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Abstract 

 Integral calculus is one of the topics involved in mathematical courses both at 

secondary and tertiary level with several applications in different disciplines. It is part of 

gateway mathematical courses at universities for many majors and important for the 

development of the science. Several studies had been undertaken for exploring students’ 

learning of integral calculus, both at the secondary and tertiary level, using a variety of 

frameworks (e.g., Action-Process-Object-Schema (APOS) theory (Dubinsky, 1991). 

However, students’ learning of integral calculus has not been explored in terms of 

metacognitive experiences and skills, and the number of studies which have explored 

metacognitive strategies in relation to the students’ learning of integral calculus is limited. 

Therefore, this study used Revised Bloom’s Taxonomy (RBT) (Anderson et al., 2001), 

Efklides’s metacognition framework (Efklides, 2008), and an adaptation of VisA 

(Visualization and Accuracy) instrument (Jacobse & Harskamp, 2012) for exploring 

students’ learning of integral calculus. 

 A multiple case study approach was used to explore students’ learning of the 

integral-area relationships and the Fundamental Theorem of Calculus in relation to the 

RBT’s factual, conceptual, and procedural knowledge, and the facets of metacognition 

including metacognitive knowledge, experiences, and skills. The study sample comprised 

of nine first year university and eight Year 13 students who participated in individual semi-

structured interviews answering nine integral calculus questions and 24 questions related 

to the RBT’s metacognitive knowledge. Integral calculus questions were designed to 

address different aspects of RBT’s knowledge dimension and activate RBT-related 

cognitive processes. A think aloud protocol and VisA instrument were also used during 

answering integral calculus questions for gathering information about students’ 

metacognitive experiences and skills. Ten undergraduate mathematics lecturers and five 

Year 13 mathematics teachers were also interviewed in relation to the teaching and learning 

of integral calculus to explore students’ difficulties in the topic. The entire teaching of 

integral calculus in a first year university course and a Year 13 classroom were video 

recorded and observed to obtain a better understanding of the teaching and learning of 

integral calculus in the context of the study. 
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 The study findings in terms of the RBT’s factual knowledge show several students 

had difficulty with notational aspects of the Fundamental Theorem of Calculus (FTC) (e.g., 

Thompson, 1994) whereas this issue was not dominant for the definite integral. In relation 

to the RBT’s conceptual and procedural knowledge for both topics, conceptual knowledge 

was less developed in students’ minds in comparison to procedural knowledge (e.g., 

students had not developed a geometric interpretation of the FTC, whereas they were able 

to solve integral questions using the FTC). The obtained results were consistent with 

previous studies for these three types of knowledge. The study contributes to the current 

literature by sharing students’ metacognitive knowledge, experiences and skills in relation 

to integral calculus. The findings highlight some student learning, monitoring, and 

problem-solving strategies in these topics. A comparison between University and Year 13 

students’ results showed students across this transition had different factual, conceptual, 

procedural, and metacognitive knowledge in these topics. For instance, University students 

in the sample use online resources more often than Year 13 students, are more interested 

in justifications behind the formulas, and have more accurate pre and post-judgments of 

their ability to solve integral questions. The information obtained using questions based on 

RBT and the metacognition framework indicates that these two together may be very useful 

for exploring students’ mathematical learning in different topics. 
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Chapter One: Introduction and Overview 

 Chapter One is dedicated to describing the problem explored in the study and 

rationale for doing it (Section 1.1). It also includes the context of study, the researcher’s 

background and the New Zealand context (Section 1.2). Key ideas of the main framework 

(Section 1.3), research questions, and focus of the study (Section 1.4) are also provided in 

the Chapter. 

1.1 Introduction and rationale 

 Over the past two decades, there has been an increasing decline in the number of 

high school students taking intermediate and advanced mathematical courses (Kennedy, 

Lyons, & Quinn, 2014). For instance, in Australia, between 1992 to 2012, the number of 

students who were enrolled in the last year of schooling, Year 12, increased by 16 %, while 

the number of students who took intermediate and advanced mathematical courses 

decreased by 11 and 7 %, respectively. In addition, there has been an increasing research 

interest in the secondary-tertiary transition in mathematics due to reports of students opting 

not to study mathematics at University (e.g., Biza & Zachariades, 2010; Godfrey & 

Thomas, 2008; London Mathematical Society, 1995; Luk, 2005; Tall 1997; Thomas et al., 

2010). The university mathematical courses (e.g., calculus, algebra) that can be chosen for 

investigating students’ difficulties within the transition are varied based on the universities 

curriculum and policies. However, in first-year courses usually calculus is taught (e.g., 

Victoria University of Wellington, 2015) because of its importance as a tool for “viewing 

and analysing the physical world” (Anton, Bivens, & Davis, 2012, p. xxi). Among calculus 

topics, the secondary-tertiary transition has been studied for equations (Godfrey & Thomas, 

2008) and derivatives (Biza & Zachariades, 2010) but to date, there is a lack of literature 

on transition in relation to integral calculus. This study used Revised Bloom’s Taxonomy 

(RBT) (Anderson, et al., 2001) as a framework for investigating the secondary-tertiary 

transition in integral calculus in New Zealand. Rationale for undertaking the study is now 

described. 

 Students moving from the study of mathematics at secondary schools to university 

face social, cultural, cognitive, and didactical changes (Section 3.3) that can be challenging. 

Issues relating to the secondary-tertiary transition have been identified complex, and 
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serious concerns about teaching and learning in these two levels have been reported (e.g., 

Clark & Lovric, 2008, 2009; Hourigan & O’Donoghue, 2007; Kajander & Lovric, 2005; 

London Mathematical Society, 1995; Luk, 2005; Tall 1997). For example, Hong, et al. 

(2009) reported there are differences between Year 13, the last year of schooling in New 

Zealand, and first-year tertiary calculus teaching from the points of view of teachers and 

lecturers (e.g., use of technology, access to resources, interaction with students, and 

purpose of teaching calculus). In New Zealand, research shows that there is not enough 

communication between teachers and lecturers of these two levels and misalignment 

between their curriculums have been found in some areas (e.g., sequences and series) 

(Thomas et al., 2010).  

 Calculus, taught internationally at secondary and tertiary levels, is within the focus 

of research in mathematics education at both levels (e.g., Biza & Zachariades, 2010; Green, 

2010; Karaali, 2011). Calculus is chosen for this study for four reasons. First, it has 

applications in many sciences such as physics, engineering, and astronomy (Anton et al., 

2012; Thomas, Weir, Hass, & Giordano, 2010). Second, its importance for developments 

of sciences is highlighted in the literature: 

 Modern scientific thought has been formed from the concepts of calculus and is 

 meaningless outside this context. When I speak of science, I do not restrict 

 myself  to other disciplines. In a very significant respect, mathematics itself came 

 into being with the development of calculus (Bressoud, 1992, p. 615). 

 Third, at the secondary level, calculus can increase students’ interest in doing 

Science, Technology, Engineering, and Mathematics (STEM) majors in university 

(McGivney-Burelle & Xue, 2013). Finally, at the tertiary level, calculus is a gateway to 

many advanced mathematical course work such as differential equations (Czocher, Tague, 

& Baker, 2013). Within the broad area of calculus, the rationale for choosing integral 

calculus for the study is now described. 

 Several studies reported students have difficulties with concepts within integral 

calculus (e.g., Jones, 2013; Kouropatov & Dreyfus, 2013; Kiat, 2005; Thomas & Hong, 

1996). While the majority of students taking integral calculus are successful in applying 

basic procedures for finding antiderivatives, their understandings of the concepts are 

limited. For example, Thomas & Hong (1996) reported many students regard integral 
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calculus “as a series of processes with associated algorithms and do not develop the grasp 

of concepts which would give them the necessary versatility of thought” (p. 577). Studies 

showed that students have difficulties with understanding the Fundamental Theorem of 

Calculus (FTC) (e.g., Thompson, 1994), integrating functions that are below the 𝑥-axis 

(e.g., Orton, 1983) or that have absolute value (e.g., ∫ |𝑥 + 2|𝑑𝑥
1

−1
) (Mundy, 1984), etc. In 

addition, Mahir (2009) found that students do not have enough conceptual understanding 

for solving integral calculus problems in: integrals, integral-area relation, the relationship 

between integrals as a function and the algebraic sum of areas, and the FTC.  

 The literature provides some useful information regarding students’ understanding 

of integral in terms of conceptual and procedural knowledge (e.g., Mahir, 2009). So far, 

however, there has been little discussion in the literature about metacognitive knowledge 

(Section 3.1.4) in relation to the teaching and learning of integral calculus.  

Other reasons for choosing integral calculus for this study are:  

 integral calculus is important for understanding a wide range of real-world 

problems, including a range of contexts in physics and engineering (e.g., 

Thompson & Silverman, 2008); 

 it has been less frequently explored than limits, another fundamental 

calculus concept (Jones, 2013);  

 many undergraduate and graduate courses in mathematics and engineering 

sciences rely heavily on parts of this topic (e.g., differential equations) 

(Czocher, Tague, & Baker, 2013); and 

 personal experiences as a lecturer and tutor in relation to students’ 

difficulties motivated me to focus on this topic (Section 1.2.1). 

It is common to use one or more frameworks to investigate the teaching and 

learning of mathematical concepts (e.g., Stewart, 2008). The following describes the 

rationales for choosing RBT as the main framework of the study.  

 For investigating the teaching, learning, and assessment of a mathematical concept, 

various frameworks of conceptual growth are proposed in the literature to explain how 

learning takes place in the mind (see Pegg & Tall, 2005; 2010), all of which have 

consequences for helping understand quality teaching (Bergsten, 2007). Two examples of 

frameworks commonly used in previous research (e.g., Jurdak & El Mouhayar, 2014; 
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Stewart, 2008) are Action-Process-Object-Schema (APOS) theory (Dubinsky, 1991) and 

the prestructural-unistructural-multistructural-relational-extended abstract levels in the 

Structure of the Observed Learning Outcome (SOLO) taxonomy (Biggs and Collis, 1982). 

These frameworks are one-dimensional, integrating cognitive processes and knowledge 

together. For example, SOLO taxonomy has five levels (Section 3.1.5), so that students’ 

responses and learning can be classified into one of these levels. In APOS theory, 

mathematical concepts are considered to be learnt using four mental structures (i.e., action, 

processes, objects, and schemas) that are constructed using five reflective abstractions 

(Section 3.1.6).  

 In this study, a two-dimensional framework which separates the knowledge and 

cognitive processes is used. According to Anderson et al. (2001) educational objectives 

consist of verbs and nouns with the verbs describing the intended cognitive processes and 

the nouns describing the knowledge that needs to be acquired or constructed. The reason 

for choosing a two-dimensional framework is to analyse educational objectives (i.e., 

students’ work, teaching activity, or curriculum documents) in more detail. A two-

dimensional framework, often encapsulated in a table such as an RBT Table, enables 

separate and connected analysis of knowledge and cognitive process (Chapter Two) and 

can therefore provide more information about the transition between secondary and tertiary 

level than a one-dimensional framework. Others Reasons for choosing RBT for exploring 

the transition are: 

 it is a framework that can be used for exploring teaching, learning, and assessment 

of a topic (Anderson, et al., 2001) but has been less in the focus of research and 

practices in mathematics education and has not been used for exploring the 

transition; 

 it has metacognitive knowledge as part of the knowledge dimension;  

 as the literature about metacognitive knowledge in relation to the teaching and 

learning of integral calculus is sparse, such research opens dialogue between 

lecturer, teachers, and researchers in relation to metacognitive knowledge in the 

context of teaching integral calculus; 
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  additionally, to date, the knowledge dimension of RBT has not been explored for 

integral calculus. By exploring the knowledge dimension of RBT, opportunities are 

created for designing educational objectives, teaching activities, and assessment 

based on RBT. This work can help lecturers, teachers, researchers, and curriculum 

designers involved in the transition to have a better understanding of RBT in the 

context of mathematics, particularly integral calculus, and to use or modify some 

of the examples in their practice and research. It provides an opportunity to think 

about improving the current teaching by improving students’ awareness of 

metacognitive knowledge, and using it for learning and problem solving in 

mathematics. In addition, for evaluating the alignment between educational 

objectives, teaching activities, and assessment questions including achievement 

standards, these examples are useful for understanding where each material should 

be located in an RBT Table; and 

 my previous experiences (Section 1.2.1) using this framework. 

 In the following argument, the rationale for choosing New Zealand as the context 

of the study is described.  

 New Zealand is chosen as the geographical context for the study for convenience 

and because integral calculus is taught at the secondary and tertiary levels, spanning the 

transition between these. Integral calculus has similar treatment in the New Zealand 

Curriculum (Ministry of Education, 2007a) to that of many countries such as the United 

States of America (Calculus course description: College Board, 2007) and Australia (State 

of Queensland: Mathematics B (Queensland Studies Authority, 2008); State of Victoria: 

Victorian Certificate of Education Study Design (Victorian Curriculum and Assessment 

Authority, 2013)). Calculus is commonly included in undergraduate university calculus 

courses internationally (e.g., Department of Mathematics and Statistics of the University 

of Melbourne, 2015). Therefore, the findings of the study are potentially highly relevant 

outside the New Zealand context as well as within New Zealand.  

1.2 The context of the study 

In this section, the researcher’s background and the New Zealand context are 

described.  
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1.2.1 Researcher’s background, stance, and perspective 

 My educational and research background are presented to show the motivation for 

undertaking the study and the experiences I bring to it. I hold a Bachelor degree in pure 

mathematics, a Master’s and a PhD degree in mathematics with a focus in mathematics 

education. I have used quantitative research methods in mathematics education, especially, 

in relation to the psychology of learning mathematics. In particular, I explored how 

different affective factors (e.g., mathematics anxiety and attitude), working memory 

capacity, and different learning style affect students’ mathematical problem solving. One 

of the reasons for undertaking the current study was to expand my knowledge about 

qualitative research methods in mathematics education.  

 I have worked as a teacher assistant in differential equations (ten years) in Iran and 

New Zealand and lectured pre-calculus, calculus, and multivariable calculus courses at the 

tertiary level (two years) in Iran. In New Zealand, I have tutored university calculus, 

multivariate calculus, and differential equation courses since 2014. 

 One of the reasons for choosing integral calculus as the focus of this study was that 

during marking students’ work in differential equations, I frequently saw that students 

successfully found the appropriate procedure for solving first or second order differential 

equations; however, they faced more difficulties with the integration sections of the 

problems. Furthermore, I found that students have negative attitudes towards, and a lack of 

confidence in, integration work. From talking with students, I have come to the belief the 

difficulty is due to their perceptions of integration being more procedural than conceptual.  

 I have completed other research related to RBT including projects into the possible 

applications of RBT to different disciplines and within mathematics in general (Radmehr, 

Alamolhodaei, & Amani, 2012; Radmehr, Alamolhodaei, & Pezeshki, 2011), for analysing 

students’ mathematical problem solving in the cognitive process (Fardin & Radmehr, 2013; 

Radmehr and Alamolhodaei, 2010), and the knowledge dimension of RBT (Fardin & 

Radmehr, 2013; Radmehr & Alamolhodaei, 2012). In addition, I have used RBT for 

exploring the relationship between mathematical problem-solving and psychological 

factors (i.e., mathematics anxiety, attitude, attention, working memory capacity, field-

dependency, and multiple intelligences) (Fardin & Radmehr, 2013; Hajibaba, Radmehr, & 

Alamolhodaei, 2013; Rahbarnia, Hamedian, & Radmehr, 2014).  
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 My previous studies focussed on analysing students’ performance using 

quantitative approaches and I believe the applications of RBT also need to be explored 

using a qualitative approach. This reason along with reasons highlighted in Section 1.1 

encouraged me to continue on working with RBT in this study. In the next section, the New 

Zealand schooling system in relation to teaching integral calculus is described. 

1.2.2 The New Zealand context 

In New Zealand, study at secondary school (also known as high school or College) 

for students in Years 9 to 13 is started at age 12 or 13, and compulsory up to age 16. A vast 

majority of secondary schools in New Zealand teach a programme of work that is based on 

New Zealand Curriculum (Ministry of Education, 2007b). The main secondary school 

qualification in New Zealand is the National Certificate of Educational Achievement 

(NCEA) (Ministry of Education, 2015a).  

Integral Calculus is part of New Zealand Curriculum (Ministry of Education, 

2007a) for secondary schools and also is taught in first and second-year courses at New 

Zealand universities. Typically students first learn about integral calculus at Year 12, age 

15-16, by being introduced to the idea of anti-differentiation. Further topics in integral 

calculus are introduced at Year 13, age 16-17 (Ministry of Education, 2007a). The related 

achievement objectives in the New Zealand Curriculum in these years are:  

In a range of meaningful contexts, students will be engaged in thinking 

 mathematically and statistically. They will solve problems and model situations 

 that require them to: 

 apply differentiation and anti-differentiation techniques to polynomials [for 

Year 12] (Ministry of Education, 2007a, p. 22); and   

 choose and apply a variety of differentiation, integration, and anti-

differentiation techniques to functions and relations, using  both analytic 

and numerical methods [for Year 13] (Ministry of Education, 2007a, p. 22).  

Integral calculus is part of the NCEA level two (New Zealand Qualifications 

Authority [NZQA], 2015) and three mathematics achievement standards (NZQA, 2013). 

Most students undertake their NCEA level two assessment in Year 12 and NCEA level 
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three assessment in Year 13. The standard-based assessment uses achievement standards 

and achievement standards are New Zealand Curriculum-based describing: 

what a student needs to know, or what they must be able to  achieve, in order to 

 meet the standard… As students study new topics, their teachers will explain 

 what will be assessed and how. Teachers ensure that students are prepared  for 

 assessment. If students pass the assessment, the standard is achieved (NZQA, 

 20151). 

In relation to integral calculus, the NCEA level two mathematics achievement 

standard focuses on antidifferentiating polynomials (NZQA, 2015). A further achievement 

standard related to integral calculus is set at NCEA level three (Figure 1.1). In both levels 

the assessment of integral calculus is external (i.e., tested nationally) rather than internally 

assessed within the schools. 

Figure 1.1 Integral calculus in level three Mathematics Achievement Standards. 

Copyright 2013 by NZQA. Reprinted with permission. 

The integral calculus topic has a credit value of six. “Credits are the currency of the 

NCEA qualification” (NZQA, 2016, p. 1).  Each credit represents “ten hours of learning 

and assessment [including] teaching time, homework and assessment time” (NZQA, 2016, 

p. 1). A year-long course typically consists of 18 to 24 credits (NZQA, 2016), therefore, 

integral calculus is one of the main parts of the calculus course at Year 13. NZQA (2013) 

encourages teachers to teach “integration by parts” and “integration by substitution 

                                                           
1 No page number as the quote is copied from the NZQA website 
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techniques” and use resources available at Te Kete Ipurangi (TKI) senior secondary 

website (Ministry of Education, 2015b).  

In New Zealand universities, integral calculus is taught in first and second Year 

calculus courses. For example, in Victoria University of Wellington, it is first taught to 

students in Calculus 1A (School of Mathematics and Statistics, 2015a), then further 

explored in Calculus 1B (School of Mathematics and Statistics, 2015b). Double, triple, and 

surface integrals are taught to students in Multivariable Calculus, at second year (School 

of Mathematics and Statistics, 2015c).  

1.3 Revised Bloom’s Taxonomy 

In this section, RBT’s structure and its key ideas are introduced to inform 

understanding the research questions and focus of the study. RBT will be described in more 

detail along with studies that used it as a framework in Chapter Two. 

RBT (Anderson et al., 2001) was designed for considering potentially useful new 

approaches and theories of the late 20th century in relation to Bloom’s Taxonomy (BT) 

(Bloom, Engelhart, Furst, Hill, & Krathwohl, 1956), such as metacognition (Flavell, 1979) 

and constructivism (Piaget, Elkind, & Tenzer, 1967). Another purpose for the revision of 

BT was to point out its value to educational researchers, as a tool that was “ahead of its 

time” (Anderson et al., 2001, p. xxi). 

  In RBT (Table 1.1) each cell is defined as an intersection of the knowledge and the 

cognitive process dimension. The knowledge dimension includes factual, conceptual, 

procedural, and metacognitive knowledge. Levels of the knowledge dimension are on a 

sequence from concrete in the 'factual knowledge' to abstract in the 'metacognitive 

knowledge' (Anderson et al., 2001). However, with regards to this continuum, sometimes 

there are overlaps between conceptual and procedural knowledge (Näsström, 2009) 

(Section 3.1.3). 
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Table 1.1 

General RBT Table (without inclusion of subtypes of the knowledge and the cognitive 

process dimension) 

Note. Adapted from “A taxonomy for learning, teaching, and assessing: A revision of 

Bloom’s Taxonomy of Educational Objectives (p. 28),” by L. W. Anderson, et al., 2001, 

New York: Longman. Copyright 2001 by the Addison Wesley Longman, Inc. Adapted 

with permission.   

The cognitive process of RBT has six categories presented in verb format from a 

low cognitive complexity in ‘“remembering” to high cognitive complexity in “creating” 

(Anderson, 2005; Krathwohl, 2002). In order for RBT to be more applicable for lecturers 

and teachers, “strict hierarchy” was neglected to allow the categories to overlap one another 

(Krathwohl, 2002, p. 215). The hierarchical structure of RBT is not as strict as BT because 

some aspects of understanding (e.g., explaining) are more challenging than executing as a 

subcategory of applying (Krathwohl, 2002).  

Educational objectives (e.g., learning objectives) can be classified using RBT by 

placing them in cell(s) in relation to the intersection of the column(s) suitable for 

categorising the verb(s) and the row(s) suitable for categorising the noun(s) (Krathwohl, 

2002). For example, a learning objective based on RBT can be written using a verb to show 

the cognitive process and a noun to show the knowledge. “The learner will be able to [verb] 

[noun]” (Su & Osisek, 2011, p. 323).  Amer (2006) describes the potential applications of 

the RBT Table including: 

 

The Knowledge 

Dimension 

The Cognitive Process Dimension 

1. Remembering  

 

2. Understanding 

 

3. Applying 

 

4. Analysing 

 

5. Evaluating  

 

6. Creating  

 

A. Factual 

knowledge 

 

      

B. Conceptual 

knowledge 

      

C. Procedural 

knowledge 

 

      

D. Metacognitive 

knowledge 
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 “analyse the objectives of a unit or a syllabus” (p. 223); 

 “help teachers not to confuse activities with objectives” ( p. 225); 

 “help teachers realise the relationship between assessment and 

teaching/learning activities” (p. 225); and 

 “examine curriculum alignment” (p. 226).  

 These applications are described in detail in Chapter Two.  

1.4 The study overview and focus 

 The focus of the study is how RBT can be used as a tool for exploring students’ 

mathematical learning in the context of integral calculus at Year 13 and first year 

university and what are the perspectives of teachers and lecturers towards students’ 

difficulties in this topic. The research questions that address the focus of the study are: 

 1. What examples of factual, conceptual, procedural, and metacognitive knowledge 

in integral calculus based on RBT can be found in Year 13 and first year university?  

 2. Using RBT as a lens, what are students' difficulties in solving integral questions 

in Year 13 and first year university? 

 3. What metacognitive knowledge, experiences, and skills do students hold about 

integral calculus in Year 13 and first year university? 

 4. What differences exist between student learning of integral calculus in Year 13 

and first year university? 

 5. What are the perceptions of lecturers and teachers towards students’ difficulties 

in integral calculus?  

 For exploring the transition in integral calculus based on RBT, the RBT’s 

knowledge dimension must be contextualised for integral calculus. The factual, 

conceptual, procedural, and metacognitive knowledge for integral calculus needs to be 

defined in order to explore student learning of integral calculus based on RBT (to help 

answer the first research question). 
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 To have a better understanding of the transition, Year 13 and first year university 

students were interviewed using questions designed based on RBT. The questions explored 

students’ factual, conceptual, and procedural knowledge (to help answer the second and 

forth research question) as well as their metacognitive knowledge, experiences, and skill 

(to help answer the third and forth research question).  In addition, to gain more insight 

about the transition, perceptions of teachers and lecturers about students’ difficulties in 

integral calculus were explored (to help answer the fifth research question) 

1.5 Chapter summary and thesis structure 

 This chapter explained the motivation, context, and research questions of the study. 

Chapter Two is dedicated to describing RBT and studies that have used it. Chapter Three 

reviews the literature relevant to the study. Chapter Four explains and justifies how the 

study was designed, including the research paradigm, the methodology of the study, 

explanations about the study sample, and the process of data collection. The data gathering 

instruments and how they have been designed and trialled, and how the data are analysed 

are described in Chapter Five.  

 Chapter Six describes the context of the study in terms of how integral calculus was 

taught in the University and the College settings and provides lecturers’ and teachers’ 

opinions about students’ difficulties in integral calculus. Chapter Seven describes students’ 

learning of integral calculus in relation to RBT’s factual, conceptual, and procedural 

knowledge. Students’ metacognitive knowledge, explored in relation to the questions 

designed based on the structure of RBT’s metacognitive knowledge, is outlined in Chapter 

Eight. Chapter Nine provides explanations of students’ metacognitive experiences and 

skills during solving integral questions.  

 Chapter Ten includes discussion of findings, conclusions of the study, discusses the 

limitations and implications of the study, and presents questions for further research.  
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Chapter Two: Revised Bloom’s Taxonomy 

In order to frame the study and what is known about the use of RBT in educational 

studies in general and in mathematics education in particular, this chapter is dedicated to 

the theoretical and empirical literature related to RBT. For this purpose, the major 

difference between Bloom’s Taxonomy (BT) (Bloom et al., 1956) and RBT (Anderson et 

al., 2001) and reasons for designing RBT are provided (Section 2.1). Then, the subtypes of 

the knowledge and the subcategories of the cognitive process dimension are described in 

detail (Section 2.2). The rest of the chapter is dedicated to describing how RBT and its 

table have been used as described in the literature.  

2.1 Bloom’s Taxonomy and Revised Bloom’s Taxonomy  

 In this section, BT, reasons for its revision, and its differences from RBT are 

provided to obtain a better understanding of RBT and how it can be used. BT (Bloom et 

al., 1956) has six categories including knowledge, comprehension, application, analysis, 

synthesis and evaluation. All the categories were divided into subcategories except 

application (Figure 2.1). BT is based on several assumptions such as “the categories were 

ordered from simple to complex and from concrete to abstract”, and “mastery of each 

simpler category was prerequisite to mastery of the next more complex one”, which 

presented a “cumulative hierarchy” (Krathwohl, 2002, pp. 212-213).  
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Adapted from Krathwohl (2002) 

 Researchers have identified several weaknesses and limitations of BT. For instance, 

some aspects of knowledge (e.g., conceptual knowledge about the Fundamental Theorem 

of Calculus) are more complex than certain demands of application. Moreover, synthesis 

is more challenging in comparison to evaluation (Kreitzer & Madaus, 1994), while 

evaluation is considered as the highest level in BT. In addition, the “cumulative hierarchy” 

(p. 212) of BT is not applicable in all situations (Krathwohl, 2002). For example, in 

mathematics, students could apply procedures for solving routine problems without 

mastering the concepts. Radmehr & Alamolhodaei (2010) showed that for the concept of 

limits and derivatives, students could apply procedures while they hold difficulties in 

understanding the related conceptual knowledge. Another weakness is related to 

classifying educational objectives. Educational objectives normally consist of some kinds 

of content (noun or noun phrase) and an explanation of how it should be acted on (verb or 

Figure 2.1 Structure of Bloom's Taxonomy 
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verb phrase) (Krathwohl, 2002) (Section 1.3). However, the knowledge category of BT 

consists of both noun and verb dimensions that brought “unidimensionality” to it 

(Krathwohl, 2002, p. 213). The noun was considered in subcategories of knowledge and 

the verb dimension was assumed in the definition of knowledge. In another words, 

knowledge is an unsuitable term to explain a level of thinking (Pickard, 2007). 

 Anderson and his colleagues (2001) amended BT to address its weaknesses by 

separating the noun and verb aspects and placed them in different dimensions. The noun 

aspect formed the knowledge dimension and the verb aspect shaped the cognitive process 

dimension. The first three levels of knowledge dimension consist of materials presented in 

BT in other terms as factual, conceptual and procedural knowledge (Figure 2.2; Table 2.1). 

Metacognitive knowledge was not included in BT. It was considered from the viewpoint 

of new learning theories in educational research regarding the importance of metacognition 

for learning (Section 3.1.4). Flavell’s definition of metacognition (1979) is used for the 

metacognitive level of RBT (Amer, 2006).  

 

 

 

 

 

 

 

 

 

Cognitive processes of RBT have the same number of categories as BT. Names of 

three categories were changed (i.e., remembering, understanding, and creating) and the 

positions of two were swapped (i.e., evaluating and creating) to address critique (e.g., 

Krietzer & Madaus, 1994). In addition, all the cognitive processes were revised to verb 

Figure 2.2 Relations between BT and RBT 
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form in order to be more applicable for classifying educational objectives (Krathwohl, 

2002). 
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Table 2.1 RBT Table with subtypes 

RBT Table with subtypes  

Note. RBT Table with subtypes of the knowledge and the cognitive process dimension. Adapted from “A taxonomy for learning, 

teaching, and assessing: A revision of Bloom’s Taxonomy of Educational Objectives (p. 28),” by L. W. Anderson, et al., 2001, 

New York: Longman. Copyright 2001 by the Addison Wesley Longman, Inc. Adapted with permission.  

 

 

 

The Knowledge Dimension 

The Cognitive Process Dimension 

1. Remembering  

1.1 Recognising 

1.2 Recalling 

2. Understanding 

2.1 Interpreting 

2.2 Exemplifying 

2.3 Classifying 

2.4 Summarising 

2.5 Inferring 

2.6 Comparing 

2.7 Explaining 

3. Applying 

3.1 Executing 

3.2 Implementing 

 

4. Analysing 

4.1 Differentiating 
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2.2 RBT dimensions: Knowledge and cognitive process  

 In this section, the knowledge (Section 2.2.1) and cognitive process dimension 

(Section 2.2.2) of RBT are described to provide background to the analysis of the study’s 

findings.  

2.2.1 The knowledge dimension 

 This section is dedicated to the structure of the knowledge dimension of RBT. The 

knowledge dimension has 11 subtypes (Table 2.1). For each subtype, the definition is 

presented from the RBT handbook (Anderson et al., 2001), then, the definitions are again 

summarised in four tables, one for each type of knowledge. These tables were used for 

developing the interim RBT knowledge dimension for integral calculus (Section 5.1). 

Factual knowledge 

 Factual knowledge is “the basic elements that students must know to be acquainted 

with a discipline or solve problems in it” (Anderson, et al., 2001, p. 46). It has two subtypes: 

knowledge of terminology, and knowledge of specific details and elements (Table 2.2).  

Table 2.2of the factual knowledge 

Structure of the factual knowledge 

Subtype An explanation of the subtype 

Knowledge of terminology “Knowledge of specific verbal and nonverbal labels and 

symbols” (Anderson, et al., 2001, p. 45). 

Knowledge of specific details 

and elements 

“Knowledge of events, locations, people, and dates” (p. 47). 

“Knowledge of sources of information” (p. 47). 

 

 Knowledge of terminology is referred to as “knowledge of specific verbal and 

nonverbal labels and symbols (e.g., words, numerals, signs, [and] pictures)” (Anderson, et 

al., 2001, p. 45). Knowledge of specific details and elements includes “knowledge of 

events, location, people, dates, sources of information, and the like” (Anderson, et al., 

2001, p. 47). 
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Conceptual knowledge 

Conceptual knowledge refers to the knowledge of “the interrelationships among the 

basic elements within a larger structure that enable them to function together” (Anderson, 

et al., 2001, p. 46). It has three subtypes (Table 2.3).  

 of the factual owledge 

Structure of the conceptual knowledge 

Subtype An explanation of the subtype 

Knowledge of classifications 

and categories 

Knowledge of “specific categories, classes, divisions, and 

arrangements that are used in different subject matter” 

(Anderson, et al., 2001, p. 49). 

Knowledge of principles and 

generalisations 

“Knowledge of particular abstraction that summarise 

observation of phenomena” (p. 51). 

Knowledge of theories, 

models, and structures 

“Knowledge of principles and generalisations together with 

their interrelationships that present a clear, rounded, and 

systematic view of a complex phenomenon, problem, or 

subject matter” (p. 51). 

“Knowledge of the different paradigms, epistemologies, 

theories, and models that different disciplines use to describe, 

understand, explain, and predict phenomena” (p. 52). 

 

The first subtype, knowledge of classifications and categories, relates to “specific 

categories, classes, divisions, and arrangements that are used in different subject matter” 

(Anderson, et al., 2001, p. 49). It differs from the factual knowledge because it is more 

general and abstract. For example, knowing which numbers are integers and which are 

fractions can be considered as factual knowledge and categorised as rational numbers 

(Anderson et al., 2001). The second subtype, knowledge of principles and generalisations, 

refers to “knowledge of particular abstractions that summarise observations of phenomena” 

(Anderson, et al., 2001, p. 51). The last subtype, knowledge of theories, models, and 

structures includes “Knowledge of principles and generalisations together with their 

Table 2.3 of  
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interrelationships that present a clear, rounded, and systematic view of a complex 

phenomenon, problem, or subject matter” (Anderson, et al., 2001, p. 51) and “knowledge 

of the different paradigms, epistemologies, theories, and models that different disciplines 

use to describe, understand, explain, and predict phenomena” (Anderson, et al., 2001, p. 

52). 

Procedural knowledge 

 Procedural knowledge is defined as knowledge of “how to do something; methods 

of inquiry, and criteria for using skills, algorithms, techniques, and methods” (Anderson, 

et al., 2001, p. 46). It has three subtypes (Table 2.4).  

 

Structure of the procedural knowledge  

Subtype An explanation of the subtype 

Knowledge of subject 

specific skills and algorithm  

“Knowledge of skills and algorithms that the process may be 

either fixed or more open but the end result is generally 

considered fixed” (Anderson, et al., 2001, p. 53). 

Knowledge of subject 

specific techniques and 

methods 

“Knowledge of how to think and attack a problem in a field 

rather than the results of such thought or problem solving” (p. 

54).  

Knowledge of criteria for 

determining when to use 

appropriate procedures 

Knowledge of criteria that help to “make decisions about when 

and where using different types of subject-specific procedural 

knowledge” (p. 55). 

 

 Knowledge of subject specific skills and algorithm, the first subtype, refers to 

“knowledge of skills and algorithms that the process may be either fixed or more open but 

the end result is generally considered fixed” (Anderson, et al., 2001, p. 53). The second 

subtype, knowledge of subject specific techniques and methods, includes 

  knowledge that is largely the result of consensus, agreement, or disciplinary 

 norms rather than knowledge that is more directly an outcome of 

Table 2.4of the procedural knowledge 
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 observation…knowledge [of] how experts in the field or discipline think and 

 attack problems rather than the results of such thought or problem solving…The 

 result is more open and not fixed (Anderson, et al., 2001, p. 54). 

  The last subtype, knowledge of criteria for determining when to use appropriate 

procedures, refers to knowledge of criteria that help to “make decisions about when and 

where using different types of subject-specific procedural knowledge” (Anderson, et al., 

2001, p. 55).  

Metacognitive knowledge 

 This section describes metacognitive knowledge in RBT and a broader discussion 

of metacognition is discussed in Chapter Three (Section 3.1.4). Metacognitive knowledge 

refers to “knowledge of cognition in general as well as awareness and knowledge of one’s 

own cognition” (Anderson, et al., 2001, p. 46). It is different from using the metacognitive 

knowledge (i.e., monitoring, controlling, and regulating of cognition) which is related to 

the cognitive process dimension (Anderson et al., 2001). Metacognitive knowledge has 

three subtypes (Table 2.5). 
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Structure of the metacognitive knowledge  

Subtype An explanation of the subtype 

Strategic 

knowledge 
“Knowledge of the general strategies for learning” (Anderson, et al., 2001, p. 

56) (rehearsal, elaboration, and organisational). 
Knowing that planning, monitoring, and regulating cognition are useful.  
Knowledge of the general strategies for thinking and problem solving: 

“various heuristics students can use to solve problems, particularly problems that 

have no definitive solution method” (p. 57). 
Knowledge of “general strategies for deductive and inductive thinking, 

including evaluating the validity of different logical statements, avoiding 

circularity in argument, making appropriate inferences from different sources of 

data, and drawing on appropriate samples to make  inferences” (p. 57). 
Knowledge about 

cognitive tasks, 

including 

appropriate 

contextual and 

conditional 

knowledge 

Knowledge about “different cognitive tasks can be more or less” (p. 57) 

challenging. 
Knowledge about when and how to use strategic knowledge. 

Knowledge of different cognitive tasks requires different strategic knowledge. 

Knowledge of “local situational and general social, conventional, and cultural 

norms for using different strategies” (p. 58). 

Self-knowledge Knowledge of “one's strengths and weaknesses in relation to cognition and 

learning” (p. 59) (e.g., self-awareness, self-efficacy, goal-orientation, and 

attitude). 
Note. Some segments are bolded for adding emphasis to the original text.  

 Strategic knowledge, the first subtype, refers to the “knowledge of general 

strategies for learning, thinking, and problem solving” (Anderson, et al., 2001, p. 56).  

Learning strategies are grouped into three categories: rehearsal, elaboration, and 

organizational (Weinstein & Mayer, 1986). In addition to these general learning strategies, 

is the knowledge that planning, monitoring, and regulating cognition are useful for learning 

the topic and being a successful problem solver (Anderson, et al., 2001). General strategies 

for problem solving and thinking encompass “various heuristics students can use to solve 

problems, particularly… problems that have no definitive solution method” (Anderson, et 

al., 2001, p. 57). In addition to problem solving strategies, “there are general strategies for 

deductive and inductive thinking, including evaluating the validity of different logical 

statements, avoiding circularity in argument, making appropriate inferences from different 

Table 2.5of the metacognitive knowledge 
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sources of data, and drawing on appropriate samples to make inferences” (Anderson, et al., 

2001, p. 57). 

 The second subtype, knowledge about cognitive tasks, including appropriate 

contextual and conditional knowledge, includes that 

 different cognitive tasks can be more or less difficult, may make differential 

 demands on the cognitive system, and may require different cognitive strategies… 

 This knowledge reflects both what general strategies to use and how to use 

 them. Conditional knowledge [as part of this subtype] refers to knowledge  of the 

 situations in which students may use metacognitive knowledge…Another 

 important aspect of conditional knowledge is the local situational and general 

 social, conventional, and cultural norms for using different  strategies (Anderson, 

 et al., 2001, pp. 57-58). 

 The last subtype, self-knowledge, relates to “one's strengths and weaknesses in 

relation to cognition and learning” (Anderson, et al., 2001, p. 59). It also includes 

individuals’ beliefs about their motivations (e.g., self-awareness, self-efficacy, goal-

orientation, and attitude). This aspect is also included in the taxonomy because these beliefs 

are social cognitive in nature and therefore related to the taxonomy (Anderson, et al. 2001). 

2.2.2 The cognitive process dimension 

 This section presents the structure of the cognitive process dimension of RBT. The 

cognitive process has 19 subcategories (Table 2.6). They are described in the following 

subsections based on their definition in the RBT handbook (Anderson et al., 2001) and are 

summarised in Table 2.6.   
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Subcategories of the cognitive process dimension 

Cognitive process Subcategory Explanation 
Remembering Recognising “retrieving relevant knowledge from long term memory in order to compare it with presented information” (Anderson, et al., 

2001, p. 69) 
Recalling “retrieving relevant knowledge from long term memory when given a prompt to do so” (p. 69)  

Understanding Interpreting  Converting “information from one representational form to another” (p. 70). 

Exemplifying  “Giving a specific example or instance of a general principle” (p. 70). 

Classifying  “Identifying something (e.g., particular instance or example) belongs to a certain category” (p. 72). 

Summarising Suggesting “a single statement that represents presented information or abstracts a general theme” (p. 73).  

Inferring “Finding a pattern within a series of examples or instances” (p. 73). 

Comparing  “Detecting similarities and differences between two or more objects, events, ideas, problems, or situation” (p. 75). 

Explaining  Constructing “a cause-and-effect model, including each major part in a system or each major event in the chain, and using the 

model to determine how a change in one part of the system or one “link” in the chain affects a change in another part” (p. 76). 

Applying Executing Using constructed knowledge in an exercise, familiar task. 

Implementing Referring to using knowledge in a problem, unfamiliar task. 

Analysing Differentiating  “Distinguishing the parts of a whole structure in terms of their relevance or importance” (p. 80). 

  Organising  “Identifying the elements of a communication or situation and recognising how they fit together into a coherent structure” (p. 

81). 

Attributing Ascertaining “the point of view, biases, values, or intention underlying communications” (p. 82). 

Evaluating Checking “Testing for internal inconsistencies or fallacies in an operation or act” (p.83). 

Critiquing “Judging a product or operation based on externally imposed criteria and standards” (p. 84). 

Creating Generating “Representing the problem and arriving at alternatives or hypotheses that meet certain criteria” (p. 86). 

Planning “Devising a solution method that meets a problem’s criteria, that is, developing a plan for solving the problem” (p. 87). 

Producing “Carrying out a plan for solving a given problem that meets certain specifications” (p. 87). 

 

Table 2.6of the cognitive process dimension 
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Remembering 

 Remembering has two subcategories in RBT, recognising and recalling (Anderson 

et al., 2001). Recognising includes “retrieving relevant knowledge from long term memory 

in order to compare it with presented information” (Anderson et al., 2001, p. 69) whereas 

recalling is “retrieving relevant knowledge from long term memory when given a prompt 

to do so” (Anderson, et al., 2001, p. 69). 

Understanding 

 Teaching activities that help students construct meaning from teaching materials 

are related to understanding (Anderson, et al., 2001). In RBT, understanding has seven 

subcategories including interpreting, exemplifying, classifying, summarising, inferring, 

comparing, and explaining. Interpreting refers to converting “information from one 

representational form to another” (Anderson, et al., 2001, p. 70). Exemplifying relates to 

giving “specific example or instance of a general principle” (Anderson, et al., 2001, p. 71). 

Classifying refers to identifying “something (e.g., particular instance or example) belongs 

to a certain category (e.g., concept or principle)” (Anderson, et al., 2001, p. 72). 

Summarising, the fourth subcategory, is related to suggesting “a single statement that 

represents presented information or abstracts a general theme” (Anderson, et al., 2001, p. 

73). Inferring refers to “finding a pattern within a series of examples or instances” 

(Anderson, et al., 2001, p. 73). Comparing includes “detecting similarities and differences 

between two or more objects, events, ideas, problems, or situation” (Anderson, et al., 2001, 

p. 75). The last subcategory, explaining, refers to constructing  

  a cause-and-effect model, including each major part in a system or each major 

 event in the chain, and using the model to determine how a change in one part of 

 the system or one “link” in the chain affects a change in another part (Anderson, 

 et al., 2001, p. 76). 
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Applying 

 Applying has two subcategories in RBT, executing and implementing. Executing 

refers to using constructed knowledge in an exercise, familiar task, whereas implementing 

refers to using it in a problem, an unfamiliar task (Anderson, et al., 2001). 

Analysing 

 Analysing “involves breaking material into its constituent parts and determining 

how the parts are related to one another and to an overall structure” (Anderson, et al., 2001, 

p. 79). Analysing is an extension of understanding and also can be considered as a prelude 

to evaluating and creating (Anderson, et al., 2001). In RBT, analysing has three 

subcategories including differentiating, organising, and attributing. Differentiating refers 

to “distinguishing the parts of a whole structure in terms of their relevance or importance” 

(Anderson, et al., 2001, p. 80). Organising relates to “identifying the elements of a 

communication or situation and recognising how they fit together into a coherent structure” 

(Anderson, et al., 2001, p. 81). The last subcategory, attributing, refers to ascertaining “the 

point of view, biases, values, or intention underlying communications” (Anderson, et al., 

2001, p. 82). 

Evaluating 

 Evaluating refers to making judgements based on some criteria (Anderson, et al., 

2001). It has two subcategories in RBT, namely checking (i.e., “testing for internal 

inconsistencies or fallacies in an operation or act” (Anderson, et al., 2001, p. 83)), and 

critiquing (i.e., “judging a product or operation based on externally imposed criteria and 

standards” (Anderson, et al., 2001, p. 84)). 

Creating 

 Creating is defined as “putting elements together to form a coherent or functional 

whole. “Objectives classified as Create have students make a new product by mentally 

reorganising some elements or parts into a pattern or structure not clearly present before” 

(Anderson, et al., 2001, p. 84). It has three subcategories in RBT including generating, 

planning, and producing. Generating relates to “representing the problem and arriving at 
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alternatives or hypotheses that meet certain criteria” (Anderson, et al., 2001, p. 86). It 

differs from understanding in that the aim of generating is divergent, find various 

possibilities for solving the problem; whereas for understanding the goal is convergent, 

finding a single meaning for the problem through translating, exemplifying, etc. (Anderson, 

et al., 2001). Planning, the second subcategory, refers to “devising a solution method that 

meets a problem’s criteria, that is, developing a plan for solving the problem” (Anderson, 

et al., 2001, p. 87). Producing, relates “carrying out a plan for solving a given problem that 

meets certain specifications” (Anderson, et al., 2001, p. 87).  

2.3 Illustrating how RBT Tables are used 

To clarify how educational materials are placed in the RBT Table, three examples 

are provided which were from Green (2010) in multivariable calculus and pre-calculus 

contexts. Undergraduate students, to match functions to graphs of simple functions such as 

𝑦 = 𝑠𝑖𝑛𝑥 or 𝑦 = 𝑒𝑥, may only need to recall factual knowledge, as they work with these 

functions quite often. Therefore this question can be placed in the remembering factual 

knowledge cell (Example 1, Table 2.7).  
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Table 2.7 Sample examples in RBT Table 

Sample examples in RBT Table 

 

Note. Locating three examples in the RBT Table. Adapted from “Matching functions and 

graphs at multiple levels of Bloom's revised taxonomy,” by K. H.  Green, 2010, PRIMUS, 

20(3), p. 217. Copyright 2010 by Taylor and Francis. Adapted with permission. 

 

For matching more complex single variable functions to their graphs, such as 𝑦 =

(𝑥 − 1)2 + 2 or 𝑦 = (𝑥 + 3)2, students may need to “apply conceptual knowledge” 

(Example 2, Table 2.7) (Green, 2010). However, matching functions to graphs of 

multivariable functions such as 𝑧 = cos(𝑥𝑦) or 𝑧 = |𝑥||𝑦| involve different cells of RBT 

because:  

 students are required to understand conceptual knowledge to find the symmetry or 

asymptotic properties of the functions and graphs; 

 students need to analyse factual knowledge that is provided in graphs in order to 

find the behaviour of the functions; 

 it is essential to evaluate procedural knowledge to find a strategy to solve the 

problem; and  

 sometimes students need to apply procedural knowledge in order to calculate 

particular details about the functions like their value at the origin (Example 3, 

Table 2.7) (Green, 2010).  
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 The next section describes how the RBT Table can be used for evaluating 

alignment in educational research. 

2.4 RBT Table as an alignment framework 

 Alignment in educational settings consists of a picture of the relationship between 

standards, teaching, and assessment (Anderson, 2002). Evaluating alignment is important 

for three reasons (Anderson, 2005). Firstly, evaluating alignment provides information 

about the different effects of educational institutes (i.e., school, and university) on students’ 

achievement. Second, poor alignment can cause neglect or underrating of the impact of 

teaching on students’ learning. For instance, in the situation that instruction is not aligned 

with national assessment, the high quality of teaching cannot be recognised since it is not 

shown through the assessment. Finally, a high level of alignment is “central to the success 

of educational accountability programs” (Anderson, 2005, p. 111) since educational 

institutes are responsible for providing opportunities for their students to achieve the 

standards that have been considered for them (Anderson, 2005).  

The RBT Tables can be used for evaluating alignment (Anderson, 2002, 2005; 

Näsström, 2009). The nouns and verbs included in the objectives/standards lead to finding 

suitable cell(s) for questions (Section 2.3). For analysing teaching materials and 

assessments, the procedure for finding suitable cell(s) is the same. Alignment can be 

evaluated through creating the three RBT Tables; one for curriculum (including 

educational objectives), another for teaching activities, and the third for assessment 

(including achievement standards). If similar cells are covered across the taxonomies, there 

is complete alignment. However, for example, if the same rows (levels of knowledge) but 

different columns (levels of cognitive process) or the same columns but different rows were 

covered in the taxonomies, partial alignment is said to occur. In checking alignment some 

cells may be found that are not addressed by any of curriculum, teaching, and assessment 

materials. These cells, which can be called “missed opportunities” (Anderson, 2005, p. 

112), are suggested for consideration by the designer of curriculum and assessment 
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(Anderson, 2005). Moreover, lecturers and teachers could consider covering these cells to 

help enrich students’ opportunities for learning.  

2.5 Background to RBT as a framework 

 In this section, studies that used RBT are described in order to understand possible 

applications of RBT, and how the study should be designed. The use of RBT as a tool for 

analysing and informing teaching, learning, and assessment is well established in the 

literature across a wide range of disciplines. RBT has been used for evaluating alignment 

between curriculum, teaching, and assessment; planning teaching activities and lessons; 

designing assessment; and analysing students’ performance. Such uses are collectively 

referred to as RBT’s applications. In mathematics education, RBT has been used for 

analysing examination curricula, students’ mathematical problem solving, and 

psychological factors affecting students’ performance. Moreover, its potential for 

evaluating alignment has been addressed. A summary of these studies is described in the 

following sections. 

2.5.1 Interpreting RBT for a topic 

RBT cells are interpreted to a range of disciplines (e.g., music, nursing, and 

computer science education); Hanna (2007) provides examples for each cell of RBT in 

music education. For instance, an example of understanding conceptual knowledge in 

music education is “understand[ing], explain[ing], and discuss[ing] music concepts and 

music’s relationships to other areas both within and outside of music” (Hanna, 2007, p. 

10). Pickard (2007) did not cover all the cells of RBT for family and consumer sciences, 

but provided different examples for each level of the knowledge and cognitive process 

dimensions separately, without using the RBT Table. For instance, “forms of business 

ownership”, “starch cookery principles”, and “colour theory” (Pickard, 2007, p. 49) are 

examples of these respective subtypes of conceptual knowledge. Similarly, Thompson, 

Luxton-Reilly, Whalley, Hu, & Robbins (2008) provided examples for computer science 

education without using RBT Table. For instance, with reference to remembering, an 

example is “identifying a particular construct in a piece of code” (Thompson, et al., 2008, 
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p. 157). In mathematics, Green (2010) described the power of RBT in mathematics 

education by explaining three problems related to matching functions and graphs with 

multiple cells of RBT in pre-calculus and multivariate calculus (Section 2.3). 

In terms of teaching activities, planning lessons, and assessment based on RBT, 

Ferguson (2002) designed an integrated class in history and English, planning the unit by 

specifying the objectives, determining the instructional activities, and designing formative 

and summative assessment all based on RBT. Such a procedure has been widely applied in 

nursing education (e.g., Su, Osisek, & Starnes, 2004; 2005; Su & Osisek, 2011). For 

instance, for understanding conceptual knowledge in the context of medical-surgical 

nursing lessons, an objective, a teaching activity and an assessment can be considered the 

following examples:  

 objective: “Differentiate relevance among a set of clinical data related to 

clients with” myocardial infarction (Su et al., 2004, p. 118); 

 teaching activity: “Classroom exercises—distinguish relationships among a 

set of data” (Su et al., 2004, p. 118); and 

 assessment: “Multiple-choice test item—identify relevant information from 

a given set of data.” (Su et al., 2004, p. 118). 

 The next application of RBT described in this section is that of evaluating 

alignment. 

2.5.2 Evaluating alignment based on RBT 

Näsström, & Henriksson (2008) evaluated the alignment between standards and 

assessment for a syllabus in chemistry for upper secondary schools in Sweden. In addition, 

Näsström (2009) studied the efficiency of RBT for interpreting standards in mathematics 

through two panels (i.e., teachers and assessment experts) and revealed that RBT is an 

acceptable tool for this purpose; however, the expert panel was more consistent in their 

interpretation of standards in comparison to the teacher panel. Hanna (2007) analysed 

national standards for music education based on RBT, and in mathematics, Rizvi (2007) 

explained how to use RBT to analyse examination curricula of high school mathematics in 

Pakistan. 



32 
 

 

2.5.3 Analysing students’ performance based on RBT 

In computer science education, for the purpose of analysing students’ performance 

based on RBT, Whalley et al., (2006) studied novice computer programmers’ performance, 

and Alaoutinen & Smolander (2010) designed a survey questionnaire based on the 

cognitive process dimension of RBT. However, neither studies classified content in terms 

of the knowledge dimension.  

  In mathematics, Radmehr and Alamolhodaei (2010, 2012) quantitatively studied 

students’ mathematical performance based on 24 cells of RBT in functions, limits, and 

derivatives. Moreover, Hajibaba, Radmehr, and Alamolhodaei (2013) investigated the 

effects of several psychological and affective factors on students’ mathematical 

performances based on columns and rows of RBT. They found that the effects of attitude 

towards mathematics, anxiety, attention, field dependency, and working memory capacity 

on students’ mathematical performance varied in terms of rows and columns of RBT. Also, 

Rahbarnia, Hamedian, and Radmehr (2014) investigated the relationships between 

different multiple intelligences and mathematical performance in different rows and 

columns of RBT. Consistent with Anderson (2005), the purpose of these studies were to 

show that researchers in the psychology of mathematics education would benefit from 

changing their typical questions to questions based on RBT in order to maximise the 

usefulness of information about the relationship between psychological factors and 

mathematical performance.  

 2.5.4 Strengths and weaknesses of previous studies into using RBT as a 

framework 

 In terms of defining the levels of knowledge of RBT, analysing students' 

performance, and providing assessment examples, educational objectives, and teaching 

activities based on RBT in different disciplines, three major concerns have been identified. 

First, previous studies have been done without documenting how these materials have been 

developed, refined, and validated (examples of these studies are: Hanna, 2007; Su, Osisek, 

& Starnes, 2004, 2005; Su, & Osisek, 2011). In these studies, researchers, based on their 

experiences in the discipline, provided materials using RBT. Second, in several studies, all 
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the cells and subcategories of RBT are not covered, without providing justification as to 

whether the omitted categories are inapplicable for the discipline, or researchers cannot 

find the suitable materials for the content, or it is not in the interests of the researcher. An 

example in mathematics education is Green’s (2010) study about functions. Finally, in 

several studies, the authors seem to have misconceptions about RBT. For instance, they 

have not considered RBT as a two dimensional taxonomy and therefore neglected one of 

the dimensions (e.g., Thompson et al., 2008).  

 In terms of the methods used in previous studies, they were varied (quantitative 

(e.g., Hajibaba et al., 2013; Radmehr & Alamolhodaei, 2010), qualitative (e.g., Hanna, 

2007; Su, Osisek, & Starnes, 2004, 2005; Su, & Osisek, 2011), and mixed methods (e.g., 

Bümen, 2007; Näsström,  & Henriksson, 2008; Näsström, 2009)). The quantitative studies 

used RBT for analysing students' performance; and the qualitative studies used RBT for 

providing educational objectives, assessment questions, and teaching activities, and the 

mixed methods employed RBT for evaluating alignment. The major methodological 

problems the researcher found in previous studies is that they have not refined and 

validated the materials based on RBT. 

 The design of this study seeks to address these concerns. The process of developing 

the interim RBT knowledge dimension is documented and resources used are provided 

(Section 5.1). In addition, the RBT knowledge dimension is not considered to be a refined 

or final version, instead, it is considered an interim knowledge dimension to be developed 

further in future studies. While all of the subcategories of the RBT cognitive process are 

not covered in the questions designed for exploring student learning (Section 4.3.1), 

questions are designed in such a way that each main category is being addressed (Section 

5.2.1). To address both dimensions, the knowledge dimension was developed first; then, 

questions were designed to address different cognitive processes of these knowledge types.  

2.6 Chapter summary  

This chapter described BT’s limitations and weaknesses that lead to the design of 

RBT. Then it described the RBT’s structure to show how it can be used. It also included 
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studies that used RBT as a framework, and discussed their limitations. All of these kinds 

of information were used in designing this study in order that the study findings could 

provide further understanding of the transition between school and university for students 

in relation to integral calculus. 
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Chapter Three: Literature Review 

 This review of the literature has the following structure. The first section discusses 

major theories and frameworks that influence the learning and teaching of mathematics. It 

is important to review these for understanding similarities and differences between RBT 

and these, to have a better understanding of how RBT can be used for informing the 

teaching and learning of mathematics. Section 3.2 is dedicated to the literature about 

teaching and learning of integral calculus, especially integral-area relationships and the 

FTC, to foreground the study findings. Section 3.3 reviews studies about the secondary-

tertiary transition in mathematics, because these transition years are the focus of this study. 

3.1 Major theories and frameworks that influence the teaching and learning of 

mathematics  

 Major theories and frameworks that influence the teaching and learning of 

mathematics are described in this section, including: cognitive and social constructivism, 

Skemp’s theories of mathematical understanding; conceptual and procedural knowledge; 

metacognition; SOLO taxonomy (model); APOS theory; the notion of procept; Tall’s 

theory of three worlds of mathematics; and Schoenfeld’s framework for the analysis of 

mathematical problem-solving behaviour and decision making in teaching. These sections 

show how RBT fits with these theories, and discusses several aspects of the theories. 

3.1.1 Cognitive and social constructivism  

This section describes cognitive and social constructivism, two major theories that 

strongly influence the understanding of teaching and research in mathematics education. 

RBT’s stand in relation to these theories is presented. Key ideas underlying these theories 

are described to understand the connection between them and RBT in order to explore 

whether RBT addresses them or not. 

Constructivism and objectivism, previous methods used to explain the teaching of 

a variety of subjects including mathematics, provide different perspectives about teaching 
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and learning (Biggs & Tang, 1997). To better understand constructivism, a description of 

objectivism is presented; then cognitive and social constructivism are described.  

Objectivism considers knowledge existing as independent of the knower (Biggs & 

Tang, 1997). It is based on a positivist paradigm and sees understanding as “coming to 

know what already exists” (Biggs & Tang, 1997, p. 79). Teaching based on this theory 

(which has been described transmission teaching) is a matter of transmitting knowledge 

from the teacher’s mind to the student’s mind (Johnson, 2006), “learning of receiving and 

storing it accurately, and using it appropriately” (Biggs & Tang, 1997, p. 79).  This teaching 

approach is considered to be teacher-centred with the teacher being the knowledge 

dispenser, and the final evaluator of learning (Johnson, 2006).  

Constructivists have different points of view about knowledge and teaching. Based 

on this theory, meaningful learning occurs when students actively construct their 

knowledge (Biggs & Tang, 1997) rather than passively receive and store it.  Construction 

of knowledge can happen through both personal and social activity, and relies on learners’ 

prior knowledge, experiences, motivation, and orientation toward learning. The aim of 

constructivist style teaching is to help students’ cognitive processes go in such a direction 

that teaching objectives can be achieved (Biggs & Tang, 1997; Powell & Kalina, 2009). 

