
PENSATO
A Virtual Reality Framework for Musical Performance

by

Byron Mallett

A Masters Thesis by Composition
submitted to the Victoria University of Wellington
in fulfilment of the requirements for the degree of

Masters of Design Innovation in Computer Graphics

Victoria University of Wellington
2016

B

C

The final composition video associated with this thesis, Pensato: Fissure can be accessed
online through the following link.

http://youtu.be/tz79NmSt_Vo

All code associated with this thesis is available at the following links:

Showtime: https://github.com/mystfit/showtime
Pensato: https://github.com/Mystfit/TeslaRift

Unless otherwise indicated, images included in this thesis were created by Byron Mallett.
© Victoria University of Wellington 2016

D

E

I. Abstract

 This thesis presents the design for a method of controlling music software for live performance by

utilising virtual reality (VR) technologies. By analysing the performance methods of artists that use either

physical or gestural methods for controlling music, it is apparent that physical limitations of musical input

devices can hamper the creative process involved in authoring an interface for a performance. This thesis

proposes the use of VR technologies as a central foundation for authoring a unique workspace where a perfor-

mance interface can be both constructed and performed with. Through a number of design experiments using

a variety of gestural input technologies, the relationship between a musical performer, interface, and audience

was analysed. The final proposed design of a VR interface for musical performance focuses on providing the

performer with objects that can be directly manipulated with physical gestures performed by touching virtual

controls. By utilising the strengths provided by VR, a performer can learn how to effectively operate their

performance environment through the use of spatial awareness provided by VR stereoscopic rendering and

hand tracking, as well as allowing for the construction of unique interfaces that are not limited by physical

hardware constraints. This thesis also presents a software framework for connecting together multiple musical

devices within a single performance ecosystem that can all be directly controlled from a single VR space. The

final outcome of this research is a shared musical environment that is designed to foster closer connections

between an audience, a performer and a performance interface into a coherent and appealing experience for

all.

F

G

II. Acknowlegements

This thesis would not have been possible without the following people:

Thanks go to my supervisor Rhazes Spell, who provided all right questions and insight to help me retain
my direction throughout the course of this project.

Xiaodan Gao from Victoria Learning Support who helped me get started with the difficult process of writ-
ing, and whom without this thesis would not have reached completion.

Anne Niemetz and Josh Bailey for providing me the opportunity to create a work for the Forks and Sockets
concert, the basis of which became the direction for my final project Pensato.

Terry Moore and Michael McKinnon for all the support, encouragement and discussion that helped the
refinement of each of my works over time.

Steven Lam for helping me share the experience of completing a masters degree to the end, with all the
stress, elation, frustration and satisfaction involved.

Szilárd Ozorák for all his help in filming, cinematography and transportation that made my final video
possible.

My parents for their consistent support throughout each of my endeavours.

And to all my fellow masters students who have helped make the long nights bearable, thank you.

H

Table of Contents

I. Abstract E

II. Acknowlegements G

1. Introduction 1

1.1 Motivation . 2

1.1.1 Audio software complexity . 2

1.1.2 Audience Communication . 2

1.1.3 Hardware controls and limitations . 3

2. Context Analysis 5

2.1 Human gestural input in musical performance . 6

2.1.1 Theremin . 7

2.1.2 Imogen Heap’s Glove Project . 9

2.1.3 Analysis . 10

2.2 Hardware controls in Performance . 11

2.2.1 Taylorythm . 11

2.2.2 Beardyman . 12

2.2.3 Analysis . 14

2.2.4 Conclusion . 14

2.3 Virtual Reality in Musical Performance . 15

2.3.1 DRILE . 15

2.3.2 Virtual Music Instruments . 16

2.3.3 Analysis . 16

2.3.4 Conclusions . 16

2.4 Methods for interacting with VR spaces . 17

3. Design Experiments 19

3.1 Experiment One: Sonoromancer . 20

3.1.1 Background . 20

3.1.2 System . 22

3.1.3 Interaction . 22

3.1.4 Results . 24

3.2 Experiment Two: Tesla Rift . 27

3.2.1 Background . 27

3.2.2 System . 27

3.2.3 Results . 31

3.3 Experiment Three: Pensato and Fissure . 32

3.3.1 Performance . 32

I

3.3.2 Results . 32

4. Final Design: Pensato 33

4.1 Audio Software Relationship . 35

4.2 Basic VR Controls . 37

4.2.1 Slider . 37

4.2.2 Button . 37

4.2.3 Instrument . 37

4.3 VR Performance Widgets . 38

4.3.1 Value Trigger . 39

4.3.2 Pump Slider . 39

4.3.3 Matrix . 40

4.3.4 Radial Basis Function Sphere (RBF) . 41

4.4 Gesture Fundamentals . 42

4.4.1 Index Point . 43

4.4.2 Two-finger point . 43

4.4.3 Grasp . 43

4.4.4 Individual finger controls . 44

4.5 UI Design . 44

4.5.1 Hovering . 46

4.5.2 Orientation . 47

4.6 Organisation by Layers . 48

4.6.1 Menu Layer . 48

4.6.2 Instrument Layer . 48

4.6.3 Widget Layer . 48

5. Showtime Framework 51

5.1 Existing messaging systems . 52

5.2 Showtime . 53

5.2.1 Node . 53

5.2.2 Stage . 54

5.2.3 Creating a Showtime performance network 55

5.3 Pensato-Showtime network . 58

5.3.1 Conclusion . 60

6. Conclusion 61

6.1 Future directions . 62

7. Bibliography 65

8. Figures 68

J

1

1. Introduction

This thesis investigates the creative possibilities afforded by the merging of three separate technological

areas: the creation of live music using intangible instruments, the development of meaningful user interfaces

viewed and controlled using virtual reality technologies, and the operation of musical software through hard-

ware controllers.

By combining these avenues, this thesis presents a method of controlling musical software with virtual re-

ality technology that explores what possible performance and musical arrangement opportunities are unlocked

by the merger of these forms of technology.

2

1.1 Motivation

My motivation for combining virtual reality technologies with music software stems from my own

personal experiences and issues with the complexity of musical software interfaces and the rigidity of hard-

ware audio controller setups. As a musician, there are a number of areas that I believe can be improved upon

in the realm of electronic music performance. These areas include the increasing amount of complexity

inherit in music software interfaces, finding ways of communicating musical performance actions to an au-

dience, and the lack of flexibility for configuring musical hardware setups on the fly during performances.

1.1.1 Audio software complexity

Electronic music existed well before the use of the computer in synthesized music compositions and

performance. Instruments within this genre can be traced back over the last 120 years in various forms,

including the following examples.

• The Telharmonium created by Thaddeus Cahill in 1906 was a 200-ton instrument played using

a set of four keyboards and broadcast over the New York telephone network (Simon, 2014).

• The Theremin patented by Leon Theremin in 1928 which was an ethereal tone generator played

by a performer using only their body and with no physical contact with the instrument (Galeyev,

1991).

• The electronic synthesizers that have been constructed and popularized by Robert Moog (1934-

2005) since 1965 which helped to ease the synthesizer into mainstream music.

Even though electronic music production existed long before the age of computers, the progress of

both the power of computer systems and the flexibility of music software interfaces has helped to expand

the ability of performers to create musical works that would have been difficult or impossible to compose

using analog instruments. Modern software provides the ability to synthesize almost any conceivable sound

using vast numbers of parameters, leading to increasingly complicated interfaces being required in order to

expose all the functionality offered by these systems. But as the number of features and controls within audio

software increases, so does the need to have a intuitive and uncomplicated way of interacting with them, so

that musical inspiration is not lost through the fight with abstracted input mechanisms.

1.1.2 Audience Communication

One of the primary methods of interaction with audio software is still through the use of the ubiqui-

tous mouse and keyboard. These tools serve well as general purpose input devices, but also limit expression

3

in musical performance due to their generality. These input devices lack actions dedicated to a performance

context and must rely on the host performance software to provide a meaningful context for actions that are

then triggered by the input device.

Whilst these tools function well for a wide range of tasks, this can also hide the individual effort of a

live performer if they choose to use this as their primary method of performance. This can be attributed to

the audience presuming that the use of a mouse and keyboard requires a lower level of skill to operate based

on their own day-to-day experiences with using these devices. Performing with these input devices will not

offer enough visual cues to the audience to discern whether the performer is carrying out a complex series of

musical tasks rather or checking their email (Fintoni, 2013).

1.1.3 Hardware controls and limitations

The extension of musical interfaces using specialized hardware performance controls can help to over-

come the limitations of a mouse and keyboard setup for live performance, and provide a central focus for

the audience to observe in order to relate the authenticity of the performer’s actions to the generated music.

As music interfaces possess a great amount of complexity, custom hardware controls for manipulat-

ing parameters are incredibly useful for extending the range of actions a performer can accomplish without

switching between multiple contexts. By combining buttons, faders, knobs and multi-dimensional touch-

pads, a performer has access to a wide array of physical inputs for controlling each individual aspect of a

performance. However, most of these hardware controls only have single-use applications. For example, a

performer will typically link a control to the audio software to manipulate a single aspect of their perfor-

mance such as the volume of an instrument. This static mapping offers less options for the performer to

create new layout configurations on the fly and limits them to only being able to operate their interface in

a fixed number of ways.

Another alternative for controlling audio software is through the operation of instruments that feature

no physical components. Through the use of sensors, cameras and micro-controllers, instruments can be

created that are solely operated by the movement of the human body, rather than through a physical device.

This can open up a wide array of mappings between the movement of a person into the generation or control

of sound and music. This quickly introduces problems however, due to the removal of the haptic feedback

that is afforded to the performer by having a physical surface to press against. The performer has to memorize

precise body positions and motions in order to achieve the sound that they desire, with only their sense of

hearing available to gauge if a movement is correct. This can be remedied with controls being visualized in a

4

graphical manner, but depending on the size of screen used to deliver the visual feedback, this may limit the

range of motion that a performer can work with.

This thesis will investigate approaches to solving these issues, by coupling use of an Oculus Rift virtual

reality Head Mounted Display (HMD) with sensors for detecting hand and finger positions, in order to

create virtual controls that operate similarly to hardware sound controllers, but with the freedom afforded

by a virtual environment to organise and remap controls and parameters using spatial interactions between

controls.

The final creative output of this thesis is Pensato, a performance tool that allows for the extension of

music performance software into a VR space. Pensato utilizes an interface that allows for a performer to con-

trol musical software by manipulating virtual objects using a pair of positional and gesture tracking gloves.

This thesis also presents Showtime, a software framework for connecting together musical devices together

into a shared performance environment.

5

2. Context Analysis

Before undertaking the task of extending music software with VR technologies, an understanding of how

artists create and work with their own live performance systems is required. In order to improve upon these

existing implementations, an appreciation of how artists have created their own technology, instruments and

conventions for performing live electronic music is needed in order to establish what can be improved through

the addition of VR technologies to a musical performance systems.

This chapter will examine how some artists have uniquely approached this area, what interfaces and

design methodologies they have constructed in order to create their art, and how their designs can relate to the

application of VR technology to a performance system.

