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Abstract 

The long-term sustainability and security of food sources for an increasing human population will 

become more challenging as climate change alters growing and harvesting conditions. Significant 

infrastructure changes could be required to continue to supply food from traditional sources. 

Fisheries remains the only major protein supply directly harvested from the wild. This likely makes it 

the most sensitive primary sector to climate change. Overfishing is an additional concern for 

harvested species. There is a need to anticipate how marine species may respond to climate change 

to help inform how management might best be prepared for shifting distributions and productivity 

levels. The most common response of mobile marine species to changes in climate is an alteration of 

their geographic distributions and/or range shifts. Predicting changes to a species’ range could 

promote a timely development of more sustainable harvest strategies. Additionally, these 

predictions could reduce potential conflict when different management areas experience increasing 

or decreasing catches. Ecological Niche Modelling (ENM) is a helpful approach for predicting the 

response of key fishery species to climate change scenarios. 

The overall aim of this research was to use the maximum entropy method, Maxent, to perform ENM 

on 10 commercially important fishery species, managed under the Quota management system in 

Aotearoa (New Zealand). Occurrence data from trawl surveys was used along with climate layers 

from Bio-ORACLE to estimate the species niche and then predict distributions in four different future 

climate scenarios, called Representative Concentration Pathway Scenarios (RCPS), in both 2050 and 

2100. With little consensus over the best settings and way to apply the Maxent method, hundreds of 

variations were tried for each species, and the best model chosen from trial experimentation.  

In general, Maxent performed well, with evaluation metrics for best models showing little omission 

error and good discriminatory ability. There was, however, considerable variation between the 

different species responses to the future climate scenarios. Consistent with other studies, species 

able to tolerate sub-tropical or temperate conditions tended to expand southward, while sub-

antarctic species generally contracted within their preferred environment. The increasing emissions 

or ‘business as usual’ climate change scenario consistently presented the most extreme difference 

from modern predictions. Northern regions of prediction, where sub-tropical or temperate species 

increased in probability of presence, were often highly uncertain due to novel conditions in future 

environments. Southern regions were usually less uncertain. Surface temperature consistently 

influenced base models more so than any other covariates considered, with the exception of 

bathymetry.  
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Some predictions showed common areas of relative stability, such as hoki and ling on the southern 

Chatham Rise, potentially indicating future refugia. The preservation of habitats in the putative 

refugia may be important for long-term fisheries resilience. Furthermore, most species that showed 

large predicted declines are currently heavily harvested and managed. Overfishing could compound 

the effects of climate change and put these fisheries at serious risk of collapse. Identification of 

potential refugial areas could aid strategy adjustments to fishing practise to help preserve stock 

viability. Additionally, when some species shift, there are areas where new fisheries may emerge. 

This study offers a perspective of what future distributions could be like under different climate 

scenarios. The ENM predicts that the ‘business as usual’ scenario, where ‘greenhouse gas’ emissions 

continue to rise throughout the century, will have a negative impact on multiple aspects of 

distribution. However, in a reduced emissions scenario, less extreme range shifts are predicted. This 

study has provided a predictive approach to how fisheries in Aotearoa might change. The next step is 

to determine whether there is any evidence for the beginning of these changes and to consider how 

fisheries might best adapt.  
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Chapter 1: Introduction 

1.1: Climate Change Impacts on the Marine Environment 

Anthropogenic climate change has become the forefront of most research globally, is topical in 

mainstream media, and is the source of much political debate. Anticipating changes in global climate 

and impacts may better enable society to prepare and understand what will be required to adapt. 

Discussions of climate change impacts have been disproportionately focussed on terrestrial 

ecosystems and species, while impacts on the marine environment has often been under-reported 

(Turra et al., 2016; Donelson et al., 2019; Frost et al., 2017; Robinson et al., 2011). Recently however, 

concerns have been raised in mainstream media reports about the effects of global climate change 

on marine environments (Beck, 2018; May, 2019; Neilson, 2019; Stevens & Noll, 2019) and a 2019 

study by Cheng et al. (2019) suggested that the marine environment is being impacted to a larger 

extent than was previously expected. Impacts on the marine environment include, but are not 

limited to, rapid ocean warming, rising sea levels, ocean acidification, declining oxygen levels, and 

primary productivity shifts (Cheng et al., 2019; Free et al., 2019, Law et al., 2017). There is an urgent 

need to understand the implications of these changes on marine species ecosystems, especially 

those that support valuable fisheries.  

Species that cannot tolerate changes to their environmental conditions usually respond by shifting 

their geographic range, including withdrawal to areas of refugia, and/or adapt to the altered 

conditions (Donelson et al., 2019; Nogués-Bravo et al., 2018). In the absence of these types of 

responses, extirpation or extinction of species or populations may occur (Nogués-Bravo et al., 2018). 

Phenotypic plasticity or altering phenology may permit species to temporarily persist in an area and 

avoid moving or adapting (Crozier & Hutchings, 2014). However, persistence through extreme 

environmental change will likely require more permanent adjustment and/or a combination of these 

responses (Crozier & Hutchings, 2014; Donelson et al., 2019). The current rate of the changing 

climate is not conducive to adaption unless rapid, a possibility reserved for species with high 

reproductive rates and short generation times or ‘r-selected’ life histories (Colautti & Barrett, 2013; 

Crozier & Hutchings, 2014; Reznick & Ghalambor, 2001). This, and the mobile nature of most marine 

organisms, often undertaking long distance migrations or being dispersed by pelagic larvae in ocean 

currents, suggests distribution shifts will more frequently be observed as responses of marine 

species to climate change (Donelson et al., 2019; Hiddink & Ter Hofstede, 2008).  

Many marine species’ distributions are dynamic and strongly linked to temperature preferences 

(Cheung et al., 2012; Sunday et al., 2012). Although ocean warming will have varied effects on 

different marine taxa (Free et al., 2019), latitudinal and depth range shifts in response to ocean 
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warming have already been observed numerous times (Cheung et al., 2012; Dambach & Rödder, 

2011; Jung et al., 2014; Morley et al., 2018; Perry et al., 2005). Mostly poleward shifts have been 

observed and are expected to increase, with species in sup-polar regions at high risk of extinction 

due to invasion and competition from species currently in temperate and tropical regions (Cheung et 

al., 2009; Cheung et al., 2013; Morley et al., 2018). In this case, this pattern would result in an 

increasing dominance of warm water species, a phenomenon called “tropicalisation” (Cheung et al., 

2012; Cheung et al., 2013). These large scale redistributions are likely in response to physiological 

stress or change in food availability due to higher temperatures (Plagányi, 2019). Other factors 

associated with ocean warming, such as ocean acidification and reduced oxygen concentration, are 

expected to compound warming effects (Hofmann & Schellnhuber, 2009). The resulting changes in 

species composition and richness will likely substantially impact fisheries worldwide (Cheung et al., 

2009; Dambach & Rödder, 2011). As species shift across current management boundaries, conflicts 

and management disputes may arise over catch allocations (Bell et al., 2014; Miller & Munro, 2004). 

Furthermore overfishing of shifted populations would further compromise the resilience of species 

already contracting in response to warmer temperatures (Free et al., 2019).  

Global productivity of marine fishes has declined and is expected to continue to do so as a result of 

climate change and other anthropogenic factors (Free et al., 2019). However, changes in productivity 

are expected to vary in different regions (Blanchard et al., 2012; Cheung et al., 2016; Moore et al., 

2018). Decline of fisheries productivity coinciding with human population increases will almost 

certainly reduce per-person seafood availability (Plagányi, 2019). In future, suitable responses to 

redistribution of fisheries worldwide could alleviate some pressure on fisheries. Implementation of 

effective management strategies and adaptation requires better understanding of fisheries’ 

responses to climate change (Cheung et al., 2013). Anticipating redistribution of key fishery species 

is a first step in achieving this. Tools such as Ecological niche modelling (ENM) may allow better 

anticipation of species shifts in response to climate change. ENM has the potential to aid 

development of sustainable management practices in response to changing climates.  

ENM or Species Distribution Modelling (SDM)* allows exploration of possible range shifts and 

species overlaps by predicting species’ distributions based on correlations between environmental 

covariates and species’ occurrences. ENM has also been used to aid species delimitation (Raxworthy 

et al., 2007), invasive species studies (Thuiller et al., 2005), conservation planning (Lindsay et al., 

2016; Moore et al., 2016), phylogenetics (Graham et al., 2004) and population genetics studies 

(Mestre et al., 2015; McCallum et al., 2014). See Graham et al. (2006) and Martinez-Meyer et al. 

(2004) for other purposes. Increased use of ENM to predict species’ responses to future 

environments has coincided with increased data accessibility, technological advancements and rising 
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concerns about climate change. Unfortunately, far fewer marine ENM studies have been done than 

terrestrial studies (Robinson et al., 2011), and in 2017 only 17% of these had been done specifically 

as climate change investigations (Robinson et al., 2017). ENM as a tool to predict responses to 

climate change in the marine realm is an underutilised resource.  

Lack of marine ENM studies could be attributed to the difficulty in collecting occurrence data 

compared to terrestrial environments (Kaschner et al., 2006; Mannocci et al., 2018; Tyberghein et 

al., 2012). Challenges in the marine environment that restrict collection, such as clarity and depth, 

have resulted in marine surveys historically falling behind the terrestrial ones (Costello et al., 2010; 

Zhang & Vincent, 2017). Most marine ENM studies have been performed in temperate northern 

regions, particularly the Northern Atlantic where survey effort is substantial (Breece et al., 2016; 

Bruge et al. 2016;  Robinson et al., 2017). There has been a lack of ENM studies in other regions with 

high survey effort for fisheries monitoring, such as South Africa and parts of South America 

(Robinson et al., 2017). Additionally, in regions likely to be substantially affected by potential 

poleward shifts, such as tropical waters around Indonesia and Africa, ENM has rarely been utilised 

(Barros et al., 2014). This is likely due to wealth and institute density as well as lower survey effort. 

Furthermore, few marine ENM have been done specific to the Arctic, despite predicted substantial 

community composition changes species (Cheung et al., 2009; Cheung et al., 2013; Morley et al., 

2018). In 2017 only 10% of all marine ENM studies had been in Australasia and only 4 out of 236 

marine ENM studies done worldwide were specific to New Zealand. None of the New Zealand 

studies were investigations into climate change responses (Robinson et al., 2017).  

Further reservations to apply ENM to marine environments may be due to lack of fossil records or 

genetic data from the marine environment, which are often used in terrestrial studies to corroborate 

predictions (Gavin et al., 2014). However, marine environments are more mobile than the terrestrial, 

from tides to ocean currents, and therefore supports greater potential for long distance dispersal 

(Carr et al., 2003; L. Robinson et al., 2011). Most marine organisms generally disperse farther and 

faster than terrestrial species and are more likely to occupy a greater amount of the area available 

with suitable habitat (Donelson et al., 2019; L. Robinson et al., 2011). As a result, ENM may be 

expected to predict marine species’ future distributions better than those of terrestrial organisms. 

Additionally, marine environmental data and can be obtained from broad‐scale remotely sensed or 

modelled data sources, a benefit not as applicable for terrestrial studies, which are required 

frequently to include microclimate information (Robinson et al., 2011).  

_________________________________________________________________________________ 
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*The terms ENM and SDM model are often used interchangeably. What the distinction is and whether it is 

important appears an unresolved topic of debate (Peterson 2006; Peterson 2012; Elith & Leathwick 2009; 

Franklin 2010; Sillero 2011; Araújo & Peterson 2012; Warren 2012). Although the aim of this study is not to 

characterise the ecological niche but to estimate the potential distributions, doing so requires niche estimates 

based on a set of variables (Peterson, 2012). Furthermore, interpreting how environmental changes may elicit a 

species’ response and influence distributions relies on niche theory because it assumes a correlation between 

the variables used and species’ potential geographic distributions (Peterson, 2012, Wiens et al., 2009). Thus, 

the phrase ENM is used rather than SDM in this thesis.  

__________________________________________________________________________________ 

1.2: ENM Algorithms 

A wide variety of ENM algorithms are now available and easily accessible. These include algorithms 

that use Presence Absence (PA) data such as generalised linear models (Nelder & Wedderburn, 

1972; Zuur et al., 2010), generalised additive models (Zuur et al., 2010) and artificial neural networks 

(D’heygere et al., 2006; Fukuda et al., 2013). Others are able to utilise Presence Only (PO) data such 

as BIOCLIM (Booth 1985; Booth et al., 2014; Parra et al., 2004), DOMAIN (Carpenter et al., 1993; 

Segurado & Araujo, 2004), Maxent (Phillips et al., 2006; Phillips et al., 2004), and GARP (Anderson, 

2003; Peterson, 2001). PA data contains both species presence and absence information and is 

usually collected in a systematic and targeted manner. PO data does not contain absence 

information and is usually more inconsistent and spatially biased than PA data. PO data however is 

more easily collected and is readily available from museums, herbariums, and online sources like the 

Global Biodiversity Information Facility (GBIF; http://www.gbif.org) dataset (Elith et al., 2006). 

Algorithms that utilise PO data are therefore more easily utilised and PO data is a valuable resource, 

given the challenges of using it are overcome (Elith et al., 2006).  

In 2017, the most used ENM software was Maxent, the popularity of which has substantially 

increased since its introduction in 2006 (Gobeyn et al., 2019; Morales et al., 2017; Phillips et al., 

2006). Maxent is a maximum entropy based machine learning algorithm that uses presence and 

background data to predict the probability distribution of a species based on a given set of 

environmental variables (Manzoor et al., 2018). Although less mature, Maxent has often performed 

well compared with other ENM methods (Derville et al., 2018; Elith & Graham, 2009; Elith et al., 

2006; Phillips et al., 2006; Ray et al., 2018; Shabani et al., 2016; Tarkesh & Jetschke, 2012) 

particularly on small sample sizes (Papeş & Gaubert, 2007; Pearson et al., 2007). However, there has 

been particular contention around whether Maxent or GARP (Genetic Algorithm for Rule-set 

Prediction) is superior (Chikerema et al., 2017; Peterson et al., 2007; Ray et al., 2018; Terribile & 

Diniz-Filho, 2010). Most studies seem to favour Maxent and claim it achieves better predictions 

http://www.gbif.org/
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(Elith & Graham, 2009; Phillips et al., 2006; Ray et al., 2018; Tarkesh & Jetschke, 2012). Those that 

favour GARP either only use AUC statistics to evaluate models (Terribile & Diniz-Filho, 2010), an 

evaluation metric that has been criticised when used exclusively (Lobo et al., 2008; Peterson et al., 

2008), or received criticism for incorrect use of the Maxent (Peterson et al., 2007; Phillips, 2008). 

This was usually related to background data use, insufficient replicates or failing to utilise the 

flexibility of Maxent by relying on default settings (Anderson, 2015; Anderson & Gonzalez, 2011; 

Peterson et al., 2007; Phillips, 2008). Studies favouring Maxent often explored more settings and 

features of the software (Elith & Graham, 2009). Without considering key settings that can be 

altered to suit the data, the utility of Maxent is often underestimated (Anderson & Gonzalez, 2011; 

Chikerema et al., 2017). Furthermore, ENM studies in general rarely attempt to estimate uncertainty 

in their predictions, reducing the ability to identify methods or models that produce more or less 

robust predictions (Cheung et al., 2016; Morley et al., 2018; Planque et al., 2011). 

1.3: Target Species 

This thesis considers a range of species managed under the New Zealand Quota Management 

System (QMS), in New Zealand (New Zealand) for which their occurrence records are regularly 

collected during fisheries research trawl surveys by the National Institute of Water and Atmosphere 

Research Ltd. (NIWA). These species were chosen due to their prevalence in literature, varied life 

histories and other biological traits, and diverse temperature and depth preferences, so as to have a 

range of species to compare and contrast. Target species include inshore species; snapper, john 

dory, trevally and tarakihi usually found at depths of less than 200m, and a number of deep-water 

species such as scampi, orange roughy, hoki, ling, southern blue whiting, and a species of New 

Zealand arrow squid. Each of these species are recognised as important fisheries in New Zealand and 

many have recreational and/or cultural value (Fisheries New Zealand, 2018). Species are listed with 

their most commonly used name, Māori and scientific names respectively. Where the common and 

Māori names were the same only this was used. 

Snapper or tāmure (Chrysophrys auratus Forster, 1801) 

Snapper are in the Sparidae family, made up of 38 Genera, and 159 species, distributed throughout 

tropical and temperate Atlantic, Indian, and Pacific Oceans (Paul, 1986). Snapper are one of the most 

commercially valuable inshore species in New Zealand, distributed mainly from the top of NI to top 

of SI (Parsons et al., 2014). Snapper are mostly prevalent in warm waters, and appear to have 

increased growth, survival and recruitment success in warmer waters (Fielder et al., 2005; Francis, 

1993; Parsons et al., 2014). The same species is also found around coastal Australia and some Pacific 

Islands (Ashton et al., 2019; Sumpton et al., 2008). They are demersal fish with a depth range down 
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to 200m but are typically present in 15-60 m (Parsons et al., 2014; Smith et al., 1978). Snapper are 

relatively slow growing and long lived, reaching maturity at around 3-4 years and may live for up to 

60 years (Parsons et al., 2014).  

Hoki (Macruronus novaezelandiae Hector, 1871) 

Hoki are in the Merlucciidae family, made up of 24 species and 5 Genera, distributed throughout the 

Atlantic, eastern Pacific, Tasmania and New Zealand, often in sub-antarctic waters (Alyling & Cox, 

1982). As an abundant commercial finfish species in New Zealand waters, hoki is New Zealand’s 

largest fishery and is exported all over the world (Dunford et al., 2015; McKenzie, 2017). Hoki are 

widely distributed throughout New Zealand Exclusive Economic Zone at depths from 50 - 1000m, 

although they are typically caught between 400-600m in southern regions, preferring cooler water 

temperatures (Hamer et al., 2012). Hoki are relatively fast-growing, reaching maturity at 3-5 years 

and living for up to 25 years (McKenzie, 2017). 

Orange roughy or nihorota (Hoplostethus atlanticus Collett, 1889) 

Orange roughy are part of the Trachichthyidae family, consisting of 49 species and 8 genera 

distributed in temperate oceans worldwide (Tingley & Dunn, 2018). Orange roughy are widely 

distributed globally but absent from northern Indian and Pacific Oceans (Branch, 2001; Kulka et al.,  

2003; Laptikhovsky, 2008; Roberts et al., 2015; Varela et al., 2013). In New Zealand they are 

widespread from depths of 450-1800m, although usually caught between 700-1300m (Branch, 

2001). Orange roughy are slow growing and exceptionally long lived, known to live well over 100 

years (Andrews & Tracey, 2003; Andrews et al., 2009; Tingley & Dunn, 2018). Orange roughy don’t 

tend to reach maturity until 30-40 years, and have low fecundity (Branch, 2001; Tingley & Dunn, 

2018). 

Tarakihi (Nemadactylus macropterus Forster, 1801) 

Tarakihi are part of the Cheilodactylidae family, with 27 species and 4 genera, distributed in 

subtropical and temperate waters both northern and southern hemispheres (Roberts et al., 2015). 

Tarakihi are widespread and commercially important marine fish in New Zealand and southern 

Australia (Burridge & Smolenski, 2003). They are typically found on the continental shelf at depths of 

80-100m but known depth range is from 10 up to 500m (Beentjes, 2011; Burridge & Smolenski, 

2003; McKenzie et al., 2017). Tarakihi have high fecundity, are relatively fast-growing, mature at 4-6 

years and live upwards of 35 years (Burridge & Smolenski, 2003; McKenzie et al., 2017).  

Trevally or araara (Pseudocaranx georgianus Cuvier, 1833) 



16 

 

Trevally are part of the Carangidae family, with 146 species and 30 genera, distributed in tropical 

waters in the Atlantic, Indian, and Pacific oceans (Roberts et al., 2015). Trevally are one of New 

Zealand’s most important commercial inshore fish species (Fisheries New Zealand, 2018). Found in 

northern New Zealand and other areas throughout the world, although there is much confusion and 

inconsistency where naming of this species is concerned throughout the world (Fisheries New 

Zealand, 2018). Trevally are most common at depths of approximately 80m, although their depth 

range is thought to be 10 - 238 m (Mundy, 2005). Trevally can reach over 40 years of age (Fisheries 

New Zealand, 2018).  

Scampi or kōurarangi (Metanephrops challenger Balss, 1914) 

Scapi are part of the Nephropidae family, with 18 genera and 118 species distributed throughout 

both southern and northern hemispheres (Bell et al., 2013; Tshudy, 2003). In New Zealand, scampi 

are of high value, particularly as an exported species (Tuck et al., 2015; Van der Reis et al., 2018). 

They are generally found at depths of 200-600m on muddy areas of the continental slope around 

eastern and western New Zealand, including the Chatham Islands (Bell et al., 2013; Major & Jeffs, 

2018; Tshudy, 2003; Tuck et al., 2015). Scampi can live for up to 15 years, reaching maturity at 3-4 

years (Cryer & Oliver, 2001), and are known to have low fecundity (Phillips, 2008).  

John dory or kuparu (Zeus faber Linnaeus, 1758) 

John dory are part of the Zeidae family, with 6 species and 2 genera, distributed in the Atlantic, 

Indian, and Pacific Oceans (Heemstra, 1980). John dory is distributed widely worldwide, usually 

found less than 200 m deep (Maravelias et al., 2007; Radford et al., 2018). In New Zealand they are 

distributed mainly around the NI and northern SI (Dunn & Jones, 2013). John dory have been found 

to live up to eight years, in New Zealand (Caton & McLoughlin, 2000) and mature at 4-5 years (Ismen 

et al., 2013).  

Southern blue whiting (Micromesistius australis Norman, 1937) 

Southern blue whiting are in the family Gadidae, which has 23 species and 13 genera distributed in 

sub-antarctic water in the Arctic, Atlantic and Pacific oceans at depths of 0-800m (Alyling & Cox, 

1982). Southern blue whiting occur in sub-antarctic waters off South America and southeast of New 

Zealand (Hanchet, 1999; O'Driscoll et al., 2016). New Zealand southern blue whiting are a major 

fishery with substantial annual landings (Fisheries New Zealand, 2018; O'Driscoll et al., 2016). 

Southern blue whiting are known to aggregate at 200-500m (O'Driscoll et al., 2016). They usually live 

to around 15 years but have been found to live up to 25, and mature between 2-4 years (Fisheries 

New Zealand, 2018).  
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Ling or hokarari (Genypterus blacodes Forster, 1801) 

Ling are part of the family Ophidiidae, with 258 species and 50 genera, found in the Atlantic, Indian 

and Pacific oceans (Roberts, 2015). Ling are found in depths of 100-800m in the southern Pacific and 

Atlantic oceans (Dunn et al., 2010). The maximum recorded age for ling in New Zealand is 46 

although they don’t often live over 30 years (Dunn et al., 2010; Horn, 2005) and have relatively low 

fecundity compared to other deep water species (Paredes & Bravo, 2005). Hoki, arrow squid and 

scampi are common components of their diet in New Zealand (Fisheries New Zealand, 2018). 

