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Recent discoveries have spurred the theoretical prediction and experimental
realization of novel materials that have topological properties arising from
band inversion. Such topological insulators have conductive surface or edge
states but are insulating in the bulk. How the signatures of topological behav-
ior evolve when the system size is reduced is noteworthy from both a fun-
damental and an application-oriented point of view, as such understanding
may form the basis for tailoring systems to be in specific topological phases.
This thesis investigates the softly confined topological insulator family of
Bi2Se3 and its properties when subjected to an in-plane magnetic field. The
model system provides a useful platform for systematic study of the transi-
tion between the normal and the topological phases, including the develop-
ment of band inversion and the formation of massless-Dirac-fermion surface
states. The effects of bare size quantization, two-dimensional-subband mix-
ing, and electron-hole asymmetry are disentangled and their corresponding
physical consequences elucidated.
When a magnetic field is present, it is found that the Dirac cone which is
formed in surface states, splits into two cones separated in momentum space
and that these cones exhibit properties of Weyl fermions. The effective Zee-
man splitting is much larger for the surface states than for the bulk states.
Furthermore, the g-factor of the surface states depends on the size of the
material. The mathematical model presented here may be realizable experi-
mentally in the frame of optical lattices in ultra cold atom gases.
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Chapter 1

A History of Physics

The subject of topology is still relatively new in the field of physics. Ini-
tial steps have been made in the 1980s after the discovery of the Quantum
Hall effect where topological order in a two-dimensional crystalline mate-
rial leads to quantized conduction along its edges. In general, a topological
insulator is described as a crystal structure that exhibits certain symmetries
leading to topological properties that cannot be altered easily. The topolog-
ical properties of a crystal are related to its repetitive microscopic structure.
The repetitiveness, however, can never be an infinitely extended feature be-
cause boundaries have to be introduced in the real world. But since materials
usually are sized at micro-, milli-, or centimeter scales and the repetitiveness
is on the scale of a nanometer, repetitions stay in the millions or billions and
edge states have not been given much attention before the discovery of topol-
ogy in physics.

But now, with the focus on edge and surface states, what happens if mate-
rials are made wider or thinner? Suppose that a material is shrunk from one
centimeter to some hundred nanometer. Repetitions are now at the scale of
only a few hundred. Do we expect our initial conditions to still hold? And as
the material is made even smaller, repetitions are now down to a few dozen,
we can almost be certain for it to break down or at least to be affected signif-
icantly. But not only size can be a restriction to topology but also force fields
that affect the strict structure of a crystal.

That is the point where this dissertation takes over. What happens to
a three-dimensional topological insulator when it is brought to nanometer
scales? How does it react to magnetic fields and what does it imply for the
physical properties of these fields? In order to understand this, first of all
there is the need to understand what topological insulators are and what es-
tablishes their properties. After realizing that they have only been discovered
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a decade ago, one might also wonder why this has not happened earlier since
crystals had been studied quantum mechanically for some decades already.
Already in the 1960s George Gamow stated that only "number theory and
topology still remain purely mathematical disciplines without any applica-
tions to physics. Could it be that they will be called to help in our further
understanding of the riddles of Nature?" [1]. As it turns out, he was quite
right. The physics community was surprised and unprepared for the Quan-
tum Hall effect and, among other concepts, topology was introduced into the
field of condensed matter physics.

Outline. This introductory chapter is intended to be a broad overview
accessible to the layperson. It serves as a means to classify topological in-
sulators historically by giving a brief history of physics, quantum mechan-
ics, condensed matter physics, and the start of topological condensed matter
physics with the discovery of the Quantum Hall effect.

Chapter 2 delves into the fundamental concepts that are necessary to un-
derstand topological insulators. It is aimed at general physicists with the
wish to get a basic understanding of the topic but may also be approachable
for laypersons.

Chapter 3 treats the most recent developments in topological condensed
matter physics that lead to the discovery of 3D topological insulators. It also
describes properties of topological insulators, gives examples for other phys-
ical systems where topology may appear in, and introduces the mathematical
model Hamiltonian that is investigated in this thesis.

Chapter 4 shows the mathematical structure of the applied confinement
potential and its consequences for band structures and other physical proper-
ties of the system. These results have been summarized partially in a separate
publication [2].

Chapter 5 then extends the previous results to a confined model with a
planar magnetic field applied to it. The results are finally summarized and
concluded in chapter 6.

1.1 Classical Condensed Matter Physics

Humphry Davy and Michael Faraday can be seen as the great grand fathers
of condensed matter physics. Davy was studying the electrical and thermal
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conductivity of the elements known at the time and opposed John Dalton’s
atomic model - since it was related to the periodic table of elements, at the
time this was rather considered Chemistry. He also proposed that elements
that are not solids at room temperature could be categorized into metals and
insulators if methods were found to make them solid. Consequently, he at-
tracted a young Michael Faraday to the "Royal Institution" who turned out
to be a gifted experimentalist [3]. Faraday continued Davy’s work and got
on a journey to find the liquid phases of gases and succeeded for most of
them. This then became the field of low temperature physics. Later in the
eighteen hundreds (1869), Thomas Andrews studied the reverse transitions
(compared to Faraday) of liquids turning into gases and described a critical
point [4] during phase transitions at which liquids and gases are indistin-
guishable which was then explained by Johannes van der Waals by extending
the ideal gas law.

Then, after the discovery of the Hall effect by Edwin Herbert Hall in 1879,
it was only at the turn of the 19th century when attention was brought back to
solids. First by Joseph John Thomson with the prediction and discovery of the
electron and then by Paul Drude developing a classical model for electrons
in solids, called Drude model today (he also introduced the letter c for the
speed of light in the vacuum). At the same time, the earlier developments of
quantum mechanics began to take on pace with Planck’s solution to the black
body problem and Einstein’s explanation of the photo electric effect. The clas-
sical chapter of condensed matter physics, and also Michael Faraday’s great
pursuit, was finally closed with Heike Kamerlingh Onnes’ liquefaction of
Hydrogen and Helium. Another hindsight at a new type of physics was his
discovery of superconductivity in mercury in 1911 [5] which was to become
one of the most intriguing discoveries in physics history. Drude and Onnes
would have to wait quite a few years for the open questions to be addressed.

1.2 Quantum Mechanics

The physics of condensed matter systems did bear notable discoveries dur-
ing the following years but, after Planck’s and Einstein’s first contributions
to theoretical quantum physics, the Zeitgeist rather pointed towards further
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developments of the latter. Experimentally, Ernest Rutherford, Arthur Comp-
ton, Chandrasekhara Venkata Raman, and Pieter Zeeman discovered the nu-
clear model of the atom (Rutherford model [6]), the particle property of elec-
tromagnetic waves (Compton effect [7]), the wave length shift of light during
scattering (Raman scattering [8]), and the splitting of spectral lines of atoms
in the presence of magnetic fields (Zeeman effect, 1896), respectively. Ruther-
ford’s atomic model served as basis for Niels Bohr’s theory of the atomic
structure of electrons and nuclei, which is now called the "old quantum the-
ory" and was of more phenomenological nature.

After being brought to a halt due to World War I, the development of
the "new" quantum theory started with Louis de Broglie’s postulate that "to
each bit of energy of the proper mass m0 there is connected a periodic phe-
nomenon of the frequency ν0", now being called the particle-wave dualism
[9] and basically the opposite of what Einstein did to light with the intro-
duction of the Photon. Meanwhile, Wolfgang Pauli proposed that two elec-
trons that reside within the same physical system cannot occupy the same
quantum numbers or quantum states, the Pauli exclusion principle [10]. De
Broglie’s statement and Pauli’s principle inspired Werner Heisenberg and
Erwin Schrödinger where the former first introduced the idea of non-com-
mutative operators [11] and consequently the uncertainty principle [12]. The
latter delivered one of the most important equations of the 20th and most
likely the 21st century, the Schrödinger equation [13]

Ĥ Ψ(~r, t) =

[
− h̄2

2m
~∇2 + V(~r)

]
Ψ(~r, t) = −ih̄ ∂tΨ(~r, t)

which describes a probability distribution or wave function |Ψ(~r, t)|2 so that
now there was only a certain probability to find a particle anywhere in space
instead of the classic view in which particles were assumed to have definite
positions. Up until today, it is still used as the framework of non-relativistic
microscopic models.

At the same time, sparked by Heisenberg’s publication about non-com-
mutative operators and Schrödinger’s equation, Paul Dirac developed a the-
ory basing on classical dynamics but with non-commuting fields. He intro-
duced symmetric and anti-symmetric wave functions for indistinguishable
particles, already applying the so-called Slater-determinant which was at-
tributed to Slater, even though Heisenberg and Dirac had used their own
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versions of it three years earlier, and derived and reproduced Fermi-Dirac
and Bose-Einstein statistics, respectively [14]. Two years later, in a remark-
able publication, he formulated the Dirac equation [15], his equation

[
α1px + α2py + α3pz + β

]
Ψ(~r, t) = −ih̄ ∂tΨ(~r, t)

which is, at the least, of same importance as Schrödinger’s equation and lead
to the postulation of the positron, the anti-particle of the electron. For both,
the Schrödinger and the Dirac equation, the fact that only the absolute value
of the wave function is of interest lead to the belief that a complex phase fac-
tor eiϕ would leave the physical state invariant. Later on, after the discovery
of the Quantum Hall effect, it was realized that the phase factor can indeed
be impactful on the physical system.

1.3 Condensed Matter Physics

Roughly three decades after Drude had developed his model of classical ki-
netic electron transport in metals and after quantum mechanics had been
established, it was Arnold Sommerfeld who applied one of the recent dis-
coveries, Fermi-Dirac statistics, to the Drude model in 1927. Maybe Sommer-
feld can be seen as the grand father of modern condensed matter physics -
he was famous for his teaching and an astonishing number of his students’
names are still persistent within the field. Pauli developed the theory of para-
magnetism, already in 1926. Léon Brillouin introduced the Brillouin zone in
his quantum theory of solids and later works around 1930. Max von Laue, al-
ready in 1912, had shown diffraction patterns for X-rays in crystal lattices. Fe-
lix Bloch, not a student of Sommerfeld but of Werner Heisenberg (who used
to be one of Sommerfeld’s students), embedded quantum mechanics into the
periodicity of crystal lattices in 1928. Instead of applying the Schrödinger
equation to the whole lattice with huge numbers of electrons, he realized
that the problem could be simplified by dividing the wave functions and
potentials into a part u(~r) periodic in~r and a part that describes the crystal
momentum ei~k~r to get an effective Schrödinger equation with Bloch functions
instead of wave functions[(

h̄2k2

2m
− E

)
− h̄2

2m
~∇2 + V(~r)

]
u~k(~r) = 0.
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As a result, with this theory of energy bands in solids, first band structure
calculations were conducted. Bloch’s theorem would also become important
later on for the characterization of topology in crystals. Ernst Ising, a student
of Wilhelm Lenz, provided the model of the Ising spin chain

H = −∑
ij

JijSiSj

that, through contributions by Felix Bloch, Rudolf Peierls, Louis Néel, and
Lars Onsager, enabled the microscopic understanding of magnetism and also
the explanation of phase transitions between ferromagnetic and paramag-
netic states of solids.

However, many other contributions came from different schools of phy-
sics all over the world. Lawrence Bragg derived a simple formula that en-
abled the mapping of crystal structures, the Bragg equation. Together with
Carl Hermann and Max von Laue he also was the first author of "Interna-
tional Tables for Crystallography" in 1935, which made systematic crystal
structures available to the whole physics community. In the same year, an
early attempt at a theory for superconductivity was made by Fritz and Heinz
London [16] - it successfully explained the Meissner effect but failed to de-
liver a microscopic picture of superconductivity. Also in the same year, Lev
Landau investigated the quantum effects of magnetic fields and developed
the framework of Landau quantization. Landau was incredibly productive.
Two years later, in 1937, Landau introduced a theory of phase transitions
[17] which he would modify with the help of Vitaly Ginzburg after World
War II in 1950. Another valuable contribution was made by him in 1956,
the (Landau-)Fermi liquid theory of interacting fermions in metals. Much
later, his theory of phase transitions would be extended by topological phases
which can’t be explained in the frame of his theories.

Parts of the riddle of superconductivity was finally solved by John Bar-
deen, Leon Cooper, and John Schrieffer in 1965. They pictured the essential
feature of a superconductor to be Cooper pairs - pairs of electrons that are
formed due to phonon-phonon interactions within superconducting mate-
rials. These pairs of fermions effectively behave like bosons and condense
into a superconducting state with no resistivity. One year earlier, a new prob-
lem was formulated by Jun Kondo [18] which would take ten years to be
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explained by Kenneth Wilson in 1975 [19]. The Kondo effect describes a ma-
terial state where magnetic impurities lead to increased resistivity at low tem-
peratures.

In 1971, Dyakonov and Perel proposed a spin version of the Hall effect,
the last Hall effect to be explained with only quantum mechanics [20, 21].
This effect involves accumulation of opposite spin on opposite boundaries in
a charge carrying sample and a resulting spin current instead of a charge cur-
rent - thus being called the Spin Hall effect. Later on, this effect was further
categorized into an extrinsic Spin Hall Effect relying on spin dependent scat-
tering off impurities [22] and an intrinsic Spin Hall Effect due to spin-orbit
coupling in the band structure of electrons [23].

1.4 Topological Condensed Matter Physics

Roughly 100 years after the first discovery of the Hall Effect, in 1980, Klaus
von Klitzing, Gerhard Dorda, and Michael Pepper found that the Hall con-
ductance in very strong magnetic fields can be measured in multiples of the
inverse Klitzing constant e2

h [24]. Due to the magnetic field the band structure
of the probe splits into Landau levels. Variation of the field also changes the
number of electrons the energy levels can carry and, therefore, if the mag-
netic field is strong enough, all conduction electrons will be concentrated in
one level. Consequently, all these electrons will have the same energy and
a cyclotron frequency ωc = eB

m . Semi-classically, the electrons close to the
boundaries of the sample will bounce off the edges forming conduction chan-
nels while the electrons in the bulk will travel on circular orbits. For each
filled Landau level there is one conduction channel contributing e2/h to the
conductance. Introducing the filling factor ν as the number of filled Landau
bands, the total Hall conductance then is σH = νe2/h. It was realized that ν is
a topological invariant. First, Robert Laughlin showed that the quantization
of the Hall conductance is a consequence of gauge invariance in combination
with the existence of a mobility gap [25]. This was given further justification
by David Thouless et al. by explicitly considering a two-dimensional elec-
tron gas in a uniform magnetic field in a periodic lattice structure with the
Fermi energy lying in a gap [26]. In 1982, Bertrand Halperin showed that, in
a strong magnetic field, charge carriers that are located within roughly one
cyclotron radius of the edges of the sample serve as current generators while
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charge carriers in the bulk do not contribute [27]. Meanwhile, Michael Berry
was studying adiabatic changes to quantum systems. He pointed out that
the phase of quantum states eiϕ cannot be assumed to be irrelevant when the
system goes through a series of adiabatic changes. Instead, the wave function
picks up an additional geometrical phase factor that depends on the path of
these adiabatic changes [28], the Berry phase factor eiγc . This sparked the
first connection of physics and topology that had been anticipated by George
Gamow in the 1960s. Just a few months after Berry’s findings, Barry Simon
showed that Berry’s geometrical phase factor is a "holonomy in a Hermi-
tian line bundle since the adiabatic theorem naturally defines a connection in
such a bundle" [29]. He also showed the natural connection to the findings of
Thouless et al. a year earlier and that, in fact, the Hall quantization is not a
consequence of the Hamiltonian of the system but a result of the phase space
the system’s parameters live in. Finally, Franck Wilczek and Anthony Zee
showed that Berry’s and Simon’s constructions would lead to non-abelian
gauge fields during the adiabatic evolution of quantum mechanical systems
[30].

The Quantum Hall effect is the first example of a bulk-boundary corre-
spondence which means that the material’s bulk structure is responsible for
a non trivial behavior at the boundary. In the same year Tsui, Stormer, and
Gossard found plateaus similar to the resistivity plateaus in the QHE, but
for fractional filling factors ν = 1

3 , 2
3 , 1

5 , .., soon to be known as the fractional
Quantum Hall effect. However, this is not a manifestation of a new aspect
of the Quantum Hall effect but rather a result of electron-electron interaction
forming quasi particles that replace the electrons in Klitzing’s Quantum Hall
effect [31].

A few years later, in 1988, Duncan Haldane proposed a model of "2D
graphite" - a honeycomb lattice with two sub lattice sites that exchange places
under rotations around the Brillouin zone center (today’s Graphene). In con-
trast to Gordon Semenoff, who had studied this lattice structure before [32],
Haldane not only considered nearest neighbour hopping of electrons be-
tween the two types of sites due to the two sub lattices, but also next neigh-
bour hopping enabling electrons to stay within their sub lattice. Furthermore,
he considered a time-reversal breaking periodic local magnetic flux density
that introduces chirality to the Hamiltonian with different effective electron
masses on each sub lattice. If these electron masses were to have opposite
signs, the Landau filling factor of the time-reversal invariant version of the
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model (where the local magnetic flux is zero) differs from the time-reversal
breaking version by one, meaning that the time-reversal breaking model ex-
hibits quantized conductance just like in the Quantum Hall effect [33]. Hal-
dane’s model was a milestone during the establishment of topological con-
densed matter physics and it is further examined in section 2.5.1. The Hal-
dane model is the equivalent to the classical anomalous Hall effect and fur-
ther developments found that this quantum anomalous Hall effect can also
be realized in ferromagnetic insulators with strong spin-orbit coupling which
was finally done in the year 2013 [34].

Also in 1988, Barry Simon published the continuation of his earlier work
that was connecting Michael Berry’s geometrical phase with the TKNN in-
teger. He succeeded to put this integer into a framework of topological in-
variants in fermion systems with time-reversal invariance by realizing that it
could be associated with the first Chern number [35].

The developments in the 1980s laid the foundations for today’s topologi-
cal condensed matter physics. The ideas established at the time are necessary
for the understanding of topological insulators and will be presented in the
next chapter.
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Chapter 2

Topological Insulator
Fundamentals

The topic of topological insulators is a complicated one. It involves mecha-
nisms from different areas of physics and mathematics and it gets tangled
very fast, especially when diving into the topic while coming from fields that
are only marginally related. This chapter is written with the intent to prevent
drowning after the dive.

