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Abstract

Unsupervised learning is a fundamental category of machine learning
that works on data for which no pre-existing labels are available. Unlike
in supervised learning, which has such labels, methods that perform

unsupervised learning must discover intrinsic patterns within data.

The size and complexity of data has increased substantially in recent
years, which has necessitated the creation of new techniques for reducing
the complexity and dimensionality of data in order to allow humans to
understand the knowledge contained within data. This is particularly
problematic in unsupervised learning, as the number of possible patterns
in a dataset grows exponentially with regard to the number of
dimensions. Feature manipulation techniques such as feature selection
(FS) and feature construction (FC) are often used in these situations. FS
automatically selects the most valuable features (attributes) in a dataset,
whereas FC constructs new, more powerful and meaningful features that

provide a lower-dimensional space.

Evolutionary computation (EC) approaches have become increasingly
recognised for their potential to provide high-quality solutions to data
mining problems in a reasonable amount of computational time. Unlike
other popular techniques such as neural networks, EC methods have
global search ability without needing gradient information, which makes
them much more flexible and applicable to a wider range of problems.
EC approaches have shown significant potential in feature manipulation
tasks with methods such as Particle Swarm Optimisation (PSO)

commonly used for FS, and Genetic Programming (GP) for FC.
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The use of EC for feature manipulation has, until now, been
predominantly restricted to supervised learning problems. This is a
notable gap in the research: if unsupervised learning is even more
sensitive to high-dimensionality, then why is EC-based feature

manipulation not used for unsupervised learning problems?

This thesis provides the first comprehensive investigation into the use of
evolutionary feature manipulation for unsupervised learning tasks. It
clearly shows the ability of evolutionary feature manipulation to improve
both the performance of algorithms and interpretability of solutions in
unsupervised learning tasks. A variety of tasks are investigated,
including the well-established task of clustering, as well as more recent
unsupervised learning problems, such as benchmark dataset creation

and manifold learning.

This thesis proposes a new PSO-based approach to performing
simultaneous FS and clustering. A number of improvements to the
state-of-the-art are made, including the introduction of a new
medoid-based representation and an improved fitness function. A
sophisticated three-stage algorithm, which takes advantage of heuristic
techniques to determine the number of clusters and to fine-tune
clustering performance is also developed. Empirical evaluation on a
range of clustering problems demonstrates a decrease in the number of

features used, while also improving the clustering performance.

This thesis also introduces two innovative approaches to performing
wrapper-based FC in clustering tasks using GP. An initial approach
where constructed features are directly provided to the k-means
clustering algorithm demonstrates the clear strength of GP-based FC for
improving clustering results. A more advanced method is proposed that
utilises the functional nature of GP-based FC to evolve more specific,
concise, and understandable similarity functions for use in clustering
algorithms. These similarity functions provide clear improvements in
performance and can be easily interpreted by machine learning

practitioners.
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This thesis demonstrates the ability of evolutionary feature manipulation
to solve unsupervised learning tasks that traditional methods have
struggled with. The synthesis of benchmark datasets has long been a
technique used for evaluating machine learning techniques, but this
research is the first to present an approach that automatically creates
diverse and challenging redundant features for a given dataset. This
thesis introduces a GP-based FC approach that creates difficult
benchmark datasets for evaluating FS algorithms. It also makes the
intriguing discovery that using a mutual information-based fitness
function with GP has the potential to be used to improve supervised

learning tasks even when the labels are not utilised.

Manifold learning is an approach to dimensionality reduction that aims
to reduce dimensionality by discovering the inherent lower-dimensional
structure of a dataset. While state-of-the-art manifold learning approaches
show impressive performance in reducing data dimensionality, they do so
at the cost of removing the ability for humans to understand the data in
terms of the original features. By utilising a GP-based approach, this thesis
proposes new methods that can perform interpretable manifold learning,

which provides deep insight into patterns in the data.

These four contributions clearly support the hypothesis that evolutionary
feature manipulation has untapped potential in unsupervised learning.
This thesis demonstrates that EC-based feature manipulation can be
successfully applied to a variety of unsupervised learning tasks with
clear improvements in both performance and interpretability. A plethora
of future research directions in this area are also discovered, which we

hope will lead to further valuable findings in this area.
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Chapter 1

Introduction

1.1 Problem Statement

Data mining [41] is a large and extensively studied area of Computer
Science that attempts to discover knowledge in large datasets. Machine
learning (ML) has been widely applied to data mining tasks such as
classification, regression, and clustering. Supervised learning tasks,
where data have expert-defined labels that can be exploited by data
mining algorithms, have attracted the majority of attention in ML [75].
However, it has become clear that a significant proportion of the
remaining challenges in ML cannot depend on learning from rich
labelled data: many huge datasets cannot be feasibly labelled; other
problems are so complex that even a human expert cannot solve them
reliably [151]. Unsupervised learning, which seeks to discover intrinsic
relationships or characteristics in unlabelled data, is seen as key to the
future of artificial intelligence (AI) [152] by renowned ML experts such as
Yann LeCun, who states: “We all know that unsupervised learning is the

ultimate answer” and Jeff Dean, founder of Google Brain, who explains:

“Supervised learning works so well when you have the right
data set, but ultimately unsupervised learning is going to be a really
important component in building really intelligent systems — if you

look at how humans learn, it’s almost entirely unsupervised.”

1
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One key challenge in data mining is producing useful results on datasets
containing many attributes (features). For example, consider a
(supervised) classification algorithm that uses all 100 features of a
medical dataset to diagnose a patient. The first concern is how accurate
this algorithm can really be, given the huge search space it was faced
with optimising; secondly, and more critically, is the extent to which a
doctor can trust the algorithm sufficiently given it is nearly impossible to
understand such a complex model. These challenges are even more
pronounced in unsupervised learning: as no labels are provided, the
search space of possible solutions is strictly larger than in supervised
learning; and the lack of labels makes validating and interpreting a

complex unsupervised model even more futile.

Feature manipulation (FM) [98] transforms the input feature space of a
dataset into a new (usually lower-dimensional) feature space containing
features that are more concise in their information content, providing a
smaller but more powerful set of features. FM methods are commonly
categorised as filter, wrapper, or embedded methods. Filter methods
directly evaluate a candidate transformed feature space using some
feature quality measure; wrapper methods evaluate by utilising the
results of feeding the new features into a ML algorithm; and embedded
methods are those where the ML algorithm implicitly performs FM as
part of its learning process.

FM has been widely applied to supervised learning tasks [160] with
Evolutionary Computation (EC)-based methods showing particular
success in recent years [120,165,179]. EC methods have been shown to be
especially suitable, with their population-based approach allowing them
to find sufficiently good solutions to a range of NP-hard problems in
reasonable time [135]. However, there has been very little application of
EC feature manipulation to unsupervised learning tasks — despite that
these problems are strictly more difficult to solve than supervised tasks,
and are of key importance to the future of machine learning. This can be
seen through the number of results obtained when searching for
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“supervised learning” or “unsupervised learning” in conjunction with
“feature selection” or “feature construction” on common academic
indexing services such as Google Scholar. As of September 2019, there are
64,900 papers that mention both “supervised learning” and “feature
selection”, but only 34,900 mentioning both “supervised learning” and
“unsupervised learning”. When the 21,900 papers that mention both
supervised and unsupervised learning are subtracted, there are only
around 13,000 papers that focus on unsupervised learning. A similar
result is found with “feature construction”, with 1,690 papers focusing
solely on FC in supervised learning compared to 460 in unsupervised
learning. If we restrict the search criteria further to only include papers
that use the term “evolutionary”, there are fewer than 100 such papers

mentioning EC, FC, and unsupervised learning.

1.2 Motivations

1.2.1 Challenges in Clustering

Clustering is the most-studied unsupervised task, which partitions a
dataset into several groups (clusters), where each cluster contains similar
or related instances of the dataset. For example, a group of people can be
clustered by their age groups or according to their common interests.

Clustering is widely used in many real-world applications [118].

A cluster partition that uses all features of a high-dimensional dataset to
define its clusters is likely to be very difficult to analyse, as the instances
contained in each cluster will be related to each other based on a very
large number of attributes. A large proportion of clustering algorithms
use distance-based techniques to evaluate how related two data points
are; many distance functions, such as Euclidean distance, become
increasingly less meaningful as dimensionality increases [1]. In addition,
algorithms using many features tend to require significantly more
computing power to perform clustering. In the worst case, using all
features may mean the algorithm takes so long to finish that it is not a
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viable choice for the user. Different features within a feature set often
vary in their discernibility power — consider, for example, clustering
historic weather records that contain a “day of week” attribute. While
clustering the dataset by the day of week would produce a valid
partition, the usefulness of the produced clusters is likely to be much

lower than if a “rainfall (mm)” attribute was instead used.

A variety of different FM techniques have been proposed to combat these
issues. Two common approaches used by algorithms are feature selection
(FS), and feature construction (FC) [98]. While such FM techniques have
been applied extensively to classification problems, they have seen
relatively little use in clustering and other unsupervised learning

algorithms.

Both clustering [40, 67] and FS/FC [10, 53] have been shown to be
NP-hard problems. FS problems have a search space of 2™ possible
feature subsets in a dataset with m features, and FC problems have an
even larger search space, as every possible feature subset can be
combined into a number of constructed feature(s) in many different
ways. The most common FS techniques such as Sequential Forward
Selection (SFS) [177] and Sequential Backward Selection (SBS) [108] fail to
scale well when many features are present, as they tend to become stuck
in local optima [138].

Clustering n instances into K groups can be performed SX ways, which
is a Stirling number of the second kind, defined as [50]:

=K

SK — % (—1)K (f)w (1.1)
T =0

The number of possibilities grows extremely quickly as n or K increases
— for five instances being allocated to two clusters, there are 15
possibilities. However, for a slightly larger dataset, with n = 20 and
K = 2, there are 524, 287 possible clusterings. One of the largest synthetic
datasets commonly used in the literature has 2000 instances and 40
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clusters — such a dataset can be clustered in 1.62 x 103°° ways: clearly it
is impossible to test all possible clusterings.

When K is unknown, the number of permutations is even bleaker at
Zif mer Siwhere K4, is a pre-defined maximum number of clusters; in
the extreme case K,,,; = n. As datasets continue to become increasingly
longer (more instances) and wider (more features), fundamental
clustering algorithms such as k-means fail to scale effectively [69].
Clearly, it is infeasible to find the best partition by trying every possible
result on all but trivial problems. Hence, clustering methods have used a
wide range of approximations and heuristics to find good clustering

results in reasonable computational time.

EC [35] is an Al paradigm that contains stochastic population-based
search techniques that supposedly draws inspiration from biological
sources, such as evolution and animal swarming behaviour. Genetic
Programming (GP) [82] and Particle Swarm Optimisation (PSO) [78] are
two very successful EC methods, which been applied to a wide range of
NP-hard problems successfully due to their ability to find sufficiently
good solutions in reasonable time (i.e. hours to days).

The use of EC for clustering has been shown to produce superior results
compared to existing deterministic algorithms [36, 64, 118]. However,
even EC-based clustering struggles to perform well on datasets with a
large number of features: more features introduce more ways to assign

instances to clusters, ergo further increasing the search space size.

To address this, a few methods have been proposed for performing FS for
clustering, and also for performing FC for clustering. However, these
methods have a number of limitations, which are discussed in the
following subsections. EC approaches for these tasks have not been
studied nearly as comprehensively as in the supervised learning domain,
where PSO for FS [179] and GP for FC [37] have seen substantial use in
classification problems. Indeed, the use of FS with PSO for clustering has
been recently suggested as a promising area for future research [36].
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1.2.2 Limitations of Current EC Work for Feature Selection

in Clustering

The majority of existing EC work combining FS with clustering tasks has
used EC only to perform one of the two tasks of FS or clustering, with a
non-EC method performing the other. Such an approach is inherently
limited in that it does the two tasks separately; performing both
simultaneously would allow the features chosen to be “tailored” to the
clusters produced. Simultaneous FS and classification has been shown to
be very effective [179], but simultaneous FS and clustering has been
performed by only a few methods [71, 150], which have several

limitations:

1. They either require K to be pre-defined [71] or use a variable-length
encoding [150] where the length of the representation used is
relative to K. Pre-defining K limits the usefulness of a method to
cases where K is (approximately) known, and using a variable
length encoding introduces difficulties in allowing individuals with

different lengths to interact and exchange information.

2. They use fitness functions that linearly punish the number of
tfeatures and clusters relative to the maximum number of features
and clusters [71,150]. Linearly punishing the number of clusters
may give incorrect results as the EC process is likely to find it
“easier” to decrease the number of features rather than increase the
clustering performance. In a similar vein, applying a linear penalty
based on K is likely to encourage bias towards small K, even on

datasets that may actually have many clusters.

3. They have only been tested on small datasets with few features and
clusters. FS is most useful on large, difficult datasets where
reducing the number of features can significantly decrease
computational resources required and the complexity of the
solutions produced.
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Figure 1.1: Wine dataset projected across varying numbers of features.
Wine contains three classes, 13 features, and 178 instances.

There is also an inherent dependency between the number of features
selected (m') and K. A larger m’' will encourage a larger K and vice
versa; the more information (i.e. features) available, the more easily the
data can be divided into a larger number of smaller clusters instead of a
tew big clusters [8]. For example, consider the three plots shown in
Figure 1.1, which show the Wine dataset projected using different
numbers of features. The three colours represent the three classes of the
Wine dataset. When three features are used in Figure 1.1a, it is easy to
distinguish all three classes as distinct clusters. When one feature is
removed in Figure 1.1b, the blue class still appears as a homogeneous
cluster, however, the red and green classes are much closer and have
enough overlap so that they may be considered as a single cluster. When
only a single feature is considered in Figure 1.1c, all three classes overlap
considerably and it is difficult to choose two thresholds that would split
the three classes into three clusters well. As m' is minimised to encourage
selecting fewer features, the evolutionary search will be biased towards
picking smaller K, reducing performance on datasets that have large K.

A large number of fitness functions have been proposed for both
clustering [118] and feature selection [179], but little research has been
conducted into fitness functions that consider both clustering and feature
subset quality. Both tasks require balancing several objectives: a good
clustering partition will have clusters with high compactness,
separability, and connectedness [56], whereas a good feature subset will
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contain the smallest number of features possible that maximise
performance. As the evolutionary process is directly guided by the
fitness function used, it is important that a suitable fitness function is

used in order to maximise the quality of the solutions produced.

1.2.3 Limitations of Current EC Work for Feature

Construction in Clustering

Tree-based GP is an evolutionary algorithm that automatically models
programs or functions using a tree-based structure, where the inputs of
the program are the terminals of the tree, and the root is the output of the
program. Tree-based GP has been used extensively for performing
classification with feature construction built into the tree structure [37],
but has only seen very limited use in clustering applications [118]. By
using the feature set as terminals in a GP program design, feature
selection and construction can automatically occur, as not all features are
used in a tree, and function nodes operate on multiple features. Most
existing GP methods for clustering perform feature selection and
construction using an embedded approach, whereby feature manipulation
occurs as a consequence of the program structure. This use of GP directly
for cluster assignment may limit performance; GP is known to perform
poorly when used directly as an embedded approach to many-class
classification [37]', which is an analogue to many-cluster clustering.
Using a wrapper approach may produce better results by using an
existing clustering algorithm to perform the clustering task. Such
approaches have been successfully applied to the multi-class
classification problem [120].

Much of the existing literature using GP for clustering encourages the
formation of hyper-spherical clusters?, either explicitly by using

'Due to the need to choose many thresholds that separate classes.

ZHyper-spherical clusters are those where instances lie in a hyper-spherical region
around the cluster mean; in a 2D feature space, this produces circular clusters. Clusters
need not be hyper-spherically shaped; a dataset may contain clusters of varying shape
(e.g. elliptical, spiral, ring, etc. [69,166]).
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distance-based clustering techniques, or implicitly by using a fitness
function that measures fitness in a hyper-spherical manner. Many
datasets may not have hyper-spherical clusters at all, and GP’s dynamic
and flexible structure and representation should allow it to be used

effectively for non-hyper-spherical clustering problems.

Beyond clustering, there are a range of other unsupervised problems that
feature manipulation has the potential to address. The following
subsections identifies and discusses two such problems: benchmark

dataset creation and manifold learning.

1.2.4 Challenges in Creating Benchmark Datasets

The design of benchmark datasets is a growing research area in
unsupervised learning; the lack of class labels makes it very difficult to
evaluate the performance of unsupervised algorithms since there is no
correct “ground truth”. To tackle this, a range of benchmark clustering
datasets have been produced [43], including using EC methods [56, 148]
to produce complex, challenging clustering problems.

Another important data mining task that regularly uses benchmark
datasets for comparison is feature selection. FS algorithms primarily
work by identifying and removing irrelevant or redundant features from a
feature set [160], either in a supervised or unsupervised manner.
Irrelevant (or noisy) features are those that add little or no meaningful
value to a dataset. In the worst case, an irrelevant feature may actually
mislead the data mining process, when it contradicts the information
given by other “correct” features. Removing such features reduces the
search space of the data mining task, generally improving
performance [99]. While removing irrelevant features is reasonably
straightforward, redundant features (r.fs), which share a significant
overlap of information content with other features, are much more
difficult to identify, especially when they are redundant in a multivariate

and/or interactive manner.
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The most common method of quantitatively comparing the efficacy of
different FS algorithms is to evaluate them on a range of popular datasets
and compare the performance achieved and the number of features
selected by each. Such an approach is quite a “coarse” analysis, as it
gives little insight into which type of features each FS algorithm removes
from a dataset. For example, naive FS algorithms may readily remove
clearly irrelevant features, while failing to identify r.fs completely. A
more refined evaluation method is to directly look at how well each FS
algorithm can remove each “type” of feature. However, identifying
which features are non-linearly redundant in a dataset is an NP-hard
problem (otherwise, the FS problem could be brute-forced!) [99]. Hence,
an increasingly common technique is to purposefully add “new”
irrelevant or redundant features to an existing dataset. While irrelevant
features can be added with relative ease (choose a stochastic noise
generator, and generate a number of noisy features), it is not obvious
how to add features with complex redundancies.

The most naive way of creating a r.f (Y) from a given source feature (X) is
to multiply each feature value of X by some multiple «, such that the i*"
value of Y is computed as Y; = X, [52,54,181]. By varying «, one can
easily generate any given number of r.fs based on X. A particularly
straightforward method is to simply duplicate features (i.e. let & = 1) —
but these are trivial to remove. To make the redundancy weaker, one can
introduce some bias () such as adding a constant value to each Y}, e.g.
Y, = aX,; + 8. However, such approaches have a number of serious

limitations.

The above types of r.fs have very simple redundancies that do not
represent realistic interactions between features in real data mining
problems. For example, in a dataset of people, two potential features may
be an individual’s age and income. It is generally true that the older a
person, the more they earn, and so we may expect these features to be
linearly redundant. However, a child is likely to have no income

regardless of their exact age, and a pensioner is likely to have a similar
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income to others aged over 65. While these two features are certainly
partially redundant, the interaction is clearly more complex. In most
datasets, the redundancy between two features tends to be even more
complex. Removing r.fs that have linear redundancies is also quite a
trivial FS problem, and so is not an adequate challenge for non-trivial FS
algorithms.  For example, a greedy algorithm that uses Pearson’s
correlation can easily find groups of linearly redundant features by

measuring the correlation of each feature to those already selected.

There is hence an obvious need to have methods available to generate r.fs
with (arbitrarily) complex interactions in order to benchmark FS methods
more effectively. There has been very little work in the literature that has
investigated how to automatically generate non-trivial r.fs. One common
method used to automatically create functions to perform a particular
task is GP. GP could be used to produce r.fs by taking a source feature as
the program’s input, and producing a r.f as the program’s output. This
could generate challenging FS datasets that have features with a range of
redundancies, from simple univariate relationships to even more

complex multivariate ones, i.e. many-to-many features.

1.2.5 Challenges in Manifold Learning

Manifold learning has risen to prominence in recent years due to
significant improvement in autoencoders and the widespread use of the
t-Distributed Stochastic Neighbour Embedding (t-SNE) visualisation
algorithm [171]. Manifold learning is the main area in the non-linear
dimensionality reduction literature, and consists of algorithms that seek
to discover an embedded® (non-linear) manifold within a
high-dimensional space so that the manifold can be represented in a
much lower-dimensional space. Hence, they aim to perform

dimensionality reduction while preserving as much of the structure of the

3Embedded in the manifold learning context means an underlying, existing, intrinsic
structure in a dataset. Embedded in the feature manipulation context refers to a machine
learning algorithm that performs FM as part of its learning process.
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high-dimensional space as possible.

Popular manifold learning algorithms nearly exclusively work by
producing an embedding in the low-dimensional space, which is
represented by a set of points: these points are optimised freely according
to some cost function, using a method such as gradient descent. For
example, if the embedding had a dimensionality of two, then each
instance in the dataset would have two feature values in the
low-dimensional space, which are optimised starting from some point.
While this approach has proved the most successful [111,171], it has a
critical limitation: there is no direct relationship between the high- and
low-dimensional spaces. This is problematic in cases where it is
important to apply the embedding to future examples (without
re-running the whole algorithm), or even more restrictive when
interpretability is important: since there is no clear relationship of the
embedding to the original features, there is no meaningful way to
interpret the embedding. As Mclnnes et al. note:

“For a number of uses [sic] cases the interpretability of the
reduced dimension results is of critical importance. Similarly to
most non-linear dimension reduction techniques (including
t-SNE and Isomap), UMAP lacks the strong interpretability of
Principal Component Analysis (PCA) and related techniques such a
[sic] NonNegative Matrix Factorization (NMF). In particular the
dimensions of the UMAP embedding space have no specific
meaning, unlike PCA where the dimensions are the directions of
greatest variance in the source data. Furthermore, since UMAP is
based on the distance between observations rather than the source
features, it does not have an equivalent of factor loadings that linear
techniques such as PCA, or Factor Analysis can provide. If strong
interpretability is critical we therefore recommend linear
techniques such as PCA and NMFE.” [111, p. 35]

Given that linear techniques are fundamentally limited in their ability to

transform complex manifolds, and that interpretability is a key criterion
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in many data mining applications, there is a clear need for new manifold
learning techniques that are both powerful and interpretable. Manifold
learning can be tackled as a feature construction problem, where the
output embedding is a transformation of the original features. Given
GP’s ability to produce functional and interpretable mappings, it seems
likely that GP techniques could be developed to tackle this challenge.

1.3 Goals

This overall goal of this thesis is to investigate the potential of using
evolutionary unsupervised feature manipulation (FM) to improve the
performance and interpretability of models in machine learning
problems. This will be investigated through two main directions. First,
the use of FM for improving the most common unsupervised data
analysis task, clustering, will be explored. Second, the use of
evolutionary FM to tackle unsupervised problems that evolutionary
computation has not traditionally been applied to will be explored. These
two directions will be investigated through two research objectives each.

The four specific objectives of this thesis are:

1. Investigate and develop a new PSO algorithm that performs
clustering and feature selection simultaneously in the same particle,
using new representations and refined fitness functions to improve
clustering performance and select fewer features than existing
methods.

Existing work uses a restrictive centroid-based clustering encoding,
and requires a variable-length encoding when K is
unfixed [71, 150], which can often give invalid solutions and a
difficult search space. Existing fitness functions also inherently bias
decreasing dimensionality at the cost of reduced -clustering
performance due to the much smoother fitness space present in
feature selection compared to clustering. The introduction of new

clustering encodings and more refined fitness functions has the
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potential to address these issues.

2. Design new methods for using GP to perform feature construction
for clustering tasks. GP is widely known for its ability to improve
performance in classification tasks by producing high-level
constructed features from the original feature set, but the use of GP
for clustering has been very limited. This also has the potential to
improve the interpretability of cluster partitions through the use of

tewer, more meaningful high-level features.

GP-based feature construction wrapper methods have been very
successfully applied to classification tasks [37], but have never been
applied to clustering [118]. Wrapper methods are often quite
powerful, as they can harness the efficiency/efficacy of an existing
method by treating it as a “black box” into which constructed
features can be fed. A GP wrapper method could be applied to an
existing clustering method, such as k-means. Existing clustering
methods require the selection of an appropriate (pre-defined)
similarity function for use in the clustering process. However, these
functions are nearly always inflexible, domain-agnostic, and require
treating all features equally despite their varying importance. GP is
well-known for its ability to evolve functions: GP-based feature
construction has the potential to evolve custom similarity functions

to improve the performance of clustering methods.

3. Develop an approach to creating challenging benchmark feature
selection datasets. Evaluating the performance of FS algorithms
comprehensively requires testing their ability to remove known
redundant features. Common approaches such as duplicating or
scaling existing features to introduce redundancy are not
representative of challenging, real-world situations where

multivariate complex redundancies exist.

The creation of redundant features can be modelled as an
unsupervised learning task, as redundancy is generally defined by
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how feature distributions vary without considering any class
information. Common measures, such as mutual information
provide a proxy for measuring redundancy: by optimising to
maximise mutual information, highly-redundant features can be
designed. Such redundancies can be thought of as a redundancy
function between the source (original) features and the newly
created redundant features. Evolving this redundancy function is
an application of feature construction, and so it is expected that GP
is suited to this task. Furthermore, a multi-tree GP approach would
provide a natural extension to creating multivariate

(many-to-many) complex redundancies.

. Propose the first GP-based approach to performing interpretable

manifold learning. Manifold learning has become a very popular
area of unsupervised machine learning research in recent years,

with many high-performing approaches proposed.

However, nearly all manifold learning algorithms have a glaring
issue: they provide no understanding of how the manifold is
formed from the original (high-dimensional) feature space.
Interpretability is a key aspect of the data mining process, and
arguably is most important on data that manifold learning is
designed for: high-dimensional, complex data that humans cannot
understand.  Manifold learning can be seen as a type of
unsupervised feature construction: the low-dimensional manifold
can be created based on the high-dimensional structure present in
the original features. Hence, GP could be used to evolve a
functional mapping representing the manifold present in data. GP
produces models that are inherently not black boxes — GP trees
have the potential to be understood and interpreted, especially if
parsimony pressure or other techniques are used. This is especially
key in visualisation, where methods such as t-SNE give
high-quality visualisations that cannot be related to the original

feature set and so are limited in their usefulness.
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1.4 Major Contributions

The major contributions of this thesis are as follows:

1. This thesis shows how a new medoid-based PSO approach can
perform simultaneous feature selection and clustering in a single
particle, utilising fewer features while achieving greater clustering
performance compared to previous centroid-based PSO methods.
This approach also allows the automatic discovery of the number of
clusters (K) in a dataset while still using a more effective
tixed-length representation. An advanced version of this algorithm
that utilises a heuristic guide for K, and a pseudo-local search to
fine-tune the best solution is also introduced; it shows further

improvements across a range of benchmark datasets.
Parts of this contribution have been published in:

Andrew Lensen, Bing Xue, and Mengjie Zhang. “Particle Swarm
Optimisation Representations for Simultaneous Clustering and
Feature Selection”. In Proceedings of the Symposium Series on
Computational Intelligence (SSCI '16). pages 1-8. IEEE, 2016.

Andrew Lensen, Bing Xue, and Mengjie Zhang. “Using Particle
Swarm Optimisation and the Silhouette Metric to Estimate the
Number of Clusters, Select Features, and Perform Clustering”. In
Proceedings of the 20th European Conference on the Applications of
Evolutionary Computation (EvoApplications '17). Part I, volume 10199
of Lecture Notes in Computer Science, pages 538-554. Springer,
2017.

2. This thesis shows how the use of GP for feature construction can
improve the performance and interpretability of existing clustering
algorithms. A wrapper approach where GP is used to improve the
performance of k-means is proposed, and is more accurate even
when using only a few constructed features comprising a handful
of original features. An alternative method, whereby GP is used to
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evolve similarity functions for use by clustering methods, is also
developed. This method automatically produces similarity
functions that are specifically designed for the clustering algorithm
and dataset being considered, which allows for more concise,
meaningful, and powerful similarity functions compared to
standard distance metrics such as Euclidean distance. Particular
success is demonstrated when using a cohesive set of smaller
similarity functions (i.e. multi-tree GP) to allow more tailored
behaviour in different niches of the cluster space. The evolved
similarity functions are shown to be significantly more interpretable

than standard functions.
Parts of this contribution have been published in:

Andrew Lensen, Bing Xue, and Mengjie Zhang. “New
Representations in Genetic Programming for Feature Construction
in k-means Clustering”. In Proceedings of the International Conference
on Simulated Evolution and Learning (SEAL '17). Volume 10593 of
Lecture Notes in Computer Science, pages 543-555. Springer, 2017.

Andrew Lensen, Bing Xue, and Mengjie Zhang. “Improving
k-means Clustering with Genetic Programming for Feature
Construction”. In Companion Material Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO Companion '17). pages
237-238. ACM, 2017.

Andrew Lensen, Bing Xue, and Mengjie Zhang. “GPGC: Genetic
Programming for Automatic Clustering wusing a Flexible
Non-hyper-spherical Graph-based Approach”. In Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO ’17). pages
449-456. ACM, 2017.

Andrew Lensen, Bing Xue, and Mengjie Zhang.  “Genetic
Programming for Evolving Similarity Functions for Clustering:
Representations and Analysis”. Evolutionary Computation (Journal,
MIT Press). 2019. Accepted with minor revisions (April '19).
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3. This thesis shows how to generate redundant features using GP
with a mutual information (MI)-based fitness function for
benchmarking feature selection datasets. The proposed GPRFC
method automatically creates difficult, redundant features that
have the potential to be used for creating high-quality feature
selection benchmark datasets. An extended multivariate approach
(GPMVREFC) is also proposed,; it is able to create more complex and
realistic redundancy relationships between sets of multiple
features. These methods provide a promising platform for further

development of FS benchmark datasets.
Parts of this contribution have been published in:

Andrew Lensen, Bing Xue, and Mengjie Zhang. “Generating
Redundant Features with Unsupervised Multi-tree Genetic
Programming. In Proceedings of the 21st European Conference on
Genetic Programming (EuroGP ’18). Volume 10781 of Lecture Notes
in Computer Science, pages 84-100. Springer, 2018.

Andrew Lensen, Bing Xue, and Mengjie Zhang. “Automatically
Evolving Difficult Benchmark Feature Selection Datasets with
Genetic Programming”. In Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO "18). pages 458-465. ACM, 2018.

4. This thesis shows how to use GP to perform manifold learning
(GP-MaL). We have developed the first GP-MaL approach, which
achieves competitive performance compared with existing
manifold learning algorithms, while producing models that can be
interpreted and re-used on unseen data. The value of GP-MalL is
further reinforced through a new variation called GP-tSNE, which
uses a multi-objective approach to produce visualisations that are
both highly representative of the dataset while also being produced
by interpretable GP trees. GP-tSNE is the first machine learning
visualisation method that produces a front of visualisations that
provide the user with a trade-off between visual clarity and model
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interpretability. Deep insight can be gained when a set of solutions

across a front are examined cohesively.
Parts of this contribution have been published in:

Andrew Lensen, Bing Xue, and Mengjie Zhang. “Can Genetic
Programming Do Manifold Learning Too?”. In Proceedings of the
22nd European Conference on Genetic Programming (EuroGP ’19).
Volume 11451 of Lecture Notes in Computer Science, pages
114-130. Springer, 2019. Awarded best paper in EuroGP.

Andrew Lensen, Bing Xue, and Mengjie Zhang. “Evolving a Front
of Representative and Interpretable Visualisations for Data
Analysis”.  Submitted to IEEE Transactions on Evolutionary
Computation (TEVC, March "19).

1.5 Organisation of Thesis

The contents of this thesis are organised as follows. Chapter 2 introduces
a variety of background content and related work. Chapters 3 to 6 each
address one of the research objectives and each produce one of the major
contributions of this thesis. Chapter 7 concludes the thesis and highlights

future research directions of interest.

Chapter 2 introduces fundamental background concepts for this thesis,
including machine learning, unsupervised learning and clustering,
feature manipulation, and evolutionary computation (PSO and GP). It
also reviews existing related literature, highlighting limitations that this
thesis aims to address.

Chapter 3 proposes a new PSO-based algorithm to perform clustering
and feature selection simultaneously in a fixed-length PSO
representation. An extended three-stage approach is then discussed,
which offers further improvements while addressing limitations of
existing PSO-based approaches. Experiments show clear improvements
compared to existing approaches, with the proposed approach selecting

tewer features while increasing clustering performance.
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Chapter 4 develops two new approaches to using GP to perform FC for
improving clustering performance. The first approach, which is the first
approach to using wrapper-based GP for clustering, demonstrates how
multi-tree GP can be used to significantly improve the performance of
existing clustering algorithms. The second method proposed uses
sophisticated techniques to automatically evolve custom similarity
functions, which improve performance by tailoring similarity functions
to the algorithm and dataset being used.

Chapter 5 establishes the first approach to automatically generating
difficult FS benchmark datasets by evolving complex redundant features
using multi-tree GP. An extension, which creates more realistic
multivariate redundant features is also introduced. These methods are
shown to create features that challenge existing FS algorithms and
showcase the clear potential for using GP-based FC to tackle challenging
and previously unexplored unsupervised learning.

Chapter 6 introduces the first usage of GP for performing interpretable
manifold learning by using GP-based FC techniques. The benefits of this
approach compared to existing manifold learning algorithms is clearly
demonstrated: the proposed approach achieves competitive performance
using a model that can be interpreted in a straightforward manner. This
is further demonstrated through the application of this approach to
visualisation tasks, where the transparency of the models evolved by the
proposed approach are shown to increase the amount of knowledge

provided by the generated visualisations.

Chapter 7 summarises the main contributions of this thesis, highlighting
the key findings of each chapter. A number of wider conclusions are also
provided for the future use of EC-based feature manipulation in
unsupervised learning. This thesis then concludes by discussing a range
of specific potential areas of future research.



Chapter 2

Literature Review

This chapter begins by introducing fundamental concepts of machine
learning relevant to this thesis, including unsupervised learning and
clustering. Core concepts of feature manipulation are then provided,
followed by an overview of evolutionary computation, and mutual
information. Related work on using evolutionary computation for
feature manipulation and unsupervised learning is discussed, with a
focus on clustering due to the lack of existing use of evolutionary

computation for manifold learning and feature creation.

2.1 Machine Learning

Machine Learning (ML) is a central paradigm in Artificial Intelligence
(AI), which has progressed dramatically during the 21** century and is
now commonly regarded as the best approach for tackling a plethora of
real-world tasks [75]. Unlike traditional algorithms — that are
programmed to perform pre-defined actions — ML algorithms learn to
solve a task/problem by examining data and automatically building and
refining a model to achieve the best possible result [9]. There is a huge
amount of diversity in ML algorithms, but they are commonly grouped
by the way in which the algorithm receives feedback to iteratively refine
its model. The most typical categorisation of techniques is whether they

perform supervised, unsupervised, or reinforcement learning [145]:

21
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¢ In supervised learning tasks, each instance (datum) is provided to
the ML algorithm with a pre-defined desired output (label), which
the algorithm should learn to reproduce [115]. Supervised ML
algorithms must learn a function/model that correctly maps inputs
(features of the instance) to the desired outputs. Supervised
learning is historically the most commonly studied ML paradigm,
with tasks such as classification (categorical outputs) and regression

(continuous outputs) being extensively researched.