New Zealand arrow squid or wheketere (Nototodarus sloanii Gray, 1849) 

Arrow squid are part of the family Ommastrephidae, with 11 Genera and 21 species, found in all 

oceans of the world (Jereb & Roper, 2005; Roper et al., 2010). N. sloani is endemic to New Zealand 

and found south of the convergence zone up to 600m depth (Fisheries New Zealand, 2018). 

Juveniles are found in shallower waters of <200m (Dunn, 2009). They live to around 1 year, have 

rapid growth and mature around 200 days (Dunn, 2009). There is a second closely related species, N. 

gouldi, which closely resembles N.solani, making it difficult to differentiate (Fisheries New Zealand, 

2018). N. gouldi is generally found further north and on the west coast (Fisheries New Zealand, 

2018). Although only N. sloanii was modelled in this thesis, discussion of how mistaken identification 

between these two species may have affected results has been included.  

1.4: Thesis Objectives 

The overall objective of this study is to establish a better understanding of how some New Zealand 

marine species included in the New Zealand Quota Management System (QMS) may respond to 

future climate change.  The specific aims of this thesis were as follows: 

• To appropriately collate and examine marine climate and fish occurrence data for use with 

the Maxent modelling method.  

• To perform ENM on each target species under different parameters in order to find a model 

that best represented the ecological niche of the target species. 

• To project best models for each species onto four different future climate scenarios 

(Representative Concentration Pathway Scenarios) in order to visualise their response. 

• To consider the validity and reliability of the future predictions. 



18 

 

Chapter 2: Methods 

2.1: Workflow overview: 

 

 

 Figure 2.1: Overview of the methods 

 

2.2: Occurrence Data 

2.2.1: Preparing Occurrence Data 

Occurrence data for New Zealand marine fishery species were obtained from the fisheries New 

Zealand database, which holds operational details, catch, and biological sampling data for all 

government-commissioned, research trawl surveys. Summary of the major survey series within this 

dataset can be found in Beentjes and Stevenson (2008); Dunn, Rickard, Sutton, and Doonan (2009); 

Morrison, Stevenson, and Hanchet (2001); O’Driscoll, MacGibbon, Fu, Lyon, and Stevens (2011); and 

Stevenson and MacGibbon (2018). These data were provided by NIWA (M. Dunn). The total 

geographical coverage of this dataset is presented in Figure 2.2. This dataset contained 660,905 

catch records of 1,892 different marine species caught between 1960 and 2017, although most were 

caught after 1980 (Figure 2.3, Appendix A.1). Depth of records ranged from 2m to 2730m (Figure 

2.4). Any record with an assigned depth that when plotted with depth contours appeared to be an 

error, was removed. Full summary information of these occurrence records can be found in 

Appendix A.2.  

Using R Studio version 3.5.1, occurrence records were filtered and only those collected from bottom 

trawls and high opening bottom trawls were kept, so that 579,435 records remained. Records where 

other gear methods were used were excluded. Only records with excellent or satisfactory gear 

performance, as per the trawl database documentation by Mackay (2011), were kept so that 
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545,077 remained. Records with NA or zeros as coordinates were also removed so that the final total 

number of records in the entire dataset was 543,909. This filtering was done for consistency of 

geographic comparisons and to retain only high-quality data. The dataset was then subset by species 

into separate files for each of the ten target species. The files were then reduced to only the 

coordinate information for each species, in order to produce the necessary input files for the 

MAXENT modelling software (Phillips et al., 2004). A summary of the number of occurrence records 

for each species, before further processing is provided in Table 2.1. 

  

Figure 2.2: Total geographic coverage of occurrence of species records in the New Zealand region 
from the MPI trawl dataset (provided by NIWA, M. Dunn). 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Total number of occurrence records (y axis) collected per year (x axis) from the New 
Zealand region from the MPI trawl dataset (provided by NIWA, M. Dunn). 
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Figure 2.4: Maximum depth of records (A) and minimum depth of records (B) in New Zealand, with 
depth (x axis) and frequency of occurrence (y axis), of records in the total occurrence dataset 
provided by NIWA (M. Dunn). 

 

 

2.2.2: Spatial Bias in the Occurrence Data 

Assumptions about occurrence data 

A key assumption in ENM is that occurrence data points are spatially independent from each other. 

The presence of sampling bias violates this assumption (Boria et al., 2014; Carsten et al., 2007). 

Unstructured sampling effort and recurrent sampling of more accessible areas are common in PO 
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datasets and result in biased data (Fithian et al., 2015; Fourcade et al., 2014). In the marine 

environment, sample bias may arise due to higher levels of sampling inland, as it is more easily 

accessible, or because of management priorities. Locations distant from land may be less often 

sampled for practical reasons (Corkeron et al., 2011; Derville et al., 2018). Furthermore areas where 

important commercial species do not commonly occur are likely to be rarely sampled. Sampling bias 

promotes environmental bias by over-representing environmental conditions associated with 

regions (or time periods) that encompass clustered records (Aiello‐Lammens at al., 2015b; Boria et 

al., 2014; R. J. Hijmans et al., 2000; Kadmon et al., 2004; Reddy & Dávalos, 2003). In ENM this creates 

models over-fit to environmental conditions associated with clustered records and leads to 

erroneous estimates of both optimum conditions and variable response and influence (Boria et al., 

2014). Temporal bias may also be introduced if surveys are consistently always done at similar times, 

for example only during certain seasons or in ‘good’ weather (Corkeron et al., 2011; Derville et al., 

2018; Elith et al., 2011). On further inspection, these data appeared to be relatively consistent with 

year-round sampling (Appendix 2.3). 

 

Similarly, it is assumed in ENM that the sampled area reflects the entire range of conditions the 

target species can tolerate (Anderson, 2015). If sampling bias results in omission of large areas of a 

species’ range this assumption is unreasonable as these areas will be mistaken for regions that 

aren’t inhabited due unfavourable conditions. This often produces overly conservative estimates of 

suitable habitat, due to a narrower range of environmental conditions being associated with 

occurrence records (also known as overfitting) (Radosavljevic & Anderson, 2014). The following 

sections explain how sampling bias was addressed this study, so that these assumptions were more 

acceptable. However, assuming the full range of areas with tolerable conditions are occupied may 

also be unrealistic if dispersal barriers have prevented occupation of suitable areas. This study 

assumed few or no dispersal barriers currently operating in the marine environment (that are not 

included in the investigated variable set) substantial enough to have majorly restricted any of the 

target species’ ability to inhabit its full range of tolerable environment. Therefore, once accounting 

for spatial bias had been attempted, it was assumed that the occurrence dataset represented 

spatially independent geographic localities associated with the full range of environmental 

conditions tolerable for each species.  

 

It is further assumed that within the species range niche characteristics are similar, so that 

environmental conditions associated with occurrences are within the same tolerance range. If 

species are genetically isolated or have begun to isolate and adapt to different conditions this may 

be an issue. An ideal species for ENM is one with panmixia throughout its range (Radosavljevic & 
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Anderson, 2014). The ability of the occurrence data to accurately represent the environmental niche 

is compromised if records were mislabelled, species were misidentified, coordinates were entered 

incorrectly, or if occurrence localities were not from a source habitat. If occurrences were from a 

sink habitat, the associated conditions would not represent those necessary to maintain its 

population without emigration and may therefore exaggerate tolerance ranges (Phillips et al., 2006). 

Large datasets including repeated surveys, such as the one used here, reduce the influence of 

records with errors such as these, given there are few in the dataset.  

 

Addressing spatial bias: Method 1 - Adjusting Background Extent 

There are a variety of methods available to attempt to account for sampling bias and ensure key 

assumptions are met (Mateo et al., 2010; Steven J Phillips et al., 2009; Syfert et al., 2013; VanDerWal 

et al., 2009). One common way is to adjust the background (BG) samples that Maxent takes 

(Anderson & Gonzalez, 2011; Anderson & Raza, 2010; Barve et al., 2011; Elith et al., 2011; Fourcade 

et al., 2014; Mateo et al., 2010; Phillips et al., 2009). Due to utilising PO, rather than PA data, Maxent 

uses BG points during model training instead of absence points (Elith et al., 2011). Maxent compares 

the relationship between environmental variables at locations occupied by the species with 

independently and randomly selected BG locations, where species presence is unknown (Merow et 

al., 2013; Muscarella et al., 2014). Ability to differentiate between presence and background 

locations based on environmental conditions largely determines the model quality (Merow et al., 

2013).  

By default, Maxent randomly extracts BG points from the entire study region and every pixel has the 

same probability that a BG point will be selected from it (Elith et al., 2011; Merow et al., 2013). This 

assumes the whole area was available for sampling and that the species were equally likely to be 

found anywhere within the region (Elith et al., 2011; Merow et al., 2013). These assumptions do not 

hold true given sampling bias in the dataset. To mitigate this, the area where BG points are taken 

from can be adjusted (Merow et al., 2013; Phillips & Dudík, 2008).  

Adjusting the area where BG points are taken from allows the user to exclude areas where there 

were suitable conditions but species had not been recorded either due to sampling bias or dispersal 

barriers (Anderson, 2015; Anderson & Raza, 2010; Barve et al., 2011). As well as the default entire 

background (EBG) method, two established approaches of adjusting BG areas were trialled: the 

Target Group Background (TGBG) method (Anderson, 2003; Phillips et al., 2006; Ponder et al., 2001) 

and the Restricted Background (RBG) method (Phillips, 2008).  
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Target Group Background  

This method uses collective occurrence records for many similar species (the target group), obtained 

via the same method, from the same database, under the assumption that those surveys would have 

recorded the focus species had it occurred there (Anderson, 2015; Anderson et al., 2003; Dudík et 

al., 2006; Fitzpatrick et al., 2013; Phillips et al., 2009; Ponder et al., 2001; Syfert et al., 2013). Based 

on the occurrence records of the target group, the sampling distribution can be estimated. This 

permits BG data to be taken only from the area that was sampled, rather than the whole region. This 

reduces the potential for BG points to be taken from areas with suitable conditions but no presence 

records, thus reducing the tendency to over fit to environmental conditions associated with sampled 

areas (Phillips & Dudík, 2008). When using this method, the BG sample theoretically reflects and 

therefore counteracts bias in the presence data (Dudík et al., 2006; Phillips & Dudík, 2008; Reddy & 

Dávalos, 2003; Zaniewski et al., 2002). Others have found the TGBG method significantly improves 

model performance and reduced the effect of sampling bias (Elith & Leathwick, 2007; Elith et al., 

2011; Phillips & Dudík, 2008). Here, the sampled area was estimated using the occurrence records of 

all marine species in the trawl database as the target group, filtered as previously mentioned for 

gear use and quality control. A number of coordinates associated with occurrence records in this 

target group were then randomly selected to be used as BG points in model training to apply the 

TGBG method (Figure 2.5B). A file was constructed from these coordinates for input into Maxent. 

Therefore, environmental conditions at the occurrence coordinates associated with the target 

species were contrasted with the environmental conditions at BG coordinates associated with the 

target group during model training when this BG method was implemented.  

Restricted Background  

This method is another way to adjust the area where BG points are taken from. This involved 

creating circular bounding buffer areas around each occurrence point, at a certain user-defined 

distance from each point, then merging these areas by dissolving interior lines so that an overall area 

encompassing all points remained (Phillips et al., 2009). BG points were randomly selected from 

within the merged region rather than from the entire study area. In this way, the area from which 

BG points could be taken was restricted. This method allows the BG data to better reflect the 

occurrence data bias, which encourages better distinction between presence and BG points (Phillips 

et al., 2009).  

Variability in MaxEnt predictions produced with different background extents has been 

comprehensively documented (Anderson & Gonzalez, 2011; Anderson & Raza, 2010; Baasch et al., 

2010; Barve et al., 2011; Elith et al., 2010; Elith et al., 2011; Giovanelli at al., 2010; Merow et al., 

2013; Phillips et al., 2009; VanDerWal et al., 2009; Yates et al., 2010). A more limited BG extent 
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encourages better differentiation between conditions in occupied and unoccupied areas, and 

therefore better recognition of distribution limiting conditions (Phillips, 2008). However, having 

more local BG points increases model complexity and therefore extrapolation when projecting the 

model to a different environment (Elith et al., 2011; VanDerWal et al., 2009). In this study three 

different restricted background extents were trailed to find an optimal distance: 10km (RBG1), 50km 

(RBG2) and 100km (RBG3). The three distances here were compared with the TGBG and EBG 

methods (Figure 2.5). Although the recommended restricted distance is one that reflects the 

average dispersal capability of the focal species, these data are not always available (Zeng et al., 

2016). Additionally, it was more feasible to trial the same set for each species, than to change it for 

each species being modelled in this study.  

 

Figure 2.5: Plots of the New Zealand region with examples of the different BG adjustment methods; 

The circles indicate points that were randomly selected as BG points dependant on the method 

used. A: EBG (Default BG of entire study region), B: TGBG, C: Three different RBG extents around 

orange roughy occurrence points as an example; Yellow = RBG1 (10km), Red = RBG2 (50km), Orange 

= RBG3 (100km). 

Addressing spatial bias: Method 2 - Spatial rarefication 

Spatial rarefication is another method commonly used to reduce sampling bias in presence only 

datasets (Boria et al., 2014; Fourcade et al., 2014). This involved adjusting the occurrence data itself 

before using it in the model.  Spatial rarefication was chosen rather than spatial thinning due to 

computational constraints of thinning on large datasets. The R package spThin was used to conduct 

spatial rarefication, using the function spRarefy (Aiello-Lammens et al., 2015a; Aiello‐Lammens et al., 

2015b). Spatial rarefication was implemented for each species dataset, reducing occurrence points 

to only ones a certain, user defined distance away from each other (Boria et al., 2014). This was 

done by selecting a single record from each grid cell randomly in replicates of 10. Increasing the 

number of replicates did not change the points selected or number of records that remained.  

A B C 
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Spatial rarefication was conducted due to the large variation in the density of records between 

sampled areas (see Figure 2.2). If this was not corrected the model fit would favour the conditions 

where density of records was high and down weight conditions where there were fewer occurrence 

points. The aim of rarefication was to reduce effects of overrepresented localities in the dataset 

without reducing the signal of areas with suitable habitat (Aiello‐Lammens et al., 2015(b); Anderson, 

2015). Rarefication should result in more equal weight given to all areas and reduce the effect of 

clustered records, which place artificial importance on the associated environment. Too much 

rarefication however may lead to smoothing the distribution of tolerable conditions and therefore 

overestimation of probability of presence (POP) at the edges of distributions, as well as 

underestimation of POP where conditions are most preferred (Fourcade et al., 2014).  

The distance at which points are set away from each by rarefication other should depend on the 

precision at which the data was collected and what is computationally feasible (Jeffery Hanson, 

University of Queensland, email correspondence). In this case, a distance of 10 km was selected 

because as the distance between the surveys tows that collected the data was often 3 nautical miles 

(5.556 km), following the standard operating procedure (Hurst et al., 1992; Stevens, 2014). If each 

tow was ~5 km, the midpoint has to be at least ~5 km away in order for there to be no overlap 

between tows (1 tow per 6 n.mile), so the minimum distance between each tow would have been 

roughly 10 km (Aiello‐Lammens et al., 2015b). Therefore, this distance was selected as the maximum 

distance at which points should be set apart from each other. Finer spatial rarefication at 5km and 

1km, was also trailed (Table 2.1). 

Although rarefication deals with geographically clustered records it cannot account for the omission 

of areas of suitable habitat. Therefore, simultaneously using rarefication and different background 

adjustment methods (such as previously discussed TGBG or restricted BG methods) is potentially an 

effective method to reduce the effect of sample bias on models. Therefore combinations of these 

methods were trailed for each species. See Table 2.2 for all combinations of methods used. Effective 

reduction in sampling bias should result in a model with less overfitting and better predictive 

performance on independent evaluation data (Boria et al., 2014).  
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Table 2.1: Number of records for each target species before and after rarefication: 

Species No rarefication 
1km 

rarefication 
5km 

rarefication 
10km rarefication 

Hoki 14250 13137 9483 6535 

Snapper 3828 3099 1905 1171 

Tarakihi 5249 5001 3732 2404 

Trevally 1623 1368 964 683 

Scampi 1535 1483 1286 1023 

Orange roughy 9605 7554 3652 2093 

Southern Blue Whiting 1675 1654 1562 1427 

John Dory 3951 3360 2247 1402 

Ling 10967 10520 8504 6106 

Arrow Squid 4522 4338 3702 2854 

 

Table 2.2: Trial codes for Maxent runs showing the combinations of background methods, including 

Entire Background (EBG), three different Restricted Backgrounds (RBG) and Target Group 

Background (TGBG), and species occurrence data variations, including all records (no adjustment to 

occurrence records), removal of duplicates, and three spatial rarefication variations, used in Maxent 

trials. These are referred to throughout the results section in chapter three. 

BG method All records Duplicates 
not included 

Spatial 
rarefication 
(10 km) 

Spatial 
rarefication 
(5 km) 

Spatial 
rarefication  
(1 km) 

EBG 1a 2a 3a 4a 5a 

RBG 1 (10 km) 1b 2b 3b 4b 5b 

RBG 2 (50 km) 1c 2c 3c 4c 5c 

RBG 3 (100 km) 1d 2d 3d 4d 5d 

TGBG 1e 2e 3e 4e 5e 

 

2.3: Climate Data 

Obtaining and Preparing Climate layers 

Marine data for the modern and predicted future climates were obtained from Bio-ORACLE  

(http://www.bio-oracle.org/downloads-to-email.php) (Assis et al., 2018; Tyberghein et al., 2012). 

These data were available at a resolution of 5 arc-min. It has been suggested that higher resolution 

climate layers with finer grain sizes commonly give more accurate models, (Connor et al., 2018; 

Manzoor et al., 2018; Scales et al., 2017; Song et al., 2013) however this was all that was readily 

available and easily accessible. Data for 2040-2050 and 2090-2100 were downloaded for each 

different Representative Concentration Pathway Scenario (RCPS). These four climate scenarios are 

http://www.bio-oracle.org/downloads-to-email.php
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RCPS 2.6, a decline in greenhouse gas concentrations, RCPS 4.5 and RCPS 6.0 stabilisation of 

greenhouse gas concentrations, and the RCPS 8.5, an increasing emissions scenario (Van Vuuren et 

al., 2011). Bio-oracle provides both surface and deep sea environmental layers, however only 

surface layers were selected for consistency across models, and because deap sea environmental 

data has poorer collection coverage. Sea Surface Temperature (ST) and Surface Salinity (SS) 

covariates were downloaded (12 variables in total). Modern data were also taken from Bio-ORACLE 

of the same nature as the future data (5 arc-min, ST & SS covariates). Modern bathymetry climate 

layers were downloaded from MARSPEC (http://marspec.weebly.com/modern-data.html)(Sbrocco, 

2014), and added to all climate sets as depth data were not available on Bio-ORACLE.  

It is important to consider which environmental factors are used to train ENMs. The model assumes 

they are ecologically relevant to, independent of and have temporal correspondence to, species 

presences (Anderson, 2015; Phillips et al., 2006; Werkowska et al., 2017). Temperature and salinity 

were chosen as variables to use in this study as both have frequently been linked to marine species 

distributions (Balzano et al., 2010; Golikov et al., 2013; Khan et al., 2013; Kimmerer, 2002; Kültz, 

2015; Lehtonen et al., 2016; Smyth & Elliott, 2016). Including more variables often increases 

complexity and propensity for overfitting and complicates interpretation, while adding little further 

information to predictions (Werkowska et al., 2017). Furthermore, transferability of models when 

projecting to different time periods decreases with additional variables (Werkowska et al., 2017). For 

this reason, and for time and computational feasibility reasons, other variables from the large 

selection available from Bio-ORACLE were not included. Furthermore, predictor variables with varied 

effect on species distributions across the modelled region such as temperature average of the 

warmest month were omitted, as recommended by Peterson (2006) and Phillips et al., (2006). 

Temporal correspondence between the occurrence dataset and the climate data must also be 

considered. Temperature and salinity datasets were assembled from climate data collected between 

2002-2009 (Tyberghein et al., 2012). Although occurrence data was drawn from a larger time scale 

(1960-2017), it was assumed that two still relatively correspond, as most records have been 

collected between 1980 and 2017. Because of this and for the purpose of retaining as many records 

as possible, occurrence data were not further filtered to produce a narrower collection date range. 

However, it is acknowledged that it is possible that there have been changes in distributions or 

environmental responses over this time period. A species could be absent or depleted from an area 

in some years where it recently resided due to depletion of fish stocks from fishing, or other 

distributional fluctuations over this time period.  

Multicolinearilty between variables is often raised as an issue in ENM (Werkowska et al., 2017). 

Although collinearity does not considerably compromise model quality when using Maxent (De 
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Marco & Nobrega, 2018), it does complicate interpretation of response curves and variable 

contributions (Werkowska et al., 2017). Correlations between variables were assessed using the 

ENMTools R package (Warren et al., 2010). Almost all ST and SS variables were highly correlated with 

each other (>0.85), except for SS range and ST Range (Appendix B.1 & B.2). Because the aim was to 

investigate long-term change, mean SS and ST covariates were kept, and all other variables 

correlated with them discarded. SS range and ST range were also kept as these were not highly 

correlated with other variables and some species are influenced more by temperature extremes 

than averages as drivers of range shifts (Grieve et al., 2016; Hare et al., 2010; Hare et al., 2012; 

Morley et al., 2018a). Thus, a reduced variable set was assembled that included bathymetry, SS 

Mean, SS Range, ST Mean, and ST Range. Although this set of environmental variables may not be 

sufficient to describe all parameters of the fundamental niche for the study species, they will allow 

approximate estimation of geographic distributions based on a few key variables (Phillips et al., 

2006). 

All climate layers were subject to cropping and transformation in R Studio version 3.5.1. All 

downloaded climate data was in -180 to 180 format longitudinal format. In order to preserve all of 

New Zealand marine space in the models and avoid cut-off at the 180 International Date Line, these 

had to be converted to 0 to 360 longitudinal formats. These were then cropped to include only the 

desired study region and the final raster layers were able to be used as inputs for the Maxent 

algorithm. Summary plots for the climate layers used in this study can be found in Appendix C.  

2.4: Model Assembly 

2.4.1: Data Partitioning  

A ‘masked geographically structured’ data partitioning method was used where both occurrence and 

BG points were partitioned by geographic space. Occurrence and BG points were partitioned into 

four bins based on their position relative to latitude and longitude lines that divided occurrence 

localities as equally as possible (Muscarella et al., 2014; Radosavljevic & Anderson, 2014). After 

partitioning, four models were built iteratively for each combination of settings, using three bins for 

model training and the withheld bin for testing. Therefore, the calibration localities could not be 

next to or in the same geographic cluster as, evaluation localities and thus were independent from 

each other as recommended by Radosavljevic & Anderson (2014). This addresses the spatial 

autocorrelation issue that often arises when using random cross validation. In random cross 

validation evaluation data may be taken from areas of clustered localities (ie. due to sampling bias), 

and thus its independence from the calibration data is compromised. This often leads to over-

inflation of performance values and doesn’t address spatial bias (Boria et al., 2014; Roberts et al., 

2017). The background localities in the same geographic area as the bin holding testing localities 
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were not included in the training phase (Phillips, 2008; Phillips & Dudík, 2008; Radosavljevic & 

Anderson, 2014). This method is called ‘spatial blocking’ and is often used to reduce spatial-

autocorrelation between testing and training points (Boria et al., 2014; Hijmans & Elith, 2013; 

Wenger & Olden, 2012; Muscarella et al., 2014; Radosavljevic & Anderson, 2014; Veloz, 2009). 