In order to understand the significance of topology in topological insula-
tors, there are a few concepts and basics that have to be addressed first. To
put it very general, solids with crystalline structure are invariant under a set
of symmetry transformations. This leads to a repetitive behavior within the
crystal that is summarized in the concept of the Brillouin zone. External or
internal fields can then induce a current in the material that, in part, depends
on an integral over and, therefore, on the form of the Brillouin zone. This is
described by the Berry phase (or geometric phase). The Berry phase, how-
ever, not only captures properties of specific crystal symmetries (like transla-
tion invariance) but allows for any parameter of the underlying mathemati-
cal model that can be altered adiabatically to have a direct influence on the
properties of the whole material. While perfect crystal symmetries are dis-
turbed quite easily by defects in the crystal, there are other symmetries that
can be disturbed or broken less easily. This means that the resultant topolog-
ical structure and properties of the crystal are stable and it can lead to unique
properties. It is the intend of the following sections to lay out this quick ex-
planation in more detail.
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2.1 Characterization of Crystal Structures in Physics

A crystal consists of a number of atoms that obey repetitive arrangements. In
contrast to this are amorphous materials that are not arranged in any specific
way, apart from, for example, the average distance between atoms. An exam-
ple of a crystal in two dimensions could be a square lattice of identical atoms
where each atom has the same distance to its nearest neighbours. In general,

n2 = 9

Amorphous Material

(a)

Wigner-Seitz Cell

a1

a2

Rn

n2 = 9

n1 = 8

Crystalline Material

(b)

FIGURE 2.1: (a) An amorphous material with no clear structure
(i.e. glass). (b) The structure of a 2D crystal with a square lattice.
The definition of the lattice vector Rn allows access to every lat-
tice site. The region indicated by a square around a lattice point
is called the Wigner-Seitz cell or Brillouin zone in the reciprocal

lattice.

each lattice site in a crystal can be described as a linear combination of base
vectors

Rn =
d

∑
i=1

niai (2.1)

where ni are integers and d represents the dimension of the lattice. The base
vectors ai do not necessarily have to be orthogonal but can take on any form
as long as they still span the according space in terms of dimensions and as
long as their according unit cell can fill the material without intermediate
spaces. The unit cell is spanned by the base vectors and, due to the previ-
ous restrictions, crystals in three dimensions are limited to the fourteen Bra-
vais lattices [36]. The fourteen Bravais lattices describe all the lattice struc-
tures that are possible in three dimensions. Another important concept is the
Wigner-Seitz cell which is depicted in figure 2.1b and can be defined as the
set of all points that is closer to one lattice point than to any other lattice
point.

One of the fundamental properties of crystals are their symmetries re-
garding translations with respect to their base vectors as well as rotations
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or reflections. For example, considering figure 2.1b, for an infinite lattice, a
translation from any lattice site to another lattice site would leave the lattice
invariant. The same is true for a rotation of 90◦, 180◦, or 270◦ of the whole
lattice around any lattice site. These symmetry transformations are gathered
to form the symmetry group of crystal lattices which contains 48 symme-
try transformations. Each possible Bravais lattice obeys only a subset of the
symmetry group.

The base vectors have the dimension of length. However, for most appli-
cations, the Fourier transform of the lattice vectors is more convenient. For
this reason, the reciprocal base vectors are defined in three dimensions as

b1 =
2π

V
(a2 × a3), b2 =

2π

V
(a3 × a1), and b3 =

2π

V
(a1 × a2) (2.2)

where V is the volume of the unit cell and, as equivalent to Rn, the reciprocal
lattice vector is defined as

G = k1b1 + k2b2 + k3b3. (2.3)

Opposed to the regular lattice base vectors, the reciprocal base vectors bear
the unit of inverse length and, as such, are compatible with wave numbers
or wave momenta. This is because the maximum wave number allowed by
the lattice in real space is given by the minimum wave length fitting within
one lattice spacing. Thus, all possible crystal momenta fit within one Wigner-
Seitz cell which is called the first Brillouin zone for the reciprocal lattice.

Periodic Boundaries and Bloch Theorem

The importance of the Brillouin zone for the fundamentals of topological in-
sulators lies within the fact that, when moving from one zone to the adja-
cent zone, it is mathematically equivalent to entering the first zone from the
opposite side. This originates from the periodicity of the lattice and the as-
sumption that macroscopic materials are large enough and that lattices can
be assumed to extend to infinity or satisfy periodic boundary conditions. For
example, if there is a lattice with periodic boundary conditions with N sites
in the direction of one basis vector, moving one site further from n = N will
end up at the other side of the lattice, n = 1. Usually, this is also the case for
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any function f of interest on the lattice. If any f satisfies the periodic bound-
ary conditions, the relation

f (Rn) = f (Rn + Niai) (2.4)

holds. f can be applied to reciprocal space by making use of its Fourier trans-
form

f (k) = ∑
n

f (Rn)e−ikRn and f (Rn) =
1
N ∑

k
eikRn f (k). (2.5)

Because any point in the lattice can be accessed by addition of a reciprocal
lattice vector k + G, it suffices to determine these relations only for the k
within the first Brillouin zone since GRn = 2π and eiGRn = 1.

When considering the Hamiltonian of an actual physical system, this prop-
erty also comes into play if the involved functions fulfill the same periodic-
ity as the lattice. For example, with a translation invariant potential V(r) =

V(r + Rn) and the Schrödinger equation(
− h̄2

2m
∇2 + V(r)

)
Ψ(r) = EΨ(r), (2.6)

it follows that any eigenfunction Ψ(r) does not have to satisfy translation
invariance but can pick up a phase factor eikRn and thus

Ψ(r + Rn) = eikRn Ψ(r) (2.7)

which is called the Bloch condition. With the definition of the Bloch functions

uk(r) = e−ikr Ψk(r), (2.8)

it follows that eigenfunctions of the Schrödinger equation can be expressed
in terms of translation invariance fulfilling Bloch functions

Ψk(r) = eikr uk(r). (2.9)

This is called the Bloch theorem.
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2.2 Characterization of Topology in Mathematics

Historically, topology initially was a part of geometry and it started being
accepted as an independent field of mathematics between the late 1800s and
early 1900s. Topology is now a major area within mathematics and it deals
with the study of abstract spaces and their properties. Important with respect
to condensed matter physics is the study of geometrical objects in two, three,
and four dimensions, such as tori or spheres. Fundamentally, from the geo-
metric point of view, "topology may be regarded as the study of those proper-
ties of geometric figures that remain invariant under single-valued continu-
ous mappings possessing single-valued continuous inverses" [37]. This refers
to homeomorphisms which are defined as a mapping f so that:

• f is a bijection (each function parameter x is associated with exactly one
function value f (x))

• f is continuous

• the inverse function f−1 is continuous.

An example for this would be f (x) = x3 which is a bijection, continuous, and
its inverse f−1(x) = x1/3 is continuous. Homeomorphisms are essential for
distinguishing between topological objects and they are not the topological
objects of interest themselves. From the example in figure 2.2a, it is apparent

(a)

FIGURE 2.2: (a) All three displayed objects are topologically
equivalent. The dashed (dotted) shapes are deduced by ap-
plying the homeomorphisms f (x, y) = (x3, y3) ( f (x, y) =
(Sin(x), Sin(y))) to each coordinate of the circle (thick line). (b)
A torus generating a 2D lattice of atoms (in red) by rotating

along the lines and the atom indicated on the torus’ surface.
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that homeomorphisms not necessarily conserve the proportions of the ob-
jects they are applied to. This is because the actual distance between points
in a topological object is not of concern - a classic metric, like the absolute
value of a vector v, |v|, is not defined or not of interest in Topology. Thus, the
deformation of a coffee cup into a torus is just an example of a homeomor-
phic deformation. And because the homeomorphic deformation is possible,
the two objects are topologically equivalent.

Another way to distinguish between topological objects is the Euler char-
acteristic χ. It captures the shape of the respective topological space and is
invariant under any homeomorphic deformations. Oversimplified, it can be
viewed as a measure for how many holes an object has. Consider the 3D
plastic versions of the three characters "8", "O", and "c". The "c" does not have
any hole and can be deformed to a sphere, its Euler characteristic is χc = 2.
The "O" basically represents a torus with one hole and thus χO = 0. And
the "8" is a double torus with two holes and χ8 = −2 (a n-holed torus has
χn = 2− 2n). Even though, at first glance, this correspondence seems arbi-
trary, there is a system called Conway symbols of orbifolds, which is closely
related to symmetry groups in crystal structures, enabling the derivation of
an object’s Euler characteristic.

The Euler characteristic relates topological spaces to their Gaussian cur-
vature K. This is summarized in the Gauss-Bonnet theorem∫

M
dS K +

∫
∂M

ds kg = 2πχ(M) (2.10)

where M is a manifold representing the topological object of interest. The
first part is a surface integral over the Gaussian curvature. The second part
only is significant if the manifold has an open boundary. It is a line integral
around an open boundary ∂M.

The initial question, how topology and crystal structures are related, can
now be answered. Taking a 2D lattice as example, because the crystal lattice is
repetitive and going from one crystal cell to the next is equivalent to entering
the first cell from the opposite side, the path through a lattice is periodic and
can be represented by a circle. In 2D, this is possible in two directions, hence
the lattice can be described by two circles in its parameter space. Combining
the two circles into one object will give an object that resembles a torus. The
torus can be viewed as the generator of the lattice and is pictured in figure
2.2b. It can be used as a "stamp", printing the lattice onto a 2D surface while
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rolling through space along its two circles in parameter space. The torus is
here the most simple example and only covers two parameters but can be
generalized to any number of parameters. The topological aspect of crystal
lattices is that many lattices may result in the same topological "stamp" rep-
resenting them.

2.3 The Berry Phase

The Berry phase is a concept derived by Michael Berry [28] when studying
the quantum adiabatic theorem and it is also referred to as geometric phase
because it is crucially dependent on the geometry of the underlying struc-
ture. The relation between the Berry phase and the Quantum Hall effect was
subsequently pointed out by Barry Simon [29], describing it as a result of
holonomy of the underlying manifold.

The quantum adiabatic theorem was first proved by Max Born and Vla-
dimir Fock [38]. It states that if a Hamiltonian is changing in time sufficiently
slowly and the system initially begins close to an eigenstate, then the system
remains close to an eigenstate with evolution of time. This can be expressed
in terms of a Hamiltonian with a set of parameters R(t) that is time depen-
dent H(R(t)). The system is assumed to go through a cycle c from t = 0 to
t = T where R(T) = R(0) and c describes the motion described by the vector
R(t) with passing time. At any given time the system is characterized, up to
a phase uncertainty, by its Schrödinger equation

H(R(t))|un(R(t))〉 = En(R(t))|un(R(t))〉 (2.11)

where the quantum number n is related to the Energy eigenvalues of the
Bloch functions |un (R(t))〉. However, this equation does not capture the time
evolution of the system. For this, the full time dependent Schrödinger equa-
tion

ih̄∂t|Ψ(t)〉 = H(R(t))|Ψ(t)〉, (2.12)

where the wave functions are time dependent explicitly, has to be considered.
Comparison with (2.11) delivers an expression for the full wave function in
terms of the Bloch functions |un(R(t))〉

|Ψ(t)〉 = eiγC(t)eiφ(t)|un(R(t))〉 (2.13)
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where iφ(t) = −i/h̄
∫ t

0 dt′En(R(t′)) contains the regular energy terms and
γc, the quantity of interest, depends on a line integral along c

γc =
∮

c
dR An(R) with An(R) = i〈un(R(t))|∇R|un(R(t))〉. (2.14)

γc is called Berry phase and An(R) is called the Berry vector potential. The
Berry phase can be rewritten as surface integral

γc =
∫

M
dS ∇R ×An(R) =

∫
M

dS Ωn(R) (2.15)

where M represents the manifold describing the surface spanned by the path
c. This resembles the Gauss-Bonnet theorem from (2.10) and Ωn(R) is inter-
preted as an equivalent to the Gaussian curvature K in topology and is called
Berry curvature. Considering the definition of An(R), the Berry curvature
can be expressed in terms of the Bloch functions of the Hamiltonian as

Ωn(R) = Im ∑
m 6=n

〈unk|∇RH(R)|umk′〉 × 〈umk′ |∇RH(R)|unk〉
(Em − En)

2 (2.16)

where |unk〉 are Bloch functions with momentum indices as in (2.8). In terms
of the components Rµ of the set of parameters R(t) the Berry curvature tensor
can be written as

Ωn
µν(R) = −2 Im ∑

m 6=n

〈unk|∂Rµ H|um〉〈umk′ |∂Rν H|unk〉(
Em(k′)− En(k)

)2 . (2.17)

Now that the connection between topology, crystal symmetries, and Hamil-
tonian systems has been established, what is left is to find the last link to an
application of the previous derivations.

2.4 Quantum Hall Effect

The Quantum (charge) Hall effect was the experimental discovery setting
off the first developments in topological condensed matter physics. It takes
place in the setting of a flat, effectively two-dimensional, material that is pen-
etrated by a strong magnetic field and that is carrying a small current. For
magnetic fields strong enough, the Hall conductivity is then quantized with
the number of occupied Landau levels ν. A sketch of the flat material and
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FIGURE 2.3: (Left) Sketch of a flat material with conducting
channels on its edges where the magnetic field is perpendic-
ular to the material plane [39] and (right) example data show-
ing quantized steps in resistance with varying magnetic field
strength [40]. RH is the Hall resistance associated with the con-
ductivity σxy or σH and Rxx is the resistivity associated with σxx.

The edge channels are not spin sensitive.

experimental results for the Quantum Hall Resistance are shown in figure
2.3.

The Hall conductivity σxy for an initial current in x direction that leads
to a current in y direction can be determined by making use of the Kubo
formula [41] which describes the linear response of a Hamiltonian to a small
time dependent oscillating electric field

σxy(ω + iδ) =
i

ω + iδ
1
V

1
Z0

∑
n,m

〈n|jx|m〉〈m|jy|n〉
h̄ω + iδ + En − Em

(
e−βEn − e−βEm

)
. (2.18)

A second term, called the diamagnetic term, is omitted due to it being ap-
plicable only to diagonal elements of σij. ω is the frequency of the oscillating
electric field, Z0 is the partition function associated with the unperturbed
Hamiltonian, and |n〉 are eigenstates of the unperturbed Hamiltonian with
their respective energy eigenvalues En. For Bloch waves, ω → 0, T → 0, and
by making use of

1
h̄ω + En + Em

=
1

En − Em

(
1− h̄ω

En − Em

)
+O(ω2), (2.19)

the Hall conductivity can be expressed as

σxy =Im
2e2

h̄ ∑
n,m,k,k′

〈unk|vy|umk′〉〈umk′ |vx|unk〉
(En(k)− Em(k′))2

=− 2 Im
e2

h̄

En<EF

∑
n,k

m 6=n

∑
m,k′

〈unk|∂kx H|umk′〉〈umk′ |∂ky H|unk〉
(En(k)− Em(k′))2

=
e2

h
1

2π

En<EF

∑
n

∫
BZ

dk Ωn
xy

(2.20)

where the summation excludes n = m and n only runs over occupied states
with En < EF. EF is the Fermi energy. The summations over wave vectors
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has been converted to an integral over the Brillouin zone in the final step.
Here lies the connection between the Quantum Hall conductivity and the
Berry phase/curvature. The QH conductivity can be expressed in terms of
the Berry curvature given in (2.17). It crucially depends on the integral and,
thus, on the shape of the Brillouin zone. In the case of the Quantum Hall
conductance, the integral equals 2π and the summation over n, where only
the ν occupied (Landau) bands are considered, then contributes a factor of ν.
Hence, the conductivity for the integer Quantum Hall effect is

σxy = ν
e2

h
. (2.21)

It is quantized because each occupied Landau band opens up exactly one 1D
channel for electron transport. ν is called the first Chern number and it is a
topological invariant.

2.5 Quantum Spin Hall Effect

A crucial concept for the Quantum Spin Hall effect is that of time-reversal
symmetry (TRS). The action of time-reversal is represented by the replace-
ment of the parameters for time, t → −t. If a system’s state is invariant
under this transformation, it is called time-reversal invariant. time-reversal
symmetry is related to entropy in that, if a system is time-reversal invariant,
the entropy of the system does not change. Hence, on the macroscopic scale,
time-reversal symmetry is in conflict with the second law of thermodynam-
ics. On the microscopic scale, TRS is a symmetry present in quantum me-
chanical systems where the seeming paradox of TRS in the quantum world
but TR asymmetry on the macroscopic scale is resolved by the fluctuation
theorem of statistical mechanics.

Time-reversal symmetry in quantum mechanics has an important effect
on fermions described by the Kramers theorem. If a Hamiltonian H is in-
variant under time-reversal T, [H, T] = 0, then for each state of the Hamil-
tonian |Ψ〉 there exists a second state T|Ψ〉 that bears the same energy be-
cause HT|Ψ〉 = TH|Ψ〉 = ET|Ψ〉, where E is the energy of the original state
H|Ψ〉 = E|Ψ〉. The two states |Ψ〉 and T|Ψ〉 are called a Kramer or TRS pair.
For condensed matter systems these two states usually are distinguishable
by their respective values in momentum space which take opposite sign. An
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exception to this is when the wave vector equals zero for which both states
have the same momentum. In the absence of spin-orbit coupling, Kramers
degeneracy simply describes the usual spin up/spin down degeneracy that
can be lifted by a magnetic field and results in Zeeman splitting.