It is also important to examine how the artist presents their method of interaction to the audience. Two

approaches will be considered: sound synthesis and musical triggering. Sound synthesis will involve the artist

creating music controlled and expressed from their direct actions, similarly to how a performer utilizes a tradi-

tional music instrument. Musical triggering will cover the performance of arranged music where the performer

fills the role of a choreographer and directs the music through the playing of pre-composed sequences.

6

Figure 1: Barbara Buchholz plays a TVox model theremin (Gregor, 2008).

2.1 Human gestural input in musical performance

Human gestural input in electronic music stretches over 80 years of innovation and encompasses a

variety of approaches for involving the human body in a musical performance without the use of a physical

instrument. Two instruments that span this timeline include the Theremin, invented by Leon Theremin in

1928, and Imogen Heap’s performance gloves from 2013. By analysing these two instruments we can extract

positive and negative elements, and detail the advantageous uses of this performance approach as well as

possible improvements that can be made using VR input devices.

7

2.1.1 Theremin

Arguably the first person to perform using an intangible electronic instrument was Léon Theremin,

using his own invention the Termenvox, more commonly known as the Theremin (Galeyev, 1991). The in-

strument was operated using the position of the performer’s hands relative to two antennas to play a sound

that would alter in pitch and volume. The music played by the theremin was usually very legato (without

silence between notes), since the performer would constantly be sliding between frequencies as they per-

formed. To remedy this, the theremin performer would also articulate the volume of the instrument with

their other hand in order to separate out distinct notes from the constant change in frequency performed

with their other hand. Advertisements for theremin performances at the time of its introduction compare it

to pulling music from the air itself (Martin, 1995).

Expanding on the concept of controlling music through movement, Theremin went on to also create

the Terpsitone (Mason, 1936). This device allowed a dancer to use their height and body motion over a metal

floor plate to control musical pitch and their distance from a metal plate on a wall to control the amplitude.

The resulting performance resulted in a choreographed dance performance accompanied by a unique musi-

cal backing generated by the motion of the dancer.

Figure 2: Leon Theremin performing a trio for
theremin, voice and piano (Theremin, 1924).

Figure 3: Dancer performing with a Terpsitone
(Mason, 1936).

8

Figure 4: Me The Machine (Heap, 2014).

Figure 5: Imogen Heap at TEDGlobal 2012 (Heap, 2013).

9

2.1.2 Imogen Heap’s Glove Project

Imogen Heap’s demonstrative performance of her glove project involved the use of inertial motion

sensors, flex sensors, a Microsoft Kinect, and a series of microphones to remotely create and perform elec-

tronic music. The inertial motion sensors and flex sensors were built into a pair of gloves and enabled gestural

recognition as a form of interaction for controlling sound parameters and switching performance contexts.

The Kinect allowed for the position of Heap’s location on the stage to be tracked and could control param-

eters such as addition of reverb to Heap’s voice the further back she would place herself. The combination

of these systems enabled her to perform a choreographed routine where her body was used as the control

interface for a musical performance.

Imogen stated that one of the primary reasons for creating an interface designed in such a manner, was

to foster a closer connection between her movements on stage and the sounds that she was creating (Heap,

2013). This would allow the audience to more closely track the importance of each gesture to an instantane-

ous musical output. Some examples of gestures included drumming motions to trigger tuned percussion

and gesturing at waist height to control the pitch of a bass line.

10

2.1.3 Analysis

By drawing comparisons between the playing style for both of these instruments we can start to see

how such a interaction method would work within a VR space for the benefit of both the performer and

audience. Both the Theremin and Imogen Heap’s gloves demonstrate the importance of gesture within a

performance for fostering a connection between the artist’s performance and the audience. By choosing

appropriate movements that map to perceptibly audible outputs, the audience can begin to easily associate

a particular gesture or type of movement with the sound heard, bringing authenticity to the performer’s

actions. It will be important to make sure that this type of relationship is preserved within the final VR in-

terface so that an audience will not be confused about the role the performer is playing.

Both the Theremin and Imogen Heap’s gloves lack the haptic advantages provided by a physical in-

strument for playing fast and accurate notes. In the case of Imogen Heap’s gloves, small motors are present

that provide a vibration feedback response from certain actions. However, these are reactionary at best and

don’t provide an opposing force for resisting the motion of the performer’s limbs.

Physical instruments that have variable pitches (such as a stringed instrument like a violin) require

the performer to carefully pay attention to the played sound and alter their pitch to resolve poor intona-

tion. However, since a violin is a physical object that provides feedback to the player through touch, muscle

memory is utilized whilst learning how to play series of notes. The performer subconsciously learns where

each finger needs to be positioned relative to the other fingers on the neck in order to generate a particular

pitch. Both of these discussed instruments do not possess a tangible physical object that is interacted with by

the performer, rather the body of the performer is instead the instrument interface. As a result, the performer

has to be very precise in knowing where their body is located in relation to a control that cannot be directly

felt in the space where the performer is interacting with it.

 Both of these instruments also lack strong visual elements that indicates the way body has to move to

create a particular audible output. However, Heap’s interface does possess some visual elements representing

what high-level mode the performer is operating within, such as recording or playing back sound. The addi-

tion of a visual response indicating the result of the performer’s actions on a screen or projected surface can

help resolve this, but using these types of visual media will always maintain a physical separation between

the performer’s body and the visual output. The addition of a VR interface that synchronizes the performer’s

body between the real performance space and a virtual one, could make strides towards reducing this separa-

tion.

11

2.2 Hardware controls in Performance

By using custom and off-the-shelf hardware, a musician can create their own unique layouts and

methods for interfacing with music software. But musical software has become increasingly complex over

time. This means that control layouts have had to follow suit in order to provide artists higher levels of

control over their musical systems. This section examines artists such as the French music duo Taylorythm

, and Beardyman, who combine various kinds of musical technology to form platforms for performance or

musical improvisation. By evaluating the advantages of these artist’s unique control layouts, approaches to

applying VR technology as an augmentation for a similar system will be considered.

2.2.1 Taylorythm

A good example of the power afforded by combining multiple hardware controls for live performance

can be observed through performances created by the french electronic music duo Taylorythm. Analysing

the video of their remixed performance of “You are Amazing” by Eleven (Buignet & Tisseraud, 2013) we can

see the advantage afforded by the wealth of controllers used in their piece.

In their setup we can see multiple Novation Launchpad controllers (Novation, 2013), one for each

performer. Each launchpad is connected to the host performance software Ableton Live (Ableton, 2014)

and allows each performer to trigger sections of the song or play samples of sound. Note that there is only a

single laptop running Ableton Live for this the piece, necessitating the use of hardware controllers since the

logistics required to operate a mouse and keyboard with two performers would be impossible.

Figure 6: Taylorhythm - You are Amazing (Buignet & Tisseraud, 2013)

12

The multitude of devices present in this performance demonstrates the necessity for the control layout

to be uncluttered and easily accessible. Often one of the musicians has to multi-task between two different

devices or parameter controls using both hands simultaneously, demonstrating the need to have a clear ar-

rangement of controls at all times. The clear organisation of control devices in this piece also helps to estab-

lish a good division of tasks between each performer and reduce the chance of collision or interference from

two musicians competing over one interface.

Several instruments are operated by the variety of keyboard controllers present. In one instance, a

keyboard sends note information to a bass synthesizer whilst the rhythm is controlled through a control

knob instead of the keys being released and triggered to play notes. This sort of parameter-focussed opera-

tion allows the performer to stay in sync with the performance and remove the need for exact timing when

playing notes.

An iPad tablet present used in this performance, running the Ableton Live control software touchAble

(Zerodebug, 2013), allows the performers to control a large number of mapped parameters on a 2D surface.

By using a touchscreen interface in this performance, a wider range of controls can be stacked into one small

space and swapped between as required, reducing the total number of hardware controllers required.

2.2.2 Beardyman

Darren Foreman, also known by his stage name Beardyman, is most well known for his use of incred-

ibly complex and sophisticated live-looping techniques using nothing but his voice as a source of musical

samples. In his TED demonstration, he demonstrates how his musical workspace allows him to create a

vast range of different sounds and instruments through only the processing of his voice through multiple

slicing, pitch shifting and modulation techniques. The most recent version of his musical workstation, the

Beardytron5000 mkIII, features a bespoke UI design crafted to suit the improvisational style of Beardyman,

and demonstrates a variety of novel methods of interacting with sound as it is created in real-time (Foreman,

2014).

Whilst operating the instrument, Beardyman demonstrates a frantic level of interaction with the tab-

let surfaces and keyboards that comprise most of the input layers of the instrument, but each action appears

to be specific to achieving a outcome in the soundscape being created. Beardyman appears to be utilizing

gestures that extend past simple button or fader control gestures, and combines dragging, holding and tap-

ping movements to control a single parameter in a number of ways that would be difficult or impossible to

achieve using an equivalent physical control.

13

Figure 7: Beardyman: The Polyphonic Me (Foreman, 2013).

Without the dynamic interface capabilities offered by computer-driven touchscreen technology, such

an instrument would have to have a much larger surface area in order to provide enough controls to manipu-

late every parameter within the system.

14

2.2.3 Analysis

Both Taylorhythm and Beardyman use complex performance systems that have been hand crafted to

facilitate their own kind of musical performance using both unique or commercially available hardware and

software combinations. However, there are limits in regards to usability for anyone not familiar with these

unique control layouts. Whilst this is appropriate for these two performers, who have built a very personal

arrangement of hardware, the complexity and cost of the devices, coupled with the extensive space required

and lack of portability, will likely be a deterrent to their adoption by other performers. The addition of

touchscreen technology to both performance layouts offers a level of customization that extends beyond

simple hardware buttons and sliders, but these controls are limited by the physical constraints imposed by

the relatively small surface area offered by the tablet.

2.2.4 Conclusion

I believe that a VR interface could adopt the customization benefit afforded by touchscreen interfaces

whilst solving the surface area problem by providing a three dimensional area for touch controls. A disadvan-

tage of this method is that a VR interface will lack the haptic feedback provided by the physical surface of

a tablet (as discussed in the previous section). This will be a point for evaluation within the final VR design

and alternative solutions will need to be considered.

15

2.3 Virtual Reality in Musical Performance

The use of VR technology to assist a musical context is not a new idea. There have been a number of

attempts made over the last two decades at creating interfaces within virtual spaces for composing or per-

forming music. However, due to the limited availability, high cost, and ineffectiveness of VR technology ,

these prototypes have remained as proof-of-concepts. These projects discussed provide a number of natural

or immersive methods for interacting with objects within a virtual space within a musical context.

2.3.1 DRILE

One VR interface for performing music is DRILE, which is a VR environment that uses head-tracked

stereoscopic glasses and rhythmic motion controllers to control objects representing sound effects and pa-

rameters. The environment uses hierarchical live-looping to build up sequences of notes and effect param-

eters using ‘worms’ that act as nexus points for parameters that affect the music played. The performer can

modify these parameters in space by moving ‘tunnel’ objects over the worms which change the shape, hue

and transformations of the worm and thus the musical parameters linked to them. This project promotes

musical collaboration by letting performers manipulate multiple musical elements together in the shared

space, but is not able to deliver a fully immersive experience for every user simultaneously due to the limita-

tions of head tracking technology when dealing with multiple performers observing the same screen.