To create opportunities so that meaningful learning occurs for students, teachers and 

lecturers are encouraged to find out what their students already know about the topic in 

order to present new information to them in such a way that students can create “personal 

meaning” (Powell & Kalina, 2009, p. 241) out of it. 

Two types of constructivism considered in educational research are cognitive and 

social constructivism (Powell & Kalina, 2009). These are now described.  

Cognitive constructivism 

  Cognitive constructivism relies on the work of Piaget (1953). Piaget’s theory of 

cognitive development (1952) claimed that children construct knowledge through a process 

such that knowledge could not be given to them in a way that could immediately be 
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understood and used. Piaget’s cognitive theory has three main aspects, including schemas, 

adaptation processes, and stages of cognitive development (McLeod, 2015). 

   Piaget defined schemas as “a cohesive, repeatable action sequence possessing 

component actions that are tightly interconnected and governed by a core meaning”, 

(Piaget, 1952, p. 7). It is a mental structure and can be considered as a way of organising 

knowledge (McLeod, 2015). Schemas can be considered as units of knowledge that are 

related to objects, actions, and abstract concepts in the world (McLeod, 2015). 

 In relation to the second aspect of his theory (i.e., adaptation processes), intellectual 

growth takes place through schema construction and is considered as a process of 

adaptation to the world (McLeod, 2015) through assimilation, accommodation, and 

equilibration. Assimilation refers to incorporating a new piece of knowledge into existing 

schemas, whereas, accommodation refers to changing the existing schema according to 

new knowledge (e.g., object, situation) because the current schema does not work or the 

new knowledge in conflict with the existing schema (McLeod, 2015, Swan, 2005).  

Equilibration is the force that brings about development, both when the new information 

can be assimilated or when it needs to be accommodated (McLeod, 2015). A final aspect 

of this theory, the stages of cognitive development (1952) (Table 3.1), are described as 

sensorimotor, preoperational, concrete, and formal operational (Wadsworth, 2004).  

Table 3.1of Piaget's theory of cognitive development 

Stages of Piaget's theory of cognitive development 

Stage Age range Description of the stage 

Sensorimotor 0-2 Using sense, physical activity, and later language for 

exploring environments. 

Preoperational 2-7 Developing personal language skills but cannot understand 

thoughts of other people. 

Concrete 

operational 

7-11 Using personal logical reasoning to replace intuitive 

thought. 

Formal operational 11 to adulthood Using higher levels of thinking for problem-solving. 

 

http://psycnet.apa.org/journals/bct/9/2/26.html#c28
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Piaget believed that this sequence is universal regardless of the learner’s culture. 

This view was disputed by some scholars such as Vygotsky who believed social interaction 

is important for cognitive development (McLeod, 2015). 

Social constructivism 

Social constructivism is inspired by the works of Vygotsky (1962, 1978).  

Vygotsky’s theories came after cognitive constructivism; highlighting the importance of 

social interactions in the construction of knowledge. Vygotsky believed students’ social 

interactions with teachers and other students in classrooms are an integrated part of 

learning. Vygotsky claimed “cognitive skills and pattern of thinking are not primarily 

determined by innate factors,…, but rather are the products of activities practiced in the 

social institutions of the culture in which the individual lives” (Swan, 2005, p. 4). Based 

on his view, knowledge construction is a reciprocal process: first enacted socially, then 

internalised in the individual’s mind. Internalised concepts then guide social interactions 

(Swan, 2005).  

Vygotsky described a Zone of Proximal Development (ZPD) as a place where 

learning of a concept happens when students interact with teachers, peers or adults to 

construct knowledge (Powell & Kalina, 2009). Vygotsky was also interested in the role of 

language in learning and thinking, believing language and thought are closely related and 

language is important for forming thought (Swan, 2005). 

Cognitive and social constructivism: A comparison 

Despite the differences between cognitive and social constructivism, they have 

consistencies in relation to at least three things. Firstly, students construct knowledge based 

on their prior knowledge that is “relevant and meaningful” for them (Powell & Kalina, 

2009, p. 241). Secondly, they place importance on inquiry learning, involving presenting a 

puzzling situation to students and asking them to solve the problem by collecting the 

required data, then evaluating the results (John Dewey, 1910 in Woolfolk, 2004). Thirdly, 

the lecturers and teachers are seen as facilitators helping students to construct their own 

knowledge (Powell & Kalina, 2009). 



39 
 

 

 Cognitive constructivism theory in mathematics education is characterised by 

“students actively construct[ing] their mathematical ways of knowing as they strive to be 

effective by restoring coherence to the worlds of their personal experience” (Cobb, 1994, 

p. 13); whereas, social constructivism theory focuses on social and cultural aspects of 

mathematical activity and interactions in classrooms are examples of a “culturally organised 

practice of schooling” (Cobb, 1994, p. 15). These two theories have frequently been used in 

mathematics education (e.g., Averill, 2012; Bednarz & Janvier, 1988), and several 

differences between them are reported (Table 3.2); however, several scholars believe they 

are complementary and both should be considered in teaching and research (Cobb, 1994, 

Powell & Kalina, 2009). They believe social constructivism focuses on “the conditions for 

the possibility of learning” (Cobb, 1994, p. 13), whereas cognitive constructivism focuses 

“on what students learn and the processes by which they do so” (Cobb, 1994, p. 13). 

Table 3.2 Difference between cognitive and social constructivist perspectives 

Difference between cognitive and social constructivist perspectives 

Note. Based on the difference reported by Cobb (1994) and Powell & Kalina (2009). 

Cognitive  constructivist perspectives Social constructivist perspectives 

Inspired by the works of Piaget. Inspired by the works of Vygotsky. 

Ideas are constructed in the individual through 

a personal process. 

Ideas are constructed through social interaction 

with others (e.g., teachers and students). 

Student’s thinking is analysed individually in 

terms of sensory-motor and conceptual 

processes. 

Student’s thinking is analysed through social 

actions. 

Focus is on linking activity with “students’ 

sensory-motor and conceptual activity” 

(Cobb, 1994, p.14). 

Focus is on linking activity to “culturally 

organised practices” (Cobb, 1994, p.14). 

Thinking precedes language and mathematical 

signs and symbols are tools that students use 

for expressing and communicating 

mathematical thinking.  

Language precedes thinking, and mathematical 

signs and symbols are “carriers of established 

mathematical meaning or of a practice’s 

intellectual heritage”(Cobb, 1994, p. 13). 

Classroom interactions are considered as 

teachers’ and students’ efforts to adapt their 

individual activities. 

Classroom interactions are examples of a 

“culturally organised practice of schooling” 

(Cobb, 1994, p. 15). 

Focus is on “social and cultural basis of 

personal experience” (Cobb, 1994, p. 15). 

Focus is on the “constitution of social and 

cultural processes by actively interpreting 

individuals” (Cobb, 1994, p. 15). 
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 For improving teaching and learning drawing from these two theories, the literature 

suggested several practices such as:  

 asking questions of students to explore whether they have difficulty with the 

concept and helping them to amend their misconception(s); 

 students working on assignments while a teacher helps them; and 

 encouraging students to talk about their culture and how the topic is related to that 

(Powell & Kalina, 2009). 

Discussion 

In relation to these theories, RBT is designed based on a constructivist approach to 

learning. RBT designers believe:   

students engage in active cognitive processing, such as paying attention to relevant 

incoming information, mentally organising incoming information into a coherent 

representation, and mentally integrating incoming information with the existing 

knowledge…The cognitive processes provide a means for describing the range of 

students’ cognitive activities in constructivist learning; that is, …students can 

actively engage in the process of constructing meaning (Anderson, et al., 2001, p. 

65). 

 In relation to the context of the study, the New Zealand Curriculum (Ministry of 

Education, 2007b) can be said to be strongly influenced by constructivism. Constructivist 

language can be found in the wording of its vision, values, key competencies, and 

principles. For instance, in terms of principles, students are considered to be at the centre 

of teaching, and learning and in terms of values, students are encouraged to value inquiry 

(Ministry of Education, 2007b), which is a component of constructivism. Thinking is a key 

competency in the New Zealand Curriculum which is strongly related to constructivism 

(e.g., developing understanding, constructing knowledge):  

 Thinking is about using creative, critical, and metacognitive processes to make 

 sense of information, experiences, and ideas.  These processes can be applied to 
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 purposes such as developing understanding, making decisions, shaping actions, or 

 constructing knowledge. Intellectual curiosity is at the heart of this competency. 

 Students who are competent thinkers and problem solvers actively seek, use, and 

 create knowledge… (Ministry of Education, 2007b, p. 12). 

 The next section describes Skemps’s theories about mathematical learning.  

3.1.2 Skemp’s theories of mathematical learning 

 Exploring what mathematical learning is, is important because this study explores 

student learning of a mathematical topic, integral calculus. To some extent, this section 

facilitates understanding the relationships between conceptual and procedural knowledge 

as two types of RBT knowledge. Skemp’s theories of learning (1971, 1976, & 1979) are 

among major theories in relation to mathematical learning.  

 Similar to the Piaget definition of schema, Skemp (1971) considered the schema as 

the general psychological term for a mental structure which integrates existing knowledge 

and works as a tool for acquiring new knowledge (Skemp, 1971). Skemp (1971) 

highlighted “to understand something means to assimilate it into an appropriate schema. 

This explains the subjective nature of learning and also makes clear that this is not usually 

an all-or-nothing state” (p. 46).  

 Skemp (1976) discussed two types of understanding and learning: instrumental, 

knowing “rules without reasons” (p. 2); and relational, “knowing both what to do and why” 

(p. 2). For a group of students, instrumental understanding develops (in contrast to 

relational understanding) because it is easier to understand, requires less content, and the 

reward is quick and apparent (Skemp, 1976). However, relational understanding has its 

own advantages. In relational understanding, after content is learnt, it can be recalled more 

easily (Skemp, 1976). The content is often helpful for understanding other topics (Skemp, 

1976). Relational understanding also acts as an internal reward because it “can be effective 

as a goal in itself” (Skemp, 1976, p. 10). If students are satisfied with relational 

understanding of their current topics, they may try to understand relationally new topics as 

well, “like a tree extending its roots” (Skemp, 1976, p. 10). 
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 Skemp (1976) defined instrumental and relational mathematics in similar terms to 

his definitions of instrumental and relational understanding, and highlighted “I now believe 

that there are two effectively different subjects being taught under the same name, 

‘mathematics’…what constitutes mathematics is not the subject matter, but a particular 

kind of knowledge about it” (pp. 6, 15). Characteristic of instrumental mathematical 

learning is learning several “fixed plans” (p. 14) that enable students to solve mathematical 

problems using a specific starting point. The plans tell students exactly what to do at each 

step. However, in relational mathematical learning, students construct a “conceptual 

structure (schema)” (p. 14) which helps them to create several plans that can be used for 

solving mathematical problems from any starting point. Comparing instrumental and 

relational understanding and learning with objectivism and constructivism (Section 3.1.1), 

objectivism is more linked to instrumental learning and constructivism is more linked to 

relational learning. The reason is both relational understanding and constructivism focus 

on creating plans rather than learning fixed plans. 

 Logical understanding, the third type of understanding described by Skemp in 1979 

(Skemp, 1979) is: 

  the ability to demonstrate that what has been stated follows of logical 

 necessity, by a chain of inference, from (i) the given premises, together with (ii) 

 suitably chosen items from what is accepted as established mathematical 

 knowledge (axioms and theorems) (p. 47). 

 These three types of understanding are compared with RBT in the next section. 

Discussion 

 A comparison between Skemp’s understanding theories and RBT has not been 

considered in the literature to date; however to highlight the potential of RBT as a 

framework for analysing students’ learning, a loose comparison is described here. In terms 

of the RBT knowledge dimension, instrumental understanding addresses procedural 
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knowledge, relational understanding addresses both conceptual and procedural knowledge, 

and finally, logical understanding relates to metacognitive knowledge.  

 Instrumental understanding refers to knowing rules (without reasons) and RBT 

procedural knowledge is defined as knowledge of how to do something (Section 2.2.1), 

which could suggest that there is a close relationship between them. Relational 

understanding, knowing both what to do and why, relates to procedural knowledge because 

as part of this understanding the individual knows what to do. Relational understanding 

also encompass RBT conceptual knowledge because conceptual knowledge is knowledge 

of the interrelationships between elements (Section 2.2.1); knowing the relationships helps 

individuals to know why something works, which is part of relational understanding.  In 

terms of logical understanding, strategic knowledge, a subtype of RBT metacognitive 

knowledge, relates to this type of understanding. One aspect of strategic knowledge is 

knowledge of general strategies for deductive and inductive thinking (Section 2.2.1) that 

relate to the definition of logical understanding. 

 Comparing Skemp’s learning theories with the RBT Table shows that instrumental 

understanding relates to remembering and applying procedural knowledge (Table 3.3); 

whereas, relational understanding encompass these two as well as understanding 

procedural knowledge. It also includes remembering, understanding and applying 

conceptual knowledge. Logical understating relates to remembering, understanding, and 

applying metacognitive knowledge. In some instances, the higher cognitive processes of 

RBT are also related to relational and logical understanding. 
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Table 3.3 

Comparing Skemp’s learning theories with the RBT table 

 There are other definitions for mathematical understanding which are not in line 

with all parts of Skemp’s theories for learning and understanding. For instance, Piaget 

(1978) believed understanding cannot be considered as how to do something. 

“Understanding brings out the reason for things…” (p. 222). Therefore, Piaget’s (1978) 

notion of understanding is not in line with the idea of instrumental understanding as part 

of understanding. Skemp’s views about instrumental and relational understanding are 

reflected as to how procedural and conceptual knowledge are defined (Stewart, 2008). The 

next section describes these two types of knowledge in the case of mathematics. 

3.1.3 Conceptual and procedural knowledge  

 Both conceptual and procedural knowledge are two types of the RBT knowledge 

dimension (Section 2.2.1). In this section, conceptual and procedural knowledge, their 

relationship, and the tools used for measuring them, are described. Then, studies that have 

defined conceptual and procedural knowledge in integral calculus are reviewed. How 

conceptual and procedural knowledge are defined in mathematics and integral calculus are 

foregrounded here, as these two types of RBT knowledge will be interpreted in later 

analysis (Section 5.1).   

 

The Knowledge 
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The Cognitive Process Dimension 
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2. Understanding 

 

3. Applying 
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Definitions of conceptual and procedural knowledge and their importance 

  The border between conceptual and procedural knowledge cannot be identified 

easily (Mahir, 2009) and sometimes they are not separable (Rittle-Johnson & Schneider, 

2014). One of the first attempts to define these two terms in mathematics was done by 

Hiebert and Lefevre (1986). Based on their view, procedural knowledge refers to having 

“familiarities with the individual symbols of the system [and knowing] rules or procedures 

for solving mathematical problems” (p. 7) and conceptual knowledge is “knowledge that 

is rich in relationships. It can be thought of as a connected web of knowledge, a network 

in which the linking relationships are as prominent as the discrete piece of information” (p. 

3).  

  This conceptual knowledge definition is disputed by others (Baroody, Feil, & 

Johnson, 2007; Rittle-Johnson & Schneider, 2014), who claim it takes time for knowledge 

to be richly connected in the mind, and this happens for experts over time. Others consider 

conceptual knowledge as knowledge of concepts (Rittle-Johnson & Schneider, 2014), 

where concepts refers to “an abstract or generic idea generalized from particular instances” 

(Mish, 1999, p. 238). 

 Similarly to that of conceptual knowledge, Hiebert and Lefevre’s procedural 

knowledge definition (1986) is argued by others (Canobi, 2009; Rittle-Johnson & 

Schneider, 2014). In more detail, familiarities with the symbols of the system are not 

considered in their definitions. For example, Rittle-Johnson & Schneider (2014) noted that 

procedural knowledge “is the ability to execute action sequences (i.e., procedures) to solve 

problems” (p. 1120).  

 Despite these differences in the definitions of conceptual and procedural 

knowledge, there is an agreement that to have a meaningful understanding of mathematics, 

a balance between providing opportunities for students to construct both conceptual and 

procedural knowledge should be considered (Gray & Tall, 1994; Mahir, 2009; Rittle-

Johnson & Schneider, 2014; Stewart, 2008). Without having conceptual knowledge of a 

topic, procedural knowledge is limited. “Procedural knowledge must rest on conceptual 
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base… procedural knowledge can be quite limited unless it is connected to a conceptual 

knowledge base” (Silver, 1986, p. 185). If conceptual and procedural knowledge are not 

linked in students’ minds, “students may have a good intuitive feel for mathematics but not 

solve the problems, or they may generate answers, but not understand what they are doing” 

(Hiebert & Lefevre, 1986, p. 9). 

 Several types of teaching activities are suggested in the literature for improving 

both conceptual and procedural knowledge. Three examples are: encouraging students to 

compare alternative solution procedures; explaining the solution procedures for 

themselves, and exploring how they can solve problems before having instruction (Rittle-

Johnson & Schneider, 2014). To achieve a better understanding of conceptual and 

procedural knowledge, the next section describes the relationships between these two types 

of knowledge. 

Relationships between conceptual and procedural knowledge 

 Four perspectives on the relationship between conceptual and procedural 

knowledge are reported, including concept-first, procedure-first, inactivation, and iterative 

perspectives (Rittle-Johnson & Schneider, 2014) (These four perspectives are summarised 

in Table 3.4). However, the iterative perspective is currently the most accepted view, 

supported by several studies in different mathematical topics (See Rittle-Johnson & 

Schneider, 2014). The initial knowledge about the topic can be conceptual or procedural 

depending on prior knowledge within the topic. It is not important which one comes first, 

the important thing is that having one type of knowledge helps construct the other type 

(Rittle-Johnson & Schneider, 2014). For instance, conceptual knowledge assists in 

choosing suitable procedures during problem solving; and practising several procedures 

(procedural knowledge) may help achieve a better understanding of the concept (Rittle-

Johnson & Schneider, 2014).   
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Table 3.4 Relationships between conceptual and procedural knowledge 

Relationships between conceptual and procedural knowledge 

 
       An explanation of the order 

Concept-first Individuals first construct conceptual knowledge, then build procedural 

knowledge from it by solving different problems. 

Procedure-first Individuals first construct procedural knowledge, then, using “abstraction 

processes”, build conceptual knowledge. 

Inactivation Individuals construct conceptual and procedural knowledge 

independently. 

Iterative Growth in Individuals’ conceptual and procedural knowledge is “bi-

directional”; an increase in one will lead to “subsequent increase” in the 

other.   

Note. These different perspectives are reported by Rittle-Johnson & Schneider (2014). 

 The next section describes the measures used for evaluating conceptual and 

procedural knowledge in the literature to inform how conceptual and procedural knowledge 

need to explored in the context of integral calculus in the study.  

Measuring conceptual and procedural knowledge  

 There are differences between how conceptual and procedural knowledge can be 

measured. Conceptual knowledge can be measured using a variety of tools that can be 

categorised into two groups, implicit and explicit tools. A tool is classified into one or other 

of these, based on whether implicit or explicit knowledge of the concepts is required to be 

successful in the task. Examples of implicit tools are  

 evaluating unfamiliar procedures, examples of concepts, and the quality of answers 

given by others;  

 translating quantities between representational systems;  

 comparing quantities; and 

 sorting examples into categories (Rittle-Johnson & Schneider, 2014). 

  Examples of explicit tools are  
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 explaining judgement;  

 generating or selecting definitions of a concept; 

 explaining why procedures work; and 

 drawing concept maps (Rittle-Johnson & Schneider, 2014). 

  The main feature of measuring conceptual knowledge is that the task should be 

relatively unfamiliar to participants in order for them to find out the answer by using their 

conceptual knowledge, not using a known procedure for solving it (Rittle-Johnson & 

Schneider, 2014). 

 Methods of measuring procedural knowledge are not as varied as for conceptual 

knowledge and are easier to assess. Most of the time participants are asked to solve a 

number of familiar problems and their work is evaluated in terms of accuracy of the answer 

or procedures (Gray & Tall, 1994; Rittle-Johnson & Schneider, 2014). Familiar tasks are 

used because participants have solved questions related to them, therefore, they have 

constructed suitable procedures for solving them (Rittle-Johnson & Schneider, 2014). The 

next section describes how conceptual and procedural knowledge were explored in 

literature in the context of integral calculus. 

Conceptual and procedural knowledge in integral calculus 

 Mahir (2009) evaluated undergraduate students’ conceptual and procedural 

knowledge in integral calculus. His definition of conceptual and procedural knowledge is 

inspired by Hiebert and Lefevre’s (1986) definitions. 

 Conceptual knowledge is knowledge which is connected to the other pieces of 

 knowledge, and the holder of the knowledge also recognises the connection. The 

 connections between the pieces of knowledge are as important as the pieces 

 themselves. Procedural knowledge consists of [the] formal language of 

 mathematics,  and of rules, algorithms and procedures used to solve mathematical 

 tasks (Mahir, 2009, pp. 201-202).  



49 
 

 

 Mahir (2009), based on his understanding of conceptual and procedural knowledge, 

defined them in the context of integral calculus. He defined conceptual knowledge as 

knowing “the definite integral of a function is the limit of Riemann sums, the integral-area 

relation and the Fundamental Theorem of Calculus” (p. 202); and procedural knowledge 

as knowing “the integral techniques used to find the primitive of a function” (p. 202). Mahir 

used a questionnaire with five questions. Two questions measured procedural knowledge, 

(𝑒. 𝑔. , ∫
sin√𝑥

√𝑥
𝑑𝑥), two measured both conceptual and procedural knowledge depending 

on the method used for solving the question (e.g., ∫ √6 − √8 − 𝑥2
2√2

√2
𝑑𝑥), and one 

measured conceptual knowledge (question three of students interview, Section 5.2.1). For 

evaluating whether students have conceptual or procedural knowledge, the methods 

students solved the questions with were considered. If the question was solved using 

integral-area relationship, Mahir (2009) claimed the presence of conceptual knowledge, 

and if the question was solved using integral techniques, then, the presence of procedural 

knowledge was claimed.  

 Kiat’s (2005) study is also useful for exploring conceptual and procedural 

knowledge in the context of integral calculus. In this study, when exploring students’ 

difficulties in solving integral calculus problems, three types of errors were defined 

including conceptual, procedural, and technical errors. He described conceptual error as 

“failure to grasp the concepts in the problem or errors that rise from failure to appreciate 

the relationships involved in the problem” (p. 41) and procedural errors as errors that “arise 

from failure to carry out manipulations or algorithms despite having understood the 

concepts behind the problem.” (p. 41). Instances of conceptual error in integral calculus 

from Kiat’s (2005) study are: 

 students do not split the integral when a function crosses the axis of integration. For 

example, not splitting the integral at  𝑥 = 4 for∫ 𝑥(𝑥 − 4)𝑑𝑥
5

0
; and 

 students make a mistake in setting up integral limits.  
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 Two examples of procedural error reported by Kiat (2005) are: not adding the 

constant 𝑐 when finding the antiderivative of an indefinite integral; and confusing 

differentiation with integration. 

 The last study reviewed here is Thomas and Hong’s (1996) study. For exploring 

students’ conceptual understanding of integrals, they used questions in which an integrand 

is not explicitly given in the question. For example, “If ∫ 𝑓(𝑡)𝑑𝑡 = 8.6
3

1
, then write down 

the value of ∫ 𝑓(𝑡 − 1)𝑑𝑡
4

2
” (p. 575). Questions like this caused difficulties for several 

students who have a process-oriented view to integral calculus (Thomas and Hong, 1996). 

Discussion 

 The definitions highlighted by Rittle-Johnson & Schneider (2014) are in line with 

RBT’s definitions for conceptual and procedural knowledge. However, Hiebert and 

Lefevre’s conceptual and procedural definition (1986) encompasses not only RBT’s 

conceptual and procedural definition, but also RBT’s factual knowledge definition. In more 

detail, familiarity with the individual symbols of the system that was considered in Hiebert 

and Lefevre’s definition (1986) of procedural knowledge is related to the first subtype of 

factual knowledge (i.e., knowledge of terminology) that includes knowledge of specific 

verbal and nonverbal labels and symbols (Section 2.2.1).  

 Now that an insight into the nature of conceptual and procedural knowledge has 

been presented, the next section explores the nature of metacognitive knowledge.  

3.1.4 Metacognition  

Metacognition (Flavell, 1979; Schneider, & Lockl, 2002) is traditionally defined as 

any knowledge or cognitive activity that individuals have about any aspect of cognitive 

activities (Flavell, Miller, and Miller, 1993). It refers to “meta-level knowledge and mental 

action used to steer cognitive processes” (Jacobse & Harskamp, 2012, p. 133). 

One important addition to BT was the inclusion of metacognitive knowledge in 

RBT. Metacognitive knowledge is the last type of RBT’s knowledge dimension (Section 

2.2.1) which is part of the broader notion, metacognition (Flavell, 1979; Schneider, & 
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Lockl, 2002). In this section, after highlighting the importance of metacognition, 

metacognitive knowledge from Flavell's model of cognitive processing (1979) is presented 

due to its importance in designing RBT. Then, three general facets (the terminology that is 

used for the components of metacognition) of metacognition presented in several studies 

(e.g., Efklides, 2006, 2008; Kim, Park, Moore, & Varma, 2013; Schneider, & Artelt, 2010) 

are explained and compared with the RBT’s metacognitive knowledge. This has been done 

in order to link the current research about metacognition to RBT. Then, instruments for 

measuring metacognition are explored as a background to the tools that are used for 

gathering data in this study.  

  Metacognitive activities are necessary for successfully solving mathematical 

problems (Lester, 1982; Silver, 1982; Verschaffel, 1999). Skills in building relevant toolkit 

(e.g., separating relevant from irrelevant information) and using a variety of heuristics are 

components of successful problem solving that is related to metacognition (Lester, 1982). 

Metacognition is instrumental in building an appropriate representation of the given 

problem and checking the outcome of problem solving (Garofalo, & Lester, 1985; 

Verschaffel, 1999). Metacognition is also related to the decisions that a problem solver 

makes, relating to their personal beliefs and values, between different cognitive strategies 

to find the solution during mathematical problem solving (Silver, 1982). Beliefs and values 

about learning, problem solving, and mathematical problem solving are important in the 

encoding and retrieval of mathematical content knowledge (Silver, 1982).  Knowing the 

definition of metacognition and its importance for mathematical problem solving, the next 

section describes Flavell’s definition of metacognition through his model of cognitive 

processing (1979). 

Flavell's model of cognitive processing  

Based on Flavell's model of cognitive monitoring (1979), monitoring of cognitive 

tasks happens through the interactions of metacognitive knowledge, metacognitive 

experiences, goals, tasks, and strategies. Flavell (1979) highlighted that metacognitive 

knowledge "consists primarily of knowledge or beliefs about what factors act and interact 
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in what ways to affect the course and outcome of cognitive enterprises" (p. 907). The major 

categories of these factors are persons, tasks, and strategies. 

The persons’ category refers to an individual's beliefs about himself and others as 

cognitive processors, and includes intra-individual (Flavell, 1979) (e.g., you prefer and are 

more confident in finding area with respect to the 𝑥-axis rather than the 𝑦-axis when both 

ways can be used for finding the area using integral calculus), inter-individual differences 

(e.g., between your friends, Sara knows integral calculus better than others), and universals 

of cognition (e.g., knowing one might not understand the lecture notes if one has not 

attended the lectures). 

The tasks’ category relate to how the cognitive enterprise should be managed and 

how you are likely to be successful in achieving the goal(s) based on the information 

provided in the given situation (Flavell, 1979) (e.g., your knowledge about how you want 

to check if you have found the correct answer for a definite integral problem). 

 The third category, ‘strategies’, refers to knowledge about strategies that are 

effective for achieving goals in different conditions (Flavell, 1979)  (e.g., knowing in the 

questions related to areas, volumes, and surface areas, sketching the related graphs of 

functions and considering a cross section will help to determine which method/way should 

be used). 

In practical situations, metacognitive knowledge combines two or all of these 

factors (Flavell, 1979). For instance, Sara may believe that (unlike John) (person factor) 

first she should use integration with respect to the 𝑦-axis (rather than integration with 

respect to the 𝑥-axis) (strategy factor) in solving area problems when the given functions 

are presented as 𝑥 = 𝑓(𝑦) (task factor). 

Garofalo, & Lester (1985) describes Flavell’s metacognitive knowledge definition 

(1979) in the context of mathematics. The person factor involves self-assessment of 

capabilities and limitations in relation to different topics in mathematics. It also includes 

personal beliefs regarding “the nature of mathematical ability, the relationship of 
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performance in mathematics to performance in other areas, and the effects of affective 

variables such as motivation, anxiety, and perseverance” (Garofalo, & Lester, 1985, p. 

167). Mathematical task knowledge includes personal beliefs “about the subject of 

mathematics as well as beliefs about the nature of mathematics tasks” (p. 167). “An 

awareness of the effects of task features such as content, context, structure, and syntax on 

task difficulty” (p. 167) are also included in this type of knowledge. The third factor, 

mathematical strategy knowledge,  includes “knowledge of algorithms and heuristics, but 

it also includes a person’s awareness  of strategies to aid in comprehending problem 

statements, organising information or data, planning solution attempts, executing plans, 

and checking results” (p. 168).  

The next section describes the facets of metacognition, including metacognitive 

knowledge, experiences, and skills.  

Metacognition and its facets 

 A number of researchers have tried to describe metacognition and its facets (e.g., 

Efklides, 2006, 2008; Flavell, 1979; Kim et al. 2013; Schneider, & Lockl, 2002; Tarricone, 

2011). However, there is fuzziness in the concept and structure of metacognition (Akturk, 

& Sahin, 2011; Tarricone, 2011) due to different models and meanings presented in the 

literature, and it is not always easy to distinguish between cognition and metacognition 

(Garofalo, & Lester, 1985). However, metacognition is accepted as a model of cognition 

that works at a meta-level to cognition by monitoring and controlling cognitive tasks 

(Efklides, 2006). Three main facets of metacognition recognised in current research (e.g., 

Efklides, 2006, 2008; Kim et al., 2013; Schneider, & Artelt, 2010; Tarricone, 2011) are: 

metacognitive knowledge or knowledge of cognition; metacognitive skills or regulation of 

cognition; and metacognitive experiences or concurrent metacognition. These three facets 

are described in the following paragraphs. 

 Metacognitive knowledge (or knowledge of cognition) 

 Metacognitive knowledge is a declarative knowledge about cognition (Efklides, 

2006). It refers to individuals' explicit or implicit knowledge (i.e., ideas, beliefs, theories) 



54 
 

 

about persons (how individuals perform and feel about different tasks), tasks (its 

categories, features, relationships, and the way they work), goals (the goals individuals 

follow within different tasks and situations), and strategies (including different strategies 

and when, why, and how they should be used) (Efklides, 2006, 2008). 

Metacognitive knowledge derives from a person's long-term memory about 

him/herself or others. It also encompasses knowledge about the various cognitive functions 

(e.g., thinking, and memory) in terms of what they are and how they work (Efklides, 2006, 

2008). In addition, it includes epistemic cognition, knowledge of the criteria of validity of 

knowledge that involve knowledge about limits of knowing, the certainty of knowing, and 

criteria of knowing (Kitchner, 1983). Finally, there is some evidence (e.g., Kuhn, 2000) 

that theory of mind (Bartsch, & Wellman, 1995), beliefs that individuals have about 

people's minds, including their own, can be considered as knowledge of cognition. 

Self-monitoring and monitoring others' cognitive activities, communicating with 

other people, and awareness about personal metacognitive experiences help individuals to 

constantly develop, update, and revise their metacognitive knowledge (Efklides, 2006, 

2008; Flavell, 1979; Kim, et al., 2013).   

Metacognitive skills (or regulation of cognition) 

 The second facet of metacognition, metacognitive skills, is a procedural knowledge 

(Efklides, 2006) that refers to activities that help individuals to control their cognitive 

activities such as learning (Schraw, 1998).  

 These activities are performed deliberately and consist of activities such as task 

orientating, planning, monitoring, regulating, and evaluating. Task orientating relates to 

understanding the task requirements, planning corresponds to steps that need to be done to 

achieve the goal(s) or doing the task(s), monitoring refers to monitoring activities during 

implementing strategies, and evaluating and regulating relate to checking the outcome of 

cognitive processing and modifying it when it fails (Efklides, 2006, 2008; Garofalo, & 

Lester, 1985; Schraw, 1998; Veenman, & Elshout, 1999). 
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Metacognitive experience (or concurrent metacognition) 

 Metacognitive experience as the last facet of metacognition is "what the person is 

aware of and what she or he feels when coming across a task and processing the information 

related on it" (Efklides, 2008, p. 279).  

Unlike metacognitive knowledge and skills, metacognitive experience is present in 

working memory (Efklides, 2006). It encompasses feelings of knowing, familiarity, 

difficulty, confidence, and satisfaction. Metacognitive experiences also include judgment 

of learning, estimation about effort, and time that is needed and spent on the task as well 

as estimating the correctness of solution. Another aspect of metacognitive experiences is 

online task specific knowledge, that is, task information, ideas, and thoughts that a person 

knows about the task which they are engaged with. Metacognitive knowledge that 

individuals retrieve from memory to perform the task is also part of online task specific 

knowledge (Efklides, 2001, 2006, 2008; Schneider, & Lockl, 2002).   

Having an understanding of these metacognition facets, the next section describes 

the instruments that have been used for measuring metacognition.  

Instruments for measuring metacognition 

Two main types of metacognition measure are reported in the literature (e.g., 

Jacobse, & Harskamp, 2012; Schneider, & Artelt, 2010), offline and online measures. 

Offline measures are those that assess metacognitive knowledge without concurrent 

problem solving assessment, whereas online measures assess metacognitive skills and 

experiences during problem solving activity (Schneider, & Artelt, 2010). Both interviews 

(e.g., Kreutzer, Leonard, & Flavell, 1975) and questionnaires (e.g., the Motivated 

Strategies for Learning Questionnaire (Pintrich, & De Groot 1990), and the Metacognitive 

Awareness Inventory (Schraw, & Dennison, 1994)) have been used for measuring 

individuals’ metacognitive knowledge.   

 Questionnaires generally include statements about metacognitive monitoring and 

regulation and individuals need to rate to which degree the statements apply to them. 
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Measuring metacognitive knowledge using a self-report questionnaire has the advantage 

of being easily administered. However, the results may be not accurate because of the social 

desirability factor (McNamara, 2011; Jacobse, & Harskamp, 2012; Schneider, & Artelt, 

2010); “the basic human tendency to present oneself in the best possible light” (Fisher, 

1993, p. 303), and the issue of memory distortion when recalling what has been done during 

a cognitive task (Jacobse, & Harskamp, 2012; McNamara, 2011). 

 One proven online effective method of measuring metacognition is a think-aloud 

protocol (Ericsson, & Simon, 1993). For using this protocol, a person’s thinking, which is 

verbalised during working on a task, is collected. Then, it is transcribed and coded based 

on a scheme (e.g., Kim et al., 2013); or without transcribing, each recorded video file is 

coded based on a scheme (e.g., Jacobse, & Harskamp, 2012). Measuring metacognition 

using a think-aloud protocol is time-consuming, but it provides more reliable information 

than questionnaires because it is collected while the learner executes the task and it is less 

affected by the social desirability factor and memory distortions (Jacobse, & Harskamp, 

2012; Veenman, 2011).  

 Knowing the three facets of metacognition (metacognitive knowledge, experiences, 

and skills), and instruments measuring it, it is worth comparing facets of metacognition 

with the RBT’s metacognitive knowledge. 

Discussion 

 Anderson, et al. (2001) acknowledge two facets of metacognition, knowledge of 

cognition (which relates to RBT’s metacognitive knowledge), and the monitoring, control, 

and regulation of cognition (which relates to metacognitive skills of Efklides’s (2006, 

2008) metacognition framework). RBT’s metacognitive knowledge as stated above is a 

representation of Flavell’s (1979) model:  

 In Flavell’s (1979) classical article on metacognition, he suggested that 

 metacognition included knowledge of strategy, task, and person variables. We 

 have represented this general framework in our categories by including … 
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 strategic knowledge, …, knowledge about cognitive task, [and] self-knowledge 

 (Anderson et al., 2001, p. 56). 

 Metacognitive experience as a facet of metacognition is not explicitly mentioned in 

the RBT handbook. However, considering the fact that metacognitive experiences are 

present in the working memory, it seems it is related to the cognitive process dimension of 

RBT. Evaluating as a cognitive process of RBT seems to be especially related to the 

judgement, a component of metacognitive experiences. In addition, comparing Table 2.5 

and Table 3.4 shows that RBT’s metacognitive knowledge covers most aspects of the 

metacognitive knowledge facet of Efklides’s framework (2006, 2008).  

3.1.5 SOLO taxonomy (or model) 

 In this section, the SOLO taxonomy is described, then compared with RBT. 

Knowing the structure of the SOLO taxonomy could help us to have a better understanding 

of how learning happens for students and also comparing it with RBT could help us to have 

a better understanding of RBT.  

 The SOLO taxonomy (also called the SOLO model (Pegg & Tall, 2010)) is known 

both as a local framework of conceptual growth, describing how learning happens for 

individuals when they construct a concept in mind; and as a global framework of 

knowledge growth, describing how knowledge develops over a long period of time (Pegg 

& Tall, 2010).  

  If SOLO is used as a local framework, Biggs and Collis (1982) claimed that 

understanding of a concept is constructed through a cycle of stages that can be described 

as prestructural, unistructural, multistructural, relational, and extended abstract. Students’ 

responses to a task can then be categorised into one of these levels (Table 3.5). 
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Table 3.5 

 SOLO as a local framework 

 Note. Adapted from “Van Hiele levels and the SOLO taxonomy,” by M.  Jurdak, 1991, 

Mathematical Education in Science and Technology, 22(1), 57-60. Copyright 1991 by 

Taylor and Francis. Adapted with permission. 

 

 In terms of global framework, Biggs and Collis (1982) proposed that knowledge 

develops by successive modes of operation including sensori-motor, ikonic, concrete 

symbolic, formal, and post formal (Table 3.6). Their model is similar to Piaget's theory of 

cognitive development.  

 

 

 

 

 

 

 

 

 

 

 

SOLO Levels A description of the level 

Prestructural Response represents the use of no relevant aspect. 

Unistructural Response represents the use of one relevant aspect. 

Multistructural Response represents the use of several disjoint aspects. 

Relational Response represents the use of all aspects related into an integrated whole. 

Extended abstract. Comprehensive use of all relevant aspects together with related hypothetical 

constructs and abstract principles. 
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Table 3.6 

SOLO as a global framework 

SOLO Modes Age range A description of the mode 

Sensori-motor Soon after  birth A person reacts to the physical environment. For the very 

young child it is the mode in which motor skills are 

acquired. 

Ikonic From 2 years A person internalises actions in the form of images. It is in 

this mode that the young child develops words and images 

that can stand for objects and events. 

Concrete symbolic From 6-7 years A person thinks through use of a symbol system such as 

written language and number systems. 

Formal From 15 to 16 

years 

A person considers more abstract concepts. This can be 

described as working in terms of “principles” and 

“theories”. Students are no longer restricted to a concrete 

referent. 

Post formal Possibly at around 

22 years 

A person is able to question or challenge the fundamental 

structure of theories or disciplines. 

Note. Adapted from “The fundamental cycle of concept construction underlying various 

theoretical frameworks,” by J.  Pegg, & D. Tall, 2010, In B. Sriraman & L. English 

(Eds.), Theories of Mathematics Education: Seeking new frontiers (pp. 173-192). 

Berlin Heidelberg: Springer. 

 In the following, the SOLO taxonomy is compared with RBT to show the potential 

of RBT.  

  Discussion  

 Several studies highlighted differences between BT and SOLO (e.g., Hattie & 

Purdie, 1998); however, no study has been found which compared SOLO and RBT. RBT 

as a taxonomy can be used for analysing students’ learning, and can be compared with the 

local aspect of SOLO. The aim of this study is not to do so in depth, however, it seems 

RBT provides more information when is used for exploring student learning because it is 

a two-dimensional taxonomy with 24 cells with the inclusion of metacognitive knowledge. 
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On the other hand, local aspect of the SOLO taxonomy integrates both knowledge and 

cognitive processes, therefore, student learning can be explored in only one dimension 

(within five levels). Having familiarity with SOLO taxonomy, the next section is dedicated 

to APOS theory, another framework which is frequently used in mathematics education.  

3.1.6 APOS theory 

 APOS theory is introduced by Dubinsky (Dubinsky, 1991) as a constructivist 

learning theory for describing how mathematical concepts are constructed in the mind. It 

is a theory with roots in the works of Piaget that can be used for designing teaching 

activities and analysing students’ mathematical problem solving and learning (Arnon et al., 

2014). APOS is frequently used for research and curriculum development in mathematics 

education, especially at secondary and tertiary levels (e.g., Bayazit, 2010; Dubinsky & 

Wilson, 2013). 

  Based on APOS theory, construction of mathematical knowledge is not linear, but 

how a mathematical concept is constructed in the mind is assumed in a hierarchical manner 

(Arnon et al., 2014). Mathematical concepts cannot be understood directly, therefore, 

mental structures are necessary for making sense of concepts (Piaget & Garcia, 1989).  

According to APOS theory, mathematical concepts are learnt using four mental structures 

(i.e., action, processes, objects, and schemas) that are constructed by five reflective 

abstractions (mental mechanisms) including interiorisation, encapsulation, coordination, 

reversal, de-encapsulation, and thematisation (Figure 3.1) (Arnon et al., 2014).  
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Figure 3.1 Mental structures and mechanisms of APOS theory. 

 Adapted from “APOS Theory: A Framework for Research and Curriculum Development 

in Mathematics Education,” by L.  Arnon, J. Cottrill, E. Dubinsky, A. Oktac, S. Roa 

Fuentes, M. Trigueros, K. Weller, 2014. New York, USA: Springer. 

 Learning a mathematical concept starts with manipulating previously learnt objects 

(mental and physical) in order to shape actions. Through interiorisation, actions form 

processes. Then, objects form by encapsulation. Objects can be de-encapsulated to the 

processes they were originated from. Finally, schemas are the place where actions, 

processes, and objects can be organised (Asiala et al. 1996). 

 Genetic decomposition is a key part of APOS theory. It is a hypothetical model 

describing “the mental structures and mechanisms that a student might need to construct in 

order to learn a specific mathematical concept” (Arnon et al., 2014, p. 27). It can help in 

understanding students’ difficulties in learning a concept and also be used for designing 

teaching activities (Arnon et al., 2014).  

Discussion  

 The same argument that was mentioned for the SOLO taxonomy can be made for 

APOS theory. APOS also integrates knowledge and cognitive processes, and does not 

address metacognitive knowledge explicitly. Therefore, in terms of analysing students’ 

learning, more information is able to be provided by RBT in comparison to APOS.  The 

nature of these lenses differ; however, a comparison of these frameworks shows that RBT 
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has potential that should be revisited by scholars in mathematics education for exploring 

students’ learning. 

 Another lens which is linked to APOS theory is Garry and Tall’s (1994) notion of 

procept (Tall, 1999). The next section is dedicated to describing this notion.  

 3.1.7 The notion of procept 

 Gray and Tall (1994) introduced another lens for exploring how mathematical ideas 

are developed in the mind. They provided a lens which integrates concept and process and 

highlights the importance of symbols in mathematical learning to represent processes or 

objects. For example, a symbol,∫ 𝑐𝑜𝑠𝑡𝑑𝑡
𝑥

1
, evokes the process of integration and also the 

concept of integral calculus. The cognitive combination of these three (i.e., symbol, 

process, and concept) can be considered as a procept in the context of integral calculus 

(Thomas, & Hong, 1996). Gray and Tall (1994) defined an elementary procept as the 

amalgam of three components including a process which creates a mathematical object, a 

symbol representing the process or the object. For instance, the symbol 2 + 3 evokes the 

process of addition or the concept of sum (Gray & Tall, 1994).  

 Then, they extended this notion to highlight the flexibility of mathematical 

thinking. “A procept consists of a collection of elementary procepts that have the same 

object” (Gray & Tall, 1994, p. 121).  For instance, the procept 6, includes “the process of 

counting 6 and a collection of other representations such as 3 + 3,…,8 - 2, and so on” (p. 

121) indicating “the flexible way in which 6 may be decomposed and recomposed using 

different processes” (p. 121). 

 As a sequence of defining procept, proceptual thinking is also defined by Gray & 

Tall (1994) as opposed to procedural thinking. “Proceptual thinking is characterised by the 

ability to compress stages in symbol manipulation to the point where symbols are viewed 

as objects that can be  decomposed and recomposed in flexible ways” (p. 132). 
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Discussion 

 Comparing procept with RBT, especially the knowledge dimension, it seems that 

procept addresses the first three types of RBT knowledge dimension. Symbols address the 

first subcategory of factual knowledge, knowledge of terminology (Section 2.2.1), process 

relates to procedural knowledge, and object addresses the conceptual knowledge. However, 

procept, like SOLO taxonomy and APOS theory, does not address metacognitive 

knowledge explicitly.   

3.1.8 Tall’s theory of three worlds of mathematics 

 Tall (2004, 2006, and 2008) proposed the theory of the three worlds of mathematics 

for describing how humans learn mathematics in the long term; relevant to this study that 

explores student mathematical learning in the context of integral calculus. Tall introduced 

two terminologies, ‘set-befores’ and ‘met-befores’, for explaining his theory. He claimed 

that a human learns mathematics through three attributes located in a person’s genes ‘set-

befores’ birth, including:  

 “recognition of patterns, similarities, and differences; 

 repetition of sequences of actions until they become automatic; 

 language to describe and refine the way we think about things” (Tall, 2008, p. 6). 

  He also claimed personal development relies on a person’s interpretations of new 

situations using experiences that are ‘met-befores’ (Tall, 2008). Tall (2008) defining a met-

before as “a current mental facility based on specific prior experiences of the individual” 

(p. 6).  A met-before can be consistent or inconsistent with new situations. For example, 

for a finite set, when some elements are taken, the cardinality of the set is reduced. 

However, for infinite sets (e.g., natural number), removing odd numbers does not affect 

the cardinality of the set. The effect of negative met-befores is sometimes neglected and 

causes major difficulties for some students (Tall, 2008). 

 Tall’s theory of three worlds of mathematics (2004, 2006, and 2008) refers to three 

interrelated blended sequences of development of mathematical thinking that are 
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constructed by the three set-befores (i.e., recognition, repetition, and language). These 

sequences worlds are conceptual-embodied, proceptual-symbolic, and axiomatic-formal 

worlds.  

 The first world is “based on perception of and reflection on properties of objects, 

initially seen and sensed in the real world but then imagined in the mind” (Tall, 2008, p.7). 

The second world, the proceptual-symbolic world, is developed on the conceptual-

embodied world using action. It is symbolised as thinkable concepts “that function both as 

processes to do and concepts to think about (procepts)” (Tall, 2008, p.7). The third world, 

the axiomatic-formal world, which is based on formal definitions and proofs, “reverses the 

sequence of construction of meaning from definitions based on known objects to formal 

concepts based on set-theoretic definitions” (Tall, 2008, p.7). 

Discussion 

 If the three ‘set-befores’ descried in Tall’s theory being compared with RBT (which 

has not been done in the literature), the first set-before seems to relate to remembering 

knowledge, because recognition relates to the first subcategory of remembering, 

recognising. Patterns, similarities and differences can be related to any type of knowledge, 

therefore the first set-before addresses the first column of RBT Table (Table 2.1). In terms 

of the second set-before, repetition seems to be related to executing, the first subcategory 

of applying. Actions seems to relate to procedural knowledge, therefore the second set-

before, repetition of sequences of actions until they become automatic, might address 

applying procedural knowledge cell. Regarding the third set-before, as mentioned earlier, 

language relates to knowledge of terminology, the first subtype of factual knowledge. 

Describe might be related to the second RBT’s cognitive process, understanding, 

particularly, the last subcategory, explaining. However, refine can encompass higher 

cognitive processes, especially evaluating. Therefore, the last set-before possibly addresses 

four cells including understanding, applying, analysing, and evaluating factual knowledge 

cells. Therefore, all set-befores can be located in the RBT Table, showing the potential of 
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RBT for use in mathematics education, and how it is in line with other theories in 

mathematics education.  

 In terms of the three words, considering their definition and RBT’s structure, the 

first and the third world, conceptual-embodied world and axiomatic-formal world, seems 

to be  related to conceptual knowledge, whereas, the second world, the proceptual-symbolic 

world, seems to address the RBT factual, conceptual, and procedural knowledge. However, 

this theory does not explicitly mention how metacognitive knowledge can be developed 

over time. 

3.1.9 Schoenfeld's frameworks of the analysis of mathematical problem-solving 

behaviour and decision making in teaching 

 Schoenfeld (e.g., 1985, 1987, 1992, 2010) has made a major contribution to how 

student mathematical problem solving can be studied, claiming four categories are 

“necessary and sufficient for understanding problem-solving success or failure” 

(Schoenfeld, 2010, p. 4). The four categories for exploring include: 

 what mathematical  knowledge do students know? 

 what problem-solving strategies do students have for solving unfamiliar problems? 

 how do students monitor and regulate resources (e.g., time) for problem-solving? 

and 

 what beliefs do student have about mathematics, context, themselves, etc 

(Schoenfeld, 2010). 

 Schoenfeld (2010) argued mathematical knowledge is essential for problem-

solving. There are occasions where the knowledge is the “make-or-break factor” (p. 4). In 

unfamiliar problems, using heuristic strategies sometimes make the solution reachable. 

How much time and effort should be spent on a problem is also a key variable for being a 

successful problem solver. Personal beliefs sometimes lead students to avoid or attack 

problems, and also influence their success in problem solving (Schoenfeld, 2010). 
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 Another major contribution of Schoenfeld’s research is his framework (2010) for 

decision making in teaching. Schoenfeld (2014) highlighted:  

 people’s moment-by-moment decision making in teaching…can be modeled as a 

 function of their resources (especially their knowledge, but also the tools at their 

 disposal), orientations (a generalization of beliefs, including values and 

 preferences), and goals (which are often chosen on the basis of orientations and 

 available resources) (p. 406). 

Discussion 

 Schoenfeld’s frameworks seem to be in line with RBT. In relation to the framework 

for analysing problem solving, the first category fits with the RBT’s factual, conceptual, 

and procedural knowledge. The second addresses strategic knowledge, the first 

subcategory of RBT’s metacognitive knowledge. The third category relates to 

metacognitive experiences and skills, and the last relates to self-knowledge, the third 

subcategory of RBT’s metacognitive knowledge. 

  Regarding Schoenfeld’s framework (2010) for decision making in teaching, 

resources related to the RBT’s knowledge dimension, especially the factual, conceptual, 

and procedural knowledge, and orientation and goal address the third RBT subtype of 

metacognitive knowledge, self-knowledge.    

 After presenting major theories and frameworks that influence teaching and 

learning of mathematics and how they are addressed in RBT, the next section is dedicated 

to describing studies that focus on the teaching and learning of integral calculus.   

3.2 Teaching and learning of integral calculus 

 This section reviews the literature in relation to the teaching and learning of integral 

calculus in two streams. The first comprises the definite integral, the Riemann integral, and 

the area under curve(s), and the second focusses on the FTC. The first stream is chosen 

because it is being taught at both Secondary and tertiary level. The FTC is chosen because 
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it is an important theorem that connects the definite and indefinite integral (Section 3.2.1) 

and there is a lack of research about it. 

3.2.1 The definite integral, Riemann sums, and area under curve(s)  

 In this section, first the importance of Riemann sums in integral calculus is 

presented. Then, students’ difficulties with this topic reported in the literature are described 

to be used for justifying the study’s findings. Teaching activities that are suggested in the 

literature for teaching integral calculus are also described in this section.  

 The concept of Riemann sum, ∑ 𝑓(𝑐𝑖)∆𝑥𝑖
𝑛
𝑖=1 , is an important part of integral 

calculus for at least three reasons. Firstly, for functions where the antiderivative cannot be 

expressed in terms of elementary functions (e.g.,∫
1

𝑙𝑛𝑥
𝑑𝑥

5

2
), numerical integration methods 

should be used for finding the integral, Riemann sums is one of the approaches that can be 

used. Secondly, structures of other numerical methods (e.g., trapezoid rule) are based on 

Riemann sums; therefore, if students understand Riemann sums, their understanding 

facilitates learning of other methods. Thirdly, understanding Riemann sums helps students 

with solving definite integral problems by knowing what to integrate and how to set up the 

bounds of integral (Sealey, 2006, 2014). 

 A number of important concepts are involved in Riemann sums and definite 

integral, lim
𝑛→∞

∑ 𝑓(𝑐𝑖)∆𝑥
𝑛
𝑖=1 , including series, functions, limits, rate of change, and 

multiplication (Sealey, 2006). Students’ difficulties with understanding the definite 

integral as the limit of a sum are highlighted in the literature (Orton, 1983; Grundmeier, 

Hansen, & Sousa, 2006). For instance, Orton (1983) found that even the best student in his 

sample had difficulty with solving problems related to understanding the definite integral 

as the limit of a sum. 

 To achieve a better insight about how students might develop the concept of 

Riemann integral, a framework for characterising students’ understanding of Riemann 

sums and the definite integral is proposed (Sealey, 2014). The framework has a pre-layer, 
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and four layers (Table 3.7). Using the framework, Sealey (2014) found that layer 1, the 

product of 𝑓(𝑥) and ∆𝑥, is the most complex part of problem-solving for students.  

“Difficulties in this layer are not necessarily related to the operation of multiplication and 

performing calculations, but are typically related to understanding how the product is 

formed and understanding how to use each factor within the product” (Sealey, 2014, p. 

238). 

Table 3.7 

Riemann integral framework 

Layer Symbolic representation 
Pre-layer [

1

𝑐
. 𝑓(𝑥𝑖)] and or[𝑐. ∆𝑥] 

Layer 1: Product [
1

𝑐
. 𝑓(𝑥𝑖)].[𝑐. ∆𝑥] 

Layer 2: Summation 
∑𝑓(𝑥𝑖)∆𝑥

𝑛

𝑖=1

 

Layer 3: Limit 
lim
𝑛→∞

∑𝑓(𝑥𝑖)∆𝑥

𝑛

𝑖=1

 

Layer 4: Function 
𝑓(𝑏) = lim

𝑛→∞
∑𝑓(𝑥𝑖)∆𝑥

𝑛

𝑖=1

 

 

 Several studies have explored the relationship between definite integral and area 

under curve(s). These studies reported many students are able to do routine procedures for 

finding area using integral techniques, however, their understanding about why such a 

procedure should be performed is limited (e.g., Artigue, 1991, Thomas & Hong, 1996). 

Students’ difficulties are reported when the function is below the 𝑥-axis (Orton, 1983) or 

absolute values are involved in the integrand (Mundy, 1984) (Section 1.1). In addition, Kiat 

(2005) found that if the graph of the integrand is not given to students, students can fail to 

set up integrals correctly for finding the area, and that shows their understanding of definite 

integral is procedural and that they cannot make the connection between definite integral 

and area. In detail, Kiat (2005) reported 80% of students failed to realise that, for finding 

the area enclosed between𝑦 = 𝑥(𝑥 − 4) and the 𝑥-axis from 𝑥 = 0 to 𝑥 = 5, the integral 
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should be split at 𝑥 = 4. Difficulties in setting up the right integral are also reported when 

the graphs of the curves are given in the questions. Kiat (2005) found that 55% of students 

could not set up the correct integrals for finding the shaded area in a question where one of 

the curves is above and one below the 𝑥-axis (Kiat, 2005). 

 Mahir (2009) explored conceptual and procedural knowledge of undergraduate 

students in integral calculus (Section 3.1.3, measuring conceptual and procedural 

knowledge in integral calculus). He found that students developed a satisfactory level of 

procedural knowledge in this topic. In detail, 92 % and 74% of students answered correctly 

two questions that can be solved using procedural knowledge in integral calculus. 

However, this study reported a lack of students’ conceptual knowledge in integral calculus. 

In detail, in three questions that can be solved using conceptual knowledge in integral 

calculus, only 8%, 16%, and 24% of students were able to use their conceptual knowledge 

for solving the questions. In addition, Rasslan and Tall (2002) reported students’ 

difficulties in understanding the definite integral as an area under curve for piecewise 

defined functions and improper integrals. 

 In terms of symbols and notations of integral calculus, “𝑑𝑥” in ∫ 𝑓(𝑥)𝑑𝑥 causes 

conflicts and contradictions for a number of students. The reason is, some students are told 

not to cancel 𝑑𝑥 in 
𝑑𝑦

𝑑𝑡
=

𝑑𝑦

𝑑𝑥

𝑑𝑥

𝑑𝑡
 when solving questions related to chain rule as it has no 

separate meaning. However, in integral calculus 𝑑𝑥 has a different meaning, showing 

integration should be done with respect to 𝑥 (Tall, 1992). 

 In relation to the definition of definite integral, Grundmeier, Hansen, and Sousa 

(2006) reported students had great difficulty with learning the symbolic definition of a 

definite integral. Within the sample of the study consisting of 52 students, only one student 

was able to provide the symbolic definition of the definite integral and only 35% were able 

to provide a correct verbal definition. However, the study findings showed that students’ 

knowledge of the definition of a definite integral did not affect students’ ability to do 

routine integral problems. In the sample of the study, more than 60% of students were able 



70 
 

 

to evaluate the definite integral of a trigonometric function. Such findings are supported by 

others (e.g., Rasslan, & Tall, 2002) that a majority of students are not able to write 

meaningfully about the definition of definite integral. One reason is related to the learning 

and teaching approach of some teachers and lecturers that focuses on the procedural aspect 

of calculus (Bezuidenhout, 2001). 

Teaching integral calculus 

 Researchers have provided suggestions for teaching integral calculus based on their 

study findings. For instance, Orton (1983) suggested the focus of integral calculus teaching 

should be on determining the enclosed area as a limit of a sum rather than integration 

techniques for solving different types of integrals. Providing diagrams and graphs as much 

as possible is also recommended in order that students have a better understanding of the 

relationship between definite integral and area (Orton, 1983).  Integrating technology to 

teach integral calculus might also be helpful for focusing on conceptual ideas (Thomas & 

Hong, 1996; Hong & Thomas, 2015). Kiat (2005) suggested asking students to compare 

differentiation and integration techniques because he found that many students have 

confusion about these two processes. He also highlighted that many students make 

technical errors during solving integral problems; therefore, he suggested remedial lessons 

and revision worksheets related to prerequisite knowledge for integral calculus for 

preparing students for this topic. Another suggestion about teaching integral calculus, 

especially at secondary school, is related to teaching limits. Limit is not in the focus of 

secondary school curriculum in several countries (e.g., Singapore (Kiat, 2005)) whereas it 

is necessary for understanding the definition of the definite integral; therefore, it is 

suggested that more attention be paid to this topic in order for students to have a better 

understanding of integral calculus (Kiat, 2005).  

3.2.2 The Fundamental Theorem of Calculus 

 FTC is an important part of integral calculus because it connects the definite and 

indefinite integral together and provides an efficient method for evaluating definite 

integrals using anti-derivatives (Anton et al., 2012).  It expresses the relationship between 
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the accumulation of a quantity and the rate-of-change of the accumulation (Thompson, 

1994). It is recognised as one of the intellectual hallmarks in the development of calculus 

(Carlson, Persson, & Smith, 2003).   