2.5.1 The Haldane Model

An important step towards the theoretical development of the Quantum Spin
Hall effect was a model introduced by Duncan Haldane [33]. He constructed
a model on a honey-comb lattice with sub-lattices A and B that features
nearest- and next-nearest-neighbour hopping represented by the respective
hopping amplitudes t1 and t2 with a position dependent magnetic flux den-
sity that averages to zero over the whole unit cell but with opposite signed
fluxes for different regions within the cell. Hopping due to the next nearest
neighbour hopping t2 acquires a phase φ while hopping around the whole
cell with nearest neighbour hopping t1 acquires no phase. Essentially being a
Graphene model with additional next nearest neighbour hopping, the result-
ing tight binding Hamiltonian shows two distinct points in the kx-ky plane
at which the gap is closed, Kτ where τ ∈ {−1, 1}, if none of the symmetry
breaking terms are present. An expansion of the Hamiltonian to linear order
around these two points results in a Dirac-like Hamiltonian for each point

Hτ =

(
mτ h̄vF(τkx − iky)

h̄vF(τkx + iky) −mτ

)
(2.22)

where vF is the Fermi velocity and mτ = M − 3
√

3τt2sin(φ) with M being
an on-site energy, positive for A sites and negative for B sites. mτ is present
due to the next nearest neighbour hopping and represents an effective mass
within the picture of the Dirac Hamiltonian. The eigenenergies of (2.22) are
given by Eτ

±(k) = ±
√
(h̄vFk)2 + m2

τ. The terms mτ break time-reversal sym-
metry and inversion symmetry of the original Graphene model and, without
it, the dispersion would form a Dirac cone. Suppose now that a film of mate-
rial governed by the Haldane model in the region M− 3

√
3τt2sin(φ) < 0 is

side by side with the same model but where the complex next nearest neigh-
bour hopping term t2 is zero. If the x axis serves as edge between the two
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layers and t2 6= 0 for y < 0, and if the function for the mass

m(y) =

{
M− 3

√
3τt2sin(φ) y ≤ 0
M y > 0

(2.23)

at the edge of the two materials is continuous, then it needs to cross zero
around y = 0. The Fourier transformed Hamiltonian of the system can then
be represented by (h̄vF = 1)

H(x, y) =

(
m(y) −(i∂x + ∂y)

−(i∂x − ∂y) −m(y)

)
(2.24)

which results in a wave function located at the boundary of the two regions

ψkx(x, y) ∝ eikxxe−
∫ y

0 dy m(y′) (2.25)

with the linear dispersion E(qx) = EF + h̄vFqx. |ψkx(y)|
2 and m(y) are plot-

ted in figure 2.4. The model thus has two topologically distinct regions that
can be associated with a topological integer ν ∈ {0,±1}. When inversion
symmetry is broken, a gap opens and the system becomes a regular semi-
conductor with ν = 0. But if TRS is also broken the system ends up in a
state with ν = ±1 and becomes an integer Quantum Hall state. This model
derived by Duncan Haldane is now referred to as a Chern insulator or the
Quantum Anomalous Hall effect.

FIGURE 2.4: (left) Localization of the wave function at the inter-
face of a trivial and a non-trivial Haldane system where m(y)
is approximated as a continuous function through m = 0 [42].
(right) Predicted edge state dispersion of Quantum Spin Hall

state in Graphene as proposed by Kane and Mele [43].

2.5.2 The Kane-Mele Model

The Kane-Mele model refers to work of Charles Kane and Eugene Mele who
were first to construct a model that predicted the Quantum Spin Hall effect
[43, 44]. They combined two time-reversal conjugate copies of the Haldane
model, one for spin up electrons exhibiting ν = +1 and one for spin down
electrons with ν = −1. In this setup, the two copies cancel each others’
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FIGURE 2.5: (Left) Sketch of a flat material with conducting
channels on its edges due to the Quantum Anomalous Hall ef-
fect and (right) sketch of a flat material with conducting chan-
nels on its edges due to the Quantum Spin Hall effect where the

edge channels are spin sensitive [39].

Quantum Anomalous Hall effect that was determined in the previous sec-
tion. A sketch of the Quantum Anomalous Hall effect and the Quantum Spin
Hall effect can be seen in figure 2.5. But a calculation for the spin current in-
stead of the charge current results in a quantized spin current conductivity
σs

xy = e/(2π). Kane and Mele introduced a coupling term between the spin
up and spin down electrons to allow for spin flips that was expected to open
up a gap in the whole band structure. But it was found that the edge states re-
mained gapless and that they are protected by the Kramers degeneracy and
an associated Z2 topological invariant that reflects the parity of the Chern
number.

The Z2 invariant can be characterized by a Chern number associated with
time-reversal polarization which is defined as PT = P+ − P− and can be ex-
pressed as an integral similar to the Berry curvature. Here, P+ and P− are the
partial charge polarizations for each spin flavor. It then results in a Z2 inte-
ger ν that defines two distinct polarization states, one with conducting edge
states and one with gapped edge states. The Z2 classification is similar to the
first Chern number classification of the quantum charge Hall effect and can
be identified as second Chern number [35, 45]. The edge states transmit elec-
trons perfectly even when there are regions of disorder. The reflection ampli-
tude of an electron in an edge channel is odd under time-reversal which re-
sults in dissipation less transmission at zero temperature unless time-reversal
symmetry is broken.

Subsequently to the discovery of the Quantum Spin Hall effect by Kane
and Mele, the term "topological insulator" (TI) was coined as a distinction
from insulators with trivial topological properties. Trivial usually attributes
to the fact that the wave functions of a material can be defined continuously
over the whole Brillouin zone while in the Quantum Spin Hall phase wave
functions have to be defined in patches within the Brillouin zone. The Quan-
tum Spin Hall effect is the basis of topological insulators. Due to this effect,
topological insulators have conducting helical edge states that are filtered by
spin and resistant towards perturbations.
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Chapter 3

Recent Developments

The theoretical prediction of the Quantum Spin Hall effect in Graphene set off
a series of developments. After Charles Kane’s and Eugene Mele’s topologi-
cal categorization of the Quantum Spin Hall effect by a Z2 invariant [43, 44],
several other attempts at mathematical derivations of the invariant and char-
acterizations of properties were made. Liang Fu and Charles Kane showed
that, for non interacting electrons, the Quantum Spin Hall Z2 invariant can
be expressed analogous to the Berry phase formulation of the charge po-
larization [46]. The Kramers doublet plays an important role as the relative
phase between it reduces the second Chern number represented by Z to a Z2

topological invariant [47]. Moore et al. show that the time-reversal invariant
Brillouin zone can be classified within homotopy theory and determine dis-
tinct classes of maps from the Brillouin zone to the space of Bloch Hamiltoni-
ans. They show that there exists one Z2 index per Bloch band in two dimen-
sions and four Z2 indice per Bloch band in three dimensions [48]. Moreover,
time-reversal invariant insulators exist in four dimensions and the 2D and
3D topological insulators can be obtained through dimensional reduction of
these 4D system [49]. The edge states of 2D systems also have the important
property helicity, meaning that the up spins propagate in one direction, while
the down spins propagate in the other [50]. The stability of the Quantum Spin
Hall state is further investigated by Xu and Moore who find that it is stable
to weak interactions and disorder for models with single Kramer pairs [51].

Further investigation into topological insulators has brought to light more
of their properties. Together with superconductors, different types of topo-
logical insulators and superconductors can be systemized in a periodic table
[52]. This is due to the relation between the two types of structures in terms
of time-reversal symmetry, particle-hole symmetry, and chiral symmetry for
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different spacial dimensions. Imura et al. found that weak topological insu-
lators may also be associated with a periodic gap size [53]. Moreover, other
symmetries may be used as source for the protection of edge states, for ex-
ample mirror symmetry and rotational symmetries [54, 55].

Experimental Discovery of 2D and 3D Topological Insulators

The initial candidate for a 2D topological or spin hall insulator, Graphene,
had to be dismissed as it was realized that the actual spin-orbit coupling in
Graphene was too weak to open up a gap large enough. At the Dirac point,
the gap only reaches a size of order 10−6 eV [56, 57]. For another proposal,
independent of the work of Kane and Mele, by Bernevig and Zhang in GaAs
there were no immediate experimental systems available [58]. A second pro-
posal by Bernevig, Hughes, and Zhang claimed for the Quantum Spin Hall
effect to be present in layered CdTe-HgTe-CdTe quantum wells when certain
conditions for the thickness of HgTe are met [59]. Subsequently, the proposed
quantum well structure was realized by Molenkamp et al. showing strong
evidence for the existence of gapless edge states without the presence of a
magnetic field [60]. In this model, the necessary spin-orbit coupling in the
effective Hamiltonians results from the spin-orbit coupled p orbitals and the
mass parameter can be tuned to reach negative values because s orbitals lie,
energetically, below the p orbitals. With increasing HgTe size the mass pa-
rameter becomes smaller until it is negative and the system enters the topo-
logical regime.

After the discovery of the QSHE in HgTe/CdTe quantum wells, further
proposals for Bi1−xSbx and strained HgTe as strong 3D topological insulators
were made [61] which lead to the experimental discovery of the first 3D topo-
logical insulator in Bi1−xSbx by Hsieh et al. [62]. Fu and Kane also pointed
out that with 3D topological insulators there is associated a set of four Z2

topological invariants (ν0; ν1ν2ν3) that can lead to weak and strong topolog-
ical insulators, where the 3D TI in Bi1−xSbx is classified as strong. The term
weak 3D topological insulator is associated with structures that consist of
layered two-dimensional topological insulators similar to how the 3D inte-
ger quantum Hall state can be constructed by layering regular 2D Quantum
Hall structures [63]. Weak topological insulators have ν0 = 0 and the helical
edge states of the 2D structures turn into anisotropic surface states that are
not protected by time-reversal symmetry anymore.
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Three-dimensional topological insulators with topological invariant ν0 =

1 are considered strong topological insulators. In a strong topological insu-
lator the number of Kramers points enclosed by the surface Fermi circle is
odd (ν0 = 1) while it is even for weak topological insulators (ν0 = 0). Be-
cause the band gap in Bi1−xSbx is small, it was desirable to find topological
materials with larger band gap. Zhang et al. then showed that Bi2Se3, Bi2Te3,
and Sb2Te3 are possible candidates of strong topological insulators [64] which
was confirmed around the same time by Xia et al. [65] for Bi2Se3. The works
of Zhang et al. in [64] serves as a foundation for this thesis. Its details will be
explained more thoroughly in section 3.1.

Topological Insulators in other Physical Systems

Topological states have also been identified in other areas of physics. 3D
topological insulators have been simulated in the frame of ultra cold atoms
being subject to artificial gauge fields in optical lattices [66–69]. In acoustical
topological insulators, edge states have been observed in acoustic resonators
that are arranged in a honey comb lattice [70, 71]. Also, topologically non-
trivial states of light have been created in periodic photonic structures [72,
73]. For two types of water waves on the oceans of earth around the equator,
it was theorized that they are the result of topological order [74].

The discovery of topological insulators also sparked excitement in the
area of quantum computation. Qubits, the binary system associated with
the construction of quantum computers, tend to be unstable when created
in conventional ways. With the help of the stability of topological states the
existence of stable zero energy Majorana modes is expected in systems con-
sisting of a superconductor in close proximity to a topological insulator [75–
78]. These Majorana modes behave like anyons and are a candidate for fault
tolerant quantum computing. There is strong evidence for the existence of
Majorana modes but the observed systems yet have to be proven to be suit-
able for quantum computing [79, 80].

Apart from Majorana fermions, another fundamental particle predicted
by the Dirac equation are Weyl fermions. Weyl semimetals are named after
these types of fermions and they feature charge carriers that behave like Weyl
fermions in the bulk band structure and show Fermi arcs in the surface state
band structure. Weyl fermions occur at accidental touching points in the bulk
band structure [81] which are related to Berry curvature monopoles in the
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Brillouin zone [82, 83].
Topological Kondo insulators relate to classic Kondo insulators that adapt

topological order. Robust surface states have been observed in SmB6 which
may be attributed to topological properties of the Kondo insulator [84, 85].

Magnetic Properties of Topological Insulators

Considering the prerequisite of classical topological insulators being time-
reversal invariance and the fact that TRS is broken by a magnetic field, it
may seem pointless at first sight to consider magnetic properties of topolog-
ical insulators. However, as stated before, topologically protected states not
only result from TRS but may also be the result of other symmetries. For ex-
ample, due to crystalline symmetries in Bi2Te3, the band structure of it in a
magnetic field does not show the opening of a gap [55]. There are a number of
topological effects that are related to magnetic properties. Topological states
can also be present in ferromagnetic materials where magnons represent the
particles being transported in protected edge channels. These topological
magnon insulators have been proposed [86] and experimentally observed in
superconducting qubit chains and in the honeycomb ferromagnet CrI3 [87,
88]. Topological insulators also may feature the topological magneto-electric
effect which leads to magnetic fields induced by electric fields and electric
fields induced by magnetic fields [89, 90]. The properties of the Berry curva-
ture may also lead to the realization of effective magnetic monopoles [91, 92].
Negative magnetoresistance is observed in topological insulators and topo-
logical semimetals that is also related to the Berry curvature and the chiral
anomaly, respectively [93, 94]. The planar Hall effect has been observed on
the surface of topological insulators and is related to effects induced by the
orbital magnetic moment [95, 96]. Finally, Weyl fermions may be created in
materials with time-reversal symmetry and inversion symmetry by applying
a magnetic field [97].

3.1 A 3D Topological Insulator in Bi2Se3, Bi2Te3,

and Sb2Te3

The Bi2Se3 family of materials as topological insulators has been introduced
by Chao-Xing Liu and Shou-Cheng Zhang et al. [64]. Their group derived
a low-energy effective Hamiltonian of the Bi2Se3 crystal structure using its
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FIGURE 3.1: (Left) Crystal structure of Bi2Se3. Bismuth selenide
consists of one selenium layer (green), which is followed by a
bismuth layer, another selenium layer, and a bismuth and se-
lenium layer where the stacking occurs along the z axis. The
x and y axis lie in the plane perpendicular to the stacking di-
rection. The crystal obeys a mirror symmetry with the mirror
plane normal lying in the x-y plane and pointing in y direction.
(Right, obtained from [64]) The formation of the band structure
of Bi2Se3. Note the inversion of valence and conduction band
after the application of spin-orbit coupling - these bands have
opposite parity. (I) Hybridization (II) Anti-bonding/Bonding

(III) Crystal-Field-Splitting (IV) Spin-Orbit-Coupling

crystal symmetries and time-reversal invariance. The Hamiltonian was justi-
fied further by a more extensive derivation using symmetry arguments and
k · p -theory [98].

The crystal structure of Bi2Se3 is rhombohedral and in the space group
D5

3d. It exhibits inversion symmetry, twofold rotation along the x direction,
threefold rotation along the z direction, and time-reversal symmetry. It con-
sists of layers of bismuth and selenium that are stacked in z direction as tri-
angle layers in the order A-B-C-A-B-C-A-· · ·, shown in figure 3.1. While dif-
ferent quintuples of Bi2Se3 are weakly coupled by van der Waals forces, the
chemical bonding within the quintuple layer is very strong. With an electron
configuration of 6s26 p3 for bismuth and 4s2 4p4 for selenium, the outmost



30 Chapter 3. Recent Developments

Parameters according to [98] Parameters according to [99]

Bi2Se3 Bi2Te3 Sb2Te3 Bi2Se3 Bi2Te3 Sb2Te3

A0 [eVÅ] 3.330 2.870 3.400 2.513 4.003 3.694
B0 [eVÅ] 2.260 0.300 0.840 1.836 0.900 1.174
M0 [eV] −0.280 −0.300 −0.220 −0.169 −0.296 −0.182
M1 [eVÅ2] 6.860 2.790 19.640 3.353 9.258 22.136
M2 [eVÅ2] 44.500 57.380 48.510 29.375 177.355 51.320
C0 [eV] −0.008 −0.180 0.001 0.048 −0.123 0.023
C1 [eVÅ2] 5.740 6.550 −12.390 1.410 2.667 −14.211
C2 [eVÅ2] 30.400 49.680 −10.780 13.906 154.457 −6.972

TABLE 3.1: Material parameters according to [98] and [99]
for all involved materials. In this thesis, the set on the right
hand side [99] will be used for the most part. In some cases
the left hand side parameter set [98] will be used to under-
line differences that occur. While the derivation of the param-
eters in [98] relies on the atomic orbital wave functions and
on symmetry considerations and k · p-theory, the parameters
from [99] are derived solely on the basis of k · p-theory with
spinor wave functions derived with the extended linearized

augmented plane wave method (ELAPW).

shells of both materials are p orbitals and, hence, the s orbitals are neglected.
To obtain the four essential bands around the Fermi level, several effects on
the bismuth and selenium bands are considered and labelled (I) to (IV) as
indicated in figure 3.1. In the first stage (I), hybridization of bismuth orbitals
and selenium orbitals leads to the repulsion of levels. Because the system
is inversion invariant, these states can be combined to bonding and anti-
bonding states with a definite parity (II). This leads to two sets of states with
opposite parity around the Fermi energy. Crystal field splitting (III) leads to a
splitting into px,y and pz orbitals. Due to the layered structure in z direction,
the x-y plane is different from the z direction in the atomic plane. Finally,
spin-orbit coupling (IV) leads to the inversion of the bands so that the band
that was previously below (above) the Fermi energy with negative (positive)
parity now is above (below) the Fermi level. After symmetry considerations,
the resultant bands in the order |P1+z , ↑〉, |P2−z , ↓〉, |P1+z , ↓〉, |P2−z , ↑〉 lead to
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the model Hamiltonian

HZhang = ε (k) +


M(k) B0kz 0 A0k−
B0kz −M(k) A0k− 0

0 A0k+ M(k) −B0kz

A0k+ 0 −B0kz −M(k)

+O
(

k2
)

(3.1)

where ε (k) = C0 + C1k2
z + C2(k2

x + k2
y) represents particle-hole asymmetry,

M(k) = M0 + M1k2
z + M2(k2

x + k2
y), and k± = kx± iky. For the |P1τ

z , σ〉, |P2τ
z , σ〉

basis states, σ represents the the spin eigenvalues and τ represents the parity
eigenvalues which can also be interpreted as a two level pseudospin system.
The parameters A0, Ci, Mi, and B0 are material specific to Bi2Se3, Bi2Te3, and
Sb2Te3 and were determined numerically. In an attempt to refine these mate-
rial parameter, ab initio calculations were conducted and found another set
of parameters representing the respective materials. Both sets of parameters
are listed in table 3.1. The model Hamiltonian (3.1) resembles Dirac’s equa-
tion when written as

HDirac = ε (k) +
[
A0
(
kxαx + kyαy

)
+ B0kzαz + M (k) β

]
+O

(
k2
)

(3.2)

with αa = σa ⊗ τ1, β = 1⊗ τ3, and a, i ∈ {x, y, z}. σa and τi are the Pauli ma-
trices. As such, it is also denoted as Dirac-like Hamiltonian. The Hamiltonian
derived in this section serves as basis of this thesis. Results obtained here are
also applicable to any other material with this type of Hamiltonian, for ex-
ample the Dirac semimetal Cd3As2 [100, 101] or other topological insulators
such as Bi2Te2I2 [102].
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Chapter 4

Confined 3D Topological Insulator
with no external fields

The central consideration of this chapter is a harmonic potential extending
along the z-direction of the material, the stacking direction which is used
as confining potential. Usually, confinement is applied by introducing infi-
nite hard walls, that is, by restricting the Hamiltonian to a certain space and
the wave function is set to vanish outside this space. Compared to this, a
downside of the soft harmonic potential that is used here would be that it
introduces a force towards the center of the material. On the other hand, fun-
damentally, the transition crystal-boundary-vacuum is, arguably, more real-
istic because the forces exerted by the crystal will not end abruptly but decay
smoothly on a certain length scale while exiting the crystal structure. With
hard-wall confinements, by definition, there is no possibility for the descrip-
tion of wave functions outside the crystal. The main reason for this choice of
confining potential, however, is that it is simple and that it will prove to fit
in well with the rest of the model while still being a realizable experimental
setting in optical lattices.