Figure 8: DRILE: An Immersive Environment for Hierarchical Live-Looping (Berthaut, De-
sainte-Catherine & Hachet, 2010)

16

2.3.2 Virtual Music Instruments

Another approach for applying VR technology to a musical context is through the creation of Virtual

Music Instruments, VMI for short (Mulder, 1998). For this project, The VMIs provided methods of interac-

tion that were inspired by tactile interactivity, though technological limitations stripped the possibility of

haptic feedback from the design. Some of the design metaphors used for interaction involved sculpting or in-

teraction with physical objects, such as a rubber sheet or ball. It is significant to note that the final evaluation

of the work states that it was difficult to interact with at times, due to the lack of visual depth cues. This can

be attributed to the fact that the system was presented to the performer using a traditional two dimensional

display, even though the design of the instruments would have been better suited for a 3D VR world. The

musical focus was also more strongly orientated towards sound synthesis rather than musical interpretation,

due to limitations in expressing tone and rhythm using the input mechanism provided.

2.3.3 Analysis

DRILE demonstrates the playing of notes through the use of physical controllers, which should prove

to be a more robust and effective method for playing exact rhythms rather than relying on gesturing in space,

due to the presence of a physical object to stimulate performance muscle memory. However, this limits the

number of gestures available, as only a series of simple button presses is involved and maintains a level of

abstraction between the actual hand of the performer and the virtual space. Removing this input abstraction

and using the hand of the performer directly is demonstrated in the VMI project and the positive response

that such a natural gesture interaction method can provide is demonstrated.

2.3.4 Conclusions

Whilst both of these VR interfaces demonstrate immersive methods of delivering spatial controls to a

performer, their relative isolation from a standard musical performance system means that effects and sound

samples need to be tailor-made and chosen for inclusion within the musical environment. My hypothesis

is that sticking to a more common musical system through integration with existing music software can

expand the creative resources available for a performer or composer, rather than reinventing the wheel in

terms of generating music.

17

2.4 Methods for interacting with VR spaces

A significant subject to discuss in regards to VR interaction design is how gestures and intent can be

placed upon a variable scale of realism. In particular, how gestures can fall under the categories of naturalism

or “magic” (Bowman, McMahan, & Ragan, 2012).

Natural gestures focus on using actions that we use in our daily lives into VR space on the subcon-

scious level. The actions typically involve types of movements that we do not need to actively think about,

such as grasping an object or pressing a button. The user has an intent that they need to communicate to the

item in question, and will naturally choose the most appropriate gesture for the interaction.

Gestures that fall in the category of “magic” are ones that exaggerate existing natural gestures in order

to let the user perform in ways that would be impossible with natural gestures due to physical constraints,

such as reaching for far away objects that lie outside the reach of a normal human. Magic gestures can also

encompass novel gestures that don’t have a close natural mapping. Many of these gestures can be used to

overcome the limitations of a VR environment, such as the attempting to solve the challenge of moving

through the VR space whilst being tethered to a workstation generating the feed for your VR headset.

In Bowman’s paper, tests were performed on VR tasks such as changing the observable viewpoint, tra-

versing a VR space, manipulating objects, driving, aiming, and performing multiple complex tasks. Most of

the experiments provided favourable outcomes for naturalistic gestures, where affording the user the closest

possible parallel to a real gestures would increase their precision and effectiveness at manipulating their sur-

roundings. Conversely, magic gestures that enhanced natural gestures provided a greater range of control, at

a cost of losing precision. From these results, I believe that utilizing natural gestures in the design of a virtual

music interface will prove to be the most effective method for building interaction methods that reinforce

learned accuracy over the course of using the interface, due to their closeness to real-world actions.

From this we can conclude that as the level of abstraction increases from a natural gesture to an un-

natural or hyper-real gesture, the more actively the user has to put them into action. In a live performance

context, naturalistic gestures will theoretically help to foster a closer connection between the performer and

their VR tool than hyper-real gestures, though such gestures still have a place for controlling non-time criti-

cal user interface elements.

18

1919

3. Design Experiments

For this thesis, two separate design experiments are presented as explorations of alternative methods of

musical and visual control using non-physical methods. Each project takes an opposing approach in regards to

interaction fidelity, ranging from abstract motions transformed into meaningful music, to precise and specific

motions translated into visual responses. These projects form a basis for the design interactions and decisions

evident in the final project outcome of this thesis.

20

Fig. 9: Sonoromancer in action

3.1 Experiment One: Sonoromancer

Sonoromancer was a solo experiment undertaken to understand the underlying connection between

the body of a performer and the space that they perform within. The project is similar in operation to instru-

ments such as the Terpsitone (see 2.1.1), but instead of sensing magnetic fields a Microsoft Kinect is used as

way of tracking the shape and movement of the body of a performer as they move through the performance

space.

3.1.1 Background

The concept for this project originated during a research period where various types of optical tech-

nologies were examined in order to determine their suitability for controlling a musical environment.

One early work examined was the Dimi-O instrument created by Erkki Kurenniemi which involved

a video input being converted to synthesized sound (Kurenniemi, 1971). By having a dancer perform in

front of a predefined line, the visual footage of the dancers movement was converted to notes played on a

synthesized organ locked to a series of notes within a scale.

More recent derivatives of this optical method have involved technology like the Microsoft Kinect

which is used to provide visual as well as depth information for musical performance. This technology has

also allowed for tracking of a performer’s body which allows for distinctions to be made between specific

limbs used within a performance to control different elements. Performances such as the V Motion Project

(Kofoed & Trott, 2012) and Chris Vik’s demonstration of live looping in Ableton Live using a Kinect (Vik,

2011) demonstrate some novel uses of this technology, where the position of the performer’s limbs are used

21

Fig. 10: Sonoromancer projected view

to play or to control effects applied to an instrument, as well as to trigger clips and samples.

As mentioned earlier in the context analysis of non-physical instruments, the lack of haptic feedback

and the difficulty involved in playing exact notes is a problem in this method of instrument performance. By

extension, any instrument that functions by using external sensors observing the human body, rather than

being directly operated upon by a performer will also suffer the same loss in feedback to the user.

Previous instruments constructed with Kinect sensors using the body tracking functionality can usu-

ally demonstrate a certain amount of guesswork on the performer’s part in terms of for the intended output

of a gesture. For example, the most intuitive actions involving the manipulation of parameter values through

these systems work most effectively when the value is calculated from a relative position, such as how far one

hand may be from the other. This can be attributed to the user engaging their spatial awareness to determine

where their hands should be positioned to achieve the desired effect, rather than having to observe their po-

sition through a separate display. When observing their actions through external means, the performer adds

an extra layer of abstraction between themselves and the instrument, as they need to consciously predict in

advance when their actions will result in a visible or audible output. This creates an extra step of conscious

thought for the performer, detracting from their ability to make musical choices instinctively.

This experiment approached this problem by removing the requirement for a performer to be very

specific in their movements and to adopt fluid methods of movement that were mapped to ensure pleasing

audio and visual outputs.

22

3.1.2 System

For Sonoromancer, only the Kinect depth sensor and colour camera were used. These were used to

control the musical system using a more abstract method of body control rather than a per-limb approach.

This led to the creation of an instrument that the performer “played” using a water simulation. The instru-

ment analysed how the performer perturbed the water simulation and generated musical notes and textures

from the result.

Whilst this may appear to be a counter-intuitive approach, especially regarding the previously stated

observations reducing the number of layers of abstraction, this design decision was made in order to discover

if there were techniques that could be applied to already abstracted systems in order to increase their intui-

tiveness. In this case, the simulation input method provided a different variety of gestures and movements

a performer could utilize in order to control the instrument, rather than being concerned with triggering

individual notes. This removed the requirement for the instrument to react instantaneously to input from

the performer, and acted instead as an amalgamation of the performer’s intent over time.

Rather than directly track the positions of each limb, the silhouette of the body was used as the main

form of interaction, with the Kinect’s depth camera used to recognize the silhouette of the performer (see

Figure 11: Single update loop of Sonoromancer). This was then used to mask the video feed of the perform-

er and to create motion vectors using an optical flow algorithm. These motion vectors were then used to

stimulate the fluid simulation. The depth camera was also used to determine how close the performer was in

relation to the front of the performance area in order to inject areas of high brightness into the fluid, which

would then dissipate over time. The visual output of the fluid simulation was then passed through a blob de-

tection algorithm in order to determine the shape, size, and position of the brightest areas of the fluid. These

blobs were then mapped to a variety of parameters that were converted into MIDI messages and forwarded

to Ableton Live to generate the musical output.

3.1.3 Interaction

The final version of Sonoromancer allowed a wide array of options for how a performer would move

in order to operate the instrument. The performer could spread themselves out as wide as possible in order

to inject a large amount of virtual dye into the system, and as a result, increase the size of the detected blobs.

Fast motion would greatly stimulate the fluid system, increasing the rate of dissipation for the different

blobs. As each blob would shrink in size and split into multiple small areas, the active musical note would

jump around between the remaining areas of brightness and create arpeggiated runs of notes. Somewhat

23

Fig. 11: Single update loop of Sonoromancer.

Frame end

Colour image

Depth image

User
silhouette

Calculate motion vectors
using OpenCV

Mask and
desaturate

Combine in
shader

Kinect Velocity Texture
Red = X velocity
Green = Y velocity
Blue = Depth

Clamp depth to short
range in front of user

Fluid
Velocity
Texture

Fluid Dye
Texture

Add

Add

Blue

Red
Green

Advect dye by
 velocity

Calculate fluid shape
properties using blob

detection

Parameter
mapping profile

Map blob parameters
to Midi

Frame start

Update Kinect
camera

Sonoromancer
Visuals

Update 2D
GPU Fluid
Simulation

Update
instruments

precise control could be obtained by the performer presenting a small profile to the camera by clasping both

hands together and gently pushing them into the depth range that the camera would start to inject dye

from. This motion could be extended into quick jabbing motions in different areas to quickly move between

multiple pitches.

The audio environment consisted of a number of digital instruments provided by Ableton Live which

were mapped to a variety of parameters provided by the fluid system. Each instrument featured different

types of mappings for generating a variety of different musical patterns appropriate for the sound of the in-

24

strument and was locked to a scale of notes. Mapping parameters such as pitch to the horizontal position of

the fluid blob would allow the performer to move horizontally to play specific notes, whilst mapping pitch

to the size of the blob would create constantly evolving sequences of notes as the performer moved forwards

or backwards within the performance area. The performer could also cycle between different instruments

and fluid colours by pressing buttons on a discreetly held wireless mouse.

