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Abstract

Herein contained is an exploration into mathematical modelling pertaining 
to blood flow in arteries. Previous models are considered as well as a new model 
derived. Some properties of these new models are investigated. They hold 
similarities with models from other physically significant systems, namely the 
KdV/BBM equations used for the modelling of water flow.
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Chapter 1

Introduction

The study of the human cardiovascular system has been a multidisciplinary approach span-
ning many years. Though the physical structure was known since antiquity (and many
different theories put forward to explain both operation and purpose), the major develop-
ments came from William Harvey in 1628. He postulated that the heart was responsible for
blood flow in the cardiovascular system. It was this idea that began the modern understand-
ing of the cardiovascular system[3].
The foray of mathematics into this topic concerned itself mainly with modelling the flow
of blood in arteries. To this end, Euler began with the formulation of equations to describe
these. Still in use today and (appropriately) named the Euler Equations, they describe in-
compressible and inviscid flow in arteries. Poiseuille’s law (given in 1846), ∆p

l =
(

8µ
πR4

)
Q

relates pressure drop to flow rate, providing both an accessible and accurate model. Further
work by Navier and Stokes led to the development of a set of equations for general motion
of a viscous fluid.
Auxiliary to the fluid-flow approach is the lumped parameter model. Developed by Otto
Frank,[4] the Windkessel model treats the arteries as an electric circuit, first as a simple
resistor, with successive circuit elements like capacitors and inductors added for greater ac-
curacy. Another significant contributor was Womersley, who worked on solutions to the lin-
earized Navier-Stokes equations[5]. More recent developments have been focused around
the idea of pulse wave propagation, in which models are derived from waves in the circu-
latory system having finite speed[1, 6]. Overall, there have been many contributors to this
topic, with this being a small recount of a rich history.
Cardiovascular disease stands as a leading cause of death in the world, comparable in toll
to other afflictions like cancer. The problems that arise with the vascular system are largely
mechanical failures - obstructions due to build-up of plaque, or hardening of the arteries
(arteriosclerosis) for example. Understanding when and where these failures occur is vital.
Preventive intervention can often minimize or remove some of these problems, and stands
as a good strategy to counter heart disease. Thus, anything which helps to understand the
mechanics of blood flow can be potentially used as a tool to see out this strategy. Mathe-
matics stands as one of these tools. Mathematical models that simulate blood flow are used
in operations and in consideration of devices such as heart stents. In such sensitive cases
as surgery, it is important to have a strong theoretical basis on which these operations are
performed[7, 8, 9].
Secondary to clinical importance, the cardiovascular system is also rather fascinating. It is an
approachable physical system, being abstractly relatable to a system of pipes with a pump
attached. From this ’simple’ system, the complexity can ramp up quickly, as modelling for
the capillaries and veins is added. Further effects such as that of viscosity and viscoelasticity
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from the arterial walls can be considered. The study of this topic is self-justifiable, and may
have contributed to the rich history of mathematics in haemodynamics. In time I should
hope the entire system will be solved; it would make for a great self-contained story.
We are not afforded that luxury yet however.
The cardiovascular system is responsible for maintaining and regulating blood flow. It is
comprised of a network of vessels that form a closed loop with the heart. There are two
main sections - arteries, which carry blood away from the heart and veins which carry blood
to the heart. They link together in the organs of the body through the capillaries - extremely
narrow branching beds through which the blood can interface the organs.
Structurally, the two systems are very different - arteries tend to be narrow, high pressure
and carry oxygenated blood, while the veins are wider, low pressure and carry deoxy-
genated blood. The entire system is driven by the heart which acts as a large pump by
taking blood into it and contracting to force it out. Figure (1.1) gives a good outline to the
structure.
The blood itself is a complex mixture of chemicals. The general role of blood is to act as a
transport agent. Any chemical which moves throughout the body will do so through the
blood, including both nutrient and waste byproducts. These chemicals are largely trans-
ported through the blood plasma, which contains mostly water and accounts for around
half of the blood volume. The other half is comprised of blood cells, with majority red.
These are large cells which contain hemoglobin, a chemical responsible for the transport of
oxygen and carbon dioxide from the organs to the lungs[7].
Blood is a non-newtonian fluid[10] which displays shear-thinning properties. These are re-
lated to the microscopic properties and structure of the red blood cells. In this study, we will
generally be treating blood as an inviscid fluid, one that does not have viscosity. In the ar-
teries this assumption allows for accurate models, but breaks down in the capillaries, where
the size of the vessel and red blood cells are comparable, and the veins, where blood flow is
much lower.
The structure of this thesis is first to show and give some models from literature with focus
on 1D and 0D. From there, we turn to the formulation of a system derived by asymptotic
methods, exploring both their initial formulation and subsequent simplifications. Finally,
some properties of the new models are investigated. Results have been published, with
work beginning in [11].
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Figure 1.1: Depiction of the arterial structure. Reproduced from [1].
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Chapter 2

Derivation of current models

Blood flow, like many things, can be described by a set of equations. These equations are the
mathematical model we choose. They are derived from the application of empirical laws
and logical consequences of them arising from mathematical reasoning and examination. In
this chapter I will be showing the derivation of the general laws of motion for fluid flow.
These comprise the first major models used[12, 13, 7] and give an example of how mathe-
matical reasoning can be applied to arrive at a model. Some of the methods presented here
indeed shall feed into the later chapters, where nondimensionalization is used. Here I shall
also discuss the Windkessel model.

2.1 Continuity Equation

We begin with a statement: the rate of change of a particular quantity in a given volume is
exactly the net migration through the surface, and production/consumption of it inside the
system.1 Mathematically, we write this in terms of integrals as the following:

∂

∂t

∫
V

f = −
∫

∂V
f u · n−

∫
V

s

where f is the quantity, u = [u(x), u(y), u(z)] is the material velocity vector, u · n is the
dot product of the material velocity and unit normal vector to the surface, and s is the
source/sink of the system.
The integrals given are a mathematical formulation involving both the volume and the
boundary of the volume. Our goal is to combine the integrals into one statement, as op-
posed to two separate integrals. To do this, we apply the Divergence Theorem to the surface
integral to obtain:

∂

∂t

∫
V

f = −
∫

V
∇ · ( f u)−

∫
V

s

By assumption, this is over a control volume, so using Reynolds Transport Theorem, the left
hand side is transformed to give:∫

V

∂ f
∂t

= −
∫

V
∇ · ( f u)−

∫
V

s

Essentially, this brings the derivative inside the integral.
Now the integrals are all combined to give:∫

V

(
∂ f
∂t

+∇ · ( f u) + s
)
= 0

1Heat is a good example of such a quantity
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This implies that:
∂ f
∂t

+∇ · ( f u) + s = 0

This final equation is the continuity equation, commonly used in the context of quantities
that are being preserved such as energy. For the next step, it will be used to derive equations
for mass and momentum conservation.