It has been proposed [66, 103] that Topological Insulators can be realized
in two-dimensional hexagonal optical lattices with a light-induced periodic
vector potential. Furthermore, it has been shown that an optical lattice can
be used as quantum simulators of relativistic lattice fermions in 3 + 1 dimen-
sions where the effective physical system is represented by a 3D Topological
Insulator [67]. For 3D Z2 Topological Insulators such as Bi2Se3, Bi2Te3, and
Sb2Te3, optical lattice simulations have been realized in optical flux lattices
that generate non-abelian gauge fields such that Time-Reversal Symmetry is
not broken and with non-trivial Z2 invariant [69, 104, 105]. Furthermore, the
confining potential can modelled similarly to the harmonic potential used
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here and can be made arbitrarily sharp as shown in [106]. As such, the va-
lidity of the model presented here and its results may be verified under such
circumstances at least qualitatively. At the same time, this model can serve
as a verification of the experimental setup and it can give insights into its
further properties. Topological Insulators in optical lattices, in turn, drive the
development of Topological Quantum Computing [68].

4.1 Model Hamiltonian for a Confined 3D Topo-

logical Insulator

In this study, the low energy approximation (3.1) is used as basis for a soft
confinement of the materials Bi2Se3, Bi2Te3, and Sb2Te3. A mass confined po-
tential of the form

V(z) = V(z) (1⊗ τz) =


V(z) 0 0 0

0 −V(z) 0 0
0 0 V(z) 0
0 0 0 −V(z)

 (4.1)

is considered. Here, V(z) takes on the form of the usual harmonic potential

V(z) =
1
2

m‖Ω
2
γz2 (4.2)

with mass m‖ and Ωγ defined with respect to the material parameters as

m‖ =
h̄2

2M1
and Ωγ = γ

A2
0

M2h̄
. (4.3)

The magnitude of the confinement potential is parametrised by γ. The smaller
γ becomes, the wider the parabola opens up and allows for less restricted
movement which is illustrated in figure 3.1. After introducing this potential,
the total Hamiltonian of the system reads

H = ε(k) +


M(k) B0kz 0 A0k−
B0kz −M(k) A0k− 0

0 A0k+ M(k) −B0kz

A0k+ 0 −B0kz −M(k)

+ V (z) . (4.4)
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As is, the advantage of the harmonic oscillator potential is not immediately
apparent. The idea is to obtain a full harmonic oscillator Schrödinger equa-
tion and make use of its harmonic oscillator (HO) wave functions in order to
solve the system. The first step towards this is to carry out the replacement
kz → −i∂z . This allows to rewrite the Hamiltonian as

H = ε(k) +


M (k) + HO −iB0∂z 0 A0k−
−iB0∂z −M (k)− HO A0k− 0

0 A0k+ M (k) + HO iB0∂z

A0k+ 0 iB0∂z −M (k)− HO


(4.5)

where the effective gap parameter M (k) and the harmonic oscillator Hamil-
tonian HO read

M (k) = M0 + M2k2
⊥ and HO = − h̄2

2m‖
∂2

z +
1
2

m‖Ω
2
γz2, (4.6)

respectively, where k2
⊥ = k2

x + k2
y and k± = kx + iky. The solution to the

Schrödinger equation for the harmonic oscillator Hamiltonian, HOΦ(z) =

EΦ(z), are regular harmonic oscillator functions

Φn(z) =
1√
2nn!

(m‖Ωγ

πh̄

)1/4

e−
m‖Ωγz2

2h̄ Hn

√m‖Ωγ

h̄
z

 , (4.7)

whereHn denote Hermite polynomials

Hn(z) = (−1)nez2 dn

dzn

(
e−z2

)
(4.8)

and the prefactor of z is called the natural length of the harmonic oscillator
or, here, the harmonic oscillator length lγ =

√
h̄/(m‖Ωγ) =

√
2M1/(E⊥γ).

Furthermore, its energy eigenvalues are the energies of the harmonic oscilla-
tor

E0
n = h̄Ωγ

(
n +

1
2

)
. (4.9)

It is convenient to split the Hamiltonian into a part that is solvable analyti-
cally, H0, and two further parts, Hε, which represents the particle-hole asym-
metry εk⊥ , and H‖(z), which includes the z-dependent terms that can not be
included in the harmonic oscillator Hamiltonian. It becomes apparent that
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H0 becomes block diagonal when the order of the base orbitals is changed so
that |P2−z , ↓〉 and |P2−1 , ↑〉 switch positions. This results in the order {|P1+z , ↑〉,
|P2−1 , ↑〉, |P1+z , ↓〉, |P2−z , ↓〉} and H0, Hε, and H‖ then read

H0 =


Mk⊥ A∗k⊥ 0 0

Ak⊥ −Mk⊥ 0 0
0 0 Mk⊥ Ak⊥
0 0 A∗k⊥ −Mk⊥

 , H‖ = −
(
σy ⊗ τy

)
B0

p̂z

h̄
,

(4.10)
and Hε = εk⊥ , respectively, where p̂z is the momentum operator in z direc-
tion, p̂z = −ih̄∂z, and k⊥ is short for (kx, ky), i.e.Mk⊥ =M(kx, ky). The con-
vention is taken that, in terms of the form σi⊗ τj, σi is always to the left of the
Kronecker matrix product ⊗ while τi is always to the right of it. H0 is invari-
ant under a rotation in the kx-ky plane. For kx = k′ Cos(ϕ) and ky = k′ Sin(ϕ),
it follows

k2
x + k2

y = (k′)2 and kx ± iky = k′[Cos(ϕ) + i Sin(ϕ)] (4.11)

which results in the same Hamiltonian for a rotation of axes around the z axis.
For later convenience, A0k± is summarized by the τx-τy term Ak⊥ = A0k±.
The goal is now to find an analytical solution for

H0ψk⊥(z) = Enψk⊥(z) (4.12)

that can be used as Ansatz for the perturbative solution to the whole Hamil-
tonian. Since H0 is of the form

H0 =

(
h0 0
0 h∗0

)
, (4.13)

it is possible to solve the two blocks separately and split the Schrödinger
equation into two parts

h0 ψ
(↑)
k⊥

(z) = E ψ
(↑)
k⊥

(z)

h∗0 ψ
(↓)
k⊥

(z) = E ψ
(↓)
k⊥

(z)
(4.14)
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where the asterisk represents complex conjugation. H0 is invariant under the
time-reversal operator

T = iσy ⊗ 12×2K

and h0 is invariant under the operation T = iσyK. Assuming that ψ
(↑/↓)
k⊥

(z)
can be factorized, the Ansatz

ψ
(↑)
nk⊥

(z) = ψ
0(↑)
nk⊥

Φn(z) (4.15)

is used, making use of the harmonic oscillator functions Φn(z). With this, the
effective gap parameterM can be expressed in terms of the HO energies as

Mn k⊥ = M0 + M2k2
⊥ + E0

n (4.16)

and the energy eigenvalues of h0 read

E = Eα
n k⊥ = α

√
(Mn k⊥)

2 +
∣∣Ak⊥

∣∣2 (4.17)

where α can take on the values +1 or −1. This can be rewritten in terms of
the fundamental energy and momentum measures of the system

E⊥ =
(A0)

2

M2
and q0 =

A0

M2
. (4.18)

Along with a definition of the coupling strength

γ‖ =
B2

0

A2
0

M2

2M1
, γ0 =

M0

E⊥
, and γε =

C1

2M1
, (4.19)

it results in

E (α)n k⊥
= αE⊥

√√√√[γ

(
n +

1
2

)
+ γ0 +

(
k⊥
q0

)2
]2

+

(
k⊥
q0

)2

(4.20)

where γε is associated with the particle-hole asymmetry term εk⊥ . Note here,
that the first term under the root, [Mn k⊥/E⊥]2 determines the (un-)inverted
character of the bands and further determines whether the gap is closed or
not. This will be discussed further in section 4.2. The non harmonic oscillator
function contributions to the eigenvectors, ψ

0(↑)
n k⊥

, can be written with respect
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to E (α)n k⊥
andMn k⊥ as

ψ
0(↑,α)
n k⊥

=


√
A∗k⊥
|Ak⊥ |

E (α)n k⊥
+Mn k⊥

2E (α)n k⊥

α

√
Ak⊥
|Ak⊥ |

E (α)n k⊥
−Mn k⊥

2E (α)n k⊥

 . (4.21)

Due to the structure of the two blocks, h0 and h∗0 , the wave functions of the
two blocks are related by complex conjugation ψ

(↓,α)
n k⊥

(z) = ψ
(↑,α)
n k⊥

(z)∗. For the
Hamiltonian H0 one then gets the two solutions

ψ
(+,α)
n k⊥

(z) = |+〉 ⊗ ψ
(↑,α)
n k⊥

(z) and ψ
(−,α)
n k⊥

(z) = |−〉 ⊗ ψ
(↓,α)
n k⊥

(z) (4.22)

which are simplified by the notation ψ
(σ,α)
n k⊥

(z) where σ can take on the values
+1 and−1 or + and− for convenience. |σ〉 represents the two spinors (1 0)T

for σ = 1 and (0 1)T for σ = −1. Each state ψ
(σ,α)
n k⊥

(z) is related to its time-

reversal partner by T ψ
(σ,α)
n k⊥

(z) = ψ
(−σ,α)
n k⊥

(z).
The first part of the total Hamiltonian, H0 is solved. What remains are

the particle-hole asymmetry Hεk⊥
and H‖ which is called the coupling term

because it couples the bands arising from the 2 × 2 two blocks in H0. The
Ansatz to the solution of H is made with a super position of H0 wave func-
tions ψ

(σ,α)
n k⊥

(z)

Ψk⊥(z) = ∑
nσα

b(σ,α)
nk⊥

ψ
(σ,α)
n k⊥

(z) (4.23)

which leads to the Schrödinger equation[
H0 + H‖ + Hε

]
Ψk⊥(z) = E Ψk⊥(z). (4.24)

Each term within the square brackets will be treated separately and recom-
bined later. The strategy in each case is to multiply a solution to H0, ψ

(τ,β)
m k⊥

(z),
from the left. In bra/ket notation, starting with H0 this results in

∑
nσα

b(σ,α)
nk⊥
〈mτβ|H0|nσα〉 = E ∑

nσα

〈mτβ|nσα〉

b(τ,β)
mk⊥
E (β)

n k⊥
= Eb(τ,β)

mk⊥

(4.25)
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and can be rewritten as an effective Hamiltonian Hn with a spinor

bnk⊥ =
(

b(+,+)
0 k⊥

, b(+,−)
0k⊥

, b(−,+)
0 k⊥

, b(−,−)
0 k⊥

, b(+,+)
1 k⊥

, ... , b(−,−)
n−1 k⊥

)T
(4.26)

and a diagonal matrix that converts H0 energy eigenvalues to the formalism
of Hn

En = diag
[
E (+)

n k⊥
, E (−)n k⊥

, E (+)
n k⊥

, E (−)n k⊥

]
. (4.27)

The result is

Hn =



E0

E1 0
E2

.
.

0 .
En−1


(4.28)

which is exact for n→ ∞ in

Hnbnk⊥ = Ebnk⊥ (4.29)

and will be cut off as an approximation. Contributions by the coupling term
and particle-hole asymmetry will introduce mostly off-diagonal elements to
this effective Hamiltonian. Recalling H‖ = −

(
σy ⊗ τy

)
B0

p̂z
h̄ , it is convenient

to express p̂z and z in terms of harmonic oscillator ladder operators

p̂z

h̄
= i

√
m‖Ωγ

2h̄

(
a† − a

)
and z =

√
h̄

2m‖Ωγ

(
a† + a

)
. (4.30)

The contribution to Hn can then be expressed as

∑
nσα

b(σ,α)
nk⊥
〈mτβ|H‖|nσα〉 = i

√
m‖Ωγ

2h̄
B0 ∑

nσα

b(σ,α)
nk⊥
〈mτβ|(σy ⊗ τy)(a− a†)|nσα〉

= i ∑
nσα

τδτ,−σb(σ,α)
nk⊥

C̃nm
αβ k⊥〈m|a

† − a|n〉

(4.31)
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with

C̃n,m
αβ k⊥

=

√√√√ γ E⊥B2
0

16M1 E
(α)
n k⊥
E (β)

m k⊥

[
α

√
(E (β)

m k⊥
+Mm k⊥)(E

(α)
n k⊥
−Mn k⊥)

− β

√
(E (β)

m k⊥
−Mm k⊥)(E

(α)
n k⊥

+Mn k⊥)

]
.

(4.32)

The evaluation of the ladder operator matrix element gives

〈m|a† − a|n〉 = δm−1,n
√

m− δm+1,n
√

m + 1. (4.33)

Because the relation
C̃n,m

αβ k⊥
= −C̃m,n

βα k⊥
(4.34)

holds, it is possible to rewrite (4.31) as

∑
nσα

b(σ,α)
nk⊥
〈mτβ|H‖|nσα〉 = i ∑

α

τ
[
b(−τ,α)

m−1,k⊥
Cm−1,m

αβ k⊥
+ b(−τ,α)

m+1,k⊥
Cm,m+1

βα k⊥

]
(4.35)

with the definition Cn,m
αβ k⊥

=
√

m C̃n,m
αβ k⊥

. In order to fit this into the same form
as Hn, the matrices Γn and Cn k⊥ are defined as

Cn k⊥ =

(
Cn,n+1
++k⊥

Cn,n+1
+−k⊥

Cn,n+1
−+k⊥

Cn,n+1
−−k⊥

)
and Γn =

(
0 +iCn k⊥

−iCn k⊥ 0

)
. (4.36)

Hn then takes on the form

Hn =



E0 Γ0

(Γ0)
† E1 Γ1 0

(Γ1)
† E2 Γ2

. . .
. . .

0 . . .
(Γn−2)

† En−1


. (4.37)

In this representation, the structure of the system becomes more clear and the
connotation of "coupling term" becomes apparent. For example, for n = 2
in Hn, H‖ couples the oscillator bands at n = 0 to the n = 1 bands. The
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larger the n, the more consecutive bands are coupled to each other as can be
observed in

H2 =

(
E0 Γ0

(Γ0)
† E1

)
, H3 =

 E0 Γ0 0
(Γ0)

† E1 Γ1

0 (Γ1)
† E2

 , etc. (4.38)

Finally, the particle-hole contribution to Hn is

∑
nσα

b(σ,α)
nk⊥
〈mτβ|Hεk⊥

|nσα〉 = ∑
nσα

b(σ,α)
nk⊥
〈mτβ|C0 + C1

p̂2
z

h̄2 + C2k2
⊥|nσα〉. (4.39)

The parts with no z-dependence, C0 + C2k2
⊥, will only give an additive con-

tribution to the diagonal entries of Hn. The calculation for p̂2
z

h̄2 is very similar
to the previous calculation with the main difference being the squared lad-
der operators which couples H0 bands with band index n to bands with index
n± 2. The other part consists of terms that involve both, raising and lowering
operators and, thus, it also gives a correction term to the diagonal elements
of Hn. Specifically, one gets

−
C1m‖Ωγ

2h̄
b(σ,α)

nk⊥
〈mτβ|(a†)2 − 2(a†a + 1/2) + a2|nσ, α〉 (4.40)

where the middle term, in combination with C0 +C2k2
⊥, leads to the diagonal

correction

En → En + E⊥

[
γ γε(n +

1
2
) +

C0

E⊥
+

C2

M2

k2
⊥

q2
0

]
14×4. (4.41)

The squared ladder operators give a contribution

E⊥∑
α

[
Dm−2,m

αβ,k⊥
b(α,τ)

m−2,k⊥
+ Dm,m+2

βα,k⊥
b(α,τ)

m+2,k⊥

]
(4.42)
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to the Schrödinger equation where

Dn,m
αβ,k⊥

= −γ · γε

√
m(n + 1)

4
√
E (α)n k⊥

E (β)
m k⊥

[√(
E (β)

m k⊥
+Mm k⊥

) (
E (α)n k⊥

+Mn k⊥

)

+ αβ

√(
E (β)

m k⊥
−Mm k⊥

) (
E (α)n k⊥

−Mn k⊥

)]
.

(4.43)

Together along with the previous diagonal correction and the definitions

∆n =

(
Dn 0
0 Dn

)
and Dn =

(
Dn

++ Dn
+−

Dn
−+ Dn

−−

)
, (4.44)

the effective Hamiltonian Hn now reads

Hn =



E0 Γ0 ∆0

(Γ0)
† E1 Γ1 ∆1 0

(∆0)
† (Γ1)

† E2 Γ2 ∆2

. . . . .
. . . . ∆n−3

0 . . . Γn−2

(∆n−3)
† (Γn−2)

† En−1


. (4.45)

Since ∆n is real, the hermitian conjugation for it in Hn can be replaced by a
regular transposition. But it is kept for the sake of clarity and aesthetics.

