
Ownership and Immutability
in Coq

by

Julian Mackay

A thesis
submitted to the Victoria University of Wellington

in fulfilment of the
requirements for the degree of

Master of Science
in Computer Science.

Victoria University of Wellington
2013

Abstract

A significant issue in modern programming languages is unsafe aliasing.
Modern type systems have attempted to address this in two prominent
ways; immutability and ownership, and often a combination of the two
[4][17].

The goal of this thesis is to formalise Immutability and Ownership
using the Coq Proof Assistant, a formal proof management system [13].
We encode three type systems using Coq; Featherweight Immutable Java,
Featherweight Generic Java and Featherweight Ownership Generic Java,
and prove them sound. We describe the challenges presented in encoding
immutability, ownership and type systems in general in Coq.

ii

Acknowledgments

Thanks go to Alex Potanin and Lindsay Groves for their guidance and
encouragement. Hannes Mehnert gave much needed insight into the in-
tricacies Coq.

iii

iv

Contents

1 Introduction 1
1.1 Type Systems . 1

1.2 Immutability . 2

1.3 Ownership . 4

1.4 Soundness . 5

1.5 Type Systems in Coq . 6

1.6 Overview . 6

2 Background 9
2.1 Featherweight Java . 9

2.1.1 FJ Syntax . 9

2.1.2 FJ Functions . 11

2.1.3 FJ Subtyping . 12

2.1.4 FJ Type Rules . 13

2.1.5 FJ Reduction Rules . 14

2.1.6 FJ Soundness . 15

2.2 Coq . 15

2.2.1 A Coq Primer . 15

3 Featherweight Immutable Java 25
3.1 Featherweight Immutable Java 25

3.2 FIJ Type System . 29

3.2.1 FIJ Syntax . 29

v

vi CONTENTS

3.2.2 FIJ Substitution . 33
3.2.3 FIJ Functions . 34
3.2.4 FIJ Subtyping and Well-Formedness 38
3.2.5 FIJ Expression Typing 40
3.2.6 FIJ Reduction . 49

3.3 FIJ Soundness . 52

4 Featherweight Generic Java 59
4.1 FGJ . 59
4.2 FGJ Type System . 61

4.2.1 FGJ Syntax . 61
4.2.2 FGJ Substitution . 64
4.2.3 FGJ Functions . 66
4.2.4 FGJ Subtyping and Well-Formedness 73
4.2.5 FGJ Expression Typing 75
4.2.6 FGJ Reduction . 81

4.3 FGJ Soundness . 85
4.3.1 Substitution . 85
4.3.2 Preservation . 89
4.3.3 Progress . 91

5 Featherweight Ownership Generic Java 93
5.1 FOGJ . 93
5.2 FOGJ Type System . 95

5.2.1 FOGJ Syntax . 95
5.2.2 FOGJ Substitution . 99
5.2.3 FOGJ Functions . 100
5.2.4 FOGJ Subtyping and Well-Formedness 104
5.2.5 FOGJ Expression Typing 108
5.2.6 FOGJ Reduction . 116

5.3 FOGJ Soundness . 117
5.3.1 Type Substitution . 118

CONTENTS vii

5.3.2 FOGJ Soundness . 118

6 Conclusion 121
6.1 Related Work . 121
6.2 Encoding a Type System in Coq 122
6.3 Future Work . 126

6.3.1 Readonly References 126
6.3.2 Method Guards . 127
6.3.3 Featherweight Ownership Immutability Generic Java 128

6.4 Conclusion . 129

viii CONTENTS

Chapter 1

Introduction

1.1 Type Systems

When writing software, it is necessary to be sure that the software behaves
as expected. Moreover, we wish to be sure that software is safe and pre-
dictable, while still being fairly flexible. In order to prevent undesirable
behaviour, we need some way of restricting the behaviour of programs
so that certain errors are excluded. Programs can be checked for errors
statically before execution where unsafe programs are discarded, or dy-
namically where unsafe programs throw an exception. Dynamic checking
is necessary in most languages since there are often errors that cannot be
caught statically such as out of bound array accesses [2].

A type system is a formal system used for reasoning about and ensur-
ing program correctness statically [12]. Pierce [12] provides the following
definition:

”A type system is a tractable syntactic method for prov-
ing the absence of certain program behaviors by classifying
phrases according to the kinds of values they compute.”

That is, a type system is a formal set of constraints that seeks to remove un-
expected errors from programs that conform to those constraints. This is

1

2 CHAPTER 1. INTRODUCTION

generally done by differentiating language expressions by types, and spec-
ifying allowable behaviour for each type. Type restrictions can be used to
restrict an operation to arguments that support that operation. There are
a limited number of errors that can be detected statically due to the level
of reasoning available. The example below is a common example of such
a limitation.

1 if(1 > 0){print "safe";}

2 else{

3 <some type error>

4 }

It is obvious that 1 > 0 will always hold, and so the above code frag-
ment is safe, however a type system may not be able to infer this and so
the code would fail type checking due to the potential type error. Due
to these restrictions, type systems generally tend to be conservative, and
many programs may be rejected by a type system that are technically safe.

While at the most basic level type systems can be used to prevent crit-
ical errors from occurring, they can also be used to control the way vari-
ables and objects are accessed or modified, providing more functionality
and control to a programmer. Using types, we can further restrict be-
haviour that while not resulting in a critical error would be undesirable.

1.2 Immutability

A common problem in writing safe programs is aliasing [9]. Aliasing
refers to objects having multiple references. Unsafe aliasing can lead to
objects being modified without the knowledge of objects that rely on that
object. This can lead to unpredictable program behaviour and even secu-
rity violations. There are existing mechanisms to protect data but these
are often flawed. In Java the private keyword is the primary method
for protecting internal data, however a careless programmer is still able to

1.2. IMMUTABILITY 3

expose or change a private field by providing a getter or setter method.
An example is given below.

1 class foo extends Object{

2 private Object f;

3 foo (Object f){this.f=f;}

4 Object exposef (){

5 return this.f;

6 }

7 }

Field f has been exposed by the method exposef. The programmer may
then wrongly believe that f is protected from aliasing, and would not pre-
pare for the possibility that an external reference may be used to change
the value of f.

Immutability allows for safe aliasing of objects. Some objects may be
declared immutable on initialization. An immutable object may not be mod-
ified. Changing the previous example to use immutability rather than
private gives us the following:

1 class foo extends Object{

2 Object<immutable> f;

3 foo (Object f){this.f=f;}

4 Object<immutable> exposef (){return this.f;}

5 }

As before, f has been exposed, but now it cannot be modified. This pro-
tects the field f from unsafe aliases. Immutability comes in several vari-
eties that all restrict the modification of objects in some way. This is usually
implemented through type information, i.e. an immutable object is of an
immutable type. The three most common forms of immutability are given
below.

• Object Immutability: An instance of class may be annotated as immutable.

4 CHAPTER 1. INTRODUCTION

Immutable instances may not be modified, while non-immutable in-
stances behave as normal [16][10].

• Class Immutability: A class may be annotated as immutable. All
instances of an immutable class are immutable [16][10]. An object
may not be modified via a readonly reference, but might be modified
via a non-readonly reference [16][15][10].

Each of these kinds of immutability provide some level of assurance that
aliased objects will not be incorrectly modified with varying levels of flex-
ibility. All three of these are implemented through type information. Un-
like private fields an immutable object will always have an immutable
type.

1.3 Ownership

While immutability attempts to allow for aliasing, but mitigate the effects
of unintended or bad aliasing, ownership is an attempt to enforce encap-
sulation of objects, and restrict aliasing by introducing the concept of an
owner. In Object Oriented languages, data is abstracted by the concept
of objects. Objects have various characteristics and structure as well as
relationships with other objects. For example a Student object uses a
Pen object to write. It would seem natural to be able to say that a certain
Student ”owns” a certain Pen. That is, that Pen may only be used by
that Student. Ownership allows objects to be owned by other objects.

If an object is owned by another object then references or mutations to
the first object are controlled in some manner by the second. How strict the
restrictions on references to or mutations of an owned object are depends
on the form of ownership used, and how it is enforced. Below are a few
examples of the more common forms of ownership.

• Owners as Dominators: References to objects are strictly limited to an
object’s owner. This is the strictest form of ownership [3].

1.4. SOUNDNESS 5

• Owners as Modifiers: Objects can only be modified by their owners,
but can be referenced by any object [4].

Enforcing encapsulation allows us to restrict access to sensitive parts of an
object’s structure. For example, a list can be created that owns its structure,
but does not own its elements. Restrictions like this can prevent careless
programming errors that can expose a list’s state, and potentially break
code, while also allowing access to the elements.

Extending the ownership metaphor to types allows us to enforce own-
ership restrictions through a type system. For a Pen p owned by a Student
s, we can say p is of type Pen<s>. Now we can specify that s doesn’t just
need a Pen to write, but s needs his pen to write, or a pen of type Pen<s>.

1.4 Soundness

If the purpose of a type system is to prevent certain behaviour from oc-
curring, we would like to be able to prove that for any given program that
conforms to the type system, evaluation will not result in any unexpected
errors and will not get stuck. This property is called Soundness. A type
system can be formally expressed as a calculus by defining the syntax of
the language and the type constraints (or rules) mathematically. If we can
express the type system mathematically, then we can construct theorems
to prove the type system sound or not.

Type soundness is important when extending a type system with func-
tionality such as immutability or ownership, because we want to be sure
that added type restrictions do not result in unpredictable behaviour, and
our type system does what it says on the box.

In the case of immutability for example, we need to be sure that the
type constraints of such a type system result in programs that do not al-
low modifications to immutable objects, this would be an immutability
guarantee. In the case of ownership, we need to be sure that type safe

6 CHAPTER 1. INTRODUCTION

modifications to an object are only done by that object’s owner, an owner-
ship guarantee.

1.5 Type Systems in Coq

Coq is a proof assistant based upon the calculus of inductive construc-
tions. Coq can be used to define various mathematical concepts and sub-
sequently prove properties of those concepts in theorems. Coq therefore
has direct application to the world of type systems. Since a type system
is a formal system, the type constraints of that type system, the elements
of the language and the evaluation of those elements can be represented
mathematically.

Once a type system has been expressed in Coq, we can reason about the
type system by formulating a series of proofs. Specifically, we are able to
prove the type system sound or not. Since soundness is such an important
property of a type system it is essential that the proof of soundness be
correct. Coq provides a level of rigor in proofs that is not available with
pen and paper by providing a framework for proofs, and checking that
each step in a proof is correct.

1.6 Overview

This thesis presents the following three type systems and their Coq encod-
ings.

1. Featherweight Immutable Java (FIJ): A type system featuring a vari-
ant of immutability.

2. Featherweight Generic Java (FGJ): A type system featuring generic
types.

3. Featherweight Ownership Generic Java (FOGJ): A type system that
builds upon FGJ with a variant of ownership.

1.6. OVERVIEW 7

We prove these type systems sound with Coq, providing added insurance
to programs written in these languages. We also provide a basis for encod-
ings of type systems featuring different forms of immutability and owner-
ship.

Chapter 2 provides a background to the type systems and Coq in later
chapters. Chapter 3 presents Featherweight Immutable Java [8] (FIJ), an
extension of Featherweight Java [6] with Immutability and its Coq en-
coding. Chapter 4 presents a modified Featherweight Generic Java [6]
(FGJ) and its Coq encoding. Chapter 5 presents Featherweight Owner-
ship Generic Java (FOGJ), an extension of FGJ with Ownership, and its
Coq encoding. Chapter 6 provides a discussion of these type systems and
their respective Coq encodings.

8 CHAPTER 1. INTRODUCTION

Chapter 2

Background

2.1 Featherweight Java

The basis of all formal systems described in this thesis is that of Feather-
weight Java (FJ)[6], a lightweight, minimal core calculus of the Java lan-
guage and type system. The FJ syntax is limited to new expressions, field
accesses, method invocations and casts. This tiny subset of Java provides
an easy platform from which to reason about and extrapolate to the larger
and far more complex Java type system. It is useful to start with a mini-
mal calculus when trying to prove a type system sound since larger type
systems usually contain mechanisms extraneous to what is being investi-
gated. As casts are extraneous to the language properties being investi-
gated in this thesis, they are left out of all type systems discussed in later
Chapters. This section gives a brief overview of the FJ type system without
casts and how it is structured. FJ without casts will be referred to as FJ in
this and later Chapters for ease, although that name is not strictly correct.

2.1.1 FJ Syntax

Since a type system is applicable to a language, a type system needs a
syntax to represent the various components of that language. The syntax

9

10 CHAPTER 2. BACKGROUND

e ::= x |e.f |e.m(e) |new C(e)

v ::= new C(e)

M ::= C m (Cx){return e; }
K ::= C(Cx){super(x); this.f=x;}
L ::= class C extends C{Cf; KM}
Pr ::= L; e

Figure 2.1: FJ Syntax

for FJ is given in Figure 2.1. The FJ syntax is made up of expressions (e),
values (v), method declarations (M), constructors (K), class declarations (L)
and programs (Pr). C, D and E refer to class names, and the convention of
an over bar is used to denote a list of something, e.g. C is a list of classes.
Types in FJ are just classes, and so C and D also represent FJ types. Ex-
pressions are the most basic components of a program. An FJ expression
may be a variable (x), a field access (e.f), a method invocation (e.m(e))
or a new expression (new C(e)). These expressions are often made up
of sub-components such as sub-expressions, method or field names and
class names. Method names are given by m and field names as f. Values
are those expressions that are irreducible. Values in FJ are new expres-
sions. All methods are defined using method declarations. An FJ method
declaration C m (C x){return e; }, gives the return type of the method
call C, the name of the method m, the list of parameters and their types
C x and the body of the method e. An FJ constructor method K of a class
C takes a list of parameters corresponding to the fields of C, and assigns
them to those fields. The body of the constructor makes use of the super
type’s constructor by calling the super() method. Classes in FJ are de-
fined using a class declaration L. A class declaration consists of a class, its
super type, a list of field names and their type, a constructor and a list of
method declarations. Finally, an FJ program Pr consists of a list of class
declarations (a class table), and an expression.

2.1. FEATHERWEIGHT JAVA 11

fields(Object) = ∅ (F-OBJECT)

class C extends D{Cf; KM}

fields(C) = Cf ∪ fields(D)
(F-CLASS)

Df ∈ fields(C)

ftype(C,f) = D

class C extends D{Cf; KM} C0 m (D x){return e0; } ∈ M

mbody(C,m) = (x,e0)
(MB-CLASS)

class C extends D{Cf; KM} m /∈ M

mbody(C,m) = mbody(D,m)
(MB-SUPER)

class C extends D{Tf; KM} C0 m (e){return e0; } ∈ M

mtype(C,m) = C→ C0
(MT-CLASS)

class C extends D{Cf; KM} m /∈ M

mtype(C,m) = mtype(D,m)
(MT-SUPER)

Figure 2.2: FJ Field and Method Retrieval Functions

2.1.2 FJ Functions

In order to make judgments about types and expressions, information
about them needs to be retrieved. In FJ this would be information about
fields and method from the class table, but in another type system other
functions may be defined that retrieve relevant information about types
and expressions. The functions used in FJ are found in Figure 2.1.2. The
first function is the fields function. fields(C) returns the field names and
types of type C. The base case, Object, has no types (F-OBJECT). For all
other classes C, fields(C) returns the fields defined in the class declaration
of C, as well as those of the super class of C (F-CLASS). ftype makes use of
the fields function, and returns the type of a specific field f for a type C.
Method body retrieval is handled by mbody, which returns the body and

12 CHAPTER 2. BACKGROUND

C <: C (S-REFL)
C <: D D <: E

C <: E
(S-TRANS)

C extends D

C <: D
(S-EXTEND)

Figure 2.3: FJ Subtyping Rules

parameter variables of a method for a given type. mbody(C,m) will return
(x,e) in one of two cases; if method m with parameters x and body e is de-
fined in the class declaration of C (MB-CLASS), or if mbody(D,m) = (x,e),
where D is the super type of C (MB-SUPER). The mtype function retrieves
the type of a method for a type. mtype acts in a similar way to mbody,
i.e. mtype(C,m) = C → C0 if method m is defined in the class decla-
ration of C with parameter type C, and return type C (MT-CLASS), or if
mtype(D,m) = C→ C0, where D is the super type of C (MT-SUPER).

2.1.3 FJ Subtyping

In typed programming languages, subtyping refers to the type substitutabil-
ity property between types. If one type S subtypes another type T, then we
can treat S in the same manner as we would treat T. This relation is cap-
tured in type systems by the introduction of a subtype judgment. In FJ,
types are synonymous with classes. When referring to classes, subclasses
are used to extend the properties of one class to other classes by inheri-
tance. That is, if one class subclasses another, it inherits the properties of
the first class. Therefore, in FJ, subtyping is done by subclassing. Figure
2.1.3 gives the subtyping relation for FJ. The judgment C <: D is read as C
is a subtype of D. Subtyping is reflexive, i.e. a type C is a subtype of itself
(S-REFL). Subtyping is also transitive, i.e. if C subtypes D, and D subtypes
E, then C also subtypes E (S-TRANS). The basic form of subtyping is one

2.1. FEATHERWEIGHT JAVA 13

Γ(x) = C

Γ ` x : C
(T-VAR)

Γ ` e0 : C0 ftype(C0,f) = C

Γ ` e0.f : C
(T-FIELD)

Γ ` e0 : C0 mtype(C0,m) = C→ C Γ ` e : D D<:C

Γ ` e0.m(e) : C
(T-INVK)

fields(C) = C f Γ ` e : D D<:C

Γ ` new C(e) : C
(T-NEW)

Figure 2.4: FJ Typing Rules

class extending another, i.e. if C is declared to extend D, then C subtypes D
(S-EXTEND).

2.1.4 FJ Type Rules

The central aspect of the FJ type system is the typing of expressions. Since
a program is just a series of expressions, how expressions are typed, and
whether or not that typing is able to ensure any level of safety is critical
to any type system. The typing judgment for FJ is given in Figure 2.1.4.
An expression e is said to be well-typed with respect to a type C in the
context of an environment Γ if Γ ` e : C holds. An environment provides
a mapping from expression variables to types. As with previous rules,
typing is presented in a case by case basis for each expression. A variable
x has type C if Γ maps x to C (T-VAR). A field access e0.f has type C if
e0 has type C0, and f has type C in C0 (T-FIELD). A method invocation
e0.m(e) has type C if e0 has type C0, m has a return type of C in C0, and the
parameters e have types D that subtype the parameters of m, C (T-INVK).
A new expression new C(e) has type C if e have types D which subtype
the field types of C (T-NEW).

14 CHAPTER 2. BACKGROUND

fields(C) = Cf

(new C(v)).fi −→ vi
(R-FIELD)

mbody(m,C) = (x,e0)

(new C(v1)).m(v2) −→ [v2/x, (new C(v1))/this]e0
(R-INVK)

Figure 2.5: FJ Reduction Rules

e0 −→ e′0

e0.fi −→ e′0.fi
(RC-FIELD)

e0 −→ e′0

e0.m(e) −→ e′0.m(e)
(RC-INVK-RECV)

ei −→ e′i

e0.m(...,ei, ...) −→ e0.m(...,e′i, ...)
(RC-INVK-ARG)

ei −→ e′i

new C(...,ei, ...) −→ new C(...,e′i, ...)
(RC-NEW-ARG)

Figure 2.6: FJ Context Reduction Rules

2.1.5 FJ Reduction Rules

The reduction of expressions is represented by the reduction rules in Fig-
ure 2.1.5. Expression e1 reduces to expression e2 if e1 −→ e2 holds. A
field access new C(v).fi reduces to vi (R-FIELD). A method invocation
new C(v1).m(v2), where m has body (x,e0) in class C, reduces to e0 with
the method parameters v2 substituted for the parameter variables x, and
new C(v1) substituted for the this variable. Reduction of expressions
may also occur by by the reduction of subexpressions. These are captured
in Figure 2.1.5 as the context reduction rules.

2.2. COQ 15

2.1.6 FJ Soundness

Soundness in a type system is can be summed up as: If Γ ` e : C holds
for environment Γ, expression e and type C, then the evaluation of e will
never result in an unexpected error. To express this property, we break
it up in to two components; Preservation and Progress. The statement of
Preservation is given below in Theorem 2.1.1.

Theorem 2.1.1 (Preservation). If Γ ` e : C and e −→ e′, then Γ ` e′ : C′ and
C′ <: C

Proof. By induction on the derivation of e −→ e′.

Preservation requires that for a given well-typed expression, any reduction
will result in another well-typed expression that subtypes the type of the
original expression. Progress completes soundness and is presented below
in Theorem 2.1.2.

Theorem 2.1.2 (Progress). If Γ ` e : C then either

(i) e is a value, or

(ii) ∃e′ s.t. e −→ e′

Proof. By induction on the derivation of Γ ` e : C.

Progress requires that for a well-typed expression, either that expression is
an irreducible value, or it can ”make progress”, and can be reduced. In
other words, no well-typed expression will get stuck.

2.2 Coq

2.2.1 A Coq Primer

This section gives an overview of Coq basics. The definitions and tactics
described here are only intended to help understand the type systems and

16 CHAPTER 2. BACKGROUND

their respective proofs in later chapters. For a more complete description
of these and other Coq definitions and tactics the book Coq’Art [1] is a
good resource.

Coq Definitions

All Coq definitions fall into one of two categories, Prop or Type [13].
Prop refers to propositions while definitions that fall into the Type cat-
egory are data types. The type systems in the following chapters are all
constructed using a combination of the following Coq definitions. The
first and most common definition type used is the Inductive definition.
An example of the Inductive definition is given below.

Inductive nat : Type :=

| O : nat

| S : nat -> nat.

nat is the Coq representation of natural numbers. An inductive definition
is made up of two parts, the header and the body. The header gives the
definition’s name and what type of Coq object it is. In this case the name is
nat and the type is Type. The body provides the ways in which an object
can be constructed. There are two ways to construct a Coq object of type
nat, O and S. O corresponds to 0 in the natural number system, and S to
the successor function, i.e. a nat may either be O or S n where n is some
nat. Using this scheme, 1=S O, 2=S 1=S (S O), etc.

Another inductively defined Coq datatype is list. Lists in Coq are
represented in the same manner as natural numbers, and is given below.

Variable A : Type.

Inductive list : Type :=

| nil : list

| cons : A -> list -> list.

2.2. COQ 17

Infix "::" := cons (at level 60, right associativity).

We start by declaring some variable type A using Variable A : Type.
A will be used in the definition of list as a generic data type so we may
create lists of different types. We can construct a list in one of two ways;
nil and cons. nil, an empty list, is the base case, and is analogous to O

in nat. cons a l (where a is of type A, and l is a list of elements of type
A) is the Inductive case, and is analogous to S in nat. cons a l appends
a to the front of l. We can construct the list [a1, a2, a3] as (cons
a1 (cons a2 (cons a3 nil))). We also define :: as short hand for
cons. Therefore, [a1, a2, a3] = (a1::(a2::(a3::nil))).

An Inductive definition may also be of type Prop. Below is an ex-
ample of such a definition, lt, a predicate that determines if one natural
is less that of another.

Inductive lt: nat -> nat -> Prop :=

| lt_O : forall n,

lt O (S n)

| lt_S : forall n m,

lt n m ->

lt (S n) (S m).

lt is of type nat -> nat -> Prop, i.e. given two objects of type nat,
n and m, lt n m has type Prop. The body provides two cases where
lt n m holds. lt_O and lt_S. lt_O says that O is less than S n for all
n. lt_S says that given two naturals n and m, lt n m implies the same
for their successors, i.e. lt (S n) (S m). Using lt we can say that
2 is less than 3. 2 = S (S O) and 3 = S (S (S O)). Therefore lt

(S (S O)) (S (S (S O))) holds if lt (S O) (S (S O)) holds by
lt_S. Similarly lt (S O) (S (S O)) holds if lt O (S O) holds, also
by lt_S. Finally, lt O (S O) holds by lt_O.