¢ Unsupervised learning tasks, in contrast, provide no labels for the
ML algorithm to use to facilitate learning. In lieu of labels,
unsupervised ML techniques attempt to find underlying patterns or
characteristics of the data [60]. By far the most well-known
approach is clustering, but in recent years, research interest in
unsupervised feature learning and non-linear dimensionality

reduction has surged in the research community [14].

* In reinforcement learning tasks, desired outputs are not directly
provided, however, rewards or punishments are provided to the
learner depending on the actions it takes [159]. In this way, the ML
algorithm implicitly learns based on the decisions it chooses to
make. Reinforcement learning has become increasingly well-known
in recent years from DeepMind’s reinforcement learning
approaches giving similar or better-than-human performance in
Atari games [114], and Go and Chess [151].

This thesis focuses solely on unsupervised learning tasks. = More
specifically, it considers the well-established task of clustering, as well as
the two more recent and lesser-studied tasks of redundant feature
creation and interpretable manifold learning. A background to these
tasks and related concepts is provided in the next three sections.
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2.2 Clustering

Clustering is an important part of exploratory data mining that aims to
group similar items (instances) of a dataset together into a number (K) of
natural groups (clusters) [46, 69]. Unlike in supervised learning, where
labels are used to evaluate performance, the quality of a clustering
solution (partition) is measured by using one or more of a wide range of
measures [116,118]. Many different types of clustering algorithms, which
are effective on a range of different datasets with different properties and

clustering objectives, have been proposed [3].

A huge variety of approaches have been proposed for performing
clustering [3, 178], which can be generally categorised into hard, soft
(fuzzy), or hierarchical clustering methods. In hard and soft clustering,
each instance belongs to exactly one or to at least one cluster respectively.
In contrast, hierarchical clustering methods build a hierarchy of clusters,
where a parent cluster contains the union of its child clusters. The
majority of work has focused on hard clustering, as partitions where each
instance is in exactly one cluster tend to be easier to interpret and
analyse. =~ A number of distinct models have been proposed for
performing hard clustering: prototype-based models (including the most
famous clustering method Fk-means [68], and its successor
k-means++ [12]), density-based models (e.g. DBSCAN [38] and
OPTICS [11]), and graph-based models [146] (e.g. the Highly Connected
Subgraph (HCS) algorithm [59]).  Statistical approaches, such as
distribution-based models (e.g. Expectation-maximisation (EM)
clustering [21]) and kernel-based models [48] have also been proposed.
Each of these common categories of clustering algorithms are explained

in more detail below.

2.2.1 Common Clustering Algorithms

Prototype-based clustering: Prototype-based clustering algorithms
produce a number of prototypes, each of which corresponds to a distinct
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cluster centre, and then assigns each instance to its nearest prototype
using a distance function, such as Euclidean distance. While these
models are the most popular, they are inherently limited by their use of
prototypes to define clusters: typically they can only be used to produce
hyper-spherical clusters due to optimising by minimising a distance
function to all instances in the cluster. However, clusters need not be
hyper-spherically shaped [69, 166]; a variety of valid cluster shapes are
shown in Figure 2.1.

AK. Jain's Toy problem

2 4 6 8 0 12 14 10 0 30 a0 5 10 15 221 25 30

Flame Zahn's Compound Path-basedl

path-based?2: spiral

Figure 2.1: Hand-crafted datasets exhibiting a range of geometries and
densities [43].

k-means [68] is the canonical example of a prototype-based clustering
algorithm. The original k-means algorithm generates K initial cluster
centroids (prototypes) randomly in the feature space. Each instance in
the dataset is then assigned to the nearest cluster centre using a distance
measure such as Euclidean distance. The centres of each cluster are then
recomputed by finding the mean of all instances in the cluster. Each
instance is then again assigned to its nearest cluster and cluster centres
are recomputed. This process continues until a number of iterations is
reached or until the clusters stabilise. The performance of k-means is
highly dependant on the quality of the initial cluster centroids. While



25 2.2. CLUSTERING

k-means is efficient and can have good performance when its
assumptions are met, it has a number of limitations: K must be
pre-defined; the clusters produced are very sensitive to the initial centres
chosen; when K is high, performance tends to decrease; and the clusters
produced will tend to be compact but may not be well-separated or

well-connected.

k-means++ [12] is an improved version of k-means, which performs
more intelligent selection of the initial (seed) values for clusters by
probabilistically encouraging the selection of seeds that are far apart.
k-medoids is an alternative approach, which enforces the constraint that
cluster centres must be instances in the dataset (medoids) [127], which is
useful in ML in situations where a single instance from each cluster
should be selected (e.g. instance selection).

Density-based Clustering: Density-based clustering algorithms (e.g.
DBSCAN [38]) define clusters as being regions of high density and label
instances in sparse regions as outliers [3]. DBSCAN has been largely
succeeded by OPTICS [11]. OPTICS improves upon DBSCAN by
detecting clusters in data of varying density more accurately, i.e. by
ordering instances by their similarity. Unlike DBSCAN, OPTICS does not
explicitly produce a partition; instead a parameter, £, is used — the value
of ¢ represents the relative decrease in density that represents a cluster
boundary, e.g. { = 0.1 corresponds to a 10% drop in density.

Density-based clustering algorithms often suffer from their need to
choose parameter values carefully: picking poor values may lead to
many small dense clusters, which should be merged, or to only a few big
clusters that are overly general and should be split further. They are also
known to scale poorly in high dimensions: instances become increasingly
equidistant in higher dimensions [15] (the “curse of dimensionality”),
which leads to increasingly uniform density across the feature space and
a lack of dense regions representing clusters.
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Hierarchical Clustering: Hierarchical clustering algorithms build a
hierarchy of clusters, merging or splitting clusters at different levels of
the hierarchy. These generally fall into one of two types: agglomerative
methods, where each instance starts in its own cluster and clusters are
repetitively joined as you move up the hierarchy; and divisive methods,
which use a contrary approach where all instances start in a single cluster
and are split into increasingly smaller clusters [142]. The output of
hierarchical clustering is a dendogram, which can be cut at any given point
in order to give a clustering partition. The best manner in which to
choose a cut is often unclear or is domain-specific and is an active area of
ongoing research. Common techniques include requiring the user to
choose a pre-defined K, using clustering quality or information
theoretic-measures [112], or using visualisation techniques [147].

Agglomerative clustering has seen greater research efforts due to its
significantly lower computational cost: it is much cheaper to decide
which two small clusters to merge than how to split one big cluster into
an exponential number of two sub-clusters.  Single-linkage and
complete-linkage clustering are canonical agglomerative clustering
methods that pick the two nearest clusters to combine based,
respectively, on the closest or furthest instances between the two clusters.
A third, less common approach is average-linkage clustering, where the

distance between the means of each cluster is used [153].

Graph-based Clustering: Graph-based clustering algorithms [174]
represent clusters as distinct graphs, where there is a path between every
pair of instances in a cluster graph. Graph-based approaches are seen as
an intuitive way of modelling clustering problems, as instances (nodes)
should generally be in the same cluster as their nearby neighbours; in
other words, close instances will have an edge between them. This
representation means that graph-based measures are not restricted to
clusters with hyper-spherical or convex shapes. The popular HCS
algorithm [59] uses a similarity graph that connects instances sharing a
similarity value (e.g. distance) above a certain threshold. It then
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iteratively splits graphs that are not highly connected by finding the
minimum cut, until all graphs are highly connected. Choosing a good
threshold value in HCS can be difficult when there is no prior knowledge
of the data.

Subspace Clustering: Another sub-paradigm of clustering research is
subspace clustering [101,116], where each cluster is located in a subspace
of the data, i.e. it uses only a subset of the features. In this regard, each
cluster is able to correspond to a specific set of features that are used to
characterise that cluster, which has the potential to produce better-fitted
and more interpretable clusters. Subspace clustering methods can be

seen as implicitly performing dimensionality reduction.

2.2.2 Measuring Clustering Performance

As clustering is an unsupervised learning task, solutions cannot be
evaluated using a test set as in supervised learning (with the exception of
synthetic data). As a result, a number of measures have been proposed to
evaluate the goodness of a given cluster partition. These measures may

consider a range of criteria, as follows:

Compactness: how tightly-packed a cluster is. Clusters should be as
compact as possible, so as to ensure that only the most related instances
have been grouped together. A cluster’s compactness can be measured in
a number of ways, such as each instance’s distance to its nearest/furthest

cluster neighbour, to all cluster neighbours, or to the cluster mean.

Separability: how well neighbouring clusters are separated in the
feature space. A partition with clusters that are far apart is a good
partitioning as instances have been clearly separated into clusters. As
with compactness, a range of approaches can be used, e.g. the distance
from each cluster to the nearest/furthest other cluster, or to the dataset

mean.
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Connectedness: instances that are close together by distance should
generally be allocated to the same cluster as they have similar
characteristics. Maximising connectedness encourages the formation of
clusters that better represent the dataset. Unlike the previous two
criteria, connectedness is generally measured per-instance rather than
per-cluster. The most common approach used is to find the mean
distance from each instance to its n-nearest neighbours.

Number of clusters: when the expected number of clusters is known
in advance, it is obvious that the best solutions will contain the correct
number of clusters. When the expected number of clusters is between
some minimum and maximum or completely unknown, it can be difficult
to evaluate how many clusters should be formed. A common heuristic is
to limit the number of clusters to between 2 (the smallest valid partition)
and /n, where n is the number of instances [126]. This heuristic can fail
on small datasets that have many distinct instances, and so require many
clusters. This heuristic also gives a very wide range of possible K, which
introduces a very large search space for large n.

A good partition will be maximally connected, minimally sparse, and
maximally separated, and have K clusters, where K is some optimal

number of clusters.

The most common clustering measures consider either or both of the intra-
(compactness) and inter-cluster (separability) distances when evaluating

a partition.

2.2.3 Clustering Measures

A number of common clustering measures are defined and explained
below. Across all measures, n and m represent the number of instances
and features respectively, and K represents the number of clusters in a
given partition. C; and Z; represent the i'" cluster and the mean of the i
cluster respectively. The dataset mean is given by Z*. The distance d(a, b)

between two instances can be calculated using any distance function. The
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most prevalent distance function is Euclidean (“straight-line”) distance:

d(a,b) = \/(ay — 1)+ (ag — by)2 4 ... + (@ — )2 (2.1)
where a; and b; give the i*" feature value of instances a and b.

Internal Measures

The internal measures listed below are ones that evaluate cluster quality
based purely on the properties of the partition produced by a clustering
algorithm [46]. Each measure is labelled with either a 1 or a | to indicate

it should be maximised or minimised respectively.

1. Sum intra-cluster distance:

K
Intragm J= » Y d(a, Z;) (2.2)

=1 aeC;

Minimising the sum of the intra-cluster distances will give compact
clusters. If partitions are evaluated using only this measure, then
the best partition will occur when every cluster contains a single
instance (i.e. n = K), as each cluster will have no intra-cluster
variation. Hence, this measure is most suitable when K is

pre-defined or as a component in a more complicated measure.

2. Root Mean Squared Error:

K
_ 1 2
RMSE | =, | - ; CSE: (2.3)
where
CSE = \/ |é | > d(a, Z;)? (2.4)
i a€eC;

RMSE is very similar to the sum intra-cluster distance measure, but
better punishes poor-quality clusters with instances far away from
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the cluster mean.

3. Sum inter-cluster distance:

K K
Intersum 1= Y > d(Z:, Z)) (2.5)

i=1 j=1

Maximising the sum of the inter-cluster distances will give
well-separated clusters. A number of variations to the above
equation are used, including summing the distance from each
cluster mean to the dataset mean, i.e. d(Z;, Z*) or from each cluster
mean to the closest neighbouring cluster mean, i.e. the minimum of
d(Z;, Z;) across all j # i. A third variation instead considers the
distance between the two closest points of each cluster pair:

Interminpistsum T= ZZ min  dist(a,b) (2.6)

a€Cy,beC;
=1 j=1

The best variation of this measure will often depend on the dataset
or the learning algorithm used.

4. Davis-Bouldin index [28]:

1 SC + SC
o Sei +5¢; 2.7
avies-Bou dln \l/ K 1<Z<]<K dZSt(Zm Z; ) ( )
where
: Z d(a. 2) (2.8)

aec

The Davies-Bouldin index measures the ratio of within-cluster
scatter (i.e. intra-cluster distance) to inter-cluster separability. The
two clusters that have the highest ratio give the output of the
Davies-Bouldin index. This measure derives a partition’s quality
from the two worst clusters in that partition, meaning it may give
an overly pessimistic view of the clustering partition when two

clusters are much worse than the rest of the clusters. A lower value
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of this index corresponds to a better distance.

. Dunn index [32]:

Dunn Index 1= min<icj<x dist(Zi, Z;)

maxi <;<x Max, pec; dist(a,b) 29)
The numerator in Equation (2.9) finds the minimum distance
between any two clusters. The denominator finds the maximum
distance between any two instances that are in the same cluster.
Hence, by maximising the numerator and minimising the
denominator, a higher value of the Dunn index will correspond to a
better quality partitioning. = This measure is similar to the
Davies-Bouldin index in that it considers the inter-cluster distance

of the two closest clusters.

. Silhouette Criterion [143]:

The silhouette criterion measures how well a given instance is
matched to its cluster. It is defined as follows:

b(i) — a(7)
maz{a(i),b(i)} (210

where a(i) is the average distance between instance i and all other

Silhouette(i) =

instances in its cluster; b(i¢) is the minimum average distance
between instance ¢ and the instances in each other cluster. A
silhouette value of 1 indicates an instance is perfectly clustered; a
value of —1 indicates it should be in a neighbouring cluster; a value
of 0 indicates it is on the border of two clusters. The average
silhouette computed across all instances in a partition gives a
measure of how good the partition is, and implicitly balances both

the intra- and inter-cluster measures.

7. Scatter trace criterion [45]:

Scatter 1= trace(Sy Sg) (2.11)
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This criterion uses scatter matrices! to give a measure that considers
both within-cluster scatter (Sy,, compactness) and between-cluster

variation from the dataset mean (Sp, separability).

External Measures

While clustering is an unsupervised learning task, it can be helpful to test
the performance of a clustering method on a dataset where the clusters
have previously been labelled — a partition can be evaluated based on
how accurately it reproduces the labelled partition. This comparison is
complicated as the number of clusters produced need not be the same as
the labelled partition. Furthermore, there is no general method for
mapping clusters between the labelled partition and generated partition,
and so clusters cannot be directly compared in terms of their
memberships. Measures that perform such a comparison are called
external measures, as information (i.e. labellings) external to the partition
produced is used to evaluate their performance. A variety of external

measures have been proposed:

1. Purity measures: A good cluster will contain instances from only a
single class. The purity across the clusters in a partition can hence
give an indication of how good that partition is. Sheng et al. [150]

computed the classification error in the following way:

(a) For each cluster, find the majority class label of the instances in
that cluster.

(b) Count the number of misclassified instances, where an instance
is misclassified if it is not the majority class.

(c) Find the total error rate as the fraction of misclassified instances

across the whole partition.

LA scatter matrix is an estimation of a covariance matrix, used where a full covariance
matrix is overly expensive or infeasible to create.
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2. Another common external evaluation measure is the Rand index

(RI) [140]. This index measures the similarity between two
clusterings; here it is used to measure the similarity between the
known classification and the cluster produced. For every pair of
instances in the dataset, the Rand index checks two things: if the
pair are in the same cluster, and if the pair are in the same class.

From this, four values are computed:

(@) ais the number of pairs that are in the same cluster and in the

same class.

(b) b is the number of pairs that are in different clusters and in
different classes.

(c) ¢ is the number of pairs that are in the same cluster but in

different classes.

(d) dis the number of pairs that are in different clusters but in the

same class.
The Rand index is then computed as follows:

a+b

df=—""7
FRand 1 a+b+c+d

(2.12)

This index essentially measures the fraction of agreements between
the clustering solution and the known classifications. Pairs of
instances should only be in the same cluster if they are in the same

class, and vice versa.

The Adjusted Rand Index (ARI) [124] is a corrected-for-chance
version of the Rand Index, which corrects the RI by accounting for
the expected similarity of all pair-wise comparisons between
clusters in a random model [173]. The ARI is most easily

understood through a formulation using a contingency table:

Given a cluster partition C' produced by an algorithm and a gold
standard cluster partition G, the ARI is calculated by first
generating a contingency table where each entry n;; denotes the
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number of instances in common between C; and GG, where C; is the
i-th cluster in C, and G| is the j-th cluster in G. In addition, the sum
of each row and column is computed, denoted as a; and b,
respectively. As before, n is the total number of instances. The ARI
is then calculated according to Equation (2.13), which finds the
frequency of occurrence of agreements between the two cluster

partitions, while adjusting for the chance grouping of instances.

. Zij (n§]> o [Zz <a1> (b ) (g)
AR T ) 15, )] = 5 (9) 5, ()

3. Cura [27] used an error rate criterion to measure the similarity

(2.13)

between a partition and the known correct classification. This
criterion uses a similar approach to the Rand index (and is, in fact,
equivalent) but instead produces a percentage error rate across the
instances in the dataset:

n—1 n

ER |= [71(% X Z Z disagree(I,, Iy)| x 100% (2.14)

a=1 b=a+1
where disagree(l,, I,) is 0 if Instances [, and [, are either both in the
same classes and same clusters or in different classes and clusters,
and 1 otherwise.

4. In this thesis, a variation of the F-measure used in supervised
learning is also used for measuring clustering performance due to
its familiarity. We adapt the F-measure used in classification tasks,
by considering each pair of instances in turn (as it is not possible to
directly decide if an instance is in the “right” cluster) and choose

which of the following cases apply:

(a) Same class label, belong to the same cluster: true positive (7'P).

(b) Same class label, belong to the different clusters: false negative
(FN).
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(c) Different class labels, belong to different clusters: true
negative (I'N).
(d) Different class labels, belong to the same cluster: false positive

(FP).

The F-measure is then calculated in the normal way using the total
number of T'Ps, FPs, and F Ns, as follows:

precision x recall

F-measure = 2 x — (2.15)
precision + recall
TP
precision = m (216)
TPs
N=——— 217
e T TPs+ FNs (217)

The F-measure uses a similar approach to the RI, but weights
precision and recall using a harmonic mean rather than an
arithmetic one. It is also particularly suited to accurately
representing results on imbalanced datasets, i.e. where clusters vary
greatly in their size.

2.24 Estimating K

Clustering methods can also be broadly categorised based on whether
they require K to be pre-defined, or if they are able to automatically
determine an acceptable K in the learning process. While the latter case
is more flexible and hence is generally more useful, it may happen that a
domain expert is available and is able to determine an optimum kK, in
which case the former methods are likely to perform better as they search

a much smaller search space.

A wide range of statistical techniques for estimating the number of
clusters (K.y) in a given dataset have been proposed [24]. While studies
have compared the efficacy of many techniques [24], there is no
consensus on the best technique for the general case. An overview of two
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of the most popular methods, the Gap Statistic [164], and the use of the
Silhouette Criterion [76] are discussed below.

The Gap Statistic

The Gap Statistic method estimates K. ; by performing clustering on the
dataset across a range of K values and then comparing the clustering
partitions to those produced when clustering is performed on reference
datasets generated using a uniform distribution [164]. The Gap value,
Gap(K), for a given K is computed by comparing the sum of the
intra-cluster distances (i.e. sum error (SE)) of the dataset partition to that
of each of the reference dataset partitions. K. is then chosen as follows:

Koot = mln{K > 2‘Gap(K> < Gap(K + 1) - SdK+1} (218)

where sdi is the standard deviation of the Gap values across the
reference datasets. In other words, the gap statistic attempts to find the
smallest K which produces a clustering partition with the lowest
intra-cluster variation relative to what would be expected on a randomly
sampled reference dataset.

A range of clustering methods can be used within the Gap Statistic
method; the performance of the clustering method will directly affect the
K.y produced. k-means is commonly used, but Partition around
Medoids (PAM) is generally regarded as having consistently better
performance, albeit at a significantly larger computational cost. While the
Gap Statistic produces reasonably accurate K., on most datasets, it
requires a large amount of computational time on larger datasets due to
the need to generate and cluster many reference datasets. Pham et
al. [133] proposed a method that uses similar principles to the Gap
Statistic but instead employs a heuristic estimate of the intra-cluster
variance of the reference data. This estimate greatly reduces the
computation time required to give K.,, even when PAM is used for
clustering. Empirical testing indicates a similar accuracy compared to the
Gap Statistic.
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The Silhouette Criterion for Estimating K

The silhouette criterion can be used to give K.y by performing clustering
for each potential K and then choosing the K for which the average
silhouette is highest [76]. This can be computationally expensive due to
the need to compute the pair-wise distance between all instances in a
dataset. However, this computation only needs to be performed once at

the start of the algorithm.

2.3 Feature Manipulation

Feature manipulation (FM) is the act of purposefully altering the feature
set of a dataset in order to improve the outcomes of a machine learning
algorithm. FM is most often used to improve learning efficiency and
performance and/or improve the interpretability of the
models/solutions produced by decreasing model complexity.  In
statistical domains, FM is often instead referred to as dimensionality
reduction (DR). It can be argued that FM, unlike DR, can actually increase
the number of dimensions in a dataset; if new features are added
alongside the original features, there will be a higher dimensionality.
However, this approach is not used in this thesis, and so FM and DR are
treated as interchangeable terms here. The two most common categories
of feature manipulation are feature selection (FS) and construction
(FC) [99]. FS attempts to select an optimal smaller subset of features in
order to improve performance and decrease complexity, whereas FC
improves performance by creating new, more powerful meta-features

that combine multiple features in some way.

FM methods are also often categorised by how they evaluate the quality
of the manipulated features. The most common categorisation is into
wrappet, filter, hybrid, and embedded methods [8]. Wrapper methods
use a learning algorithm to evaluate the quality of a manipulated feature
set and choose the one that gives the highest performance on the learning
algorithm. Filter methods take a different approach where the quality of
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a manipulated feature set is measured more explicitly using a measure
such as information gain or entropy [53]. Filter methods tend to give
inferior results to wrapper methods, but are usually quicker in terms of
computational time required [100]. Filter methods can also be performed
purely as a pre-processing step to the main data mining task, making
them independent to the learning algorithm being used. Hybrid
approaches combine both filter and wrapper methods to give better
performance than filter methods while being quicker to run than
wrapper methods. Embedded approaches perform FM directly as part of
the learning algorithm being used, and so can be designed efficiently
while being tailored to the algorithm being used; however, they tend to
be more algorithm-specific.

While FS approaches are sufficient for datasets that have a large number
of redundant and/or redundant features, their ability to reduce
dimensionality on other data is limited. For example, if we want to
reduce the dimensionality to two or three features, using FS alone is
likely to poorly retain the structure of the dataset. In such a scenario, FC
approaches have the potential to retain more structure/information of
the original feature set; however FC has a strictly larger search space and
the constructed features are likely to be harder to understand than a
subset of original features. Both of FS and FC are discussed in further
detail in the following subsections, including a survey of relevant

existing work.

2.3.1 Feature Selection

Feature selection, the task of selecting a subset of features in order to
decrease complexity and increase performance, is perhaps the most
popular feature manipulation task. Many FS algorithms have been
proposed, the simplest of which is likely filter-based feature
ranking [102], where features are ranked according to their quality
according to a measure such as class label correlation (in supervised
learning) or inherent information content based on Mutual Information
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(MI). The top n features are then chosen as the best n features to use for
the given dataset. While such an approach is efficient, simple, and
algorithm-agnostic, it does not consider the interactions between features.
In the trivial case where two features in a dataset are identical and of
high-quality, feature ranking would naively select both despite the
second being redundant. In other words, “the n best features are not the
best n features” [70].

The well-known minimal-redundancy-maximal-relevance criterion
(mRMR) [131] refines this concept by minimising the redundancy
between selected features, as well as maximising the relevance with
respect to the class label /optimisation criteria. However, given there are
2" possibilities for selecting n features, using this more sophisticated
approach introduces a new problem: how can this NP-hard search space
be effectively optimised? The simplest approach is to use a sequential
forward or backward selection (SFS, SBS) technique [138,177]. SES begins
with no features selected, and repetitively greedily selects the next
unselected feature that maximises the feature selection criterion. SBS
takes an opposite approach, starting with all features selected, and
repetitively removing the feature that improves the criterion the most 2.
In the case of mRMR, this corresponds to greedily selecting a feature
subset that gives the most information possible while selecting features
that are least-redundant. As SFS/SBS are greedy approaches, such an
approach addresses the computation complexity issues — but as a
greedy search is used there is no guarantee that the best (or even a good)
subset can be found. Variants of SFS/SBS such as Sequential Floating
Forward/Backward Selection (SFFS/SFBS) [138] have been proposed,
but these have their own limitations (e.g. how much back-tracking to
perform in a floating search). Other more advanced methods such as
using sparse models [17, 22] have been proposed. These sequential
searches can also be used as wrapper-based methods, by using the

performance of a ML algorithm as the criterion for measuring the quality

20Or decreases the FS criterion the least, depending on how the problem is formulated.
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of a feature subset.

One of the most common embedded FS approaches is the use of
regularisation to penalise the creation of models with many coefficients;
this encourages models to be formed with zero-valued coefficients,
which correspond to unselected features. This approach is commonly
used in regression, such as in the least absolute shrinkage and selection
operator (LASSO) method [163], but has also been used in Support
Vector Machines (SVMs) [186] and Decision Trees (DTs) [30] for
classification. Other ML methods also implicitly perform FS as part of
their learning process, such as in DT learning where often not all features

will be used in an attempt to reduce over-fitting [79].

Feature selection applications have been extensively studied on a range
of problems including classification in supervised learning [160], and in
a range of unsupervised learning problems [33] such as clustering [8]. In
recent years, increasing focus has been applied to the use of Evolutionary
Computation (EC) for FS in these domains due to their strength in tacking
NP-hard tasks: this will be discussed in detail in Section 2.6.1.

2.3.2 Feature Construction

Feature construction techniques take a different approach to FS, whereby
they attempt to construct new, higher-level features that are
transformations and combinations of multiple features in the
dataset [154]. The new constructed features are trained to have improved
performance, while also reducing the number of features used by the
machine learning algorithm. The use of FC can improve interpretability
by automatically combining useful features in an understandable

manner.

One of the most well-known FC methods is Principle Component
Analysis (PCA) [74]. PCA produces components (constructed features)
that are linear combinations of the original features, such that each
successive component has the largest variance possible while being
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orthogonal to the preceding components. Variance is a fundamental
measurement of the amount of information in a feature, and so PCA is
optimal for performing linear dimensionality reduction under this
framework. However, linear combinations are not sufficient when data
has a complex underlying structure; linear methods tend to focus on
maintaining global structure while struggling to maintain local

neighbourhood structure in the constructed feature space [171].

SVMs [26] are a supervised learning algorithm that construct a (set) of
hyperplanes, which maximally separate distinct classes in the data. These
hyperplanes are formed as combinations of the existing feature vectors,
and so are considered by some to be a form of FC. Some work has been
done to interpret the meaning of SVMs through examining the weights
used in a model to identify relevant features [139,156]. DTs can also be
considered to be an embedded FC approach, given that they determine an
instance’s class using complex meta-rules based on the instance’s feature

values.

As in FS, there has recently been a surge in research using EC techniques
for FC tasks. In particular, Genetic Programming has seen significant
success due to its model structure being well-suited for FC [154].
EC-based FC techniques will be discussed in further detail in
Section 2.6.2. Another increasingly popular form of FC is methods that
perform nonlinear dimensionality reduction, which is recently more

commonly called manifold learning [88].

2.3.3 Information Theory: Mutual Information

Mutual Information (MI) [72] is an important concept in the field of
Information Theory. MI is used as a way to measure the amount of
information shared by two variables (or features). In this way, it is a
measure of the mutual dependence of two variables, and is one way to
measure how redundant one feature is with respect to another — the
higher the MI, the more redundant the features are said to be. MI is

formalised as follows:
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MI(X,Y)=H(X)+ H(Y) - H(X,Y) (2.19)

where the entropy of a feature X, H(X), is defined as:

H(X) == _plx) x log, p(x) (2.20)

zeX

and the joint entropy of two features, X,V is:

H(X,Y) ==Y plx,y) x log, p(x,y) (2.21)

zeX yey

Equation (2.19) can be expanded as follows:

MIX,Y)=— Y plz,y) x log, 5(%’(9;) (2.22)

The above definition of MI assumes that the two features have discrete
values; in the case of continuous features (such as in this work), the below
definition applies:

N . op. P@Y)
MI(X,Y)/X/Yp( ,y) x 1 g2p(:r)(y)d dy (2.23)

Calculating the MI of two continuous features requires knowing the full
marginal and joint probability density functions (pdf) of the two features.
In practice, this is infeasible, as the feature values for a given feature can
be thought of as only a sample of the underlying pdf [83]. As such, a
number of MI estimators have been proposed for estimating the MI of
two continuous features. One venerable method proposed by Kraskov
et al. [83] uses a nearest-neighbour estimation approach, which compares
the similarity of neighbours for each instance across the two dimensions
X and Y as a proxy to gauge the strength of the relationship between X
and Y. This approach, implemented in the Java Information Dynamics
Toolkit (JIDT) [103], is employed throughout this thesis.
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It is often more common to compare sets of related features — for
example, two sets of selected features. In such a case where there is a
many-to-many (i.e. multivariate) relationship, an extension of
Equation (2.23) is used, where X and Y represent the set of source and
target features respectively, e.g. X and Y. A similar equation is used,
except that the marginal and joint probabilities represent the set of
features, i.e. p(X) = p(X1,Xs,..X,) for d source features. As with
univariate MI, continuous multivariate MI is approximated using
Kraskov’s approach as part of the JIDT tooklit.

2.4 Manifold Learning

Manifold learning (MaL) algorithms are based on the assumption that
the majority of real-world datasets have an intrinsic redundancy in how
they represent information they contain through their features [14]. A
manifold is the inherent underlying structure that contains the
information held within that dataset, and often this manifold can be
represented using a smaller number of features than that of the original
feature set due to the local “flatness” present in the geometry of the
dataset structure [14]. Thus, MaL algorithms attempt to learn/extract this
manifold into a lower-dimensional space. PCA, for example, can be seen
as a linear MaL algorithm; of course, most real-world manifolds are
strongly non-linear [14]. While MaL can be considered to be FC, it is
discussed separately here as it is generally considered to be its own field
of research.

A common categorisation of MaL algorithms is whether they perform an
explicit or implicit mapping from the high- to low-dimensional space [88].
An explicit mapping method (also known as an “embedding” method)
directly produces a low-dimensional representation for each instance,
which means that generalisation to new instances is not possible, and
interpretability with respect to the original high-dimensional
representation is often infeasible. In contrast, an implicit mapping
method (also known as simply a “mapping” method) creates a
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parametrised function between the high- and low-dimensional spaces.
Such methods have the benefits of being re-usable on future data, and
also the potential to be understood by humans. However, finding such a
mapping is inherently more difficult than directly optimising a
low-dimensional representation, as the function space cannot be
optimised through traditional methods such as (stochastic) gradient
descent. In this thesis, the terms embedding method and mapping
method are used to highlight the key difference between directly finding
an embedding, and evolving a functional mapping. State-of-the-art MaL
methods are nearly exclusively of the embedding type.

Multidimensional Scaling (MDS) [84] was one of the first approaches to
MaL, and attempts to maintain between-instance distances as well as
possible from the high- to the low- dimensional space. Metric MDS often
uses a loss function called stress, which is then minimised using a
majorizing function from convex analysis. Another well-known, more
recent method is Locally-Linear Embedding (LLE) [144], which describes
each instance as a linear combination of its neighbours3, and then seeks
to maintain this combination in the low-dimensional space using
eigenvector-based optimisation. = MDS performs a non-parametric
transformation of the original feature space, and so is not interpretable
with respect to the original features; LLE is also difficult to interpret

given it is based on preserving neighbourhoods.

Self-organising maps (SOMs) [80, 81] are a type of two-layer artificial
neural network, which can be regarded as a MaL algorithm, as well as a
clustering method. SOMs map the high-dimensional input space to a
(generally) two-dimensional region of output nodes, which can be
interpreted as a two-dimensional visualisation. Each output node of the
SOM is fully connected to the input layer, and so has m weight values for
m features in a dataset. These weight values can be used to calculate the
distance between the input and output spaces for a given instance. These
weight values are optimised such that close output nodes in the SOM

SHere, neighbours refer to the closest instances to a point by (Euclidean) distance.
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will have similar distances to the same instances. In this way, different
parts of the SOM output layer will correspond to different inherent
groupings of the dataset. SOMs are commonly used due to their
relatively simple approach, and ability to create visually-understandable
outputs. As a standard SOM is fully-connected, it scales poorly as the
input dimensionality increases, and is directly affected by the curse of
dimensionality. While the outputs of SOMs can be interpreted, the
mapping itself from high- to low-dimensional space is opaque due to the
large number of weights (#outputs x m) required for datasets with

significant complexity.

t-Distributed Stochastic Neighbour Embedding (t-SNE) [171] is
considered by many to be the state-of-the-art method for performing
visualisation (i.e. 2D/3D Mal); it models the original feature space as a
joint probability distribution in terms of how close an instances’
neighbours are and then attempts to produce the same joint distribution
in the low-dimensional space by using Kullback-Leibler divergence to
measure the similarity of the two distributions. However, t-SNE was
developed purely for visualisation (2/3D dimensionality reduction) and
so it is not specifically designed as a general MaL algorithm [171]. It is
also similar to MDS in that it produces an embedding with no mapping
back to the original features. Finally, autoencoders are often regarded to
do a type of MaL [14], but again they tend to be quite opaque in the
meaning of their learnt representation, while requiring significantly more

computational resources than the classical MaL methods.

2.4.1 Manifold Learning for Visualisation

Visualisation is a fundamental task in data mining that aims to represent
data in a human-understandable graphical manner [41]. The simplest
commonly-used machine-learning visualisation methods are FS and
PCA. By using FS to select only two (or perhaps three) features, one can
visualise a dataset by plotting the feature values of each instance along
the x- and y-axes. PCA can be used for visualisation by plotting the first
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two principle components: this gives the optimal visualisation that can
be produced by using only linear transformations. While using FS clearly
allows for ease understanding of the produced visualisation, it is
extremely limited in its efficacy when the feature space is non-trivial due
to the use of only two/three raw features. PCA (and other linear
mapping techniques) also have the potential to be interpreted, but are
inherently limited in the quality of their output dimensions on large

datasets by their use of linear weightings only.

