, τy, τ
′
x, τ

′
y) > 2πdε. With this

approach, we see that

ηi <
K∑
j 6=i

1

N2sin4(πdε)

∑
r,s,r′ ,s′

Γijrsr′s′ . (7.24)

Since the right hand side of (7.24) converges to zero as N →∞ it follows that

ηi
a.s.−→ 0 and LSP holds.

7.5 Numerical Results

In Fig. 7.1 we demonstrate the channel hardening and FP results for the ULA

discussed in Sec. 7.3 for K = 2 and an increasing number of antennas. We

adopt the non-line-of-sight (NLOS) 3GPP angular and cluster parameters in

[35]. The number of clusters is C = 20, and the number of subpaths per

cluster is L = 20. Referring to the channel model in (7.1), P = CL. Each

subpath angle of arrival (AoA) is modeled by a central cluster angle having
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a Gaussian distribution (zero mean and a standard deviation of 76.5◦) plus a

subray offset angle which is Laplacian with a standard deviation of 15◦. We

assume β1 = β2 = 1 and subrays having equal powers7. From the upper

plot of Fig. 7.1, we can see that the normalized power in the desired chan-

nel, S = |hH
i hi|/N ≈ 1 for large numbers of antennas. Similarly, the lower

plot shows the mean of interference term, I = |hH
i hj|/N decreasing to zero

as N → ∞. Note that Fig. 7.1 plots E[I] for both the ray-based model (via

simulation) and i.i.d. Rayleigh fading (via analysis) so that the variations do

not obscure the trend. As expected, the convergence to FP is slower for the

ray-based model but the initial rate of convergence is similar for both chan-

nels. Hence, both channel hardening and FP are shown to occur for a typical

parameter set as predicted by the analysis. Fig. 7.1 shows channel hardening

and FP occurring for a clustered channel model with wrapped Gaussian cen-

tral cluster angles and Laplacian offsets. This numerical example is useful as

it verifies the analysis for a commonly used ray-based model structure. The

analysis goes much further and proves the existence/non-existence of chan-

nel hardening and the existence of FP for all ray-based of the form in (7.1)

for a comprehensive range of ray distributions. These observations are in line

with the channel hardening measurements reported in [153].

In Fig. 7.2, we show that the power of the desired channel will either con-

verge to a constant or a random variable, verifying the analysis in Sec. 7.3.1.

We assume the same model as in Fig. 7.1 but with two possibilities for the

ray coefficients, γir. The Akdeniz model [35] uses a complex Gaussian vari-

able for γir, while the 3GPP model [35] uses a random phase. As shown in

Fig. 7.2, as the number of antennas grows, the cumulative distribution func-

tion (CDF) of the normalized desired channel power, S = hH
i hi/N , with the

7Equal ray powers are adopted for simplicity in Fig. 7.1 and Fig. 7.2 for initial verification
of the FP and channel hardening results, βir = 1/CL, and phases are uniformly distributed,
φir ∼ U [0, 2π].
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Figure 7.1: Channel hardening and FP (3GPP angular parameters).

Akdeniz model remains almost the same, indicating convergence to a ran-

dom variable. In contrast, with the random phase model of 3GPP the CDF

converges to a step function indicating that S converges to a constant. Hence,

as shown in Sec. 7.3.1, channel hardening can occur for ray-based models but

this depends on the models employed for the ray coefficients.

In Fig. 7.3, we show both the simulated and analytical results for µULA with

uniform and VM distributions using the results in Sec. 7.3.3. We also show

simulated values of µULA by adopting the angular parameters of the 3GPP

model in [35] as in Fig. 7.1. The number of antennas and users are growing at

the same ratio N/K = α = 2, while φir ∼ U [0, 2π] for the uniform model and

κ = 4.23 (for 30◦ angle spread) and µ = 0 for VM. From Fig. 7.3 we can see that

the analysis agrees well with simulation for both uniform and VM models.

We also notice that the growth rates of µULA are different for all three models,

due to the differences in the AoA distributions. In the following figure, we
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Figure 7.2: Channel hardening for two types of channel models.

give more details of the growth rate with regard to angular distributions.

In Fig. 7.4, we demonstrate the logarithmic growth rate of µULA against the

number of antennas, N , for VM and uniform models with different parame-

ters as shown in the legend. The analytical results in Sec. 7.3.3 were used in

generating µULA for the uniform and VM distributions, respectively. Note that

although the analysis in Theorem 1 predicted logarithmic growth for µULA,

this is hard to verify from Fig. 7.3. Hence, we substitute (7.10) into (7.9) and

identify the dominant component of µULA giving µULA ∼ mslopelog(N) + C0,

where C0 is a constant and

mslope =
2(f 2

φ(π
2
) + f 2

φ(−π
2
))

d
. (7.25)

Hence, mslope determines how quickly µULA will grow. The uniform distribu-

tion has the highest interference growth rate, which is muniform
slope = (π2d)

−1. For
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Figure 7.3: µULA vs N for three different angular distributions.

the VM model, the slope depends on κ and µ. In Fig. 7.4 we observe that

µULA is clearly logarithmic in N , as predicted, and that the slope is correctly

identified by (7.10), as shown by the dotted lines which have slope mslope.