 The FTC has two parts. The first part says, “if 𝑓 is continuous on [a,b] and 𝐹 is any 

antiderivative of 𝑓 on [𝑎, 𝑏], then ∫ 𝑓(𝑥)𝑑𝑥 = 𝐹(𝑏) − 𝐹(𝑎)
𝑏

𝑎
 (Anton et al., 2012, p. 363)”. 

The second part states  

 If 𝑓 is continuous on an interval, then 𝑓 has an antiderivative on that interval. In 

 particular, if 𝑎 is any point in the interval, then the function 𝐹 defined by 

  𝐹(𝑥) = ∫ 𝑓(𝑡)𝑑𝑡
𝑥

𝑎
 is an antiderivative of 𝑓; that is, 𝐹′(𝑥) = 𝑓(𝑥) for each 𝑥 in 

 the interval, or in an alternative notation 
𝑑

𝑑𝑥
[∫ 𝑓(𝑡)𝑑𝑡

𝑥

𝑎
] = 𝑓(𝑥)” (Anton et al., 

2012, p. 370). 

 For understanding the FTC, encapsulating both differentiation and integration seem 

to be required (Thomas & Hong, 1996). Literature shows that a number of students could 

apply the FTC for finding the definite integral; however, they do not know why the FTC 

provides the results (Orton, 1983).  

 Student difficulties with the FTC are reported to be related to students’ 

understanding of function (e.g., Thompson, 1994), limits (e.g., Thompson & Silverman, 

2008), rate of change (Thompson, 1994), and the notational aspect of the accumulation 

function (Thompson & Silverman, 2008). Several studies reported that both undergraduate 

and high school students have difficulties with understanding limits (e.g., Tall, 1992; Tall, 

Vinner, 1981), which might prevent students from understanding the FTC (Thompson & 

Silverman, 2008).  From the notational aspect, the role of 𝑡 in ∫ 𝑓(𝑡)𝑑𝑡
𝑥

𝑎
 is confusing for a 

number of students (Thompson & Silverman, 2008). 

  

 The concept of accumulation function in the FTC, represented by 𝐹(𝑥) =

∫ 𝑓(𝑡)𝑑𝑡
𝑥

𝑎
, involves several parts that make it hard for some students to understand it 

(Thompson & Silverman, 2008). First, students need to understand 𝑓(𝑡) is a number 
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depending on the value of 𝑡. Second, they need to have a covariational understanding 

(Carlson et al., 2003; Carlson, Larsen, & Jacobs, 2001) of the relationship between 𝑡 and 

𝑓, which means understanding that as the value of 𝑡 changes from [𝑎, 𝑥], the value of 𝑓(𝑡) 

varies accordingly. The third step is understanding the bounded area accumulating, as 𝑡 

and 𝑓(𝑡) vary, and these values are changing in tandem (Thompson & Silverman, 2008).  

Teaching the Fundamental Theorem of Calculus 

 The literature suggested some changes in the focus of teaching integral calculus. 

Thompson & Silverman (2008) highlighted that the focus should be on the accumulation 

function rather than the traditional emphasis on finding a number representing the area 

enclosed by curves over an interval: “This paper presents a call for increased emphasis on 

the FTC as explicating an inherent relationship between accumulation of quantities in bits 

and the rate at which an incremental bit accumulates” (p. 51). To make this happen, the 

idea of covariation should also be considered in teaching calculus (Thompson & Silverman, 

2008). In addition, to achieve a better understanding of the role of the accumulation 

function in the FTC, constructing, representing, and understanding Riemann sums should 

also be in focus (Thompson & Silverman, 2008).  

 A teaching experiment was conducted to help first year students to understand the 

accumulation function and the FTC (Carlson et al., 2003). In this design, the culmination 

of the course was understanding the FTC. The course started with reviewing function and 

from the start of the course, the concept of covariation of quantities was the focus and that 

reasoning was used for teaching other topics (e.g., rate of change, limits). Their study 

findings showed a high success rate in terms of understanding the concept of accumulation 

function and the FTC.  

Discussion 

 Previous studies in calculus that used RBT as a lens examined matching functions 

and graphs (Green, 2010) and functions, limits, and derivatives (Radmehr & Alamolhodaei, 

2010, 2012). Therefore, analysing students’ performance in integral calculus based on RBT 

is potentially useful and could reveal further information about students’ difficulties in this 
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topic. In addition, previous studies that explored students’ mathematical problem solving 

based on RBT were quantitative while the current study used a mixed approach (both 

quantitative and qualitative). In addition, there is a lack of research about students’ 

metacognitive knowledge, experiences, and skills in the context of integral calculus that 

makes this study novel.   

3.3 The secondary-tertiary transition in mathematics 

Integral calculus is part of the upper secondary school and undergraduate university 

curriculum; therefore, transition effects between these two levels should be considered in 

this study. The secondary-tertiary transition is considered as a “rite of passage" (Clark & 

Lovric, 2008, 2009), with three phases including separation from high school, liminal 

(transition from high school to university), and incorporation into university. Separation 

happens during the time students are still in secondary school and expect to be going to 

university. The liminal phase includes to “the end of high school, the time between high 

school and university, and the start of first year at a university” (Clark & Lovric, 2009, p. 

756). The final phase, incorporation, includes the first year at university (Clark & Lovric, 

2009). 

The secondary-tertiary transition in mathematics is a complex issue and serious 

concerns about teaching and learning in these two levels have been reported (e.g., Hourigan 

& Donoghue, 2007; Kajander & Lovric, 2005; London Mathematical Society, 1995; Luk, 

2005; Tall, 1997). These concerns have been classified as epistemological and cognitive, 

sociological and cultural, and didactical (De Guzmán, Hodgson, Robert, and Villani, 1998). 

These classifications were derived from different discussions during the International 

Congress on Mathematical Education (ICME) conferences and from administering 

questionnaires to undergraduate students about their difficulties with university 

mathematics (De Guzmán, Hodgson, Robert, and Villani, 1998). Those most pertinent to 

this study are the cognitive and didactical aspects because RBT is particularly powerful for 

examining cognitive and didactical aspects of teaching and learning. 
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Regarding the cognitive aspect (which is related to concepts in the discipline and 

how individuals approach it) of the secondary-tertiary transition, students may face 

difficulties in university since mathematical concepts are presented in more depth and 

problems require more technical and conceptual understanding in comparison to secondary 

level teaching (De Guzmán et al., 1998). Moreover, facing formal deductive approaches 

like proving theorems in the first year in university is another problem for students at this 

transition (London Mathematical Society, 1995; Tall 1997).  

In relation to the didactical aspect (which is related to teaching methods and the 

performance of lecturers and teachers) of the transition, there are concerns such as lack of 

innovation in teaching methods, feedback procedures, and designing assessment in 

universities. In addition, lecturers in the study were found not to have strong pedagogical 

and didactical abilities and paid less attention to course design than teachers (De Guzmán 

et al., 1998).  

In New Zealand, a comprehensive two-year study about the transition from 

secondary to tertiary mathematics took place (Hong et al., 2009; Thomas et al., 2010). The 

results of the study are similar to previous research in some aspects. For instance, not all 

of the students were affected in the same manner through the transition, and there were 

several differences between teaching mathematics in schools and universities in term of 

emphasis and style. However, other aspects of this research may be specific to New 

Zealand. For example, Thomas et al. (2010) reported that there was a misalignment 

between the curriculum at secondary and tertiary level in some areas such as the omission 

of series and vectors from NCEA. This led to problems for students whose studies were 

based on NCEA in that when they enter tertiary education they have not been introduced 

to these concepts. However, the study claimed that students who studied under the 

Cambridge Curriculum (The Association of Cambridge Schools in New Zealand, 2011) 

made the transition more easily. In addition, communication between teachers and lecturers 

is important for understanding issues involved in each side of the transition, but it was not 
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focused on by universities and schools up to the time they conducted their study (Hong et 

al., 2009). 

Discussion 

In terms of calculus, the cognitive secondary-tertiary transition has been studied for 

functions (Godfrey & Thomas, 2008) and derivatives (Biza & Zachariades, 2010) but there 

is a lack of research in this regard for integral calculus. Therefore, exploring students’ 

learning of integral calculus based on RBT in Year 13 and University level will provide 

new insight into cognitive aspects of the secondary-tertiary transition in integral calculus.  

3.4 Chapter summary 

 This chapter discussed the potential of RBT by comparing it with learning theories 

and frameworks that are frequently used in mathematics education. In addition, it describes 

the literature about the teaching and learning of integral calculus and the secondary-tertiary 

transition in mathematics to show the potentials of RBT for providing further insight into 

student learning in these topics, and also for being used to interpret the study findings. 
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Chapter Four: Study Design  

In this chapter, the research paradigm and the methodology of the study are described and 

justified. Explanations about the study sample and the process of data collection are also presented. 

The main data gathering instruments and how they have been designed are described in Chapter 

Five. The research questions are restated here and the approach taken to answering them is 

presented. 

 1. What examples of factual, conceptual, procedural, and metacognitive knowledge in integral 

calculus based on RBT can be found in Year 13 and first year university?  

2. Using RBT as a lens, what are students' difficulties in solving integral questions in Year 13 

and first year university? 

3. What metacognitive knowledge, experiences, and skills do students hold about integral 

calculus in Year 13 and first year university? 

4. What differences exist between student learning of integral calculus in Year 13 and first 

year university? 

5. What are the perceptions of lecturers and teachers towards students’ difficulties in integral 

calculus?  

4.1 Research paradigm 

A Research paradigm can be defined as "a general philosophical orientation about the 

world and the nature of research that a researcher brings to a study" (Creswell, 2014, p. 6) that 

influences the way knowledge is studied, interpreted, and obtained (Mackenzie, & Knipe, 2006). 

The research paradigm addresses ontological, epistemological, and methodological matters 

(Punch, 2013). It describes the nature of reality (ontology), the relationship between the researcher 

and the reality (epistemology), and indicates methods suitable for studying the reality 

(methodology) (Punch, 2013). 

In a post-positivist world there is an increasing variety of paradigms (e.g., post-positivism, 

social-constructivism, feminism, social realism, transformative, and pragmatism) (Blaikie, 2009; 
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Creswell, 2014; Teddlie & Tashakkori, 2009), therefore a pragmatic approach has been chosen for 

the study. Such an approach allows researchers to use both quantitative and qualitative approaches 

for answering the research question(s). Pragmatism considers that knowledge can be obtained in a 

social, historical, and political context. Pragmatists are focusing on research questions, and design 

data collection and analysis, in a way that provides insights into the problem without any 

dependency on alternative paradigms (Creswell, 2014; Mackenzie, & Knipe, 2006; Morgan, 

2007).  

In relation to investigating the students’ learning of integral calculus using RBT, both 

qualitative (i.e., interpretive) and quantitative (i.e., post-positivism) approaches are used. A 

qualitative approach was used because it relies on understanding a phenomenon from the 

participants’ point of view in the context in which it happens (Stake, 2006), and is found on a 

belief that knowledge is subjective and socially embedded (Cohen, Manion, & Morrison, 2011). 

Considering the fact that some aspects of metacognitive knowledge (e.g., self-knowledge) are 

subjective, using a qualitative approach is necessary to explore students’ metacognitive knowledge 

in integral calculus. It is also productive for exploring how students perform on tasks whose design 

is based on RBT at a micro level. Quantitative approaches are useful for comparing students’ 

results from university and Year 13 at a macro level. They are also useful for answering the fourth 

research question, by using statistical inference tests to explore whether there is any significant 

difference between the performance and knowledge of students at these respective levels. Table 

4.1 provides rationales for rejecting the other main paradigms (i.e., post-positivism, interpretive, 

and transformative) (Creswell, 2014) for this study.  
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Table 4.1 

Rationale for rejecting the main paradigms other than pragmatism for this study 

Paradigm The main reason for rejecting the paradigm for the study 

Post-positivism The study was not only committed to comparing students’ performance in integral 

calculus questions based on RBT in general. The performance of each student was 

analysed in depth (micro focus). 

Interpretive The study not only relied on qualitative analysis, but a comparison of students’ 

performances in general between university and Year 13 students was also considered 

(macro focus). 

Transformative The research questions were not related to social justice and marginalised people and did 

not include an action agenda for changing the lives of participants.  

 

 The next section describes the research methodology undertaken based on the chosen 

paradigm.  

4.2 Research methodology 

 Having the pragmatic paradigm in mind, a mixed method study, predominantly 

qualitative, was designed within the case study approach (Yin, 2012, 2014) as a research 

methodology. In this section, the case study approach and the rationales for using it are justified.  

Case study is a research methodology which “investigates a contemporary phenomenon 

(the “Case”) in its real-world context, especially when the boundaries between phenomenon and 

context may not be clearly evident” (Yin, 2014, p. 2). Case study methodology is suitable when 

the research questions are descriptive, explanatory, or exploratory and the goal of the study is to 

emphasise the study of a phenomenon within its real-world context (Baxter & Jack, 2008; Yin, 

2012). Case study is chosen because of the nature of the research questions and the aim of the 

study. Three main steps of case study design are: defining the case; selecting one of four types of 

case study design (i.e., single holistic, single embedded, multiple holistic, and multiple embedded 

design); and deciding whether to use theory to inform methodological steps such as case selection, 

data collection, data analysis, etc. (Yazan, 2015).  
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A single case study is suggested for five situations (Yin, 2014), including: critically testing 

a theory; explanation of the conditions and circumstances of an everyday situation; an extreme or 

unusual case; a longitudinal case, and when the researcher has access to a case that was previously 

inaccessible to research (Yin, 2014). Multiple case studies are used when there are two or more 

cases can be selected for the study, considering the time and expense involved, they are “believed 

to be literal replications, such as a set of cases with exemplary outcomes in relation to some 

evaluation questions” (Yin, 2014, p. 62). If there is more than one level of analysis in a case, then 

an embedded Case study should be used instead of a holistic approach (Yin, 2014). In this study, 

a case was defined as an educational institution in New Zealand (i.e., University or College) in 

which integral calculus was taught in 2014. The two selected Cases consist of a sample of students 

and lecturers/teachers who were interviewed and the teaching of integral calculus was observed 

and recorded within the samples (Figure 4.1). Information about study participants is presented in 

method section (Section 4.3.2).  

 

 

 

 

Figure 4.1 Structure of the study Cases 

 In terms of case study design, embedded multiple-case studies were conducted, with the 

goal of understanding how students learn integral calculus and what are their difficulties in 

learning this topic at Year 13 and first year university at their respective institutions. The reason 

for having such design was that university and Year 13 students might have different learning 

experiences of integral calculus, and lecturers/teachers might have different opinions toward 

students’ difficulties in learning integral calculus.  

In terms of analysis, the study is a comparative case study (Kaarbo & Beasley, 1999) in the 

sense that a comparison is conducted between students’ learning of integral calculus at University 
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(Case 1) and College (Case 2). In addition to these two Cases, five lecturers from another 

University were interviewed to explore students’ difficulties in learning integral calculus, however, 

as no students were interviewed from the second University, these five lecturers were not 

considered as a Case. 

As this research is exploratory, emerging theory is intended to be derived from an analysis 

of the data collected rather than existing beforehand. As such, grounded theory (Charmaz, 2006) 

has been chosen as an approach to the data analysis because of its usefulness for constructing 

explanations of complex phenomena, students’ learning of integral calculus, and its being 

frequently used in mathematics education research (e.g., Frejd, 2013; Johnson, 2015; Roh, 2010; 

Triantafillou, & Potari, 2010). For example, Roh (2010) categorised students based on their way 

of using a counting process by abstracting interviewees’ responses, gestures, language expressions, 

and diagrams (Roh, 2010). Similarly, in this study, students’ responses to the interview questions 

were used for generating theory about the ways students learn integral calculus. 

 Grounded theory provides a guideline for identifying, refining, and integrating categories 

within a set of data, and shows researchers how to link them to create a theory (Willig, 2013). 

When using grounded theory for data analysis, the goal of a researcher is to generate theory from 

data (Willig, 2013). Using grounded theory for data analysis influenced the research method 

selected for the study, of using a semi-structured one-to-one interview with students to elicit data 

about students’ learning of integral calculus.  

  Key aspects of grounded theory data analysis consist of different processes, including 

memo-writing, coding, constant comparative analysis, and theoretical saturation (Charmaz, 2006; 

Willig, 2013). Memo-writing was done throughout the process of data collection and analysis to 

keep a written record of theory development. By using coding, including initial and focused 

coding, (Charmaz, 2006) categories that emerge from data were identified. Constant comparative 

analysis, defined as “inductive processes of comparing data with data, data with category, category 

with category, and category with concept” (Charmaz, 2006, p. 187) were done to find out 

similarities and differences between emerging categories and theory. Finally, data analysis 

continued until theoretical saturation was reached, and coding was continued until no new 

categories could be recognised. Due to the importance of coding in qualitative research, more 

explanation about how coding was done in the study is presented below.  
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 The first step of moving from data to generating theory is coding (Charmaz, 2006). Coding 

refers to “categorising segments of data with a short name that simultaneously summarises and 

accounts for each piece of data” (p. 43). Coding shows how the data was selected, separated, and 

sorted. Two main phases of grounded theory coding are initial and focused coding (Charmaz, 

2006). In the initial phase, words, lines, and segments of data are labelled and the codes are 

considered “provisional, comparative, and grounded in data” (p. 48). After constructing direction 

through initial coding, focused coding should be done, which is “using the most significant/and or 

frequent earlier codes to sift through the large amount of data” (p. 57).   

 In relation to inductive or deductive approaches, the coding in relation to student learning 

was considered inductive, and defined as moving from data to theory, rather than testing a theory 

with a data set, which is defined as a deductive approach (Blackstone, 2012). However, 

considering the study findings (Chapter Seven to Nine) at a macro level, the results show the 

degree of the effectiveness of using the combination of RBT and Efklides’s metacognition 

framework for exploring students learning. This aspect of the analysis related to deductive 

approach towards reasoning. An example of how coding was done at a micro level through the 

data is presented below. 

 The following (Figure 4.2) shows three responses from students in relation to their 

orientation toward taking the calculus course (Section 8.4.2). All three responses were identified 

as being from students who like calculus regardless of the fact that this course was useful for their 

further study.  In the figure, the clouds are the initial codes for these segments and the focused 

code that was chosen for them is like.  
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Figure 4.2 Example of how the coding was done for the data 

 In detail, first, the segments were read and the initial codes were assigned. Then, by 

comparing the students’ responses, and considering the fact that all of them, used the word like for 

expressing their reason for taking the calculus course,  the focused code for these segments was 

chosen as like.  

4.3 Method 

In the following section the method of the study is described, including describing how the 

data were collected, how participants were recruited, and how the reliability, validity, and ethical 

considerations were considered in the study.  

Y8: I enjoy it. It is one of my favourite subjects because I really like mathematics and I 

like the problems and working them out… I need to have calculus for that [doing the 

major in a University] but I was doing Year13 calculus before I made that decision 

enjoy favourite 

subjects 

like mathematics 

and its problems 

Choose calculus before 

thinking about the  major 

U4: Because I like math, calculus, and integration. It is hard but it is  good fun 

when you get it 

like 
A good fun when it 

is understandable 

Y7: I find it fun… I guess it does help a quite bit with physics [in the University], 

but, I generally like algebra and calculus 

fun 

like 

Helpful for 

other subject 
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The data collection had four Stages (Table 4.2). In Stage One, Tool development, the 

instruments of the study were designed (Chapter Five) and trialled. Then, undergraduate 

mathematics lectures and Year 13 teachers (Stage Two: Lecturers/teachers interview), University 

and College students (Stage Three: Students interview) were interviewed in 2013-2014 academic 

year using the instruments. The entire teaching of integral calculus in a course in a University in 

New Zealand and a College in Wellington were observed and digitally recorded (Stage Four: 

Video recording and observing). 

Table 4.2  

Stages of data collection 

 

 

Stages Data collection Participants Purpose 

Stage One: 

Tool development 

(qualitative) 

Documents: 

(The New Zealand Curriculum, 

NCEA level 3 mathematics 

achievement standards, Year 13 and 

university Calculus text books and 

revision books, summative 

assessment in school and university, 

Senior subject guide on TKI 

website, past exam on integral 

calculus). 

The researcher: designing the 

instruments 

To design the 

interviews for next 

stages of the study. 

Stage Two: 

Lecturers/teachers 

interview 

(mixed methods, 

mainly qualitative) 

Interviews: semi-structured-audio 

recording. 

The researcher: interviewing 

mathematics undergraduate lecturers 

(10 participants) and  Year 13 

mathematics teachers 

(5 participants) 

 

To explore lecturers 

and teachers 

perspective about 

students’ learning of 

integral calculus  

Stage Three: 

Students interview 

(mixed methods, 

mainly qualitative) 

Interviews: semi-structured- audio 

& video recording. 

The researcher: interviewing 

University students 

(9  students) and College students 

(8 students) 

 

To explore students’ 

learning of integral 

calculus.  

 

Stage Four: 

Video recording and 

observing 

(mixed methods, 

mainly qualitative) 

Video recording classrooms, 

lectures, and tutorials. 

The researcher: observing and memo-

writing, first year undergraduate 

calculus students and their lecturers 

plus two tutors, and Year 13 calculus 

students and their mathematics teacher 

(one regular class of a College). 

To have a better 

understanding of how 

the topics are taught at 

the courses.   
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4.3.1 General structure of the interviews 

 In this section, how the interviews were conducted and trailed is described.  The details of 

how the students’ interview questions were designed are provided in Section 5.2. One-to-one semi-

structured interviews (DiCicco‐Bloom & Crabtree, 2006) are the main source of data collection in 

this study. The interviews were semi-structured in a sense that the wording of the questions was 

developed in advance, but further questions (probes) were used depending on how clear and 

complete the interviewer judged the interviewee’s response to be. Interview research “is distinctive 

in its reliance on direct, usually immediate, interaction between the researcher and participant” 

(Salmons, 2015, p. 1). In qualitative research, interviewing is one of the most popular methods for 

generating data (King, & Horrocks, 2010) and is frequently used in grounded theory research in 

mathematics education (e.g., Johnson, 2015). In interviews, questions can be explained more 

thoroughly and questions without any responses are minimised (Snowball & Willis, 2011). 

However, collecting data using interviews is more time and energy consuming than using 

questionnaires and gives less time for participants to think about the questions in some instances 

(Snowball & Willis, 2011).  

 For trialing the interview questions, they were discussed with the PhD supervisors in 

several sessions and their comments were considered. For instance, the number of questions and 

how they should be asked was changed during these consultations. In some occasions, the 

supervisors considered themselves as teachers and have tried to help the researcher to understand 

how the question should be reworded. In addition, instead of using one question for each cell of 

RBT, questions were designed in a way that several cells and types of knowledge were assessed 

in each question. Then, a PhD student in mathematics who had experiences of teaching calculus 

answered all questions (lecturer, teacher, and student interview) and her feedback was also 

considered for the final version. The first University and College student who participated in the 

interview were used to trail the tools. However, as no major problem was found with the interview 

questions (i.e., the questions were understandable for students and they had no difficulty with 

interpreting them), these students’ responses were considered part of the study data. In the 

following sections, the interview questions are introduced. 
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Lecturers’ and teachers’ interview 

Interviews were begun with general and open questioning about the way lecturers and 

teachers teach integral calculus in their classes, in order to put interviewees at ease and not feel as 

if their knowledge is being tested in interviews (Levenson, 2012). The opening question was: 

Could you please describe a typical day of teaching integral calculus in your class/lecture in 

relation to finding the area enclosed between curves and the Fundamental Theorem of Calculus? 

The interviewer did not critique or probe further their response to this question, instead, after their 

response, started asking the interview questions. Then, the interview questions became more direct 

and specific. The interviewees were asked 24 questions during a one to three hour interview, 

however, only one is presented in the thesis as it being central to the focus of the study: What are 

students' main difficulties toward finding the area enclosed between curves? How about the 

Fundamental Theorem of Calculus?  

Student interviews 

RBT cells represent different types of intended student learning (Anderson, 2005, Chapter 

Two). Analysing students’ learning in relation to all 24 RBT cells required a number of questions 

and consequently could take several hours of students’ time, so, this was not undertaken. When 

working with 24 cells is not practical, Anderson (2005) suggests students’ learning can be analysed 

in relation to RBT’s rows or columns: 

Organising the current research in terms of the cells of the Taxonomy Table (or, 

 alternatively, the row or columns if the cells prove to be too specific) may provide a level 

 of understanding of the research which has not been possible to this point in time (p. 

 110). 

Student learning of the integral-area relationship and the Fundamental Theorem of 

Calculus (FTC) were explored using 23 questions (e.g., Appendix 12). The first nine questions 

comprised integral-area and FTC questions to explore factual, conceptual, procedural knowledge, 

                                                           
2 In Appendix 1, the University version is placed. In the Year 13 version, in the second part, after the fundamental 
theorem of calculus, the word “definite integral “ were placed for students who do not know the name of this 
theorem. In addition, in the first question of part two, instead of lecturer/tutor/instructor, the word “teacher” was 
used.  
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metacognitive skills, and metacognitive experiences. The remaining 14 explored students’ 

metacognitive knowledge (Figure 4.3).  

 

 

 

 

Figure 4.3 Structure of interview questions with students  

4.3.2 Study participants 

The following section describes information about the study participants and how they 

were selected. It includes teachers, lecturers, and students who were interviewed. Their classes 

were observed and video recorded. Reasons for the methods of recruiting participants are given.  

Interview participants 

In the following paragraph, information about the undergraduate mathematics lecturers and 

Year 13 mathematics teachers who were interviewed is presented first, and then information about 

the students is provided.  

Lecturers and teachers 

For the selection of lecturers and teachers, theoretical sampling was used, meaning the 

sample is “suitable for illuminating and extending relationships and logic among constructs” 

(Eisenhardt, & Graebner, 2007, p. 27). The criteria for being chosen for the interview were: having 

the experience of teaching calculus for at least three years; and being interested in knowing more 

about the learning and teaching of integral calculus. These criteria were chosen to provide a higher 

probability that participants would have an established understanding of students’ difficulties in 

the context of integral calculus and be aware of restrictions in the teaching and learning of integral 

calculus. The researcher cannot provide further information about his relationship with participants 

in the Cases as it may identify the Cases in New Zealand. However, the researcher can confirm he 

was not a lecturer or teacher in these two Cases.  

Student learning of the integral-
area relationships and the FTC

9 integral questions

Factual knowledge

Conceptual knowledge

Procedural knowledge

Metacognitive skills

Metacognitive experiences

Metacogntive knowledge questions Metacognitive knowledge
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Ten undergraduate mathematics lecturers from two universities in New Zealand and five 

Year 13 mathematics teachers from a College in Wellington, New Zealand, were interviewed.  The 

reason for having at least five participants from each group of lecturers and teachers was that for 

building theory from data, four to ten participants are reported to be enough for driving theory 

from data (Eisenhardt, 1989). These two Universities are among the top five universities in New 

Zealand (QS World University Rankings, 2014) and regularly offer calculus courses that include 

integral calculus to first year university students. The College is one of 11 Colleges in Wellington 

(Te Kete Ipurangi, 2014) which offered calculus courses to Year 12 and Year 13 students. 

Lecturers and Year 13 mathematics teachers in the sample have had a diversity of teaching 

experiences in calculus, ranging from 4 to 33 years for lecturers and 8 to 29 years for teachers 

(Table 4.3). The lecturers and teachers pseudonyms were given in each institute in order of length 

of teaching experiences, to assist in exposing any connections between their responses about 

students’ difficulties and their respective lengths of teaching experience.  

 

 

 

 

 

 

 

 

 

 

 



88 
 

 

Table 4.3 

 Participants’ information: lecturers and teachers 

 Qualifications Years of teaching  calculus 

Undergraduate mathematics lecturers   

University1   

L11 B.Sc.(Hons.), & PhD in mathematics  4 

L12 B.Sc. in mathematics/computer science, 

honours in mathematics, M.Sc., & PhD in 

mathematics 

5 

L13 B.Sc. in Physics, M.Sc., & PhD in 

mathematics 

30 

L14 B.Sc., M.Sc., & PhD in mathematics 30 

L15 B.Sc.(Hons.), & PhD in Physics 33 

University 2   

L21 B.Sc. in mathematics, M.A. & PhD in 

mathematics education 

4 

L22 B.Sc. in mathematics, & education, M.Sc. 

& PhD in mathematics 

7 

L23 B.Sc., M.Sc., & PhD in mathematics, & 

Dip. T.* 

11 

L24 B.Sc. & M.A.  in statistics 17 

L25  B.Sc.(Hons.) in Mathematics, M.Sc., & 

PhD in mathematics education 

More than 30 

Year 13 mathematics teachers   

T1 B. A. in engineering, & Dip. T.   8 

T2 B.Sc. in mathematics, & Dip. T. 12 

T3 M.Sc. in Military Science 20 

T4 B.Sc.(Hons.) in physics, & Dip. T. 20 

T5 B. A.  in Sociology, & Dip. T. 29 

Note.* Dip. T. = Graduate diploma for teaching. 

 This research is a comparative case study (Section 4.2), therefore, the three important 

criteria (Kaarbo & Beasley, 1999) for selecting cases in comparative case studies were considered 

including “ [1] selecting comparable cases, [2] selecting cases that vary on the dependent variable, 

and [3] selecting cases across subgroups of the population to address alternative explanations” 

(Kaarbo & Beasley, 1999, p. 380).  Having approximately the same number of students (i.e., nine 

University and eight Year 13 students) in Case 1 and 2, makes these two Cases comparable in 

terms of exploring student learning. Having students with different calculus backgrounds (next 

Section) increased the chances that the second and third criteria were being met in this study.   

Students  

 Theoretical sampling (Eisenhardt & Graebner, 2007) was also considered for choosing 

students for interviews in the College. For this purpose, in the College that was chosen using 
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convenience sampling, students with different calculus performance were chosen from a 

scholarship and a regular class (Section 4.3.3). The reason for having students with different 

calculus performance is to have a better understanding of student learning of integral calculus, 

their difficulties, and meeting the criteria for selecting cases in a comparative case study. Eight 

students (Table 4.4) from the College were interviewed, including two of the best students from 

the scholarship class, and two students from each group of high, medium, and low calculus 

performance from the regular class (see Section 4.3.3 for details about participant recruitment). 

Having two students from each group was done to avoid having a single student representing a 

group of students (e.g., scholarship, high, medium, and low). Students’ codes are based on the 

level of their calculus background (Section 4.3.3) to help illuminate any connections between 

students’ points of view about learning integral calculus and their calculus background.  

Table 4.4 

Participants’ information: College students who participated in the interviews 

 Gender Calculus background 

Y1 Male Low 

Y2 Male Low 

Y3 Male Medium 

Y4 Male Medium 

Y5 Male High 

Y6 Male High 

Y7 Male Scholarship student 

Y8 Male Scholarship student 

  

 The method of choosing University students for the interview was different because the 

lecturers did not know their students’ calculus background.  Therefore, all students enrolled in the 

course were invited by email to participate and nine students volunteered (Table 4.5). While 

interviewing University students, different performances were observed, indicating that students 

with different calculus backgrounds were included.  
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Table 4.5 

Participants’ information: University students who participated in the interviews 

 Gender 

U1 Male 

U2 Male 

U3 Male 

U4 Male 

U5 Female 

U6 Female 

U7 Male 

U8 Male 

U9 Male 

 

Digital recording and classroom observation participants 

 The entire lectures and two tutorial classes related to the teaching of integral calculus were 

recorded in Case 1. In Case 2, the entire teaching of integral calculus in one regular classroom was 

recorded. The camera and sound recorder were placed to capture the board and the 

lecturer/teacher/tutor. Memo-writing during the video recording of the classes was conducted 

using a form (Appendix 2) to help analyse the recording data and be a backup if the video and 

sound file were lost or corrupted.  The form has three sections for memo writing, including a 

section on the learning objectives of the session, a section for teaching activities that were used in 

the classroom, and a section for the interactions between the instructor and students. In addition, a 

small RBT table was inserted in each section for locating the learning objectives, teaching 

activities, and interaction in the RBT table. However, those Tables were not included in the 

analysis of this study because an evaluation of alignment was not conducted in the study due to 

the quantity of data from other sources.  

4.3.3 Participant recruitment 

 In this section, the methods of selecting study participants are described. 

Case 1 

Regarding the interviews with lecturers in Case 1, the information sheet (e.g., Appendix 3) 

and the consent form (e.g., Appendix 4) were delivered to the head of the Mathematics 

Department, and after his agreement, the researcher met the lecturers face to face, asking about 
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their interest in being interviewed. In Case 1 all were involved with teaching calculus in the 

academic year 2013-2014, and met the criteria of the study.  

For choosing students for interview, an email including the consent form and information 

sheet about the interview was sent to each student enrolled in the course. All students who 

volunteered were interviewed. 

Regarding video recording of the lectures and tutorials, the head of the Mathematics 

Department discussed the project to the lecturer and tutors of the course, then, the researcher 

sought permission to record and observe their classes. In the first session of their lectures and 

tutorials, before starting integral calculus topic, the lecturer and tutors introduced the project to the 

students, and informed them that if they were not happy with the video recording of the teaching 

they should inform the researcher or the lecturer of the course and ask to be excluded from the 

analysis. In addition, the information sheets and consent form were placed on the website for the 

course. It was neither practical nor necessary to obtain students’ written consent for videoing 

because of the large number of students enrolled in the course and the video recorder being placed 

in a way that it captured only the board and the lecturer. In the tutorials, the consent form and 

information sheets were delivered to the students and each was asked for their permission to be 

included in the video recording, because of smaller number of students in the classrooms. All 

students agreed to be video recorded and signed the consent form.   

University 2  

In University 2, the research project was described to one of the lecturers in the 

Mathematics Department. He discussed the project within the department, and based on the 

minimum criteria of the study, the five lecturers who volunteered were introduced to the 

researcher.   

Case 2 

In Case 2, the information sheets and the consent form were sent to the head of the 

Mathematics Department asking for permission to collect data. The researcher asked him to send 

the consent form and information sheet to the principal and seek his permission to do the research. 

With the agreement of the principal, the information sheet and the consent form were delivered to 
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Year 13 mathematics teachers. All of the Year 13 mathematics teachers of the College agreed to 

be interviewed and met the criteria of the study.   

Regarding the interviewing of students, the head of the Mathematics Department and the 

teacher talked to the scholarship and regular students, respectively, describing the project. The 

scholarship students were chosen by the head of the Mathematics Department and were happy to 

be interviewed. The researcher asked the head of the Mathematics Department to choose the best 

students from that class. High, medium, and low calculus performance students were chosen by 

the calculus teacher of the regular class. Following the initial agreement of students, their email 

addresses were passed to the researcher. The researcher sent the consent form and the information 

sheet to the students. With students’ agreement and after they have signed the consent form, the 

interviews were conducted during the College hours.  

The researcher asked the head of the Mathematics Department to choose a class with 

regular students so that the results of the study would be more applicable to the actual situation of 

teaching integral calculus in Year 13. Regarding the observation and video recording of the regular 

classroom, the head of the Mathematics Department talked to its teacher about the study, and asked 

his permission. With the agreement of the teacher, the consent form and information sheets were 

delivered to him. The teacher then talked to the students of his classroom, delivered consent forms 

and information sheets to them, and asked their permission. All students agreed to be video 

recorded and signed the consent form. This happened in case students’ voices were captured by 

the recorder when they asked questions.  

4.3.4 Reliability 

Evaluating the quality of research is important for its findings to be utilised in practice 

(Noble & Smith, 2015). Reliability is one of the factors used for evaluating the quality of a 

research. In quantitative studies, reliability refers to techniques that show that if the study is 

repeated in the same context using the same methods, similar results will be obtained (Shenton, 

2004). In qualitative research, dependability is closely related to the notion of reliability in 

quantitative research (Golafshani, 2003) and can be addressed by providing details of how the 

study was conducted (Shenton, 2004). The researcher’s background, the study context, rationale 

and decisions regarding participant selection and design of the instruments are all described to 

show the degree of reliability that can be assigned to the study. 
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4.3.5 Validity 

Validity in quantitative research refers to “the precision in which the findings accurately 

reflect the data” (Noble & Smith, 2015, p. 34).  In qualitative studies, validity refers to using 

different procedures for evaluating the findings (Creswell, 2009). Validity has two main streams: 

internal, which refers to how truthful the findings are; and external, which refers to how applicable 

the findings are for other settings (Decrop, 1999). Several criteria are suggested (e.g., Creswell, 

2009; Golafshani, 2003; Tracy, 2010) for ensuring the validity of the findings, such as considering 

multivocality, triangulation, whether a reasonable amount of time has been spent on the site of 

research, possible bias of the researcher, and the provision of a thick description about the study. 

Multivocal research relates to including “multiple and varied voices in the qualitative 

report and analysis” (Tracy, 2010, p. 844). In the study, having students with different calculus 

backgrounds could ensure the provision for different voices about how students learn integral 

calculus. In addition, having lecturers’ and teachers’ opinions about students’ difficulties could 

help towards a better understanding of how students learn integral calculus and what are their 

difficulties in the topic.  

Triangulation is related to use of different sources of data, methods, theories, and 

researchers to increase the validity of the findings (Denzin, 2006; Shenton, 2004). It is based on 

the “premise that no single method ever adequately solves the problem of rival explanations. 

Because each method reveals different aspects of empirical reality, multiple methods of data 

collection and analysis provide more grist for the research mill” (Patton, 1999, p. 1192). 

 The study used data triangulation by interviewing students with different calculus 

backgrounds, interviewing lecturers/teachers from different institutions with various teaching 

experiences, recording and observing the teaching of integral calculus from different institutions 

to provide a better understanding of student learning. Theory triangulation has been done by using 

not only RBT for exploring student learning of integral calculus, but also using facets of 

metacognition to have a better understanding of student learning. In relation to method 

triangulation, three different methods were used for collecting data from students, including 

conduction a semi-structured interview, using a think-aloud protocol, and the VisA instrument 

(Figure 4.4).   
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Figure 4.4 Summary of the triangulations considered in the study 

 Concerning the researcher being on the site for a reasonable time, the researcher spent more 

than three months in Cases 1 and 2, video recording and observing teaching, and interviewing 

lecturers, teachers, and students.  

 In relation to the bias of the researcher, the description of the researcher’s background 

(Section 1.2.1) describes the position from which the researcher approached the study, enabling 

identification of any possible bias in the study. Provision of excerpts of students’ verbal thoughts 

and workings for each category of analysis, helps readers to identify the researcher’s interpretation 

within each category. 

Regarding thick description, the study design provides the information about participants, 

their context, and how they have been recruited. Details in the results chapters are also provided 

to help readers reach their own conclusions about the results and understand how the study fits 

with other settings (i.e., external validity) (Tracy, 2010).  

4.3.6 Ethical considerations 

An ethical norm should be considered in research to promote the purpose of the study (e.g., 

obtaining knowledge and truth) and values that are essential to collaborative work (e.g., trust and 

mutual respect). This would also make the researcher accountable to society, and may bring public 
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support for the study (Resnik, 2011). The study followed the ethical guidelines of the Human 

Ethics Committee of Victoria University of Wellington (VUW) and New Zealand Association for 

Research in Education’s (NZARE) ethical guidelines (NZARE, 1998). Ethics approval from the 

Human Ethics committee of VUW was obtained (Approval number: 20851).  Several ethical issues 

were considered during the study as suggested by the literature (e.g., Creswell, 2014; Johnson & 

Christensen, 2012; NZARE, 1998; Resnik, 2011) such as:   

 the purpose of the study, and how the data was to be collected and would be used were 

explained to the participants before data collection, using the study information sheets 

( e.g., Appendix 3); 

 the participants were informed in the information sheets that they could withdraw from 

the study without giving any reasons and no pressure was imposed on them to sign the 

consent form (e.g., Appendix 4); 

 the participants and the sites of the research were treated with respect. For example, 

the researcher tried not to make noise during data collection (e.g., observing and video 

recording the classrooms); 

 the confidentiality of the participants was considered by using pseudonyms; 

 the researcher introduced himself to participants as a Ph.D. student;  

 the research findings were intended to be reported objectively, frankly, and without 

any prejudice; and 

 summary of research findings was passed to those participants who showed an interest 

in knowing about the results in the consent forms.  

4.3.7 Structure of data analysis 

 Lecturers/teachers’ points of view about students’ difficulties in integral calculus are 

presented in Chapter Six, which also includes contextual information, obtained from observing 

and video recording the teaching of integral calculus in Cases 1 and 2.  

 Students’ responses to integral questions are explored in Chapter Seven. Students’ 

responses to metacognitive knowledge questions are presented in Chapter Eight. When it was 
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possible, they were compared to student performance in solving integral-area problems. This was 

done to explore whether they applied their metacognitive knowledge during problem-solving and 

to find out how students’ metacognitive knowledge could be related to their factual, conceptual, 

and procedural knowledge.  Students’ metacognitive experiences and skills are described and 

compared to students’ problem-solving in Chapter Nine. 

4.4 Chapter summary 

 In this chapter, the research paradigm, the methodology, and the method of the study are 

explained and justified. The detailed structure of main data gathering instruments, the students’ 

interview, and how the interim RBT knowledge dimension for integral calculus was developed, 

are described in the next chapter.   
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Chapter Five: The Development of Interim Knowledge 

Dimension and Associated Data Gathering Tool  

 In this chapter, firstly the way in which RBT knowledge dimension has been contextualised 

for integral calculus within this study is explained. Secondly the detailed structure of students’ 

interviews are presented and justified. It is important to acknowledge that the cognitive processes 

activated in students’ minds during problem solving depends on students’ prior knowledge and 

experiences. Prior knowledge is found to be one of the important prerequisites for learning (Gurlitt 

& Renkl, 2010) and affects mathematical performance (Weinert and Helmke, 1998). One question 

can activate recall of a type of knowledge for one student, while for another who has not seen 

similar questions, creativity can be activated as the student needs to construct a type of knowledge. 

Even within each cognitive process, different subcategories may be activated by students, 

depending on their prior knowledge and experience. For instance, in terms of applying a type of 

knowledge, if students have previously solved a similar question to those answered during 

interviews, executing (Section 2.2.2) a type of knowledge was involved, however, if they have not 

solved similar questions before, implementing (Section 2.2.2) a type of knowledge might be 

activated for solving the problem. Considering the subjectivity in the cognitive process activated 

in students’ minds, student learning was analysed in terms of RBT’s types of knowledge.  For 

doing so, the RBT’s knowledge dimension for integral calculus was developed, as described in the 

following sections.  

5.1 The interim RBT knowledge dimension for integral calculus 

 This section is dedicated to demonstrating the process and care taken in contextualising 

RBT’s knowledge dimension for integral calculus. It is important to first define the knowledge 

dimension for integral calculus (Section 1.1) in order to be able to explore student learning of 

integral calculus based on RBT. When designing the RBT knowledge dimension for integral 

calculus, the following resources (Figure 5.1) were used:  
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Figure 5.1 Resources used for designing the RBT knowledge dimension for integral calculus 

 first, the definitions of the RBT’s knowledge dimension subtypes were obtained 

from the RBT handbook (Anderson et al., 2001) (Section 2.2.1); 

 the examples provided in the RBT handbook were considered as the second 

important resources because they were chosen by the designers of RBT, who were 

likely to have a clear understanding of what constituted each subtype. Examples in 

the handbook were provided from various disciplines including mathematics. 

When, for a subtype, examples from mathematics and other disciplines were 

provided, more attention was given to the mathematical examples; 

 the third source was research papers that defined RBT in particular disciplines 

(Section 2.5.1). Such papers were given a high status because the examples were 

peer-reviewed by academics before publishing as a research paper. However, they 

were not considered as valid as the first and the second resources because they were 

not defined by the designers of RBT; 

 integral calculus teaching resources (Section 5.2.1) were considered for choosing 

examples that related to the focus of the study and made the examples useful for 

lecturer and teachers teaching the topics; 

 the next resource used were the mathematics education literature about the RBT 

types of knowledge (e.g., conceptual and procedural knowledge) and examples 

provided in them were used for developing the RBT examples (e.g., Mahir, 2009); 

and 

 finally, PhD supervisors provided feedback on the interim knowledge dimension 

and their comments were used.  
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 The following sections provide a detailed explanation of how the 11 subtypes of RBT’s 

knowledge dimension for integral calculus were developed using the process above.   

5.1.1 Factual knowledge: Knowledge of terminology  

For the knowledge of terminology, the examples provided in the RBT handbook (Anderson 

et al., 2001) comprise knowledge of “the alphabet, scientific terms (e.g., labels of parts of a cell), 

the standard representational symbols on maps and charts” (p. 47). No mathematical examples 

were found in the handbook or other resources for knowledge of terminology. Considering the 

definition of the subtype (Section 2.2.1) and these examples, in the context of integral calculus, 

the knowledge of terminology can be considered to include the definition of such terms as 

integration, anti-differentiation, antiderivative, along with the meaning of commonly used symbols 

such as the integral sign, integrand, information that lecturers/teachers teach students to acquaint 

them with this topic. The reason is these are the specific verbal and nonverbal symbols used in 

integral calculus for introducing this topic. For instance, the definition of antiderivative is the first 

definition in the Anton et al. (2012, p. 322) calculus textbook for the section on the indefinite 

integral. 

5.1.2 Factual knowledge: Knowledge of specific details and elements 

This subtype comprises knowledge of events, locations, people, dates, and sources of 

information (Section 2.2.1). For this subtype, again, no mathematical examples were found in the 

RBT handbook. Some examples in the handbook (Anderson et al., 2001) are “knowledge of major 

facts about particular cultures and societies,…, [and] knowledge of the more significant names, 

places, and events in the news” (p. 48).  

In the context of integral calculus, a first suitable example might be the history of the 

development of integral calculus (e.g., knowing that Newton and Leibniz are those who realised 

that the Fundamental Theorem of Calculus is an efficient tool for computing areas and integrals 

without using the limits of sums (Anton et al., 2012)). The history of integral calculus is frequently 

highlighted in calculus textbooks (e.g., Anton et al., 2012; Stewart, 2008). In addition, the 

importance of the history of mathematics in the teaching and learning of mathematics is 

highlighted in several studies (e.g., Clark, & Thoo, 2014; Huntley, & Flores, 2010). Sharing the 

history of mathematics with students humanises mathematics. Students can be helped to 

understand mathematics as a human endeavour (e.g., Clark, & Thoo, 2014) and they can gain a 
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new appreciation of mathematics (e.g., Huntley, & Flores, 2010). The history of mathematics is 

also reported as a motivating and exciting factor for learning mathematics (e.g., Huntley, & Flores, 

2010; Mayfield, 2014). Providing the history of mathematics is found to be helpful for 

understanding mathematical concepts at a deeper level (e.g., Huntley, & Flores, 2010) and 

remembering them for a longer time (e.g., Mayfield, 2014). 

The second example of this subtype might be knowledge about the context. Context has 

different meanings in educational settings (Van den Heuvel-Panhuizen, 2005; Harvey & Averill, 

2012). It is related to both the learning-environment context, and task context. Learning-

environment context refers to different situations where learning takes place and interpersonal 

aspect of learning, whereas, task context are “words and pictures that help students to understand 

the task, or concerning the situation or event in which the task is situated” (Van den Heuvel-

Panhuizen, 2005, p. 2).   

In terms of integral calculus, the aspect that is relevant to the knowledge dimension is 

knowing the importance of realistic context problems/questions for student learning and knowing 

different realistic context problems/questions in relation to integral calculus. Realistic context 

problems are referred to as problems where the context is imaginable for learners, and does not 

necessary come from the real world (e.g., could be from the fantasy world of fairy tales) (Van den 

Heuvel-Panhuizen, 2005). An example of a realistic context problem in integrals is  

A modern sport stadium is being planned, with a curved concrete roof. Each of the end 

 walls is 25 meters long. Its height, 𝑦 meters, is given by 𝑦 = 5√𝑥 − 𝑥 + 4, where 𝑥 

 meters is the horizontal distance from the beginning of the wall. Draw a sketch showing 

 the shapes of one of these walls and use a definite integral to find its area (Barnes, 

 1993, p. 39). 

An example of the knowledge of sources of information in the handbook (Anderson et al., 

2001) is “particular books, writings, and other sources of information on specific topics and 

problems” (pp. 47-48).  For the knowledge of sources and information, in integral calculus, two 

different aspects of knowledge might be involved. The first is calculus textbooks, websites, etc. 

that provide information for those who want to learn about integral calculus, and the second is data 

that is presented in integral  problems. For example, in the area problem of finding the area 
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enclosed between 𝑥 = 𝑦2and 𝑦 = 𝑥 − 2, the two functions are the specific details and information 

needed for finding the enclosed area. Figure 5.2 summarises factual knowledge in the context of 

integral calculus. 

 

 

 

 

 

 

 

Figure 5.2 The factual knowledge in the context of integral calculus 

 The next section describes the first subtype of RBT conceptual knowledge for integral 

calculus. 

5.1.3 Conceptual knowledge: Knowledge of classifications and categories 

 Knowledge of classification and categories is important to not constrain student learning 

by “misclassification of information into inappropriate categories” (Anderson et al., 2001, p. 50). 

For instance, if a student cannot classify an integral into one of the types of indefinite, definite, 

and improper integral, they cannot identify the appropriate procedures for finding the integral. No 

mathematical examples were provided in the handbook for this subtype. Examples from other 

disciplines are knowledge of “the parts of sentences (e.g., nouns, verbs, adjectives), [and] 

knowledge of different kinds of psychological problems” (p. 50). Conceptual knowledge in 

mathematics and integral calculus are defined in the mathematics education literature (Section 

3.1.3), however, it seems those definitions might fit better with the second subtype of RBT’s 

conceptual knowledge as they do not address the different classifications and categories (Section 

3.1.3).  

Knowledge of specific verbal and 
nonverbal labels and symbols

Integration, anti-differentiation, integral 
symbol, integral sign

Knowledge of events, locations, 
people, and dates

History of Calculus in relation to integral

Knowing different realistic context 
problems and questions in relation to 

integral

Knowledge of  sources of 
information

Data presented in integral problems

Calculus textbook, internet links that 
provide videos about teaching of integral
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 Considering the definition (Section 2.2.1) and the examples, classifications and categories 

in the context of integral (Figure 5.3) include knowing that there are different types of integral 

(i.e., indefinite, definite, and improper integrals), different integrands (e.g., rational function, and 

exponential), different methods of finding areas (e.g., with respect to the 𝑥 and 𝑦-axis) and volumes 

(i.e., slices by disk, washers, and cylindrical shell). Students need to distinguish these 

classifications to be able to apply suitable procedural knowledge. 

  

 

 

 

 

 

Figure 5.3 First subtype of the conceptual knowledge in the context of integral calculus  

 The second subtype of RBT’s conceptual knowledge (Section 2.2.1) is described in the 

next section. 

5.1.4 Conceptual knowledge: Knowledge of principles and generalisations 

 Knowledge of principles and generalisations, abstractions that summarise observation of 

phenomena (Section 2.2.1), is important in any discipline for solving problems and studying 

phenomena (Anderson et al., 2001). Mathematical examples of this subtype in the RBT handbook 

are “knowledge of the principles that govern rudimentary arithmetic operations (e.g., the 

commutative principle, the associative principle)” (p. 51) and “Pythagorean theorem” (p. 46). 

Mahir (2009) defined conceptual knowledge for integral calculus as knowing “the definite integral 

of a function is the limit of Riemann sums, the integral-area relation, and the Fundamental 

Theorem of Calculus” (p. 202) (Section 3.1.3). 

  Considering the definition of this subtype (Section 2.2.1) and the examples,  the subtype in 

the context of integral calculus are 1) principles used for finding the antiderivatives of different 

Knowledge of the specific categories, classes, 
divisions, and arrangements that are used in 

different subject matter

Knowledge of classifying integrals as 
indefinite, definite, and improper integral

Knowledge of classifying an integrand 
according to its form

Knowledge of different methods for 
finding areas (e.g., with respect to x and y)

Knowledge of different methods for 
finding volumes (i.e., slices by disk, 

washers, and cylindrical shell)
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Knowledge of particular 
abstractions that summarise 
observation of phenomena

Formulas in integral calculus

The integral-area and integral-
volume relationship

The Fundamental theorem of 
calculus

types of functions (e.g.,∫ 𝑥𝑛𝑑𝑥 =
𝑥𝑛+1

𝑛+1
+ 𝐶, (𝑛 ≠ −1) ) which derive from the relationships 

between derivative and antiderivatives, 2) knowledge about the relationship between the definite 

integral and Riemann sums (e.g.,∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
= lim
𝑛→∞

∑ 𝑓(𝑐𝑖)∆𝑥
𝑛
𝑘=1 ), and 3) the FTC, the overarching 

theorem in integral calculus that relates definite and indefinite integrals together. The second and 

third aspects are the same as claimed by Mahir (2009).  

 In relation to the first aspect, If ∫ 𝑥3𝑑𝑥 =
𝑥4

4
+ 𝑐 is considered as one observation, and  

∫𝑥
2

3𝑑𝑥 =
𝑥
5
3

5

3

+ 𝑐 as another observation, and the integral of different polynomial functions as 

other observations, the abstraction that summarise these observations is ∫𝑥𝑛𝑑𝑥 =
𝑥𝑛+1

𝑛+1
+ 𝐶, (𝑛 ≠

−1). Therefore, the knowledge of principles and generalisations that are defined as particular 

abstractions that summarise observation of phenomena consists of all formulas in integral calculus 

topics. In addition to that, as conceptual knowledge is rich in relationships (Section 3.1.3), for this 

subtype, these formulas should be considered with the rationale that produce them. For instance, 

(
𝑥𝑛+1

𝑛+1
+ 𝑐)′=𝑥𝑛 is also part of conceptual knowledge about ∫ 𝑥𝑛𝑑𝑥 =

𝑥𝑛+1

𝑛+1
+ 𝐶. However, the way 

that the formulas are used is related to knowledge of subject specific skills and algorithms, the first 

subtype of procedural knowledge.   

 The integral-area and integral-volume relationship are also part of this subtype because 

they can be stated as a formula, and as an abstraction that summarises which principles should be 

used for solving area/volume problems. This subtype in the context of integral calculus is 

summarised below.  

 

 

 

 

Figure 5.4 Second subtype of the conceptual knowledge in the context of integral  
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 The next section describes the third subtype of RBT conceptual knowledge for integral 

calculus. 

5.1.5 Conceptual knowledge: Knowledge of theories, models, and structures 

 This subtype is different from the previous subtype in the sense that it focuses “on a set of 

principles and generalisations related in some way to form a theory, model, or structure” 

(Anderson et al., 2001, p. 52); whereas, the second subtype of conceptual knowledge does not need 

to be related to other parts (Anderson et al., 2001). No mathematical examples were found for this 

subtype in the handbook. Some examples from other disciplines are “knowledge of a relatively 

complete formulation of the theory of evolution, knowledge of genetic models (e.g., DNA), … 

[and knowledge about] behavioral, cognitive, and social constructivist theories in psychology” (p. 

52). Considering the definition of the subtype, the whole set of theorems (e.g., the FTC, the mean 

value theorem for integral), proofs, and formulas in relation to indefinite, definite, and improper 

integrals that form integral calculus topic can be considered as fitting within this subtype.  

5.1.6 Procedural knowledge: Knowledge of subject-specific skills and algorithms 

 Subject-specific skills and algorithms are those processes where the end result is to fix 

whether the processes are open or fixed (Section 2.2.1). Mathematical examples of this subtype 

can be found in the resources: “Knowledge of algorithms used with mathematical exercises. The 

procedure of multiplying fractions in arithmetic,…, knowledge of various algorithms for solving 

quadratic equations” (Anderson et al., p. 53). In mathematics education literature (Section 3.1.3), 

Mahir (2009) defined procedural knowledge as knowledge of integral techniques for finding the 

antiderivative of functions. This definition seems broad encompassing all three subtypes of 

procedural knowledge identified in RBT. Sections 5.1.6 to 5.1.8 provides the detailed definition 

of procedural knowledge in integral calculus for these subtypes. 

 Considering the definition of the subtype (Section 2.2.1) and the examples, knowing how 

to solve one specific type of integral calculus problem is related to the first subtype of procedural 

knowledge. The main skills and algorithms in the context of integral calculus are those related to 

how to find an anti-derivative of different types of integrands and knowing how to find areas, 

volumes, etc. (i.e., applications of definite integrals) (Figure 5.5). For example, knowing how to 

find the anti-derivative of different types of trigonometric functions such as odd and even powers 

of cos 𝑥 is related to this subtype.   
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Figure 5.5 The first subtype of procedural knowledge in the context of integral calculus  

 The following section describes the second subtype of procedural knowledge for integral 

calculus. 

5.1.7 Procedural knowledge: Knowledge of subject-specific techniques and methods 

 In contrast to the first subtype where the knowledge is specifically related to knowing one 

approach, the second subtype is broader. It is the “knowledge of how of think and attack a problem 

in a field” (Anderson et al., 2001, p. 53, Section 2.2.1). No mathematical examples were found in 

the resources for this subtype. Examples from other disciplines are “knowledge of relevant 

research methods,…, knowledge of techniques used by scientists in seeking solutions to problems” 

(Anderson, et al., p. 54). Considering the definition (Section 2.2.1) and the examples, research 

methods in mathematics can be considered for this subtype; those method that used/or are being 

used for proving mathematical statements such as direct proof, proof by mathematical induction, 

and proof by contradiction. Theorems and proofs which are the results of research in mathematics 

are related to conceptual knowledge; but, the methods that are used and are being used for creating 

theorems and proof, are related to this subtype because these are the ways that mathematicians 

attack and solve problems in mathematics.  

 At a lower level of abstraction for attacking integral problems, a technique that is used is 

sketching an integrand and a cross-section in area/volume problems to decide which method 

should be used for solving the problems (e.g., Anton et al., 2012) (Figure 5.6). 

Knowledge of skills and algorithms 
that the process may be either fixed or 

more open but the end result is 
generally considered fixed

Knowledge of how to find an anti-derivative of different 
types of integrals

Knowledge of how to  compute an area, volume, velocity, 
length of planar curve,  and kinematics question
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Figure 5.6 The second subtype of the procedural knowledge in the context of integral calculus  

 The next section describes the last subtype of RBT’s procedural knowledge for integral 

calculus. 

5.1.8 Procedural knowledge: Knowledge of criteria for determining when to use appropriate 

procedures 

 This subtype refers to knowledge that helps decision making about when and where to use 

different subject specific knowledge (Section 2.2.1). For this subtype, a mathematical example is 

provided in the handbook (Anderson et al., 2001): “knowledge of the criteria for determining 

which method to use in solving algebraic equations” (p. 55). Considering the definition of the 

subtype (Section 2.2.1) and the examples, the subtype in integral calculus might be knowing which 

method should be used in volume/area/indefinite integral problems when the method is not 

indicated in the question (Figure 5.7). For example, to find the enclosed area between 𝑥 = 𝑦2 and 

𝑦 = 𝑥 − 2, it is easier to set up the integral using integration with respect to the y-axis, as the 

enclosed area can be represented by ∫ (𝑦 + 2
2

−1
− 𝑦2)𝑑𝑦. However, for finding the enclosed area 

using integration with respect to the 𝑥-axis, the area needs to be split and several integrals need to 

be set up.  Knowing that it is easier to find the definite integral using the FTC rather than Riemann 

sums, when the antiderivative can be found in terms of elementary functions, is another example 

of this subtype.  

