Maintaining private views in

Java

Paran Haslett

A thesis
submitted to the Victoria University of Wellington
in fulfilment of the
requirements for the degree of
Master of Science

in Computer Science.

Victoria University of Wellington
2014

Abstract

When developers collaborate on a project there are times when the code
diverges. When this happens the code may need to be refactored to best
suit the changes before they are applied. In these situations it would be
valuable to have a private view. This view would be functionally equiv-
alent to other views and be able to present the code in a different form.
It enables a developer to refactor or change the code to their tastes, with
minimal impact on other developers. Changes in the order of methods
and the addition of comments currently impact other developers even if
there is no change in how the code works. The Refactor Categories Tool
has been written to detect where Java source code has been moved within
a file or comments have been added, removed or edited. This indicates
that it would be useful for version control systems to differentiate between
changes to a program that also change the behaviour and those that do not.

Acknowledgments

I would like to acknowledge the invaluable help of both my supervisors
David Pearce and Lindsay Groves and also my wife Hye Eun Park who
has been a great support during this thesis.

Contents

1 Intr 1 1
LI Overviewl. o 4

2 Background| 5
2.1 Version control systems| 5
2.1.1 Dealing with conflicts| 9

2.1.2 'Iypes of version controls systems| 12

2.2 Longest Common Subsequence| 13
221 Example oL 14

2.2.2 Methods of calculating LCS 16

223 Myers| 17

224 Patiencel 17

225 Histogram|.0 ..., 20

2.2.6 How LCSis used in differencing tools| 20

227 Theproblemwith LCS{. 21

2.3 Refactoring|. 21
24 JDime|. 24
.41 How JDimeworks 25

2.4.2 Investigating JDime|, 25

2.4.3 Reasons why JDime cannot currently be used to cre- |

| ateprivateviews| 27
2.5 Other refactoring aware versioning tools|. 28

i1

CONTENTS iii

3 Private views 29
B.1 The problemstoaddress| 30
3.2 Benefits of privateviews|o o000 33
B.3 Implementing private views|o 34
.4 Arecomments mportant?| 0 0L 36

4 Refactor Categories Tool| 39
M1 Overviewl. L 39
42 Whatthetooldoes 43

421 Detectsmoves 43
4.2.2 Detectsrenaming| 46
4.2.3 Detects equivalentcode| 46
4.2.4 Detects changes to comments| 47
4.3 Performancedecisions| 47
B4 Designdecisions|. 000 48

[5 Experimental results| 51
p.1 Purpose|. 51
0.2 Methodology| L 000, 51
B3 Resultd 53

B31 Overviewl 53
0.3.2 Discussion|. oL 53

b__Conclusions and future workl 61

b1 Futureworkl 62
[6.1.1 Changes to the Refactor Categories Tool|. 62

(6.1.2 Other linesofenquiry| 64

Chapter 1
Introduction

According to Bertino [5] version control systems provide a way of allowing
multiple developers to collaborate. When multiple developers work on
the same portion of source code there is a risk that they have conflicting
changes. One way of managing these conflicting changes is by ensuring
only one person can edit a file at a time. This locking mechanism was
recommended by Tichy [23] for the RCS version control system. Of course,
the problem here is that one person can stop others from being able to edit
the file.

An alternative approach is to allow multiple changes to a file and to
automatically resolve most of them in a process called a merge. The merge
process compares the changes made in one version with the changes made
on the other version. If the merge process determines that changes can
coexist, it creates a merged file that contains all the changes. The changes
that cannot be automatically merged are known as merge conflicts. The
merge conflicts need to be manually checked and edited to form a merged
file with the correct changes.

Internally the merge process needs to determine what changes have
happened to both of the revisions being compared. In Figure there
are two revisions that are derived from a common ancestor. It is possible
to determine what has been deleted, inserted or changed by comparing

CHAPTER 1. INTRODUCTION 2

Revision 1 Revision 2

Common Ancestor

Figure 1.1: A file that has two different revisions

each of the revisions against the common ancestor. This is often done as
a linear comparison of the source code for each revision. This works very
well provided there has been no change in the order or structure of the file.
However, if there has been a change where a block of source code has been
moved from one place to another a linear comparison instead determines
that two changes have occurred. This is equivalent to deleting a block
of source code from the common ancestor and inserting that source code
elsewhere. It is possible that this change is not important to other pro-
grammers as the program behaves in the same manner even when source
code is in a different order. An example of this is if a Java programmer
changes the order of methods within a program. The program will be-
have in the same way as changing the order of methods does not change
any functionality, however the source code is now different. The swapping
of the order of the method is still counted as being two different changes
even though the program behaves in the same manner as it did before the
change took place.

Without any further analysis this change is recorded in the merged file
even if the reordering was a personal preference for the programmer. Al-

though there has been no functional change the version control system

CHAPTER 1. INTRODUCTION 3

will treat the relocation of blocks of source code exactly like a change in
functionality. Whenever a programmer attempts to update their code to
incorporate any change in functionality, the change to the order of meth-
ods is also made to their code. If a programmer is already familiar with the
old structure of code and expects the code to remain relatively consistent
the swapping of methods could be disconcerting.

Another issue that non-functional changes raise is an increase in the
number of merge conflicts. This could occur when two views have had
a small amount of refactoring. Since in both views the behaviour of the
program has not changed it is possible that the merge conflict occurs about
something trivial. An example of this could be different formatting or
ordering of methods. For an ordinary text merge these changes to the
structure of the source code require manual intervention. These issues
highlight the need to develop smarter ways to merge.

It is becoming more important to have smarter merges because of the
scale of many software projects and the number of developers working on
them. Large online repositories, like GitHub, contain many open source
projects. It is possible for these projects to make source code available to
many developers at a time. This means it is possible for two developers to
work on the same project while having little personal contact. Care needs
to be taken when their individual work is combined. Preferably most of
the problems with merging their work should be automatically resolved.
However, there still could be instances where either or both developers
will have to figure out how the code should interact. Having better au-
tomatic merges reduces the risk that time will be spent manually figuring
out how different changes should be combined.

This thesis introduces the concept of maintaining multiple private views
which can be ordered differently but have functionally equivalent source
code. The purpose of these views is to reduce the number of changes in-
troduced during a merge. It also explores a way of allowing a version
control system to detect when there is a change in the source code but not

CHAPTER 1. INTRODUCTION 4

a functional change in a program. Examples of this are if items have been
reordered, if comments have been inserted or there have been changes to
the formatting. We developed the Refactor Categories Tool for the purpose
of identifying these changes. We report on the design and implementation
of this tool. The Refactor Categories Tool is then used in an experiment

evaluating a range of real-world benchmarks.

1.1 Overview

This thesis is organised in the following manner: In Chapter 2 we go over
the background of version control, the longest common subsequence prob-
lem and refactoring as well as look at JDime, an existing tool for merging
refactored views. In Chapter 3 we discuss our concept of private views
and what they could mean. In Chapter 4 we examine the Refactor Cate-
gories Tool, a precursor to developing private views. This will allow us
to evaluate if additional merge operations are possible. In Chapter 5 we
evaluate the results produced from the Refactor Categories Tool and de-
termine what this could mean for our concept of private views. In Chapter

6 we will conclude and discuss future work.

Chapter 2
Background

As this thesis is about maintaining private views within a version control
system what follows is some background concerning version control sys-
tems and how they determine if a change has occurred in source code.
We will also cover refactoring before looking more closely at JDime and
other tools that attempt to reduce merge conflicts caused by refactoring or

reformatting.

2.1 Version control systems

Version control systems are a way of managing different revisions (or ver-
sions). Version control systems can be used to keep revisions of files that
are in any format. Most commonly they are used for maintaining source
code written for a plain text programming language (e.g. Java, C, etc.).
There are a number of reasons why we might want to use a version control
system. It can be used to refer to previous revisions, to maintain a revision
that has an experimental feature, to associate additional documentation
about a feature or to collaborate with multiple developers who are on the

same programming project:

Revisit revisions using tagging. A version control system can be used by

CHAPTER 2. BACKGROUND 6

a single person to manage different revisions of their program. A
previous revision can always be revisited at a later date and changed.
If there is something significant about a particular revision it can be
labelled with a tag. A tag assigns a name to all the files in the revision
you are interested in so that you can more easily revisit the code at
a certain point. This is helpful if a software package has a number
of released versions. If you need to go back and revisit a particular
release it becomes a lot easier if you have tagged the code at that

point with the release name or other identification.

Use branching for experimental features. It is also possible to maintain
multiple revisions of all the files for a software project. This is use-
ful if there is an experimental feature which you want to explore but
want to maintain the original as a separate project. As shown in Fig-
ure a version control system can keep these multiple interests
separate by putting them on different branches. It is still possible to
easily switch between the different branches depending on which
project you want to make changes to. A good use of this feature is if
you have a software project that you have written on behalf of two
different companies but each of them would like their own unique
customisations on top of the base product. By making two copies
of the base product and having a record of when it was divided the
branches can later be recombined to include some or all of the fea-

tures that have been introduced.

Attach documentation to a feature. Another useful feature of version con-
trol is the ability to record meta information beside changes to a set
of files. The reason this is useful is that you can specify what the
change was for. It is possible to associate a change that has occurred
over multiple files as being for the same reason. Most version control
systems allow a message to be written when documents are checked

in. In some version control systems this message is required. The rea-

CHAPTER 2. BACKGROUND 7

]

Figure 2.1: A project that has been split into two branches. Both the red
files have been changed for the left branch whilst only the green one has
changed in the right branch.

son this is useful is for when queries are made about what a certain
change to a document was for. Since there is a message beside all the
documents about the reason for a particular change it becomes easier
to figure out the reason for the individual change we are interested
in.