Inductive definitions can also be defined mutually if they both de-
pend on each other. The predicate even defined below holds if a supplied

18 CHAPTER 2. BACKGROUND

natural is even. even is defined along with odd. odd is a predicate that
holds if a supplied natural is odd, similarly odd is defined using even.

Inductive even : nat -> Prop :=

| even_O : even O

| even_S : forall n,

odd n ->

even (S n)

with odd : nat -> Prop :=

| odd_S : forall n,

even n ->

odd (S n).

A natural number n is even if either n = O (even_O), or the predecessor
of n is odd (even_S). A natural n is odd if its predecessor is even (odd_S).

Coq objects can also be defined using previously defined predicates
with the Definition.

Definition leq (n m : nat) := (lt n m) \/ (n = m).

The predicate leq determines if one natural is less than or equal to another
by making use of the previously defined lt. gt n m holds if n is less than
m (lt n m) or if n equals m (n = m). These two propositions are joined by
a disjunction (\/).

Recursive functions can also be defined in Coq, using the a Fixpoint
function definition.

Fixpoint sum (n m : nat) : nat :=

match n with

| O => m

| S n’ => S (sum n’ m)

end.

The function sum is defined above, and takes two naturals, n and m, as
inputs and returns their sum. The first input n is matched with one of two

2.2. COQ 19

cases, O and S n’ for some n’. If n = O, then sum n m returns m. If n =

S n’, then sum n m recursively calls sum, and returns S (sum n’ m).
In the second case, eventually recursion will end when n = O, and at that
point the result will be m + 1 + 1 + 1 + ... (n times) = m + n. The
end of the function is marked by end.

Coq Proofs

Theorems and their proofs in Coq generally follow a simple structure that
is outlined here. A Coq theorem is composed of three parts, a name that is
used to reference it, a statement of the theorem, i.e. what it is we wish to
prove, and finally the proof. The basic structure is given below.

Theorem <name> :

<statement of theorem>

Proof.

<proof>

Qed.

An example is given below: a simple proof showing that ∀n ∈ N, n < (Sn).

Theorem lt_n_S : forall (n : nat),

lt n (S n).

Proof.

intro n.

induction n as [|n’].

Case "n = O".

apply lt_O.

Case "n = S n’".

apply lt_S.

assumption.

Qed.

20 CHAPTER 2. BACKGROUND

The theorem begins with the name of the theorem, lt_n_S, and follows
with the statement of the theorem forall n, lt n (S n). In other
words the theorem lt_n_S states that for all n of type nat, n is less that
its successor S n. The proof of a theorem makes use of a series of tactics
that act upon the goals or the premises of a proof in order to resolve the
goals. Each goal represents a separate case to be resolved. In this primer
and throughout the encodings presented in this thesis, we make use of a
Coq tactic from the Software Foundations course [11]. Before any tactics
are applied entering the theorem above gives the following set of premises
and goals.

1 subgoals

______________________________________(1/1)

forall n : nat, lt n (S n)

To begin with we need to introduce some n. To do this we apply the tactic
intro n.

1 subgoals

n : nat

______________________________________(1/1)

lt n (S n)

Now a n of type nat has been introduced as a premise. Since n is an
inductive type, we can proceed by induction on n. So we say in order to
prove lt_n_S holds for some general nwe need to prove that it first holds
for O and then show that if it holds some n’, it follows that it holds for S
n’. In order to do this we use the tactic induction n as [|n’].

2 subgoal

______________________________________(1/2)

lt 0 1

______________________________________(2/2)

lt (S n’) (S (S n’))

2.2. COQ 21

The original goal has now been replaced by two subgoals; one for n = 0,
and one for n = S n’. The qualifier [|n’] allows us to specify names
for variables used in each case. In the second case we want the variable
n’ to be used. The first goal can be easily derived from the definition of
lt from the previous section. lt has two cases lt_O and lt_S. lt_O
states that for all n, lt O (S n) holds. Since 1 = S 0, lt 0 1 holds
by lt_O. We can use this in our proof by using the tactic apply lt_O.

1 subgoals

n’ : nat

IHn’ : lt n’ (S n’)

______________________________________(1/1)

lt (S n’) (S (S n’))

The first case has now been resolved, and we can move on to the next case.
We are now trying to show that for some n’, it follows that if lt_n_S
holds for n’, it also holds for S n’. Since this is the inductive case, we
start with the inductive hypothesis IHn’ : lt n’ (S n’). We are
now trying to show that lt (S n’) (S (S n’)) holds. As with the
previous goal, we can make use if the definition of lt. This time we can
use lt_S instead of lt_O. lt_S states that for all n and m, lt n m implies
that lt (S n) (S m) holds. We can apply this to our current goal with
the tactic apply lt_S.

1 subgoals

n’ : nat

IHn’ : lt n’ (S n’)

______________________________________(1/1)

lt n’ (S n’)

Applying lt_S means we still have to prove that lt n’ (S n’) holds.
However we already know this is true by the induction hypothesis IHn’
mentioned before. Since this is already assumed, we can apply the tactic
assumption to resolve the final goal. To complete and save the proof for,

22 CHAPTER 2. BACKGROUND

later reference we can use the keyword Qed.

Induction is a very commonly used proof tactic in Coq due to the use
of Inductive definitions. Usually using induction is a simple case of
applying induction to a premise as we did in the previous example, how-
ever when dealing with mutually defined definitions like even and odd,
we need to define the induction scheme for them mutually. Below is a
mutually defined induction scheme for even and odd. First we define
even_induct and odd_induct as inductive definitions for even and
odd respectively. Second, we instruct Coq to use them together by defin-
ing them as even_odd_mutind.

Scheme even_induct := Minimality for even Sort Prop

with odd_induct := Minimality for odd Sort Prop.

Combined Scheme even_odd_mutind from even_induct,

odd_induct.

Now, when we have a theorem that requires induction on both even and
odd, we can apply even_odd_mutind in order to resolve it. Below is an
example that makes use of the above mutually inductive scheme. sum_of_
odd_even_mutind states that the sum of two even numbers is even, and
the sum of an even and an odd number is odd. These two separate state-
ments would be impossible to prove separately given the way we previ-
ously defined even and odd. If they had not been defined mutually, we
might be able to proceed by regular induction with both separately, but
since both definitions make use of each other we need to prove each these
statements in order to prove the other.

Theorem sum_of_odd_even_mutind :

(forall n, even n -> (forall m, even m ->

even (sum n m))) /\

(forall n, odd n -> (forall m, even m ->

odd (sum n m))).

2.2. COQ 23

Proof.

apply even_odd_mutind; intros.

Case "even_O".

simpl. assumption.

Case "even_S".

simpl. apply even_S.

apply H0. assumption.

Case "odd_S".

simpl. apply odd_S.

apply H0. assumption.

Qed.

Applying even_odd_mutind to the initial goal results in three cases, one
for each inductive case of even and odd. These cases are resolved fairly
easily in the same way we resolved the goals from lt_n_S. Another tac-
tic introduced in this theorem is simpl. simpl just simplifies a goal or
premise, for example a goal of sum (S n) m would be simplified to S

(sum n m) by the straight forward application of the sum function.

24 CHAPTER 2. BACKGROUND

Chapter 3

Featherweight Immutable Java

3.1 Featherweight Immutable Java

Featherweight Immutable Java (FIJ) extends FJ with immutability. As dis-
cussed in Chapter 1, immutability as we wish to define it, requires field
assignment. This means we need to extend FJ by introducing a new as-
signment expression of the form e.f = e′, where expression e′ is being
assigned to field f of receiver e. With assignment we need to introduce a
store. A store represents the memory in our program, and contains all the
objects that have been initialized. To refer to those objects we use locations.
A location is an expression that points to an object within the store, and is
used in place of that object. A store is contextual, only having meaning in
relation to an expression, and is maintained and updated as that expres-
sion is reduced. Reduction in FIJ is extended from FJ to include a store.
e|H −→ e′|H′ is the reduction of expression e and store H to expression
e′ and storeH′.

Along with locations, we also introduce two more expressions; null ex-
pressions and errors. A null expression is an empty pointer, i.e. a pointer
that does not point to an object. This allows us to initialize object with
null fields, and only assign them later. A null expression is well typed
with respect to all well-formed types. This means they are assignable to

25

26 CHAPTER 3. FEATHERWEIGHT IMMUTABLE JAVA

all fields. While a null expression may be used anywhere, that does not
change the fact that it is not an object, and so does not have fields or meth-
ods. Field and method calls on null expressions result in an error. An error
expression is used when performing reductions on expressions with a null
receiver, and in our type system will not be well-typed with respect to any
type.

Immutability in FIJ is enforced by adding mutability information to
types. All FIJ types are parameterized by a mutability parameter. An ob-
ject of a type parameterized as mutable acts in the same way as a normal
Java object, while an object of a type parameterized as immutable disal-
lows field assignment.

All FIJ classes are parameterized with a mutability parameter. A class
mutability parameter limits the mutability of the objects of that class. Mu-
tability parameters fall in to one of three categories; mutable (mut), im-
mutable (imm) or a mutability variable X. For a class C with mutability I,
the mutability of all objects of class C must conform to I. If a class C is
parameterized as mut / imm, then all objects of class C must be mutable /
immutable. If C is parameterized by X, objects of class C may be initialized
as either mut or imm. An example of some FIJ classes are provided below.

1 class C<imm> extends Object<imm>{}

2 class D<X> extends Object<X>{}

3

4 new C<mut>(); // results in a type error

5 new C<imm>(); // type checks

6 new D<imm>(); // type checks

7 new D<mut>(); // type checks

Parameterizing a class by a mutability variable means that mutability
is defined at object initialization, this implies FIJ conforms to the Object
Immutability discipline. Parameterizing classes with mut or imm on the
other hand, provides for Class Immutability since all instances of a class

3.1. FEATHERWEIGHT IMMUTABLE JAVA 27

parameterized with imm are immutable.

In FIJ, immutable objects are restricted from field assignment, however
the fields of an immutable object are not required to be immutable, and
so may be mutated themselves. This means that the immutability of FIJ
is on the surface shallow. This is useful if we want to make an objects that
have immutable structure, but we still want to retain some flexibility in
mutating fields. An example of this would be an immutable list which
always contains the same elements, but those elements are not guaranteed
to be immutable.

While on the surface the immutability of FIJ is shallow, using a mutabil-
ity variable we can enforce deep immutability. If a class is parameterized
with a mutability variable X, then X may be used throughout the class.
That is, fields and methods may treat X as a defined mutability parameter.
An example of such a class is given below.

1 class Cx<X> extends Object<X>{

2 Object<X> fx;

3 Cx<X> copy pure(){return new Cx<X>(this.fx);}

4 Cx<X> setfx mutating(Object<X> fx){return this.fx=fx;}

5 }

The field fx will have the same mutability as the instance of Cx it is de-
clared in. The method copy can also use the mutability variable X. the
return type of copy will depend on the mutability of the receiver.

The copy method in the above listing makes use of the pure and
mutating keywords. In FIJ, a method may be annotated as pure if it
does not mutate the object in anyway, otherwise it must be annotated as
mutating. Only pure methods may be called on an immutable receiver.
Type errors can arise from methods that mutate the receiver being called
on an immutable receiver. Disallowing mutating method calls on im-
mutable receivers prevents such type errors.

Notice in the previous code segment that there is no explicit construc-

28 CHAPTER 3. FEATHERWEIGHT IMMUTABLE JAVA

Figure 3.1: FIJ Type Hierarchy

tor for Cx. Constructors in FIJ are not explicitly declared, and the new

expression takes a series of expression parameters as inputs and assigns
them to the objects fields. This presents an issue during object initializa-
tion of immutable objects. If the fields of immutable objects can not be
assigned to, then how are the fields initialized? During object initializa-
tion, the mutability of the object is not taken into account. This is the only
time immutability restrictions are lifted. In all other cases assignment must
respect the mutability of the receiver.

Subtyping in FIJ is complicated by the introduction of mutability pa-
rameters. It would seem natural that Cx<mut> should subtype Cx <imm>

since in all cases an object of type Cx<mut> is substitutable for an object
of type Cx<imm>. The problem arises when we want to be sure that an
immutable object really is immutable. If we can assign a mutable ob-
ject to an immutable field then we cannot rely on the immutable nature
of any field we declare. IGJ [16] dealt with this by using a readonly

mutability type that both imm and mut subtyped, but mut did not sub-
type imm. To maintain a level of simplicity, FIJ does not use a readonly
mutability type, rather it uses a split type hierarchy. Cx<mut> subtypes
Object<mut> and Cx<imm> subtypes Object<imm>, but Cx<mut> does
not subtype Cx<imm>. This creates the type hierarchy seen in Figure 3.1.
As mentioned in Chapter 1, alternative immutability variants [15] [16] [17]

3.2. FIJ TYPE SYSTEM 29

e ::= null | ι |x |err |e.f |e.f = e |e.m(e) |new T(e) |e; e

v ::= null | ι
I ::= mut |imm |X
P ::= mutating |pure
T ::= C<I>

M ::= T m P (T x){return e; }
L ::= class T extends T{Tf; M}
Pr ::= L;e

Figure 3.2: FIJ Syntax

include readonly as a mutability parameter. The inclusion of readonly
completes the hierarchy, allowing references to be created that prohibit as-
signment, while not ensuring such restrictions from other references. Such
a type system is clearly more descriptive, and while FIJ’s type system is
not ideal, it does allow FIJ to focus on the encoding of assignment to im-
mutable types without complicating the type hierarchy.

The rest of this chapter is devoted to describing the FIJ type system and
its Coq encoding in detail. Section 3.2 presents the FIJ type system and its
Coq encoding. Section 3.3 describes the soundness proofs of the FIJ type
system, and the Coq of those soundness proofs.

3.2 FIJ Type System

3.2.1 FIJ Syntax

Figure 3.2 gives the syntax of FIJ. An FIJ expression (e) may be a null ex-
pression (null), a location (ι), a variable (x), an error (err), a field access
(e.f), a field assignment (e.f = e), a method invocation (e.m(e)), a new
expression (new T(e)) or a sequence (e; e). A value (v) is either the null
expression, or a location. A mutability parameter (I) may be either mut,
imm or X, a mutability variable. All methods are annotated by a method

30 CHAPTER 3. FEATHERWEIGHT IMMUTABLE JAVA

mutability (P). A method mutability annotation may either be mutating
or pure. An FIJ type (T) is represented by a class name (C) parameterized
by a mutability parameter. A method declaration (M) is given by a return
type, a method name (m), a method mutability annotation, a list of method
parameters (Tx) and a method body (e). A class declaration (L) is given
by a type (T) that extends a super type (T), a list of field names and their
types (Tf) and a list of declared methods (M). Lastly, an FIJ program (Pr)
is a list of class declarations (L) and an expression (e). The list of class
declarations in a program is referred to as a class table.

Now the Coq encoding of the FIJ syntax will be presented.The Coq def-
inition of classes is given below (class). Classes are defined inductively
with one of two constructors; Object and Extend. Object is the base
class, and is analogous to the natural number 0. Extend is the inductive
case, and defined with a unique identifier (ClassName) and a super class.
Extend C D is read as ”the class with ClassName C extends class D”.
Extend is analogous to the successor function S for natural numbers. The
notation C extends D is also defined below as the notation for Extend
C D.

Inductive ClassName : Type :=|Class : nat -> ClassName.

Inductive class : Type :=

| Object : class

| Extend : ClassName -> class -> class.

Notation "C ’extends’ D" := (Extend C D) (at level 0).

Initially when encoding the FIJ type system, classes were defined in the
same manner as ClassName, i.e. by simply using a natural number (nat)
to distinguish between them. Classes were only later encoded inductively
as they are above with the intention of making it easier to reason about
the class hierarchy. If classes are defined as either Object, or the exten-
sion of some other class, it becomes quite easy to show that all classes
extend Object. It also becomes easier to determine if one class extends
another simply by the information contained in the class rather than hav-

3.2. FIJ TYPE SYSTEM 31

ing to check with the artificial construct of the class table. One side effect
was that within a class declaration the super type was split up in to class
information (contained in the subclass) and a mutability parameter. This
has no effect on FIJ since the structure of the type hierarchy (Figure 3.1)
means that the mutability parameter of the super type will be the same as
that of the subtype. In later encodings this was changed back to the sim-
pler encoding (as in ClassName). With the introduction of multiple type
parameters in generics and ownership, it became inconvenient to split up
the parameters and the class information of super types.

Mutability parameters are defined below as mutability. Possible
mutability parameters are mutable, immutable and variable. mutable
and immutable correspond to mut and imm. variable is the Coq encod-
ing of mutability variables. There can only ever be one mutability variable
in scope at any one time, and therefore there will never be any ambiguity
about mutability variables. Thus, for simplicity, all mutability variables
are encoded as variable.

Inductive mutability : Type :=

| mutable : mutability

| immutable : mutability

| variable : mutability.

Types are defined below as ty. A type is constructed using a class and a
mutability parameter (Ty C I). The notation C <<I>> is used through-
out the FIJ encoding instead of Ty C I.

Inductive ty : Type :=

| Ty : class -> mutability -> ty.

Notation "C ’<<’ I ’>>’" := (Ty C I) (at level 0).

Method mutability annotations are defined below as meth_mut in a sim-
ilar fashion to type mutability parameters. They may be either pure or
mutating.

Inductive meth_mut : Type :=

| pure : meth_mut

32 CHAPTER 3. FEATHERWEIGHT IMMUTABLE JAVA

| mutating : meth_mut.

Expressions are defined below as exp. e_null is the Coq encoding of a
null expression. e_loc is the encoding of locations. e_loc i a location
with position i in the store. e_var is the Coq encoding of variables, and is
constructed using a unique variable identifier (var). e_err encodes an er-
ror expression. e_field encodes field accesses. e_field e f is a field
access f on receiver e. e_assign encodes field assignments. e_assign
e f e’ assigns expression e’ to field f in receiver e. e_new encodes new
expressions. e_new C I es corresponds to new C<I>(es), where C is a
class, I is a mutability parameter, and es is a list of constructor param-
eters. e_meth is the encoding of method invocations. e_meth e m es

is a method invocation m with parameters es on receiver e. e_seq is the
encoding for sequences. e_seq e1 e2 corresponds to e1; e2.

Inductive exp : Type :=

| e_null : exp

| e_loc : nat -> exp

| e_var : var -> exp

| e_err : exp

| e_field : exp -> field -> exp

| e_assign : exp -> field -> exp -> exp

| e_meth : exp -> meth -> list exp -> exp

| e_new : class -> mutability -> list exp -> exp

| e_seq : exp -> exp -> exp.

Method (MethDecl) and class (ClassDecl) declarations are defined be-
low. A method declaration mDecl m T0 P xs e0 declares a method
with name m, return type T0, method mutability P, parameters xs and
body e0. A class declaration cDecl C I fs ms is declares a class C

with mutability parameter I, fields fs and methods ms. A ClassTable

is defined as a list of class declarations (ClassDecl). Throughout the
encoding a generic class table, CT is used. CT is defined below. This is
done for simplicity so we do not require a class table parameter in every
predicate. A common premise used in many predicates throughout all en-

3.2. FIJ TYPE SYSTEM 33

codings in this thesis is In (cDecl C I fs ms) CT. This checks that a
class declaration with class C, mutability I, fields fs and method declara-
tions ms is in the generic class table CT. If C = C0 extends D (for some
class name C0 and class D), then this can be considered a Coq encoding of
class C<I> extends D{fs; ms}

Inductive MethDecl : Type :=

| mDecl : meth -> ty -> meth_mut ->

list (var * ty) -> exp -> MethDecl.

Inductive ClassDecl : Type :=

| cDecl : class -> mutability ->

flds -> mths -> ClassDecl.

Notation ClassTable := (list ClassDecl).

Parameter CT : ClassTable.

A store is required for locations to be used. A store is a collection of
locations, each containing an object. An object is represented as a type-
expression list pair. The type is the type of the object, and the expression
list is the list of expressions corresponding to the fields of the type. A store
is thus a list of type-expression list pairs. A location e_loc i, described
in exp, points to the ith position in the store.

Definition store := list (ty * (list exp)).

3.2.2 FIJ Substitution

When pen and paper proofs are done that involve substitution not much
attention is paid to what happens during the substitution, and much is
assumed about the functioning of the substitution. When these proofs are
translated into a Coq script, Coq does not allow us to ignore these aspects
of the proof. This section describes the encoding of expression substitution
in FIJ.

When method calls are evaluated in FJ and FIJ, expression parame-
ters are substituted for their corresponding parameter variables into the

34 CHAPTER 3. FEATHERWEIGHT IMMUTABLE JAVA

method body. In Coq we need to encode a function that represents an ex-
pression substitution such as [e/x]e. First we need a way to represent the
substitution relation [e/x]. In our encoding, SubstRel is defined as a list
of variable-expression (var-exp) pairs. For a R of type SubstRel, each
(x,e) (v of type var and e of type exp) in R corresponds to some [e/x] in
[e/x] i.e. x is replaced by e. The Fixpoint function subst below takes a
substitution mapping (SubstRel) E and an expression (exp) e as inputs,
and returns e with E substituted into it. To do this, subst recursively
substitutes E into all the sub-expressions of e, except for variables. For
e = e_var x, subst searches E for (x,e0) (where e0 is some expres-
sion), and returns e0. If x is not in E, then the original variable e_var x

is returned. To search E, the function get is used below. The encoding of
get is not given, but get x E either returns None if x is not in E, or Some
e0 if (x,e0) is in E.

Fixpoint subst (E : SubstRel)

(e : exp) : exp := match e with

| e_var x => match get x E with

| None => e_var x

| Some e0 => e0

end

| e_field e0 f => e_field (subst E e0) f

The encoding for e_field is also given. For a field expression e_field e0

f, subst is applied recursively, and e_field (subst E e0) f is re-
turned. The rest of the cases for subst are not given since each one simply
recursively applies subst in the same way as e_field.

3.2.3 FIJ Functions

In this section, the method and field lookup functions are encoded. In the
paper presentation of the functions, they are functions that take inputs and
return an output. In the encoding however the functions are encoded as
relations. For example the fields function (Figure 3.3) takes a class as input

3.2. FIJ TYPE SYSTEM 35

fields(Object) = ∅ (F-OBJECT)

class C<I> extends D<I>{Tf; M}

fields(C) = Tf ∪ fields(D)
(F-CLASS)

Tf ∈ fields(C)

fType(f,C) = T

Figure 3.3: FIJ Field Lookup Function

and returns a list of the fields of that class. The Coq encoding of fields,
fields is encoded as a relation that takes a class and a list of fields as
inputs, and holds if the list of fields is the correct list of fields of the class.
In other words, for a class C with fields fs, fields(C) = fs translates to
fields C fs. This is the same for the method lookup function.

The FIJ field lookup functions are shown in Figure 3.3. fields(T) re-
trieves the field names and types for type T. Object<I> has no fields for
all I (F-OBJECT). For all other types, the fields for that type are the fields
declared in the class declaration of that type and the fields of the super
type (F-CLASS). Field overriding is not permitted in FIJ. This is enforced
during class typing later on in Section 3.2.5. fType(f,T0) returns the type of
field f in type T0. Field f has type T in type T0 if T f is in the set of fields
of T0. The fields predicate below, encodes fields. fields C fs holds
if the list of field-type pairs fs is the list of fields associated with class C.
F-OBJECT is encoded as fields obj, the Object class has no fields (i.e.
nil, see Chapter 2). F-CLASS is encoded as fields extends. A class C
that extends a class D (C = C0 extends D), where D has fields Df and
Cf are the fields declared in the class declaration for C, has fields concat
Cf Df (Cf concatenated with Df).