As well as verifying the logarithmic growth, Fig. 7.4 demonstrates some

interesting angular properties. For both κ = 4.23 (angle spread = 30◦) and

κ = 1.49 (angle spread = 60◦), µULA decreases as µ is reduced from µ = 0.52

(30◦) to µ = 0. This is because shifting the mean towards broadside reduces

the interference inflation that occurs near end-fire. Secondly, for both µ = 0

and µ = 0.52 there is a cross-over as N increases. For small N , increased

angular spread is beneficial as it spreads the rays and reduces the chance of

high interference caused by rays in close proximity. However, for high N the

higher angular spread puts more probability near end-fire and this begins to

dominate and causes higher interference.

In Fig. 7.5, we confirm via simulation for the 3GPP parameters and via
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Figure 7.4: Logarithmic growth of µULA.

analysis for the uniform and VM models that the mean global interference

term, E[ηi], grows logarithmically as predicted by the analysis in Sec. 7.3.3.

For the uniform case, φir ∼ U [0, 2π], for VM, κ = 4.23, µ = 0, and for 3GPP we

use the parameters considered in Fig. 7.1. For the uniform and VM models all

user link gains and ray powers are equal, βir = (CL)−1. For the 3GPP param-

eters, we also consider unequal ray powers and unequal user link gains. To

avoid the substantial extra variation caused by shadowing models with large

arrays we employ a simple deterministic model for these powers. The link

gains decay exponentially from user 1 to user K such that βK = 1
10
β1 and the

cluster powers behave similarly. The desired user is then randomly allocated

one of the K distinct link gains. The levels are then adjusted to give the same

total power as in the uniform and VM models, and subrays in a particular

cluster all have the same power as assumed in [154]. Fig. 7.5 shows the same

logarithmic growth as Fig. 7.3, confirming the analysis.
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Figure 7.5: E[ηi] vs N for three angular distributions.

In Fig. 7.6, we show the variation of E[ηi] with N for the 3GPP channel

model. The parameters are identical to Fig. 7.5 except the channel powers,

β1, β2, · · ·, βK , are chosen using the classic path-loss and shadowing model

given in Sec. 4.4. The parameters used for the path loss and shadowing are:

path loss exponent γ = 3.5 and the standard deviation of the shadowing is

ζ = 6 dB. Note that the Fig. 7.5 simulations for the 3GPP model already show

simulation error. When the extra variation due to shadowing and path loss is

added in, the simulations become extremely variable. In Fig. 7.6, 4000 simu-

lations are run (as in Fig. 7.5) but this is far too small to see accurate results.

In practice, extremely long simulation runs are required in this scenario.

In Fig. 7.7, we evaluate the channel hardening and FP results for a UPA

with K = 2 and an increasing number of antennas. We adopt the angu-

lar models from [36]. The azimuth central angle follows a wrapped Gaus-

sian distribution (φc ∼ N (0◦, σ2
c )) with a Laplacian offset distribution (∆c,s ∼
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Figure 7.6: E[ηi] vs N for the 3GPP model including the effects of shadowing
for the users.

L(1/σs)). Both the central and offset angles for elevation have Laplacian dis-

tributions with θc ∼ L(1/σ̂c) (centred on 90◦) and δc,s ∼ L(1/σ̂s), respectively.

We adopt the following parameters: the number of clusters is C = 20, the

number of subrays within a cluster is L = 20, σc = 31.64◦ and σs = 24.25◦

from [154] and we use the upper 90% of the lognormally distributed values of

σ̂c and σ̂s from [36] in order to give a wide angular spread, which is 6.12◦ and

1.84◦, respectively (Scenario Wide). As in Fig. 7.1 and Fig. 7.2, equal powers

for subrays are assumed and βir = 1/(CL) for simplicity. From Fig. 7.7, we see

that, similar to ULA, FP and channel hardening also occur for the UPA struc-

ture. However, the gap between the 3GPP and Rayleigh channel in Fig. 7.7 is

wider than for a ULA. Hence, the smaller azimuth footprint of the UPA slows

down FP.

In Fig. 7.8, we show both the simulated and analytical results for µUPA
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Figure 7.7: Channel hardening and FP for UPA.

with a uniform angular distribution for both azimuth (U [0, 2π]) and elevation

angles (U [0, π]). The analytical results are from Secs. 7.4.3. We can see that

the analysis agrees well with the simulation. We also show the simulated

values of µUPA for two scenarios. Scenario Wide uses the angular parameters

in Fig. 7.7. Scenario Narrow uses C = 3, L = 16, σc = 14.4◦ and σs = 6.24◦ and

the lower 10% of the lognormally distributed values of σ̂c and σ̂s from [36]. As

with the ULA, the growth rates of µUPA are different for all three models, due

to the differences in both the azimuth and elevation angular distributions.