When used on source code in tandem with a bug tracking system the
message can contain the identification number for the bug being
fixed or feature being added. This means that anybody who is ex-
amining the revision to see the reasoning for the change has access

to a lot more information via the bug tracking system. An example

CHAPTER 2. BACKGROUND 8

Example issue

paranhaslett opened this issue a minute ago - 0 comments
E paranhaslett commented a minute age
This issue will be closed using a commit message

BA paranhasiett added the [iabel a minute ago

Figure 2.2: A issue that has been created in GitHub

Example issue

paranhaslett opened this issue 4 hours ago - 0 comments
H paranhaslett commented 4 hours age
This issue will be closed using a commit message
B paranhasiett added the [ffff] Iabel 4 hours ago

R [E] paranhaslett referenced this issue from a commit 19 seconds ago

E‘ This addressed issue #1 and is used as a demonstration for issue #2

Figure 2.3: The issue has been updated using a commit message

of this is the issue tracker that is built in to GitHub, an online version
control system. In GitHub an issue (e.g. a bug report or feature re-
quest) can be created as shown in Figure The issue tracker is
linked with the messages that you need to write when you check in
files. If you include a hash sign followed by an issues” identification
number in the message you check in then GitHub updates that issue,
as shown in Figure

CHAPTER 2. BACKGROUND 9

Collaborate with multiple developers. Version control systems make it
possible to have individual revisions that contain each person’s changes.
The version control system then manages the way these changes are
merged into a composite product. Bertino [5] describes the ability
to merge the work of multiple people as being a powerful collabo-
rative tool. This is because a version control system allows multiple
people with different ideas to collaborate on the same document. In
some circumstances it allows them to work on the document at the
same time. This feature seems similar to the concept of having a pri-
vate view that we are exploring in this thesis. The difference is that
a version control system has no awareness about the format of the
documents. This means it is harder for it to evaluate the difference
between features of the document that will be helpful to collabora-
tion and features that express the individual tastes of each of the col-
laborators.

2.1.1 Dealing with conflicts

When people work on the same software project there is a need to interact
with each other. If they require the same source code then there is com-
petition to access that file for each of them to successfully do their work.
There is the risk that they will attempt to change the same block of source
code at the same time. If different changes are made to the same block
of source code then they have a merge conflict and need to figure out how
to combine the changes manually. There are a few ways of dealing with
these conflicts.

Locking

One approach is to require that a file is only able to be used by one person
at a time and that anyone else has to wait. This method avoids the need to
resolve any conflicting changes. The advantage of locking a file like this is

CHAPTER 2. BACKGROUND 10

that we can be certain about the contents of the file at any given time. This
is how one of the original version control systems, RCS ensured that the
document stayed consistent. Tichy [23] has explained why he considers
locking in a version control system to be a good idea in the design for
RCS. The disadvantage is if one person retains the document for extended
periods of time, it cannot be changed by anybody else. Furthermore the
resulting document may be barely recognisable as the original if extensive
work is done on it. However, if the two parties change distinctly different
parts of the file, or both independently make exactly the same changes this

restriction is unnecessary.

Smaller structured units

Another way to reduce conflicts is to split the programming code into
smaller units. The advantage of this is that if you are using locking you
minimise the risk that two people need access to the same unit of source
code. Consider two people working on the same project made up of a
number of files. Instead of one person locking a file at a time that person
could be allowed to only lock the functions they are changing. As those
functions are smaller than the file there is likely to be less changes and they

are likely to unlock them sooner.

Merging documents

Finally we could allow both parties to change the document and try to
figure out what the problems are afterwards. This resolution of anything
that remains a problem is known as resolving a merge conflict. This occurs
whenever the computer cannot automatically process a merge. The merge
then needs to be sorted out manually. Merge conflicts are more likely to
occur if there is a dramatic change such as refactoring.

If not regularly merged it is possible for the source code to diverge
greatly and it becomes harder and harder to reconcile. According to Bertino

CHAPTER 2. BACKGROUND 11

it is possible to keep a smaller more easily deployed repository by exclud-
ing files that can be generated. [5]. Although Bertino refers to unnecessary
files this premise may also be applicable for the smaller blocks of code
we are interested in. This suggests that maintaining a record about what
is relevant and what is irrelevant may have some benefit (e.g. the non-

functional changes).

Manual Merging. If you have two files you want to merge but no com-
mon starting point for them both you will need to manually merge
any differences. The computer has no record about what the orig-
inal file looked like so it cannot determine which changes were in-
tended. Features that they have in common will not need to be af-
fected. However, a decision needs to be made about any differences
by the developers responsible for those changes.

Automatic Merging. An automatic merge is possible if three revisions are
available: the original revision, the revision containing changes we
have made and the revision containing changes made by other de-
velopers. By comparing the differences between our revision and the
original one it is possible to determine which changes we have made.
If we compare the changes made by other developers to the original,
the changes that they have made can be determined. If we attempt
to update our code by merging other people’s changes and a change
only occurs in our code then that change is retained. If we attempt
to update our code by merging other people’s changes and a change
only occurs in the other persons code the the change is inserted into
our code. A merge conflict can however still occur when a change is
made in the same area of code in both revisions. The merge conflicts
need to be dealt with manually.

CHAPTER 2. BACKGROUND 12

2.1.2 Types of version controls systems

Centralised version control. In a centralised version control system all
the changes are made to one location. This is called a centralised
repository. Having a centralised repository means that only one place
needs to be checked in order to access the most up-to-date and agreed
upon source code. The need to be connected to a central system al-
lows multiple developers the ability to work on the same source code
but often has a large overhead. Some centralised systems require a
specialist to be involved just to look after the server and ensure that
merges were done correctly. However according to Chacon [7] this
single point of management has some advantages as it is possible to
manage what developers had access to. According to Chacon [7] and
Bertino [5] the main flaw with centralised version control systems is
that they have a single point of failure. If anything goes wrong with
the server you could lose all your work.

Distributed version control. According to Chacon [7] and Bertino [5] this
is like having a complete copy of a repository present on every com-

puter that has access to that project

One advantage of having a complete copy of a project from the repos-
itory are that it eliminates the single point of failure that centralised
version control systems have. It also makes it possible to make changes
to the program remotely without being connected to a central server.
At a later time you are able to merge you changes with other peo-
ple’s work. You are also able to select changes others have made and
incorporate them into your personal copy.

Online version control systems. Whilst is is possible for a measure of col-
laboration just by using a version control system on its own, it re-
quires that you have some method of obtaining the separate branches
on one machine before they can be merged. One way of doing this

CHAPTER 2. BACKGROUND 13

within a company is to set up a server for the version control sys-
tem. This might be suitable for projects that are closed source and
have a select group of people who work on the source code. For
larger projects that have programmers in different parts of the world
a publicly accessible version control system that is on the web may
be a better solution. Loeliger [17] shows how it is possible to access
and use a web based version control system to achieve this. A good
example of a web based version control system is GitHub. GitHub
provides a way for many developers in different parts of the world
to change source code for an open source project. It is possible that
the developers for a particular project have not even met in real life

or even know about each other.

As an example we could look at the JGit project in GitHub. JGit is a
pure Java implementation of the Git version control system. Figure
shows part of the GitHub page for JGit highlighting the amount
of activity that there has been on the JGit project. With 74 contrib-
utors supplying 3245 changes means that the potential to have con-
flicting changes must be high. Having 20 separate branches may
indicate that merges often need to happen. This one example could
indicate the need for good merge tools that can reconcile conflicts

even if the developers have little contact with each other.

2.2 Longest Common Subsequence

The longest common subsequence problem is relevant to this thesis as it
concerns comparing code to determine similarities and differences. The
similarities and differences can then be used to automatically merge code
in a version control system.

A simple definition of the longest common subsequence problem is
attempting to find the maximum number of common items in two strings

when the strings are examined from left to right. A subsequence does not

CHAPTER 2. BACKGROUND 14

JGit project repository (jgit) http://eclipse.org/jgit

T PR T 5
¥ branch: master ~ jgit +

Merge "Add isRebase to API of BranchConfig"

robinrosenberg latest commit d97558fbic B

org.eclipse.jgit.ant.test Add new default settings from Eclipse 4.4 a month ago

Figure 2.4: The overview page of the Jgit project in GitHub. This shows
that there are 74 contributors to the source code and 3245 individual

changes over 20 branches.

need to be in a single contiguous block however. Algorithms that solve
the longest common subsequence can determine the differences between
two lists by working out what is the same.

2.2.1 Example

An example of finding the longest common subsequence is as follows.
Imagine we have two similar sets of Java source code that we want to
compare with each other. We would like to know what is the same and
what is different. A longest common subsequence for the source would
contain a list of all the lines that are the same and in the same order.

CHAPTER 2. BACKGROUND 15

[

N

10

11

12

13

—_

[N]

W

The first listing is as follows:

public class SampleLCS {
public static double area (double radius) {

return Math.PI x square (radius);

public static void main(String[] args) {

System.out.println (area(3));

public static double square (double num) {

return num * num;

In the second listing the order of a number of methods has changed but

the way the code works has not been changed.

public class SampleLCS {
public static void main(String[] args) {

System.out.println (area(3));

public static double square (double num) {

return num * num;

public static double area(double radius) {

return Math.PI x square (radius);

CHAPTER 2. BACKGROUND 16

A listing containing only the common lines in the same order between
both listings follows. Since this is one of the longest listings possible it is

known as the longest common subsequence.

-

public class SampleLCS {

[N]

public static double area(double radius) {

3 return Math.PI x square (radius);

6 }

It is possible to have more than one longest common subsequence if there
are multiple listings of common lines that have the same number of lines in
common and have the maximum number of lines that match. For instance
the following listing is also a longest common subsequence of the above

example.

—-

public class SamplelLCS {

N

public static void main (String[] args) {

W

System.out.println (area(3));

6 }

As there are possibly multiple longest common subsequences identi-
fying the longest common subsequence that is going to be most useful
becomes difficult.

2.2.2 Methods of calculating LCS

According to Arslan [4] there are many algorithms that solve longest com-
mon subsequence problem. As is it possible for there to be multiple correct
solutions to a LCS problem a reason for having a different algorithm may
be to find the LCS that make the most intuitive sense. The algorithms used

CHAPTER 2. BACKGROUND 17

in JGit (an open source implementation of Git in Java) for example are the
the Myers, Patience and Histogram algorithms. JGit predominately uses
the Histogram algorithm with a fall-back of using the Myers algorithm if
it gets too computationally expensive. There is also the option of using the
Patience algorithm however this will produce similar results to the His-
togram algorithm which has been derived from it.