Creating optimal non-linear transformations is an NP-hard problem,
with many machine learning methods proposed as a result. The earliest
methods include techniques such as Isomap [161] and Local Linear
Embedding (LLE) [144]. SOM have also been extensively used for
visualisation [49, 132], but are limited in understandability by their
fully-connected structure.

t-SNE [171] is generally regarded as the mainstream state-of-the-art
visualisation method. t-SNE is an improvement to the previously
proposed SNE method [62], which introduced a more nuanced
probabilistic mapping from the high- to low-dimensional spaces based
on the similarity of neighbours in the high-dimensional space. t-SNE
improved upon SNE by introducing a cost function that could be better
optimised by gradient-based optimisers; and by using a heavy-tailed
t-distribution in place of a Gaussian to address the tendency of points in
the low-dimensional space to be pushed together at the cost of separation
between points, a characteristic known as the crowding problem. A range
of improvements to t-SNE have since been proposed, including a more
efficient tree-based nearest-neighbour search [170], and a parametric

version [169].

Parametric t-SNE [169] is a variation of t-SNE that allows for
out-of-sample re-use of the learnt t-SNE representations on future
samples. Parametric t-SNE constructs a mapping from the high- to
low-dimensional space using restricted boltzmann machines to construct

a pre-trained feed-forward neural network model. The neural network
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architectures used over 10,000 neurons on the biggest dataset, which
heavily restricts the potential for interpreting the mapping that the

neural network represents.

Autoencoders [63] are another neural-network based approach, which
attempt to compress the representation of the data into the narrowest
middle hidden layer as possible such that the original data can be
re-created from the concise representation. To do so, autoencoders use a
number of layers of varying sizes to encode and decode the data. This
provides a mapping to and from the learnt representation, but again it is
unrealistic to interpret given the number of nodes and fully-connected
topology. Clearly, the solutions found by these methods are opaque to
humans and provide little “intuitive” understanding of the data. Even
the most recent advances such as Uniform Manifold Approximation and
Projection for Dimension Reduction (UMAP) [111] acknowledge
significant weaknesses in regards to interpretability.

2.5 Evolutionary Computation

Evolutionary Computation (EC) [35] is a research area of Artificial
Intelligence (AI) that includes stochastic population-based search
techniques that draw inspiration from nature. EC methods are generally
classified into one of three paradigms: evolutionary algorithms
(EAs) [44], which are motivated by evolutionary principles; swarm
intelligence (SI) methods [77], which are motivated by animal swarming
behaviour; and other methods that are based on some other
metaphor [13]. EC methods iteratively improve an initial set (population)
of solutions (individuals) by measuring the quality (fitness) of each; using
the best individuals to create new, hopefully superior individuals, which
replace the population in the next iteration (generation); and then
repeating this process until stopped. Genetic Programming (GP) [82] and
Particle Swarm Optimisation (PSO) [78] are very successful EA and SI
methods respectively, which been applied to a wide range of NP-hard
problems successfully, due to their ability to find sufficiently good
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solutions in a reasonable amount of time. This thesis uses GP and PSO
extensively; they are each discussed in detail in the following

subsections.

2.5.1 Genetic Programming

GP [82] is an EA technique where individuals are modelled in the form of
computer-style “programs”. The most common representation uses a
tree-based structure, where the root of the tree is the output of the
program, the leaves of the tree are inputs, and the internal nodes (i.e.
non-leaves) are functions. Each function in a tree performs a certain task,
by taking a number of inputs and producing an output based on these
inputs. A common function is the “—” operator, which takes two
floating-point values as input, and then outputs the result of subtracting
the second input from the first. The leaves of the trees are called terminals,
as they take no inputs, but produce some output. Common examples of

terminals include features from the dataset, or constant values.

As GP is an EA, it uses mechanisms inspired by biological evolution to
iteratively refine (evolve) the individuals, in its population. The GP process
begins by randomly generating enough individuals to fill the population.
It then runs for a number of iterations (generations); in each generation, the

following steps are performed:

1. Measure the fitness of all individuals in the population using the

fitness function.

2. Choose a number of the best individuals according to their fitness,

using a selection method (e.g. tournament selection).

3. Apply genetic operators (mutation and crossover) to the chosen
individuals to create new individuals, in an attempt to improve

them.

4. Replace the worst individuals in the current population with the

newly created individuals.
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5. (Optional): ensure the best solutions from the current generation are

maintained in the new population (elitism).

6. Repeat Steps 1 to 5 until the total number of generations is reached,

or another termination criteria (such as optimal fitness) is fulfilled.

Genetic Operators

Each of the genetic operators are applied to a given selected individual
probabilistically according to the parameters set by the user. For
example, 20% mutation would mean that 20% of the time, a selected
solution has mutation applied to it; the other 80% of the time, another
operator is used. The mutation operator generally selects a random
sub-tree of the program, and then replaces it entirely with a new
randomly-generated sub-tree, which is generated in the same manner as
how the initial population was generated. In doing so, there is a chance
that a tree will be improved. The crossover operator randomly selects two
compatible sub-trees in two distinct individuals, and swaps them, to give
two new individuals. Crossover is the mechanism through which
individuals in the population can exchange “good” partial solutions
(“building blocks”), and is one of the main mechanisms that allows GP to
outperform random search techniques. Reproduction simply takes a
solution and inserts it unchanged into the new population; it differs from
elitism in that it is performed probabilistically on all selected solutions

rather than simply transferring the n best solutions.
Multi-tree GP

A variant of GP is multi-tree GP [117], where each GP individual
contains ¢ trees instead of a single tree. This is particularly useful for ML
problems that benefit from heterogeneous behaviour/niching, or which
have several distinct sub-problems to be optimised. There are a variety of
approaches to performing crossover and mutation in multi-tree GP, but a
common approach is to pick a tree within an individual at random, and
then apply the genetic operator to that tree as in single-tree GP. Multi-tree
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GP will be used extensively in this work with FC to represent multiple

constructed features in a single candidate solution.

2.5.2 Particle Swarm Optimisation

PSO is an SI technique inspired by bird flocking behaviour [78]. In PSO,
the swarm (population) consists of a number of particles (individuals),
which explore the search space based on their personal experience as
well as the swarm’s social knowledge of good areas of the search space.
Each particle encodes a single solution to the problem being optimised as
a position vector, which represents the particle’s position in the search
space. This position vector takes the form [z, x5, ..., xp|, where D is the
number of dimensions in the search space. The velocity of a particle
encodes its movement through the search space and is represented using
a vector of the form [vy, vs, ..., vp]. During each iteration of the PSO search
process, a particle’s velocity is updated based on its previous best
position (pbest) and the swarm’s overall best known position (gbest). The
particle then updates its position based on its current velocity, giving an
updated position and hence a new candidate solution. The position and

velocity updates are formally defined as follows:

zit = xly 4+ i)t (2.24)

"Uf;l =w X "de + 1y X (pig — xfd) + car2 X (Pga — xfd) (2.25)

where t is the t™" iteration of the PSO process and d € D is the d™
dimension of the search space. The inertia weight, w, is used to balance
the exploration and exploitation behaviour of the particles. ¢; and ¢, are
acceleration constants that balance the contributions of the pbest and
gbest positions respectively. 7, and ry are randomly generated values in
U[0, 1] that introduce variance to the search process. p;; and p,, are used
to represent the values of pbest and gbest in the d* dimension. The
updated velocity, vfjl, is restricted to the range [—viaz, Umas) fOr some

maximum velocity, v,,q,, in order to limit oscillation.
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2.5.3 Evolutionary Multi-Objective Optimisation

Multi-objective optimisation (MO) is a technique used when a problem
intrinsically has two (or more) conflicting objectives between which a
trade-off must be made by any solution to the problem. The quality of a
solution in this context is often relative to the objective function values of
other solutions. For example, given two candidate solutions y, z to a
problem that has two minimisation objectives, then the following test can
be used to determine if y is strictly better than (or dominates) z:

Vi: fi(y) < fi(z) and 35 : f;(y) < f;(2) (2.26)

where i,j € 1,2,3, ..., k for k objectives. A solution that is not dominated
by any other solution is called a non-dominated solution. For a given
problem, the Pareto set contains all the Pareto-optimal solutions: those
that are not dominated by any other possible solution to the problem.
This set is mapped to the objective space by the Pareto front, which is the
subset of solutions that represent the best trade-offs between the different
objectives. MO algorithms attempt to find the set of non-dominated
solutions which give the best approximation of the Pareto front.

EC is one of the most successful and widely used approaches to MO as
its population-based structure naturally allows for multiple
non-dominated solutions to be found in a single run. Of the Evolutionary
Multi-objective Optimisation (EMO) algorithms, the non-dominated
sorting genetic algorithm (II) (NSGA-II) [29] is perhaps the most popular
for two-objective problems and is still regarded as a very strong and

simple method despite being proposed in 2002.

NSGA-II works by constructing a series of dominance rankings, whereby
an individual’s ranking is based on the number of other solutions that
dominate it. Non-dominated solutions have a ranking of 0, with other
solutions having higher (worse) rankings respectively. These rankings

are then used as “fitness” in the evolutionary process, with selection
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methods such as tournament selection using these rankings to select
solutions for breeding. The concept of crowding distance is used to
encourage diversity of solutions, by discouraging the selections of
solutions with close neighbours. The final output of the EC process is a
set of unique, non-dominated solutions (i.e. the best approximation of the
Pareto front).

A plethora of other EMO methods have been proposed [185]. This thesis
uses EMO solely with GP. Multi-objective genetic programming [16, 23]
most commonly utilises NSGA-II. While other EMO methods may give
better results, this thesis is not focused on exploring EMO in depth, and
so we use NSGA-II as a known reliable EMO method.

2.6 EC for Feature Manipulation

Research into the use of EC techniques for performing feature
manipulation has become much more popular during the last decade,
due to the ability of EC techniques to efficiently search in a large feature
set space. Despite this, the use of EC for feature manipulation in

unsupervised learning tasks has thus far been relatively unexplored.

2.6.1 EC for Feature Selection

EC techniques have been used widely for feature selection [47,179], with
PSO and Genetic Algorithms (GAs) being used for filter, wrapper, and
hybrid approaches. These two algorithms are both well-suited for FS
tasks as they use a vector encoding, where each feature can be
represented by a single value, which determines if that feature is
selected. Genetic Programming (GP) has also been used for performing
embedded feature selection [117]. EC has seen some use for FS in

clustering tasks, which will be surveyed extensively in Section 2.7.2.



53 2.6. EC FOR FEATURE MANIPULATION

2.6.2 EC for Feature Construction

Tree-based GP has emerged as the predominant FC technique due to its
dynamic model structure allowing features to be combined in a
hierarchical manner using a variety of powerful functions [37,120]. Most
work uses a representation where a single GP tree produces a single
constructed feature, as the output of the tree. The input to the tree is
generally the set of features, and an optional random value input. This
representation has been extended so that multiple features may be
constructed in a single GP individual, commonly using a multi-tree
representation [117]. Other representations have also been proposed [37],
including using multiple sub-trees as a set of constructed features [4,165],
using specially-tailored node designs [184], cooperative co-evolutionary
GP [97], and even by performing multiple GP runs (each producing a
single constructed feature) [120].

GP-based FC has been used in classification [165], image analysis [6], and
other supervised domains [4, 51, 58], but has seen nearly no use in
unsupervised learning tasks. The limited work using GP for clustering
tasks mostly performs feature construction as a “side-effect” of using
features as terminals, rather than explicitly aiming to utilise GP for
feature construction to improve performance. These approaches will be

discussed in detail in Section 2.7.3.

2.6.3 EC for Manifold Learning and Visualisation

EC has seen very recent use in manifold learning through evolving
autoencoders for image classification tasks using Genetic
Algorithms [158], GP [141], and PSO [65, 157]. Historically, autoencoders
have had to be manually designed or required significant domain
knowledge to get good results, and so automatic evolution of the
structure of autoencoders with high performance is a clear improvement.
However, these methods are still a somewhat indirect use of EC for
representation/manifold learning, as they do not allow an EC method to
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directly learn the underlying manifold of the data. Success is also
fundamentally limited by the need for neural network architectures that
are differentiable. GP has also been used for visualisation in a supervised
learning context using a multi-objective fitness function to optimise both
classification performance and clustering-based class separability
measures [23]. The use of GP for visualisation of solutions for production

scheduling problems has also been recently investigated [123].

Multi-objective GP approaches have been proposed to improve the
visualisation quality of feature construction in classification problems.
The Multi-objective Genetic Programming Projection Pursuit (MOG3P)
algorithm [66] aimed to produce solutions with a trade-off between three
objectives: classifiability, visual interpretability, and semantic
interpretability, by using the multi-objective Strength Pareto
Evolutionary Algorithm 2 (SPEA-2) [187]. The three objectives used do
not appear to be strictly conflicting: on a naive classification dataset, it
would be possible to achieve perfect classification performance with a
simple hyperplane (or line), which could be represented by a simple GP
tree that produces a visualisation with two very distinct classes. Even on
more complex datasets, there is an inherent relationship between the
visual interpretability of a dataset (i.e. how well classes are separated),
and the classification performance; given well-separated classes, one
would expect correct classification to result. A later approach focused on
classifiability and visual interpretability only, but used a number of
different measures for each of these objectives [23].

Tree-based GP is often recognised for its ability to directly model
functions by taking inputs as leaves and producing an output at the
root [135] and is often used for dimensionality reduction in the form of
FC [120]. Significant progress has been made on producing interpretable
GP trees, which are simple enough to be understood by a human expert
by using techniques such as parsimony pressure [135] and
multi-objective optimisation [18], with multi-objective approaches
showing particularly good results due to their ability to produce a range
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of solutions with different levels of complexity [23,176]. Despite being
clearly suitable for dimensionality reduction and evolving interpretable
trees, GP has never been applied as a MaL technique to produce
interpretable models that create understandable visualisations.

2.7 EC for Clustering

EC  techniques have also been applied to clustering
successfully [46,104, 118, 134, 149] with many GA and PSO techniques
used to automatically evolve clusters. Most EC techniques have focused
on performing hard partitional clustering (where every instance is
assigned to exactly one cluster) [64, 118] with the majority of techniques
using a prototype-based approach. Clustering performance is generally
measured in terms of connectedness (how well neighbouring instances
are assigned to the same cluster), compactness (how densely packed a
cluster is) or separability (how well clusters are separated from each
other) [64]. EC-based clustering methods using vector (PSO/GA)
encodings and tree-based (GP) encodings are surveyed in the following
subsections, as these are the most related to this topic of research. In
addition, work using EC for FS with statistical feature grouping
techniques are discussed, as this is an application of EC-based clustering
to a FS task.

2.71 PSO and GA for Clustering

Both PSO and GA have seen extensive use for clustering [36, 64]. Both
algorithms tend to use related approaches, due to their similar
representations. Most methods can be broadly defined by the use of one

of the three following encoding schemes [64].

Centroid Encoding

The centroid encoding scheme directly encodes the co-ordinates of

cluster centroids into the particle or chromosome representation. For
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example, a single centroid using five features may have the following
representation: [0.20,0.60, 1.15,0.70, 2.30]. This encoding gives a length of
mK for m features and K clusters (where K must be pre-defined). Each
instance is generally assigned to the cluster with the closest centroid (i.e.
I-nearest neighbour). A downside of this encoding is that its length will
grow linearly with m, giving a very large search space on big feature sets.
Hence, the application of feature selection to this representation should
be able to allow it to be better applied to datasets with many features.
This is by far the most prevalent encoding scheme used.

Medoid Encoding

A medoid-based system uses an encoding of length n for n instances,
where each instance is assigned a single value [64]. A high value (e.g. 1
in a binary encoding) for an instance corresponds to that instance being a
medoid, i.e. a cluster centre. Hence, the number of clusters is defined by
the number of medoids selected. All instances that are not medoids are
assigned to the cluster with the closest medoid, usually by Euclidean
distance. A benefit of this scheme is that the number of clusters does not
have to be pre-set by the user, a useful characteristic in clustering
algorithms. However, the search space will grow quickly as the number
of instances increases, which can be an issue in large datasets. The
medoid representation is restricted to choosing cluster prototypes that
are instances in the dataset. As a result, it may not be able to perform
exploitation (i.e. local searching) as effectively as the centroid
representation, which can produce centroids located at any point in the
search space. This is less likely to be an issue on datasets where there is a
large number of instances as there will be a higher level of granularity in

terms of the medoids available.

Label Encoding

The third common design uses a labelling system, where each instance is
assigned a label representing the cluster it belongs to. A similar



57 2.7. EC FOR CLUSTERING

representation to the medoid encoding is used, where each instance of
the n instances has a single value in an encoding of length n. The value
for an instance directly gives its cluster label. This design is more flexible
than the medoid or centroid schemes, as it does not use a distance
measure to define a cluster membership. In other words, a cluster is not
encouraged to be hyper-spherical, allowing clusters to form shapes that
are suitable for the dataset. Such an encoding can produce multiple
redundant solutions, e.g. the solutions [1,1,2,2,3,3] and [2,2,1,1,3, 3]
produce the same cluster partition. This increases the search space
unnecessarily unless a renumbering procedure is used. Furthermore, it
can be difficult to design a system that will give a smooth search space
when using a labelling encoding; if integers are used to label instances,
then a PSO system will have to round position values.  The
multi-objective clustering with automatic k-determination algorithm
(MOCK) [56] uses a GA with a label-based graph approach to perform
multi-objective clustering. Another GA method has also been proposed,
which takes inspiration from spectral clustering and uses either a
label-based or medoid-based encoding to cluster the similarity
graph [113].

2.7.2 PSO or GA with Feature Selection for Clustering

While a range of EC techniques have been proposed for either clustering
or FS, only a few of these techniques perform simultaneous clustering and
FS. All of these techniques use a centroid encoding [71,150] to perform
clustering, and a binary encoding for performing FS. An example of such
a representation is shown in Figure 2.2 for m features and K clusters. The
tirst m dimensions correspond to the m features in the dataset. The value
for a given feature determines if it has been selected. The remaining Km

dimensions correspond to the co-ordinates of the K cluster prototypes.

The most influential work in the EC domain for simultaneous clustering
and feature selection is the Niching Memetic Algorithm for simultaneous
Clustering and Feature Selection (NMA_CFS) [150], which uses a GA to
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Figure 2.2: Centroid representation for simultaneous clustering and
feature selection.

simultaneously perform FS, find K, and cluster the dataset. The authors
use niching and local search techniques to improve the performance and
consistency of the method. The niching approach requires a number of
parameters to be set in order to optimise performance. NMA_CFS uses a
variable-length encoding where the solution size is relative to the
number of clusters produced. While this method produced impressive
results compared to existing algorithms, the datasets used for testing
contained a small number of clusters (a maximum of 6 and 7 in the
synthetic and real-world datasets respectively) and a small number of
teatures (m) with a maximum of 20 and 30 on synthetic and real-world
datasets respectively. In practice, datasets may have many more clusters
and features; it is not obvious how well NMA_CFS would scale as K and

m increase.

The NMA_CFS algorithm used a fitness function based on the scatter
trace criterion. The J1 criterion (see below) applies a penalty weighting
based on the number of features selected by the clustering algorithm,
which encourages the use of fewer features. The clustering algorithm is
hence encouraged to find a trade-off between two criteria: clustering
accuracy and the number of features used. The J1 criterion may limit the
performance because of this simple weighting technique; using more
advanced compositions of these two criteria or a multi-objective
approach may improve results. Sheng et al. [150] also introduced the ]2
criterion, which applies an additional penalty weighting to the ]J1
criterion based on the number of clusters formed by a given solution.
This additional weighting seems somewhat arbitrary — encouraging a
small number of clusters is not correct on all datasets, and hence may
lead to a smaller number of clusters being formed than the optimal

number.
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In the below equations, m’ represents the number of selected features, and
Koz 1s defined to be /n, as per the original definitions [150].

J1 1= trace(S;' Sp) x mom (2.27)
m — 1
m—m' Koo — K
J2 1= trace(S;' Sg) x T X"k 1 (2.28)

The use of a variable-length encoding may also reduce training
effectiveness due to the inability of candidate solutions to fully exchange
information when they vary in length. A centroid encoding also
introduces an implicit ordering to the clusters in the solution when
clusters do not have any ordering in reality. For example, consider the
two solutions shown in Figure 2.3 — both solutions will produce the
same cluster partition, but as their two centroids are in different orders,
the training process will incorrectly attempt to move each solution
towards the other. In a GA approach, for example, this could mean that
crossover produces a solution that contains conflicting or even duplicate

centroids.

Cll C12 C13 C21 C22 C23 C21 C22 C23 Cll C12 C13

(a) Solution A (b) Solution B

Figure 2.3: Two centroid solutions with different centroid orderings that
produce the same partition.

Javani et al. [71] proposed a PSO-based method that uses a similar centroid
representation to the NMA _CFS [150] approach, but requires K to be pre-
fixed. A more advanced fitness function was proposed, which considers
a partition’s connectedness, compactness, and separability. The proposed
method was shown to generally perform better than NMA_CFS [150] on
the synthetic datasets. However, NMA_CFS [150] is able to be used when
K is unknown, which likely makes it a more useful method in the general

case.
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A limited amount of work has been published that uses PSO for either
the clustering or FS task, and uses a non-EC technique to perform the
other task. Marinakis et al. [109] proposed a two-phase approach using
PSO for feature selection and a greedy randomised adaptive search
procedure (GRASP) for clustering. Their second paper [110] used a
multi-swarm version of PSO using a constriction factor in order to
improve the feature selection performance compared to the first
paper [109]. Kuo et al. [85] used PCA to perform dimensionality
reduction before using a hybrid GA-PSO approach to perform clustering
for an unknown number of clusters. Another method used the Projection
Pursuit (PP) model to reduce dimensionality and then used PSO to
perform clustering [183].

Summary

Existing techniques using EC for simultaneous feature selection and
clustering [71,150] clearly show the suitability of EC methods to this task.
However, these works have a number of limitations due to their use of
variable-length and centroid-based representations, as well as their use of
fitness functions that do not account for the interaction between the

number of features and clusters.

EC for Subspace Clustering

Subspace clustering can be seen as a form of FS in clustering, as each
cluster found lies in a subspace of the data (i.e. a subset of the features are
used). Several EC methods have been proposed for performing subspace
clustering [130, 167]. However, subspace clustering intrinsically has an
even larger search space than normal clustering, as the quantity and
choice of features must be made for every cluster, rather than only once
for the dataset as in other FS for clustering approaches [128].
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2.7.3 GP for Clustering

A small amount of research has been published that uses GP for
clustering. A grammar-based method was proposed, which uses GP to
create trees containing a series of symbolic logical formulae, where each
formula represents a cluster [39]. An instance is assigned to the cluster
with the best matching formula, based on the instance’s feature values, or
to the closest centroid if it matches no formula. Fitness of an individual
was measured using a weighted sum of the intra- and inter-cluster
distances. = While this method does perform some inherent feature
selection and construction, the use of only logical predicates and not
arithmetic operators may limit the effectiveness of the constructed
features. Furthermore, the fitness function does not consider the size of
the feature subset used; overly large and specific solutions may be
generated on large feature sets.

Boric and Estévez [20] proposed a multi-tree approach where each GP
individual contains a tree corresponding to each cluster. An instance is
assigned to a cluster by feeding it to each of the trees, and taking the tree
with the maximum output as the assigned cluster. This approach
performs feature selection and construction as part of the evolutionary
process, as the terminal set contains features (only some of which are
used), and the function set contains arithmetic operators to combine
features. While this approach was shown to be superior to the k-means
algorithm, it requires K to be known in advance, so that the number of
trees per individual is fixed. This generally means that some domain
knowledge is required to use this method, in order to estimate a suitable
number of clusters. Furthermore, the authors tested their approach on
datasets with a relatively low K (a maximum of K = 7). If K was higher,
e.g. K = 40, it is likely that this approach will perform poorly as training
40 trees simultaneously is very difficult due to a very large search space.

Ahn et al. [5] proposed a more straightforward approach using a simple
GP program design where the output of the tree directly corresponds to a
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cluster label. The terminal set consists of the feature set and a random
constant, and the function set contains the usual arithmetic and other
mathematical operators. The output of a tree is rounded using integer
rounding to give the cluster label for an instance. This rounding
technique can cause issues as it introduces an uneven search space — an
output of 0.99 would correspond to the “0” cluster, despite being much
closer on the number line to the “1” cluster. Using such a multi-threshold
system for cluster assignment is a technique that is known to give poor
performance in multi-class classification [105] and it follows this would
also be true for clustering. A simple improvement on this would be to
use the tree output as an input to another data mining algorithm (e.g.

k-means) to give the final cluster assignment.

The Multi-Objective Clustering with Hierarchical Partition Fusions
(MCHPF) algorithm [25] uses GP to construct a clustering partition using
initial partitions generated by a set of different base clustering techniques
(k-means, hierarchical single linkage etc.) These base partitions form the
terminal set of the program design, and the function set consists of
consensus functions, which merge child partitions using the existing
Hybrid Bipartite Graph Formulation (HBGF) and Meta-Clustering
Algorithm (MCLA) algorithms. The output of the tree is a partitioning of
the dataset. The authors used a multi-objective approach whereby both
the overall deviation and the connectivity of a partition determines the
titness of an individual. The use of an ensemble method that considers
multiple clustering algorithms is a relatively recent development in
clustering, and this work is the first to use GP in combination with this
technique. = MCHPF does not perform any feature selection or
construction as the raw features are never used in the GP tree, hence,
performance may suffer on large feature sets where the base clustering
algorithms begin to perform poorly.  Furthermore, the proposed
algorithm requires setting a range for the number of clusters, K, as part
of the configuration settings. This approach ensures that a reasonable

amount of clusters will be generated by the base algorithm, but again
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means some domain knowledge is required.

More recently, a GP approach has been proposed based on the idea of
novelty search [119], where in lieu of an explicit fitness function, the
uniqueness (novelty) of a solution in the behavioural landscape* is used to
determine whether it is used in subsequent generations. This approach
was only tested on problems with two clusters, and it is unclear how it
would scale as K increases, given that the search space becomes

exponentially larger.
Summary

A small number of methods have been proposed that use GP for
clustering, including grammar-based, multi-tree, multi-objective, and
novelty search-based approaches. However, these methods do not take
full advantage of GP’s powerful potential for performing FC; these
methods perform FC only implicitly as a side-effect of using a GP-based
representation. Existing clustering methods, which are well-established
in the literature, could benefit significantly from using high-quality
constructed features created by a dedicated GP-based FC approach.

2.74 PSO for Feature Selection using Feature Grouping

Lane et al. [86] proposed a method using PSO with statistical clustering
for FS. They use the standard PSO representation for FS, where each
particle has a single dimension for each feature in the feature set. Binary
PSO is used, such that a 1 in a given dimension of a particle’s position
indicates the corresponding feature is selected; a 0 indicates the feature is
not selected. After each iteration of the PSO loop, each cluster is analysed
and the feature with the highest velocity in the cluster is selected (given a
position value of 1), while all the other features have their position values
set to 0. Hence, their method ensures that one feature from each cluster is

selected. =~ While their method achieved good performance, their

“The behaviour of a program considers the program output in conjunction with the
context in which the output was produced.
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representation is somewhat restrictive: it is not possible to select no
teatures or multiple features from a cluster, which limits performance
where all features in a cluster are of poor quality, or when feature
interaction occurs. The authors later addressed this limitation by using a
Gaussian distribution to allow multiple features to be selected from a
single cluster [87]. Their proposed method selects lower numbers of
features from a cluster more often than higher numbers (according to a
Gaussian distribution), thereby encouraging a small number of features
(to maximise dimensionality reduction) while still allowing multiple
features where beneficial. While this approach still forces the selection of
at least one feature per -cluster, their results showed superior
performance compared to a standard PSO feature selection algorithm.

Nguyen et al. [122] also proposed a PSO-based method that used
statistical clustering for FS. Their method takes a different approach by
using a new particle representation that directly encodes the number of
features to be selected from each cluster. For each of the K clusters, a
maximum of s features are allowed to be selected, where s is defined to
be the square root of the cluster size. Each cluster is then allocated s
dimensions in the particle representation, where each dimension
represents one selected feature. A particle’s position encodes a set of
candidate selected features. Each position dimension contains a value in
the interval [0,1] where the value represents a certain feature in the
corresponding cluster. A series of intervals according to the cluster size
are used to map a value to a feature (or to “null”, indicating no feature
selected). This new representation allowed their proposed method to
achieve similar performance compared to existing PSO feature selection
techniques, while selecting many fewer features. By using a series of
intervals to map position values to features, there will be a sudden
change in a particle’s fitness when a value is changed across an interval,
and no change if a value is changed within the same sub-interval. This
produces an uneven fitness landscape, which can affect the training

effectiveness of the method. The authors later addressed this limitation
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by introducing a Gaussian transformation technique, which introduces a
chance that values close to an interval will instead be mapped to the
neighbouring sub-interval [121]. This technique produces a smoother
fitness landscape, as small changes in a position value will slightly
change the probability of a feature being selected. Their results showed
general improvements in performance and reduced the number of

selected features compared to their base method.

2.8 Summary

This chapter reviewed a number of key concepts that underpin this
thesis, including machine learning, clustering, feature manipulation,
manifold learning, and evolutionary computation (with a focus on GP
and PSO). A comprehensive survey of literature related to the use of EC
for feature manipulation in unsupervised learning was also performed.
This survey highlighted the potential of EC for performing FM in
unsupervised learning tasks, but also outlined a number of significant
limitations and gaps in the literature, which, in conjunction with

Section 1.2, provide the key motivations of this thesis:

¢ EC for feature selection in clustering:

The potential for EC-based feature selection to improve clustering
algorithm performance has been demonstrated in the literature.
However, simultaneous feature selection and clustering — which
allows suitable features to be found alongside good clusters — has
been performed by only a handful of methods. These methods are
limited by their assumptions around the number of clusters;
encoding schemes; rudimentary fitness functions; and lack of
application to large datasets.

* EC for feature construction in clustering:
The use of GP for directly performing clustering is known to have a
number of limitations, including the difficulty in mapping a single
GP output to a large number of potential clusters. While GP has
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seen some initial use for performing clustering, but has never been
used to explicitly perform FC in order to improve the performance
of clustering algorithms. The capability of GP for performing FC is
well-known in the supervised learning domain, and the lack of its

use for clustering represents a significant gap in the field.

* Creating benchmark feature selection datasets:
Synthetic benchmark datasets are often used to evaluate ML
algorithms in a controlled manner. While the creation of clustering
datasets has been well-studied, there has been minimal
investigation into creating synthetic features for benchmarking FS
algorithms. Existing techniques primarily duplicate, scale, or add
noise to existing features; such techniques are unrealistic and do not
challenge modern FS algorithms. GP-based FC could be used to
create challenging synthetic features across a range of supervised
and unsupervised problems by encouraging complex redundancies

between features that are hard for a FS algorithm to detect.

¢ Interpretable manifold learning;:

Manifold learning is one of the latest trends in performing
high-quality unsupervised dimensionality reduction, with
significant success in tasks such as data visualisation. However,
state-of-the-art MaL algorithms are nearly exclusively black-box in
nature, giving practitioners little insight into the meaning of the
created low-dimensional space or visualisation. Given the use of
MalL algorithms for exploratory data analysis, it is essential that
they are both high-performing and interpretable. GP is
well-regarded for its ability to create interpretable functions that
can map a feature space to a new lower-dimensional constructed
teature space. Despite this, GP has never been used for directly
performing MalL.

Each of the following four chapters focuses on addressing one of these
limitations.



Chapter 3

Particle Swarm Optimisation for
Simultaneous Feature Selection
and Clustering

3.1 Introduction

While EC methods have seen some limited use for simultaneous
clustering and feature selection [71, 150], these methods have all used
centroid-based encodings. Centroid encodings may produce centroids
that are invalid solutions; fail to train effectively due to centroid ordering;
and are difficult to use effectively when the number of clusters (K) is not
known. Furthermore, the fitness functions used do not adequately
consider the interaction between the number of features selected and the
number of clusters found. There is a clear need for new representations

and refined fitness functions that address these limitations.

3.1.1 Chapter Goals

This chapter aims to investigate a new PSO approach to performing
simultaneous feature selection and clustering. @ The use of new
representations and fitness functions is anticipated to improve

performance while selecting fewer features than existing approaches. In

67
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particular, this chapter will investigate:

* whether centroid or medoid clustering representations in PSO are
most suitable for performing simultaneous feature selection and

clustering;

e if the centroid representation can be improved to reduce the
likelihood of invalid solutions being created;

¢ whether a flexible variation of the medoid approach that does not
require K to be pre-defined can automatically find a good K while

selecting few features; and

e if a multi-stage approach can improve the flexible medoid approach
by utilising heuristics for finding K and local search for improving

the medoids found.

3.1.2 Chapter Organisation

Sections 3.2 to 3.4 address the first two goals of this chapter by proposing
a number of PSO representations for simultaneous FS and clustering. The
performance of these representations are compared across a number of
datasets. Sections 3.5 to 3.6.1 tackle the third and fourth goals, by
extending the medoid representation proposed in Section 3.2 into a
multi-stage approach. Different variations of this approach are compared
with the initial medoid representation and to other baselines. A
summary of the main findings of this chapter is provided in Section 3.8.

3.2 The Proposed PSO Representations

This section proposes PSO methods for both the cases where K is
pre-defined and where K is automatically determined by the learning
process. We also propose a fitness function that can be used to give good
simultaneous feature selection and clustering solutions in both cases. The
overall design of the PSO algorithm for performing simultaneous feature
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Figure 3.1: The overall flow of the PSO process for all of the proposed
representations.

selection and clustering is shown in Figure 3.1. The variations between
the different representations occur in the initialisation mechanisms
(“Initialise PSO”) and in how prototypes are represented (“Cluster data

using selected features and prototypes”).

3.2.1 Pre-defined K

We use a centroid representation (as shown in Figure 3.2) as a base PSO
method for performing simultaneous feature selection and clustering.
This is the same representation as in the NMA_CFS approach [150], but
here we only use it when K is known and hence it has a fixed length of
m + Km, where the first m dimensions correspond to the m features in
the dataset. The position value for a given feature determines if it has
been selected by the PSO algorithm. A position value greater than 0
indicates a selected feature; less than 0 indicates the feature is not
selected. The remaining K'm dimensions correspond to the co-ordinates
of the K cluster prototypes. Instances are assigned to the cluster with the
closest prototype by Euclidean distance based on the selected features

only.

To address the issue where the centroid representation could produce
invalid solutions, we propose two seeding techniques, which ensure at
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Figure 3.2: Centroid representation for simultaneous clustering and
feature selection.

least one of the initial particles in the swarm will contain centroids that
produce a valid partition with the correct K. These two techniques are
described below:

* The k-means seeded centroid approach first runs the k-means
algorithm on the dataset to give K viable centroids. One particle in
the swarm is initialised to contain these K centroids and the
remaining particles are initialised as normal (i.e. randomly). For all
particles, the FS component of the particle is randomly initialised.
This technique ensures at least one viable particle is produced,
while also using the result of k-means as a good starting point for
the PSO learning process.

e The dataset seeded centroid approach initialises the swarm by
randomly choosing instances from the dataset to act as initial
centroids. Each particle is initialised by randomly choosing K
unique instances and using their feature values as the initial
positions of the K centroids. This approach still uses a centroid
representation; centroids are not constrained to take instance values
in subsequent iterations. This approach ensures that all particles in
the swarm will initially give valid solutions.