In Fig. 7.9, the logarithmic growth of µUPA with different angular spreads

in both azimuth and elevation angles is presented. As we can see, the nar-

rower the angular spread is, the quicker µUPA grows. Note that the lower

curves show reasonably clearly that growth is linear in log(N), logarithmic

in N. Even here, the simulation errors obscure the linearity a little. For the

narrow scenario, up to the number of antennas shown, the curve is still in its
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Figure 7.8: µUPA vs N for wide and narrow angular distributions for UPA.

initial stage before the linearity (the high N regime) begins. Given that the

graph already goes up to over 1000 antennas (log10(N) > 3), the x-axis was

stopped here as it is already a large number of antennas and simulations for

large arrays take a very long time due to the large variability of interference.

In Fig. 7.10, we confirm via simulation for the 3GPP parameters (adopt-

ing Scenario Wide and Scenario Narrow parameters in Fig. 7.8) that the mean

global interference term, E[ηi], grows logarithmically as predicted by the anal-

ysis in Sec. 7.4.38. We consider unequal ray powers and unequal user link

gains as in Fig. 7.5. The results in Fig. 7.10 are also shown on a logarith-

mic scale in Fig. 7.11. Again, note that the wide scenario shows clearly that

growth is linear in log(N). For the narrow scenario, the curves is still in its

initial stage before the linearity begins.

In Fig. 7.12, we show the instantaneous behavior of ηi that causes E[ηi]

8
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Figure 7.9: Logarithmic growth of µUPA for UPA.

to grow. A simple channel is assumed with 20 paths, half-wavelength an-

tenna spacing in a ULA, unit power rays, α = 10 and all rays have a U [0, 2π]

distribution. With no control over the users entering the system, occasional

large inteference values occur as interfering user rays nearly align with the

desired user. This is demonstrated by the spikes in the curve labelled as ”no

scheduling.” Note that these spikes keep occurring even for massive antenna

numbers, up to 2000. In contrast, we also show that the trivial scheduling

scheme introduced in Sec. 7.3.4 with a protection target of ε = 0.1, equivalent

to an angular separation of 0.57◦. Here, the value of ηi is well-behaved and

decays to zero.
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Figure 7.10: E[ηi] vs N for two angular distributions.

7.6 Conclusion

The fundamental properties of massive MIMO have been identified with great

generality for a broad class of ray-based models with a ULA or a UPA at the

BS. The generality and insight possible is considerably greater than can be

achieved with statistical channel models. In particular, we show that chan-

nel hardening may or may not occur depending on the model used and FP is

guaranteed for all continuous angular distributions. Although LSP will not

normally hold, as the mean interference grows logarithmically relative to the

desired channel, the implications for massive MIMO are excellent. As the

number of users grows, the mean interference does grow relative to the de-

sired channel but extremely slowly and this is further reduced by practical

considerations, such as the attenuation of end-fire radiation caused by typical

array patterns. In addition, we prove that this mean interference growth can
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Figure 7.11: E[ηi] vs log10N for two angular distributions.

be avoided by trivial scheduling schemes.
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Figure 7.12: ηi vs N with and without scheduling.
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8
Conclusions and Future Work

This chapter summarizes the research work presented in this thesis, and then

provides several future research directions.

8.1 Conclusions

This thesis analyses the system performance of MU-MIMO wireless commu-

nication systems using a variety of linear processing schemes based on analog

MRC and digital MRC. The analysis caters for a variety of channels including

i.i.d Rayleigh and correlated Rayleigh. Numerical results are also given for

Ricean channels. In addition, the fundamental properties of FP and channel

hardening are considered, both in terms of asymptotic massive MIMO be-

haviour as well as MRC behaviour, where we employ a very general class of

ray-based models. These topics are important for understanding next gen-

eration wireless communication systems as future systems are likely to op-

erate with large antenna arrays employing low complexity processing tech-

niques. A number of analytical, simulated results, and useful insights are

presented, leading to an improved understanding for future system imple-

mentation. Specific conclusions are given in the following.

133
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8.1.1 Distributed Antenna Systems

Chapter 4 and Chapter 6 analyse the system performance for various dis-

tributed BS layouts. Chapter 4 compares the system performance of digital

and analog MRC/MF in both centralized and distributed systems. We show

that digital MRC benefits from distributed clusters and analog MRC has a

relatively good performance in a centralized system. The impact of Rice K

factors is analysed, showing that the gap between digital MRC and analog

MRC shrinks with increasing Rice K factor in a centralized system but re-

mains in distributed systems. Chapter 6 presents analytical expressions for

the expected per user SINR in an uplink distributed MIMO system with two-

stage beamforming techniques. Two- and four-cluster BS layouts are consid-

ered with four beamforming strategies (A-D, D-D, A-ZF and D-ZF). The first

stage considers either analog or digital MRC, followed by the second stage of

either digital MRC or digital ZF. We also present the asymptotic behaviour of

A-D and D-D strategies. We show a π/4 performance ratio in a centralized

configuration, while for the distributed layout, the relative performance of

A-D and D-D varies depending on the distribution of interference among the

base stations. Finally, we show that the performance gap between A-D and D-

D increases with the number of BS clusters, which agrees with our analytical

results in Chapter 4.