2.2.3 Myers

The Myers algorithm was discovered by Eugene Myers [19] who claimed
that finding the minimal differences between any two documents was the
equivalent to finding the shortest path in an edit graph. If we have the
two sequences that we wish to compare we can use them to create an edit
graph. For example to discover that the longest common subsequence for
the two strings “ABBCABAB” and "BACCABBAC” we would create the
edit graph shown in Figure

Note that the diagonals are on the graph at every point where the let-
ters coincide. If we draw a path from the top corner to the bottom corner
by following either the edges of the boxes or the diagonals we can deter-
mine a subsequence of both of the strings. Each time the path crosses a
diagonal is an instance where both strings have a common letter. If the
path uses the fewest number of box edges possible then it contains a low-
est common subsequence. Figure[2.6/shows a path for a longest common
subsequence. There may be more than one longest common subsequence.
For our example another longest common subsequence of "BCABB” is also
equally valid.

2.2.4 Patience

The Patience algorithm instead of figuring out the longest common sub-
sequence directly uses the longest increasing subsequence. The example
used by Aldous [1] to explain how the Patience algorithm finds the longest

CHAPTER 2. BACKGROUND 18

A-B B C A B A B

O m w0 0O P ow

Figure 2.5: An edit graph for two strings, ”ABBCABAB” and "BACCAB-
BAC”

increasing subsequence is similar to a single player card game. The aim of
the game is to create the minimal number of piles of cards in a row. A
higher card may not be placed on a pile with a lower one in it. Cards need
to be placed on the leftmost valid pile. A new pile needs to be created
at the end of the row for any cards that cannot be placed on any existing
pile. This game discovers the longest increasing subsequence of the cards
when they were shuffled before the game is played. The cards in the pile
to the immediate left of each card when it is played are all possible ele-
ments that could come before it in a longest increasing subsequence. By
taking notes of the card on top of the pile to the immediate left whenever

CHAPTER 2. BACKGROUND 19

A-B B C A B A B

An LCS for
both strings

"ACABA"

0 PP m o m O O 0O P m

Figure 2.6: An edit graph for two strings, “YABBCABAB” and "BAC-
CABBAC”, showing the path for the longest common subsequence of
"ACABA”

a card is played a longest subsequence can be calculated.

When the Patience algorithm is used on source code line numbers are
compared (rather than cards). The Patience algorithm is not applied to
every line in the source code, but is only applied to markers. A marker is
when there are lines of code that match in both revisions and appear only
once. The longest common subsequence is computed just for those mark-
ers. The portions of code between those markers in the longest common
subsequence are then computed recursively.

As Bram Cohan [9] has pointed out in his blog there are instances

CHAPTER 2. BACKGROUND 20

where a traditional LCS algorithm can return results that although cor-
rect are not as helpful as they could be. This is especially true when there
are multiple possible longest common subsequences. The patience algo-
rithm initially ignores lines that appear multiple times and focuses first on
solving the longest common subsequence problem for the markers, which
only appear once. By doing this it has a clearer picture about where to

place the lines that occur multiple times.

2.2.5 Histogram

The patience algorithm works well when there are matches that only occur
once in both revisions, but has difficulty in determining what to do if lines
appear more than once. It is possible to fall back on a Myers algorithm
for the segments where multiple matches occur, however it is possible for
Myers to produce unhelpful results. The Histogram algorithm attempts to
overcome this by also detecting lines that occur in both revisions a small
number of times. The algorithm is solely used in JGit at the moment and
is a derivative of Bram Cohens patience algorithm. More details about this
algorithm can be found in the Javadoc for HistogramDiff in the JGit source
code [22].

2.2.6 How LCS is used in differencing tools

Differencing tools (often shortened to ”diff tools”) are programs that com-
pare the contents of two files and show the similarities and differences. In
many diff tools a hash code is assigned to each line of the files to speed
up the differencing process. This means that the differencing tool can
work much faster as it does not need to compare each character in the line
but can compare hash codes instead. However the granularity of what is
compared is more coarse as it shows complete line differences rather than
word or character differences. In the source code for many programming
languages the white space is not relevant so many diff tools have the op-

CHAPTER 2. BACKGROUND 21

tion of ignoring the white space and only comparing the code. This has
an impact on the hash codes for each line as the hash code needs to be
generated just from the text without including white spaces.

Additionally with some diff tools it is possible to use regular expres-
sions to ignore program features such as comments when doing a diff. The
reason this is important is if it is possible to exclude changes that have no
affect on behaviour from a diff then it is possible to also exclude them from
a merge. If we exclude them from a merge we could have fewer conflicts.
An example of something that is already excluded in JGit is white-space.

2.2.7 The problem with LCS

From the perspective of this thesis there is still a problem with longest
common subsequence. It does not notice changes of order in a document.
For the example in section2.2.1]two methods have swapped positions. The
program still behaves in the same manner when it is run. It is unnecessary
to make any changes to this code in order to get them to behave the same
way. Diff tools that solely use the longest common subsequence do not
take different ordered items into account even if they can be considered

equivalent.

2.3 Refactoring

A common concern with coding is the need to periodically refactor the
code. When we use the word refactored here we refer to the definition
of refactoring presented by Murphy-Hill [18] who claims that refactoring
simply changes the structure of the code but not the behaviour. Refactor-
ing simply reorganises the source code so that it is easier to read and add
changes. According to Fowler et al. the main time for refactoring is when
new functionality is added [13]. Similarly according to Kerievsky some of
the motivations for refactoring include adding more code and understand-

CHAPTER 2. BACKGROUND 22

) 4
Sorted.java : Unsorted java x
/home/paran/Documents/workspaces/Study/SampleLCS/src/Sorted.java ~ | Browse... /home/paran/Documents/workspaces/Study/SampleLCS/src/Unsorted.ja'| v Browse... (3
1 1|
2 public class SamplelCS { 2 public class Samplel(S {
3 3
4 public static double area(double radius){ - 4 public static void main(String[] args){
5 return Math.PI * square(radius); 5 System.out.println(area(3));
6 } 6 }
7 7
8 public static void main(String[] args){ 8 public static double square(double num){
9 System.out.println(area(3)); 9 return num * num;
10 } €10 }
11 11
12 public static double square(double num){ 12 public static double area(double radius){
13 return num * num; 13 return Math.PI * square(radius);
14 } 14 }
15 } 15 }
16 16

Ln1,Col1 INS

Figure 2.7: A graphical diff tool showing differences with two equivalent

blocks of source code

ing existing code [15]. As adding more functionality is one of the motiva-

tions for refactoring let us consider what happens in a multi-developer

environment. Two developers could have different views on what is con-

sidered an appropriate refactoring. This is especially true if they need to

add different functionality from each other. We will now demonstrate this

with the following two code examples:

-

public TempConv () {
Scanner keyboard = new Scanner (System.in);
System.out.println("Enter_the_temperature_in_Celsius");
int celsius = keyboard.nextInt ();
System.out.println("Degrees Fahrenheit_is_approx, "
+ (celsius * 2 + 30));

keyboard.close () ;

Refactoring this code depends on what functionality you need to add.

CHAPTER 2. BACKGROUND 23

One developer may recognize that conversion from Celsius may be used
several times throughout the code and so extract the calculations as a sep-
arate method as follows:

-

public TempConv () {

2 Scanner keyboard = new Scanner (System.in);

3 System.out.println ("Enter_the_temperature in Celsius");
4 int celsius = keyboard.nextInt () ;

5 System.out.println("Degrees, Fahrenheit is_approx, "

6 + celsiusToFahrenheit (celsius));

7 keyboard.close() ;

10| public int celsiusToFahrenheit (int celsius) {
1 return celsius * 2 + 30;

12| }

This change, in spite of producing the same output as the first, pro-
vides a number of advantages. Firstly if other programs need to convert
from Celsius to Fahrenheit the new method can easily be reused. Secondly
since the calculation is a crude estimation it becomes a lot clearer where
the code needs to be changed to improve the formula. The ability to add a
method that clearly indicates that the calculation is from Celsius to Fahren-
heit helps with the readability of the code. There are also disadvantages to
doing this refactoring. If we do not care about conversion between Celsius
and Fahrenheit the refactoring simply adds to the amount of code we need
to examine before understanding what the code does. An alternative way

of refactoring is as follows:

CHAPTER 2. BACKGROUND 24

1| public TempConv () {

2 Scanner keyboard = new Scanner (System.in);

3 System.out.println ("Enter_the_temperature_in_ Celsius");
4 int celsius = keyboard.nextInt ();

5 int celsiusToFahrenheit = celsius *2 + 30;

6 System.out.println("Degrees Fahrenheit_is_approx "

7 + celsiusToFahrenheit);

8 keyboard.close() ;

of }

While this again expresses the same functionality as the code above
it has not created a new method to do so. This has some of the same
advantages. It separates and identifies the formula to convert between
Celsius and Fahrenheit. It also uses less code to express this separation
than forming a new method. It does not expose the conversion formula
outside this method to be used by other calculations however.

As the value of a particular refactoring appears to depend on what is
trying to be achieved it is very hard to claim that one refactoring is better
than another. Rather, it depends on the wider context of the intention for
the refactoring, in this case the level of access required for the approxima-
tion to convert Celsius to Fahrenheit.

Although this was a simple example it is easy to imagine a case where
a much larger refactoring process is undertaken. In such circumstances a

merge becomes difficult.

24 JDime

JDime is a tool written by Apel and Lefsenich [2] [3] [16] to study how to
get a balance between fast text-based merges and slow but more accurate
semantic merge. A semantic merge is done by parsing the class files into
AST and evaluating the AST. JDime is designed to merge two sets of code

CHAPTER 2. BACKGROUND 25

even if both of them have undergone refactoring. In order to increase per-
formance, only if there is a conflict in a text based merge does any of the

more expensive semantic merge take place.

24.1 How JDime works

Before doing any calculations, JDime runs a regular text merge over the
source code. If the regular text merge has conflicts then JDime parses the
file into an abstract syntax tree (AST). JDime uses the AST to determine
if sections of the source code need to be in a particular order or could be
in any order. What then happens depends on if order is required in the
section of code JDime is examining.