Inductive fields : class -> flds -> Prop :=

| fields_obj : fields Object nil

| fields_extends : forall C C0 Cf D Df mutX ms,

In (cDecl C mutX Cf ms) CT ->

C = C0 extends D ->

fields D Df ->

36 CHAPTER 3. FEATHERWEIGHT IMMUTABLE JAVA

class C<I> extends T{Sf; M}
T0 m P (Ux){return e; } ∈ M

mType(m,C) = P U→ T0

(MT-CLASS)

class C<I> extends D<I>{Sf; M}
∀T0, PU, x, e : T0 m P (Ux){return e; } /∈ M

mType(m,C) = mType(m,D)
(MT-SUPER)

class C<I> extends T{Sf; M}
T0 m P (Ux){return e; } ∈ M

mBody(m,C) = (x;e)
(MB-CLASS)

class C<I> extends D<I>{Sf; M}
∀T0, PU, x, e : T0 m P (Ux){return e; } /∈ M

mBody(m,C) = mBody(m,D)
(MB-SUPER)

Figure 3.4: FIJ Method Lookup Function

fields C (concat Cf Df).

The predicate validField is defined below. validField C fi Ti

holds if the field fi with type Ti is declared for class C. This encodes the
fType function from Figure 3.3. The encoding is straightforward, and re-
trieves the fields of C (fields C fs), and checks that the field-type pair
(fi,Ti) is in fs (In (fi,Ti) fs).

Definition validField (C : class)

(fi : field)(Ti : ty) : Prop :=

exists fs, fields C fs /\ In (fi,Ti) fs.

The method type and body lookup functions are found in Figure 3.4.
mType(m,C) retrieves the type of method m in class C. A method m has
type P U → T0 in class C if m is has that signature in the list of methods of

3.2. FIJ TYPE SYSTEM 37

the class declaration of C (MT-CLASS). A method m has the same type in
C as in the super class D providing that there is no method m declared in
class C (MT-SUPER). mBody(m,C) retrieves the method body of m in class
C. As with mType, a method m has body e for a class C if it is declared in the
class declaration of C (MB-CLASS), or if it is inherited from the super class
D (MB-SUPER). mBody returns not only the body of the method, but also
the parameter variables (X) of the method that are needed for parameter
substitution.

Below is method, the predicate encoding both mType and mBody. They
are encoded together for two reasons. They both operate in the same way,
only returning a different part of the method signature, so combining the
encoding allows for reuse of the same predicate. Encoding them together
allows for ease during soundness when attempting to prove that the body
and the type of the same method in a class are derived from the same
declaration.

method C decl holds if the method declaration decl is defined for
class C. m this encodes both MT-CLASS and MB-CLASS. For a class with
method list ms, decl is a valid method declaration for C if decl is in ms.
m inherit encodes MT-SUPER and MB-SUPER. For a class C that extends
class D (C = Cn extends D), a method declaration decl is defined for
C if decl is defined for D (method D decl), and C has no method by the
same name as decl in its method list.

Inductive method : class -> MethDecl -> Prop :=

| m_this : forall decl T0 m As e0 C fs ms mutX mutM,

decl = mDecl m T0 mutM As e0 ->

In (cDecl C mutX fs ms) CT ->

In decl ms ->

method C decl

| m_inherit : forall C D mutX fs ms Cn decl m T0 mutM As e0,

decl = mDecl m T0 mutM As e0 ->

In (cDecl C mutX fs ms) CT ->

(forall T0’ mutM’ As’ e0’,

38 CHAPTER 3. FEATHERWEIGHT IMMUTABLE JAVA

T <: T (S-REFL)
S <: T T <: E

S <: E
(S-TRANS)

C<I> extends D<I>

C<I> <: D<I>
(S-EXTEND)

Figure 3.5: FIJ Subtyping Rules

∼ In (mDecl m T0’ mutM’ As’ e0’) ms) ->

C = Cn extends D ->

method D decl ->

method C decl.

3.2.4 FIJ Subtyping and Well-Formedness

Figure 3.5 gives the FIJ subtype rules. The rules provide reflexivity (S-
REFL), transitivity (S-TRANS) and class extension (S-EXTEND). They are
the same rules as those in FJ [6], except for the introduction of the mu-
tability parameter in S-EXTEND. S-EXTEND requires that both the super
type and the subtype must have the same mutability parameter. This cre-
ates the split in the type hierarchy that is illustrated by Figure 3.1 and
discussed in Section 3.1.

Below is the encoding for the subclass predicate. subtype C D

holds if class C is a subclass of class D. S Refl, S Trans and S Extends

capture the reflexivity, transitivity and class extension relationships.

Inductive subclass : class -> class -> Prop :=

| S_Refl : forall C, subclass C C

| S_Trans : forall C D E, subclass C D ->

subclass D E -> subclass C E

| S_Extends : forall C D C0 mutC fs ms,

In (cDecl C mutC fs ms) CT ->

3.2. FIJ TYPE SYSTEM 39

Object<I> : ok (WF-OBJECT)

class C<IC> extends D<IC>{Tf; M}
(IC = mutable ∨ immutable)⇒ I = IC D<I> : ok

C<I> : ok
(WF-CLASS)

Figure 3.6: FIJ Type Well-Formedness

C = C0 extends D ->

subclass C D.

The subtype predicate below encodes the subtype judgment of Figure
3.5. subtype S T holds if type S is a subtype of type T. For S to be a
subtype of T, the class of S must subclass the class of T, and they must
have the same mutability parameter. The last requirement enforces the
type hierarchy of Figure 3.1.

Definition subtype (T1 T2 : ty) : Prop :=

exists mut0, exists2 C, exists2 D,

subclass C D & (T2 = D <<mut0>>) & (T1 = C <<mut0>>).

FIJ type well-formedness is given in Figure 3.6. Object<I> is well-
formed for all I (WF-OBJECT). A type C<I> is said to be well-formed if I
conforms to the mutability as declared in class C (WF-CLASS). That is, if C
is defined as having mutability parameter IC, then if IC is a non-variable
mutability parameter, I = IC. The super class D is also required to be

The encoding for type well-fomedness (ok_type) is given below. ok_
type is an inductive predicate that takes a type and a class table as inputs,
and holds if the type is well-formed with respect to the class table. While
this predicate is defined with an explicit class table parameter, it could
just as easily be defined using the generic class table CT. ok_Obj encodes
WF-OBJECT. ok_class encodes WF-CLASS.

Inductive ok_type : ty -> ClassTable-> Prop :=

40 CHAPTER 3. FEATHERWEIGHT IMMUTABLE JAVA

| ok_Obj : forall mutObj CTbl,

ok_type Object <<mutObj>> CTbl

| ok_class : forall C Cn D mutC mutX fs ms CTbl,

C = Cn extends D ->

ok_type D <<mutC>> CTbl ->

In (cDecl C mutX fs ms) CTbl ->

(mutability_defined mutX -> mutC = mutX) ->

ok_type C <<mutC>> CTbl.

3.2.5 FIJ Expression Typing

Before expression typing can be expressed, two environments need to be
mentioned. First, Chapter 2 introduced an environment mapping vari-
ables to types. This environment is still used, and is referred to as simply
an environment in the type system. Below is the Coq encoding of environ-
ments, env.

Notation env := (list (var * ty)).

An env is a list of variable-type pairs. Each pair represents a mapping
in the environment. The second environment used in the typing of FIJ
expressions is a store typing environment, mapping locations in a store to
types. Store typing environments are encoded below as store_typing.

Definition store_typing := list ty.

A store_typing is a list of types (ty). Since store typing environments
all correspond to some store, there must be a mapping from a location in
store H to a type in store_typing Delta. For a location e_loc i, that
points to the ith position in H, it also maps to the ith position in Delta.

Expression type rules for FIJ are given in Figure 3.7. An expression e

is said to have type T with respect to environment Γ and store typing ∆

if Γ; ∆ ` e : T holds. This is encoded by the Coq predicate typing that
takes an environment (env), a store typing environment (store typing),

3.2. FIJ TYPE SYSTEM 41

Γ ` x : Γ(x)
(T-VAR)

T : ok

Γ ` null : T
(T-NULL)

Γ ` ι : ∆(ι)
(T-LOC)

Γ ` e0 : C0<I> fType(f,C0) = T

Γ ` e0.f : T
(T-FIELD)

Γ ` e0 : C<mutable> Γ ` e : T

fType(fi,C0) = Ti T<:Ti

Γ ` e0.fi = e : T
(T-ASSIGN)

Γ ` e0 : C<I> mType(m,C) = P U→ T

I 6= mutable⇒ P = pure Γ ` e : S S<:U

Γ ` e0.m(e) : T
(T-INVK)

C<I> : ok fields(C) = Tf Γ ` e : S S<:T

Γ ` new C<I>(e) : C<I>
(T-NEW)

Γ ` e1 : T1 Γ ` e2 : T2

Γ ` e1; e2 : T2
(T-SEQ)

Figure 3.7: FIJ Typing Rules

an expression (exp) and a type (ty) as inputs. The header for typing is
given below.

Inductive typing :

env -> store_typing -> exp -> ty -> Prop :=

An expression variable x in environment Γ has type Γ(x) (T-VAR). The
Coq encoding is shown below as T Var. Since the environment Gamma
is actually a list of variable-type pairs representing variable to type map-
pings, for a unique x in Gamma, Γ(x) = T translates to In (x,T) Gamma.

| T_Var : forall Gamma Delta x T, env_ok Gamma ->

In (x,T) Gamma -> ok_type T CT ->

42 CHAPTER 3. FEATHERWEIGHT IMMUTABLE JAVA

typing Gamma Delta (e_var x) T

A null expression is judged to have type T for all types T (T-NULL). This
is captured by T Null below. The only requirement being that T is well-
formed (ok type T CT).

| T_Null : forall Gamma Delta T,

ok_type T CT ->

typing Gamma Delta e_null T

A location ι in a store typing ∆ has type ∆(ι) (T-LOC). T Loc below,
encodes typing for locations. Since locations are identified by an index
i in a list, the type T, at index i in the store typing Delta is retrieved
by store typing lookup i Delta = T. The premise i < stLength

Delta is not strictly needed, and can be derived from store typing

lookup i Delta = T. This is something that is not included in later
encodings.

| T_Loc : forall Gamma Delta i T,

i < stLength Delta -> ok_type T CT ->

store_typing_lookup i Delta = T ->

typing Gamma Delta (e_loc i) T

A field access e.f has type T if e has type T0, and field f has type T in
type T0 (T-FIELD). This is encoded below as T Field. validField C0

fi Ti corresponds to fType(f,T0) = T, but C0 is the class of type T0.
Since validField retrieves a field type for a class, and not a type, the
mutability mutC0 of type C0 <<mutC0>> has to be substituted into the
field type Ti. subst ty mutC0 Ti substitutes mutC0 into Ti.

| T_Field : forall Gamma Delta e0 C0 fi Ti mutC0 T,

typing Gamma Delta e0 C0 <<mutC0>> ->

validField C0 fi Ti -> ok_type Ti CT ->

T = subst_ty mutC0 Ti ->

typing Gamma Delta (e_field e0 fi) T

3.2. FIJ TYPE SYSTEM 43

A field assignment e.f = e’ has type T if e has a mutable type, f has type
T for that type, and the type of e, T’, subtypes T (T-ASSIGN). The encod-
ing for T-ASSIGN, T Assign, is given below. typing Gamma Delta e0

C0 <<mutable>> requires that the receiver e0 have mutability mutable.
As with T Field, validField C0 fi Ti retrieves the type of field fi

for class C0, Ti. mutable is then substituted into Ti.

| T_Assign : forall Gamma Delta e0 C0 fi Ti e T,

typing Gamma Delta e0 C0 <<mutable>> ->

validField C0 fi Ti ->

subtype T (subst_ty mutable Ti) ->

typing Gamma Delta e T ->

typing Gamma Delta (e_assign e0 fi e) T

If e has type C <<I>>, m has type p D → T for a reciever of type C0

<<I>>, where p = pure if I 6= mutable, and e subtypes D, then e.m(e)

has type T (T-INVK). The encoding for T-INVK is found below as T Invk.

| T_Invk : forall Gamma Delta e0 C0 es

e T0 T m As mut0 mutM,

typing Gamma Delta e0 C0 <<mut0>> ->

method C0 (mDecl m T0 mutM As e) ->

(mut0 <> mutable -> mutM = pure) ->

subtypings Gamma Delta es

(List.map (subst_ty mut0) (range As)) ->

ok_types (range As) CT -> ok_type T0 CT ->

T = (subst_ty mut0 T0) ->

typing Gamma Delta (e_meth e0 m es) T

A new expression new C<I>(e) has type C <I> if the types of e subtype
the field types of C <I> (T-NEW). The encoding of T-NEW is given below.

| T_New : forall Gamma Delta C es fs Ts mutC,

mutability_defined mutC ->

fields C fs -> range fs = Ts ->

subtypings Gamma Delta es Ts ->

44 CHAPTER 3. FEATHERWEIGHT IMMUTABLE JAVA

ok_type C <<mutC>> CT ->

typing Gamma Delta

(e_new C mutC es) C <<mutC>>

A sequence e1; e2 has type T2 if e1 is well-typed with respect to some
T1, and e2 is well-typed with respect to T2 (T-SEQ). The Coq encoding of
T-SEQ is given below.

| T_Seq : forall Gamma Delta e1 e2 T1 T2,

typing Gamma Delta e1 T1 ->

typing Gamma Delta e2 T2 ->

typing Gamma Delta (e_seq e1 e2) T2

The only expression that is not well-typed with respect to some type is
e_err. We cannot catch computation errors, all we can say is that they
are not well-typed. In Section 3.3 we present the properties of the type
system with the assumption that computation does not result in an error.

The predicate subtyping is defined along with typing, and is used
instead of a combined typing and subtyping predicate. subtyping Gamma

Delta e T holds if typing Gamma Delta e T’ holds for some T’,
and T’ is a subtype of T. subtypings is defined as subtyping for lists
of expressions and types.

with subtyping : env -> store_typing ->

exp -> ty -> Prop :=

| T_Sub : forall Gamma Delta e T T’,

typing Gamma Delta e T ->

subtype T T’ -> ok_type T’ CT ->

subtyping Gamma Delta e T’

with subtypings : env -> store_typing ->

list exp -> list ty -> Prop :=

| T_Nil : forall Gamma Delta,

subtypings Gamma Delta nil nil

| T_Subs : forall Gamma Delta e T es Ts,

subtypings Gamma Delta es Ts ->

3.2. FIJ TYPE SYSTEM 45

mType(m,D) = QU→ U0 ⇒ T = U ∧ T0<:U0 ∧ P = Q

override(m,D,PT→ T0)

Figure 3.8: FIJ Override Function

subtyping Gamma Delta e T ->

subtypings Gamma Delta (e::es) (T::Ts).

The FIJ override function is given in Figure 3.8. override(m,D,PT → T0)

holds if the method m being defined in class D implies the method type
PT → T0 overrides the method type of m in D. A method type over-
rides another method type if the parameter types are the same, the re-
turn type subtypes that of the overridden method, and they have the same
pure/mutating annotation. There is no distinct encoding of this func-
tion as it is fairly simple, and is incorporated into the method typing dis-
cussed next.

The FIJ method and class typing rules are given in Figure 3.9. A method
declaration T m (Tx){return e; } is said to be well-formed in type C<I> if
T m (Tx){return e; } OK IN C<I> holds. A class declaration class C<I>
extends D<I>{Tf; M} is said to be well-formed if class C<I> extends
D<I>{Tf; M} OK holds.

A method declaration is well-formed in one of two cases, T-METH-
PURE for pure methods, and T-METH-MUT for non-pure (or mutating)
methods. A pure method is well-typed if it overrides any method by the
same name in the super type and the body is well-typed for an immutable
receiver and an empty store (T-METH-PURE). A mutating method is well-
typed for a type C<I> if I is either mut or a variable, and the body is
well-typed for a mutable receiver and an empty store (T-METH-MUT). As
with T-METH-PURE, the method must correctly override any method by
the same name in the super type.

46 CHAPTER 3. FEATHERWEIGHT IMMUTABLE JAVA

this : C<imm>, [imm/X]Tx; ∅ ` [imm/X]e : [imm/X]T

class C<IC> extends D<IC>{...}
override(m,D<I>,pureT→ T)

T m pure (Tx){return e; } OK IN C<I>
(T-METH-PURE)

this : C<mut>, [mut/X]Tx; ∅ ` [mut/X]e : [mut/X]T

I = mut ∨ I = X class C<IC> extends D<IC>{...}
override(m,D<I>,mutatingT→ T)

T m mutating (Tx){return e; } OK IN C<I>
(T-METH-MUT)

Tf ∩ fields(D) = ∅ ∀M ∈ M : M OK IN C<I>

class C<I> extends D<I>{Tf; M} OK
(T-CLASS)

Figure 3.9: FIJ Method and Class Typing Rules

The FIJ method typing is encoded as meth_ok. meth_ok is a single
definition that covers both T-METH-PURE and T-METH-MUT. meth_ok
decl C <<I>> holds if method declaration decl is well-formed for type
C <<mutC>>. meth_ok consists of a series of propositions joined by con-
junction. Each proposition is given separately but is part of the same def-
inition. First the header and premises for meth_ok is given below. The
premises decl = mDecl m T0 mutM As e0 and T = C <<mutC>> are
added in order to extract the components of decl and T, the inputs of
meth_ok.

Definition meth_ok (decl : MethDecl) (T : ty): Prop :=

forall C mutC T0 m e0 mutM D As Cn,

decl = mDecl m T0 mutM As e0 -> T = C <<mutC>> ->

To ensure that non-pure methods are not included in classes declared as
immutable, the following proposition is added to mneth_ok. If mutC
(the receiver’s mutability) is immutable, then the method must be pure.

(mutC = immutable -> mutM = pure) /\

3.2. FIJ TYPE SYSTEM 47

Next, typing for the method body is given below. All method bodies are
required to be well-typed for a mutable receiver. Below is the typing for
mutable receivers. mutable is substituted for any mutability variable
into the body (e0), the return type (T0) and the method parameters (As).
The substituted body is then required to subtype the substituted return
type with respect to an empty store (nil) and the substituted parameters
along with the this variable mapped to a mutable C.

subtyping ((this,C<<mutable>>)::(map (subst_pair mutable) As))

nil (subst_mut_exp mutable e0)

(subst_ty mutable T0) /\

If the method is annotated as pure, then the body must also be well-typed
for an immutable receiver. This is done in the same manner as with a
mutable receiver. An alternative to double the typing of method bodies
(for both mutable and immutable receivers) would be to only require the
bodies of pure methods to be well-typed with respect to an immutable
receiver. It should not be hard to then show that pure methods are well-
typed with respect to a mutable receiver. This is a consideration for future
encodings.

(mutM = pure ->

subtyping ((this,C<<immutable>>)::

(map (subst_pair immutable) As))

nil (subst_mut_exp immutable e0)

(subst_ty immutable T0)) /\

The prerequisites of the override function are included below, the return
type must subtype the return type of any overridden methods, the param-
eter types must be the same and they must have the same pure/mutating
annotation. The range function used below is not given here, but takes a
list of pairs as an input, and returns a list composed of the second compo-
nent of each pair.

C = Cn extends D /\

(forall T0’ mutM’ Bs e0’,

48 CHAPTER 3. FEATHERWEIGHT IMMUTABLE JAVA

method D (mDecl m T0’ mutM’ Bs e0’) ->

(range As = range Bs) /\

(subtype T0 T0’) /\ (mutM = mutM’)).

Finally, the notation "decl ’OK_IN’ C" is used for meth_ok decl T.

Notation "decl ’OK_IN’ T" := (meth_ok decl T) (at level 0).

Class typing is given in Figure 3.9 as T-CLASS. A class declaration is
well-formed if there are no fields overriding those of the super class and
if the list of method declarations are well-formed for the class. The Coq
encoding of T-CLASS is given below as class ok. class ok is encoded
as a Definition that takes a class declaration, and returns a proposition
(Prop). The encoding is a straight encoding of T-CLASS, ensuring that the
methods are well-formed, the fields do not override any super type fields
and that all types are well-formed for that class declaration.

Definition class_ok (decl : ClassDecl): Prop :=

forall C ms fs mutC, decl = cDecl C mutC fs ms ->

(ok_meths ms /\ (forall fC, fields C fC -> ok_fields fC)/\

(forall Ci muti fi,

(In (fi, Ci <<muti>>) fs -> ok_type Ci <<muti>> CT /\

(muti = mutC \/ mutability_defined muti))) /\

(forall m T0 As e0 mutM, (In (mDecl m T0 mutM As e0) ms ->

(mDecl m T0 mutM As e0) OK_IN (C <<mutC>>) /\

(forall C0 mut0, T0 = C0 <<mut0>> ->

mut0 = mutC \/ mutability_defined mut0) /\

(ok_type T0 CT) /\

(forall xi Ci muti, In (xi,Ci <<muti>>) As ->

(muti = mutC \/ mutability_defined muti) /\

ok_type Ci <<muti>> CT)))).

Notation "’CLASS’ decl ’OK’" := (class_ok decl) (at level 0).

3.2. FIJ TYPE SYSTEM 49

H(ι) = new C<M>(v)

fields(C) = Cf

ι.fi|H −→ vi|H
(R-FIELD)

H(ι) = new C<M>(v)

fields(C) = Cf H′ = H[ι 7→ new C<M>(...,vi−1,v,vi+1, ...)]

ι.fi = v|H −→ v|H′
(R-ASSIGN)

H(ι) = new C<M>(...) mBody(m,C<M>) = (x;e)

ι.m(v)|H −→ [ι/this,v/x]e|H
(R-INVK)

ι /∈ dom(H) H′ = H, ι 7→ new C<M>(v)

new C<M>(v)|H −→ ι|H′
(R-NEW)

v; e|H −→ e|H
(R-SEQ)

Figure 3.10: FIJ Reduction Rules

3.2.6 FIJ Reduction

This section presents the reduction rules and their Coq encodings. FIJ re-
duction represents the evaluation of one FIJ expression-store pair to an-
other. The reduction rules are given in Figure 3.10. An expression e with
store H reduces to e′ with store H′ if e|H −→ e′|H′ holds. The core FIJ re-
ductions are given, but the context and null reduction rules are not given.
The FIJ context reduction rules, i.e. the reduction of subexpressions, are
straightforward, and so are not given. The null reduction rules involve
the reduction of field or method accesses on a null receiver, and result in
error. As with context reduction, null reduction is straightforward, and so
is not included. A field access ι.fi reduces to the corresponding value vi in
H(ι) (R-FIELD). A field assignment ι.fi = v with storeH reduces to v, and
replaces the value stored for fi inHwith v (R-ASSIGN). A method invoca-

50 CHAPTER 3. FEATHERWEIGHT IMMUTABLE JAVA

tion ι.m(e) reduces to the body e of the method m with the parameters and
the receiver substituted in for the appropriate variables (R-INVK). A new

expression new C<M>(v) reduces to ι if ι /∈ H where ι contains an object
of type C<I> with field values v and H is the store (R-NEW). A sequence
v; e with storeH reduces to e, andH remains unchanged (R-SEQ).

The following notation is used in Coq to represent expression reduc-
tion.

Reserved Notation "e1 ’/’ H1 ’-->’ e2 ’/’ H2"

(at level 40, H1 at level 39, e2 at level 39).

An expression e1 with store H1 reduces to an expression e2 with store H2
if e1 / H1 --> e2 / H2 holds.

The Coq encodings of the reduction rules are given separately here for
convenience, but form a single reduction rule in the encoding. The header
for the reduction predicate is given below. The reduction predicate is en-
coded as an Inductive definition, taking two expression-store pairs and
holds if the first reduces to the second.