The medoid clustering approach can be extended to perform FS by
adding a dimension per feature, as shown in Figure 3.3. This
representation has a length of m + n for n instances in the dataset, and
uses the same FS technique as the centroid approach. Instead of using
centroids, each instance is assigned a dimension in the representation,
and the position value of an instance’s dimension determines if it is a

cluster prototype. The instances that correspond to the K highest
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position values are chosen to be the K prototypes. As before, instances
are assigned to the nearest prototype by Euclidean distance.

Fyleee [Fo| 1g oo | 1,

Figure 3.3: Medoid representation for simultaneous clustering and feature
selection, where K is known in advance.

3.2.2 No Pre-defined K

As discussed previously, the use of a centroid encoding when K is not
pre-defined requires a variable length encoding (or a technique to turn
centroids “on” and “off” [46]). The medoid representation can be easily
extended to allow for a flexible number of clusters to be generated while
maintaining a fixed-length encoding. When K was fixed, the instances
with the K highest position values were chosen as medoids. An
alternative technique is to choose all instances where the position values
are above some threshold ©. K will then vary based on the number of
instances meeting this threshold. The representation for this dynamic
medoid approach is shown in Figure 3.4. This representation includes a
single additional dimension corresponding to ©. The length of this
representation is m 4+ n + 1. While © could be a constant value (e.g. 0),
we suggest that it may be more effective to allow the PSO process to
automatically vary ©, as changing © can add or remove multiple clusters

from a solution at a time.

Fi|---[Fp | O] 1y |- | I,

Figure 3.4: Medoid representation for simultaneous clustering and feature
selection, where K is unknown.

3.2.3 Fitness Function

In order to perform effective clustering and FS, a fitness function should

encourage good clustering performance while minimising the number of
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tfeatures selected. The NMA_CFS [150] algorithm used the .J, fitness
function (shown in Equation (3.1)), which measures -clustering
performance using the trace scatter metric and applies two penalty terms

to minimise the number of features and clusters selected.

m—m' XKmM—K
m—1 K-1

J2 = trace(S,'Sy) x (3.1)

where m and m’ are the total number of features and the number of
selected features respectively. K and K,,,, are the number of clusters
and the maximum number of clusters respectively. K,,,, is defined as y/n
(as is common in the literature [126]) where n is the number of instances
in the dataset. S, and S, are the within- and between-cluster scatter
matrices, which measure cluster compactness and separability

respectively and are defined as follows:

K

S = %Z > (Lo — Z) (I — Z)" (3.2)
=1 I,eC;

Si=> - Li-2)Zi-2") (3.3)

=1

where C; represents the i" cluster, and Z; and |C;| are the mean of the i'"
cluster and the number of instances in the i" cluster respectively. I, is an

instance within cluster C;. The dataset mean is given by Z*.

While we base our fitness function on Equation (3.1), we found that a
number of adjustments could be made to improve performance. The
clusters produced can be improved by punishing outliers more heavily
by using the sum of squared Euclidean distances instead of the squared
difference to measure intra- and inter-cluster dissimilarity. The number
of clusters should not be penalised linearly; we should apply only a small
penalty to smaller values of K, but apply an increasingly larger penalty
as K approaches K,,,,. Doing so allows a wider range of small potential
K values to be considered by the learning algorithm, while still
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penalising K values that are so large as to produce overly specific
clusters. This change improved the accuracy of K for the dynamic
medoid approach. Our proposed fitness function with these
improvements is shown in Equation (3.4).

. Betweengy, m —m' log K
Fitness = Wzthlnsum o X (1 — m) (34)
1K
Within, =~ Y > d(I., Z;)? (3.5)
T e
Betweeng,,, = 1 i \Cy|d(Z;, Z*)? (3.6)
L

where d(1,, ;) is the Euclidean distance between instances [, and I,
defined in the standard way:

A1, 1) = /(Tar — 101)? + (Isg — Inp)? 4 .. + (T — Tom)? (3.7)

When computing the Euclidean distance between two instances, we use
all features, not only the selected ones. If only the selected features are
used, the fitness function would become overly biased towards a low K
and m’; selecting fewer features reduces the amount of information
available to the clustering method, reducing the extent to which the
dataset can be separated into smaller, more specific clusters. By using all
features, we ensure the original structure of the dataset is considered

when evaluating the performance of a solution.

3.3 Experiment Design

We evaluated the performance of the PSO representations on a range of
datasets using a variety of evaluation metrics. We also compared our
results to those produced by the standard k-means when all features are
used. As all of the methods are non-deterministic due to their use of

random initialisation, we ran each method 30 times and computed the
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mean of each metric across all runs. Unfortunately we were unable to
compare to the NMA_CFS algorithm as the authors were unable to
provide their source code and we were not able to reproduce their results
when we re-implemented their approach. The remainder of this section
will discuss the datasets, evaluation metrics and PSO parameters used in
detail.

3.3.1 Datasets

We tested the PSO representations across a variety of real-world and
synthetic datasets, which are summarised in Table 3.1. The real-world
datasets are ones that are commonly used in the clustering literature, and
all are from the UCI machine learning repository [31]. All of these are
classification datasets; it is common practice to use classification datasets
for clustering by excluding the class label from the learning process. The
class labels are then used to evaluate how well the clusters produced
match the known classification. As clustering a classification dataset is
harder than clustering a specifically-designed clustering dataset (due to
potential heterogeneity in classes), we generally use real-world datasets
with small K, but include the Movement Libras dataset (with K = 15) to

give an indication of performance on many-class classification problems.

The synthetic datasets were generated by Handl et al. [56] and are also
widely used. We used a range of synthetic datasets, which contain 10, 50,
or 100 features and 10, 20, or 40 clusters. Testing the representations on
large m and K shows how they scale as the search space increases. All
datasets were standardised so that each feature had zero mean and unit

variance to ensure features contribute equally to the clustering process.

3.3.2 Evaluation Metrics

We evaluated the performance of each of the representations using five
commonly used metrics. These included two internal metrics, which
directly measure the quality of a partition. The first of these is the trace
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Table 3.1: Datasets used in the experiments.

Real-World UCI datasets from [31]. Synthetic datasets from [56].

Name No.of No.of No. of Name No.of No.of No. of

Features Instances Classes Features Instances Clusters
Iris 4 150 3 10d10c 10 2730 10
Wine 13 178 3 10d20c 10 1014 20
Movement 90 360 15 10d40c 10 1938 40
Libras 50d10c 50 2699 10
Breast 9 683 2 50d20c 50 1255 20
Cancer 50d40c 50 2335 40
Image 18 683 7 100d10c 100 2893 10
Segmentation 100d20c 100 1339 20
Dermatology 34 359 6 100d40c 100 2212 40

scatter metric (as defined in Section 3.2.3), which measures the
compactness and separability of a partition. In addition, we computed
the sum of the intra-cluster distances, which measures compactness

directly. This is the metric that the k-means directly optimises.

We also used three external metrics, which measure how well the
clustering solution matches the dataset’s known classification. The class
purity metric measures how homogeneous each cluster is in terms of the
class labels of the instances it contains. The error rate (ER) is a metric
proposed by Cura [27] that measures how well pairs of instances agree
on their class labels and cluster memberships. The true positive rate
(TPR) measures the proportion of instances in the same class that are also

in the same cluster.

For the sum-intra cluster distance and ER metrics, a smaller value
represents a better result; for the other three metrics, higher is better.
Each of the five metrics, asides from the scatter trace metric, are defined
as follows:

1. Sum intra-cluster distance:

K
d Intra=> > d(l.,7Z) (3.8)

i=1 I,eC;
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2. Class purity: computed according to the following steps:
(3.9)

(a) For each cluster, find the majority class label of the instances in
that cluster.

(b) Count the number of correctly classified instances, where an
instance is correctly classified if it belongs to the majority class.

(c) Find the class purity as the fraction of correctly classified
instances across the whole partition.

3. ER [27]:

9 n—1 n
ER = [ ) X Z Z disagree(l,, I,)| x 100% (3.10)

nn—1
( a=1 b=a+1

where disagree(1,, I,) is 0 if instances I, and I, are either both in the
same classes and same clusters or in different classes and clusters,

and 1 otherwise.

4. TPR:
1 #Cl
TPR=- — I 1
total Pairs x ‘21:1 12201 agree(la, I) (3.11)
= aslb 7

where Cl; represents the i'" class and #ClI is the number of classes.
agree(l,, Iy) is 1 if I, and [, are in the same cluster, and 0 otherwise.
total Pairs is the sum of the number of pairs of instances in each
class.

3.3.3 PSO Parameters

Several parameters must be set in the PSO algorithm. We use commonly-
used parameters [168]: 100 iterations, a swarm size of 30, Ve, = 6, w =
0.729844, and ¢; = ¢, = 1.49618. These parameters are constant across all
datasets.
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3.4 Results and Discussion

The performance of the approaches are shown in Tables 3.2 and 3.3
respectively. KMS-Centroid is the k-means seeded centroid approach,
DS-Centroid is the dataset seeded centroid approach, and D-Medoid is
the dynamic medoid approach. We provide the mean results for each of
the evaluation metrics discussed previously, as well as the mean number
of features selected (m') and non-empty clusters produced (K). The ¥
Intra and ER metrics are marked with a *, as a reminder that they should
be minimised. The best result for each external metric is bolded, and a
method is bolded if it has the best performance on a majority of the
external metrics. The results will be analysed for the real-world and

synthetic datasets in turn.

3.4.1 Results on Real-World Datasets

Most of the pre-fixed representations perform similarly on the easy Iris
dataset, with the centroid approach achieving slightly better results on
the external metrics. On the more difficult real-world datasets, the
centroid approach begins to struggle; it is not able to generate 15 clusters
successfully on the Movement Libras dataset, and it has the worst
performance across the metrics on the Image Segmentation and
Dermatology datasets. The seeded KMS- DS-centroid approaches are
able to outperform the normal centroid approach on these datasets and
are always able to correctly generate K viable clusters. The medoid
approach performs the best of the pre-fixed approaches as it consistently
selects a relatively small number of features while achieving competitive
performance on both the internal and external metrics. For example, on
the Movement Libras dataset it selects only 20.67 features on average
while achieving similar results to both KMS-centroid and k-means,

which use 39.57 and 90 features respectively.

k-means outperforms all of the PSO methods on the Wine and Breast

Cancer datasets, but performs poorly in comparison on Iris. In general,
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Table 3.2: Performance on Real-World Datasets.

Dataset Method m K Scat. ¥ Intra* Purity ER* TPR
Centroid 1 3 2357 1694  0.9111 10.21 0.8681
KMS-Centroid 1 3 2293 1692  0.9036 10.99 0.8612

Iris DS-Centroid 1 3 2250 1691  0.8987 11.48 0.8568
Medoid 1 3 2266 1692  0.9004 11.30 0.8584
D-Medoid 1.100 3.167 23.83 16.64  0.9049 11.36 0.8308
k-means 4 3 12.03 1693  0.7844 19.97 0.7718
Centroid 2.600 3 11.05 57.70  0.9045 11.79 0.8212
KMS-Centroid 2.633 3 1151 57.13  0.9270 9.386 0.8536

Wine  DS-Centroid 2.267 3 10.86 57.34  0.9243 9.755 0.8479
Medoid 2.400 3 11.18 57.28  0.9232 9.887 0.8458
D-Medoid 2.733 3 10.11 57.72 09077 11.68 0.8237
k-means 13 3 13.69 56.39  0.9610 5.287 0.9152
Centroid 4537 10.63 12.52 3360  0.2489 26.62 0.4164
KMS-Centroid 39.57 15  34.80 240.7  0.4506 9.877 0.3704

Move. g centroid 355 15 2847 259.3  0.4148 11.04 0.3358

Libras  \1040id 2067 15  36.07 237.8  0.4680 9.693 0.3820
D-Medoid 23.13 6.267 13.89 300.3  0.2799 18.57 0.4498
k-means 90 15 37.24 2375  0.4640 9.569 0.3902
Centroid 1.333 2 5505 1425 09375 11.71 0.9094
KMS-Centroid 1.367 2 5310 1426  0.9366 11.87 0.9081

Breast g Centroid 1.233 2 5.222 142.8 0.9348 12.18 0.9070

Cancer rodoid 1.167 2 5.294 143.0 0.9343 12.27 0.9071
D-Medoid 1.733 2.733 9.778 137.6  0.9414 13.80 0.8417
k-means 9 2 6.774 137.8  0.9587 7.925 0.9341
Centroid 6.300 7 3528 661.3  0.5556 20.37 0.7226

Image KMS-Centroid 4533 7 51.60 636.5  0.5845 17.07 0.7444

Seg. DS-Centroid 4 7 56.69 6285  0.5857 16.44 (0.7124
Medoid 3.800 7 67.51 6114  0.6072 14.46 0.6684
D-Medoid 45 7300 55.60 6120  0.5950 15.20 0.6550
k-means 18 7 5092 607.1  0.6043 15.30 0.6715
Centroid 11.60 6 4670 183.6  0.7246 15.69 0.7288
KMS-Centroid 8.833 6 72.87 176.1  0.8024 11.79 0.7788

Derm. DS-Centroid 7.867 6 7146 1759  0.8044 10.97 0.8035
Medoid 65 6 8621 1729  0.8318 10.83 0.7554
D-Medoid 7.867 4.267 61.76 1827  0.7344 14.84 0.9088
k-means 34 6 9222 1780  0.8099 12.26 0.7839

the PSO methods are able to achieve good performance given that they
use many fewer features than k-means. All of the methods struggle on
the Movement Libras dataset with TPR and purity values under 50%.
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This dataset is known to be difficult for clustering algorithms [150] as the
class labels do not correspond well to hyper-spherical clusters.

The dynamic medoid approach (D-Medoid) performs reasonably well on
the Iris, Wine, Breast Cancer and Image Segmentation datasets, generating
K to within 1 of the actual number of classes and achieving similar results
on the metrics to the other PSO methods. It struggles to achieve good
results on the Movement Libras dataset where it only finds 6.267 clusters
on average and has a correspondingly high error rate. It is interesting
to note that on both the Movement Libras and Dermatology datasets it
has the highest TPR value despite having incorrect K; this suggests it is
creating a few big clusters, each of which contain multiple classes. This
highlights a fundamental issue in clustering when K is unknown — it can
be difficult to consistently determine across varying datasets when one
large cluster should be split into two smaller clusters.

In general, the medoid approach is superior to all other pre-fixed
approaches on the real-world datasets, including the centroid

approaches, which are much more widely used.

3.4.2 Results on Synthetic Datasets

Unlike the real-world datasets, the synthetic datasets are designed
specifically for evaluating clustering algorithms. Hence, they may give a
better indication of the performance that can be expected on an
unlabelled dataset.

As shown in Table 3.3 (and Table 3.3 continued), the basic centroid
approach struggles to find K viable clusters on all of the synthetic
datasets that contain 20 or 40 clusters. Of the other pre-fixed K
approaches, the medoid approach selects the fewest features while
achieving the best results across the metrics on all of the synthetic
datasets with 50 or 100 features. This approach even outperforms the
k-means approach on these datasets despite using many fewer features.
This suggests two things: the medoid approach may be able to better
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Table 3.3: Performance on Synthetic Datasets.

Dataset Method m' K  Scat. YIntra* Purity} ER* TPR
Centroid 2.800 10  11.79 803.3 0.6448 13.59 0.5608
KMS-Centroid 4.033 10 14.69 703.3 0.8179 7271 0.7103

10d10c DS-Centroid 3.333 10 14.34 734.3 0.7713  8.442 0.6918
Medoid 3.933 10 15.18 708.0 0.8056 7.864 0.6646
D-Medoid 3.767 7.467 11.83 753.8 0.7458 9.727 0.7379
k-means 10 10 17.50 643.8 0.9281 3.983 0.8001
Centroid 5.100 12.20 9.875 307.1 0.3854 22.84 0.6632
KMS-Centroid 5.167 20  55.55 159.5 0.8551 2.834 0.7914

10d20c DS-Centroid 4.767 20 45.13 174.0 0.8084 3.349 0.7543
Medoid 4967 20  64.74 1438 09160 1.504 0.8727
D-Medoid 4300 12.73 39.17 188.8 0.7527 4.068 0.9037
k-means 10 20 70.37 143.8 0.9018 2.095 0.8306
Centroid 5.367 20.80 8.541 585.8 03334 16.13 0.6407
KMS-Centroid 5300 40  55.08 311.4 0.8388 1.677 0.7411

10d40c DS-Centroid 5233 40  39.87 362.8 0.7447  2.577 0.6260
Medoid 5667 40  56.81 292.8 0.8734 1305 0.7821
D-Medoid 3.900 13.10 20.19 502.4 0.4861 6.786 0.8267
k-means 10 40 73.06 261.2 0.9188 0.9848 0.8386
Centroid 2297 10  23.72 1330 0.5807 2394 0.5782
KMS-Centroid 17.67 10  56.70 972.9 0.7125 16.82 0.5545

50d10c DS-Centroid 16.60 10  52.43 995.2 0.6948 18.53 0.5524
Medoid 13.67 10 62.12 938.9 0.7470  14.36 0.5655
D-Medoid 13.47 18.23 133.5 717.6 0.8773 9.334 0.4115
k-means 50 10 70.98 967.0 0.7365 16.06 0.5698
Centroid 24.23 12.47 23.83 813.2 0.3314 29.54 0.6670
KMS-Centroid 2230 20  119.0 480.6 0.6737 1195 0.5876

50d20c DS-Centroid 20.43 20  99.82 529.8 0.6621 8.742 0.5879
Medoid 14.17 20 112.3 453.2 0.7459 7.216 0.6203
D-Medoid 15.33 17.40 97.53 486.5 0.7115 10.16 0.6655
k-means 50 20 136.0 477.6 0.6895 11.72 0.6021
Centroid 26.77 22.90 29.76 1520 0.2905 24.19 0.6073
KMS-Centroid 22.87 40  176.2 852.1 0.6696 8309 0.5551

50d40c DS-Centroid 19.47 40 131.6 1001 0.6238 5.387 0.5272
Medoid 14.37 40 156.9 860.9 0.7053 4.135 0.5687
D-Medoid 14.53 22.80 84.56 1156 0.5042 11.58 0.6274
k-means 50 40 190.7 847.2 0.6786 9.822 0.5825

explore the search space than the centroid approaches as it can more

effectively utilise the social knowledge of the swarm, and secondly, that

k-means fails to scale well for large k or m, whereas PSO is able to scale
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Table 3.3: Performance on Synthetic Datasets (continued).

’

Dataset Method m K Scat. X Intra* Purity ER* TPR
Centroid 475 10  29.04 2099 0.5883 22.00 0.5954
KMS-Centroid 39.53 10  65.85 1533 0.7392 14.04 0.6016

100d10c DS-Centroid 39.90 10  63.18 1572 0.7230 15.51 0.6035
Medoid 33.53 10  71.45 1470 0.7808 11.36 0.6488
D-Medoid 34.43 19.07 193.3 1060 0.9092 8.459 0.4302
k-means 100 10  94.17 1592 0.7600 13.76 0.6217
Centroid 49.80 12.93 27.24 1222 0.3239 30.39 0.6311
KMS-Centroid 4690 20  149.8 740.1 0.6709 11.42 0.5933

100d20c DS-Centroid 45 20 138.8 777.4 0.6514 11.31 0.5852
Medoid 3217 20  157.2 671.2 0.7610 7.653 0.6200
D-Medoid 35.63 185 146.3 711.8 0.7268 9.342 0.6414
k-means 100 20 1862 733.7 0.6921 12.48 0.6184
Centroid 49.53 22.77 39.72 2052 0.2868 24.05 0.6019
KMS-Centroid 47.40 40 263.0 1152 0.6742 8.729 0.5618

100d40c DS-Centroid 43.60 40 2179 1277 0.6625 6.074 0.5668
Medoid 32.73 40  246.5 1107 0.7382 4.398 0.5952
D-Medoid 34.97 22,93 136.3 1439 0.5516 14.14 0.6705
k-means 100 40  301.7 1148 0.6874 10.26 0.5903

effectively. On the datasets with 10 features, the KMS approach can also
perform well relative to the medoid approach. k-means is also able to
perform well — it has the lowest error rate and highest purity on 10d10c
and 10d40c, as well as the best results for the internal metrics. These
datasets have a small number of features and so k-means does not
struggle as it does on the other synthetic datasets. Each of the two seeded
centroid approaches perform better on different datasets, with the DS

approach generally performing more effectively on the larger datasets.

The dynamic medoid approach is inaccurate in terms of the mean
number of clusters it produces on all synthetic datasets asides from
10d10c, 50d20c and 100d20c. On the datasets where it overestimates K
(50d10c and 100d10c), it achieves the best scatter, ¥ intra, purity and ER
results despite obviously performing badly. This highlights the difficulty
in measuring good clustering performance and in designing a good
titness function — if we used only scatter fitness as our fitness function,

we would likely produce many more clusters than is correct. The purity
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and ER metrics are also biased towards large K. As the number of
clusters increases, the homogeneity of any given cluster is likely to be
higher as clusters become smaller and more specific. This leads to an
increase in purity. In a similar vein, a higher K also tends to decrease the
ER: the more clusters present, the more likely it is that instances from
different classes will be assigned to different clusters. As the majority of
pairs of instances in a dataset will belong to two different classes when
there are more than two classes, the number of disagreements between
instance pairs will tend to decrease as K is increased. The TPR metric
does not have this issue as it considers only the true positives relative to
the number of actual positives; the dynamic medoid approach achieves a
low TPR value on 50d10c and 100d10c. These issues demonstrate the
need for care when evaluating clustering algorithms, as the number of

clusters may have an unexpected effect on how metrics behave.

While the dynamic medoid approach performs poorly compared to the
pre-fixed approaches, the case where K is unknown is a much more
difficult problem [46]. We believe that the success of the pre-fixed medoid
approach and the fact that the dynamic approach can use a fixed-length
representation suggest it is worth exploring this direction further.

3.5 A Multi-Stage Approach

While the dynamic medoid approach struggled on the synthetic datasets,
it clearly has significant potential given that the fixed medoid approach
outperformed the centroid approaches across the datasets. The key
limitations of the dynamic medoid approach were its inaccurate
determination of K (particularly on synthetic datasets); its tendency to
select fewer features at the expense of clustering performance; and its
inability to fine-tune cluster centres due to the restrictions given by a
medoid representation. To address these, this section proposes a
multi-stage approach that provides a number of improvements to the
dynamic medoid approach.
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First Stage Second Stage (Optional) Third Stage

Estimate K__ using Use PSO to perform Reflne Shetol
> est . ) —— using pseudo-local :
Silhouette method clustering and refine K_, e

Figure 3.5: The overall flow of the multi-stage approach.

The overall design of the three stages is shown in Figure 3.5. In the first
stage, an estimate of K, called K.y, is determined using a statistical
measure. The second stage then performs simultaneous clustering and
feature selection, while using K.y as a guide for finding K. K is still
dynamic and so can be optimised by the evolutionary search, but
individuals that have a K that varies too far from K., will have their
fitness punished correspondingly. As methods used to generate K., in
the first stage may not give perfect estimates, allowing minor variations
to K.s allows the EC method to fine-tune the K value. The (optional)
third stage then performs a pseudo-local search using a centroid
representation to fine-tune the solution produced by the second stage.

The following subsections discuss the design of each of the stages in detail.

3.5.1 First Stage

The Silhouette method described in Section 2.2.4 was used in this study
to produce K., in the first stage as it was empirically found to be the
most accurate method tested. k-means was used to cluster the data in the
first stage for each potential £ in the range [2, /1], as suggested in [126],
and then the average silhouette for each K was computed. The K with
the highest average silhouette is chosen as K.. The silhouette method
is non-deterministic and produces a large variation in K., values across
different runs. To address this we run the algorithm 30 times and take the

median K., to reduce variation, producing more consistent K values.

3.5.2 Second Stage

The output of the first stage is a single K., value. The second stage uses
this value as a heuristic to guide the search by PSO for the number of
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clusters. We use the medoid representation introduced in Section 3.2.2.

The fitness function introduced in Section 3.2.3 balanced three key criteria
required to measure the quality of a given PSO solution: the clustering
performance, the number of features used, and how large K was, which

can be formulated as follows:
Fitness = Cluster Performance x Feature Weighting x K’ Weighting (3.12)

The first component, measuring the cluster quality, is unchanged. To
turther address the bias between the number of features selected and
cluster performance, we investigate an alternative method for weighting
the number of features. The multi-stage approach uses a heuristic K.,
and so it is necessary to adapt the third component of this fitness

function.

The changes to the second and third components of the fitness function
are discussed below.

Feature Weighting:

The most common metric for measuring the goodness of a feature subset
is to apply a weighting based on the number of features selected. This is
usually expressed as a simple fraction in the form m#m/ for m total
features and m' selected features. Such a weighting applies a linear
penalty to the fitness of a given particle with respect to the percentage of
features selected. An issue with this approach is that the search process
will tend to over-emphasise minimising m’ at the cost of cluster
performance — it is usually “easier” to improve fitness by reducing m/
than by improving cluster performance. Furthermore, the goal of feature
selection is generally to reduce the number of features used to an
acceptable level; the user may not differentiate between 5% or 10%
features being selected as both values of m' are acceptably small. Hence,
a linear weighting mechanism may not be ideal; we would like to apply
little penalty when m’ is reasonably small and then apply an increasing
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Figure 3.6: Fitness weightings for balancing the number of features and
clusters.

amount of penalty as m’ increases. To achieve this we propose using an

elliptical function as shown in Figure 3.6a.

The equation used to compute the elliptical feature weighting is:

1
Feature weighting = p m2 — (m')? (3.13)

This formulation is chosen as it produces very little penalty when a
relatively small number of features is selected, while still providing some
motivation for the PSO process to select as few features as possible
without sacrificing clustering performance. As the number of features
increases, this function penalises the fitness at an increasing rate until the
whole feature set is used and the fitness becomes zero. This formulation
better captures the aim of FS: it uses as few features as possible while not
overly affecting clustering performance. We trial using both this method
and the normal linear method for the feature weighting component of the

titness function in our experiments.
K Weighting:

The final decision required is how to penalise particles that have a K
value varying significantly from the K., heuristic. As K., is not a perfect
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estimate, we allow small variations from it without any significant
penalty. As the variations increase, we should penalise at a higher rate.
The use of a Gaussian function was found to give a good balance of these
two objectives. Figure 3.6b shows an example of a Gaussian function
with p = K.y and 0 = % where the output is scaled to give 1 (no
penalty) when K = K.,. As shown, the fitness weighting is small for &
values between 8 and 12 or so, but becomes large when K is five or 15.
The standard deviation must be a function of K., to ensure the function
scales effectively; the denominator of 1.5 was chosen empirically. The use
of different denominators (e.g. 1 or 2) will increase or decrease the rate of
penalty as K varies from K.,. We use this Gaussian function as the third

component of the fitness function in Equation (3.12).

3.5.3 Third Stage (pseudo-local search)

One key limitation of a medoid-based representation is that cluster
prototypes are restricted to the instances in the dataset. It is possible that
better clusters may be formed using cluster prototypes that lie elsewhere
in the feature space (e.g. halfway between two instances). To address this
limitation, while still maintaining the benefits of a medoid approach, we
propose the use of a third-stage where the medoid representation is
converted to a centroid representation and then the centroids are
tine-tuned using another PSO search process. We call this procedure a
“pseudo-local search”, as particles are initialised to the best solution
found in the second stage, but are allowed to explore the search space
freely.

Figure 3.7 shows the representation used in the third stage. Each of the K
medoids in the best solution from the second stage is used to initialise the
position of the particles in the third stage — each medoid is converted to

Ciil - Cimd =+ [Cia] === Crne

Figure 3.7: Centroid representation used in the third stage.
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a centroid with length equal to the number of selected features (m/)
where the centroid contains the feature values for each of the selected
features. Each particle’s velocity is randomly initialised. Hence, particles
will initially spread out in different directions from the second stage’s
gbest before beginning to converge again. It is hoped this will allow
fine-tuning of the cluster centres, while focusing the majority of the
search in an area that is known to give good performance.

3.6 Experiment Design: Multi-Stage Approach

To evaluate the performance of the proposed multi-stage approach, a
number of methods were tested across the real-world and synthetic
datasets (see Table 3.1). The methods are:

1. 2-Stage Linear: the proposed method using linear feature weighting.

2. 2-Stage Elliptical: the proposed method using elliptical feature
weighting.

3. 3-Stage: the 2-Stage Elliptical method plus the third stage (pseudo-
local search) for refining the solutions.

4. k.s-means: the standard k-means algorithm but using K = K. as
computed by the first stage of the proposed approach. This
algorithm is used to evaluate how well the proposed approach is
able to refine K based on the heuristic and how well it can perform
feature selection.

5. k-means: the standard k-means algorithm, initialised with centroids
drawing from instances in the dataset. Note that K is known, and

so this algorithm is being run on a much easier task.

6. D-Medoid: The proposed single-stage dynamic medoid approach.

All methods have stochastic behaviour and so were run 30 times on each
dataset for 500 iterations to ensure search convergence. The PSO methods
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(including the pseudo-local PSO) had a swarm size of 100 and used
standard PSO parameters [168]: w = 0.729844, C; = Cy = 1.49618, and
velocity clamped between —6 and 6. A fully connected PSO topology
was used; gbest after 500 iterations gives the best solution. Feature values

were scaled linearly to [0, 1].

3.6.1 Evaluation Metrics

As previously, we evaluated our proposed multi-stage methods using the
Scatter trace and Sum intra-cluster distance internal metrics (as defined in
Section 3.3.2). In place of the three external metrics used in Section 3.3.2,
here we used the F-measure (F-m) as the single external metric, which
measures how well pairs of instances agree on their class labels and cluster
memberships. The F-measure does not suffer from the same biases that
were discovered with some of the external metrics earlier in this chapter.
The F-measure is defined in Equation (2.15).

3.7 Results and Discussion: Multi-Stage Approach

The results of the experiments are shown in Tables 3.4 and 3.5 for the
real-world and synthetic datasets respectively. Each table shows the
mean number of features selected and clusters produced by each method
(note that these are constant for k-means) as well as the method’s average
performance according to the evaluation metrics. The ) Intra metric is
the only one that should be minimised — it is labelled with a * to indicate
this. For each of the proposed methods, each result is labelled with a “+4”
or a “—" if it is significantly better or worse than the k-means baseline
according to a Student’s t-test performed with a 95% confidence interval.
A lack of a “+” or “—" indicates no significant difference was found. A
label of 1 or | indicates a result is significantly better or worse than the
existing D-Medoid method according to the same test. The D-Medoid
results vary slightly from those in Section 3.4 as feature scaling rather
than standardisation was used. The results are analysed on the
real-world and synthetic datasets separately in the following subsections,
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and then some general trends are discussed.

3.7.1 Results on Real-World Datasets

Our proposed methods are competitive with k-means on the external
metrics and often have superior performance on the internal metrics for
the first four real-world datasets, while using a much smaller number of
features. The methods also generally outperform D-Medoid on the
external metrics on four of the six datasets. The proposed methods
perform significantly worse than k-means and D-Medoid across all
metrics on the Image Segmentation dataset due to incorrectly choosing
K = 3. As the value of K. is two on average, PSO is only able to vary K
to be 3 without fitness being overly affected. On the Dermatology
dataset, the proposed methods achieve a significantly better F-measure
value compared to k-means and D-Medoid, despite incorrectly
estimating K.  This is likely due to the estimated K allowing
better-formed clusters; on real-world data, class labels are produced by a

human expert and may not correspond well to hyper-spherical clusters.

Another important consideration is that a clustering partition that differs
from the known classification is not necessarily a “wrong” clustering —
there are many ways to group a dataset based on different characteristics
(i.e. feature subsets). Hence, it may be better to consider the performance
in terms of the internal metrics as a better measurement of how well the
proposed approaches performs In this regard, it is clear that the proposed
approaches are able to achieve similar to or better results than k-means
on the Iris, Wine, Movement Libras, and Breast Cancer datasets, while
using a much smaller number of features. On the other two datasets, the
performance is far superior to the k.y-means method, while again using a

small number of features.
Further Investigation

To analyse why K was being inaccurately estimated on the Image
Segmentation and Dermatology datasets, we visualised these datasets
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Table 3.4: Real-world datasets.

Dataset Method m’ K  Scatter ) Intra* Purity F-m
2-Stage Linear 1 3 26.781+ 29.99¢  0.94367T 0.8962F"
2-Stage Elliptical 1 3 2747 29.96+  0.9493TT 0.9055T"

Iris 3-Stage 1 3 26.9tF  29.99  0.9449%T 0.898+T
kesi-means 4 2 9.8 37.23 0.6667  0.7462
k-means 4 3 16.37  30.58 0.8404  0.7751
D-Medoid 1 36 3503 2829 0.9191  0.8229
2-Stage Linear 227 337 12537 89.28~T 0.9161~ 0.81527+
2-Stage Elliptical 357 34 13.96%T 88.147T  0.9418" 0.8523~

Wine  3-Stage 3.67 34  14.55TT 87.67+T  0.9541+T 0.8749°"
kesi-means 13 2 492 104.2 0.6073  0.6357
k-means 13 3 12.68  88.75 0.9464  0.8947
D-Medoid 227 3 11.14  90.26 0.9167  0.8414
2-Stage Linear 145 17.77 45.6277 388.1%T  0.5017*T 0.3423"

Move, 2Stage Elliptical 267 179 471477 383.97T  0.5005T 0.3501"

Libras J-Stage 26.5 17.73 49.01*" 380.0tT  0.5012*" 0.3596+"
kesi-means 90 12.27 31.28  434.6 0.4226  0.3278
k-means 90 15  39.01  409.4 0.4705  0.347
D-Medoid 125 6.13 1521  515.6 0.2859  0.2518
2-Stage Linear 1.53 2 6.0627+ 344.27+  0.9407~ 0.8994~"

Breast 2Stage Elliptical 25 2 75477+ 335.6~  0.9571-T 0.9251"

Cancer J-Stage 243 2 7.8077F 33477  0.95737T 0.9254~"
kest-means 9 2 8.2 332.0 0.9609  0.9313
k-means 9 2 8211  332.0 0.9611  0.9316
D-Medoid 1.6 27 1017  331.0 0.9441  0.8744
2-Stage Linear 1.33 3 19.337+ 1245.07+ 0.42517+ 0.4536F

Image 2-Stage Elliptical 213 3 19.187+ 1242.07+ 0.42757+ 0.4583 ¢

-1 -4 -1 -1

Seg.  3-Stage 1.8 3 19.367% 1241.07% 0.4276+ 0.4595
kesi-means 18 2 4.063  1482.0  0.2857  0.3362
k-means 18 7 60.86  898.3 0.6426  0.5583
D-Medoid 223 523 63.53  984.4 0.6089  0.5725
2-Stage Linear 453 397 68.03~ 405.5-  0.7837"T 0.7886""
2-Stage Elliptical 713 4 79.26-" 401.6-T  0.8025" 0.8206""

Derm. 3-Stage 7.07 4 81.227 " 400.9-T 0.8083" 0.8311F"
kest-means 34 273 5569 457.3 0.612  0.6113
k-means 34 6 93.58  387.6 0.8278  0.7351
D-Medoid 437 38 68.77  409.4 0.7602  0.7587

using the principal component analysis (PCA) and t-distributed
stochastic neighbour embedding (t-SNE) visualisation methods, as
shown in Figures 3.8 and 3.9. Each sub-figure shows the results of
applying one of these methods to one of the datasets, where the colours
represent the class labels of the dataset.
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Figure 3.8: Visualisations of Dermatology dataset (K = 6).
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Figure 3.9: Visualisations of Image Segmentation dataset (K = 18).