• Analog MRC has the benefit of low power consumption, low complex-

ity, and hardware costs. It is an ideal candidate for massive MIMO sys-

tems if the performance gap between analog MRC and digital MRC is

reasonable. In our work, we show that if only considering local pro-

cessing for distributed clusters, the performance of analog MRC de-

grades compared with digital MRC when the number of clusters in-

creases. Thus, analog MRC is more suitable in a centralized system
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when a strong Rice K factor is anticipated, in other words, in a more

open environment.

• Two-stage processing makes the use of analog MRC at local processing

even more promising. A-D only requires phase shifters in the local pro-

cessing and one RF chain per cluster for central processing. Thus, A-D

further reduces the complexity and hardware requirements compared

with D-D and D-ZF for distributed systems. Furthermore, our results

show that A-D can outperform D-D at lower SNR and even at moderate

SNR levels the performance gap is small.

8.1.2 Spatial Correlation for Distributed and Centralized Sys-

tems

Chapter 4 and Chapter 5 consider the impact of correlation on MU-MIMO

systems. Chapter 4 presents novel analytical expressions of expected per-user

SINR for both centralized and distributed systems with arbitrary correlation

models. Although distributed systems reduce the adverse impact of correla-

tion by dividing the antennas into multiple clusters, the correlation within the

cluster still exists. Thus, we extend our work in Chapter 4 to the analysis of

various correlation models in a centralized system in Chapter 5. The analysis

demonstrates that SIR decreases when the user correlation matrices are iden-

tical, but increases when they are different. Thus, the system performance

is critically dependent on the correlation scenario. We have shown that for

uncorrelated fading the SINR converges to a constant. For fully correlated

channels SINR converges to zero for equal correlation matrices, whereas for

unequal correlation matrices SINR converges to zero or a constant, depending

on the correlation model.

• Novel insights are given that correlation can improve system perfor-
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mance and users’ angular distribution is the key. Large amplitude cor-

relation helps the signal relative to interference, thus enhancing SINR,

unless the phases are very similar when the SINR is adversely affected

by large interference. Hence, as long as there is diversity in the phase

parameters, increasing correlation is beneficial to performance.

• In a centralized system, our analysis shows that analog MRC and digital

MRC have the same asymptotic behaviour under the assumption of per-

fect correlation. This implies analog MRC will work well whereas dig-

ital MRC degrades when high correlation presents in the system. This

further explains why a strong Rice K factor would help analog MRC.

• The interference behaviour under perfect correlation with two special

correlation models, exponential and one-ring are studied. We find that

the asymptotic behaviour of interference mainly depends on the angu-

lar distribution of users.

8.1.3 Asymptotic Analysis for Massive MIMO

There are two cases to distinguish when referring to asymptotic analysis for

massive MIMO, single-sided massive MIMO and double-sided massive MI-

MO. If there is only a finite number of users to be served by increasing the

number of antenna elements, we refer to this as single-sided massive MIMO.

When growing the number of antennas, ideally, more users are likely to be

served, leading to a system that becomes large both in users and antennas.

This is referred as double-sided massive MIMO.

The effects of correlation on the asymptotic behaviour of double-sided

massive MIMO for analog and digital MRC is analysed in Chapter 5. The

findings suggest that the system performance is improved where there is per-

fect correlation within one user’s channel but a random phase distribution
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among users. Thus, in some cases, correlation is beneficial and can help sys-

tem performance. From the derived expression of SINR for i.i.d Rayleigh

fading, around 21.5% performance loss occurs with analog MRC compared

with digital MRC. The system performance analysis under perfect correla-

tion suggests that digital and analog MRC would have the same asymptotic

behaviour.

Chapter 6 concerns the asymptotic behaviour of expected SINR for the

two-stage processing techniques D-D and A-D in a single-sided massive MIMO

system. The analysis shows that A-D has a performance loss of approximately

21.5% compared to D-D in centralized systems. However, D-D performs sig-

nificantly better when interference is scattered among clusters while A-D ac-

tually outperforms D-D when the dominant interferers coincide at one BS

cluster.

Two key principles behind the success of massive MIMO are FP (single-

sided massive MIMO) and channel hardening. With FP, the use of large num-

bers of antennas offers an implicit interference reduction mechanism, and en-

ables the use of low complexity signal processing algorithms. The bulk of the

theoretical work on FP and channel hardening has utilized classical statisti-

cal channel models. In Chapter 7, we analyse FP and channel hardening for

ray-based channel models and, furthermore, we propose a novel system per-

formance metric, LSP (for double-sided massive MIMO). The fundamental

properties of massive MIMO have been identified with great generality for a

broad class of ray-based models with a ULA or a UPA at the BS. The gener-

ality and insight possible is considerably greater than can be achieved with

statistical channel models. In particular, we show that channel hardening

may or may not occur depending on the model used and FP is guaranteed

for all continuous angular distributions. Although LSP will not normally

hold, as the mean interference grows logarithmically relative to the desired
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channel, the implications for massive MIMO are excellent. In a double-sided

massive MIMO system, the mean interference does grow relative to the de-

sired channel but extremely slowly and this is further reduced by practical

considerations, such as the attenuation of end-fire radiation caused by typical

array patterns. In addition, we prove that this mean interference growth can

be avoided by trivial scheduling schemes.