Inductive reduction : exp * store -> exp * store -> Prop :=

R_Field encodes R-FIELD below. For a field access e field (e loc

i) f with store H, the object (C <<mutC>>,vs) at location i is retrieved
by store lookup i H. The value v is retrieved from vs, the list of field
values. The original field access reduces to v with an unchanged store.

| R_Field : forall C i H fs vs fv f v mutC,

store_lookup i H = (C <<mutC>>,vs) ->

fields C fs -> ok_fields fs ->

zipFlds fs vs fv -> In (f,v) fv ->

(e_field (e_loc i) f) / H --> v / H

R_Assign encodes R-ASSIGN below. A field assignment e assign

(e loc i) f v reduces to the value v. The object (C <<mutC>>,vs)

at location i is retrieved by store lookup i H. The index of the field f

in fs is identified by lookup index n fs. The nth value in vs is then

3.2. FIJ TYPE SYSTEM 51

replaced by v (replace n v vs). The new store is derived by replacing
the object at the original location with a new object of the same type, but
with the modified list of values replace i (C <<mutC>>,vs’) H.

| R_Assign : forall H H’ C i n fs vs vs’ fv v f T mutC,

store_lookup i H = (C <<mutC>>,vs) ->

value v -> fields C fs ->

ok_fields fs -> zipFlds fs vs fv ->

lookup_index n fs = Some (f, T) ->

vs’ = replace n v vs ->

H’ = replace i (C <<mutC>>,vs’) H ->

e_assign (e_loc i) f v / H --> v / H’

R_Invk encodes R-INVK below. For a method invocation e meth (e loc

i) m vs with store H to be reduced, the following prerequisites must
hold. i must point to an existing location in H containing an object (C
<<mutC>>,es). The parameters vs must be values (i.e. null expres-
sions or locations), and this is captured by values vs. values is not
given here, but is a predicate that holds for a list of expressions vs if all
expressions in vs are values. method C (mDecl m T0 mutM xs e)

retrieves the method parameter variables and body of m in C. We then
have to construct a substitution mapping that maps method parameter
variables to parameters. To do this, we use the SubstRelZip predicate.
SubstRelZip takes three parameters xs a list of variable-type pairs, vs
a list of expressions and R a list of variable-expression pairs (SubstRel),
and holds if xs zips together with vs to form R. Finally we can say that
e meth (e loc i) m vswith store H reduces to (subst ((this,e loc

i)::R)(subst mut exp mutC e)) with store H. We add the mapping
of this to e loc i on to the R we constructed. We also substitute any
mutability variable in e for mutC.

| R_Invk : forall H i C m xs vs e R es T0 mutC mutM,

store_lookup i H = (C <<mutC>>,es) ->

values vs -> SubstRelZip xs vs R ->

method C (mDecl m T0 mutM xs e) ->

52 CHAPTER 3. FEATHERWEIGHT IMMUTABLE JAVA

(e_meth (e_loc i) m vs) / H -->

(subst ((this,e_loc i)::R)

(subst_mut_exp mutC e)) / H

R_New encodes R-NEW below. Since a store is encoded as a list of
objects, new locations are appended to the end of the list. Therefore, the
new store is derived by appending a new object to the end of H (stSnoc
H (C <<mutC>>,vs)). The constructor parameters vs must be values
(values vs). The reduced expression is e loc i, where i is the final
position of the reduced store.

| R_New : forall H H’ i C vs mutC,

stLength H = i -> values vs ->

H’ = stSnoc H (C <<mutC>>,vs) ->

(e_new C mutC vs) / H --> (e_loc i) / H’

R_Seq encodes R-SEQ below. A sequence v ;; e reduces to e, with an
unchanged store H, if v is a value (value v).

| R_Seq : forall v e H, value v -> v ;; e / H --> e / H

3.3 FIJ Soundness

The statements of the FIJ soundness theorems, Preservation and Progress,
are given in this section. Before soundness can be proven, we need to de-
fine a mutual induction scheme for reduction and ListReduction, as
well as one for typing, subtyping and subtypings. Mutual induction
was introduced in Chapter 2, and it is tackled in the same way here. Below
is the mutual induction scheme for reduction.

Scheme reduction_reduction_ind :=

Minimality for reduction Sort Prop

with reduction_listreduction_ind :=

Minimality for ListReduction Sort Prop.

3.3. FIJ SOUNDNESS 53

Combined Scheme reduction_mutind from

reduction_reduction_ind, reduction_listreduction_ind.

First, induction for reduction and ListReduction is defined. Sec-
ondly, these two induction schemes are joined to form the combined scheme
reduction mutind Below is the mutual induction scheme for typing.

Scheme typing_typings_ind := Minimality for

typing Sort Prop

with typing_subtyping_ind := Minimality for

subtyping Sort Prop

with typing_subtypings_ind := Minimality for

subtypings Sort Prop.

Combined Scheme typings_mutind from

typing_typings_ind, typing_subtyping_ind,

typing_subtypings_ind.

This is defined in a similar way to reduction, except adding an extra
induction scheme for subtyping.

Preservation

Theorem 3.3.1 is the statement of the Preservation Theorem for FIJ. Loosely
it states that for an expression e that is well-typed with respect to some
type T, any reduction that does not result in an error (err) will be well-
typed too. A field access on a null receiver null.f may be well-typed, but
it reduces to err, which is not well-typed.

Theorem 3.3.1 (Preservation). If Γ,∆,` e : T , e|H −→ e′|H′ where e′ 6= err

andH is well-typed with respect to ∆ then ∃∆′,T′ s.t. ∆′ extends ∆, Γ,∆′ ` e′ :
T′ and T ′ <: T .

Below is the Coq encoding of Preservation. In order to be able to apply
the mutual induction scheme for reduction and ListReduction, the

54 CHAPTER 3. FEATHERWEIGHT IMMUTABLE JAVA

reduction notation e / H --> e’ / H’ defined earlier cannot be used.
This is because the mutual induction scheme we defined expects two pairs,
p and p’, not two expressions e and e’ and two stores H and H’. For
this reason, reduction is written below as reduction p p’, where p =
(e,H) and p’ = (e’,H’). Similarly, reduction of lists is written below as
ListReduction p p’, where p = (es,H) and p’ = (es’,H’) (es and
es’ being lists of expressions). Our premises are that the store H must be
well-typed with respect to the store typing Delta (store well typed

Delta H), the environment Gammamust be well-formed (env ok Gamma),
and e must be well-typed with respect to some type T. If this is the case,
then e’ must be well-typed and subtype T, with respect to some Delta’
that extends Delta, and H’ must be well-typed with respect to Delta’.
The mutual case for expression lists extends this for lists, ListReduction
instead of reduction and subtypings instead of typing.

Theorem Preservation :

(forall p p’, reduction p p’ ->

(forall Gamma Delta T e e’ H H’,

(e,H) = p -> (e’,H’) = p’ ->

e’ <> e_err ->

store_well_typed Delta H -> env_ok Gamma ->

typing Gamma Delta e T ->

(exists Delta’, ST_Extends Delta’ Delta ->

store_well_typed Delta’ H’ ->

subtyping Gamma Delta’ e’ T))) /\

(forall p p’, ListReduction p p’ ->

(forall Gamma Delta Ts es es’ H H’,

(es,H) = p -> (es’,H’) = p’ ->

∼ In e_err es’ ->

store_well_typed Delta H -> env_ok Gamma ->

subtypings Gamma Delta es Ts ->

(exists Delta’, ST_Extends Delta’ Delta ->

store_well_typed Delta’ H’ ->

subtypings Gamma Delta’ es’ Ts))).

3.3. FIJ SOUNDNESS 55

Progress

Theorem 3.3.2 is the statement of Progress for FIJ. Given a well typed ex-
pression e, either e is a value, or there exists e′ such that e reduces to
e′.

Theorem 3.3.2 (Progress). If Γ,∆ ` e : T, then either

(i) e is a value, or

(ii) ∀H s.t. H is well-typed with respect to ∆, ∃e′,H′ s.t. e|H −→ e′|H′

The Coq encoding of Progress is given below. Progress makes use of
the mutual induction scheme typings mutind defined at the beginning
of this Section. Mutual induction needs Progress to be proven for typing,
subtyping and subtypings at the same time, so the statement is bro-
ken up into three statements, joined by conjunctions. For a tying judg-
ment typing Gamma Delta e T, if the environment Gamma is empty
(Gamma = nil), then either e is a value (value e), or for all stores H that
are well-formed with respect to Delta, there exists e’ and H’ such that
e / H --> e’ / H’. This is extended to the cases for subtyping and
subtypings.

Theorem Progress :

(forall Gamma Delta e T,

typing Gamma Delta e T -> Gamma = nil ->

(value e \/ (forall H, store_well_typed Delta H ->

exists e’, exists H’, e / H --> e’ / H’))) /\

(forall Gamma Delta e T,

subtyping Gamma Delta e T -> Gamma = nil ->

(value e \/ (forall H, store_well_typed Delta H ->

exists e’, exists H’, e / H --> e’ / H’))) /\

(forall Gamma Delta es Ts,

subtypings Gamma Delta es Ts -> Gamma = nil ->

values es \/ (forall H, store_well_typed Delta H ->

exists es’, exists H’, ListReduction (es, H) (es’, H’)))).

56 CHAPTER 3. FEATHERWEIGHT IMMUTABLE JAVA

Immutability Guarantee

Theorem 3.3.3 gives the statement of the Immutability Guarantee of FIJ.
For any expression e that is well-typed, if e with store H reduces to e′

with store H′, then all locations in H that have immutable types will have
unchanged fields inH′.

Theorem 3.3.3. If e;H −→ e′;H′, Γ,∆ ` e : T , e′ 6= err, and H is well-
typed with respect to ∆ then ∀ι if ∆(ι) = C <imm>,H(ι) = (T, v) andH′(ι) =

(T ′, v′) then v = v′

Below is the Coq encoding of the Immutability Guarantee. As with
Preservation, the Immutability Guarantee makes use of the mutual induc-
tion scheme for reduction. The statement is a straightforward encoding
of Theorem 3.3.3.

(forall p p’, reduction p p’ ->

(forall e H e’ H’ Delta Gamma T,

(e, H) = p -> (e’,H’) = p’ ->

subtyping Gamma Delta e T ->

e’ <> e_err ->

store_well_typed Delta H ->

(forall i C T T’ vs vs’, i < stLength H ->

store_typing_lookup i Delta = C <<immutable>>->

store_lookup i H = (T, vs) ->

store_lookup i H’ = (T’, vs’) ->

vs = vs’))) /\

(forall p p’, ListReduction p p’ ->

(forall es H es’ H’ Delta Gamma Ts,

(es, H) = p -> (es’, H’) = p’ ->

subtypings Gamma Delta es Ts ->

∼ In e_err es’ ->

store_well_typed Delta H ->

(forall i C T T’ vs vs’, i < stLength H ->

store_typing_lookup i Delta = C<<immutable>>->

3.3. FIJ SOUNDNESS 57

store_lookup i H = (T, vs) ->

store_lookup i H’ = (T’, vs’) ->

vs = vs’))).

58 CHAPTER 3. FEATHERWEIGHT IMMUTABLE JAVA

Chapter 4

Featherweight Generic Java

In this Chapter, we present the Featherweight Generic Java (FGJ) type sys-
tem and its Coq encoding. Section 4.1 provides a brief introduction to FGJ
and an overview of the type system, Section 4.2 presents the type system
and its encoding, while Section 4.3 gives the an overview of the Soundness
proofs of FGJ.

4.1 FGJ

Featherweight Generic Java extends Featherweight Java with Generic Types
[6]. Generic types allow normal FJ classes to be written using types that are
only defined at runtime. We would like to parametrize types, and delay
defining those parameters until runtime in order to allow for code reuse in
structurally identical classes. An example would be a normal Pair class
that contains a pair of objects fst and snd. In different circumstances we
would want an instance of Pair to contain fields of different types. Pair
without generics is given below, along with two classes C and D.

1 class Pair extends Object{

2 Object fst, snd;

3 Pair(Object fst, Object snd){

59

60 CHAPTER 4. FEATHERWEIGHT GENERIC JAVA

4 this.fst = fst; this.snd = snd;

5 }

6 }

7 class C extends Object{C(){}}

8 class D extends Object{D(){}}

A Pair instance can be initialized with fields of any type, however once
initialized, those fields may only be treated as having type Object unless
we use a cast. To illustrate this, the Pair object p below is initialized using
fields of type C and D.

1 Pair p = new Pair(new C(), new D());

2 Object fst1 = p.fst; // type checks

3 C fst2 = (C) p.fst; // type checks

4 C fst3 = p.fst; // results in a type error

The field access p.fst has type Object, thus line 2 above type checks.
We know that the value stored in fst has type C since we just initialized
it, thus the cast on line 3 may be done and we can be sure it is safe. Line
4 however, does not type check since the type system cannot be sure that
p.fst has type C. This is inconvenient if we want to create a Pair with
elements of type C and D, and we do not want to lose that type information.
We could define a new class, say CDPair, that has fst and snd fields of
type C and D respectively.

1 class CDPair extends Object{

2 C fst; D snd;

3 Pair(C fst, D snd){

4 this.fst = fst; this.snd = snd;

5 }

6 }

CDPair allows us to initialize a pair with fields of type C and D without
losing any type information, however, this is not very efficient since both

4.2. FGJ TYPE SYSTEM 61

Pair and CDPair have the same structure. It is more efficient to define
one class that has fields of variable type that can be changed depending on
the need. Generics in Java allows classes to be parametrized with variable
types that are defined at runtime. Using generics, we can rewrite the Pair
class.

1 class Pair<X extends Object, Y extends Object>

2 extends Object{

3 X fst; Y snd;

4 Pair(X fst, Y snd){

5 this.fst = fst; this.snd = snd;}

6 }

Pair is now parametrized with X and Y. Both X and Y are bound by
Object, that is X and Y must both subtype Object. If we wanted to
create a Pair object with elements of type C and D as in CDPair, we can
make use of the new Pair class.

1 Pair <C,D> cd = new Pair<C,D>(new C(), new D());

4.2 FGJ Type System

4.2.1 FGJ Syntax

The syntax is shown in Figure 4.1. An expression (e) may be a null expres-
sion (null), a location (ι), a variable (x) an error (err), a field access (e.f),
a field assignment (e.f = e), a method invocation (e.m<T>(e)), a new ex-
pression (new N(e)) or a sequence (e; e). A value (v) is either null or
ι. A type (T) can be either a type variable (X) or a non-variable type (N).
A non-variable type is given by a class and list of types (C <T>). A class
declaration (L) is a class name, a list of type variables and their bounds, a
super type, a list of fields and their types, a constructor and a list of meth-
ods. A constructor (K) calls the constructor of the superclass and then as-

62 CHAPTER 4. FEATHERWEIGHT GENERIC JAVA

e ::= null | ι |x |err |new N(e) |e.f |e.f = e |e.m<T>(e) |e; e

v ::= null | ι
T ::= X |N
N ::= C<T>

L ::= class C<X / N> extends N{T f; K M}
K ::= N (T f){super(f); this.f = f}
M ::= T m<X / N> (T x){return e; }
Pr ::= L; e

Figure 4.1: FGJ Syntax

signs values to the appropriate fields. A method declaration (M) is a return
type, a list of generic type variables and their bounds, a method name, list
of expression parameters and their types, and a method body. A program
(Pr) is a list of class declarations and an expression.

The encoding for types is shown below. Types (T) and type lists (T)
are encoded mutually as ty and tys respectively. A type (ty) may be
constructed in one of two ways, Ty_Var (X in Figure 4.1) or Ty_Class (N
in Figure 4.1). A type variable Ty_Var X is constructed using the unique
identifier X of type var. var is defined, but not shown. An object of
var is just an identifier used to differentiate between variables. A non-
variable type Ty_Class C Ts is constructed with a class C (type class),
and a type list Ts, this corresponds to a type with class C and a generic
parameters Ts. class like var is merely a unique identifier, this time
for class names. A type list (tys) is constructed inductively as either an
empty list (empty) or a type concatenated with another type list (Tys).
Throughout the encoding (T ;; Ts) is the notation for a non-empty list
of types, where T is the head and Ts is the tail. The notation C <<Ts>>is
used for non-variable types, where C is the class, and Ts is the type list
representing the generic parameters.

Inductive ty : Set :=

| Ty_Var : var -> ty

| Ty_Class : class -> tys -> ty

4.2. FGJ TYPE SYSTEM 63

with tys : Set :=

| empty : tys

| Tys : ty -> tys -> tys.

Notation "T ’;;’ Ts" := (Tys T Ts)(at level 0).

Notation "C ’<<’ Ts ’>>’" := (Ty_Class C Ts)(at level 0).

Given that there already is a Coq list type as described in Section 2.2,
it may seem strange that a new list type tys was defined instead of sim-
ply using list ty. A large part of the FGJ encoding was devoted to the
encoding of type substitution. Type substitution makes use of a function
subst_ty defined in Section 4.2.2. Proving properties about both types
the substitution of types requires mutual induction of types and type lists.
This means that both types and type lists, and substitution and substi-
tution of lists have to be defined inductively. While this is an advantage
when mutually reasoning about both types and type lists, it does mean the
predefined functions for list can not be used for type lists. For this reason,
unless a case requires mutual induction, the Coq list type is used.

We often need to convert from a type list (tys) to a list of types (list
ty). The functions toList and toTys are used for this purpose. The
encodings are not given here as they are very simple functions. toList
converts an instance of tys an instance of list ty, while toTys con-
verts an instance of type list tys to one of type tys.

Below is the encoding for the expressions from Figure 4.1. These are
largely unchanged from the FIJ expressions in Section 3.2.1. Differences
can be seen in the e_meth and e_new expressions that both require a type
parameter list as input of type list ty in the case of e_meth, and tys

for e_new.

Inductive exp : Type :=

| e_null : exp

64 CHAPTER 4. FEATHERWEIGHT GENERIC JAVA

| e_loc : nat -> exp

| e_var : var -> exp

| e_err : exp

| e_new : class -> tys -> list exp -> exp

| e_field : exp -> field -> exp

| e_assign : exp -> field -> exp -> exp

| e_meth : exp -> meth -> list ty -> list exp -> exp

| e_seq : exp -> exp -> exp.

Values are encoded below as an inductively defined predicate. value e

implies that expression e is a value. v_null provides the rule for null
expressions (e_null) to be values, and v_loc for locations (e_loc n).

Inductive value : exp -> Prop :=

| v_null : value e_null

| v_loc : forall n, value (e_loc n).

4.2.2 FGJ Substitution

The addition of generic types to FJ [6] creates several complications for the
encoding, the most obvious being the substitution of type parameters that
have to be done for every type and method invocation. In this section, the
encoding of type substitution in FGJ is given. Expression substitution is
unchanged from that of FIJ in Section 3.2.2.

Substitution of types is similar to that of expressions, and substitutes a
variable-type mapping into a type. We define variable-type mappings as
environments (env) below as a list of variable-type pairs (list (var *
ty)).

Notation env := (list (var * ty)).

subst_ty below takes an environment (E) and a type (T), and returns a
type with all the variables in the type substituted for relevant mapping in
E. For a type variable Ty_Var x, E is searched (using the function get

4.2. FGJ TYPE SYSTEM 65

as in Section 3.2.2) for a mapping (x,N), returning N if one is found,
and Ty_Var x otherwise. In the case of a non-variable type C <<Ts>>,
subst_ty recursively performs the substitution on Ts using the mutually
defined function subst_tys. subst_tys is the substitution function de-
fined for type lists (of type tys). subst_tys takes an environment E and
a type list Ts, and returns a type list with the variables in the environment
substituted for their mappings. Substitution into empty type lists returns
empty. Substitution into non-empty type lists substitutes the environment
into the head, and then recursively applies the substitution into the tail.

Function subst_ty (E : env) (T : ty) {struct T} : ty :=

match T with

| Ty_Var x => match get x E with

| None => T

| Some N => N

end

| Ty_Class C Ts => Ty_Class C (subst_tys E Ts)

end

with subst_tys (E : env) (Ts : tys) {struct Ts} : tys :=

match Ts with

| empty => empty

| T;;Ts’ => (subst_ty E T);;(subst_tys E Ts’)

end.

Another function, subst_pair, is not shown here but is used often to ap-
ply type substitution to a pair where the second element is a type. subst_
pair R (x,T) simply returns (x,subst_ty R T). The notations [R]
T and [:R:] P below are used instead of subst_ty R T and subst_pair
R P respectively, throughout the encoding for simplification.

Notation "’[’ R ’]’ T" := (subst_ty R T)(at level 0).

Notation "’[:’ R ’:]’" := (subst_pair R)(at level 0).

66 CHAPTER 4. FEATHERWEIGHT GENERIC JAVA

boundE(X) = E(X) boundE(N) = N

Figure 4.2: FGJ Bound Function

4.2.3 FGJ Functions

The bound function in Figure 4.2 is used to determine the bound of a type
for a given environment. When checking the well-formedness of expres-
sions and types when some types may be variables, we need to be able to
determine the upper bound of a type. The bound of a type variable is used
when type checking field or method call receivers. For a type variable X
and an environment E, boundE(X) = E(X). Since we will always be work-
ing with well-formed types and expressions, there will never be a case
where X is not in E. Well-formedness of types and expressions are found
in Sections 4.2.4 and 4.2.5 respectively. For a non-variable type C<T> and
an environment E, bound(C<T>) = C<T>. The encoding for the bound func-
tion (bound) is given below as an inductive predicate on an environment
and two types. The predicate holds if the second type is the bound of the
first in the supplied environment. B Var and B Class provide the two
cases.

Inductive bound : env -> ty -> ty -> Prop :=

| B_Var : forall E x T,

E maps x to T ->

bound E (Ty_Var x) T

| B_Class : forall E C Ts,

bound E C <<Ts>> C<<Ts>>.

The field lookup functions are given in Figure 4.3. The function fields
takes a type as input, and returns a list of fields and their respective types.
fType takes a field name and a type and returns the field’s type. The Coq
encoding of these rules is shown below. fields and fType encode fields
and fType respectively. fields takes a type T and a list of field-type pairs

4.2. FGJ TYPE SYSTEM 67

fields(Object<>) = ∅
(F-OBJ)

class C<X / N> extends N{S f; K M}

fields(C<T>) = [T/X]Sf ∪ fields([T/X]N)
(F-CLASS)

T f ∈ fields(C<T>)

fType(f,C<T>) = T

Figure 4.3: FGJ Field Lookup Function

fs as inputs, and holds if fs is the list of fields defined for type T. F_Obj
and F_Class provide the encodings for F-OBJ and F-CLASS respectively.
fields holds for a type Object <<empty>> and an empty list of fields
(F_Obj). fields C <<Ts>> (concat (map [:R:] Cf) Df) holds
if C is in the class table CT, Cf is the list fields declared in C and Df is the
list of fields defined for the super type [R] N. R is the substitution map
created by zipping the type parameters Ts and the type variables Xs. R
is then substituted into the class field list (map [:R:] Cf) and the super
type ([R] N).

Inductive fields : ty -> flds -> Prop :=

| F_Obj : fields Object <<empty>> nil

| F_Class : forall C Cf Df ms Xs N Ts R,

In (cDecl C Xs N Cf ms) CT ->

zip Xs (toList Ts) R ->

fields ([R] N) Df ->

fields C <<Ts>> (concat (map [:R:] Cf) Df).

The fType predicate below encodes fType. fType T fi Ti holds if there
exists a list of field-type pairs fs for type T, and (fi,Ti) is in fs.

Definition fType (T : ty)

(fi : field) (Ti : ty) : Prop :=

exists fs, fields T fs /\ In (fi,Ti) fs.

The main difference between the method lookup functions given here
in Figures 4.4 and 4.5 and those in the original FGJ type system [6], is the

68 CHAPTER 4. FEATHERWEIGHT GENERIC JAVA

order in which the type substitutions are made in mType and mBody. In the
original FGJ type system, the substitution of the generic type parameters
for the method was applied after retrieval of the method type and body,
while the generic type parameters of the class were substituted during
retrieval. This is not possible to do during the Coq encoding of mType and
mBody, and so the method retrieval functions were changed to reflect the
encoding.

Given a class declaration class C<X / N> extends N{T f; M}, a
method declaration T0 m<Y / P> (x){return e0; } ∈ M, and a method call
e.m<V>(e), where e has type C<T>, we have two substitutions that need
to be applied; [T/X] and [V/Y]. These substitutions can be applied to a type
T in one of two ways; (i) concurrently as [T/X,V/Y]T, or (ii) consecutively
as [T/X][V/Y]T. These two substitutions are not necessarily equal, in fact
[T/X,V/Y]T = [T/X][V/Y]T ⇐⇒ V∩X = ∅. We cannot ensure that V∩X = ∅,
since X is declared within the class declaration and V is determined exter-
nally in some method call. For this reason, in order to ensure the sub-
stitution of type variables during method retrieval is done correctly, type
substitution must be done concurrently. On paper the difference between
these two is not addressed since the intent is clear, but Coq forces us to take
these differences into account. In the original FGJ type system [6], these
substitutions are applied consecutively. To apply them concurrently, they
must both be applied either during or after method retrieval. In order to
minimize the places type substitution needs to be applied, we decided to
encapsulate the type substitution of methods within the method retrieval
functions mType and mBody(see Figures 4.4 and 4.5).