On the Dermatology dataset (which has six classes), PCA clearly
separates the red and green classes into two distinct clusters. The
remaining classes appear as one tightly packed cluster, with the pink
class potentially a fourth cluster. This gives three to four clusters on this
dataset, consistent with the four average clusters found by the proposed
methods. t-SNE more clearly separates the classes into clusters, but there

is still overlap between the teal and yellow classes, giving five distinct
clusters.

The visualisations on the Image Segmentation dataset are much more
unclear; PCA produces a poor visualisation, with only the purple class
being clearly separated. t-SNE is clearer — the aquamarine and purple
classes are separated well, but the remaining classes all have a fair
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amount of overlap. This suggests why the proposed methods find three
clusters — two of the classes fit into two clusters well, and the remaining

instances have sufficient overlap to produce a single cluster.

In summary, both the linear and elliptical two-stage methods successfully
select a small m' on all six of the real-world datasets. The elliptical
method has slightly better performance than the linear method while
selecting additional features. If the minimum number of features is
desired while achieving good performance, then the linear method is
best; however, if better performance is preferred at the cost of slightly
higher complexity, the elliptical method should be used. The 3-stage
method has slightly higher performance than the 2-stage elliptical
method across all metrics, which shows the pseudo-local search is able to

further refine the solutions.

3.7.2 Results on Synthetic Datasets

Unlike the real-world datasets, the synthetic datasets have classes that
map well to hyper-spherical clusters. Thus the external metrics are useful
for measuring the performance of the proposed approach, which clearly
outperforms k-means and k.,-means on all of the synthetic datasets
(except for 10d10c) while achieving a low m/, especially on the datasets
with high m. The proposed approach scales to large datasets more
effectively than the k-means algorithm, despite not performing only
clustering, but also feature selection and determining K in the same
search process. It also performs better than k-means on the internal
metrics across the 50d and 100d datasets, where it selects the most useful
features to improve clustering.

Despite performing well, the proposed methods are inaccurate in
predicting K on several of the synthetic datasets, such as 50d20c and
100d20c where they select 35 — 36 clusters instead of 20. However,
compared to the previously proposed D-Medoid method, the proposed
methods predict K more accurately on seven of the nine datasets. The
D-Medoid method predicts values of K close to 20 on all the 50d and
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Table 3.5: Synthetic datasets.

Dataset Method m’ K  Scatter ) Intra* Purity F-m
2-Stage Linear 3.63 897 15.04" 782.6~T 0.8051~" 0.763~
2-Stage Elliptical 493 957 156371 750.0°" 0.8604~" 0.8196"
10d10c  3-Stage 49 9.07 16.117" 739.9°T 0.88727T 0.8678*"
kest-means 10 543 11.49 8159 0.7743  0.7786
k-means 10 10 17.7  715.7 0.9175  0.833
D-Medoid 33 697 12.63 817.7 0.7718  0.7481
2-Stage Linear 507 20.1 75.327T 226.9TT  0.9587+" 0.9408*7
2-Stage Elliptical 6.1 20.17 85.2*T 216.8*T 0.9828*T 0.9721+"
10d20c  3-Stage 6.07 20  90.17+T 213.3*T  0.9953*T 0.9928+"
kest-means 10 1513 53.31  292.7 0.7907  0.7651
k-means 10 20 70.02 2485 0.8887  0.8218
D-Medoid 44 147 51.65 282.7 0.8249  0.8305
2-Stage Linear 547 39.73 67.26" 452.0°T 0.9182"T 0.8699"
2-Stage Elliptical 6.87 39.7 78.29%1 417.3*T  0.9615%T 0.9437+"
10d40c  3-Stage 6.87 40.1 85.667T 402.9*T 0.9824*T 0.97*7
kest-means 10 29.83 55.58  499.9 0.8385  0.8234
k-means 10 40 745  433.7 0.9219  0.8657
D-Medoid 3.83 156 27.08 756.4 0.5692  0.5477
2-Stage Linear 93 135 93.48H 1072.07% 0.81917+ 0.5197+
2-Stage Elliptical 14.87 13.23 96.76 7+ 1071.07+ 0.8174*+ 0.5172F
50d10c 3-Stage 14.23 13.5 104.5"+ 1045.07 0.8152*+ 0.5125%
kest-means 50 11.53 88.84 1242.0  0.7679  0.4978
k-means 50 10 72.87 1306.0  0.7426  0.4865
D-Medoid 9.07 185 144.2  930.6 0.8824  0.5196
2-Stage Linear 10.87 34.63 250.2%T 372.47T  0.8622+1T 0.525%"
2-Stage Elliptical 17.43 34.67 261.87T 366.177  0.8692*T 0.5171F7
50d20c 3-Stage 17.33 34.6 283.1*1 356.8TT 0.858*" 0.4835*"
kest-means 50 288 211.3 4325 0.8057  0.4713
k-means 50 20 1375  548.6 0.6858  0.3581
D-Medoid 10.63 17.43 99.65  539.6 0.7165  0.4167
2-Stage Linear 13.57 48  200.4*T 756.97T  0.77241T 0.4888*"
2-Stage Elliptical 19.87 48 211.7+1 738.87T 0.788%T 0.4949F"
50d40c 3-Stage 2043 48 230.3*T 708.5%T  0.761FT 0.3669"
kest-means 50 447 2145 8226 0.7099  0.2841
k-means 50 40 1924 8719 0.6749  0.2586
D-Medoid 11.33 26.03 104.5 1062.0  0.5546  0.2455

100d datasets despite K actually varying from 20 to 40. This suggests
that D-Medoid cannot search for the true K value as effectively as the
proposed methods. It is interesting to note that the K values produced
by the proposed methods are always higher than the K. generated by
the first stage. This suggests that the fitness function encourages a higher
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Table 3.5: Synthetic Datasets (continued).

Dataset Method m' K  Scatter ) Intra* Purity F-m
2-Stage Linear 20 15.87 148.3*F 1401.07 0.8655T% 0.5648F
2-Stage Elliptical 294 1577 150.9*+ 1395.0+ 0.86767+ 0.5707F"

100d10c 3-Stage 289 1573 153.47+ 1376.07F 0.85671+ 0.5557F
kest-means 100 11.27 1152  1807.0  0.794  0.5623
k-means 100 10  103.5 2036.0  0.7436  0.5194
D-Medoid 17.3 1897 206.1  1287.0  0.9137  0.5549
2-Stage Linear 219 36  358.9*T 559.9TT  0.8945%T 0.5627F"
2-Stage Elliptical 334 36  381.9%T 548.2FT  0.8943%T 0.5466""

100d20c 3-Stage 34.17 35.93 399.9*" 536.17T  0.8858*" 0.5256F"
kest-means 100 262 2604  707.5 0.7865  0.4505
k-means 100 20 188.1  841.0 0.7011  0.3799
D-Medoid 19.53 20.23 162.7  748.6 0.7568  0.4435
2-Stage Linear 27.37 47 304.4%Y 991.7tT  0.7968%T 0.5116F"
2-Stage Elliptical 39.07 47 315.8%T 980.4TT  0.8057T 0.5012F"

100d40c 3-Stage 379 47  338.67T 940.5TT  0.7624F" 0.3305%"
kest-means 100 42.87 332.0 1146.0  0.7073  0.2837
k-means 100 40 3014 1176.0  0.6923  0.2689
D-Medoid 2247 23 142.7  1442.0  0.5426  0.1997

number of clusters, perhaps due to the clustering performance metric
used. This behaviour is useful in some cases, where K., is below the
actual K (e.g. 10d10c, 10d20c and 10d40c), but on the other synthetic
datasets where K.y > K, it means that the proposed methods are not
able to correctly lower the K found. It would be useful to investigate
changing the clustering performance metric in the fitness function to
encourage searching values on both sides of K.

3.7.3 Further Analysis

The two variations of the two-stage approach perform better on different
datasets: the elliptical method is best on datasets with small feature sets
(Wine, Breast Cancer, Dermatology, 10d) where the linear method selects
tewer features at the expense of cluster quality. On the larger feature sets,
the elliptical method selects extra features without increasing
performance. This is due to the ellipse used: on larger feature sets, e.g.
the 50 features seen in Figure 3.6a, the feature weighting is close to 1 for
m between 0 and 10, and above 0.9 even when 20 features are selected —
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indeed, on the synthetic datasets with 50 features, this method selects 15
to 20 features. On smaller feature sets, this effect is less noticeable, as
only a few features are able to be selected before the feature weighting
decreases significantly. Investigating a way of dynamically altering the
shape of the ellipse used based on the size of the feature set would ensure
that the weighting “drop-off” begins earlier on bigger datasets. The
two-stage methods have similar values of K across all datasets,
indicating that neither is being overly affected by the correlation between
m’ and K. If this had occurred, the elliptical method would have higher

K on the datasets where it selected more features than the linear method.

The three-stage approach is an improvement compared to the two-stage
elliptical approach on the internal metrics across all of the datasets (and
especially on the hardest synthetic ones). This suggests that fine-tuning
the solutions produced with a pseudo-local search is effective, increasing
the cluster quality. However, the results on the external metrics are much
worse for the three-stage approach on the 50d40c and 100d40c synthetic
datasets, contrary to that of the internal metrics. It is not obvious why this
occurs — one explanation is that the noise present in the synthetic datasets
has a significant effect when K is large (i.e. K = 40); as a centroid can
take any possible co-ordinates (unlike a medoid), it may be much more

sensitive to the noise in the dataset, producing overly specific clusters.

3.8 Chapter Conclusions

This chapter compared a number of different PSO representations for
simultaneously performing clustering and feature selection.  We
proposed an extension to the medoid representation (“D-Medoid”) that
enables it to be used in the case where the number of clusters is
unknown. An improved version of the NMA_CFS fitness function [150]
was also introduced. A comprehensive quantitative comparison of the
different representations was conducted across a number of real-world
and synthetic datasets with a range of different characteristics. It was
found that a medoid representation could achieve the best performance
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when K is known, as it was able to select the fewest features while
outperforming k-means on the hardest synthetic datasets. This finding
highlights a gap in the current clustering literature, which has focused
primarily on centroid approaches.

The second half of this chapter introduced a more comprehensive
two-/three-stage medoid approach, which addressed key limitations of
the proposed medoid representation by: using an estimate of K, K.y, to
guide the PSO search process; proposing a further improved
multi-faceted fitness function that encourages good cluster quality,
minimises m/, and reduces the search space of K; and introducing a
pseudo-local search, which refines the clusters produced by the second
stage. These improvements were shown to significantly improve upon
the K found by D-Medoid on datasets with high K. The two- and
three-stage approaches also demonstrated a more appropriate trade-off
between feature selection and clustering performance, selecting more
features than D-Medoid but also achieving significantly better
performance on the synthetic clustering datasets.

In future work, we will further refine our fitness function by taking a
multi-objective approach in order to allow more intelligent balancing of
all the three criteria: cluster performance, feature selection, and
deduction of K. We would also like to investigate other methods of
measuring cluster performance (perhaps using multi-objective
techniques), such as connectedness or density. There is also scope for
improving performance further with other methods for estimating K,
penalising the number of features produced, or using other EC

techniques or representations.

This chapter clearly demonstrated the ability of EC-based FS to improve
clustering results. However, this is not the only way that EC can perform
FM in clustering tasks; the next chapter will explore using EC-based FC for
improving the performance and interpretability of clustering algorithms.



Chapter 4

Genetic Programming for Feature

Construction in Clustering

4.1 Introduction

EC-based feature construction (FC) has been used to improve
performance, reduce complexity, and improve model interpretability in a
wide range of supervised learning tasks [37]. However, despite
unsupervised learning posing even larger search spaces and
interpretability concerns than supervised learning, there has been very
tew applications of EC-based FC in problems such as clustering [118].
Some existing GP work inadvertently perform embedded FC by using
GP to perform clustering, but these methods do not leverage the full
potential of GP to construct high-quality, sophisticated features. Indeed,
no known EC work use the powerful wrapper FC approach, where
features are automatically tailored to be specific to the clustering
algorithm and dataset being used.

4.1.1 Chapter Goals

This chapter aims to propose the first GP approach to performing
wrapper-based FC in clustering tasks. This approach is expected to

improve clustering performance; reduce the number of features used by

97
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clustering algorithms; and allow more interpretable clustering results
utilising a small number of sophisticated, high-level constructed features.
More specifically, this chapter will investigate:

* whether a basic wrapper-based GP method can be used to
automatically produce multiple constructed features in a single run,

and if so, which GP representation is most appropriate;

o if these constructed features are simple enough so that they can be
understood;

e whether GP can be used to automatically generate tailored
similarity functions, which are specific to a given clustering
algorithm and dataset;

e if these evolved similarity functions improve performance while
improving interpretability by using a subset of features; and

* whether evolving multiple heterogeneous similarity functions to
make a consensus decision can further improve the results by
allowing niching behaviour across the search space of a clustering

problem.

4.1.2 Chapter Organisation

Sections 4.2 to 4.5 address the first two goals of this chapter by proposing
two wrapper approaches using GP to automatically construct features for
improving the performance of k-means clustering. The performance of
these approaches are compared to k-means (using all features) across a
number of datasets. Sections 4.6 to 4.10 tackle the third, fourth, and fifth
goals, by developing a novel approach to automatically creating tailored
similarity functions for use in clustering algorithms. Different varieties of
this approach are evaluated in substantial depth across 17 clustering
datasets compared to a wide range of existing clustering methods. A
summary of the key findings of this chapter is provided in Section 4.11.
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4.2 GP for Wrapper-Based FC in Clustering

k-means is the most well-known clustering algorithm due to its simple,
efficient formulation and reasonable efficacy on basic problems [69].
However, it is fundamentally limited on more difficult problems where
there are many dimensions/clusters or clusters are non-hyper-spherically
shaped. By using GP to construct high-level features, the original feature
space could be manipulated into a form which k-means can easily cope
with. In this way, the performance of k-means can be improved beyond
what is possible with the original features alone. Traditional GP program
designs output only a single value from a single individual, meaning that
only a single constructed feature (CF) is created. While a single CF may
be adequate on easy datasets with a small K, when there are many
clusters, it would be very difficult to accurately partition the dataset
using a single value. Hence, new GP representations need to be
developed to produce multiple CFs. The evolved system can also be
taught to produce good clusters according to any measure of cluster
quality, as GP individuals will learn to produce CFs to maximise the
titness of the wrapped k-means algorithm. In contrast, standard k-means
simply minimises intra-cluster variance without considering any other
indicators of cluster quality. As clustering will be performed on a
constructed feature space, using a clustering algorithm more advanced
than k-means may not be necessary, as GP should learn to produce
features tailored to the clustering algorithm used.

In this section, we propose two new representations for performing FC
using GP for clustering. We also introduce two fitness functions that can
be used to train GP with k-means to improve the clustering performance.

The overall design of the methods in this section is shown in Figure 4.1.

4.2.1 Multi-Tree Representation

To allow multiple CFs to be produced by a single GP individual, we
propose an extension to the standard single-tree GP representation, so
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Figure 4.1: The overall flow of the GP wrapper-based FC methods. The
multi-tree and vector representations differ in how they produce the
constructed features for each instance.

that an individual contains multiple trees, producing multiple CFs. The
number of trees (¢) is dependent on the dataset used — generally, a
higher K requires a higher t.

The function set used contains a number of standard arithmetic operators
(+,—, x,+,|+],| =), as well as the max and min operators. Each of these
operators take two children and produce a single output. The <+ operator
is protected division: if the second child (the divisor) is 0, the operator
returns 1. The final operator in the function set is i f, which takes three
children and returns the value of child, if child, is positive; otherwise it
returns the value of childs. The if operator is used to allow conditional
behaviour in the GP program. The terminal nodes are the features of the
dataset (f; through to f,,) as well as a random double in the range [0, 1].

When such a multi-tree approach is used, the crossover and mutation
operators in the evolutionary process must be adapted. In this work, we
use a common approach [61, 162] whereby crossover is performed by
selecting two individuals (in the normal way), selecting a random tree
from each of the individuals, and then selecting a random sub-tree from
each tree to use for crossover. Mutation is performed by choosing a
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random tree from a random individual to be mutated.

While the multi-tree approach is reasonably straightforward to design, it
has a number of limitations: most notably, that ¢ must be set in advance.
The crossover operator used may also be problematic: as any two random
trees from a pair of individuals can be chosen for crossover, trees being
crossed over may not correspond to similar CFs, and so the CFs produced
are unlikely to be fully distinct from each other. Redundancy across a
constructed feature set may affect the efficiency and interpretability of a

given solution.

4.2.2 Vector Representation

To address the above issues, we also propose a single-tree approach
which utilises a vector representation to produce multiple CFs from a
single tree. The vector representation has no ¢ parameter and so no
parameter tuning is required. We use a similar function set as in the
previous approach, but adapt each function to take two vectors as input
and produce a vector as output. Each function operates on the input
vectors in a pairwise manner, and the output vector has length equal to
that of the smaller vector. We also introduce a concat function that takes
two vectors as input and outputs a vector that is the result of appending
the second vector to the end of the first. This concat function allows
vectors of variable length to be generated, allowing GP to automatically
generate a dynamic number of CFs. By using several concat functions in
a single tree, the constructed feature vector will grow as the tree is
evaluated from bottom to top. The terminal set remains the same as in
the previous approach, however each terminal node now outputs a

vector containing the terminal value.

4.2.3 Fitness Function

When K is fixed, the most commonly used fitness function is the ) | Intra
fitness [3]:
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K
Y Intra=> > d(I, %) (4.1)

i=1 I,eC;

where C; represents the *" cluster, I, € C; represents an instance in the i*"
cluster, and Z; represents the mean of the i cluster. This fitness function is
what is minimised by k-means — when K is known, we should encourage
all clusters to be as compact as possible, by minimising ) Intra. One
limitation of this measure is that clusters are encouraged towards hyper-
sphericality; clusters will be unlikely to form non-spherical shapes that

can occur on certain datasets.

One way of avoiding this problem is to use a fitness function based on
connectedness. Connectedness measures the extent to which instances
are in the same cluster as their immediate neighbours; close instances are
similar and should fall in the same cluster. We propose a new fitness
function, based on that proposed by Handl et al. [56], which computes
the mean connectedness of all clusters in a partition:

K
1 1
Connectedness = E Z C Z dinverse([m Ib) (42)
i=1 |Cil e’
1
dmverse Izu Iy) = ) VY 1 4.
(o )= min gy )

The above fitness function (Equation (4.2)), which should be maximised,
encourages clusters to contain instances which are close together.
Equations (4.2) and (4.3) contain a number of extensions to the one
proposed by Handl et al. [56]:

1. Closer neighbours are weighted more strongly, by directly using the
distance between neighbours in the fitness calculation. The inverse
distance is capped to a maximum of 10 (i.e. when dist < 0.1) to
prevent very similar/identical instances overly affecting fitness.
The value of 10 was chosen empirically through testing on a range
of datasets.
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2. The mean connectedness is calculated across the set of clusters,
instead of summing over all instance pairs. This discourages
solutions with one very large cluster (with very good
connectedness) and several very small clusters.

3. The mean connectedness within a cluster is used (instead of
summing), to prevent very close instances from being

over-represented in the fitness.

It is anticipated that by using connectedness, GP will produce features
that allow for non-hyper-spherical clustering — although k-means itself
will create hyper-spherical clusters in terms of the CFs, the CFs created
by GP need not be linear transformations of the original features. The
ability of our wrapper approach to train k-means based on different fitness
measures allows k-means to be adapted to perform well on datasets that
it would otherwise struggle on, especially when it is used with only a few
CPs.

4.3 Experiment Design

Each combination of the two representations (multi-tree and vector) and
two fitness functions () Intra and Connectedness: Equations (4.1)
and (4.2)) were evaluated on a range of datasets using a variety of
metrics. k-means was evaluated as a baseline, using all features. Each
method is non-deterministic, and so is run 30 times using different seeds,

and the mean result for each metric is computed.

Table 4.1 shows the evolutionary parameters used for all the GP methods
across all the datasets. For the multi-tree approach, ¢ is set to 7 — this
was found empirically to be the required number of trees in order to give
good performance across all datasets. k-means is also run for 100
iterations, or until convergence is reached (i.e. when cluster centres do
not move between iterations). The initial cluster centres for k-means are

randomly selected from the dataset. The seed of k-means is determined
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Table 4.1: GP parameter settings.

Parameter Value Parameter Value
Generations 100 Crossover Rate 80%
Population Size 1024 Mutation Rate 20%
Minimum Depth 2 Elitism top-10
Maximum Depth 8 Selection Type Tournament

Initial Population =~ Half-and-half =~ Tournament Size 7

Table 4.2: Datasets used in the experiments.

Real-World UCI datasets from [31]. Synthetic datasets from [56].

No.of No.of No. of No.of No.of No. of

Name Name
Features Instances Classes Features Instances Classes
Iris 4 150 3 10d10c 10 2730 10
Wine 13 178 3 10d20c¢ 10 1014 20
Movement 90 360 15 10d40c 10 1938 40
Libras 50d10c 50 2699 10
Breast 9 683 2 50d20c¢ 50 1255 20
Cancer 50d40c 50 2335 40
Image 18 683 7 100d10c 100 2893 10
Segmentation 100d20c 100 1339 20
Dermatology 34 359 6 100d40c 100 2212 40

using a hashing function applied to a GP tree so that each tree produces

consistent partitions.

4.3.1 Datasets

A range of synthetic and real-world datasets were wused to
comprehensively evaluate the proposed methods, as shown in Table 4.2
Datasets were scaled so that each feature had values in [0, 1], to prevent
bias towards features with large ranges. These are the same datasets as
used in Chapter 3; justification around the choice of these datasets is
provided in Section 3.3 (page 73).
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4.3.2 Evaluation Metrics

Clustering performance is measured using the two internal metrics
defined previously, which directly measure the quality of a cluster
partition.  Connectedness (see Equation (4.2)) evaluates how well
neighbouring instances are allocated to the same cluster, and ) Intra

Distance (see Equation (4.1)) indicates how compact the clusters are.

In addition, we use two external metrics to measure how well the cluster
partitions produced correspond to the dataset’s class labels. These are
class purity, which measures the homogeneity of each cluster with respect
to the class labels, and the F-measure, which measures how well pairs of
instances agree in terms of the clusters they are allocated to and their class
labels. These measures are previously defined in Equations (2.15) and (3.9)
respectively, on pages 35 and 76.

4.4 Results and Analysis

Tables 4.3 and 4.4 show the performance of the four GP methods and
k-means (using all features (AF)) across the six real-world and nine
synthetic datasets respectively. MTConn and MTIntra are the multi-tree
approaches using the connectedness and ) Intra fitness function
respectively, with ¢t = 7. VectorConn and VectorIntra are the two vector
approaches, each using one of the fitness functions proposed. Four
metrics are shown: Conn (connectedness), > Intra (3 intra distance),
Purity (class purity), and FM (the F-measure). The ) Intra metric should
be minimised (it is marked with a * in the table); the other three metrics
are maximised. For the GP methods, each result is labelled with a “+” or
a “—" if it is significantly better or worse than the k-means baseline
according to a Student’s t-test performed with a 95% confidence interval.
A lack of a “+” or “—" indicates no significant difference.
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4.4.1 Results on Real-World Datasets

The GP methods generally perform well compared to k-means across the
real-world datasets. All the four GP methods are significantly better in
terms of the F-measure on the Iris, Wine, and Image Segmentation
datasets. At least one of the GP methods is significantly better than
k-means on all the remaining real-world datasets; GP is only significantly
worse than k-means when using connectedness on the Breast Cancer
dataset, where the )  Intra fitness measure gives much Dbetter
performance. The connectedness fitness measure gives very good results
on the Dermatology dataset, improving performance over k-means
significantly. Clearly, different datasets require the use of different fitness
functions: this flexbility is a key benefit of our proposed approach
compared to the original k-means algorithm. Both the multi-tree and the
vector approaches appear to perform similarly on the real-world
datasets, with an exception on the Iris dataset, where the vector approach

is superior when connectedness is used in terms of the external metrics.

Table 4.3: Performance on Real-World Datasets.

Method Conn Intra* Purity FM Conn Intra* Purity FM
Iris Wine

MTConn?7 223.47 29.59% 0.8989" 0.8308"  90.13" 88.997 0.9723% 0.9444*

MTIntra 26.49- 29.28% 0.8867* 0.81117  7.6217 88.7t 0.9663% 0.933"

VectorConn 223.11 29.59% 0.9502% 0.9086% 90.12% 89.01~ 0.9697" 0.9392"
VectorIntra 26.49~ 29.28% 0.8867% 0.8111% 7.618% 88.7t 0.9661" 0.9325T
k-means AF 26.77 31.39 0.8116 0.7544 7.561 88.74 0.9491 0.8998

Movement Libras Breast Cancer
MTConn?7 19.28%F 424.9~ 0.4424— 0.3417 895.8%7 369.7~ 0.9101~ 0.8445~
MTIntra 5.473% 400.2F 0.472 0.3527 15.637 331.67 0.9675T 0.9423%

VectorConn 19.17  414.3  0.4583 0.3434 898.1% 376.7 0.89727 0.824~
VectorIntra 5.4867 399.07 0.4749% 0.3542% 15.647 331.6T 0.9669" 0.94137"
k-means AF 5.134 4145 0.4619 0.3439 15.52  332.0 0.9609 0.9313

Image Segmentation Dermatology
MTConn?7 798.4% 877.17 0.6832F 0.58867  42.28% 377.17 0.946T 0.93247F
MTIntra 25.39% 869.5% 0.6654" 0.5717  3.176% 376.2% 0.8655" 0.7915

VectorConn 797.1% 873.8% 0.6859" 0.5894T 41.77  382.8 0.9063% 0.8764%
VectorIntra 25.38% 872.2% 0.6655T 0.5726™ 3.063 380.9% 0.8538 0.7839
k-means AF 24.78 908.6 0.6383 0.5582 3.022  386.5 0.8349 0.7569
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4.4.2 Results on Synthetic Datasets

The GP methods continue to perform well compared to k-means on the
synthetic datasets. All of the four methods have a significantly higher
F-measure value than k-means on the datasets with 20 or 40 clusters.
These datasets are the most difficult as they require separating the
dataset into the greatest number of distinct groups. k-means performs
very poorly when there is a large number of clusters (e.g. K = 40); GP is
able to effectively perform FC to significantly improve the performance
of k-means on the hardest datasets, while only using a small subset of the
feature set. Some GP methods perform significantly worse on the simple
10d10c and 50d10c datasets, but at least one GP method is still
significantly better than k-means in these cases.

The connectedness and ) Intra fitness measures are again superior on
different datasets. The method using connectedness are significantly
better than k-means on the 50d10c dataset, whereas those using ) _ Intra
titness are significantly worse. The inverse is true on the 10d10c dataset,
however. In general, the multi-tree approach seems slightly better than
the vector approach, especially on the datasets with highest
dimensionality such as 100d20c and 100d40c. Future testing is required
to evaluate which method is superior, and more work could be done to
improve each method by further exploring alternative representations or

fithess functions.

4.5 Evolved Program Analysis

It is often useful when using GP to evaluate and analyse some of the
high-performing individuals produced during the evolutionary process.
Doing so allows us to understand what properties of a given tree allow it
to perform well, which leads to a better understanding of the problem as
well as allowing the GP method to be improved further. In addition,
analysing evolved programs increases the confidence in our proposed
method by demonstrating how it is able to achieve the good results we
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Table 4.4: Performance on Synthetic Datasets.

Method Conn Intra* Purity FM Conn Intra* Purity FM
10d10c 10d20c

MTConn 823.3% 719.17 0.9019~ 0.7836~  177.07 213.2% 0.9948% 0.9919"

MTIntra 17.67~ 710.17 0.9294 0.878 16.57 213.0"  0.9948% 0.9919*

VectorConn 827.3%7 713.9  0.9153~ 0.8025~ 177.0" 213.57  0.9941" 0.9887"
VectorIntra 18.05" 706.3%  0.9404" 0.8926™ 16.487 213.57  0.9938"T 0.9906"
k-means AF  17.88 7124  0.9291 0.8571 15.29 254.8  0.8732 0.7969

10d40c 50d10c
MTConn 173.2F 406.5% 0.9747t 0.9311F 589.47 1480.0~ 0.7325~ 0.5167"
MTIntra 16.341T 405.0% 0.977F 0.9456* 17.14~ 1220.07 0.7392 0.4785~

VectorConn 173.6% 403.3%  0.9789" 0.9409"  587.3% 1437.0~ 0.7278 0.5005
VectorIntra 16.327 404.17  0.9771F 0.9494" 17.227 1216.0" 0.7397 0.4795~
k-means AF  15.75 436.8 09182 0.8628 1749 1317.0 0.744  0.4939

50d20c 50d40c
MTConn 163.37 583.27 0.7138% 0.4996™ 163.37 894.77 0.685  0.4397°
MTIntra 17.43  493.8% 0.74567 0.4776" 18.95~ 833.8" 0.6952" 0.42697"

VectorConn 162.5% 555.7  0.7212F 0.4832" 165.4T 850.4% 0.7082% 0.4106™
VectorIntra 17.52 487.2% 0.7412%F 0.4351" 19.3%  797.1%  0.7165" 0.37597
k-means AF  17.33 546.5 0.6868 0.3823 19.16 865.2  0.6791 0.2618

100d10c 100d20c
MTConn 521.8% 2123.0~ 0.7598 0.5311 126.0" 885.4~ 0.7084 0.4657
MTIntra 15.81" 1776.0" 0.7835" 0.5825T 13.66T 764.97 0.7481" 0.4598"

VectorConn 519.5% 2077.0~ 0.7595 0.5446 125.57 850.5  0.7122 0.4451°
VectorIntra 15.89% 1771.0%7 0.7839" 0.5854% 13.747 749.6% 0.7466" 0.4331°"
k-means AF  15.14 1968.0 0.748  0.5255 13.31 844.2  0.7033 0.38

100d40c
MTConn 114.8% 1234.0~ 0.6963 0.4629"
MTIntra 14.187 1118.0" 0.7181" 0.462"

VectorConn 116.0T 1159.0 0.7142% 0.4418*%
VectorIntra 14.45 1061.0T 0.7344% 0.4028*%
k-means AF 14.55 1184.0 0.6904 0.2675

claim. In this section, we analyse a number of GP trees with high

F-measure across a range of datasets.

An example of the multi-tree approach (for 10d20c) can be seen in
Figure 4.2. The seven trees produced by an individual with a very high
F-measure value of 0.9947 are shown, along with the constructed feature
set generated, which consists of seven features, one from each tree. Of
these trees, three are simply performing feature selection of a single
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The evolved multi-tree GP individual with seven trees.
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(h) Constructed feature set generated by the programs.

Figure 4.2: An evolved multi-tree individual on the 10d20c dataset (FM:
0.9947).

feature, two add a constant value to a single feature, and the remaining
two are performing more advanced FC. In total, seven of the original 10
features are used. Although the dimensionality has not been greatly
reduced, performance is still much higher than that of the original
k-means algorithm (which achieves an F-measure value of 0.7969). This
further highlights the ability of GP to improve performance by selecting
the most important features, and creating more powerful high-level

features.

Figure 4.3 shows a GP individual using the vector approach with high
performance on the hardest synthetic dataset (100d40c). The individual is
a reasonably concise tree, with a maximum width of eight nodes and a
depth of seven. The tree itself is shown in Figure 4.3a, and the output of
the tree as shown in Figure 4.3b. The tree selects feature values as
terminal nodes, and outputs a constructed feature vector of length 12,
containing 11 “constructed” features and one constant value. Of these
CFs, one is an arithmetic combination of two selected features and two
constants, two are operations applied to a selected feature and a constant
value, and the remaining nine are unchanged selected features. k-means
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(a) The GP tree.

[I(Fis x 0.85) + (F3o — 0.62)|, Fu1, Fis, Fia, For, 0.6, Fer, min(0.63, Fis), Fys, Fss, Fri]

F7
0.59°

(b) Constructed feature set generated by the program.

Figure 4.3: An evolved vector individual on the 100d40c dataset (FM:
0.499).

achieved an F-measure value of 0.2618 on average; this GP individual
produced nearly double the F-measure value (0.499) while only using 12
features compared to the 100 original features that k-means used. This
large increase in performance shows the power of GP in improving
performance by creating more powerful high-level features while also

reducing dimensionality.

A useful property of the vector approach is its ability to dynamically
produce a variable number of CFs. For example, on the Iris dataset,
which has only three classes, it is unnecessary to have seven CFs (as
occurs for ¢t = 7 in the multi-tree approach) and having so many features
may reduce the interpretability of the solution. Figure 4.4 shows a high
performing, very simple GP individual produced on the Iris dataset. This
tree is very easy to analyse: it simply selects two of the four features in
the dataset (F3 and F,). By not selecting the other misleading or
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(a) The GP tree. (b) Feature set.

Figure 4.4: An evolved vector individual on the Iris dataset (FM: 0.9233).

redundant features, this GP tree significantly improves the ability of
k-means to produce a good cluster partition.

4.6 Evolving Similarity Functions for Clustering
using GP

The wrapper-based approaches proposed in Section 4.2 showcased the
potential of GP to improve the performance and interpretability of
clustering algorithms through the automatic construction of high-level
features. However, the clustering algorithm (k-means) was forced to
weight all constructed features equally in all cases, as the similarity
function was pre-determined to be Euclidean distance. It is not likely that
this is the optimal similarity function to use, especially across a range of
different datasets with varying characteristics. Ideally, we would hope
that the best similarity function for a given clustering algorithm and
dataset could be automatically found, but this in itself is clearly an
NP-hard task if we allow arbitrary similarity functions.