Knowledge of how to think and attack a 
problem in a field rather than the results of 

such thought or problem solving

Knowing that for solving area and volume 
problems, sketching the graph of the functions 
is useful for choosing which method should be 

used for solving the problem

Knowledge that is largely the result of 
consensus, agreement, or disciplinary norms 

rather than knowledge that is more directly an 
outcome of observation. The result is more 

open and not fixed

Knowledge of different methods of proving 
mathematical statements (e.g., proof by 

contradiction)
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Figure 5.7 The third subtype of the procedural knowledge in the context of integral calculus   

 The first subtype of metacognitive knowledge in the context of integral calculus is 

described in the next section. 

5.1.9 Metacognitive knowledge: Strategic knowledge  

Strategic knowledge comprises the general strategies for learning, thinking, and problem 

solving (Section 2.2.1). In RBT, strategic knowledge is considered to include strategies that can 

be used across different tasks and disciplines (Anderson, et al., 2001); therefore, the examples 

provided are general rather than subject-specific. Some examples are:  

 knowledge of various mnemonic strategies for memory (e.g., the use of acronyms such as 

 Roy G Biv for the colours of the spectrum,…, knowledge of various organisational 

 strategies such as outlining or diagramming,…, knowledge of various elaboration 

 strategies such as parapharasing and summarising,…, knowledge of comprehension-

 monitoring strategies such as self-testing or self-questioning (p. 57).  

In terms of the learning strategies in the context of integral calculus (Figure 5.8), knowing 

that making a plan for solving different integral calculus problems or knowing summarising 

techniques such as making concept maps for classifying concepts, procedures, and formulas are 

useful for learning integral calculus, might be included. If students have problems with memorising 

formulas or procedures, while encouraging students to solve several integral calculus examples to 

help them to know how the procedures work, knowing how mnemonic strategies can be used to 

help with memorising and recalling procedures such as order of integration by parts (e.g., LIATE 

Knowledge of criteria that helps to make decisions 
about when and where to use different types of 

subject-specific procedural knowledge

Knowledge of determining which 
method should be chosen for finding 

volume of a solid (e.g., slicing by 
disks, washers, or cylindrical shell)

Knowing that the fundamental theorem 
of calculus gives an efficient way to 

calculate a definite integral much better 
than using the Riemann sum

Knowledge of determining whether 
integration should be done with respect 

to x or y axis in a given area/volume 
integration problem
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(Logarithmic, Inverse trig, Algebraic, Trig, and Exponential functions)), relates to this subtype. 

Knowing the importance of prior knowledge and how it affects problem solving is another aspect 

of strategic knowledge. Students could evaluate their prior knowledge and try to amend their 

weaknesses in previous materials that are related to integration such as derivatives, limits, and 

functions (e.g., Thompson & Silverman, 2008). A final aspect of the learning strategy is knowing 

useful approaches for dealing with material that is hard to understand, such as asking questions of 

others (e.g., peers, teacher/lecturer/tutor), looking at different references for different approaches 

to topic, seeking videos on the internet that explain the topic, and practising more questions and 

re-reading material. 

 

Figure 5.8 General strategies for learning in the context of integral calculus 

In terms of knowledge of monitoring strategies, three strategies might be considered in the 

context of integral calculus (Figure 5.9). In the definite integral, a strategy can be knowing that 

sketching the integrand in the given interval and finding (or approximating) the net area is useful 

to check whether the answer makes sense. For indefinite integrals, knowing that the answer can be 

checked by differentiating the anti-derivative might be related to this subtype. In numerical 

integration, knowing that the results of numerical integration can be checked using the 

Fundamental Theorem of Calculus can be a consideration (if the antiderivative of the integrand 

can be shown with elementary functions).   

Knowledge of the general strategies for 
learning (rehearsal, elaboration, and 

organizational). Knowing that planning, 
monitoring, and regulating cognition are useful

Knowing the effect of prior knowledge (e.g., derivative, limits, 
functions, and trigonometry) on their performance in integration

Knowing  that designing a concept map of materials and 
concepts presented in integration content is useful for learning 

integration

Knowing that summarising and classifying concepts/procedures 
in terms of definite, indefinite integral is useful for learning 

integration

Knowing various mnemonic strategies for memorising formulas 
and procedures for integrating functions such as acronyms for 

the order of integration by parts (LIATE)

Knowing the usefulness of re-reading materials that are hard to 
understand, asking questions from others, practicing more 

questions,  and looking at different references
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Figure 5.9 Examples of monitoring strategies in the context of integral calculus 

Concerning knowledge of general problem solving strategies, several are highlighted in the 

literature. For instance, Schoenfeld (1987) noted “never use any difficult techniques before 

checking to see whether simple techniques do the job” (p. 191) in the exam situation. Using several 

approaches briefly to find out which approach could solve the problem is a general strategy used 

by mathematicians (Schoenfeld, 1987).  

In terms of general problem solving strategies for integral calculus, for indefinite integrals, 

one strategy can be to look to simplify the integrand if possible - such as through an obvious 

substitution, then classify the integrand according to its form, and if the substitution does not work, 

try another substitution or another method. Knowing some problems might be attempted a variety 

of ways, that if one chosen strategy does not work, going back, “relooking” at the problem from a 

different perspective might give a clue to another strategy (for instance, another substitution) could 

be useful. For the definite integral in area/volume problems, having a plan that consists of the 

following might be useful: A) Sketch the integrand, B) Sketch a cross section, C) decide to 

integrate with respect to the 𝑥 or y axis,  choosing the method (i.e., slices by disk, washers, and 

cylindrical shell) based on the cross section (Thomas, Weir, & Hass, 2010).   

In terms of the fourth aspect of this subtype, knowledge of general strategies for deductive and 

inductive thinking (Table 2.5, Section 2.2.1) in the context of integral calculus, being familiar with 

deductive, abductive, and inductive reasoning in mathematics might be included. The result of 

having such knowledge is being able to realise whether a proof of a theorem in integral calculus is 

correctly constructed or not. In addition, if students are asked to prove a theorem, familiarity with 

these types of reasoning can help them. However, students who do not have this aspect of strategic 

Monitoring strategies in the 
context of integral calculus

Knowing that the results of numerical integration can be 
evaluated with the fundamental theorem of calculus if the anti-

derivative of the integrand can be shown with elementary 
functions

Knowing that for indefinite integrals the answer can be 
checked by differentiating the anti-derivative

Knowing that for definite integrals the answer can be checked 
by drawing the graph of a integrand and finding the net area if 

possible or at least check whether the answer make sense 
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knowledge, when a theorem is given to them, may only provide an example that meets the 

conditions of the theorem as a proof, claiming “evidence is proof” (Chazan, 1993). 

5.1.10 Metacognitive knowledge: Knowledge about cognitive tasks, including appropriate 

contextual and conditional knowledge   

 Knowledge about cognitive tasks is also part of metacognitive knowledge (Flavell, 1979, 

Anderson et al., 2001). Some examples of this subtype are 

 knowledge that recall tasks (i.e., short-answer items) generally make more demands on 

 the individual’s memory system than recognition tasks (i.e., multiple-choice items),…, 

 knowledge that a primary source may be more difficult to understand than a general 

 textbook or popular textbook,…, knowledge that general problem-solving heuristics may 

 be most useful when the individual lacks relevant subject- or task-specific knowledge 

 (Anderson, et al., 2001, pp. 58-59) 

 This subtype has four aspects (Table 2.5). Considering the definition and the examples, for 

this subtype (Figure 5.10), in relation to knowledge about different cognitive tasks that can be 

more or less challenging, the first aspect, knowing that some integral calculus problems are harder 

than others can be considered. In addition, knowing that useful references (e.g., videos on 

YouTube) may be easier to follow than others (e.g., lecture notes) and this may differ from one 

person to another, can be considered. 

 In terms of knowledge about when and why to use strategic knowledge, the second aspect, 

and different cognitive tasks require different strategic knowledge, the third aspect (Table 2.5), an 

example can be knowing that maybe different preparation should be done for taking a multiple 

choice exam in comparison to a constructed response exam. An example of knowledge that 

different cognitive tasks require different strategic knowledge is knowing that materials that are 

presented in university can be more challenging than materials presented in senior secondary 

school in the sense that the rationale behind the formulas and proofs might be asked in the 

University section, and university students may face difficulties if they want to take the same 

approach to learning as they had previously. 

  A few examples of the fourth aspect, knowledge of local situational and general social, 

conventional, and cultural norms for using different strategies, are knowing that lecturers may ask 

similar questions in their exams over different academic years, looking at previous integral 

calculus exams may give better idea of what will appear on integration exams, and different 
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calculus lecturers may have different approaches to teaching and this can lead to having different 

types of questions in exams. 

 

 

 

 

 

 

 

 

 

 

Figure 5.10 The second subtype of metacognitive knowledge in the context of integral calculus 

 The next section describes the last subtype of RBT’s knowledge dimension. 

5.1.11 Metacognitive knowledge: Self-knowledge 

 Self-knowledge is an important part of student learning. If students are not aware that some 

aspects of their factual, conceptual, or procedural knowledge are not well-structured, it is unlikely 

they will make an effort to learn them (Anderson et al., 2001). In addition, if students’ perceptions 

of their weaknesses and strengths are not accurate, these perceptions can inhibit their success when 

solving problems. Several examples are presented in the RBT handbook (Anderson et al., 2001) 

for this subtype: 

 Knowledge that one is knowledgeable in some areas, but not in others… knowledge of 

 one’s goal for performing a task,…, knowledge of one’s personal interest in a task,…, 

 knowledge that one tends to rely on one type of “cognitive tool” (strategy) in a certain 

 situation (p. 60).  
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 Considering the definition (Section 2.2.1) and the examples, self-knowledge in the context 

of integral calculus (Figure 5.11) might include awareness of one’s own weaknesses and strengths 

in relation to solving the different types of integral calculus problems and doing different types of 

exams (i.e., multiple choice, constructed response). Another consideration might be awareness 

about personal goal orientation (i.e., mastery, performance, or avoidance) (Keys, Conley, Duncan, 

& Domina, 2012) and attitude toward learning integral calculus and its effects on learning and 

problem solving.  

 

 

 

 

Figure 5.11 The third subtype of metacognitive knowledge in the context of integral calculus 

 Having the interim RBT knowledge dimension, the next step was using it to design the 

instruments of the study.  

5.2 Detailed structure of students’ interviews 

 In this section, the students’ interview questions are presented and how they were designed 

is described. First, the integral questions are provided (Section 5.2.1), then, metacognitive 

knowledge questions are presented (Section 5.2.2). Section 5.3.3 describes how metacognitive 

experiences and skills were measured in the interviews.   

5.2.1 Integral calculus questions asked in the interviews 

The integral questions were chosen in such a way that several cognitive processes might be 

activated during the solving of each question. The questions do not cover all 19 RBT subcategories 

of the cognitive process dimension (Section 2.2.2); however, at least one of each of the six 

cognitive processes of RBT is addressed. For designing and choosing integral calculus questions 

for the interviews, the following were considered: 

Knowledge of one's strengths and weaknesses in 
relation to cognition and learning (e.g., self-awareness, 

self-efficacy, goal-orientation, and attitude)

Self-awareness of capabilities of solving 
multiple choices or constructed response 

questions

Self-awareness of capabilities of solving 
different types of integral calculus problems

Students’ goal orientation (i.e., mastery, 
performance, or avoidance), atitudes, anxiety 

towards learning integral calculus
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 questions used in previous research in integral calculus (e.g., Jones, 2013; Kiat, 2005; 

Mahir, 2009; Orton, 1983; Sealey, 2006; Thomas, & Hong, 1996);  

 the materials used for teaching integral calculus in most secondary schools in New 

Zealand (e.g., the New Zealand Curriculum (Ministry of Education, 2007b); NCEA 

level 3 mathematics achievement standards (New Zealand Qualifications Authority, 

2013); Delta mathematics (Barton & Laird, 2002);    

 the materials used for teaching integral calculus in some Universities in New Zealand 

(e.g., Calculus: Early transcendentals (Anton, Bivens, & Davis, 2012)) and outside of 

New Zealand (e.g., Calculus: Early transcendentals (Stewart, 2008); Thomas' Calculus 

Early Transcendentals (Thomas et al., 2010); and 

 observation of all taught classes on integral calculus for both Cases.  

 How the nine questions can activate different RBT’s cognitive processes are described 

first, then how the questions address different types of RBT’s knowledge are presented.   

Q1. Please calculate the area enclosed between the curve 𝑥 = 𝑦2 and 𝑦 = 𝑥 − 2 in two ways. 

Which way is better to use? Why? 

 The first part of Q1 (i.e., calculate the area enclosed between curves) is a typical question 

of the integral calculus topic that explores whether students have the knowledge to use the definite 

integral for finding areas enclosed between curves. It is typical, as similar questions were used for 

teaching and assessment in the Cases of the study (Section 6.1). While the two functions are not 

sophisticated, the curves cross the 𝑥 −axis and the lower curve changes if the integral is set up 

with respect to the 𝑥-axis. Therefore, the question could challenge some students. In addition, 

solving the question in two ways, and evaluating which way is better to use, is not a standard 

question format according to the consulted resources and observed teaching (Section 6.1). This 

part of the item is intended to activate a higher cognitive process in students’ minds.  

 For Q1, remembering might be activated to recall the ways in which areas enclosed 

between curves can be calculated using integral calculus. Then the methods need to be applied for 

solving the question. Finally, critiquing, a subcategory of evaluating, might be included to figure 

out which method is better to use for finding the enclosed area in Q1. 
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Q2. What do you understand by A = ∫ [𝑓(𝑥) − 𝑔(𝑥)]𝑑𝑥
𝑏

𝑎
  and B = ∫ [𝑤(𝑦) − 𝑣(𝑦)]𝑑𝑦

𝑑

𝑐
 ? Can 

you justify how these formulas are derived? Can you justify when each one is used? 

 Similar questions to Q2 were asked in the literature about exploring student learning of 

integral calculus. For example, Rasslan & Tall (2002) in their survey asked students, In your 

opinion, what is∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 (the definite integral of the function 𝑓 on the interval [𝑎, 𝑏]) or Rösken 

& Rolka (2007) explored students’ concept definition of integral calculus using the following 

questions:  

“What do you understand by∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
? 

Give a geometric definition of the integral and an illustration. 

Give an analytic definition of the integral and an illustration” (p. 188). 

 Students in both Cases were taught Riemann sums and Riemann integral (Section 6.1). 

However, this happened for students in Case 2 at the end of teaching integral calculus, and 

examples were not solved for students using Riemann sums and Riemann integral. Therefore, 

students in Case 2 might have more difficulty with Q2 in comparison to students in Case 1.  

 In relation to Q2, remembering may be activated to recognise the symbol of integral, 

integrand, lower and upper bound, and 𝑑𝑥 in A= ∫ [𝑓(𝑥) − 𝑔(𝑥)]𝑑𝑥
𝑏

𝑎
 and B= ∫ [𝑤(𝑦) −

𝑑

𝑐

𝑣(𝑦)]𝑑𝑦 and for recalling ∫ [𝑓(𝑥) − 𝑔(𝑥)]𝑑𝑥
𝑏

𝑎
 and ∫ [𝑤(𝑦) − 𝑣(𝑦)]𝑑𝑦

𝑑

𝑐
can be used for finding 

enclosed area between curves. Understanding might be involved for explaining how each of A =

∫ [𝑓(𝑥) − 𝑔(𝑥)]𝑑𝑥
𝑏

𝑎
  and B = ∫ [𝑤(𝑦) − 𝑣(𝑦)]𝑑𝑦

𝑑

𝑐
 is derived and being used.  

Q3. “The graph of 𝑓′(x), the derivative of 𝑓(𝑥), is sketched below. The area of the regions, 

𝐴, 𝐵,and 𝐶 are 20, 8, and, 5 square units, respectively. Given that𝑓(0) = −5, find the value of 

𝑓(6)” (Mahir, 2009, p. 203). 
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 This question is chosen from a Mahir (2009) study focusing on exploring students’ 

conceptual and procedural knowledge in integral calculus. This question was designed for 

exploring students’ conceptual knowledge (Mahir, 2009). Students in both Cases might have 

difficulty with this question as the function, 𝑓(𝑥), is not given in the question explicitly (Thomas 

and Hong, 1996). In addition, this question might be an atypical question for students in the Cases 

as they have not seen questions like this in the teaching and assessment of integral calculus (Section 

6.1). This question was intended to activate analysing to distinguish which areas (i.e., A, B, and 

C) should be used for finding 𝑓(6). Other cognitive processes that might be activated include 

remembering how the area under the graph of 𝑓′(𝑥) is linked to 𝑓(𝑥) through the FTC, and then 

executing might be involved for solving the question.  

Q4. Are these examples solved correctly? Please justify your answer. 

Ex.1: Find, if possible, the area between the curve 𝑦 = 𝑥2 − 4𝑥 and the 𝑥-axis from 𝑥 = 0 to 

𝑥 = 5. 

∫ (𝑥2 − 4𝑥)𝑑𝑥 = [
𝑥3

3

5

0
−

4𝑥2

2
]𝑥=0
𝑥=5 = [

53

3
−

4(5)2

2
] − [

(0)3

3
−

4(0)2

2
] =

−25

3
.                                            

 Ex.2: Find, if possible, the area enclosed between the curve 𝑦 =
1

𝑥2
  and the 𝑥-axis from 𝑥 =

−1to 𝑥 = 1. 

∫
1

𝑥2
𝑑𝑥 = ∫ 𝑥−2𝑑𝑥

1

−1

1

−1

= [
(𝑥)−1

(−1)
=
−1

𝑥
]𝑥=−1
𝑥=1 =

−1

1
−
(−1)

(−1)
= −2. 

 

 The first example in Q4 is based on an item from Kiat (2005) that looked at students’ 

difficulties in solving integral calculus problems: 

“Find the area between the curve y = x(x – 4) and the x-axis from x = 0 to x = 5” (p. 58). Students 

may find an incorrect area for this question if they do not sketch the graph of the curve.  In addition, 

students who only focus on integral techniques and do not pay enough attention to the integral-

area relationship may also make mistakes in answering this question. 

 The dominant cognitive process that might be activated in Q4 is checking, a subcategory 

of evaluating whether the examples are solved correctly, because as mentioned (Section 2.2.2), 

checking refers to testing for internal inconsistencies or fallacies in an operation or act. Similarly 
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to previous questions, remembering and applying might also be activated for remembering how 

the area can be calculated and then be executed for the question.  

Christou, Mousoulides, Pittalis, Pitta-Pantazi, & Sriraman (2005) proposed a taxonomy for 

problem posing processes that can be useful for desiging problem posing questions. Based on this 

taxonomy, problem posing questions can be classified in one of the following types: a) editing, b) 

selecting, c) comprehending, and d) translating quantitative information. Q5 is classified as 

selecting quantitative information because it requires students to pose a problem that is appropriate 

to the given answer (Christou et al., 2005). This task is more difficult than editing as students need 

to focus on relationships between the given information (Christou et al., 2005).  

 This question might be challenging for students in both Cases as they have not seen 

problem posing questions in integral calculus topic in their classes (Section 6.1). Problem posing 

activity in Q5 is related to creating. Students need to create a mathematical question that meets the 

given conditions in Q5. Other cognitive processes like remembering and applying might also be 

involved.  

Q6. Find the derivative of the following functions. 

 𝑂(𝑥) = ∫
1−𝑡

𝑡2−2𝑡−9
𝑑𝑡

𝑥

1
 

 G(𝑥) = ∫ 𝑟2√1 + 𝑟3
𝑥2

0
𝑑𝑟 

 𝐷(𝑥) = ∫ 𝑡3𝑑𝑡
4𝑥+4

2𝑥−5
 

Q6 is designed to explore whether students are able to use the second part of the FTC to 

find the derivative of the definite integral. This question is similar to tutorial and assignment 

questions students practised in Case 1 (Section 6.1.1). The integrals were designed in such a way 

that the antiderivatives can be found using basic integral techniques; therefore, students who are 

not completely familiar with the FTC, Case 2, also have this chance to solve the question. 

 For solving Q6, students might need to remember how to use the second part of the FTC 

for finding the derivatives. Applying might also be activated for executing procedures for finding 

the answers.  

Q5. Please can you pose a problem about the area enclosed between a curve and a line with any 

two arbitrary bounds that will give an answer of 1 (i.e., the enclosed area will be equal to one)? 
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Q7. What do you understand by 𝐹(𝑥) = ∫𝑓(𝑥)𝑑𝑥?  

What do you understand by 𝐹(𝑥) = ∫ 𝑓(𝑡)𝑑𝑡
𝑥

𝑎
?  

What do you understand by∫ 𝑓(𝑥)𝑑𝑥 = 𝐹(𝑏) − 𝐹(𝑎)
𝑏

𝑎
? When do you use this formula? Can 

you justify how it is derived?  

What do you understand by  
𝑑

𝑑𝑥
(∫ 𝑓(𝑡)𝑑𝑡

𝑥

𝑎
) = 𝑓(𝑥) ? When do you use this formula? Can you 

justify how it is derived? 

The design of Q7 is similar to Q2 and the wording of the question is inspired by the 

literature (Rösken & Rolka, 2007). Students in Case 1 have been taught both parts of the FTC; 

therefore, they might have better performance in this question in comparison to students in Case 

2. Students in Case 2 have not been taught the second part of the FTC; therefore, they might not 

able to answer this question completely (Section 6.1). The reason for asking this question of these 

students is to know what parts of the FTC are more challenging for them. Q7, similarly to Q2, 

might activate remembering and understanding. Remembering for recognising symbols in the 

questions and linking them to the FTC, recalling the statement of the FTC, etc. Understanding 

might also be activated for being able to explain how these formulas are derived.   

Q8. “Let 𝑓 represent the rate at which the amount of water in Phoenix's water tank changed in 

100's of gallons per hour in a 12 hour period from 6 am to 6 pm last Saturday (Assume that the 

tank was empty at 6 am (t=0)). Use the graph of 𝑓, given below, to answer the following. 

 How much water was in the tank at noon? 

 What is the meaning of   𝑔(𝑥) = ∫ 𝑓(𝑡)𝑑𝑡
𝑥

0
 ? 

 What is the value of g(9) ? 

 During what intervals of time was the water level decreasing? 

 At what time was the tank the fullest? 

 Using the graph of 𝑓 given above, construct a rough sketch of the graph of 𝑔 and explain 

how the graphs are related” (Carlson, et al., 2003, pp. 168-169). 

This question is chosen from a Carlson, et al. (2003) study looking at the teaching and 

learning of the FTC. It explores how well students can use the FTC in a contextual problem. This 

question might help show whether students have a geometrical interpretation of the FTC. Students 

in both Cases have not previously solved contextual problems in relation to the FTC in their classes 
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(Section 6.1); therefore, it might be a challenge for a number of them. However, they might have 

seen similar questions to some parts of this question in other courses (i.e., physics courses), or in 

a differentiation topic.  

Q8 might activate a range of cognitive processes in students’ minds. As several questions 

were asked about the graph of rate of change, analysing might be activated for answering the 

questions. Students might also need to interpret the given graph for themselves to be able to answer 

the question; therefore, understanding might be involved in the question. Similarly to other 

questions, remembering and applying might also be necessary for answering some parts of the 

question.  

 Q9. Please can you write a problem based on the following graph whose solution would require 

using the Fundamental Theorem of Calculus?  

 

 In relation to the Christou et al., (2005) taxonomy of problem posing processes, Q9 is 

classified as translating quantitative information because students need to pose an appropriate 

problem based on the given graph.  This question might be challenging for a number of students 

because they have not practised problem posing in this topic (Section 6.1). Similarly to Q5, 

creating might be activated for this question for the student to be able to create a mathematical 

problem based on the FTC. At least remembering should also be activated to recall what the FTC 

is. 

5.2.2 Metacognitive knowledge questions asked in the interviews 

 Metacognition has three facets (i.e., metacognitive knowledge, skills, and experiences) 

(Section 3.1.4). Metacognitive knowledge questions are described in this section, and the way 

metacognitive skills and experiences are measured in the study are explained in the next section. 

 Knowing what can be considered as different types of RBT knowledge in integral calculus 

(Section 5.1), especially metacognitive knowledge, affected how the students’ interview was 

designed. For exploring students’ metacognitive knowledge, questions were designed (Table 5.1) 

based on RBT’s structure of metacognitive knowledge. Questions 1 to 9 address learning, 

monitoring and problem-solving strategies that relate to strategic knowledge (Section 5.1.9).   
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Table 5.1  

Questions that probe metacognitive knowledge in relation to integral calculus 

Item Area to be 

examined 

Interview questions used 

M1 Learning strategy  Did you attend the lectures/tutorials/classrooms in these topics? If so, could you please 

describe what you typically did when attending them? Why/Why not?  

Did you take notes in class? Why/Why not?  

Did you just listen to the instructor/tutor? Why/Why not? 

Did you talk to your classmate while the instructor/tutor teaches these topics? Why/Why not? 

Do you do any pre-reading before attending sessions in relation to these topics? Why/Why not? 

Do you look at your previous lecture notes, or Anton calculus textbook, etc before coming to 

the classes? Why/Why not? 

M2 Learning strategy  Which source(s) of information do you use for learning about these topics? Why? 

M3 Learning strategy  How do you help yourself to learn to calculate the area enclosed between curves? How about 

when you are learning about the Fundamental Theorem of Calculus? Please justify your answer. 

M4 Learning strategy  What prior knowledge do you think you need to be able to solve problems related to finding 

the area enclosed between curves? How about the Fundamental Theorem of Calculus? 

M5 Learning strategy  Do you use any practice or memory strategies for these topics, such as using an acronym for 

remembering formulas, procedures, and concepts in these topics (e.g., BEDMAS: for order of 

operations in algebra? 

M6 Learning strategy  When you are studying integration do you think about the justification or rationale behind the 

formulas or do you just try to apply the formulas? Why? 

M7 Learning strategy  Have you made a summary of the concepts, formulas, or procedures presented in these topics 

for yourself? Please explain your answer. 

M8 Monitoring strategy How do you check your answers when solving problems involving finding the area enclosed 

between curves?  How about the Fundamental Theorem of Calculus? 

M9 Problem-solving 

strategy 

Do you have a plan for solving problems related to enclosed area between curves (See 

Appendix 1)? Why/why not? How about a plan for solving problems related to the 

Fundamental Theorem of Calculus? If not, can you create one now? 

M10 Knowledge about 

cognitive task  

Do you solve all questions in relation to finding enclosed area in the same way or do you use 

different strategies for solving different questions in this topic? How about the solving 

questions using the Fundamental Theorem of Calculus? 

M11 Strength and 

weaknesses in the 

topic  

What difficulties do you have in learning how to calculate the area enclosed between curves? 

What are your strengths and weaknesses in this topic?  How about the answers to these two 

questions in relation to the Fundamental Theorem of Calculus? 

M12 Goal orientation and 

attitudes  

Why are you taking this course? 

M13 Goal orientation and 

attitudes  

Do you like calculus, especially integration? 

M14 General question Have you heard about metacognitive knowledge? If so, what is metacognitive knowledge in 

terms of learning how to calculate the area enclosed between curves?  What is it in terms of 

learning about the Fundamental Theorem of Calculus? 

Note. Questions are ordered based on the structure of RBT’s metacognitive knowledge, not the 

order used in the students’ interview (Appendix 1). 

 M1 explores to what extent students use the teaching in the classes for learning the topics 

and how they spend their time while they are in the classes. M2 focuses on the resources students 
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use for learning the topics. Are they relying on only one or two resources, or do they use a variety 

of resources? For instance, use of textbooks as one of the learning resources was reported as being 

very low by engineering students in a calculus course (Randahl, 2012). Randahl (2012) reported 

students preferred lecture notes over textbooks. However, the number of studies which have 

explored the resources used by students at Year 13 and first year university is limited. M3 is a 

complementary question for M1 and M2 to provide an opportunity for students to give more 

information about how they learn these topics.  

 M4 explores to what degree students are aware of the importance of mathematical prior 

knowledge in learning new mathematical topics (Hailikari, Nevgi, & Komulainen, 2008) as 

students’ difficulties with the FTC are reported to be related to students’ prior knowledge about 

concepts of function, limits, and rate of change (Section 3.2.2). 

 M5 was designed to explore whether students use any memorising strategies for learning 

the topics. Memory strategies refers to “techniques specifically tailored to help the learner store 

new information in memory and retrieve it later” (Oxford & Crookall, 1989, p. 404). Memory 

strategies have been used by University students for language learning (Mochizuki, 1999); 

however, there is a lack of research regarding to what degree this type of strategy is being used by 

students for learning mathematics at Year 13 and first year university. Memory strategies can be 

helpful if part of assessment in classes focuses on remembering certain information. Considering 

the fact that formula sheets were given to students in both Cases, and the nature of mathematical 

questions, it would be interesting to find out to what extent students use this type of strategy for 

learning mathematics. 

 M6 was designed for exploring whether students are aware of the importance of proofs and 

rationales behind the formulas. Proofs in mathematics are an intersection between students and 

experts (Wilkerson-Jerde & Wilensky, 2011) and are a main part of professional mathematical 

practice (Hanna & de Villiers, 2008). Proofs have also been identified as a mechanism for people 

of connecting different parts of the mathematical knowledge (Cuoco, Goldenberg, & Mark, 1996). 

 M7 explores to what extent students use summarising strategies for learning the topics. The 

literature in educational research identifies summarising as a tool that helps students to learn (King, 

1992; Susar & Akkaya, 2009; Thiede & Anderson, 2003). It helps students to comprehend 

knowledge and transfer knowledge to long-term memory more easily as it motivates them to do 
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reading for understanding and identify important ideas and express them using their own words 

(Susar & Akkaya, 2009). Summarising can help students to make connections between the new 

concepts and their prior knowledge (King, 1992). However, there is a lack of research about how 

useful summarising strategies are for learning mathematics and how much they are being used by 

students. Therefore, this question was designed to shed light on this aspect of metacognitive 

strategies. 

 M8 explores which monitoring strategies students are aware of that can be used for 

checking answers in questions related to the integral-area and the FTC. However, their use of these 

strategies during problem solving, metacognitive skills, was explored using a think aloud protocol 

(Section 5.2.3).  For instance, whether the antiderivative is calculated correctly can be checked by 

finding the derivative of it and check whether the integrand is obtained or not (Barton & Laird, 

2002). 

 M9 explores the complexity of students’ plans for solving the integral-area and the FTC 

problem. Making a solution plan is part of metacognition in the domain of mathematics 

(Schoenfeld, 1992). Asking students to make a plan also identifies whether verifying answers is 

part of their plan or not.   

 M10 relates to knowledge about cognitive tasks, including appropriate contextual and 

conditional knowledge (Section 5.1.10). This question explores to what extent students are aware 

that different strategies might be necessary for solving different types of problems.  

 M11 to 13 address the third subtype, self-knowledge (Section 5.1.11). M11 was asked so 

as to explore whether students are aware of their difficulties in learning integral calculus. If they 

are not aware, it is unlikely they will make an effort to understand the materials they have difficulty 

with (Section 5.1.11). M12 and 13 were used to identify students’ goal orientation toward learning 

integral calculus. Students’ goal orientation has been found to influence students’ mathematical 

achievement (Keys et al., 2012). Students who have a mastery approach toward learning are more 

engaged in learning and use deeper cognitive strategies. However, students who have 

performance-avoidance approach are less motivated towards learning (Keys et al., 2012), and the 

negative correlation between this approach and achievement has been reported (Harackiewicz, 

Barron, & Elliot, 1998). 
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 M14 is a general question to explore whether students are familiar with the term 

metacognitive knowledge in general, and in particular, in integral calculus. 

5.2.3 Measuring metacognitive experiences and skills 

 For measuring metacognitive skills and experiences during mathematical problem solving 

a think-aloud protocol was used. A think-aloud protocol is an effective method for having insight 

into students’ metacognition. In this method, students are asked to verbalise their thoughts during 

solving/working on tasks (Jacobse & Harskamp, 2012). An advantage of using think-aloud 

protocols in comparison to metacognitive questionnaires, is that students’ metacognitive 

experiences and skills are gathered directly when it is executed in students’ minds; therefore, it is 

less vulnerable to students’ memory distortions (Jacobse & Harskamp, 2012). Several activities 

are suggested for analysing metacognitive experiences and skills (Veenman, Kerseboom, Imthorn, 

2000; Jacobse & Harskamp, 2012). The study used five items from Veenman et al. (2000) and 

Jacobse & Harskamp (2012) (Table 5.2). Two are related to metacognition experience (ME1 and 

ME2), and the remaining three items are related to metacognitive skills (Section 3.1.4). 

Table 5.2 

Items explored in relation to metacogntivie experiences and skills 

   

 In relation to measuring ME1 and ME2, before solving the integral questions students were 

asked to answer a question: How well do you think you can solve this problem? They could choose 

one of the following judgments: I am sure I will solve this problem; I am not sure whether I will 

solve this problem correctly or incorrectly; or I am sure I cannot solve this problem (Appendix 1). 

After choosing one of these, they were encouraged to provide reasons for their choice. A similar 

question was asked after they solved the problem; rate your confidence for having found the correct 

 Themes of analysis in relation to metacognitive experiences and skills 

ME1 Having an accurate pre-judgment of  whether student is able to solve the problem 

MS1 Making a drawing related to the problem 

MS2 Making a calculation plan and systematically doing it 

MS3 Checking calculations and answer 

ME2 Having an accurate post-judgment of how student solved the problem 
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answer. Again, students had three choices and were asked to provide reasons for their choice. 

These two questions formed the instrument for measuring students’ metacognitive experiences and 

were adapted from the VisA instrument (Jacobse & Harskamp, 2012). 

 MS1 was chosen because making a drawing in relation to the given problem was found to 

be an important factor in mathematical problem solving (See Jacobse & Harskamp, 2012). MS2 

was selected because it shows to what extent students use their metacognitive knowledge and 

regulate their problem solving strategies while solving problems. Finally, MS3 was chosen to 

explore whether students monitor their problem solving during solving mathematical problems. 

5.3 Chapter summary 

 In this chapter, the RBT knowledge dimension has been contextualised for integral calculus 

and the detailed structure of students’ interviews is described and justified. The next Chapter 

describes the context of the study. 
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Chapter Six: Context of the Study  

 This chapter has two sections for describing the context of the study. The first section 

describes how integral calculus was taught - in particular, how the integral-area relationship and 

the FTC were taught in the University and the College, to set the scene for the student results 

described in Chapter Seven to Nine. The second section presents analysis of the opinions of 

lecturers and teachers towards students’ difficulties in these two topics.   

6.1 The calculus courses in the University and the College 

 This section shows to what degree the teaching and assessment of the integral-area 

relationship and the FTC differed across the two Cases. First, the structure of the calculus course 

at the University, Case 1, is presented (Section 6.1.1), followed by the structure of the calculus 

course at the College, Case 2 (Section 6.1.2). In the discussion section (Section 6.1.3), the major 

differences and similarities between these two Cases are highlighted, and possible reasons for such 

differences/similarities are discussed.   

6.1.1 The calculus course in Case 1 

 The calculus course, which includes the topics of limits, derivatives, partial derivatives, 

integrals, and differential equations, consisted of three one-hour lectures and four one-hour 

tutorials per week. Two tutorials were run by the lecturer and two by post-graduate students. 

Attending lectures and tutorials was not mandatory, but students were asked to sign up for tutorials 

and were encouraged to attend (Figure 6.1). Assignment and tutorial questions were set every week 

relating to the content that was covered by the lecturer. 

  In the lectures, the lecturer did the mathematics (e.g., solved the mathematical examples 

and proved theorems while students observed him). However, on some occasions, (on average 

approximately three times per session3), the lecturer asked students how an example could be 

solved (e.g., “How would you suggest that we do [ 
𝑑

𝑑𝑧
[∫ sin 𝑠𝑑𝑠

𝑧2

6
]? Any suggestions?”(L114)). 

On those occasions, on average, approximately half of the time5, one or two students responded to 

                                                           
3 This information is obtained from the observational tool (Appendix 2). 
4 Lecturer 1 from University 1, see Table 4.3 
5 This information is obtained from the observational tool (Appendix 2). 
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the lecturer’s questions, and during the other half no students responded. After presenting a 

concept, the lecturer usually asked students whether they had any questions (e.g., “any questions 

about the proof” (L11)). For each topic, the teaching structure was as follows. First, the lecturer 

provided the motivation behind teaching the topic (e.g., why the Riemann sums are useful for 

finding area under curves), then, necessary definitions and theorems were provided. The theorems 

were proved by the lecturer, followed by several examples for illustration.  

 In the tutorials, tutorial questions were discussed to help students have a better 

understanding of the topics. Depending on the tutor’s teaching style either the students or the tutor, 

or students and tutor together, solved the questions in the class. If the tutor preferred group work, 

groups of three or four students were formed and tried to solve the questions together. If they had 

a problem, they asked the tutor to help them. Tutors who preferred a tutor-centred style solved all 

questions on the board with the help of students, and students who had problems with any these 

asked questions about them. The third style was that students had a chance to work on each 

question for a few minutes, individually or as a group, then a volunteer came to the board to solve 

the question. If no one volunteered, the tutor solved the question on the board, and during the 

process encouraged students to suggest the next steps for solving it.  

In relation to assignments, several assignment questions which were similar to tutorial 

questions were given to students at the start of each week. Students were expected to solve them 

by Friday of that week. All assignment questions were marked by post-graduate students and 

results contributed towards 10 percent of students' final grades. In addition, the lecturer encouraged 

marker to provide feedback on student-working, however, providing feedback was not mandatory. 

The marked assignments were given back to students to help them understand their difficulties. 

The lecturer also provided a model answer for assignment questions on the website of the course 

after the due date of solving the assignment questions. Students could also attend several 

Helpdesks6 that were run by postgraduate students and faculty members. Attending Helpdesks was 

not compulsory, but students were encouraged to attend. 

                                                           
6 During Helpdesk time, students could go to a staff member/post graduate’s office and ask questions about the 

content of the course. 
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Figure 6.1 Structure of the University teaching 

 The course had a textbook (i.e., Anton et al., 2012) but it was not mandatory for students 

to have. A summary of topics covered in the course based on the textbook was also provided as a 

PDF file in the webpage of the course. 

Teaching of the integral-area relationship and the Fundamental Theorem of Calculus in the 

University calculus course 

 In this section, first, the overall structure of the relevant sections of the course to the study 

is presented, then the detailed structure of topics related to the study is described.  

Overall structure  

 The integral-area relationship and the FTC were taught in the second and third weeks of 

the course, after reviewing the following topics: limits, derivatives, and functions (Table 6.1). 

These three topics were revised by providing relevant theorems (e.g., Rolle’s theorem) and by 

working through examples.  

 

Lecturer and 
tutors: Teaching 
new topics in the 

lectures and 
tutorials

Students: 
Attending lectures, 

tutorials, and 
helpdesks

Students: Doing 
assignment 
questions

Markers: Giving 
feedback on the 

marked 
assignment
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Table 6.1 

Overall structure of the first half of the University course  

Week Session        Topic 

1
st
 w

ee
k
 

14.07.2014 Reviewing limits 

Closed/ Open intervals 

16.07.2014 Implicit differentiation 

Reviewing differentiation, trigonometric functions, and  inverse functions 

18.07.2014 Reviewing trigonometric functions and inverse functions continued 

Rolle's Theorem  

2
n
d
 w

ee
k

 

 

21.07.2014 Rolle's Theorem (continued) 

Computing area under a curve using Riemann integral  

23.07.2014 Calculating Riemann sums  

Properties  of integrals 

25.07.2014 The mean value theorem 

The Fundamental Theorem of Calculus 

3
rd

 w
ee

k
 

 

28.07.2014 The Fundamental Theorem of Calculus (continued) 

Integration by substitution 

30.07.2014 Calculating area between curves 

01.08.2014 Volumes by slicing: Disks and washers methods  

4
th

 w
ee

k
 

 

04.08.2014 Volumes by slicing: Disks and washers methods (continued) 

06.08.2014 Volume by Cylindrical shells 

Length of planar curve 

08.08.2014 Area  of a surface of revolution 

5
th

 w
ee

k
 

 

11.08.2014 Hyperbolic and  Inverse hyperbolic trigonometric functions and their integration 

13.08.2014 Integration by parts 

15.08.2014 Integrating trigonometric functions 

6
th

 w
ee

k
 18.08.2014 Integrating trigonometric functions continued 

Trigonometric substitution 

20.08.2014 Trigonometric substitution continued 

 

The lecturer started the integral-area relationship topic by introducing Riemann sums and 

Riemann integral. Then, the FTC and integration by substitution were introduced. Calculation of 

volumes, length of planar curves, and area of revolution were taught before techniques for finding 

antiderivatives of different types of integrand. Students’ interviews were conducted after the sixth 

week of the course and before the start of the second half of the course. Partial fractions techniques 

and the improper integral were taught in the second half of the course. 

Detailed structure 

 In the University course, how areas under a curve and areas enclosed between curves can 

be calculated using integral calculus was justified using Riemann sums and Riemann integral. The 

lecturer started the topic using the following example: 
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 …A consideration for the integration part [of the course] is to calculate the area.  So what 

 do we want to do? Assuming that we have a function f, and let us for simplicity assume 

 the value of f is non-negative…and we want to calculate the area under this graph from 1 

 to 5… How could we do that? Again, we have situations that we have not seen before and 

 we try to do calculate the area. So we try to pull out as much as we can from what we 

 know... we know how to calculate the area of simple figures like triangle, square... In this 

 case, what could we do? Well, we could divide the region that we want to calculate the 

 area of into small pieces of the form that we know, triangle, square, rectangle, etc, and we 

 [could then] add up the area. That process should work for any region... (L11). 

 The lecturer continued by presenting the ideas (proof) of Riemann sums and Riemann 

integral. Before teaching the FTC and how it can be used for finding areas, he explained how the 

area under a curve can be approximated using Riemann integral. Then, integrable functions based 

on Riemann sums were defined and a counter example and an example were presented for 

illustration (Example 1 and 2, Table 6.2). Before teaching the FTC, selected properties of integrals 

were introduced to students including: 

 ∫ [𝛼𝑓(𝑥) + 𝛽𝑔(𝑥)]
𝑏

𝑎
𝑑𝑥 = 𝛼 ∫ 𝑓(𝑥)𝑑𝑥 + 𝛽 ∫ 𝑔(𝑥)𝑑𝑥

𝑏

𝑎

𝑏

𝑎
 and ∫ 𝑓(𝑥)𝑑𝑥 + ∫ 𝑓(𝑥)𝑑𝑥

𝑐

𝑏

𝑏

𝑎
= ∫ 𝑓(𝑥)𝑑𝑥

𝑐

𝑎
 

assuming 𝛼 and 𝛽 are constant and 𝑓 and 𝑔 are integrable functions. 

 

 

 

 



129 
 

 

Table 6.2 

Examples solved during the teaching of the University course related to the topics of the study 

Session Examples  

23.07.2014 
1) Example of non-integrable function 𝑓(𝑥) = {

0, 𝑖𝑓𝑥𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙
1, 𝑖𝑓𝑥𝑖𝑟𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙

 

2) ∫ (3𝑥 + 1)𝑑𝑥
4

1
 using the Riemann integral. 

25.07.2014 3) ∫ (3𝑥 + 1)𝑑𝑥
4

1
 using the FTC. 

4)
𝑑

𝑑𝑥
[∫ sint 𝑑𝑡

𝑥

1
]     5) 

𝑑

𝑑𝑦
[∫ sin 𝑣𝑑𝑣

7

𝑦
] 

6)
𝑑

𝑑𝑧
[∫ sin 𝑠𝑑𝑠

𝑧2

6
] 7) 

𝑑

𝑑𝑡
[∫ sin 𝑥𝑑𝑥

𝑡2

−𝑡
] 

28.07.2014 
8)∫(3𝑥 + 1)𝑑𝑥 

9) ∫(3𝑡 + 1)𝑑𝑡 

10)∫ (3𝑡 + 1)𝑑𝑡
𝑥

0

 

30.07.2014 11) Calculate the area enclosed between 𝑦 = 𝑥 + 1 and = −sin 𝑥 between 𝑥 =
𝜋

2
 and 

𝑥 = 𝜋. 

12) Calculated area of the region enclosed by 𝑦 = 𝑥3, 𝑦 = 𝑥, 𝑥 = −
1

2
 and 𝑥 =

1

2
 . 

13) Calculated area of the region enclosed by 𝑦 = 𝑥3, 𝑦 = 𝑥. 

14) Calculate the area enclosed by = √𝑥 , 𝑦 = −√𝑥, and 𝑦 = 𝑥 − 2. 

 

 The lecturer taught the first part of the FTC and then proved it using the Mean-Value 

theorem. It seems for illustration, and to show how useful the theorem is, the lecturer calculated 

Example 2 from the previous session using the FTC. Teaching the FTC was continued by 

introducing the second part of the FTC. However, when the lecturer presented the second part, the 

geometric interpretation was not provided. “…The derivative of the big function F is equal to small 

function f for every x in the interval I. So, that is the conclusion of the fundamental theorem of 

calculus, part two” (L11). For proving this part, the Integral Mean Value Theorem was also 

presented and proved. Then several examples were solved by the lecturer to show how the second 

part of the FTC could be used (Examples 4 to 7, Table 6.2). The lecturer also provided three 

examples (Examples 8 to 10, Table 6.2) to show the role of dummy variables in integrals. However, 

the lecturer, while solving those examples, did not highlight the geometric interpretation of the 

FTC, only focusing on how those examples could be solved. 

 The lecturer continued teaching the integral-area relationship after introducing the 

integration by substitution method. He showed how the area enclosed between two curves, 𝑓(𝑥) 

and 𝑔(𝑥), could be calculated using Riemann sums and Riemann integral. It seems several 
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examples (Example 11 to 14, Table 6.2) were solved for illustration and to point out the importance 

of determining which function is the upper/lower function (for integration with respect to the 𝑥-

axis) or which function is on the left/right (for integration with respect to the 𝑦-axis). The lecturer 

after finding the area with integration with respect to the 𝑥-axis for Example 14, explained how 

the area could be calculated using integration with respect to the 𝑦-axis, and also solved Example 

14 using this method.   

Assessment of the integral-area relationship and the Fundamental Theorem of Calculus in the 

University Calculus course 

 In this section, tutorial, assignment, and midterm questions used for assessing student 

integral calculus performance at the University course are presented to provide more information 

about the context of the study. The questions are described in three categories including Riemann 

sums and Riemann integral, the integral-area relationship, and the FTC. 

The Riemann sums and Riemann integral 

 Three tutorial questions and three assignment questions of the second week and one 

question in the mid-term exam were related to Riemann sums. In the midterm exam, one question 

was also related to Riemann sums (Table 6.3). 
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Table 6.3 

Assessment questions related to Riemann sums and Riemann integral  

Question type Question 

Tutorial  Apply the definition of the integral via [the] Riemann sums to compute the following using [the] 

left endpoints: ∫ 𝑥2𝑑𝑥
3

1
 

 Use Riemann sums to show that if 𝑓 and 𝑔 are integrable on [𝑎, 𝑏] and  

𝑓(𝑥) ≥ 𝑔(𝑥) for 𝑥 ∈  [𝑎, 𝑏] then ∫ 𝑓(𝑥)𝑑𝑥 ≥ ∫ 𝑔(𝑥)𝑑𝑥
𝑏

𝑎

𝑏

𝑎
. 

 Evaluate the following limit by interpreting it as a Riemann sum and then computing the 

corresponding integral using the Fundamental Theorem of Calculus:   

lim
𝑛→∞

∑
𝜋

4𝑛
𝑠𝑒𝑐2(

𝜋𝑘

4𝑛
)

𝑛

𝑘=1

 

Assignment  Apply the definition of the integral via Riemann sums to compute the following using [the] right 

endpoints: ∫ (𝑥 + 2)3𝑑𝑥
1

−2
 

 Use Riemann sums to show that if 𝑓 is integrable on [𝑎, 𝑏]and 𝛼 

 is a constant then ∫ [𝛼𝑓(𝑥)]𝑑𝑥 =
𝑏

𝑎
𝛼 ∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎
 

 Evaluate the following limit by interpreting it as a Riemann sum and then computing the 

corresponding integral using the Fundamental Theorem of Calculus 

lim
𝑛→∞

∑
𝑛

𝑛2 + 𝑘2

𝑛

𝑘=1

 

Mid term  

exam 

Express the following as the limit of a sequence of Riemann sums, and then find this limit by 

calculating the appropriate integral.  

lim
𝑛→∞

∑
𝑘
3
2

𝑛5

𝑛2

𝑘=1

 

Note that the number of the terms in the summation is 𝑛2. 

 

 These questions show that Riemann sums and Riemann integral were one of the foci of 

the assessment of integral calculus in Case 1. 

The integral-area relationship 

 In the University course, four tutorial and two assignment questions were related to the 

integral-area relationship, particularly focussing on the area enclosed between curves (Table 6.4). 

However, there was no question in the midterm exam in relation to this topic.  
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Table 6.4 

Assessment questions related to the integral-area relationship at the University course 

Question type Question 

Tutorial  1) Consider the region 𝑅 enclosed by the curves 𝑦 = 𝑐𝑜𝑠𝑥, 𝑦 = 𝑠𝑖𝑛𝑥, 𝑥 = 0, and 𝑥 = 
𝜋

4
. 

Sketch the described region and find its area. 

 2) Consider the region 𝑅 enclosed by the curves 𝑦 =  𝑥2, 𝑥 = 𝑦2. Sketch the described region 

and find its area. 

 3) Consider the region 𝑅 enclosed by the curves 𝑦 =  𝑥3 − 3𝑥 and 𝑦 = 2𝑥2. Sketch the described 

region and find its area. 

 4) Suppose that the shadow area of the Figure below was split into two regions by the line 𝑥 =
𝑘. What should be the value of k such that both regions have the same area? 

  
Assignment  5) Consider the region 𝑅 enclosed by the curves y = 𝑒−2𝑥, 𝑦 = 0, 𝑥 = 0,and 𝑥 = 1. Sketch the 

described region and find its area. 

 6) Consider the region 𝑅 enclosed by the curves 𝑥 = 𝑦2 and 𝑥 = 𝑦 + 2. Sketch the described 

region and find its area. 

Mid term  

exam 

No question in the midterm exam 

 

 The questions covered different types of regions such as regions under the 𝑥-axis, and 

regions bounded by the 𝑦-axis. In addition, to find the correct answer students also needed to be 

able to split the region, because the upper function changes across the enclosed area (e.g., Tutorial 

Question 3). 

The Fundamental Theorem of Calculus  

 Questions where the FTC was the focus of the assessment are presented here (Table 6.5). 

Questions related to finding the definite integral are not covered completely in this section as it is 

not the focus of the study. A few examples (six out of 13 definite integrals) are presented here to 

illustrate the level of complexity of integral techniques needed for solving them. 
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Table 6.5 

Assessment questions related to the FTC in the University course 

Question type Question 

Tutorial  1) Use the Fundamental Theorem of Calculus, Part 1 (hence using antiderivatives) to 

evaluate the following integrals: 

(𝑎) ∫ (𝑥2 − 6𝑥 + 8√𝑥)𝑑𝑥
4

1

(𝑏)∫
𝑑𝑥

√1 − 𝑥2


1

√2

0

(𝑐)∫ (𝑒𝑡 + 1)𝑑𝑥
3

2

 

 2) Use the Fundamental Theorem of Calculus, Part 2 to find the following:  

(𝑎)
𝑑

𝑑𝑥
[∫ tan(𝑡3)𝑑𝑡

𝑥

𝑒

](𝑏)
𝑑

𝑑𝑥
[∫ 𝑒√𝑢𝑑𝑢

𝑥4

4

](𝑐)
𝑑

𝑑𝑥
[∫ 𝑡7

3𝑥+5

3𝑥−1

] 

Assignment  3) Use the Fundamental Theorem of Calculus, Part 1 (hence using antiderivatives) to 

evaluate the following integrals: 

(𝑎) ∫ (3𝑥 + √𝑥2
3

) 𝑑𝑥
1

−1

(𝑏)∫
2

𝑠𝑖𝑛2𝜃
𝑑𝜃

𝜋
2

𝜋
4

(𝑐)∫ (
3 + 𝑥3

𝑥
+ √𝑥)𝑑𝑥

4

1

 

 4) Use the Fundamental Theorem of Calculus, Part 2 to find the following:  

(𝑎)
𝑑

𝑑𝑥
[∫

𝑑𝑡

𝑡 + ln 𝑡

𝑥

2

](𝑏)
𝑑

𝑑𝑢
[∫

1

1 + |𝑥|
𝑑𝑥

𝑒𝑢

2

] 

(𝑐)
𝑑

𝑑𝑥
[∫ sin(𝑡2)𝑑𝑡

1

𝑥

](𝑑)
𝑑

𝑑𝑥
[∫ √𝑠4 + 9𝑑𝑠

cos 𝑥

sin 𝑥

] 

Mid term 

exam 

5) Find the following integral:  

(𝑎)∫ (2𝑥2 + 𝑥 + √𝑥)𝑑𝑥
1

0

(𝑏)∫ 𝑥𝑠𝑒𝑐2
√
𝜋
2

0

(𝑥2 −
𝜋

4
)𝑑𝑥 

6) Find the following:   

(𝑎)
𝑑

𝑑𝑥
[∫ sin(𝑒𝑡 + 2𝑡)𝑑𝑡

𝑥

3

](𝑏)
𝑑

𝑑𝑦
[∫ 𝑒𝑥

2
𝑑𝑥

1

𝑦2
] 

  

 Table 6.5 shows that all aspects of the FTC were not covered in the assessment. For 

instance, answering these FTC questions did not require geometric understanding of the FTC. 

Students could answer these questions with instrumental understanding (Section 3.1.2) of, and 

procedural knowledge (Section 3.1.3) about the FTC. 

6.1.2 The calculus course in Case 2 

 The calculus course at this College consisted of five one-hour sessions every six school 

days. Normally, the teacher, before teaching a new topic, encouraged students to ask questions 

arising from previous topics, especially the topic of the last session (Figure 6.2). Students were 

encouraged to ask questions about homework that they found hard, and the teacher discussed those 

questions in the class and solved them with the help of the students. Then, the teacher typically 

taught a new concept for around 20 minutes and solved examples related to the topic with the help 
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of the students. Then, the teacher selected a range of questions from the textbook for students, who 

were encouraged to solve those questions in the remaining session time and for homework. On 

those time, some students worked alone and some worked with their peers (in a group of 2 or 3) 

for solving the questions. During the time students worked on the textbook questions, the teacher 

circled around the classroom and talked to students individually, helping them with their 

difficulties in the topic/exercise questions.  

 

Figure 6.2 Structure of the College teaching 

 The homework was not marked by the teacher7 or anyone else and therefore is not 

discussed here. Only homework questions that the students asked about and that had been 

discussed in the classroom are presented in this section. 

Teaching of the integral-area relationship and the Fundamental Theorem of Calculus in the 

College calculus course 

 In this section, similar to Case 1, the overall and detailed structure is presented. 

                                                           
7 Only the final answers, not the step by step solution, are available at the back of the textbook. 

Students: Asking questions 
from previous topics.

Teacher: Helping students 
on their difficulties

Teacher: Teaching a new 
topic

Teacher: Expecting 
students to do some 
questions from the 

textbook

Students: Do ing the 
questions.

Teacher: Helping 
students with their 

difficulties
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Overall structure  

 The integral-area relationships and the FTC were taught in the College course after 

teaching how to find antiderivatives of different types of integrands (Table 6.6).  

Table 6.6 

Overall structure of the course at the College  

Date Topics 

30.07.2014 Introducing antidifferentiation (integration) 

Integration of polynomials 

31.07.2014 Integration of exponential and trigonometric functions (session 1) 

Integration by substitution (session 1) 

01.08.2014 Integration by substitution (session 2) 

Particular and general solution of an integral 

5.08.2014 Integration of trigonometric functions (session 2)  

07.08.2014 Integration by substitution (session 3) 

Integration of trigonometric functions (session 3) 

08.08.2014 Integration of trigonometric functions (session 4) 

Integration by substitution (session 4) 

11.08.2014 Integration by substitution (session 5) 

13.08.2014 Definite and indefinite integral 

15.08.2014 Definite integral (session 2) 

18.08.2014 Calculating areas under a curve (session 1) 

19.08.2014 Calculating areas under a curve (session 2) 

21.08.2014 Calculating areas enclosed between curves (session 1) 

22.08.2014 Calculating areas enclosed between curves (session 2) 

25.08.2014 Numerical integration: The trapezium rule 

26.08.2014 Numerical integration: The Simpson’s rule 

27.08.2014 Comparing the trapezium and Simpson’s rule 

Introducing Riemann integral 

02.09.2014 Using Calculus for solving Kinematics problems 

03.09.2014 Differential equations 

 

 Not all aspects of the FTC, in particular the second part of the FTC, were covered in the 

teaching. Those that were covered were taught in the name of the definite integral (Table 6.6).  

Detailed structure  

 The FTC was not covered completely in the College course. The teacher introduced the 

FTC as follows: 
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 ∫𝑓(𝑥)𝑑𝑥 and ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 are two different things but related. The first is the indefinite 

 integral and gives us a function. This [the second one] is called a definite integral and it is 

 a fixed value, a number.  If 𝐹(𝑥) is the integral of 𝑓(𝑥), then, (T5) 

  ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
= 𝐹(𝑥) + 𝐶]𝑎

𝑏 = (𝐹(𝑏) + 𝐶) − (𝐹(𝑎) + 𝐶) = 𝐹(𝑏) − 𝐹(𝑎)(Boardwork, 

 T5). 

 The teacher illustrated the definite integral using several questions (Table 6.7).  
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Table 6.7 

Examples solved during the teaching of the College course related to the topics of the study 

Date Examples solved during the teaching  

13.08.2014 1) ∫ (𝑥2 + 5𝑥)𝑑𝑥
3

1
      2)∫ 𝑥√𝑥2 + 1𝑑𝑥

2

1
 

15.08.2014 3) ∫
𝑥

1−𝑥
𝑑𝑥

−1

−2
              4)∫

6𝑥+4

3𝑥−2
𝑑𝑥

1

0
 

18.08.2014 5) Find the shaded area.  

 

[The equation of the graph was given to students] 

 

 

 

 

6) Find the area bounded by (enclosed by) the curve𝑦 = 𝑥2 − 3𝑥 and the 𝑥-axis. 

 

19.08.2014 7) Calculate ∫ cos 𝑥𝑑𝑥
𝜋

0
      

8) The area bounded by the curve 𝑦 = cos 𝑥, the 𝑥 −axis, and between the 

coordinates 𝑥 = 0 and 𝑥 = 𝜋. 

9) Find the shaded area.                     

10) Find the area bounded by the curve 𝑦 = 𝑥3 − 9𝑥 and the 𝑥-axis. 

21.08.2014 

11) Find the shaded area.                

 

12) Calculate the area enclosed by the curve 𝑦 = cos 2𝑥, both axes, and the line 𝑥 =
𝜋

2
 . 