Figure 4.4 gives the mType function. mType(m<V>,C<T>) retrieves the
type of method m for a receiver of type C<T> and generic type parameters
m<V>. MT-CLASS returns the type of a method call where the method is
declared in the class declaration of the receiver. MT-SUPER returns the
type of a method where the method is inherited from the super type of the
receiver.

4.2. FGJ TYPE SYSTEM 69

class C<X / N> extends N{S f; K M}
T0 m<Y / P> (U x){return e; } ∈ M

mType(m<V>,C<T>) = [T/X,V/Y](<Y / P>U→ T0)
(MT-CLASS)

class C<X / N> extends N{S f; K M}
∀T0, Y, P, U, x, e : T0 m<Y / P> (U x){return e; } /∈ M

mType(m<V>,C<T>) = mType(m<V>, [T/X]N)
(MT-SUPER)

Figure 4.4: FGJ Method Type Lookup Function

Below is the encoding of the mtype function. MT_Class and MT_Super
correspond to MT-CLASS and MT-SUPER respectively in Figure 4.4. mtype
m T Vs (YP,xs,T0) holds if (YP,xs,T0) is the type of method call
m with generic type parameters Vs on a receiver of type T, where YP is
generic type environment of m, xs the expression environment and T0 is
the return type of m.

Inductive mtype : meth -> ty -> list ty ->

env * env * ty -> Prop :=

| MT_Class : forall C Xs N fs ms m YP T0 xs

e0 ZQ ys U0 Ts R1 R2 R Vs,

In (cDecl C Xs N fs ms) CT ->

In (mDecl m YP T0 xs e0) ms ->

zip Xs (toList Ts) R1 ->

zip YP Vs R2 ->

R = concat R1 R2 ->

(ZQ,ys,U0) =

(map [:R:] YP, map [:R:] xs, [R] T0) ->

mtype m C <<Ts>> Vs (ZQ,ys,U0)

| MT_Super : forall C Xs N fs ms m YP T0 xs Ts R Vs,

In (cDecl C Xs N fs ms) CT ->

(forall ZQ U0 ys e,

70 CHAPTER 4. FEATHERWEIGHT GENERIC JAVA

class C<X / N> extends N{S f; K M}
T0 m<Y / P> (U x){return e; } ∈ M

mBody(m<V>,C<T>) = (x, [T/X,V/Y]e)
(MB-CLASS)

class C<X / N> extends N{S f; K M}
∀T0, Y, P, U, x, e : T0 m<Y / P> (U x){return e; } /∈ M

mBody(m<V>,C<T>) = mBody(m<V>, [T/X]N)
(MB-SUPER)

Figure 4.5: FGJ Method Body Lookup Function

∼ In (mDecl m ZQ U0 ys e) ms) ->

zip Xs (toList Ts) R ->

mtype m ([R] N) Vs (YP, xs, T0) ->

mtype m C <<Ts>> Vs (YP, xs, T0).

Figure 4.5 shows the FGJ method body retrieval function. As with
mType, the substitution of the method and class type variables is done dur-
ing method retrieval. MB-CLASS retrieves the body of a method declared
in the class of the receiver. MB-SUPER retrieves the body of a method in-
herited from the receiver’s super type.

Below is the encoding for mBody; mbody. mbody m Vs T (xs,e)

holds if (xs,e) is the body of of method call m with generic parameters
Vs on a receiver of type T, where xs is the parameter list of m, and e is the
body. mbody, as with mtype, is inductively defined, and has two cases,
MB_Class corresponding to MB-CLASS and MB_Super corresponding to
MB-SUPER.

Inductive mbody : meth -> list ty -> ty ->

env * exp -> Prop :=

| MB_Class : forall C Xs N fs ms m YP T0 xs

e0 ys e1 Ts Vs R1 R2 R,

In (cDecl C Xs N fs ms) CT ->

4.2. FGJ TYPE SYSTEM 71

mType(m<Y>,N) = <Z / Q>U→ U0 ⇒
(P = Q T = U Y / P ` T0 <: U0)

override(m,N,<Y / P>T→ T0)

Figure 4.6: FGJ Override Function

In (mDecl m YP T0 xs e0) ms ->

zip Xs (toList Ts) R1 ->

zip YP Vs R2 ->

R = concat R1 R2 ->

(ys,e1) = (map [:R:] xs, subst_exp R e0) ->

mbody m Vs C <<Ts>> (ys, e1)

| MB_Super : forall C Xs N fs ms m xs e0 Ts Vs R,

In (cDecl C Xs N fs ms) CT ->

(forall ZQ U0 ys e,

∼ In (mDecl m ZQ U0 ys e) ms) ->

zip Xs (toList Ts) R ->

mbody m Vs ([R] N) (xs,e0) ->

mbody m Vs C <<Ts>> (xs,e0).

Figure 4.6 shows the FGJ override function. override(m,N,<Y / P>T→
T0) holds if method m with type <Y /P>T→ T0 overrides m in type N. That
is, if m<Y> has type <Z / Q>U→ U0 for a receiver type N, then P = Q, T = U

and T0 subtypes U0. The Coq encoding of override is given below.

Definition override (m : meth)(N : ty)(YP : env)

(Ts : list ty)(T0 : ty) : Prop :=

meth_def m N ->

exists ZQ ys U0,

mtype m N (toVars (dom YP)) (ZQ,ys,U0) /\

(range YP = range ZQ /\

Ts = range ys /\

subtype YP T0 U0).

72 CHAPTER 4. FEATHERWEIGHT GENERIC JAVA

E ` T <: T (S-REFL)
E ` S <: T E ` T <: U

E ` S <: U
(S-TRANS)

E ` X <: E(X) (S-VAR)
class C<X / N> extends N{S f; M}

E ` C<T> <: [X/T]N
(S-EXTEND)

Figure 4.7: FGJ Subtyping Rules

override m N YP Ts T0 holds if a method with generic type environ-
ment YP, parameter type Ts and return type T0 overrides m in type N.
There is a difference between the encoded override function, and over-
ride from Figure 4.6. The predicate meth_def is defined, but not shown.
meth_def m N holds if method m is defined for type N, i.e. if m is a valid
method call on a receiver type N. meth_def is used instead of mtype (as
in Figure 4.6) due to a peculiarity in the encoding. The override function
uses a logical implication since we want to say, if a method is defined for a
super class, then the type of the method in the subclass conforms to some
restrictions. In the encoding it is possible for a method m to be defined
for a type N, but for mtype m N ... not to hold. This is because the
mtype predicate includes a premise zip YP Vs R2, which requires that
the method type parameters YP and the method call type parameters Vs
have the same cardinality. This means that you could define a method in
a subclass with the same name as that in a super class but with a different
number of type parameters, and the mtype m N ... premise would not
hold, which would imply mtype m N ...⇒ P would hold for all P . To
get around this, we use meth_def instead of mtype.

4.2.4 FGJ Subtyping and Well-Formedness

The FGJ subtyping rules are given in Figure 4.7, and the Coq encoding is
given below. The subtype rules are the same as those in FJ [6], except for

4.2. FGJ TYPE SYSTEM 73

E ` Object<> : ok (WF-OBJECT)
X ∈ E(X)

E ` X : ok
(WF-VAR)

class C<X / N> extends N{S f; M}
E ` T : ok E ` [X/T]N : ok E ` T <: [X/T]N

E ` C<T> : ok
(WF-CLASS)

Figure 4.8: FGJ Type Well-Formedness

the addition of the S-VAR type rule. A type variable X subtypes N in E, if
E(X) = N. The encoding of the subtype judgment is also very similar to the
encoded FIJ subtype judgment, but now takes an environment E as input
along with the types S and T. subtype E S T holds if S is a subtype of
T in environment E. S_Var corresponds to S-VAR.

Inductive subtype : env -> ty -> ty -> Prop :=

| S_Refl : forall E T,

subtype E T T

| S_Trans : forall E S T U,

subtype E S T ->

subtype E T U ->

subtype E S U

| S_Var : forall E x N,

E maps x to N ->

subtype E (Ty_Var x) N

| S_Class : forall E C Xs N fs ms Ts Rs,

In (cDecl C Xs N fs ms) CT ->

zip Xs (toList Ts) Rs ->

subtype E (C <<Ts>>) ([Rs] N).

Figure 4.8 provides the well-formedness rules for FGJ, and the encod-
ing is found below as WF_ty. The predicate WF_tys is encoded along
with WF_ty as a well-formedness predicate for type lists. WF_ty takes

74 CHAPTER 4. FEATHERWEIGHT GENERIC JAVA

three inputs; an environment, a type and a class table. WF_ty E T CTbl

holds if type T is a well-formed type with respect to environment E and
class table CTbl. WF tys E Ts CTbl holds if type list Ts is well-formed
with respect to environment E and class table CTbl. WF_ty is the only
place a ClassTable is used as a parameter. This is something that was
tried in a previous encoding, was found to not be useful, and is not passed
as an input in any other predicate. In later encodings it may be useful to
remove CTbl as a parameter to WF_ty altogether, but for now it is just
a relic of an older encoding. In practice, the ClassTable parameter is
always replaced with the generic ClassTable instance CT discussed in
Chapter 3.2.1.

The predicate WF_ty has three cases, each corresponding to a rule in
Figure 4.8. WF_Obj encodes WF-OBJECT, and specifies that a type, of class
Object, is well-formed if the generic parameters list is empty. WF_Var

encodes WF-VAR. A type variable X is well-formed in environment E if
there exists T such that E maps X to T (in other words, if X is in the do-
main of E). WF_Class encodes WF-CLASS. A non-variable type C<<Ts>>
is well-formed for an environment E and a class table CTbl if the follow-
ing holds: C is defined in CTbl ((cDecl C Xs N fs ms)), the substi-
tution R can be constructed from generic parameters Ts and the generic
class parameters Xs (zip Xs (toList Ts) R), Ts is well-formed with
respect to E (WF_tys E Ts CTbl), Ts subtypes the generic type parame-
ter bounds of class C (subtypes E (toList Ts) (map [R] (range

Xs))), and super type [R] N must also be well-formed with respect to E.

The predicate WF_tys is not given, but recursively performs wellformed-
ness checks on a type list (tys). WF_tys E Ts CTbl holds if all types in
Ts are well-formed with respect to E and CTbl.

Inductive WF_ty : env -> ty -> ClassTable-> Prop :=

| WF_Obj : forall E CTbl,

WF_ty E Object <<empty>> CTbl

| WF_Var : forall E x CTbl,

4.2. FGJ TYPE SYSTEM 75

E ` N : ok fields(N) = T f E; Γ; ∆ ` e : S E ` S <: T

E; Γ; ∆ ` new N(e) : N
(T-NEW)

E; Γ; ∆ ` e0 : T0 fType(f, boundE(T0)) = T

E; Γ; ∆ ` e0.f : T
(T-FIELD)

E; Γ; ∆ ` e0 : T0

E; Γ; ∆ ` e : T fType(f, boundE(T0)) = S E ` T <: S

E; Γ; ∆ ` e0.f = e : T
(T-ASSIGN)

E; Γ; ∆ ` e0 : T0 E ` V : ok E; Γ; ∆ ` e : T E ` T <: U

E ` V <: P mType(m<V>, boundE(T0)) = <Y / P>U→ T

E; Γ; ∆ ` e0.m<V>(e) : T
(T-INVK)

Figure 4.9: FGJ Expression Typing Rules

(exists T, E maps x to T) ->

WF_ty E (Ty_Var x) CTbl

| WF_Class : forall E C Xs N fs ms CTbl Ts R,

In (cDecl C Xs N fs ms) CTbl ->

zip Xs (toList Ts) R ->

WF_tys E Ts CTbl ->

subtypes E (toList Ts) (map [R](range Xs)) ->

WF_ty E ([R] N) CTbl ->

WF_ty E (C <<Ts>>) CTbl.

4.2.5 FGJ Expression Typing

The FGJ expression typing rules are given in Figure 4.9. An expression
e is said to be well-typed with respect to type T, type environment E,
environment Γ and store typing ∆ if E; Γ; ∆ ` e : T holds. Typing for
null expressions (T-NULL), variables (T-VAR), locations (T-LOC) and se-
quences (T-SEQ) are unchanged from Chapter 3, and so are omitted. A

76 CHAPTER 4. FEATHERWEIGHT GENERIC JAVA

new expression new N(e) has type N in E, Γ and ∆ if N is well-formed in
E, Γ and ∆, and the types of e subtype the field types T of N. A field access
e0.f has type T in E, Γ and ∆ if e0 has type T0, and the field type of f for
the bound of T0 inE has type T (T-FIELD). A field assignment e0.f = e has
type T in E, Γ and ∆ if e0 has type T0, the type of e subtypes the field type
of f for the bound of T0 in E (T-ASSIGN). A method invocation e.m<V>(e)

has type T in E, Γ and ∆ if e0 has type T0, method m has return type T for
the bound of T0, the generic type parameters V are well-formed and sub-
type the generic type parameter bounds of m and the types of e subtype
the parameter types of m (T-INVK).

The encodings of the type rules are given next. typing E Gamma

Delta e T holds if expression e has type T with respect to type envi-
ronment E, environment Gamma and store typing Delta. Apart from the
addition of the type environment E, the rules for null (T-NULL), vari-
ables (T-VAR), locations (T-LOC) and sequences (T-SEQ) are unchanged
from Chapter 3, and so are omitted. Descriptions for the subtyping and
subtypings rules can also be found in Chapter 3.

T_New below encodes T-NEW. An expression e_new C Ts es has
type C <<Ts>> if the parameters es are well-typed with respect to the
field types of C <<Ts>>. In other words, if fs is the list of field-type
pairs associated with type C <<Ts>>; then the types of es must sub-
type range fs (subtypings E Gamma Delta es (range fs)). C

<<Ts>> must also be a well-formed type (WF_ty E (C <<Ts>>) CT).

Inductive typing : env -> env ->

store_typing -> exp -> ty -> Prop :=

| T_New : forall E Gamma Delta C es fs Us Ts,

fields C <<Ts>> fs ->

subtypings E Gamma Delta es (range fs) ->

WF_ty E (C <<Ts>>) CT ->

typing E Gamma Delta (e_new C Ts es) C <<Ts>>

T_Field below, encodes T-FIELD. T_Field checks that the receiver’s

4.2. FGJ TYPE SYSTEM 77

type T0 has a bound (N0) in type environment E, and that field f has type
T for a receiver type T0’ (ftype N0 f T).

| T_Field : forall E Gamma Delta e0 T0 T0’ f T,

typing E Gamma Delta e0 T0 ->

bound E T0 N0 ->

ftype N0 f T ->

typing E Gamma Delta (e_field e0 f) T

T-ASSIGN is encoded below by T_Assign. This features the same prereq-
uisites as T_Field, except the requirement that the assigned expression e

is well-typed, and subtypes the field type Ti.

| T_Assign : forall E Gamma Delta e0 fi Ti e T T0 N0,

typing E Gamma Delta e0 T0 ->

typing E Gamma Delta e T ->

bound E T0 N0 ->

fType N0 fi Ti ->

subtype E T Ti ->

typing E Gamma Delta (e_assign e0 fi e) T

T_Invk encodes T-INVK. A method invocation e_meth e0 m Vs es

has type T if the receiver e0 has type T0, and method m with type param-
eters Vs has type (YP,xs,T) in type N, where N is the bound of T0 in
type environment E. Since the substitution of type parameters is handled
by mtype, no substitution is needed here. Therefore, Vs must subtype
the range of YP (subtypes E Vs (range YP)), i.e. the generic type
bounds of m. The expression parameters es must subtype range xs,
or the expression parameter types (subtypings E Gamma Delta es

(range xs)).

| T_Invk : forall E Gamma Delta e0 T0 N es YP T m xs Vs,

typing E Gamma Delta e0 T0 ->

bound E T0 N ->

(forall V, In V Vs -> WF_ty E V CT) ->

mtype m N Vs (YP,xs,T) ->

78 CHAPTER 4. FEATHERWEIGHT GENERIC JAVA

∀X, : ∃N, N = E(X) ∧ E ` N : ok

E ok
(T-TYPE-ENV)

∀x, : E ` Γ(x) : ok

E ` Γ : ok
(T-ENV)

Figure 4.10: FGJ Method and Class Typing Rules

subtypes E Vs (range YP) ->

subtypings E Gamma Delta es (range xs) ->

typing E Gamma Delta (e_meth e0 m Vs es) T

The well-formedness of environments is given in Figure 4.10. A type
environment E is well-formed if the range of E is well-formed with respect
to E, and contains only non-variable types (T-TYPE-ENV). An environ-
ment Γ is well-formed with respect to a type environment E if the range
of Γ is well-formed with respect to E. The encodings of T-TYPE-ENV and
T-ENV are given below.

Definition WF_type_env (E : env) (CTbl : ClassTable):Prop :=

(ok E) /\ (forall x N, E maps x to N ->

(nonvar_type N /\ WF_ty E N CTbl)).

Definition WF_env (E G : env): Prop :=

(ok G) /\ (forall x T, In (x,T) G -> WF_ty E T CT).

WF_type_env encodes T-TYPE-ENV and WF_env encodes T-ENV. Both
WF_type_env and WF_env make use of the ok predicate. ok E holds for
a list of A-B pairs E, where A and B are generic Coq types, if each element
of the domain of E is unique. Since ok works for any Coq types A and B,
we can use it for any list of Coq pairs. Thus, for a type environment E, ok
E ensures that E is a function. Similarly, ok G ensures that environment G
is a function. E and Γ in Figure 4.10 are assumed to be functions, and so

4.2. FGJ TYPE SYSTEM 79

class C<X / N> extends N{...} E = X / N,Y / P

E;this : C<X>,x : T; ∅ ` e : S E ` T : ok E ` P : ok

E ` T : ok E ` S <: T override(m,N,<Y / P>T→ T)

T m<Y / P> (T x){return e; } OK IN C<X / N>
(T-METH)

S ∩ fields(N) = ∅ X / N ` S : ok

X / N ` N : ok ∀M ∈ M, : M OK IN C<X / N>

class C<X / N> extends N{S f; M} OK
(T-CLASS)

Figure 4.11: FGJ Method and Class Typing Rules

a premise equivalent to ok is not needed. Other than ok, WF_type_env
and WF_env are direct encodings of the rules in Figure 4.10.

The FGJ method and class declaration typing rules are given in Figure
4.11. The judgment T m<Y / P> (T x){return e; } OK IN C<X / N> holds
if method declaration T m<Y / P> (T x){return e; } is well formed in
class C with class type environment X / N (T-METH). The return type, T,
the expression parameter types T and the generic type parameter bounds
P must be well-typed with respect to the generic class (X / N) and method
parameters (Y / P). The type of method body e must subtype the return
type. Further, if C<X> extends some type N, then the method must override
any method by the same name in N.

The judgment class C<X / N> extends N{T f; M} OK holds if the
class declaration class C<X / N> extends N{T f; M} is well formed (T-
CLASS). Since field overriding is not allowed, the intersection between the
declared fields and the fields of the super type must be empty. The super
type and the field types S must be well-formed with respect to the generic
type parameters.

meth ok below, encodes T-METH. It is encoded as an Inductive

predicate instead of as a Definition, as in previous encodings, to make

80 CHAPTER 4. FEATHERWEIGHT GENERIC JAVA

it easier break up the predicate into its premises during proofs. meth ok

decl C XN holds if method declaration decl is well-typed in class Cwith
respect to type environment XN. The types within the decl must be well-
formed with respect to the class type environment XN and the method type
environment. These are concatenated to form E (E = concat XN YP),
which must be well-formed (WF type env E CT). The environment G =

((this, C <<toTys (toVars (dom XN))>>)::xs) is constructed
from the method environment xs appended with (this, C <<toTys

(toVars (dom XN))>>), i.e. this has type C <<toTys (toVars (dom

XN))>>, where toTys (toVars (dom XN)) is the domain of XN, and
corresponds to X in T-METH. Gmust be well formed. The method body e0
must be well-typed with respect to the return type T0, or some subtype of
T0 (subtyping E ((this,C<<toTys (toVars (dom XN))>>)::xs)

nil e0 T0). The method signature, YP (range xs) T0, must match
that of any method defined for the super type D <<Ys>> (override m

D <<Ys>> YP (range xs) T0).

Inductive meth_ok : MethDecl -> class ->

list (var * ty) -> Prop :=

| GT_Method : forall decl C N XN m YP T0 xs e0 E G fs ms,

In (cDecl C XN N fs ms) CT ->

decl = mDecl m YP T0 xs e0 ->

E = concat XN YP ->

G = ((this, C <<toTys (toVars (dom XN))>>)::xs) ->

WF_type_env E CT -> WF_env E G -> WF_ty E T0 CT ->

subtyping E G nil e0 T0 ->

override m N YP (range xs) T0 ->

meth_ok decl C XN.

Below is the encoding of T-CLASS, class ok. class ok decl holds if
decl is well-formed in the class table CT. For a class declaration (cDecl C

XN Ys fs ms) to be well-formed, the type environment XN must be well-
formed (WF type env XN CT), and all types used in the declaration must
be well-formed with respect to XN. That is, the super type N (WF ty XN N

4.2. FGJ TYPE SYSTEM 81

CT) and all field types (forall Ti fi, In (fi, Ti) fs -> WF ty

XN Ti CT). There must be no duplicate field or method names (ok fC

and ok meths ms). Lastly, all method declarations must be well formed
for class C and type environment XN (M OK IN C XN)).

Inductive class_ok : ClassDecl -> Prop :=

|GT_Class :

forall C XN N ms fs decl, decl = cDecl C XN N fs ms ->

WF_type_env XN CT -> WF_ty XN N CT ->

nonvar_type N -> ok_meths ms ->

(forall Ts fC, fields C <<Ts>> fC -> ok fC) ->

(forall Ti fi, In (fi, Ti) fs -> WF_ty XN Ti CT) ->

(forall M, (In M ms -> M OK_IN C XN)) ->

class_ok decl.

4.2.6 FGJ Reduction

The FGJ reduction rules are shown in Figure 4.12. The congruency reduc-
tion rules are not given, and are the usual congruency rules as in Chapter
2.1.5. Expression reduction takes place in the context of a store. e;H −→
e’;H′ asserts that an expression e with a store H reduces to e’ with a
store H′. A new expression, new N(v) with store H, reduces to some lo-
cation ι with H′ where ι is not in the domain of H and H′ is the store
derived by adding ι to H (R-NEW). A field access ι.fi reduces to the field
value vi stored in H(ι) (R-FIELD). A field assignment ι.fj = v with store
H, reduces to v with store H′, where H′ is the store derived from replac-
ing the field value of f in H(ι) with v (R-ASSIGN). A method invocation
ι.m<V>(e) with store H reduces to [ι/this,v/x]e with store H, where x
are the parameters of m (R-INVK). A sequence v; e with store H reduces
to e with store H (R-SEQ). As with FIJ in Chapter 3 the congruency (the
reduction of sub-expressions) and null (the reduction of field or method
calls on null receivers) reduction rules are omitted.

82 CHAPTER 4. FEATHERWEIGHT GENERIC JAVA

ι /∈ dom(H) H′ = H, ι 7→ new N(v)

new N(v)|H −→ ι|H′
(R-NEW)

H(ι) = new N(v) fields(N) = T f

ι.fi|H −→ vi|H′
(R-FIELD)

fields(N) = T f

H(ι) = new N(v) H′ = H[ι 7→ new N(...,vj−1,v,vj+1, ...)]