• For ray-based models, we show that channel hardening may or may

not occur depending on the nature of the model and FP is guaranteed

for all models where the ray angles are continuous random variables (as

assumed by all models to date).

• For LSP, we derive remarkably simple expressions which relate the asymp-

totic interference behavior to system size, antenna spacing the ray dis-

tribution. We demonstrate that LSP will not normally hold as the mean

interference power grows logarithmically relative to the mean power

of the desired user channel as the system size increases. Although the

interference eventually dominates the desired channel, the growth is

very slow and is further attenuated by practical factors such as the likely

propagation environment and the typical array patterns employed. In

addition, we prove that trivial scheduling schemes can retain LSP, and

thus increase the robustness of massive MIMO performance.

8.2 Future Work

In this section, we propose the following research areas for further explo-

ration:
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8.2.1 Multi-user Scheduling for Massive MIMO

In Chapter 7, it was shown that simple scheduling can force LSP to hold.

Hence, it is expected that scheduling could have a large impact on ray-based

channels. However, choosing the optimal scheduling method is a polynomial

time hard problem, and has a computational complexity of O
(
K
Nuser

)
, where

Nuser is the number of potential users and K is the number to be selected. For

large systems, this complexity quickly becomes infeasible. Also, considering

the computational time for measuring the system performance based on the

chosen users, the computational burden is even heavier. Thus, the design of

efficient scheduling methods for ray-based channels is in high demand.

8.2.2 Multi-cell Interference Analysis for Two-stage Hybrid

MRC

In Chapter 6, we only consider the system performance of two-stage hybrid

MRC, with A-D and D-D in a single cell. Since MRC does not have the ability

to mitigate interference, it would be useful to analyse the system performance

when taking the adjacent cells’ interference into consideration. The same re-

search interest also applies in Chapter 5.
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9
Appendix

The work in these appendices is taken from [149].

9.1 Proof of Theorem 1

We note that

E[e−jsφ̂ir ] =

∫ 2πd

−2πd

e−jsxfφ̂(x)dx, (9.1)

where fφ̂(·) is PDF of φ̂ir. Now, φ̂ir = 2πdsinφir is a non one-to-one transfor-

mation of φir. Using standard transformation theory, we obtain

fφ̂(x) =
p(x)√
l2 − x2

, −l ≤ x ≤ l, (9.2)

where l = 2πd and

p(x) =

fφ
(
sin−1

(
x
l

))
+ fφ

(
π − sin−1

(
x
l

))
, x ≥ 0

fφ
(
sin−1

(
x
l

))
+ fφ

(
−π − sin−1

(
x
l

))
, x < 0.

(9.3)
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Hence, (9.1) is rewritten as

E[e−jsφ̂ir ] =

∫ l

−l
e−jsx

p(x)√
l2 − x2

dx. (9.4)

Using the notation in [155, Eq.1, p. 15], the Fourier transform (FT) of a func-

tion f(x) can be written as

g(y) =

∫ ∞
−∞

f(x)e−j2πxydx. (9.5)

If we set y =
s

2π
, then

g
( s

2π

)
=

∫ ∞
−∞

f(x)e−jsxdx. (9.6)

Using the Heaviside function, H(x), we can write (9.4) as a FT in the same

format as (9.6) as follows,

E[e−jsφ̂ir ] =

∫ ∞
−∞

e−jsx (H(x+ l)−H(x− l)) p(x)√
l2 − x2

dx. (9.7)

Hence, defining f(x) = (H(x+ l)−H(x− l)) p(x)√
l2 − x2

, allows E[e−jsφ̂ir ] to be

computed as the FT of f(x).

This formulation is particularly useful as we can now leverage known re-

sults on the asymptotics of FTs as s → ∞ [155]. These results depend on

the singularities of f(x) so we first discuss the nature of these singularities.

Clearly, f(x) has singularities at x = ±l and at any singularities of p(x). Note

that the singularities at x = ±l are infinite discontinuities (indicating that the

value of f(x) will grow infinitely large as x approaches ±l). In contrast, the

singularities of p(x) are never infinite discontinuities for any proposed, practi-

cal angular distribution models. Models such as the wrapped Gaussian have

no singularities inside (−l, l) while the Laplacian has only a non-differentiable
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point at the peak. Hence, the singularities at x = ±l are the worst. The general

principle presented in [155, p. 55] is that the ’worst’ singularity1 of a function

contributes the leading term to the asymptotic expression for its FT. Thus in

our case, we only need to consider the two singularities at x = ±l. Near

x1 = −l, f(x) behaves like F1(x) = H(x+ l)p(−l)(2l(l + x))−1/2 and simi-

larly near x2 = l, f(x) behaves like F2(x) = (1−H(x− l))p(l)(2l(l − x))−1/2.