13) Find the area bounded by 𝑦 = 𝑥3 and 𝑦 = 𝑥. 

22.08.2014 

14) Find the shaded area.             

  

 The area under curves was presented as an application of integration. The teacher did not 

provide Riemann integral for students. He said,  
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 I am going to take the expedient route in introducing this to begin with. I am going to 

 give you the application, it is like doing the differentiation, saying without proving…I 

 am going to give you the results, what integration is used for and then go back...and even 

 then I won’t be able to spend enough time on showing you why to bring the power down, 

 reduce the power by one, I just want to show you where it comes from (T5). 

 

    Areas: ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 ~                                               (Board work, T5)   

 Is that a big surprise to anyone? [The class was silent]. This thing [𝑓(𝑥)] that you 

 evaluate is the shaded area. What that says, is the area trapped between the curve lies 

 above the 𝑥-axis between the ordinates 𝑎 and 𝑏, is what comes out of that. That’s what it 

 is. There are a few other things we need to [care about], if the curve is underneath the 𝑥-

 axis, we need to be careful about that. At that moment just let’s say that is a continuous 

 function (T5). 

 It seems the teacher provided several examples to show how areas could be calculated 

using integration to facilitate students’ learning (Table 6.7). Example 5 was designed in a way that 

drew students’ attention to the fact that the shaded area is bounded by lines on the 𝑥-axis, not the 

𝑦-axis.  Example 6 was posed in a way that emphasised the fact that drawing is important for 

finding the area using integration. He said, “Have you got a visual on this? Would that be helpful?”. 

Then, he sketched the curve and found the area. It appeared to the researcher that the teacher also 

posed Example 6 in a way that taught how areas under the 𝑥-axis should be considered and treated. 

Then, the teacher sketched the graph of Cos 𝑥 between 0 to 𝜋, presumably to point out the fact that 

an area under a curve between two points is not always equal to the corresponding integral of that 

curve between those points. He told students that the area is not zero here, but the integral is. The 

teacher highlighted the need for splitting the integral for finding the area using integration.  

 The teacher then continued with his previous topic, how to solve area questions. "Areas 

below the 𝑥-axis are negatively signed, i.e., if we have this [the figure below] is it equal to area?  

It is equal to -(area)" (T5). 
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               (Board work, T5) 

 The teacher provided one of the properties of integral calculus which is “∫ = −∫ 1
𝑎

𝑏

𝑏

𝑎
” and 

derived it using the following rationale: 

 ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
= 𝐹(𝑥) + 𝐶]𝑎

𝑏 = (𝐹(𝑏) + 𝐶) − (𝐹(𝑎) + 𝐶) = 𝐹(𝑏) − 𝐹(𝑎) 

             ∫ 𝑓(𝑥)𝑑𝑥
𝑎

𝑏
= 𝐹(𝑥) + 𝐶]𝑏

𝑎 = (𝐹(𝑎) + 𝐶) − (𝐹(𝑏) + 𝐶) = 𝐹(𝑎) − 𝐹(𝑏) =

−[𝐹(𝑏) − 𝐹(𝑎)] = −∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
(Board work, T5) 

 The teacher continued his teaching by providing Examples 7 and 8 that helped students 

understand the difference between finding areas and calculating integrals. The teacher did not draw 

the graph at the start. A few students mentioned, “these are the same questions”, and pointed out 

the integral is zero as well as the enclosed area. Then, one student mentioned that the integral 

needed to be split for finding the enclosed area. Then the teacher placed emphasis on the fact that 

the graph should be drawn so as to explain what the student said. Next, the teacher calculated the 

area. He showed the students four ways to calculate the enclosed area and encouraged them to try 

these to see which way they preferred. The ways are ∫ cos 𝑥𝑑𝑥 + |∫ cos 𝑥𝑑𝑥
𝜋
𝜋

2

|
𝜋

2
0

, ∫ cos 𝑥𝑑𝑥 −
𝜋

2
0

∫ cos 𝑥𝑑𝑥
𝜋
𝜋

2

, ∫ cos 𝑥𝑑𝑥 + ∫ cos 𝑥𝑑𝑥
𝜋

2
𝜋

,
𝜋

2
0

 and 2∫ cos 𝑥𝑑𝑥
𝜋

2
0

. Afterward, two other examples 

(Examples 9 and 10) were presented to students presumably to help them to have a better 

understanding of how the areas under the 𝑥-axis should be treated.  

 The teacher showed how the enclosed area between two curves can be calculated as 

follows. "If 𝑓(𝑥) and 𝑔(𝑥) are continuous functions over [𝑎, 𝑏] and if 𝑓(𝑥) > 𝑔(𝑥)  ∀𝑥 ∈ [𝑎, 𝑏] 

area enclosed by each graph= ∫ 𝑓(𝑥) − 𝑔(𝑥)𝑑𝑥
𝑏

𝑎
”(T5). 

                                                                      (Board work, T5) 
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 He illustrated this by providing Example 13 (Table 6.7). As he solved the example, the 

teacher pointed out that if the curves are below the axis, the procedure could still be used. He said, 

“It does not matter if you are underneath the axis or what, if you got the ascendant function 

minusing the lower function, it always works out properly for you”. The teacher also justified why 

that formula works by considering the area underneath each curve separately and subtracting them.  

 The teacher then showed how the area with the 𝑦-axis as a boundary could be calculated 

by providing Example 14 (Table 6.7). First, two methods were presented for calculating the shaded 

area in the example using integration with respect to the 𝑥-axis. The first method, suggested by a 

student, was subtracting the area under the curve 𝑦 = 4 between zero to two, and the area under 

the curve𝑦 = 𝑥2 between zero and three from the area under the curve 𝑦 = 9 between zero and 

three. The second method was to bring the curve down four units and subtract the area under the 

curve 𝑦 = 𝑥2 − 4 between two to three from the area under the curve 𝑦 = 5 between zero and 

three.  For calculation of the area using integration with respect to 𝑦-axis, the teacher provided the 

following formula without any justification.  

 

     ∫ 𝑥𝑑𝑦~
𝑑

𝑐
     (Boardwork, T5) 

 The teacher, after finishing the numerical integration topics, introduced the idea of 

Riemann sums and Riemann integral for a decreasing function above the 𝑥-axis. However, he did 

not solve any example using Riemann integral and did not mention the name of the method. 

Assessment of the integral-area relationship and the Fundamental Theorem of Calculus in the 

College calculus course 

 In this section, integral questions (Table 6.8) that were used in the internal assessment8 of 

the regular and the scholarship classes are provided to describe assessment in the context of the 

study. 

 

                                                           
8 The examination administered at the end of the topic within the College for preparing students 

for the external assessment. 
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Table 6.8 

Assessment questions related to integral calculus at the College 

Type Questions  

Scholarship 1) i) Find 
𝑑

𝑑𝑥
(𝑥cos(𝑥)) and use this result to find ∫ 𝑥 sin(𝑥) 𝑑𝑥. 

      ii) Hence find the value of ∫ 𝑥𝑠𝑖𝑛(𝑥)𝑑𝑥
𝑛𝜋

0
 for positive integer value of 𝑛. 

Internal 2) Find the following integrals. You do not need to simplify your answers. Do not forget 

the constant of integration.  

a) ∫
4𝑥4+3

𝑥
𝑑𝑥                            b) ∫ (√𝑥

5
−

2

𝑥2
) 𝑑𝑥   

c)∫4sec(2𝑥)tan(2𝑥)𝑑𝑥          d) ∫(𝑒3𝑥 − 𝑐𝑜𝑠𝑥)𝑑𝑥 

3) The following table shows some values of the function 𝑦 =
1

√𝑥2+6
 

 

𝑥 0 2 4 6 8 10 12 

𝑦 0.4082 0.3162 0.2132 0.1543 0.1195 0.0971 0.0816 

 

Use the Trapezium Rule to estimate the value of the integral ∫
1

√𝑥2+6

12

0
𝑑𝑥 

4) Find the following integral.  

a) ∫
5𝑥2

4𝑥3+3
𝑑𝑥                                  b) ∫

4𝑥

√2𝑥−1
𝑑𝑥 

5) Calculate the area of the region enclosed by the functions 𝑥 = 𝑦2 and 𝑦 = 𝑥 − 2. 

[The picture of area was given in the exam.] 

6) The shaded region in the given graph is bounded by the two functions 

𝑦 = 𝑠𝑖𝑛𝑘𝑥  

𝑦 = 𝑠𝑖𝑛2𝑘𝑥 where 𝑘 is a natural number. 

Find the area of the shaded region in term of 𝑘. 

Given the results of any integration needed to solve this problem. 

 
 

 Table 6.8 shows that the integral-area relationship and finding of antiderivatives using 

integral techniques were the focus of the assessment. The FTC was not the focus of the assessment 

in this College. There was no assessment question related to the Riemann integral. However, one 

question was related to the one of the numerical integration methods (i.e., the Trapezium rule).  
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6.1.3 Discussion 

With reference to the literature relating to the teaching of integral calculus (Section 3.2.1 

and Section 3.2.2): in the both Cases described, diagrams and graphs were used to help students 

have a better understanding of the relationship between definite integral and area. In both Cases, 

the examples solved in classes in relation to finding areas, the given curves were sketched before 

or during the solution process. However, in Case 1, when solving questions that related to finding 

the derivative of integrals using the second part of the FTC  (Example 4 to 7, Table 6.2), graphs 

were not used for illustrating why 
𝑑

𝑑𝑥
[∫ 𝑓(𝑡)𝑑𝑡

𝑥

𝑎
] = 𝑓(𝑥). This did not happen in Case 2, as the 

second part of the FTC was not taught to the students. 

 In relation to the suggestion in the literature that the focus of integral calculus teaching 

should be on determining the enclosed area as a limit of a sum rather than on integration techniques 

for solving different types of integrals: in Case 1, Riemann sums and Riemann integral were taught 

and used in the assessment; whereas in Case 2, Riemann sums were introduced at the end of the 

teaching of integral calculus without being illustrated, and did not appear in the assessment. In 

terms of the FTC, in both Cases, the accumulation area function was not the focus of assessment 

and teaching. 

The reason for not focusing on Riemann sums and the accumulation function in Case 2 is 

likely to be related to the New Zealand Curriculum (Section 1.2.2). As stated in Section 1.2.2 

above, Ministry of Education (2007a) and the NCEA level 3 mathematics achievement standards  

(New Zealand Qualifications Authority, 2013) focus on problem solving that requires using 

antidifferentiation techniques. The FTC and Riemann sums are not highlighted in the curriculum, 

and therefore are not being taught by teachers and did not appear in the assessments.   

In relation to the lens of teaching as transmission versus constructive teaching (Section 

3.1.1): in Case 1, the lecturer was the centre of the lectures; that is, an instance of teaching as 

transmission. There were only a few interactions between the lecturer and students, which may 

have been related to the structure of the lecture theatre or the large number of students in the 

lectures. However, in the tutorials more interactions were possible between tutors and students. 

Students had this chance to work on mathematical questions both individually and as a group to 

construct their knowledge. In all three styles mentioned (Section 6.1.1) consistent with 
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constructivist teaching tutors tried to encourage students to come up with a solution, rather than 

providing the answers to the tutorial questions to the students. 

In comparison to Case 1, in Case 2, there were more interactions, (one to one between the 

teacher and students, between students during group work, and talking about the work on the 

whiteboard between the teacher and students. However, during the teaching of the core concepts, 

the teacher acted as a knowledge dispenser (Section 6.2.1, Detailed structure). In addition, the 

teacher presented the core concepts without justifying them, whereas in Case 1, the lecturer 

followed the traditional way of teaching mathematics, providing Definition, Theorem, Proof 

(DTP) (Weber, 2004), and examples. It seems there was a higher probability that instrumental 

learning (Section 3.1.2) happened to students in Case 2 because proofs of theorems were not in the 

curriculum and were not taught to them, Riemann sums and Riemann integrals were not the focus 

of the teaching and the assessment, and because of how the teacher taught the core concepts. 

However, in Case 1, proofs were taught to students, and Riemann sums and Riemann integral were 

the focus of the teaching and the assessment. Therefore, students interested in having a relational 

understanding (Section 3.1.2) of the topic could consider those approaches, whereas such 

opportunity was not provided in Case 2.  

6.2 Perspectives of lecturers and teachers towards students’ difficulties in learning integral 

calculus 

 This section describes lecturers’ and teacher’s perspectives towards students’ difficulties 

in the integral-area relationships, and the FTC in particular, for first year calculus courses. Their 

perspective towards students’ difficulties is important because those perspectives affect their 

teaching, therefore, knowing them will provide more information about the study context. In 

addition, their views are useful for discussion in the following chapters, in order to explore to what 

extent lectures and teachers are aware of students’ difficulties in these topics. Responses of a 

number of lecturers/teachers were coded in relation to more than one theme/subtheme.  

6.2.1 Students' difficulties with the integral-area relationships 

 Three main themes were found in terms of students’ difficulties in understanding the 

integral-area relationships based on the perspectives of lecturers and teachers. These were: 

students’ learning and life style; setting up integrals; and students’ prior knowledge (Table 6.9). 
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The themes are explained in the order of those mentioned most to least frequently by lecturers and 

teachers. 

 In terms of students’ approaches to learning, four (L15, 23; T1, 5) believed students do not 

solve enough questions in this topic: 

 I think the main difficulty is not practising enough. I actually think when something like 

 that [integral-area relationship], when we do it in class, is actually not a difficult concept 

 for them. What is difficult is that one concept and we have lots of other concepts and to 

 get good at all of them you need to practise all of them, so the problem is that they do not 

 practice (T1). 

Table 6.9 

Lecturers’ and teachers’ perspectives toward students’ difficulties in understanding the integral-area 

relationships 

Main themes Sub themes Lecturers Teachers Total 

Student learning 

approach and 

lifestyle 

Not practising enough questions 2 (L15,23) 2 (T1,5) 4 

Relying on procedural knowledge and having 

performance approach toward learning the topic 

2 (L11,22) 2 (T4,5) 4 

Being dependent on graphic calculators 1 (L22) 1 (T4) 2 

Students’ lifestyle 1 (L15) 0 1 

Setting up the 

integral  

Difficulty with the concept of upper (bigger) function 2 (L12,14) 1(T4) 3 

Setting up the integral when the enclosed area needs to 

be split 

1 (L13) 2 (T2,3) 3 

Setting up the integral when the integral boundaries are 

not given 

1 (L14) 1 (T2) 2 

 Difficulty with choosing the method (i.e., with respect 

to 𝑥 or 𝑦-axis), and not familiar with integration with 

respect to y-axis 

1 (L21) 0 1 

Students’ Prior 

knowledge 

Lack of relevant prior knowledge 4 (L12,15,23,24) 1 (T2) 5 

Lack of skills of sketching functions 3 (L14,15,24) 1 (T4) 4 

 

 The second sub-theme relates to the fact that a number of students rely on procedural 

knowledge about integral-area relationships and have a performance approach toward learning, 

mentioned by four lecturers/teachers (L11, 22; T4, 5). For instance, L22 believed it is hard for 

students to “grasp the conceptual understanding” of the subject and said, “they [students] just rely 
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on the procedural knowledge and how they pass the course, [is] they feel like they understand it”. 

L11 mentioned “my feeling is that they are not doing properly, they just look at whatever formula 

they can remember and then apply [it] without trying to understand that”. T4 mentioned “These 

boys [students] are very results driven”. 

 The third sub-theme is about students’ dependency on graphic calculators pointed out by 

two lecturer/teachers (L22; T4): 

 a lot of students coming from high school who are just attached to graphic calculators and 

 that's kind of detrimental in some cases that having graphic calculators, especially the last 

 five years, has intensified. We feel that they [students] just, they do not have, need to 

 have a  picture in their head of elementary functions (L22). 

 T4 highlighted, “ [the] graphic calculator is a bad tool. It is bad, Farzad. [The] calculator 

has become an addiction. I am very old fashioned. No computer devices in my classrooms, no 

computers. I do not like it”. 

 The final sub-theme highlighted by one lecturer (L15) is related to students’ lifestyle in 

that students do not pay enough attention to their study: 

 Too much drinking, I am thinking of lifestyle, student lifestyle. I guess this is a general 

 thing, the main difficulty for doing a study... A guy came to the states, and talked about 

 teaching first year calculus. He said the main difficulty with teaching first year calculus is 

 students are in states [where] they are recovering, they are sick because they are drinking 

 too much the night before, or they were sleepy, because they did not get enough sleep 

 the night before, because they are drinking and he said the lifestyle, we always fighting 

 the lifestyle. They are not applying themselves. They are applying themselves to 

 socialisation, not to working. 

 The second theme relates to setting up the integrals, mentioned by seven lecturers/teachers 

(L12, 13, 14, 21; T2, 3, 4). Three of them (L12, 14; T4) believed a number of students have 

difficulties in identifying which function is upper (bigger) when finding the enclosed area between 

curves.  For instance, L14 believed students have difficulty in “getting the functions the right way 

around, realising which one is the larger, and which one is the smaller”. T4 mentioned, “It is 
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interesting that some students have difficulty when you took one function that is bigger than 

another, what that actually means”. 

 Three (L13; T2, 3) believed a number of students have difficulty when they need to split 

the area. For instance, T2 said, “the harder conceptual question would be where I have to break 

the area and why I need to do that”. One lecturer and one teacher (L14; T2) believed finding the 

appropriate bounds for an integral is hard for a number of students. Finally, L21 mentioned that a 

number of students have difficulty in choosing the most efficient method of finding the enclosed 

area (i.e., integration with respect to the 𝑥 or 𝑦-axis) and are not familiar with the integration with 

respect to the 𝑦-axis: 

 What is the most efficient way of doing it? The little 𝑑𝑦 or 𝑑𝑥 at the end cause a lot of 

 problem [for students]. All they know is that, I suppose to integrating with respect to the 

 𝑥. They do not know that you are setting up a coordinate system which they can integrate 

 with it... I would say that the kids are so used to using the 𝑑𝑥 at the end of integral that as 

 soon as they see 𝑑𝑦 they start double thinking. It is a new thing for them. 

 The third theme is students’ lack of prior knowledge, mentioned by five lecturers (L12, 14, 

15, 23, 24) and two teachers (T2, 4). The prior knowledge necessary for solving integral-area 

problems from their perspectives are knowledge about functions (L15, 23, 24), graphing functions 

(L14, 15, 24, T4), algebraic manipulation (L12, T2), and the 𝑥-𝑦 coordinates (L23). For instance, 

L23 highlighted: 

 You have students with different backgrounds. So you have people who still struggling 

 with the definition of the function, some of them struggling with the 𝑥-axis and the y-

 axis, some of them are fine but they cannot do the derivative. 

 L15 mentioned: 

 The difficulty would be graphing functions and knowing what the graph is that is going 

 with the functions. So the difficulty would be the fundamental one, we need to know 

 about the functions, what it means to have 𝑓(𝑥), what the graphs tell you about the 

 function… 
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6.2.2 Students' difficulties with the FTC 

 From the perspectives of lecturers and teachers, two main themes were found in terms of 

students’ difficulties in understanding the FTC (Table 6.10). The themes are described in order, 

based on the number of times they are mentioned. 

Table 6.10 

Lecturers’ and teachers’ perspectives toward students’ difficulties in understanding the FTC 

Main theme Sub themes Lecturers Teachers Total 

Learning 

approach 

Relying on procedural knowledge and having performance 

approach toward learning the topic 

2 (L11, 24) 2 (T1,2) 4 

Fundamental 

Theorem of 

Calculus 

Difficulty with the conceptual knowledge of  the FTC 2 (L15, 22) 1 (T2) 3 

Difficulty with the notational aspects of the FTC 2 (L14, 15) 0 2 

Difficulty with the second part of the FTC when the chain 

rule needs to be used 

2 (L11,12) 0 2 

Difficulty with the second part of the FTC 1 (L21) 0 1 

Not knowing the difference between definite integral and 

antidifferentiation 

1 (L14) 0 1 

Difficulty with understanding the accumulation area function 1 (L14) 0 1 

 

 In relation to learning approach, two lecturers (L11, 24) and two teachers (T1, 2) believed 

the difficulty students have with the FTC is related to the fact that students focus on understanding 

the procedural knowledge underpinning this topic and have a performance orientation toward 

learning the topic: 

  I do not think even they [students] have tried [to understand the FTC]. They are more 

 interested in what is in the exam? What do questions look like? What is the procedure I  

 need to know to get to the end? (T1). 

 In relation to the FTC and its first sub-theme, two lecturers (L15, 22) and one teacher (T2) 

mentioned that students have difficulty with understanding the concepts involved in the FTC. For 

instance, L15 said, “the difficulty would be I think understanding of the fundamental concepts of 

derivative and integral” and T2 mentioned, “conceptual connection because they [students] do not 

really understand where it has come from, they just use the results”. 

 The second sub-theme related to the FTC is students’ difficulties in understanding the 

notations involved in the FTC, mentioned by two lecturers (L14, 15): 
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  [the difficulty for the students is] understanding what an integral with the variable 

 bounds mean as a function and understanding that there is a distinction between making 

 the bound variable and the variable of integration and why they have to be different 

 things (L14). 

 The third sub-theme relates to the second part of the FTC; in particular, questions that asked 

students to find the derivative of integrals using the FTC (e.g., Q2b in Table 6.5). Two lecturers 

(L11, 12) believed a number of students have difficulty with solving those problems when they 

need to use the chain rule. L12 mentioned students have difficulty with the “chain rule part, when 

the top bound is a function of 𝑥”.  

 One lecturer believed that considering the two parts of the FTC, students have difficulty 

with the second part: 

  I would say [in] the second part that they have problems…when you start looking at 

 giving  the derivative of the particular function and giving the integral and asking the kids 

 to realise that the actual function being differentiated is the one that is the integrand, that 

 requires a few more steps and I think from my experience if the kids have a problem 

 that's the area they have a problem (L21). 

 L14 mentioned another two difficulties that students have with the FTC. He pointed out 

that for a number of students the difference between definite integral and antidifferentiation is not 

clear, “you have to make the point quite strongly that integration is not antidifferentiation”. The 

second point he mentioned was that students have difficulty with understanding the accumulation 

area function, “…understanding what an integral with the variable bounds means as a function”. 

 While answering the interview question, two lecturers (L12, L22), from different 

Universities, mentioned that conceptual knowledge of the FTC is not focussed on in the assessment 

in the first year of University:  

 I think the majority of them [students] in the first year they do not grasp the conceptual 

 understanding and we [lecturers] kind of do not insist on that. We do not really check 

 that. I think they [students are] just terrified. The FTC I think it is worse for students. 

 We relying on procedural understanding (L22).  
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 And L12 highlighted, “we [lecturers] tend to test the applications, not the idea, we do not 

test the proof and when we go to the assignments and the test, we usually test on calculating”. 

 One teacher (T4) mentioned students have no difficulty with the FTC which could be 

because he does not cover all aspects of the FTC in his teaching. T4 told students the FTC is “just 

a magic” that enables finding area using anti-differentiation. 

6.2.3 Discussion 

 Some of the students’ difficulties with integral calculus mentioned in the literature (Section 

3.2) were also mentioned by the lecturers and teachers. For instance, in terms of integral area 

relationships, difficulties with finding the area when the integrand is below the x-axis, the graph 

of the integrand is not given in the questions, and reliance on procedural knowledge, were 

mentioned both in the literature and by lecturers and teachers. In terms of the FTC, difficulty with 

notations was highlighted by both lecturers and the literature.  

 Presenting the FTC as a “magic” (T4) or not covering all aspects of it in teaching may 

cause several problems for students. The first problem might be that students would not be helped 

to understand the structure of mathematics and think there is no rationale or justification about 

how formulas are derived. Second, having such an approach may affect students’ attitudes toward 

mathematics, because if students think mathematics is magic and there is no rationale behind the 

formulas and theorems, they may tend towards instrumental learning, focusing on memorising and 

applying procedures. Previous studies revealed that students, both at secondary and tertiary level, 

(e.g., Grundmeier, Hansen, & Sousa, 2006; Vinner, 1976), mathematics teachers (e.g., Leikin, & 

Zazkis, 2010), and prospective mathematics teachers (e.g., Levenson, 2012) had confusion about 

the structure of mathematics (e.g., the difference between definition and theorem, or the distinction 

between proof and motivation). One of the reasons for this may be related to the fact that the 

research methodologies of mathematics are not in the focus of curricula, therefore, calculus 

instructors do not spend, or only spend a short time, informing students about the structure of 

mathematics (Vinner, 1976). 

6.3 Chapter summary 

 This chapter has described how the integral-area relationship and the FTC were taught in 

the Cases. In addition, it has shown the perspectives of lecturers and teachers towards students’ 
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difficulties in these two topics. These results have been described to set the scene for the results 

and analysis provided in the following Chapters. 

  



151 
 

 

Chapter Seven: Students’ Factual, Conceptual, and Procedural 

Knowledge about Integral-area Relationships and the FTC  

  In this chapter, students’ learning of the integral-area relationships and the FTC is explored 

in relation to the RBT types of factual, conceptual, and procedural knowledge. The chapter 

presents results drawn from student interviews (Section 5.2.2). These results provide answers for 

the second and fourth research questions (Section 1.4). First, the qualitative analysis is presented, 

and at the end of the chapter the quantitative analysis is described. The integral-related questions 

used for the interview (Appendix 1) were  

Q1. Please calculate the area enclosed between the curve 𝑥 = 𝑦2 and 𝑦 = 𝑥 − 2 in two ways. 

Which way is better to use? Why? 

Q2. What do you understand by A = ∫ [𝑓(𝑥) − 𝑔(𝑥)]𝑑𝑥
𝑏

𝑎
  and B = ∫ [𝑤(𝑦) − 𝑣(𝑦)]𝑑𝑦

𝑑

𝑐
 ? Can 

you justify how these formulas are derived? Can you justify when each one is used? 

Q3. The graph of 𝑓′(x), the derivative of 𝑓(𝑥), is sketched below. The area of the regions, 

𝐴, 𝐵,and 𝐶 are 20, 8, and, 5 square units, respectively. Given that𝑓(0) = −5, find the value 

of 𝑓(6). (Mahir, 2009, p. 203). 

 

 

 

Q4. Are these examples solved correctly? Please justify your answer. 

Ex.1: Find, if possible, the area between the curve 𝑦 = 𝑥2 − 4𝑥 and the x-axis from 𝑥 = 0 to 

𝑥 = 5. 

∫ (𝑥2 − 4𝑥)𝑑𝑥 = [
𝑥3

3

5

0
−

4𝑥2

2
]𝑥=0
𝑥=5 = [

53

3
−

4(5)2

2
] − [

(0)3

3
−

4(0)2

2
] =

−25

3
.                                            

 Ex.2: Find, if possible, the area enclosed between the curve 𝑦 =
1

𝑥2
  and the x-axis from 𝑥 =

−1to 𝑥 = 1. 

∫
1

𝑥2
𝑑𝑥 = ∫ 𝑥−2𝑑𝑥

1

−1

1

−1

= [
(𝑥)−1

(−1)
=
−1

𝑥
]𝑥=−1
𝑥=1 =

−1

1
−
(−1)

(−1)
= −2. 

Q5. Please can you pose a problem about the area enclosed between a curve and a line with 

any two arbitrary bounds that will give an answer of 1 (i.e., the enclosed area will be equal to 

one)? 

Q6. Find the derivative of the following functions. 

𝑂(𝑥) = ∫
1−𝑡

𝑡2−2𝑡−9
𝑑𝑡

𝑥

1
G(𝑥) = ∫ 𝑟2√1 + 𝑟3

𝑥2

0
𝑑𝑟𝐷(𝑥) = ∫ 𝑡3𝑑𝑡

4𝑥+4

2𝑥−5
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Q7. What do you understand by 𝐹(𝑥) = ∫ 𝑓(𝑥)𝑑𝑥 ? What do you understand by 𝐹(𝑥) =

∫ 𝑓(𝑡)𝑑𝑡
𝑥

𝑎
?  

What do you understand by∫ 𝑓(𝑥)𝑑𝑥 = 𝐹(𝑏) − 𝐹(𝑎)
𝑏

𝑎
? When do you use this formula? Can 

you justify how it is derived? What do you understand by  
𝑑

𝑑𝑥
(∫ 𝑓(𝑡)𝑑𝑡

𝑥

𝑎
) = 𝑓(𝑥) ? When do 

you use this formula? Can you justify how it is derived? 

Q8. Let 𝑓 represent the rate at which the amount of water in Phoenix's water tank changed in 

100's of gallons per hour in a 12 hour period from 6 am to 6 pm last Saturday (Assume that the 

tank was empty at 6 am (t=0)). Use the graph of 𝑓, given below, to answer the following. 

 How much water was in the tank at noon? 

 What is the meaning of   𝑔(𝑥) = ∫ 𝑓(𝑡)𝑑𝑡
𝑥

0
 ? 

 What is the value of g(9) ? 

 

 During what intervals of time was the water level decreasing? 

 At what time was the tank the fullest? 

Using the graph of 𝑓 given above, construct a rough sketch of the graph of 𝑔 and explain how 

the graphs are related. (Carlson, et al., 2003,  p. 168-169). 

Q9. Please can you write a problem based on the following graph whose solution would require 

using the Fundamental Theorem of Calculus?  

 In the mathematical tasks/questions, several aspects of the factual, conceptual, and 

procedural knowledge are addressed at the same time. Defining notions such as procept as an 

amalgam of process, symbol, and concept support this idea (Section 3.1.7). In this chapter, the 

responses of students to the nine questions were provided in terms of 20 themes (Table 7.1), rather 

than in terms of factual, conceptual, and procedural knowledge because each question exposes 

different types of knowledge. These themes were inspired by the interim knowledge dimension of 

integral calculus (Section 5.1). 

 

 

 

 



153 
 

 

Table 7.1 

Themes of analysis of students’ integral calculus performance 

Main type of  

knowledge 

investigated 

Theme 

Factual knowledge Recognising and using symbol of integral, integrand, lower and upper bound, and 𝑑𝑥 in 

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 correctly 

Factual knowledge Definite integral can be used for finding area under curve(s) 

Conceptual knowledge The net signed area under 𝑓(𝑥), enclosed by the 𝑥-axis, 𝑥 = 𝑎, and 𝑥 = 𝑏 is equal to 

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 

Conceptual knowledge The net signed area under 𝑓(𝑦), enclosed by 𝑦 −axis, 𝑦 = 𝑐, and 𝑦 = 𝑑 is equal to 

∫ 𝑓(𝑦)𝑑𝑦
𝑑

𝑐
 

Conceptual knowledge Integrand should be continuous on the interval that is being integrated 

Conceptual knowledge  Understanding the relationship of enclosed areas between curves, 𝑓(𝑥) and 𝑔(𝑥), and the 

definite integral (∫ [𝑓(𝑥) − 𝑔(𝑥)]𝑑𝑥
𝑏

𝑎
) 

Conceptual knowledge Understanding the relationship between the definite integral and the limit of Riemann 

sums:  ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
= lim
𝑛→∞

∑ 𝑓(𝑐𝑖)∆𝑥
𝑛
𝑘=1  

Conceptual knowledge Being able to use the integral-area relationships for a graph of derivative function 

Factual/conceptual 

knowledge 
Understanding the meaning of 𝐹(𝑥) = ∫ 𝑓(𝑥)𝑑𝑥 

Factual/conceptual 

knowledge 
Understanding the meaning of 𝐹(𝑥) = ∫ 𝑓(𝑡)𝑑𝑡

𝑥

𝑎
 

Factual/conceptual 

knowledge 
Understanding the meaning of ∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎
= 𝐹(𝑏) − 𝐹(𝑎) 

Factual/conceptual 

knowledge 
Understanding the meaning of 

𝑑

𝑑𝑥
[∫ 𝑓(𝑡)𝑑𝑡

𝑥

𝑎
] = 𝑓(𝑥) 

Procedural knowledge Be able to do necessary algebraic manipulations for simplifying integrands, finding 

intersection points, etc. 

Procedural knowledge Find the antiderivative of 𝑓(𝑥) using integral techniques ∫𝑓(𝑥)𝑑𝑥 = 𝐹(𝑥) + 𝑐 

Procedural knowledge ∫ 𝑓(𝑥)𝑑𝑥 = 𝐹(𝑏) − 𝐹(𝑎)
𝑏

𝑎
, where 𝐹′(𝑥) = 𝑓(𝑥) 

Procedural knowledge Knowing when it is efficient to use integration with respect to the 𝑥 or 𝑦-axis  for solving 

integral-area problems 

Procedural knowledge Being able to use  
𝑑

𝑑𝑥
[∫ 𝑓(𝑡)𝑑𝑡

𝑥

𝑎
] = 𝑓(𝑥) for finding the derivative of integrals 

Conceptual/procedural 

knowledge 

Being able to use FTC in a contextual problem 

Conceptual/procedural 

knowledge 

Being able to pose a question for the integral-area relationship 

Conceptual/procedural 

knowledge 

Being able to pose a question in relation to the FTC 
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 The results in terms of factual knowledge indicate that students had difficulty with 

notational aspects of the FTC. There is evidence that conceptual knowledge was less developed 

than procedural knowledge for students both in terms of the integral-area relationships and the 

FTC. To compare the Cases at a macro level (Section 4.1), for each type of knowledge that was 

discussed in the following sections one point was given. Some sections discussed several aspects 

of knowledge about integral calculus, therefore, more than one point was allocated to them (e.g., 

Section 7.17). The total points each student scored was then calculated for comparing students’ 

result in the Cases (Section 7.20).  

7.1 Factual knowledge: Recognising and using symbols of integral, integrand, lower and 

upper bound in the definite integral  

 University (U) and Year 13 (Y) students in the sample did not ask the interviewer any 

questions about the symbols (integral, integrand, lower and upper bound, and 𝑑𝑥 in ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
) 

while engaging with integral-area questions. Also, through transcript analysis of students’ running 

commentary during their solution of the problems, no comment was noted that indicated that a 

student did not understand the questions. However, for the FTC questions, some students reported 

that they had difficulty with understanding the symbols used in the questions and in the FTC (e.g., 

Section 7.16). For these reasons, it is assumed that all students recognised symbols in ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
. 

 From the study sample, only two students (U8; Y7) used correct notations and symbols 

while solving mathematical questions. Two errors were found in students’ mathematical writing 

in relation to integral calculus. First, 15 students (Table 7.2) did not use brackets when integrating 

more than one term (e.g., instead of ∫ [𝑓(𝑥) + 𝑔(𝑥)]𝑑𝑥
𝑏

𝑎
, they wrote ∫ 𝑓(𝑥) + 𝑔(𝑥)𝑑𝑥

𝑏

𝑎
). Second, 

three students (Table 7.2) did not write 𝑑𝑥 or 𝑑𝑦, the symbol that shows integration should be 

done with respect to 𝑥 or 𝑦, when working on the mathematical questions (e.g., Figure 7.1). 

   

 

Figure 7.1 An example of missing 𝑑𝑥 in a solution 
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Table 7.2 

Errors within students’ writing in relation to the definite integral 

Errors with writing definite integrals Case 1 Case 2 

Have not used brackets when integrating more than one term 8 (U12345679) 7 (Y1234568)  

Have not used 𝑑𝑥 for showing integration should be done with 

respect to which variable 

1 (U2) 2 (Y38) 

 

 One possible reason for the school students not using brackets for integrating more than 

one term is that the teacher did not use these brackets during teaching. However, in Case 1, this 

does not explain the lack of bracket use by the University students as the lecturer did use them 

during teaching. Another possibility for the exclusion of brackets and 𝑑𝑥 was that students used a 

'shortcut' by leaving them out of in their working. 

 Recognising and using symbols contributes two points towards students’ mathematical 

performance scores in integral questions; one for recognising the symbols and one for using them 

correctly for solving questions. All the students scored one point for recognising the symbols, 

however only two students, one from each Case, scored one point for using symbols correctly.  

7.2 Factual knowledge: Remembering the definite integral can be used for finding the area 

under curve(s)  

 All students, when solving integral questions, remembered that when finding the area under 

a curve the definite integral should be used. However, there was one student in Case 2 (U2) who 

used ∫ 𝜋𝑓2(𝑥)𝑑𝑥
𝑏

𝑎
, the disk formula for finding volume, for finding areas under curves. This 

section contributes one point to students’ mathematical performance ratings in integral questions 

so all students scored that point. 



156 
 

 

7.3 Conceptual and procedural knowledge: The net signed area under a curve is equal to 

the definite integral 

 In the first section, the way students used integration with respect to the 𝑥-axis for finding 

the enclosed area is explored; in the second section, students’ learning in relation to how 

integration can be used with respect to the 𝑦-axis is explored.  

7.3.1 Calculating area using integration with respect to the 𝒙-axis 

 In relation to Q1, only four students (U589; Y8) were able to find the enclosed area with 

respect to the 𝑥-axis correctly. Drawing the graph incorrectly can affect how students set up their 

integral. Therefore, to investigate whether students had the ability to find the area with respect to 

the 𝑥-axis, the integrals students set up were compared with their drawings. Four students (U13; 

Y67) set up integrals correctly according to their drawings. One student (Y2) did not use this 

method and the remaining eight students (U2467; Y1345) had difficulties with finding the enclosed 

area by using integration with respect to the 𝑥-axis. 

 U4 had difficulty with the fact that 𝑥 = 𝑦2 is not a function, and set up the integral 

incorrectly (i.e., ∫ 𝑥 − 2 − √𝑥𝑑𝑥 + ∫ 𝑥 − 2 − √𝑥𝑑𝑥
0

1

4

0
); even though he had sketched the graph 

correctly. U7 had not realised that if the upper/lower limit changes during the integration interval, 

the area function will change accordingly. He said, “I find a general formula that would give me 

the correct answer with whatever bound I put in. So having integrated it, then I can decide what 

bound I can use” (Figure 7.2).  

 

 

 

 

 

Figure 7.2 Part of U7’s working on Q1 
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 U2 used a wrong formula for finding the enclosed area (Section 7.2). The last University 

student who had difficulty with finding the area with respect to the  𝑥-axis, U6, could not find the 

second intersection point for the two curves, only found 𝑥 = 4 as one of the intersection points. 

Also, she set up an incorrect integral for finding the area with respect to the 𝑥-axis (i.e., ∫ √𝑥
4

−

𝑥 − 2𝑑𝑥). 

 In terms of Case 2, Y1 considered only ∫ 𝑥 − 2𝑑𝑥
2

0
 as the integral for finding the enclosed 

area. Y5 had difficulty with finding the area below the 𝑥-axis, mentioning “I am not too sure 

whether it [𝑥 = 𝑦2] actually stops at 𝑥 = 0 or would continue around like a parabola in which case 

there will be some area there that is missed out. I am not sure how to calculate that”. Two (Y34) 

had difficulties in relation to finding intersection points (Section 7.8), preventing them from setting 

up the correct integrals.  This section contributes one point to students’ mathematical performance 

scores in integral questions. Five from Case 1 and three from Case 2 scored that point for finding 

the enclosed area correctly according to their graph, by using integration with respect to the 𝑥-

axis.  

7.3.2 Calculating area using integration with respect to the 𝒚-axis 

 In relation to Q1, 11 students (U23456789; Y278) attempted to find the area with respect 

to the 𝑦-axis. Of those, seven students (U45689; Y78) correctly found the enclosed area by using 

integration with respect to 𝑦-axis, while four of these (U569; Y2) used this method as their first 

choice for finding the enclosed area.  

  The four students who answered incorrectly (U267; Y2) made various errors in setting up 

the integrals with respect to the 𝑦-axis. Three students (U67; Y2) made a mistake about which 

function is the top function, considering the curve as the top function. Two students considered 

the bounds of integration with respect to the 𝑥-axis (Figure 7.3) rather than the 𝑦-axis (U2; Y2). 

In addition, U2 used an incorrect formula for finding the enclosed area (Section 7.2). U3 created 

an incorrect drawing of the graph of 𝑥 = 𝑦2 which led an incorrect lower bound for the integral, -

2. The remaining six students (U1;Y13456) did not use this method for finding the enclosed area. 
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Figure 7.3 Part of Y2’s working on Q1 

 Ten students (U23456789; Y78) who found the enclosed area with respect to both axes 

(whether correct or incorrect) highlighted that integration with respect to the 𝑦-axis is easier for 

finding the enclosed area in this question, because one integral is involved and they did not need 

to work with square root and negative area: “I could do it in one equation and also it is all above, 

all positive, [and] I don’t have to deal with negative area” (U5). This section contributes one point 

to students’ mathematical performance scores in integral questions and five students from Case 1 

and two from Case 2 scored that point for finding the enclosed area using integration with respect 

to the 𝑦-axis. 

7.4 Conceptual knowledge: Understanding Integrand should be continuous on the interval 

that is being integrated  

  Three students (U579) had the conceptual knowledge that the integrand should be 

continuous on the interval that is being integrated. This was shown by students’ responses to Q4, 

Ex 2, in which they were asked to evaluate whether the area enclosed between the curve =
1

𝑥2
 , the 

𝑥-axis from 𝑥 = −1 to 𝑥 = 1 were solved correctly. U5 showed that the area is diverging by using 

the improper integral. U9 had the misunderstanding that if an integrand is not continuous at a given 

point, the calculation is not possible: “Why this work, I thought it will be something in the 

calculation that wouldn't work [sic]”. U7 sketched the graph of 𝑦 =
1

𝑥2
 and said, “we do not have 

the division by zero problem here”, indicating he did not notice that the function is undefined at 

zero. This section contributes one point to students’ mathematical performance in integral 

questions and three students from Case 1 scored that point for remembering the integrand should 

be continuous on the integration interval. 
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7.5 Conceptual knowledge: Understanding the relationship of enclosed areas between 

curves and the definite integral  

 All students in Case 1 except U2, the student who thought he was dealing with the volume 

topic, and five in Case 2 (Y45678), understood that 𝐴 = ∫ [𝑓(𝑥) − 𝑔(𝑥)]𝑑𝑥
𝑏

𝑎
 in Q2 means the area 

enclosed between functions 𝑓(𝑥)and𝑔(𝑥), 𝑥 = 𝑎, and 𝑥 = 𝑏 considering 𝑓(𝑥)as the upper 

function: “ [𝐴 is] the area enclosed between the function 𝑓(𝑥) and 𝑔(𝑥) between 𝑎and 𝑏and𝑓(𝑥) 

is the upper function” (Y6). In addition, seven students in Case 1 (U3456789) and five in Case 2 

(Y45678) were able to correctlyillustrate 𝐴 on 𝑥-𝑦 plane using two arbitrary functions and bounds. 

U2, while answering Q2, still thought he was dealing with volume the topic and said “[A] is [the 

volume] rotating around the 𝑥-axis”. U1 only considered the area above the 𝑥-axis and neglected 

the area enclosed between 𝑓(𝑥), 𝑔(𝑥),and𝑥 = 𝑎(Figure 7.4). Y3 also failed to consider the area 

under the 𝑥-axis. Students in Case 2 besides this misconception, had other difficulties, including 

misconceptions about the upper/lower function and the bound of integration (Figure 7.5).  

 

Figure 7.4 U1’s incorrect illustration of 𝐴 = ∫ [𝑓(𝑥) − 𝑔(𝑥)]𝑑𝑥
𝑏

𝑎
 and B=∫ [𝑤(𝑦) − 𝑣(𝑦)]𝑑𝑦

𝑑

𝑐
 

 

 

 

 

Figure 7.5 Misconceptions about illustrating ∫ [𝑓(𝑥) − 𝑔(𝑥)]𝑑𝑥
𝑏

𝑎
 in Case 2 
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 In relation to B=∫ [𝑤(𝑦) − 𝑣(𝑦)]𝑑𝑦
𝑑

𝑐
 in Q2, seven students in Case 1 (U3456789) and four 

in Case 2 (Y5678) understood that 𝐵 is the area enclosed between functions, 𝑤(𝑦)and𝑣(𝑦), 𝑦 =

𝑐, and 𝑦 = 𝑑 considering 𝑤(𝑦)is the upper function. Furthermore, seven students in Case 1 

(U3456789) and three in Case 2 (Y578) were able to illustrate 𝐵 correctly for two arbitrary 

functions and bounds. For the two remaining students in Case 1, the reasons for failure were the 

same as those reported for 𝐴. For students in Case 2, misconceptions about illustrating the enclosed 

area were related to the upper/lower functions, and neglect of the area under the 𝑦-axis (Figure 

7.6). The reasons why students in Case 2 had more difficulties in understanding 𝐴 and 𝐵 in 

comparison to students in Case 1 might be related to them not being exposed to Riemann sums 

until the last few sessions before the end of the integral calculus topic (Table 6.6), and that no 

examples were solved for students using Riemann integral. 

 

 

 

 

Figure 7.6 Misconceptions about illustrating B=∫ [𝑤(𝑦) − 𝑣(𝑦)]𝑑𝑦
𝑑

𝑐
 in Case 2 

 This section contributes four points to students’ mathematical performance scores in 

integral questions, comprising one point for understanding A, one for illustrating A, one for 

understanding B, and one for illustrating B. Students from Case 1, achieved the combined scores 

of 8, 7, 7, and 7 points respectively for these items; whereas students in Case 2 achieved combined 

scores of 5, 5, 4, and 3 points in these items. 

7.6 Conceptual knowledge: Understanding the relationship between the definite integral 

and the limit of Riemann sums  

 In responding to Q2, seven students in Case 1 (U3456789), and one in Case 2 (Y7), showed 

they understood the relationship between the definite integral and the limits of Riemann sums. The 

other justification that four students in Case 2 (Y5678) provided for how 𝐴 and 𝐵 could be derived 

was they could be found by calculating the difference between the area under each curve: 
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 The way we derive these formulas is we find the area under the curve of one graph and 

 the area under the curve of the other graph, and minus the two, and then, through 

 distributive property of integrals we can condense them [sic] (Y7). 

 Students in both Cases had been taught how the definite integral is related to Riemann sums 

(Section 6.1). However, more materials are taught in Case 1 in relation to Riemann sums in 

comparison to Case 2. This section contributes one point to students’ mathematical performance 

scores in integral questions, and seven students from Case 1 and one from Case 2 scored that point 

for understanding the relationship between the definite integral and the limits of Riemann sums.  

7.7 Conceptual and procedural knowledge: Using the integral-area relationships for a 

graph of derivative function 

 Students’ responses to Q3 were used to explore whether they were able to use the integral-

area relationships for 𝑓′(𝑥). Seven students in Case 1 (U3456789) and four in Case 2 (Y5678) 

realised that the ∫ 𝑓′(𝑥)𝑑𝑥
𝑏

𝑎
 is equal to the area under the graph of 𝑓′(𝑥) between 𝑥 = 𝑎 and 𝑥 =

𝑏. However, only six students in Case 1 (U345689) realised this integral is equal to the signed net 

area underneath the graph of 𝑓′(𝑥). Furthermore, Y7 while solving Q3, made a mistake and 

considered ∫ 𝑓′(𝑥)𝑑𝑥 = 𝑓′(𝑏) − 𝑓′(𝑎)
𝑏

𝑎
. 

 This section contributes one point to students’ mathematical performance scores in integral 

questions, and only six students from Case 1 scored that point for using the integral-area 

relationships for finding the area under the graph of derivative function correctly. 

7.8 Procedural knowledge: Doing algebraic manipulations necessary for simplifying 

integrands, finding intersection points, etc.  

 Across several questions a lack of proficiency in algebraic manipulations was found to be 

one of the students’ major barriers to be a successful problem solver in these topics. In Q1, six 

students (U136; Y356) had difficulties in solving 𝑥 − 2 = √𝑥  for finding the intersection points. 

Five students (US13; Y145) made a mistake in finding 𝑦 from 𝑥 = 𝑦2, assuming 𝑦 = √𝑥. Y6 

made an error in squaring 𝑥 − √𝑥 assuming it is equal to 𝑥2 − 𝑥. Y5 thought these two curves 

have no intersection point, and Y3 wanted to solve 𝑥 − 2 = 𝑦2 to find intersection points rather 

than −2 = √𝑥 .  
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 Lack of proficiency in algebraic manipulation was also observed in solving Q4. In response 

to this question, four students in Case 2 (Y1456) used a calculator for checking whether the bounds 

were substituted correctly in the integrand, indicating students were not confident at doing 

calculations. Examples of calculations done with calculators include 25 × 2and 
53

3
. Moreover, Y1 

made a mistake in simplifying 
53

3
− 2 × 52 and wrote that it is equal to 

125

3
− 20. Then he asked to 

use a calculator to find the end results.  

 In Q6, Y3, to find the antiderivative of 𝐺(𝑥) = ∫ 𝑟2√1 + 𝑟3
𝑥2

0
𝑑𝑟, simplified the integrand 

as follows 𝐺(𝑥) = ∫ 𝑟2√1 + 𝑟3
𝑥2

0
𝑑𝑟 = ∫ √𝑟4 + 1 + 𝑟3

𝑥2

0
𝑑𝑟, neglecting the fact that 𝑟4 should 

be multiplied by 1 + 𝑟3. 

 In Q8, two students (U1; Y6) were unable to find the equation of a line from the given 

graph (Section 7.17). This section contributes one point to students’ mathematical performance 

ratings for integral questions, and six students from Case 1 and three from Case 2 scored that point 

for correctly doing the necessary algebraic manipulation when solving integral questions. 

7.9 Procedural knowledge: Using integral techniques for finding antiderivatives  

 All of the students were able to find the antiderivative of different powers of 𝑦 = 𝑥𝑛 when 

𝑛 is positive as evidenced by Q1 in which, after setting up the integrals (whether correct or 

incorrect), students were able to find the antiderivative correctly. However, when 𝑛 was negative, 

difficulties in finding the antiderivative were found. Y5 had a misconception as to how to find the 

∫
1

𝑥2
𝑑𝑥

1

−1
 and used the integration of natural logarithm for finding the antiderivative (Figure 7.7).  

 

 Figure 7.7 Misunderstanding of finding the antiderivative of negative power of 𝑥𝑛 (Y5) 
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 Also, U1 had difficulty in finding the antiderivative for this integral and used the U-

substitution method by considering 𝑢 = 𝑥2. He found the antiderivative correctly; however, 

university students are recommended to master how to find the antiderivative of basic functions in 

order to be able to cope with more complex integrals. 

 While solving Q5, Y1 had difficulty with 𝑥2 + 0.5 and asked whether it is a function or 

not, saying “I do not know how to integrate that”, thus showing a lack of understanding about the 

properties of integrals.  

 Among those students who did not use FTC, part two, for solving Q6,  two students in Case 

2 (Y23) had difficulties with finding the antiderivative of 𝑂(𝑥) = ∫
1−𝑡

𝑡2−2𝑡−9
𝑑𝑡

𝑥

1
 and 𝐺(𝑥) =

∫ 𝑟2√1 + 𝑟3
𝑥2

0
𝑑𝑟. Y3 did not use the U-substitution integration technique for finding the 

antiderivative of  𝐺(𝑥) and after bringing 𝑟2 under the square root incorrectly (Section 7.8) solved 

the problem as follows (Figure 7.8).  

 

Figure 7.8 Example of lack of proficiency in using integral techniques 

 Y2 had a misconception about the definite integral properties and thought 

∫ 𝑓(𝑥)𝑔(𝑥)𝑑𝑥
𝑏

𝑎
= ∫ 𝑓(𝑥)𝑑𝑥 ∗∫ 𝑔(𝑥)𝑑𝑥

𝑏

𝑎

𝑏

𝑎
. Therefore, for finding the antiderivative of 𝑂(𝑥), he 

found the antiderivative 1 − 𝑡 and 
1

𝑡2−2𝑡−9
 separately and multiplied them together.  This section 

contributes one point to students’ mathematical performance scores in integral questions and all 

nine students from Case 1 and four from Case 2 scored that point for using the integral techniques 

correctly to find antiderivatives in the questions. 
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7.10 Procedural knowledge: Using the first part of the FTC to find the definite integral  

 All students in the sample, after finding the antiderivative, were able to use the FTC for 

finding definite integrals. This section contributes one performance point and all students scored 

the point for using the FTC to find the definite integral. 

7.11 Understanding when it is efficient to use integration with respect to 𝒙 and 𝒚  for 

finding integral-area problems  

 Two themes were found in relation to how students chose which method should be used 

for solving the integral-area problems, including:  

 choosing based on the graph of curves (U34589; Y1234); and 

 necessary algebraic manipulations for solving the problem (U123456789; Y567).   

 Regarding the graph, five students (U3489; Y2) noted they chose the method that involved 

the lesser change in the lower/upper function. For example, U8 said “when you have to break it up 

less times like the previous example [Q1 that is efficient to use integration with respect to the 𝑦-

axis]”. U5 mentioned she would make her choice based on which alternative had the lesser 

negative signed area. Three students in Case 2 (Y134) said that their choice would be based on the 

graph being enclosed by the 𝑥 or 𝑦 axis, indicating they were thinking about the area under one 

curve rather than two curves, which is what is asked in the questions. This misconception was also 

found in illustrating 𝐴 and 𝐵 in Q2 (Section 7.5). In problems related to finding the enclosed area 

between curves and two bounds, the axes are not important. However, as most Y13 students did 

not understand the idea behind the integral-area relationships through Riemann sums (Section 7.6), 

such misconceptions had been created among students.  

 In relation to the second theme, students mentioned they made their choice of method based 

on the least algebraic manipulation being necessary for finding the lower and upper bounds. In 

other words, if the bounds were given in terms of 𝑥 = 𝑎and𝑥 = 𝑏, they would choose integration 

with respect to 𝑥, and if it was given in terms of 𝑦 = 𝑐 and 𝑦 = 𝑑, they would choose integration 

with respect to the 𝑦-axis. Another factor that affected their decision was how the integrand was 

given in a question. If the integrand was presented as a function of 𝑥, they would choose integration 

with respect to the 𝑥-axis, and if it was given in terms of 𝑦, they would choose integration  with 
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respect to the 𝑦-axis: “I would use it [the method] depending on what formula I have for the 

functions. I am integrating relative to the thing the function is of” (U7). 

 Two students in Case 2 (Y58) mentioned their first choice was always integration with 

respect to the 𝑥-axis. Y8 believed it is easier to conceptualise when you are integrating with respect 

to the 𝑥-axis. He mentioned:  

 By default, I go 𝑥 because it is easier to conceptualise, because you have positive to 

 negative, but𝑦, sort of is inverted in terms of positive to negative. But sometimes it is 

 just easier to do in terms of y [sic]”. 

 Y5 mentioned, “In all questions it is easier to use the integration with respect to x-axis 

because you don’t need to write the function in terms of 𝑥 = 𝑓(𝑦), at least in questions that we 

see in our school”.  

 This section contributes one point to students’ mathematical performance scores in integral 

questions. As all students gave a reason for choosing the most efficient method (i.e., their choice 

was based on the graphs, the necessary algebraic manipulations, and which method was easier to 

conceptualise) of integrating with respect to the 𝑥 or 𝑦-axis, one point wss given to all students.   

7.12 Factual and conceptual knowledge: Understanding the meaning of 𝑭(𝒙) = ∫𝒇(𝒙)𝒅𝒙 

 Four students in Case 1 (U1356) and two in Case 2 (Y36), in response to the first part of 

Q7, read the mathematical statement rather than telling what they understood by it: “the function 

of 𝐹(𝑥) is equal to the integral of 𝑓(𝑥) [with] respect to 𝑑𝑥” (Y6). After observing such responses, 

I tried to engage students so as to provide more responses by asking “Is 𝐹(𝑥) the antiderivative of 

𝑓(𝑥)?” Their answers showed that all students in Case 1 and four in Case 2 (Y1678) understood 

that the antiderivative of 𝑓(𝑥) is 𝐹(𝑥). Three students in Case 2 (Y234) were unsure about it, and 

Y2 said “I cannot see how they are related”. Only U4 understood that 𝑓 is the function that 

describes the rate of change of 𝐹(𝑥), saying “𝑓(𝑥) is the formula for the gradient of 𝐹(𝑥)”. 

However, Y5 held a misconception and said “the 𝐹 is the rate of change of 𝑓”.  

 This section contributes two points to students’ mathematical performance scores in 

integral questions, including one point for understanding 𝐹(𝑥) is the antiderivative of 𝑓(𝑥), and 

one point for understanding 𝑓(𝑥) as the function that describes the rate of change of 𝐹(𝑥).  All 
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students in Case 1 and four in Case 2 scored the first point, while only one student in Case 2 

achieved the second point. 

7.13 Factual and conceptual knowledge: Understanding the meaning of 𝑭(𝒙) = ∫ 𝒇(𝒕)𝒅𝒕
𝒙

𝒂
 

 Four students (U18;Y23), in response to the second part of Q7, read the equation as 

opposed to telling what they understood by it: “the integration of 𝑓(𝑡) between 𝑥 and 𝑎 is 𝐹(𝑥)” 

(Y3). Five students (U9; Y1678) said “𝐹(𝑥) is the antiderivative of 𝑓”. Y1 was not sure what the 

𝑎 and 𝑥 stand for. Three university students (U356) mentioned that the 𝐹(𝑥) shows the area 

between𝑎, 𝑥, and the curve. Y7 had difficulty with 𝑓(𝑡) and said “I cannot remember what the 

𝑓(𝑡) is”. He could not understand the relationship between the area under the graph of 𝑓(𝑡) and 

𝐹(𝑥). The responses of two students in Case 1 (U12) were influenced by procedural aspects of 

FTC that they were asked about in Q6, saying “It is FTC again because the bottom part doesn’t 

matter over there” (U1), and “I understand by this you sub 𝑥 to get the derivative of this” (U2). U7 

and Y4 had no idea about the equation.  

 Students, after providing their initial responses, were asked to illustrate 𝐹(𝑥) = ∫ 𝑓(𝑡)𝑑𝑡
𝑥

𝑎
. 

Seven students in Case 1 (U1345689) and two in Case 2 (Y56) illustrated it by considering the 

𝐹(𝑥) as the area under the graph of 𝑓(𝑡) between 𝑎and𝑥 (Figure 7.9). Out of these students, three 

in Case 1 (U348) also showed that they understood 𝐹(𝑥) is the accumulated area under the curve. 

U3 said “𝑎 is constant and 𝑥 is moving. 𝐹(𝑥) is depending on 𝑥 but there is a specific lower 

bound”. Two of them (U48) sketched 𝐹(𝑥) as an increasing function that shows their 

understanding of accumulated area function (Figure 4.10). Y3 made a mistake in bounds and 

considered 𝑥 as the lower bound in his drawing. Two university (U27) and four Year 13 (Y1248) 

students were unable to provide any illustration for this part.   

 

 

 

Figure 7.9 An example of students’ illustration of 𝐹(𝑥) = ∫ 𝑓(𝑡)𝑑𝑡
𝑥

𝑎
 (U6) 
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Figure 7.10 An example of considering 𝐹(𝑥) as an accumulated area function (U8) 

 Three points were conferred in this section for students’ mathematical performance ratings 

in integral questions. One point was for having an understanding of the meaning of 𝐹(𝑥) =

∫ 𝑓(𝑡)𝑑𝑡
𝑥

𝑎
, whether as an area under a curve or as accumulated area function; one for illustrating 

∫ 𝑓(𝑡)𝑑𝑡
𝑥

𝑎
 as an area under the graph of 𝑓(𝑡); and one for illustrating 𝐹(𝑥) as an accumulated area 

function. Three students from Case 1 scored the first and third point, and seven students from Case 

1, and two from Case 2 scored the second point. 