ι.fj = v|H −→ v|H′
(R-ASSIGN)

H(ι) = new N(...) mBody(m<V>,N) = (x;e)

ι.m<V>(v)|H −→ [ι/this,v/x]e|H
(R-INVK)

v; e|H −→ e|H
(R-SEQ)

Figure 4.12: FGJ Reduction Rules

The encodings of the reduction rules are shown next. They are split up
here for convenience, but, along with the reduction rules for congruence,
make up a single predicate in the encoding. The notation for a reduction,
e / H --> e’ / H’, is interpreted as expression e with store H reduces
to expression e’ with store H’

R New encodes R-NEW below. A new expression e new C Ts vswith
store H reduces to e loc i with store H’. The constructor parameters vs
must be values (values vs). The list of field value pairs fv is constructed
by zipping fs and vs together (zip fs vs fv), where fs is the list of
fields associated with type C <<Ts>> (fields (C <<Ts>>) fs). H’ is
constructed by appending (C<<Ts>>,fv) to the end of H. In R-NEW, ι
must not be in the domain ofH. In the Coq encoding R New, H (represent-
ing H) is a list, that means new locations must be appended to the end of
H. This is done by letting the position i of the new location be the length
of H (leng H = i). The location e loc i now points to the ith position

4.2. FGJ TYPE SYSTEM 83

of H’, and is the reduced expression.

Inductive reduction : exp * store -> exp * store -> Prop :=

| R_New : forall H H’ i C vs fs fv Ts,

leng H = i ->

values vs ->

fields (C <<Ts>>) fs ->

zip fs vs fv ->

H’ = stSnoc H (C <<Ts>>, fv) ->

(e_new C Ts vs) / H --> (e_loc i) / H’

R Field encodes R-FIELD below. For a field access e field (e loc i)

f with store H, the location in H at position i is retrieved (lookup i H =

Some (N,vs)). In this instance, N is the type, and vs is the list of field-
value pairs, representing the field values. The value v corresponding to f
is then retrieved from vs (vs maps f to v).

| R_Field : forall N i H vs f v,

lookup i H = Some (N,vs) ->

vs maps f to v ->

(e_field (e_loc i) f) / H --> v / H

R Assign encodes R-ASSIGN below. A field assignment e assign (e loc

i) f v with store H reduces to v with store H’. v is a value (value
v). Location i is retrieved from store H (lookup i H = Some (N,vs)),
and the index (j) of f in vs is found (lookup j vs = Some (f, e)).
H’ is constructed by replacing the object at i in Hwith a new object (N,vs’)
(H’ = replace i (N,vs’) H). vs’ is constructed by replacing the field-
value pair in vs at position j with (f,v) (vs’ = replace j (f, v)

vs).

| R_Assign : forall H H’ N i j e vs vs’ v f,

lookup i H = Some (N,vs) ->

value v ->

lookup j vs = Some (f, e) ->

vs’ = replace j (f, v) vs ->

84 CHAPTER 4. FEATHERWEIGHT GENERIC JAVA

H’ = replace i (N,vs’) H ->

e_assign (e_loc i) f v / H --> v / H’

R Invk encodes R-INVK below. A method invocation e meth (e loc

i) m Vs vs with store H reduces to (subst ((this,e loc i)::R)

e) with store H. vs must be values (values vs). The object at location i

is retrieved, and the method body (xs, e) for the object’s type N is re-
trieved (mbody m Vs N (xs, e)). zip xs vs R constructs the sub-
stitution function R by zipping the the method environment xs and the
values vs. The reduced expression is now the method body with the pa-
rameters substituted into it, along with e loc i substituted for this.

| R_Invk : forall H i N m xs vs e R es Vs,

lookup i H = Some (N,es) ->

values vs ->

mbody m Vs N (xs, e) ->

zip xs vs R ->

(e_meth (e_loc i) m Vs vs) / H -->

(subst ((this,e_loc i)::R) e) / H

R Seq encodes R-SEQ below. If v is a value (value v), then e seq v e

with store H reduces to e with store H.

| R_Seq : forall v e H,

value v ->

e_seq v e / H --> e / H

Reductions on lists of expressions are needed for congruence reduction
rules. ListReduction, defined below, is the Coq encoding of reduction
for a list of expressions. ListReduction is defined mutually with the
reduction predicate. ListReduction (es,H) (es’,H’) holds if list
of expressions es with store H reduces to es’ with store H’. R Head is the
rule describing a reduction of the head of a list, and R Tail describes the
reduction of the tail.

with ListReduction : (list exp) * store ->

4.3. FGJ SOUNDNESS 85

(list exp) * store -> Prop :=

| R_Head : forall H H’ e e’ E,

e / H --> e’ / H’ ->

ListReduction ((e::E), H) ((e’::E), H’)

| R_Tail : forall H H’ e es es’,

ListReduction (es, H) (es’, H’) ->

ListReduction ((e::es), H) ((e::es’), H’)

The notations defined below are used to represent reductions of expres-
sions and lists of expressions.

where "e1 ’/’ st1 ’-->’ e2 ’/’ st2" :=

(reduction (e1,st1) (e2,st2)).

Notation "es1 ’//’ st1 ’==>’ es2 ’//’ st2" :=

(ListReduction (es1,st1) (es2,st2)) (at level 200).

4.3 FGJ Soundness

Soundness for FGJ is captured by two theorems Preservation and Progress,
but in order for these to be proven, several lemmas involving type and
expression substitution must be proven. Section 4.3.1 presents the substi-
tution lemmas, while Sections 4.3.2 and 4.3.3 give the statements of Preser-
vation and Progress respectively. The theorems are stated both formally
and as a Coq formalism.

4.3.1 Substitution

The addition of generic types to FJ introduced type substitution to the
type system. This section provides the statements of several useful lem-
mas needed to show that type substitution in FGJ preserves various judge-
ments. The proofs of these Lemmas [6] are not given here. Provided here

86 CHAPTER 4. FEATHERWEIGHT GENERIC JAVA

are informal statements of proofs found in the Coq encoding. Lemma 4.3.1
states that a bound of a substituted type subtypes the substituted bound.

Lemma 4.3.1. If E2 ∪ X / N ` T ok and E1 ` U ok, where E1 ` U <: [X/U]N,
then E1 ∪ [X/U]E2 ` boundE1∪[X/U]E2

([X/U]T) <: [X/U]bound
E2∪X/N(T)

Proof. By case analysis on the bound function. The cases where T is a
non-variable type and T is a variable type in dom(E2) are trivial. The case
where T is some Xi ∈ X follows from E1 ` U<:[X/U]N.

Lemma type_substitution_preserves_bound :

forall E1 XN E2 Us R,

zip XN Us R ->

subtypes E1 Us (map [R] (range XN)) ->

(forall E T N, bound E T N ->

E = (concat XN E2) ->

(forall E’,

E’ = (concat E1 (map [:R:] E2)) ->

WF_type_env E CT ->

WF_type_env E’ CT ->

WF_ty E T CT ->

(forall U, In U Us -> WF_ty E1 U CT) ->

(forall N0, bound E’ ([R] T) N0 ->

subtype E’ N0 ([R] N)))).

Lemma 4.3.2 states that the subtype relationship is preserved by type sub-
stitution.

Lemma 4.3.2. If E2 ∪X /N ` S <: T and E1 ` U ok, where E1 ` U <: [X/U]N,
then E1 ∪ [X/U]E2 ` [X/U]S <: [X/U]T

Proof. By induction on the derivation of E2∪X/N ` S <: T. Cases S-REFL,
S-TRANS and S-CLASS are trivial. Case S-VAR where S is in dom(E2) is
easy. In the case where S = Xi ∈ X, the proposition follows from E1 `
U <: [X/U]N.

4.3. FGJ SOUNDNESS 87

Lemma type_substitution_preserves_subtype :

forall E1 XN E2 Us R,

zip XN Us R ->

subtypes E1 Us (map ([R]) (range XN)) ->

(forall E S T, subtype E S T ->

E = concat XN E2 ->

(forall E’,

E’ = (concat E1 (map ([:R:]) E2)) ->

WF_type_env E CT ->

(forall U, In U Us -> WF_ty E1 U CT) ->

subtype E’ ([R] S) ([R] T))).

Lemma 4.3.3 states that well-formedness of types is preserved by type sub-
stitution. The Coq proof requires mutual induction of type and type lists to
be performed, rather than a straight induction on types. Without a mutual
induction scheme, well-formedness of the type lists of class types would
not be recognised as well-formed by the induction hypothesis. The state-
ment of the Coq proof provided here only provides the statement of the
proof for well-formedness of types, and not of type lists. The statement of
the proof that makes use of mutual induction is omitted due to length, but
can be found in the encoding.

Lemma 4.3.3. If E2 ∪ X / N ` T ok and E1 ` U ok, where E1 ` U <: [X/U]N,
then E1 ∪ [X/U]E2 ` [X/U]S ok

Proof. By induction on the derivation of E2 ∪ X / N ` T ok. Cases WF-
OBJECT and WF-CLASS are simple. Case WF-VAR (T = X) requires a case
analysis on whether X ∈ dom(E2) or X. X ∈ dom(E2) is easy, and follows
from E1 ` U ok.

Lemma type_substitution_preserves_WF :

forall E1 XN E2 Us R,

88 CHAPTER 4. FEATHERWEIGHT GENERIC JAVA

zip XN Us R ->

subtypes E1 Us (map ([R]) (range XN)) ->

(forall E T CTbl, WF_ty E T CTbl ->

CTbl = CT ->

E = concat XN E2 ->

(forall E’,

E’ = (concat E1 (map ([:R:]) E2)) ->

WF_type_env E CTbl ->

(forall U, In U Us -> WF_ty E1 U CTbl) ->

WF_ty E’ ([R] T) CTbl)).

Lemma 4.3.4 states that expression typing is preserved by type substitu-
tion. As with Lemma 4.3.3, a mutual induction scheme is used in the Coq
formalism. Mutual induction is perfomed on expression typing (typing),
expression subtyping (subtyping) and expression list subtyping (subty-
pings).

Lemma 4.3.4. If E2 ∪ X / N; Γ; ∆ ` e : T and E1 ` U ok, where E1 `
U <: [X/U]N, then E1 ∪ [X/U]E2; [X/U]Γ; ∆ ` [X/U]e : S and E1 ∪ [X/U]E2 `
S <: [X/U]T.

Proof. By induction on the derivation of E2 ∪ X / N; Γ; ∆ ` e : T

Lemma type_substitution_preserves_typing :

forall E1 XN E2 Us R,

zip XN Us R ->

subtypes E1 Us (map ([R]) (range XN)) ->

(forall E Gamma Delta e T,

typing E Gamma Delta e T ->

E = concat XN E2 ->

(forall E’,

E’ = (concat E1 (map ([:R:]) E2)) ->

WF_type_env E CT ->

4.3. FGJ SOUNDNESS 89

WF_type_env E’ CT ->

(forall U, In U Us -> WF_ty E1 U CT) ->

subtyping E’ (map ([:R:]) Gamma) Delta

(subst_exp R e) ([R] T))).

Lemma 4.3.5 states that expression substitution preserves typing. A mu-
tual induction scheme for expression typing, subtyping and expression list
subtyping is also used in this Lemma. As before, the statement of the proof
using mutual induction is omitted for brevity. Once the mutual induction
scheme is applied, the proof is straight forward.

Lemma 4.3.5. If E;x / B; ∆ ` e : T and E; Γ; ∆ ` e : A, where E ` A <: B,
then E; Γ; ∆ ` [x/e]e : S and E ` S <: T

Proof. By induction on the derivation of E;x / B; ∆ ` e : T.

Lemma Substitution_Preserves_Typing :

forall E Gamma Delta xB e T es R,

typing E xB Delta e T ->

subtypings E Gamma Delta es (range xB) ->

zip xB es R ->

WF_type_env E CT ->

subtyping E Gamma Delta (subst R e) T.

4.3.2 Preservation

The statement of the Subject Reduction Theorem, or Preservation, in FGJ
is given in Theorem 4.3.1. As with previously discussed lemmas, the Coq
proof of Preservation makes use of a mutual induction scheme. Induction is
performed mutually on the reduction and the ListReduction pred-
icates. Without this scheme, the induction hypothesis for expression lists
would not be produced during induction. Preservation states that given a
non-error, well-typed expression, any reduction of that expression would

90 CHAPTER 4. FEATHERWEIGHT GENERIC JAVA

result in an expression which is well-typed with regard to a type that is a
subtype of the type of the original expression

Theorem 4.3.1 (Preservation). If e;H −→ e′;H′ where e′ 6= err andE; Γ; ∆ `
e : T, then ∃∆′ s.t. (∆′ ⊇ ∆ and ∃S, s.t. E; Γ; ∆′ ` e : S and E ` S <: T)

Proof. By induction on the derivation of e;H → e′;H′.

Below is the statement of Theorem 4.3.1 in Coq. The theorem is pre-
sented as the conjunction of two propositions; one for reduction of expres-
sions and one for the reduction of lists.

Theorem Preservation :

(forall p p’, reduction p p’ ->

(forall E Gamma Delta T e e’ H H’,

(e,H) = p -> (e’,H’) = p’ ->

e’ <> e_err ->

WF_store Delta H -> ok Gamma ->

WF_type_env E CT ->

typing E Gamma Delta e T ->

(exists Delta’, ST_Extends Delta’ Delta ->

WF_store Delta’ H’ ->

subtyping E Gamma Delta’ e’ T))) /\

(forall p p’, ListReduction p p’ ->

(forall E Gamma Delta Ts es es’ H H’,

(es,H) = p -> (es’,H’) = p’ ->

∼ In e_err es’ ->

WF_store Delta H -> ok Gamma ->

WF_type_env E CT ->

subtypings E Gamma Delta es Ts ->

(exists Delta’, ST_Extends Delta’ Delta ->

WF_store Delta’ H’ ->

subtypings E Gamma Delta’ es’ Ts))).

4.3. FGJ SOUNDNESS 91

4.3.3 Progress

Theorem 4.3.2 is the statement of the Progress Theorem. Progress states that
for all well-typed expressions, either that expression is a value, or there
is some expression such that the original expression may be reduced to.
Proof of the theorem is done by induction on the derivation of the typing
predicate. As with Preservation, a mutual induction scheme is required in
order to successfully perform the induction.

Theorem 4.3.2 (Progress). ∀e, if E; Γ; ∆ ` e : T then either;

(a) e is a value, or

(b) ∀H s.t. H is well-typed with respect to ∆, ∃e′,H′ s.t. e;H −→ e′;H′

Proof. By induction on the derivation of E; Γ; ∆ ` e : T.

Theorem Progress :

(forall E Gamma Delta e T,

typing E Gamma Delta e T ->

Gamma = nil -> E = nil ->

(value e \/

(forall H, WF_store Delta H ->

exists e’, exists H’,

e / H --> e’ / H’))) /\

(forall E Gamma Delta e T,

subtyping E Gamma Delta e T ->

Gamma = nil -> E = nil ->

(value e \/

(forall H, WF_store Delta H ->

exists e’, exists H’,

e / H --> e’ / H’))) /\

(forall E Gamma Delta es Ts,

subtypings E Gamma Delta es Ts ->

92 CHAPTER 4. FEATHERWEIGHT GENERIC JAVA

Gamma = nil -> E = nil ->

(values es \/

(forall H, WF_store Delta H ->

exists es’, exists H’,

ListReduction (es, H) (es’, H’)))).

Chapter 5

Featherweight Ownership
Generic Java

Featherweight Ownership Generic Java (FOGJ) is presented in this Chap-
ter. Section 5.1 gives an outline of the FOGJ type system, Section 5.2 de-
scribes the type system, while the FOGJ soundness proofs are described in
Section 5.3.

5.1 FOGJ

Featherweight Ownership Generic Java is an extension of the FGJ in Chap-
ter 4 with Ownership. Ownership is an object-oriented language feature
that allows one object to own another. Ownership has several variations,
but they all restrict access to owned objects to some degree based on their
owner. A common variant of Ownership, and the one presented in this
Chapter, is Owners-as-Modifiers. Under the Owners-as-Modifiers paradigm,
modifications to an object (field accesses, field assignments and method in-
vocations) may only be made by the owner of that object, while references
may be held by any object.

Objects may be owned by either World or Thisl. Objects owned by
Worldmay be modified by any other object, while objects owned by Thisl

93

94 CHAPTER 5. FEATHERWEIGHT OWNERSHIP GENERIC JAVA

may only be modified by the object stored at location l.

In FOGJ, ownership information is contained as type information. The
types of FGJ are extended to include owners. Therefore the owner of a type
simply forms part of its generic parameter list. Including owners as types
introduces two new kinds of type on top of those of FGJ: non-variable
owner types No and variable owner types Xo. To store owners of FOGJ
types, class types are parametrised by an owner parameter: C<T;O> is a
type of class C, generic parameters T and owner O. The class declaration
of a class C is given below as an example.

1 class C <X extends Object<Xo>; Xo extends World>

2 extends Object<Xo>{

3 Object<Xo> f;}

4 ...

5 C <Object<World>;World> C_obj =

6 new C<Object<World>;World>();

C_obj has type C<Object<World>;World>, with owner World and su-
per type Object<World>. The field f has type Object<Xo> within class
C. This shows that once we declare the owner parameter Xo, it may be
used within the class C. The concept of scope is very important in FOGJ.
While an object can only modify objects it owns, it may reference an object
ι with owner O so long as O is in scope.

In the above example, the owner variable Xo is within the scope of C,
and may be used to define fields (like f) and method declarations within
C. Owners that are in scope in class declarations are World, any owner
variables defined as generic parameters such as Xo above, and This. The
This owner variable represents the current object, and at runtime for a
specific object l, all occurrences of This are replaced by Thisl. The This
variable is used during type checking to prohibit the modification of ob-
jects by objects other that their owner. Field accesses, assignments and
method invocations that use the This variable may only applied to the

5.2. FOGJ TYPE SYSTEM 95

e ::= null | ι |x |err |new N() |e.f |e.f = e |e.m<T>(e) |e; e |P > e

v ::= null | ι
T ::= X |N
X ::= Xt |Xo
N ::= C<T;O> |No
No ::= World |This |Thisl
O ::= Xo |No
L ::= class C<X / N;Xo / No> extends N{Tf; M}
M ::= T m<X / T> (Tx){return e; }
P ::= C | ι
Pr ::= L; e

Figure 5.1: FOGJ Syntax

receiver this. Therefore, a field with owner parameter This may only be
accessed within the scope of the class where the field is defined.

5.2 FOGJ Type System

5.2.1 FOGJ Syntax

Figure 5.1 is the FOGJ syntax. The syntax is much the same as that of
FGJ, extending types to include owners. Expressions remain the same as
in FGJ. There is a single addition of a context expression P > e used to
give a context of permission P to an expression e. A permission P can be
either a class C or a location ι. Permissions are used to give an ownership
context during typing and method reduction in order to identify the This
owner. For a context expression P > e, e is within the scope of some
class or object represented by P. The FOGJ new expression does not take
any parameters, and all fields are initialized as null. This is because of
the introduction of ownership. Any constructor parameters must be fully
initialised before the new object is initialised. Since fields may be owned

96 CHAPTER 5. FEATHERWEIGHT OWNERSHIP GENERIC JAVA

by the new object, this can lead to a contradiction. For this reason fields
must be set after the object is initialised. A value v is the same as in FGJ,
nulls and locations. A type variable X can be either a class type variable Xt
as in FGJ, or an owner type variable Xo. A non-variable type may be either
a class type C<T;O>, or a non-variable owner No. The class type differs
from that of FGJ by the addition of an owner type O, this is the owner
of the class type. A non-variable owner may be World, This or Thisl.
World is the root of the ownership tree, This is the current object, and
Thisl is the object at location l. An owner O may be either an owner type
variable, or a non-variable owner. A class declaration L adds an explicit
owner variable Xo and bound No to that of FGJ. Method declarations are
unchanged from FGJ.

The addition of ownership types requires the introduction of three types
on top of those in the FGJ encoding: owner type variables, concrete owner
types and an undefined type. The Coq encoding of types can be found
below.

Inductive ty : Type :=

| Ty_Var : Var -> ty

| Ty_Class : class -> tys -> ty -> ty

| Ty_Own : own -> ty

| Ty_Undf : ty

with tys : Type :=

| empty : tys

| Tys : ty -> tys -> tys.

As in FGJ, type variables and class types are given by Ty Var and Ty Class

respectively. A class type Ty Class C Ts O has class C, generic parame-
ters Ts and owner parameter O. Type variables are represented by a Var, a
unique variable identifier. In FGJ the identifier was simply a natural num-
ber, but in FOGJ there are two types of type variables, class and owner
type variables. This is captured by the Var definition given below.

5.2. FOGJ TYPE SYSTEM 97

Inductive Var : Type :=

| t_Var : nat -> Var

| o_Var : nat -> Var.

A Var is constructed in one of two ways, t Var and o Var, corresponding
to class and owner type variables respectively. This distinction is needed
throughout the encoding, and is assumed in the original OGJ type system.
For ease, the following notation is used to identify class and owner type
variables.

Notation "’X_’ x" := (Ty_Var (t_Var x))(at level 0).

Notation "’O_’ x" := (Ty_Var (o_Var x))(at level 0).

A normal type variable Ty Var (t Var x) uses the notation X x, while
Ty Var (o Var x) is written as O x. The This variable is defined as
o Var 0 in the encoding.

Definition This := o_Var 0.

For simplification, the following notation is used for type lists (tys) class
types.

Notation "T ’;;’ Ts" := (Tys T Ts)(at level 0).

Notation "C ’<<’ Xs ’;’ O ’>>’" :=

(Ty_Class C Xs O)(at level 0).

Under the above notation, Tys T Ts becomes T ;; Ts, while Ty Class

C Ts O becomes C<<Ts;O>>. There are two further types available in
FOGJ; owner types Ty Own and an undefined type Ty Undf. Owner types
correspond to No in Figure 5.1, and take an own parameter.

Inductive own : Type :=

| O_World : own

| O_This_ : nat -> own.

own may either be O World or O This l. O World encodes World in
the syntax, and O This l encodes Thisl, where l is the position of the

98 CHAPTER 5. FEATHERWEIGHT OWNERSHIP GENERIC JAVA

owner object in the store. As with class and variable types, owner types
are given a notation for ease of use.

Notation "’World’":=(Ty_Own O_World).

Notation "’This_’ l":=(Ty_Own (O_This_ l))(at level 0).

The final type Ty Undf represents an undefined type. An undefined type
is not an actual type, and is an encoding of ⊥ to allow for type checking
to catch ownership violations. The use of undefined types is discussed in
Section 5.2.3 during the encoding of encoding of the this function.

FOGJ expressions are very similar to those in FGJ, and are given below.

Inductive exp:Type :=

| e_null :exp

| e_loc :nat -> exp

| e_var :var -> exp

| e_err :exp

| e_new :class -> tys -> ty -> exp

| e_field :exp -> field -> exp

| e_assign :exp -> field -> exp -> exp

| e_meth :exp -> meth -> list ty -> list exp -> exp

| e_seq :exp -> exp -> exp

| e_context:nat -> exp -> exp.

The FOGJ context expression is encoded by e context l e, where l is
the position in the store of the current This object. The rest of the expres-
sions are taken directly from FGJ, except for an owner type parameter for
the new expression.

The only other peculiarity of the syntax is the addition of permissions.
A permission P can be either a location l or a class C.

Inductive Permission : Type :=

| P_Class : class -> Permission

| P_loc : nat -> Permission.

5.2. FOGJ TYPE SYSTEM 99

P Class C encodes the class permission C, and P loc l encodes the lo-
cation permission l.

5.2.2 FOGJ Substitution

Substitution in FOGJ inherits much from FIJ and FGJ. FOGJ expression
substitution is inherited from FIJ, and is unchanged. FOGJ type substitu-
tion is inherited from FGJ with minor changes.

In FGJ, type variables were identified in the same way as expression
variables, using var objects (Section 4.2), that is an FGJ type variable is
written Ty_Var x, where x is of type var. During FGJ type substitu-
tion we used the get function to retrieve a mapping of x in some envi-
ronment. In Section 5.2.1 we presented the encoding for FOGJ type vari-
ables. FOGJ type variables are identified using Var objects. Var is dif-
ferent from var in that there is more than one way to construct an object
of type Var; t_Var for normal type variables and o_Var for owner type
variables. Since type variables are not defined using var, we can no longer
use the get function to retrieve a type variable’s mapping. For this reason,
get_Var below was written to replace it.