4.2 Properties of the System H0

Before the simulation and discussion of the full model, it is instructive to take
a closer look at the part of the model that is analytically solvable. It gives in-
sight into the fundamentals of the system and an understanding of its char-
acteristics. Therefore, the mathematical expressions derived in section 4.1
will be visualized using the program Mathematica in the version 11.2 which
can be acquired from the Wolfram Research Company (http://www.wolf-
ram.com/). The program will also be used for later numerical calculations
and the code involved is accessible online [107].

http://www.wolfram.com/
http://www.wolfram.com/
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A central part in the picture of the topological insulator is the harmonic
potential used to confine the system. One question that arises naturally is:
how does one determine the exact size of the TI when the harmonic potential does
not deliver a clear boundary to the system? The answer is that the size of the
material can only be approximated. One can obtain a first idea of the size by
considering the harmonic oscillator length lγ =

√
2M1/(E⊥γ). This quantity

will be used when comparing the different sizes for the three TI-materials.
As one of the most fundamental properties of any system, the energy

eigenvalues of the H0 model are a good starting point for the investigation.
The basic structure of the dispersion in (4.20) follows a square rooted quartic
behavior that forms a parabola shape or a square rooted quartic behavior that
forms a W-shape (or M-shape). Both types of bands are visualized in figure
4.1. Essential for distinguishing between these two types of behavior is the
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FIGURE 4.1: Band structure of H0 for Bi2Te3: a) for an arbitrary
γ = 1.694 which attributes to a width of 1 nm and b) for a
smaller γ = 0.7 (wider TI) with a width of 1.71 nm. The red
(black) bands denote (un-) inverted bands. The larger the width

of the material, the more bands are inverted.

gap parameter

Mn q⊥ = E⊥

[
γ

(
n +

1
2

)
+ γ0 + q2

⊥

]
(4.46)

with the definition of q⊥ = k⊥/q0 and, more specifically, the interplay be-
tween oscillator energies

E⊥γ (n + 1/2) and the material parameter M0, (4.47)
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which is negative in all three materials. One interpretation of this behavior
could be that the harmonic confinement competes with the material parame-
ter M0 which, in turn, is also a measure for the inverted character of a band.
This means that, in this picture, inverted bands can be distinguished from
uninverted bands by their W-shape in most of the cases. A precise definition
can be extracted from (4.46) at q⊥ = 0. A band with quantum number n is
inverted if the gap parameter satisfies (note that γ0 < 0)

Mn q⊥=0 = E⊥

[
γ

(
n +

1
2

)
+ γ0

]
< 0. (4.48)

The band character is therefore (i) dependent on the parameter γ, which is
a measure for the strength and thus for the thickness of the material (where
thickness grows with 1/

√
γ), and (ii) dependent on the harmonic oscillator

band index n. Hence, the thinner the material gets, the less likely a band is
of inverted character and the larger the band index becomes, the less likely a
band is of inverted character. To put it another way, as the γ parameter is get-
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γ = 1.22

FIGURE 4.2: a) Energy dispersion of H0 for Bi2Se3 at γ = 0.258.
b) Band structure of H0 for Sb2Te3 at γ = 1.22 (wider TI). Red
(black) bands denote (un-)inverted bands and the respective
values for γ correspond to a width of roughly 1 nm for both
materials. Even though the width are similar, the shape of the

band structures varies significantly.

ting smaller (material gets thicker), more and more bands become inverted as
can be observed when comparing the H0 band structure for Bi2Te3 in figure
4.1a and figure 4.1b.



4.2. Properties of the System H0 45

Considering the band structure of the three material types, Bi2Se3, Bi2Te3,
and Sb2Te3, even though the thickness of each respective topological insula-
tor in figure 4.1b, figure 4.2a, and figure 4.2b is roughly equal at 1 nm, there
still is a considerable difference in their band structure. While, for example,
Bi2Te3 features several inverted bands, Sb2Te3 only has one inverted band.
And while the characteristic energy E⊥ for the aforementioned materials is
similar, it is considerably smaller for Bi2Se3.

It is also noticeable that for Sb2Te3 in figure 4.2b the gap is nearly closed.
For a random choice of γ and band index n this is coincidental but there
are also situations when the gap is completely closed. They occur when the
effective gap parameter at q⊥ = 0 equals zero, so when the confinement
energy of the harmonic oscillator exactly cancels the material parameter M0

and thus when the condition

γ

(
nc +

1
2

)
+ γ0 = 0 (4.49)

holds. To put it differently, the gap closes when an uninverted band turns
inverted or vice versa. On one hand, this determines a critical nc at any given
width γ for which all bands with band number n < nc are inverted. On the
other hand, it means that for any nc ≥ 0, there is a suitable material thickness,
γc, so that the gap is closed.

Bi2Se3

Bi2Te3

Sb2Te3

0 2 4 6 8 10
0.0
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1/γ

E
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⟂

FIGURE 4.3: Periodicity of the gap closure in H0. Pictured are
Bi2Te3 (dotted), Bi2Se3 (dashed), and Sb2Te3 (thick). The gap
opens and closes as the strength of the harmonic potential

changes.
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Another consequence is that the gap opens and closes periodically when
the size of the material is increased or decreased. The periodic behavior can
be summarized in the definition of the gap size ∆ as

∆(γ) = 2 Min n

[
γ

(
n +

1
2

)
+ γ0

]
(4.50)

where Min n[ f (n)] is defined as the minimum of f with respect to n (i.e.
Min n[n] = 0 for n ∈ N). The periodicity is not directly evident but when
plotted it becomes clearer, as shown for all three materials in figure 4.3a. In
this picture, the periodic gap closure that occurs with the change in size of
the material can be explained by the interplay of confinement and inversion
of bands. The curve enclosing the periodic behavior is dampened with in-
crease in 1/γ because the energetic distance between the harmonic oscilla-
tor bands at q⊥ = 0 decreases as γ increases. The period of the closure de-
pends on the characteristic energy of the system E⊥ and M0 and is a constant,
δ(1/γc) = −E⊥/M0.

Another interesting point is the probability distribution in z direction of
electrons that inhabit the H0 bands. In the H0 picture the main contribution
results from the harmonic oscillator wave functions Φn(z). This is reasonable,
considering the mathematical shape of the wave function is

ψ
0(α)
n q⊥(z) =


√
A∗q⊥
|Aq⊥ |

E (α)n q⊥+Mn q⊥
2E (α)n q⊥

α

√
Aq⊥
|Aq⊥ |

E (α)n q⊥−Mn q⊥
2E (α)n q⊥

Φn(z) (4.51)

which reduces to the harmonic oscillator wave function density when taking
the squared absolute value ∣∣∣ψ0(α)

n q⊥(z)
∣∣∣2 = |Φn(z)|2 (4.52)

because it needs to be normalized. Thus, in the H0 picture, the wave functions
behave like HO wave functions and are considered bulk-like.

In order to get a better understanding of band inversion, the spin and
pseudospin character of the bands can be studied. With respect to the present
choice of basis state order, the pseudospin operator and the spin operator
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FIGURE 4.4: a) Ŝz expectation values of Bi2Te3 at γ = 0.7. All
bands are doubly degenerate with opposite spin projection ex-
pectation values. b) The pseudospin projection expectation val-
ues are inverted with respect to the spin projection expectation
values. All bands are doubly degenerate with negated pseu-
dospin projection expectation values for the bands not pictured.

projected along z direction take on the forms

Ŝz = σz ⊗ τz and T̂z = 12×2 ⊗ τz, (4.53)

respectively. The spin and pseudospin projection expectation values are then
determined by

〈ψ(σ,α)
n q⊥ |Ŝz|ψ(σ,α)

n q⊥ 〉 and 〈ψ(σ,α)
n q⊥ |T̂z|ψ(σ,α)

n q⊥ 〉, (4.54)

respectively, where the involved integrals over the harmonic oscillator wave
functions contributes a factor of one because they are not affected by non-
z-dependent operators. The previous determination of the bands’ inverted
character by considering the zero points of ∆γ can now be investigated more
thoroughly by using the pseudospin projection expectation value distribu-
tion within a band as the previous method only took into account the result
of the gap parameter at q⊥ = 0. This method still reproduces the same be-
havior around q⊥ = 0, but also visibly deviates and parts of the inverted
bands’ pseudospin expectation values become nearly neutral as can be seen
in figure 4.4a.
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Regarding spin projection expectation value texture, when the sets of quan-
tum numbers {n, α} are equivalent, the expectation values for the wave func-
tions with σ = 1 and σ = −1 are the same. For the pseudospin projection
expectation values, bands with quantum numbers σ = 1 and σ = −1 take
opposite expectation values, so 〈ψ(+,α)

n q⊥ |T̂z|ψ(+,α)
n q⊥ 〉 = −〈ψ

(−,α)
n q⊥ |T̂z|ψ(−,α)

n q⊥ 〉 (fig-
ure 4.4b).

One can take away from these observations, first, that band inversion is
reflected in the pseudospin z projection expectation values. Secondly, the
bands involved show bulk like behavior and extend throughout the mate-
rial in confinement direction. Thirdly, the periodicity of the gap is a direct
consequence of the process of confinement because Ωγ, which measures the
energetic distance between two H0 bands, becomes large as the material size
decreases.

4.3 Properties of the Coupled System H0 + H‖

The full Hamiltonian Hn that does not include particle-hole asymmetry is
given in (4.37) and, in general, looks like each set of four bands (En) is cou-
pled to its neighbours via the coupling terms Γn and Γn−1. Any attempt to
get an appropriate analytically deducible approximation to the full Hamilto-
nian by only focusing on the low energy bands around the Fermi level or by
applying for example Löwdin partitioning, also known as Schrieffer-Wolff or
Foldy-Wouthuysen transformation [108], has failed or delivered very poor
results. The most effective method is to cut off the Hamiltonian at a certain
n that lies well beyond the critical nc in the H0 picture. Note here, that the
energy dispersions of the H0 picture are located on the diagonal of the full
Hamiltonian Hn. The n beyond which the approximation becomes accurate
is determined by observing the change of band energies and eigenvectors
with increasing n. As pointed out before, the simulation of the full Hamilto-
nian is carried out with the help of Mathematica. When the order of relative
change between the energy eigenvalues of two Hamiltonians with consec-
utive n and n + 1 is below 10−14, which is roughly the standard precision
for numerical Mathematica calculations, the approximation is deemed suffi-
ciently accurate. However, the fact that nc determines the magnitude of a
sufficient n also means that the more inverted bands there are, the larger the
dimensions of Hn have to be. Thus, the thicker the material gets, the harder it
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FIGURE 4.5: a) Convergence of band structure energy with in-
crease in dimension of the total Hamiltonian Hn. The dashed
lines show the location of nc. Convergence only occurs after all
inverted H0 bands with n < nc are included in the simulation.
b) Convergence of Hn eigenvectors. Generally, the eigenvectors
converge more slowly and their imaginary argument is sub-
ject to the Mathematica matrix solving algorithm and not a fixed

value for different n.

is to receive satisfying results as can be seen in figure 4.5a for several material
widths in Bi2Te3. As a result, the minimum in γ to get acceptable calculation
timings is roughly γ = 0.05 where the dimension of the involved matrices
exceeds n = 100. This attributes to lγ ∼ {25 Å, 64 Å, 58 Å} for the three
materials Bi2Se3, Bi2Te3, and Sb2Te3, respectively. All of the following calcu-
lations are carried out for an approximated H = H40 where n = 40 is large
enough to obtain results with acceptable accuracy.

4.3.1 General Features of the H Band Structure

The change occurring in the band structure due to the band coupling be-
tween the H0 bands fundamentally depends on the strength of the coupling
parameter γ‖, defined in (4.19). In Bi2Se3, the coupling parameter is com-
parably large and the structure of crossing bands in H0 is mostly gone as
can be observed in figure 4.6. On the other hand, when considering Bi2Te3 or
Sb2Te3, γ‖ is rather small and the remnants of the occurring anti-crossings are
visible in the resultant band structure. In all cases qx and qy are still equiva-
lent in the Hamiltonian and thus interchangeable. One main feature of the
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FIGURE 4.6: a) H0 band structure of Bi2Se3 at γ = 0.258 and
b) the band structure for the full Hamiltonian H at the same γ.
The band coupling pushes the lowest band towards zero energy
so that the Dirac cone is established even though the gap in the

H0 picture is quite significant.

band structure for all materials is the formation of the Dirac cone which,
however, is only formed when the material is wide enough and confinement
effects do not dominate. When γ becomes large and the confinement poten-
tial too steep, the ground state oscillator energy h̄Ωγ/2 becomes large and no
band in the H0 picture is inverted anymore. Hence, when confinement effects
dominate, the interplay between inverted and uninverted bands cannot lead
to the formation of the Dirac cone. For Bi2Se3, the Dirac cone can be recog-
nized/dissolves at around γ = 0.65. In contrast to the band structure for H0,
this Dirac cone stays in place not just for certain special values of γ but for all
γ < 0.65. For the other two materials, the convergence towards a Dirac cone
is faster and occurs at around γ = 1.3 (Bi2Te3) and γ = 1.4 (Sb2Te3). However,
the cone for these two materials is less stable in the sense that the gap opens
and closes again slightly as the material gets thicker and γ reaches lower val-
ues. Still, compared to the H0 picture, the Dirac cones come into place for a
larger range of γ. When comparing a H0 band structure side by side to the
corresponding band structure in the full H picture, anti-crossings that hap-
pen due to the band coupling become apparent in Bi2Te3 (figure 4.7a). Basi-
cally, bands with even (odd) harmonic oscillator quantum numbers that cross
other even (odd) harmonic oscillator bands remain crossings. Other crossings
where odd bands meet even bands turn into anti-crossings. This is the basic
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FIGURE 4.7: For Bi2Te3 (a) and Sb2Te3 (b) the lowest band also
forms the Dirac cone due to the coupling of bands. Contrary to
Bi2Se3, the structures of the bulk bands allow for band crossings
and they resemble their respective structure in the H0 picture.
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FIGURE 4.8: Establishment of Dirac Cone and band twisting
from H0 (a) to H (b) in Bi2Te3. The crossings indicated by the
blue circles in a) turn into anti-crossings and lead to the forma-
tion of the Dirac cone. They also lead to a twisting effect be-

tween the two bands closest to the Dirac bands.

mechanism of how the Dirac cone is established visually in the H picture.
It also leads to some interesting band formations. Comparing specifically the
band structures of Bi2Te3 in the H0 picture with structures in the H pic-
ture (figure 4.8) shows that some bands, as a result of this effect, establish
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a structure where they appear to be twisted around each other. For Sb2Te3,
on the other hand, the interaction seems to have less impact on the band
structure. Most crossings remain crossings and there is no specific structure
verifiable. Out of the three materials, Sb2Te3 resembles its band structure in
the H0 picture the most. This is reasonable, considering its coupling strength
of γ‖ = 0.12 which is small compared to Bi2Te3 (γ‖ = 0.48). Both of these ma-
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FIGURE 4.9: Dirac wave functions for Bi2Se3 and Sb2Te3 for γ =
0.1 and γ = 0.15, respectively. While the location of the Dirac
wave functions tends to the surface with little probability in the

center for Bi2Se3, the same cannot be said for Sb2Te3.

terials, in turn, have small coupling strength compared to Bi2Se3 (γ‖ = 2.34)
which shows no remnants in its band structure that can be identified as the
result of band anti-crossings.

One key feature of topological insulators are the ungapped states that
are located on the surface which was not the case for the previous harmonic
oscillator wave functions. Contrary to the unperturbed system, in the cur-
rent picture, there are now states for which the wave function densities are
distributed around two peaks on the z axis. The probability of finding an
electron in between these two peaks is non-zero when the material is very
thin and on the verge of being confinement dominated, but it tends to zero
as the material width increases. This applies to each of the three materials
and is visualized in figure 4.9 and 4.10. However, for Bi2Se3 this decrease is
non-periodic while for the other two materials the decline is periodic. The
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FIGURE 4.10: The Dirac wave function densities at z = 0 tend
to zero with increase in size for both materials. However, for
Sb2Te3, the density shows periodic behavior in 1/γ. The dashed
red lines denote the position ob the gap closures in the H0 pic-

ture.
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FIGURE 4.11: The three energy bands above the Fermi energy
that are energetically closest to the Dirac band show clear bulk-
like behavior for Sb2Te3 and semi-Dirac behavior for the two
bands closest to the Bi2Se3 Dirac cone. As the distance to the
Dirac cone in terms of energy increases, the Bi2Se3 bands be-
come more bulk-like, too. The dotted blue lines depict the wave
function densities of the energy band that are, energy wise, clos-
est to the Dirac band. The thick yellow lines represent the sec-
ond closest bands to the Dirac band and the dashed red lines

show the bands third closest to the Dirac band.

periodicity may be explained by the same properties that lead to the periodic
gap in the H0 picture.

As for the bulk bands, most of them are very similar to the harmonic
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oscillator wave functions from before, meaning that they are mostly dis-
tributed throughout the material but their probability distributions are de-
formed. This behavior is illustrated in figure 4.11 for Bi2Se3 and Sb2Te3 where
the deformation is stronger in the former material. One can define a condi-
tion to determine the edge of a material in positive and negative z direction
in the following way. The smallest (largest) ze for which

∣∣ψq⊥(z)
∣∣2 < 10−5 for

all z > ze (z < ze) defines the edge of the material. For all bands observed,
it is possible to find such a pair of ±ze which makes it feasible to assign a
size to the respective material. Because the Dirac bands are located around
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(b)

FIGURE 4.12: Pseudospin projection expectation value distri-
bution for a) Sb2Te3 and b) Bi2Se3 at γ = 0.15 and γ = 0.1,
respectively. While the inverted character of bands is very clear
in Sb2Te3, it is less clear for Bi2Se3. For both materials, the Dirac

cone is neutral in T̂z expectation values.

the supposed edge of the material, ±ze, it may be concluded that the Dirac
states are located on the surfaces of the materials whereas the bulk bands are
spread throughout the material. The value 2 ze(γ) lγ may then be used as a
measure for the width of the materials.