3.1.4 Results

The final version of Sonoromancer worked well as an experimental method for controlling single

monophonic instruments, but due to its chaotic behaviour was not always the most reliable of instruments

for playing a wide range of music. The most appealing sounding instruments designed for the interface

were ethereal sounding synth pads and textures that would evolve gradually over time to create interlocking

harmonies, rather than being used to play distinct and controlled melodies. The interface also had only

rudimentary options for triggering or controlling elements outside of mapped parameters, so the performer

was limited to either playing notes or cycling between instruments. Some test performances were attempted

using live-looping, but they quickly became overly chaotic as no interface element was provided to control

when loops were being recorded.

The chaos of the fluid simulation created appealing imagery for both the performer and audience, but

removed all information about the musical workspace the performer was interacting with. This meant that

the performer had to rely on the projected output of the fluid simulation in order to receive visual infor-

mation about the state of the instrument. In some of the test performances, this meant that the performer

often had their back to any observers, as they would need to observe the same visual output as the audience.

This could be improved by having the output of the instrument projected onto the floor surrounding the

performer in order to more strongly connect them to the visual dimension of the performance.

25

26

Fig. 12: Front view of TeslaRift in action at the Forks in Sockets performance event.

27

3.2 Experiment Two: Tesla Rift

The second experiment functioned as a research platform for designing VR interfaces that could be

displayed and controlled using a variety of hardware. The final experiment delivered a number of controls

that could be manipulated in a VR space in order to generate live visuals for a performance.

3.2.1 Background

The idea for Tesla Rift originated from my participation in the Tesla music performance Forks in

Sockets (see Figure 12 on page 26). The performance revolved around musical and visual elements accom-

panying a 7-foot tall Tesla coil functioning as a giant square-wave synthesizer. The role Tesla Rift played in

the performance was to control the generation of visuals that were then passed along to a VJ who mixed and

displayed the result with other video feeds. When researching possible interaction methods, the question of

using VR technology to display and control the generated visuals was raised which led to an evaluation of

the available hardware approaches for both displaying and interacting with a VR space.

3.2.2 System

In order for Tesla Rift to function as an effective input mechanism using VR as a core design element

the following components were required.

• Hardware to display the VR space and detect which direction the user was looking in

• Hardware input controls for interacting with the VR space

• Software to generate an real-time interactive VR space

To display the VR world, an Oculus Rift developer kit was chosen. The Oculus Rift is a head mounted

display for delivering stereoscopic VR content that provides fast and accurate head tracking across 360° and a

wide field of view. Since the Rift arrived for developers in April 2013 after a wildly successful crowd-funding

campaign (Oculus, 2012), there has been a resurgence into VR research and content creation due to the

Rift’s inexpensive price (Kushner, 2014). Whilst the Rift did possess some drawbacks, such as a relatively

low display resolution of 640x800 pixels per eye and no positional tracking of the user’s head (only orienta-

tion) it served remarkably well in delivering a very believable VR environment to the user.

For manipulating the VR interface, a pair of Razer Hydra game controllers were chosen. These

motion based input devices were initially developed as game controllers that used magnetic fields to track

their exact position and orientation in space. Unfortunately the Hydra was limited by the lack of games that

28

Fig. 13: A Eurogamer Expo attendant tries an Oculus Rift HD prototype. (Bowles, 2013)

Fig. 14: Razer Hydra controllers (Castle, 2011).Fig. 15: Razer Hydra usage (Castle, 2011).

properly implemented its motion control functions and was limited to being a novelty game control device

for most of its market (Castle, 2011). Since the Rift was released, the Hydra and other types of motion

controllers have seen a resurgence of interest from developers interested in experimenting with motion based

controls for interacting with VR worlds.

In order to render the virtual interface, a game engine was required as the platform for rendering the

environment. The Unity3D game engine was chosen due to its modular programming approach which

helped speed the process of prototyping interactions. It was also chosen for its integration with both the Raz-

er Hydra and Oculus Rift peripherals and included demonstration code examples which helped accelerate

the development process.

29

The final design for the interface component of the performance system involved a number of mova-

ble floating orbs that contained a series of panels representing grouped controls for controlling the generated

visuals. Each value represented by a panel could be individually scaled by grasping the panel and increasing

or decreasing the distance of the hand from the control.

Values could be automated by connecting the panels to a number of floating discs that held different

types of repeating patterns, such as a value that would spike upon every beat before quickly dropping away

or a variety of different sine waves and values that would rise or fall based on input from external audio in-

put such as a microphone. The performer would draw connections between the parameters surrounding an

instrument to these value generators, which would then take over the responsibility of modifying the param-

eters based on a scale that could be controlled by the performer. Certain parameters functioned as buttons

rather than scaling sliders, allowing for a greater variety of control methods for the performer to utilize.

Fig. 16: Example audience-facing visual output of TeslaRift

30

Fig. 17: Preview of the performance interface being viewed through the HMD and the prototype
glove input device used for Tesla Rift.

31

The output visuals revolved around a white sphere as the central element present in a black void (see

Fig. 16 on page 29). The interface was used to change parameters of patterns displayed upon the sphere,

as well as how its shape morphed over time. Parameters such as speed, angular velocity and pulsation rates

could be controlled, as well as triggerable swarms of particles that would fly and orbit through the space. The

entire visual experience was rendered using only white or black colours, allowing the visual output to be used

by the VJ as live mask for their footage.

The parameters that were being modified in order to control the performance would send their values

via the Open Sound Control protocol (OSC) to a copy of the VR environment running on the computer

used by the VJ artist. However, the view was presented from a fixed camera angle that did not move as the

performer looked around the VR space and also hid the controls that were being manipulated.

3.2.3 Results

Whilst Tesla Rift’s interface for controlling visuals provided a novel experience, it contained some

flaws in regards to usability. As each control orb could be moved around and placed using physics simu-

lations, it was a time consuming process to organize the controls into arrangements that were close to the

performer. The spreading of controls evenly over the surface of a 3D sphere made it difficult to determine

what value was located on what control, as the most reliable method of determining this was to hold the

orb close enough to read the labels on each panel. This was also due to the low pixel resolution of the Rift of

640x800 per eye, which made small text hard to read.

As the performer, one impressive element I noticed whilst using the system was how I would be affect-

ed by the generated visuals in some situations. When the environment was still or slowly changing the size

and distance of the central sphere would be hard to establish due to its flat white colour on a black surface,

removing my ability to use the shading upon the surface of the sphere to discern its 3D shape. By contrast,

when the environment became swamped with swarms of particles my spatial awareness became acute due to

the large number of objects present with varying depths.

The input controllers tracked the position of my hands quite well, but a lot of practice was required to

memorize the correct button combinations need to perform tasks. The goal of removing this level of abstrac-

tion was resolved in later iterations of this project with the replacement of the input controllers with gloves

that utilized bend sensors to detect specific gestures rather than relying on button presses.

32

The setup and configuration process to allow Tesla Rift to talk to external programs was frequently

time consuming, due to reliance on using text files to describe parameters within the target of communi-

cation. This was later resolved with the invention of the Showtime protocol for Pensato which allowed for

parameters to be exposed or controlled across a variety of devices, discussed in “5. Showtime Framework”

on page 51.

3.3 Experiment Three: Pensato and Fissure

The final experiment was a VR interface for musical performance (see “4 Final Design: Pensato”, 33).

3.3.1 Performance

Pensato was demonstrated by myself in a live performance at Raglan Roast, Wellington on the 19th of

September 2014. The event involved a performance of Fissure which is an improvisational piece I arranged

to demonstrate Pensato’s performance capabilities, a projection screen that displayed to the audience a 2D

view of what I was observing as the performer, and was followed by an informal audience QA session.

Audience feedback received from the event featured both positive and negative remarks. The audience

found the novelty of watching a performer manipulate an invisible control space in order to create music

interesting. However, audience members also reported that they expressed difficulty in connecting some of

my movements as a performer to the musical feedback they were hearing. Even with the projection screen

displaying what I was seeing as a performer inside the VR headset, actions such as opening and closing men-

us or reconfiguring interface elements were interpreted as musical gestures but didn’t result in the creation

or manipulation of sound.

3.3.2 Results

Using the feedback from the previous performance, I created the final video performance of Fissure, a

link to which is available on page C. The performance featured three wall-sized projections located directly

in front of the performance area, in order to make the connection between my gestures and the changes they

would inflict upon Pensato's performance environment easier to observe.

3333

4. Final Design: Pensato

34

I present Pensato as the final compositional output of this thesis. Pensato in Italian translates to Eng-

lish as the word “thought”, and was arguably established as a musical direction by Anton Webern, described

by Perle (1995) as “a note which was to be imagined, not played” (p 149). It is through this definition that I

envision and hope how the VR interface will be interpreted by an audience, by appearing as if the performer

is skilfully manipulating an imaginary entity.

Pensato is a VR interface that acts as a hub for multiple audio devices. These devices are represent-

ed by a variety of VR controls and can be manipulated in a variety of ways using the interface to perform

musical works. By using the lessons learnt from my previous VR input experiments, the interface has been

designed to leverage the advantages provided by such a VR space and associated technologies.

This chapter will cover the following topics:

• The relationship between Pensato and external music software.

• The tools Pensato provides for authoring configurations of VR controls and how they are used

during a performance.

• The method of interaction through the use of natural gestures.

• The organisational principles adopted within the VR environment to reduce confusion.

35

4.1 Audio Software Relationship

In order for Pensato to satisfy its purpose as central hub for controlling a musical performance, an

external program was required for generating the audio output. The software chosen for this purpose was the

Digital Audio Workstation (DAW) Ableton Live due to its effectiveness as a real-time musical performance

platform. Live’s musical controls, organisation and methods of execution were analysed throughout the

design process of Pensato in order to create a family of VR controls that would easily map to most of Live’s

core features. The core features that were targeted for implementation were the organisation of multiple

instruments into ‘tracks’, the manipulation of sound parameters through ‘devices’ and the arrangement of

multiple musical ideas and sections into ‘clips’.

Fundamentally, the goal of music software is to produce a mixed waveform that when played through

speakers can be interpreted by the human ear as music. Live accomplishes this through allowing the combi-

nation of pre-recorded audio samples and synthesized instruments. Samples can range from a single sound

clip being shifted in pitch to play multiple notes, to loops and single hits of recorded or synthesized sound

that are then layered together to form the musical composition. Synthesized instruments focus on manipu-

lating a variety of parameters to generate a particular waveform and can offer a vast amount of customization

to obtain an ideal sound. Live can also be used as an audio editing and mixing environment for creating

musical compositions, rather than exclusively as a performance environment.

In Live, samples and synthesized instruments can be played directly using hardware such as MIDI

keyboards or through recorded clips which represent recorded sequences of notes or parameter data. One of

Live’s main strengths that elevates it as a tool for performing music is how it organises these clips in a mode

called the “session view” (see Figure 18). The structure of the session view and how it organized its musical

sub-objects was adopted as the main way of grouping multiple related VR controls together in a hierarchical

manner.

36

The session view comprises a matrix of instrument tracks arranged in columns. Within each cell of

the matrix, a clip can be placed which upon triggering will play either a sequence of MIDI notes stored in

the clip, or will play an associated sample. Each vertical track represents a grouping of clips that either repre-

sents a single synthesized instrument or a defined grouping of samples and is limited to one playing clip at a

time. Each horizontal row is called a “scene” and can trigger each clip located upon the row simultaneously,

allowing for rows to represent separate musical sections. Each track can contain multiple “devices”, which are

small modules that transform either the incoming note information or the sound waveform. These devices

possess a number of parameters which can be mapped to external MIDI messages allowing for real-time

manipulation of the device’s properties and behaviour.