2.4.2 Investigating JDime

We performed a small experiment to investigate JDime as a tool for au-
tomatically merging code which has been reordered. As JDime performs
a type of automatic merge it requires three different revisions. JDime re-
quires a revision that has changes that we want included. This is com-
monly called the right revision however I will call this the merger revision
as the changes in it are meant to be merged. JDime also requires a revi-
sion that we want to merge into. This is commonly called the left revision,
however I will refer to this as being the mergee. Finally JDime requires an
original revision that both the merger and the mergee are based on. This
is commonly called the base revision.

In order to show how JDime performs extra refactoring based merging
we need to attempt to try something that would incorrectly cause a conflict
in a text based merge. The reason that this is necessary is that if there are
no conflicts in a text based merge the refactoring aware portion of JDime
will not be run. This saves the overhead of parsing the program into an
AST in the event that the initial text merge has no conflicts. One way to get
a lot of text conflicts between two pieces of code that are equivalent when

CHAPTER 2. BACKGROUND 26

Merger Mergee

Change the order Change the order

of the methods of the methods
Base

Figure 2.8: The set-up for the test of JDime

they run is to change the order of the methods. Although the methods
are in different order the programs are still “functionally equivalent”. In
order to examine how JDime works and test its suitability a test handler
was written. The test handler creates all of the directories and files for
JDime to process. The methods inside the files are reordered differently
for both the merger and the mergee. Figure demonstrates how the
test files were arranged.

Once the test was set up using the test handler JDime was run to pro-
cess the directories. What we expected to happen was that JDime would
reorder the methods to match the order in the mergee. As shown in Figure
when we compared the methods using a graphical merge tool how-
ever we found that the order of the methods in the files did not match.

Further investigation revealed that the order of the methods in the final
merged code example did not match the order of any of the equivalent
input files. In other words JDime normalises its output so that methods
are in a particular order, but this does not necessarily reflect the order of
any of the original files.

CHAPTER 2. BACKGROUND 27

[out] Annotationutils java : [Test] AnnotationUtils.java - Meld

i 4
[out : left % | 1] [out] Annotatio...otationutils java %
/home/paran/Documents/Study/out/org/apache/commons/lang3/Annota | v || Browse... /home/paran/Documents/Study,/Test/out/left/org/apache/commons/lang| v | Browse.. | (3
87 return false; 113 return false;
88 } 114 }
89 try { 115 try {
90 for (final Method m : type.getDeclaredMethods()) { 116 for (final Method m : type.getDeclaredMethods()) {
91 if (m.getParaneterTypes().length == 0 & isValidAnnotationMemberT 17 if(m.getParameterTypes(). length == 0 & isValidAnnotationMemberT
92 final Object vl = m.invoke(al); 118 final Object v1 = m.invoke(al);
93 final Object v2 = m.invoke(a2); 119 final Object v2 = m.invoke(a2);
% if (1memberEquals (m.getReturnType(), v1, v2)) { 120 if (ImemberEquals (m.getReturnType(), v1, v2)) {
95 return false; 121 return false;
96 } 122 i
97 } 123 i
98 } 124 }
99 } 125 i
180 catch (final IllegalAccessException ex) { 126 catch (final TllegalAccessException ex) {
1601 return false; 127 return false;
102 128 }
103 catch (final InvocationTargetException ex) { 129 catch (final InvocationTargetException ex) {
104 return false; 130 return false;
CH } — 131 }
106 return true; 132 return true;
107} 133}
168 private static boolean annotationArrayMemberEquals(final Annotation[] - 134 public static int hashCode(final Annotation a) {
109 if(al.length != a2.length) { 135 int result = @;
110 return false; 136 final Class<? extends Annotation> type = a.annotationType();
ur) 137 for (final Method m : type.getDeclaredethods()) {
112 for(int i = ; i < al.length; i++) { 138 try {
113 if(tequals(allil, a2(il)) { 139 inal Object value = m.invoke(a);
114 return false; 149 if(value == null) {
115 } 141 throw new IllegalStateException(String.format("Annotation meth
116 142 ¥
17 return true; 143 result += hashMember(m.getName(), value);
18} 144 1
119 public static int hashCode(final Annotation a) { 145 catch (final RuntimeException ex) {
120 int result = 0; 146 throw ex;
121 final Class<? extends Annotation> type = a.annotationType(); 147 }
122 for (final Method m : type.getDeclaredMethods()) { 148 catch (final Exception ex) {
192 i o 20 hou o Buntimamcontionlow) -

Ln75, Col 1 INS

Figure 2.9: Screen-shot of Meld showing a different method order

2.4.3 Reasons why JDime cannot currently be used to cre-

ate private views

The aim of this thesis is to be able to maintain two views of Java that, al-
though having a different format, function in the same manner. Although
JDime seems like it would be able to help achieve those aims there are a
few reasons why it cannot be used without changes.

The first issue is that as explained above that the merged code could be
in a totally different order to the original file and both of the revisions.

The second issue is that when JDime parses the code into an AST it
strips out any comments or white-space placed in the code. Although the
comments do not have any functional impact on how the program runs
they do have an impact on how the source code is understood. To limit
the impact a merge makes on one view comments need to be evaluated as
well. In some ways retaining comments or even white-space in the code
aids in determining if a section of the code has been copied verbatim from
one place to another.

The final concern is that after JDime does the initial comparison of text

CHAPTER 2. BACKGROUND 28

and finds conflicts it discards those results. It parses the entire file into an
AST and begins analysing it again without knowing which parts differ.

2.5 Other refactoring aware versioning tools

JDime is not the only tool that can be used to address refactor aware ver-
sion control. Ekman and Asklund [12] introduced a plug-in for eclipse
that recorded information about refactoring in to version control so that
it was easier to recognise where refactoring took place. They did this in a
very similar manner as Apel and Lefienich when they developed JDime.
Both make use of an AST to record information about any refactoring that
took place. Freese [14] also developed a tool that was very similar written
in Object-Z. Despite this interest in refactoring aware merges however the

idea of maintaining private views has not been discussed.

Chapter 3
Private views

In a project with multiple developers situations may arise where you need
to make a change to the structure of the source code. This becomes a prob-
lem if you also want to limit the impact on other developers. Maintaining
your own private view of the source code could be valuable in these cir-
cumstances. One way of doing this is by making version control systems
aware of refactoring. Interference with the structure of the source code in
each view could then be kept to a minimum, with only what is necessary
merged between views. There is already a significant amount of interest
in making diff tools and version control systems refactor aware. Some

example of this are as follows:

e MolhadoRef [11] [10] attempts to incorporate refactoring in version

control systems.

e Semantic Merge [8] is a series of stand alone diff tools for different

languages.

e JDime as already discussed in Section [2.4]

29

CHAPTER 3. PRIVATE VIEWS 30

3.1 The problems to address

There are a couple of challenges when collaborating using version control
systems. We believe that having private views will help address these

issues.

Repeated structure changes for other software developers. Imagine a sit-
uation where you are working jointly on a project with other people.
Since you want to collaborate on different aspects of the same source
code you have set up the project in a merge based version control
system. You have checked out your own copy of the code so that
you can work on the source code without interfering with any of the
changes others are making. You decide that it would be helpful to
make a small refactoring. This lightweight refactoring will help you
to better understand the source code and could involve some refor-
matting. You complete your changes and check your code back into
the version control system. While you are doing this other people
have been working on the code. If you manage to check in your code
before anyone else you will not need to merge any of your changes.
Anybody who checks in after you however, could have a merge con-
flict. A few of the merge conflicts that they experience could be be-
cause the changes you made directly compete with the changes they
have made. Potentially merge conflicts could also occur between the
changes they have made and the lightweight refactoring that you
have completed.

As shown in Figure [3.1|the difficulty lies in the fact that not only the
functionality that you have added is checked in but also the changes
brought about by lightweight refactoring. These refactored changes
have not changed how the program functions but have simplified
and tidied the code to make the addition of your changes easier.
These could include any formatting changes, or code restructuring

used to create a programming environment to allow you to be more

CHAPTER 3. PRIVATE VIEWS 31

merge
changes

make
changes

refactor

branch

Figure 3.1: Merging changes with refactored code also merges any refac-

toring

productive. During these occasions you may want to avoid changing

other peoples code in such a dramatic fashion.

By checking in your refactoring code you are forcing others to com-
ply with your vision about how the code should be structured. This
occurs even though you could have no awareness about what changes
to the code others have made or intend to make. Everyone who at-
tempts to check in their code after you will need to merge into a
restructured code source that they are unfamiliar with. The potential
for merge based bugs and time wasted doing unnecessary merging

increases.

Difficulty if there are multiple check-ins. When there is a large change
in a separate branch with many development milestones it is desir-
able to have the ability update your code periodically. By regularly
pulling updates from a main branch in the version control system

CHAPTER 3. PRIVATE VIEWS 32

this is possible. This could be done to ensure that there is not too
much divergence between the separate branch and other develop-
ment projects. If there is some lightweight refactoring in your branch
however every time you pull the changed updates your code could
change format as it applies the changes that others have completed.
It is possible that each time you pull the changes you would need
to reapply any lightweight refactoring that you have done. In the
worst case other peoples lightweight refactoring conflicts with your
lightweight refactoring despite both of them being non-functional
changes. As this happens periodically a lot of time could be spent
adjusting the code back into to the format and style that you wanted.

Differences in how code is understood. According to Kerievsky a reason
for refactoring code is to better understand it [15]. As shown by [6]
the very act of going through the source code and reprocessing it in
a clearer form can help with the understanding of it. This would
suggest that developers tend to leave the code in a difficult to under-
stand state or that different developers understand things differently.
Kerievsky also relates a tale about how the lack of knowledge of pat-
terns makes a particular refactoring look a lot more complex [15].
The different perspectives meant that the programmer he refers to as
John has a differing opinion that the refactored code was not an im-
provement. This shows that it is not just different functionality that
influences the need to refactor but sometimes the knowledge and ex-
perience of the developers themselves. It is often the case that two
developers could have different views about what is an appropri-
ate refactoring. This could be because each person brings different
skills, notices different issues and has a preferred way of visualising
a problem and solution.