The clustering literature has an overwhelming focus on producing novel
clustering algorithms, which employ a wide range of techniques for
modelling and searching the clustering problem space. However, there
has been very little focus on new techniques for automatically creating
more appropriate and more powerful similarity measures to accurately
model the relationships between instances on a specific dataset. GP, with
its intrinsic function-like solution structure, is a natural candidate for
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automatically evolving similarity functions tailored to the data it is
trained on. GP, and EC methods in general, have been shown to be
effective on large dataset sizes and dimensionality; GP has the potential
to evolve smaller, more refined, and more interpretable similarity
functions on very big datasets. The remainder of this chapter investigates
the capability of GP for automatically constructing power similarity

functions.

4.7 Evolving Similarity Functions: Proposed

Approaches

A variety of representations have been proposed for modelling clustering
solutions. The graph representation models the data in an intuitive way,
where instances (nodes) are connected by an edge if they are similar
enough [174]. This is a powerful representation that allows modelling a
variety of cluster shapes, sizes, and densities, unlike the more common
prototype-based representations such as k-means. However, algorithms
using graph representations are very dependent on the criterion used to
select edges [174]. One of the most common criteria is to simply use a
fixed threshold [174], which indicates the distance at which two instances
are considered too dissimilar to share an edge. Such a threshold must be
determined independently for every dataset, and this approach typically
does not allow varying thresholds to be used in different clusters.
Another popular criterion is to put an edge between each instance and its
N-nearest neighbours [174], where N is a small integer value such as 2, 3,
or 4. N must also be determined before running the algorithm, with

results being very sensitive to the IV value chosen.

Given that graph-based clustering performance is very dependent on a
good choice of similarity function (and parameter tuning), we focus on
this type of algorithm as a good candidate for improving through the use
of automatically evolved similarity functions. An overview of the

proposed GP for Graph-based Clustering (GPGC) algorithm is shown in
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Initialise EC
process
Evolutionary Done
Loop

For G generations
Update population Done Repeat for n
(selection, crossover, \epee |
mutation) individuals

Cluster data using GP Evaluate fitness of
individual clustering result

Output individual
with best fitness

Figure 4.5: The overall flow of the proposed GPGC algorithm. The
clustering process is discussed in detail in Section 4.7.2, and is shown in
Algorithm 1.

Figure 4.5. We discuss the different parts of this overall algorithm in the
following subsections.

4.7.1 GP Representation

To represent a similarity function, a GP tree must take two instances as
input and produce a single floating-point output corresponding to the
similarity of the two instances. Therefore, we define the terminal set as
all feature values of both instances, such that there are 2m possible
terminals for m features (/o and I, Fj, through to [yF,,,_1 and I, F},,_1), as
well as a random floating-point value (for scaling purposes). The
function set comprises of the normal arithmetic functions (+,
—, %, protected +), two absolute arithmetic functions (| + | and | — |), and
the max, min and i f operators. All of these functions asides from i f take
two inputs and output a single value, which is the result of applying that
function. The i f function takes three inputs and outputs the second input
if the first is positive, or the third input if it is not. We include the if,
max, and min functions to allow conditional behaviour within a
program, in order to allow the creation of similarity functions that

operate differently across the feature space. The + operator is protected
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Figure 4.6: An example of of a similarity function with the expression
sub(max(add([oFl, IlFl), |sub|(]1F5, [()FQ)), ]OFg).

division: if the divisor (the second input) is zero, the operator will return
a value of one. An example of a similarity function using this GP

program design is shown in Figure 4.6.

4.7.2 Clustering Process

As we are using a graph representation, every pair of instances that are
deemed “close enough” by an evolved GP tree should be connected by
an edge. As discussed before, we would like to refrain from using a fixed
similarity threshold as varying thresholds may be required across a
dataset due to varying cluster density. We therefore use the approach
where each instance is connected to a number of its most similar

neighbours (according to the evolved similarity function).

To find the most similar neighbour of a given instance for an evolved
similarity function requires comparing the instance to every other
instance in the dataset. Normally, when using a distance metric, these
pairwise similarities could be precomputed; however, in the proposed
algorithm, these must be computed separately for every evolved
similarity function, giving O(n*) comparisons for every GP individual on
every generation of the training process, given n instances. In order to
reduce the computational cost, we use a heuristic whereby each instance
is only compared to its [ nearest neighbours based on Euclidean distance.
The set of nearest neighbours can be computed at the start of the EC
training process, meaning only O(nl) comparisons are required per GP
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individual. By using this approach, we balance the flexibility of allowing
an instance to be connected to many different neighbours with the
efficiency of using a subset of neighbours to compare to. As we use
Euclidean distance only to give us the order of neighbours, the problems
associated with Euclidean distance at high dimensions should not occur.
We found in practice that setting [ as | = [/n] gave a good
neighbourhood size that is proportional to n, while ensuring [ is at least 2.

Algorithm 1 shows the steps used to produce a cluster for a given GP
individual, X. For each instance [ in the dataset, the nearest [ neighbours
are found using the pre-computed Euclidean distance mappings. Each of
these [ neighbours is then fed into the bottom of the tree (X) along with
I. The tree is evaluated, and produces an output corresponding to the
similarity between I and that neighbour. The neighbour with the highest
similarity is chosen, and an edge is added between it and I. As in GPGC,
we tested adding edges to more than one nearest neighbour, but found
that performance decreased. Once this process has been completed for
each I € Dataset, the set of edges formed will give a set of graphs, where
each graph represents a single cluster. These graphs are converted to a set

of clusters by assigning all instances in each graph to the same cluster.

4.7.3 Fitness Function

The most common measures of cluster quality are compactness and
separability [3]. A good cluster partition should have distinct clusters
that are very dense in terms of the instances they contain, and that are far
away from other clusters. A third, somewhat less common measure, is
the instance connectedness, which measures how well a given instance
lies in the same cluster as its nearby neighbours [56]. The majority of the
clustering literature measures performance in a way that implicitly
encourages hyper-spherical clusters to be produced, by minimising each
instance’s distance to its cluster mean, and maximising the distance
between different cluster means. Such an approach is problematic, as it

introduces bias in the shape of clusters produced, meaning elliptical or
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Algorithm 1: Process to produce a cluster using a given GP individual
(X) and the number of neighbours (().

Edges ={};

for I € Dataset do Choose edge

Neighbours = nearest Neighbours(1,1);

Neighbourpes = 0;

Similaritypess = —00;

for Y € Neighbours do Test neighbour

similarity = evaluate(X,I,Y);

if similarity > Similaritypg.. then
Similaritygess = similarity;
Neighbourges =Y;

end

end

add edge from I to Neighbourp.s to Edges;

end

Cluster = graphToCluster(Edges);

other non-spherical clusters are unlikely to be found.

As a graph representation is capable of modelling a variety of cluster
shapes!, we instead propose using a fitness function that balances these
three measures of cluster quality in a way that gives minimal bias to the
shape of clusters produced. We discuss each of these in turn below.

Compactness To measure the compactness of a cluster, we choose the
instance in the cluster that is the furthest away from its nearest neighbour
in the same cluster; that is, the instance that is the most isolated within
the cluster. The distance between that instance and its nearest neighbour,
called the sparsity of the cluster, should be minimised. We define sparsity
in Equation (4.4), where C; represents the i" cluster of K clusters, I, € C;
represents an instance in the i cluster, and d(I,, I;) is the Euclidean

distance between two instances.

Sparsity = max { min d(Io, 1) |1 # 1} (4.4)

eC; [bez

!Examples of a range of cluster shapes can be seen in Figure 2.1 on page 24.
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Separability To measure the separation of a cluster, we find the
minimum distance from that cluster to any other cluster. This is
equivalent to finding the minimum distance between the instances in the
cluster and all other instances in the dataset that are not in the same
cluster, as shown in Equation (4.5). The separation of a cluster should be

maximised to ensure that it is distinct from other clusters.

Separation = }516%1 { Ibrr%lg d(1, 1)} (4.5)
Connectedness An instance’s connectedness is measured by finding how
many of its ¢ nearest neighbours are assigned to the same cluster as it,
with higher weighting given to neighbours that are closer to the given
instance, as shown in Equation (4.6). To prevent connectedness from
encouraging spherical clusters, ¢ must be chosen to be adequately small
— otherwise, large cluster “blobs” will form. We found that setting
¢ = 10 provided a good balance between producing connected instances
and allowing varying cluster shapes. The mean connectedness of a

dataset should be maximised.

1
i

|C Z dinv(Lzalb)}IbﬂCi (46)

1K
Connectedness = e g
=1 I(LGCi1 IbEN[a

where N;, gives the c nearest neighbours of I,, [, N C; indicates that /, and

I, are (correctly) in the same cluster, and

1

AT 10] (4.7)

dmv(Ia; ]b) = mln[

The inverse distance between two instances is capped at 10, to prevent
very close instances from overly affecting the fithess measure. Inverse

distance is used to weight closer neighbours more highly.

Our proposed fitness function is a combination of these three measures
(Equations (4.4) to (4.6)): we find each cluster’s ratio of sparsity:
separation (as they are competing objectives) as shown in Equation (4.8),
and then measure the partition’s fithess by also considering the
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connectedness, as shown in Equation (4.9). This fitness function should

be maximised.

1 Sparsity
Mean SpaSep = K : Se}mrTon (4:8)
Fitness — Connectedness (4.9)
Mean SpaSep

4.7.4 Using a Multi-Tree Approach

GP can also use multiple trees to represent each individual/solution.
Multi-tree GP has the potential to automatically generate multiple
complementary similarity functions, which are able to specialise on

different clusters in the dataset.

As previously discussed, using a single fixed similarity function means
that every pair of instances across a dataset must be compared
identically, i.e. with all features weighted equally regardless of the
characteristics of the given instances. By using GP to automatically
evolve similarity functions containing conditional nodes (¢f, maz, and
min), we are able to produce trees that will measure similarity
dynamically. However, a tree is still limited in its flexibility, as there is an
inherent trade-off between the number of conditional nodes used and the
complexness of the constructed features in a tree — more conditionals
will tend to mean simpler constructed features with fewer operators (and

vice versa), due to the limitations on tree depth and training time.

To tackle these issues, while still maintaining reasonable tree depth and
training time, we propose evolving a number of similarity functions
concurrently. Using this approach, a pair of instances will be assigned a
similarity score by each similarity function, which are then summed

together to give a total measure of how similar the two instances are?. In

20f course, there are a variety of ways to combine similarity scores in the ensemble
learning literature, such as taking the maximum output. We use the sum here to increase
the stability of the joint similarity function, and to reduce the effect of outliers/edge
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(a) (b) ()

Figure 4.7: An example of a multi-tree similarity function.

this regard, each similarity function provides a measure of its confidence
that two instances should lie in the same cluster, allowing different
similarity functions to specialise on different parts of the dataset. This is
implemented using GP with a multi-tree approach, where each GP
individual contains not only one but multiple trees. An example of this
structure is shown in Figure 4.7 with the number of trees, t = 3. As all ¢
similarity functions are evolved concurrently in a single individual, a set
of cohesive functions will be evolved that work well together, but that are
not expected to be good similarity functions independently. In this way, a
GP individual can be thought of as a meta-function. The core of the
clustering process remains the same with this approach, with the only
change being that the most similar neighbour for a given instance is
based on the sum of similarities given by all trees in an individual. This

change to the algorithm is shown in Algorithm 2.

There are several factors that must be considered when extending the
proposed algorithm to use a multi-tree approach: how to perform
crossover when there are multiple trees to crossover between, and how
many trees to use. These two factors will be discussed in the following
paragraphs. A third consideration is the maximum tree depth — we use
a smaller tree depth when multiple trees are used, as each tree is able to
be more specialised and so does not require as many nodes to produce a
good similarity function. Mutation is performed as normal, by randomly

choosing a tree to mutate.

cases. We hope to investigate this further in future work.



© 0 NN o

10
11
12
13
14
15

4.7. EVOLVING SIMILARITY FUNCTIONS: PROPOSED
APPROACHES 120

Algorithm 2: Choosing the most similar neighbour to an instance (/)
in the multi-tree approach for individual X.

for Y € Neighbours do Test neighbour
stmilaritysy, = 0;
for T' € X do Each tree
‘ similaritys,, += evaluate(T,1,Y);
end
if similaritygy,, > Similarityp. then
Simalaritypess = stmalaritysym;
Netghbourges =Y;
end
end

Crossover Strategy

In standard GP, crossover is performed by selecting two individuals,
randomly selecting a subtree from each of these two individuals, and
swapping the selected subtrees to produce new offspring. In multi-tree
GP, a tree within each individual must also be selected. There are a

number of possible methods for doing so [61,162], as discussed below:

Random-index crossover: The most obvious method is to randomly
select a tree from each individual (random-index crossover) (RIC). This
method may be problematic when applied to our proposed approach, as
it reduces the ability of each tree to specialise, by exchanging information

between trees that may have different “niches”.

Same-index crossover: An alternative method to avoid the limitations of
RIC is to always pick two trees at the same index in each individual. For
example, selecting the third tree in both individuals. This method, which
we call same-index crossover (SIC), allows an individual to better develop
a number of distinct trees while still encouraging co-operation between
individuals through the crossover of related trees.

All-index crossover: The SIC method can be further extended by
performing crossover between every pair of trees simultaneously, i.e.
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crossover between every i tree in both individuals, where i € [1, ] for ¢
trees. This all-index crossover (AIC) approach performs information
exchange more aggressively between individuals, which should increase
training efficiency. However, it introduces the requirement that the effect
of performing all pairs of crossovers gives a net fitness increase, which

may limit the exploitation of individual solutions during the EC process.

We will compare these crossover approaches to investigate which type of

crossover is most appropriate.

Number of Trees

The number of trees used in a multi-tree approach must strike a balance
between the performance benefit gained by using a large number of
specialised trees and the difficulty in training many trees successfully.
When using either the SIC or RIC crossover methods, increasing the
number of trees used will reduce the chance proportionally that a given
tree is chosen for crossover/mutation, thereby decreasing the rate at
which each tree is refined. When the AIC method is used, a larger
number of trees increases the probability that a crossover will not
improve fitness, as the majority of the trees are unlikely to gain a
performance boost when crossed over in the later stages of the training
process when small “tweaks” to trees are required to optimise
performance. We will investigate the effect of the number of trees used

on the fitness obtained later in this chapter.

4.8 Evolving Similarity Functions: Experiment

Design

4.8.1 Benchmark Techniques

We compare our proposed single-tree approach (GPGC) to a variety of
baseline clustering methods, which are listed below. We also compare the
single- and multi-tree approaches to investigate the effectiveness of using
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additional trees.

* k-means++ [12], a commonly used partitional clustering algorithm.
Standard k-means++ cannot automatically discover the number of
clusters, and so K is pre-fixed for this method. We use this as an
example of a relatively simple and widely used method in the

clustering literature.

e OPTICS [11], a well-known density-based algorithm. OPTICS
requires a contrast parameter, £, to be set in order to determine
where in the dendrogram the cluster partition is extracted from; we
test ~OPTICS with a range of ¢ values in
[0.001,0.005,0.01,0.05,0.1,0.2,0.3,0.4,0.5] and report the best result
in terms of the Adjusted Rand Index (defined in Equation (2.13)).

* Two naive graph-based approaches that connect every instance
with an edge to its n-nearest neighbours [174]. We test with both
n = 2 (called NG-2NN) and n = 3 (called NG-3NN) in this work.
Note that the case where n = 1 (NG-INN) is similar to the
clustering process used in Section 4.7.2; we exclude NG-1NN as it

produces naive solutions with a fixed distance function.

¢ The Markov Clustering (MCL) algorithm [172] is another clustering
algorithm using a graph-based representation, which simulates
random walks through the graph and keeps instances in the same
cluster when they have a high number of paths between them.

* The multi-objective clustering with automatic k-determination
(MOCK) algorithm [56], as an example of a well-known
high-quality EC clustering method.

4.8.2 Datasets

We use a range of synthetic clustering datasets to evaluate the
performance of our proposed GPGC approach, with varying cluster
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Table 4.5: Datasets generated using a Gaussian distribution [56].

Name m n K
10d10cGaussian 10 2730 10
10d20cGaussian 10 1014 20
10d40cGaussian 10 1938 40

Table 4.6: Datasets generated using an Elliptical distribution [56].

Name m n K Name m n K
10d10c 10 2903 10 100d10c¢ 100 2893 10
10d20c 10 1030 20 100d20c¢ 100 1339 20
10d40c 10 2023 40 100d40c 100 2212 40
10d100c 10 5541 100 1000d10c 1000 2753 10
50d10c 50 2699 10 1000d20c 1000 1088 20
50d20c 50 1255 20 1000d40c 1000 2349 40
50d40c 50 2335 40 1000d100c 1000 6165 100

shapes, numbers of features (m), instances (n) and clusters (/). We avoid
using real-world classification datasets as done in previous clustering
studies, as there is no requirement that classes should correspond well to
homogeneous clusters [175] — for example, clustering the well-known
Iris dataset will often produce two clusters, as the versicolor and
virginica classes overlap significantly in the feature space. The datasets
were generated with the popular generators introduced by Handl et
al. [56]. The first generator uses a Gaussian distribution, which produces
a range of clusters of varying shapes at low dimensions, but produces
increasingly hyper-spherical clusters as m increases. As such, we use this

generator only at a small m, to produce the datasets shown in Table 4.5.

The second generator produces clusters using an elliptical distribution,
which  produces non-hyper-spherical clusters even at large
dimensionality. A wide variety of datasets were generated with this
distribution, with m varying from 10 to 1000, and K varying from 10 to
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Table 4.7: Common GP Parameter Settings.

Parameter Setting Parameter Setting
Generations 100 Population Size 1024
Mutation 20% Crossover 80%

Elitism top-10 Selection Type Tournament
Min. Tree Depth 2 Max. Tree Depth 5 (MT), 7 (ST)
Tournament Size 7 Pop. Initialisation Half-and-half

100, as shown in Table 4.6. Datasets with K = 10 clusters have between
50 and 500 instances per cluster, whereas datasets with a higher K have
between 10 and 100 to limit the memory required. These datasets allow
our proposed approach to be tested on high-dimensional problems. All
datasets are scaled so that each feature is in [0, 1] to prevent feature range
overly affecting the distance calculations used in the clustering process.
As a generator is used, the cluster that each instance is assigned to is
known — i.e. the datasets provide a gold standard in the form of a “cluster
label” for each instance. While this label is not used during training, it is
useful for evaluating the clusters produced by the clustering methods.

4.8.3 Parameter Settings

The non-deterministic methods (k-means++, GPGC, MOCK, MCL) were
run 30 times, and the mean results were computed. k-means++, GPGC
and MOCK were run for 100 iterations, by which time k-means++ had
achieved convergence. All benchmarks use Euclidean distance. The GP
parameter settings for the single- and multi-tree GPGC methods, are
based on standard parameters [135], and are shown in Table 4.7; the
multi-tree (MT) approach uses a smaller maximum tree depth than the
single-tree (ST) approach due to having multiple, more-specific trees. The
MOCK experiments used the attainment score method to select the best

solution from the multi-objective approximation front.
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4.8.4 Evaluation Metrics

To evaluate the performance of each of the clustering algorithms, we use
the three measures defined previously (connectedness, sparsity, and
separation), as well as the Adjusted Rand Index (ARI), which compares
the cluster partition produced by an algorithm to the gold standard
provided by the cluster generators in an adjusted-for-chance manner.
The ARI is defined in Equation (2.13) on page 34.

4.9 Evolving Similarity Functions: Results and

Discussion

We provide and analyse the results of our experiments in this section. We
begin by comparing each of the proposed multi-tree approaches to the
single-tree GPGC approach in order to decide which version of GPGC is
the more effective (Section 4.9.1). We then compare the best of these
approaches, GPGC-AIC, to the benchmark methods to examine how well
our proposed method performs relative to existing clustering methods
(Section 4.9.2). The effect of the number of trees on the performance of

the multi-tree approach is analysed in Section 4.9.4.

4.9.1 GPGC using Multiple Trees

To further improve the performance of the proposed GPGC approach, we
proposed an extension to use a multi-tree GP design in Section 4.7.4. To
analyse the effectiveness of this extension, and determine which type of
multi-tree crossover is most effective, we evaluated the three crossover
methods (RIC, SIC, AIC) against the single-tree GPGC approach. We
used t = 7 trees based on initial tests — the effect of varying ¢ is
discussed further in Section 4.9.4. Tables 4.8 and 4.9 show the results of
these experiments on the datasets generated using a Gaussian and
elliptical distribution respectively. For each of the four methods, we

provide the (mean) number of clusters (X), as well as four metrics of
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Table 4.8: Crossover: Datasets using a Gaussian Distribution.

Dataset Method Fitness K Conn. Spar* Sep. ARI
GPGC 19.23 215 419 0.293 0.140 0.750
10d10cGaussian AIC 23.757 88 5147 0.3247 0.1547 0.8807
RIC 2447t 81 5241 0.3247 0.156" 0.859"
SIC 24.66T 7.6 5297 0.326° 0.1577 0.8337
GPGC 63.00 19.7 473  0.268 0.375 0.991
10d20cGaussian AIC 63.79 19.5 473  0.268 0.377 0.980~
RIC 63.26 19.7 473  0.269 0.376 0.988
SIC 63.33 19.7 473  0.268 0.376 0.991
GPGC 57.81 34.8 486  0.267 0.331 0.958
10d40cGaussian AIC 60.37t 33.7 489" 0.265~ 0.337" 0.943~
RIC 60.057 34.0 489" 0.266~ 0.336" 0.955
SIC 58.89 34.6 488  0.267 0.334 0.958

cluster quality: fitness achieved, connectedness (Conn), sparsity (Spar)’,
separation (Sep), and the ARI. Connectedness, sparsity, and separation
are defined in the same way as in the fitness function. We performed a
two-tailed Mann Whitney U-Test at a 95% confidence interval comparing
each of the multi-tree approaches to the single-tree approach on each of
the metrics. A “+” indicates a method is significantly better than the
single-tree GPGC method, a “—" indicates it is significantly worse, and
no symbol indicates no significant difference was found. For all metrics

except for sparsity, a larger value indicates a better result.

The most noticeable result of using a multi-tree approach is that the
titness achieved by the GP process is significantly improved across all
datasets with the exception of the 10d20cGaussian, 10d40c and 10d100c
datasets, where the multi-tree approaches were significantly worse or
had similar fitness to GPGC. On the datasets generated using a Gaussian
distribution, the multi-tree approaches are able to find the number of
clusters much accurately on 10d10cGaussian, and achieve a significantly
higher ARI result. On the 10d40cGaussian dataset, both AIC and RIC
achieved significantly better fitness, connectedness, sparsity, and
separation than GPGC. While AIC is significantly worse than GPGC on

3Sparsity is labelled with a * in tables as a reminder that it should be minimised.
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Table 4.9: Crossover: Datasets using an Elliptical Distribution.

Dataset Method Fitness K Conn. Spar® Sep. ARI
GPGC 19.17 364 61.2  0.157 0.061 0.737
10d10c AIC 21.357 24.0 71.7"7 0.166~ 0.059 0.8147
RIC 20.687 23.1  73.77 0.168~ 0.058 0.7997
SIC 21.13% 24.7 7297 0.164~ 0.057 0.8067
GPGC 43.69 278 733 0.150 0.098 0.663
10d20c AIC 49117 225 7747 0.154 0.106% 0.666
RIC 4951 21.9  77.7% 0.154 0.106T 0.656
SIC 50.28T 21.8 783" 0.155~ 0.1067 0.677
GPGC 36.57 556 70.9 0.136 0.079 0.579
10d40c AIC 33.437 49.2  76.67 0.139 0.0727 0.522
RIC 31.927 53.2 7511 0.138 0.0707 0.486~
SIC 31.95- 51.1 7597 0.140 0.071~ 0.539
GPGC 31.80 109.5 74.0 0.131 0.066 0.424
10d100c AIC 32.40 1064 75.6 0.131 0.066 0.421
RIC 30.84 1349 726  0.127 0.064 0.442
SIC 31.78 1134 741  0.130 0.066 0.444
GPGC 31.66 126 57.8 0.445 0.276 0.962
50d10c AIC 42.49" 10.0 59.5T 0.4727 0.3417 0.987
RIC 41.217 10.0  60.17  0.465 0.328" 0.977F
SIC 40.217 104 59.9T 0.459 0.320" 0.969
GPGC 3036 25.2  50.6 0.350 0.234 0.807
50d20c AIC 36.787 21.1  51.8% 0.359 0.273" 0.837
RIC 34.82% 215 51.3  0.3627 0.268" 0.841
SIC 34.06% 221 51.3  0.3587 0.2617 0.848
GPGC 29.58 49.8 54.6  0.304 0.196 0.726
50d40c AIC 34.367 45.2  56.17 0.308 0.2207 0.8107
RIC 32.137 46.2 55.8T 0.306 0.2097 0.721
SIC 32.27T 46.3  55.8T 0.307 0.208% 0.776

10d20cGaussian and 10d40cGaussian, the decrease of ~1.5% ARI is not
very meaningful given it gained 13% ARI on 10d10cGaussian.

The multi-tree approaches also tend to produce clusters that are both
better connected and better separated than GPGC on the datasets
generated with an elliptical distribution. It seems that using multiple
trees allows the GP evolutionary process to better separate clusters, while
still ensuring that similar instances are placed in the same cluster.
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Table 4.9: Crossover: Datasets using an Elliptical Distribution (Part 2).

Dataset Method Fitness K Conn. Spar* Sep. ARI
GPGC 39.40 104 479 0611 0.545 0.993
100d10c AIC 4440t 9.8 481  0.621 0.580T 0.998
RIC 44.88% 9.7 482  0.622 0.584T 0.997
SIC 42.87 10.0 481  0.617 0.569 0.996
GPGC 28.18 222 384 0527 0.449 0.883
100d20c AIC 32.00% 20.6 38.2  0.535 0.494 0.917F
RIC 31317 20.7 386  0.530 0.481F 0.905
SIC 31.59% 20.5 383  0.538 0.492F 0.921%
GPGC 21.60 50.2 39.7 0436 0.282 0.724
100d40c AIC 25.02% 45.9  40.6% 0.440 0.3167 0.771
RIC 24.50% 47.6  40.7t 0.438 0.311F 0.777F
SIC 23.64%7 49.2  39.9 0438 0.304T 0.792%F
GPGC 11.60 10.1 15.0 2.132 1.704 0.980
1000d10c AIC 12.607 9.7 149 2126 1.784% 0.987*
RIC 12.557 9.7 15.0 2122 1.776% 0.984
SIC 1248t 9.6 152 2115 1.754% 0.978
GPGC 9.22 231 120 1.539 1.325 0.834
AIC 11.48% 19.6  12.4% 1.575 1.511% 0.810
1000d20c RIC 1137 195 122 1.581~ 1.533+ 0.790
sIC 10.96% 19.4 123 1.5897 1.498% 0.804
GPGC 848 475 140 1.376 1.006 0.797
AIC 10.14% 42,5 142 1.387 1.130% 0.804
1000d40c RIC 10.017 42.6 142  1.385 1.126% 0.832
SIC 9.66% 44.1 14.2  1.382 1.086% 0.828
GPGC 791 1325 158  1.172 0.761 0.839
AIC 9.90* 117.2  16.0  1.189~ 0.901% 0.916*
1000d100c RIC 9.06% 119.9  16.07 1.186~ 0.839% 0.863
SIC 8.56 124.7 16.0% 1.172 0.797 0.853

Sparsity is either increased (i.e. made worse) or is similar compared to

GPGC when a multi-tree approach is used — this suggests that the single

tree approach was overly favouring reducing sparsity at the expense of

the overall fitness. Another interesting pattern is that the number of

clusters (K) found by the multi-tree approaches was always lower than
that found by GPGC; given that GPGC tended to over-estimate K, this

can be seen as further evidence that using multiple trees improves

clustering performance. Furthermore, a smaller K is likely to directly
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Table 4.10: Summary of ARI post-hoc analysis findings. For each dataset,
all results with a p-value below 0.05 (5% significance level) are shown.
“AIC >GPGC” indicates that AIC had a significantly better ARI than
GPGC on the given dataset, with a given p-value.

Dataset Finding p-value Finding p-value Finding p-value Finding p-value
10d10cG AIC >GPGC 0.000 AIC >SIC 0.015  RIC >GPGC 0.002  SIC >GPGC 0.034
10d10c AIC >GPGC 0.002  SIC >GPGC 0.018  RIC >GPGC 0.028

10d40c GPGC >AIC 0.048  GPGC >RIC 0.001 SIC >RIC 0.047

50d10c AIC >GPGC 0.000 AIC >RIC 0.040 AIC >SIC 0.003  RIC >GPGC 0.016
50d40c AIC >GPGC 0.003 AIC >RIC 0.003

100d40c AIC >GPGC 0.013  RIC >GPGC 0.006  SIC >GPGC 0.004

1000d100c AIC >GPGC 0.000 AIC >RIC 0.037 AIC >SIC 0.004

improve connectedness as more instances will have neighbours in the
same cluster, and separation since having fewer clusters increases the

average distance between neighbouring clusters.

In terms of the ARI, the multi-tree approaches were significantly better
than GPGC on a number of elliptically-generated datasets, with the RIC,
SIC, and AIC methods being significantly better on three, three, and six
datasets respectively. Both the AIC and RIC methods have significantly
better fitness than GPGC on these datasets, while SIC is not significantly
better on 100d10c or 1000d100c.

To better understand which of the three multi-tree methods has the
highest performance, we analysed the ARI results further as these give
the best overall evaluation of how the multi-tree methods compare to the
gold standard. We performed a Kruskal-Wallis rank sum test (at a 5%
significance level) followed by post-hoc pair-wise analysis using Dunn’s

test. The summary of this testing is shown in Table 4.10.

According to the post-hoc analysis, AIC outperformed GPGC six times,
whereas RIC and SIC outperformed GPGC four and three times
respectively. AIC outperformed RIC and SIC in three cases each as well.
In one case, SIC outperformed SIC. Furthermore, AIC generally had a
smaller p-value when it outperformed GPGC compared to SIC and RIC.
Based on these findings, we conclude that AIC is the most effective of the
three proposed multi-tree approaches. This may be because AIC is a
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more “aggressive” form of crossover, which enables more knowledge to
be transferred between different GP individuals during the same number
of generations compared to RIC or SIC. Based on this, we use GPGC-AIC
in the next section to compare to other clustering methods.

4.9.2 GPGC-AIC compared to the Benchmarks

Tables 4.11 and 4.12 show how the proposed GPGC-AIC method
compares to the six benchmarks across the datasets tested. For each of
the seven methods, we provide the (mean) number of clusters (K), as
well as the same four metrics of cluster quality as before. Note that
k-means++ requires K to be pre-defined, and so always obtains the
correct K value. We use the two-tailed Mann Whitney U-test as in
Section 4.9.1: a “+” indicates that a baseline method is significantly better
than the GPGC-AIC method, a “—" indicates it is significantly worse, and
no symbol indicates no significant difference is found.

Table 4.11 shows the results on the datasets that were generated using a
Gaussian distribution. In terms of the ARI, the AIC method is significantly
worse than either the MCL or MOCK method across the three datasets,
but generally outperforms all the other baselines. As these datasets were
generated with a Gaussian distribution, they tend to contain very well-
formed hyper-spherical clusters, and so methods such as MCL are very

effective at clustering these correctly.

On the datasets generated using an elliptical distribution, shown in
Table 4.12, GPGC is significantly better than all baselines excluding
MOCK across all datasets containing 10 features (10d*c). While the
MOCK method is competitive (or better) on the datasets with 10 and 20
clusters, it achieves a very poor ARI on the more difficult datasets with
40 and 100 clusters, where the AIC method is clearly superior. The
remaining baseline methods are nearly always significantly worse than
AIC on these datasets. The NG baselines are particularly inconsistent,
with the number of clusters and ARI values varying by up to three times

depending on the number of nearest neighbours chosen. AIC can also
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Table 4.11: Baselines: Datasets using a Gaussian distribution.

Dataset Method K Conn. Spar.* Sep. ARI
AIC 88 514 0.324 0.154 0.880
k-means+-+ 10.0 504~ 0.341- 0.133~ 0.848~

‘ MCL 8.0 52.8T 0.323 0.137~ 0.910
10d10cGaussian MOCK 13.6 414~ 0.291~ 0.167+ 0.963F
NG-2NN 40 453~ 0.317" 0.193% 0.368~
NG-3NN 1.0 57.6% 0.428~ 0.000~ 0.248~
OPT-0.005 39.0  27.97 0.227~ 0.103~ 0.572~

AIC 195 473 0.268 0.377 0.980
k-means++ 20.0  43.8~ 0.273 0.293~ 0.872~
' MCL 20.0  47.2= 0.269~ 0.373~ 0.998*

10d20cGaussian MOCK 20.7  45.77 0.265~ 0.359~ 0.990
NG-2NN 19.0 47.3% 0.268 0.381% 0.965~
NG-3NN 19.0 47.3% 0.268 0.381% 0.965~
OPT-0.001 26.0 382~ 0.287" 0.218~ 0.895~
AIC 33.7 489 0265 0.337 0.943
k-means++ 40.0  44.5~ 0.270~ 0.260~ 0.895~

' MCL 40.0  47.2 0.264~ 0.335~ 0.999*

10d40cGaussian MOCK 38.0 46.4- 0.261- 0.321~ 0.960%
NG-2NN 40.0  46.3 0.261~ 0.332~ 0.984*
NG-3NN 37.0  47.6~ 0.263~ 0.342+ 0.951
OPT-0.001 55.0  36.3~ 0.298~ 0.175~ 0.850~

automatically find the number of clusters much more accurately than
OPTICS, and produces less sparse and more separated clusters than
k-means++ across these datasets. In contrast to the previous datasets, the
MCL method struggles significantly with these non-hyper-spherical
datasets — a pattern that is also true for the remaining datasets and that
highlights a key weakness with the MCL method. Similar patterns are
seen across the 50d*c datasets, with the exception being on 50d10c where
NG-3NN achieves a near perfect result. On the high-dimensional
datasets (100d*c, 1000d*c), the MOCK method has a high variance in
accuracy, with ARI values ranging from 0.434 to 0.897. In contrast, the
AIC method achieves consistently good performance, with the lowest
ARI achieved being 0.771 and the highest being 0.998. While the MOCK
method is superior on 1000d40c, its inconsistency on the other datasets
makes it harder to use confidently in practice. On this set of datasets, the

NG baselines achieve better results than previously in terms of the ARI,
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Table 4.12: Baselines: Datasets using an Elliptical Distribution (Part 1).