Spatial blocking is recommended when model transfer across time or space is required, as it offers 

more accurate extrapolation to conditions outside of those not used in model training (Wenger & 

Olden, 2012; Muscarella et al., 2014; Zeng et al., 2016). The block method was implemented using 

the R package ENMeval (described below) using the ENMevaluate function (Muscarella et al., 2014).  

2.4.2: Maxent Runs 

The MaxEnt software (version 3.4.1) downloaded from 

https://biodiversityinformatics.amnh.org/open_source/maxent/ was used to perform ENM. It is 

necessary to perform species specific tuning when using Maxent by trialling a variety of different 

combinations of settings for each species (Morales et al., 2017; Phillips & Dudík, 2008). The two 

main parameters in Maxent that influence model results are regularization and choice of feature 

class (fc). Regularisation influences model complexity and affects how closely fit the model is. An 

increase in the regularisation multiplier (RM) penalises complexity and constrains potential for 

overfitting (Merow et al., 2013; Phillips et al., 2006; Phillips & Dudík, 2008; Phillips et al., 2004; 

Warren & Seifert, 2011). Feature class refers to the type of mathematical transformation of variables 

for modelling of complex relationships (Elith et al., 2010). For further detail on feature classes see 

Elith et al. (2011).  

To run MaxEnt trials the R package ENMeval was used. ENMeval implements Maxent via the dismo 

package and allows users to test a variety of combinations of RMs and fcs and simplifies the process 

of comparing many models at a time (Hijmans et al., 2011; Muscarella et al., 2014). Each ENMeval 

trail was run in parallel with RM values of 0.5-8 in increments of 0.5, and a variety of combinations of 

fcs including Linear (L), Quadratic (Q), Hinge (H), Product (P) and Threshold (T) feature classes. These 

were 'L','LQ','H','LQH','LQP', 'LQPT','LQPH', and 'LQHPT'.  

For each trial, 10,000 back ground points were randomly selected from the specified background 

extent as this typically achieves optimal performance (Elith et al., 2006). It is suggested that more BG 

points should be taken for larger datasets as more BG points typically equates to improved model 

predictive performance (Elith et al., 2006). Because all species datasets used here had under 10,000 

records or just over  increasing the number of BG points from 10,000 would mostly be redundant 

(Dudik et al., 2007).   

https://biodiversityinformatics.amnh.org/open_source/maxent/
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ENMeval runs were performed using the ENMevaluate function on the five different BG treatments 

(EBG, TGBG, & three different RBG extents) with five different occurrence datasets (all localities, no 

duplicates, and three spatially rarefied by different distances). Table 2.2 shows a summary of these 

method combinations used. Each run was performed using the modern climate layers obtained from 

Bio-ORACLE. Sixteen RMs and eight fc combinations on these 25 different treatments resulted in a 

total of 3200 models run per species, 32,000 overall.  

2.5: Model Selection 

Evaluation Metrics 

After each ENMevaluate call, the function produced a variety of evaluation metrics for each 

combination of settings. One of the most important of these is the Akaike Information Criterion 

(AICc). The AICc is a model selection uncertainty metric and reflects both goodness of fit and 

complexity. AICc is the version of AIC that was developed to correct for small sample size, and 

reduce the chances of the model being over fitted (Brewer et al., 2016). It is used to find optimal 

level of complexity and gives an overall indication of model quality (Radosavljevic & Anderson, 2014; 

Warren & Seifert, 2011). The philosophy underlying the AICc metric is that models that fit that data 

are rewarded while unnecessary parameters are penalised (Warren & Seifert, 2011). Complexity is 

estimated based on the lambda file produced at the end of each model run, in which all the 

parameters with a nonzero weight are counted to give the number of parameters used (Warren & 

Seifert, 2011). AICc is calculated on the full set of localities (both train and test) so is not affected by 

partitioning method (Muscarella et al., 2014; Warren & Seifert, 2011). Models with a delta(∆) AICc 

value under two have substantial support and a ∆AICc of 0 is indicative of the ‘best’ models 

(Burnham & Anderson, 2004).  

Another important evaluation metric produced is the ‘mean AUC’, which refers to the Area Under 

the operator Curve. This is based on the testing data (withheld from model construction), averaged 

across all partitioned bins (AUCtest) (Warren & Seifert, 2011). AUCtest is calculated in each iteration on 

the full set of background localities (Radosavljevic & Anderson, 2014). This presents the model’s 

ability to distinguish between conditions at occurrence and background localities, as it gives an 

estimate of the probability that a randomly chosen presence locality would be ranked above a 

randomly chosen absence locality (Boria et al., 2014; Muscarella et al., 2014; Phillips & Dudík, 2008; 

Phillips et al., 2004; Radosavljevic & Anderson, 2014). An AUC score of 0.5 or under indicates that 

the probability a randomly chosen presence is ranked above a randomly chosen background point is 

no better than random (Phillips & Dudík, 2008). The closer to 1 the AUC value is, the better the 

discriminatory ability. Usually, values above 0.75 are considered acceptable (Phillips & Dudík, 2008). 



31 

 

The AUC value for the full model, based on data used in model training, is also given by ENMevaluate 

(AUCtrain) (Warren & Seifert, 2011). 

AUC does not allow comparisons between models with different study regions, backgrounds, 

species, or test data, only between similar models having different settings (such as RMs and fcs) 

(Merow et al., 2013; Radosavljevic & Anderson, 2014). AUC is a threshold independent measure of 

discriminatory ability but gives no indication of model fit (Lobo et al., 2008; Peterson et al., 2011; 

Phillips et al., 2006; Phillips et al., 2004). AUC therefore tends to favour more complex models 

(Fourcade et al., 2014; Radosavljevic & Anderson, 2014; Warren & Seifert, 2011). Therefore, it is 

important to select models with low overfitting before assessing AUC values.  

ENMeval produces three metrics for estimating overfitting. The first is given as the ‘mean AUCDIFF’ 

and is the calculated difference between calibration (AUCtrain) and evaluation (AUCtest) AUC scores, 

averaged across all bins (Boria et al., 2014; Warren & Seifert, 2011). Large difference between 

calibration and evaluation AUC equates to models over fit to the training data (Boria et al., 2014). 

This is because over fit models frequently perform well on calibration data, but not on evaluation 

data. If the difference is minimised, so is the potential for overfitting (Warren & Seifert, 2011).  

The other two metrics produced are threshold-dependent omission rates. Omission rates are 

indicative of the proportion of test localities that are omitted from the model, based on the 

threshold used (Boria et al., 2014). If more localities have been omitted than expected, the model is 

over fit (Boria et al., 2014; Radosavljevic & Anderson, 2014; Shcheglovitova & Anderson, 2013). 

Therefore, lower omission indicates better discrimination between suitable and unsuitable areas and 

generally higher model performance (Boria et al., 2014). Two kinds of omission rates are presented 

by ENMeval. The first is the minimum training presence threshold (ORMTP), presented by ENMeval as 

‘mean ORmin’, which sets the threshold at the lowest value of prediction for any pixel with a 

calibration locality (the training locality with the lowest predicted value) and so calculates omission 

rate on all the data. Thus there is an expected omission rate of 0% (Boria et al., 2014). An ORMTP 

value over zero indicates a level of overfitting. The second is the 10% calibration omission rate 

(mean OR10), which sets a threshold at a value that excludes 10% of training localities with the 

lowest predictions, giving an expected omission rate of 0.10 (Boria et al., 2014). Therefore, a mean 

OR10 above 0.10, indicates some level of over fitting (Pearson et al. 2007). 

Base model selection 

The methods generated hundreds of alternative models for each species. The best model for each 

species was chosen based on two main points of consideration. The fist was based on the evaluation 

metrics and the other was based on biological interpretation of the models. Firstly, models were 
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filtered so that only those with a ∆AICc of 0 were considered. Of these, models were selected based 

on those with the lowest overfitting metrics (OR10, ORMTP, and AUCDIFF). ORMTP was frequently so low 

in all models filters thus far that had little relevance during model selection. Then, only those with 

the highest discriminatory ability (AUCtest) were kept. In order to follow a species-specific selection 

process, and because evaluation metrics varied between species, the criteria for best models 

changed on a case-by-case basis to be more or less strict. Thus, the selection criteria was slightly 

different for each species, as is detailed further in the results. ∆AICc scores and AUC scores had 

selection criteria that was always the same, but the criteria for selecting those with low overfitting 

metrics varied considerably depending on the species. Six models were identified as the relative 

‘best’ models for each species. These were subject to further analysis in order to select a base model 

to use for the climate change investigations.  

A biological interpretation approach was subsequently adopted to investigate which models had 

best captured the niche of each species. The six models with the ‘best’ evaluation metrics were 

projected onto modern climate layers to visually inspect which best reflected the known current 

distribution of the target species. This was checked by expert opinion where possible, but 

alternatively density maps created with occurrence records were used as comparisons. Using current 

distributions to check model predictions assumes entire distributions are known and was therefore 

only used as an approximate guideline. Although over prediction of distributions was difficult to 

dispute, under prediction was generally an obvious error and could often be interpreted as a sign of 

overfitting. Analysis of the response curves further informed choice of base model. Models that 

showed no response to climate variables were excluded, provided the next met model was not 

substantially more over fit to the training data.  

This process reflects recommendations that low overfitting should be a primary criterion before 

discriminatory ability is taken into account, and that ecological interpretation is an important factor 

to consider when choosing models (Derville et al., 2018; Radosavljevic & Anderson, 2014; 

Shcheglovitova & Anderson, 2013). This allowed selection of base models that were not overly 

complex, had sufficient ability to distinguish preferred areas from not preferred areas, and will have 

better transferability to other time periods (Warren & Seifert, 2011, Werkowska et al., 2017). 

Variable Influence 

Variable influence and contribution to models was investigated by analysing response curves, 

permutation importance and limiting factor plots. Response curves indicated how the model 

responded to the co-variates and permutation importance indicated how much the variables 

contributed to the models. Permutation importance was used rather than percent contribution 
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because permutation importance is only measured from the final model rather than the path taken 

to obtain it (Phillips, 2006). Permutation importance is calculated by measuring how much AUC 

drops when the model is re-evaluated on each variable in turn, with its values randomly permuted 

throughout the training region to remove the effect of any environmental gradient or pattern they 

exhibit. The more the AUC score dropped, the more the variable contributed to the model.  

Limiting factor plots were constructed independently of the models using the R package Rmaxent 

(Baumgartner, 2018). These plots indicate the most limiting factor at each grid cell. This was 

calculated by giving each variable a new value at each cell equal to that of the mean value of that 

variable across the entire training region. If the predicted suitability increased as a result of this 

value change, more so than when any other variable is subject to the same treatment, then that 

variable was mostly responsible for limiting suitability in that grid cell and was thus the most limiting 

factor (Elith et al., 2010). Limiting factor plots were created for modern climates and the future 

climate under RCPS 8.5, to contrast the two most different climate effects on distributions. This was 

done for each species. 

2.6: Model Projection 

After model training on modern climate layers to estimate the climatic niche, the selected base 

models for each species were used for projections onto the four sets of future climate layers, in 2050 

and 2100. These projections presented Probability Of Presence maps (POP) for each species. It is 

implied that areas with high POP are areas with the most suitable habitat, or areas where that 

species will most likely be distributed based on the assumptions about the model. Thus for ease of 

interpretation, the phrases ‘potential distributions’ and ‘areas of suitable habitat‘ are used 

interchangeably to describe areas with high POP in this thesis.  

Successful estimation of the modern species distribution by the model does not guarantee 

successful projection to different climates as the model may have poor transferability (Elith et al., 

2010). It is therefore important to critically evaluate ENM projections to different time periods or 

geographic regions. Projecting models to different time periods with different climates relies on 

good transferability and several assumptions. It is assumed that the relationship between the 

species and the variables used to train the models does not change between time periods 

(Anderson, 2015). This is also referred to as assuming niche conservatism or no niche evolution. The 

quicker environments change, the potential for sufficient adaptation is reduced, so the validity of 

this assumption may vary with climate scenario (Hoffmann & Sgro, 2011). When interpreting the 

predicted distributions, it is further assumed that other factors influencing species distributions 

including biotic interactions do not change between time periods. This is a harder assumption to 
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endorse due to the complexity of these interactions. Additionally, it is assumed that the constructed 

future climate datasets used to project models are as accurate as possible.   

2.6.1: Projection Evaluation 

Extrapolation  

Because model assembly used recent climatic conditions to train the model when it is projected to a 

different time period, and thus onto different variables, it is possible that these variables have values 

outside of the range on which the model was trained. Despite this, projection occurs as though the 

base model is being projected onto the same climate layers used for training. Therefore, MaxEnt 

may predict outside of the range of values it encountered during training. This process is called 

extrapolation (Phillips et al., 2006). How well it does this depends on how well the occurrence data 

represented the environmental conditions within the species preferred habitat. Spatially and 

temporally extensive occurrence records are advantageous for this purpose. 

By default, MaxEnt uses clamping to limit extrapolation by capping predictions to environmental 

conditions with values outside of the range of those used in training. Clamping is done so no values 

higher than the highest value and lower than the lowest value used in training remain in the climate 

layers that the model is being projected onto (Elith et al., 2011; Phillips et al., 2006). This clamps the 

predicted responses to the most alike conditions in the modern climate calibration data (Anderson & 

Raza, 2010; Phillips et al., 2006).  

Although this is the recommended standard practice, clamping itself can be problematic (Phillips et 

al., 2006). For example, clamping fixes response to temperatures higher than those encountered in 

training so that response is equal to response to the highest training temperature, and vice versa for 

lower temperatures. Therefore, temperatures far out of the range of those used in model training 

could are assigned the same predicted response as the most extreme temperatures used during 

model training. This may not be a realistic representation of species response to these new 

conditions and is referred to as the ‘problem of novel climate conditions.’ Presence of clamping 

could be identified from the covariate response curves.  

Uncertainty 

To assess where there were novel conditions, and how they influenced future climates, Multivariate 

Environmental Similarity Surface (MESS) maps were produced (Elith et al., 2010; Radosavljevic & 

Anderson, 2014). MESS maps measure the similarity between the future environment and the 

training sample (Elith et al., 2010) and present this as estimates of relative uncertainty throughout 

the study region by assigning negative or positive values. Thus the similarity in climatic variables 

between any given locality in the projection dataset and the localities in the training dataset was 
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assessed (Elith et al., 2010). Negative values indicate sites where at least one variable had a value 

outside of the range encountered in the training data, thereby indicating novel conditions 

(conditions not experienced during model training). Conversely, the more positive the value the 

more similar the conditions were to those encountered during training. For each species, MESS maps 

for each climate scenario were produced. MESS analysis, in conjunction with response curves, were 

used to guide interpretations of the future climate predictions and identify how and where novel 

conditions affected predictions (Carneiro et al., 2016; Elith et al., 2010).  

Change in POP calculations 

Each projection map presented a continuous scale of probability of presence (POP) from 0-1. In 

order to estimate differences between different climate scenarios, this scale was split and assigned 

evenly into nine different ‘bins’ in increments of 0.1 (excluding all sites with a POP of <0.1) so that 

the proportion of area on each map that fell into each bin could be calculated. The proportion of 

area within one bin was calculated as a proportion of the whole study region. The proportion of sites 

within each bin was calculated for all modern and future projections. A percentage change for all 

future projections was then calculated as the change in proportion of area that fell into each POP bin 

from the modern projection for that species. This was done to show the amount of habitat of 

different qualities or POP rankings that was gained or lost in response to different climate scenarios. 

All calculations were performed in R Studio version 3.5.1. 
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Chapter 3: Results 

This chapter presents results of the ten focal species, organised by species. It starts with the inshore 

species snapper, john dory, trevally and tarakihi then continues to the deep-water species scampi, 

orange roughy, southern blue whiting, hoki, ling and arrow squid. This section duplicates analyses 

for each species. An overall summary and a cross-species comparison of results is described in the 

final section (3.11: Results Summary). Full results of all ENMeval runs that produced thousands of 

different models for each species can be found in a dropbox folder accessed by following this link: 

https://www.dropbox.com/sh/ebhbskzka9ebm0t/AADxJWY6BrGK2bAcuaANFI4ha?dl=0 

 

3.1: SNAPPER (Chrysophrys auratus) 

Model Selection  

Of all models generated, ∆AIC values varied form 0 - 3145.1. Only models with a ∆AIC of 0 were 

selected. Train AUC scores varied from 0.6 - 0.98 and test AUC from 0.61 - 0.98. To select models 

with good discriminatory ability, only those >0.75 were selected. To select models with low 

overfitting, average test OR10 values varied from 0.06 - 0.23 but only those that were <0.15 were 

selected and average AUCDIFF varied from 0.001 - 0.113 but only those <0.05 were selected. Only the 

models that met these criteria were considered for base model selection (Table 3.1.1). When 

projected as modern probability distributions, all predictions appeared relatively similar (Figure 

3.1.1). When compared to the contemporary known distribution (Figure 3.1.2A), models 3c10 and 

3d10 (Figure 3.1.0A&B) over predicted snapper distribution around the top of the SI, while models 

5d11 and 5d12 (Figure 3.1.1E&F) appeared to under predict around the lower NI. Of the remaining 

two, model 3e70 (Figure 3.1.1C) showed lower overfitting values than all other models (OR10 = 0.072, 

AUCDIFF = 0.010) and was the only model that didn’t exceed the 10% OR10 threshold recommended by 

Muscarella et al. (2014). Model 3e70 also had relatively good discriminatory ability with high AUC 

train and test scores above 0.9. Independent expert advice suggested model 3e70 was slightly more 

representative of the contemporary distribution (M Dunn, NIWI, pers. Comm). Model 3e70 was 

therefore selected from the six models as the base model for snapper projections.  

 

 

 

https://www.dropbox.com/sh/ebhbskzka9ebm0t/AADxJWY6BrGK2bAcuaANFI4ha?dl=0
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Figure 3.1.1: Snapper; Six best Maxent models projected on modern climate layers; 3c10 (A), 3d10 (B), 3e70 

(C), 4e28 (D), 5d11 (E), 5d12 (F). Colours reflect POP estimates between 0-1. Darker green indicates higher POP 

and red the reverse. 
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2050 Model Projections 

All 2050 RCPS projections were similar (Figure 3.1.2B-E). In the modern projection snapper were 

essentially absent from the South Island (SI), expect for a small area on the N/W corner. All 2050 

projections showed a moderate extension just over halfway down the West Coast of the SI, where 

POP increased from <0.4 to >0.7 in all RCPS. Around the entire North Island (NI) the POP was also 

predicted to increase substantially. In all future climate scenarios, areas with highly preferable 

climatic conditions, which therefore had the highest POP values, increased the most (POP >0.9 by 

300.04 - 412.88%), while areas with lower POP between 0.6 - 0.9 values increased comparatively 

less. Furthermore, the proportion of areas with POP values <0.6 decreased in all RCPS (Table 3.1.2).  

The 2050 MESS maps for all RCPS displayed little relative uncertainty (Appendix D.1). Relative 

certainty was highest in the RCPS 2.6 prediction particularly around the Chatham rise, Cook Strait 

and West Coast of the SI (Figure 3.1.3A). Most relative uncertainty was around the north of the NI in 

RCPS 8.5.  

2100 Model Projections 

The 2100 predictions showed more variation than the 2050 predictions, although similar patterns 

were observed (Figure 3.1.2G-J). A similar extension down the SI West Coast and general increase in 

POP around the NI was present in all 2100 RCPS, but these observations were more apparent in 

scenarios that deviated further from modern conditions. In the most ‘extreme’ scenario RCPS 8.5, 

the probability distribution extended to the lower SI and to Stewart Island. Unlike the other 

scenarios, the RCPS 8.5 showed POP of snapper exceeding 0.5 around the bottom of the SI. POP 

along the east coast of the SI was still very low, even in the more extreme scenarios. Other notable 

places of predicted POP increase was the Hauraki Golf, Hawke Bay and Cook Strait/South Taranaki 

bight areas. Similarly to the 2050 predictions, in all scenarios areas of high POP increased the most 

(POP >0.9 by 220.46 - 897.95%), while areas with lower POP between 0.6 - 0.9 increased 

comparatively less. Most striking was the 897.95% increase in the proportion of areas with a POP of 

>0.9 in RCPS 8.5 (Table 3.1.2). The proportion of areas with POP values <0.5 decreased in all RCPS 

(Table 3.1.1).  

The 2100 MESS maps displayed more relative uncertainty than the 2050 MESS maps (Appendix D.1). 

Most relative uncertainty occurred around northern New Zealand. Uncertainty was most prevalent 

in the RCPS 8.5 prediction (Figure 3.1.3B), particularly from Hawke Bay northward.  
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Table 3.1.2: Snapper; Change in POP values compared to the modern projection for each of the four climate 

scenarios 2050 and 2100.  

  2050  2100 

POP  RCP2.6 RCP4.5 RCP6.0 RCP8.5  RCP2.6 RCP4.5 RCP6.0 RCP8.5 

0.9  342.727 386.731 300.041 412.881  220.458 333.099 564.953 897.946 

0.8  28.993 41.423 38.059 51.283  10.789 37.736 95.196 135.596 

0.7  32.578 33.618 33.923 36.447  2.76 29.956 53.6 74.732 

0.6  11.969 9.708 10.473 10.119  0.185 6.456 16.97 29.562 

0.5  -2.819 -4.766 -2.836 -5.065  -6.049 -6.432 -4.937 5.7 

0.4  -13.309 -15.049 -12.255 -15.74  -11.912 -15.568 -17.434 -7.137 

0.3  -22.16 -24.026 -21.734 -25.136  -18.503 -24.314 -25.348 -9.917 

0.2  -27.519 -29.088 -26.47 -29.231  -22.955 -29.141 -28.039 -9.667 

0.1  -25.489 -25.807 -24.226 -24.608  -21.451 -25.768 -13.974 -1.025 

 

 

 

Figure 3.1.3: Snapper; MESS Maps of RCPS 2.6 2050 (A) and RCPS 8.5 2100 (B). MESS maps for all climate 

scenarios can be found in Appendix D.1. Negative sites indicate most relative uncertainty and positive 

sites indicate most relative certainty.   
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Variable Influence 

The base model predicted that snapper were virtually absent at depths below -500m and had 

increased POP with mean temperature (Figure 3.1.4). Information beyond 20 degrees was outside of 

the range of the data so a constant value was assumed and POP was fixed at 20 degrees at about 

0.75. Temperature and salinity range had very little effect, and mean salinity did not contribute 

(Figure 3.1.4, Figure 3.1.5).   