2.2 Mass Conservation

Because mass is neither created nor destroyed in any fluids we are concerned with, the rate
of change of mass is zero. This is the law of mass conservation. The system will also be
treated as closed, so that no mass can enter or leave. We desire a translation of this idea into
fluids. The mass of a fluid is given by the integral of the density over a given volume; in this
case, the control volume. Considering this and the other statements, we have formally:

∂

∂t

∫
V

ρ = 0 (2.1)

The quantity in question here is density, which can be substituted into the continuity equa-
tion immediately to get:

∂ρ

∂t
+∇ · (ρu) = 0 (2.2)

A further simplification can be made here. By treating the fluid as having constant density
(as is the case with many liquids like blood) allows a simple statement for the conservation
of mass in a fluid;

∇ · u = 0 (2.3)

Note that this condition also gives that the fluid is incompressible.

2.3 Momentum Conservation

Momentum can neither be created nor destroyed, only transferred.
A similar calculation for mass will give the momentum of a control volume, using momen-
tum density (also referred to as mass flux) as the conserved quantity as opposed to simply
mass density. The initial integral is thus:

∂

∂t

∫
V

ρu = s

Where u is the velocity vector of the control volume. This gives us:

∂(ρu)
∂t

+∇ · (ρu⊗u)− s = 0 (2.4)

We proceed similarly to the mass conservation - more terms do arise as a result of the prod-
uct rule from the del operator. By expanding the terms, we arrive at

u
∂ρ

∂t
+ ρ

∂u
∂t

+ u⊗u · ∇ρ + ρu · ∇u + ρu∇ · u = s (2.5)

Rearranging, we get

u(
∂ρ

∂t
+∇ · (ρu)) + ρ(

∂u
∂t

+ (u · ∇)u) = s (2.6)
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Which, given the mass conservation law, simplifies to

ρ(
∂u
∂t

+ (u · ∇)u) = s (2.7)

Unlike in the case with mass conservation, the source term of the momentum conservation
is nonzero. This is due to forces acting on the system in some way. These can be categorized
into three parts:

External Force: Caused by forces acting on the body as a whole. The major (and most commonly
accounted for) force is gravity

Internal Force: These tend to arise due to interactions of particles with eachother. The viscocity of a
fluid is an example.

Surface Stress: Caused by interactions on the boundary of the fluid. An example of this is blood
interacting with the artery. On the boundary, this will be equal to the internal force,
and we will capture the influence of the wall via the pressure term.

We account for all these forces in different ways. First, external forces are simply modelled
by addition of a term such as g. In this study, we will consider the body forces as negligible.
In the case of a resting body, forces in the arteries are mainly dominated by the heart and
arterial compliance, justifying this choice.
It is good to note that this is not the case in many situations. There are a lot of forces that
can act on the body which have drastic effects. Microgravity tends to have a detrimental
effect on the cardiovascular system, a phenomenon being actively investigated by NASA
and which will become more important as mankind ventures further into space[14]. Back
on Earth, G-force from jets can lead to redouts, where the pilot simply passes out as the brain
is flooded with blood. Even the simple act of running changes the body forces. All these
interactions are very complex.
The internal stresses are encoded in a matrix, called the Cauchy stress tensor. All stresses
within the material can be described in this matrix; three forces parallel with the coordinates
and 6 shear stress components - 3 components in total for each coordinate. These forces will
be acting through a surface, so invoking the divergence theorem, we can obtain∫

Ω
s =

∫
∂V

T · n + g =
∫

V
∇ · T + fexternal (2.8)

Now an assumption is made on the nature of T. This relation is derived from the mechanical
properties of the fluid - it is assumed to be a linear function of the derivative of the velocity.
Here, the relation is

T = −PI + µ(∇u +∇uT) (2.9)

Here P is the pressure and µ the viscocity term. This is known as a constitutive equation.
This relation in particular is for Newtonian incompressible fluids, and different equations
here will lead to different modelling. It may be a good place to start if one wishes to derive
more complex behaviour.
Now we apply the del operator to T, and rearrange to obtain:

∇ · T = −∇ · PI + µ∇ · (∇u +∇uT)

= −∇ · PI + µ∇2u +∇(∇ · u)
= −∇ · PI + µ∇2u

as ∇ · u = 0 by mass conservation

(2.10)
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2.4 Navier-Stokes Equations

By combining the two conditions, we finally arrive at:

∂u
∂t

+ (u · ∇)u +∇P
ρ
− µ∇2u = 0

∇ · u = 0
(2.11)

This set of equations is known as the Navier-Stokes equations, well renowned for their ubiq-
uity in fluid dynamics. Indeed, they are the set of equations which describe all incompress-
ible fluid flow, and are a cornerstone of any study related to it.
Despite having been derived over 100 years ago, the equations are still remain unsolved, ow-
ing to their difficulty. The unique phenomenon of turbulence, chaotic movement induced
by a number of factors, and high dimensionality are some of these problems. Modelling a
full 3D system requires a lot of computer resources and time - resources that may be scarce
and time unavailable. In a clinical setting for example, the timescale may be as low as a few
hours[15]. Simpler models allow for lower resources and time. An added benefit is that sim-
plified models allow insight to potential non-experts, a major benefit for a cross-disciplinary
problem.
Of course then, one doesn’t want to get snared and perform a fatal error on the whims of a
bad model. There is a fine balancing act between what can and could be solved.

2.5 1D Models

Attempts to solve equations such as the Navier-Stokes equations often resort to simplifica-
tions. This comes at the price of neglecting some physical behaviour, but can lead to models
which capture the principal behaviours of the system in a robust and efficient manner. One
such strategy is to lower the dimensionality, solving a 1D/0D model as opposed to 3D. For
the arterial system, we will only be dealing with a pipe-like domain - the arteries. To model,
it will be convenient to use cylindrical coordinates (x, r, θ) rather than (x,y,z). For (x, r, θ), x
is parallel to the direction of blood flow in the artery, while r is transverse to the direction of
blood flow. This allows us to make a number of reductions which simplify the system:

• Axial symmetry eliminates θ, with no quantities depending on the angle. This lowers
the dimensionality immediately by 1. The tube radius is thus also a function of x and
t.

• The pressure across each axial section is the same, thus only dependent on x and t.

• The x direction velocity component is dominant with respect to the r and θ velocity
component. That is to say, velocity in the direction of r and θ is minimal to the point
of negligibility. Further, the velocity can be stated as

u(x)(x, r, t) = ū(x, t)s(
r

R(x)
) (2.12)

where ū is the cross-sectional average velocity and s is a velocity profile.

• The artery radius can be described by

R(x, t) = R0(x) + η(x, t) (2.13)

Where R(x,t) is the radius, R0(x) is the reference radius and η is the displacement from
the reference radius.
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• Body forces are 0.

3 more unknowns are added for simplicity of calculation - A, area, Q, average flux, and P,
axial pressure, along with a generic axial section denoted by S. Area and average flux are
defined as follows:

A =
∫

S
dσ

Q = ρ
∫

S
u(x)dσ = Aū

From here, the Navier-Stokes equations are integrated along a generic axial section.