The session view was adopted as the inspiration for Pensato’s organisational structure as it provides a

logical structure for grouping together instruments (tracks), controls (device parameters) and musical ideas

(clips). These elements were also chosen as they could be represented using simple graphical elements in the

VR space that were easy to move and operate using natural gestures.

Figure 18: Ableton Live displaying the session view.

37

Figure 19: Slider control.

Figure 20: Button control.

Figure 21: Instrument control.

4.2.1 Slider

The slider control is the simplest control available that

can manipulate a single parameter value. The value of the pa-

rameter can be modified by sliding a finger across the slider

in order to smoothly set the value of the parameter to a value

between a minimum and maximum amount (see Figure 19).

The slider will also update and show the real-time value of the

linked parameter if it is modified externally.

4.2.2 Button

The button control represents a single momentary or

toggle-able action that can be triggered by pressing it with a

finger (see Figure 20). When used to trigger clips within Able-

ton Live, the button will light up with a partially transparent

colour when the associated clip is queued to play on the next

beat, and will light up with an opaque colour when the clip

is actively playing.

4.2.3 Instrument

The instrument control groups all parameter sliders

and clip buttons associated with a track into a single object.

Tapping the instrument will display all child controls grouped

underneath this object, allowing them to be manipulated (see

Figure 21). The instrument also functions as a template from

which these child controls can be copied and inserted into

other widgets to create custom layouts (see “4.3 VR Perfor-

mance Widgets”, 38).

4.2 Basic VR Controls

The VR controls comprise the minimum set of objects required to interact with Live, whilst allowing

flexibility for improvisation or variance during a performance. In Pensato, device parameters are represented

by sliders, clips are represented by buttons, and both parameter sliders and clip buttons are grouped un-

derneath an instrument. Controls map to the Live object they are meant to represent using the Showtime

framework (see “5.3 Pensato-Showtime network”, 58).

38

4.3 VR Performance Widgets

Whilst it is fully possible for a performer to only use the provided slider and button controls for mod-

ifying external parameters, each control is only bound to one distinct parameter or action. It can become

difficult to accomplish complex sequences of actions without having a vast number of individual controls

laid out in front of the performer. To overcome this, Pensato provides a number of more complex controls

named widgets which allow for complex groupings of controls to be manipulated simultaneously in a variety

of ways.

Each widget can be populated with a number of child controls. Child controls are created by the user

copying an existing template control that is located within the menu layer (see “Menu Layer”, 48). This

is achieved by the user dragging a copy away from the template control and releasing the freshly created

clone on top of a widget (see Figure 22). The act of storing one control or widget within another is called

“docking”, and allows the user to create widgets that represent distinct musical ideas. Each different widget is

designed to trigger its child controls in a unique way, and can even contain other widgets as children which

contain their own child controls. This allows for complex nested layouts to be formed where a single action

performed upon a widget can perform a large number of different actions.

In order of increasing complexity, the widgets that Pensato offers are as follows.

• Value Trigger

• Pump

• Matrix

• Radial Basis Function Sphere

Figure 22: A Selecting control. B Tearing off clone. C Docking into widget.

A B C

39

4.3.1 Value Trigger

A value trigger widget acts as a storage lo-

cation for other controls (see Figure 23). All child

controls added to the trigger will simultaneously

perform their associated actions when the trigger

is activated by the performer. The trigger will also

store the value of a control that contains a variable

parameter when the control is added to the trigger as

a child. The trigger will set the parameter associated

with the child control to the stored value when the

trigger is activated.

Figure 23: Value Trigger widget (orange
sphere) containing two sliders and a button.

4.3.2 Pump Slider

The Pump Slider widget functions as a

three-dimensional version of the simple slider con-

trol (see Figure 24). The performer can grab the top

of the pump and slide it into and out of the base of

the widget which changes the value of the pie-per-

centage circle on the pump’s cap. This value will be

sent to each of the pump’s child slider controls, al-

lowing them to be manipulated in sync with each

other.

This widget can be used as a holder any num-

ber of slider controls, allowing the performer a way

of grouping together multiple variable controls that

need to be operated simultaneously.

Figure 24: Two Pump Slider widgets contain-
ing child slider controls.

This type of behaviour can be used to move between sections of a song. By triggering a value trigger

containing a number of clip buttons, all of the children would queue the necessary clips to play at the same

time. The performer could also swap an instrument between different patterns of stored values in order to

quickly swap between different configurations of sound.

40

4.3.3 Matrix

The Matrix widget is a 4x4x4 cube that can contain

either value trigger widgets or button controls as children

(see Figure 25). Whilst each child control can be triggered

independently, the matrix widget also allows for controls

to be triggered using individual fingers. The position of

the performer’s hand relative to the cube selects how far

back and which row to choose a control from, whilst each

finger the performer curls (ranging from index to pinky)

will select the column. This action visually appears from

the outside as if the performer is “playing” each control on

a row as if it were a piano.

Figure 25: Matrix widget containing
multiple value trigger widgets and button
controls.

Figure 26: Novation Launchpad controller (Novation, 2014)

The design of the matrix widget was inspired by hardware music controllers such as the Novation

Launchpad (see Figure 26). This controller consists of a 2D grid of buttons that can be assigned to trigger

clips and controls inside of audio software. The advantage provided by these controllers is similar to that of

a MIDI keyboard, but the organization of buttons in a grid rather than a linear arrangement makes it easier

to memorise which rows and sections are relevant for the current part of the song the performer is playing.

41

4.3.4 Radial Basis Function Sphere (RBF)

The RBF sphere is the most complex widget available in Pensato (see Figure 27). It allows the per-

former to interpolate between values for multiple plug slider widgets using positions in space. This is carried

out by a trained Radial Basis Function network which allows for multidimensional interpolations to be

performed between a number of inputs and outputs (Broomhead & Lowe, 1988).

In order to train the widget, the following steps are carried out.

• The performer adds a number of pump slider widgets already populated with one or more slider

controls into the sphere’s region of influence. The pumps will function as the outputs of the RBF

network. The pumps will also orient themselves facing outwards from the center of the sphere in

order to keep the space visually organised.

• The performer creates anchor points within the sphere’s volume that will serve as training points

for the RBF network.

• The performer selects one of the anchor points, then alters the value of the pumps. The position

of the anchor point is saved as the training point’s input value, whilst the values of the pumps are

saved as the training point’s output values. This is repeated for every anchor point.

When the widget is fully trained, the performer controls the sphere by placing their hand within

the volume and forming a pointing gesture. As the hand is moved within the volume, the position of the

extended digit is fed into the RBF network which outputs a series of interpolated values for the pumps. The

closer the finger is located to one of the anchor points, the more the trained pump values associated with the

anchor point’s location will influence the active value of the pumps.

Figure 27: RBF Sphere with three docked plug widgets containing a number of slider controls

42

4.4 Gesture Fundamentals

The types of gestures used within Pensato are primarily spatial. This means that the user has to ‘touch’

the virtual controls with their hands directly, rather than using generalized ‘magic’ gestures (see “2.4 Meth-

ods for interacting with VR spaces” on page 17). The motivation behind designing the system this way

was due to the control qualities afforded by the gloves for VR immersion. During early tests, methods of

control that manipulated objects through proximity rather than direct contact were sometimes awkward to

trigger or operate and thus many gestures were rewritten to function only upon touching an VR control.

To detect gestures, I constructed a pair of VR gloves from the Razer Hydra controllers used in “3.2

Experiment Two: Tesla Rift” on page 27. The gloves were constructed by coupling the position and ori-

entation trackers from the Hydra controllers with bend sensors embedded within a pair of dual-layer gloves.

Gestures were calibrated using an RBF network (see “4.3.4 Radial Basis Function Sphere (RBF)”, 41)

which was trained by associating each programmed gesture with values reported from the bend sensors lo-

cated within each glove.

The different types of gestures provided to the user are generally consistent throughout the operation

of the system. This design reflects the common UI scheme afforded by mouse driven systems where a small

number of individual actions can be performed using the input device, but expand to a great number of

actions depending on the context where an action is used. For example, when using a mouse, a left click

signifies the selection of an object, and a right click signifies some sort of secondary action.

Each gesture is linked to a virtual hand which mimics the pose of the performer’s hand in the real

world. To help the user distinguish when a gesture has been recognized, the appropriate fingers that make

up the main form of the gesture, such as the index finger for pointing, or the index and middle fingers for

scrolling will light up upon the virtual hand. This is to help reinforce to the performer which gesture they

have active at any time, since forming the wrong gesture by accident could cause unexpected reactions from

the virtual environment.

43

Figure 28: Index Point gesture

Figure 29: Two-finger point gesture

Figure 30: Grasp gesture

4.4.1 Index Point

Pointing is a natural action that someone performs

when indicating an object of interest or for controlling

something that requires the precision of a single digit.

This gesture was chosen as the method of selecting VR

controls and triggering objects to activate their primary

actions (see Figure 28).

4.4.2 Two-finger point

This gesture was chosen due to its use in modern

multi-touch laptop trackpads for scrolling content in a

direction (see Figure 29). This gesture has a real-world

equivalent of sliding a piece of paper across a surface,

where two fingers are used for stability. In Pensato, it is

used to scroll through stacks of VR controls, allowing for

elements out of reach to be brought into close enough

proximity for the user to manipulate.

4.4.3 Grasp

A grasping gesture is typically used when some-

one wishes to move a physical object from one location

to another. By wrapping their fingers around an object,

a person creates a stable attachment between their limb

and the object they wish to relocated. This gesture is used

within Pensato to move objects around within the VR

space (see Figure 30).

44

Figure 31: Playing gestures

4.4.4 Individual finger controls

This gesture (see Figure 31) mimics the finger motions of someone interacting with an object that has

a large number of controls parallel to each other. This is similar to the action performed when playing on a

piano or typing on a keyboard. In Pensato, this gesture is used to control widgets that have intractable sec-

tions located in close parallel proximity to each other. It is can also be used to rapidly trigger certain controls

where a single digit is not fast enough to perform a repeated action but multiple digits can provide increased

speed and less fatigue.

4.5 UI Design

The goal of any user interface is to present to the user a set of objects that either display information,

or provide methods of modifying that information. VR provides its own unique set of challenges when

designing an effective UI, as well as some of the typical challenges associated with creating 2D interfaces.

These include determining the most efficient way of delivering required information to the user, whilst

also maintaining a coherent organized interface that delivers information in the most contextually appro-

priate manner. With VR, obviously these challenges need to be solved in 3D space rather than 2D space.

Perspective needs to be taken into account where previously most 2D interfaces would be presented using

orthographic methods.

In the context of interface design for music performance, we already have two domains for interface

design that we can draw from, hardware and software. Hardware music controllers usually contain buttons

or variable controls, such as knobs and faders. More exotic controls such as touchpads also exist, such as in

the case of the Korg Kaossilator series of controllers, which can allow parameters to be modified in a two-di-

mensional space using a single finger (see Figure 32).