The limiting factor plots showed that the main climatic variable limiting contemporary snapper 

distribution was surface temperature (ST) mean from the mid NI southward (Figure 3.1.6A). In the 

RCPS 8.5 100 limiting factor plot, this substantially shifted so that ST mean was the limiting factor in 

only the most south-eastern coastal regions of the SI (Figure 3.1.6B). Instead, the limiting climatic 

variable throughout most of coastal New Zealand in RCPS 8.5 was ST range.  

 

 
 

Figure 3.1.4: Snapper; Predictor response curves indicating how variables used for training affected the base 

model. Model predictions (red lines) and observations (blue data rug of deciles) are shown. The variables are 

bathymetry (A), surface salinity mean (B), surface salinity range (C), surface temperature mean (D), and surface 

temperature range (E). 
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Figure 3.1.5: Snapper; Predictor variable contribution based on permutation importance (Phillips, 2006). 

Variable names are shortened here to fit:  SS = Surface salinity, ST = Surface temperature, Rng = range, Bathy = 

bathymetry.  

 

 

Figure 3.1.6: Snapper; Limiting factors plots of Modern (A), and RCPS 8.5 in 2100 (A) climates. Colours indicate 

the most limiting variable to distribution in that area.
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3.2: JOHN DORY (Zeus faber) 

Model Selection 

Of all models generated, ∆AIC values varied from 0 - 3505.71. Only models with a ∆AIC of 0 were 

selected. Train AUC scores varied from 0.59 - 0.97 and test AUC varied from 0.56 - 0.97. To select 

models with good discriminatory ability only those >0.75 were selected. To select models with low 

overfitting, average test OR10 values varied from 0.05 - 0.27 but only those that were <0.16 were 

selected and average AUCDIFF varied from 0 - 0.135 but only those <0.05 were selected. Only the 

models that met these criteria were considered for base model selection (Table 3.2.1). All selected 

models had high discriminatory ability (>0.9). When projected onto modern climate layers, four 

models appeared to under-represent contemporary john dory distribution (Figure 3.2.1; A, B, C & F), 

while one over estimated this (Figure 3.2.1D). The remaining model 4e34 (Figure 3.2.1E), reflected 

the modern distribution well, and had comparatively low overfitting values, (AUCDIFF = 0.019, OR10 = 

0.129). Therefore, model 4e34 was selected as the base model for future predictions. 

 

Figure 3.2.1: John dory; Six best Maxent models projected on modern climate layers; 1e5 (A), 1e6 (B), 2e16 (C), 

3e69 (D), 4e34 (E), 5e21 (F). Colours reflect probability of presence estimates between 0-1. Darker green 

indicates higher POP and red the reverse.  
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2050 Model Projections 

All 2050 RCPS projections were relatively similar (Figure 3.2.2B-E). All 2050 projections showed 

extension down the West Coast of the SI to roughly the same degree. POP consistently increased 

throughout the potential john dory range. In all climate scenarios, areas with highly preferable 

climatic conditions, (and therefore had the highest POP values), increased the most (POP >0.9 by 

302.60 - 484.93%), while areas with lower POP increased much less or declined. The proportion of 

areas with POP values <0.7 decreased in all RCPS (Table 3.2.2).  

The 2050 MESS maps for all RCPS displayed little relative uncertainty (Appendix D.2, Figure 3.2.3A). 

Most uncertainty was in the northern regions around the NI. In the more extreme RCPS 8.5, regions 

with relatively high uncertainty also included the Hauraki Gulf and Hawke Bay. Areas with 

particularly high relative certainty in most RCPS 2050 MESS maps were the Chatham Rise, through 

Cook Strait, to the West side of the SI.  

2100 Model Projections 

Results for the 2100 predictions were more varied than the 2050 predictions, although similar 

patterns were observed (Figure 3.2G-J). There was again an increase in areas with high POP and 

decrease in areas with low POP. Areas with a POP >0.9 increased by 272.78 - 1126.02% and areas 

with a POP of >0.5 decreased by 3.34 - 19.93%. Again, suitable conditions around the NI were 

maintained and POP generally increased in all predictions. Probable distribution extended further 

down the West Coast of the SI and reached Stewart Island in both RCPS 6.0 and 8.5. RCPS 8.5 also 

showed a substantial increase in POP on the east coast of the SI.   

The 2100 MESS maps showed slightly more relative uncertainty, particularly in the most extreme 

scenario, RCPS 8.5 (Figure 3.2.3B, Appendix D.2). Most uncertainty was from the top of the NI to the 

middle of the NI, including Hawke Bay. Other areas with relatively high uncertainty included the bays 

on either side of Banks Peninsular on the East Coast of the SI, and around Karamea Bight at the 

north of the SI. 
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Table 3.2.2: John dory; Change in POP values compared to the modern projection for each of the four climate 

scenarios 2050 and 2100.  

 

 

Figure 3.2.3: John dory; MESS Maps of RCPS 2.6 2050 (A) and RCPS 8.5 2100 (B). MESS maps for all climate 

scenarios can be found in Appendix D.2. Negative sites indicate most relative uncertainty and positive 

sites indicate most relative certainty.   

 

 

 

 

 

  2050  2100 

POP  RCP2.6 RCP4.5 RCP6.0 RCP8.5  RCP2.6 RCP4.5 RCP6.0 RCP8.5 

0.9  340.203 474.433 302.599 484.93  272.781 437.77 796.408 1126.016 

0.8  58.057 57.812 21.086 61.044  25.887 50.126 102.45 176.681 

0.7  9.997 7.095 -6.614 1.923  -3.677 2.897 15.359 46.061 

0.6  -6.92 -11.133 -8.203 -15.45  -11.021 -12.177 -10.095 8.46 

0.5  -15.466 -19.986 -13.028 -23.344  -15.997 -19.934 -22.17 -3.343 

0.4  -21.867 -26.967 -18.859 -29.815  -20.463 -26.297 -29.501 -9.199 

0.3  -26.932 -31.388 -23.849 -34.545  -24.804 -30.7 -34.178 -12.853 

0.2  -29.288 -33.296 -25.618 -35.869  -26.457 -32.388 -35.04 -15.585 

0.1  -28.527 -32.571 -24.374 -34.452  -26.009 -31.465 -27.377 -15.599 
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Variable Influence 

The base model predicted john dory were absent below -500m and had increased POP with mean 

temperature (Figure 3.4). Information beyond 19 degrees was outside of the range of data used to 

train the model so a constant value was assumed and POP was fixed at 19 degrees at about 0.95.  ST 

mean contributed most to the model, other climatic variables had comparatively little contribution 

(Figure 3.4 and 3.5).  

The modern liming factor plot (Figure 3.6A), showed ST mean was main the limiting climatic variable 

for contemporary john dory distribution, particularly in regions south of the mid NI. In the future 

limiting factor plot the area limited by ST mean was substantially reduced and confined to the lower 

eastern SI regions (Figure 3.6B). Instead, the limiting climatic variable in regions north of the mid SI 

and the majority of the future limiting factor plot was ST range.  

 

Figure 3.2.4: John dory; Predictor response curves indicating how variables used for training affected the base 

model. Model predictions (red lines) and observations (blue data rug of deciles) are shown. The variables are 

bathymetry (A), surface salinity mean (B), surface salinity range (C), surface temperature mean (D), and surface 

temperature range (E). 
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Figure 3.2.5: John dory; Predictor variable contribution based on permutation importance (Phillips, 2006). 

Variable names are shortened here to fit:  SS = Surface salinity, ST = Surface temperature, Rng = range, Bathy = 

bathymetry.  

 

 

Figure 3.2.6: John dory; Limiting factors plots of Modern (A), and RCPS 8.5 in 2100 (A) climates. Colours 

indicate the most limiting variable to distribution in that area.  
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3.3: TREVALLY (Pseudocaranx georgianus) 

Model Selection 

Models selected are shown in table 3.1. ∆AIC values varied form 0 - 1482.2, only models with a ∆AIC 

of 0 were selected. Train AUC scores varied from 0.59 - 0.98 and test AUC from 0.62 - 0.98. To select 

models with good discriminatory ability only those >0.75 were selected. To select models with low 

overfitting average test OR10 values varied from 0.036 - 0.19 but only those that were <0.11 were 

selected and AUCDIFF varied from 0.001 - 0.079 but only those <0.05 were selected. When projected, 

the selected models each matched the contemporary distribution relatively well (Figure 3.3.1) 

although, models 2d16 (Figure 3.3.1B), and 5d10 (Figure 3.3.1E) underestimated distribution in the 

southern NI and slightly overestimated around the Hauraki Gulf. Unfortunately, these two models 

were the only ones where climatic variables had any influence. Selecting models where an 

environmental response was detected rather than those where it was not (models 1e28, 2e27, 4e2, 

5e27) did not require a substantial trade-off in model quality as all six selected best models high 

discriminatory ability (AUCTRAIN and AUCTEST both >0.9) and low overfitting, with OR10 values (OR10 = 

0.076 - 0.107) barely exceeding the 10% OR10 threshold recommended by Muscarella et al. (2014) 

(Table 3.3.1). Model 2d16 had slightly lower overfitting metrics (AUCDIFF = 0.012, OR10= 0.09) (Table 

3.3.1). Model 2d16 was therefore selected as the base model. 
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Figure 3.3.1: Trevally; Six best Maxent models projected on modern climate layers; 1e28 (A), 2d16 (B), 2e27 

(C), 4e2 (D), 5d10 (E), 5e27 (F). Colours reflect probability of presence estimates between 0-1. Darker green 

indicates higher POP and red the reverse.  
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2050 Model Projections 

Each of the 2050 RCPS predictions suggested southward shifts for trevally distributions (Figure 3.3.2B-E). 

Shift extents were more substantial the more the climate scenario deviated from the contemporary 

conditions. RCPS 8.5 had the most notable changes from the contemporary prediction. POP in the 

northern regions decreased from >0.8 to <0.4 in some areas, while POP increased equivalently around 

the southern NI and top of the SI. In RCPS 4.5, 6.0 and 8.5 a slight increase in POP down the west coast of 

the SI was also visible. In all RCPS, except RCPS 6.0 areas with highly preferable climatic conditions, and 

therefore had the highest POP values, decreased the most, while areas with lower POP decreased much 

less or increased. The proportion of area occupied by a POP value of >0.9 decreased by 22.29 – 51.00%, 

and in the case of RCPS 6.0 increased by 1.01%. Areas with a POP value of >0.5 decreased by 6.98 – 

24.38%, and in the case of RCPS 6.0 increased by 1.88% (Table 3.3.2). 

The 2050 MESS maps for each RCPS looked similar, with most relative uncertainty in the southern region 

at the bottom of the SI (Figure 3.3.3A, Appendix D.3). Areas with particularly high certainty were regions 

on the eastern side of the NI and in the Cook Strait. 

2100 Model Projections 

2100 RCPS projections had considerably more variation than 2050 projections (Figure 3.3.2G-J). The areas 

with suitable conditions in the RCPS 2.6 2100 projection appeared very similar to the 2050 projection. 

Despite this, decrease in areas with high POP was not as dramatic so not as much quality suitable habitat 

was lost in the 2100 prediction as it was in the 2050 prediction. In 2050 POP between 0.8 and 0.9 

decreased by 45%, while areas with the same POP only decreased by 12.74% in the 2100 prediction 

(Table 3.3.2). This was the case for all RCPS in 2100, except for RCPS 8.5, where areas with high POP were 

dramatically reduced. In this scenario, areas with a POP of >0.9 decreased by 91.05%. The RCPS 4.5 and 

RCPS 6.0 2100 projections showed similar but more substantial southwards shifts of suitable conditions 

to the 2050 predictions. In RCPS 6.0 and 8.5, POP was more substantially reduced in the top half of the 

NI. Like the 2050 predictions, in RCPS 4.5 and to a greater extent in RCPS 8.5, highly preferable conditions 

were reduced more than average or low quality conditions. Hawke Bay was the only area that has a 

consistently high POP (>0.7) in all predictions, except RCPS 8.5 2100. 

The 2100 MESS maps showed similar relative uncertainty patterns to the 2050 MESS maps (Appendix 

D.3), with the exception of the most extreme scenario RCPS 8.5 (Figure 3.3.3B). This showed considerably 

more uncertainty from the top of the NI to the middle of the NI, including Hawke Bay. 
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Table 3.3.2: Trevally; Change in POP values compared to the modern projection for each of the four 
climate scenarios 2050 and 2100.  

  

 

 

 

Figure 3.3.3: Trevally; MESS Maps of RCPS 2.6 2050 (A) and RCPS 8.5 2100 (B). MESS maps for all climate 

scenarios can be found in Appendix D.3. Negative sites indicate most relative uncertainty and positive 

sites indicate most relative certainty.   

 

 

 

  2050  2100 

POP  RCP2.6 RCP4.5 RCP6.0 RCP8.5  RCP2.6 RCP4.5 RCP6.0 RCP8.5 

0.9  -41.943 -51.001 1.013 -22.288  -3.143 -40.115 4.298 -91.052 

0.8  -44.998 -36.939 -3.868 -24.604  -12.739 -33.072 9.787 -82.198 

0.7  -40.499 -35.329 -15.621 -26.734  -8.806 -35.655 -5.539 -78.516 

0.6  -37.093 -25.507 -7.457 -18.53  1.386 -27.512 -10.825 -72.788 

0.5  -24.382 -15.355 1.879 -6.983  9.457 -15.624 -16.094 -68.715 

0.4  -16.023 -7.849 11.777 -4.141  12.758 -9.896 -16.541 -63.935 

0.3  -10.517 -0.822 16.636 -0.154  14.865 -3.393 -18.535 -55.468 

0.2  -2.746 6.922 18.347 5.308  21.186 4.381 -20.396 -41.216 

0.1  2.208 9.64 12.927 7.107  13.942 8.862 -15.676 -18.163 
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Variable Influence 

The base model predicted trevally were absent below -500m and had slightly increased POP at mean 

temperatures between 16-18 degrees and at mean salinity between 34.8 - 35.6psu (Figure 3.3.4). 

Salinity range had no clear effect and temperature range slightly increased POP. All climatic variables 

had limited contribution to the model, however mean temperature contributed the most of out of 

these (Figure 3.3.5).  

The modern liming factor plot (Figure 3.3.6A), showed ST mean was main the climatic limiter for 

contemporary trevally distribution, particularly in coastal regions south of the mid NI. The future 

limiting factor plot changed considerably so that the for coastal regions around the NI, Cook Strait, 

and half way down the west coast of the SI, were are mainly limited by ST mean (Figure 3.3.6B). 

Furthermore, the climatic variable limiting distribution on the east coast and southern New Zealand 

was mainly SS mean, and ST range around the S/W corner.  

 

Figure 3.3.4: Trevally; Predictor response curves indicating how variables used for training affected the base 

model. Model predictions (red lines) and observations (blue data rug of deciles) are shown. The variables are 

bathymetry (A), surface salinity mean (B), surface salinity range (C), surface temperature mean (D), and surface 

temperature range (E). 
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Figure 3.3.5: Trevally; Predictor variable contribution based on permutation importance (Phillips, 2006). 

Variable names are shortened here to fit: SS = Surface salinity, ST = Surface temperature, Rng = range, Bathy = 

bathymetry.  

 

 

Figure 3.3.6: Trevally; Limiting factors plots of Modern (A), and RCPS 8.5 in 2100 (A) climates. Colours indicate 

the most limiting variable to distribution in that area. 
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3.4: TARAKIHI (Nemadactylus macropterus) 

Model Selection  

Models selected are shown in table 3.4.1. ∆AIC values varied form 0 - 12671.95. Only models with a 

∆AIC of 0 were selected. Train AUC scores varied from 0.57 - 0.97 and test AUC from 0.58 - 0.97. To 

select models with good discriminatory ability only those >0.75 were selected. To select models with 

low overfitting average test OR10 values varied from 0.04 - 0.27 but only those that were <0.13 were 

selected and average AUC DIFF varied from 0 - 0.09 but only those <0.05 were selected. When 

selected models that fit these criteria were projected onto modern climates, there was notable 

variation between the probability distributions (Figure 3.4.1). All models somewhat correctly 

predicted the contemporary populations around Cook Strait and the upper SI, and the east coast of 

the SI but their predictions around the upper NI, west coast of the NI and lower SI varied 

considerably. Models 3c4 and 3d9 (Figure 3.4.1B&C) appeared to resemble tarakihi distribution 

slightly better than the other projections, particularly in the furthermost northern and southern 

regions. Model 3d9 had higher discriminatory ability than 3c4 (AUCTRAIN & AUCTEST =0.88) and lower 

overfitting than 3c4 and all other models (AUCDIFF = 0.007, OR10= 0.08) (Table 3.4.1). Model 3d9 was 

therefore chosen as the base model for future projections.  
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Figure 3.4.1: Tarakihi; Six best Maxent models projected on modern climate layers; 1d5 (A), 3c4 (B), 3d9 (C), 

3e69 (D), 4c3 (E), 4d5 (F). Colours reflect probability of presence estimates between 0-1. Darker green 

indicates higher POP and red the reverse.  
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2050 Model Projections 

The 2050 tarakihi predictions generally showed an increase in POP in most regions, with the 

exception of the northern NI regions (Figure 3.4.2B-E). In all climate scenarios high POP areas 

contracted southward from the top of the NI. This was most substantial in the RCPS 8.5 prediction. 

In RCPS 4.5, 6.0 and 8.5, the potential distribution also extended further southward, past the bottom 

of the SI and Stewart Island. In all RCPS, Banks Peninsular and the mid-east coast of the SI, along with 

Cook Strait and the top to middle of the SI West Coast, remained stable areas with high POP. Overall 

areas with a POP of >0.9 increased by 77.54 - 311.16% while all areas with a POP of >0.5 decreased 

slightly or stayed the same (Table 3.4.2).  

All four RCPS 2050 MESS maps looked similar and showed little relative uncertainty (Appendix D.4, 

Figure 3.4.3A). Relative certainty was highest around the South-Western areas of New Zealand, in 

the Cook Strait, and along the Chatham Rise, indicating these were areas where the predicted 2050 

conditions most closely represented contemporary climate for the base model. 

2100 Model Projections 

The 2100 predictions reflected similar patterns to the 2050 predictions in each RCPS but effects were 

more pronounced in RCPS 4.5, 6.0 and 8.5 (Figure 3.4.2G-J). These RCPS displayed further southward 

contraction of high POP from the NI. Areas with high POP receded from the NI almost entirely in the 

most extreme RCPS 8.5. POP increased around the Chatham Islands in scenarios 4.5, 6.0 and 8.5. 

Overall areas with a POP of >0.9 increased by 82.54 - 167.25%. In RCPS 6.0 this increase was much 

less than the 311% increase in the 2050 prediction. Areas with a POP of >0.5 decreased by 6.49 - 

18.22% (with the exception of the RCPS 2.6 which increased by 0.28%). As was with the 2050 

predictions, area with highly preferable conditions for tarakihi increased, while area with less 

preferable conditions decreased. 

The MESS maps also showed more variation in 2100 than 2050, with the RCPS 8.5 showing a greater 

amount of relative uncertainty, while the other MESS maps showed a similar uncertainty patterns as 

the 2050 MESS maps (Appendix D.4). Most uncertainty was in the RCPS 8.5 scenario around the 

northern areas (Figure 3.4.3B). 
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Table 3.4.2: Tarakihi; Change in POP values compared to the modern projection for each of the four 
climate scenarios 2050 and 2100.  

 

 

 

 

Figure 3.4.3: Tarakihi; MESS Maps of RCPS 2.6 2050 (A) and RCPS 8.5 2100 (B). MESS maps for all climate 

scenarios can be found in Appendix D.4. Negative sites indicate most relative uncertainty and positive 

sites indicate most relative certainty.   

 

 

  2050  2100 

POP  RCP2.6 RCP4.5 RCP6.0 RCP8.5  RCP2.6 RCP4.5 RCP6.0 RCP8.5 

0.9  77.54 97.725 311.161 144.73  82.542 87.588 162.342 167.253 

0.8  35.168 57.645 122.528 71.775  79.087 35.919 90.324 79.068 

0.7  35.235 55.402 68.245 58.201  48.358 34.879 46.961 37.438 

0.6  -4.752 12.546 15.199 10.111  6.516 -0.84 -1.692 -9.611 

0.5  -13.537 -0.065 1.617 -1.2  0.283 -6.485 -9.655 -18.222 

0.4  -10.46 -2.178 -2.516 -2.382  4.013 -5.689 -8.355 -16.49 

0.3  -5.422 -3.455 -3.607 -3.595  3.317 -5.049 -5.928 -12.474 

0.2  -1.632 -1.277 -2.421 -3.706  1.555 -4.466 -4.894 -9.852 

0.1  -0.829 0.064 -1.479 -1.735  1.512 -0.632 -2.232 -11.388 

A B 

Relative  

Uncertainty 
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Variable Influence 

The base model predicted that tarakihi were completely absent at depths below -1000 metres, 

preferred SS mean between 34 - 34.5 psu but above that had a negative response, and peak POP at 

an ST mean of just below 18 degrees, which then decreased (Figure 3.4.4). There was a slight 

positive relationship with SS range and ST range. ST Mean had the highest permutation importance 

out of all climatic variables, while SS Mean did not quite have as much weight. SS and ST range had 

comparatively low permutation importance’s (Figure 3.4.5).  

The contemporary limiting factor plot (Figure 3.4.6A), showed that in the south-eastern areas of 

New Zealand from the bottom S/W corner of the SI to the top N/E corner of the SI, the climatic 

variable limiting tarakihi distribution was ST Mean. This was reduced in the RCPS 8.5 limiting factor 

plot (Figure 3.4.6B) so that ST Mean was the most limiting variable only in small pockets of ocean in 

the future limiting factors plot. SS Mean remained the most limiting climate variable around the NI 

in both modern and future scenarios. 

 

Figure 3.4.4: Tarakihi; Predictor response curves indicating how variables used for training affected the base 

model. Model predictions (red lines) and observations (blue data rug of deciles) are shown. The variables are 

bathymetry (A), surface salinity mean (B), surface salinity range (C), surface temperature mean (D), and surface 

temperature range (E). 
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Figure 3.4.5: Tarakihi; Predictor variable contribution based on permutation importance (Phillips, 2006). 

Variable names are shortened here to fit: SS = Surface salinity, ST = Surface temperature, Rng = range, Bathy = 

bathymetry.  