2.6 Mass Conservation

Using the divergence theorem, we change the integral to∫
Ω
∇ · u =

∫
Ω+

ux −
∫

Ω−
ux +

∫
Ω(wall)

u · n (2.14)

Where Ω is the volume of the artery in question. The surfaces of the volume are partitioned
into 3 segments - Ω+, the entrance of the vessel, Ω−, the exit of the vessel, and Ω(wall) the
vessel wall. Along Ω(wall), we assume ux = 0 - this is known as the no-slip condition. This
implies ηt = u. Using this condition, and the definition of Q, we get

∂A
∂t

+
∂Q
∂x

= 0 (2.15)

2.7 Momentum Conservation

For the momentum conservation, we have a similar derivation as before, with each term
being integrated separately.
Using the Arbitrary Lagrangian Eulerian Transport theorem, we have∫

Ω

∂ux

∂t
=

d
dt

∫
Ω

ux −
∫

∂Ω
uxηt · n =

d
dt

∫
Ω

ux (2.16)

where ηt denotes the boundary speed. Along the axial direction, this is 0, and along the
boundary ux = 0, hence the boundary integral goes to 0. Using the mean value theorem, we
are able to obtain:

d
dt

∫
Ω

ux =
∂

∂t
[A(xc)ū(xc)dx] +O(dx) (2.17)

By diving by dx, taking the limit as dx → 0 and using the definition of Q, we finally obtain

lim
dx→0

[
∂

∂t
[A(xc)ū(xc)] +O(dx)

]
=

∂Q
∂t

(2.18)

Using the divergence theorem, we have∫
Ω
∇ · (uxu) =

∫
∂Ω

uxu · n =
∫

Ω+
u2

x −
∫

Ω−
u2

x +
∫

Ω(wall)
uxηt · n (2.19)
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As ux is 0 along the arterial wall, we rearrange to get∫
Ω
∇ · (uxu) = α

∂

∂x
(

Q2

A
)

where α =

∫
S u2

xdσ

Aū2

(2.20)

Usually α is taken to be 1, or at the very least constant. The pressure is independent of time,
which leaves us with

1
ρ

∫
Ω

∂P
∂x

=
A
ρ

∂P
∂x

(2.21)

Finally we consider the last term of the momentum equation in the Navier-Stokes (equation
2.11): ∫

Ω
∇2ux =

∫
∂Ω
∇ux · n =

∫
Ω+

∂ux

∂x
−
∫

Ω−

∂ux

∂x
+
∫

Ω(wall)
∇ux · n (2.22)

We assume ∂ux
∂x is small, and split n into the x and r components. This gives the approximate

equation ∫
Ω
∇2ux ≈ βū = β(

Q
A
) (2.23)

Where β is a friction parameter that depends on the velocity profile chosen.
Put together, these equations are

∂Q
∂t

+ α
∂

∂x
(

Q2

A
) +

∂P
∂x

+ β(
Q
A
) = 0

∂A
∂t

+
∂Q
∂x

= 0
(2.24)

2.8 0d Models

First we adopt a pressure-area relation of the form2

P =
4
√

πhE
3A0(1− σ2)

(
√

A−
√

A0) =
β

A0
(
√

A−
√

A0) (2.25)

Where E is the Young modulus, h the wall thickness and σ the Poisson ratio. Substituting
this and linearising about the point A0 we greatly simplify (2.24) to

C
∂p
∂t

+
∂q
∂x

= 0

L
∂q
∂t

+
∂p
∂x

= −Rq
(2.26)

where

C =
2A
√

A0

β
, L =

ρ

A0
, R =

ρβ

A2
0

(2.27)

2note: πr2 = A =⇒ r =
√

A√
π

. This is a linear relation of strain, stating that the force is simply ratio of

change of radius multiplied by a kinematic constant ie the pressure, or strain, is simply ∆r
r0

multiplied by the
appropriate constants
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By integrating over the length of the artery, and assuming the mean pressure and flow are
equal to the pressure and flow in, we have the system

C
dpin

dt
+ qout − qin = 0

L
dqout

dt
+ Rqout + pout − pin = 0

(2.28)

This now gives an algebraic expression relating pressure and speed. Given an input pres-
sure and speed, one can calculate an output pressure and speed.
Interestingly, these equations are the same as the ones used for electric circuits, treating C as
capacitance of a capacitor, R as resistance of a resistor and L as the inductance of an inductor.
The pressure and flow are then voltage and current.
Treating the cardiovascular system as an electrical circuit[16, 5] represents some of the ear-
lier efforts in modelling. It is known as the Windkessel model. It consists of a 2, 3 or 4
element circuit, with combinations of resistors, capacitors and inductors used to construct
these circuits. This is used to model a small section of a vessel, then a larger system is con-
structed by the compound addition of individual elements. This forms a lumped parameter
model[17, 18, 19, 20]. In figures (2.1) and (2.2) the various representations for the Windkessel
model can be seen.
The correspondence to an electric circuit immediately highlights the inability of this model
to account for wave propagation. In this model, all circuit elements will react instanta-
neously to a change in voltage/current, whereas in the human body the wave takes time to
travel through. Wave propagation underpins the mechanics of the arterial system - it is a re-
sult of the elastic nature of the system. While these models cannot capture this phenomenon,
they still remain useful for coupling to other models.

10



Figure 2.1: (a) a 3 element Windkessel Model and (b) a 4 element Windkessel Model. Repro-
duced from [1].
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Figure 2.2: Further depictions of the various schematics used for the Windkessel model.
More complicated circuits can be constructed from the basic elements and can be used for
better modelling, such as (f), similar to a Generalized Maxwell model. Reproduced from [2].
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Chapter 3

Asymptotic Models

This chapter will focus on the derivation of a newer model that uses asymptotic analysis as
the main mathematical method. The methods needed to perform the analysis are presented
and then carried out, which give a baseline for the development of a Boussinesq model in
the following chapter. We begin with the non-dimensionalization and scaling of the Euler
equations. The Euler equations have a similar form to the Navier-Stokes, only they assume
the fluid has no viscocity (inviscid flow). In cylindical coordinates, they are:

ut + uux + vur +
1
ρ

px = 0 (3.1)

ut + uvx + vvr +
1
ρ

pr = 0 (3.2)

ux + vr +
1
r

v = 0 (3.3)

Where u is the velocity in the x direction (parallel to the artery), and v is the radial velocity
(perpendicular to the artery). Flow is assumed to be irrotational, hence velocity with respect
to θ is 0. Here (and from now on) the subscripts are shorthand for the derivative with
respect to that variable ie ut =

∂u
∂t . Scaling and nondimensionalization begins with the series

of transformation of variables:

η? =
η

a
, x? =

x
λ

, r? =
r
R

, t? =
t
T

,

u? =
u
εc̃

, v? =
v

εδc̃
, p? =

p
ερc̃2 , γ? =

γ

ρλc̃ε

(3.4)

Where:

• a is the amplitude of a typical wave on the wall of the artery

• λ, the typical pulse wavelength

• R, the typical vessel radius

• c̃ (=
√

Eh/2ρR), the Moens-Korteweg characteristic speed

• T (= λ
c̃ ), the time scale chosen

• γ is parameter which characterises viscoelasticity 1

1The parameter is usually defined in terms of the response a material has when loaded and unloaded with a
constant stress. The exact value is both material and model dependent.
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• ε = a
R