There are some bands, however, whose density distributions are very sim-
ilar to the distributions of the Dirac bands. They show large peaks at the
edges and have only minor appearances in the bulk. These are the states that
are, energy wise, closest to the Dirac bands and the effect decreases, the fur-
ther away the specific band is from the Dirac cone. The bands closest to the
Dirac cone are also the states that form an additional degeneracy which will
be addressed in section 4.3.3.
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FIGURE 4.13: Spin projection expectation value distribution a)
in Ŝz projection and b) in Ŝx projection for Sb2Te3. While values
for Ŝz in the Dirac cone equal ±1 at q = 0, the rest of it is spin
neutral. Bulk bands are spin up in their z projection expecta-
tion values with their respective degeneracy partner being spin
down. The Ŝx expectation values are zero for all bands in all

materials.

As for the spin and pseudospin projection expectation value distributions,
Dirac cones are expected to be pseudospin neutral and the bulk bands shall
reflect the inverted character of the bands involved. Both expectations are sat-
isfied in all the materials for the pseudospin projection in z direction, T̂z, as
long as they are not too thin. When the materials get too thin, there are no in-
verted bands at all. The general structure of the inversion, however, strongly
depends on the specific material. For example, while H0 bands in Bi2Te3 and
Sb2Se3 can be retraced, the band coupling in Bi2Se3 is too strong and only a
vague idea of the previous H0 structure can be identified. Examples of these
behaviors for Sb2Se3 and Bi2Se3 are shown in figure 4.12. Considering the
pseudospin expectation values in x and y projection does not deliver much
further insight into the system, as both, the expectation values of T̂x and of
T̂y, equal zero in all bands. The same occurs for the expectation values of
the real spin operator projections, Ŝx and Ŝy, as can be seen in figure 4.13b.
The expectation values of the spin projection along the z axis are non-zero in
all bands except for the Dirac cone and regions close to it, where it tends to
zero. Note that each band is doubly degenerate with one degeneracy instance
taking on a positive spin expectation value while the other one takes on the
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opposite value, i.e.
〈
Ŝz
〉
= ±c0, where c0 is an arbitrary value between 0 and

1.

4.3.2 Gap Behavior

As mentioned in the previous section, in all three materials the gap of the
surface states tends towards zero exponentially with increasing material size,
even in situations where the gap size is of order E⊥ in the unperturbed pic-
ture. However, the gap size at any given specific width parameter γ is subject
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FIGURE 4.14: Band gap ∆γ for Bi2Te3 and Sb2Te3. The dashed
red lines depict the gap closures in the H0 picture. For both ma-
terials the oscillation remains but with a slightly increased pe-

riod of oscillation.

to change and the specific gap behavior depends on the model parameters of
the different materials (A0, M0, etc.). For Bi2Te3 and Sb2Te3 with compara-
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FIGURE 4.15: Band gap ∆γ for Bi2Se3 assuming different sets
of parameters [99] (left) and [98] (right). While one set leads to
gap oscillations like in the other materials, the other set leads to

a smooth exponential decay of the gap.
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bly small coupling parameter γ‖, the gap still exhibits a periodic behavior
with varying size of material. However, the dampening that also occurs in

Parameters according to [98] Parameters according to [99]

Gap oscillates No oscillation

A0 [eVÅ] 3.330 2.513
B0 [eVÅ] 2.260 1.836
M1 [eVÅ2] 6.860 3.353
M2 [eVÅ2] 44.500 29.375

TABLE 4.1: Relevant model parameters of γ‖ for the gap behav-
ior in Bi2Se3 for two different sets of material parameters.

the H0 picture is enhanced significantly by the coupling of bands so that
the gap size converges to zero much more rapidly. Furthermore, just like
in the wave function oscillations at q = 0 and z = 0 for varying γ from
figure 4.10, the period of the oscillations is not in agreement with the H0 os-
cillations anymore and the deviation from the H0 oscillations depends on
the strength of the band coupling parameter γ‖. Thus, the gap behavior of
Sb2Te3 in the full model resembles its behavior in the H0 model more than for
Bi2Te3 and the period of gap oscillations in these two materials is consistent
with δ(1/γc) ∼ 1/γM0 , the period of the H0 system oscillations, which corre-
sponds to a period δlγ ∼

√
M1/M0 for oscillation of the gap as a function of

the effective 2D-system width scale lγ. In contrast, the gap for Bi2Se3 doesn’t
show any periodic behavior and converges smoothly towards zero. The ob-
served absence of gap oscillations suggests that Bi2Se3 can be classified as a
strongly coupled topological insulator while Bi2Te3 and Sb2Te3 (figure 4.14)
can be classified as a weakly coupled topological insulators. As such, these
systems may be comparable to the layered 2D Topological Insulators in [53].

The material parameters used in these gap calculations are the parameters
given in [99]. When considering the parameters given in [98], the periodic be-
havior is also observable in Bi2Se3 but with much longer gap oscillations that
surpass the oscillation period size of the H0 model for this material by a factor
of three (figure 4.15). Hence, there may be a smooth transition from periodic
to non-periodic gaps when the right parameters are modified. Keeping in

mind the definition of the coupling strength γ‖ =
B2

0
A2

0

M2
2M1

and comparing the
relevant parameters of Bi2Se3 in table 4.1, a suitable parameter to simulate
the transition from non-periodic to periodic gap behavior, is M1, because it
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FIGURE 4.16: Change of gap behavior with material parame-
ters M1 and A0, starting at the set of parameters for Bi2Se3 with
no gap oscillations. While for M1 there seems to be a smooth
transition between periodic and non-periodic gap, for A0, any
small deviations increasing or decreasing its value lead to a pe-
riodic gap. Dashed (dotted) lines indicate the value of A0 or M1

for the parameter set with smooth (periodic) gap.

changes by a factor of two between the two sets of parameters and it does
not contribute to the harmonic oscillator band energy distances E⊥. Another
interesting parameter to monitor is A0, for the opposite reason: it is tied to E⊥
and part of the σx and σy terms in the Hamiltonian and thus present in several
measures of the system. Investigation of the gap size with varying material
parameter results in interesting structures. Starting with the parameters that
have been used for all previous calculations, when increasing M1, the gap os-
cillations start to appear slowly and their frequency gets higher, the larger M1

becomes. Notably, there seem to be regions of M1 where the gap can get espe-
cially small (dark blue areas in figure 4.16). When considering the change of
A0, the underlying structure is even more appealing. Apparently, the value
A0 takes on in Bi2Se3, in interplay with all other material parameters, leads
to the material gap being located in a "valley" with no oscillations along the
1
γ -axis. However, even slight deviations to A0 would result in oscillations of
the material.

4.3.3 Four-fold Degeneracies

The twisting of bands previously mentioned and shown in figure 4.17a, also
leads to further degeneracies on top of the already two-fold degenerate model.
Since with decreasing γ more and more inverted bands get involved in the
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FIGURE 4.17: (a) Band structure of Bi2Te3 for a width of γ =
0.65. At this point, the bands of interest in red and blue are still
separated and non-degenerate. The "twisting" of the bands oc-
curs due to weak coupling of H0 obeying two rules: (i) crossings
between odd and even bands yield anti crossings, (ii) crossings
between the same symmetry remain crossings. (b) The contri-
butions of the oscillator prefactors as function of qy where the
red (blue) band in (a) is represented by the thick (dashed) lines.

H band formation around the Fermi level, the twisting effect becomes finer
until two (each two-fold degenerate) bands become four-fold degenerate. By
looking at the wave function densities of these states, the origin of the sym-
metry can not be established. All four states show the same density distribu-
tion as seen in figure 4.18b. Moreover, two of the four displayed wave func-
tions exhibit spin up, while the other two exhibit spin down. The respective
spin expectation values of these states only account for a degeneracy of factor
two. More insight is gained by comparing the harmonic oscillator prefactors
of two wave functions with equal spin expectation values as shown in figure
4.19, |b(α+)

nq ψnαq|2, defined in (4.23). While one pair of states is dominated by
prefactors where n is uneven, the other pair is dominated by prefactors with
even n. Notably, the harmonic oscillator function that, energy wise, is closest
to a certain n in the H0 picture, contributes the most to the full wave function.
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FIGURE 4.18: (a) Band structure of Bi2Te3 for a width of γ =
0.15. As the TI gets wider from γ = 0.65 in figure 4.17 to
γ = 0.15 the bands colored in blue and red approach each other
energetically and become degenerate. The wave function den-
sities of the four degenerate bands in (b) are equal and lie on

top of each other.
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FIGURE 4.19: The decomposition of the wave function into its
oscillator function prefactors for Bi2Te3 at (a) γ = 0.15 and (b)
γ = 0.65. The wave function densities of the four degener-
ate bands are equal but the decomposition into their oscillator

function prefactors shows variations.
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4.4 Properties of the Full system H0 + H‖ + Hε

The calculations so far did not account for the particle-hole asymmetry term
εq⊥ which is defined as

εq⊥ = C0 − C1∂2
z + E⊥

C2

M2
q2
⊥ = ε̃q⊥ − C1∂2

z (4.55)

and it lifts the symmetry between particles and holes which results in the
deformation of the band structure and in a shift of the gap that varies with
C0. Only its part with derivative in z has to be treated perturbatively, the rest
can be included in H0 to give the shifted HO energy levels

E (α)n q⊥ = ε̃q⊥ + αE⊥

√[
γ

(
n +

1
2

)
+ γ0 + q2

⊥

]2

+ q2
⊥. (4.56)

The diagonal nature of the Hamiltonian Hε also means that particle-hole
asymmetry has no effect on the spin structure within a band in the H0 picture
because, for a diagonal scalar addition, the eigenvectors of H0 don’t change.
As for the full system H = H0 + H‖ + Hε, the effects of Hε are presented in
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FIGURE 4.20: (a) The particle-hole asymmetry deforms the H0
bands which translates directly to the full model in (b). Pictured
is Bi2Te3 at γ = 0.4. Notable is the absence of the four-fold de-
generacy discussed in section 4.3.3 and the non-linear behavior

of the Dirac cones.

figure 4.20 and figure 4.21. In the case of Bi2Te3, for the most part, Hε results
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in the deformation and shift of the band structure where the parabolic na-
ture of ε̃q⊥ is still recognizable within it. It also still leads to the formation of
a Dirac cone with neutral pseudospin expectation value texture for the pro-
jection along the z axis, however, its linear behavior is gone. Its influence on
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FIGURE 4.21: The particle-hole asymmetry also leads to the de-
formation of Bi2Se3 at γ = 0.1 (a) and Sb2Te3 at γ = 0.15
(b). While the cone crossing in Bi2Se3 is shifted, the impact on
the rest of the band structure is small. The opposite is true for
Sb2Te3 in which some bulk bands coincide with the Dirac cone.

Bi2Se3 is less significant and the Dirac cone is still well separated from the
rest of the bands but the deformation is still clearly visible. As for Sb2Te3,
some bulk bands are close to the Dirac point, even though the extent of the
deformation on the rest of the band structure is small. However, the change
in spin expectation value texture for T̂z is quite significant. Some bands get
so close to the Dirac cone crossing that non-zero pseudospin expectation val-
ues are in close proximity to the crossing. Moreover, the previous twisting of
bands discussed in section 4.3.3 becomes less obvious and some of the bulk
bands’ pseudospin expectation value textures for T̂z becomes inverted. Sim-
ilarly, in Bi2Te3, the twisting of bands vanishes from the bands closest to the
Dirac cone and appears in some of the higher bands instead and, except for
at q⊥ = 0, the four-fold degeneracy is lifted, too. In general, the magnitude
of the pseudospin expectation values for the bands above and close to the
Dirac cone decreases and, around q⊥ = 0, these bands resemble a Dirac cone
on their own. For Bi2Se3 the four-fold degeneracy is not lifted.
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Looking at the gap behavior, the general magnitude of the gap does not
change even though its position with respect to the Fermi energy does. How-
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FIGURE 4.22: Shown are the gap oscillations with particle-hole
asymmetry present. The dashed blue lines indicate the approx-
imate positions of the gap minima in the particle-hole symmet-
ric system H0 + H‖. For both pictured materials the period of
oscillations decreases with the introduction of the asymmetry.

For Bi2Se3 the gap remains non oscillatory.

ever, the oscillation period is affected by εq⊥ and it becomes slightly smaller
for both, Bi2Te3 and Sb2Te3 (figure 4.22). The same occurs for the behavior of
the Dirac wave function at the center of the material - even though the gen-
eral appearance and magnitude of the periodic behavior stays the same, the
period slightly varies. Also, for both, Bi2Te3 and Sb2Te3, the position of the
Dirac crossing with respect to the Fermi energy changes with material size.
While for Sb2Te3 the crossing is driven below the Fermi level with increasing
confinement strength, for Bi2Te3 the position of the crossing increases with
confinement strength but never crosses the Fermi energy.

When regarding the wave functions in general, only moderate change oc-
curs. For the Dirac cones, the wave functions actually exhibit the same prob-
ability distributions at q⊥ = 0 but deviate slightly otherwise with a non-zero
probability to appear in the middle of the materials. The major part of the
probability is still located on the surface of the material (figure 4.23). The
change in the bulk bands is more notable but their general form stays the
same, too.
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FIGURE 4.23: In contrast to the particle-hole symmetric system
(red), the Dirac bands for Sb2Te3 with particle-hole asymmetry
(blue, dashed) have a non vanishing probability density at the

center of the material for
∣∣qy
∣∣ > 0.

4.5 Classification of observed results

Bi2Se3, Bi2Te3, and Sb2Te3 have been the subject of many studies in the past
few years. Among these, there have been quite a few treating the band struc-
ture of the three materials, also observing Dirac cones for the surface states
and band structures that are in qualitative agreement with the band struc-
ture results presented here [98, 109]. A feature that has been observed in
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FIGURE 4.24: Comparison of the gap oscillations derived in
[110] (blue) with the gap behavior obtained with H (red) for
the material parameter set [98] (left) and [99] (right) for Bi2Se3.
Notable is the lack of gap oscillations for the parameter set [99]

in H .

several theoretical works with hard-wall confinement or open boundaries
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is the decaying oscillatory gap presented in section 4.3.2. The exponential
decay/increase of the gap size is a property characteristic to the process of
confinement as, fundamentally, particles in a box-type setup feel an increase
in zero-point energy when the shape of the box is narrowed or sharpened.
This behavior can be observed in the study presented here and is confirmed
in several studies experimentally and theoretically [111–114]. The gap oscilla-
tions are also confirmed qualitatively by several other studies [109, 115, 116]
and are in poor to good quantitative agreement with [110] as can be seen in
figures 4.24 and 4.25. However, the non-oscillatory behavior of Bi2Se3 for the
material parameter set given in [99] is not reproduced in [110] (figure 4.24)
and the exponential decay of the gap size and the gap oscillation period de-
viates significantly for Bi2Te3.
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FIGURE 4.25: Comparison of the gap behavior derived in [110]
(blue) with the gap behavior determined with the full Hamilto-
nian H (red) for Bi2Te3. Magnitude and oscillations are not in

good agreement at all.

Moreover, the form of the surface state wave functions presented here is
in qualitative agreement with the surface state wave functions determined in
[113]. The same is true for the spin textures around the Dirac cone observed
in [98, 116]. However, for all points of comparison, while being in good qual-
itative agreement, the length scale measure lγ adopted throughout this study
does not appear to be accurate and underestimates the realistic size of the
material.

4.6 Summary

In this chapter the effects of a harmonic-oscillator-type confinement on the
Bi2Se3 Topological Insulator family model Hamiltonian was investigated.
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Overall, while there are quantitative deviations, the obtained results are in
qualitative agreement with previous studies. An interesting outcome is the
non-existence of gap oscillations in Bi2Se3 which is contrary to common lit-
erature. The investigation into model parameter space in section 4.3.2 in fact
reveals that this is an almost singular behavior that only occurs for a specific
combination of model parameters.

One thing that this model illustrates delightfully is the interplay of band
inversion, size quantization, and band mixing when comparing the results
for the analytically solvable part H0 and the full model H . Bare oscillator
bands of H0 tend to retain their pseudospin properties even after level re-
pulsion due to the coupling in H . Also, the expected inverted pseudospin
distribution and the Dirac cone, whose formation can also be attributed to re-
pulsing bare oscillator bands, are present and serve as evidence for the topo-
logical nature of the material. Finally, the location of the Dirac states on the
surface of the material is confirmed, too, and an additional four-fold degen-
eracy is observed.
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Chapter 5

Confined 3D Topological Insulator
in a Magnetic Field

The stability of topological insulators relies on topology but also on the sym-
metries involved. Specifically time-reversal symmetry is a crucial ingredi-
ent. Thus, any perturbations that leave these symmetries intact, will not alter
the topological structure of the system. The magnetic field, however, breaks
time-reversal symmetry and the behavior of the system when symmetries are
broken is fundamentally interesting. Moreover, it has been theorized that, in
some cases, magnetic fields result in interesting results like the formation of
Weyl cones [97].

In this section the effects of a magnetic field directed along the x axis as
shown in section 3.1 is investigated. Due to the invariance of the Hamiltonian
to a rotation in the kx-ky plane as shown in the previous chapter (4.11), it
suffices to consider the magnetic field directed only into one direction within
the x-y plane.

Generally, the magnetic field impact on crystals consists of a Zeeman term
and a contribution due to the vector potential that is introduced into the
Hamiltonian by Peierls substitution. As with the model without magnetic
field, the objective is to determine an analytically solvable Hamiltonian H0

that is perturbed by the band coupling term H‖, the particle-hole asymmetry
term Hε, and the additional terms arising due to magnetic field effects. The
Zeeman Hamiltonian is given in [98] but is rearranged to fit the different or-
dering basis states here. The g-factor values for this model are listed in table
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Parameters according to [98] Parameters according to [99]

Bi2Se3 Bi2Te3 Sb2Te3 Bi2Se3 Bi2Te3 Sb2Te3

g1z −25.40 −50.34 −14.45 −9.41 −168.18 −18.00
g2z 4.10 6.88 14.32 1.67 9.71 10.80
g1p −4.12 −2.67 −2.43 −4.83 −4.64 −4.29
g2p 4.80 3.43 16.55 −3.10 −4.57 −15.36

TABLE 5.1: Magnetic material parameters according to [98] and
[99] for all involved materials. The g factors each have two con-
tributions: the orbital g factor resulting from each atomic orbital
and a higher order contribution that can be related to the effec-

tive mass [98].