7.14 Factual and conceptual knowledge: Understanding the first part of the FTC 

 In response to Q7, part three, eight students in Case 1 (U23456789) and four in Case 2 

(Y1358) understood that ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
= 𝐹(𝑏) − 𝐹(𝑎)could be used to find the area under the graph 

𝑦 = 𝑓(𝑥) between 𝑥 = 𝑎 and 𝑥 = 𝑏. Five students in Case 1 (U34568) and four in Case 2 (Y1578) 

were able to sketch the area under the graph of 𝑓(𝑥) between 𝑥 = 𝑎 and 𝑥 = 𝑏 correclty. However, 

U1 and Y6 held misconceptions about the statement and thought it meant find the area between 

two curves, 𝐹(𝑏) and 𝐹(𝑎) (Figure 7.11).  

 

 

 

 

Figure 7.11 An example of students’ misconceptions about ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
= 𝐹(𝑏) − 𝐹(𝑎) (Y6) 
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 Only U8 was able to provide the formal proof of how the statement is derived. Three Y13S 

(Y457) initially could not recognise the statement, and when I asked which formula you should 

use to find the area under curves, they realised that they had seen and used this formula. 

 Three points were considered for this section regarding students’ mathematical 

performance in integral questions. One point was for their understanding that the formula could 

be used to find the area under the graph of 𝑓(𝑥) between 𝑥 = 𝑎 and 𝑥 = 𝑏, one point for 

illustrating its use for an arbitrary function, and one point for proving the first part of the FTC. 

Eight students from Case 1 and four from Case 2 scored the first point, five from Case 1 and four 

from Case 2 scored the second point, and only one student from Case 1 scored the third point. 

7.15 Factual and conceptual knowledge: Understanding the second part of the FTC 

 In response to Q7, part four, four students (U2; Y146) did not understand anything from 

reading the statement, and provided responses such as “I do not know” (Y1). Five (U18; Y235) 

initially read the statement rather than stating what they understand by it. Three students (U37; 

Y5) acknowledged that integration and differentiation are inverse processes. Procedural 

understanding about the statement was mentioned by U1: “I know effectively you just get the top 

part and just subs into 𝑓(𝑡) and the 𝑎 part, the bottom one, is being ignored [sic]”. Apart from 

solving questions that asked them to find the derivative of integrals (e.g., Q6), students did not 

know any applications of the statement, mentioning “I actually not sure when we use this formula. 

I do lots of questions on that, but I am not actually sure when it used for [sic]” (U6).  

 There was no student who could justify how this statement could be derived by using the 

formal proof. Four students (U689; Y8) provided the following justification. 

 That is like what we have been doing in the last question basically the 𝑓(𝑎)doesn’t mean 

 anything because when you differentiate with respect to 𝑥 the 𝑎 is going down to zero. 

 Basically, it goes to 𝐹(𝑥) and then the derivative of that is 𝑓(𝑥)(Y8).  

 U5 justified the statement using 
𝑑

𝑑𝑥
[∫ 𝑓(𝑡)𝑑𝑡] = 𝑓(𝑣(𝑥))𝑣′(𝑥) − 𝑓(𝑢(𝑥))𝑢′(𝑥)

𝑣(𝑥)

𝑢(𝑥)
, by 

considering 𝑢(𝑥) = 𝑎 and 𝑣(𝑥) = 𝑥, which indicated procedural understanding about the topic.  
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 Two students in Case 1 (U37) held a misconception about the statement and thought the 

constant should be considered in it. A sample response was “I think it should have +c as the right 

side because even if it is the same thing, still [I] get lost when you differentiate and integrate”(U3). 

No student mentioned that the instantaneous rate of change of the accumulation function at 𝑥 is 

equal to the value of the rate of change function at 𝑥. 

 Two points were considered for this section toward students’ mathematical performance 

scores in integral questions, including one point for understanding the second part of the FTC, and 

one point for proving it. No students scored those points.  

7.16 Procedural knowledge: Using the second part of the FTC for finding the derivative of 

integrals 

 In response to Q6, five students in Case 1 (U14589) had the procedural knowledge for 

finding the derivative of different integrals using the second part of the FTC (Table 7.3). U5 instead 

of using the chain rule, used 
𝑑

𝑑𝑥
[∫ 𝑓(𝑡)𝑑𝑡] = 𝑓(𝑣(𝑥))𝑣′(𝑥) − 𝑓(𝑢(𝑥))𝑢′(𝑥)

𝑣(𝑥)

𝑢(𝑥)
 correctly for 

solving the problem, indicating instrumental learning (Section 3.1.2) about the FTC. Four students 

(U67; Y25) acknowledged integration and differentiation are inverse processes while they worked 

at solving the question. The rest of the students held misconceptions about the statement or didn’t 

know it. 

Table 7.3 

Number of correct responses to each part of Q6 

Q6 Case 1 Case 2 

𝑑

𝑑𝑥
[∫

1 − 𝑡

𝑡2 − 2𝑡 − 9
𝑑𝑡

𝑥

1

] 
8 (U12345689) 1 (Y8) 

𝑑

𝑑𝑥
[∫ 𝑟2√1 + 𝑟3𝑑𝑟

𝑥2

1

] 
5 (U14589) 0 

𝑑

𝑑𝑥
[∫ 𝑡3𝑑𝑡

4𝑥+4

2𝑥−5

] 
5 (U14589) 1 (Y7) 

   

 Students who did not know the second part of the FTC had different approaches to solve 

the question. Five students in Case 2 (Y23578) first tried to integrate the integral, then, differentiate 
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the answer. Y6 made a mistake and instead of integrating, differentiated the integrand, then 

substituted the bounds in it. Two students in Case 2 (Y14) did not try to solve the question.  Y1 

said “I am confused by the integral sign being [dt, dr] and the bound is a variable. If it was without 

that then I think I might be able to do it”. Y4 said, “I am sure I cannot because we have not been 

taught it”. Having different variables for integration and differentiation caused difficulty for 

another student.  Y5 wrote 𝑜′(𝑥) =
1−𝑡

𝑡2−2𝑡−9
 . Then, after realising one side is based on 𝑥 and one 

side based on 𝑡, used the substitution method by considering 1 − 𝑡 = 𝑥 and changing the right 

hand side based on 𝑥, which indicated instrumental learning about the substitution method. 

  Four students in Case 1 (U2367) and three in Case 2 (Y257) held misconceptions about 

the FTC, substituted the band in the integrand, and did not use the chain rule (Figure 7.12). 

 

 

 

Figure 7.12 Example of students’ misconception about FTC (U6) 

 U3’s misconception (Figure 7.13) was related to not knowing the geometrical 

interpretation of the FTC (i.e., the instantaneous rate of change of the accumulation area function 

at 𝑥 is equal to the value of the rate of change function at 𝑥): 

 I am thinking about how suddenly you have the derivative of a function, but you are 

 moving the bounds... my  intuition is what I would do, but I think it is wrong is stating at 

 lower bound the derivative at lower bound is this and at the upper bound is this. Because 

 I am not sure what meaning it would be behind taking two different points of the graph 

 and say here is the average derivative, it's just like does not have any meaning to me [sic]. 
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Figure 7.13 An example of students’ misconceptions about the FTC (U3) 

And U7s thought that showed misunderstanding of the FTC was 

 If you integrate the derivative of something you end up with the something. If I integrate 

 some function and then I take the derivative of the results I get back to the original 

 function. But because this is the definite integral I feel like I want to plug x and 1 

 somewhere into it, but I don’t have two slots to put into.  

 This section contributes one point to students’ mathematical performance scores in integral 

questions, and five students from Case 1 scored that point for correctly using the second part of 

the FTC to find the derivative of integrals in all three items in Q6.  

7.17 Conceptual and procedural knowledge: Using the FTC in a contextual problem 

 Students' abilities to use the FTC in a contextual problem were explored in Q8 (Table 7.4).  

 Table 7.4 

Frequency of correct responses to each part of Q8 

 Case 1 

(total=9) 

Case 2 

(total=8) 

Did not answer  

Case 1 Case 2 

8.1 How much water was in the tank at noon 6 (U345679) 2 (Y78) 1 (U1) 1 (Y6) 

8.2 The meaning of 𝑔(𝑥) = ∫ 𝑓(𝑡)𝑑𝑡
𝑥

0
 8 (U13456789) 5 (Y24568) 0 2 (Y37) 

8.3 The value of 𝑔(9) 7 (U3456789) 2 (Y28) 1 (U1) 2 (Y67) 

8.4 Interval of time the water level 

decreasing 

8 (U13456789) 3 (Y478) 0 0 

8.5 Time the tank was the fullest 7 (U1345689) 2 (Y78) 0 0 

8.6 Sketch the graph of 𝑔(𝑥) 7 (U3456789) 2 (Y48) 2 (U12) 3 (Y367) 
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 Students' responses are described in the following sections. 

7.17.1 Item 8.1  

 Eight students (U345679; Y78) found that 450 gallons of water were in the tank at noon.  

Of these students, Y8 solved the question by finding the equation of 𝑓(𝑡) for each interval, then 

integrating it between 0 to 9. U7 only found the equation from 0 to 3, then, integrated on this 

interval, and for the remaining interval he calculated the area under the graph of 𝑓(𝑡) using the 

area of geometry shapes. The remainder calculated the area underneath the graph of 𝑓(𝑡) by using 

the area of geometry shapes for the whole interval. U1 and Y6 could not find the answer because 

they were unable to find the equation for 𝑓(𝑡), indicating lack of prior knowledge. Therefore, they 

were not able to find the amount of water by integrating 𝑓(𝑡) between 6 am to noon. In addition, 

these students did not use the fact that the net signed area under the graph of 𝑓(𝑡) shows the amount 

of water in the tank. Three students (U2; Y12) did not consider 𝑓(𝑡) as the graph of derivative 

function, and said the amount of water in the tank is 300 gallons (U2) and -300 gallons (Y12). U8 

found the equation of 𝑓(𝑡), but, made a mistake in finding the slope of the equation of 𝑓(𝑡). Y3 

said, “It says at 6 am it was zero and at noon is below zero, so still nothing”, indicating a lack of 

understanding how to interpret the graph of 𝑓(𝑡). Y4 did not consider the fact that the graph of 

𝑓(𝑡) changed in the interval, and used ∫ 𝑡𝑑𝑡
6

0
 for finding the amount of water.  

7.17.2 Item 8.2  

 Thirteen students (U13456789; Y24568) noted that 𝑔(𝑥) is the amount of water in the tank 

after 𝑥 hours. Two students in Case 2 (Y37) did not know the meaning of 𝑔(𝑥) and had difficulties 

with having both 𝑡 and 𝑥 in the equation. U2 and Y1 thought 𝑔(𝑥) is the rate of change of water 

in the tank. U7, despite his correct answer, tried to find a general formula for 𝑔(𝑥) by solving 

∫ 𝑡𝑑𝑡
𝑥

0
 . He did not notice that 𝑓(𝑡) has different equations between 6 am to 6 pm and found 

𝑥2

2
 as 

the general formula for it.  

7.17.3 Item 8.3  

 Thirteen students (U23456789; Y12358) found 𝑔(9) = 0. However, four of them (U2; 

Y135) had incorrect justifications, considering 𝑔(9) = 0 because the graph of 𝑓(9) = 0. 

Therefore, only nine students (U3456789; Y28) had a correct understanding of the meaning of 𝑔(9). 

Y4 considered 𝑔(9) = 900 because he thought the rate of change is constant at 100 gallons per 
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hour; therefore, after 9 hours  𝑔(9) is equal to 900. Three students (U1; Y67) could not respond 

to this part. U1 and Y6 could not answer because they were unable to find the equation of 𝑓(𝑡), 

and said they could not find the value of 𝑔(9). Y7 could not respond because of difficulty with the 

meaning of 𝑔(𝑥) = ∫ 𝑓(𝑡)𝑑𝑡
𝑥

0
 (Section 7.17.2). 

7.17.4 Item 8.4  

 Eleven students (U13456789; Y478) made the correct interpretation of the graph of the 

rate of change in terms of the interval that the water level was decreasing. The remainder of the 

students (U2; Y12356) had difficulties in interpreting the graph of the derivative. Five (U2; Y2356) 

considered 9 am to 12 pm, and Y1 considered 9 am to 10 30 am and 3 pm to 6 pm as the intervals 

at which the water level was decreasing. 

7.17.5 Item 8.5  

 Nine students (U1345689; Y78) mentioned correctly that the tank was the fullest at 10:30 

am. Of the remaining students, six (U27; Y1246) considered 9 am and 6 pm as the times that the 

tank was the fullest, and two (Y3; Y5) said 9 am is the time that the tank was the fullest indicating 

a wrong interpretation of the graph of the rate of change.  

7.17.6 Item 8.6  

 Nine students (U3456789; Y48) drew the graph of 𝑔(𝑥) correctly. Five students (U12; 

Y367) were unable to provide a drawing for it. The remaining three students (Y125) made wrong 

drawings for 𝑔(𝑥). Y5 made a mistake, saying “the integral of linear graphs is a straight line”, 

considering the differentiation of linear graphs instead of integration.  However, he only made this 

mistake in this part and in other questions he knew the difference between differentiation and 

integration (Figure 7.14).  

 

 

Figure 7.14 Y5’s incorrect drawing of 𝑔(𝑥) 

 Y1 and Y2’s graphs were incorrect because of their failure to answer the previous parts 

of Q8 (Figure 7.15) correctly. 
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Figure 7.15 Y1 and Y2’s incorrect drawings of 𝑔(𝑥) (Left graph: Y1, right graph Y2) 

 This section contributes six points to students’ mathematical performance scores in integral 

questions, one point for each item. Students in Case 1 scored more points from these items in 

comparison to students in Case 2 (Table 7.3).  

7.18 Conceptual and procedural knowledge: Posing a question for concerning integral-area 

relationship 

 In response to Q5, eight students (U3456789; Y7) posed a correct question about the area 

enclosed between a curve and a line using the given information. Of the remaining, seven students 

(U12; Y23458) could not pose a problem and two students (Y16) posed an incorrect problem 

(Table 7.5).   

Table 7.5 

Question posed by students for the integral-area relationship  

Find the area enclosed 

between 

Curve Line Bounds N 

Lower Upper 

Suitable problems 𝑦 = 𝑥2 𝑦 = 0 𝑎 = 0 𝑏 = √3
3

 5 (U3456; Y7) 

𝑎 = 1 𝑏 = √4
3

 1 (U9) 

𝑦 = 3𝑥2 𝑦 = 0 𝑎 = 0 𝑎 = 1 1 (U7) 

𝑦 = sin 𝑥 𝑦 = 0 𝑎 = 0 𝑏 =
𝜋

2
 

1 (U8) 

Unsuitable problems 𝑦 = 𝑥2 + 0.5 𝑦 = 2𝑥 𝑎 = 0 𝑎 = 1 1 (Y1) 

𝑦 = 𝑥2 𝑦 = 1.31 -- -- 1 (Y6) 

 

 Posing a problem was not an easy task for students. For example, Y4 said, “I am struggling 

with only the area is given and you have too many things”. Students who were not able to pose a 
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problem, had not considered the line as the 𝑥-axis to simplify the task. For instance, Y8 chose 𝑦 =

𝑥2 as the curve and 𝑦 = 𝑥 as the line for his first try, then tried 𝑦 = √𝑥 as the curve. After he was 

unable to find an area equal to one, he changed the functions to a more general form by considering 

the curve 𝑦 = 𝑎√𝑥 and the line as 𝑦 = 𝑏𝑥.  

 This section contributes one point to students’ mathematical performance scores in integral 

questions and seven students from Case 1, and one from Case 2, scored that point for posing a 

correct question based on the given information in Q5.  

7.19 Conceptual and procedural knowledge: Posing a question in relation to the FTC 

 In response to Q9, all the students except two (U17) posed a problem for the given graph. 

U1 did not pose a problem because he believed he had not “understand the FTC”. U7 said “copy 

and paste question eight here”, indicating a lack of knowledge about the FTC. He also commented, 

“I’d need to know my stuff a lot better to set problems”. In addition, three students (U2; Y56) 

posed a problem that is not related to the FTC (Table 7.6).  

Table 7.6 

Student-posed problems not related to the FTC 

Student Students’ problem 

U2 Find the equation from 0 to 2 and from 2 to 6. 

Y5 Please can you draw 𝑓′(𝑥) of the following graph? 

Y6 𝑓(𝑥) [the function corresponded to the given graph] is the rate of change of 𝑔(𝑥). Between 

what values is the rate of change of 𝑓(𝑥) changing? 

 

 Of those 12 students who posed a problem related to the FTC (Table 7.7), nine students 

(U345689; Y278) were able to solve their own problem correctly.  

 

 

 



176 
 

 

Table 7.7  

Students’ problems related to the FTC 

Student Students’ problem 

U3 What is the integral of the above graph on the range 2 to 6? To rephrase, assume the graph above 

is 𝑓(𝑥). What is  ∫ 𝑓(𝑥)𝑑𝑥
6

2
 ?  

U4 The graph gives the rate of changes temperature in terms of degree of Celsius. Find temp at t=6. 

Describe the graph of T(t) between 2 and 6. Equation of T(t) between 6 to 7 (assuming the curve 

between 6 and 7 is a parabola.). 

U5 The following graph describes a person's velocity from a tree where east is counted as positive 

and west is counted as negative. The unit of time is second and the unit of velocity is m/s. Please 

find how many meters did he walk in the first 2 seconds. 

U6 𝑓(t) rate water going into the tank. How much water goes into the tank between t=4 and t=6? 

U8 The graph represents the rate at which a tank is filled in with 𝑚3of water per minute. Assuming 

tank has 1 𝑚3of water at 𝑡 = 0. Find how much water is in the tank after 5 mins. 

U9 Let y be the velocity of a runner. His displacement at t=0 was 0 m. Find his position at t=6 hours. 

Y1 Sketch the graph of 𝑔(𝑥) considering 𝑔(𝑥) = ∫ 𝑓(𝑥)𝑑𝑡
7

0
 using the graph of 𝑓(𝑥).  

Y2 Graph 𝑓 represents the rate of water change within a water tank. At what point is the tank 

empty?  How much water is in the tank at 6? What is the meaning of g (x) = ∫ 𝑓(𝑡)𝑑𝑡
𝑥

0
? 

Y3 The tank has 1000 litre of water at the time of 0.  When the amount of water is decreasing? 

When the amount of water is increasing? [sic] [Considering the conditions of question eight in 

terms of the graph.] 

Y4 The graph above represents the change in velocity of a cart on a kids roller coaster over a 7 

minute period. Sketch a graph showing the velocity of the cart and  find the point where the 

cart reaches its maximum velocity? [sic] 

Y7 Between which intervals does f(x) have the greatest area under the graph? 

Y8 The graph shows the rate of change of water in a harbour. At what point is the water level in 

the harbour at its greatest point? 
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 Y3 provided an incorrect answer and two students (Y14) were unable to find an answer to 

their own problems. Y3 made an incorrect interpretation of the graph of the rate of change and 

said the amount of water was decreasing between (0,2)and [6,7), and increased between [2,6). 

Y1’s problem is correct, but it seems this student had used an incorrect notation for what he meant 

by 𝑔(𝑥). Y1 considered 𝑔(𝑥) = ∫ 𝑓(𝑥)𝑑𝑡
7

0
 which is equal to 𝑔(𝑥) = 𝑓(𝑥) ∫ 1. 𝑑𝑡

7

0
= 7𝑓(𝑥). It 

means that for sketching 𝑔(𝑥) he needed to multiply the values of 𝑓(𝑥) by seven. However, what 

he had sketched as an answer to his problem (Figure 7.16), shows that he sketched 𝑔(𝑥) =

∫ 𝑓(𝑡)𝑑𝑡
𝑥

0
 for 𝑥 ∈ [0,7] (he made a mistake for the interval of 6 to 7). 

 

Figure 7.16 Y1’s drawing of 𝑔(𝑥) for the answer to his posed problem  

 Y4 could not solve his problem because he did not use the integral-area relationship to find 

the velocity; instead he found the equation for the graph for [0,2] and [2,6], then integrated them 

and considered C for each equation. Then, he would have liked to find the C for each line, but 

could not. Among students’ posed problems based on the FTC, two students (U3; Y7) posed a 

problem that is more related to the integral-area relationship than the FTC, especially the second 

parts of the FTC. 

 This section contributes two points to students’ mathematical performance scores in 

integral questions, including one point for posing a question related to the FTC, and one for solving 

their own problem. Six students from Case 1 and six from Case 2 scored the first point, and six 

from Case 1 and three from Case 2 scored the second point.   

7.20 Overall mathematical performance of students in integral questions 

 The points students obtained from the sections were added together. The maximum number 

of points that a student could score was 36. The minimum number of points students obtained in 



178 
 

 

Case 1 was 8 (U2), and in Case 2 was 6 (Y3) (Table 7.8). The highest points achieved in Case 1 

was 30 (U58), and in Case 2 was 23 (Y8). 

Table 7.8 

Descriptive statistics for students’ mathematical performance 

 
N Min Max Mean Standard division 

Case 1 9 8 30 23.4 8.0 

Case 2 8 6 23 12.8 6.3 

Total 17 6 30 18.5 8.9 

 

 The total points each student achieved are shown in the following Table (Table 7.9). The 

distribution of students’ mathematical performances was not normal in Case 1 according to the 

Shapiro-Wilk test of normality (P-value=0.026); therefore9, the equivalent non-parametric test, 

Mann-Whitney test, was used to compare students’ mathematical performance in the Cases.  

Table 7.9 

Students’ total points in integral questions 

 U
1

 

U
2

 

U
3

 

U
4

 

U
5

 

U
6

 

U
7

 

U
8

 

U
9

 

Y
1

 

Y
2

 

Y
3

 

Y
4

 

Y
5

 

Y
6

 

Y
7

 

Y
8

 

Total scores 

13 8 27 29 30 26 20 30 28 8 9 6 11 12 12 22 23 

 

 Students in Case 1 had significantly better performance in comparison to students in Case 

2 according to the Mann-Whitney test (P-value=0.01) (Table 7.10).  

 

 

                                                           
9 For using parametric tests, the distribution of sample in both groups should be normal. 
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Table 7.10 

Results of the Mann-Whitney test for students’ mathematical performance 

 
N Mean rank Sum of  ranks 

Case 1 9 11.8 106.5 

Case 2 8 5.8 46.5 

 

 Eight students (47.05%), including two from Case 1 (U12) and six in Case 2 (Y123456), 

obtained less than half of the possible points that student could have got from the integral questions 

(i.e., 18 points). 

7.21 Discussion  

 In both Cases, students had more difficulties with the FTC than the definite integral and 

the integral-area relationships. Students' problem posing ability (Q5 and Q9) and their ability to 

evaluate whether a question has been solved correctly (Q4) have been not studied for integral 

calculus in previous studies. In the following, the study findings are compared to previous studies 

in relation to factual, conceptual, and procedural knowledge.  

 Regarding factual knowledge, students recognised the symbols involved in the definite 

integral and understand its basic terminologies. However, they had difficulties with symbols and 

terminologies involve in the FTC, especially the second part of it. This finding is in line with 

previous research showing that the role of 𝑡 in ∫ 𝑓(𝑡)𝑑𝑡
𝑥

𝑎
 is confusing for students (Thompson & 

Silverman, 2008).  

 In terms of conceptual and procedural knowledge, students’ procedural knowledge was 

better developed in comparison to their conceptual knowledge in both definite integral and the 

FTC. This is also consistent with previous studies showing students are able to do routine 

procedures to find area using integral techniques, however their knowledge about why such a 

procedure is used are limited (Artigue, 1991; Grundmeier, Hansen, & Sousa, 2006; Mahir, 2009; 

Orton, 1983; Rasslan, & Tall, 2002; Thomas & Hong, 1996).   
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 Lack of algebraic manipulation skills and prior knowledge were a barrier for several 

students to solving the questions correctly, due to their not being able to find the intersection points, 

sketch the graph correctly, or find the equation of lines and curves. These findings, also highlighted 

by previous studies, indicate that several of students would benefit from improving their 

knowledge of functions, and/or algebraic manipulation and/or graph sketching prior to starting 

integral calculus (Kiat, 2005). 

 In terms of conceptual knowledge, the fact that the integrand should be continuous was 

ignored by most students during problem solving. In Case 2, several students were unsuccessful at 

illustrating ∫ [𝑤(𝑦) − 𝑣(𝑦)]𝑑𝑦
𝑑

𝑐
 correctly, which indicates they had not developed conceptual 

knowledge about the definite integral. Several students considered area or net area underneath the 

graph of 𝑓′(𝑥) is equal to the ∫ 𝑓′(𝑥)𝑑𝑥, rather than its signed net area. More evidence supporting 

this claim is that only one student in Case 2 was able to explain the relationship between Riemann 

sums and the definite integral. Lack of conceptual knowledge about the definite integral is also 

reported in literature (e.g., Mahir, 2009; Thomas & Hong, 1996). Previous research has also 

highlighted that students had difficulty in understanding the definite integral as the limit of a sum 

(Orton, 1983; Grundmeier, Hansen, & Sousa, 2006). 

 In terms of the FTC, in line with previous research (Thompson, 1994; Thompson & 

Silverman, 2008), the notion of accumulated area function was not developed in the students’ 

minds, and their understanding of the first and second part of the FTC was limited in both Cases. 

For instance, several students did not understand the fact that 𝑓 is the function that described the 

rate of change of the accumulated area function, 𝐹(𝑥). A number of students in Case 1 had 

difficulty with using the FTC to find the derivative of integrals when bounds of the integral were 

functions of 𝑥.  

7.22 Chapter summary  

 This chapter has described the research findings in terms of students’ factual, conceptual, 

and procedural knowledge of RBT. It provides responses to the second research questions (i.e., 

using RBT as a lens, what are students' difficulties in solving integral questions in Year 13 and 

first year university?) and the fourth (i.e., what differences exist between student learning of 
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integral calculus in Year 13 and first year university?) of the study (Section 1.4). The next Chapter 

explores students’ metacognitive knowledge in relation to integral calculus. 
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 Chapter Eight: Metacognitive Knowledge in Relation to the 

Integral-area and the FTC Problems 

 In response to the question Have you heard about metacognitive knowledge?, all the 

students except U9 said they had not. U9 said, “it is knowledge about understanding how you 

know things, how you learn things”. However, he stated he did not know what metacognitive 

knowledge (MK) is in the context of the integral-area and the FTC problems. Despite the fact that 

students thought they did not know what the term MK means and what it is in the context of 

integral calculus, they showed in their responses to interview questions related to MK that they 

did in fact have a variety of knowledge about it in the context of integral calculus. In this chapter, 

students’ MK is explored in relation to questions whose design was based on the structure of RBT’s 

metacognitive knowledge, including questions about strategic knowledge ((learning strategies 

(Section 8.1), monitoring strategies (Section 8.2), problem solving strategies (Section 8.3)), 

knowledge about different cognitive tasks (Section 8.4), and self-knowledge (Section 8.5).  

 8.1 Strategic knowledge: Learning strategies 

 In this section, students’ learning, monitoring, and problem-solving strategies are explored 

in relation to the integral-area and the FTC problems. 

8.1.1 Attending lectures, tutorials, and school classes 

 In this section, students in Case 1 and 2 are compared separately, as students in Case 1 

attended lecturers and tutorials while students in Case 2 attended school classes. This section 

shows most students in both Cases were aware that attending classes is important and useful. 

Attending lectures and tutorials 

 Of the nine students in Case 1, five attended both lectures and tutorials in these topics 

(U23789). Two only attended lectures (U46), and one only attended tutorials (U5). U1 did not 

attend either lectures or tutorials (Table 8.1)10.  

 

                                                           
10 If the actual attendance data were available, it would be valuable to cross check it with the interview data. 
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Table 8.1 

Attending lectures, tutorials, and school classes 

Sources  Case 1 Case 2 Total 

Attending lectures & tutorials 5 (U23789) NA 5 

Attending lectures only 2 (U46) NA 2 

Attending tutorials only 1 (U5) NA 1 

Not attending lectures & tutorials 1 (U1) NA 1 

Attending school classes NA 8 (Y12345678) 8 

 

 Students who attended both lectures and tutorials believed attendance was useful for 

learning the topics (U789), getting support from lecturers, tutors, and peers (U8), knowing how to 

do examples, problems, and assignment questions (U2), and exploring the structure of the course 

to find out whether it could be learnt using self-study (U3). The two students who only attended 

lectures had different reasons for doing so. U6 believed learning through attending lectures is 

easier than doing self-study. U4 attended lectures to write notes towards learning the topic later. 

These two had different reasons for not attending the tutorials, including that only the easy 

questions were solved by the tutor (U4); and, the time of the tutorial was too close to the time that 

assignments needed to be handed in (U6). 

  U5, who only attended tutorials, believed attending lectures without pre-reading the 

materials is a waste of time. She stated that she was also too busy with other courses, so that she 

could not do pre-reading for this course; therefore she only attended tutorials that she had time to 

prepare for. U1, who did not attend either lectures or tutorials, was behind with his other courses 

and had therefore decided he had not the time to attend this course’s lectures and tutorials.  

Attending school classes 

 Students in Case 2 had varied reasons for attending classes in these topics. Despite the fact 

that attending the classes is compulsory, which was mentioned by two students (Y24), three 

reasons were found as to why attending the classes are important. 
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 Four students said attending the classes is useful for learning the topic (Y1456). Three 

students (Y258) believed it is easier to learn in the classes rather than doing their own 

reading. Y6 believed that, to have a better understanding and do well in exams, you need 

to attend classes; otherwise by self-reading you could just pass the course. 

 Getting support from their teacher and peers was another reason for attending the 

classrooms, mentioned by three students (Y128).  

 Y7 and Y8 said they were more motivated to study when they come to classes, and Y7 also 

added that he attended the classes so as not to lose his skills in calculus and to reinforce his 

understanding. An example of the students’ responses is: 

I find it easier to learn if I am getting taught face to face and you can ask questions and you 

can see the person doing it. But when you read the textbook you cannot get the full idea of 

it. If I was at home, I would not have such motivation to do work, but if I am in class it 

helps me to do more work. Also, if I am stuck or my friend stuck we can help each other. 

If I make a mistake, I can compare my work with other  people (Y8). 

 In comparison, Y3 believed attending the classes is not useful because he could do self-

study: “I can learn these topics at home as well. Because the teacher told us the same thing that is 

in the textbook”. 

Discussion 

 The importance of attending classes is highlighted in the literature and most students in the 

sample were aware of it. Therefore the results show the presence of this aspect of metacognitive 

knowledge for a majority of students. Several studies highlight that class absence is negatively 

correlated with overall course grades (e.g., Brown, Graham, Money, & Rakoczy, 1999; Clump, 

Bauer, & Whiteleather, 2003). The study findings are consistent with previous research, in that 

U1, who did not attend the lectures and tutorials, had scored the second lowest points in integral 

questions in Case 1 (13 out of 36). In addition, Y3, who believed that attending the classes  is not 

useful, scored the lowest performance score in integral questions of the sample (i.e., 6 out of 36).  

8.1.2 Taking notes in lectures, tutorials, and classes 

 Most students in the sample took notes while attending classes and were aware of the 

importance of taking notes. In detail, thirteen students (U1234567; Y124568) took notes when 
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attending lectures, tutorials, and classes. The remaining four students (U89; Y37) did not take 

notes. The reasons for taking notes included that they were: 

 useful for studying later, including reviewing and revising the materials (U4; Y23568);  

 useful for learning the steps of problem solving and understanding the topic (U2; Y16); 

 helpful for remembering the topic (U6; Y4); 

 good for “engaging brain” (U25); 

 useful to “supplement textbook and online notes” (U37); 

 easier to follow than online notes (U46); and 

 good for keeping students focused (U4). 

 The four students who did not take notes had several reasons for this. Y3 believed it is a 

waste of time and he could use the textbook to understand the topic. Y7 said he did not take notes 

this year because he had done this course last year. U8 did not take notes because he only used the 

online notes and said “…because we have online notes and I find it easier if I have got full attention 

to the material. But if it is an example, I try to follow along and compare them”. U9 said because 

calculus is computational and the material is not new, he did not need to write notes for this course; 

however, he noted, he took notes for other courses like discrete mathematics.  

Discussion 

 Two main reasons are highlighted that support the value of taking notes during classes, 

including encoding and external storage (Anderson & Armbruster, 1986). Encoding is important 

because it helps students learn and remember topics. Taking notes is considered as an external 

storage because it preserves information for later use (e.g., for studying before examinations) 

(Anderson & Armbruster, 1986). These two reasons were mentioned by students, indicating that 

students in both Cases were aware of the usefulness of taking notes. Therefore, the results indicate 

the presence of this aspect of metacognitive knowledge for a majority of students. 

8.1.3 Engaging with lecturers, teachers, and tutors 

 Five students (U23578) only engaged with instructors when they attended lectures, 

tutorials, and school classes. The rest, except Y3, both engaged with the instructor and talked with 

their classmates (Table 8.2). The reason Y3 did not engage with his teacher was that he preferred 

self-study. For other students, talk was about the course topic, on task, or off task. On task it was 
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about helping each other when one of them was confused. Off task talk happened when the 

materials were boring (U9), not new to students and students were “comfortable” with it (U49), or 

students were “completely lost” (U46).  

Table 8.2 

Engagement during attendance at classes 

 
 Case 1 Case 2 Total 

Only engaging with instructors 5 (U23578) 0 5 

Engaging with the instructor and talking to their 

classmates 

4 (U1469) 7 (Y1245678) 11 

Not engaging with instructors 0 1 (Y3) 1 

 Students’ statements about their reasons for engaging with the teaching are provided in 

Table 8.3. Four themes were found in relation to students’ engagement with the teaching, including 

learning, efficiency, behaviour, and affect. Most of the students in the sample engaged with 

teaching because they wanted to learn the topics. The most frequent sub-themes within their 

learning were to get the full idea and not miss anything from the teaching.  

Table 8.3 

Reasons for engaging with the teaching 

Themes Sub-themes/ examples  Case 1 Case 2 Total 

Learning  “To get the full idea and don’t miss 

anything”   

3 (U789) 1 (Y8) 4 

 “knowing how to do the questions” 1 (U2) 2 (Y16) 3 

 To be able to take notes effectively 1 (U4) 1 (Y4) 2 

 Easier to learn from the teacher rather than 

reading textbooks 

0 1 (Y2) 1 

Efficiency “Don’t want to waste time” 3 (U365) 0 3 

Behaviour It is a habit to only listen to teachers in class 0 1 (Y5) 1 

Affect The teacher was “very interesting” 0 1 (Y7) 1 
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Discussion 

 Most of the students were aware of the importance of engaging with the instructor during 

teaching. Y3, who did not value engaging with the teaching, achieved  the lowest performance in 

the integral questions. 

8.1.4 Pre-reading before attending lectures, tutorials, and classrooms 

 Most of the students in the sample did not use pre-reading before attending the classes. 

Four students (U358; Y2) did pre-reading about the materials that would be taught in classrooms 

before attending them. Students had different reasons for doing so. U8 did this to be introduced to 

the idea and be able to understand it a lot better the second time in lectures. U5 believed if she did 

not do the pre-reading, she would not understand the topic in the lecture. U3 preferred self-

learning, therefore, “read around the topic” before attending sessions. He added, “I go to lectures 

to pick up odd things, information, stuff, that might not come up naturally”. Y2 said, “It is easy to 

understand when you have taken a look ahead”.  

 Those who did not do any pre-reading had different reasons for not doing so. Three students 

(U6; Y14) believed it was a good idea to do this, but they had not done it before: “I did not think 

about it. Thinking about it, it would be a good idea, probably” (Y1). Y1 also said he did have time 

to do so. Two students (U2; Y6) believed they did not have time to do it. Two University students 

(U47) believed that they were not organised enough to do pre-reading before attending lectures. 

Four students (U9; Y758) believed the teaching of the instructor was enough for learning the topic, 

indicating reliance on the instructor: “the teacher does everything” (Y5) and U9 said, “I think it is 

not necessary. I expect the lecturers to stand by themselves”. Y3 did not do any pre-reading 

because he preferred self-reading; therefore, he only attended classes because it was compulsory. 

Y8 said doing pre-reading may cause misunderstanding about the topic:  

 We cover all of the workings in class. We do not require to do pre-reading. I think it 

 would be quite difficult because a lot of things that we are learning is complicated, so if 

 we go and try to understand it ourselves, we might get the wrong idea, or we might not 

 able to understand it. But if the teacher teaching it to us we might get a better idea and 

 starting off from the right places rather than us starting off from a wrong place and have 

 to do re-work to understand it. 
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Discussion 

 Of the four students who had done pre-reading, three of them (U358) scored more than half 

of the possible points in the integral questions. U5 and U8 scored the highest points in the sample 

for the integral questions. Comparing these four students with the other students in the sample in 

terms of mean score in integral questions, there was no significant difference between students 

who had done pre-reading (24.0) and those who had not done pre-reading (16.76) according to the 

Mann-Whitney test (P-value=0.1) which may have been due to the small sample size.  

 The literature highlights that there is a direct relationship between pre-reading and 

academic achievement (e.g., Hwang & HSU, 2011; Spies & Wilkin, 2004). Pre-reading re-inforces 

students’ prior knowledge and relates new topics to students’ prior knowledge (Hwang & HSU, 

2011). Pre-reading also relates to the idea of a flipped classroom approach to the teaching, 

“students prepare for class by engaging with resources that have been pre-prepared by their 

teachers” (Muir & Geiger, 2015, pp. 149-150), an approach that has gained more attention in the 

past few years (See Muir & Geiger, 2015 for more information). As most of the students in the 

sample had not done pre-reading, and were not aware of its importance, the results indicate that 

students may benefit from this learning strategy, which therefore could be suggested to them by 

lecturers and teachers.  

8.1.5 Reviewing previous materials before attending the next session 

 This section is different from the previous section as it relates to studying topics that have 

already been taught in the classes, not new topics. Twelve students (U13457; Y1245678) had 

regularly studied previous materials before attending the next sessions. These students had 

different reasons for doing that including that they found it: 

 reinforced learning (U1345; Y678); 

 helpful for doing homework/assignments (U7; Y1246); and 

 helpful for remembering the materials (Y25). 

 Two sample responses are: “it allows me to filter to unique lecture note. I can filter 

information that is not trivial, but, can be easily adapted [sic]” (U3); and, “help me understand it 

and makes it easier to understand new content which is based on it” (U4). 
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 Students who did not study previous materials regularly, had different reasons for not doing 

so. U6 believed it is a good idea, but she had not done that before. U2 said he only looked at them 

if it helped him with assignments. Two students (U89) said they looked at these materials if they 

were confused or the topic was hard: “If I was confused, I would, but if I have got it, I am not 

looking at it again” (U9). U8 also looked at them if he had a problem with assignments.  

Discussion 

 Reviewing previous materials before attending classes is one of the study techniques 

suggested in the literature (e.g., Gurung & McCann, 2011; Gurung, 2004). Most of students in the 

sample had done that and were aware of its effectiveness.  Therefore, the results indicate the 

presence of this aspect of metacognitive knowledge for a majority of students. 

8.1.6 Learning resources  

 In response to M2 (Table 5.1), students said they had used different resources for learning 

integral calculus (Table 8.4). The resources can be categorised into offline, online, and human 

resources. The most frequent resource category used was offline resources in both Cases.  

 The textbook was used by all the students except U2, who only used published lecture 

notes and the internet. For students in Case 1, in addition to the textbook, published lecture notes 

written by the lecturer, and the internet, were the main resources used to learn the topic. For 

students in Case 2, textbook, personal notes, past exam papers, and the teacher were the main 

resources for learning the topic. Relying on the instructor is more dominant in Case 2 in 

comparison to Case 1. No students in Case 1 mentioned the lecturer or the tutors as a learning 

resource for the topic, whereas four students in Case 2 said “the teacher” in response to question 

two: “[I] use the teacher because he understands the topic and can help me face to face” (Y8). 
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Table 8.4 

Learning resources mentioned by students in response to M2 

Theme Resources  Case 1 Case 2 Total 

Offline resource Textbook 8 (U13456789) 8 (Y12345678) 16 

 Published lecture notes 8 (U12356789) N/A 8 

 Personal  notes 1 (U4) 6 (Y124568) 7 

 Past exam papers 1 (U2) 4 (Y2467) 5 

 Extra workbooks/test books 2 (U57) 3 (Y136) 5 

 Tutorial and assignment 

solutions 

2 (U12) N/A 2 

 Teacher's handout N/A 1 (Y6) 1 

Online resources The internet 8 (U12345679) 2 (Y58) 10 

Human resources Teacher/lecturer/tutor 0 4 (Y2478) 4 

 Classmates/friends/girlfriends 2 (U47) 2 (Y48) 4 

 Family: Sister 0 1 (Y4) 1 

 Help Desk 1 (U6) N/A 1 

 Extra tutor outside of the class 0 1 (Y1) 1 

  

 Students in Case 2 (Table 8.5) did not use the internet frequently as a resource for learning 

the topic. Only Y5 used the YouTube channels for learning the topic and Y8 used them to find 

mathematics formulas. The use of the internet by other students in Case 2 was for downloading 

past exam papers from NZQA or the College website. Y4, in response to my follow-up question, 

“Do you use the internet for learning the topic?” said: “No, [I] use the web to get questions, not 

information”, indicating a difference between students in Case 1 and Case 2 in terms of using 

resources available on the internet. Downloading past exam papers from NZQA or College 

websites is not coded as a usage of the internet, because the students went to a specific website 

that they were aware of. They had not used a wide range of the integral questions and notes 

available on the internet.  
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Table 8.5 

Ways students used the internet for learning the topic 

Types of using the internet   Case 1 Case 2 Total 

YouTube channels 5 (U13457) 1 (Y5) 6 

Wolfram alpha 6 (U123467) 0 6 

Wikipedia 4 (U1379) 0 4 

Googling the topic and using files that appeared 3 (U456) 0 3 

Finding mathematics formula online 0 1 (Y8) 1 

Online integral calculator 1 (U2) 0 1 

 

 In relation to internet resources, the Wolfram alpha website was mainly used for checking 

answers. In terms of YouTube channels, U5 critiqued a channel that is widely used on the internet 

for learning mathematics. She said, “It just provides basic ideas, not providing a deep 

understanding…the person who makes the videos are not prepared the topic, the length of the 

videos are longer than other YouTube files on the same topic”. U5 also showed that she was aware 

of learning theories, indicating MK in terms of cognitive function (Section 3.1.4), and said, “from 

a journal paper that I have read a long time ago, people cannot concentrate on some intense topic 

for more than five minutes. That's why some standard YouTube files are less than five minutes”.  

 In response to question two, the importance of using different resources for learning a topic 

was highlighted by four students (U1357). These students were aware that using different 

resources help students to explore a topic from different perspectives: 

 A lot of time people will state their teaching in one way, and repeatedly they stated in one 

 way. If you go to a lot of sources, you see it is stated in different ways and in might be 

 one of them is more understandable to you or expressing in such a way that you can see 

 what can be done with it (U3). 

Discussion 

 Students in both Cases used several resources for learning integral calculus. There were 

two main differences between the resources used by students in the respective Cases: first, students 

in Case 2 relied more on the instructor as a learning resource compared to students in Case 1. This 
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might be because the Case 1 environment, especially lecture size and number of students in the 

lectures, might prevent students talking to lecturers. However, the tutorial size and number of 

students attending tutorials in Case 1 were similar to College classes. Second, students in Case 1 

used internet resources more frequently in comparison to students in Case 2. The potentials of the 

internet as a learning resource should be highlighted to students in College more frequently, as 

College students in the sample did not use it frequently for learning these topics, and also the 

teacher did not promote these resources in his teaching. One of the possible reason for this finding 

might be related to not having access to internet at home. If websites such as 

https://www.desmos.com/ for drawing curves or http://www.emathhelp.net/calculators/calculus-

2/integral-calculator/11 for finding antiderivatives were used in the classes, students might be more 

likely to use these tools for checking their answers.  

8.1.7 Memorising strategies  

 In response to M5 (Table 5.1), thirteen students (U2345689; Y234678) said they did not 

have any memory strategies for learning these topics. The others had varying memory strategies 

(Table 8.6). Y1 said he used flip cards that he made to learn the steps. Y5 used the fact that he 

knew the rate of change of a parabola is a linear graph for doing rate-of change-questions related 

to other types of functions. He said, “the rate of change of a parabola is a linear graph. It can help 

me in other examples as well, even for changing cubic functions to parabola, I always remember 

this first”.  

 

 

 

 

 

 

                                                           
11 The latter is a very useful website because it provides the complete solution free of charge, 

while some of the most popular websites do not provide the complete solution free. 

https://www.desmos.com/
http://www.emathhelp.net/calculators/calculus-2/integral-calculator/
http://www.emathhelp.net/calculators/calculus-2/integral-calculator/
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Table 8.6  

Memory strategies used by students for learning the topics 

 

 The LIATE (Logarithmic, Inverse trigonometric, Algebraic, Trigonometric, Exponential) 

rule for choosing 𝑢 in integration by parts ∫ 𝑢𝑑𝑣 = 𝑢𝑣 − ∫𝑣𝑑𝑢 was mentioned by two students 

in Case 1 (U17). Despite this, U1 said he used the following table (Table 8.7) to remember the 

value of basic trigonometric functions. He said that, for sin 𝑥, the values start by 
√0

2
, and for each 

major angle the value under the square root increase by one. For cos 𝑥, the process is inverse, and 

for tan 𝑥, and 𝑐𝑜𝑡𝑎𝑛𝑥, he said he used the fact that 𝑡𝑎𝑛𝑥 =
sin𝑥

cos𝑥
, and 𝑐𝑜𝑡𝑎𝑛 =

cos𝑥

sin𝑥
. 

Table 8.7 

A table used by U1 for memorising values of basic trigonometric functions 

 0 𝜋

6
 

𝜋

4
 

𝜋

3
 

𝜋

2
 

𝑆𝑖𝑛𝑥 √0

2
 

√1

2
 

√2

2
 

√3

2
 

√4

2
 

𝐶𝑜𝑠𝑥 √4

2
 

√3

2
 

√2

2
 

√1

2
 

√0

2
 

 

 Those students who did not use any memory strategy for learning these topics had different 

reasons for not doing so (Table 8.8). Four students in Case 1 (U3489) said they tried to understand 

the idea behind the concepts and formulas, then they derived it when necessary rather than 

memorising the formulas. In addition, U3 was against using memory strategies for learning 

mathematics: 

Memory strategies for integral-area problems Case 1 Case 2 Total 

LIATE rule for substitution in integration by parts 2 (U17) 0 2 

Using flip card to remember steps 0 1 (Y1) 1 

Use one known information for remembering similar information 0 1 (Y5) 1 

Use a Table for remembering the values of Sin 𝑥 and Cos 𝑥 1 (U1) 0 1 

None 7 (U2345689) 6 (Y234678) 13 



194 
 

 

 I think rote learning is the worst idea ever, formula memorisation, etc. [Learning] without 

 understanding is useless because I am a big believer of you should be able to reproduce 

 all of the formulas you use from the scratch; that is my goal in any papers to be able to 

 recreate everything as you need. Understanding can reproduce everything.  

Table 8.8 

Reasons given by students for not using memory strategies  

Reasons for not using memory strategies  Case 1 Case 2 Total 

Use understanding the idea behind the concepts for reconstructing 

materials 

4 (U3489) 0 4 

Do not know any 0 3 (Y268) 3 

Formula sheet 0 2 (Y34) 2 

Do questions/practice  1 (US4) 1 (Y6) 2 

Do not need any 0 1 (Y6) 1 

 

 Practising questions was another reason for not using memory strategies mentioned by two 

students (U4; Y6). Formula sheets were given in exams for both students in Case 1 and 2. However, 

only Y3 and Y4 said that because they had the formula sheet in exams, they did not need to 

memorise the formulas. Y6 said he did not need any memory strategy: “I haven't really come 

across anything that I think I need it. The questions are about having method you can use and work 

through things and you just practicing by doing questions”.  

Discussion 

 Most of students in the sample did not use any memory strategy for learning integral 

calculus. Three (U1; Y15) out of four students who used memory strategies for learning the topic 

scored less than half the possible points for integral calculus questions. The fourth student, U7, got 

the third lowest points of the students in Case 1. Comparing students who used memory strategies 

with the other students in the sample in terms of mean score in integral questions, there was no 

significant difference between students who used memory strategies (13.2) and those who had not 

used those strategies (20.1) according to the Mann-Whitney test (P-value=0.3) which may have 

been due to the small sample size. Therefore, the obtained results suggest memorising strategies 

are not associated with mathematical performance in this instance. No research has been found in 
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this regard to compare this study findings with. In addition, four students in Case 1 (U3489) 

emphasised the importance of understanding the ideas behind the concepts and formulas, relational 

understanding (Skemp, 1976) (Section 3.1.2), indicating they had a better understanding of how 

mathematics should be learnt. This fact was not highlighted by students in Case 2. These four 

students achieved a higher mean score (28.5) compared to other students (15.4). The difference 

was significant according to the Mann-Whitney test (P-value=0.01).  

8.1.8 Summarising strategies 

 Summarising strategies are different from memorising strategies, as the latter focus on 

learning one chunk of information, while the former focus on connecting several chunks of 

information. In response to M7 (Table 5.1), eleven students (U12358; Y235678) said that they did 

not use any summarising strategies for learning these topics. The rest said they had done some sort 

of summarising or intended to do so later (Table 8.9). Three students in Case 1 (U469) said they 

would make a summary of the materials close to their exams: “I write down everything in pages, 

then I make it smaller and smaller to a page. It is a process of writing and copying help me. It is 

how I study previously. Writing helps” (U9). U6 supported the idea that writing helped and added 

another reason why making summaries is useful: “writing it down helps you remember it. Also, 

for last minute study before going to the test, you can look at it [your summary].” Y1 used flip 

cards to remember the steps of problem solving (Section 8.1.7), which can also be considered a 

summarising strategy: “it kind of make it easier, rather than having a whole lot of information. 

You can break it down to particular things you need to remember. Make it easier to remember the 

procedures”. Y4 said he added a summary to his class-notes to know what he needed to focus on. 

U1 and Y8 said having a summary is useful, but they had not made one so far.  
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Table 8.9 

Summarising strategies given by students for learning these topics 

 Students who had not done any sort of summarising or had not intended to, had different 

reasons for this (Table 8.10). Four students (U8; Y278) said because they had the formula sheet 

they did not feel it necessary to make a summary:  

 No, I just use the formula sheet. I found that you need to practise how to use each 

 formula and then you can just see the formula there. You get faster at doing them. I think 

 it is more effective than trying to memorise formulas (Y2). 

Table 8.10  

Reasons for not using summarising strategies for these topics 

Summarising strategies  for learning these topics Case 1 Case 2 Total 

Make a summary close to exams 3 (U469) 0 3 

Add a summary to class-notes 0 1 (Y4) 1 

Make a summary of the course materials in a page 1 (U9) 0 1 

Make flip cards of steps 0 1 (Y1) 1 

Summarise mathematical statements and make a list of possible 

ways to deal with similar statements 

1 (U7) 0 1 

None 5 (U12358) 6 (Y235678) 11 

Themes Sub-themes/ example Case 1 Case 2 Total 

Use other resources Formula sheet 1 (U8) 3 (Y278) 4 

Use other learning 

strategies  

By practicing question, summarising is not 

necessary 

0 3 (Y236) 3 

Read lecturer/class notes rather than 

summarising 

1 (U8) 2 (Y68) 3 

Not for these topics because it is not 

complicated 

1 (U5) 0 1 

“Never felt the need” 1 (U4) 0 1 

Negative attitude toward 

summarising strategies 

Dislike rote learning 1 (U3) 0 1 

“Mathematics is not a memorising stuff” 0 1 (Y5) 1 
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 U5 said she had done that before, but because these topics are not complicated she did not 

feel it necessary to make a summary of them:  

 I do that for the trig, inverse trig, hyperbolic trig, and inverse hyperbolic trig. But for the 

 FTC I did not do that because it is not that complicated…when you have lots of 

 materials that look similar, you need to read it and compare. 

 U3 was against using summarising strategies because he felt it is related to rote learning: 

“No, I just make sure I am comfortable going through everything without it…I dislike rote 

learning…with understanding the relationships are obvious. The reason I like math is there is no 

real rote learning”. Y5 also made a similar claim and said, “Mathematics is not a memorising stuff 

[sic]”. 

Discussion 

 The literature suggests summarising as a tool that helps students to comprehend 

knowledge, transfers knowledge to long-term memory more easily, and makes connections 

between the new concepts and students’ prior knowledge (King, 1992; Susar & Akkaya, 2009)  

(Section 5.2.2). However, it was not used by most of the students in the sample. Students with 

good integral calculus performance can be seen in both the groups of students who had used 

summarising strategies and those who had not; therefore, the study’s findings cannot show any 

association between using these strategies and mathematical performance. However, students who 

used summarising strategies received a higher mean score for integral questions (20.3)  compared 

to those who had not used such strategies (17.4); but the difference was not significant according 

to the Mann-Whitney test (P-value=0.7).  

 It seems some of the students had negative attitudes toward summarising strategies, and 

that should be reconsidered. Summarising strategies can facilitate learning, and their usefulness 

should be highlighted to students. If websites such as https://bubbl.us/ could be used in classes by 

lecturers and teachers as an example to show how different mathematical concepts and theorems 

in a topic are related to each other, students might also realise its usefulness and use summarising 

strategies for other topics as well.   

https://bubbl.us/
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8.1.9 Thinking about justifications behind the formulas 

 In response to M6 (Table 5.1), eight students (U345689; Y57) said they had thought about 

the justification/rationale behind the formulas rather than just applying them. The remaining 

students said they had only applied the formulas. In this section, all the students except U9 did not 

differ between the integral-area relationships and the FTC when answering these questions, and 

said they had the same opinion regarding the FTC problems. However, U9 had thought about 

justifications for the integral-area relationships, but not for the FTC because he did not know the 

justification for that: “…not for the FTC, I have no ideas what it means geometrically. As far as I 

know there is no geometric interpretation [for the FTC]”. 

 Students who just applied the formulas had different reasons for doing so (Table 8.11). The 

main reason for not thinking about justification was because it was not asked for in exams, 

therefore, they did not need it:  

 I think it can be quite interesting, but I guess it probably not might be necessary at this 

 level if it is not asking questions about it in the exam… I think it is an extra; I think for 

 most people, including myself, want to do well in exams...rather spending time making 

 sure I am better at things which gonna be in the exam (Y6). 

Table 8.11 

Reasons for not thinking about justifications 

 

Themes Sub-themes Case 1 Case 2 Total 

Negative attitude 

towards justifications 

Do not need to know it/ not in the 

examinations or questions 

0 4 (Y1368) 4 

Not have time to think about them 2 (U27) 0 2 

Sometimes justifications are more 

complicated than memorising them 

1 (U1) 0 1 

Justifications confuse me 0 1 (Y1) 1 

No access to 

justification 

Have not seen a thorough  justification for 

the topic 

0 3 (Y248) 3 

Does not mention it in the textbook 0 1 (Y3) 1 
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 The second reason was not seeing a thorough justification for the materials in the 

classrooms. Y8 thought the integral calculus topic did not have thorough justifications behind it: 

“Not in the integration probably because they do not have a thorough understanding. I do in 

differentiation”. Y4 said he would have liked to see the justification, but the teacher did not provide 

it because of time constraints:  

 I do wonder about the justification behind it… It allows to have a deep understanding 

 what you are actually doing with the formulas. I do not ask specifically, but, I noticed 

 people asking about it, but, the teacher said we do not have time to explain it. 

 Two students in Case 1 (U27) said they did not have time to go over the justifications: “I 

wish I had time to think more about the rationale, but I am too busy applying trig identities in every 

conceivable combinations” (U7). Y3, who said the justifications are not stated in the textbook, 

said: “when I do [questions from] the textbook, I am using the formulas, and I do not care about 

anything behind or around the question. I just do the question and get the answer”.  

 Those students who had thoughts about the justifications behind the formulas had different 

reasons for doing so (Table 8.12). Three main themes were found, including that they are helpful 

for remembering, applying, or reproducing formulas, to have a better understanding about the 

topic, and better performance in exams and answering questions.   
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Table 8.12 

Reasons of thinking about the justifications behind the formulas 

 

 A sample response from the first theme is, “I do not have to remember the formula. If I 

understand the concept I can come up with the formulas for different questions” (U4). In terms of 

the second theme, U8 said:  

 It just makes sense a lot better when I understand what is going on. That is what I like 

 about the math. It is theorems and proofs, not just the tools. If I understand it, it is easier 

 to apply it correctly and not make a mistake. If I do forget it and if I understood it, it is 

 easier to reproduce it. 

 In relation to the last theme, U5 believed by knowing justification you could check your 

workings:  “…otherwise, how can you double check it is legit?”  

Discussion 

 Half the students in Case 2 thought they did not need to know about the justifications 

behind the formulas. This may have prevented them from having a relational understanding about 

mathematics and how mathematics should be learnt. The importance of knowing the rationale 

behind the theorems and formulas is addressed in the literature (e.g., Cuoco, Goldenberg, & Mark, 

Themes Sub-themes Case 1 Case 2 Total 

Helpful for remembering, 

applying, or reproducing 

formula 

Help to reproduce them when necessary 4 (U3458) 0 4 

Help to remember the formula 2 (U69) 0 2 

Don’t need to remember the formula 1 (U4) 0 1 

It is easier to apply formula when you understand it 1 (U8) 0 1 

Have a better understanding To have a better understanding about the topic 2 (U89) 1 (Y7) 3 

Remembering the formula is not sufficient 1 (U5) 0 1 

Have a better performance 

in exams, and answering 

questions 

 

It is easier not to make a mistake 1 (U8) 0 1 

Helpful for checking workings 1 (U5) 0 1 

To answer some questions, knowing justification is 

necessary  

0 1 (Y5) 1 

Maybe a question about the justification being 

asked in the scholarship exam 

N/A 1 (Y7) 1 
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1996) and most students in Case 1 were aware of its importance and usefulness. Therefore, it seems 

that its importance should be highlighted to students in college.  

 A comparison  of students’ integral calculus performance between those who had thought 

about the justification behind the formulas and those who had not, shows the first group achieved 

a higher mean (20.1) in comparison to the second group (13.2), and this difference is significant 

according to the Mann-Whitney test (P-value=less than 0.01).  

8.1.10 Prior knowledge necessary for learning the topics 

 In response to M4 (Table 5.1), students said different prior knowledge is necessary for 

learning these topics (Table 8.13).  In terms of algebra, Y6 said it is necessary for “manipulating 

functions”. Regarding differentiation, U6 believed differentiation should be taught before integral 

calculus: “if you jump straight into integration people think what is this?” Y8 believed 

differentiation as prior knowledge help him to understand the topic and could be used for checking 

the antiderivative: “differentiation can help you understand the integration and also if you 

differentiate [the antiderivative] you can see what the answer kind of be”. Limits and summation 

were mentioned for understanding Riemann sums and Riemann integral. U9 said, “Physics can 

also be considered as a prior knowledge because several questions in this topic involve velocity, 

displacement, and acceleration”. 