• δ = R
λ

The two terms ε and δ characterise the non-linearity and dispersion of the system respec-
tively. The domain these equations pertain to are the arteries, which we can approximate
as a long thin tube that does not expand much upon contraction. Taking this into account,
inspecting the definition of ε and δ2, we find these two terms will be very small and of sim-
ilar order, with the assumptions ε � 1 and δ2 � 1. Further we assume that ε and δ2 are
comparable, with ε/δ2 = O(1). This is the Stokes-Ursell number, which characterises the
balance between non-linearity and dispersion. By taking O(1), we assume the two effects
are balanced. The derivation depends on this, as with a higher Stokes-Ursell number, the
model no longer holds as well.
This leads to the cylindrical Euler equations being written as:

u?
t? + εu?u?

x? + εv?u?
t? + p?u? = 0 (3.5)

δ2(v?t? + εu?v?t? + εv?v?r?) + p?r? = 0 (3.6)

r?u?
x? + (r?v?)r? = 0 (3.7)

δ2v?x? = u?
r? (3.8)

With the additional irrotational condition (3.8), and boundary and pressure conditions:

v? = η?
t? + r?w

x? u? at r? = r?w (3.9)

p? = αδ2η?
t?t? + γ?βη?

t? + βη? at r? = r?w (3.10)
v? = 0 at r? = 0 (3.11)

Where α = ρwh
ρR , β = 2R2

r2
0(x) . ρw is the wall density, h is the wall height, and ρ is the blood

density. rw and r?w are defined as the radius and nondimensionalized radius of the wall re-
spectively. Furthermore, we can define rw(x, t) = r0(x, t) + η(x, t), where r0 is the reference
radius of the artery, and η is the (assumed small) displacement of the wall from r0.
From here we begin the analysis. Our aim is to see what order every term is, then try elimi-
nate terms of order O(εδ2, δ>2). To clean up notation, the ? will be dropped.

Figure 3.1: Physical domain of the artery
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3.1 Wall Motion

In this section we will derive equation (3.10). This is the pressure used to describe the wall,
and governs it’s motion. The artery wall has many different layers. We will be approximat-
ing it as a thin strip. The study of the fluid-structure interaction is very complex, and gives
rise to boundary layer theory, where behaviour changes dramatically depending on how far
the fluid is considered to be from the solid surface[21, 22, 23, 24]. To do this, we will consider
the forces acting on the wall by considering small elements of it. To this end, we consider
the wall thickness (δr, denoted as h), arc length (rδθ) and wall length (δx). The volume and
mass of the small wall element are then:

δV = rhδθδx (3.12)
δm = ρwδV (3.13)

Stress, σ, is defined as the force acting on the area of a material. There will be 5 major stresses
occurring within the tube, given as pressures. The 5 sources are:

1. Radial Stress, σ(r)

2. Axial Stress, σ(x)

3. Angular Stress, σ(θ)

4. Fluid Stress, pw

5. Shear stress, τw

We now consider the forces acting in each direction. The forces must balance in accordance
with Newton’s laws (mass times acceleration). This will give us equations of motion.
For the radial direction, we have:

δm
∂2η

∂t2 = rδθδxpw − rδθδxσ(r)

Simplifying to:

ρwh
∂2η

∂t2 = pw − σ(r) (3.14)

The angular acceleration will be 0, as we are assuming cylindrical symmetry. However,
as the angular arclengths increase, the radius increases. This is a consequence of cylindrical
symmetry - if the arclength between two points increase, it must be that the radius increased.
In other words, angular and radial stress are related. To find this relation, we consider the
radial and angluar stress to be in equilibrium, and set

rδθσ(r) = 2hsin(
δθ

2
)σ(θ) (3.15)

which simplifies to:

σ(r) =
h
r

σ(θ) (3.16)

We will assume the arteries do not elongate or contract over the cardiac cycle as they are
tethered in place, thus the axial acceleration will be 0. Therefore, any stress from this direc-
tion will be a constant term, and will not be considered for the moment.
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3.2 Stress-strain relations

Now we consider the strain in each direction. Strain, ω, is a dimensionless quantity defined
as the change in length divided by the original length. These equations are similar to those
for a linear elastic isotropic material, and express the strain in terms of the stress in each
direction. They are (in vector notation):ω(x)

ω(r)
ω(θ)

 =
1
E
(

σ(x)
σ(r)
σ(θ)

− ν

σ(r) + σ(θ)
σ(θ) + σ(x)
σ(x) + σ(r)

) (3.17)

Where E is Young’s modulus and ν is Poisson’s ratio. We assume the displacements in the
artery will remain small. Rearranging to solve for the stress, assuming r

h � ν, and using the
relation for σ(r) and σ(θ) (namely σ(r) =

h
r σ(θ)), we find

σ(x) = Eν(ω(x) + νω(θ)) (3.18)

σ(r) =
hEν

r
(ω(θ) + νω(x)) (3.19)

Where Eν = E
1−ν2

Axial strain is caused by change in length of the tube. Under the assumption that the artery
remains the same length however, we find the axial strain to be 0. Here I will mention there
have been some studies into the longitudinal effects of the arteries[25, 26]. A taut string will
behave differently to a loose one. Forces do cause tangential stresses, and the fact that the
arteries are already under stress means the pressure term could be affected. Certainly there
is a difference in axial stress when comparing the arteries and veins.
For angular strain, strain arises in two ways:

1. Between two points in the artery, the arclength between them increases due to a change
in angle. Under the assumption of cylindrical symmetry however, this cannot occur.
This would cause the artery to balloon out at one particular wedge. With cylindrical
symmetry, each cross-section will always be a circle, preventing this.

2. An arclength increasing in length because of the increase in radius. This arclength
increase is not impossible under our assumptions, unlike the previous case, so we
must consider it.

For the arclength, the change in length is from rδθ to (r + η)δθ. Strain is defined as change in
length divided by original length. Here we will introduce the viscoelasticity, by adding an
extra term into the modelling of the strain, related to the resistivity of the material to change.
This is modelled as a strain from both the change in length and the resistance to that change,
given as:

ω(θ) =
1

rδθ
((r + η + γ

∂η

∂t
)δθ − rδθ) (3.20)

Where γ is the constant related to the viscoelasticity of the vessel wall.
This simplifies to:

ω(θ) =
η + γηt

r
(3.21)

Substituting in to equations of motion, and taking εx = 0 as discussed, we find:

ρwh
∂2η

∂t2 = pw − hEν

r2 (η + γηt) (3.22)

This gives us an equation for the pressure at the wall purely in terms of the wall motion.
Nondimensionalizing this equation, we get (3.10).
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3.3 Asymptotic Analysis

With the wall derivation fully justified, we are ready to begin analysis. By integrating (3.8)
from r to rw, we get

u(x, r, t) = u(x, rw, t)− δ2
∫ rw

r
vx(x, τ, t)dτ (3.23)

Giving us u(x, r, t) = u(x, rw, t) +O(δ2). Equation (3.8) also gives us that ur = O(δ2). By
differentiating (3.23) with respect to x and t, we get

ux(x, r, t) = ux(x, rw, t) + rw
x ur(x, rw, t) +O(δ2) (3.24)

ut(x, r, t) = ut(x, rw, t) + rw
t ur(x, rw, t) +O(δ2) (3.25)