Version control systems not being aware of changes in the order. One of

the changes which is not catered for by current version control sys-

CHAPTER 3. PRIVATE VIEWS 33

tems is changes in the order of methods. The first person to check-in
their code will have no issue as the version control system assumes
that all the changes are simply a new revision. When the second per-
son attempts to reconcile their view there is the possibility of having
unnecessary conflicts. A lot of these conflicts will be with refactored
or reformatted code which although works the same has a different
structure.

3.2 Benefits of private views

We want to be able to maintain private views that can have different but
equivalent refactorings. Different structures of code that function the same

way have a number of features that could be of interest.

Reduced interference with other software developers. One benefit is that
it is possible to keep the structure of code that each programmer
works on as consistent as possible. This means that when the devel-
oper examines the code again that it remains familiar and in a similar
state to how it was when they last examined the code. The location
of methods and variables are more likely to remain in the place the
software developer left them even if a merge occurs. By maintain-
ing two private views it allows software developers working on the
same programming project to freely refactor or add notes with min-
imal interference from others. It also means that the software de-
veloper will not interfere with others. If changes that are purely for
formatting are not included when the code is merged then there will
be less changes. The reduced changes would also mean that there

will be less merge conflicts when merging code.

The number of changes is reduced when merging. The number of changes
when merging is reduced if you omit any changes that don’t also

CHAPTER 3. PRIVATE VIEWS 34

have any change in behaviour. This in turn means that there is less

chance for there to be a merge conflict.

The ability to have comments tied to a specific view. It would be possi-
ble to have comments that are not considered when doing a merge.
This would be a benefit if there are comments that are specific to a
view and that are not necessary to share. This would allow a pro-
grammer to keep a lot more personal notes about a change. As some
comments will remain only in a private view there is less chance that
it will be hard to read the code due to the surplus amount of com-

ments.

3.3 Implementing private views

There are a number of ways we have considered about how to provide

private views that have the same functionality.

Comparing differences using a non-ordered comparison algorithm. Instead
of using the Longest Common Sub-sequence (LCS) based approach
we could instead use a non-ordered comparison. The easiest way
to consider this concept is that the LCS algorithm compares two lists
whereas a non-ordered algorithm is a bit more like comparing sets of
items. In this illustration each item would be a chunk of code. Node
that the items within these items may still need to be ordered.

The problems with using this approach to reconcile two different sets
is that the comparison would not know the difference between what
needs to strictly remain in order and what is allowed to be in a dif-
ferent order. If the version control system has an understanding of
a particular computer language it is much easier to determine what
items can be moved without changing functionality and which ones

need to stay in the same order.

CHAPTER 3. PRIVATE VIEWS 35

Normalising the source code before placing it in the version control system.
Before placing the item into source control it could be automatically
transformed into an agreed upon format. That is before doing a
merge both the code currently in the view and the code that is in
source control would need to be transformed into normal form. Here
normal form could mean that all the methods are arranged alphabet-
ically. Once we have the normal form of both items being merged it
will be easier to compare versions to see if they are equivalent. If

both versions are equivalent there is no need to merge them.

It is complicated to do this well and it requires careful thought about
what features would be normalised and which will not. It seems
more efficient to compare two revisions directly with each other rather

than to go to the effort of transforming them before comparing them.

Storing additional information in the version control system. By storing
additional information within the version control system different
views could be managed and recreated. This concept is very simi-
lar to Ekmans plug-in for eclipse that maintains a record of different
refactorings in addition to the source code [12].

The problem with this is that it would have to store information
about every private view. In a distributed version control system
especially an online one the number of distinct views could be large

and change often.

Using a tool like JDime solely as a method of comparison. As mentioned
earlier (see Section 2.4.3)there are a number of reasons why JDime
cannot currently be used as a method of keeping two private views.
If changed however it could still be useful. One idea we had was to
attach it to Git and solely use it to detect equivalent pieces of Java

source code.

The difficulty we experienced with this idea was that JDime had fea-

tures that we did not want. Moulding JDime into something that

CHAPTER 3. PRIVATE VIEWS 36

we could use was too complex and it was easier to explore using the
JastAdd] compiler.

We selected using a non-ordered comparison algorithm as we had a
method of figuring out what could be reordered and what had to stay in
the same order. To achieve this we used a parser to discover the AST. As
each AST node had a start and an end position we could relate each AST
Node back to its position in the source code. We could also determine
which parts of the source code were comments and white space as these
segments of the source code were not covered by an AST node. We will
discuss this further in the next chapter.

3.4 Are comments important?

Although in this thesis we have focused mostly on changes to the be-
haviour of a program as opposed to aesthetic changes to the source code
we recognise that sometimes changes to comments may be important.
There are occasions were it is practical to require that an important com-
ment or a change to a comment are merged. There may also be instances
where is it better not to merge a comment, as it is specific to this view.
We propose that inserted or deleted comments should be treated as if they
are specific to the view and that modifications to existing comments need
to be copied into other views. We believe the best idea however is to al-
low comments to be marked with an annotation to specify if they are only
relevant to the view they are currently in or need to be included in any
merge.

Existing comments and even white space can also provide useful infor-
mation about any changes of order in the code. If a programmer has cut
and pasted a block of code the white space and comments are also moved
and provide hints to what has occurred. Even if some of the code has been
modified there could be enough clues left behind to suggest that the most
likely event is that the code has moved and then adjusted.

CHAPTER 3. PRIVATE VIEWS 37

For these reasons comments are investigated as part of the Refactor
Categories Tool.

Chapter 4
Refactor Categories Tool

In order to show that having private views would be useful we created
the Refactor Categories Tool. Normally Version Control Systems such a
JGit compare and merge files by differentiating between insert, delete and
modify operations. The Refactor Categories Tool enhances this by also
identifying instances where a block of code has moved but the functional-
ity remains unchanged. It also can differentiate between changes to com-
ments, white space and Java code. This means it can differentiate between
instances where a change to a source file does not cause a change in the be-

haviour of the program and some instances where it has been refactored.

4.1 Overview

When the Refactor Categories Tool is run an ordinary text comparison is
used as a starting point. The text comparison within JGit is used with
white space ignored. The text comparison returns the minimal number
of text changes in an EditList object. The EditList object contains a
list of changes to the plain text. Information about each change that the

EditList object retains is:

e the starting line of the change for both revisions being compared

38

CHAPTER 4. REFACTOR CATEGORIES TOOL 39

e The ending line of the change for both revisions

e The type of change that is being made

As this is a text comparison the types of changes that are detected be-
tween two files are limited to inserts, deletes, and modifications. In or-
der to expand this list we need more information. We obtain information
about the meaning of Java files by parsing both of the revisions we are
comparing. We use JastAdd] [20] to parse the information into an AST.
Once we have the AST we need to discover which AST nodes match which
changes to the text in the source code.

Both the EditList object and AST nodes contain information about
the line of source the AST node starts and ends at. Unlike the EditList
object an AST node can also hold the column that the AST node starts and
ends at. Using this positional information we can match the text changes
in the EditList object to a set of AST nodes.

There are likely to be AST nodes that are not included in any of the
change sets and can be safely ignored. In order to find those AST nodes
we are interested in we need to traverse the AST. The root node spans
the entire file. By examining the children of the root however, we can
determine which children contain all or part of the matching text change.

An example of this can be found in Figure In this Figure it is safe
to ignore any children of the AST node marked "Child 1’ because "Child 1
does not contain the text change. The AST Node marked "Child 3" however
is interesting as its location places it within a text change.

Another interesting question is how the tool deals with situations where
a text change partly overlaps an AST node or an AST node only partly cov-
ers a text item. In Figure 4.2 two different AST nodes each contain part of
a text change. By examining any possible children of ‘Child 1" and “Child
2’ we could discover 4 types of AST Nodes:

AST nodes that are not included in the text change. Any AST node that

cannot be associated with a text change can be safely ignored. It

CHAPTER 4. REFACTOR CATEGORIES TOOL 40

0 | AST Root

v

0| Child1 |46

100

46 | Child 2 | 100

N

/v

3 57

53 | Child

50 Text Change 60

Figure 4.1: An AST showing each AST Node arranged in a tree and with

Child 3 consisting of a text change. Each AST Node and text change has

a start row recorded before the node and an end row recorded after the

node.

0 | AST Root

100

4

O|Child1l |46

46 | Child 2 |100

N

4U-Text Change;SD

Figure 4.2: An AST showing a partial overlap between child 1 and a text

change, and child 2 and a text change.

CHAPTER 4. REFACTOR CATEGORIES TOOL 41

means that there are no changes to the text and therefore no changes
to that AST Node.

AST nodes that are fully encapsulated by the text change. These are the
AST nodes that we wanted to discover as they are entirely within the
range of a text change. It means that this AST node has changed and
warrants further investigation. There may also be text changes that
are outside the AST node. If they are not part of any AST node they

would be classified as comments or white-space.

AST nodes that partly include the text change but have child AST nodes.
If an AST node has children and it is not fully contained by the text
change we recursively check the children.

AST nodes that partly include the text change but have no child AST Nodes.
If an AST node is a leaf node in an AST and it contains a text change
then it is highly likely that the AST node has changed. As there has
been changes to this AST node then it also warrants further investi-
gation. Any part of the text change that is not part of the AST node
and not part of any other AST node would be classified as comments

or white-space.

In both Figure4.1)and Figure 4.2 there are portions of text that are out-
side an AST node. These are of interest to us because these are instances
where the text may have been changed but it has no impact on the be-
haviour of the program. The most likely instances of this is when a com-
ment has changed or if white space has been introduced in the middle of
source code.