 Y4 mentioned justification about the formulas and applications of the topic in daily life as 

a prior knowledge for learning the topic: “I always like to know where these things come from. 

We are just dumps with equations and told to use them. [Also, I want to know] the reason why we 

learn this for future [sic]”. Trigonometry, logarithm, natural logarithm, and exponential functions 

are the functions about which students believed knowledge was necessary for learning these topics.  
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Table 8.13 

Prior knowledge necessary for learning the topics 

  

Discussion 

 Students in both Cases knew that various prior knowledge is necessary for being successful 

mathematical problem-solvers in integral calculus. However, several students had difficulties with 

this prior knowledge; in particular algebra, functions, and sketching functions when solving 

Themes Sub-themes  University students Y13Students Total 

Mathematical  topics Algebra 5 (U13459) 5 (Y24568) 10 

Differentiation 6 (U123689) 3 (Y138) 9 

Skills of drawing function 4 (U1239) 3 (Y178) 7 

Basic numerical skills/ 

Arithmetic 

4 (U1346) 3 (Y678) 7 

Functions 4 (U4679) 0 4 

Trigonometry 1 (U7) 3 (Y256) 4 

Euclidean geometry 2 (U79) 1 (Y3) 3 

Logarithm and natural logarithm 

function  

1 (U7) 2 (Y26) 3 

Exponential functions 0 2 (Y26) 2 

Limits 2 (U38) 0 2 

Summation 2 (U38) 0 2 

Familiarity with Leibniz and 

Newton notations 

1 (U3) 0 1 

Solving linear equation 1 (U5) 0 1 

The idea of area 1 (U4) 0 1 

Other skills and 

knowledge necessary  

Justification about the formulas 0 1 (Y4) 1 

Applications of the topic in daily 

life 

0 1 (Y4) 1 

Being able to use a calculator 

effectively 

1 (U1) 0 1 

Physics 1 (U9) 0 1 
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integral questions (Chapter Seven). Therefore, it seems that mastering the prior knowledge 

necessary for integral calculus should be highlighted to students. Similar findings have been 

reported in literature. Kiat (2005) reported many students have technical errors when solving 

integral problems and suggested remedial lessons and revision worksheets related to prior 

knowledge to prepare students for the integral calculus topic. In addition, diagnostic tests in 

relation to topics necessary for integral calculus could be used for helping students understand 

which part of their prior knowledge needs further development. 

8.2 Strategic knowledge: Monitoring strategies 

 In response to M8 (Table 5.1), students in Cases 1 and 2 mentioned different strategies for 

checking their answers in integral-area (Table 8.14) and the FTC (Table 8.15) problems. However, 

three students in Case 1 (U137) highlighted they did not have time to do that in their exams.  

Table 8.14 

Monitoring strategies for integral-area problems 

  

Themes Sub-themes  Case 1 Case 2 Total 

Monitoring strategies 

related to integral-area  

relationship 

Approximating  the area using geometric shapes 6 (U134689) 2 (Y78) 8 

Check the area is positive 2 (U39) 3 (Y156) 5 

Check the antiderivative by differentiating it 2 (U27) 3 (Y458) 5 

General monitoring 

strategies 

Double-check /redo working 6 (U134568) 4 (Y2457) 10 

Use the Wolfram alpha website to check answers 5 (U34567) 0 5 

Check answers with classmates 2 (U46) 2 ( Y67) 4 

Use the answers at the end of textbook 0 4 (Y2346) 4 

Use assignment solutions 2 (U23) N/A 2 

Use calculator to check answers/graph of curves 0 2 (Y36) 2 

Use the Maple software for checking answers 1 (U8) 0 1 

Long answer-simple equation: You probably do it 

wrong 

1 (U6) 0 1 

Express the final answer as an English statement 

to see whether it makes sense 

1(US7) 0 1 

Think about the answer before doing the problem 

and compare the answer with your thoughts 

1(US6) 0 1 
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 In terms of integral-area problems, the most frequent strategy for checking answers was 

going over the calculation (U134568; Y2457). The second was approximating using the geometric 

shapes to find out whether the answer makes sense (U134689; Y78). Using the fact that the area 

should be positive was another strategy mentioned by five students (U39; Y156) to check the final 

answer is correct. These students were aware that if the final answer is negative, then some parts 

of their workings were not correct. Because to find the area enclosed by the curves using 

integration, first the antiderivative of the curves should be found, five students (U27; Y458) said 

they check whether they found the correct antiderivative by differentiating it. In a non-exam 

situation, five students in Case 1 (U34567) used the Wolfram alpha12 website and U8 used Maple 

software for checking answers. However, students in Case 2 did not use these resources, and only 

two (Y36) said that they had used a calculator to check their answers. Four students (U46; Y67) 

compared their answers with their classmates’ answers. Another strategy mentioned by four 

students in Case 2 (Y2346) was using the answers given at the end of their textbook for checking 

answers. Using the assignment solution, mentioned by two )U23), was another strategy used for 

checking the answer in a non-exam situation. A strategy only mentioned by one of the students in 

Case 1 (U6), was, if you are dealing with a simple equation and your answer is long, you had 

probably done the question incorrectly. U7 wrote the final answer as an English statement to find 

out whether it makes sense for him. Finally U4, before solving the problem, thought about the 

possible answer, and then after finding the answer, he compared his answer with his initial 

thoughts. 

 

 

 

 

 

 

                                                           
12 Wolfram alpha has the capability to solve indefinite and definite integrals and if a person subscribes to the 
website, he/she can access step-by-step solution methods.  
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Table 8.15 

Monitoring strategies for the FTC problems 

Themes Sub-themes Case 1 Case 2 Total 

Monitoring strategies  

related to the FTC 

Check the antiderivative using differentiation 4 (U45677) 2 (Y58) 6 

General monitoring 

strategies 

Double check /redo working 4 (U3458) 1 (Y8) 5 

Check whether the final answer makes sense 1 (U6) 2 (Y28) 3 

Use the Wolfram alpha website 1 (U7) 0 1 

Check with classmates 1 (U4) 0 1 

Express the final answer as an English 

statement to see whether it makes sense 

1 (U7) 0 1 

None N/A 3 (U129) 5 (Y13467) 8 

 

 The most frequent strategy for checking answers for the FTC problems was checking the 

antiderivatives using differentiation (Table 8.15). This strategy is useful for questions that relate to 

the definite integral, the first part of the FTC. There was not any particular strategy mentioned by 

students for checking questions related to the second part of the FTC. U3 highlighted, “I feel there 

is little I can do [for checking the FTC problems]. Ensure understanding if you can. It is more 

abstract. Harder to check”. Double-checking/redoing working, checking whether the final answer 

makes sense, using the Wolfram alpha site, checking with classmates, and expressing the final 

answer as an English statement are strategies mentioned by students that are not specifically related 

to FTC problems.  

 In terms of checking answers for the FTC problems, eight students (U129; Y13467) said 

they were not sure how to check answers in relation to FTC problems, suggesting they may not 

have had a good understanding of this theorem.   

Discussion 

 It seems online resources and technology for checking answers should be suggested to 

students in College. Five students in Case 1 had used Wolfram alpha and one used Maple software 

for checking answers on this topic; however, students in Case 2 had not used online resources for 

checking answers, and only two students in Case 2 used calculators for checking their answers. 



206 
 

 

There are several websites that can be used for checking answers. Some of them also provide step-

by-step solution free of charge (e.g., http://www.integral-calculator.com/). If teachers in Colleges 

use those websites for checking answers to questions that have been solved on the board, College 

students might also use them for checking their answers. The step-by-step solutions that are 

provided by some websites are useful for checking answers to textbook questions as well, because 

the textbook that has been used for teaching in the College (i.e., Delta mathematics (Barton & 

Laird, 2002)) only provides the final answer to the questions at the back of the book.   

 Approximating area using geometric shapes, differentiating antiderivatives, and the fact 

that area should be positive are monitoring strategies that should be highlighted to students for 

checking answers. More than half the students in the sample did not mention those strategies for 

checking answers. If lecturers/teachers use those strategies for checking their answers in classes, 

students might be encouraged to use them.  

 Approximately half the students (8 out of 17) had no idea how they could check their 

answers related to the FTC problems. In addition, there was no particular strategy mentioned by 

students for checking questions related to the second part of the FTC. Strategies that can be used 

for checking answers in questions related to the second part of the FTC are not fixed, unlike 

questions related to the first part of the FTC or integral-area relationship. However, using 

geometric interpretation of the second part of the FTC might be useful for checking whether the 

answers make sense.  

8.3 Strategic knowledge: Problem-solving strategies 

 In response to M9 (Table 5.1), students were asked to pose two plans, including a plan for 

how they would solve enclosed area between curves problems, and a plan for the FTC problems. 

All the students were able to provide a plan for the area between curves problems. Six plans (U23; 

Y1247) were general, and the remaining 11 plans were detailed (U1456789; Y3568). Those plans 

that had three, or less than three, steps were considered to be “general plans”, and those with more 

than three steps were considered to be “detailed plans”. A sample of a general plan is: “1. Look 

for the bounds. 2. Integrate the function. 3. Use appropriate formula to find the area” (Y4). An 

example of a detailed plan is “1. Visualise/sketch. 2. Find the top and bottom function. 3. Calculate 

𝑓(𝑥) − 𝑔(𝑥). 4. Integrate 𝑓(𝑥) − 𝑔(𝑥) 5. Put the bounds in [the anti-derivative]” (Y6).  
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 Two items were considered for exploration of students’ plans, including checking the 

integrand being continuous on the interval of integration, and checking/evaluating the processes 

and answers. Only U1 mentioned the process of checking the integrand is continuous as part of his 

plan. The first step in his plan is “check that both curves are continuous on the closed interval - 

where you are trying to find the area”. In terms of checking the process and answer, three students 

in Case 1 (U489) said checking was part of their plans. U8, at the end of his plan wrote, “make 

sure the answer makes sense”. In U9’s plan, the final step was checking the answer is positive. U4 

had more checking processes in his plan. After he set up the integral for the enclosed area between 

curves, he checked that he had not made a mistake in writing 𝑓(𝑥) and 𝑔(𝑥) because he said I 

“usually write them wrong”. Then, after finding the area by solving the integral, he asked himself 

“whether it [the answer] is reasonable?” He also said that before solving the problem he tried to 

guess the answer to compare it with his final answer. If the final answer makes sense for him, he 

took “a quick look at the working”, if not, he took “a quite thorough look at the working”. 

 In terms of having a plan for the FTC problems, thirteen students (U134569; Y123467) had 

no plan for solving those problems. For example, U9 said, “no [I do not have any strategy, just] 

cry”, and U3 said, “if obvious, then solve, if not try something with no confidence”. It is worth 

mentioning the FTC problem is a broad term in integral calculus and several questions can be 

considered as an FTC problem, including the integral-area problems. During the interviews, if a 

student asked about the statement of the FTC, I only told them it was the relationship between 

differentiation and integration, in order to direct students’ focus onto the second part of the FTC. 

For the remaining four students, one plan was related to the first part (Y5), two related to the 

second part of the FTC (U8; Y8), and one was a general plan (U7). Y5’s plan for the FTC was: “1. 

[consider the] power of the variable.  2. Raise or reduce depends on the question. 3. Change the 

shape of the graph. 4. Add/derive the power. 5. Check the answer maybe”. Y8’s plan for the FTC 

was: “Try to get my head around stationary points and points of inflection”. His plan was suitable 

for FTC questions similar to question eight of this study. U8’s plan was related to FTC questions 

where students are asked to differentiate an integral, similar to question six of this study, “If 

necessary, split up, use the chain rule to find resulting function”. The general plan mentioned by 

U7 was “1. Express the problem as a function. 2. Do all the maths stuff”. 
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  All students would have liked to see a plan for how the integral-area problem could be 

solved while the materials were being taught to them. Students said this after Figure 2 of the 

interview question (Appendix 1) had been shown to them and I had talked to them about the steps. 

This happened after they had posed their plans. For instance, U5 said, “It is super,” and U4 said, 

“It could be quite helpful to see something like this”. Some of the students provided more 

comments about the plan. For example, Y5 said, “It can show you step by step what you should 

do to get the correct answer”. Two students in Case 1 (U25) and all students in Case 2 said they 

would like to see a plan after some questions were solved in the class, and U1 said he would like 

to see it at the start of the topic. Others did not provide any comment about when they wanted to 

see the plan. For instance, Y8 said, “…probably after you have been taught because if I did not 

know what I was doing and I got this, probably overwhelming. Probably have a few practical 

demonstration of it”. U1, who would have liked to see a plan at the start said  

 Right at the start, to be honest, and when you go along at the end of each lecture you can 

 come back and say this part is checked off and move on.  Because we have a lecture on 

 calculating the intersection points, one session finding the limits between two parts, 

 you could refer back to the lecture and at the end you have got your list and you can 

 track through it.  So, you feel equipped. 

Discussion 

 Since for most of the students, checking whether the integrand was continuous or not, and 

monitoring problem-solving were not part of students’ plans for solving integral problems, those 

should be addressed with students in both Cases. The first check can be done in classes by asking 

students to find the area under curves that has discontinuity points such as ∫
1

𝑥

3

−3
𝑑𝑥 or ∫ tan 𝑥

𝜋

−𝜋
𝑑𝑥 

.The second check can be addressed by using monitoring strategies (e.g., approximating the area 

using geometric shapes) while solving questions on the board for students in classes. 

 The fact that more than half the students (13 out of 17, including five university students) 

had no plan for solving the FTC problems is another piece of evidence that students have difficulty 

with this topic. In addition, using problem-posing tasks in teaching is useful for student learning 

(Lavy & Shriki, 2007) as it enhances students’ problem-solving skills; reduces their dependency 
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on their lecturers/teachers and textbook, and “fosters more diverse and flexible thinking” (p. 130). 

Therefore, it should be used more frequently in teaching and assessment.  

8.4 Knowledge about different cognitive tasks 

 In response to M10 (Table 5.1), five students (U129; Y13) said they solved all questions 

relating to the enclosed area in the same way. Twelve students (U345678; Y245678) said they 

used different strategies for solving this type of question based on:  

 the number of curves (Y7); 

 the shape of enclosed area (U4; Y26); 

 representation of functions (Y5); 

 the given functions (U3; Y8); and 

 the difficulty of questions (U3567; Y4). 

   Regarding the FTC questions, eight students (U2589; Y1357) said they used the same 

strategy for solving these questions. Four students (U16; Y26) said they had no strategy for solving 

the FTC questions, indicating a lack of knowledge about this type of question. Five students (U347; 

Y48) said they used different strategies for solving this type of question. For instance, Y4 changed 

the order of steps of his strategy when he solved different types of problems. U7 said he rearranged 

the formula in different ways according to the given questions. The other three students did not 

mention what their different strategies were.  

Discussion 

 Acknowledgment of having different strategies for solving different questions in a topic 

can be an indication of the presence of metacognitive knowledge (Anderson et al., 2001) (Section 

2.2.1).  This question was asked to explore whether students were aware of this aspect of 

metacognitive knowledge. For the integral-area relationship, most of the students highlighted that 

they had different strategies for the integral-area problems; however, for the FTC problems only 

five students said they had different strategies for this type of problem. This may be related to the 

fact that their knowledge about the FTC is limited, as indicated in Chapter Seven.  
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8.5 Self-knowledge 

 Students’ self-knowledge was explored in terms of three items; that is, students’ 

knowledge/perception about their difficulties in learning the integral-area relationships and the 

FTC, their orientation toward taking the calculus course, and their attitude toward calculus 

especially the integral calculus topic.  

8.5.1 Students' knowledge about their difficulties in learning the integral-area relationships 

and the FTC 

 Students’ responses to M11 (Table 5.1) were considered to explore their knowledge about 

their difficulties in learning the integral-area relationships and the FTC. 

The integral-area relationships 

 In terms of the integral–area problems, most of the students believed they knew how to 

solve these problems. Therefore, their main difficulty was finding the antiderivative of complex 

functions (U3689; Y28, Table 8.16), rather than setting up integrals to find the enclosed area (U7).  

 

 

 

 

 

 

 

 

 

 

 



211 
 

 

Table 8.16 

Students’ opinions about their difficulties with integral-area problems. 

 

  U9, in response to question five said, “no, because it seems very intuitive, unless the 

integral itself is hard to integrate”. Three students (U25; Y3) said they had no difficulty in solving 

integral-area problems. Two students (Y68) were not confident of using the ∫ [𝑓(𝑥) − 𝑔(𝑥)
𝑏

𝑎
]𝑑𝑥 

to find the enclosed area between two curves, and said they found the enclosed area between each 

curve and the 𝑥-axis separately, and then subtract the areas: “I think I need more practice to be 

more confident in using ∫ [𝑓(𝑥) − 𝑔(𝑥)
𝑏

𝑎
]𝑑𝑥 instead of using ∫ 𝑓(𝑥)

𝑏

𝑎
𝑑𝑥 minus ∫ 𝑔(𝑥)

𝑏

𝑎
𝑑𝑥 when 

solving questions in relation to the area between curves” (Y6). Y4 believed he had difficulty with 

finding the area using integration with respect to the 𝑦-axis. U7 thought he had difficulty with 

setting up the integral for finding the area: “I find it hard to translate the question into a 

mathematical statement”. Y5 had difficulty with several formulas that exist for finding the area, 

indicating he did not understand the intuition behind the integral-area problems: “we have many 

different kinds of areas, between [the] 𝑦-axis, 𝑥-axis, between two curves, and they all have a 

specific formula. There are so many formulas just for the area and it is a little bit confusing”. 

Themes Sub-themes Case 1 Case 2 Total 

Integral-area topic Finding the antiderivative of some complex functions 4 (U3689) 2 (Y28) 6 

Not confident in using ∫ [𝑓(𝑥) − 𝑔(𝑥)
𝑏

𝑎
]𝑑𝑥 0 2 (Y68) 2 

Finding area using integration with respect to the 𝑦-axis 0 1 (Y4) 1 

Setting up the integral based on the given information 1 (U7) 0 1 

Several formulas for integral-area problems 0 1 (Y5) 1 

Prior knowledge Sketching the integrand 1 (U1) 1 (Y1) 2 

 Finding the upper/lower limits 1 (U6) 1 (Y7) 2 

 Manipulating the graphs in terms of 𝑦 or 𝑥 1 (U7) 1 (Y7) 2 

 Finding the intersection points 1 (U8) 0 1 

 One of the curves is not a function 1 (U4) 0 1 

 Non-real-world problem 0 1 (Y4) 1 

Nothing N/A 2 (U25) 1 (Y3) 3 
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 The rest of the difficulties mentioned were not related to the integral calculus topic 

specifically, rather they related to students’ prior knowledge. U1 and Y1 said they had difficulty 

with sketching the curves of some functions: “I think my graphing needs to be stronger” (U1). 

Two students (U6; Y7) had difficulty with finding the bounds of integral, and two students (U7; 

Y7) had difficulty manipulating the graphs in terms of 𝑥 or 𝑦. U8 believed he had difficulty with 

finding the intersection points, and U4 thought he had difficulty with finding the enclosed area 

when one of the curves is not a function such as a circle. Finally, Y4 made a general comment, 

saying he had difficulty with non-real-world problems: “with the applied questions, I find it easier 

to visualise which way to do [the integration]”. 

The FTC problems 

 Five students (U58; Y347) believed they had no difficulty in relation to solving the FTC 

problems. Three students (U1; Y16) believed they needed to learn more about the FTC (Table 

8.17). Similarly, three students (U49; Y5) believed they had not understood the FTC. Two students 

(Y28) said it took more time to solve the FTC problems: “it takes me a while to do each question. 

I do not have any workout method. It takes me a lot longer I guess” (Y2). U6 made her comments 

based on the first part of the FTC, and believed finding the antiderivative was her difficulty in 

solving the FTC problems. U2 believed he had difficulty with understanding 𝑡 and 𝑥 in 

𝑑

𝑑𝑥
[∫ 𝑓(𝑡)𝑑𝑡

𝑥

𝑎
] = 𝑓(𝑥) and said he was not confident with the second part of the FTC because of 

“the t and x thing [sic]”. U3 said he did not know the intuition behind the second part of the FTC. 

However, he had seen a proof about the FTC, but highlighted that sometimes the intuition is 

different from the formal proof: 

 Formal proofs are not intuitive all the time. I can have a formal proof, and knowing that 

 there is a formal proof and even being able to reproduce a formal proof. The formal proof 

 isn't always the logic behind what is happening. It is just a demonstration that is there is 

 an entailment. The proof is not always the intuitive aspect of why it works...there is no 

 guarantee the proof that I am looking at is the one that most help me, like it is just a 

 proof, it is not the proof and it is not the intuitive proof always. 
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Table 8.17 

Students’ opinions about their difficulties with the FTC problems. 

Themes Sub-themes Case 1 Case 2 Total 

Difficulty with the conceptual 

knowledge 

Not know enough about the FTC 1 (U1) 2 (Y16) 3 

Vague/not understanding the FTC 2 (U49) 1 (Y5) 3 

Understanding 𝑡 and 𝑥 in 
𝑑

𝑑𝑥
[∫ 𝑓(𝑡)𝑑𝑡

𝑥

𝑎
] = 𝑓(𝑥) 1 (U2) 0 1 

The intuition behind the second part of  the FTC  1 (U3) 0 1 

Difficulty with the procedural 

knowledge/problem solving 

It takes a long time to solve them 0 2 (Y28) 2 

Finding the antiderivative 1 (U6) 0 1 

Nothing N/A 2 (U58) 3 (Y347) 5 

Discussion 

 In terms of the integral-area relationship, seven students said they had difficulties with prior 

knowledge related to integral calculus, and those difficulties were also found in their performance 

in integral questions (Chapter Seven). As stated in Section 8.1.10, helping students to master prior 

knowledge seems to be necessary to make them successful problem-solvers in integral calculus. 

For the FTC, most students believed their difficulties were related to the theorem rather than the 

prior knowledge related to it. For the three students from Case 2 who said they had no difficulty 

with the FTC, their responses seemed to be related to the first part of the FTC, as they could not 

respond to questions related to the second part of the FTC correctly (Chapter Seven). The two 

University students who had no problem with the FTC answered most of the FTC questions 

correctly; however, they did not have geometric understanding of the second part of the FTC 

(Chapter Seven).  

8.5.2 Students' orientation toward taking the calculus course 

 Students’ responses to M12 (Table 5.1) were considered for exploration of students’ 

orientation toward taking the calculus course. Three themes were found, including requirement for 

further study, liking for calculus, and calculus is a useful subject (Table 8.18).  
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Table 8.18 

Students' orientation toward taking the calculus course 

 

 The main reason for taking the calculus course in Year 13 was the fact that calculus is one 

of the requirements for doing some majors in Universities that students want to do. For University 

students, the main reason was that the calculus course was one of the pre-requisites for taking other 

courses (Table 8.18).  

 For three students (U4; Y78) the main reason was not the fact that calculus is one of the 

requirements, rather they liked calculus:  

 I enjoy it. It is one of my favourite subjects because I really like mathematics and I like 

 the problems and working them out… I need to have calculus for that [doing the major in 

 a University] but I was doing Year 13 calculus before I made that decision (Y8).  

 Y4 highlighted the fact that through learning calculus you would learn logical thinking: 

“they teach you logical processes and logical thinking”. 

Discussion 

 Only four students in the sample said they took the calculus course because they found it 

enjoyable or useful. The remainder took the course because it was a requirement. This might lead 

to their having a performance approach toward the course, and could prevent their developing 

conceptual knowledge if this type of knowledge is not being assessed or taught. If the students 

only want to pass the course with even a good grade, and the assessment does not focus on 

Themes Sub-themes Case 1 Case 2 Total 

Requirement Prerequisite for taking further courses in  a 

major 

7 (U1236789) N/A 7 

Requirement for doing a major in a University N/A 6 (Y123456) 6 

Get one of the University prizes 1 (U5) N/A 1 

Needed for knowing general mathematics 

knowledge 

1 (U3) 0 1 

Like  Like/enjoy calculus 1 (U4) 2 (Y78) 3 

Useful  Through calculus learn logical thinking 0 1 (Y4) 1 
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conceptual knowledge, students might only focus on learning the procedures for solving questions 

and will not put enough effort into learning the conceptual knowledge underpinning the topic. 

Such orientation was also found in Section 8.1.9, where students mentioned to what extent they 

thought about the justification behind the formulas.  

8.5.3 Students' attitudes toward calculus, especially integral calculus 

 Students’ responses to M13 (Table 5.1) were considered in order to explore students’ 

attitudes toward calculus, especially integral calculus. Students had differing attitudes towards 

calculus and integral calculus (Table 8.19). 

Table 8.19 

Students’ attitudes toward calculus, especially integration 

 

 Seven students (U12469; Y13) liked calculus and integration if they understood it: “I like 

it when I can do it. I feel satisfied if I get it right. I just get frustrating, if I constantly get it wrong” 

(Y1). Three students (U58; Y5) liked integration because of its application in different disciplines, 

sciences, and daily life: “[For] a lot of things in science, physic, daily life you need to involve this” 

(U5). Three students (U4; Y78) liked calculus because they believed it is fun: “I find it fun” (Y7). 

Two students (U3; Y6) had neutral feelings about calculus/integration: “It is not pretty the most 

fun subject, but it is not terrible” (Y6). U3 said, “calculus is a more of a tool kit for physicists and 

engineers than pure mathematics disciplines. A lot of it has a very applied focus where I do not 

have applied focus at all”. U9 did not like integral calculus because some questions in this topic 

do not have clear procedures for solving them:  

Row Students’ attitude toward calculus/ integral calculus Case1 Case 2 Total 

1 Like  calculus  when I understand/can do it 5 (U12469) 2 (Y13) 7 

2 Like integration because of its application 2 (U58) 1 (Y5) 3 

3 Like calculus because it is fun/enjoyable 1 (U4) 2 (Y78) 3 

4 Like calculus and integration topic 2 (U47) 1 (Y4) 3 

5 Like calculus, but not integration topic 0 2 (Y23) 2 

6 Neutral feelings about calculus/integration 1 (U3) 1 (Y6) 2 
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 I do not like integration because it is hard and tricky and requires you to have quite an 

 intuitive sense of how you can solve it. Should I substitute, or I should do integration by 

 parts? It is not very fun. 

Discussion 

 In terms of comparing the attitudes of students in Case 1 and 2, approximately the same 

number of students liked calculus or integration (i.e., row 2, 3, and 4 in Table 8.19) (5 in Case 1 

and 4 in Case 2) in these Cases. However, more students in Case 2 (1 in Case 1 and 3 in Case 3) 

had a neutral feeling about integration (i.e., row 5 and 6 in Table 8.19), and more students in Case 

1 liked calculus when they understood it  (five in Case 1 and two in Case 2). 

 There was no significant difference between students’ mean scores in integral questions of 

those who liked calculus or integration (22.1), compared to students who felt neutral about 

integration (13.5) according to the Mann-Whitney test (P-value=0.1) because of the small sample 

size. The remaining students who were not classified in these two groups obtained a mean score 

(16.6) between them. The findings are in line with previous studies (e.g., Samuelsson & 

Granstrom, 2007) that attitudes toward mathematics and mathematical performance are related.  

8.6 Chapter summary 

 In this chapter, students’ metacognitive knowledge was explored in relation to questions 

that were designed based on the structure of the metacognitive knowledge dimension of RBT. The 

results described in Chapter Eight provide some answers to the third research question of the study 

(i.e., what metacognitive knowledge, experiences, and skills do students hold about integral 

calculus in Year 13 and first year university?). The results indicate the questions that were designed 

based on the structure of RBT’s metacognitive knowledge are useful for exploring student learning 

and show some of the aspects of students’ metacognitive knowledge that need further development 

(e.g., the importance of the rationale behind the formulas, and the usefulness of summarising 

strategies). The next chapter describes students’ metacognitive experiences and skills in solving 

integral questions.  
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 Chapter Nine: Metacognitive Experiences and Skills Relating 

to Solving the Integral-area and the FTC Problems 

 In this chapter, students’ metacognitive experiences and skills are explored in relation to 

solving integral-area and FTC problems. Metacognitive experience, what a person is aware of and 

feels when coming across a task (Efklides, 2008), has several aspects (Efklides, 2001, 2006, 2008; 

Schneider, & Lockl, 2002) (Section 3.1.4). The aspects explored in this chapter relate to feelings 

of knowing, familiarity, difficulty, confidence, judgment of learning, and estimating the 

correctness of solution (Efklides, 2006, 2008). Metacognitive skills, activities that help individuals 

to control and regulate their cognitive activities (Schraw, 1998), also has several aspects such as 

task planning, and monitoring (Section 3.1.4). Metacognitive experiences and skills are related to 

the metacognitive knowledge row of RBT, such as the applying metacognitive knowledge cell 

(Section 3.1.4). It is important to know how students feel and use their judgment when facing 

different types of mathematical problems, to help them not make wrong decisions in problem-

solving, nor to oversimplify or over-complicate the question.  

 The results discussed in this chapter indicate that the students in this study used differing 

metacognitive experiences and skills when solving different types of integral-area and FTC 

problems. Students’ metacognitive experiences and skills are explored regarding integral 

Questions that are problem-solving in nature, i.e., all the integral questions except Q2 and Q7 

(Section 5.2.1). Students' metacognitive experiences and skills are explored for all of these seven 

Questions because the types of questions are different (e.g., typical, atypical, and problem posing) 

(Section 5.2.1). For measuring students’ metacognitive experiences and skills a think aloud 

protocol was used (Section 5.2.3). For each question, firstly, students’ pre-judgment of their ability 

to solve the question is explored (Sections 9.1.1 to 9.7.1); then, the three items related to 

metacognitive skills (i.e., making a drawing related to the problem; making a calculation plan and 

systematically doing it; and checking calculations and answer) are described (Section 9.1.2 to 

9.7.4). The fifth section relating to each question is students’ post-judgment of how accurately they 

had solved the question (Section 9.1.5 to 9.7.5). The last section relating to each question is a 

discussion of the results obtained for the question (Section 9.1.6 to 9.7.6). After presenting the 

results for the seven questions, a general discussion is provided (Section 9.8).   
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9.1 Students’ metacognitive experiences and skills concerning a typical question of integral-

area relationship 

 Students’ metacognitive experiences (Section 9.1.1 & 9.1.5) and skills (Section 9.1.2 to 

9.1.4) regarding Q1 are explored in this section.  

9.1.1 Having an accurate pre-judgment of whether they can solve the problem 

 Students had different levels of metacognitive experiences in dealing with Q1. Eight 

students (U127; Y12567) made their judgment based on their familiarity with how to find an area 

using integral calculus. An example of these responses is “we have recently learnt this [topic] in 

class and I am practising these questions at the moment” (Y1). Four students (U568; Y8) based 

their judgment on their ability to integrate the form of the integrand. They provided reasons such 

as “equations [are] not particularly difficult to integrate” (U6). Three students (U3; Y34) based 

their decision on their familiarity with the shape of the graph, providing such reasons as “I can 

imagine it graphically” (U3). U9 highlighted the importance of the shape of the enclosed area for 

making his judgment about his ability to solve the problem: 

 What I will do before I would have known if I am sure or not I will draw the graph. 

 Then I  decide whether I am sure I can solve it or not. That is hard for me to look at those  

 two functions and say, oh yes, it is easy I can find the area between functions. 

 Drawing the enclosed area is an important part of solving integral-area problems, as it helps 

students decide whether integration should be done with respect to which axes, and shows whether 

the curves have any discontinuity point. In addition, drawing a graph is an element of 

metacognitive skills (Jacobse & Harskamp, 2012), and U9 said he does this before solving the 

problem. 

  The judgement of U4 was affected by the fact that 𝑥 = 𝑦2 is not a function, and therefore 

he was unsure whether or not he could solve this problem. A comparison between the results of 

students in Cases 1 and 2 (Table 9.1) shows that students in Case 1 had higher metacognitive 

experience compared to students in Case 2 in relation to predicting their ability to solve Q1.  
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Table 9.1 

Students’ prediction of ability to solve Q1 

 

9.1.2 Making a drawing related to the problem 

For Q1, all students drew the curves while solving this question. Eleven (U2456789; 

Y2378) made a correct drawing of the curves. For the six remaining students there were two major 

reasons for their failure to draw the curves correctly. Firstly, neglecting the part of 𝑥=𝑦2 which is 

under the 𝑥-axis (U13; Y456) (Figure 9.1). Secondly, it seems students had tried to remember the 

graph, and have not checked their drawing by considering each curve as a function/relation and 

substituting some values in the domain of the function/relation for finding the relationship between 

𝑥 and 𝑦. The reason for making such a claim is that during the think alouds none mentioned they 

would substitute some values in the function/relation to sketch the graph. If students checked their 

drawing by substituting some values in the function/relation, they were a higher chance that they 

would identified their errors.   

 

 Find area with respect to 𝑥-axis Find area with respect to 𝑦-axis 

Correct Incorrect Didn’t use 

the method 

Correct Incorrect Didn’t use 

the method 

I am sure I will 

solve this question 

(N=12) 

Case 1 

(N=6) 

3 3 0 4 2 0 

Case 2 

(N=6) 

1 5 0 1 1 4 

I am not sure 

whether I will 

solve this question 

correctly or 

incorrectly. 

(N=5) 

Case 1 

(N=3) 

0 3 0 1 2 0 

Case 2 

(N=2) 

0 2 0 1 0 1 

I am sure I cannot 

solve this 

question. 

(N=0) 

Case 1 

(N=0) 

0 0 0 0 0 0 

Case 2 

(N=0) 

0 0 0 0 0 0 
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Figure 9.1 Examples of students’ mistakes in drawing the curves and a correct drawing of it 

 The students’ ability to find the area enclosed between the curves correctly were closely 

related to their drawing of the curves, especially when the upper and lower functions do not change 

in the enclosed area. Seven students (U45689; Y78) out of those who sketched the curves correctly 

and tried to find the area with respect to the 𝑦-axis were successful. Of those integrated with respect 

to the 𝑥-axis, four of the students (U589; Y8) who correctly drew the graph, were successful (Table 

9.2). The lower success level was due to changes in the lower function at 𝑥 = 1 from 𝑦 = −√𝑥 to 

𝑦 = 𝑥 − 2. The final piece of evidence that supports the importance of curve sketching when using 

integral to find area, is that all the students who did not draw the curves correctly were unsuccessful 

with the item (Table 9.2).  

Table 9.2 

Relationship between correct drawing and finding area respect to the axes 

 Find area respect to x-axis Find area respect to y-axis 

Correct Incorrect Didn’t use 

the method 

Correct Incorrect Didn’t use 

the method 

Correct 

sketch 

(N=11) 

Case 1 

(N=7) 

3 4 0 5 2 0 

Case 2 

(N=4) 

1 2 1  2 1 1 

Incorrect 

sketch 

(N=6) 

Case 1 

(N=2) 

0 2 0 0 1 1 

Case 2 

(N=4) 

0 4 0 0 0 4 

 

 

An example of trying to remember the curves (Y1) An example of neglecting the negative part of x=𝑦2(U3)    Correct drawing of the curves 

                                                                                                                                                                                                                                                       

Sketched using desmos.com 
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9.1.3 Making a calculation plan and systematically performing it 

 According to students’ think alouds, all students in the sample had a plan for solving Q1, 

and started by either drawing the curves or finding the intersection points. Another evidence 

supporting this claim is all students in their responses to M9 (Section 8.3), described a plan for 

how they would solve enclosed area between curves problems.  

9.1.4 Checking calculations and answers 

 For Q1, more than half of the students in the sample did not check their solutions. Four 

students in Case 1 (U1589) and three in Case 2 (Y246) did some sort of checking. They had only 

checked their calculations and not their drawing of the curves. Of these, four (U1; Y246) made 

errors in their working; and three (U1; Y46) could not find their errors. Y2 was able to amend his 

drawing for 𝑥=𝑦2 (Figure 9.2) on his fourth try. The three remaining University students (U589) 

who solved the question correctly, had checked their answer to find out whether they found the 

same answer using both axes (two out of three), and one checked his calculation to ensure he not 

made any mistake in finding the intersection points.   

 

 

 

 

Figure 9.2 Y2’s attempts in drawing 𝑥 = 𝑦2 

9.1.5 Having an accurate post-judgment of how effectively the problem was solved 

 Students’ judgments of how well they answered the problem were varied for Q1 (Table 

9.3). Four students (U589; Y8) were sure they had solved the question correctly because they could 

find the same answer using both methods (and their answers were correct). Similarly, two 

university students (U27) were sure they had solved the question incorrectly as they found different 

answers using the two methods (and both their answers were incorrect). Two students in Case 2 

(Y15) were sure they had solved it incorrectly because their answers were negative.  
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Table 9.3 

Students’ post-judgment of their ability for solving Q1 

 

 Two students (U3; Y6) made an inaccurate post-judgment, saying they were sure they had 

found the correct answer because “it makes sense graphically” (U3), and “looking at graph it seems 

right visually” (Y6). However, their drawings were incorrect. Use of drawing the curves to check 

their answers and intersection points was used by other students. Y4 was unsure whether or not he 

had solved the question correctly because the intersection points he found did not match the curves. 

 Three students (U46; Y7) were unsure if they had solved the question correctly for the 

following different reasons; U6 could not distinguish which function is the top function: “not sure 

which one [in] ∫𝑓(𝑥) − 𝑔(𝑥)𝑑𝑥 is 𝑓(𝑥)” (U6). U4 had difficulty with 𝑥 = 𝑦2 (U4) and said: 

“𝑥 = 𝑦2 is not a function so that confused me”; Y7 was unsure because “[I] forget to account for 

the other part [the part which is under 𝑥-axis] of 𝑥 = 𝑦2” (Y7).   

 U1 was not confident with his problem solving, saying, “usually with math question you 

are pretty sure when you have got it right. I was pretty hazy when I go through. I was over confident 

when I started”. Finally, Y2 was sure he had solved the question correctly but could not explain 

why. However, he had not found the correct answer.  

 Find area with respect to 𝑥-axis Find area with respect to 𝑦-axis 

Correct Incorrect Didn’t use 

the method 

Correct Incorrect Didn’t use 

the method 

I am sure I solved 

this question 

correctly (N=7) 

Case 1 

(N=4) 

3 1 0 3 1 0 

Case 2 

(N=3) 

1 1 1 1 1 1 

I am not sure 

whether I solved 

this question 

correctly or 

incorrectly (N=5) 

Case 1 

(N=3) 

0 3 0 2 1 0 

Case 2 

(N=2) 

0 2 0 1 0 1 

I am sure I solved 

this question 

incorrectly (N=5) 

Case 1 

(N=2) 

0 2 0 0 2 0 

Case 2 

(N=3) 

0 3 0 0 0 3 
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9.1.6 Discussion 

 The fact that several students made their pre-judgment of being able to solve this question 

– based on knowing the techniques for finding the antiderivative of integrands, or knowing how 

to find the enclosed area in general – suggests it is important to highlight the shape of the enclosed 

area to students to enable their pre-judgment of whether they are able to solve integral-area 

problems. The reason is, the shape of the enclosed area affects the method that can be used to find 

the enclosed area, and a number of students had made errors in setting up the integral in terms of 

which curve is the top function. However, all students, during their problem-solving, had made a 

drawing to help solve the problem, which could be an indication of the presence of that 

metacognitive skill. Checking the calculations and answers were not done by more than half of the 

students; therefore this aspect of metacognitive skills could be regularly modelled for students. In 

relation to their post-judgment of having found the correct answer, the ten students who were 

unsure they had found the correct answer, or were sure they had solved the problem incorrectly, 

were not found to be revisiting and checking their solution, showing a lack of persistence in 

mathematical problem solving. 

9.2 Students’ metacognitive experiences and skills about an atypical question of integral-

area relationship 

 Students’ metacognitive experiences (Section 9.2.1 & 9.2.5) and skills (Section 9.2.2 to 

9.2.4) about Q3 are explored in this section. Students’ experiences and skills in this question might 

be different from that for previous questions, as this question might be unfamiliar to the student 

since the function is not given explicitly in the question.  

9.2.1 Having an accurate pre-judgment of whether they can solve the problem 

 Four students (U348; Y4) were sure they could solve question three. However, only two 

of them were correct (U34). Three (U348) of them had that feeling because they thought they 

understood why the information is given. For instance, U8 said, “we know the area of important 

parts of the 𝑓′(𝑥) and area is related to the anti-derivative”. Y4 had this feeling because he thought 

he had seen similar questions; however when he started solving the problem he said he had not 

understood correctly what the question asked. He said, “I have seen question like this before… I 

think I misinterpret what is asking [sic]”. 
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 Eleven students (U12567; Y123568) were not sure whether they could solve this question 

correctly. Of those, only U5 solved the question correctly. U5 was unsure because she had not 

“encountered any question like this”. Other students had different reasons for that feeling. Two 

students (U7; Y3) were unsure because they had not seen a question like this before. Two students 

(Y68) were unsure because they needed to think more about it to know whether they were able to 

solve it. For instance, Y6 said,  

 I am not sure because I need time to think about it mentally in my head to understand the 

 question better... I think I might be able to do it in time...I know it seems there are some 

 familiar parts in it but all together in one question [I am not sure whether I am able to 

 solve it].  

 Three students (U1; Y12) recognised the question, but were unsure how to solve it. For 

instance, U1 said, “I have seen questions like this before, but cannot remember how to do it”. U6 

was unsure because she thought maybe guessing is involved for solving the problem: “not sure, 

because some guessing may be required”. U5 had some misunderstanding about the given 

information, and thought the given graph is the graph of 𝑓(𝑥). He said, “𝑓(0) = −5 is confusing 

me”. Y1 was unsure because he did not know “where to start”. Y5’s feeling was specifically related 

to how the problem needed to be solved. He said, “I am not sure because I have to change the area 

to 𝑓′(𝑥). but I am not sure I can calculate it correctly [sic]”. 

 Two students (U9; Y7) were sure they were not able to solve this question; however, U9 

did solve the question correctly. U9 had that feeling because he had not seen a similar question 

before. He said, “I never seen this before”. Y7’s feeling was related to how the problem should be 

solved. He said “I do not know how to find out the 𝑓(𝑥) because I do not recognise the graph type 

of 𝑓′(𝑥)” . 

9.2.2 Making a drawing related to the problem 

 For this question, students did not make any drawing related to this problem.  

9.2.3 Making a calculation plan and systematically performing it 

 Students had three different plans for solving Q3 (Table 9.4). Eight students had planned 

to use the integral-area relationships for the graph of derivative function (Section 7.7) and three 

students planned to use the given information to find the equation of 𝑓(𝑥). Three students, when 
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they failed to find the equation, used the integral-area relationship to solve the question. The 

remaining three had no plan for solving Q3.  

Table 9.4 

Students’ plans for solving Q3 

Plans for solving Q3 University students Year 13 Students Total 

Plan A: Use the integral-area relationships for the graph 

of derivative function  

6 (U345689) 2 (Y58) 8 

Plan B: Use the given information for finding the 

equation of 𝑓(𝑥) 

1 (U2) 2 (Y23) 3 

First tried to use plan A, then, plan B 1 (U7) 2 (Y67) 3 

No plan 1 (U1) 2 (Y14) 3 

 

9.2.4 Checking calculations and answers 

 During their solving of Q3, only U5 did some sort of checking. After she found the 

correct answer, she revisited her working to make sure did not make any mistake.  

9.2.5 Having an accurate post-judgment of how effectively the problem was solved 

 Five students (U58; Y568) thought they had solved this question correctly. However, from 

those, only U5 made an accurate post-judgment about solving this question correctly. She was sure 

because she used all of the given information in the question. U5 said, “I have utilised all the 

information I have in the question”. Y5 could not provide a reason why he thought he had solved 

the question correctly. The remaining three students did not provide any reliable justification for 

their judgment. For instance, Y6 said, “It works logically and reasonably I am confident with the 

working”, and Y8 believed he had solved the question correctly because he found the answer more 

easily than he expected. He said, “I think I solved it correctly… because it was a lot simple one to 

do once I was start looking at it in more depth [sic]”. 

 Four students (U349; Y7) were unsure whether they had solved the question correctly. 

From these students, three of them (U349) solved the question correctly. The reason for not being 

sure was different for each of them. U4 was unsure because he did not use a part of the information 

given in the problem, the area of region 𝐶. U9 was unsure because he could not justify the method 
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he had used. He said, “I am not sure because I do not feel I can justify the method I have used”. 

U3 was not confident because he had not solved a non-calculation question in this topic for a long 

time, indicating that most of the questions he dealt with were procedural or calculative questions: 

 It is a question that I haven't come across for a long time…It is just being so long since I 

 have to do a non-calculation based integration and or differentiation [question] that it's 

 pretty much taken me by surprise. Always expect calculation heavy question. Not 

 prepared. 

 Y7 was unsure because he was not confident whether he could integrate both sides of 

𝑓′(6) + 12 = 𝑓′(0). In his solution, he integrated both sides and wrote 𝑓(6) + 12𝑥 + 𝑐 = 𝑓(0), 

which is not correct. The remaining eight students (U1267; Y1234) could not come up with an 

answer to this question, therefore, they have been considered automatically as if they were sure 

they had solved the question incorrectly. 

 To sum up, five factors were found in relation to students’ feelings about whether they had 

solved Q3 correctly, including 

 how much of the given information was being used; 

 how well the method could be justified; 

 how confident the student was with his/her working; 

 how familiar the student was with the question; and 

 how easily the answer was found. 

9.2.6 Discussion 

 For this question the number of students who had checked their answers was fewer than 

for Q1, only one having checked, again suggesting it could be useful for lecturers/teachers to more 

strongly encourage students to use this metacognitive skill. The fact that six students did not use 

the integral-area relationship to solve this question suggests lecturers and teachers should also use 

the graph of derivative for integral-area questions they solve in their classes to help students to 

understand that ∫ 𝑓′(𝑥)𝑑𝑥 = 𝑓(𝑏) − 𝑓(𝑎)
𝑏

𝑎
 is another representation of the first part of the FTC 

and equivalent to ∫ 𝑓(𝑥)𝑑𝑥 = 𝐹(𝑏) − 𝐹(𝑎)
𝑏

𝑎
 where 𝐹′ = 𝑓. This practice might provide a better 

chance for students to realise that the relationship between the graph of the function and the area 
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under the curve also exists for the derivative function. The number of students who were sure they 

were able to solve this question was less than for Q1 (12 for Q1 and 4 for Q3), indicating that 

students are not confident about answering questions that focus on conceptual knowledge (as stated 

in Section 5.2.1, this question evaluates students’ conceptual knowledge). In addition, students’ 

reasons for their post-judgment about solving this conceptual question correctly show that they are 

not confident in their problem solving concerning this question. This suggests that more conceptual 

questions should be included in class practices.  

9.3 Students’ metacognitive experiences and skills about an evaluation task of integral-area 

relationship 

 Students’ metacognitive experiences (Section 9.3.1 & 9.3.5) and skills (Section 9.3.2 to 

9.3.4) regarding Q4 are explored in this section. Students’ experiences and skills for this question 

might be different from those for previous questions because the question is an evaluation task. 

9.3.1 Having an accurate pre-judgment of whether they can solve the problem 

 All the students thought they were able to do this task. However, only U5 identified that 

the first example in Q4 was solved incorrectly. In relation to the second example in Q4, only two 

students (U59) identified it as solved incorrectly. Students made that judgment because they 

thought the examples were familiar to them (U124; Y356), saying the integrals are “simple” and 

“straightforward to integrate” (U28; Y7), and they knew how to solve these questions (U9; Y248). 

U5 made that judgment because she thought only one curve is involved in each example. She said, 

“sure, in both questions, they are only one equation involved so it is not as tricky as the ones with 

more equations”. Y1 made that judgment because he thought he did not need to graph the curves. 

He said, “Also, I do not need to work out the formula from the graph”. 

 Some of the students’ responses related to the fact that the task was an evaluating task. For 

instance, U7 said, “…easier to find someone wrong than to prove me right”. U6 said, “I think I 

can find any wrong steps”.  

9.3.2 Making a drawing related to the problem 

 For this question, two students (U57) made a drawing for this question. U5 made a drawing 

for both parts of the question and solved the question correctly. U7 made a drawing only for the 

second part, but could not identify that the function is not defined at zero (Section 7.4). 
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9.3.3 Making a calculation plan and systematically performing it 

 10 students (U12345; Y13458) had chosen to solve the examples and compare their final 

answer in order to check the examples. The remaining seven students (U6789; Y267) went 

through the steps and checked the steps rather than solving the examples.  

9.3.4 Checking calculations and answers 

 Five students (U3; Y1456) had done some sort of checking for this question. Year 13 

students used their calculators for checking the calculation involved in the problem (Section 7.8). 

U3 checked the calculation after he had solved the question, without using a calculator, to explore 

whether he had substituted the bounds in the anti-derivative correctly (because the answers were 

negative).  

9.3.5 Having an accurate post-judgment of how effectively the problem was solved 

 15 students were sure they had solved the task correctly. However, only U5 made the 

correct judgment for the first example, and only two students (U59) made the correct judgment for 

the second example. The remaining two students (U12) were unsure whether they had solved the 

task correctly. They were unsure because they had got a negative area. In addition, U1 was unsure 

whether the antiderivative of 
1

𝑥2
 is 

−1

𝑥
 or not, indicating a lack of procedural knowledge for finding 

antiderivatives. 

 The 15 students were sure for several reasons. 13 students (U34679; Y12345678) had that 

judgment because they had got the same answer (for one or both examples). U8 had that feeling 

because was “confident” with his workings. Three students (U5; Y15) were sure because they had 

found a different answer from what is written in the task. The two Year 13 students had found a 

wrong answer due to wrong calculation (Y1) and a misconception about the integral-area 

relationship (Y5).  

9.3.6 Discussion 

 The fact that this task is an evaluation task does not negatively affect the confidence of 

students as all students were confident they could solve this question. Students’ pre-judgments, 

similarly to Q1, show that most of them made their judgment based on familiarity with the 

integrand and knowing how to find the antiderivatives, and not by focusing on the shape of the 

enclosed area. In addition, most of the students did not make any drawing of the given curves in 
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the question, with the result that they were unable to find the mistake in the question. This suggests 

that is may be useful for lecturers and teachers to more strongly highlight the importance of 

drawing curves in the integral-area problems and encourage them to focus on the enclosed area’s 

shape to solve these types of questions.  In relation to checking; since most of students did not 

check the fact that integrand should be continuous, this checking strategy also needs to be 

suggested to students. Most of the students’ post-judgments were incorrect, related to the fact that 

they had not used the necessary checking strategies (e.g., that the integrand be continuous, the area 

be positive, and approximating the area using geometric shape) to understand their mistakes in 

finding the solution.  

9.4 Students’ metacognitive experiences and skills regarding a problem posing task about 

integral-area relationship 

 Students’ metacognitive experiences (Section 9.4.1 & 9.4.5) and skills (Section 9.4.2 to 

9.4.4) regarding Q5 are explored in this section. This question is a problem posing task, therefore, 

students’ experiences and skills in answering this question might be different from those used for 

previous ones. 

9.4.1 Having an accurate pre-judgment of whether they can solve the problem 

 Nine students (U3456789; Y57) were sure they were able to pose a problem based on the 

given information. From these, all but Y5 posed a correct problem.  These students had these 

feelings because they thought they could find an example (U689; Y57), or thought they (U357) 

could use simple functions for posing a problem. For example, U7 said, “sure, I am going to use 

simple stuff”, and Y7 said, “I can think of an example”. Apart from those reasons, U4 was sure he 

could pose a problem because he “understand the theory behind” the task.  

 Seven students (U12; Y24568) were unsure whether they were able to pose a problem 

based on the given information. All of them could not pose a problem or posed an incorrect 

problem based on the given information (Section 7.18). Students were unsure for several reasons 

including: 

 unsure they could find an example that fitted the given information (U1; Y26); 

 unsure they could “do it backward” (U2; Y8); 

 unsure because they had not posed a problem before (Y3); and 
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 unsure because they “may make a mistake” (Y4). 

 It was only one student (Y1) who was sure he could not pose a problem based on the given 

information because he had not posed a problem before. 

9.4.2 Making a drawing related to the problem 

 11 students (U34579; Y235678) made a drawing for Q5. In their drawing they had tried to 

sketch a curve and a line to have a better understanding of what they should consider a curve and 

a line. Of those, six were successful in posing a correct problem (Table 9.5). However, making a 

drawing was not as closely related to being successful in this task in comparison to Q1.  

Table 9.5 

Relationship between making a drawing and being successful in Q5 

  Posed correct problem Posed incorrect problem Did not pose a problem 

Made a drawing 6 (U34579; Y7) 1 (Y6) 4 (Y2358) 

Did not make a drawing 2 (U68) 1 (Y1) 3 (U12; Y4) 

 

9.4.3 Making a calculation plan and systematically performing it 

 14 students (U3456789; Y1345678) for posing a problem had tried to choose simple curves 

(e.g., 𝑦 = 𝑥2) and lines (e.g., 𝑦 = 0) (Section 7.18). Four students (U12; Y24) had no specific plan 

for solving Q5, i.e., they did not fix the bounds or functions and just tried some random functions. 

For instance, Y4 drew 𝑦 = 𝑥 and 𝑦 = 𝑥2 on his calculator to see whether he could find an enclosed 

area of one, and after he could not, gave up. Two students (Y1; U7) tried to fix the bounds and 

then choose a curve and a line in a way that the enclosed area be equal to one. For instance, Y1 

fixed the bounds, considering the lower bound equal to zero and the upper bound equal to one. 

Five students (Y23568) tried to fix a curve and a line, then chose both bounds in a way that fitted 

the task. Five students (U34569; Y7) tried to fix a curve, a line, and the lower bound, and chose 

the upper bound so that the enclosed area would be equal to one. For instance, Y7 considered the 

enclosed area between 𝑦 = 𝑥2, the 𝑥-axis, 𝑥 = 0 and𝑥 = 𝑏, and solved∫ 𝑥2𝑑𝑥 = 1
𝑏

0
 to find the 

𝑏. U2 had a misconception about which formula should be used for the area, considered 𝑓2(𝑥) −

𝑔2(𝑥) = 1, and then did not continue working on this question.  
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9.4.4 Checking calculations and answers 

  Six students (U45689; Y6) had done some sort of checking for Q5. These students, after 

posing their problems, solved it to see whether they had got 1 as the answer. However, Y6 who 

made a mistake in his problem posing, could not identify where he had made the mistake.  

9.4.5 Having an accurate post-judgment of how effectively the problem was solved 

 Eight students (U345689; Y67) were sure they had posed the problem correctly. Of those, 

all were correct except Y6. Five of them (U45689) had that feeling because they had solved their 

posed problems and had got one as the answer. Y6 had that feeling because he believed if someone 

solves that problem, the answer is one. Y7 was sure because he thought he had set up the integral 

correctly. U3 thought his solving “was thorough and multiple wrong solutions excluded”. 

 One student who was unsure posed a correct problem (U7), but his reason was not related 

to the content and indicated that he was not confident with his working. He said, “still I can see a 

smile on the researcher’s face”. Eight students (U12; Y123458) were sure they had solved this 

question incorrectly because they could not pose a problem.  

9.4.6 Discussion 

 The problem-posing task is not included in the assessment and the examples solved 

regarding teaching of integral calculus in the Cases (Section 6.1). However, students in Case 1 

were more confident they were able to pose a problem in comparison to students in Case 2. This 

may be due to the fact that they had more experience of working with integral calculus questions, 

as they had passed Year 12 and Year 13 calculus courses. Another possible reason might be related 

to the more conceptual teaching in Case 1 in comparison to Case 2. 

 In relation to their metacognitive skills, more than half of the students did not check their 

calculation for this question, similarly to previous ones. However, several students showed that 

they had metacognitive skills by trying to sketch graphs to be able to pose a problem that met the 

given conditions.  
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9.5 Students’ metacognitive experiences and skills relating to a typical question of the 

second part of the FTC 

 Students’ metacognitive experiences (Section 9.5.1 & 9.5.5) and skills (Section 9.5.2 to 

9.5.4) concerning Q6 are explored in this section. This question is about the FTC; therefore, 

students’ experiences and skills in this question might be different from those found in the previous 

five questions. 

9.5.1 Having an accurate pre-judgment of whether they can solve the problem 

 Six students (U58; Y2358) were sure they were able to do this task. Of those, three of them 

(U58; Y8) were correct. Others misinterpreted what had been asked in the question, thinking they 

only needed to differentiate the expressions or do the definite integral. For example, Y3 said, “sure, 

because I did this in the class”. However, these types of questions about the FTC were not taught 

in Year 13, consequently, they had not done it in their class. 

 Eight students (U1234679; Y6) were unsure whether they were able to do the task. Of 

those, three students (U149) solved the question correctly. The remaining four University students 

solved some parts correctly (Section 7.16). Y6 did not solve any part correctly. He was unsure 

because the task was unfamiliar to him. Three students (U239) were unsure because they had had 

difficulties in learning the FTC. For instance, U2 said, “I am struggling with the second part of the 

fundamental theorem of calculus”, or U9 said, “not sure, these are [the] FTC questions”. U7 was 

unsure because he could not remember the process for solving such questions. U1 was unsure 

because he had not done “much practice” of these types of questions. U6 was unsure, but could 

not provide a reason. She just said, “not sure, I think I can but not sure. We did this in one of the 

assignment”. Only U4’s reason was specifically related to the details in the question. He said, “not 

too sure, because [the] bounds that are functions are a bit confusing for me”. 

 Three students (Y147) were sure they were not able to solve this task. The task was “very 

unfamiliar” for Y7. Y4 had that feeling because the task had not been taught in their classroom, 

and Y1 did not provide any reason for the feeling.  

9.5.2 Making a drawing related to the problem 

 For Q6, two students (U37) made a drawing for the question. However, their drawings did 

not help them to understand how the FTC could be used to solve the problem [see Section 7.16 for 
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U3]. For U7, the drawing was not specifically related to the information given for the problem 

(Figure 9.3). 

 

Figure 9.3 U7’s drawing for Q6 

9.5.3 Making a calculation plan and systematically performing it 

 Students’ plans for Q6 are covered in section 7.16 that described how the second part of 

the FTC was used for finding the derivative of integrals. 

9.5.4 Checking calculations and answers 

 In relation to Q6, only U5 had done some sort of checking. After she found the correct 

answer, she double-checked her workings to make sure she had not made a mistake.  

9.5.5 Having an accurate post-judgment of how effectively the problem was solved 

 Six students (U1568; Y28) were sure they had solved the task correctly. Of these, four 

students (U158; Y7) solved the question correctly, U6 partially solved the question correctly, and 

Y2 had an incorrect judgment. Three students (U168) were sure because they had “recognised the 

question and the path needs to get through” (U1). U5 was sure because she had double- checked 

her working. Y2 was sure but did not provide any reason for that judgment. Y7 had that feeling 

because he thought “there was not much room for errors” and the answer “came out very nicely”. 