However, since ur = O(δ2), we get

ux(x, r, t) = ux(x, rw, t) +O(δ2) (3.26)

ut(x, r, t) = ut(x, rw, t) +O(δ2) (3.27)

Inserting (3.8) into (3.5) gives a simpler form of the momentum equation:

ut + εuux + px = O(εδ2) (3.28)

Now we try to derive some approximations for v. We consider the function

ψ(x, r, t) =
1
r

∫ r

0
τu(x, τ, t)dτ (3.29)

To calculate this integral, we use the relation (3.23), giving us

ψ(x, r, t) =
r
2

u(x, rw, t) +O(δ2) (3.30)

This is then used in the integration of (3.7) from 0 to r, giving

v(x, r, t) =
1
r

∫ r

0
τu(x, τ, t)dτ = −ψ (3.31)

=⇒ v(x, r, t) = − r
2

ux(x, rw, t) +O(δ2) (3.32)

Substituting this into (3.9), we get an equation for η:

ηt = −(
1
2

rwux(x, rw, t) + rw
x u(x, rw, t)) +O(δ2) (3.33)

From the derivation of the wall pressure laws, a new term is derived, to be added to the
original equation. This will affect the derived momentum conservation law. The viscoele-
lasticity constant is assumed to be rather small, and we further assume the order of γ? can
be compared to ε and δ2, as follows:

O(γ?δ2) ≈ O(γ?ε) ≈ O(εδ2) (3.34)

From here we wish to calculate the derivatives of the viscoelasticity term; specifically we are
looking to calculate [γ?β(x)ηt]x. We start by making the subtitution of ηt:

ηt = −
1
2
(rwux + 2rw

x u) +O(δ2) (3.35)
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Because of the assumption that O(γ?ε) is very small, we can make the further assumption
that

γ?rw = γ?r0 +O(γ?ε, γ?δ2) (3.36)

Substituting, we get:

γ?[β(x)ηt] = −γ?R2
( r0

r2
0

ux + 2
r0x

r2
0

u
)

(3.37)

= −γ?R2
( 1

r0
ux + 2

r0x

r2
0

u
)

(3.38)

Now we consider the x derivative. As γ? and R2 are constant with respect to x, we bring
them out and use product/quotient rule to obtain:(ux

r0

)
x
=

uxxr0 − r0xux

r2
0

(3.39)

( r0xu
r2

0

)
x
=

(rxu)xr2
0 − 2r0x(r0xu)

r4
0

(3.40)

=
(rxxu + rxux)

r2
0

− 2
r2

0
· r2

0xu
r2

0
(3.41)

giving us

γ?[β(x)ηt]x = −γ?β(x)
2

[
uxxr0 + r0xux + 2r0xxu− 4

( r2
0xu
r2

0

)]
(3.42)

(3.32) can be inserted into (3.5) to obtain

pr = δ2(
r
2
)uxt(x, rw, t) +O(ε, δ2, δ4) (3.43)

Integrating this from r to rw, then differentiating with respect to x, we get

px(x, r, t) = px(x, rw, t)− δ2(
(rw)2 − (r)2

4
)uxxt(x, rw, t)− δ2 rwrw

x
2

uxt(x, rw, t) (3.44)

Substituting (3.32) into (3.23) and performing the integration, we get

u(x, r, t) = u(x, rw, t) + δ2 (r
w)2 − (r)2

2
uxx(x, rw, t) +O(δ4) (3.45)

Using this, integrating (3.7) again, but from 0 to rw, and substituting in (3.33), we get

rw(ηt + rw
x u(x, rw, t)) =− 1

2
(rw)2ux(x, rw, t)− δ2

4
(rw)3rw

x uxx(x, rw, t)

− δ2

16
(r2)4uxxx(x, rw, t) +O(δ4)

(3.46)

Which rearranges to:

ηt + rw
x uw +

1
2

rwuw
x +

δ2

4
(rw)2rw

x uw
xx +

δ2

16
(rw)3uw

xxx = O(δ4) (3.47)

This gives the approximate mass conservation.
To get the approximate momentum equation, we substitute in our approximations for pres-
sure, the derivatives of u and the boundary condition (3.10) to obtain

uw
t + [β(x)η]x + εuwuw

x − αδ2(r0xuw
t )x −

δ2r0r0x

2
uw

xt−

αδ2

2
(r0uw

xt)x −
γ?β(x)

2

[
uw

xxr0 + r0xuw
x + 2r0xxuw − 4

( r2
0xuw

r2
0

)]
= O(εδ2, δ4)

(3.48)

18



which gives the approximate momentum conservation.
We collect these equations, and substitute in rw = r0 + εη to form the nondimensional sys-
tem:

ηt + (r0x + εηx)uw +
1
2
(r0 + εη)uw

x +
δ2

4
(r0)

2(r0x)uw
xx +

δ2

16
(r0)

3uw
xxx = O(δ4) (3.49)

uw
t + [β(x)η]x + εuwuw

x − αδ2(r0xuw
t )x −

δ2r0r0x

2
uw

xt−

αδ2

2
(r0uw

xt)x −
γ?β(x)

2

[
uw

xxr0 + r0xuw
x + 2r0xxuw − 4

( r2
0xuw

r2
0

)]
= O(εδ2, δ4)

(3.50)

Or, written in dimensional form and discarding higher order terms:

ηt + (r0x + ηx)uw +
1
2
(r0 + η)uw

x +
1
4
(r0)

2(r0x)uw
xx +

1
16

(r0)
3uw

xxx = 0 (3.51)

uw
t +

[
Eh
r2

0ρ
η

]
x
+ uwuw

x −
ρwh

ρ
(r0xuw

t )x −
r0r0x

2
uw

xt−

ρwh
ρ

r0uw
xt)x −

γEh
2r2

0ρ

[
uw

xxr0 + r0xuw
x + 2r0xxuw − 4

(
r2

0xuw

r2
0

)]
= 0

(3.52)

This gives us a baseline for a model.
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Chapter 4

Further Improvements

In this chapter I will use equations (3.51) and (3.52) and attempt to further simplify them.
This chapter will centre on this goal and discuss the outcomes of it. Currently, the model
contains a highly dispersive term uw

xxx. Our aim now is to try and reduce this higher order
term. This derivation will lead to a new class of systems.