_

[

CHAPTER 4. REFACTOR CATEGORIES TOOL 42

4.2 What the tool does

4.2.1 Detects moves

If an AST Node has been inserted at one point and a similar one deleted
it is possible to see if a code block has moved. The following shows an
example of original source code before any methods have been moved:

public class SampleMoveAndChange {
double rect (double w, double h) {return w * h;}
double tri(double b, double h) {return b / 2 * h;}
double cube (double len) { return 6 *x sqgr(len);}
double circ (double rad) { return Math.PI % sqgr(rad);}

double sgr (double num) {return num * num; }

Once we move the tri method to before the rect method and circ
method to after the sqr method the code now looks like this:

public class SampleMoveAndChange {
double tri(double b, double h) {return b / 2 * h;}
double rect (double w, double h) {return w * h;}
double cube (double len) {return 6 * sqr(len);}
double sqgr (double num) {return num * num; }

double circ (double rad) {return sqgr(rad) * Math.PI;}

A comparison of the source code using Meld, a graphical merge tool is
shown in Figure Both rect and circ have been deleted from the orig-
inal version and have been inserted into the modified version. However
the circ method has also changed slightly. When this code is compared
and parsed into an AST we will initially have four differences due to both
the deletion and insertion of the two methods. We are not able to directly
compare the deleted AST nodes with the inserted AST Node to see if they

are equal because the circ method has been changed slightly. Instead of

CHAPTER 4. REFACTOR CATEGORIES TOOL 43

SampleMoveAndChange.java : SampleMoveAndChange2.java - Meld

& 4

| |1 SampleMoveAn...ndChangez.java ¥

J/home/paran/Documents/workspaces/Study/Sample¢, + | Browse... /home/paran/Documents/workspaces/Study/Sample| + || Browse... (&
1 public class SampleMoveAndChange { 1public class SampleMoveAndChange {

2 double rect(double w, double h) {return w * h;} - 2 double tri(double b, double h) {return b / 2 * h;}

3 double tri(double b, double h) {return b 7 2 * h;} # 3 double rect(double w, double h) {return w * h;}

4 double cube(double len) { return 6 * sgr(len);} 4 double cube(double 1len) {return & * sqr(len);}

5 double circ(double rad) { return Math.PI * sqr(rad);} =» 5 double sqr(double num) {return num * num;}

6 double sgr(double num) {return num * num;} % 6 double circ(double rad) {return sqr(rad) * Math.PI;}

7} 7}

Ln1,Col1 INS

Figure 4.3: A comparison of similar code with methods that have moved
and changed

checking for equality we need to check for similarity. By comparing all
the AST nodes for a delete candidate against all the AST nodes for a insert
candidate we are able to calculate a score that shows how similar they are.

There could be more than one insert and we need to compare them
against all the deletes to obtain the scores for each combination. In the
above example for instance we need to compare the deletion of circ with
both the insertion of rect and the modified circ to determine which one
is the better fit.

If a method is moved from one class into an inner class the programs’
behaviour could have changed. When this occurs there is no guarantee
that a match between that insert and delete is a valid one. If a method
has been shifted within the same class however, the program will still act
the same. Therefore in order to determine if the move is one that has no
impact the matches are only counted if a match can be found within the
same container. Here, a container is an enclosing scope within the source
code, such as a class. Restricting any valid moves to a container ensures
we get moves that don’t change the behaviour of the program.

CHAPTER 4. REFACTOR CATEGORIES TOOL 44

Figure 4.4: Two AST nodes being compared to each other by comparing
the differences in their child nodes.

To calculate the scores for a single change we start at the root AST node
for both the insert and delete candidates. If the root nodes have the same
type and fields then we can then check their children. By performing a diff
between the lists of children for both the insert and delete candidates we
obtain the minimum number of differences. If an extra child AST node has
been inserted or a child AST node is deleted then 1 is added to the score.
If a child AST node has been modified it is the equivalent of both a child
AST node being inserted and one being deleted so 2 is added to the score.
If there has been no change to a child AST node we need to recursively
assign a score using its children. To get the total percentage of children
that changed we divide the score against the total number of children for
both the delete and insert AST nodes we are scoring.

In the example in Figure two AST nodes are being compared with
each other. The red AST node has been deleted and an orange AST node
have been inserted. Because the yellow node has been modified it has
effectively been deleted and a green node has been inserted. This means
there have been a total of four changes to this level of the AST.

CHAPTER 4. REFACTOR CATEGORIES TOOL 45

Scores are stored in a two dimensional array where the rows are insert
candidates and the columns are delete candidates. We use the greedy al-
gorithm to select the lowest score in the array. Insert and delete candidates
that are selected are recorded as a move and should not be compared with
anything else. The comparisons that are no longer possible are in the same
column or row in the array. The comparisons that are no longer possible
are removed and the next lowest score for a match is evaluated. To ensure
that anything cannot be matched with anything once all good matches are
eliminated a limit is set ensuring that any further matches are ignored. The
two items that could have otherwise been matched will remain a solitary

insert and a delete.

4.2.2 Detects renaming

The Refactor Categories Tool can also detects some renaming. It does this
by comparing the names for each each node. If the name has changed but
the node type and all the children nodes are still the same then it places the
change into the ‘rename’ category. When the Refactor Categories Tool does
not check every AST node it can not determine if the rename operation is
going to have impact on other code. This means that if all copies of a
methods or variable have not been uniformly renamed it cannot find the

ones that remain unchanged.

4.2.3 Detects equivalent code

In some situations when the code has been modified the ASTs still re-
main the same. This means that although there have been changes the
behaviour of the code still has not changed.

CHAPTER 4. REFACTOR CATEGORIES TOOL 46

4.2.4 Detects changes to comments

In addition to doing a comparison of AST Nodes the Refactor Categories
tool also detects text changes that are located between AST nodes. These
changes could be comments or white space and are checked to see if they
have been inserted, deleted, modified or moved. The Refactor Categories
Tool first does a cursory examination of the text differences between two
files. It then examines both the differences in executable Java code and the
differences between comments and white-space.

This detection of comments and white-space also extends to move op-
erations As it is possible for the comment to change we also need to test
for similarity rather than equality. This is done by comparing the charac-
ters in the code block that has been deleted with characters from the code
block that has been inserted. A comparison is done between the two code
blocks using a diff to obtain the smallest number of changes. A score of
1 is added for each deleted or inserted character. If a character has been
modified a score of 2 is added. To obtain the percentage of items changed
the score is divided by the total number of characters in both code blocks.

4.3 Performance decisions

Performance is an issue especially for when examining large software projects
that have many changes. This means we have not only had to look at us-
ing more memory for the Refactor Categories Tool but also had to make

some changes to the code to free up more memory where required.

By setting object references back to null when they are no longer used.
Once a difference has been detected we attempt to remove any of the
information we are not going to use in the future. This should help
the garbage collector free up memory. We do this by setting the AST
nodes recorded against a difference to null once the difference has
been discovered.

CHAPTER 4. REFACTOR CATEGORIES TOOL 47

By not analysing AST node that did not have a text based change. By ig-
noring AST nodes and any of their child nodes that do not have a
text based change comparing all the AST nodes can be avoided. This
will also help to speed up analysis as these nodes do not need to be
analysed to see if they match.

matching within only the required scope. If we were not testing for moves
in the same scope we would need to test every deleted AST node
against every inserted AST node for the entire file. By stipulating
that we can only be sure if it is a legal move if it is in the same scope
we not only eliminate a lot of relocations of source code that are il-
legal but also reduce the number of items that need to be compared.
In addition to this the AST node along with its type are recorded in
a hash map. This ensures that only AST nodes that are a similar type

are compared against each other.

4.4 Design decisions

Java was chosen as both the language to write the tool in and to be the
language that the tool would recognise. This was done as it was a lan-
guage we understood and to make use of JDime if it was going to be part
of the tool. We wanted to use Git due to its distributed nature. The rea-
sons for choosing a distributed version control system was that we wanted
each private view being able to function on its own as a fully fledged
project without being dependant on a server. As we were already using
Java rather than using the main Git distribution which is written in C we
needed to use JGit instead.

We could not use JDime because of the issues discussed earlier. Instead
we used JastAdd] — the same Java implementation that JDime uses so that
we could implement some of the differences we required including being

comment aware and only examining each of the copies of source code.

CHAPTER 4. REFACTOR CATEGORIES TOOL 48

There are a number of design differences between JDime and the Refac-
tor Categories Tool. Instead of doing a text comparison first and only
proceeding to analyse the program using an AST if there are conflicts
the Refactor Categories Tool examines all entries that have a difference in
them. Although this takes longer and is more memory intensive there is an
advantage to this. If a merge was done using an ordinary text comparison
and there is a non functional change to only one revision there is no conflict
and JDime only does a text based merge. During this text based merge we
could get the non functional changes that change the source code without
changing the programs’ behaviour. By examining all changes irrespective
of if the text has conflicts means that the Refactor Categories Tool can de-
termine if it is a change that would not affect the behaviour of a program.

As there is a cost overhead with testing all the changes rather than just
the conflicting ones the Refactor Categories Tool needs to be efficient in
how it tests changes. Assuming that changes occur in select areas in the
file there are portions of the file that have not been changed. As men-
tioned in Section |4.1| we use positional information to match AST Nodes
to text changes. By ignoring portions of the AST that do not have any text
changes we avoid spending extra time where we know changes have not
occurred.

In some instances there is no position information stored in the Jas-
tAdd] AST nodes. This could be because they are generated by the parser
to reflect parts of the Java language that are inferred rather than directly
mentioned in the code. An example of this would be the use of super in
the constructor. Even if it is not written in the code for every constructor
has a super. Likewise all methods mentioned in an interface have a public
type even if is not in the code.

To get around this problem we needed to discover the end position of
the previous AST Node to determine the position the inferred AST node
should occupy. This means that the inferred AST node is in the right posi-
tion but is not represented by a block of text in the source code.

CHAPTER 4. REFACTOR CATEGORIES TOOL 49

Comment and white-space are also examined separately as they also
could give some indication of where code has been moved from or to. Be-
fore being checked to find matches unnecessary white-space is identified
and recorded. Any text that remains is examined to determine if its is a
comment.

Because of the way we are using the position in the code to identify
AST nodes there are circumstances when parts of the Java programming
language are identified as being surplus text. These have already been
identified and represented as an AST Node. By identifying comments we
can eliminate any of the items falsely recorded as comments.