 Six students (U2349; Y67) were unsure whether they had solved the task correctly. Of 

those, two students (U49) had solved the question correctly, three students (U23; Y7) solved some 

parts correctly, and Y6 had not solved any parts correctly (section 7.16). Students had different 

reasons for that feeling. U2 had the feeling because his answer was obtained “too easy”. U4 was 

unsure because the bounds in the questions were functions rather than numbers. U9 was unsure 

because he was “confused about the FTC”. U3 thought he “did not do what was asked” in the 

question and he “missed the rule” for solving the task. Y6 was unsure because the task was 
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unfamiliar to him. Y7 was unsure because he thought he had not solved the first two parts correctly 

and for the third one, he only “figured out how to actually solve them”. 

 Four students (U7; Y145) were sure they had solved the question incorrectly. All of them 

had that feeling because they did not finish solving that task or did not try to solve it (section 4.17). 

The remaining one student did not answer this part of Q6.  

9.5.6 Discussion 

 Students’ pre- and post-judgments for this question showed that students in both Cases 

were not confident with solving questions related to the second part of the FTC. Students in Case 

2 had not seen the second part of the FTC, which could be why they were not confident at solving 

this type of question. However, students in Case 1 had seen this theorem completely in the teaching 

(Section 6.1), but only two students were confident of being able to solve this typical FTC question. 

Similar questions to this question were solved in the lectures and tutorials and also were in the 

assignment questions. This suggests that the teaching of the FTC needs to be reconsidered so that 

students can be more confident when dealing with this type of question. That might be done by 

emphasising the development of conceptual knowledge about the FTC.  

 Similarly to previous questions, the number of students who used checking strategies was 

limited, as only one student used this type of strategy. Most of the students did not make any 

drawing to help solve this question, as making drawings is not as essential as the integral-area 

question for being able to find the correct answer.  

9.6 Students’ metacognitive experiences and skills about a contextual problem of the FTC 

 Students’ metacognitive experiences (Section 9.6.1 & 9.6.5) and skills (Sections 9.6.2 to 

9.6.4) concerning Q8 are explored in this section. This question is a contextual question about the 

FTC, therefore, students’ experiences and skills in this question might be different from those used 

for Q6.  

9.6.1 Having an accurate pre-judgment of whether they can solve the problem 

 Five students (U1358; Y4) were sure they were able to solve the task. Of those, two of 

them (U35) solved the task correctly, and three students (U18; Y4) partially solved the task. 

Students had different reasons for that feeling. Y4’s reason was not related to the information given 



235 
 

 

in the task, and he was sure just because he thought he was “better at applied questions”. U5 and 

U8 said, “the 𝑓′ represents the velocity of the water at the tank” and they knew how to solve this 

type of question. U1 and U3 believed it is not a hard task to perform. U1 said, “sure, it doesn’t 

look complex integration problem. It is just given a real world application”, and U3 said, “sure, 

simple graph about a simple rate of change”. 

 Ten students (U4679; Y123568) were unsure whether they were able to solve the task.  Of 

those, four students (U469; Y8) solved the task correctly. The remaining six students partially 

solved the task correctly. These students had that feeling because of different reasons. The task 

was unfamiliar for two students (U7; Y3). U9 was unsure because the task “look like a physic 

question”. U6 was unsure but did not provide any reason. She said, “not sure, if I know how, but 

I think I can”. Five students (U4; Y1268) were unsure because they were not confident about being 

able to solve all parts of the task. For example, Y6 said he was unable to sketch 𝑔(𝑥), or Y1 said, 

“I probably need to find the equation of the graph which I am not good at doing that”. Y5 was 

unsure because 𝑥 in the ∫ 𝑓(𝑡)𝑑𝑡
𝑥

0
 “confused” him.  

 Two students (U2; Y7) were sure they were unable to solve the task. Of those, Y7 partially 

solved the task. They had this feeling because the task was unfamiliar to them. U2 said, “I have 

not seen a question like this”, and Y7 said, “…not familiar with ∫ 𝑓(𝑡)𝑑𝑡
𝑥

0
”, indicating a lack of 

knowledge about the FTC. 

9.6.2 Making a drawing related to the problem 

 Apart from part six, which students were asked to sketch a graph for 𝑔(𝑥) (Section 7.17), 

they did not sketch any other drawing for this question.  

9.6.3 Making a calculation plan and systematically performing it 

 Similar to Q6,  students’ plans for solving Q8 are covered in Chapter Seven (section 7.17) 

that described how the FTC was used in a contextual problem.  

9.6.4 Checking calculations and answers 

 Three students (U35; Y8) had done some sort of checking for Q8. Two of them double-

checked their working. U3, by doing that amended his answer to part 5 of this question. Y8 when 
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he found a negative answer for the first part, checked his workings and amended his answer 

(Section 7.17).  

9.6.5 Having an accurate post-judgment of how effectively the problem was solved 

 Seven students (U3568; Y467) were sure they had solved the task correctly. Of those, three 

students (U356) solved the task completely, and the remaining four students (U8; Y467) partially 

solved the task. These students made that judgment for several reasons. Two students (U3; Y7) 

thought it was not a hard task. For instance, Y7 said for the parts he answered, “it only involved 

geometry and simple understanding of the rate of change”. U3, apart the fact that he thought the 

task is not a hard one, had that feeling because all of his “answers agree with each other”. U8’s 

feeling was related to the answer to one part of the task. He said, “I could work out the area from 

looking at the graph”. U6’s reason was a general one. She said, “looks like the right answer. It 

makes sense”. Three students (Y64; U5) did not provide a reason for their feelings. For instance, 

Y6 said, “I do not know. These are the things that I remember”. 

 Seven students (U249; Y1235) were unsure whether they had solved the task correctly.  Y3 

could not provide a reason for his feeling. Two students (Y25) were “confused” by the questions 

that caused that feeling. For instance, Y5 said, “I am just so confused about the question that I am 

not sure I am right or wrong”. Y1 had that feeling because he was not confident with his answer 

and his drawing. U4 had that feeling because the task was a bit different from previous questions 

he had solved. He said, “done similar stuff before, but not quite like this”. Two students (U29) 

were unsure because they were not confident about their answers to all parts. For instance, U2 

said, “I am not sure, some bits I think I did, some bits not”. 

 Two students (U17) who were sure they had solved the task incorrectly had partially solved 

the task. U7 had that feeling because he was not sure about the value of 𝑔(9). U1 was sure he had 

solved the task incorrectly because he could not draw the function of 𝑔(𝑥). 

9.6.6 Discussion 

 In relation to pre- and post-judgment, as for Q6, this analysis shows several students were 

not confident about the FTC problem, indicating changes to the teaching of the FTC might be 

beneficial for students, as also highlighted in previous chapters. As for previous questions, the 

number of students who used checking strategies was limited, i.e., 3 out of 17. For this question, 
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students did not make any drawing apart from part six, probably because they had the graph of 𝑓′ 

in the question and for part six they had to draw the graph of ∫ 𝑓′(𝑡)𝑑𝑡
𝑥

0
= 𝑓(𝑥) − 𝑓(0) = 𝑓(𝑥). 

These two graphs are enough for answering all parts of the question. 

9.7 Students’ metacognitive experiences and skills regarding a problem posing question of 

the FTC 

 Students’ metacognitive experiences (Section 9.7.1 & 9.7.5) and skills (Section 9.7.2 to 

9.7.4) in relation to Q9 are explored in this section. This question is the second problem-posing 

task, and as it is about the FTC, student’s experiences and skills shown in response to this question 

might be different from Q5.  

9.7.1 Having an accurate pre-judgment of whether they can solve the problem 

 Three students (U5; Y48) were sure they were able to pose a problem based on the FTC 

for the given graph. Of those, all posed a question based on the FTC. However Y4 could not solve 

his problem. These students had different reasons for having that feeling. U5 had that feeling 

because she was sure she could use the graph to pose a problem related to the velocity. Y7 had that 

feeling because it was an open question. He said, “It is quite open so I think I am able to pose a 

problem”. Y4’s feeling was not related to the given information in the task. He said, “I have done 

questions so perhaps I can write one”. 

 Nine students (U23468; Y1356) were unsure whether they were able to pose a problem 

based on the FTC for the given graph. Of those three students (U2; Y56) posed a question that is 

not related to the FTC. The remaining six students posed a problem related to the FTC.  Y1, 

however was not able to solve his problem and Y3 solved his problem incorrectly. Students had 

different reasons for having such a feeling. Four students (U234; Y6) were unsure because they 

had not understood the FTC thoroughly. For instance, U2 said, “not sure, because, I am not quite 

familiar with the FTC part 2” and U4 said, “not too sure because I am not too confident with the 

FTC”. One student was unsure because he believed he was not good at posing questions: “I am 

not sure, because I am not good at posing questions, but might be able to use the previous question” 

(Y1). Y5 was unsure because the graph had three components. U6 made a general comment and 

said, “not sure, it looks complicated”. U8 was unsure because the task was open: “not sure. It is a 

bit trickier because, like the last pose a problem question, infinite many possible answers [exist]”.  
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 Five students (U179; Y27) were initially sure they were unable to pose a problem based on 

the FTC for the given graph. Of those, two students (U17) could not pose a problem, and the 

remaining three students were able to pose a problem and also solved their own problem correctly. 

All of them had that feeling because they thought they did not understand the FTC: “I am sure, I 

cannot, because I do not have a geometric understanding of the FTC” (U9).  

9.7.2 Making a drawing related to the problem 

 For Q9, there was no student who made a drawing to help them to pose a problem. In 

relation to answering the problem they had posed, students did not make any drawing to help them 

solve their problems. The two students (Y13) who posed their problems in such a way that drawing 

a graph is part of the answer were not considered for this section. 

9.7.3 Making a calculation plan and systematically performing it 

 Seven students (U45689; Y28) posed their problems by considering the given graph as the 

graph of the rate of change, and solved their problems by using the areas under the curve. Two 

students (Y34) posed their problems using the given graph as the graph of the rate of change but 

did not use the area under the curve for solving their problems; and were unsuccessful with their 

problem as a consequence. Two students (U3; Y7) did not consider the given graph as the graph 

of the rate of change; instead, they posed their problems based on the first part of the FTC. Two 

students (Y56) posed problems about the rate of change, and U2 posed a problem about finding an 

equation of lines using the given graph. Two students (U17) did not pose a problem and Y1 used 

the given graph as the graph of the rate of change, but had a misunderstanding about the FTC 

(Section 7.19). 

9.7.4 Checking calculations and answers 

 Only U2 did some form of checking for this task. When he was asked to rate his confidence 

that he had found the correct answer, he re-visited his working and made some changes. After the 

changes, however, his answer to the problem that he had posed was still incorrect (Section 7.19). 

9.7.5 Having an accurate post-judgment of how effectively the problem was solved 

 Six students (U456; Y358) were sure they had posed a corrected problem based on the 

FTC. OF those, five students (U456; Y38) posed a problem related to the FTC and four (U456; 

Y8) solved it correctly. Students had different reasons for that judgment. Two students were sure 
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because they believed their problems related to the FTC. U5 said, “I utilise this theorem and posed 

a basic problem utilising the velocity and the distance”. Y8 said, “my question requires an 

understanding of the relationship between the rate of change and actual amount there”. U6 was 

sure because the question was similar to question eight. U4 was sure because he liked the applied 

questions and the problem and the answer make sense for him. Y3 was sure because he believed 

he should have been able to solve the problem he had posed. Y5 did not provide a reason for his 

feeling.  

 Five students (U238; Y47) were unsure whether they had posed a correct problem based 

on the FTC. Of those, all posed a problem related to the FTC and solved their problems, except 

U2, who posed a problem which is not related to the FTC. U8 was unsure because he was not sure 

he “used the FTC”. U3 had difficulty in understanding the FTC: “I am not used to it. My two 

weaker points: the FTC and writing problems”. Y2 was unsure because he was not sure “…the 

questions covers all aspects of the FTC”, and whether he had solved it correctly. Y7 was unsure 

because his question does not “need [an] understanding of the FTC to solve but it is part of it”. U2 

did not provide any reason for his feeling. 

 Five students (U179; Y16) were sure they had not posed a correct problem related to the 

FTC. Of those, two of them (U9; Y1) had posed a problem related to the FTC, and U9 was able to 

solve his problem correctly. Two students (U17) had that feeling because they could not pose a 

problem. Two students (U9; Y6) were sure they did not pose an FTC problem because they thought 

they did not understand what the FTC is. U9 said, “I have absolutely no idea [whether that question 

is related to the FTC or not]”, and Y6 said, “I am not confident with the concept of the FTC and 

whether I have used the FTC”. Y1 had that feeling because he could not solve his problem 

correctly: “I did not know how to sketch it and I just sketch what I remember”. 

9.7.6 Discussion 

 Similar conclusions apply to this problem posing question as applied to Q6 and Q8. 

Students’ pre- and post-judgments show that several students were not confident with the FTC 

problems, and several University students were among them. Most of the University students who 

were unsure of being able to solve this question, or sure they could not solve it said they had this 

feeling because they had not understood the FTC. As mentioned earlier, this suggests changes to 

the teaching of the FTC, could benefit students.   
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9.8 General discussion  

 Considering the number of students who were sure they could solve the integral-area and 

the FTC problems, it can be concluded that students at both levels were more confident of solving 

the integral-area problems in comparison to the FTC problems (Table 9.6 and Table 9.7), 

regardless of whether they had solved the problems correctly. Section 9.5 to Section 9.7 shows 

that several University students were not confident of solving the FTC problem despite the fact 

that this theorem is taught completely in the course, suggesting changes to the teaching of the 

integral calculus are warranted. This suggestion is supported by the literature (e.g., Thompson, 

1994; Thompson & Silverman, 2008) and well supported by the results in Chapters Six to Nine. 

No research was found around students’ metacognitive experiences using the VisA instrument 

(Jacobse & Harskamp, 2012) at secondary or tertiary level that could be compared with the results 

of this study. However, the results obtained show that this instrument is helpful for understanding 

what students feel when dealing with different types of integral calculus questions. In relation to 

post-judgment of having found the correct answer, most of the students who were unsure they had 

found it, or were sure they had solved the problem incorrectly, did not go back to check their 

solution. This result could be an indication of lack of persistence in mathematical problem solving 

in both Cases, considering the fact that there was no time constraint for solving the integral 

questions in the interviews. However, other reasons may also have contributed to the lack of 

checking. For example, it is possible that students had time constraints outside of the researcher’s 

knowledge or that because they were responding to questions during an interview, rather than 

during a high-stakes assessment, they felt less need to check their work. If the checking process 

was routine for students, however, it could be expected that they would automatically do so. 

 University students, in comparison to College students, had a more accurate pre-judgment 

of their ability to solve the integral questions. In addition, they had a better post-judgment as to 

whether they had solved the questions correctly. However, several students in both Cases made an 

incorrect pre- and post-judgment of their ability to solve the problems. The accuracy of 

metacognitive experience is a very important factor as it has an effect on decisions which students 

make in learning situations regarding effort allocation, time investment, or strategy use (Efklides, 

2006). The researcher believes if students think that, because they have successfully solved some 

integral-area relationship questions or they have seen similar questions in the class, they can solve 
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all integral-area questions, such thinking is a barrier to improving their knowledge of this topic, 

and increases the possibility of making an incorrect pre-judgment. For instance, some students are 

able to solve integral-area questions where the upper function does not change in the enclosed 

area, but, when exposed to questions like Q1 that the upper function changed in the enclosed area 

(if you integrate with respect to the 𝑥-axis), they might just treat this question like questions where 

the upper function does not change. Therefore, they found the enclosed area incorrectly while they 

thought they could solve the question (incorrect pre-judgment). Encouraging using monitoring 

strategies, such as approximating the enclosed area using geometric shapes, might help students to 

identify their mistakes and errors, as would the systematic use of checking strategies when lecturer 

or teachers solve exemplar problems. 

Literature in Mathematics education (e.g., Garofalo, & Lester, 1985; Silver, 1982; 

Verschaffel, 1999) also highlighted the importance of metacognition and its relationship to 

problem solving ability (Section 3.1.4). Several general activities are suggested to develop 

students’ metacognitive awareness that might be also helpful for solving questions about integral 

calculus such as 

 exposing students to general problem solving and thinking skills;  

 encouraging students to think aloud the strategies they have used to solve questions; 

 giving questions to students which require planning before solving and evaluating after 

solving; and  

 encouraging students to use different methods for solving the same question (Ministry of 

Education, 2006). At least this study have addressed the second and fourth suggestions by 

asking Q1 (asking student to find area using two methods) and using think aloud protocol 

for exploring student learning. Therefore, these type of activities could be used during 

teaching integral calculus at Year 13 and first year university courses.  

 



242 
 

 

Table 9.6 

Students’ responses to metacognitive experiences questions related to the integral-area problems 

 

Table 9.7 

Students’ responses to metacognitive experiences questions related to the FTC 

  

 

 

 Q1 Q3 Q4 Q5 

Case 1 Case 2 Case 1 Case 2 Case 1 Case 2 Case 1 Case 2 

I am sure I will solve this question 6 (U135689) 6 (Y123678) 3 (U348) 1 (Y4) 9 (U123456789) 8 (Y12345678) 7 (U3456789) 2 (Y57) 

I am not sure whether I will solve this question 

correctly or incorrectly 

3 (U247) 2 (Y45) 5 (U12567) 6 (Y123568) 0 0 2 (U12) 5 (Y23468) 

I am sure I cannot solve this question 0 0 1 (U9) 1 (Y7) 0 0 0 1 (Y1) 

I am sure I solved this question correctly 4 (U3589) 3 (Y268) 2 (U58) 3 (Y568) 7(U3456789) 8 (Y12345678) 6 (U345689) 2 (Y67) 

I am not sure whether I solved this question correctly 

or incorrectly 

3 (U146) 1 (Y7) 3 (U349) 1 (Y7) 2 (U12) 0 1 (U7) 0 

I am sure I solved this question incorrectly 2 (U27) 4 (Y1345) 4 (U1267) 4 (Y1234) 0 0 2 (U12) 6 (Y123458) 

 
Q6 Q8 Q9 

Case 1 Case 2 Case 1 Case 2 Case 1 Case 2 

I am sure I will solve this question 2 (U58) 4 (Y3258) 4 (U1358) 1 (U4) 1 (U5) 2 (Y48) 

I am not sure whether I will solve this question correctly or incorrectly 7 (U1234679) 1 (Y6) 4 (U4679) 6 (Y123568) 5 (U23468) 4 (Y1356) 

I am  sure I cannot solve this question 0 3 (Y147) 1 (U2) 1 (Y7) 3 (U179) 2 (Y27) 

I am sure I solved this question correctly 4 (U1568) 2 (Y28) 4 (U3568) 3 (Y147) 4 (U4567) 3 (Y358) 

I am not sure whether I solved this question correctly or incorrectly 4 (U2349) 2 (Y67) 3 (U249) 4 (Y1235) 3 (U238) 2 (Y27) 

I am sure I solved this question incorrectly 1 (U7) 3 (Y145) 2 (U17) 0 2 (U19) 2 (Y16) 
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 In relation to checking calculations and answers (one of the aspects of metacognitive 

skills), in all questions more than half the students did not check calculations and answers (Table 

9.8). Therefore, the importance of this aspect of metacognitive skills could be highlighted to 

students, and ways that students can use those strategies could be suggested to them (e.g., 

approximating area using geometric shapes, differentiating antiderivatives, and the fact that area 

should be positive). Encouraging students to challenge themselves with questions like “how do 

you know you are correct?” after solving questions can also help students to think about different 

strategies they can use for checking answers. 

Table 9.8 

Number of students who have done checking and calculations in integral questions  

Q1 Q3 Q4 Q5 Q6 Q8 Q9 

7 (U1589; Y246) 1 (U5) 5 (U3;Y1456) 6 (U45689;Y6) 1 (U5) 3 (U35; Y8) 1 (U2) 

 

 Make a drawing for the problem is known both as a metacognitive skill (Jacobse & 

Harskamp, 2012) and a thinking skill (Ministry of Education, 2006); and its importance is 

highlighted in the literature (Jacobse & Harskamp, 2012; Ministry of Education, 2006). For the 

first integral questions all students made a drawing towards solving the problem. However, for the 

evaluation task, Q4, only two students made a drawing to help them solve the question. It seems 

the importance of making a drawing to aid finding the solution of mathematical questions also 

should be highlighted to students, because in atypical questions some of the students in the sample 

did not make a drawing for solving the problem. For instance, in Q4 if students made a drawing 

for the integrands, there was a higher chance that they could understand in the first example that 

the area needs to be split and the integrand in the second example is not continuous.  

9.9 Chapter summary 

 This chapter has explored students’ metacognitive experiences and skills during solving 

integral questions for answering the third and fourth research questions of the study (i.e., what 

metacognitive knowledge, experiences, and skills do students hold about integral calculus in Year 

13 and first year university? And what differences exist between student learning of integral 
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calculus in Year 13 and first year university?). This chapter shows students’ metacognitive 

experiences and skills could be further developed at both levels. The next and final chapter 

describes the overall discussion and conclusions of this study.  
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Chapter Ten: Discussion and Conclusion 

 In this chapter, an overview of the study is presented (Section 10.1) followed by a 

description of the limitations of the study (Section 10.2). Section 10.3 explains the main study 

findings and their implications. It also includes the answers to the research questions of the study. 

Directions for further research (Section 10.4) and concluding words (Section 10.5) form the other 

sections of this chapter. 

10.1 Overview 

 In this study, a multiple case study approach was used to explore students’ learning of the 

integral-area relationships and the FTC. The study sample comprised nine first year university and 

eight Year 13 students who each participated in an individual semi-structured interview. Ten 

undergraduate mathematics lecturers and five Year 13 mathematics teachers were also interviewed 

in relation to the teaching and learning of integral calculus. The teaching of integral calculus in a 

first year university course and a Year 13 college class were also video recorded and observed, to 

obtain a better understanding of the teaching and learning of integral calculus. 

 The study used RBT (Anderson et al., 2001) and Efklides’s metacognition framework 

(Efklides, 2008) to explore students’ learning of integral calculus. The combination of these two 

frameworks can be used to explore student learning in any mathematical topic. Conceptual and 

procedural knowledge (e.g., Mahir (2009)), factual, conceptual, and procedural knowledge (e.g., 

introducing procept by Gray and Tall (1994)), and metacognitive knowledge, experiences, and 

skills (e.g., Jacobse, & Harskamp, 2012), were the focus of research into how students learn 

mathematics and solve mathematical problems. However, RBT (Anderson et al., 2001) and 

Efklides’s metacognition framework (Efklides, 2008) were not previously used together in a study 

for exploring student learning. Using these two frameworks provides a better understanding of 

how students learn mathematics and solve mathematical problems, as illustrated in Chapters Seven 

to Nine. Using them together can help researchers investigate student learning in relation to six 

items, i.e., factual, conceptual, procedural, metacognitive knowledge, experiences, and skills.  

10.2 Main study findings and its implications 

 The work in this thesis adds to the literature about mathematics education in several ways. 

In relation to the first research question of the study, what examples of factual, conceptual, 

procedural, and metacognitive knowledge in integral calculus based on RBT can be found in Year 
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13 and first year university?, the 11 subtypes of RBT’s knowledge dimension for integral calculus 

are described in Chapter Five (Section 5.1). These 11 subtypes have not been explored for integral 

calculus before. Also the researcher could not find a study which described these 11 subtypes for 

mathematics in detail. The implication of this contribution is that it will create opportunities for 

the design of educational objectives, teaching activities, and assessments based on RBT cells for 

integral calculus. In addition, it could help lecturers, teachers, researchers, and curriculum 

designers involved in calculus teaching in Year 13 and first year university to have a better 

understanding of RBT in the context of integral calculus. Having metacognitive knowledge as part 

of RBT’s knowledge dimension and describing it in the context of integral calculus helps lecturers 

and teachers to have a better understanding of what each subtype of metacognitive knowledge 

means in integral calculus (Section 5.1.9 to 5.1.11). 

 The discussion and implications of the remaining research questions are described together, 

as they are related to each other. These research questions are: 

 2. Using RBT as a lens, what are students' difficulties in solving integral questions in Year 

13 and first year university? 

 3. What metacognitive knowledge, experiences, and skills do students hold about integral 

calculus in Year 13 and first year university? 

 4. What differences exist between student learning of integral calculus in Year 13 and first 

year university? 

 5. What are the perceptions of lecturers and teachers towards students’ difficulties in 

integral calculus?  

 Making a profile of students’ metacognitive knowledge, experiences, and skills in relation 

to the topics of the study has not previously been explored in the literature. These findings show 

which aspects of students’ metacognitive knowledge, experiences, and skills may need further 

development (Chapter Eight and Nine). In addition, the study makes contribution to literature in 

mathematics education in New Zealand by making a profile of students’ conceptual and procedural 

knowledge in the FTC, compared to most previous research in New Zealand which focuses on the 

integral-area relationships, definite integral, and Riemann sums (e.g., Thomas & Hong, 1996).  
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 In relation to the transition from secondary to tertiary education, the findings show that the 

teaching (Section 6.1) and learning (Chapter Seven and Eight) of mathematics in Year 13 was 

more procedural than conceptual in comparison to first year university; therefore, students who 

start studying at university should learn how to deal with more conceptual teaching. Year 13 

students should develop their metacognitive knowledge in a way that gives them an understanding 

of how to learn mathematics effectively, and to understand the importance of the rationale and 

ideas behind the formulas and theorems which promote understanding (Cuoco, Goldenberg, & 

Mark, 1996; Hanna, 1995). Students need to come to see mathematics as more than just a collection 

of formulas and theorems, and that students need to learn more than the procedures for using them. 

If they want to be successful in mathematics, students understand how different ideas in 

mathematics are related to each other, and not forget to explore why formulas and theorems exist 

and how they are related to other concepts and topics in mathematics. To achieve this, teachers 

could also adapt practices that support students development of conceptual and metacognitive 

knowledge to prepare students for studying at universities.  

  The study findings show that students had difficulty with conceptual knowledge about the 

FTC (Chapter Seven). Results in relation to metacognitive experiences also reveal that students 

knew they had not understood the FTC (Chapter Nine). Students in both Cases were more 

confident about solving the integral-area problems in comparison to the FTC problems (Chapter 

Nine), regardless of whether they had solved the problems correctly. This is more important in 

Case 1, as these students were taught both parts of the FTC. There are several possible reasons for 

such performance. Firstly, the geometric interpretation of the FTC was not mentioned explicitly to 

students (Section 6.1.1). Secondly, the FTC questions used for assessment in both Cases related to 

procedural knowledge about the FTC (Section 6.1.1). No question was asked about the geometric 

interpretation of the FTC in their assessments; also students did not ask about it in the classes. 

Therefore students did not focus on understanding the meaning of the FTC. Understanding of the 

FTC for many students was limited to using it for finding the definite integral from the 

corresponding antiderivative, or being able to find the derivative of an integral using FTC, 

regardless of their understanding of the relationship between the accumulated area function and 

rate of change of accumulated area function. The obtained results are in line with the literature 

(e.g., Orton, 1983; Thompson & Silverman, 2008) which shows that students could apply the FTC 

for finding the definite integral, however, they did not have conceptual knowledge about it. 
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 The fact that students’ focus was on procedural knowledge was also highlighted by 

lecturers and teachers (Section 6.2) and the literature on mathematics education (e.g., Thomas & 

Hong, 1996). Avoiding presenting the FTC as magic (Section 6.2.3), and more focus on conceptual 

knowledge both in teaching and assessment might change the students’ focus. This study’s 

findings (Chapters Six and Eight) show that a number of students had a performance approach 

toward learning integral calculus; therefore, if conceptual knowledge was not involved in the 

assessment, they had not focused on this type of knowledge.  

 These findings suggest the advisability of designing and using teaching activities and 

assessment that focus on conceptual knowledge, particularly in relation to geometric interpretation 

of the FTC in calculus courses. This has been also been supported by the literature (Thompson & 

Silverman, 2008). Providing conceptual questions, both in examples that are solved in classrooms 

and in assignments and assessments, might influence students’ focus because of their wish to 

obtain good scores in tests and assignments. If lecturers and teachers in their assessment, and the 

examples they solve in classes for students, use conceptual questions like Why do you use definite 

integral for finding the area enclosed between curves?, or why 
𝑑

𝑑𝑥
(∫ 𝑓(𝑡)𝑑𝑡

𝑥

𝑎
) is equal to 𝑓(𝑥)?, 

or use questions like the integral questions used in this study, or similar conceptual questions asked 

in the literature about exploring student learning in integral calculus (e.g., Thomas & Hong, 1996); 

this might change students’ approaches toward learning integral calculus. 

 The findings in Chapter Seven (Section 7.8) showed several students made technical errors 

while solving integral problems. This finding suggests remedial lessons and revision worksheets 

related to necessary prior knowledge (e.g., algebra, skills of drawing functions, and functions) 

could be used to prepare students for the integral calculus topic. This also has been suggested by 

literature regarding other contexts (e.g., Singapore: Kiat, 2005). Another suggestion could be to 

use a diagnostic test, before or at the start of the course, about the prior knowledge needed for this 

topic to help students identify their difficulties.  

 Considering the teaching of integral calculus in Case 2 that was more procedural and the 

perspective of teachers and lecturers (Chapter Six), it seems the importance of conceptual 

knowledge, particularly, the rationale behind the formulas, should be highlighted to instructors, 

particularly teachers. As several University students stated (Section 8.1.9), knowing the rationale 
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helps students to remember, apply, or reproduce formulas when needed. It helps them to have a 

better understanding of the topic, and better performance in exams and questions. The study 

provides further evidence that pre-service and in-service teaching programmes benefit from 

including focus on conceptual knowledge and its usefulness for students’ learning. 

 Students in Case 2 had more difficulties with conceptual knowledge about the definite 

integral and the integral area relationship in comparison to Case 1 (Chapter Seven). One possible 

reason for such performance might be related to the teaching of the Riemann sums (Section 6.1). 

In Case 1, Riemann sums were the focus of teaching definite integrals, and examples were solved 

in this regard. In addition, during the teaching of other topics such as finding volume by slicing 

and cylindrical shells, the proofs for volume formulas were taught to students. The ideas used in 

those proofs are related to Riemann sums, therefore, help students to have a better understanding 

of the Riemann sums and Riemann integral. However, other possible reason for such performance 

could be university students have more experiences with this topic as they exposed to it for a longer 

time. 

 In Case 2, the teacher did not introduce Riemann sums until end of the teaching of integral 

calculus and no example was solved in the classroom. This teacher started with teaching definite 

integrals, showing his procedural approach toward teaching, i.e., “I am going to take the expedient 

route...I am going to give you the application…saying without proving…” (Section 6.1.2). Similar 

to presenting the FTC as magic (Section 6.2.2), such approaches toward teaching mathematics are 

related to instrumental learning (Section 3.1.2), which can have negative consequences for 

students’ learning (e.g., they influence their attitude toward mathematics and their understanding 

of the structure of mathematics (Section 6.2.3)). One of the possible reasons why this teacher did 

not focus on Riemann sums is related to the New Zealand Curriculum (Ministry of Education, 

2007a) and the NCEA level 3 mathematics achievement standards (New Zealand Qualifications 

Authority, 2013). Being able to use the numerical method of integration is prescribed in these 

documents; however the Riemann sums are not highlighted (Section 1.2.2). In addition, the 

textbook used in the College (Delta mathematics (Barton & Laird, 2002) does not focus on the 

Riemann integral and only provides it in the appendix. Among the numerical integration methods, 

the trapezium and Simpson’s rule are provided in the main body of the textbook and also are in 

the focus of teaching in the College. However, it seems the proofs behind these methods are more 
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complicated in comparison to the Riemann sums as their formulas have more elements. Another 

possible reason is the numerical method was presented at the end of integral calculus topic in the 

textbook and was also taught by the teacher at the end of the integral calculus topic, whereas, in 

Case 1, students first learnt about Riemann sums, then were exposed to the FTC and integral 

techniques. Numerical methods are more conceptual and need more time to understand. Students 

in Case 1 had more time to understand them while being introduced to different topics in integral 

calculus, while this opportunity was not available to students in Case 2.  

 Study findings (Section 8.5.3) show that five University and two College students like 

calculus when they understand it. Teaching the Riemann sums to students can help them to have a 

better understanding of the definite integral and integral-area relationship (Sealey, 2006, 2014) and 

the FTC (Thompson & Silverman, 2008). Therefore, teaching about Riemann sums might be one 

of the useful ways of changing students’ attitudes toward calculus as students may develop a better 

understanding of the structure of mathematics. 

 In relation to one aspect of metacognitive skills (that is, checking calculations and 

answers), in all integral questions, more than half the students did not check their calculations and 

answers in the interviews (Table 9.8). In addition, for most students, checking whether the 

integrand is continuous or not, and monitoring problem solving were not part of students’ plans 

for solving integral problems (Section 8.3). Moreover, the number of monitoring strategies 

students knew for checking their answers were limited for several students (Section 8.2). 

Therefore, this aspect of metacognitive skills should be included as a key element of teaching, and 

ways in which students can use those strategies should be suggested to them (e.g., approximating 

area using geometric shapes, differentiating antiderivatives, and that the fact that area should be 

positive). If lecturers and teachers used monitoring strategies more often during the solving of 

questions in their classes, and asked students to do so as part of their problem solving, this 

metacognitive skill might be used by students more often. 

 In relation to making a drawing related to a problem as part of metacognitive skills in 

solving mathematical problems; in the first integral question, which is a typical question about 

integral-area relationship, all students made a drawing to help solve the problem. However, for 

non-typical questions, like Q4 of the integral question (Section 5.2.1), only two students made a 

drawing to help them solve the question. It seems the importance of making a drawing to assist in 
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solving mathematical questions should also be highlighted to students, because in unfamiliar 

questions some students in the sample did not make a drawing to help solve the problem. For 

instance in Q4, if students made a drawing for the integrands, there was a higher chance that they 

could understand that in the first example the area needs to be split, and the integrand in the second 

example is not continuous. Lecturers and teachers should be encouraged to make a drawing for 

each question they solve in classes for students, and also to encourage students to do so. Free 

online resources such as https://www.desmos.com/ can be used/suggested for this purpose. 

 The differences between students’ performance in Case 1 and 2 in relation to definite 

integral suggests changes in the curriculum document to focus more on teaching Riemann sums. 

This would help to increase students’ conceptual and procedural knowledge. By knowing the 

rationale behind the relationship between definite integral and the area under a curve through 

Riemann sums, students will develop their conceptual knowledge as to why a definite integral can 

be used for finding area. Teaching Riemann sums would also help students develop their 

procedural knowledge by knowing what to integrate and how to set up the bounds of integral 

(Sealey, 2006, 2014). 

 Students in Case 1 in comparison to students in Case 2 had a more accurate pre-judgment 

of their ability to solve the integral questions and also had a better post-judgment of whether they 

had solved the questions correctly (Chapter Nine). However, in both Cases several students made 

an incorrect pre- and post-judgment. Therefore, highlighting not oversimplifying the question and 

using monitoring strategies might help students to understand where they make mistakes. 

  In relation to metacognitive knowledge, the importance of knowing the rationale behind 

the theorems and formulas is addressed in the literature (Section 5.2.2), and most of the students 

in Case 1 were aware of its importance and usefulness (Section 8.1.7 & 8.1.9). Therefore, it seems 

that its importance should be highlighted to students in College. The usefulness of pre-reading 

(Section 8.1.4) and summarising strategies (Section 8.1.8) could be highlighted to students in both 

Cases as the number of students who used them was limited. If a lecturer or teacher, after teaching 

mathematical concepts and theorems within a topic, made a concept map of the mathematical 

concepts and theorems in the topic (using websites such as https://bubbl.us/) to show how the 

concepts and theorems in the topic are related to each other, this can help students to realise that 

making a summary of the ideas in the course is helpful for their learning. The teacher or lecturer 

https://www.desmos.com/
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could also encourage students to do so, and then students could compare their concepts map of the 

topics with their peers to further develop their understanding of the topic.     

 Overall, Table 10.1 summarises the similarities and differences found between the teaching 

and learning in the study’s Cases. This could help researchers, lecturers, and teachers who are 

involved and interested in the secondary-tertiary transition to have a better understanding of this 

transition.  

Table 10.1  

Similarities and differences between the teaching and learning in the Cases of the study 

Similarities Differences 

Assessment in both Cases was more 

procedural than conceptual. 

The teaching of integral calculus was more 

procedural in Case 2 in comparison to Case 1. 

Students’ metacognitive knowledge, skills, 

and experiences could be further developed in 

both Cases. 

For a majority of students, their understanding 

of the definite integral and the integral-area 

relationship was procedural in Case 2, while it 

was conceptual in Case 1. 

The use of monitoring strategies should be 

modelled to students in both Cases. 

Online resources were used more often in Case 

1 in comparison to Case 2. 

Students’ understanding of the FTC was 

procedural in both Cases. 

Metacognitive knowledge of students in Case 2 

needed further development in comparison to 

students in Case 1 in relation to the importance 

of the rationale behind the formulas. 

Several students in both Cases had difficulties 

with the algebraic manipulation necessary for 

solving integral questions and sketching 

graphs.  

Lecturers were more aware of the importance 

of the rationales behind the formulas and 

theorems in comparison to the teachers. 

Several students in both Cases had a 

performance approach towards learning 

integral calculus. 

Students in Case 1 had more accurate pre- and 

post-judgments in comparison to students in 

Case 2. 
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10.3 Limitations of the study 

 For the first time, this study makes a profile of students’ use of factual, conceptual, 

procedural, and metacognitive knowledge in integral calculus. In addition, it shows how RBT can 

be used to explore students’ learning in a mathematical topic. However, there are a number of 

limitations to the study’s findings.  

 In this study, student learning of integral calculus is explored, based on the responses of 17 

students from one University and one College; therefore, the results obtained may not represent 

all students’ problem-solving behaviours in integral calculus. The University and College were 

chosen from a region that was geographically accessible to the researcher. The school decile of the 

College was 10; therefore, the findings might not be applicable to students who attend other 

colleges with different decile rating. Studies with larger sample sizes in different contexts are 

necessary to explore the findings further.  

 Gender differences are not explored in the study because of the small sample size with 

most of the interviewees were male. If further studies, exploration of gender differences in terms 

of students’ mathematical problem solving, metacognitive knowledge, experiences, and skills 

could also be fruitful. In addition, it would be valuable to explore whether there is a difference 

between students of different ethnic groups in terms of the themes of the study.  

 In this study, to explore facets of metacognition in relation to integral calculus, the 

Efklides's (Efklides, 2006, 2008) metacognition framework and subtypes of RBT's metacognitive 

knowledge (Anderson et al., 2001) were used. If other metacognition frameworks or other 

definitions that existed for metacognitive knowledge were to be considered, further valuable 

information may be obtained that could add to the study findings.  

 The presence of the researcher during the observation and recording of the teaching of 

integral calculus in these Cases might have had an impact on lecturers, tutors, teachers, and 

students behaviour in classes. The researcher attempted to establish friendly relationships with 

participants, however, his presence might still have had an effect on their behaviour and practices. 

 The main data from students were gathered using a fairly lengthy interview. Students 

before the interview were informed whenever they feel tired tell the interviewer to do the rest of 

the questions on another session (Appendix 1), however, they might not have done that when they 

felt tired. Although, for all students except one, the interview were done in two sessions, and for 
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the remaining student it was conducted in three sessions. In addition, students might not feel 

comfortable answering integral questions while being observed by the researcher and think aloud.  

 Students’ metacognitive skills were explored using a think aloud protocol (Section 5.2.3). 

While the interviewer encouraged students to think aloud consistently during problem solving, 

there were moments where students did not think aloud. It was possible that students did not 

verbalise all their thinking, therefore, some of the students’ metacognitive skills might not have 

been captured in the study.  

 The interim RBT knowledge dimension for integral calculus used in this study was 

developed solely by the researcher, using several documents under the supervision of his PhD 

supervisors (Section 5.1). In addition, the qualitative analysis of this study reported in Chapters 

Six to Nine was done by the researcher only. Therefore the study findings are reliant on his 

interpretation and biases. Different issues related to reliability, such as data, theory, and method 

triangulation (Section 4.3.4) and validity (Section 4.3.5) in qualitative research, were considered 

to strengthen the validity of the findings. However, the findings were still influenced by his beliefs 

and experiences (Section 1.2.1) and should be seen in that light.  

10.4 Directions for further research 

 This study used RBT for exploring students’ learning of integral calculus, while RBT has 

other applications, such as exploring alignment and planning teaching (Chapter Two).  Evaluating 

the alignment between curriculum documents, teaching activities, and assessment can be done 

using RBT. Developing a tool for observing teaching in classrooms and analysing teaching 

activities based on RBT can also provide further insights about teaching and learning.  In addition, 

RBT can be used for designing questions that explore teachers’ perspectives toward teaching 

different mathematical topics.  

 While several studies focus on students’ learning of definite integral and integral-area 

problems (e.g., Grundmeier, Hansen, and Sousa, 2006; Kiat, 2005; Mahir, 2009), further studies 

in relation to students’ learning of the FTC seem necessary, as the amount of research in relation 

to this topic is still limited.  
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 The interim RBT knowledge dimension for integral calculus in this study could be 

developed and refined by a research team including mathematics lecturers, teachers, and 

researchers in undergraduate mathematics, to incorporate several perspectives and ideas. 

 Designing teaching activities and assessment questions that focus on conceptual 

knowledge about the FTC is also required, as lecturers and teachers are mainly using procedural 

questions related to this topic (Section 6.1) and the amount of research which provides such 

teaching activities and assessment is limited. In a broader perspective, designing teaching activities 

that address different cells of RBT for the FTC can be useful.  

 Further research is necessary to explore at what stage numerical integration should be 

taught to students: at the start of teaching integral calculus before exposing students to the FTC 

and antiderivative (Case 1); or at the end of the topic after teaching the definite integral, FTC, and 

integral techniques (Case 2). The study findings show that presenting the numerical integration 

method at the end of teaching integral calculus at Case 2 did not provide conceptual knowledge 

for students, while the Riemann sums that were provided at the start of teaching integral calculus 

in Case 1 did provide conceptual knowledge to students (Chapter Seven). However, the fact that 

students in Case 1 had been exposed to integral calculus in Years 12 and 13 should be taken into 

consideration here. Therefore, further research is necessary to see whether prioritising each of 

these topics for students in the same schooling Year has an effect on their conceptual knowledge 

or not.    

10.5 Concluding words 

 The number of researchers in mathematics education who have used RBT as a framework 

is limited. However, the comparison that has been done between the major theories and 

frameworks that influence the teaching and learning of mathematics (Section 3.1) shows that RBT 

fits with these theories and addresses several aspects of them. The study findings show that RBT 

is a useful tool for exploring student learning, therefore its potential should be reconsidered by 

researchers in mathematics education when they wish to explore students’ learning and problem 

solving. Several students in the sample had not developed conceptual knowledge in relation to the 

definite integral in Year 13, therefore, changes in the teaching of integral calculus at this level 

seems necessary to provide more focus on conceptual knowledge. At both levels, University and 

College, changes to the teaching of the FTC are necessary in order to provide opportunities for 
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students to develop their conceptual knowledge about the FTC. The study shows that several 

aspects of student’s metacognitive knowledge, skills, and experiences need further development; 

those aspects should be highlighted during the teaching of integral calculus, to help students to 

improve their understanding of this topic and become successful mathematical problem solvers. 

All of these changes could help improve the quality of the teaching and learning of mathematics 

at Universities and Colleges, and make the secondary- tertiary transition more enjoyable for 

students.  
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Appendix 1: Interview questions with University students 

 

Dear participant 

Thank you so much for accepting to participate in the interviews regarding learning area under curves 

and the Fundamental Theorem of Calculus. Please read information below and after you feel ready tell the 

interviewer to start the interview. 

 Please note that there are 9 integration questions which you need to solve in these interviews, 

five related to the area under curves and four related to the Fundamental Theorem of Calculus. 

 Some of these questions may be not taught in X13, and they are asked for research purpose. 

 If you need extra paper for solving the questions ask the interviewer to provide some for you. 

 Remember that how you answer these questions will not affect your X grade and your responses 

are completely confidential with the researcher and his supervisors as informed you previously 

in the information sheet. 

 For each question, please explain your thinking aloud while you solve the questions.  

 Please do not share the interviews questions with your classmates because some of them are 

going to take part in the same interviews and for the research purpose, they should not see the 

questions before the interviews. 

 Whenever you feel tired, please tell the interviewer to do the rest of the questions on another 

session. 

 For some of the questions you need to read the questions and rate your confidence for finding 

the correct answer (without calculating the answer). When you finished, you also need to rate 

your confidence for having found the correct answer. 

 After you finish answering the integration questions, there are a couple of general questions 

about your experience of learning area under curves and the Fundamental Theorem of Calculus. 

There are 14 questions in this regard which approximately take around 15 to 20 minutes to 

discuss them with the interviewer. This is the place you can say your opinion about teaching, 

learning, and assessment of integration, particularly in these two calculus topics. 

Many thanks again for participating in the interviews 

Yours sincerely 

Farzad Radmehr 

                                                           
13 The name of the course was mentioned here instead of X which is removed for not revealing the name of the 
University. All X in appendix 1 is the name of the course students were enrolled in it.  
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1.    Please calculate the area enclosed between the curve 𝑥 = 𝑦2 and 𝑦 = 𝑥 − 2 in two ways. Which way is better to use? 

Why? 

How well do you think you can solve this question? 

I am sure I will solve this question.  

I am not sure whether I will solve this question correctly or incorrectly.  

I am sure I cannot solve this question.  

Please, explain why 

 

 

 

Solution: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rate your confidence for having found the correct answer. 

I am sure I solved this question correctly.   

I am not sure whether I solved this question correctly or incorrectly.  

I am sure I solved this question incorrectly.  

Please, explain why 
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2. What do you understand by A = ∫ [𝑓(𝑥) − 𝑔(𝑥)]𝑑𝑥
𝑏

𝑎
  and B = ∫ [𝑤(𝑦) − 𝑣(𝑦)]𝑑𝑦

𝑑

𝑐
 ?  

Can you justify how these formulas are derived? Can you justify when each one is used? 
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3. The graph of 𝑓′(x), the derivative of 𝑓(𝑥), is sketched below.  

The area of the regions, 𝐴, 𝐵,and 𝐶 are 20, 8, and, 5 square  

       units, respectively. Given that𝑓(0) = −5, find the value of 𝑓(6). 
 

 

 

 

 

 

 

 

How well do you think you can solve this question? 

I am sure I will solve this question.  

I am not sure whether I will solve this question correctly or incorrectly.  

I am sure I cannot solve this question.  

Please, explain why 

 

 

 

Solution: 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rate your confidence for having found the correct answer. 

I am sure I solved this question correctly.   

I am not sure whether I solved this question correctly or incorrectly.  

I am sure I solved this question incorrectly.  

Please, explain why 
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4.  Are these examples solved correctly? Please justify your answer. 

Ex.1: Find if possible, the area between the curve 𝑦 = 𝑥2 − 4𝑥 and the x-axis from 𝑥 = 0 to 𝑥 = 5. 

∫ (𝑥2 − 4𝑥)𝑑𝑥 = [
𝑥3

3

5

0
−

4𝑥2

2
]𝑥=0
𝑥=5 = [

53

3
−

4(5)2

2
] − [

(0)3

3
−

4(0)2

2
] =

−25

3
                                            

 Ex.2: Find if possible, the area enclosed between the curve 𝑦 =
1

𝑥2
  and the x-axis from 𝑥 = −1to 𝑥 = 1. 

∫
1

𝑥2
𝑑𝑥 = ∫ 𝑥−2𝑑𝑥

1

−1

1

−1

= [
(𝑥)−1

(−1)
=
−1

𝑥
]𝑥=−1
𝑥=1 =

−1

1
−
(−1)

(−1)
= −2. 

 

How well do you think you can solve this question? 

I am sure I will solve this question.   

I am not sure whether I will solve this question correctly or incorrectly.  

I am sure I cannot solve this question.  

Please, explain why 

 

 

 

Solution: 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rate your confidence for having found the correct answer. 

I am sure I solved this question correctly.   

I am not sure whether I solved this question correctly or incorrectly.  

I am sure I solved this question incorrectly.  

Please, explain why 
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5. Please can you pose a problem about the area enclosed between a curve and a line with any two arbitrary bounds 

that will give an answer of 1 (i.e., the enclosed area will be equal to one)?  

How well do you think you can solve this question? 

I am sure I will solve this question.  

I am not sure whether I will solve this question correctly or incorrectly.  

I am sure I cannot solve this question.  

Please, explain why 

 

 

 

Solution: 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rate your confidence for having found the correct answer. 

I am sure I solved this question correctly.   

I am not sure whether I solved this question correctly or incorrectly.  

I am sure I solved this question incorrectly.  

Please, explain why 

 

 

 

 

 

 

 



284 
 

284 
 

6. Find the derivative of the following functions. 

 𝑂(𝑥) = ∫
1−𝑡

𝑡2−2𝑡−9
𝑑𝑡

𝑥

1
 

 G(𝑥) = ∫ 𝑟2√1 + 𝑟3
𝑥2

0
𝑑𝑟 

 𝐷(𝑥) = ∫ 𝑡3𝑑𝑡
4𝑥+4

2𝑥−5
 

How well do you think you can solve this question? 

I am sure I will solve this question.  

I am not sure whether I will solve this question correctly or incorrectly.  

I am sure I cannot solve this question.  

Please, explain why 

 

 

 

Solution: 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rate your confidence for having found the correct answer. 

I am sure I solved this question correctly.  

I am not sure whether I solved this question correctly or incorrectly. 

I am sure I solved this question incorrectly. 

Please, explain why 
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7. What do you understand by 𝐹(𝑥) = ∫𝑓(𝑥)𝑑𝑥? 

-What do you understand by 𝐹(𝑥) = ∫ 𝑓(𝑡)𝑑𝑡
𝑥

𝑎
? 

-What do you understand by∫ 𝑓(𝑥)𝑑𝑥 = 𝐹(𝑏) − 𝐹(𝑎)
𝑏

𝑎
? When do you use this formula? Can 

you justify how it is derived? 

-What do you understand by  
𝑑

𝑑𝑥
(∫ 𝑓(𝑡)𝑑𝑡

𝑥

𝑎
) = 𝑓(𝑥) ? When do you use this formula? Can 

you justify how it is derived? 
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8. Let 𝑓 represent the rate at which the amount of water in Phoenix's water tank changed in 100's of gallons per hour in 

a 12 hour period from 6 am to 6 pm last Saturday (Assume that the tank was empty at 6 am (t=0)). Use the graph of 

𝑓, given below, to answer the following. 

 

 How much water was in the tank at noon? 

 What is the meaning of   𝑔(𝑥) = ∫ 𝑓(𝑡)𝑑𝑡
𝑥

0
 ? 

 What is the value of (9) ? 

 During what intervals of time was the water 

 level decreasing? 

 At what time was the tank the fullest? 

 Using the graph of 𝑓 given above, construct a rough 

sketch of the graph of 𝑔 and explain how the graphs are 

      related. 

How well do you think you can solve this question? 

I am sure I will solve this question.  

I am not sure whether I will solve this question correctly or incorrectly.  

I am sure I cannot solve this question.  

Please, explain why 

 

 

 

Solution: 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Rate your confidence for having found the correct answer. 

I am sure I solved this question correctly.  

I am not sure whether I solved this question correctly or incorrectly.  

I am sure I solved this question incorrectly.  

Please, explain why 
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9. Please can you write a problem based on the following graph whose solution would require using the Fundamental 

Theorem of Calculus?  

 

 

 

 

 

 

 

 

 

 

How well do you think you can solve this question? 

I am sure I will solve this question.  

I am not sure whether I will solve this question correctly or incorrectly.  

I am sure I cannot solve this question.  

Please, explain why 

 

 

 

Solution: 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

  

 

 

 

 

 

 

 

Rate your confidence for having found the correct answer. 

I am sure I solved this question correctly.   

I am not sure whether I solved this question correctly or incorrectly.  

I am sure I solved this question incorrectly.  

Please, explain why 

 

 

 

End of first part of the interviews. 
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Part2: Please think about the calculus topics "area between two curves, and the Fundamental 

Theorem of Calculus" and answer the following questions. 

1. Did you attend the lectures/tutorials in these topics? If so, could you please describe what you typically did 

when attending the lectures and tutorials of X in these topics? Why/Why not? 

Response : 

 

Reason: 

 

Did you take notes in class? Why/Why not? Yes No 

Reason: 

 

 

Did you just listen to the instructor/tutor? Why/Why not? Yes No 

Reason: 

 

 

Did you talk to your classmate while the instructor/tutor teaches these topics? Why/Why not? Yes No 

Reason: 

 

 

Do you do any pre-reading before attending sessions in relation to these topics? Why/Why not? Yes No 

Reason: 

 

 

Do you look at your previous lecture notes, or Anton calculus textbook, etc before coming to the 

classes? Why/Why not? 

Yes No 

Reason: 
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2. Which source(s) of information do you use for learning about these topics? Why? 

Response : 

 

 

 

 

Reason: 

 

 

 

3. How do you help yourself to learn to calculate the area enclosed between curves? How about when you are 

learning about the Fundamental Theorem of Calculus? Please justify your answer. 

Response  about area: 

 

 

Justification about area: 

 

 

Response  about FTC: 

 

 

 

Justification about FTC: 
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4. Do you solve all questions in relation to finding enclosed area in the same way or do you use different 

strategies for solving different questions in this topic? How about the solving questions using the Fundamental 

Theorem of Calculus? 

Response  about area: 

 

Justification about area: 

 

Response  about FTC: 

 

 

Justification about FTC: 

 

5. What difficulties do you have in learning how to calculate the area enclosed between curves? What are your 

strengths and weaknesses in this topic?  How about the answers to these two questions in relation to the 

Fundamental Theorem of Calculus ? 

Response  about area: 

 

 

Justification about area: 

 

 

Response  about FTC: 

 

 

Justification about FTC: 
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6. How do you check your answers when solving problems involving finding the area enclosed between curves?  

How about the Fundamental Theorem of Calculus? 

Response  about area: 

 

Justification about area: 

 

 

Response  about FTC: 

 

 

Justification about FTC: 

 

7. What prior knowledge do you think you need to be able to solve problems related to finding the area enclosed 

between curves? How about the Fundamental Theorem of Calculus? 

Response  about area: 

 

Justification about area: 

 

 

Response  about FTC: 

 

 

 

Justification about FTC: 
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8. Do you use any practice or memory strategies for these topics, such as using an acronym for remembering 

formulas, procedures, and concepts in these topics (e.g., BEDMAS: for order of operations in algebra? 

Response  about area: 

 

 

Justification about area: 

 

Response  about FTC: 

 

 

Justification about FTC: 

 

9. Have you made a summary of the concepts, formulas, or procedures presented in these topics for yourself (e.g., 

Figure 1(? Please explain your answer. 

Response  about area: 

 

Justification about area: 

 

Response  about FTC: 

 

 

 

Justification about FTC: 
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10. When you are studying integration do you think about the justification or rational behind the formulas or do 

you just try to apply the formulas? Why? 

Response  about area: 

 

 

Justification about area: 

 

 

Response  about FTC: 

 

 

 

Justification about FTC: 

 

11. Do you have a plan for solving problems related to enclosed area between curves (e.g., Figure 2)? Why/why not? 

How about a plan for solving problems related to the Fundamental Theorem of Calculus? If not, can you create one 

now? 

Response  about area: 

 

Justification about area: 

 

Response  about FTC: 

 

 

Justification about FTC: 
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Plan for solving enclosed area  between curves: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Plan for solving FTC problems: 
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12. Have you heard about metacognitive knowledge? If so, what is metacognitive knowledge in terms of learning how to 

calculate the area enclosed between curves?  What is it in terms of learning about the Fundamental Theorem of 

Calculus? 

Response  about area: 

 

 

Justification about area: 

 

 

Response  about FTC: 

 

 

 

Justification about FTC: 

 

13. Why are you taking X? 

Response : 

 

 

 

14. Do you like calculus, especially integration? 

Response: 
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Figure 1 
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Figure 2 
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Appendix 2: Classroom observational tool 
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Appendix 3: A sample of information form 

  

 

Information sheet (Interview: Teachers/Lecturers/Tutors) 

Researcher: Farzad Radmehr, School of Education Policy and Implementation, Victoria 

University of Wellington.                   

Title of project: Applications of Revised Bloom’s Taxonomy in Mathematics Education: The 

Teaching, Learning, and Assessment of Integration. 

I am a PhD student in mathematics education at Victoria University of Wellington. As part 

of this degree I am undertaking a research project leading to a thesis. The project I am undertaking 

is about using Revised Bloom’s Taxonomy for improving teaching, learning, and assessment of 

integration. This research project has received approval from the Victoria University of Wellington 

Human Ethics Committee (Approval #20851). 

As part of my research, I am inviting Year 13 mathematics teachers, undergraduate 

mathematics lecturers, and tutors who have at least 3 years experience of teaching integration to 

participate in this study. I would like to seek your opinions about different types of knowledge in 

integration and how we can enhance teaching, learning, and assessment of integration by focusing 

on higher level thinking. You are invited to participate in two interviews, each lasting around one 

hour.  

Data will be used on an anonymous basis. It will not be possible for you or your institution 

to be identified. All material collected will be kept confidential. No other person besides me, my 

supervisors (Dr Robin Averill and Dr Michael Drake), and a transcriber who fill a confidentiality 

form will have access to the data. Once completed a copy of the thesis will be deposited in the 

University library. It is intended that one or more articles will be drawn from the thesis study. As 

is usual in research, all data will be destroyed five years after the end of the project. During the 

project, if you would like to withdraw from the project, you can do so without needing to give any 

reasons by sending an email to me or my supervisors up to the end of data collection (December 

1st, 2014). 

If you have any further questions or would like to receive further information about the 

project, please contact me at (0223895906 or farzad.radmehr@vuw.ac.nz) or my supervisors (Dr 

Robin Averill and Dr Michael Drake), at the Faculty of Education of Victoria University of 

Wellington (Dr Robin Averill: 04 463 9714 or robin.averill@vuw.ac.nz ; Dr Michael Drake: 04 

463 9668 or michael.drake@vuw.ac.nz). 

Please keep this letter for your information after completing and returning the consent page 

to me. 

Sincerely, 

Farzad Radmehr 

mailto:farzad.radmehr@vuw.ac.nz
mailto:robin.averill@vuw.ac.nz
mailto:michael.drake@vuw.ac.nz
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Appendix 4: A sample of consent form 

 

 

Consent to participate in research (Interview: Teachers / Lecturers/ Experts) 

Title of project: Applications of Revised Bloom’s Taxonomy in Mathematics Education: The 

Teaching, Learning, and Assessment of Integration. 

 I have been given and have understood an explanation of the research project. I have had an 

opportunity to ask questions and have them answered to my satisfaction. I understand that I may 

withdraw myself (or any information I have provided) from this project without having to give 

reasons up to end of the data collection (December 1st, 2014). In addition, I understand that any 

information I provide will be kept confidential to the researcher and the supervisors. I understand 

any published results will not use my name, and that no opinions will be attributed to me in any 

way that will identify me or my institution. 

 I consent to being involved in this research by participating in interviews regarding 

teaching, learning, and assessment of integration.      Agree           Disagree   

 

 

 Signed: 

 Name:  

 Date: 

If you are interested in receiving the summary of the results, please provide your email 

address: ……………………………………………………………………………………….. 

 