4.1 Improved Boussinesq Systems

We reuse the approximation (3.45) and rearrange:

u(x, rw, t) = u(x, r, t)− δ2 (r
w)2 − (r)2

2
uxx(x, rw, t) +O(δ4) (4.1)

By substituting in r = θrw with 0 ≤ θ ≤ 1, and u(x, θrw, t) = uθ(x, t), we obtain:

uw = uθ − δ2 (1− θ2)(rw)2

2
uθ +O(δ4) (4.2)

This implies that uw = uθ + O(δ2). This is substituted into (3.49) and (3.50), and will act
mainly to replace uw with uθ . This gives us:

ηt +(r0x + εηx)uθ +
1
2
(r0 + εη)uθ

x +
δ2(1− 2θ2)

4
(r0)

2(r0x)uw
xx +

δ2(2θ2 − 1)
16

(r0)
3uw

xxx = O(δ4, εδ2)

(4.3)
(1− δ2αr0xx)uθ

t + [β(x)η]x + εuθuθ
x − δ2r0x(3α + r0)uθ

xt −
(2α + (1− θ2r0)r0)

4
uw

xxt −
γ?β(x)

2

[
uθ

xxr0 + r0xuθ
x + 2r0xxuθ − 4

( r2
0xuθ

r2
0

)]
= O(εδ2, δ4)

(4.4)

We rearrange the momentum equation (3.33) and reuse equation (3.50) and differentiate
them twice with respect to x. By differentiating (3.50), we obtain:

r0uθ
xx = −2ηxxt− 5r0xxuθ

x − 4r0xuθ
xx − 2r0xxxuθ +O(ε, δ2) (4.5)

and for (3.33), we obtain:
uθ

xxt = −[βη]xxx +O(εδ2) (4.6)

Now we perform a simple manipulation, by writing

uθ
xxx = νuθ

xxx + (1− ν)uθ
xxx

uθ
xxt = µuθ

xxt + (1− µ)uθ
xxt
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We substitute in all of these, to arrive at:

ηt + (r0x + εηx)uθ +
1
2
(r0 + εη)uθ

x + Aδ2uw
xx+

Bδ2uw
xxx − Cδ2(2ηxxt + 5r0xxuθ

x + 4r0xuθ
xx + 2r0xxxuθ) = O(δ4, εδ2)

(4.7)

(1− δ2αr0xx)uθ
t + [β(x)η]x + εuθuθ

x − δ2Duθ
xt − δ2E[βη]xxx−

δ2Fuw
xxt −

γ?β(x)
2

[
uθ

xxr0 + r0xuθ
x + 2r0xxuθ − 4

( r2
0xuθ

r2
0

)]
= O(εδ2, δ4)

(4.8)

Where:

A =
r2

0r0x(1− 2θ2)

4
, B =

r3
0(2θ2 − 1)ν

16
, C =

r2
0(2θ2 − 1)(1− ν)

16

D =
r0x(3α + r0)

2
, E =

(2α + (1− θ2r0)r0µ

4
, F =

(2α + (1− θ2)r0)r0(1− µ)

4

From here a number of systems can be derived by using different values for θ. We are free
to choose whatever value of ν and µ we desire. To obtain the simplest system, we choose
ν = µ = 0 and θ = 1√

2
. This cancels out many terms, leaving us with:

ηt + (r0x + εηx)uθ +
1
2
(r0 + εη)uθ

x = O(δ4, εδ2) (4.9)

(1− δ2αr0xx)uθ
t + [β(x)η]x + εuθuθ

x − δ2 (3α + r0)r0x

2
uθ

xt −

δ2 (4α + r0)r0

8
uw

xxt −
γ?β(x)

2

[
uθ

xxr0 + r0xuθ
x + 2r0xxuθ − 4

( r2
0xuθ

r2
0

)]
= O(εδ2, δ4)

(4.10)

Now we look to model blood vessels of constant radius. Because of this, any derivatives
of the radius with respect to x will vanish. This greatly simplifies the viscoelastic term,
eliminating all but one variable. This gives:

ηt +
1
2
(r0ux) +

1
2

εηuθ
x + εηxuθ = O(δ4, εδ2) (4.11)

uθ
t + βηx + εuθuθ

x − δ2 (4α + r0)r0

8
uθ

xxt −
γ?βr0

2
uxx = O(δ4, εδ2) (4.12)

4.2 Addition of a viscosity term

As noted above, the Euler equations are very similar to the Navier-Stokes equations, differ-
ing only by the viscosity term. Now we seek to account for it.
We use equations (3.5) and (3.6), and perform the same nondimensionalization, only adding
in the viscocity term as such:

u?
t? + εu?u?

x? + εv?u?
t? + p?u? =

1
δ2

1
Re

(
1
r
(ru?

r )r + δ2u?
xx)) (4.13)

δ2(v?t? + εu?v?t? + εv?v?r?) + p?r? =
1

Re
(

1
r
(rv?r )r −

v?

r2 + δ2v?xx) (4.14)

Re =
λc̃
κ

where Re is defined as the Reynolds number, a dimensionless quantity used to measure
turbulence in flow, and κ is the kinematic viscocity. In blood, the Reynolds number is large.
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We make the assumption then that 1
Re = O(εδ2). Assuming our strategy is to discard any

termsO(εδ2, δ4), the only term left to consider is 1
rδ2Re (rur)r. The derivation follows a similar

pattern to before, by considering the flow as a sum of the wall velocity and higher order
terms. By assuming the flow is laminar, and that the flow is described by a suitable velocity
profile. This gives:

u(x, r, t) = u(x, rw, t)φ(x, r, t) +O(δ2) (4.15)

This formulation is commonly used to give a description of the flow across the arteries in
other systems. Here we are assuming a parabolic flow profile, by taking

φ(x, r, t) = 2
(rw)2 − r2

0

r2
0

This then leaves us with:
1

δ2Re
(

1
r
(rur)r) =

−8uw

r2
0δ2Re

As the term is separate and high order, we perform the same reductions as in the previous
sections, substituting uw for uθ . As it is high order, it has no effect on the high-order assump-
tions taken such as in equations (3.33) and (3.50).
Adding in this term to equations (4.11) and (4.12), discarding higher order terms and di-
mensionalizing it, we get:

ηt +
1
2

r0ux +
1
2

ηux + ηxu = 0 (4.16)

ut +
Eh
ρr2

0
ηx + uux −

(4ρwh + ρr0)

8ρ
r0uxxt + κu− γEh

2ρr0
uxx = 0 (4.17)

4.3 Development of the KdV-BBM type equation

The system (4.16) and (4.17) are re-nondimensionalized using a new set of variables, namely:

η? =
η

a
, x? =

x
λ

, t? =
t
T

, u? =
u
c0

where T =
2aλ

r0c0
, c0 =

a
r0

√
2Eh
ρR

, ε =
a
R

, δ =
R
λ

The system that arises from these variables is:

η?
t? + u?

x? + 2εη?
x? = O(ε2, δ4) (4.18)

u?
t? + η?

x? + 2εu?u?
x? − δ2 4ᾱ + 1

8
u?

x?x?t? + εκ?σu? − δ2γ?

σ
u?

x?x? = O(ε2, δ4) (4.19)

Where ᾱ =
ρwh
ρr0

, σ =
2λ

c̃
, c̃ =

√
Eh

2ρr0
, κ? =

κ

ε
, γ? =

γ

δ2

As before, we will drop the asterisks for clarity. By rearranging these equations, we can see
that:

ηt + ux = O(ε2, δ4)

ηx + ut = O(ε2, δ4)
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The wave equation ηtt + ηxx = O(ε2, δ4) follows from this. There are two solutions, but we
will be focusing on only one - the wave which propagates to the right ie solutions such that
ηt + ηx = O(ε2, δ4). We can start with the low order approximation η = u. To improve the
accuracy, we take higher order terms and assume that:

u = η + εA + δ2B + O(ε2, δ4) (4.20)

We substitute this into (4.18) and (4.19) and collect terms of higher order. This leaves us
with:

ηt + ηx + ε(Ax + 3ηηx) + δ2(Bx) = O(ε2, δ4) (4.21)

ηt + ηx + ε(At + 2ηηx + κ?ση) + δ2(Bt −
(4α̃ + 1)

8
ηxxt −

γ?