Rewriting, we obtain

F1(x) =
H(x+ l)p(−l)√

2l
|x+ l|−

1
2 , (9.8)

F2(x) =
p(l)√

2l
|x− l|−

1
2 − H(x− l)p(l)√

2l
|x− l|−

1
2 . (9.9)

From [155, Theorem 19, p. 52], we know that if a generalised function, f(x),

has a finite number of singularities at {x = x1, x2, x3, ..., xm}, and for each

of them f(x) − Fm(x) has absolutely integrable N th order derivatives in an

interval including xm, where Fm(x) is a linear combination of functions of

type |x − xm|β , |x − xm|βsgn(x − xm), |x − xm|βlog|x − xm|, |x − xm|βlog|x −

xm|sgn(x− xm), and if f (N)(x) is well behaved at infinity, then g(y), the FT of

f(x), satisfies g(y) =
∑M

m=1Gm(y) + o(|y|−N), as |y| −→ ∞, where Gm(y) is the

FT of Fm(x). Using this, we have

g
( s

2π

)
∼ G1

( s

2π

)
+G2

( s

2π

)
, (9.10)

whereG1 andG2 are the FTs of F1(x) and F2(x) in (9.8) and (9.9) and∼ denotes

asymptotic equivalence defined in [132, p. 15]. From [155, Table 1, p. 43], the

1The singularity x = xm of a function, f(x), is worst if f(x) is of order |x− xm|β near xm
and β is the smallest value for all singularities [155, p. 55].
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FTs required are

F(|x− l|−
1
2 ) = e−2πjly|y|−

1
2 ,

F(H(x+ l)|x+ l|−
1
2 ) = e2πjly− 1

4
jπsgn(y)|2y|−

1
2 , (9.11)

F(H(x− l)|x− l|−
1
2 ) = e−2πjly− 1

4
jπsgn(y)|2y|−

1
2 .

Using (9.11), we obtain

g
( s

2π

)
∼ G1

( s

2π

)
+G2

( s

2π

)
(9.12)

=

√
π

ls

(
p(−l)√

2
ej(ls−

π
4

) + p(l)e−jls − p(l)√
2

√
π

s
e−j(ls+

π
4

)

)
.

Substituting p(l) = 2fφ(π
2
), p(−l) = 2fφ(−π

2
) and l = 2πd into (9.12), and after

some simplification we obtain the result in Theorem 1.

9.2 Proof of Theorem 2

We drop the subscripts to re-express Mv,w as follows,

M = Eθ
[
Eφ[e−j2πνsinθsinφ̃]

]
,

where φ̃ = φ−∆ + π
2
. We get

M =

∫ 0

−π
2

{
Eφ[e−j2πν|sinθ|sin ˜̃

φ]
}
f(θ)dθ +

∫ π
2

0

{
Eφ[e−j2πν|sin(θ)|sinφ̃]

}
f(θ)dθ,

(9.13)

where ˜̃φ = −φ̃. Setting s = ν, d = |sinθ|, allows us to use Theorem 1 to give
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the asymptotic version of the expected values in (9.13). Hence,

M ∼
∫ 0

−π
2

f(θ)√
ν|sinθ|

{
f ˜̃
φ

(
−π

2

)
ej(2πν|sinθ|−π

4 )
}
dθ (9.14)

+

∫ 0

−π
2

f(θ)√
ν|sinθ|

{
f ˜̃
φ

(π
2

)
e−j(2πν|sinθ|−π

4 )
}
dθ

+

∫ π
2

0

f(θ)√
ν|sinθ|

{
fφ̃

(
−π

2

)
ej(2πν|sinθ|−π

4 )
}
dθ

+

∫ π
2

0

f(θ)√
ν|sinθ|

{
fφ̃

(π
2

)
e−j(2πν|sinθ|−π

4 )
}
dθ.

Substituting f ˜̃
φ

(
−π

2

)
= fφ(∆), f ˜̃

φ

(
π
2

)
= fφ(∆ − π), fφ̃

(
−π

2

)
= fφ(∆ − π), and

fφ̃
(
π
2

)
= fφ(∆) into (9.14), we have

M ∼ fφ(∆)e−j
π
4

√
ν

I1 +
fφ(∆− π)ej

π
4

√
ν

I2 +
fφ(∆− π)e−j

π
4

√
ν

I3 +
fφ(∆)ej

π
4

√
ν

I4,

(9.15)

where I∗1 = I2 =

∫ 0

−π
2

f(θ)ej2πνsinθ√
|sinθ|

dθ and I∗3 = I4 =

∫ π
2

0

f(θ)e−j2πνsinθ
√

sinθ
dθ.

Hence, we only need to compute I =

∫ π
2

0

g(θ)e−j2πνsinθ
√

sinθ
dθ, where g(θ) = f(θ)

for I3 and I4 and g(θ) = f(−θ) for I1 and I2. Let X = sinθ and rewrite I as

I =

∫ 1

0

g(sin−1(x))e−j2πνx
√
x
√

1− x2
dx =

∫ 1

0

e−j2πνxq(x)dx, (9.16)

where q(x) =
g(sin−1(x))
√
x
√

1− x2
[H(x)−H(x− 1)]. As in Theorem 1, q(x) has its

worst singularities at x ∈ {0, 1}. Using [155, p. 55] again, we have q(x) ∼

F1(x) = g(0)H(x)|x|− 1
2 , when x −→ 0, and q(x) ∼ F2(x) = − 1√

2
g(π

2
)|x−1|− 1

2 +

1√
2
g(π

2
)|x− 1|− 1

2H(x− 1), when x −→ 1. Thus, according to [155, Theorem 19,

p. 52], we have I ∼ G1(y)+G2(y), whereGi(·) is the Fourier transform of Fi(·)

and y = ν/2π. Hence,
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I ∼ g(0)
e−j

π
4

sgn(y)

√
2
|y|−

1
2 − g

(π
2

) e−j2πy√
2
|y|−

1
2 + g

(π
2

)
e−j2πy

e−j
π
4

sgn(y)

2
|y|−

1
2 .