5.1 and the Zeeman Hamiltonian HZ reads

HZ =
µB

2


g1zBz 0 g1pB− 0

0 −g2zBz 0 g2pB+

g1pB+ 0 −g1zBz 0
0 g2pB− 0 g2zBz

 (5.1)

where µB = eh̄
2me

is the Bohr magneton in SI units and B± = Bx ± iBy. Since
only a magnetic field in one direction is considered, this Hamiltonian reduces
to

HZ(B) = B
µB

2
(σx ⊗ G) with G =

(
g1p 0
0 g2p

)
(5.2)

and B = Bx. Because the non-zero elements of (5.2) don’t fit into the block
structure of H0, it will be treated as perturbation of Hn. What is left is the
effects of the Peierls substitution. In order to get an effective magnetic field
in x-direction, one can define the vector potential

A =

 0
−B z

0

 (5.3)

which is then introduced into the Hamiltonian H0 by the replacement within
the wave vectors

k→ k− e
h̄

A. (5.4)
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Hence, the actual replacement only takes place in ky

ky → ky +
eB
h̄

z = ky +
z
l2
B

Sgn(eB) (5.5)

where the magnetic length is defined as lB(B) =
√

h̄
eB . Reviewing H0 when

it still contains the pure harmonic oscillator operator HO in (4.5), one finds
that the essential terms for the replacement are Mn k⊥ , HO, and A0k±. More-
over, one notes that it is possible to include parts of the Peierls substitution in
the harmonic oscillator operator to get a shifted harmonic oscillator with ef-
fective frequency Ωµ(lγ, lB). The result of the considerations outlined on the
following pages is a Hamiltonian that has the same structure as H0 but with
modifications to its elements. It has the form

H0(B) =


Mk⊥(B) A∗k⊥(B) 0 0

Ak⊥(B) −Mk⊥(B) 0 0
0 0 Mk⊥(B) Ak⊥(B)
0 0 A∗k⊥(B) −Mk⊥(B)

 (5.6)

where the parameters Mk⊥(B) and Ak⊥(B) now depend on the magnetic
field. Starting with Mk⊥ , Peierls substitution leads to the modification

Mk⊥ → M0 + M2

(
k2
⊥ + ky

z
l2
B

Sgn(eB) +
z2

l4
B

)
(5.7)

where the z-dependent terms can be combined with the potential terms in
HO to

HO → −
h̄2

2m‖
∂2

z + M2ky
z
l2
B

Sgn(eB) + M2
z2

l4
B
+ M1

z2

l4
γ

. (5.8)

With the definition of the effective oscillator length

M1

l4
µ

=
M1

l4
γ

+
M2

l4
B

(5.9)

and the application of the binomial formula, one obtains

HO = − h̄2

2m‖
∂2

z +
M1

l4
µ

[
z + Sgn(eB)l2

B

(
1−

l4
µ

l4
γ

)
ky

]2

−M2k2
y

(
1−

l4
µ

l4
γ

)
.

(5.10)
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By moving the squared ky term into Mk⊥ and with the substitution

z→ z + Sgn(eB)l2
B

(
1−

l4
µ

l4
γ

)
ky (5.11)

in HO, the same structure as without magnetic field is recovered, apart from
a change in k2

⊥ as

k2
⊥ → k2

x +
l4
µ

l4
γ

k2
y (5.12)

and thus

Mk⊥(B) = M0 + M2

(
k2

x +
l4
µ

l4
γ

k2
y

)
and HO(B) = − h̄2

2m‖
∂2

z +
M1

l4
µ

z2.

(5.13)
Due to the linear nature of the substitution, ∂z does not change. However,
the off diagonal parts of the two H0 blocks, A0k± involve parts linear in z.
Carrying out the Peierls substitution and substituting (5.11) results in

A0k± → A0

(
kx ± i

l4
µ

l4
γ

ky ± Sgn(eB)
z
l2
B

)
. (5.14)

Treating the z-dependent part as perturbation and keeping the rest, Ak⊥ can
be treated as before with the redefinition

Ak⊥(B) = A0

(
kx + i

l4
µ

l4
γ

ky

)
. (5.15)

As a result, the magnetic field effects on H0 are summarized by the two
Hamiltonians

HZ(B) = B
µB

2
(σx ⊗ G) and HB(B) = A0

z
l2
B

(
σz ⊗ τy

)
Sgn(eB). (5.16)

What remains is the change of Hε after Peierls substitution. As before, deriva-
tives do not change and substituting (5.11) results in

εk⊥(B) = C0 + C1k2
z + C2

k2
x +

(
l4
µ

l4
γ

ky +
z
l2
B

Sgn(eB)

)2
 . (5.17)
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5.1 Approximation of Magnetic Effects on H0

Before considering the perturbation, the previous calculations open up the
question of the impact of the magnetic field on the harmonic oscillator prop-
erties - its wave functions and ladder operators. After the substitutions, HO

is of the form of a harmonic oscillator with

m‖ =
h̄2

2M1
and Ωµ(B) =

2M1

l2
µh̄

. (5.18)

Ωµ can also be written in terms of the previous Ωγ = γ A0
M2h̄ := 1

h̄ Ω′γ and the
cyclotron frequency ΩB = eB

me
:= 1

h̄ Ω′B

Ωµ(B) =

√
Ω2

γ +
M2

M1
Ω2

B :=
1
h̄

Ω′µ(B) =
1
h̄

√
(Ω′γ)2 +

M2

M1
(Ω′B)

2. (5.19)

Combined, one can write the expressions of the operators −i∂z =
p̂z
h̄ and ẑ in

terms of harmonic oscillator ladder operators a and a†

p̂z

h̄
=

i
h̄

√
h̄
2

m‖Ωµ(B)
(

a† − a
)
= i

√
Ω′µ(B)
4M1

(
a† − a

)
(5.20)

and

ẑ =

√
h̄
2

1
m‖Ωµ(B)

(
a† + a

)
=

√
M1

Ω′µ(B)

(
a† + a

)
. (5.21)

This means that, apart from the changes already done to Mk⊥ , in Mn q⊥
(q⊥ = k⊥/q0), the only other changes occur in the oscillator frequency and
one gets the effective gap parameter

Mn q⊥(B) = E⊥

[
γ0 +

(
q2

x +
l4
µ

l4
γ

q2
y

)
+

Ω′µ(B)
E⊥

(
n +

1
2

)]
. (5.22)

The magnetic field has no influence on H‖ - it contains derivatives which are
not affected by the change of variables because the variables are only shifted
by linear addition. Therefore, the calculation for this stays the same and one
gets Γn and En like in (4.37) but withMn k⊥ and E

(α)
n k⊥

being replaced by their
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versions in a magnetic field, specifically

E
(α)
n q⊥(B) = αE⊥

√√√√[Ω′µ
E⊥

(
n +

1
2

)
+ γ0 + q2

x +
l4
µ

l4
γ

q2
y

]2

+

∣∣∣∣Aq⊥
E⊥

∣∣∣∣2 (5.23)

where
Ω′µ(B)

E⊥
=

√
γ2 +

4M1M3
2

A4
0

1
l4
B

. (5.24)

This leaves determining the Hn representations of HZ and HB. Particle-hole
asymmetry being neglected, an overview over all terms involved to deter-
mine Hn is

HB = i
A0

l2
B


0 −z 0 0
z 0 0 0
0 0 0 z
0 0 −z 0

 , H‖ = iB0


0 0 0 −∂z

0 0 ∂z 0
0 ∂z 0 0
−∂z 0 0 0

 ,

and HZ =
µB B

2


0 0 g1p 0
0 0 0 g2p

g1p 0 0 0
0 g2p 0 0

 .

(5.25)

Calculating the Zeeman contributions to Hn is done by sandwiching

HZ = B

[
σx ⊗

(
g1p 0
0 g2p

)]
(5.26)

between 〈mτβ| and ∑nσα b(σ,α)
n q⊥ |nσα〉. One gets

∫ ∞

−∞
dz

µB

2
B ∑

nσα

b(σ,α)
nq⊥

[
〈τ|σx|σ〉 ⊗

((
ψ
(τ,β)
mq⊥ (z)

)∗( g1p 0
0 g2p

)
ψ
(τ,β)
mq⊥ (z)

)]
.

(5.27)
Carrying out the integral in z gives a Kronecker delta δnm due to the harmonic
oscillator functions and the σx part gives a δσ,−τ:

µB

2
B ∑

α

b(−τ,α)
mq⊥

[(
ψ
(τ,β)
mq⊥

)∗( g1p 0
0 g2p

)
ψ
(−τ,α)
mq⊥

]
. (5.28)
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Similar to Γnq⊥ , what is left can be expressed first as

Sβ,+
mq⊥b(−τ,+)

mq⊥ + Sβ,−
mq⊥b(−τ,−)

mq⊥ (5.29)

with

Sα,β
mτq⊥ = Sβ,α

mτq⊥ = B
µB

2

g1p
A(−τ)

q⊥∣∣Aq⊥

∣∣
√√√√ (E (β)

m q⊥ +Mm q⊥)(E
(α)
m q⊥ +Mn q⊥)

4E (β)
m q⊥E

(α)
m q⊥

+ αβg2p
A(τ)

q⊥∣∣Aq⊥

∣∣
√√√√ (E (β)

m q⊥ −Mm q⊥)(E
(α)
m q⊥ −Mn q⊥)

4E (β)
m q⊥E

(α)
m q⊥


(5.30)

and the generalization of the complex conjugation of the off diagonal terms
to

A(τ)
q⊥ =

Aq⊥ τ = 1

(Aq⊥)
∗ τ = −1

. (5.31)

This leads to the replacement En → En + λn in Hn when introducing the
definitions

Sn,τ,q⊥ =

(
S+,+

nτq⊥ S+,−
nτq⊥

S−,+
nτq⊥ S−,−

nτq⊥

)
, and λn =

(
0 Sn+q⊥

(Sn+q⊥)
† 0

)
. (5.32)

For the determination of the HB matrix elements, it is convenient to use the
representation

HB = Sgn(eB)
(
σz ⊗ τy

)
A0

z
l2
B

. (5.33)

Sandwiching this between 〈mτβ| and ∑nσα b(σ,α)
nq⊥ |nσα〉 gives

Sgn(eB)
A0

l2
B

∑
nσα

b(α,σ)
nq⊥

[
〈τ|σz|σ〉 ⊗

((
ψ
(τ,β)
mq⊥

)∗
τy ψ

(σ,α)
nq⊥

)]
〈m|z|n〉 (5.34)

where the oscillator functions are summarized in the braket notation |n〉.
With the definition of the position operator (5.21) one gets τδσ,τ for the σz

matrix element and δm,n+1
√

n + 1 and δm,n−1
√

n for the oscillator function



74 Chapter 5. Confined 3D Topological Insulator in a Magnetic Field

matrix element. The result is

∑
α

[
b(σ,α)

m+1,q⊥

(
iLα,β

m+1,m,τ

)
+ b(σ,α)

m−1,q⊥

(
iLβ,α

m+1,m,τ

)∗]
(5.35)

with

Lβ,α
n,m,τ =

τA0

l2
B

√
M1n
Ω′µ

α
A(τ)

q⊥∣∣Aq⊥

∣∣
√√√√ (E (β)

m q⊥ +Mm q⊥)(E
(α)
n q⊥ −Mn q⊥)

4E (β)
m q⊥E

(α)
n q⊥

− β
A(−τ)

q⊥∣∣Aq⊥

∣∣
√√√√ (E (β)

m q⊥ −Mm q⊥)(E
(α)
n q⊥ +Mn q⊥)

4E (β)
m q⊥E

(α)
n q⊥


(5.36)

where the relation (Lβ,α
n,m,τ/

√
n)∗ = −Lβ,α

m,n,τ/
√

m holds. With the further def-
inition

Λn = i


L++

n+1,n,+ L−+n+1,n,+ 0 0
L+−

n+1,n,+ L−−n+1,n,+ 0 0
0 0 L++

n+1,n,− L+−
n+1,n,−

0 0 L−+n+1,n,− L−−n+1,n,−

 (5.37)

this result can be incorporated into Hn.
Due to the changes in the particle-hole asymmetric term εq⊥ in (5.17) there

arise further contributions in the full Hamiltonian. Firstly, the terms linear in
z lead to the evaluation of the term

2ky
C2

l2
B

(
1 +

M2

M1

l4
µ

l4
B

)
∑
nσα

b(σ,α)
n,q⊥ 〈mτβ|z|nσα〉 (5.38)

which results in a correction Λn → Λn + Λε
n by using the expression of z as

harmonic oscillator ladder operators, where

Λε
n =


d++

n+1,n,+ d+−n+1,n,+ 0 0
d−+n+1,n,+ d−−n+1,n,+ 0 0

0 0 d++
n+1,n,− d−+n+1,n,−

0 0 d+−n+1,n,− d−−n+1,n,−

 (5.39)
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and

dαβ
nm = 2qy

C2

l2
B

(
1 +

M2

M1

l4
µ

l4
B

)√
M1

Ω′µ


√√√√ (E (β)

m q⊥ +Mm q⊥)(E
(α)
n q⊥ +Mn q⊥)

4E (β)
m q⊥E

(α)
n q⊥

+ αβ

√√√√ (E (β)
m q⊥ −Mm q⊥)(E

(α)
n q⊥ −Mn q⊥)

4E (β)
m q⊥E

(α)
n q⊥

.

(5.40)
The contribution of z2 = M1

Ω′µ
((a†)2 + 2(a†a + 1) + a2) is summarized in

C2

l4
B

M1

Ω′µ
∑
nσα

b(σ,α)
n,q⊥ 〈mτβ|(a†)2 + 2(a†a + 1) + a2|nσα〉. (5.41)

This can be divided into a part proportional to the harmonic oscillator ener-
gies that serves as correction to the diagonal elements in Hn and a part with
squared ladder operators which is a correction to the ∆n matrices determined
in (4.44). ∆n then takes on the form ∆n → ∆n + ∆B

n where

∆B
n =

(
DB

n 0
0 DB

n

)
, DB

n =

(
δn
++ δn

+−
δn
−+ δn

−−

)
, (5.42)

and

δ
αβ
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m q⊥ +Mm q⊥)(E
(α)
n q⊥ +Mn q⊥)

4E (β)
m q⊥E

(α)
n q⊥

+ αβ

√√√√ (E (β)
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4E (β)
m q⊥E

(α)
n q⊥

.

(5.43)
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Finally, the impact of particle-hole asymmetry on the diagonal elements En

can be summarized in the replacement

En → En+E⊥

[
C0

E⊥
+

C2

M2
q2
⊥ +

Ω′µC1

2M1E⊥
(n +

1
2
)− 2

C2M1

E⊥Ω′µl4
B
(n +

1
2
)

+ q2
y

C2

M1

l4
µ

l4
B

(
2 +

M2

M1

l4
µ

l4
B

)] (5.44)

in addition to the Zeeman terms added before. After combining these results,
one gets the total Hamiltonian for the numeric simulation

Hn =


E0 Γ0 + Λ0 ∆0

(Γ0 + Λ0)
† E1 Γ1 + Λ1 ∆1

(∆0)
† (Γ1 + Λ1)

† E2 Γ2 + Λ2 ∆2

. . . . .
. . . . .

 . (5.45)

5.2 Properties of the System H0(B)

As before, for the topological insulator with no external fields, it is of inter-
est to what extent the magnetic field changes the unperturbed system H0.
Due to the redefinition of the harmonic oscillator frequency to Ωµ(B) =√

Ω2 + M2/M1 Ω2
B in (5.19), it is apparent that a Pythagorean positive shift

occurs for all energy bands. Further changes occur at qy 6= 0 due to the impact
of the magnetic field onMn q⊥ andAq⊥ . There also is a small asymmetry be-
tween the qy terms in both these expressions now because Aq⊥ picks up the
qy prefactor (lµ/lγ)4 andMn q⊥ picks up the qy prefactor (lµ/lγ)2. However,
due to the magnitude of this factor deviating from 1 only marginally, for ex-
ample lµ/lγ = 0.999 at B = 2T for Bi2Se3, the overall impact of the magnetic
field on the effective gap parameter is small. lµ/lγ is shown as function of B
in figure 5.1 for all three materials.

The wave functions derived fromMn q⊥(B) and Aq⊥(B) change accord-
ingly. Thus, overall, the change is small and, just like in the non-magnetic
case, the spinor contributions to the full H0 wave functions have to be nor-
malized and the probability density only depends on the harmonic oscillator
functions. This also means that their spin and pseudospin expectation values
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FIGURE 5.1: Shown are the ratios of the parameters lµ and lγ as
function of the magnetic field for Bi2Se3 (blue), Bi2Te3 (red), and
Sb2Te3 (green, dashed). The impact of magnetic fields on Bi2Se3

is much lower than on the other two materials.

do not deviate from their non magnetic versions apart from being slightly
shifted energy wise.

5.3 Properties of the Coupled System H0(B)+ H‖+

HB(B) + HZ(B)

The simulation of the full Hamiltonian in a magnetic field is conducted in
the same fashion as the non-magnetic Hamiltonian before. The accuracy of
the calculation is decreasing slightly, meaning that the n chosen for Hn has
to be larger than before to attain the same accuracy but the system converges
at similar speed.

A central property of topological insulators is their time-reversal sym-
metry which is essential for the stability of the system. Thus, time-reversal
symmetry-breaking external perturbations are expected to impact the model
more than other perturbations. With the magnetic field being such a time-
reversal symmetry-breaking field one would expect significant changes to
the systems of the three materials. While the response to the magnitude of
the applied magnetic field varies from material to material, their response
in general is similar. The bulk bands split up into states separated by spin
where the splitting is almost constant throughout momentum space. This
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FIGURE 5.2: Band structure for Bi2Te3 (a,b) at γ = 0.4 and Bi2Se3
(c,d) at γ = 0.1. Notable are the cones being formed in both ma-
terials in (b,d) with a magnetic field of magnitude 2 T applied.
The impact of the field on Bi2Se3 is significantly lower than for
Bi2Te3 and, in general, the energy splitting in the Dirac bands is

larger than in the bulk of the materials.

splitting lifts the four-fold degeneracy that was observed without magnetic
field. While the response of Bi2Te3 and Sb2Te3 is quite strong, in compari-
son, for Bi2Se3 it is rather weak which can be observed in figure 5.2. If the
magnetic field becomes very large, all bands are becoming flat and start to
resemble Landau levels.