σ
ηxx) = O(ε2, δ4) (4.22)

In order for these set of equations to hold, the terms of equal order in each separate equation
must be equal. Thus we derive:

Ax + 3ηηx = At + 2ηηx + κ?ση

Bx = Bt +
(4α̃ + 1)

8
ηxxt −

γ?

σ
ηxx

From here there are a couple of steps. First, we seek to solve for A and B by integration.
Here we are some freedom to choose integration with respect to t or x, depending on which
is easier. We make the assumption that At = −Ax +O(ε) and Bt = −Bx +O(ε). This leads
to:

A =
−1
4

η2 + κ?σ
∫

η

B =
(4α̃ + 1)

16
ηxt −

γ?

2σ
ηx

Now we resubstitute these values for A and B into equations (4.21) and (4.22) to obtain the
KdV-BBM type systems

ηt + ηx + ε
5
2

ηηx + ε
κ?σ

2
η + δ2 4α̃ + 1

16
ηxxx − δ2 γ?

2σ
ηxx = O(ε2, δ4) (4.23)

ηt + ηx + ε
5
2

ηηx + ε
κ?σ

2
η − δ2 4α̃ + 1

16
ηxxt − δ2 γ?

2σ
ηxx = O(ε2, δ4) (4.24)

Or in dimensional variables

ηt + c̃ηx +
5c̃
2r0

ηηx + κη +
(4α + 1)c̃r0

16
ηxxx −

γc̃2

4
ηxx = 0 (4.25)

ηt + c̃ηx +
5c̃
2r0

ηηx + κη − (4α + 1)c̃r0

16
ηxxt −

γc̃2

4
ηxx = 0 (4.26)

The KdV-BBM equations in and of themselves comprise a huge topic. They are used in
the modelling of shallow water waves. The BBM equation was derived as an alternative
to the KdV equation, and while they are similar, there are some key differences, namely in
the solutions and the number of conservative laws. Here I will give a brief recount of a
particular solution to the KdV-BBM equation, namely the soliton solution[27].
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4.4 Solitary Waves

A soliton is a wave which propagates without change in speed or height as they move ie
they are a travelling wave solution. They occur when nonlinearity and dispersion cancel
out. First, we begin with the general KdV-BBM equation:

ηt + a1ηx + a2ηηx − a3ηxxt + a4ηxxx = 0 (4.27)

As it is a travelling wave, we expect it to have a form reflecting this - as the wave propagates,
it remains unchanged:

η(x, t) = φ(x− ct) (4.28)

We substitute this into the general KdV-BBM equation and make a change of variables s =
x− ct. Using the chain rule, we differentiate with respect to s to give us the equation

−cφs + a1φs + a2φφs + (ca3 + a4)φsss = 0 (4.29)

Now we integrate, and multiply back through with φs. This leads to

−cφφs + a1φφs +
a2

2
φ2φs + (ca3 + a4)φssφs = Aφs (4.30)

Now one more round of integration will go through without a problem to give:

− c
2

φ2 +
a1

2
φ2 +

a2

6
φ3 +

ca3 + a4

2
(φs)

2 = Aφ + B (4.31)

Rearranging, this will give the derivative of φ as a polynomial of φ. This polynomial can
change depending on the values for A and B, hence many different solutions exist. The
wave we desire should be symmetric and decay to 0 as s → ∞. This gives us A = B = 0,
and now we obtain the equation

φ2
s =

a2φ2

3(ca3 + a4)

(
3(c− a1)

a2
− φ

)
(4.32)

We can solve for φ in this ODE by taking the substitution g2 = 3(c−a1)
a2
− φ and using partial

fractions. Doing this, we arrive at

φ(s) =
3(c− a1)

a2
sech2

(√
c− a1

4(ca3 + a4)
s

)
(4.33)

giving the final solution

η(x, t) =
3(c− a1)

a2
sech2

(√
c− a1

4(ca3 + a4)
(x− ct)

)
(4.34)

4.5 Alternative Derivation

Here we will show an alternative derivation to the KdV-BBM type equations. This will
further help to justify the asymptotic model derived. It again relies on the assumption that
the flow is irrotational - this is crucial so as for the flow to be described with a smooth
velocity potential φ. Furthermore, we will choose this profile such that u = φx and v = φr.
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These are substituted into the cylindrical Euler equations to rewrite them in terms of φ as
opposed to u and v. This gives:

φt +
1
2

φ2
x +

1
2

φ2
r +

1
ρ

p + κφ = 0 (4.35)

rφxx + (rφr)r = 0 (4.36)

The momentum equations are combined to give a single equation, with the second being
the mass conservation. The new boundary conditions are:

φr = ηt + (r0(x) + η)xφx, for r = rw(x, t) (4.37)
φr = 0, for r = 0 (4.38)

Using the same nondimensionalization variables as (3.4) with the addition that φ? = 1
λεc̃ ,

and performing the same process, we form the nondimensional system:

φ?
t? +

ε

2
φ?2

x? +
ε

2δ2 φ?2
r? + p? + εκ?φ? = 0, for r? = r?w (4.39)

r?φ?
x?x? + (r?φ?

r?)r? = 0, 0 ≤ r? ≤ r?w (4.40)
φ?

r? = 0, for r? = 0 (4.41)
φ?

r? = η?
t? + (r?0(x?) + η?)x?φ?

x? for r? = r?w (4.42)

p? = δ2α?η?
t?t? + β?(η? + δ2γ?η?

t?) for r? = r?w (4.43)

We will drop the asterisk as before.
Rather than performing a series of integrals to attempt to reduce to discardable higher order
terms, this derivation will instead use a series expansion of the velocity potential, as follows:

φ(x, r, t) =
∞

∑
i=0

riφi(x, t) (4.44)

By substituting this into equation (4.40), we obtain a recurrence relation, namely:

δ2(φ2i)xx + (2i + 2)2φ2i+2 = 0
φ2i+1 = 0

(4.45)

The recurrence relation allows us to build up functions from φ0, allowing us to rewrite φi
purely in terms of φ0 and subsequent derivatives. In particular, we arrive at the two follow-
ing equations:

φ2 = −δ2

4
(φ0)xx (= O(δ2)) (4.46)

φ4 =
δ4

(6)2(4)2 (φ2)xxxx (= O(δ4)) (4.47)

Any terms for i ≥ 2 are guaranteed to be O(δ4) or higher, hence we may discard them.
This leads to the approximation:

φ(x, r, t) = (φ0)(x, t)− δ2 r2

4
φ0xx(x, t) +O(δ4) (4.48)

The form of equation (4.48) is very similar to (3.45), and the methods used are mimiced
here - by this I mean substituting in low-order approximations and then discarding higher

25



terms when they arise, such as δ4. We substitute (4.48) into (4.43), then (4.43) into (4.39) and
eliminate pressure to obtain:

ηt + rw
x φ0x +

rw

2
φ0xx − δ2 r2

0r0x

4
φ0xxx − δ2 r3

0
16

φ0xxxx = O(δ4, εδ2) (4.49)

φ0t − δ2 r2
0
4

φ0xxt +
ε

2
φ2

0x + εκφ0 + αδ2ηtt + β(η + δ2γηt) = O(δ4, εδ2) (4.50)

These two equations have the same form as the equations (3.51) and (3.52), and help to verify
the models.
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Chapter 5

Numerical Methods

In this section first I will give some background on the methods used to solve the equations
derived in previous chapters, and show some results of this. The numerical methods help
to solve otherwise intractible equations and validify models.