(9.17)

Substituting ν = 2πy in (9.17) and nothing that ν > 0 gives

I ∼ g(0)e−j
π
4

√
2ν

−
g(π

2
)e−j2πν
√

2ν
+
g(π

2
)e−j2πνe−j

π
4

2
√
ν

=
1√
ν

{
g(0)e−j

π
4 −

g(π
2
)e−j2πν+j π

4

2

}
.

(9.18)

Substituting (9.18) into (9.15) we get

M ∼ fφ(∆)e−j
π
4

ν

{
fθ(0)ej

π
4

√
2
−
fθ(−π

2
)

2
ej(2πν−

π
4

)

}
+
fφ(∆− π)ej

π
4

ν

{
fθ(0)e−j

π
4

√
2

−
fθ(−π

2
)e−j(2πν−

π
4

)

2

}

+
fφ(∆− π)e−j

π
4

ν

{
fθ(0)ej

π
4

√
2
−
fθ(

π
2
)ej(2πν−

π
4

)

2

}

+
fφ(∆)ej

π
4

ν

{
fθ(0)e−j

π
4

√
2

−
fθ(

π
2
)

2
e−j(2πν−

π
4

)

}
,

=
j

2ν

{
−fφ(∆− π)fθ

(
−π

2

)
e−j2πν

}
+

j

2ν

{
fφ(∆− π)fθ

(
π
2

)
ej2πν

}
+

j

2ν

{
fφ(∆)fθ

(
−π

2

)
ej2πν

}
,

− j

2ν

{
fφ(∆)fθ

(
π
2

)
e−j2πν

}
+

√
2fθ(0)

ν
(fφ(∆) + fφ(∆− π)) ,

α(ν,∆)

ν
.

(9.19)

According to a two-dimensional version of the integral test (a one-dimensional

version of the integral test can be found in [156, Theorem 9.10, p. 619]), (7.21)

converges if and only if the following expression converges as Nx → ∞,
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Ny →∞,

Z0 =

∫ Nx

−Nx

∫
y∈Y

(
1− |x|

Nx

)(
1− |y|

Ny

)
|Mx,y|2dydx. (9.20)

where Y = (−Ny,−1) ∪ (1, Ny). Note that the interval[−1,+1] has been cut

out of the integration zone for y. This is valid as it simply reflects that the first

few terms indexed by w in (7.21) are finite. As Mx,y ∼
α(ν,∆)

ν
, we have

Z0 ∼
∫ Nx

−Nx

∫
y∈Y

(
1− |x|

Nx

)(
1− |y|

Ny

)
|α(ν,∆)|2

x2d2
x + y2d2

y

dydx. (9.21)

Since |α(ν,∆)|2 is bounded and non-vanishing, the limit of Z0 exists if and

only if the limit of Z1 exists, where

Z1 ∼
∫ Nx

−Nx

∫
y∈Y

(
1− |x|

Nx

)(
1− |y|

Ny

)
1

x2 + y2
dydx,

= 4

∫ Nx

0

∫ Ny

1

(
1− x

Nx

)(
1− y

Ny

)
1

x2 + y2
dydx = IA + IB + IC + ID,

(9.22)

where IA =

∫ Nx

0

∫ Ny

1

1

x2 + y2
dydx, IB = −

∫ Nx

0

∫ Ny

1

1

Nx

x

x2 + y2
dydx,

IC =

∫ Nx

0

∫ Ny

1

1

NxNy

xy

x2 + y2
dydx, and ID = −

∫ Nx

0

∫ Ny

1

1

Ny

y

x2 + y2
dydx. Us-

ing the integral result
∫∞

0
(x2 + y2)

−1
dx = π/2y [130, Eq. 2.124.1, p. 71], we

are able to investigate the limits of IA, IB, IC and ID. First, we consider ID:

lim
Nx→∞,Ny→∞

ID = − lim
Ny→∞

∫ Ny

1

y

Ny

∫ ∞
0

y

x2 + y2
dxdy = − lim

Ny→∞

∫ Ny

1

π

2Ny

dy = −π
2
,

which is finite. Similarly, IB and IC are also finite in the limit. Thus, the

limiting behavior of (7.21) depends on IA, and we have

lim
Nx→∞,Ny→∞

IA = lim
Ny→∞

∫ Ny

1

∫ ∞
0

1

x2 + y2
dxdy = lim

Ny→∞

∫ Ny

1

π

2y
dy = lim

Ny→∞

π

2
log(Ny).