45

Hardware controls provide the closest approximation of a traditional instrument, as the performer

will receive appropriate haptic feedback from touching the physical controller. This will help them to learn

how to fluidly play their hardware controls through associated muscle memory, just like a traditional acous-

tic instrument. However, they can be incredibly difficult to modify, especially when using professional

production level controllers. Custom built hardware controllers are more flexible in regards to the options

provided to the musician, but are still difficult to modify or change on the fly whilst experimenting with mu-

sical composition, where the performer needs to stop playing to fabricate or rearrange their controls setup.

In recent years, the introduction of ubiquitous touch screen devices has provided the opportunity

for software developers to create custom music controller surfaces that use controls modelled after physi-

cal equivalents, but with the flexibility of having multiple configurations that can be swapped between as

required. For example, interfaces such as touchAble (Zerodebug, 2013) and Lemur (Liine, 2014) both

Figure 32: Korg KP3 and Kaossilator Pro touchpad audio controllers.

Figure 33: Steo Le Panda performance using touchAble (Panda, 2014).

46

provide configurable touch screen interfaces for interacting with a variety of media applications. Using VR

we can adopt the advantages afforded by natural gestures used in touch screen interfaces, but extends them

to the full surrounding 3D space of the performer, rather than being constrained to the physical dimensions

of a screen.

An iterative design process was used to construct Pensato’s user interface. The earliest version starting

in Tesla Rift used a free-form method of organising controls within the VR space. Controls could be placed

at any orientation and position in order to create a completely open interface. This ended up being a det-

rimented quality however, as micro-adjustments needed to be made in order to establish a suitable layout.

Since each control existed independently of each other, there was a lack of visual cues providing any sort of

structure and this caused confusing visual clutter. This also occurred when multiple menus or controls were

overlaid on top of each other, frequently resulting in a confused performer.

To solve this, the final iteration of Pensato uses a number of features to help maximise the legibility

and utility of the VR space: using a hovering mechanism to reduce the amount of information displayed

except when required, orientating 3D controls and towards the user to increase readability and the organi-

sation of the VR space into layers to compartmentalize functionality (see “Organisation by Layers”, 48).

4.5.1 Hovering

One of the disadvantages noted early on in the design of the VR user interface, is that overwhelming

the performer with a large number of open menus impedes productivity, due to the 3D nature of the menus

making it sometimes hard to determine their placement, especially when cloning and docking controls. To

solve this, all controls that involve scrolling functionality, or are used to create copies of template controls,

are displayed on a hover or one-at-a-time basis. When the performer places their hand over any of the clos-

est objects that create new controls, the scrolling menus will only open whilst the hand is located over the

control in question, and will close if moved too far away. This limits the number of open control menus to

one open per hand.

Interacting with instrument menus works on a similar basis, selecting an instrument will display its

available clips and parameter sliders, but selectively tearing off a copy of one of the instrument’s controls will

close the menu, allowing the performer to choose a destination for the freshly cloned object. Interacting with

another instrument will also only display one menu per hand.

47

4.5.2 Orientation

In order to impose some order upon the 3D space surrounding the performer, most controls will

perform a degree of self-organisation. Scrolling menus will rotate to face the eyes of the player so that the

largest portion of the intractable surface is presented at all times. The rotation happens on a slight delay and

only occurs on the yaw axis, so dragging and rotating controls that automatically rotate will still have a sense

of 3D depth and motion, particularly in the case of thin controls such as sliders.

Some controls that rely on interaction with the performer using a facing surface, such as the Matrix

widget, will use auto-rotation in order to present the most important surface first, whilst free floating widgets

like the Pump and Value Trigger widgets can be freely orientated. In the case of controls that function along

an axis for interaction, this allows their values to be manipulated using gestures in controllable directions. By

orientating a Pump widget upside down, a downwards swiping gesture will scale the value positively, whilst

orientated in the opposite direction will scale the value with an upwards motion. Base VR controls such as

clips and sliders and instruments will always face the user whilst they are docked within a widget, regardless

of the widget’s orientation. This is to allow the user to read the value of the control at all times.

48

4.6 Organisation by Layers

The controls in Pensato are organised by a hierarchy of ring layers. These layers are arranged in a

circular formation around waist height and within easy reach of the performer. Previous iterations allowed

for controls to exist outside of the reach of the performer requiring the use of either magic gestures to bring

controls closer, or have the performer stretch uncomfortably to bring the controls within arms reach. This

occasionally caused some safety issues, as the performer would accidentally push their hands into real-world

objects that they could not see. By organising controls in a variety of depths, the virtual environment gains

cues that help trigger the user’s depth perception and help them become more spatially aware of their sur-

roundings. Close objects will trigger a stronger feeling of depth perception than far away objects.

4.6.1 Menu Layer

The closest layer to the performer contains templates for creating widgets or instruments (see Figure

34-A). By hovering their hand over each template spawner, a scrollable menu will appear that provides cop-

yable templates the performer can drag into the workspace, resulting in a new intractable control. The layer

also contains buttons that affect the entire workspace on a global level. These include a button that switches

between the performance and editing contexts, a scrolling menu that controls what saved layout is active,

and a trash widget that will destroy controls dragged onto it.

4.6.2 Instrument Layer

The instrument layer consists of the instrument dock, a widget which provides a place for the per-

former to store instruments in to make them easier to access (see Figure 34-B). Each docked instrument

can be opened with the use of a pointing gesture which displays two menus side by side. These menus are

individually scrollable with the two-finger scroll gesture, and provide both a method for controlling the in-

strument directly, or a source for tearing off copies of parameters and clips for docking into other controls.

4.6.3 Widget Layer

The widget layer lies in the space behind the first two layers (see Figure 34-C). Controls can be cloned

from the control template source and placed anywhere in the 3D space surrounding the performer where

they can physically reach, but only custom controls can live in this space. Instruments, clips and sliders for

controlling parameters can not exist outside of a control and thus must be paired with an associated widget

for manipulation.

49

Figure 34: Menu Layer (A), Instrument Layer (B), Widget Layer (C)

A
B

C

50

5151

5. Showtime Framework

When working with musical software and hardware devices, a robust method of communication is re-

quired to connect together all devices into one cohesive musical environment. In order for Pensato to function

as an effective performance platform there were a number of requirements that needed to be satisfied when

choosing an appropriate communication method. These requirements were that a communication system had

to be fast, descriptive and flexible.

• The messaging system would need to provide a consistently fast throughput of data in order for ac-

tions sent to and from devices to instantly create audible responses.

• It would also need to be descriptive and allow for devices to provide information about their capabil-

ities so that the architect of the musical environment can appraise what functions are available across

all the devices present.

• Finally, the messaging system would need to provide the ability for multiple devices to talk to each

other bi-directionally with a minimum of configuration. It must also work across a variety of pro-

gramming languages and work with existing musical message protocols.

52

5.1 Existing messaging systems

Two existing musical communication systems were experimented with during the early design stages

of Pensato, MIDI and OSC.

MIDI (Music Instrument Digital Interface) has remained the standard messaging protocol for in-

terfacing multiple digital instruments since it was introduced in 1983 (Loy, 1985). It is a unidirectional

messaging format that allows the transmission of note and musical parameter data between either multiple

instruments or computers and has achieved ubiquitous status in music software and hardware.

Ableton Live uses MIDI extensively by allowing many mappable parameters within the program to

be controlled by or triggered by MIDI messages. Whilst common across almost all musical devices due to

its age and small footprint, MIDI does not provide a particularly wide throughput for modern data trans-

mission as the format runs at 31.25 baud (Loy, 1985), a speed appropriate when the format was introduced

but lacking for some modern usages. A MIDI connection can be overloaded by sending too many messages

simultaneously or in rapid succession. Its unidirectional nature also makes it difficult to set up complex

routings between devices.

OSC (Open Sound Control) is a messaging format which allows for descriptive addresses to be used

when sending information between devices. The format is networked based and so can leverage network

transport mechanisms for connecting devices together. It uses human readable addresses using a tree struc-

ture followed by an arbitrary value (e.g.: “/device/parameter 27”). Unlike MIDI, with its single pipe struc-

ture, OSC operates using a server/client structure where an OSC server can receive messages from multiple

OSC clients using the UDP network transport.

Whilst Ableton Live did not natively support OSC, the LiveGrabber plug-in was used during the

initial development of Pensato in order to connect the VR interface to multiple parameters within Live. This

approach was eventually scrapped due to the tedious amount of changes that were needed to be performed

by hand inside Live to correctly map incoming OSC addresses to individual parameters.

Even though both OSC and MIDI offered a number of advantages due to their pedigree as estab-

lished music communication protocols, their limitations were inhibiting the types of features that could be

implemented within the VR space. To answer Pensato’s needs for a fast, descriptive and flexible method of

communication between itself and multiple musical devices, the Showtime messaging system was developed.

53

5.2 Showtime

The Showtime framework is a cross-platform software library designed for connecting together any

number of performance devices or software programs in a manner that allows for easy configuration and

inter-communication. The framework was designed in mind for performances both figuratively and prac-

tically. “Nodes” (representing multiple performers) exist on top of a “stage”, which provides the context for

the performance. The framework accomplishes this by forming a structure of connectable nodes that can

broadcast messages to the entire performance, or instruct other devices to respond to certain inputs.

5.2.1 Node

A node represents a single device within the performance that possesses a number of controllable or

broadcastable actions. The types of actions that can be performed by nodes will be explained using an or-

chestral performance as a metaphor.

• Nodes contribute to the performance using broadcast actions, akin to how a instrument in an

orchestra contributes to the overall piece. In this case, the sheet music and performer ‘trigger’ the

instrument to ‘broadcast’ a sound, and the sound is ‘observed’ by an audience

• Nodes expose controllable actions that can be operated by other remote nodes. This is compara-

ble to how a section in the orchestra will react to a visual command from a conductor, such as a

visual command to raise or lower their volume. In this case, the conductor is a control node who

is requesting the performer nodes to run their control actions related to volume manipulation.

Figure 35: A simple Showtime network.

54

The actions that a node possesses are remotely triggered by other nodes using Remote Procedure Calls

(RPC), which is defined as “a procedure call in which the actual execution of the body of the procedure

takes place on a physically distinct processor from that on which the procedure call takes place” (Daintith

& Wright, 2014). However, unlike standard RPC methods, a node’s broadcast actions are closer to an event

model, where messages are announced globally to all interested parties. This hybrid approach of both RPC

and broadcast events allows for complex arrangements of nodes to be created that are not hindered by solely

adopting either approach.

In order to integrate devices into a Showtime network, nodes can be added to a host application using

the host’s specific scripting language. Nodes can be written in a number of languages including Python, C#,

Java and Processing. The hosting application can then trigger the node to broadcast actions when certain

events occur within the host, or the host can register an local function to be ran when a specific control

action is triggered by a remote node.