5.1 Spectral Methods

Many different methods exist to solve equations in a general sense. For this, we will focus
on a specific strategy known as a spectral method. The method is well suited for solving
equation (4.26) due to its form.

5.2 Differentiation Matrix

Suppose a curve is described by two vectors - [x1, ..., xn] and [y1, ..., yn] - containing the x
coordinates and corresponding y coordinates respectively. What then is the derivative of
this curve at each point? From the Taylor expansion, we know the derivative can be approx-
imated by a finite difference method, specifically:

y′i =
yi+1 − yi−i

2h
(5.1)

where h = xi − xi−1 = ∆x is constant. Assuming then the solution is periodic, we can
rewrite this relation as a matrix:

y′1

...

y′n

 =
1
h



0 1
2 − 1

2

− 1
2 0

. . .

. . .

. . . 0 1
2

1
2 − 1

2 0




y1

...

yn


This is a second-order finite difference method with error O(h2). We can represent higher
order finite difference schemes as matrices also. There are two points here:

• The derivative can be represented as a polynomial of the function values

• A matrix can be used to represent this derivative
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This provides the basis and inspiration for spectral methods - the idea being that this dif-
ferentiation matrix is taken to the limit to construct an infinite dimensional matrix[28]. All
the matrices derived by this are circulant, which in particular describes a convolution. This
allows the matrix to be calculated using the Fast Fourier Transform[29].1

We now take equation (4.26) and take the Fourier transform of it:

η̂t + ikc̃η̂ +
ik
2

5c̃
2r0

η̂2 + κη̂ + k2 (4α + 1)c̃r0

16
η̂t + k2 γc̃2

4
η̂ = 0 (5.2)

Where η̂ is the Fourier transform of η, k is the vector of wavenumbers, and from taking the
derivative of the Fourier transform, we note:

(η̂t) = (η̂)t, (η̂x) = ik(η̂) (5.3)

We can rearrange this equation, and make the substitution η̂t = y′ to give:

y′ = −16
(ikc̃y + ik

2
yc̃
2r0

FFT(IFFT(y2)) + κy + k2 γc̃2

4 y)
(k2(4α̃ + 1)c̃r0)

(5.4)

where FFT/IFFT are the Fast Fourier and Inverse Fast Fourier Transform, and division by k
is component-wise.
This equation can be solved as an ODE by an appropriate method such as Runge-Kutta2.
Once the solution is found in terms of y′, the IFFT can recover the true solution. This scheme
is simple to implement with a fast rate of convergence[28]. In general, this provides a pow-
erful method for solving many different 1D equations by reducing them to ODEs.

5.3 Results

In the case that the viscoelasticity and viscocity terms are neglected, the equation contains
soliton solutions as derived above. A natural consideration is the effect these two terms
have on the propagation of these waveforms.
To do this, we consider an artery with the following parameters:

Radius r 0.01m
Wall thickness h 0.0003m

Young Modulus E 4.1*105 kg
ms2

Wall density ρw 1000 kg
m3

Fluid density ρ 1060 kg
m3

Length l 0.4m
Soliton amplitude a 0.00035m

These values are used in the equation (4.26) and solved using the spectral method. Three
cases are considered:

1. γ = 0s, κ = 0s−1

2. γ = 0s, κ = 1s−1

3. γ = 10−4s, κ = 0s−1

1There are different strategies for constructing different polynomials, such as the Chebyshev polynomial, but
for now we will focus on the matrix derived from the Taylor series expansion. It goes without saying this is a
huge and fascinating topic, and I only wish to give a small recollection of it here.

2For this study, ODE45 in Matlab was used
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While these parameters are not physiologically derived, they are chosen to attempt to emu-
late a large blood vessel and serve for the purposes of investigating the models.
Because of the unique soliton solutions in the KdV-BBM equation, which will propagate
without change, it is natural to use these waves as a way to examine the effect of viscosity
and viscoelasticity. Thus, all initial conditions are waves of the form

η(x, t) = 3
cs − a

b
sech2

(√
cs − a
4csc

(x− cst)
)

where

a = c̃, b =
5c̃
2r0

, c =
c̃(4α + r0)r0

16

and cs is the propagation speed of the wave. The wave is propagated until the final time t
= 0.08s, with the results being show in Figure (5.1) As expected, for the inviscid fluid and

Figure 5.1: Results of the numerical experiments

purely elastic walls, the wave propagates without change in amplitude. When viscosity and
viscoelasticity are introduced, the amplitude decreases by 6% and 17% respectively. In the
case of the viscoelastic walls, the wave appears to broadens slightly. When both viscosity
and viscoelasticity are accounted for at the same time, the amplitude decreases by 20%.3 This

3The case for both nonzero κ and γ are not shown in Figure 5.1
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indicates the large effects these two extra terms have on the overall propagation of waves
in the arteries. In both cases, small amplitude waves propagate in the opposite direction,
suggesting these models are capable of facilitating two-way propagation. This will prove
useful for modelling of reflections.
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Chapter 6

Conclusions

This thesis has investigated topics of methods in mathematical modelling. This was done
by first showing derivations from first principles of behaviour of materials, then showing
the necessary simplifications to obtain a tractible set of equations. A small history was dis-
cussed and some complications related to modelling introduced.
A new model was derived from asymptotic methods. By using this method, an equation
was recovered whose use tends to be in water wave modelling - the KdV-BBM equation.
Pulse wave propagation is an interesting newer application of these equations. A new term
is introduced and justified in the analysis which accounts for viscoelasticity in the arterial
wall. The effect of this term is investigated by considering the evolution of a soliton in the
original KdV-BBM equation. How this soliton evolves when this viscoelasticity term is con-
sidered shows the effect of the new term. The effects of viscosity of blood and viscoelasticity
of the arteries is clearly demonstrated and quantitatively show promise for new work.
Secondary to this, the equations can be solved quickly and with good stability by the Spec-
tral Method, a dimension-reducing technique which involves using the Fourier Transform
on the model equations, solving the transformed equation, and then performing an IFFT on
the solution to recover the solution to the original equation. This method works with the
KdV-BBM equation and the viscoelasticity term presents no complications with the Spec-
tral Method, allowing it to simply slot into the equation and be solved in a straightforward
manner.
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