Rather than comparing everything with each other to determine matches
it is more efficient to match just the items that are under the same AST
structure. This means that it is more likely that we get a match that is go-
ing to be relevant and valid. An example of this is matching methods. If
the methods are under the same container (a class) they may be legally
swapped without causing issues. If the method has been moved to an in-
ner class from an outer one however it becomes more complicated and we

cannot guarantee that the code is equivalent.

Chapter 5

Experimental results

5.1 Purpose

The purpose of this experiment is to measure how many insertions, dele-
tion and modifications are performed on the Java AST verses comments
across a range of realistic benchmarks. Similarly, how many insert and
delete pairs can be classified as moves.

5.2 Methodology

We will now outline the experimental methodology. Our goal is make it
possible for someone to reproduce our experiment.

The experiment was run on a Lenovo laptop with 3.5GB Ram and 113.2
GB disk space assigned to the 64 bit Ubuntu 13.10 (Saucy Salamander) op-
erating system. The tests were written in Java and run within the Eclipse
IDE

This text is further evaluated to determine if it is a change to comments
or a change to white space. An example of this is if the text comparison
detects a single change that inserts two new methods and a comment. The
Refactor Categories Tool will recognise this as three distinct changes. This

50

CHAPTER 5. EXPERIMENTAL RESULTS

Benchmark

Description

Commits

LOC

51

Jasm

Java bytecode assembler written for
use with the Whiley programming lan-

guage.
github.com/Whiley/Jasm

74

29139

Jpp

Pre-processor for Java based on Bash
shell script.
github.com/maandree/jpp

40

254

AST Java

Small parser written to transform Java
into an AST.

github.com/klangner/ast-java

24

10174

Java Object
Diff

Allows two Java objects to be compared
at runtime.
github.com/SQiShER /java-object-diff

291

10023

Diff]

Diff tool which in addition to ignoring
white space ignores changes of ordering
in package names for a Java file.

github.com/jpace/diff]

490

13712

IRE

Java library for regular expression
matching.
github.com/jkff/ire

41

2714

Syntax

Compiler compiler used for teaching.

github.com/jaimegarza/syntax

89

9376

Auto Refactor

Eclipse plug-in that automatically refac-
tors code

github.com/JnRouvignac/AutoRefactor

212

13400

Table 5.1: A range of benchmarks that will be included in the test

CHAPTER 5. EXPERIMENTAL RESULTS 52

means that it is possible for the Refactor Categories Tool to notice more
changes than a text based comparison.

We had some garbage collection memory issues with some benchmarks
that we were testing. To resolve these issues the Refactor Categories Tool
was run individually once for each benchmark to further ensure that there
were no memory leaks between runs. We also increased the memory by
changing the parameters for the run configuration. The following param-

eters were added to the run configuration for the test.

—-Xms512M
—-Xmx4096M

5.3 Results

5.3.1 Overview

After running the Refactor Categories Tool over our benchmark suite we
obtained the results shown in Table 5.2

The number of text changes that were recognised during ordinary text
comparison done using JGit for each benchmark are shown in Table
This table allows us to show the difference between an ordinary text merge
(reported by JGit) and the results produced by the Refactor Categories
Tool shown in Table Note that the values in this table are lower as
the Refactor Categories tool detects multiple changes which a text based

comparison aggregates.

5.3.2 Discussion

Figure[5.1} which has been generated from the data in Table 5.3} shows the
average for all the benchmarks of the types of operations found during an
ordinary text comparison. Figure which has been generated from the

CHAPTER 5. EXPERIMENTAL RESULTS 53

Benchmark Java WS Comments
Ins Del Mod Mov Ren Eqv Ins Del Mod

Jasm 264 76 38 7 0 0 26 |7 6 95
Jpp 43 9 50 0 0 0 6 1 2 11
AST Java 87 28 72 1 0 11 5 2 0 22
Java Object | 2645 1961 8862 5 9 187 | 270 | 52 25 881
Diff
Diff] 3106 3164 5192 58 82 18 276 |36 39 291
IRE 263 213 640 2 30 49 |10 3 79
Syntax 1142 544 2216 6 7 12 204 | 14 81 451
Auto refactor | 1702 1621 2809 7 16 25 295 |30 16 568

Table 5.2: Results over our benchmark suite showing the number of inserts

(Ins), deletes (Del), modifications (Mod), moves (Mov), renames (Ren) and

equivalences (Eqv) for Java AST nodes, comments and white-space (WS)

changes

Benchmark Ordinary Text Diff (reported by JGit)
Ins Del Mod

Jasm 91 44 337

Jpp 23 3 41

AST Java 44 15 85

Java Object Diff | 1186 837 8219

Diff] 746 991 3544

IRE 112 49 465

Syntax 691 214 1863

Auto Refactor | 639 309 1621

Table 5.3: The result of doing an ordinary text comparison showing the

number of inserts (Ins), deletes (Del) and modifications (Mod)

CHAPTER 5. EXPERIMENTAL RESULTS 54

data in Table shows the average for all the benchmarks of the types of
operations found during a Java AST node comparison.

When we compare the figures the number of modifications is different.
The percentage is much higher in the text comparison that JGit normally
uses and lower for the Refactor Categories tool. The reason for this is be-
cause a change done to a block of text recorded in the EditList object is
made up of a number of smaller changes. For instance a single line de-
tected by the JGit text comparison may contain a Java AST node change
and a change to a comment. The Refactor Categories Tool records each of
these changes separately. A change detected by JGit could be a number
of lines, so a single block of text could contain multiple Java AST nodes.
If a block of text is a delete all the Java AST nodes or comments in that
range will also be deletes. If a block of text is an insert all the Java AST
node or comments in that range will also be inserts. It is slightly differ-
ent for blocks of text that have been modified. It is possible that some
of the changes could be Java AST nodes or comments that have been in-
serted. They could also be deletes rather than modifications. Some of the
changes that an ordinary text diff recognises as modifications could actu-
ally be made up of individual inserts and deletes. Note that the number of
changes reported by the Refactor Categories Tool will increase exactly for
this reason. Furthermore, when we examine these changes more closely
using the Refactor Categories Tool the comparative percentage of insert
and delete increases while the percentage of modifications tends to de-
crease.

Instead of having insert, delete and modifications Figure |5.2 also has
move and rename. Predominately the changes were still identified as
modifications, inserts and deletes rather than the move and rename we
are interested in. What this could mean is although some non-functional
changes have been introduced it does not occur very often. However, it is
also possible that a more advanced identification algorithm could improve
the results.

CHAPTER 5. EXPERIMENTAL RESULTS 55

W insert
W Delete
Modification

Figure 5.1: Type of operations for an ordinary text comparison on average
for all the benchmarks

W insert

W Delete
Meodify

H Move

W Rename
Equivalence

Figure 5.2: Type of operations for a Java AST node comparison on average
for all the benchmarks

CHAPTER 5. EXPERIMENTAL RESULTS 56

Another aspect we were interested in was the difference between Java
based differences and non-Java changes such as comments or white-space.
Figure 5.3[shows the how many Java changes were detected as compared
to comments and white-space. This shows that the predominate change
in the source code was a change in functionality rather than a change to
the documentation. It implies that in programming projects there tends
to be many more lines of program than lines of comments. What this
means for this thesis is that currently there are more changes to function-
ality rather than to coding style and documentation. As there are still sig-
nificant amount of changes to comments it is possible that being able to
modify comments that will not be merged could be useful.

Figure more closely examines the type of changes that have oc-
curred to comments in the source code. By far the main change to com-
ments is modification. Unlike Java AST Nodes blocks of code contain-
ing comments are not further divided. This means that the block of code
marked as a modification to a comment may in fact contain a number of
deletes or inserts. Another possible cause for a large number of comment
changes to be modification is if a programming project is well established.
It is possible, in an existing project, that changes are made to the code and
the existing comments are modified to reflect that change. The changes
to the code could include insert or deletes in addition to modifications to
the source code. In this situation when comparing the amount of inserts,
deletes and modifications between the source code changes and the com-
ment changes the source code will have comparatively more inserts and
deletes whilst the comments will have comparatively more modifications.

A significant number of comments have been inserted and deleted. Ex-
amining these items a little closer revealed that some included the words
"TODO” or “"FIXME”. Although the addition of these comments are likely
to be associated with a related code change they may only be relevant to

CHAPTER 5. EXPERIMENTAL RESULTS 57

W Java AST
W White space
Comments

Figure 5.3: The type of changes that most often occurred over all the
benchmarks

H insert
B Delete
Meodify

Figure 5.4: Types of operations for comments on average over the bench-
marks

CHAPTER 5. EXPERIMENTAL RESULTS 58

people working on that section of the code. The same is true for blocks

of commented out code. In this situation having a private view could be

useful.

Chapter 6
Conclusions and future work

In this thesis we presented the concept of maintaining private views in
Java. A private view presented here is an environment that allows a de-
veloper to import changes they want while avoiding hidden unwanted
changes. This would also allow programmers to implement lightweight
refactoring to their tastes, while minimising the impact on others. In eval-
uating what these private view will look like we used version control sys-
tems as a starting point. There are some features of version control sys-
tems that already temporarily limit unwanted changes (e.g. branches).
However, during a merge any unwanted refactoring is imported. To this
end we created the Refactor Categories Tool as a precursor to creating
private views. This tool analyses the difference between two revisions
such as encountered during a commit and identifies some examples of
lightweight refactoring. The way that the Refactor Categories Tool analy-
ses these differences is by first parsing the source for both commits into a
Java Abstract Syntax Tree (AST). Once the AST is populated we then iden-
tifty which parts of the AST match the differences we want to examine. We
then use the AST to identify additional features that have been changed.
The features we have focused on are ones that do not change any func-
tionality such as methods being moved or comments being changed. The
results show that some of these lightweight refactorings are encountered

59

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 60

in practice. As the Refactor Categories Tool is a prototype it did not, un-
fortunately, identify as many as we hoped. We believe that it is possible to
detect many more non-functional changes using more advanced identifi-

cation algorithms.

6.1 Future work

In order to further the research into private views it would be useful to
evaluate how the Refactor Categories Tool could be enhanced to detect
more non functional changes. In addition to this some other tools could

be adapted to create and evaluate the usefulness of private views.