5.2.2 Stage

The stage is a dedicated node which acts as a directory service for the entire performance. When

started, each node will connect to the stage and register both the network address and port of the node, as

well as list of all of the RPC actions it will either broadcast or respond to. This allows nodes to enter the

performance through a single fixed IP address rather than having to connect individually to other node’s

addresses. Nodes can then query the stage for the addresses of other nodes and obtain lists of what actions

they will broadcast or respond to.

55

5.2.3 Creating a Showtime performance network

The process involved when creating a Showtime network passes through a few stages ranging from

nodes registering to the stage directory to connecting to nodes creating and responding to connections made

between each other. An example follows where two nodes are used to form a small performance network.

Figure 36: Example of a node registering itself on the stage.

To join the network, a node first needs to register itself to the stage. In this example, a Kazoo player

node wishes to join the performance. The Kazoo player registers three IP address and port combinations to

the stage (Figure 36) including: a socket that other nodes can connect to in order to receive outgoing broad-

cast actions from the Kazoo, a socket that will accept messages from other nodes to trigger control actions,

and a reply socket that allows the Kazoo to receive connection requests from other nodes and reply with a

confirmation. The stage also receives the node’s available broadcast and control actions.

Figure 37: A node registering to the stage without any actions.

A music teacher wishes to join the performance (Figure 37). This node will be used to issue control

actions to the Kazoo player and will also listen to the Kazoo player’s broadcast actions. Whilst the music

teacher does not possess any actions, it has broadcast action socket that can publish control action requests

to other nodes, and a control action socket that receives broadcast actions from nodes that it subscribes to.

56

Figure 38: A node querying the stage for information about the performance.

In order for the music teacher node to connect to the Kazoo player node, the music teacher needs to

know what the kazoo player’s network addresses are. It queries the stage (Figure 38) for a list of all available

nodes and receives the addresses of all nodes within the performance. It also downloads the list of actions the

kazoo can broadcast or respond to and can use this list in the future to craft control actions.

Figure 39: One node initiating a direct connection to another.

Once the music teacher has the addresses required to connect to the Kazoo, it initiates a connection

to the kazoo’s reply socket (Figure 39) and requests that the Kazoo’s control action socket subscribes to the

music teacher’s broadcast action socket. Now the Kazoo will listen to all control actions sent from the music

teacher’s broadcast action socket and will act upon any action sent that it understands. The Music Teacher’s

control action socket will also subscribe to the Kazoo’s broadcast action socket to in order complete the two-

way relationship between the two nodes. At this point, both nodes are now fully connected and can now

communicate with each other.

57

Figure 40: A node sending a control action to a listening node, followed by broad-
cast actions being generated from the node and sent to all listening nodes.

The Music Teacher can now create a control action from the Kazoo’s list of actions downloaded from

the stage. When the music teacher runs the control action locally, the node broadcasts out the control action

over its broadcast socket (Figure 40). Since the Kazoo is now listening to the music teacher, it receives the

control action and compares it against it’s own list of control actions. When it finds a match, it runs what-

ever function is associated with the control action, in this case the Kazoo starts playing the national anthem.

Now that the Kazoo has started to play notes, it has the opportunity to run its broadcast action “cur-

rently played note”. As the Kazoo moves over each new note, it will triggers the broadcast action which is

pushed out over the Kazoo’s broadcast action socket. This is picked up by the Music Teacher on its control

action socket, where it can decide how to respond to the action.

58

5.3 Pensato-Showtime network

Showtime was designed foremost to be a replacement for OSC in connecting Ableton Live to Pensa-

to’s VR environment. Its design was driven by the need for a way to interact with Ableton Live’s underlying

application programming interface (API), rather than by binding specific MIDI or OSC messages to indi-

vidual parameters. By switching to Showtime, which could directly trigger Live’s API functions, the need to

create manual mappings between both Live and Pensato’s parameters was removed.

In order to map the correct VR controls to the correct parameters, Pensato will request Live to provide

it with an XML formatted text file describing the layout of tracks, devices and parameters that make up the

currently open song within Live. From this layout file, Pensato will construct proxy VR controls to represent

tracks, clips and parameters (see “4.2 Basic VR Controls”, 37). Each VR control stores enough identifying

information about the object so that calls to Live’s API know how to map a particular request to the correct

object. For example, a slider in Pensato contains a track, device and parameter ID which is passed through

Showtime to Live’s API in order to manipulate the correct device parameter. Each proxy VR control can also

catch broadcast actions from Live that indicate how the original linked object changes. This allows the proxy

VR control to visually represent the state of the linked Live object whenever it is updated. For example, a

slider would listen for broadcast actions from Live that communicate that a value has changed. The slider

would then visually update to reflect the current value of the linked object.

The final Showtime network that was constructed to help serve Pensato’s performances can be seen in

Figure 41. Of note is that Ableton Live does not directly possess its own Showtime node. In order to bypass

some technical limitations within Live’s Python API, a program was written to bridge a Showtime node to

Ableton Live using a Python specific messaging system called Pyro (Jong, 2012). Some other nodes of note

are the glove nodes. These were used to send glove position and gesture data from a master instance of Pen-

sato that ran the VR environment to another instance that displayed the VR environment in a projectable

format. By synchronising the glove data between the two instances, the performer’s actions became visible to

both the performer and the audience.

59

Figure 41: Pensato’s Showtime network layout

60

5.3.1 Conclusion

The initial goal when creating the Showtime framework was to create a musical messaging system that

was fast, flexible and descriptive. Showtime removed the requirement for having to create manual connec-

tions between individual Ableton Live parameters and their Pensato VR control equivalents, speeding up the

creative process. The framework also operated at a consistently high speed, due to its foundation being built

upon on the high-speed ZeroMQ library and the ability to take advantage of high-speed network hardware.

The framework provided a flexible environment to work within, allowing for the creation of multiple

specialized nodes across a variety of programming languages. This helped to spread the high computing

requirements of Pensato and Ableton Live between multiple machines. These machines were configured to

specialise in the handling of audio, VR visual rendering or audience visual rendering tasks.

Showtime has provided me with a way to quickly prototype new types of connections between Ab-

leton Live that helped to spur the design process of new features within Pensato. It is also my hope that the

Showtime framework can also be used by other artists in the future as a way for sharing multiple musical

devices within one shared digital environment.

61

6. Conclusion

This thesis has explored a variety of methods for combining virtual reality technologies with an electronic

music system, in order to create a platform for arranging and performing live music. By analysing past and pres-

ent musicians who use either off-the-shelf hardware or unique control setups for performance, the relationship

between performer and audience was established as a crucial element. VR display technology was identified as

a possible solution for closing the control abstraction gap between full body musical controllers and the visuals

reinforcing the actions of a performer.

62

A number of design experiments were undertaken in order to research methods of musical control

using the movement of the human body as a musical interface. The first experiment was Sonoromancer, an

interface that used the silhouette and position of a performer’s body to create and perturb simulated musical

fluid. This final iteration of this experiment created mesmerizing visuals, but was difficult to precisely control

in order to create specific musical notes or patterns.

The second experiment was a parameterized visual controller using a VR user interface named Tesla

Rift. The experiment focused on exploring possible methods for interacting with controls in a 3D space us-

ing hand tracking technology, primarily using floating groups of parameters that could be moved around the

environment using physics. Whilst fun to interact with, the performer would frequently become confused

due to the non-permanent placement options for some of the UI controls and UI text labels being arranged

in 3D orientations without a common point of reference.

The final compositional output of this thesis was Pensato, a VR interface for controlling the music

software Ableton Live using gesture recognition gloves. Building upon the previous two experiments, Pen-

sato delivers an interface that encourages a performer to interact with its VR controls as if they were real

physical objects. By using gestures that would map to similar actions in the real world, a performer is able to

quickly learn how to interact with the VR interface and can apply their tacit knowledge for interfacing with

physical objects to the performance space. Pensato also allows the performer to create custom mappings be-

tween multiple musical parameters using a library of VR widgets, which can be built and saved into layouts

that can be switched between during a live performance. The final software embraces an auto-organization

philosophy for sorting VR controls that allows for unique layouts to be created by the performer whilst re-

ducing visual clutter and confusion by sorting and displaying controls as needed in groups.

The Showtime library was also created during the development of Pensato, which allows for the con-

nection of multiple pieces of media software, code, or hardware together in a shared network performance

space. This let Pensato control a number of external MIDI devices, talk to and listen to the innards of the

Ableton Live API, and distribute data from the glove input system to an external Pensato client allowing for

a second computer to visualize the performer’s VR space using an external projected surface.

6.1 Future directions

VR technology in recent years has improved both in quality and affordability, which is a trend that

hopefully will continue for the foreseeable future. This will allow for easier to use and more accurate input

63

hardware to be adopted for performances using VR spaces. The quality of the input hardware used in Pen-

sato for tracking the position and gesture of the performer’s hand could be drastically improved from its

current level in order to provide a completely immersive input solution for manipulating VR controls. The

possibility of using inertial motion based tracking solutions to accurately track the entire upper body of the

performer down to the individual finger joint level would definitely increase the overall accuracy and immer-

siveness of the interface to allow for more efficient and fluent performances.

Whilst outside of the scope of this thesis, tactile feedback is a very important element missing from

Pensato that should be investigated in the future. The lack of haptic feedback between VR controls and the

performer’s limbs means that many rhythmic controls possess a degree of uncertainty for when they will be

triggered from the performer. By reinforcing the visual stimulus of hitting a virtual control with an associated

haptic response, it is hoped that this will help synchronize the performer’s action with the intended outcome.

Another natural step beyond using VR spaces for solo performance, is to introduce collaborative

components. By combining multiple performers with their own individual input hardware into a shared VR

space, performers could share instruments, create custom controls and parameter mappings or even record

new sequences and patterns. These personal controls could then be passed around like physical objects,

possibly by passing or throwing controls to another performer. It is hoped that Showtime will provide func-

tionality for this sort of collaboration in the future and will further improve how performers dynamically

connect into and control aspects of the performance space. As VR headsets also become cheaper, more mo-

bile and ubiquitous, it is hoped that members of the audience will be able to join and observe the same VR

space that the performers exist within, even if they are located in a room located halfway across the world.

Pensato harnesses the growing usefulness of virtual reality technology as a way of extending a perform-

er’s ability for creating musical performances. It is my hope that this approach can be further explored in the

future to not only improve the breadth of tools available for live music performers, but to help further the

evolution of appropriate interface and interaction designs for virtual reality.

64

65

7. Bibliography

Ableton. (2014). What is Live? Retrieved November 13, 2014, from https://www.ableton.com/en/
live/

Berthaut, F., Desainte-Catherine, M., & Hachet, M. (2010). DRILE : An Immersive Environment
for Hierarchical Live-Looping. In Proceedings of the International Conference on New Inter-
faces for Musical Expression (pp. 192–197). Retrieved from http://www.nime.org/proceed-
ings/2010/nime2010_192.pdf

Blaszczyk, R. L. (2003). Review of Analog Days: The Invention and Impact of the Moog Synthesizer
by Trevor Pinch; Frank Trocco. Journal of Design History, 16(4), 357–359.