Fixpoint get_Var {A : Type}(X : Var)

(E : list (Var * A)) : option A:=

match E with

| nil => None

| (X’,a)::E’ => if (beq_Var X X’) then

(Some a) else (get_Var X E’)

end.

get_Var X E recursively searches environment E for a mapping of vari-
able X (Var). If E is a nil list (empty), get_Var X E returns None. If E
is non-empty list with head (X’,a) and tail E’, then get_Var X E re-
turns Some a if beq_Var X X’ is true, and get_Var X E’ otherwise.
beq_Var X X’ is an equality function that returns true if X = X’, and

100 CHAPTER 5. FEATHERWEIGHT OWNERSHIP GENERIC JAVA

fields(Object<World>,To) = ∅
(F-OBJECT)

class C<X / N;Xo / No> extends N{Sf; M}

fields(C<T;O>,To) =

[To/This,O/Xo,T/X]Sf ∪ fields([To/This,O/Xo,T/X]N)

(F-CLASS)

T f ∈ fields(C<T;O>,To)

fType(f,C<T;O>,To) = T

Figure 5.2: FOGJ Field Lookup Function

false if not.

5.2.3 FOGJ Functions

In Section 4.2.3, we discussed the importance of applying type substitu-
tions concurrently. In FOGJ we still need to perform all type substitutions
during field and method retrieval concurrently, and this includes the sub-
stitution of the This owner variable. The FOGJ field and method retrieval
functions given in this section, both have an extra parameter on top of
those in the original FGJ type system, the substitution of the This owner
variable.

The FOGJ field retrieval functions fields and fType are given in Figure
5.2. The FOGJ fields function is much like the fields function of FGJ ex-
cept for the addition on the To parameter. To is substituted for the This
variable along with all other type variables. Similarly, fType also has a pa-
rameter To.

The FOGJ method type and body retrieval functions are given in Fig-
ure 5.3 and 5.4 respectively. As with the field retrieval functions they are
unchanged from FGJ except for the addition of the To parameter to sub-
stituted for the This variable.

5.2. FOGJ TYPE SYSTEM 101

class C<X / N;Xo / No> extends N{Sf; M}
T0 m<Y / Q> (Ux){return e; } ∈ M

mType(m,C<T;O>,To) =

[To/This,O/Xo,T/X,V/Y](<Y / Q>U→ T0)

(MT-CLASS)

class C<X / N;Xo / No> extends N{Sf; M}
∀T0, Y, Q, U, x, e : T0 m<Y / Q> (Ux){return e; } /∈ M

mType(m,C<T;O>,To) = mType(m, [O/Xo,T/X]N,To)
(MT-SUPER)

Figure 5.3: FOGJ Method Type Lookup Function

class C<X / N;Xo / No> extends N{Sf; M}
T0 m<Y / Q> (Ux){return e; } ∈ M

mBody(m<V>,C<T;O>,To) = (x; [To/This,O/Xo,T/X,V/Y]e)
(MB-CLASS)

class C<X / N;Xo / No> extends N{Sf; M}
∀T0, Y, Q, U, x, e : T0 m<Y / Q> (Ux){return e; } /∈ M

mBody(m<V>,C<T;O>,To) = mBody(m<V>, [O/Xo,T/X]N,To)
(MB-SUPER)

Figure 5.4: FOGJ Method Body Lookup Function

The FOGJ override and bound functions can be found in Figures 5.5 and
5.6, and are unchanged from FGJ.

The owner function is given in Figure 5.7. ownerE(T) returns the owner
of type T in type environment E. If T is a non-owner type variable Xt,
owner returns the owner of Xt’s bound in E. The owner of a class type
C<T;O>, is O. The owner of an ownership type O is O. The owner function
is encoded as owner below. owner E T O holds if O is the owner of type
T in environment E. O TVar encodes the owner function for non-owner
type variables. For a type variable X x, with bound N in environment E,
if O is the owner of N in E, then O is the owner of X x in E.

102 CHAPTER 5. FEATHERWEIGHT OWNERSHIP GENERIC JAVA

mType(m<Y>,N,This) = (<Z / R>U→ U0)⇒
(Q,T) = [Y/Z](R,U) & Y / Q; ∅ ` T0 <: [Y/Z]U0

override(m,N,<Y / Q>T→ T0)

Figure 5.5: FOGJ Override Function

boundE(Xt) = E(Xt) boundE(C<T;O>) = C<T;O>

Figure 5.6: FOGJ Bound Function

Inductive owner : ty_env -> ty -> ty -> Prop :=

| O_TVar : forall E x N O,

bound E X_ x N ->

owner E N O ->

owner E X_ x O

The rest of the rules are direct encodings of the rest of the cases in Figure
5.7.

| O_OVar : forall E x,

owner E O_ x O_ x

| O_Class : forall E C Ts O,

owner E C <<Ts;O>> O

| O_Own : forall E O,

owner E (Ty_Own O) (Ty_Own O).

The various cases; O_OVar, O_Class and O_Own correspond to the
owner function for owner type variables, class types and owner types re-
spectively. The encodings are straightforward.

The this function is given in Figure 5.8. The this function is used to
ensure ownership is not violated. Ownership restrictions in FOGJ are en-

5.2. FOGJ TYPE SYSTEM 103

ownerE(Xt) = ownerE(boundE(Xt)) ownerE(C<T;O>) = O

ownerE(O) = O

Figure 5.7: FOGJ Owner Function

thisC(this) = This thisι(ι) = Thisι thisP(...) = ⊥

Figure 5.8: FOGJ this Function

sured by restricting field accesses, assignments and method calls involving
the This type variable to the this receiver. thisP(e) returns the value of
the This type variable for a receiver e in context with permission P. When
the permission is a class C, and the receiver is this, This has value This,
or thisC(this) = This. When the permission is an object ι, and the re-
ceiver is ι, This has a value of Thisι, or thisι(ι) = Thisι. For all other
cases, This has an undefined value, or thisP(...) = ⊥.

this is encoded below as this P, a Fixpoint function that takes a per-
mission (Permission) and an expression (exp), and returns a type (ty).
It is a simple encoding that makes use of Ty Undf for ⊥. The purpose
of Ty Undf is solely to be ill-formed, to allow ownership violations to be
caught during type checking.

Fixpoint this_P (P : Permission) (e : exp) : ty :=

match P with

| P_Class C => if (eq_exp e (e_var this))

then (Ty_This) else Ty_Undf

| P_loc l => if (eq_exp e (e_loc l))

then (This_ l) else Ty_Undf

end.

this P P e can return one of three types. If the permission P is a class

104 CHAPTER 5. FEATHERWEIGHT OWNERSHIP GENERIC JAVA

E; ∆ ` T <: T (S-REFL)
E; ∆ ` S <: T E; ∆ ` T <: U

E; ∆ ` S <: U
(S-TRANS)

E; ∆ ` X <: E(X) (S-VAR)

class C<X / N;Xo / No> extends N{Sf; M}

E; ∆ ` C<T;O> <: [T/X,O/Xo]N
(S-EXTEND)

∆(l) = T ownerE(T) = O

E; ∆ ` Thisl <: O
(S-OWNER)

Figure 5.9: FOGJ Subtyping Rules

permission, and matches some P Class C, then Ty This is returned if
the receiver e equals the this variable e var this, and Ty Undf other-
wise. If P is a location permission P loc l, then This l is returned if e
equals the location e loc l, and Ty Undf otherwise.

this_P is defined as a Fixpoint definition rather than an inductive
one for ease of use later. A Fixpoint function can be used instead of its
result. Since this_P is a relatively simple function as compared to mtype,
or even bound, it is much easier to use a Fixpoint definition.

5.2.4 FOGJ Subtyping and Well-Formedness

Subtyping in FOGJ is given in Figure 5.9. E; ∆ ` S <: T holds if S subtypes
T with respect to type environment E and store type environment ∆. The
subtyping rules are as in FGJ, except for the addition of S-OWNER and a
store type environment as context. An object owner Thisl subtypes O in
type environmentE and store type environment ∆ if O is the owner of T in
E, and T is the type of location l in ∆. As in Figure 5.9, the Coq encoding
of the FOGJ subtype rules is largely unchanged from FGJ. The encoding of
S-OWNER is given below, but is part of the larger subtype predicate.

5.2. FOGJ TYPE SYSTEM 105

| S_Owner : forall E D l O T,

lookup l D = Some T ->

owner E T O ->

subtype E D (This_ l) O

For a location l with type T in store type environment D, where T has
owner O in type environment E, subtype E D (This l) O holds.

Before well-formedness can be encoded, a secondary predicate must
be defined, is owner.

Inductive is_owner : ty -> Prop :=

| Is_Var : forall x,

is_owner O_ x

| Is_Own : forall O,

is_owner (Ty_Own O).

is_owner O holds if O is an owner, i.e. if O is a owner variable, or a
non-variable owner. Since they are defined separately and not as a single
”owner” type in the syntax, to identify an owner as separate from other
types, this predicate is defined. In OGJ [17] it is assumed that owners can
be distinguished from normal types.

Type well-formedness in FOGJ is defined in Figure 5.10. The Coq en-
coding of type well-formedness is the predicate WF_ty, and is encoded in
the same manner as well-formedness in FGJ. The header for WF_ty is:

Inductive WF_ty : ty_env -> list ty ->

ty -> ClassTable-> Prop :=

WF_ty E D T CTbl holds if type T is well-formed in type environment
E, and store type environment D, with class table CTbl. Object<O> is
well-formed if O is well-formed (WF-OBJECT). WF_Obj below encodes
WF-OBJECT. Omust be an owner (is_owner O), and must be well-formed
(WF_ty E D O CTbl).

106 CHAPTER 5. FEATHERWEIGHT OWNERSHIP GENERIC JAVA

E; ∆ ` O : ok

E; ∆ ` Object<O> : ok
(WF-OBJECT)

X ∈ dom(E)

E; ∆ ` X : ok
(WF-VAR)

class C<X / N;Xo / No> extends N{Sf; M}
E; ∆ ` [T/X,O/Xo]N <: Object<O>

E; ∆ ` T, O, [T/X,O/Xo]N : ok E; ∆ ` T <: [T/X,O/Xo]N

E; ∆ ` O <: [T/X,O/Xo]No ∀T ∈ T, E; ∆ ` O <: owner(T)

E; ∆ ` C<T,O> : ok
(WF-CLASS)

E; ∆ ` No <: World

E; ∆ ` No : ok
(WF-OWNER)

Figure 5.10: FOGJ Type Well-Formedness

| WF_Obj : forall E D O CTbl,

is_owner O ->

WF_ty E D O CTbl ->

WF_ty E D Object <<empty;O>> CTbl

A type variable X is well-formed in a type environment E if X is in the
domain of E (WF-VAR). WF_Var is the Coq encoding of WF-VAR. For a
type variable Ty_Var x to be well-formed, WF_Var simply checks if there
is a mapping in the type environment E to some type.

| WF_Var : forall E D x CTbl,

(exists T, E maps x to T) ->

WF_ty E D (Ty_Var x) CTbl

A class type C<T;O> (WF-CLASS) is well-formed if the type parameters T
and O subtype the bounds of the type parameters in the class declaration,
and are well-formed themselves. The super type with the substituted type
parameters must subtype Object<O>. The final prerequisite is that the

5.2. FOGJ TYPE SYSTEM 107

primary owner O must subtype (be ”inside”) the owners of all other type
parameters T. WF_Class encodes WF-CLASS below and checks that all
subtypes are well-formed, as well as the super type. (forall T, In T

(toList Ts)->forall Q, owner E T Q->subtype E D O Q) en-
sures that the primary owner O is nested inside the owners of the other
parameters as per Section 5.1.

| WF_Class : forall E D C XN Xo No N fs ms R CTbl Ts O,

In (cDecl C XN (Xo,No) N fs ms) CTbl ->

is_owner O ->

zip ((Xo,No)::XN) (O::(toList Ts)) R ->

WF_tys E D O;;Ts CTbl ->

WF_ty E D ([R] N) CTbl ->

(forall T, In T (toList Ts) ->

forall Q, owner E T Q ->

subtype E D O Q) ->

subtypes E D (O::(toList Ts))

(map [R] (range ((Xo,No)::XN))) ->

WF_ty E D C <<Ts;O>> CTbl

Well-formedness for owners is one of the few differences between the
FOGJ presented here and the OGJ type system. In OGJ, types were of-
ten checked to be either well-formed or to subtype World, while FOGJ
requires non-variable owners to subtype World to be well-formed (WF-
OWNER). This simplifies checks in the type system and cases in several
lemmas when proving soundness. The Coq encoding of WF-OWNER,
WF_Owner is given below.

| WF_Owner : forall E D O,

subtype E D (Ty_Own O) World ->

WF_ty E D (Ty_Own O) CT

108 CHAPTER 5. FEATHERWEIGHT OWNERSHIP GENERIC JAVA

E; ∆ ` C<T,O> : ok

E; Γ; ∆;P ` new C<T,O>() : C<T,O>
(T-NEW)

E; Γ; ∆;P ` e0 : T0 fType(f, boundE(T0), thisP(e0)) = T

E; Γ; ∆;P ` e0.f : T
(T-FIELD)

E; Γ; ∆;P ` e0 : T0 E; Γ; ∆;P ` e : T

fType(fi, boundE(T0), thisP(e0)) = Ti E; ∆ ` T <: Ti

E; Γ; ∆;P ` e0.f = e : T
(T-ASSIGN)

E; Γ; ∆;P ` e0 : T0

E; ∆ ` V : ok mType(m<V>, boundE(T0), thisP(e0)) = <Y / Q>U→ T0

(∀V ∈ V ⇒ E; ∆ ` ownerE(T0) <: ownerE(V))

E; ∆ ` V <: Q E; ∆;P ` e : S E; ∆ ` S <: U

E; Γ; ∆;P ` e0 : T0
(T-INVK)

E; Γ; ∆; ι ` e : T

E; Γ; ∆;P ` ι > e : T
(T-CONTEXT)

Figure 5.11: FOGJ Typing Rules

5.2.5 FOGJ Expression Typing

The FOGJ type rules can be found in Figure 5.11. The FOGJ typing judg-
ment E; Γ; ∆;P ` e : T holds if expression e has type T in type environ-
ment E, environment Γ, store type environment ∆ and with permission
P. The type judgment is encoded in this Section as typing. Below is
the header for typing. typing E G D P e T holds if expression e has
type T in type environment E, environment G, store type environment D
with permission P.

Inductive typing : ty_env -> env -> list ty ->

Permission -> exp -> ty -> Prop :=

5.2. FOGJ TYPE SYSTEM 109

Except for the inclusion of a permission, typing for null expressions (T-
NULL), variables (T-VAR), locations (T-LOC) and sequences (T-SEQ) are
unchanged from FGJ, and so are omitted.

Typing for a new expression is greatly simplified in FOGJ from FGJ
since all fields are initialized as null, and thus takes no parameters. A
new expression new C<T;O>() has type C<T;O> if C<T;O> is a well-formed
type. This is encoded below as T_New.

| T_New : forall E G D P C Ts O,

WF_ty E D (C <<Ts;O>>) CT ->

typing E G D P (e_new C Ts O) C <<Ts;O>>

A field access e0.f has type T, where T is the the type of field f with
thisP(e0) substituted for This (T-FIELD). The Coq encoding of T-FIELD

is given below, T_Field. We also make use of the predicate defn_ty,
which is not given, but checks that a type does not contain any undefined
types (Ty_Undf). In other words, defn_ty Ti holds if Ti does not con-
tain Ty_Undf as a sub-expression. This is to ensure that the substitution
of thisP(e0) (this_P P e0) into the field type does not result in an ill-
formed type.

| T_Field : forall E G D P e0 T0 N0 fi Ti,

typing E G D P e0 T0 -> bound E T0 N0 ->

ftype N0 (this_P P e0) fi Ti -> defn_ty Ti ->

typing E G D P (e_field e0 fi) Ti

A field assignment e0.f = e has type T, where T is the type of e, and T sub-
types the type of f substituting thisP(e0) for This (T-ASSIGN). T_Assign
below is the Coq code for T-ASSIGN. Apart from the substitution of this_P
P e0 into the field type, and the subsequent defined type check (defn_ty
Ti), it is unchanged from the assignment typing of FGJ.

| T_Assign : forall E G D P e0 T0 N0 fi Ti e T,

typing E G D P e0 T0 -> bound E T0 N0 ->

110 CHAPTER 5. FEATHERWEIGHT OWNERSHIP GENERIC JAVA

ftype N0 (this_P P e0) fi Ti -> defn_ty Ti ->

subtype E D T Ti -> typing E G D P e T ->

typing E G D P (e_assign e0 fi e) T

A method invocation e0.m<V>(e) has type T, where T is the return type
of m with thisP(e0) substituted for This (T-INVK). To ensure that meth-
ods do not violate ownership, the owner of the receiver must be inside the
owners of the method type parameters. The encoding is given below as
T_Invk, and has little changed from FGJ with the exception of the substi-
tution of this_P P e0 and the nesting of parameter owners. The nesting
of owners is accomplished by a predicate nested_owners that is omit-
ted. nested_owners E D T1 T2 holds if the owner of T1 is ”inside”
(subtypes) the owner of T2 for type environment E and store type envi-
ronment D.

| T_Invk : forall E G D P e0 T0 N0 es m YP xs T Vs,

typing E G D P e0 T0 -> bound E T0 N0 ->

mtype m Vs N0 (this_P P e0) (YP,xs,T) ->defn_ty T->

(forall x U, In (x,U) xs -> defn_ty U) ->

(forall Y P, In (Y,P) xs -> defn_ty P) ->

WF_types E D Vs CT ->

(forall V, In V Vs -> nested_owners E D T0 V) ->

subtypes E D Vs (range YP) ->

subtypings E G D P es (range xs) ->

typing E G D P (e_meth e0 m Vs es) T

A context expression l > e, for a location l, has type T if e has type T given
permission P. This has a straight forward encoding below as T_Context.

| T_Context : forall E G D P l e T,

typing E G D (P_loc l) e T ->

typing E G D P (e_context l e) T

5.2. FOGJ TYPE SYSTEM 111

visibleE(ownerE(T),C)

visibleE(T,C)
(V-TYPE)

class C<X / N,Xo / No> extends N{Sf; M}
O ∈ {Xo,This,World} ∪ X

visibleE(O,C)
(V-OWNER)

Figure 5.12: FOGJ Type Visibility

Visibility

The visibility predicate is used to determine if types and expressions are
visible within a certain context such as a class or method declaration. Type
visibility is given by Figure 5.12. Informally stated, a type T is visible in a
class C if the owner of T is within the scope of C. This captures the dif-
ference between referencing an object, and modifying an object. If per-
missions and the this function are used to determine if receivers may be
modified within a certain context, visibility determines if objects or types
may be referenced within a context. Formally, a type T is visible in a class
declaration C if the owner of T is visible in C (V-TYPE). An owner type O is
visible in a class declaration C if O is one of the defined class parameters,
or if it is either World or This. The encoding of type visibility is given
below as visible.

Inductive visible : ty_env -> ty -> class -> Prop :=

| V_Type : forall E T C O,

owner E T O ->

visible E O C ->

visible E T C

| V_Owner : forall E O C XN ZM N fs ms,

In (cDecl C XN ZM N fs ms) CT ->

is_owner O ->

112 CHAPTER 5. FEATHERWEIGHT OWNERSHIP GENERIC JAVA

(In O (toVars (dom XN)) \/

In O (Ty_This::(World::nil))) ->

visible E O C.

visible E T C holds if type T has owner O in type environment E, and
O is visible in class C (V_Type). visible E O C holds if owner type O
has a mapping in the class type environment of C, XN, or O is either the
This type variable (Ty_This) or World.

Expression visibility is given in Figure 5.13. An expression is visible if
all sub-expressions and types within the expression are visible. As with
type visiblility, an expression is judged visible with regards to some class
or method declaration. The Coq encoding for expression visibility is omit-
ted as it is a simple encoding of Figure 5.13, and simply checks the visibil-
ity of sub-expressions and types. The header is given below.

Inductive visible_exp :ty_env->env->class->exp->Prop:=

visible_exp E G C e holds if expression e is visible in class C, with
type environment E, and expression variable environment G.

The well-formedness rules for method and class declarations are given
in Figure 5.14. The difference from those in FGJ is the addition of owner-
ship nesting in both method and class declarations. For a class or method
declaration to access a type or expression, it must be visible. If the primary
owner parameter of a class is not ”inside” other owner parameters, the
owners-as-modifiers property may be broken by allowing multiple heirar-
chical paths from World to the object. The other extension from FGJ is the
requirement of all subexpressions and types to be visible.

The Coq encoding of T-METHOD is given below as meth_ok. meth_ok
is defined as an Inductive definition with a single case, T_Method.
meth_ok decl C holds if method declaration decl is well-formed for
class C. All types must be well-formed (WF_ty), as well as the body. All
typing is done with respect to the type environment concat E E’. E is
the class type parameters, method type parameters and the This type

5.2. FOGJ TYPE SYSTEM 113

E; Γ;C ` visible(e0) E; Γ; ∅;C ` e0.f : T visibleE(T,C)

E; Γ;C ` visible(e0.f)
(V-FIELD)

E; Γ;C ` visible(e0) E; Γ; ∅;C ` e0.fi : Ti

visibleE(Ti,C) E; Γ; ∅;C ` e : T visibleE(T,C)

E; Γ;C ` visible(e0.fi = e)
(V-ASSIGN)

E; Γ; ∅;C ` e0.m<V>(e) : T visibleE(T,C)

visibleE(V,C) E; Γ;C ` visible(e) E; Γ;C ` visible(e0)

E; Γ;C ` visible(e0.m<V>(e))
(V-INVK)

E; Γ; ∅;C ` x : T visibleE(T,C)

E; Γ;C ` visible(x)
(V-VAR)

visibleE(C′<T;O>,C)

E; Γ;C ` visible(new C′<T;O>())
(V-NEW)

E; Γ;C ` visible(e1) E; Γ;C ` visible(e2)

E; Γ;C ` visible(e1; e2)
(V-SEQ)

Figure 5.13: FOGJ Expression Visibility

variable bound by Xo, the primary owner parameter.

Inductive meth_ok : MethDecl -> class -> ty -> Prop :=

| T_Method : forall decl m YP T0 xs e0 C XN Xo No N

fs ms E E’ G,

E = (This,Ty_Var Xo)::(Xo,No)::(concat XN YP) ->

nested_env Xo (concat XN YP) E’ ->

ok E ->

decl = mDecl m YP T0 xs e0 ->

In (cDecl C XN (Xo,No) N fs ms) CT ->

(forall P, In P (range YP) ->

114 CHAPTER 5. FEATHERWEIGHT OWNERSHIP GENERIC JAVA

class C<X / N;Xo / No> extends N{Sf; M}
E ⊃ X / N,Y / Q (∀X ∈ X,Xo / ownerE(X) ∈ E)

(∀Y ∈ Y,Xo / ownerE(Y) ∈ E) E; ∅ ` T0, Q, U : ok visibleE(T0,C)

(∀Q ∈ Q, visibleE(Q,C)) E;this : C<X;Xo>,x : U;C ` visible(e0)
E;this : C<X;Xo>,x : U; ∅;C ` e : S0

E; ∅ ` S0 <: T0 override(m,N,<Y / Q>U→ T0)

T0 m<Y / Q> (Ux){return e; } OK IN C
(T-METH)

E ⊃ X / N ∀X ∈ X,Xo / ownerE(X) ∈ E
E; ∅ ` N, No, N, S : ok visibleE(No,C)

∀N ∈ N, visibleE(N,C) ∀S ∈ S, visibleE(S,C) ∀M ∈ M, M OK IN C

class C<X / N;Xo / No> extends N{Sf; M} OK
(T-CLASS)

Figure 5.14: FOGJ Method and Class Typing Rules

WF_ty (concat E E’) nil P CT) ->

WF_ty (concat E E’) nil T0 CT ->

WF_types (concat E E’) nil (range xs) CT ->

(forall T, In T (range xs) -> visible E T C) ->

visible E T0 C ->

(forall P, In P (range YP) -> visible E P C) ->

G=(this,C<<toTys(toVars(dom XN));Ty_Var Xo>>)::xs->

visible_exp E G C e0 ->

subtyping (concat E E’) G nil (P_Class C) e0 T0 ->

override m N YP (range xs) T0 ->

meth_ok decl C (Ty_Var Xo).