 

 

Figure 3.4.6: Tarakihi; Limiting factors plots of Modern (A), and RCPS 8.5 in 2100 (A) climates. Colours indicate 

the most limiting variable to distribution in that area. 
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3.5: SCAMPI (Metanephrops challenger) 

Model Selection 

Models selected are shown in table 3.5.1. ∆AIC values varied form 0 - 5764.19. Only models with a 

∆AIC of 0 were selected. Train AUC scores varied from 0.55 - 0.98 and test AUC from 0.59 - 0.98. To 

select models with good discriminatory ability only those >0.75 were selected. To select models with 

low overfitting average test OR10 values varied from 0 - 0.22 but only those that were <0.13 were 

selected and average AUC DIFF varied from 0 - 0.11 but only those <0.05 were selected. When 

selected models that fit these criteria were projected onto modern climate, projections were all very 

similar (Figure 3.5.1). All projections fit the known contemporary scampi distribution relatively well, 

although under predicted in the southernmost areas. Although models 2a10 and 4a11 had highest 

discriminatory ability and the lowest overfitting metrics (OR10 = 0.103 & 0.111, AUCDIFF = 0.004 & 

0.003 respectively), no climatic variables contributed to either model fit (Table 3.5.1). Therefore the 

next best model that did show an environmental response was selected, which was only slightly 

more over. 1c4 was selected as the base model from the remaining models as it the lowest 

overfitting (OR10 = 0.123, AUCDIFF = 0.017) and highest discriminatory ability (AUCTRAIN = 0.893, AUCTEST 

=0.869) of these.  
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Figure 3.5.1: Scampi; Six best Maxent models projected on modern climate layers; 1c3 (A), 1c4 (B), 2a10 (C), 

2c3 (D), 4a11 (E), 5c3 (F). Colours reflect probability of presence estimates between 0-1. Darker green indicates 

higher POP and red the reverse.  
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2050 Model Projections 

The 2050 predictions for each RCPS all looked relatively similar (Figure 3.5.2B-E). Main differences 

between the 2050 projections and the modern projection included increased POP in the 

southernmost region of the study area, southward of the Auckland Islands, and the varied POP on 

the Chatham Rise in different climate scenarios. POP on the Chatham Rise appeared to fluctuate for 

each scenario. Areas with a POP of >0.9 increased much more than that in any other POP bin (Table 

3.5.2). Areas with a POP of >0.9 increased by 207.91 – 594.65%, while areas with a POP between 0.5 

and 0.6 decreased in RCPS 2.6 but in the other scenarios increased by 4.28 – 18.64%. The scenario 

with the largest increase of POP across all bins, was RCPS 6.0, with the exception of bins 0.2 and 0.1. 

The 2050 MESS maps all looked very similar for each RCPS (Figure 3.5.3A, Appendix D.5). Notable 

areas with the high relative uncertainty included coastal areas around the NW corner of the SI, the 

middle of the East Coast of the SI around Banks Peninsular, and Hawke Bay. Places with high relative 

certainty were around the Chatham Rise, Cook Strait, and most regions around the SI. Slightly more 

uncertainty was present in the RCPS 8.5 MESS map, particularly in northern regions around the top 

of the NI. 

2100 Model Projections 

The 2100 projections were more varied, as some scenarios deviated more from the contemporary 

prediction (Figure 3.5.2G-J). POP in RCPS 8.5 and RCPS 4.5, substantially increased in southern 

regions and along the Chatham Rise. In RCPS 8.5, suitable conditions around the NW corner of the SI 

disappeared almost entirely. In RCPS 2.6, POP appeared to decrease on the eastern end of the 

Chatham Rise. Like in the 2050 predictions, highly preferable conditions increased more than less 

preferable conditions, particularly in RCPS 6.0 and 8.5. Areas with a POP of >0.9 increased much 

more than that assigned to any other POP bin (Table 3.5.2). Area with a POP of >0.9 increased by 

107.34 - 1401.74%, while areas with a POP of >0.5 increased by 4.33 - 71.58%. The largest increase 

of POP across all bins was in RCPS 8.5. Consistently, areas with high POP values became more 

prevalent, while areas with average POP values increased less, stayed the same or decreased. Areas 

with lower POP values increased also, but not as much high POP values. 

The 2100 MESS maps had more variation, with more relative uncertainty in general (Appendix D.5). 

These displayed the same notable areas with the high relative uncertainty around the NW corner of 

the SI, the middle of the East Coast of the SI around Banks Peninsular, and Hawke Bay. The around 

the top of the NI also had relatively high uncertainty. This was most pronounced in the RCPS 8.5 

MESS map (Figure 3.5.3B). Most uncertainty throughout the study region was in RCPS 8.5. 
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Table 3.5.2: Scampi; Change in POP values compared to the modern projection for each of the four climate 

scenarios 2050 and 2100. 

  2050  2100 

POP  RCP2.6 RCP4.5 RCP6.0 RCP8.5  RCP2.6 RCP4.5 RCP6.0 RCP8.5 

0.9  207.908 194.34 594.645 247.194  107.335 40.679 656.234 1401.74 

0.8  0.018 33.58 80.577 13.491  2.488 -16.679 88.854 202.607 

0.7  -11.824 14.04 28.574 -9.988  -8.789 2.072 72.014 104.782 

0.6  -10.069 5.152 17.853 -3.549  -3.138 7.292 60.589 74.544 

0.5  -6.585 5.92 18.643 4.276  4.325 5.861 59.916 71.576 

0.4  3.609 7.085 14.014 6.417  13.666 -1.231 50.09 77.898 

0.3  5.084 7.313 11.45 12.746  9.575 0.147 46.865 102.211 

0.2  6.903 13.97 11.727 32.31  12.406 5.199 69.744 103.934 

0.1  27.936 53.742 43.459 69.62  45.853 41.283 81.94 93.591 

 

 

 

Figure 3.5.3: Scampi; MESS Maps of RCPS 2.6 2050 (A) and RCPS 8.5 2100 (B). MESS maps for all climate 

scenarios can be found in Appendix D.5. Negative sites indicate most relative uncertainty and positive 

sites indicate most relative certainty.   
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Variable Influence 

Response curves indicated scampi were completely absent at depths below -1000 metres, had decreased 

POP with SS Mean, and increased POP with ST Mean (Figure 3.5.4). Although there was a clear increase in 

POP with mean ST, which peaked around 16 degrees, information beyond ~18 degrees was outside of the 

range of the data so a constant value was assumed and POP was fixed at about 18 degrees at about 0.75. 

Responses of SS and ST range and SS mean were relatively cryptic, and did not seem plausible, but SS and 

ST range contributed less to the base model than other variables (Figure 3.5.4 & Figure 3.5.5). ST mean 

had a substantially higher permutation importance than other climatic variables (Figure 3.5.5).  

The contemporary limiting factor plot (Figure 3.5.6A), showed ST mean was the main climatic limiting 

factor from the lower Chatham Rise southward, including along the eastern side of the SI to the S/W 

corner of the SI. In the future limiting plot, this effect of ST mean was mainly limited to on and around the 

Campbell plateau (Figure 3.5.6B). The main limiting factor in northern New Zealand from the mid SI 

northwards in both contemporary and future limiting plots was SS Mean. In the future limiting plot ST 

range became a main limiting factor around the lower Chatham rise and S/W corner of the SI.  

 

Figure 3.5.4: Scampi; Predictor response curves indicating how variables used for training affected the base 

model. Model predictions (red lines) and observations (blue data rug of deciles) are shown. The variables are 

bathymetry (A), surface salinity mean (B), surface salinity range (C), surface temperature mean (D), and surface 

temperature range (E). 
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Figure 3.5.5: Scampi; Predictor variable contribution based on permutation importance (Phillips, 2006). 

Variable names are shortened here to fit: SS = Surface salinity, ST = Surface temperature, Rng = range, Bathy = 

bathymetry.  

 

  

Figure 3.5.6: Scampi; Limiting factors plots of Modern (A), and RCPS 8.5 in 2100 (A) climates. Colours indicate 

the most limiting variable to distribution in that area. 
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3.6: ORANGE ROUGHY (Hoplostethus atlanticus) 

Model Selection 

∆AIC values varied form 0 - 97463.59. Only models with a ∆AIC of 0 were selected. Train AUC scores 

varied from 0.56 - 0.98 and test AUC from 0.66 - 0.97. To select models with good discriminatory 

ability only those >0.75 were selected. To select models with low overfitting average test OR10 values 

varied from 0 - 0.264 but only those that were <0.11 were selected, average AUC DIFF varied from 0 - 

0.16, but only those <0.05 were selected. The models that fit these criteria are shown in Table 3.6.1.  

When projected onto the contemporary climate the probability distributions for each model were 

greatly varied (Figure 3.6.1). Probability distributions of models 3d5, 3d6 and 4d4 (Figure 

3.6.1B,C&D), were more conservative than the other models, while models 2e2, 4e2 and 5e2 (Figure 

3.6.1A,D&E) seemed to overestimate Roughy modern distribution. The more conservative models, 

3d5, 3d6 and 4d4 all had higher discriminatory ability (AUCTRAIN =0.934 - 0.947, AUCTEST =0.921 - 

0.929) than the overestimated models, but also all had had response curves that contrasted known 

ecology of orange roughy so these three models were ruled out as choices for the base model. Of 

the remaining models, 2e2 had the lowest average OR10 value (0.08) than all other models, higher 

discriminatory ability (AUCTRAIN =0.816, AUCTEST =0.819), and appeared to overestimate distribution 

the least. Expert opinion subsequently suggested 2e2 described the contemporary distribution of 

orange roughy better than the other models (M Dunn, NIWI, pers. comm). Model 2e2 was therefore 

selected as the base model for orange roughy projections.  
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Figure 3.6.1: Orange roughy; Six best Maxent models projected on modern climate layers; 2e2 (A), 3d5 (B), 3d6 

(C), 4d4 (D), 4e2 (E), 5e2 (F). Colours reflect probability of presence estimates between 0-1. Darker green 

indicates higher POP and red the reverse. 
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2050 Model Projections 

For the 2050 projections (Figure 3.6.2), all of the future climate scenarios appeared to showed 

similar results with southern areas gaining slightly higher POP scores in all scenarios. High POP of >0. 

7 all around the NI, Lorde Howe Rise, Challenger Plateau, and halfway down the West Coast of the SI 

remained constant in all scenarios. The north of the Chatham rise also maintained a stable POP, 

while POP around the Southern Chatham Rise increased in all scenarios. Overall POP increased 

throughout the range of Roughy in all scenarios. The most extreme increases of POP were observed 

where POP was already high. In all scenarios, areas with a POP of >0.9 increased by more than that 

of any other lower POP bin (Table 3.6.2). Across all 2050 scenarios POP >0.9 increased by 38.2 - 

101.72% while areas with a POP between 0.5 and 0.6 increased by 17.09 - 27.49%. 

The 2050 MESS maps (Figure 3.6.2A) for all of these scenarios showed little relative uncertainty. 

Relative certainty was highest in the RCPS 2.6 prediction (Figure 3.6.3A) particularly around the Cook 

Strait, Chatham rise, and the East Coast of the SI, indicating these were areas where the predicted 

2050 conditions most closely represented contemporary climate in the base model. Areas with the 

most relative uncertainty were the most southern and northern regions at the very edges of the 

study area. 

2100 Model Projections 

There was slightly more variation in the 2100 predictions (Figure 3.6.3). Not only did POP increase in 

general in all scenarios but similarly to the 2050 predictions, there was a larger increase in areas with 

a POP of >0.9 than that assigned to any POP bin (Table 3.6.2). Across all scenarios in 2100 POP >0.9 

increased by 50-167.9% while POP between 0.5 - 0.6 increased by 16.2-50.8%. RCPS 8.5 scenario 

clearly had the most pronounced increase in POP, while RCPS 6.0 had the second biggest increase. 

The most obvious differences were around the northern NI regions which had higher POP illustrated 

by the darker green areas, and the area around the Campbell Plateau and S/E of the NI, which was 

predicted to have an increase of POP from between 0.4 - 0.5 to between 0.6 - 0.7 in some areas.  

The 2100 MESS map showed more uncertainty than the 2050 ones (Appendix D.6). RCPS 8.5 had 

substantially more uncertainty than all other RCPS, particularly northwards of the central NI, 

including Hawke Bay (Figure 3.6.3B). Another notable area of uncertainty in the 2100 MESS maps 

was just south-east of the Campbell Plateau.  
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Table 3.6.2: Orange roughy; Change in POP values compared to the modern projection for each of the four 

climate scenarios 2050 and 2100. 

 

 

 

Figure 3.6.3: Orange roughy; MESS Maps of RCPS 2.6 2050 (A) and RCPS 8.5 2100 (B). MESS maps for all 

climate scenarios can be found in Appendix D.6. Negative sites indicate most relative uncertainty and 

positive sites indicate most relative certainty.   

 

 

 

  2050  2100 

POP  RCP2.6 RCP4.5 RCP6.0 RCP8.5  RCP2.6 RCP4.5 RCP6.0 RCP8.5 

0.9  38.202 63.016 40.999 101.721  49.99 76.093 145.279 167.943 

0.8  6.082 16.057 2.619 20.786  8.693 19.238 34.15 45.501 

0.7  2.211 8.004 3.535 11.121  5.586 9.798 23.487 41.655 

0.6  4.803 11.518 8.778 13.784  9.062 17.301 35.766 66.011 

0.5  17.085 26.11 25.406 27.492  16.15 29.244 41.381 50.83 

0.4  4.341 7.374 6.694 8.014  5.066 8.252 12.991 17.601 

0.3  2.565 4.539 4.236 5.028  3.086 5.099 8.09 11.167 

0.2  1.876 2.979 2.898 3.288  2.142 3.589 5.696 8.272 

0.1  1.951 2.614 2.844 2.665  1.643 2.936 4.949 7.126 

A B 

Relative  

Uncertainty 
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Variable Influence 

The base model predicted that orange roughy were virtually absent at depths below -2000m and above -

500m and had increased POP with mean temperature (Figure 3.6.4). Information beyond 20 degrees was 

outside of the range of the data so a constant value was assumed and POP was fixed at 20 degrees at 

about 0.9. The SS range curve suggested that a large range in salinity was slightly less preferable but 

permutation importance values (Figure 3.6.5) showed this was of little consequence. Temperature range 

and salinity mean curves predicted slight negative relationships with orange roughy POP but had little 

contribution to the base model (Figure 3.6.4 & Figure 3.6.5).  

The main climatic variable limiting contemporary distribution of orange roughy from the S/W corner of 

the SI to the eastern edge of the Chatham rise was ST mean, while SS mean limited distribution most in 

N/W regions, all around the NI and Challenger Plateau as well as the northern Chatham Rise (Figure 

3.6.5). In the future limiting plot the area for which ST mean was a limiting factor was reduced, 

particularly around the Chatham Rise. Meanwhile, ST range, SS mean, and SS range primarily limited 

distribution on the Chatham rise. ST mean was still the main limiting around S/E New Zealand, and SS 

mean remained the main limiting factor around N/W New Zealand. 

 

Figure 3.6.4: Orange roughy; Predictor response curves indicating how variables used for training affected the 

base model. Model predictions (red lines) and observations (blue data rug of deciles) are shown. The variables 

are bathymetry (A), surface salinity mean (B), surface salinity range (C), surface temperature mean (D), and 

surface temperature range (E). 

A B C 

D E 
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Figure 3.6.5: Orange roughy; Predictor variable contribution based on permutation importance (Phillips, 2006). 

Variable names are shortened here to fit: SS = Surface salinity, ST = Surface temperature, Rng = range, Bathy = 

bathymetry.  

 

 

 

Figure 3.6.6: Orange roughy; Limiting factors plots of Modern (A), and RCPS 8.5 in 2100 (A) climates. Colours 

indicate the most limiting variable to distribution in that area. 

A B 

Covariates 
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3.7 SOUTHERN BLUE WHITING (Micromesistius australis)  

Model Selection 

Models selected are shown in table 3.1. ∆AIC values varied form 0 - 4387.3. Only models with a ∆AIC 

of 0 were selected. Train AUC scores varied from 0.54 - 0.98 and test AUC from 0.55 - 0.98. To select 

models with good discriminatory ability only those >0.75 were selected. To select models with low 

overfitting average test OR10 values varied from 0.04 - 0.20 but only those that were <0.13 were 

selected, average AUCDIFF varied from 0 - 0.123, but only those <0.05 were selected. When the 

models that fit these criteria were projected onto modern climate layers there was little variation 

between them (Figure 3.7.1). These projections seemed to somewhat represent the contemporary 

distribution (Figure 3.7.2A). Model 3e2 varied most from the other models (Figure 3.7.1D) and was 

the most over fit according to OR10 metrics (OR10=0.130) (Table 3.7.1). 5a15 had the best 

discriminatory ability and AUCDIFF value but also had a high OR10 value (OR10=0.129), while its 

response curves were flat and uninterpretable. Therefore both models 3e2 and 5a15 were 

eliminated as choices for the base model. Of the remaining models there was no clear best model 

but 1d15 had the highest discriminatory ability (AUCtrain = 0.874, AUCtest = 0.872) and relatively low 

overfitting metrics (AUCDIFF = 0.03, OR10 = 0.127). 1d15 was therefore chosen as the base model for 

future predictions. Whichever model was chosen, made little difference to the future predictions.  
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Figure 3.7.1: Southern blue whiting; Six best Maxent models projected on modern climate layers; 1c11 (A), 

1d15 (B), 2c11 (C), 3e2 (D), 5a15 (E), 5c9 (F). Colours reflect probability of presence estimates between 0-1. 

Darker green indicates higher POP and red the reverse.  
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2050 Model Projections 

The 2050 predictions all appeared relatively similar (Figure 3.7.2B-E). The RCPS 8.5 projection had 

slightly less areas of high POP than the other RCPS predictions. In all scenarios there was a general 

decline in POP, and this decline was most substantial for areas with high POP. This was reflected in 

Table 3.7.2, where areas with a POP >0.9 decreased by 85.78 - 100% and areas with a POP between 

0.5 - 0.6 decreased by 10.68 – 36.80%. More areas with highly preferable climatic conditions were 

lost than areas with less preferable conditions in all RCPS. 

The 2050 MESS maps all looked similar (Appendix D.7). All regions around the NI showed high 

relative uncertainty, while southern regions had high relative certainty, particularly over the 

Campbell Plateau and Chatham Rise.   

2100 Model Projections 

The 2100 projections showed more substantial overall decrease in POP than the 2050 predictions, 

which became more so with scenarios that varied more from modern climates (Figure 3.7.3G-J). On 

the Campbell Plateau, the main area of contemporary distribution, POP fell from >0.7 to <0.4 in 

most areas. Loss of quality habitat was even more prominent in the 2100 predictions than the 2050 

predictions as areas with a POP of >0.9 either completely or almost disappeared in all scenarios 

(90.83 - 100% decrease), while areas with a POP between 0.5 - 0.6 decreased by much less (20.94 - 

66.72%) (Table 3.7.2).   

The 2100 MESS maps were similar to the 2050 MESS maps, but with more relative uncertainty, 

particularly in the most extreme RCPS 8.5 (Figure 3.7.3B, Appendix D.7). Most areas of high 

uncertainty were around northern New Zealand, however this extended further southward in the 

RCPS 8.5.  
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Table 3.7.2: Southern blue whiting; Change in POP values compared to the modern projection for each of the 

four climate scenarios 2050 and 2100.  

 

 

 

Figure 3.7.3: Southern blue whiting; MESS Maps of RCPS 2.6 2050 (A) and RCPS 8.5 2100 (B). MESS maps for all 

climate scenarios can be found in Appendix D.7. Negative sites indicate most relative uncertainty and 

positive sites indicate most relative certainty.   

 

 

 

 

  2050  2100 

POP  RCP2.6 RCP4.5 RCP6.0 RCP8.5  RCP2.6 RCP4.5 RCP6.0 RCP8.5 

0.9  -85.784 -83.006 -65.804 -100  -100 -90.832 -100 -99.655 

0.8  -68.011 -70.841 -53.78 -86.208  -93.175 -71.272 -95.681 -97.952 

0.7  -45.847 -51.391 -35.737 -77.711  -81.157 -57.701 -88.134 -89.782 

0.6  -26.464 -29.37 -16.978 -59.36  -62.526 -38.331 -77.416 -80.173 

0.5  -17.091 -17.653 -10.68 -36.801  -37.44 -20.944 -61.039 -66.715 

0.4  -12.977 -13.108 -6.815 -19.762  -18.802 -13.693 -39.485 -46.808 

0.3  -10.119 -9.422 -4.46 -10.66  -8.937 -7.381 -22.695 -30.975 

0.2  -7.532 -6.794 -4.504 -6.663  -5.292 -5.833 -11.669 -19.753 

0.1  -3.694 -2.971 -2.261 -3.524  -1.704 -2.31 -5.48 -10.041 

A B 

Relative  

Uncertainty 
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Variable Influence 

The base model predicted that southern blue whiting was absent below -1000m and had increased 

POP with low SS mean, high SS range, low ST mean, and high ST range (Figure 3.7.4). SS Mean 

contributed substantially more than other climatic variables to the base model (Figure 3.7.5). A 

larger range in salinity was not experienced during model training so a constant value was assumed 

and POP was fixed at a 1.2 degrees range at about 0.8. However, SS range, ST Range, and ST mean 

contributed very little to the base model (Figure 3.7.5) 

The contemporary distribution was most limited by SS Mean throughout most of New Zealand 

(Figure 3.7.6A). This remained true in the future limiting plot (Figure 3.7.6B), although its influence 

extended onto the Campbell Plateau. ST Mean also become more of a main limiting factor along the 

east side of the SI in the future limiting factor plot.  

 

Figure 3.7.4: Southern blue whiting; Predictor response curves indicating how variables used for training 

affected the base model. Model predictions (red lines) and observations (blue data rug of deciles) are shown. 

The variables are bathymetry (A), surface salinity mean (B), surface salinity range (C), surface temperature 

mean (D), and surface temperature range (E). 
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Figure 3.7.5: Southern blue whiting; Predictor variable contribution based on permutation importance 

(Phillips, 2006). Variable names are shortened here to fit: SS = Surface salinity, ST = Surface temperature, Rng = 

range, Bathy = bathymetry.  

 

  
 

Figure 3.7.6: Southern blue whiting; Limiting factors plots of Modern (A), and RCPS 8.5 in 2100 (A) climates. 

Colours indicate the most limiting variable to distribution in that area. 
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3.8: HOKI (Macruronus novaezelandiae) 

Model selection 

Of all models generated ∆AIC values varied form 0 - 63735.2. Only models with a ∆AIC of 0 were 

selected. Train AUC scores varied from 0.56 - 0.95 and test AUC from 0.55 - 0.94. To select models 

with good discriminatory ability, only those >0.75 were selected. To select models with low 

overfitting, average test OR10 values varied from 0.07 – 0.31 but only those that were <0.17 were 

selected, AUCDIFF varied from 0 - 0.159 but only those <0.05 were selected. Only the selected values 

are shown in Table 3.8.1. Of the models that met these criteria the projections for the modern 

probability distributions were all mostly similar, with the most variation being around Southern New 

Zealand around the Campbell Plateau (Figure 3.8.1). All modern projections underestimated hoki 

distribution to varying degrees. All selected models had discriminatory ability values above 0.9 and 

good AUCDIFF values below 0.009 (Table 3.8.1). Models 4a5, 4a6 and 5a3 all had comparatively lower 

OR10 overfitting metrics around 0.13. Of these 4a5 and 4a6, which were essentially the same, best 

matched the hoki contemporary distribution. Model 4a5 was therefore selected as the base model 

for all hoki future projections.  
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Figure 3.8.1: Hoki; Six best Maxent models projected on modern climate layers; 1a5 (A), 1a6 (B), 2a3 (C), 4a5 

(D), 4a6 (E), 5a3 (F). Colours reflect POP estimates between 0-1. Darker green indicates higher POP and red the 

reverse. 