Bowman, D. A., McMahan, R. P., & Ragan, E. D. (2012). Questioning Naturalism in 3D User
Interfaces. Commun. ACM, 55(9), 78–88. http://doi.org/10.1145/2330667.2330687

Broomhead, D. S., & Lowe, D. (1988). Radial Basis Functions, Multi-Variable Functional Interpola-
tion and Adaptive Networks (pp. 5–6).

Buhmann, M. D. (2003). Radial basis functions: theory and implementations (Vol. 5). Cambridge
university press Cambridge.

Castle, A. (2011, September 12). Razer Hydra Review. Retrieved June 9, 2014, from http://www.
maximumpc.com/article/reviews/razer_hydra_review

Daintith, J., & Wright, E. (2014). Remote Procedure Call. A Dictionary of Comput-
ing (6th Edition). Oxford University Press. Retrieved from http://www.oxfordrefer-
ence.com/view/10.1093/acref/9780199234004.001.0001/acref-9780199234004-e-
4448?rskey=KuFMVN&result=4778

Foreman, D. (2013, August 2) Beardyman: The polyphonic me. (2013). [Video file]. Retrieved from
http://youtu.be/dIh8KBOOkYU

66

Foreman, D. (2014, August 24). Beardyman - Leeds Festival 2014 (end segment). Retrieved October
6, 2014, from http://soundcloud.com/beardyman/leeds-festival-2014-end-segment

Freed, A., & Schmeder, A. (2009). Features and Future of Open Sound Control version 1.1 for
NIME. Retrieved from http://cnmat.berkeley.edu/node/7002

Galeyev, B. M. (1991). L. S. Termen: Faustus of the Twentieth Century. Leonardo, 24(5), 573.
http://doi.org/10.2307/1575663

Heap I. (2013). Heap Performance with Musical Gloves Demo: Full Wired Talk 2012. [Video file].
Retrieved from http://youtu.be/6btFObRRD9k

Heap, I. (2014). Me The Machine (Official Video). [Video file]. Retrieved from http://youtu.be/
N0lCL2hpRPM

Introducing the Midi Fighter Spectra. (2013). Retrieved from https://www.youtube.com/watch?v=B
F9Pp2qFBzI&feature=youtube_gdata_player

Jong, I. de. (2012). Pyro: Python Remote Objects (Version 3.16). Retrieved from http://pythonhost-
ed.org//Pyro/

Kneppers, M. (2013, November 18). Livegrabber. Retrieved October 14, 2014, from http://
showsync.info/index.php/tools/livegrabber/

Kofoed, J., & Trott, M. von. (2012). The V Motion Project -- Can’t Help Myself [Official Music
Video]. Assembly. Retrieved from http://youtu.be/YERtJ-5wlhM

Kurenniemi, E. (1971). Erkki Kurenniemi - DIMI Ballet [DVD]. Retrieved from https://www.you-
tube.com/watch?v=d-yHULQ2V5c

Kushner, D. (2014). Virtual reality’s moment. IEEE Spectrum, 51(1), 34–37. http://doi.
org/10.1109/MSPEC.2014.6701429

Liine. (2014, January 21). Lemur. Retrieved October 13, 2014, from http://liine.net/en/products/
lemur/

Louis Buignet, & Adrien Tisseraud. (2013). Taylorythm - You Are Amazing (Remix) [Music Video].
Retrieved from http://youtu.be/YHGj9JF73-w

Loy, G. (1985). Musicians Make a Standard: The MIDI Phenomenon. Computer Music Journal,
9(4), 8–26. http://doi.org/10.2307/3679619

Martin, S. M. (1995). Theremin: An Electronic Odyssey. Documentary, Biography, History.

Mattis, O., & Moog, R. (1992, February 1). Pulling music out of thin air: An interview with Leon
Theremin. Keyboard Magazine. Retrieved from http://www.moogmusic.com/legacy/pulling-
music-out-thin-air-interview-leon-theremin

Mulder, A. G. E. (1998). Design of Virtual Three-dimensional Instruments for Sound Control.

Nortje, J. (2010). Persistence of Illusion: Using Spatial Illusion as a Visual Performance Mechanism.
Retrieved from http://researcharchive.vuw.ac.nz/handle/10063/1257

67

Novation. (2013). Launchpad S [Product page]. Retrieved October 21, 2014, from http://global.
novationmusic.com/midi-controllers-digital-dj/launchpad-s

Oculus. (2012, January 9). Oculus Rift: Step Into the Game. Retrieved December 5, 2014, from
https://www.kickstarter.com/projects/1523379957/oculus-rift-step-into-the-game

O’Modhrain, S. (2000). Playing by Feel: Incorporating Haptic Feedback Into Computer-based Mu-
sical Instruments. Department of Music, Stanford University.

Ostertag, B. (2002). Human Bodies, Computer Music. Leonardo Music Journal, 12, 11–14.

Perle, G. (1995). The Right Notes: Twenty-three Selected Essays by George Perle on Twentieth-cen-
tury Music. Pendragon Press.

Simon, C. (2014, December 1). The “Telharmonium” or “Dynamophone” Thaddeus Cahill, USA
1897. Retrieved from http://120years.net/wordpress/the-telharmonium-thaddeus-cahill-
usa-1897/

Vallis, O. S. (2013). Contemporary Approaches to Live Computer Music: The Evolution of the Per-
former Composer. Retrieved from http://researcharchive.vuw.ac.nz/handle/10063/2831

Vik, C. (2011). Live Looping with Ableton and Xbox Kinect. Retrieved from http://youtu.be/xP-
coM7BIDZ4

Zerodebug. (2013, November 23). touchAble 2. Retrieved October 13, 2014, from http://www.
touch-able.com/touchable-2/

8. Figures

Figure 1 Hohenberg, Gregor (2008) Barbara Buchholz playing the model TVox [photo-
graph], Retrieved 13th November, 2014, from http://commons.wikimedia.org/wiki/
File:Barbara_Buchholz_playing_TVox.jpg . 6

Figure 2 Theremin , Leon (1924) Leon Theremin performing a trio for theremin, voice and
piano, [photograph] Retrieved 13th November, 2014, from http://commons.wikime-
dia.org/wiki/File:Theremin_trio.jpg . 7

Figure 3 Mason, C. P. (1936) Theremin “Terpsitone” A new electronic novelty, [photograph],
Retrieved 21st May, 2014, from http://antiqueradio.org/art/Theremin1936.jpg 7

Figure 4 Heap, Imogen (2014) Me The Machine, [video], Retrieved 7th October, 2014, from
http://youtu.be/N0lCL2hpRPM . 8

Figure 5 Heap, Imogen (2013), Imogen Heap at TEDGlobal 2012, [video], Retrieved 30th
September, 2013.from http://youtu.be/6btFObRRD9k 8

Figure 6 Buignet, Louis & Tisseraud, Adrien (2013) Taylorhythm - You are Amazing, [video],
Retrieved 27th March, 2014, from http://youtu.be/YHGj9JF73-w 11

Figure 7 Foreman, Darren (2013) Beardyman: The Polyphonic Me, [video], Retrieved 27th
March, 2014 from http://youtu.be/dIh8KBOOkYU 13

Figure 8 Berthaut, Desainte-Catherine & Hachet (2010) DRILE interface, [photograph].
From DRILE: An Immersive Environment for Hierarchical Live-Looping (p. 192) by
Florent Berthaut, Myriam Desainte-Catherine & Martin Hachet, 2010, Proceedings
of the International Conference on New Interfaces for Musical Expression 15

Figure 13 Bowles, Michael (2013) A Eurogamer Expo attendant tries an Oculus Rift HD pro-
totype, [photograph], Retrieved 6th December, 2014, from http://d3o6gih6k6q9nz.
cloudfront.net/wp-content/uploads/2014/05/The-Oculus-Rift-headset-i-012.jpg . . . 28

Figure 14 Castle, Alex (2011) Razer Hydra controllers, [photograph], Retrieved 9th June, 2014,
from http://www.maximumpc.com/article/reviews/razer_hydra_review 28

Figure 15 Castle, Alex (2011) Razer Hydra usage, [photograph], Retrieved 9th June, 2014,
from http://www.maximumpc.com/article/reviews/razer_hydra_review 28

Figure 18 Ableton (2014) What is Live? [screen capture], Retrieved 13th November, 2014,
from https://www.ableton.com/en/live/ . 36

Figure 26 Novation (2014) Launchpad S, [photograph], Retrieved 21st October, 2014 from
http://global.novationmusic.com/midi-controllers-digital-dj/launchpad-s 40

Figure 33 Panda, (2014) DAFT PUNK - MIX LOUIS VUITTON 2008 (Steo Le Panda
remake for Daft Club - TOUCH IT), [video], Retrieved 12th January, 2015, from
https://www.youtube.com/watch?v=iRrpozAovPI 45

68

69

	I. Abstract
	II. Acknowlegements
	1.	Introduction
	1.1	Motivation
	1.1.1	Audio software complexity
	1.1.2	Audience Communication
	1.1.3	Hardware controls and limitations

	2.	Context Analysis
	2.1	Human gestural input in musical performance
	2.1.1	Theremin
	2.1.2	Imogen Heap’s Glove Project
	2.1.3	Analysis

	2.2	Hardware controls in Performance
	2.2.1	Taylorythm
	2.2.2	Beardyman
	2.2.3	Analysis
	2.2.4	Conclusion

	2.3	Virtual Reality in Musical Performance
	2.3.1	DRILE
	2.3.2	Virtual Music Instruments
	2.3.3	Analysis
	2.3.4	Conclusions

	2.4	Methods for interacting with VR spaces

	3.	Design Experiments
	3.1	Experiment One: Sonoromancer
	3.1.1	Background
	3.1.2	System
	3.1.3	Interaction
	3.1.4	Results

	3.2	Experiment Two: Tesla Rift
	3.2.1	Background
	3.2.2	System
	3.2.3	Results

	3.3	Experiment Three: Pensato and Fissure
	3.3.1	Performance
	3.3.2	Results

	4.	Final Design: Pensato
	4.1	Audio Software Relationship
	4.2	Basic VR Controls
	4.2.1	 Slider
	4.2.2	Button
	4.2.3	Instrument

	4.3	VR Performance Widgets
	4.3.1	Value Trigger
	4.3.2	Pump Slider
	4.3.3	Matrix
	4.3.4	Radial Basis Function Sphere (RBF)

	4.4	Gesture Fundamentals
	4.4.1	Index Point
	4.4.2	Two-finger point
	4.4.3	Grasp
	4.4.4	Individual finger controls

	4.5	UI Design
	4.5.1	Hovering
	4.5.2	Orientation

	4.6	Organisation by Layers
	4.6.1	Menu Layer
	4.6.2	Instrument Layer
	4.6.3	Widget Layer

	5.	Showtime Framework
	5.1	Existing messaging systems
	5.2	Showtime
	5.2.1	Node
	5.2.2	Stage
	5.2.3	Creating a Showtime performance network

	5.3	Pensato-Showtime network
	5.3.1	Conclusion

	6.	Conclusion
	6.1	Future directions

	7.	Bibliography
	8.	Figures