Dataset Method K Conn. Spar.* Sep. ARI
AIC 24.0 T71.7 0.166 0.059 0.814
k-means++ 10.0  85.5T 0.212~ 0.038~ 0.552~

10d10c MCL 15.0 83.3% 0.205~ 0.050~ 0.703~
MOCK 17.8 86.17 0.180~ 0.065 0.793
NG-2NN 9.0 75.0 0.176= 0.071% 0.510~
NG-3NN 50 8237 0.187~ 0.085" 0.323—
OPT-0.05 32.0 84.4t 0.063~ 0.025~ 0.239~
“AIC 22.5 774 0.154 0.106 0.666
k-means++ 20.0 73.37 0.190 0.087 0.459~

10d20c MCL 28.0 694~ 0.1737 0.095~ 0.451~
MOCK 275 79.3% 0.152 0.113% 0.752F
NG-2NN 36.0 69.57 0.1317 0.094~ 0.584~
NG-3NN 16.0 83.1% 0.145~ 0.110" 0.355—
OPT-0.001 69.0 45.9 0.210~ 0.053~ 0.344—
AIC 49.2  76.6 0.139 0.072 0.522
k-means++ 40.0 77.2 0.169~ 0.070 0.417-
10d40c¢ MCL 54.0 69.2~ 0.149~ 0.0941 0.288~
MOCK 28.8 84.2%t 0.146— 0.087% 0.232—
NG-2NN 43.0 68.4~ 0.110 0.085% 0.256~
NG-3NN 13.0  73.6— 0.131~ 0.107T 0.082~
OPT-0.005 93.0 61.4= 0.1537 0.048~ 0.299~
AIC 106.4 75.6 0.131 0.066 0.421
k-means++ 100.0 80.47 0.153= 0.056~ 0.398
10d100c MCL 98.0 77.3% 0.136~ 0.070% 0.125~
MOCK 62.0 86.2% 0.137~ 0.074% 0.087~
NG-2NN 91.0 70.6~ 0.108~ 0.080% 0.049—
NG-3NN 26.0 734 0.096~ 0.084%" 0.030~
OPT-0.01 197.0 69.57 0.091~ 0.042— 0.054—
AIC 10.0 59.5 0.472 0.341 0.987
k-means++ 10.0 52.2= 0.555~ 0.102— 0.485~

50d10c MCL 12.0 54.1— 0.519~ 0.102— 0.604—
MOCK 14.4  56.77 0.494- 0.217~ 0.811—
NG-2NN 18.0 53.6— 0.3727 0.168~ 0.967—
NG-3NN 11.0 58.8~ 0.456~ 0.302~ 0.999%
OPT-0.05 28.0 67.7t 0.196~ 0.081~ 0.369~
AIC 21.1 51.8 0.359 0.273 0.837
k-means++ 20.0 44.3= 0.429~ 0.168~ 0.353~

50d20c MCL 26.0 42.00 0.415 0.175~ 0.482~
MOCK 24.3 50.37 0.375~ 0.273 0.884
NG-2NN 44.0 41.00 0.304— 0.2137 0.831
NG-3NN 23.0 49.00 0.369 0.286 0.808~
OPT-0.005 73.0 3227 0.455~ 0.129™ 0.386~
AIC 452  56.1 0.308 0.220 0.810
k-means++ 40.0 50.77 0.3527 0.140~ 0.254—

50d40c MCL 48.0 48.6— 0.329~ 0.161~ 0.351
MOCK 427  56.67 0.315~ 0.253% 0.867
NG-2NN 86.0 50.17 0.249~ 0.170~ 0.762~
NG-3NN 46.0 56.3 0.279~ 0.217 0.738~
OPT-0.05 73.0 53.57 0.239” 0.098~ 0.163~
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Table 4.12: Baselines: Datasets using an Elliptical Distribution (Part 2).

Dataset Method K Conn. Spar.® Sep. ARI
AIC 9.8 48.1 0.621 0.580 0.998
k-means++ 10.0 45.5~ 0.695~ 0.1317 0.562~

100d10c MCL 16.0 40.5— 0.677~ 0.207~ 0.877~
MOCK 28.8 45.7 0.590~ 0.170~ 0.548~
NG-2NN 16.0 44.6— 0.552~ 0.287~ 0.934~
NG-3NN 11.0 45.87 0.647~ 0.513~ 0.989~
OPT-0.001 92.0 37.6~ 0.3727 0.1137 0.455~
AIC 20.6  38.2 0.535 0.494 0.917
k-means++ 20.0 34.17 0.595~ 0.2327 0.374~

100d20c MCL 27.0 29.57 0.594~ 0.283~ 0.587~
MOCK 24.6  35.7~ 0573~ 0.487 0.897
NG-2NN 41.0 3217 0.450~ 0.291~ 0.819~
NG-3NN 25.0 34.77 0.529 0.520% 0.965%
OPT-0.01 76.0 281~ 0.505~ 0.168~ 0.368~
AIC 45.9  40.6 0.440 0.316 0.771
k-means++ 40.0 35.37 0.492— 0.226~ 0.268™

100d40c¢ MCL 57.0 329~ 0473~ 0.265~ 0.467—
MOCK 41.8 394~ 0.476- 0.371% 0.784
NG-2NN 91.0 34.6— 0.375~ 0.299~ 0.791
NG-3NN 49.0 36.1— 0.431 0.393% 0.711—
OPT-0.001 140.0 25.6— 0.593= 0.150~ 0.430~
AIC 9.7 14.9 2.126 1.784 0.987
k-means++ 10.0 13.87 2.347~ 0.385~ 0.488~

1000d10c MCL 10.0 12.2= 2407 0.445~ 0.474~
MOCK 16.0 14.5— 2.079~ 0.995~ 0.800~
NG-2NN 21.0 14.97 1.6817 0.610~ 0.932~
NG-3NN 10.0 1557 2.078 1.541~ 0.947—
OPT-0.005 86.0 13.1— 1.138~ 0.455~ 0.343~
AIC 19.6 124 1.575 1.511 0.810
k-means++ 20.0 9.7~ 1.885~ 0.832~ 0.376~

1000d20c MCL 24.0 9.3 1.8287 0.748~ 0.339—
MOCK 25.5 10.8~ 1.706— 1.423= 0.896
NG-2NN 47.0 9.8 1.409— 1.014~ 0.736~
NG-3NN 26.0 10.5~ 1.531~ 1.379~ 0.945%
OPT-0.001 67.0 7.00  2.142 0.589~ 0.453~
AIC 42.5 14.2 1.387 1.130 0.804
k-means++ 40.0 11.7— 1.556~ 0.632~ 0.219~

1000d40¢ MCL 47.0 10.8= 1.500~ 0.676~ 0.157—
MOCK 41,7 13.6° 1.488~ 1.2317 0.887F
NG-2NN 94.0 12.1— 1.209— 0.846~ 0.740—
NG-3NN 52.0 13.7~ 1.346— 1.130 0.898%
OPT-0.001 132.0 9.3 1.841~ 0.482~ 0.422—
AIC 117.2 16.0 1.189 0.901 0.916
k-means++ 100.0 14.5= 1.270~ 0.523~ 0.103™

1000d100c MCL 204.0 115~ 1.242~ 0.482~ 0.189~
MOCK 64.3 16.77 1.265~ 1.146% 0.434~
NG-2NN 229.0 14.7— 1.014= 0.693~ 0.761—
NG-3NN 132.0 16.0- 1.107~ 0.933 0.863~
OPT-0.05 182.0 16.0 0.917— 0.414~ 0.106~
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Table 4.13: Number of wins of each algorithm across the 17 datasets.

AIC k-means++ MCL MOCK NG-2NN NG-3NN OPTICS
6 0 2 4 1 4 0

but GPGC is only ever significantly worse than one of NG-2NN and
NG-3NN at most. GPGC also often has significantly better connectedness
and separation than one or both of the NG baselines, suggesting it is a
more consistent choice given that it is difficult to determine the number
of nearest neighbours in advance (as the NG methods assume). All of the
graph-based approaches are superior to k-means++ (due to the
non-hyper-spherical cluster shape), and OPTICS across these datasets.
The AIC method also appears to be the method that predicts X most
accurately overall across these datasets, especially where K = 100.

Summary

Table 4.13 shows the number of datasets for which each clustering
method was the winner (i.e. highest mean ARI). The AIC method was the
most successful, with six wins compared to four for the closest methods
(NG-3NN and MOCK). This is consistent with our previous analysis,
which showed AIC was the most consistent and best-performing method
across datasets with high dimensionality, and was competitive with
MOCK on the remaining datasets. The remaining baselines, with the
exception of MCL, were almost always outperformed by at least one of
AIC and MOCK. Given that MOCK is a multi-objective approach, we are
hopeful that a future multi-objective variation of AIC would be able to
improve the GPGC method even further and allow it to achieve a higher

number of wins.

4.9.3 Subspace Clustering

The fitness function proposed in this section is designed to use all
features in the feature space when calculating distances, as our primary
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Figure 4.8: ARI achieved by each clustering method on the OpenSubspace
clustering datasets, where either the number of dimensions, or number of
instances are varied.

goal is to reduce dimensionality and produce interpretable similarity
functions, while maintaining good cluster quality. However, a natural
extension of our proposed approach is to apply it to subspace clustering
problems, as our GP representation has the potential to use different
feature subsets in different clusters. To investigate the plausibility of this
extension, we applied GPGC and GPGC-AIC to datasets from
OpenSubspace [116], a collection of popular subspace benchmarking
datasets. =~ We chose to use the PROjected CLUStering algorithm
(PROCLUS) [2] and Density-based Optimal projective Clustering (DOC)
algorithm [137] for comparison, as examples of commonly used
cell-based and clustering-oriented subspace clustering algorithms
respectively. We chose PROCLUS and DOC as they have been shown to
have superior (or similar) performance to other subspace algorithms in
their paradigm [116]. We do not compare to a clustering algorithm from
the third paradigm of density-based subspace clustering, as these
methods all produced overlapping (i.e. non-crisp) clusters, which is not
the focus of this thesis.

Figure 4.8 shows the performance of each of the four methods (GPGC,
GPGC-AIC, PROCLUS, and DOC) as the number of dimensions is varied
(Figure 4.8a) and the number of instances (Figure 4.8b) is varied
respectively. For each dataset, we plot the ARI achieved by each method,
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as well as the standard deviation across 30 runs (the vertical bars). The
two proposed methods are competitive with PROCLUS as the
dimensionality is increased, but PROCLUS clearly outperforms GPGC
and is slightly better than GPGC-AIC as the number of instances is
increased. The DOC method is clearly the best of all the methods on both
categories of datasets. However, GPGC-AIC in particular shows some
promise given it has not been optimised for this task, but can still achieve
competitive results often with one common subspace clustering method.
Furthermore, GPGC-AIC is clearly superior to vanilla GPGC, which
further reinforces our previous findings. We hope to further improve
GPGC-AIC and make it a competitive subspace clustering algorithm in
the future by developing a new fitness function and designing new

genetic operators.

4.9.4 Number of Trees: Effect on Fitness

The number of trees to use in a multi-tree approach can be considered to be
a form of parameter tuning. To investigate the effect of different numbers
of trees on the training performance of the proposed multi-tree approach,
we tested a range of trees for ¢ € [1, 10|, using the AIC crossover method.
We limit ¢ to a maximum of 10, as we found that multi-tree GP did not
have improved performance, and trained more slowly at higher ¢ values.
Note that the ¢ = 1 case is not equivalent to the single-tree GPGC method,
due to the smaller maximum program depth of 5. For each dataset, we
calculated the mean fitness of the 30 runs for each value of ¢. The results
are plotted in Figure 4.9. Each plot corresponds to a single dataset, with a
red dotted line indicating the baseline performance where ¢ = 1, and each
point corresponds to the relative fitness for a given value of ¢. The error
bars show the standard deviation of each point, for the 30 runs performed
for that ¢ value. The blue solid line is a trend-line fitted to the 10 points.

On the majority of the plots (14 out of 17), increasing the number of trees
causes an increase in the fitness obtained; the 10d20cGaussian plot has no
noticeable improvement as ¢ is increased, while on the 10d40c and
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10d100c plots, the fitness is actually reduced by using more trees. This is
consistent with the results presented in Table 4.9, where the AIC method
had significantly worse fitness on the 10d40c dataset, and was not
significantly different on the 10d100c dataset — on the 10d100c plot, the
titness value for ¢ = 7 is very close to the baseline (i.e. a relative fitness of
1). For the 10d20cGaussian plot, we hypothesise that there is little room
for fitness improvement as ¢ is increased, as shown by the small changes
in fitness and ARI performance compared to GPGC in Table 4.8. On the
14 plots where there was a positive association, the fitness improvement
is between 10% (on 1000d10c), and slightly over 50% (on 1000d100c),

with improvements of around 25% on the majority of the datasets.

The optimal value of ¢ varies depending on the dataset that is used —
however, fitness tends to peak at a certain value of ¢ for each dataset,
before remaining relatively constant or dipping slightly (except for those
where ¢ does not improve performance). The best value of ¢ for each
dataset is hence the lowest value of t for which performance is
significantly better than all lower values of ¢, as this provides the best
balance of maximising fitness while maintaining the interpretability and
computational benefits of a lower ¢ value. For most datasets, this value is
between t = 5 and ¢ = 8, except for 50d20c and 1000d10c, where a ¢ value
of 9 and 4 seem to be the best, respectively. Hence, we suggest a value of
t = 7ort = 8 may be used as a good starting point for achieving good
fitness on other datasets.

4.10 Evolving Similarity Functions: Further

Analysis

4.10.1 Evolved GP Trees

In addition to achieving good clustering performance, our proposed
methods are also expected to automatically select a subset of features and
construct new, more powerful high-level features due to the tree-based
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Figure 4.10: An evolved individual on the 10d10c dataset using the single-
tree approach. Individual has a fitness of 21.37 and ARI of 0.9144 and
produces K = 22 clusters.

GP structure used. To evaluate the feature manipulation performance of
our proposed methods, we analyse an example evolved individual for

both the single- and multi-tree approaches in this subsection.

Figure 4.10 shows a single-tree individual evolved by GPGC on the
10d10c dataset, which has a very good ARI result of 0.9144. We can see
that the tree produced is able to combine a number of different sub-trees
to effectively construct a custom similarity function that can vary its
behaviour across the dataset through the use of conditional max and min
operators. A range of building blocks are used to find the similarity of two
instances, from simple feature weighting operations (e.g. 0.572 = I, F5,
LFy + 0.659) to more advanced feature comparisons (e.g.
min(IoFy, I Fy)), with high-level features formed by combining these
building blocks in a variety of ways. By evolving a similarity function
tailored to this dataset, GPGC is able to outperform the benchmark
methods, which use the inflexible Euclidean distance function. This
evolved function gives a different nearest neighbour to that of Euclidean
distance for 97.04% of the instances, and on average chooses the 5.4th

nearest neighbour according to Euclidean distance ordering. Clearly,
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Figure 4.11: An evolved individual on the 1000d20c dataset using AIC
crossover and ¢t = 7. Individual has a fitness of 10.43 and ARI of 0.9616
and produces K = 22 clusters.

GPGC has produced a significantly different ordering that is more
appropriate for this dataset than normal Euclidean distance ordering.

Figure 4.11 shows an example of a multi-tree individual evolved on the
1000d20c dataset, which has a very good ARI result of 0.9616. We have
simplified the trees where appropriate to aid interpretability by
computing constants and removing dead branches. The seven simplified
evolved trees are generally quite simple, with only one tree (c) being the
maximum depth of five; and one, two, two, and one trees having depths
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of four (e), three (f,g), two (b,d), and one (a), respectively. While it is
difficult to fully understand why these trees perform well across each
instance in the dataset, it is possible to gain insight by examining the
general behaviour of each tree ((a)—(g)), as shown below:

(a) simple feature selection of I F;5.
(b) computing a weighted sum of two selected features.

(c) constructing a more powerful high-level feature by weighting and

constructing non-linear combinations of five original features.

(d) thresholding I;Fys5 so that it has a minor impact on the total

similarity.

(e) finding the maximum of: a feature, a constant value, and the
difference between two features. This gives varied behaviour based
on the instances being considered.

(f) finding the absolute difference between two features, with one
feature scaled.

(g) finds the maximum of two features, and then takes the result as a
negative. In this way, the bigger the result, the less similar the two
instances are said to be.

Each of the seven trees evaluated above has distinctive and interesting
behaviour, which gives insight into which features are useful in the
dataset, and into what relationships between features can be used to
gauge instances’ similarities accurately. In contrast, a standard distance
function cannot provide such insight, as it uses the full feature set and
performs only linear comparisons between instances’ features. Of the
1000 features in the 1000d20c dataset, the example individual in
Figure 4.11 uses only 15 features to build its seven similarity functions.
This means the clustering partition produced is much more interpretable
than one produced by a standard nearest-neighbour graph-based
clustering algorithm. This evolved meta-similarity function chooses the
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same nearest neighbour as that of Euclidean distance on only 2.67% of
the instances in the dataset. On average, the 6.2th nearest neighbour is
chosen as the first nearest neighbour: this is a similar trend to that of the
previous example in that the neighbours have been significantly
re-ordered to be tailored for this dataset.

4.10.2 Visualising the Clusters Found

To further analyse the examples discussed in Section 4.10.1, we visualise
the clusters produced compared to the ground truth clustering in this
subsection using the commonly used t-SNE visualisation method [171],
which minimises the probability distribution divergence between the

two-dimensional visualisation and the original feature space.

Figure 4.12 shows the clusters produced by GPGC, k-means++ and the
NG-2NN methods on the 10d10c dataset. For GPGC, we use the same
evolved individual as in Section 4.10.1. For k-means++, we chose the
result with the highest ARI of the 30 runs. NG-2NN is deterministic, and
so the single result is shown. In addition, the ground truth is shown in
Figure 4.12 for reference. It is clear that GPGC is able to most accurately
reproduce the ground truth, with the majority of the clusters mapping to
the ground truth well, asides from a few instances in each cluster. The
exception is on the horseshoe-shaped cluster on the left of the
visualisation, where GPGC has over-clustered the data by splitting this
cluster into two. The k-means++ method clearly performs very poorly,
with only the horseshoe-shaped cluster being clustered nearly correctly;
all other clusters have significant overlap. The NG-2NN method also
produces clearly incorrect clusters, with many clusters being combined,
including four distinct clusters combined into one single blue cluster.
GPGC is clearly able to better find the natural clusters compared to these
baseline methods.

Figure 4.13 (a) and (b) show the clusters produced by the GPGC-MT
method (using the evolved tree discussed in Section 4.10.1) and the
ground truth respectively on the 1000d20c dataset. GPGC-MT
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Figure 4.12: Visualising the partitions chosen by a GP individual
compared to a sample of the baseline methods on the 10d10c dataset.
t-SNE [171] is used to reduce dimensionality to two dimensions. Each
colour corresponds to a single cluster.

reproduces the ground truth accurately, with only a small amount of
over-clustering. The GPGC-MT method uses only a subset of features in
the evolved trees; in this case, only 15 of the 1000 features are used. To
analyse whether using so few features would reduce the interpretability
of the clusters produced, we performed another set of visualisations that
used only the 15 selected features as input, as shown in Figure 4.13 (c)
and (d). The clusters shown in these visualisations are still very distinct
and well-separated, which suggests that the GPGC-MT method was able
to successfully perform feature selection implicitly in the evolved
similarity functions. While t-SNE is able to reliably project the feature
space into two dimensions, it does so at the cost of interpretability — the

two dimensions produced cannot be easily mapped back to the original
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Figure 4.13: Visualising the partitions chosen by a GP individual on the
1000d20c dataset. t-SNE [171] is used to reduce dimensionality to two
dimensions. Figures (a) and (b) show the visualisations formed when all
features are used by t-SNE, whereas (c) and (d) show the visualisations
using only the features used in the GP tree. Each colour corresponds to a
single cluster.

feature set, and so it is very difficult to analyse why a cluster contains
certain instances. In contrast, GPGC-MT uses only a small subset of the
feature set, and explicitly combines features in an interpretable manner
in the evolved trees.

4.10.3 Evolutionary Process

To further analyse the learning effectiveness of the proposed methods
(GPGC and the three multi-tree crossover approaches), we plot the
fitness over the evolutionary process for the 10d10cGaussian and
1000d100c datasets, as shown in Figure 4.14 (a) and (b) respectively. For
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Figure 4.14: Fitness of the four proposed methods over the evolutionary
process.

each dataset, we plot the mean fitness of the best individual at each
generation, taken across the 30 independent runs. These datasets were
selected as they represent the datasets with the lowest and highest m and
K values, and are from each of the two different generators used. Both
datasets show the same pattern for the single-tree compared with the
multi-tree approaches: while all methods begin at similar fitnesses, the
multi-tree methods increase in mean fitness at a significantly faster rate,
and reaches a much higher mean fitness overall. Indeed, the final fitness
of GPGC at the 100th generation is achieved by each of the multi-tree
approaches by generation 25 in both datasets. It is clear that the
multi-tree approaches can train more efficiently (i.e. with a steeper initial
slope), and effectively, by reaching a higher final fitness over the same
number of generations. While the GPGC-AIC method is slightly
outperformed by the other two crossover approaches on the
10d10cGaussian dataset, it is clearly the best method on the more difficult
1000d100c dataset, which reinforces our view that this is the best of the
proposed approaches. While fitness appears to have levelled off by
generation 100 on the 10d10cGaussian dataset, it appears that additional
generations could improve the performance on the 1000d100c dataset

even further.
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4.11 Chapter Conclusions

This chapter introduced two new approaches to improving the

performance of clustering algorithms by using GP for FC.

The first method used a wrapper-based approach, which has proven
success in the supervised domain, to improve the clustering accuracy of
the archetypal k-means clustering algorithm. Two representations were
proposed, one using a multi-tree approach and the other using a vector
approach. In addition, two potential fitness functions that could be used
for training high performing GP trees were explored. Both
representations and fitness functions were shown to significantly
improve performance compared to the base k-means algorithm across a
range of real-world and difficult synthetic datasets. A number of evolved
GP trees were analysed and shown to perform effective and efficient FC

even in a very small tree.

The second method (GPGC) used a more creative approach to employing
FC in clustering, by automatically evolving similarity functions tailored
to the clustering algorithm used and dataset being analysed. This is a
particularly novel application of GP for FC as it represents the first time
that similarity functions have been automatically evolved to be tailored
to a specific problem. There is no similar approach in supervised
learning, as similarity functions are not heavily used in supervised
domains. The results of our experiments showed that the automatically
generated similarity functions could improve the performance and
consistency of clustering algorithms using a graph representation, while
producing more interpretable similarity metrics, which have the
potential to be understood by a domain expert as they select only the
most important features in a dataset. We also showed that a multi-tree
GP approach could be utilised to further improve the performance by
automatically evolving several highly-specific similarity functions, which
are able to specialise on different components of the overall clustering
problem.
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While these two methods represent two distinct approaches to GP for FC
in clustering, they both provide a number of common conclusions. The
use of GP for FC in clustering clearly significantly reduced the
complexity of the clustering models formed: the first method explicitly
creates a small set of sophisticated features, whereas GPGC creates more
concise and specific similarity functions that distinguish clusters more
accurately while containing fewer terms than traditional distance
metrics. This transforms the search space of the clustering algorithm
being used into a more appropriate one, which improves the
performance of the algorithm and prevents it from becoming stuck in
local optima. Perhaps more uniquely though, this decrease in model
complexity has tangible benefits for the interpretability of the clustering
solutions. As clustering is often performed as a data exploration task, it is
important not only that good clusters are found, but also that the data
scientist can understand how these clusters are formed from the original
features. Using fewer features combined in a sophisticated manner
allows for better understanding in this regard.

This chapter showcased how GP-based FC could be used to improve the
clustering performance and interpretability of models in clustering
problems.  While clustering is the most well-known unsupervised
learning task, there are many other tasks that could benefit from the use
of GP-based FC. The next chapter applies GP-based FC to an important
research area that is very underdeveloped: the automatic generation of

difficult datasets for benchmarking feature selection algorithms.






Chapter 5

Generating Benchmark Feature
Selection Datasets with Genetic

Programming

5.1 Introduction

Recently, FS has become an increasingly important area of research due
to the surge in high-dimensional datasets in almost all areas of modern
life. A plethora of feature selection algorithms have been proposed, but it
is difficult to fully and truly analyse the quality of a given algorithm.
Ideally, an algorithm would be evaluated by measuring how well it
removes known bad features. Acquiring datasets with such features is
inherently difficult, and so a common technique is to add synthetic bad
features to an existing dataset. While adding noisy features is an easy
task, it is very difficult to automatically add complex, redundant features.
Very few methods exist for generating such features for use in
benchmarking FS algorithms. GP has two key characteristics for this task:
it can evolve functional mappings from some inputs (source features) to
outputs (redundant features) and it can use a broad range of optimisation
criteria, such as those that measure the redundancy between features.

Mutual information (MI) is widely used to measure the redundancy
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between features, by measuring how much information about instances
of the dataset that two features share. There is no known work using GP
to automatically evolve redundant features for benchmarking FS
algorithms.

5.1.1 Chapter Goals

This chapter aims to propose the first approach to automatically
generating redundant features (r.fs) for creating benchmark FS datasets
from existing datasets, using GP. This is expected to allow FS algorithms
to be compared much more rigorously than currently, by allowing
existing datasets to be augmented with known redundant features that
are redundant with existing features in the dataset in a variety of

non-trivial (non-linear) ways. This chapter will investigate:

* whether a multi-tree GP representation can be used to automatically

evolving multiple redundant features from a source feature;

e if a MlI-based fitness function can be used to optimise the

redundancy between the source and created features;

* whether these created features exhibit a variety of non-trivial
redundancies, and if they impact the performance of FS algorithms;

e if a multivariate approach where a set of many source features are
redundant with many created features produces more complex and

realistic redundancies; and

o whether these multivariate redundant features are more
challenging for FS algorithms than the univariate ones created by
the first approach.

5.1.2 Chapter Organisation

Sections 5.2 to 5.5 address the first three goals of this chapter by
introducing the first approach (GPRFC) to automatically generating r.fs
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for benchmarking FS algorithms, using GP. The quality of this approach
is evaluated by applying common machine learning and FS algorithms to
datasets with and without r.fs added to them, and examining how the
results change. Sections 5.6 to 5.8 tackle the fourth, and fifth goals, by
extending GPRFC to create r.fs that exhibit multivariate redundancy
relationships, in an effort to make the rfs even more realistic and
challenging for FS algorithms. The performance of this extended
GPMVREFC approach is compared to GPRFC across a variety of FS
algorithms. A summary of the key findings of this chapter is provided in
Section 5.9.

5.2 Creating Univariate Redundant Features:
GPRFC

This section details the proposed method for automatically generating
(univariate) redundant features (r.fs), including the GP representation,
titness function, and other important considerations made when
designing the method. This method is named Genetic Programming for
Redundant Feature Creation (GPRFC). The overall design of GPRFC is

shown in Figure 5.1.

521 GP Representation

In this work we use a multi-tree GP representation, where each GP
individual contains n distinct trees rather than a single tree. Each tree in
an individual represents a single mapping (function) from the source
feature (X), to a new redundant feature (Y). Using a multi-tree
representation allows us to generate multiple r.fs per source feature,
while encouraging each r.f to be distinct (less redundant) from all other
r.fs. By generating a variety of r.fs, we increase the diversity of the types
of redundancies between the source and redundant features. For
example, an r.f Y7 may have a polynomial relationship with X, whereas a

second r.f Y5 could have an exponential or trigonometric relationship —
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Initialise EC
process

Evolutionary Done
Loop

For G generations

Update population Done
(selection, crossover, Rep_e ?t e
mutation) individuals

Output individual with
best fithess

Evaluate each of t GP Measure fitness of
trees to get f r.f values — r.fs according to
for each instance fitness function

Figure 5.1: The overall flow of the GPRFC method. The dotted box
represents the final augmented dataset that is the output of the redundant
feature creation process.

both Y} and Y, are highly redundant with X, but less redundant with
each other. This behaviour is encouraged by the fitness function, which
will be discussed in more detail in Section 5.2.3. As each individual uses
only one source feature to create r.fs, it is necessary to perform one run of
the GP evolutionary process for every feature that redundant features
need to be created for. However, each of these runs is expected to be
relatively fast, as each instance effectively has only 1 + n features values
used in the fitness function computation. Furthermore, these runs are
fully independent, and so can be performed in an embarrassingly

parallel manner.

5.2.2 Function and Terminal Sets

We use only a single terminal in this work: the source feature, X. We
purposefully do not use a random value input (unlike most GP methods),
as such a value is unlikely to meaningfully increase MI, and increases the

search space unnecessarily.

In designing the function and terminal sets, it is important to have a wide

range of operators with distinct behaviours, so that a variety of
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redundancy relationships can be constructed in different trees. Based on
this, we use a range of different arithmetic, trigonometric, and

conditional operators as follows:

e Unary operators (taking one input): sin(a), tan(a), tanh(a), log(a),
e, va, a?, a®, and —a. We purposefully exclude cos(a) due to its
similarity to sin(a). While * and a* can be easily constructed in a

GP tree, we include them as useful “building blocks”.

e Binary operators (with two inputs): a + b, a x b, max(a,b), min(a, b),
and a’. We exclude a — b and a =+ b as they are the complements of
addition and multiplication, and as they were found to negatively
affect the learning process by easily producing constant values (i.e.
X-X=0X=X=1).

* A single ternary operator, ¢ f, which outputs the second input if the
first input is non-negative and the third input otherwise. This
operator, in addition to max and min, allows complex conditional

behaviour and non-continuous functions to be generated.

5.2.3 Fitness Function

Our proposed fitness function is based on the concept of MI, a measure of
the dependency between two features. We use MI as a proxy to measure
the redundancy of a generated feature: if the MI between the source and
generated feature is high, the generated feature is said to be highly
redundant. Hence, the MI between the source and each generated
feature/tree should be maximised. In addition, we choose to minimise
the MI between each pair of generated features. In doing so, we
implicitly encourage a set of r.fs that are redundant in different ways to be
generated — for example, if two r.fs both had linear redundancies with
the source feature, they would also have a high MI between them. This
decision automatically increases the complexity of the generated r.fs,
which should also make them harder for FS algorithms to remove. We

describe the formulation of the fitness function in detail below.
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Let X be the source feature, I be the GP individual whose fitness is being
measured, which contains a set of trees (1), where n is the number of trees.
Let the “baseline” MI, ¥ (used as a normalisation factor), be defined as the
output of the MI estimation algorithm for ¥ = MI(X, X)!. In measuring
the quality of I, we consider the minimum MI between any X and any
r.f (called minSourceMI), as well as the maximum mean MI between any
r.f and all other r.fs (called maxSharedMI). The quality of I is measured
by how much more redundant the r.fs are with X than with each other,

defined as follows:

minSourceMI = rtmjr} w (5.1)
€
> MI(ty)
maxSharedMI = max =¥ETv7t ¥ (5.2)
teT n—1
Quality, = minSourceMI — maxSharedMI (5.3)

While this quality measure is expected to be suitable as a fitness function,
it does not consider that having a minSourceMI below a certain threshold
means that the r.fs produced are in fact not very redundant at all. In
addition, generally a lower minSourceMI leads to a higher potential
titness, making the fitness function biased towards creating a set of r.fs
that are very unrelated to each other, and only weakly related to the
source feature. To remedy this, we introduce an additional component to
the fitness function for when the minSourceMI is below some threshold,
©, where © is the minimum “acceptable” redundancy between a r.f and
X. In other words, individuals not meeting this criterion can be thought
of as infeasible solutions. For these infeasible solutions, we do not consider
the shared MI between r.fs to be important, as at least one of the r.fs is not
acceptable. To encourage increasing the redundancy of each r.f in this
scenario (i.e. encouraging the solution towards becoming feasible), we

!'While MI(X, X) is defined to be 1, an estimation algorithm must be used when MI
is continuous: these algorithms do not guarantee their output has an upper limit of 1,
and so here we normalise by the output of the estimator instead. This ensures that the
normalised Ml is at most 1, which is important in our fitness function’s formulation.
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penalise individuals based on the mean MI between the source and each
r.f:

—1
Penalty, = 4
oAty = L eanSourceMI G4
S MG
meanSourceM] = =€ ¥ (5.5)
n

This penalty function is designed as such so that the higher the
meanSourceMI, the lower the penalty applied. Our fitness function is
then the combination of these two functions:

Quality,, if minSourceMI > ©

Fitness; = (5.6)

Penalty,, otherwise

As the Penalty term of the fitness function is constrained to be less than
0, an individual with minSourceMI > © will nearly always be better than
one that does not meet the O threshold. As our measurements of MI are
normalised by U, the threshold © can be chosen (roughly) from the range
0, 1], where a value of © = 0 corresponds to all r.fs being independent to
X, and a value of © = 1 corresponding to all r.fs being perfectly redundant
with X. In practice, we found a © in the range [0.6,0.7] was a good choice
forn = 5.

5.2.4 Further Considerations

A number of other factors needed to be addressed in order to achieve good
results with the proposed method. These are discussed in turn below.

To improve the consistency of the GP method, the source feature was
scaled so that all values fall in the range [0, 1]. However, this meant that
at least one source feature value would be exactly 0. An input of 0 to the
GP tree was found to significantly affect training as it would often result
in multiplication or division by 0 within the tree. ~The common

occurrence of dividing by 0 was particularly troublesome, as it meant the
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tree would not produce a valid output, making the whole individual
invalid. To remedy this, we added a small weighting to each feature
value, of size ¢, such that all feature values lie in [0 + ¢,1 + ¢|. In this
work, we found setting e = 1 x 1072 to be suitable.

While the above scaling approach is expected to work well on
artificially-generated datasets, it does not address an issue with many
real-world classification datasets: duplicate feature values. Consider the
example of a (real-world) dataset where a feature takes values in
{1,2,3,4}. Given there are only four unique inputs to a GP tree, the tree
may only produce (at most) four unique outputs. This greatly limits the
ability of GP to learn to create multiple distinct r.fs as only very “coarse”
r.fs can be generated (with low complexity). To address this performance
limitation, we add a small amount of stochastic noise (using a constant
seed) to each source feature value, so that each feature value is likely to
be distinct. This is essentially equivalent to changing the input of the GP
tree to be X + §, where ¢ is a small value that is constant for a given value
of X. As before, we ensure ¢ is strictly positive. The feature values are
hence in the range [0 + §,1 + J], where we defined ¢ to be a random
number between 0.00le and e. In both the above approaches, we still
evaluate the MI between a r.f and X (i.e. when computing the fitness
function) using the original (i.e. unscaled) feature values, to ensure we

measure the true redundancy.

In addition to scaling the source feature, we also scale the constructed
redundant features to lie in [0, 1]. This serves two purposes: it ensures the
r.fs have “sensible” ranges, and so can be more easily visualised, and it
also means they have the same range as the source feature, which is
important for many algorithms such as k-nearest neighbour, k-means
clustering etc. Finally, the redundant features are rounded to 5 decimal
places, to prevent GP from evolving very sensitive features whose

precision may be lost when saved to file or used in another algorithm.
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Other Parameter Settings:

We use a relatively high max tree depth of 15 and mutation rate of 40%
(with crossover of 60%). Using a high max tree depth was found to
encourage more complex trees to be formed, which tended to produce
more complex features. Evaluating the larger trees is not significantly
more costly, as the computation of MI is the most expensive part of the
fitness evaluation. 40% mutation was used to encourage the generation
of more diverse trees — however, crossover is still important to ensure
that useful function “building blocks” are passed between different GP
individuals. The population size was set to 1,024, and top-10 elitism was
used, as standard. In this work, we used n = 5 trees as it was found to
produce a reasonable balance between making a large number of r.fs and
making highly diverse r.fs. Decreasing n will produce r.fs that are less
redundant to each other, whereas increasing n will give more, but less

distinct r.fs. © was set to 0.7 in this work based on preliminary tests.