An oversight was made when the encoding meth_ok by not restricting
the parameter types in xs to class types. Methods conforming to meth_ok
may be declared in the following manner.

1 Object<World> meth <> (World x){ ... }

5.2. FOGJ TYPE SYSTEM 115

Such a method would clearly be problematic if it were ever called, how-
ever since a well-typed expression in a well-typed environment can never
be of an ownership type, meth could never be called on a receiver. Any
future encodings that make use of FOGJ should take this in account, and
restrict parameter types to class types.

The encoding of T-CLASS is given below as class_ok, and as with
meth_ok it is largely unchanged from that of FGJ. class_ok decl is
gien the notation CLASS decl OK throughout the encoding. CLASS decl

OK holds if decl is well-formed. All types within the declaration (field,
method and parameter types) must be well-formed. The types must also
be visible within the class declaration. The methods must also be well-
formed by meth_ok above.

Inductive class_ok : ClassDecl -> Prop :=

| T_Class : forall decl C XN Xo No N fs ms E E’ E0,

decl = cDecl C XN (Xo,No) N fs ms ->

E = (Xo,No)::XN ->

ok ((This,Ty_Var Xo)::E) ->

nested_env Xo XN E’ ->

E0 = (concat E E’) ->

WF_ty_env (concat E E’) nil CT ->

(forall N, In N (range E) ->

WF_ty E0 nil N CT) ->

WF_ty E0 nil N CT ->

(forall f T, In (f,T) fs ->

WF_ty ((This,Ty_Var Xo)::E0) nil T CT) ->

(forall M, In M ms -> meth_ok M C (Ty_Var Xo)) ->

visible E No C ->

(forall N, In N (range XN) -> visible E N C) ->

(forall T, In T (range fs) -> visible E T C) ->

(exists D Ts’, N = D <<Ts’;Ty_Var Xo>>) ->

ok_meths ms ->

116 CHAPTER 5. FEATHERWEIGHT OWNERSHIP GENERIC JAVA

ι /∈ dom(H) H′ = H, ι 7→ new C<T;O>(null)

new C<T;O>()|H −→ ι|H
(R-NEW)

H(ι) = new C<T;O>(...) mBody(m<V>,C<T;O>,Thisι) = (x;e)

ι.m<V>(v)|H −→ ι > [ι/this,v/x,Thisι/This]e|H
(R-INVK)

ι > v|H −→ v|H
(R-CONTEXT)

Figure 5.15: FOGJ Reduction Rules

(forall Ts O To fs, fields C <<Ts;O>> To fs ->

ok fs) ->

class_ok decl.

5.2.6 FOGJ Reduction

The FOGJ reduction rules are given in Figure 5.15. Field access, assign-
ment and sequence reduction are unchanged from FGJ, and so are omitted.
A new expression reduction adds a new location to the store but unlike
FGJ, all fields are initialized as null (R-NEW). R_New encodes R-NEW

below. When encoding R_New, we first need to construct the list of null
expressions to be stored as the field values. nulls, an omitted predicate,
holds if an input list is a list of e_null expressions. The list of fields for
C<<Ts;O>> is retrieved using fields. Ty_This (the This variable) is
passed as substitution for Ty_This. It does not matter what type is passed
since the types will never be used, but some input is required by fields.
Once the list of nulls has been constructed, the location is constructed in
the same manner as FGJ.

| R_New : forall H H’ i C fs ns fn Ts O,

nulls ns -> fields (C <<Ts;O>>) Ty_This fs ->

5.3. FOGJ SOUNDNESS 117

zip fs ns fn ->

H’ = stSnoc H (C <<Ts;O>>, fn) -> leng H = i ->

(e_new C Ts O) / H --> (e_loc i) / H’

Method reduction (R-INVK) is unchanged except that all instances of This
are substituted for Thisι, where ι is the receiver. R_Invk encodes R-NEW

below. A method call e_meth (e_loc i) m Vs vs reduces to the con-
text expression e_context i (subst ((this,e_loc i)::R) e),
where e is the body of m and R is the substitution of the parameters xs
of m for vs, the method call parameters. mbody is used to retrieve the
method body, and the Ty_This variable is replaced by This_ i in the
body, where i is the position of the receiver in the store.

| R_Invk : forall H i C m xs vs e R es Ts Vs O,

lookup i H = Some (C <<Ts;O>>,es) ->

mbody m Vs C <<Ts;O>> (This_ i) (xs,e)->

values vs -> zip xs vs R ->

(e_meth (e_loc i) m Vs vs) / H -->

(e_context i (subst ((this,e_loc i)::R) e)) / H

A context expression ι > v reduces to v (R-CONTEXT). R_Context en-
codes R-CONTEXT below. A context expression e_context l v with
store H reduces to v with store H if v is a value.

| R_Context : forall l v H,

value v -> (e_context l v) / H --> v / H

5.3 FOGJ Soundness

Soundness in FOGJ is structured in much the same manner as FGJ. A large
portion of the lemmas are devoted to proving type substitution preserves
the various judgements. This section will present those lemmas along with
the soundness proofs.

118 CHAPTER 5. FEATHERWEIGHT OWNERSHIP GENERIC JAVA

5.3.1 Type Substitution

Type Substitution Preserves Bound

The type substitution lemmas of FOGJ are very similar in statement to
those of FGJ. There is one addition in Lemma 5.3.1, the preservation of
ownership through type substitution. In other words if a type T has a
owner O, then after type substitution, the owner of T will be O.

Lemma 5.3.1. If E2 ∪ X / N ` T ok and E1; ∆ ` U : ok, where E1; ∆ ` U <:

[X/U]N, if E ′ = E1 ∪ ([X/N](E2 − X / U)), then owner′E([X/U]T) = [X/U]O

The encoding of Lemma 5.3.1 is given below.

Lemma type_substitution_preserves_ownership :

forall E T O, owner E T O ->

forall E1 XN E2 D Us R, E = concat XN E2 ->

ok XN -> zip XN Us R ->

forall E2’, subtract XN E2 E2’ ->

forall E’, E’ = concat E1 (map [:R:] E2’) ->

WF_ty_env E D CT ->

WF_ty_env E’ D CT ->

WF_ST D ->

(forall U, In U Us -> WF_ty E1 D U CT) ->

subtypes E1 D Us (map [R] (range XN)) ->

(forall Xi Ui, In (Xi,Ui) R ->

forall Ti, In (Xi,Ti) E2 ->

subtype E’ D Ui ([R] Ti)) ->

owner E’ ([R] T) ([R] O).

5.3.2 FOGJ Soundness

Theorem 5.3.1 is the statement of Preservation for FOGJ.

5.3. FOGJ SOUNDNESS 119

Theorem 5.3.1 (Preservation). If e|H −→ e′|H′ where e′ 6= err and e; Γ; ∆;P `
e : T, then ∃∆′ s.t. ∆′ ⊇ ∆, and ∃S, s.t. E; Γ; ∆′;P ` e′ : S and E; Γ ` S <: T

The encoding of Theorem 5.3.1 is given below.

Theorem Preservation :

(forall p p’, reduction p p’ ->

(forall E G D P T e e’ H H’,

(e,H) = p -> (e’,H’) = p’ ->

e’ <> e_err ->

WF_store D H -> WF_env G ->

WF_ty_env E D CT ->

typing E G D P e T ->

(exists D’, ST_Extends D’ D ->

WF_store D’ H’ ->

subtyping E G D’ P e’ T))) /\

(forall p p’, ListReduction p p’ ->

(forall E G D P Ts es es’ H H’,

(es,H) = p -> (es’,H’) = p’ ->

∼ In e_err es’ ->

WF_store D H -> WF_env G ->

WF_ty_env E D CT ->

subtypings E G D P es Ts ->

(exists D’, ST_Extends D’ D ->

WF_store D’ H’ ->

subtypings E G D’ P es’ Ts))).

Progress is given in Theorem 5.3.2.

Theorem 5.3.2 (Progress). ∀e, if E; Γ; ∆;P ` e : T then either;

(a) eis a value, or

(b) ∀H s.t. H is well-typed with respect to ∆, ∃e′,H′ s.t. e;H −→ e′;H′

120 CHAPTER 5. FEATHERWEIGHT OWNERSHIP GENERIC JAVA

The encoding of Theorem 5.3.2 is given below.

Theorem Progress :

(forall E G D P e T,

typing E G D P e T -> G = nil -> E = nil ->

(value e \/ (forall H, WF_store D H ->

exists e’, exists H’, e / H --> e’ / H’))) /\

(forall E G D P e T,

subtyping E G D P e T -> G = nil -> E = nil ->

(value e \/ (forall H, WF_store D H ->

exists e’, exists H’, e / H --> e’ / H’))) /\

(forall E G D P es Ts,

subtypings E G D P es Ts -> G = nil -> E = nil ->

(values es \/ (forall H, WF_store D H ->

exists es’, exists H’,

ListReduction (es, H) (es’, H’)))).

Chapter 6

Conclusion

This thesis has presented the encoding of three formalisms, FIJ FGJ and
FOGJ. The initial objective of the thesis was to encode Immutability and
Ownership using Coq. This Chapter reviews the types systems of Chap-
ters 3, 4 and 5. Section 6.2 discusses the structure of each type system and
Section 6.3 discusses potential future work.

6.1 Related Work

Cast-Free Feather Weight Java

The encoding of our original FJ with Assignment type system was based
upon a Coq encoding of Cast-Free Featherweight Java developed by De
Fraine et al. [5]. As such, the subsequent encodings in this thesis of FIJ,
FGJ and FOGJ have all inherited something of the Cast-Free FJ encoding.
Predicates such as subtype, typing are encoded in these type systems
are much the same as those of Cast-Free FJ in terms of structure, but there
are several changes that have been made. Context reductions in Cast-Free
FJ were encoded separately from the reduction predicate, while they were
encoded as normal reductions in the FIJ, FGJ and FOGJ encodings. In Cast-
Free FJ, types were simply classes, and so the type definition was fairly

121

122 CHAPTER 6. CONCLUSION

simple. In the type systems of this thesis, types are more complex, and
this has ramifications in all definitions of an encoding. One notable differ-
ence was type well-formedness. In Cast-Free FJ, a type well-formedness
predicate did not exist, since all types were classes, and thus well-formed
if in the class-table. In the encodings of this thesis (especially FGJ and
FOGJ), type well-formedness becomes more complex, and a predicate had
to be written.

Colored Fetherweight Java

Colored Featherweight Java [14] [7] (CFJ) is an extension of the Cast-Free
Featherweight Java by de Fraine et al. [5]. The CFJ type system is used in
evaluating multiple generated variants of a software product-line.

6.2 Encoding a Type System in Coq

While FIJ, FGJ and FOGJ are all different type systems encoding different
language properties, there is much they have in common. The all share a
very similar structure, and both the definitions of the type systems and the
theorems that make up the soundness proofs can be organised into distinct
sections that change little between type systems. This is not surprising as
each encoding is built upon the same FJ encoding, and each section of an
encoding such as FIJ corresponds to a distinct judgement or function in
the formal description of the type system.

While there are peculiarities to each type system, such as visibility in
FOGJ (see Section 5.2.5), each type system contains the following common
sections:

• Syntax: The encoding of the various type system elements; classes,
types, expressions, etc.

• Substitution: The substitution of expressions and types.

6.2. ENCODING A TYPE SYSTEM IN COQ 123

• Functions: Field and Method retrieval functions.

• Subtyping: The subtyping judgement.

• Well-formedness: Type and environment well-formedness.

• Typing: Expression, class and method Typing.

• Reduction: Expression Reduction.

The sections that have the most impact on the subsequent encoding
and soundness proofs are Syntax and Substitution. Other aspects of each
type system maintain a fairly standard structure between encodings, while
the way types and type substitution is handled changes since each type
system has a very different definition for types. Next is a description of
the structure of the Syntax and Substitution used in each encoding.

Syntax

The Coq encoded syntax consists of a collection of definitions defining
types, expressions and method and class declarations. The most important
definitions are types (ty) and expressions (exp). In all three encodings
types and expressions consist of Inductive definitions of type Type. The
headers for ty and exp are given below.

Inductive ty : Type :=

Inductive exp : Type :=

These definitions change as types and expressions are added to each type
system. Since types in FIJ, FGJ and FOGJ are very different, the way they
are represented changes. In FIJ, types were simply class types parametrised
by an immutability parameter. In FGJ, types were extended further to al-
low a variable number of generic parameters, along with type variables.
FOGJ further extended types by adding both variable and non-variable

124 CHAPTER 6. CONCLUSION

owner types. FOGJ presented a problem of how to define owner type vari-
ables; as owners, or variables. In FOGJ (Chapter 5.2.1), owner type vari-
ables are encoded as a distinct kind of type variable using o_Var. Thus,
for a natural number x, we define an ownership type variable Ty_Var

(o_Var x). Owner type variables are therefore distinct from normal type
variables (defined using t_Var), but can still be treated as type variables.
If we were to define owner type variables as a type of owner we would
redefine the own type in Chapter 5.2.1 as the following.

Inductive own : Type :=

| O_World : own

| O_This_ : nat -> own

| O_Var : nat -> own.

This would mean that owners would be easily distinguishable from other
types, but treating owner variables as type variables would be harder. We
decided to use the first encoding since it made the encoding of type sub-
stitution easier, which is discussed next.

Substitution

In each type system both expression and type substitutions are used. Ex-
cept for additional expressions, expression substitution is the same in all
three type systems, however type substitution changes substantially with
each type system. FIJ did not use type substitution, or at least used a very
basic type substitution, since substitution only ever involved the substi-
tution of one variable at a time. FGJ and FOGJ did use substitution, and
while they involved different cases (corresponding to the different types),
they maintained the same structure: a case for substitution applied to a
type variable that replaces the type variable with its mapping in the sub-
stitution, and a case for each non-variable type that recursively applies the
substitution to the type’s sub-types. The basic structure is given below.

Function subst_ty (E:ty_env)(T:ty){struct T}:ty :=

6.2. ENCODING A TYPE SYSTEM IN COQ 125

match T with

| Ty_Var x => match get_Var x E with

| None => T

| Some N => N

end

| <non-variable type> => <recursive substitution of E>

...

end

with subst_tys (E:ty_env)(Ts:tys){struct Ts}:tys:=

<type list substitution>

end.

In order to use this basic structure, we need to be able to group different
type variables together, and distinguish them from normal types. As dis-
cussed earlier in this Section, we decided to define owner variables along
with type variables rather than owners. While this added an extra level of
complication when distinguishing owners from normal types, it allowed
us to keep the same structure for the type substitution function from FGJ.
This meant we could use many of the metatheory theorems from FGJ for
substitution and the get_Var function. Type substitution contributed
substantially to the size of both the FGJ and the FOGJ encodings, there-
fore enabling code reuse reduced the size of FOGJ relative to FGJ.

Using the structure for types and type substitution discussed in this
Section, it is not hard to see how one could extend types further to include
other types such as immutability types. If we wanted to extend FGJ with
immutability as in IGJ [16], we could follow the structure of FOGJ.

Inductive Var : Type :=

| t_Var : nat -> Var

| i_Var : nat -> Var.

Inductive imm : Type :=

126 CHAPTER 6. CONCLUSION

| I_readonly : imm

| I_mutable : imm

| I_immutable : imm.

Inductive ty : Type :=

| Ty_Var : Var -> ty

| Ty_Class : class -> tys -> ty -> ty

| Ty_Imm : imm -> ty

This would allow us to quite easily apply the FOGJ substitution function
and lemmas on substitution to some FIGJ type system with minor mod-
ification. Given the amount of effort it takes to formally encode a type
system, reusing lemmas is premium.

6.3 Future Work

The type systems in this thesis are a good starting point for encoding var-
ious types of immutability and ownership, but there are several potential
extensions that could be considered.

6.3.1 Readonly References

The addition of readonly references to FIJ would help solve the significant
issue with the type system: the split type hierarchy. As discussed in Chap-
ter 3 the use of mutable and immutable mutability parameters requires
a split inheritance hierarchy. A readonly mutability type would allow for
both readonly references, and the joining of the split hierarchy. In such a
type system, both mutable and immutable instances of a class would ex-
tend a readonly instance. As a result, readonly references would require
a change of the subtype predicate in any future encoding. In the current
FIJ type hierarchy shown in Figure 3.1, if C<I1><:C<I2>, then I1 = I2,
however with the introduction of readonly references we could weaken

6.3. FUTURE WORK 127

Figure 6.1: Mutability Hierarchy

that restriction to I2<:I1. A modified mutability hierarchy identical to the
mutability in IGJ [16] is shown in Figure 6.3.1. Readonly references would
have little effect on type substitution, type well-formedness, lookup func-
tions, expression typing or reduction. Soundness proofs would also be
affected since the immutability guarantee would have to take a different
form. A likely immutability guarantee would be that any mutable ref-
erence points to a mutable object and any immutable reference would
point to an immutable object.

Theorem 6.3.1 (Immutability Guarantee). If Γ; ∆ ` e : T and e;H −→∗

ι;H′, then immut(T)<:immut(∆′(ι)), where ∆′ is well-formed w.r.t. H′ and
immut(T) returns the immutability of T.

6.3.2 Method Guards

In order to enforce safe method calls, FIJ used the idea of pure and mutating
methods. An immutable receiver could only have pure methods called
on it. OIGJ [17] uses method guards to restrict the types of receiver a
method may be called on.

void <X extends mutable>? mutableMeth (){}

void <X extends immutable>? immutableMeth (){}

void <X extends readonly>? readonlyMeth (){}

128 CHAPTER 6. CONCLUSION

The three methods above give an example of method guards. mutableMeth
may only be called on a mutable receiver, while immutableMeth may
only be called on an immutable receiver, and may not mutate the receiver.
readonlyMeth may be called on any receiver, but may not mutate the
receiver. If readonly references were to be added, then method guards
would provide the safety of pure method annotations while offering more
flexibility.

The addition of method guards would obviously alter the way method
calls are typed, but there could also be a change in the method retrieval
function that might not be expected in a paper formalism of such a type
system. Since the mutability of the receiver (X in the examples above)
would likely be used in the parameters and body of the method, it would
have to be substituted during normal type parameter substitution. This
would likely mean that it would have to be substituted during method
retrieval, and so would be passed as a parameter to themType andmBody
functions.

6.3.3 Featherweight Ownership Immutability Generic Java

Both immutability and ownership are language properties that are impor-
tant to writing code that is safe from careless aliases and exposure of object
representation. It follows that a combination of FIJ and FOGJ would facil-
itate both objectives [17].

Not only would it be useful from a language perspective, but the devel-
opment of FGJ (and subsequently FOGJ) has offered solutions to difficul-
ties in FIJ such as the representation and substitution of type parameters.
Such an encoding could use the type system of [17] as a basis. Since owner
parameters were introduced in FOGJ, much of the foundations of generic
immutability already exists within FOGJ. Major changes would take place
in subtyping, well-formedness and expression typing. There are no ex-
tra predicates needed beyond an immut function returning the primary

6.4. CONCLUSION 129

immutability parameter for a type.

6.4 Conclusion

In this thesis, we have presented three type systems, FIJ, FGJ and FOGJ. We
have encoded them using the Coq Proof Assistant, and have proven them
sound. Encoding a type system using a proof assistant gives us an extra
level of insurance that our type system is safe, assuming we trust that the
proof assistant is correct. While encoding a type system using Coq is both
time and effort intensive, we feel that these encodings form a strong basis
for future extensions, and provide a basic structure for future encodings.
Standardising the structure of a type system encoding is needed in order
to allow for code reuse, and code reuse is crucial to reducing the overhead
incurred by future encodings.

To our knowledge, the FIJ encoding is the only encoding of a type sys-
tem featuring Immutability in Coq. FIJ allows for both Class and Object
Immutability, and we have also provided a description of how an exten-
sion featuring readonly references could be constructed for FIJ that makes
use of lessons learned while encoding FGJ and FOGJ.

FGJ extends our previous encoding of the FJ type system with assign-
ment with Java generics. While there are other encodings of FGJ, encoding
FGJ was necessary to the encoding of FOGJ and generic type substitution.
FOGJ extends FGJ with Ownership, and to our knowledge is the only type
system featuring Ownership that is encoded in Coq.

130 CHAPTER 6. CONCLUSION

Bibliography

[1] BERTOT, Y., AND CASTÉRAN, P. Interactive theorem proving and
program development: Coq’Art: the calculus of inductive constructions.
springer, 2004.

[2] CARDELLI, L. Type systems. ACM Computing Surveys 28, 1 (1996),
263–264.

[3] CLARKE, D. G., POTTER, J. M., AND NOBLE, J. Ownership types for
flexible alias protection. ACM SIGPLAN Notices 33, 10 (1998), 48–64.

[4] DIETL, W., DROSSOPOULOU, S., AND MÜLLER, P. Generic universe
types. In ECOOP 2007–Object-Oriented Programming. Springer, 2007,
pp. 28–53.

[5] FRAINE, B. D., ERNST, E., AND SÜDHOLT, M. Cast-free feath-
erweight Java, 2008. http://soft.vub.ac.be/˜bdefrain/

featherj/.

[6] IGARASHI, A., PIERCE, B. C., AND WADLER, P. Featherweight java:
a minimal core calculus for java and gj. ACM Trans. Program. Lang.
Syst. 23, 3 (May 2001), 396–450.

[7] KÄSTNER, C., APEL, S., THÜM, T., AND SAAKE, G. Type checking
annotation-based product lines. ACM Trans. Softw. Eng. Methodol. 21,
3 (July 2012), 14:1–14:39.

131

132 BIBLIOGRAPHY

[8] MACKAY, J., MEHNERT, H., POTANIN, A., GROVES, L., AND

CAMERON, N. Encoding featherweight java with assignment and
immutability using the coq proof assistant. In Proceedings of the 14th
Workshop on Formal Techniques for Java-like Programs (New York, NY,
USA, 2012), FTfJP ’12, ACM, pp. 11–19.

[9] NOBLE, J., VITEK, J., AND POTTER, J. Flexible alias protection. In
ECOOP’98 (1998), Springer-Verlag, pp. 158–185.

[10] ÖSTLUND, J., WRIGSTAD, T., CLARKE, D., AND ÅKERBLOM, B.
Ownership, uniqueness and immutability. In TOOLS Europe 2008
(2008).

[11] PIERCE, B., CASINGHINO, C., GABOARDI, M., GREENBERG, M.,
HRICU, C., SJBERG, V., AND YORGEY, B. Software foundations, 2013.
http://www.cis.upenn.edu/˜bcpierce/sf/.

[12] PIERCE, B. C. Types and programming languages. MIT Press, Cam-
bridge, MA, USA, 2002.

[13] THE COQ DEVELOPMENT TEAM. The coq proof assistant, 2013.
http://coq.inria.fr/.

[14] THÜM, T. A machine-checked proof for a product-line–aware type
system. Master’s thesis, University of Magdeburg (2010).

[15] TSCHANTZ, M., AND ERNST, M. Javari: adding reference immutabil-
ity to Java. In OOPSLA2005 (2005).

[16] ZIBIN, Y., POTANIN, A., ALI, M., ARTZI, S., KIE, UN, A., AND

ERNST, M. D. Object and reference immutability using Java gener-
ics. In ESEC/FSE2007 (New York, NY, USA, 2007), ACM, pp. 75–84.

[17] ZIBIN, Y., POTANIN, A., LI, P., ALI, M., AND ERNST, M. D. Own-
ership and immutability in generic Java. In OOPSLA (2010), pp. 598–
617.