 

 

A B C 

D E F 

POP 



93 

 

                                                                                                                                                                                                                    

trial
m

odelnum
features

rm
train.AU

C
avg.test.AU

C
var.test.AU

C
avg.diff.AU

C
var.diff.AU

C
avg.test.orM

TP
var.test.orM

TP
avg.test.or10pct

var.test.or10pct
delta.AICc

param
eters

1a
5

LQ
H

P
0.5

0.947
0.932

0.001
0.008

0.001
0.001

0
0.154

0.006
0

228

1a
6

LQ
H

PT
0.5

0.947
0.932

0.001
0.008

0.001
0.001

0
0.154

0.006
0

228

2a
3

H
0.5

0.95
0.935

0.001
0.003

0
0.001

0
0.167

0.001
0

256

4a
5

LQ
H

P
0.5

0.944
0.932

0.001
0.007

0
0.001

0
0.134

0.01
0

227

4a
6

LQ
H

PT
0.5

0.944
0.932

0.001
0.007

0
0.001

0
0.134

0.01
0

227

5a
3

H
0.5

0.951
0.94

0.001
0.003

0
0.002

0
0.13

0.004
0

255

Tab
le 3.1.14: H

o
ki; EN

M
e

val e
valu

atio
n

 m
e

trics of six b
est m

o
d

els. 



94 

 

2050 Model Projections 

For the 2050 projections all scenarios were similar (Figure 3.8.2B-E). All scenarios supported 

maintenance of a high POP for hoki on the Chatham rise, around the east cape of the lower NI, and a 

thin area around most of the SI and Steward Island. The main difference from the modern projection 

was on the Campbell plateau, where POP was reduced in all scenarios but most substantially in RCPS 

8.5. The overall POP decreased substantially in all scenarios, likely due to the contraction from the 

Campbell plateau. Areas with a POP of >0.9 in RCPS 4.5 and 8.5 decreased by 35.35% and 28.47% 

respectively, while RCPS 2.6 and 6.0 increased by 22.97% and 24.14% respectively. Areas with POP 

between 0.5 and 0.6 decreased by 11.04 – 24.42% (Table 3.8.2).  

The 2050 MESS maps for all cliamte scenarios displayed very little relative uncertainty (Appendix 

D.8). Relative certainty was highest around the Chatham rise and south west SI areas. 

2100 Model Projections 

The 2100 predictions varied more than the 2050 predictions (Figure 3.2G-J). Like in the 2050 

predictions, POP decreased in all scenarios and the area of likely distribution decreased, in particular 

POP on the Campbell Plateau substantially decreased in all scenarios. POP on the Chatham rise also 

decreased in all scenarios, but most notably so in climate scenarios 6.0 and 8.5. Suitable habitat 

areas also declined from the lower north island and was limited to the SI in RCPS 6.0 and 8.5. RCP 8.5 

showed the most severe contraction of areas with high POP. Green areas showing high POP in the 

2100 predictions were limited to the lower Chatham rise, the east coast of the SI and the lower SI, 

extending around the Auckland Islands. Areas with highly preferable conditions decreased more 

than areas with less preferable conditions. This phenomenon was particularly pronounced in RCPS 

8.5. For RCP 8.5, areas with a POP of >0.9 were expected to be have almost entirely disappeared, as 

they decreased by 99.61% (Table 3.8.2). In all other scenarios, POP >0.9 decreased by 14.62 – 79.8% 

and areas with a POP between 0.5-0.6 decreased by 19.63 - 55.3%. 

Most of the 2100 MESS maps also showed very little relative uncertainty, although slightly more was 

apparent than in the 2050 MESS maps (Appendix D.8). More areas with relatively high uncertainty 

were observed in RCPS 8.5, than all other climate scenarios, mainly around the upper NI (Figure 

3.8.3B).  
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Table 3.8.2: Hoki; Change in POP values compared to the modern projection for each of the four climate 

scenarios 2050 and 2100. 

 

 

 

Figure 3.8.3: Hoki; MESS Maps of RCPS 2.6 2050 (A) and RCPS 8.5 2100 (B). MESS maps for all climate scenarios 

can be found in Appendix D.8. Negative sites indicate most relative uncertainty and positive sites 

indicate most relative certainty.   

 

 

 

 

  2050  2100 

POP  RCP2.6 RCP4.5  RCP6.0 RCP8.5  RCP2.6 RCP4.5  RCP6.0 RCP8.5 

0.9  22.972 -35.352 24.139 -28.473  -14.62 -69.183 -79.803 -99.611 

0.8  -9.156 -3.525 -0.817 16.522  -23.883 -0.241 -23.77 -75.542 

0.7  2.62 6.602 10.904 24.371  -8.446 12.737 -10.319 -52.233 

0.6  -1.51 -6.23 -4.241 0.941  -11.604 -3.977 -14.95 -54.303 

0.5  -11.038 -24.415 -19.182 -18.752  -19.628 -20.123 -24.771 -55.3 

0.4  -19.792 -35.128 -29.185 -32.23  -29.472 -32.648 -32.101 -55.519 

0.3  -14.247 -31.847 -27.024 -35.596  -31.29 -34.1 -34.01 -51.873 

0.2  -8.521 -21.199 -16.73 -31.38  -25.093 -17.505 -34.519 -42.095 

0.1  -6.333 -9.778 -8.542 -20.055  -15.549 -12.457 -26.441 -32.342 

A B 

Relative  

Uncertainty 
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Variable Influence 

The base model predicted that hoki were absent depths below -2000m, and had increased POP with 

high SS mean, and ST range (Figure 3.8.4). ST mean seemed to negatively affect POP. The effect of ST 

Range and ST mean seem at least partially implausible, so the temperature effect is difficult to 

interpret. Mean ST effect seems plausible from ~10 - 20°C but at lower temperatures its effect is 

more ambiguous. SS range had almost no effect. ST mean had the highest permutation importance 

of all climatic variables, followed by SS mean (Figure 3.8.5). ST range and SS range both had a 

permutation importance of almost 0.  

The main variable limiting contemporary distribution was ST mean however around the Campbell 

Plateau this was SS mean and further southward was ST range (Figure 3.8.6). This shifted slightly 

under RCPS 8.5, where SS mean limited distribution further southward and around the Campbell 

Plateau, while ST mean was the main limiting factor in more area around northern New Zealand, the 

West Coast of the SI and the Chatham Rise.  

 

Figure 3.8.4: Hoki; Predictor response curves indicating how variables used for training affected the base 

model. Model predictions (red lines) and observations (blue data rug of deciles) are shown. The variables are 

bathymetry (A), surface salinity mean (B), surface salinity range (C), surface temperature mean (D), and surface 

temperature range (E). 
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Figure 3.8.5: Hoki; Predictor variable contribution based on permutation importance (Phillips, 2006). Variable 

names are shortened here to fit: SS = Surface salinity, ST = Surface temperature, Rng = range, Bathy = 

bathymetry.  

 

 

Figure 3.8.6: Hoki; Limiting factors plots of Modern (A), and RCPS 8.5 in 2100 (A) climates. Colours indicate the 

most limiting variable to distribution in that area. 
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3.9: LING (Genypterus blacodes) 

Model Selection 

Of all models generated ∆AIC values varied form 0 - 33933.65. Only models with a ∆AIC of 0 were 

selected. Train AUC scores varied from 0.55 - 0.95 and test AUC from 0.54 - 0.95. To select models 

with good discriminatory ability only those >0.75 were selected. To select models with low 

overfitting, average test OR10 values varied from 0.04 - 0.35 but only those that were <0.15 were 

selected, average AUCDIFF varied from 0 - 0.17 but only those <0.05 were selected. Models selected 

are shown in table 3.9.1. Model 1a15 substantially under predicted ling presence on the Campbell 

Plateau and over predicted around the north of the SI (Figure 3.9.1A), while model 3e22 under 

predicted ling presence on the Chatham rise and the northern SI (Figure 3.9.1F). Models 3c5 and 

3e22 had discriminatory abilities that only just surpassed the acceptable discriminatory ability 

threshold of >0.75 (Table 3.9.1). Of the remaining models, 3a9, 3d5 and 3d6, all fit the contemporary 

known distribution reasonably well, although possibly slightly under predicted in southern regions 

(Figure 3.9.1B,C&D). 3a9 had better discriminatory ability (AUCtrain = 0.94, AUCtest = 0.94) and lower 

over fitting (AUCDIFF = 0.006, OR10 = 0.105), so model 3a9 was selected as the base model.  
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Figure 3.9.1: Ling; Six best Maxent models projected on modern climate layers; 1a15 (A), 3a9 (B), 3c5 (C), 3d5 

(D), 3d6 (E), 3e22 (F). Colours reflect probability of presence estimates between 0-1. Darker green indicates 

higher POP and red the reverse.  
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2050 Model Projections 

The 2050 projections showed the reduction of quality habitat for ling, particularly on the Campbell 

Plateau, the N/W regions around the SI and Cook Strait (Figure 3.9.2B-E). The Chatham Rise was a 

stable area of high POP in every RCPS in 2050. Reduction of area in all POP bins below 0.6 but 

increase in all above 0.7 in RCPS 8.5, suggested the amount of suitable areas decreased but the areas 

with high POP increased (Table 3.9.2). Areas with a POP >0.9 decreased by 23.52 – 42.10%, with the 

exception of RCPS 8.5 which increased by 45.97%. Over all scenarios, areas with a POP between 0.5 

– 0.6 decreased by 20.25 – 33.91%.  

2050 MESS maps suggested low levels of relative uncertainty in all RCPS (Appendix D.9). Highest 

certainty could be observed around the Chatham Rise and S/W regions of the SI in RCPS 2.6 (Figure 

3.9.3A).  

2100 

The RCPS 6.0 and 8.5 predicted almost complete loss of suitable habitat from west coast of SI, and 

substantial reduction on the Campbell Plateau in all scenarios similar to that in the 2050 predictions 

(Figure 3.9.2G-J). In the RCPS 8.5 2100 prediction, POP on the Chatham rise has decreased so that 

high quality conditions for ling only occupied the southern half of the Chatham Rise. These 

projections had more variation between each RCPS than the 2050 projections. Areas with a POP >0.9 

decreased by 18.93 – 53.18%, Areas with a POP between 0.5 – 0.6 decreased by 32.45 – 49.58%. 

2100 MESS maps also showed little relative uncertainty (Appendix D.9). Uncertainty was most 

evident in RCPS 8.5 (Figure 3.9.3B). In this scenario regions towards the north of the NI showed the 

most relative uncertainty.    



103 

 

                      

                     

Figu
re 3.9.2

: Lin
g; R

eco
rd

ed
 m

o
d

e
rn

 d
istrib

u
tio

n
 (A

) an
d

 p
ro

b
ab

ility d
istrib

u
tio

n
 p

ro
jectio

n
s fo

r each
 o

f th
e fo

u
r R

C
P

S; 2
.6 (B

 &
 G

), 4
.5 (C

 &
 H

), 6.0
 (D

 &
 J), an

d
 

8.5 (E &
 J) in

 205
0 (B

-E), m
o

d
ern

 d
ay (F), an

d
 2

1
0

0
 (G

-J). C
o

lo
u

rs reflect P
O

P
 e

stim
ate

s b
etw

ee
n

 0-1. D
arker gree

n
 in

d
icates h

igh
 P

O
P

, w
h

ile red
 in

d
icates lo

w
 

P
O

P
. 

P
O

P
 

A
 

B
 

C
 

D
 

E 

F 
G

 
H

 
I 

J 



104 

 

Table 3.9.2: Ling; Change in POP values compared to the modern projection for each of the four climate 

scenarios 2050 and 2100. 

 

 

Figure 3.9.3: Ling; MESS Maps of RCPS 2.6 2050 (A) and RCPS 8.5 2100 (B). MESS maps for all climate scenarios 

can be found in Appendix D.9. Negative sites indicate most relative uncertainty and positive sites 

indicate most relative certainty.   

 

 

 

 

  2050  2100 

POP  RCP2.6 RCP4.5 RCP6.0 RCP8.5  RCP2.6 RCP4.5 RCP6.0 RCP8.5 

0.9  -40.196 -23.524 -42.101 45.97  -18.928 -21.385 -20.686 -53.183 

0.8  -1.852 8.499 13.531 14.619  -8.067 4.378 -18.421 -58.138 

0.7  -0.3 5.098 9.17 9.45  1.987 1.301 -11.261 -42.533 

0.6  -33.01 -21.049 -22.684 -28.998  -33.604 -29.882 -34.621 -51.148 

0.5  -25.187 -20.352 -20.248 -33.912  -40.869 -32.453 -37.837 -49.579 

0.4  -18.691 -18.821 -17.109 -26.202  -33.173 -25.948 -31.636 -37.682 

0.3  -11.053 -13.055 -8.585 -20.873  -22.236 -19.499 -27.191 -27.847 

0.2  -4.375 -11.964 -8.041 -14.443  -11.783 -11.897 -22.379 -19.697 

0.1  -6.551 -10.484 -6.313 -11.744  -7.177 -8.759 -17.191 -20.731 

A B 

Relative  

Uncertainty 
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Variable Influence 

The base model predicted that ling were absent below -2000m and had increased POP with mean SS, SS 

range, and ST range (Figure 3.9.4). The base model also predicted a slight preference for cooler 

temperatures, although information below 5°C was outside of the range of the training data so a 

constant value was assumed and POP was fixed at 5 degrees at about 0.3. The effect of ST Mean and SS 

mean seem at least partially implausible and their effects are difficult to interpret. Mean ST effect 

seemed plausible from approximately 10 - 15°C but at lower temperatures its effect is more cryptic. 

Mean SS effect seemed plausible from about 34 - 35.4psu but at higher salinity shoots up in a way that is 

likely not representative of the actual true salinity effect. All climatic variables had limited contribution to 

the base model other than ST mean (Figure 3.9.5).  

ST mean was the main limiting climatic variable throughout New Zealand waters in the contemporary 

climate (Figure 3.9.6A). One notable exception was on the Chatham Rise where SS Range was the main 

limiting factor. In the future limiting factor plot, ST mean remained the main limiting factor throughout 

most of New Zealand, with the exception of on and around the Campbell Plateau, where SS mean has 

become more limiting (figure 3.9.6B). The limiting factor on the Chatham Rise shifted to mean 

temperature in the future climate.  

 
Figure 3.9.4: Ling; Predictor response curves indicating how variables used for training affected the base 
model. Model predictions (red lines) and observations (blue data rug of deciles) are shown. The variables are 
bathymetry (A), surface salinity mean (B), surface salinity range (C), surface temperature mean (D), and surface 
temperature range (E). 
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Figure 3.9.5: Ling; Predictor variable contribution based on permutation importance (Phillips, 2006). Variable 

names are shortened here to fit: SS = Surface salinity, ST = Surface temperature, Rng = range, Bathy = 

bathymetry.  

 

 

Figure 3.9.6: Ling; Limiting factors plots of modern (A), and RCPS 8.5 in 2100 (A) climates. Colours indicate the 

most limiting variable to distribution in that area. 
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3.10: New Zealand ARROW SQUID (Nototodarus sloanii) 

Model Selection 

Models selected are shown in Table 3.10.1. ∆AIC values varied form 0 - 12799.16, only models with a 

∆AIC of 0 were selected. Train AUC scores varied from 0.59 - 0.97 and test AUC from 0.57 - 0.97. To 

select models with good discriminatory ability only those >0.75 were selected. To select models with 

low overfitting average test OR10 values varied from 0.04 – 0.21 but only those that were <0.15 were 

selected, average AUCDIFF varied from 0 - 0.097 but only those <0.05 were selected. Of the models 

that fit these criteria, all projections onto modern climate layers looked similar (Figure 3.10.1). All 

modern projections appeared to over predict distribution on the East Coast of the SI, however 

predictions elsewhere were relatively consistent with known distribution maps. Models 2d11 and 

2d12 had the lowest OR10 omission rates and similarly relatively low AUCDIFF values (AUCDIFF = 0.027, 

OR10 = 0.091). These models also had the second-best discriminatory ability (AUCtrain = 0.90, AUCtest = 

0.88). As both 2d11 and 2d12 had the exact same statistics, the less complex 2d11 was selected as 

the base model.  
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Figure 3.10.1: Arrow squid; Six best Maxent models projected on modern climate layers; 1d5 (A), 1d6 (B), 2d11 

(C), 2d12 (D), 3c5 (E), 3c6 (F). Colours reflect probability of presence estimates between 0-1. Darker green 

indicates higher POP and red the reverse.  
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2050 Model Projections 

The 2050 projections looked relatively similar to the modern predictions, but varied more as climate 

scenarios presented more different conditions (Figure 3.10.2B-E). The predictions showed slight 

reduction of POP of arrow squid on the Chatham Rise, while a slight increase in POP was observed in 

the southern most extents of the distribution. This effect was most pronounced in RCPS 8.5. The 

effects of future climates on arrow squid POP thresholds were more cryptic than for other species, 

with increases in high POP in RCPS 25 and 4.5, while RCPS 6.0 and 8.5 generally showed decreases at 

in area with high POP (POP bins above 0.6) (Table 3.10.2). POP at low thresholds similarly increased 

slightly for all predictions in 2050. Overall changes in POP of arrow squid was relatively small for all 

RCPS in 2050. 

2050 MESS maps suggested low levels of relative uncertainty in all RCPS (Appendix D.10). Highest 

certainty was consistently observed on the Chatham Rise and around the SI (Figure 3.10.3A).  

2100 Model Projections 

The 2100 predictions seemed to follow the pattern of the 2050 predictions, with further increase in 

POP in southern regions around the Auckland Islands and western Campbell Plateau and decrease in 

POP along the Chatham Rise (Figure 3.10.2G-J). Again, this pattern was more pronounced in the 

RCPS 8.5, where Expansion onto the Campbell Plateau and withdrawal from the Chatham Rise was 

more substantial. The RCPS 2.6 prediction in 2100 was very similar to the RCPS 2.6 prediction in 

2050, with similar POP values accompanying (Table 3.10.2). The remaining 2100 predictions were 

more varied. In RCPS 2.6, areas with high POP increased more than areas with low POP, while in 

RCPS 4.5, 6.0 and 8.5, areas with low POP increased more than areas with high POP, except for those 

that fell into the highest POP bin 0.9. In RCPS 8.5, areas with a POP of 0.2-0.3 increased almost as 

much as areas with a POP of 0.8-0.9. While large increases in the top POP bin (>0.9) was observed in 

all climate scenarios (35.42%-69.60%), the change in area assigned to other POP bins was more 

varied. 

2100 MESS maps had slightly less certainty than the 2050 MESS maps (Appendix D.10). Uncertainty 

was most evident in RCPS 8.5 (Figure 3.10.3B). In this scenario regions northward of the mid NI 

showed the most relative uncertainty.    



111 

 

                      

                  

Figu
re 3.10.2

: N
Z A

rro
w

 Sq
u

id
; R

eco
rd

ed
 m

o
d

ern
 d

istrib
u

tio
n

 (A
) an

d
 p

ro
b

ab
ility d

istrib
u

tio
n

 p
ro

je
ctio

n
s fo

r each
 o

f th
e fo

u
r R

C
P

S; 2.6 (B
 &

 G
), 4

.5 (C
 &

 

H
), 6.0

 (D
 &

 J), an
d

 8.5
 (E &

 J) in
 205

0 (B
-E), m

o
d

ern
 d

ay (F), an
d

 21
00 (G

-J). C
o

lo
u

rs re
fle

ct P
O

P
 estim

ates b
etw

ee
n

 0
-1. D

arker gree
n

 in
d

icates h
igh

 P
O

P
, 

w
h

ile red
 in

d
icates lo

w
 P

O
P. 

 

P
O

P
 

A
 

B
 

C
 

D
 

E 

F 
G

 
H

 
I 

J 



112 

 

 

Table 3.10.2: Arrow squid; Change in POP values compared to the modern projection for each of the four 

climate scenarios 2050 and 2100.  

 

 

 

 

Figure 3.10.3: Arrow squid; MESS Maps of RCPS 2.6 2050 (A) and RCPS 8.5 2100 (B). MESS maps for all climate 

scenarios can be found in Appendix D.1. Negative sites indicate most relative uncertainty and positive 

sites indicate most relative certainty.   

 

 

 

  2050  2100 

POP  RCP2.6 RCP4.5 RCP6.0 RCP8.5  RCP2.6 RCP4.5 RCP6.0 RCP8.5 

0.9  41.298 4.471 -11.308 14.029  41.719 35.416 49.786 69.602 

0.8  8.378 3.351 -14.841 -17.36  17.162 -7.069 -1.348 0.084 

0.7  12.198 3.879 -10.045 -23.657  16.656 -9.793 1.971 -8.978 

0.6  9.133 4.462 -4.676 -12.08  12.868 -5.549 7.661 0.45 

0.5  6.862 8.351 1.504 2.471  8.694 1.169 12.384 18.394 

0.4  5.887 9.568 5.815 7.488  5.496 4.564 16.441 44.029 

0.3  1.403 6.424 3.983 4.135  2.056 1.787 21.736 53.8 

0.2  1.303 9.185 4.899 5.962  3.296 2.425 26.148 59.026 

0.1  0.92 10.14 7.432 7.591  -6.07 1.585 19.516 31.031 

Relative  

Uncertainty 

A B 



113 

 

Variable Influence 

The base model predicted that arrow squid were essentially absent below -1000m and had increased POP 

with mean ST mean until approximately 11°C, where the response was fixed (Figure 3.10.4). SS mean was 

most preferable around 34psu and response decreased above and below that. SS range had a negative 

relationship with POP, although did not contribute to the base model. ST range had a cryptic effect with 

limited model contribution. ST mean contributed more to the base model than other climatic variables 

(Figure 3.10.5).  

In the contemporary climate ST mean was the main limiting climatic variable in southern regions, 

particularly around the Campbell Plateau, while SS mean was the main limiting variable around the NI 

and western New Zealand (Figure 3.10.6A). In the future limiting factor plot, ST mean remained the main 

limiting factor but in a much smaller region on the southern half of the Campbell Plateau (Figure 3.10.6B). 

SS mean remained the main limiting factor in northern regions and became more limiting on the 

Chatham Rise and upper Campbell Plateau. The area where SS range was a limiting factor also increased 

in the future climate, particularly on the Chatham Rise. 

 

Figure 3.10.4: Arrow squid; Predictor response curves indicating how variables used for training affected the 

base model. Model predictions (red lines) and observations (blue data rug of deciles) are shown. The variables 

are bathymetry (A), surface salinity mean (B), surface salinity range (C), surface temperature mean (D), and 

surface temperature range (E). 
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Figure 3.10.5: Arrow squid; Predictor variable contribution based on permutation importance (Phillips, 2006). 

Variable names are shortened here to fit: SS = Surface salinity, ST = Surface temperature, Rng = range, Bathy = 

bathymetry.  