6.1.1 Changes to the Refactor Categories Tool

There are a number of ways that the Refactor Categories Tool could be

changed to discover more moves, and renames:

e At the moment the Refactor Categories Tool only examines moves
that occur within a class, however, there could be non-functional
changes that occur inside a method. An example would be if a lo-
cal variable declaration was moved. Sometimes this move would
have no effect on the code and others it could cause the code to no

longer compile.

e At the moment the Refactor Categories Tool only compares matches
within a limited scope (i.e. a class). Allowing the Refactor Categories
Tool to check other parts of the code, such as inner classes or even
other files may also produce some interesting results. Although we
cannot guarantee that the moves discovered are valid ones this could

give us more information about the source code we are examining.

e At the moment the Refactor Categories Tool only examines files that
have been identified by JGit as being modified or renamed. In some

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 61

instances JGit could have incorrectly determined that a file as been
deleted and reinserted rather than being renamed or moved. This
could happen easily since during a move or rename Java changes the
package reference and class name within the file. This is especially
true if the class has both been renamed and modified.

e Revising the scoring system for matching up inserts and deletes may
produce some better results. At the moment modifications are counted
as two changes using the scoring system to match inserts and deletes.
Experimenting by reducing this value could improve the number of
matches.

In addition to moves and renames, other lightweight refactoring may
be of interest. One of these are changes to access modifiers. An example
would be if a methods access changes from being private to being pub-
lic. Each of the method calls would then need to be rechecked to ensure
that the change does not affect functionality. Due to the possibilities of
overloaded methods in Java this would be complicated.

An additional lightweight refactoring that could be considered is code
that has been duplicated. This could be done in a similar manner as how
the Refactor Categories Tool check for code that has moved. If we also
check for code that has been modified slightly we may be able to deter-
mine that a copy and paste has been used to generate new code. How-
ever, at the moment the Refactor Categories Tool only considers code that
has been changed. If we want to analyse where code has been copied we
would need to check the entire source for copies as opposed to just the
items that have changed.

Comments could be associated with the AST Node they relate to. With
this change would be possible to tell if changing a comment should be
reflected in other views when there is a source code change. This change
is difficult as it is hard to tell which block of code the comment refers to.

One way this could be done would be to associate single-line comments

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 62

at the end of the line with the AST Node that appears directly before them
and other comments with the AST node that appears directly after them.
This however is only a rough approximation so it may be helpful to also
be able to specify exceptions to these rules by using annotations that tie
the comment to a block of code. Annotations could also be used to specity
how important the comment is. If the comment is marked as unimportant
it would indicate that it still should not be considered a change even if it
differs between revisions.

The Refactor Categories Tool could be re-purposed to allow it to be
used as a merge tool rather than a comparison tool that we are currently
using it for. This would bring us a step closer to being able to realise the
vision of having better separated private views.

Performance of Refactor Categories Tool could be further enhanced by
only parsing nodes that contain the text change. This however would re-
quire major changes to the parser or rewriting it. There would also be the
complexity of figuring out how to only partially parse a source code. The
benefits of rewriting the parser would save memory in addition to speed-
ing up the parsing of Java code into AST nodes.

6.1.2 Other lines of enquiry

There are other tools that could be modified to determine when a refactor-
ing has taken place.

JDime has already been investigates as part of this thesis. Although
JDime cannot recognise changes to comments or white-space it could be
re-purposed. If it could be converted into a comparison tool rather than
a merge tool then code that has been refactored differently could be com-
pared without the result being normalised.

According to Pace [21] Diff] is able to find the functional differences be-
tween two revisions of Java source code. When computing the difference

Diff] ignores a range of lightweight refactorings such as moved methods,

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 63

moved imports and the code being reformatted. As it ignores comments
and white-space however, it will not be able to determine if there have

been comment based changes that may be important.

Bibliography

[1]

ALDOUS, D., AND DIACONIS, P. Longest increasing subsequences:
from patience sorting to the Baik-Deift-Johansson theorem. Bulletin of
the American Mathematical Society 36, 04 (July 1999), 413—433.

APEL, S., LESS ENICH, O., AND LENGAUER, C. Structured merge
with auto-tuning: balancing precision and performance. Proceedings
of the 27th IEEE/ACM International Conference on Automated Software
Engineering - ASE 2012 (2012), 120 - 129.

APEL, S., LIEBIG, J., BRANDL, B., LENGAUER, C., AND KASTNER, C.
Semistructured merge. In Proceedings of the 19th ACM SIGSOFT sym-
posium and the 13th European conference on Foundations of software engi-
neering - SIGSOFT/FSE '11 (New York, New York, USA, Sept. 2011),
ACM Press, pp. 190 - 200.

ARSLAN, A. N. Language and Automata Theory and Applications,
vol. 6031 of Lecture Notes in Computer Science. Springer Berlin Hei-
delberg, May 2010.

BERTINO, N. Modern version control. In Proceedings of the ACM

SIGUCCS 40th annual conference on Special interest group on university
and college computing services - SIGUCCS "12 (Oct. 2012), ACM Press,
pp. 219-222.

Bois, B. D., DEMEYER, S., AND VERELST, J. Does the ”"Refactor

to Understand” reverse engineering pattern improve program com-

64

BIBLIOGRAPHY 65

[10]

[11]

[12]

[13]

[14]

prehension? Ninth European Conference on Software Maintenance and
Reengineering (2005).

CHACON, S., CORNELL, G., GENNICK, J., LOWMAN, M., MOODIE,
M., PEPPER, J., POHLMANN, F., RENOW-CLARKE, B., SHAKESHAFT,
D., WADE, M., AND WELSH, T. Pro Git. Control (2009), 1-210.

CODICE SOFTWARE. Semantic Merge. http://www.
semanticmerge.com/, 2013. Accessed: August 2014.

COHAN, B. Patience Diff Advantages. http://bramcohen.
livejournal.com/73318.html, 2010. Accessed: August 2014.

DIG, D., MANZOOR, K., JOHNSON, R. E. R. R. E., AND NGUYEN,
T. N. Effective software merging in the presence of object-oriented
refactorings. IEEE Transactions on Software Engineering 34, 3 (May
2008), 321-335.

DIG, D., MANZOOR, K., NGUYEN, T. N., AND JOHNSON, R. E. Mol-
hadoRef: A Refactoring-aware Infrastructure for OO Programs. In
Proceedings of the 2006 OOPSLA workshop on eclipse technology eXchange
- eclipse 06 (2006), ACM Press, pp. 25-29.

ExMAN, T., AND ASKLUND, U. Refactoring-aware versioning in
Eclipse. Electronic Notes in Theoretical Computer Science 107 (Dec. 2004),
57-69.

FOWLER, M., BECK, K., BRANT, J., OPDYKE, W., AND ROBERTS, D.
Refactoring: Improving the Design of Existing Code. Addison-Wesley
Professional, 1999.

FREESE, T. Refactoring-Aware Version Control Towards Refactoring
Support in API Evolution and Team Development. In Proceeding of
the 28th international conference on Software engineering - ICSE '06 (May
2006), ACM Press, pp. 953-956.

http://www.semanticmerge.com/
http://www.semanticmerge.com/
http://bramcohen.livejournal.com/73318.html
http://bramcohen.livejournal.com/73318.html

BIBLIOGRAPHY 66

[15] KERIEVSKY,]J. Refactoring to Patterns. Addison-Wesley Professional,
2004.

[16] LEss ENICH, O. Master Thesis Adjustable Syntactic Merge of Java

Programs.
[17] LOELIGER, J. Collaborating With Git. Linux Magazine 46 (2006), 32-35.

[18] MURPHY-HILL, E., AND BLACK, A. Breaking the barriers to suc-
cessful refactoring. 2008 ACM/IEEE 30th International Conference on
Software Engineering (2008), 421-430.

[19] MYERs, E. W. AnO(ND) difference algorithm and its variations. Al-
gorithmica 1, 1-4 (Nov. 1986), 251-266.

[20] OqQvisT, J., AND HEDIN, G. Extending the JastAdd extensible Java
compiler to Java 7. In Proceedings of the 2013 International Conference
on Principles and Practices of Programming on the Java Platform Virtual
Machines, Languages, and Tools - PPP] '13 (Sept. 2013), ACM Press,
pp. 147-152.

[21] PACE, J. JDiff. https://github.com/jpace/diffj. Accessed:
August 2014.

[22] THE ECLIPSE FOUNDATION. JGit. http://download.eclipse.
org/jgit/docs/jgit-2.0.0.201206130900-r/apidocs/
org/eclipse/jgit/diff/HistogramDiff.html, 2014. Ac-
cessed: August 2014.

[23] TicHY, W. F. Design, implementation, and evaluation of a Revision
Control System. 58—67.

https://github.com/jpace/diffj
http://download.eclipse.org/jgit/docs/jgit-2.0.0.201206130900-r/apidocs/org/eclipse/jgit/diff/HistogramDiff.html
http://download.eclipse.org/jgit/docs/jgit-2.0.0.201206130900-r/apidocs/org/eclipse/jgit/diff/HistogramDiff.html
http://download.eclipse.org/jgit/docs/jgit-2.0.0.201206130900-r/apidocs/org/eclipse/jgit/diff/HistogramDiff.html

	Introduction
	Overview

	Background
	Version control systems
	Dealing with conflicts
	Types of version controls systems

	Longest Common Subsequence
	Example
	Methods of calculating LCS
	Myers
	Patience
	Histogram
	How LCS is used in differencing tools
	The problem with LCS

	Refactoring
	JDime
	How JDime works
	Investigating JDime
	Reasons why JDime cannot currently be used to create private views

	Other refactoring aware versioning tools

	Private views
	The problems to address
	Benefits of private views
	Implementing private views
	Are comments important?

	Refactor Categories Tool
	Overview
	What the tool does
	Detects moves
	Detects renaming
	Detects equivalent code
	Detects changes to comments

	Performance decisions
	Design decisions

	Experimental results
	Purpose
	Methodology
	Results
	Overview
	Discussion

	Conclusions and future work
	Future work
	Changes to the Refactor Categories Tool
	Other lines of enquiry