The change to the Dirac cones is more significant than to the bulk bands.
First, the sheer magnitude of response to magnetic field is much larger than
the response in energy splitting for the bulk bands. However, for the qy that
are in a range where the Dirac bands are energy wise located among the
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bulk bands, the splitting of the cones decreases significantly and shows the
smaller splitting of the bulk bands. Second, the splitting of the Cones leads to
the formation of two separate cones that resemble Weyl cones. Weyl fermions
are represented by solutions to the zero mass Dirac equation and represent
a special case of the Dirac equation. One crucial property of them is their
spin momentum locking which means that, while particles moving in one
direction are spin up (down), particles moving in the other direction have
to be spin down (up). This leads to the investigation of the pseudospin and
spin expectation values of the materials because it provides insight into the
properties associated with Weyl fermions.

So far, the band structure has been illustrated on the qy axis. With the
magnetic field eliminating the symmetry between qx and qy, the definition of
a more variable set of axes to project on is advantageous. For this, curves in
qx-qy plane are defined in the following way. The "center" of the axis is located
at q0 and the axis is defined through or around it. For example, to catch the
spin behavior around a cone, it is sensible to set q0 to the crossing point of
that cone and rotate around it at a given distance in momentum space to it,
so that it is still well separated from the bulk bands. The axis is then defined
along the curve

r(θ, κ) = q0 + κ

(
Cos(θ)
Sin(θ)

)
(5.46)

where κ measures the distance from the cone crossing point (or any point q0)
in momentum space. For example, for θ = π/2 and q0 = (0, 0) the usual pro-
jection along the qy axis is recovered while θ = 0 gives the qx axis. With these
definitions and the spin expectation value texture shown in figure 5.3 and fig-
ure 5.4, it becomes apparent that the cones indeed feature Weyl fermion like
states. For the cone states at qx = 0 the spin-momentum locking is present
in the z pseudospin projection expectation values and in the x pseudospin
projection expectation values for the states with qy fixed to the cone cross-
ing point. This means that, when rotating the axis around the cone, so does
the pseudospin projection in the T̂z-T̂x spin plane. It is found that, for the
axis rotation defined in (5.46), with q0 located at a cone crossing, pseudospin
follows the rotation and is oriented along the pseudospin projection

−Cos(θ)T̂z + Sin(θ)T̂x. (5.47)
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FIGURE 5.3: (a) Pseudospin expectation values for T̂z in Bi2Te3
at γ = 0.4. (b) Real spin expectation values for Ŝx. The expecta-
tion values of Ŝy vanish for all bands due to the magnetic field
being aligned along the x-axis. For each split cone, right (left)

moving particles show spin up (down), respectively.
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FIGURE 5.4: (a) Pseudospin expectation value plot of Bi2Te3
that shows pseudospin expectation value rotation for T̂z around
the split cones along the axis r(θ, κ) for κ = 0.1 q0 and q0 =
(0, 0.1563) q0. As r(θ, κ) rotates around the center of the cone,
the expectation values of T̂z oscillate from positive to negative
and back. (b) Sketch of the pseudospin rotation within the T̂z-T̂x

plane with the rotation around the cones.

However, the magnitude of the pseudospin expectation values is small com-
pared to the rest of the bands and lies within a range of ±0.1 but still non
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negligible compared to the neutral Dirac cones without magnetic field where
pseudospin expectation values are essentially zero. The spin-momentum sig-
nature gets stronger with increasing magnetic field strength. For the bulk
bands, the magnetic field has a smaller impact on the pseudospin expecta-
tion value distributions. However, it is notable that when bands move to-
wards (away from) the Fermi level energetically, their pseudospin signature
becomes weaker (stronger). As for real spin expectation values, electrons are
expected to align along the direction of the magnetic field. Hence, the spin
expectation value structure in z projection vanishes and is replaced by a spin
expectation value distribution in x projection only. This is the case for all ma-
terials.

A property of Weyl fermions in Weyl semimetals is that the involved Weyl
particles exhibit spin-momentum locking and that they are located in the
bulk of the materials. Here, as it turns out, Weyl-like spin-momentum lock-
ing is observed in the cones that are located on the surface. The probability
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FIGURE 5.5: The respective probability densities for the red and
blue cone depicted in (a) are pictured in (b). Notable is that the
two cones are located on opposite sides of the material which

opposes the picture of Weyl cones like in Weyl semimetals.

densities in figure 5.5 show this behavior for the Cone bands in Bi2Te3 but
this structure occurs in all three materials. When considering the bulk wave
functions, as before for the non-magnetic case, the bands energy wise closest
to the cone bands show similar behavior where the probability densities are
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distributed preferably on one side (figure 5.6). However, this property de-
creases when considering bands with energy bands further away from the
Fermi energy.

Bi2Te3
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FIGURE 5.6: Probability density for the three band pairs closest
to the Dirac band at qy = 0.1q0 for Bi2Te3 and Bi2Se3. The dotted
blue lines depict the wave function densities of the energy band
that are, energy wise, closest to the Dirac band. The thick yel-
low lines represent the second closest bands to the Dirac band
and the dashed red lines show the bands third closest to the
Dirac band. With further distance to the Dirac bands the bulk

character of the bands increases.

Considering the apparent Weyl like behavior of the split cones could sug-
gest the conclusion that the state the system is in, can actually be represented
by a Graphene like model with the two Weyl cones being a representation
of the K and K′ points in Graphene. However, as expected, the Berry cur-
vature vanishes numerically in all cases. This, in turn, would mean that the
two cones can be described by a massless Graphene system. In line with this
is the structure of the gaps of the cones which show no distinct structure
and vanish numerically for all cases where split cones are present. On the
other hand, when considering the cone located at qy = 0 above or below the
Fermi energy, the gap still shows the same structure as for the model without
magnetic field (figure 5.7). One may conclude that the original Dirac cone is
subject to a Zeeman splitting that leads to two cone crossings at the Fermi
level with opposite momenta.
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FIGURE 5.7: Gap behavior for the cones located at qy = 0. The
fact that the periodic gap closure does not occur in the split
cones at the Fermi energy while the periodicity is still given
for the cones above/below the Fermi energy, suggests that the
splitting of the Dirac cone in momentum space can be seen as

the result of a Zeeman shift.

5.4 Effective Low Energy Model: g-factors and Cone

Splittings

To further investigate the splitting behavior of the Dirac cone subject to a
magnetic field, it is useful to introduce an approximation to the full Hamilto-
nian that applies to the four Dirac bands around the Fermi level. The proce-
dure here is to calculate these matrix elements for several values in q space
and to recover the q dependencies consecutively as approximations.

For this, the explicit expressions Ψa
q⊥
(z) for a wave function representing

band a, with no magnetic field present, are used. Ψa
q⊥
(z) is described by a set

of b(α,σ,a)
n q⊥ as in (4.23), summarized to

Ψa
q⊥
(z) = ∑

nσα

b(α,σ,a)
n q⊥ |nσα〉. (5.48)

Then, let a ∈ {1, 2, 3, 4} be the four Dirac-state solutions for H = H0 + HV +

H‖ with Ea as their respective energy eigenvalues and with HB(z, B)+ HZ(B)
as perturbation. Taking the superposition of these four Dirac states as Ansatz
for the full system H0 + HV + H‖ + HB + HZ this leads to

Ψq⊥(z) = ∑
a
|a〉 = ∑

a
caΨa

q⊥
(5.49)
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where ca is a complex number with ∑a |ca|2 = 1. A new effective Schrödinger
equation can be written as

∑
a,b
|b〉〈b|

(
H0 + HV + H‖ + HB + HZ

)
|a〉 = E ∑

a
|a〉 (5.50)

and each matrix element arising due to the perturbation HB + HZ reads

〈a|HB + HZ|b〉 =
A0

l2
B
〈a| z

(
σz ⊗ τy

)
|b〉+ B

µB

2
〈a| (σx ⊗ G) |b〉. (5.51)

Determining the matrix elements numerically results in an effective Hamil-
tonian HE structured like

HE(q⊥, B, γ) =E⊥ [1⊗ τz]
√

q2
x + q2

y

+ µ0B

[
r(q⊥, γ)

(
0 eiϕ

e−iϕ 0

)
⊗ τz + u(q⊥, γ) 1⊗ τx

]
,

(5.52)

where r(q⊥, γ) and u(q⊥, γ) are approximating functions to the numerical
data given by

r(q, γ) = (62.44q2
y +

35.9
γ + 15.61)

q2
y

q2
x+q2

y
(5.53)

u(q, γ) = (62.48q2
x +

35.9
γ + 15.62) q2

x
q2

x+q2
y

(5.54)

for Bi2Te3 and

r(q, γ) = (73.82q2
y +

4.543
γ − 1.93)

q2
y

q2
x+q2

y
(5.55)

u(q, γ) = (73.84q2
x +

4.544
γ − 1.93) q2

x
q2

x+q2
y

(5.56)

for Bi2Se3. The effective g-factor at q⊥ = 0 can then be represented by either
limqy→0 limqx→0 r(q⊥, γ) or limqx→0 limqy→0 u(q⊥, γ) and can be expressed as

Bi2Te3 : gE ≈ lim
qy→0

lim
qx→0

r(q⊥, γ) =
35.9

γ
+ 15.61 =

l2
γ

5.71
+ 15.61 (5.57)

Bi2Se3 : gE ≈ lim
qy→0

lim
qx→0

r(q⊥, γ) =
4.543

γ
− 1.93 =

l2
γ

6.87
− 1.93. (5.58)

For a small range of γ, this is in agreement with experimental results which
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found a range of gBi2Se3 ≈ 30 [117] and g-factors of order 20 for Bi2Te3 [118]

FIGURE 5.8: The g-factors related to the full numerical Hamil-
tonian H are determined by measuring the energy splitting of

neighbouring Dirac bands at the origin.

in the bulk and gBi2Se3 = −8.43, gBi2Te3 = −17.4, and gSb2Te3 = −2 for the sur-
face states [119]. Notable is the dependence of the g-factors on the Harmonic
Oscillator parameter γ. It can be related to the Harmonic Oscillator length
lγ which is a measure for the size of the system. Thus, the behavior of the
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FIGURE 5.9: Shown are the effective g-factors of the surface
states for Bi2Se3 (blue) and Bi2Te3 (red) over (a) the width of the
material lγ and (b) over 1/γ1/2 with normalized material pa-
rameters. The g-factors of both materials in this model depend
on the width of the material and are approximated by (5.58)

(dashed lines).
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g-factors can be described by a function quadratic in lγ and the major part of
energy splitting in the magnetic field can be attributed to a two-band Zeeman
splitting with effective g-factors shown in figure 5.9 for Bi2Te3 and Bi2Se3. The
definition of the g-factors determined from the numerical approach is shown
in figure 5.8. The g-factors are related to the energy splitting of to neighbour-
ing Dirac bands ∆E by ∆E = µBgB. The splitting also manifests in the σx

and σy terms in (5.52) which effectively represent Lorentz boosts in momen-
tum space. The boost due to these terms also fits well with the numerical
data given in figure 5.10. Remarkable is the strong dependence of the surface

FIGURE 5.10: Shown is the distance between the cone crossings
in momentum space over the width of the material lγ in Å. The
splitting in momentum space follows the same dependencies as

the Zeeman splitting in energies.

state g-factors on the size of the material which is already indicated by the
z-dependency in (5.51) and also reflected in the numerical results.

5.5 Properties of the System H0(B)+ H‖+ Hε(B)+

HB(B) + HZ(B)

Since the impact of the magnetic field on H0 is negligible, as determined in
section 5.2, the changes invoked by particle-hole asymmetry in a magnetic
H0 are nearly non-existent.

When investigating the full system, however, the changes are visible and
can be significant. Most significantly, the splitting of the Dirac cone still oc-
curs and the split cones are now at the according positions in momentum
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space shifted in energy by εq⊥ . Notable is also that the splitting for electrons
is larger than for holes and that, the further the band is away from the Fermi
level, the smaller is the impact of the magnetic field and the bands’ splitting.
Examples of this for Bi2Se3 and Bi2Te3 can be seen in figure 5.11. Just like for
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FIGURE 5.11: Band structure of (a) Bi2Te3 and (b) Bi2Se3 with
particle-hole asymmetry present and magnetic field directed in

x-direction and of magnitude 2 T.

the system without particle-hole asymmetry, the magnitude of change varies
between materials and it increases from Bi2Se3 over Bi2Te3 to Sb2Te3. More-
over, the gap doesn’t change its behavior either. The periodicity is still present
(absent) for the cone crossing at qy = 0 in Bi2Te3 and Sb2Te3 (Bi2Se3) and the
cone crossings of the split cones at the Fermi level remain numerically zero.

The impact on the wave functions is small, too. The respective cone states
still manifest on opposite sides of the materials and the bulk states show
more bulk like behavior, the further they are from the Fermi level. How-
ever, the asymmetry leads to a different behavior for electrons which show
bulk like behavior for lower distances to the Fermi energy than holes (figure
5.12). The asymmetry also manifests in the magnitude of pseudospin which
is smaller for holes and larger for electrons. Finally, like for the particle-hole
symmetric Hamiltonian, Berry Curvature vanishes in the whole qx-qy-plane
and is thus topologically trivial.
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FIGURE 5.12: Wave function densities for bulk bands that are
energy wise closest to the Dirac bands for holes (dashed) and
electrons (thick) for Bi2Te3. While electrons behave like the
Dirac states and are located on one side of the material, holes
are located on both sides with a preference to one side. As
bands further away from the Dirac bands are chosen, this be-

havior deteriorates towards bulk like band behavior.

5.6 Summary

In this chapter the effects of an in-plane magnetic field on the Bi2Se3 Topo-
logical Insulator family model Hamiltonian with a harmonic-oscillator-type
confinement was investigated. The first central result here is the splitting of
the Dirac cone into two separate cones that are located on opposite sides
of the material which has been discussed in similar settings in [120, 121]. The
pseudospin texture of these cones is remarkable in that it rotates around each
cone as shown in figure 5.4. This is a feature that has also been observed in
related studies [98, 116].

The splitting of the Dirac cones can be ascribed to an effective Zeeman
splitting that increases the energy for one Dirac cone and decreases it for the
other. This splitting energy difference is used to determine a g-factor associ-
ated with the in-plane magnetic field. Remarkable for these g-factors is that
they strongly depend on the size of the material which has not been observed
so far.



89

Chapter 6

Summary and Outlook

This project was set out to investigate the effects of a soft harmonic-oscillator-
type quantum confinement on physical properties of the model Hamilto-
nian of the topological insulators Bi2Se3, Bi2Te3, and Sb2Te3. The materials
in question represent quite different regions of the 3D-TI parameter space
and, hence, exhibit distinctive features in the evolution of topological prop-
erties as the strength of the confinement is varied. The results obtained here
are also straightforwardly generalized to any materials systems whose band
structure is described by the same type of k · p Hamiltonian that forms the
basis for the theoretical approach presented here, including Dirac semimet-
als [100, 101, 122] and other proposed topological insulators such as Bi2Te2I2

[102].
The interplay of band inversion, size quantization, and band mixing is

found to be governed by the relative magnitudes of unit-less parameters de-
fined in (4.19). Characteristic features exhibited by the particular materials
systems considered here can thus be rationalized in terms of the specific val-
ues of these parameters. Fundamentally, as the system size in the confined di-
rection varies, the gaps of inverted bare-oscillator subbands are successively
closing and reopening. The mixing of bare-oscillator subbands significantly
modifies the bare-oscillator subband dispersions in the large-width regime
(γ < γ‖), establishing the vanishing-mass Dirac-like surface-state dispersion
and eventually causing the disappearance of oscillations in the fundamen-
tal (lowest-subband) gap value. The robustness of TI phases with respect to
band mixing and electron-hole asymmetry is established by tracking the evo-
lution of band inversions by explicit consideration of the pseudospin value
of eigenstates. In contrast, the occurrence of gap oscillations turns out to be a
non-universal feature that cannot be viewed as a conclusive measure to mon-
itor TI character in a quantum-confined system. Moreover, it is found that the
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parameter A0 representing Bi2Se3 in this model lies in a region where small
deviations lead to gap oscillations which may justify further investigations
into the variation of model parameters. The effects of particle-hole asymme-
try are mainly expressed as a deformation and shift of the band structure.
Wave functions, pseudospin, and spin expectation values lose the symmetry
between particles and holes, but the distinctive topological insulator proper-
ties remain.

When an in-plane magnetic field is applied, all three materials show an ef-
fective Zeeman splitting of the Dirac cone into two separate cones in k space.
Due to the non-magnetic Hamiltonian’s rotation invariance within the kx-ky

plane, the two cones split in the direction the magnetic field is pointed at.
The band splitting of the bulk band structure is weaker than the splitting
of the Dirac cones in the surface states. The low energy effective Hamilto-
nian shows that the splitting of the cones originates from two sources. One
being the Zeeman Hamiltonian in (5.2). The other contribution results from
the vector potential of the in-plane magnetic field A which leads to effective
Lorentz boosts in ky and is summarized in HB (5.25). The cones are located
on opposite sides of the TI surface in confinement direction and show a ro-
tation pattern with clockwise (counter clockwise) rotation of pseudospin ex-
pectation values projected into the Tx-Tz plane when rotating around a cone
in k space. Calculations regarding the Berry curvature of the model Hamil-
tonian in a magnetic field delivered no visible curvature beyond numeric
background noise. Particle-hole asymmetry has a similar effect on the full
model Hamiltonian in a magnetic field as it has without magnetic field. The
band structure is deformed and shifted but the qualitative properties, like the
split Dirac cone on opposite sides of the material or the rotating pseudospin
expectation values in k space remain present.

The conclusions presented in this thesis have been reached based on an
approach where certain aspects of real materials were ignored. One of these is
the finite size of thin-film samples in the plane perpendicular to the quantum-
confined direction and any effects arising from the conducting lateral sur-
faces. However, apart from the edge-state structure in strong perpendicu-
lar magnetic fields [123], systems with a large-enough aspect ratio are well-
described by models assuming them to be infinite in the transverse direc-
tions. A potential experimentally probeable outcome is the material-size-de-
pendent effective g-factor for the surface states in all three materials which
may be observed in the frame of topological insulators in ultra cold atom
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optical lattices that allow for harmonic confinement potentials [66, 103].
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