 

 

 

Figure 3.10.6: Arrow squid; Limiting factors plots of Modern (A), and RCPS 8.5 in 2100 (A) climates. Colours 

indicate the most limiting variable to distribution in that area. 
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3.11: Results Summary  

Model Selection 

Criteria for base model selection required some flexibility, mostly owing to variation in OR10 values 

between species. For each species the six ‘best’ models were chosen with the lowest OR10 values 

possible. The highest this criterion was set was <0.17 for hoki models, and the lowest was <0.11 for 

trevally models, suggesting these were the datasets that produced the most and least overfitting 

respectively. Other selection criteria did not require adjustment.  

Overall, base models were good at representing the preferred climatic niches of the species studied. 

This was demonstrated by how well the models projected on the modern climates matched their 

known distributions. Some distributions were slightly over or under predicted but usually 

represented ranges well. For some species, such as orange roughy and there was substantial 

variation between the selected best models. Those with substantial variation between base models 

should be interpreted with cation, as future projections varied with base model choice where this 

was the case. Usually however, all six best models looked similar and had comparable variable 

contributions, response curves, MESS maps and future projections.  

Future Projections 

Differences from modern predictions were usually more extensive in 2100 predictions than those 

under the same RCPS in 2050. There was more variation between climate scenarios in the 2100 

predictions than 2050 predictions, which frequently looked similar regardless of the different RCPS. 

RCPS 8.5 typically experienced more substantial changes than all other climate scenarios.  

Southward extensions or shifts were observed in all future predictions of most species (snapper, 

john dory, trevally, tarakihi, arrow squid, orange roughy and scampi). For trevally, tarakihi and arrow 

squid southern extensions coincided with contractions from northern regions. In snapper, john dory, 

orange roughy and scampi predictions, this northern contraction was not observed. Instead, POP 

increased in northern regions, which remained stable areas of high POP in all RCPS for these four 

species. Both snapper and john dory had exceptionally similar responses to each RCPS of comparable 

scale, particularly evident in their expansions down the West Coast of the South Island. The shifts or 

expansions southward were more extensive in climate scenarios that were most different from the 

contemporary climate. The only inshore species that did not experience overall increased POP in 

future predictions was trevally. 
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Future projections for hoki, ling and southern blue whiting, all showed considerable loss of suitable 

conditions, particularly on the Campbell plateau and Chatham Rise. This loss was more substantial in 

climate scenarios that deviated most from contemporary conditions. The ling and hoki RCPS 8.5 

projections in 2100 showed strikingly similar contractions to the southern half of the Chatham Rise. 

Orange roughy was the only deep-water species that experienced increased suitable conditions in all 

future scenarios, the most substantial increase being in RCPS 8.5 in 2100. 

Probability of Presence Changes 

Some changes in POP bins were very small, so 10% change was established as the point at which 

change observed was considered noise instead of true change. This was assigned arbitrarily to aid 

interpretation and is shown as a dashed line in Figure 3.11.1. Any POP changes that were less than 

10% increase or decrease were interpreted as having no change.  

The highest quality habitat was usually affected the most. For species that consistently experienced 

decline, such as hoki, ling, southern blue whiting, and trevally, the area with the highest POP 

frequently declined the most , while areas with average POP declined much less (Figure 3.11.1). In 

some scenarios this coincided with an increase in areas with low POP, while in others, the lowest 

quality habitat also decreased but to a lesser extent than the higher quality habitats. For ling, this 

pattern was only observed in the RCPS 8.5 2100 prediction.  

For species that experienced increased suitable conditions, such as john dory, snapper, tarakihi, and 

orange roughy, areas with high POP increased more than areas with lower POP. For scampi this was 

not true in RCPS 26 and 4.5 in 2100 predictions. In john dory, snapper and tarakihi projections, the 

increase in high POP areas coincided with a decrease in low POP areas. The general pattern of 

change was frequently amplified by extreme loss or gain of high-quality habitats compared with 

areas with low quality conditions.  

Uncertainty  

Consistently the MESS maps showed most relative uncertainty was in northern regions. This effect 

was most pronounced in RCPS 8.5 2100 for all species. Uncertainty was more varied across each 

RCPS in the 2100 MESS maps than the 2050 MESS maps, which often all looked similar, regardless of 

the RCPS. 2100 mess maps usually had less certainty than 2050 MESS maps.  

Of the inshore species, tarakihi seemed to have the most certainty in predictions overall, as MESS 

maps rarely displayed large areas of uncertainty. Trevally showed high relative uncertainty in 
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furthermost southern regions, as well as the substantial northern uncertainty estimates observed in 

all inshore species base models. One deep-water species, scampi, also displayed this pattern. 

Of the deep-water species, hoki and ling showed very little uncertainty in all climate scenarios, 

except for RCPS 8.5 in 2100 in a narrow area around the northernmost extent of the study region. 

The orange roughy MESS maps had slightly more uncertainty, particularly in the southernmost and 

northernmost edges of the study area and noticeably more so in the RCPS 8.5 2100 prediction. The 

southern blue whiting MESS maps showed more relative uncertainty in the northern regions than all 

other species, which extended to the bottom or the NI or halfway down the SI in some scenarios. 

Conditions in future climates were outside of the training range of the data used to train southern 

blue whiting models in a large proportion of the study region.  

Variable influence  

Surface temperature (ST) mean consistently contributed more to base models than any other 

climatic variable. The only exception was the southern blue whiting base model, in which Surface 

salinity (SS) mean contributed the most. In particular, ST mean contributed considerably to john 

dory, snapper and arrow squid (>30 % permutation importance) base models. For john dory and 

snapper all other climate variables almost entirely did not contribute. SS mean contributed notably, 

although less so than ST mean, to tarakihi, scampi, arrow squid and hoki base models. For these four 

species the permutation importance of SS mean was approximately 10%, which was almost half that 

of ST mean for scampi and hoki. Except for hoki, all species had decreased POP with high SS mean. 

For ling, trevally and orange roughy even the highest contributing variable ST mean, did not 

contribute more than approximately 10% to the base models. SS and ST range consistently 

contributed very little or not at all.  

For snapper, john dory and orange roughy, the most preferable ST mean was the highest 

experienced during model training, so response was fixed at this temperature. Mean temperatures 

experienced higher than this in future climates, were assigned the same response. This was similarly 

observed in scampi, however more of its mean temperature range was experienced during training. 

While mean temperature preference peaked just below the highest temperature experienced during 

training, the temperature response for scampi was still fixed as highly preferable for all higher 

temperatures in future climates. The temperature response was the opposite in hoki, ling, southern 

blue whiting, trevally, and tarakihi, where the highest temperature experienced during model 

training was assigned a very small or 0 value, so response to higher temperatures was fixed as 

relatively less preferable.  
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Some response curves showed responses to variables that were difficult to interpret. This was 

particularly an issue when the response to ST mean was cryptic because it usually contributed most 

to the models. For example, hoki and ling had implausible ST mean responses, with large sudden 

increases in predicted values at low ends of their ST mean range. In both cases this coincided with 

large increases at the upper end of their SS mean range.  

In contemporary climates ST mean was the most distribution limiting variable in the southern range 

of snapper, john dory, trevally, tarakihi, scampi, arrow squid and orange roughy distributions, while 

other variables were limiting distribution in northern regions. In the future climates, the extent to 

which ST mean was a limiting factor was reduced and shifted southwards in most cases, expect for 

trevally. For trevally the future limiting factor plot showed ST mean limited distribution in northern 

regions instead. In contemporary climates hoki and ling distribution was most limited by ST mean in 

most regions around New Zealand, but less so in southern regions in future climates where SS mean 

became more limiting to their distribution. For southern blue whiting, SS mean limited distribution 

most throughout the study region in both contemporary and future climates. 
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Chapter 4: Discussion 

4.1: General Summary  

This study has provided an idea of how changes in annual mean temperature may influence many 

marine species distributions under future climate change in New Zealand. Bathymetry and mean 

temperature consistently influenced and limited projected distributions the most. The southward 

expansions of fish distributions were often associated with the reduced effect of mean temperature 

as a limiting factor in southern regions. Furthermore, species that experienced shifts from northern 

regions southward due to reduced effect of mean temperature limiting distribution in southern 

regions, simultaneously experienced increased influence of mean temperature or salinity as a 

limiting factor in the north. Other studies that considered a wider range of variables also often found 

mean temperature to be a main influencer of species distributions (Alabia et al., 2015; Derville et al., 

2018; Torres et al., 2013). Although less so, mean salinity also had a notable contribution to some 

species models. The relevance of this is difficult to discern, due to salinity mean and mean 

temperature being highly correlated (Appendix B).  

Predictions suggested that different species will have varied responses to future climates. All species 

studied here were predicted to experience changes to their respective areas of suitable habitat that 

were consistently most extreme under the RCP 8.5 climate scenario. Changes occurred as net loss or 

gain of area of suitable habitat and/or shifts in the geographical distribution of areas of suitable 

habitat. Distribution shifts varied in both direction and extent. 

Directional poleward shifts along a latitudinal gradient were observed across most species, while 

others contracted inwards towards the centre of their ranges. Usually, species that showed 

directional shifts were those typically found in sub-tropical or temperate waters, while those in sub-

polar regions declined but had no obvious directional shift. In this study, snapper, john dory, trevally, 

tarakihi, orange roughy, scampi, and arrow squid were frequently predicted to have poleward 

distribution shifts. These results were consistent with numerous studies that have predicted marine 

species in temperate or sub-tropical regions will exhibit poleward movement in response to warming 

climates (Alabia et al., 2015; Barange et al., 2016; Bruge et al., 2016; Christian & Holmes, 2016). In 

large scale global studies, this response has been produced across a diverse range of marine species 

in many different regions around the world (Cheung et al., 2009; Morley et al., 2018; Robinson et al.,  

2015). However, this was the first study to predict this trend specifically in New Zealand, and local 

areas that may be most affected were therefore highlighted.  
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The response of sub-polar and polar species is more uncertain. Cheung et al. (2009) predicted local 

extinctions of sub-polar marine species, while Morley et al. (2018) predicted continued poleward 

movement along coastlines in the northern hemisphere. For marine species in sub-antarctic New 

Zealand, there is no contiguous coastline to continue following poleward. This could inhibit their 

ability to track cooler waters southward. Movement may be constrained by the relatively narrow 

continental shelf around New Zealand as water further south may be too deep, in the absence of a 

depth range shift response. Sub-antartic species in New Zealand may therefore be more vulnerable 

than those in more temperate regions. This is reflected by hoki, ling and southern blue whiting 

results in this study, none of which exhibited clear poleward shifts but instead had temperature 

responses that were limited by bathymetry. Each of these species experienced contractions from the 

Campbell Plateau, the southernmost part of their ranges and overall reduction in the area of suitable 

habitat available in all climate scenarios. Hoki and ling projections showed contractions from both 

northern and southern sides of their ranges, resulting in decline to narrow areas along the southern 

Chatham rise and East Coast of the South Island. Southern blue whiting suitable habitat was lost 

more than that of any other species and this loss did not occur in a clearly directional way. The 

predicted declines of species in sub-polar regions may be amplified by intensive invasion by 

temperate species (Cheung et al., 2009).  

Predicted southward shifts, did not necessarily coincide with stable total area of suitable habitat. 

There was variation in whether poleward shifts involved gain, loss or no change in the amount of 

suitable habitat. Species that shifted poleward were usually predicted to have increased overall 

probability of presence, except for trevally and arrow squid. Several species, including snapper, john 

dory, scampi and orange roughy had projections that showed the areas these species already 

occupied, and the areas immediately surrounding them, would become more favourable as climates 

changed. For john dory, snapper, and scampi the increase in highly suitable habitat also coincided 

with their expansion southward to regions they have previously not been reported. John dory and 

snapper expanded to the very bottom of the West Coast of the South Island and Stewart Island, 

while scampi expanded onto the Campbell Plateau. For projections that showed range expansion, 

but not contraction, overall probability of presence increased substantially, because it increased 

both in regions already occupied by the species and in areas that they expanded into (scampi, 

snapper, john dory, Orange Roughly).   

Tarakihi, arrow squid, and trevally also showed poleward movement, but this coincided with 

contractions in the northern regions of their range. For tarakihi and trevally this involved almost 

complete removal from the North Island by 2100 in climate scenarios 6.0 and 8.5. Arrow squid 
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expanded onto the Campbell to areas much further than its range currently extends but also lost 

suitable habitat on the Chatham Rise. The range shifts of each of these species was associated with 

varied changes to the overall amount of suitable habitat. Trevally distribution shifted and 

contracted, as it experienced net loss of suitable habitat, while tarakihi shifted but experienced a net 

increase in suitable conditions in all climate scenarios. Arrow squid range shifted but there was 

usually little to no change to the amount of suitable habitat, even in the most extreme scenario.  

4.2: Uncertainty in projections 

4.2.1: Incomplete and implausible temperature responses  

The interpretations of the results produced in this study rely on the assumption that the models 

somewhat accurately represented species responses to the climate variables. Response to mean 

temperature was more important than that any other climate variable for most species so this 

discussion will be focussed on that aspect. Incomplete mean temperature response curves likely 

demonstrated an inability to capture the entire thermal tolerance range. The species where the 

upper range limits of thermal tolerance were not fully captured were snapper, john dory, orange 

roughy, arrow squid and scampi. Implausible response curves could demonstrate unreliable 

capturing of response in some areas. Additionally, response curves for hoki and ling were somewhat 

implausible at low temperatures. 

Base models failed to capture the bottom temperature range of hoki and ling and there was a 

sudden increase in predicted value in response to temperatures lower than ~10°C. This seemingly 

implausible temperature response could be a result of lack of records in areas associated with these 

lower temperatures. This may have been due to exclusion of data from areas far enough southward 

to capture the edge effects of their distributions. Inclusion of these data could have resolved tail 

ends of temperature response in a more plausible way, with declines in lower temperatures 

eventually becoming apparent, rather than sudden increases. The thermal tolerance range for hoki 

and ling is therefore likely narrower than that represented by the models. The lack of data at lower 

end of the thermal tolerance likely would not substantially influence future model projections 

as lower values than that experienced in model training were not present in future climates. 

However, if these models were projected onto cooler climates, (such as in a New Zealand 

paleoclimate projection), this sudden increase in response to cooler temperatures would raise 

issues, as the response to lower temperatures would be fixed at their high predicted value.   

For snapper, john dory, and orange roughy, the base models for these species were trained without 

information on the upper bound of their thermal tolerance. Lack of occurrence records associated 
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with higher temperatures was not necessarily due to an inability to tolerate higher temperatures but 

did result in their response to higher temperatures not being fully captured by the base models. No 

occurrence records were associated with mean temperatures higher than approximately 19°C for 

snapper and john dory, and 20°C for orange roughy. The maximum mean surface temperatures 

within the study region did not surpasses 20°C in modern climate layers. Therefore the highest 

temperature available was assigned the most preferable and no information about how these 

species respond to higher temperatures was available to the base models. Maxent fixed their 

response at around 19-20°C so that the response to mean temperatures higher than this in future 

climates was assumed to be the same, regardless of how warm it gets. Higher temperatures were 

present in the future climate scenarios, particularly in northern regions, but their response to these 

higher temperatures is fixed at the same response to the highest temperature used in model 

training. This explains why the probability of presence for these species appeared to increase greatly 

in northern areas in most future projections. Without information on the upper bounds of their 

thermal tolerance, it is not certain whether the warmer conditions in future climates would be 

tolerable for these species. If they are not, a contraction from northern regions in conjunction with a 

southern expansion might be expected, as was observed for tarakihi, a species with more of its mean 

temperature tolerance range included its base model. Tarakihi showed varied contraction from 

northern regions in all climate scenarios by 2050.  

In order to capture the full response of most sub-tropical or temperate species in New Zealand to 

changes in temperature, incorporation of occurrence records from regions where mean temperature 

is higher would be useful. Records from areas further north of New Zealand such as Northfolk or 

Kermadec Islands or from the Australian region west of New Zealand may achieve this. Information 

from fish with distributions that extend further north along coastal Australia could provide useful 

information about the upper limits of their thermal tolerance and how tolerance tails off along a 

contiguous coast. If their response declines past a certain temperature threshold around Australian 

coasts, this would be important information to include in these models. A restricted range correlated 

with warmer temperatures would be important information to include in niche descriptions for a 

species. 

Without information from other regions of the species ranges, comparing projections with available 

biological information may be a limited but still useful approach. Snapper larvae size and abundance 

increases as water temperature rises up to 24°C (Cassie, 2005). Previous studies have shown that 

there is very little difference between snapper survival in 15°C versus 24°C waters however it is 

known that mortality occurs above 27°C (Fielder et al., 2005). In even the most extreme climate 
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scenarios, mean temperature is not expected to exceed 23°C within the study region (Appendix 

C.2D). John dory abundance also increases with mean temperature, and they have been reported in 

areas that have experienced temperatures higher than 22°C in the Mediterranean Sea (Maravelias et 

al., 2007). Thus, increased snapper and john dory POP in northern New Zealand in climate scenarios 

where this region becomes warmer, seems to be a reasonably well supported prediction.  

It is harder to determine how surface temperature will influence deep-water species like orange 

roughy. The temperature in deep water is typically colder than at the ocean surface. Orange roughy 

are usually caught in water that is between 4.5-6.5°C but occasionally are found at temperatures up 

to 10.2-11.2°C (Branch, 2001). Deepwater temperature in regions around northern New Zealand are 

expected to be about 5°C on average in the most extreme scenario (RCPS 8.5 2100), and only exceed 

10°C inshore and in shallow areas within the study region (Assis et al., 2018). Based on the 

information available for the situation, the orange roughy projections appear to be reasonably well 

supported. 

The arrow squid base model also showed incomplete response to warmer mean temperatures , 

likely because data informing the upper bound of their thermal tolerance was not included in model 

training. The temperature response of arrow squid appeared unusual as it was fixed as highly 

preferable for all temperatures above 11-12°C. In New Zealand there are two species of arrow squid, 

N. sloanii and N. gouldi (McCoy 1888). It has been notoriously difficult to differentiate between 

these two species, particularly with females (Dunn, 2009; Uozumi, 1998). Despite this, their 

geographic distributions in New Zealand are clearly separate. N. gouldi is dominant around the 

North Island, top of the South Island and West Coast of the South Island. N. sloanii is dominant on 

the Chatham Rise, the East Coast of the South Island, and is exclusively found on the Campbell 

Plateau and Bounty Platform (Uozumi, 1998). It is often assumed that arrow squid found on the 

Chatham Rise are N. sloanii but N. gouldi exist here too, albeit in lower numbers (Uozumi, 1998). It is 

likely that some N. gouldi squid have been misidentified as N. sloanii and consequently their 

temperature responses inadvertently added to the data set. The response shown by the base model 

may therefore reflect an aggregate response of the two arrow squid species. The fixed response to 

high temperatures could be a result of incorporated signal from the northern species N. sloanii. If 

this was the case, thermal tolerance was likely overestimated and projected shifts or decline of 

suitable habitat in northern regions potentially underestimated. Furthermore, inclusion of N. gouldi 

records would likely have resulted in underestimated extents of poleward shifts of N. sloanii.  

It is less clear why the model failed to predict the upper limits of the thermal tolerance for scampi. 

Scampi are endemic so thermal tolerance should have been captured by models. The inability to do 
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so may have been be due to some other boundary associated with the Chatham rise, limiting their 

modern distributions so dispersal further north into warmer waters does not occur. Use of sea 

surface environmental layers to model benthic species such as scampi could also have reduced the 

ability of models to capture full thermal response or monitoring of scampi could be failing to capture 

their full geographic range. Either way, the information used to train the base model did not appear 

to resemble scampi habitat well and therefore detection of environmental signal in scampi was 

problematic.  

4.2.2: Novel climates due to variables with values outside of the training range  

MESS analysis allowed visualisation of where novel conditions caused uncertainty in predictions. The 

MESS maps showed that in some future climate scenarios, conditions were substantially different 

from conditions experienced during model training, particularly in northern regions. The southern 

regions often had relatively low uncertainty because the associated conditions were experienced in 

model training, albeit in different areas (usually further north). High uncertainty in northern regions 

was recurrent throughout predictions, particularly for the RCPS 8.5 predictions. This uncertainty and 

the relevance of it is discussed below. The uncertainty was likely caused primarily by the increased 

mean temperature in these northern regions. There were frequently temperatures in northern 

regions of future climates that most base models had not encountered during model training. 

Northern New Zealand was therefore difficult for most models to accurately predict, particularly for 

species with thermal tolerance fixed at high temperatures, or with training data that only occupied a 

narrow region. 

How do novel climates affect prediction interpretations? 

MESS maps indicated where projections should be interpreted cautiously, particularly species with 

fixed responses to high temperature; snapper, john dory, orange roughy, scampi and arrow squid. 

For these species, high uncertainty in northern regions indicated areas where temperature was likely 

to be higher than the temperature at which their response was fixed. Increased probability of 

presence in these areas associated with high uncertainty was a likely a direct result of this fixed 

response. The further from the fixed value the future climate was, the more uncertain the true 

probability of presence was in these areas. Therefore, areas that had high uncertainty and were also 

predicted to have high probability of presence values for any species, should be interpreted with 

caution (Carneiro et al., 2016; Elith et al., 2010). Large observed increases in probability of presence 

in northern regions for these species in future projections may not be realistic representation of 

responses to warmer climates. Without information on the upper thermal tolerance ranges of these 
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species, the predicted probability of presence in the northernmost most part of their ranges remains 

uncertain.  

Uncertainty differences between species 

The amount of uncertainty was a result of the range of conditions associated with the training data. 

Training data is the combined occurrence and background data used for model training. Given a 

small range of conditions were represented in the training data, projecting onto climates with a 

wider range of conditions or much higher temperatures would result in large areas of uncertainty. 

Where occurrences were widespread around New Zealand, there was less uncertainty in predictions, 

particularly if these occurrences incorporated regions of higher latitudes, such as tarakihi and orange 

roughy. However, if occurrences were restricted to southern regions, areas of uncertainty were 

more prevalent (such as southern blue whiting), unless the background data incorporated climates 

at higher latitudes (such as hoki and ling).  

A more restricted background method reduced the area in which the model was trained on and 

therefore increased the prevalence novel conditions in projected climates. The southern Blue 

Whiting predictions were an extreme example of this. Its occurrence records were only present in 

southern regions, and the base model had utilised a restricted background. Variables in the northern 

region were vastly different to the training data because the background points had only been taken 

from regions tightly encompassing and including the spread of its occurrence records. The result was 

that the northern half of the study region presented novel conditions not experienced during model 

training. The trevally base model also had a restricted background method applied. The result of this 

however was that there was more uncertainty in southern regions in its modern projection as the 

training data was all in northern regions. In contrast, ling and hoki MESS maps showed very little 

uncertainty in all projections, because the background sample used to train the base models 

encompassed the entire region. 