148

Hence, IA grows logarithmically and (7.21) grows logarithmically as desired.

9.3 Derivation of µUPA for Uniform Angular Distri-

butions

In this scenario, beginning with the basic definition of µUPA, we have

µUPA =
1

N
E
[∣∣aH

irajs
∣∣2]

=
1

N

N∑
k=1

N∑
l=1

E
[
a∗irkajska

∗
jslairl

]
=

1

N

N∑
k=1

N∑
l=1

E [a∗irkairl]E
[
a∗jslajsk

]
,

=
1

N

N∑
k=1

N∑
l=1

|E [a∗irkairl]|
2 (9.23)

=
1

N

Nx∑
kx=1

Ny∑
ky=1

lx∑
lx=1

Ny∑
ly=1

∣∣∣E [a∗irxkxa∗irykyairxlxairyly]∣∣∣2 . (9.24)

The expectation in (9.23) is given by

I1 = E[exp{j2πsinθ(dy(ky − ly)sinφ+ dx(kx − lx)cosφ)}], (9.25)

Taking expectation over φ first gives an integral of the form

1

2π

∫ 2π

0

exp{jz(αsinφ+ βcosφ)}dφ

=
1

2π

∫ 2π

0

exp{jz(
√
α2 + β2sin(φ+ ∆))}dφ

= J0(z
√
α2 + β2), (9.26)
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where ∆ = tan−1(β/α). Hence,

I1 = E
[
J0

(
2πsinθ

√
d2
y(ky − ly)2 + d2

x(kx − lx)2
)]
,

=
1

π

∫ π

0

J0(χsinθ)dθ, (9.27)

where χ = 2π
√
d2
y(ky − ly)2 + d2

x(kx − lx)2.

From [130, Eq.6, p. 724], we have

∫ π

0

J0(2zsinx)cos(2nx)dx = πJ2
n(x). (9.28)

Thus

∫ π

0

J0(2zsinx)dx = πJ2
0 (z), (9.29)

and we can rewrite I1 as

I1 = J2
0 (π
√
d2
y(ky − ly)2 + d2

x(kx − lx)2). (9.30)

Then, substituting I1 into (9.23) allows µUPA to be written as in (7.22).

9.4 Logarithmic growth of µUPA for Uniform Angu-

lar Distributions

A simple change of indices, m = ry − sy, n = rx − sx in (7.22) gives

µUPA =

Ny−1∑
m=1−Ny

Nx−1∑
n=1−Nx

(
1− |m|

Ny

)(
1− |n|

Nx

)
J4

0 (A(m,n)), (9.31)
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where A(m,n) = π
√
m2d2

y + n2d2
x. The sum in (9.31) is dominated by

µ1 =

Ny−1∑
m=1−Ny

Nx−1∑
n=1−Nx

J4
0 (A(m,n)), (9.32)

and it is straightforward to show that the remaining terms in (9.31) are finite

as N → ∞. Hence, the asymptotic behavior of µUPA is the same as for µ1.

Similarly, the sum in (9.32) is dominated by

µ2 = 4

Ny−1∑
m=1

Nx−1∑
n=1

J4
0 (A(m,n)), (9.33)

using the fact that A(m,n) is an even function of m and n and neglecting

terms which can be shown to be finite. Again, the asymptotic behavior of

µUPA is the same as for µ2. Using the asymptotic equivalence [129, Eq. 10.17.3],

J0(z) ∼
√

2

πz
cos(z − π/4), we see that µUPA behaves like

µ3 = 16

Ny−1∑
m=1

Nx−1∑
n=1

cos4(A(m,n)− π/4)

π2A2(m,n)
=

16

π4

Ny−1∑
m=1

Nx−1∑
n=1

cos4(A(m,n)− π/4)

m2d2
y + n2d2

x

.

(9.34)

Application of a two-dimensional version of the integral test (one-dimensional

version of the integral test can be found in [156, Theorem 9.10, p. 619]) and

some further analysis to handle the oscillations in the cos4(·) function via up-

per and lower bounds shows that the asymptotic behavior of µ3 is the same

as that of

µ4 =

∫ Ny−1

1

∫ Nx−1

1

1

x2d2
x + y2d2

y

dxdy =
1

dxdy

∫ (Ny−1)dy

dy

∫ (Nx−1)dx

dx

1

u2 + v2
dudv.

(9.35)
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Converting to polar coordinates, a simple upper bound on (9.35) is

µ4 6
∫ π/2

0

∫ ρmax

ρmin

1

ρ2
ρdρdθ =

π

2
(log(ρmax)− log(ρmin)) , (9.36)

where ρmin = min(dx, dy) and ρmax =
√

2max((Nx − 1)dx, (Ny − 1)dy). Hence,

the upper limit on µ4 grows logarithmically with N as N1/2 6 max(Nx, Ny) 6

N , so that 1
2
logN 6 log(max(Nx, Ny)) 6 logN . Similarly, when Nx → ∞,

Ny → ∞ as N → ∞, µ4 can be lower bounded by a logarithmic function of

N by integrating over a sector of an annulus contained inside the integration

region of (9.35). Hence, µUPA grows logarithmically with N as required.
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