Although selection of base models with restricted backgrounds created more uncertainty in some 

areas, this usually did not interfere with the model’s ability to inform probability of presence. The 

uncertainty in northern regions for southern blue whiting and tarakihi did not necessarily undermine 

prediction interpretation for these species, both of which had high predicted probability of presence 

in southern regions, where there was relatively high certainty. Despite high uncertainty in northern 

regions, their absence there seemed likely based on the extent to which response curves described 

their thermal tolerance range (general pattern of decreasing at higher temps).  
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Therefore, it is important to understand how the uncertainty estimates presented by the MESS maps 

influence projection interpretation in the context of the variable responses. For the species where 

their upper limits of their temperature tolerance range was captured by the model, their response to 

higher temperatures in future climates was more certain, such as tarakihi, trevally, ling and hoki 

where information on the upper bound of their temperature response was mostly if not completely 

available in the training data. Despite there being novel conditions in northern regions their 

response to higher temperatures is relatively obvious. These results suggest relatively high 

confidence in the projections of tarakihi, trevally, southern blue whiting, ling and hoki. But less so for 

the northern regions of snapper, john dory, orange roughy, arrow squid scampi and projections.  

4.3: Implications of Different Climate Scenarios  

For the fishery species included in the present study, the RCPS 2.6 usually resulted in the least 

change to their current distributions compared to other climate scenarios (trevally, tarakihi, arrow 

squid, orange roughy, john dory, and snapper). This is likely because the RCPS 2.6 is most similar to 

the modern environment compared to other scenarios. In this scenario sea temperatures increase 

around mid-century and subsequently decline slightly (Ministry for the Environment, 2018). For the 

RCPS 2.6 to occur, greenhouse gas emissions must begin to decline around 2020, and become 

negative by 2100. Many suggest that this is scenario is now unobtainable, and thus the RCPS 2.6 

predictions in this study, are unlikely to occur.   

RCPS 4.5 predictions often somewhat resembled the modern distributions, sometimes more so than 

in RCPS 2.6 (see hoki, ling, southern blue whiting, and scampi). This could be because the probability 

of presence of sub-antarctic species would increase more in response to the relatively small increase 

in surface temperatures in RCPS 4.5 than the slight decrease in RCPS 26. In RCPS 4.5, emissions begin 

to decline by 2040 but ocean warming continues, although at a lower rate than that of scenarios 6.0 

and 8.5 (Ministry for the Environment, 2018). For most species the predictions in RCPS 4.5 differed 

more from modern distributions than the RCPS 2.6 predictions, (see orange roughy, trevally, tarakihi, 

arrow squid), often more so in 2100 (snapper, trevally, tarakihi, arrow squid). The RCPS 4.5 

predictions in 2100 and 2050 were often indistinguishable or otherwise very similar (snapper, john 

dory, orange roughy, trevally, southern blue whiting, and hoki). This suggests stabilisation of 

distributions by 2050, which would reflect the stabilisation of greenhouse gas emissions required for 

this scenario to occur.  

In RCPS 6.0 emissions peak in 2060 then begin to decline. Ocean temperatures are expected to 

continue to increase throughout the century (Ministry for the Environment, 2018). Although 2050 
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predictions in RCPS 6.0 were often similar to those under RCPS 4.5, the 2100 predictions showed 

more substantial change from the modern projections. In 2100 predictions there was consistently 

more loss and contraction of suitable habitat than what was seen in either RCP 2.6 or 4.5 scenarios, 

(southern blue whiting, ling, hoki, arrow squid), more considerable range shifts (tarakihi, trevally), or 

more extreme expansions (john dory, snapper, orange roughy, scampi).  

The ‘business as usual scenario’, RCPS 8.5, in which emissions continue to rise indefinitely, always 

displayed the greatest changes observed for both 2050 and 2100 projections. Across almost all 

gases, RCPS 8.5 concentration levels are by far the highest throughout the century than any other 

climate scenario (Meinshausen et al., 2011). Furthermore, the 2100 predictions in this scenario were 

often vastly different from the 2050 ones, reflecting a lack of stabilisation in emission concentrations 

and an increasingly warming climate. Because this projected climate is very different to the modern 

climate, particularly in 2100, most uncertainty was consistently seen in RCP 8.5 2100 predictions. 

The varied predicted responses of these species to climate changes were strongly influenced by the 

RCPS scenario. Which RCPS occurs is dependent on if and when greenhouse gas emissions decline 

(Van Vuuren et al., 2011). This implies that the availability of suitable habitat and future distributions 

for fishery species in New Zealand will be directly influenced by the response of humans to climate 

change. Although the RCPS 2.6 scenario may now be an unrealistic possibility, some still believe that 

RCP4.5 is possible, which is a stabilisation scenario that will result in less extreme changes, and 

therefore require less measurable response from fisheries management.  

4.5: Other information to inform models 

There are many factors not considered in the models built in this study that influence species 

distributions and how they respond to change. Low dispersal ability, reproductive rates, genetic 

diversity and/or overfishing, make populations more vulnerable to large climate shifts. Taking these 

factors into consideration may help to anticipate how species will respond and aid interpretation of 

predictions. Furthermore including some of these factors into the modelling process has been trailed 

with varied success as ability to do this is limited by available data, and complexity of the process 

(Miller & Holloway, 2015; Sullivan et al., 2012; Zurell, 2017). Nonetheless, dispersal capability and 

biotic interaction information in particular could help to interpret predictions without directly 

informing the model building process, and thereby help to inform management decisions regarding 

the vulnerability of each species to changes in climate.  

1. Dispersal capability 
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A species with high dispersal capability is more likely to be able to track suitable conditions as the 

climate changes. If it is unlikely that a species will be able to track suitable conditions, niche model 

projections may have over predicted range shifts in future climates. For example, snapper rarely 

exhibit long distance (>100km) movement and dispersal is further limited by a short pelagic phase 

and high site fidelity (Bernal-Ramirez et al., 2003). Tarakihi however have been observed to move 

300 km within a year, usually recaptured up to 200 km from the tagging site, and also have a 

relatively long pelagic larval stage (8-12 months) (Crossland 1976, Annala 1987, 1993; Smith 1989, 

Burridge & Smolenski, 2003). Arrow squid also have high dispersal potential, with tagging 

experiments suggesting they travel on average about 1.1 km per day, and sometimes up to 5.6 km 

per day (Fisheries New Zealand, 2018). Therefore, shifts in tarakihi and arrow squid distributions are 

potentially likely to occur faster than snapper shifts.  

Furthermore, inshore species are potentially more restricted in their dispersal capabilities than 

deep-water species due to human influence. Altered coastal landscapes, pollution and/or runoff 

from land, may limit a species ability to disperse or survive in certain regions. Further research to 

address how human alteration of the marine environment will affect species’ ability to respond to 

climate change is pertinent.  

2. Biotic interactions 

Varied distribution shifts and rate of movement across species will likely result in changes in species 

interactions. Contraction of ranges to narrower areas will likely increase interspecific competition as 

well as intra-specific competition if multiple species contract to similar areas. Additionally, prey 

species may shift differently, or have different rates of response to their predators. For example, 

arrow squid is a food source for hoki, ling and many other species including marine mammals 

(Fisheries New Zealand, 2018). While hoki and ling were predicted to contract to the Chatham rise 

and the South Island’s East Coast, arrow squid declined southward and thus has a different response 

to change its predators. These kinds of shifts could ultimately result in imbalances in the food chain. 

The predicted increase of scampi on the Chatham rise in future could be a positive input of prey for 

other species, such as ling (Fisheries New Zealand, 2018). Ultimately limited resources due to 

increased competition and/or differential shifts between prey and predator species could increase 

population vulnerabilities.  

4.6: Implications for Fisheries in New Zealand 

If the assumptions of this process are accepted and the predictions are relatively realistic, this study 

has important implications for fisheries management in New Zealand. Depending on the climate 
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scenario that takes place, it is likely that fisheries in some areas will decline, while in fisheries new 

areas may emerge. Harvesting, particularly overfishing of species that are already predicted to 

decline, would make them more vulnerable to the stress of degraded environmental conditions from 

climate change effects. For example, tarakihi and trevally are predicted to decline from waters 

around the North Island. While the longevity of the trevally fishery could be compromised, new 

fisheries may emerge further southward for tarakihi. New fisheries around the South Island may also 

emerge for snapper and john dory, with possible simultaneous increase in productivity in northern 

regions. Projections about suitable conditions for fishery species could therefore inform 

management and help determine the adjustments that would be required for catch quotas in 

different regions.   

Although, these are predictions for what distributions may be like in 50-100 years, it is important to 

start considering the implications of climate change as soon as possible. This would best be served 

by management that anticipates what change is likely and proactively responds to it. In the long 

term, a proactive response to changes would provide benefits for the fishery industry and help 

secure the sustainable harvesting of New Zealand fisheries. However, in industry and political 

management response is often constrained to short term goals and foresights, as well as general 

scepticism of future modelling strategies.  

It is important to remember that these models are not about describing everything. There are 

complex interactions that cannot be modelled, but the aim is to get a better idea of the future by 

drawing from simple but reliable modelled correlations. Forward modelling can narrow the range of 

expectations for what change might look like. If government and society is unresponsive about 2100, 

we may risk over-harvesting populations, not adjusting appropriately to utilising shifting resources, 

and creating conflict over management boundaries as catch rates and productive areas change. Long 

term thinking about these changes would be beneficial, particularly as model reliability improves 

and as the future direction of climate change becomes more certain. Ultimately, more information 

can lead to better decisions about the future, and not including predictive modelling would be an 

oversight. 

The risks of not responding are particularly high if emissions are not reduced and the RCPS 8.5 

becomes reality. The consequence of this will be especially high for species that experience 

degraded area of suitable conditions and declining probability of presence, such as trevally, southern 

blue whiting, hoki, and ling. The continued harvest of these species in a similar way as what is 

currently done would likely be unsustainable and lead to population depletions. Conversely, 

responding well could include increasing catch quotas in some regions for species that increase such 
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as snapper. Inaction could thus be a waste of a new valuable economic resource. Stronger harvest of 

sub-tropical or temperature species that are predicted to increase could also mitigate some 

competition from these species for those that decline, and their encroachment on more southern 

species habitats.  

In order to avoid large changes to management of fishery species in New Zealand, or unsustainable 

harvest of species in decline, a less extreme climate scenario would be preferable such as RCPS 2.6 

or 4.5. Without global efforts to reduce greenhouse gas emissions, there are deep concerns that the 

human race will not respond in time, and these scenarios will be bypassed for more extreme ones 

where ecosystems are majorly affected (Schellnhuber et al. 2016; Steffen et al., 2018). 

4.7: Future Directions 

Model improvement 

Careful covariate selection is required but difficult because relevance of each varies with species. In 

this work, the same variables were used for all species for a parsimonious approach. Although there 

are many other climate variables not used in this study that are associated with marine species 

distributions, many of these are correlated with temperature (Cheung et al., 2016). Warming is likely 

the best indication of shifts (Cheung et al., 2009; Robinson et al., 2015), but other factors such as 

depth (Rutterford et al., 2015) or salinity (Weinert et al., 2016) or Net Primary Productivity (NPP) 

(Hazen et al., 2013), may constrain these shifts (Morley et al., 2018a). NPP was not included in this 

study but NPP influences many processes and interactions in the marine environment. NPP changes 

are predicted to be small but positive in sub-antarctic waters and larger but negative in subtropical 

waters (Pinkerton et al., 2016). NPP in all regions around New Zealand is predicted to decrease in the 

future as a result of climate change, with the exception of the Chatham Rise and sub-antarctic areas 

(Pinkerton et al., 2016). Despite the potential usefulness of this information, the more variables that 

are included, the more complex the models are, and the more uncertain and over parametrized they 

become. This is a common and largely unavoidable issue for most methods that attempt to model 

the natural world. Therefore, it would be ideal to create species-specific variable sets as was done by 

Zeng et al. (2016). This would allow the addition of more variables without making models too 

complex (Zeng et al., 2016).  

The climate data used in this study were 5-arc min and were subset from worldwide climate datasets 

(Assis et al., 2018). Coverage of inshore areas is likely poorer than other areas as there are usually 

details missing that heavily influence these environments. Higher quality inshore data could 

therefore improve projections, particularly for coastal species (Freer et al., 2018). The addition of 
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data records from other regions could also be useful in helping to predict the species distributions 

where full response to some variables was not captured by the models (discussed in section 4.2). For 

now, the variables and records used in this study provide a ‘best guess’ of how future climate change 

might affect these fishery species. 

Data to corroborate research results 

Future forecasts are difficult to substantiate. Combining and/or comparing several modelling 

approaches is a good way to asses model credibility (Elith et al., 2010; Jones & Cheung (2014); 

Thuiller et al., 2005). Using different ENM algorithms to model the response to future climates of the 

species modelled here would help to verify or refute the predictions made. Different algorithms that 

produce similar results would increase prediction credibility.  

Future monitoring of species distribution changes would also provide information on how accurate 

these predictions are. Currently no systems are in place in New Zealand to document catch findings 

in a collaborative way, and large-scale surveys are heavily relied upon to monitor movements. 

Anecdotal evidence of these species may help to corroborate or dispute findings, particularly for 

popular recreational fishery species. Anecdotal evidence is a valuable tool in the absence of frequent 

monitoring of populations and their movements. Australia has an example of site where the public 

can document catches and unusual findings (http://www.redmap.org.au/). A similar system in New 

Zealand has not yet been as widely popularised (https://www.fish4all.co.nz/about-us). This sort of 

documentation if implemented in future could help to corroborate or contradict climate change 

response predictions. Furthermore, there is value in considering how multiple species are 

responding rather than just a few. If some species shift, it is likely others will too. There is anecdotal 

evidence of other fish species moving southward in New Zealand recently such as Kahwai and 

Kingfish (Lewis, 2018). Future modelling and monitoring of multiple species will contribute 

information to the overall way in which biodiversity will change around New Zealand.  

 

 

 

 

http://www.redmap.org.au/
https://www.fish4all.co.nz/about-us
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Chapter 5: Conclusions 

This work has highlighted the dynamic and variable responses of species’ distributions responding to 

changing climates. There was considerable variation between species in distance moved over time 

and the associated change in area of highly suitable conditions. Expansion or shifts typically followed 

a southward trend but the way that the suitable area changed varied, even between species that 

followed poleward trends. Obvious effects of extremely different climates in New Zealand tended to 

be one of three things; the range contracted (southern blue whiting, ling and hoki), the range 

expanded (snapper, john dory, orange roughy), or the range shifted (tarakihi, arrow squid, scampi). 

For trevally this effect was both a shift and contraction of their range.  

This work has achieved four key outcomes: 

• Provided a possible glimpse into the future distributions of species for four different future 

climate scenarios to suggest those in management consider these possible shifts and 

improve or implement long term management strategies. Additionally, it has shown that 

different species respond differently to change and to different extents. 

• Provided support for published studies, which have already shown poleward shifts for 

marine species in temperate and subtropical waters and higher species turnover near the 

poles. Many species in New Zealand will likely reflect this global pattern. 

• Emphasised the importance of and provided an incentive for collaborative scientific effort 

for better collection and documentation of occurrence records from anecdotal catches and 

large-scale survey efforts over multiple countries. Anecdotal evidence is valuable for 

providing information that could inform and/or corroborate ENM studies, and formalising or 

collecting anecdotal evidence in a cohesive way would be useful.  

• Provided incentive to keep mean global temperatures down and reduce greenhouse gas 

emissions as this will result in less species turnover, smaller distribution shifts, and less 

biodiversity loss (Cheung et al., 2016). This would require less large-scale management 

changes. Demonstrating the benefits of reducing greenhouse gas emissions may encourage 

commitment to more ambitious plans to seriously address climate change and promote 

faster action. 
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Appendix 

Appendix A: Additional information about the trawl survey data obtained from NIWA (M. Dunn) 

Appendix A.1: Number of records per year  

year No. 

1960 838 

1961 1187 

1962 1298 

1963 518 

1964 388 

1965 603 

1968 262 

1969 925 

1970 139 

1971 741 

1972 713 

1973 887 

1974 383 

1975 423 

1976 849 

1977 896 

1978 1604 

1979 16981 

1980 6711 

1981 16607 

1982 18948 

1983 19752 

1984 14951 

1985 14859 

1986 21961 

1987 14042 

1988 12553 

1989 23140 

1990 30642 

1991 10436 

1992 31422 

1993 24456 

1994 27889 

1995 24472 

1996 19602 

1997 9968 

1998 11222 

1999 11204 

2000 17977 

2001 13998 

2002 18005 

2003 8509 

2004 12127 

2005 15659 

2006 8084 
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2007 19889 

2008 22371 

2009 13861 

2010 20215 

2011 12298 

2012 18984 

2013 14059 

2014 12664 

2015 9306 

2016 20609 

2017 7818 

total 660905 

 

Appendix A.2: Summary statistics of catch records 

trip_code 
station_n
o 

species weight wt_meth oth_data longitude latitude 
min_gdep
th 

max_gd
epth 

gear_met
h 

gear_per
f 

tan9406:  
6369 

Min.   :  
1.00 

HOK    : 
14250 

Min.   :     
0.0 

Min.   
:1.00 

000    
:212328 

Min.   : 
53.34 

Min.   :-
76.83 

Min.   :   
2.0 

Min.   :   
4 

Min.   
:1.000 

Min.   
:1.00 

cor9002:  
5628 

1st Qu.: 
24.00 

LIN    : 
10967 

1st Qu.:     
0.8 

1st 
Qu.:1.00 

:136039 
1st 
Qu.:171.0
2 

1st Qu.:-
44.49 

1st Qu.: 
150.0 

1st Qu.: 
159 

1st 
Qu.:1.000 

1st 
Qu.:1.00 

tan9206:  
5416 

Median : 
55.00 

JAV    : 
10703 

Median :     
3.4 

Median 
:1.00 

110    : 
84293 

Median 
:174.52 

Median :-
43.08 

Median : 
550.0 

Median : 
568 

Median 
:1.000 

Median 
:1.00 

buc8701:  
4756 

Mean   : 
72.36 

SPD    : 
10019 

Mean   :   
103.1 

Mean   
:1.12 

100    : 
71241 

Mean   
:172.19 

Mean   :-
41.67 

Mean   : 
555.5 

Mean   : 
579 

Mean   
:1.215 

Mean   
:1.24 

tan1601:  
4604 

3rd Qu.: 
96.00 

ORH    :  
9605 

3rd Qu.:    
15.0 

3rd 
Qu.:1.00 

1      : 
17252 

3rd 
Qu.:179.2
3 

3rd Qu.:-
41.27 

3rd Qu.: 
879.0 

3rd Qu.: 
915 

3rd 
Qu.:1.000 

3rd 
Qu.:1.00 

tan1003:  
4463 

Max.   
:928.00 

GSP    :  
9178 

Max.   
:200020.8 

Max.   
:8.00 

111    : 
11799 

Max.   
:188.11 

Max.   : 
25.60 

Max.   
:2730.0 

Max.   
:2730 

Max.   
:3.000 

Max.   
:2.00 

(Other):51
2673 

NA 
(Other):47
9187 

NA's   
:27161 

NA's   
:142008 

(Other): 
10957 

NA NA 
NA's   
:27927 

NA's   
:27819 

NA NA 

 

 

Appendix A.3: Months that surveys took place 
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Appendix B: Correlated covariates from Bio-ORACLE tests 

 

Appendix B.1: Correlation matrix between Bio-ORACLE temperature and salinity climate layers. 

(Spearman Correlations). 1 = highly correlated, 0 = no correlation. 

 

Appendix B.2: Correlations between Bio-ORACLE temperature and salinity climate layers. (Spearman 

Correlations). 1 = highly correlated, 0 = no correlation. 
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Appendix C: Summary plots of all climate data used in this thesis 

 
Appendix C.1: ST Mean 2050 climate layers under RCP scenarios 26(A), 4.5(B), 6.0(C) and 8.5(D). 

 

 
Appendix C.2: ST Mean 2100 climate layers under RCP scenarios 26(A), 4.5(B), 6.0(C) and 8.5(D). 

A B 

C D 

A B 

C D 

Temp. Mean (°C) 

Temp. Mean (°C) 



151 

 

 
Appendix C.3: SS Mean 2050 climate layers under RCP scenarios 26(A), 4.5(B), 6.0(C) and 8.5(D). 
 

 
Appendix C.4: SS Mean 2100 climate layers under RCP scenarios 26(A), 4.5(B), 6.0(C) and 8.5(D). 
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Appendix C.5: ST Range 2050 climate layers under RCP scenarios 26(A), 4.5(B), 6.0(C) and 8.5(D). 
 

 
Appendix C.6: ST Range 2100 climate layers under RCP scenarios 26(A), 4.5(B), 6.0(C) and 8.5(D). 
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Appendix C.7: SS Range 2050 climate layers under RCP scenarios 26(A), 4.5(B), 6.0(C) and 8.5(D). 

 

 
Appendix C.8: SS Range 2100 climate layers under RCP scenarios 26(A), 4.5(B), 6.0(C) and 8.5(D). 
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Appendix C.9: Bathymetric layer 

 

 

 

 

Appendix D: Full sets of MESS maps for each species  

Appendix D.1: Snapper; MESS Maps of scenarios RCP2.6 (A, E), RCP4.5 (B, F), RCP65 (C, G), RCP8.5 (D, H) in 

2050 (A-D), and 2100 (E-H). 
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Appendix D.2: John dory; MESS Maps of scenarios RCP2.6 (A, E), RCP4.5 (B, F), RCP6.0 (C, G), RCP8.5 (D, H) in 

2050 (A-D), and 2100 (E-H). 

 

Appendix D.3: Trevally; MESS Maps of scenarios RCP2.6 (A, E), RCP4.5 (B, F), RCP6.0 (C, G), RCP8.5 (D, H) in 

2050 (A-D), and 2100 (E-H). 
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Appendix D.4: Tarakihi; MESS Maps of scenarios RCP2.6 (A, E), RCP4.5 (B, F), RCP6.0 (C, G), RCP8.5 (D, H) in 

2050 (A-D), and 2100 (E-H). 

 

Appendix D.5: Scampi; MESS Maps of scenarios RCP2.6 (A, E), RCP4.5 (B, F), RCP6.0 (C, G), RCP8.5 (D, H) in 

2050 (A-D), and 2100 (E-H). 
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Appendix D.6: Orange roughy; MESS Maps of scenarios RCP2.6 (A, E), RCP4.5 (B, F), RCP6.0 (C, G), RCP8.5 (D, H) 

in 2050 (A-D), and 2100 (E-H). 

 

Appendix D.7: Southern blue whiting; MESS Maps of scenarios RCP2.6 (A, E), RCP4.5 (B, F), RCP6.0 (C, G), 

RCP8.5 (D, H) in 2050 (A-D), and 2100 (E-H). 
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Appendix D.8: Hoki; MESS Maps of scenarios RCP2.6 (A, E), RCP4.5 (B, F), RCP6.0 (C, G), RCP8.5 (D, H) in 2050 

(A-D), and 2100 (E-H). 

 

Appendix D.9: Ling; MESS Maps of scenarios RCP2.6 (A, E), RCP4.5 (B, F), RCP6.0 (C, G), RCP8.5 (D, H) in 2050 

(A-D), and 2100 (E-H). 
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Appendix D.10: Arrow squid; MESS Maps of scenarios RCP2.6 (A, E), RCP4.5 (B, F), RCP6.0 (C, G), RCP8.5 (D, H) 

in 2050 (A-D), and 2100 (E-H). 

 

A B C D

E F G H 

Relative 
Uncertainty 