5.3 [Experiment Design

We tested the proposed GPRFC approach on a number of popular
datasets, as listed in Table 5.1. These datasets include three classification
datasets from the UCI repository [31], two of which are quite simple and
easy to classify well (Iris and Wine), whereas the third (Vehicle) is more
challenging as it contains more features, instances, and classes. We also
use two synthetic clustering datasets (10d10c and 10d40c), which have 10
and 40 clusters respectively and are generated using an Ellipsoidal
cluster generator [56]. The datasets chosen all have a small number of

features to reduce the number of GP runs required.

For each dataset, five r.fs are created per source feature, to give a result of
d+5d = 6d features for d source features. As the feature creation approach
uses GP, it is stochastic, and so at least 30 runs were performed on each

dataset.

To evaluate the created r.fs, we used the classifiers, clusterers, and feature
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Table 5.1: Datasets used in the experiments.

Name No. Features  No. Instances  No. Classes/Clusters
Iris 4 150 3
Wine 13 178 3
Vehicle 18 846 4
10d10c 10 2903 10
10d40c 10 2023 40

selection algorithms provided by the WEKA [55] package. We selected
four varied and popular classifiers: the J48 Decision Tree (DT) algorithm,
k-nearest neighbour (KNN, with & = 3), Naive Bayes (NB), and the
Sequential Minimal Optimisation implementation of the Support Vector
Machine (SVM). For clustering, we use three different varieties of
clustering algorithms:  k-means++, agglomerative clustering (the
average-link variant), and the Expectation Maximisation (EM) algorithm.

5.4 Results and Discussion

As there are no known redundant feature creation methods that use a
guided search to automatically find good r.fs, we are unable to directly
compare GPRFC to a known baseline. Instead, we directly evaluate the
quality of the rfs created across the datasets in terms of the fitness
achieved. If GPRFC is able to achieve a high fitness on a given dataset,
then it indicates it has successfully created a set of diverse features that
have high redundancy with the source feature, but low redundancy with
each other.

We also investigate how the addition of the r.fs affects the performance of
some common classification and clustering algorithms, and how well
some simple FS algorithms are able to identify (and remove) the added
rfs, in order to evaluate the suitability of the proposed method for
creating benchmark datasets. If the clustering/classification performance
drops, or simple FS algorithms struggle to remove added r.fs, this would
indicate that GPRFC has the potential to produce hard-to-detect,
misleading features that are suitable for benchmarking FS algorithms.
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Table 5.2: Fitness achieved by GPRFC across all features on each dataset.
Standard deviation is taken across the means for each feature. 30 runs
were performed per feature per dataset.

Dataset Mean Std. Dev

Iris 0.333 0.082
Wine 0.203 0.055
Vehicle 0.351 0.041
10d10c 0.106 0.010
10d40c 0.141 0.006

5.4.1 Fitness

Table 5.2 shows the performance of GPRFC in terms of the average fitness
achieved across the tested datasets. GPRFC achieves a high fitness on two
of the three classification datasets: Iris and Vehicle. A mean fitness of 0.351
on Vehicle indicates that the typical created r.f is 35.1% more redundant
with the source feature than the other created r.fs, for example, 75.1% MI
with the source feature vs only 40% MI with the other created r.fs. The
performance on the two synthetic clustering datasets is not as strong, but
the created r.fs are still clearly more redundant with the source feature
than each other.

In general, it appears that datasets containing fewer instances tend to
have a higher standard deviation — perhaps as the fitness is more
sensitive to any one single feature value being altered during the
evolutionary process. The fitness across the Iris dataset, which has the
highest standard deviation, is shown in Table 5.3 for each feature. This
table clearly shows that F2 has a much lower mean fitness than the other
features, and so gives a high standard deviation on the Iris dataset. It is
not obvious as to why GPRFC can learn more effectively on certain
features. One explanation may be that as GPRFC produces functions that
transform the feature space, features that have very dense feature value
distributions are harder to transform with a high level of granularity, and
so harder to optimise. However, further investigation is needed.
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Table 5.3: Fitness achieved by GPRFC across the 30 runs on the Iris dataset.

Feature Mean Std. Dev

FO 0.362 0.050
F1 0.398 0.036
F2 0.213 0.029
F3 0.359 0.053

5.4.2 Classification Performance

The performance of a number of classifiers on the original datasets
compared to the datasets with added r.fs (“augmented datasets”) are
shown in Table 5.4. In general, performance is very consistent between
the original and augmented datasets — in most cases, dropping by 2-3%,
or holding steady. Given that redundant features are not inherently
misleading to a classifier, it makes sense that performance may not drop
much — though the classification model produced will certainly be more
complex. Two major exceptions to this are on the KNN classifier, which
had a decrease of around 5% and 11% accuracy on Iris and Vehicle
respectively. This is likely due to the created r.fs not having the same
distances between instances’ feature values as the source features had.
As KNN is a distance-based classifier, any addition of features that
transform the feature space non-linearly will directly alter the distances
between instances. Testing on more difficult datasets with many more
features may show a bigger decrease in performance, as the search space
may become complex/large enough to better challenge classification
algorithms. The small increase in performance on the Vehicle dataset
with NB is not statistically significant.

5.4.3 Clustering Performance

The performance of three clustering algorithms on the original and
augmented datasets was investigated, with the results shown in
Table 5.5. As with the classification datasets, there is generally little
change in performance — in fact, performance appears to slightly
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Table 5.4: Test classification accuracy on each of the datasets before
(“Original”) and after (“Augmented”) the created r.fs were added. Each
of the 30 runs of GPRFC produced one augmented dataset — hence, the
mean and standard deviation accuracy on these 30 augmented datasets
are reported. A split of 70% training to 30% test was used.

Method Iris Wine Vehicle
Original Augmented Original Augmented Original Augmented

DT 0.978 0.956+0.004 0.981 0.977+0.017 0.709 0.692£0.025
KNN  1.000 0.947+0.035 0.962 0.961+£0.028 0.720 0.613£0.029
NB 0.978 0.964+0.018 1.000 0.979+0.018 0.465 0.490£0.025
SVM  0.978 0.968+0.020 0.981 0.974+0.016 0.740 0.715+0.018

Table 5.5: Adjusted Rand Index of the clusters produced on each of the
datasets before (“Original”) and after (“Augmented”) the created r.fs were
added. Each of the 30 runs of GPRFC produced one augmented dataset —
hence, the mean and standard deviation accuracy on these 30 augmented
datasets are reported. k-means++ and EM are stochastic algorithms and
so the mean of 30 runs per augmented dataset was used.

Method 10d10c 10d40c¢
Original Augmented Original Augmented
k-means++ 0.548 0.5584+0.023 0.445 0.49140.019
Agglomerative 0.495 0.52840.064 0.276 0.30940.046
EM 0.588 0.606+0.014 0.433 0.5204+0.011

increase when adding the created r.fs. However, the clusters produced
are more complex and less interpretable — with 6d features per instance
compared to only d in the original datasets. The main exception to this
pattern is the EM method on the 10d40c dataset, where the addition of
redundant features increases the clustering performance. This is
unexpected, but may suggest that the EM algorithm is likely to create a
greater number of clusters when a larger feature space is available (even

though it is redundant in nature).
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5.4.4 Feature Selection Results

Feature Ranking;:

A common technique used in supervised feature selection is to measure
how well a given feature can be used to predict the class label for a set of
instances. Information Gain (IG) [72] is often used as a metric to measure
this, using similar principles to MI. To see how “confusing” our created
r.fs may be to a FS algorithm, we ranked the features of the median and
best results of applying GPRFC to the Iris dataset, using IG as shown in
Table 5.6. We use the Iris dataset as our example as it has the fewest

features, and so can be analysed most easily.

The majority of created r.fs have similar rankings to their source features,
with the top half of the ranks taken by F2 and F3, and the bottom half by
FO and F1. This is unsurprising — given that the created r.fs share a high
amount of information with the source features, they are likely to also
have a similar ability to predict the class label. However, the r.fs do have
small variances in their IG value compared to their source features: for
example, on the median result, F2 has an IG of 1.418, and its r.fs have IG
values between 0.864 and 1.367. On the best result, F2c and F2e actually
have better IG than the source feature; F2’s r.fs range in IG value from
0.827 to 1.456. These results indicate that while the created r.fs clearly
share information with their source features, they are still different enough
that their redundancy is non-trivial to identify and they are likely to have

an effect on the classification task.
Using a FS algorithm:

To further investigate how suitable the created r.fs are for benchmarking
FS algorithms, we applied a basic FS algorithm to the same two
augmented Iris datasets. We used the canonical Sequential Floating
Forward Selection (SFFS) [138], which is an extension to the Sequential
Forward Selection (SFS) algorithm. SFS starts with no features selected,
and iteratively adds the best of the remaining unselected features, until
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Table 5.6: Features ranked by Information Gain (with respect to the class
label) on the augmented datasets created by the median (5.6a) and best
(5.6b) runs of GPRFC.

(a) Median. (b) Best.
Info Gain Feature Info Gain Feature
1.418 F2 1.456 F2c
1.385 F3a 1.421 F2e
1.378 F3 1.418 F2
1.367 F2b 1.378 F3
1.274 F3c 1.313 F3a
1.216 F2a 1.295 F2b
1.163 F3e 1.214 F3d
0.976 F3d 1.098 F3c
0.918 F2d 1.077 F3e
0.908 F3b 1.057 F3b
0.864 F2e 0.918 F2d
0.705 FOa 0.827 F2a
0.698 FO 0.722 FOa
0.554 F2c 0.698 FO
0.376 Fle 0.597 FOe
0.376 F1b 0.597 Fod
0.376 F1 0.419 FOc
0.364 FOb 0.376 Flc
0.325 F1d 0.376 F1
0.177 FOc 0.198 F1d
0.118 Fod 0.158 F1b
0.098 FOe 0.089 Fla
0.000 Fla 0.000 FOb
0.000 Flc 0.000 Fle

performance is not improved by adding the next feature. SFFS follows
the same procedure, but also performs a backward search after each
addition of a new feature. That is, it repetitively removes the worst
feature in the selected subset, until performance is not improved by
removing an additional feature. This floating search helps to prevent the
FS algorithm getting stuck in local optima, and makes SFFS one of the

most commonly used deterministic FS algorithms.

In this work, we used a wrapper method where the SVM algorithm is
used to classify the dataset for a given feature subset, and the accuracy of
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the results is used as the performance of the selected features. We use the
SVM classifier as it had the highest performance in Table 5.4. Our SFFS
implementation used a training set to train the SVM, and a “validation
set” 2 to evaluate the performance of the SVM on unseen data during the
training process. This “validation set” gives the expected performance of
an SVM using the selected features on future unseen data, and is used to
measure the quality of the selected features. Finally, we use a separate
unseen test set to measure the quality of the final selected features on
unseen data. The training, validation, and test sets are 60%, 20% and 20%
of the shuffled dataset, respectively.

On the median dataset (for Iris), this FS method selects features [F2b,F3]
with a test accuracy rate of 0.933. On the best dataset, [FO,Fla,F3] are
selected with an accuracy of 0.967. On the original dataset, the FS method
selects only F3, with an accuracy of 0.967. While the obtained
classification accuracy on the augmented datasets is similar, the FS
method clearly selects extraneous features, which gives a more complex
model than that of when only a single feature is selected on the original
dataset.

Given that obtaining good performance on Iris is easy, and so FS is also
relatively easy, we performed a similar experiment on the Vehicle dataset
to see if different behaviour occurs on a harder, higher-dimensional
problem. On the original 18-dimensional vehicle dataset, the SFFS
method (as described above) selects 12 features: [FO, F2, F5, F7, E8, F9,
F10, F12, F13, F16, F17], with a test accuracy of 0.710. On the median
augmented dataset however, it selects seven features: [F3, F9b, F12d,
F12e, F13, F17, F17e] with a test accuracy of only 0.473. The FS method
has clearly struggled to find a good set of features, as it selects multiple
redundant features while also failing to select many features that were

selected in the original dataset. Furthermore, the training accuracy was

ZReally, it is a test set, which is applied to an SVM trained with the training set, but
we refrain from using this term to distinguish from the true test set, which is only ever
used at the conclusion of the search to measure the quality of the features found by the
search process as a whole.
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reasonably similar for both datasets (0.769 and 0.686 for the original and
augmented respectively), indicating that the created r.fs were able to
mislead the FS algorithm well enough to prevent a well-generalised
classifier from being produced. Further investigation is needed to
provide more quantitative evidence that GPRFC produces r.fs that make
difficult benchmark datasets, but the preliminary results are a promising
sign that the proposed method has potential.

5.5 Further Analysis

While we have shown that GPRFC is able to automatically produce a set
of redundant features that have high MI with an original feature, it is not
yet obvious how it is able to do so. To investigate this aspect, we plotted
the created features against the original features for each of the four
features on the Iris dataset, using the median result of the 30 runs of
GPRFC. We choose to analyse Iris as it is the dataset with the smallest

feature set. These plots are shown in Figure 5.2.

The most striking observation of these plots is that the functions
produced by GPRFC are incredibly varied — in fact, nearly every plot
has a distinct appearance. The functions are also clearly complex, with no
linear relationships apparent. A few functions are somewhat
recognisable: for example, F2a (similar to a sine wave), F2b (a power
curve), and F2d (a polynomial). The function evolved for FOa is similar in
appearance to a sigmoid function, despite the sigmoid not being directly
in the function set. Many of the remaining functions are more difficult to
classify, as they either appear to have a number of different components
(e.g. FOb, F3b), or have a majority of instances at a similar scale (e.g. FOe,
F1b, F3a, F3c).

While generally each set of r.fs for a given source feature appear to be
quite distinct, F3a and F3c appear to be very similar. This behaviour is
counter-intuitive, as the fitness function directly penalises a r.f being

similar to other r.fs for the same source feature. Indeed, F3a and F3c have
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F3a = (pow (+ (exp (sqgrt
(cube X)))
(neg (log X))) (tan (exp (+ (log X) (mul X X)))))
F3c = (pow (+ (exp (sqgrt
(sgrt (tan (square (square (max (sin (exp X)) (sin X))))))))
(neg (log X))) (tan (exp (+ (log X) (mul X X)))))

Figure 5.3: Example trees produced by GPRFC for F3a and F3c. The entire
tirst and third lines are shared by both trees.

a MI of 0.83 — however, they each have very low MI (a maximum of
0.14) with the other r.fs (F3b/d/e), which means their average shared MI
is still very low, at 0.34. The two trees corresponding to these two
features are very similar (see Figure 5.3). This issue may be alleviated by
adapting the fitness function to consider the worst-case: that is, what is

the highest value a given r.f shares with another r.f?

5.6 Creating Multivariate Redundant Features:
GPMVREFC

GPRFC was the first GP-based approach to automatically create
redundant features from existing data for benchmarking FS algorithms.
While GPRFC was able to produce significantly more complex
(non-linear) feature redundancies than existing (naive) approaches, these
redundancies were univariate. In many complex real-world datasets, the
redundancy relationship between features is more realistically a
multivariate one — many features may be jointly redundant with many
other features. In other words, many-to-many redundancies are more
common than simpler one-to-many relationships. Detecting multivariate
redundancies is also substantially more difficult for FS algorithms, as the
search space is strictly larger, given the exponential number of possible
redundancies in a many-to-many situation. Clearly, in order to produce



5.6. CREATING MULTIVARIATE REDUNDANT FEATURES:
GPMVRFC 168

benchmark datasets that can challenge the most powerful FS algorithms
in a realistic manner, there is a need for methods that can create
multivariately redundant features. The remainder of this chapter
proposes an extension to GPRFC that produces multivariate redundant
features: Genetic Programming for Multivariate Redundant Feature
Creation (GPMVREFC). The overall flow of GPMVRFC is the same as
GPRFC (see Figure 5.1, page 152), but with key changes to the program
structure and fitness function used.

5.6.1 GP Representation

The proposed GPMVRFC method follows the general structure of that
proposed in GPRFC. Each GP individual has n trees, each representing a
functional mapping from some number of source features (X) to a single
created r.f (Y'). The number of source features used is dependent on the
size of the original feature set; the bigger the original feature set, the
more source features that can be used to create a single set of r.fs. In this

work, we propose using the following equation:
IX| = |max (2, min (%, 5)>J (5.7)

where m is the size of the original feature set, and |X| the number of
source features. Computing the number of source features in this manner
ensures that at minimum two source features are used, at least four sets of
r.fs are created (for m > 8), and that at most five source features are used
(so as to keep complexity in scope). Note that for all m > 20, five source
features will be used. |X| features of the dataset will be used in a single

m

X
the full augmented dataset. In contrast, GPRFC required m runs —

hence, GPMVREC requires only 20% of the runs given m > 20. Note that
although each tree has five source features (terminals) to draw from,

GP run, as the terminal set, and so - runs must be performed to create

there is no requirement that every tree uses all the source features, and
hence different trees may be redundant with different subsets of the
source features.



5.6. CREATING MULTIVARIATE REDUNDANT FEATURES:
169 GPMVREFC

Table 5.7: Function set used in GPMVREC.

Operator Type Function #Inputs

Arithmetic et
log(a)
a+b
axb

ab

sin(a)
Trigonometric tan(a)
tanh(a)

min(a, b)

Conditional — max(a,b)
if(a, b, c)

WNN|RRR[NDNNDNRRR R R PR

5.6.2 Function and Terminal Sets

The terminal set consists of only the |X| source features of the dataset that
are being used to create r.fs of that specific GP run. No random value
terminal is used as it would not add any useful component to the mapping
function. The function set is unchanged from GPRFC (as this is not the
focus of this work), and is summarised in Table 5.7.

5.6.3 Fitness Function

One of the most difficult aspects of this task is producing created features
that represent different types of redundancies between the source and
created feature/s. For example, creating many redundant features that
all have a strong polynomial redundancy with a source feature would
maximise MI very well, but does not represent a challenging/diverse
benchmark for FS algorithms. GPRFC used a fitness function that
minimised the MI between created features, which does not directly
compare how different the types of redundancies the created features

share with the source feature are. In addition, such a fitness function is
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expected to perform poorly in the multivariate case, as it is necessary for
the created features to be redundant with each other in order to be jointly
redundant with the source features. Finally, the fitness function itself was
expensive due to the number of MI calculations required, and as a single
GP run was needed for every feature in the original dataset. To address

these issues, GPMVRFC uses a fitness function with a different approach.

The fitness function used in this work consists of two components: one
that measures the redundancy between the source feature set and the
created feature set using multivariate MI, and another that measures the
difference between the created features by comparing the gradients of the
distributions of each created feature. The fitness of an individual is based
on the source features being used (X), and the features created by that
individual (Y), i.e. the outputs of all the GP trees once they have been
evaluated using each instance in the dataset. Measuring the redundancy
between the source and created feature sets is particularly

straightforward (and efficient) in a multivariate scenario:

Redundancy = MI(X,Y) [as per Equation (2.23), page 42] (5.8)

As we wish to create features that are as redundant as possible (while
being redundant in different ways), we maximise the MI between X and Y.
As discussed previously, an estimator is used to compute the approximate
MI as the underlying pdfs of X and Y are not known.

To measure the similarity of the created features, we designed a novel
approach based on the distribution of each created feature compared to
the source features. The intuition behind this approach is that two
created features should have significantly different distributions across
the source feature space if they are to be considered to have different
“types” of redundancy with the source features. Figure 5.4 shows an
example of some potential simple created features that GPMVRFC could
create, where the y-axis represents the output of a GP tree given some

input feature. The linear, sine, and polynomial functions clearly have
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0.2 0.4 0.6 0.8 1.0
— 0.3x 0.3x+0.2 sin(2rtx)
— polynomial(x) — piecewise(x)

Figure 5.4: Example of some (scaled) redundancy mappings that could be
created by GPMVREC.

different shapes in the feature space, and so represent different types of
r.fs. The two linear functions, however, both are the exact same type of
r.fs, except that they have different offsets from the x-axis. The piecewise
and sine functions have the same redundancy function for half of the
feature space but are very different in the other half. Based on this
observation, we propose comparing the gradients of each created feature
for each value in the source feature space, in order to evaluate the
“semantic” difference between the created features. Note that when
considering the gradient, the two linear functions are identical, and the
piecewise and polynomial functions have identical gradients for half the
feature space. This approach is complicated slightly in that there are
multiple source features that can be used to produce different
distributions of the created r.fs — we propose an algorithm to cope with
this below.

For each created feature in an individual A € Y, we calculate the
difference between A and each other created feature B € {Y — A} using
the approach shown in Algorithm 3. We take the minimum of these
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Algorithm 3: Computing the difference of two created feature vectors,
A and B, given source features X.

Difference . =minimum of ComputeDifference(A,B,z) for each v € X
Function ComputeDifference(A, B, x):
A" = Sort(A) according to the natural ordering of x.
B’ = Sort(B) according to the natural ordering of x.
Gradient gig = 0
fori € [1,|z|) do
Gradient 5, = A'[i] — A'li — 1]
Gradientp; = B'[i]| — B'[i — 1]
Gradientgig+ = |Gradient 5, — Gradient ;|
end

return l?l\ x Gradientgig

differences as the minimum difference between A and any other created
feature, called RFDiff;,a. In addition, we also consider the difference
between A and each of the source features (using Algorithm 3), to ensure
that no created feature inadvertently reconstructs one of the existing
features (i.e. making it naively redundant). The minimum difference
between A and any source feature x € X is computed as SourceDiff ina.
The smaller of RFDiff ;o and SourceDiff,;,a is the distance between A
and any other constructed feature or source feature.  The final
formulation of the difference of the created r.fs is as follows:

Differencergs = gni}r/l min{RFDiff,a, SourceDiffina } (5.9)
c

where the difference should be maximised to encourage diverse types of
r.fs. The fitness of a given individual is thus as follows:

Fitness = Redundancy x Differencerp; (5.10)

In the rare case where one or more trees represents an invalid solution (e.g.
tan(0.5m) = 00), the fitness of the individual is instead set to negative the
number of invalid trees. This fitness function is also significantly more
efficient than the one proposed in GPRFC. GPRFC evaluated the MI of
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every pair of created features, i.e. at a cost of O(n?). While our proposed
titness function compares every pair of created features also, the difference
algorithm we use requires significantly less computational time than the

MI estimator would otherwise use.

5.6.4 Other Details

As GPMVRFC uses a similar representation to GPRFC, we apply a
number of additional “tricks” used in GPRFC to the proposed method
also. These are as discussed in Section 5.2.4.

5.6.5 GP Parameters

We used a population size of 1,024, 200 generations of evolution, 40%
mutation, 60% crossover, top-10 elitism and a max tree depth of 15. These
parameter settings are similar to those in GPRFC in order to maintain a
fair comparison. The one difference from GPRFC is that we employed
n = 10 trees per individual — as multiple source features are being used,
there are many more possible created features, and as we do not run the
GP process once per source feature, more trees are needed per run in

order to produce a reasonable number of r.fs.

5.7 Experiment Design: GPMVRFC

When evaluating GPRFC, we aimed to explore if GP had the potential to
produce complex r.fs, and so we primarily looked at how well the created
r.fs related to the existing features and how they affected classification
and clustering performance. Our motivations with GPMVRFC were to
make more challenging multivariate r.fs that are able to mislead FS
algorithms, and so we focus on evaluating how the multivariate r.fs affect
the FS algorithms’ performance. Given that FS has been studied and used
to a much greater extent in supervised learning, and to constrain the
scope of our experiments, we do not use clustering datasets unlike when

previously evaluating GPRFC. To evaluate the performance of the
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Table 5.8: Feature set size of original dataset vs those augmented by
GPMVRFC and GPRFC.

Source GPMVREFC GPREC

Dataset #Features #Features #Features
Iris 4 24 28
Wine 13 52 78
WDBC 9 48 54
Dermatology 34 90 196
Vehicle 18 56 104
Image. Seg. 18 56 104
Movement Libras 90 270 540

proposed GPMVRFC method, we generated a number of augmented
datasets by running GPMVREFC on a number of well-known and popular
classification datasets from the UCI machine learning repository [31].

The number of source features and the total number of features® in the
augmented datasets produced by GPMVRFC, and GPRFC, are shown in
Table 5.8. As GP is a stochastic search method, we created 40 augmented
datasets for each source dataset utilising different initial random seeds.
These augmented datasets were then used to test a number of different
FS methods, in order to evaluate how the addition of r.fs would affect the
performance of FS methods in terms of the accuracy achieved, and the
number of features selected. In order to provide a comprehensive
evaluation, we use algorithms from all three main FS categories: filter,

wrapper, and embedded methods:
Filter:

Ranking each feature in an augmented dataset according to its
Information Gain (IG) [72,102]. IG is used to evaluate how well a feature
can predict the class label, and so if created features are redundant with
source features, they may be likely to have a similar IG ranking. Different
classifiers were then used to classify the dataset using the top n features

3That is, the sum of the number of source features and number of created redundant
features.
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(where n is varied from 1 to #features). Furthermore, we used two more
advanced filter FS algorithms to further test the difficulty of performing
FS on the augmented datasets. We used the L1-norm in a linear SVM
(“11SVC”) [186] to perform FS (i.e. sparse feature selection), as well a
Joint Mutual Information (JMI)-based search [180].

Wrapper:

Applying simple sequential search based FS algorithms to each
augmented dataset, where a wrapped classifier was used to evaluate the
selected subset at each stage. Sequential Forward Selection (SFS),
Sequential Backward Selection (SBS), and the floating versions of SFS
(SFFS) and SBS (SFBS) [160] were tested.

Embedded:

Finally, we also tested directly using the augmented datasets in a decision
tree (DT) classifier. These tests used the scikit-learn library [129].

All of the stochastic FS methods listed above were run 30 times with
independent seeds and averaged. The results of each of the above tests
will be discussed in turn in the next section.

5.8 Results and Discussion: GPMVRFC

Due to the number of different test combinations across the seven
datasets, we focus on analysing the results of the four datasets that show
the clearest patterns and provide the most insight. We discuss each of the
Wine, Dermatology, Vehicle and Image Segmentation datasets in turn in
this section. = For each dataset, we discuss the feature ranking
performance (with the KNN classifier), the DT performance, SFFS and
SFBS performance (again with KNN), and the 11SVC and JMI FS
methods, using KNN as the classifier. KNN was chosen as it produced
the most consistent patterns, and is a simple and efficient classifier. Our

performance analysis considers both the number of selected features and
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the test accuracy of the classifiers. For the feature ranking approach, we
exclude the GPRFC method from the plots, as it is a univariate FS
method and so is unlikely to give a fair comparison of the difficulty of the
r.fs created by each method.

5.8.1 Wine

Figure 5.5 shows the results of the FS methods on each of the 40
augmented Wine datasets. Figure 5.5a shows how the accuracy of the
KNN classifier varies when the top n ranked features are used, where n
increases across the z-axis. The orange line represents the performance
on the original Wine dataset using the same ranking process. We can
clearly see that accuracy is lowered on the augmented datasets, due to
the addition of r.fs that mislead the IG ranking process. However, at a
certain point (n ~ 15), enough good features are selected for the accuracy
to reach the same level that selecting four features on the original dataset

would give.

The remainder of the plots show one FS approach for each of the 40
augmented datasets for GPMVRFC and GPRFC, and the original dataset.
A small amount of jitter is added so that duplicate points can be
distinguished. The sequential FS algorithms (SFFS and SFBS; Figures 5.5¢
and 5.5d) show very similar accuracy distributions for each of the two
methods. Given that GPMVREFC creates 26 fewer features, this suggests
that the features created by GPMVRFC may be more difficult to identify,
given that GPRFC has a larger FS search space. The 11SVC method
(Figure 5.5e) appears to under-select features, especially on GPMVREC,
compared to on the original dataset, with a reduction in accuracy —
suggesting that the method is being “confused”. The JMI method
(Figure 5.5f) is harder to interpret, though it appears that both methods
cause extra features to be selected. The FS methods appear to struggle to
select a lower percentage of features on the GPMVRFC datasets. The DT
method (Figure 5.5b) is particularly interesting, as it shows GPMVRFC
actually improving the performance of the classifier, albeit with more
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Figure 5.5: Wine Dataset.

Orange is the original dataset; blue is

GPMVREC; and pink is the existing GPRFC method.
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features being used. If the DT method purposefully selects additional
features while improving accuracy, then GPMVRFC must be creating
more powerful/better features than some of the original features.
Considering that GPMVRFC combines several source features to create
an r.f, it is not unexpected that some of these created r.fs may actually be
of higher quality. Furthermore, real-world datasets such as those used
here often have complex hidden feature interactions, which GPMVRFC
may be able to “uncover” when it creates new r.fs. It may be that the
multivariate features represent a sort of kernel that represents some

implicit feature space that makes classification easier.

5.8.2 Dermatology

The results on the Dermatology dataset (Figure 5.6) further reinforces the
hypothesis that GPMVRFC may actually be inadvertently creating more
powerful features (for classification). Feature ranking (Figure 5.6a) shows
that selecting the same number of features on the augmented datasets
can give better test accuracy than on the original dataset for the first ~ 15
features. This pattern continues on four of the remaining FS methods
(Figures 5.6¢ to 5.6f) where GPMVRFC datasets generally have higher
accuracy compared to GPRFC, and often even compared to the original
dataset. In the case of SFFS, GPMVREC often gives higher accuracy with
tewer features. On 11SVC and JMI, using the same number of features as
GPRFC gives higher accuracy. While this initially seems unsatisfactory,
we note this may be partially due to fewer features being created by
GPMVREC than GPRFC; it also seems intuitive that combining multiple
source features means a created r.f is inherently less likely to be
misleading, especially as the datasets are generated in an unsupervised
manner. The DT results (Figure 5.6b) show no clear difference between
the methods, though, as before, the DT method uses a higher proportion
of the features in GPMVRFC than in GPRFC.
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Figure 5.6: Dermatology Dataset. Orange is the original dataset; blue is
GPMVREC; and pink is the existing GPRFC method.
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Figure 5.7: Vehicle Dataset. Orange is the original dataset; blue is
GPMVREFC; and pink is the existing GPRFC method.

5.8.3 Vehicle

The Vehicle dataset results (Figure 5.7) continue to show a similar
pattern. The primary exception is feature ranking (Figure 5.7a), where
the GPMVRFC-augmented datasets clearly decrease the performance of
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the classifier. As discussed before, this may be due to feature ranking
being a univariate approach that cannot cope with multivariate feature
interactions. Interestingly, the r.fs also cause the performance of the
classifier to decrease when the last third of features are used, suggesting
some features may be misleading to the KNN classifier. Each of the
remaining results (Figures 5.7b to 5.7f) show that GPMVREFC can clearly
create better features than those in the original dataset, causing the FS
methods to often select additional, better features, except for 11SVC,
which actually selects fewer features with better performance on
occasion. The DT and SFBS show very consistent patterns in this case,
perhaps as they both start by using the whole feature set, before

removing unhelpful features.

5.8.4 Image Segmentation

On the final dataset, the general pattern in the results (Figure 5.8) is that
GPMVREC produces r.fs that cause lower test accuracy than GPRFC,
despite GPRFC producing twice as many r.fs. The feature ranking
method clearly suffers in accuracy, including a slow drop off in accuracy
even after only half the best-ranked features have been wused
(Figure 5.8a). The SFBS, 11SVC, and DT methods (Figures 5.8b, 5.8d
and 5.8e) all select significantly more features compared to on the
original datasets while getting much lower test accuracy, clearly
indicating the added r.fs are more challenging than those created by
GPREFC. JMI (Figure 5.8f) under-selects features compared to the original
dataset, or selects extra, less useful features; SFFS (Figure 5.8¢c) is the
exception to the pattern in that it does not have clearly worse accuracy
due to GPMVREC, but it also selects many fewer features than the other
FS methods and so may be less prone to over-fitting. We plan to
investigate why GPMVRFC gave such different results on the Image

Segmentation dataset further in the future.
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Figure 5.8: Image Segmentation Dataset. Orange is the original dataset;
blue is GPMVREFC; and pink is the existing GPRFC method.
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5.9 Chapter Conclusions

This chapter introduced the first approaches to using GP for
automatically generating difficult benchmark feature selection datasets
containing complex redundant features.

The first approach, GPRFC, proposed a multi-tree representation and a
novel mutual information-based fitness function. GPRFC was shown to
generate high-quality and complex redundant features, which were
suitable for augmenting existing datasets for use in testing feature
selection algorithms.  Testing of GPRFC showed the considerable
potential of the use of GP for this task. We found that in order to improve
GPREFC further, it would be necessary to develop an approach to creating
more sophisticated and hard-to-detect multivariate redundant features.
In addition, the fitness function showed limitations that could be

improved.

These two factors were addressed in the second half of this chapter
through the proposal of GPMVRFC. GPMVREFC used a refined approach
that encodes multivariate features, and a significantly more appropriate
and efficient fitness function utilising an elegant gradient-based
technique. A large number of experiments were conducted to evaluate
the proposed GPMVRFC approach, utilising a range of datasets and
feature selection techniques. Several interesting patterns observed in the
results were analysed in-depth, which showed that often GPMVRFC was
able to produce challenging benchmark datasets that caused a variety of

problems for different feature selection methods.

In some scenarios, it was found that GPMVRFC actually improved
classification accuracy compared to when FS was performed on the
original datasets. We believe this may be the result of the proposed
multivariate approach inadvertently creating better features due to
utilising multiple features from the original dataset. While this at first
appears to be a negative result, it actually suggests something much
more interesting: perhaps it is possible to perform unsupervised feature
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construction with GP in a filter-based approach using a MI-based fitness
function. This finding alone clearly warrants future investigation.

This chapter clearly showed the potential for GP-based FC to be applied
to a new and relatively unstudied research direction. Manifold learning
is an unsupervised learning research area that has significantly increased
in popularity in recent years, but has never seen the use of GP-based FC.
Many state-of-the-art manifold learning methods are very difficult to
interpret, despite manifold learning being primarily used in data
exploration tasks. The next chapter will investigate the potential for
GP-based FC to improve the interpretability in manifold learning,
providing further evidence of the potential for evolutionary feature

manipulation to improve the outcomes of unsupervised learning tasks.



Chapter 6

Interpretable Manifold Learning

using Genetic Programming

6.1 Introduction

Manifold learning (MaL) has surged in popularity in recent years due to
new techniques such as t-Distributed Stochastic Neighbourhood
Embedding (t-SNE) and autoencoders. However, despite one of the core
aims of MaL being to reduce complexity and improve data
understanding, state-of-the-art MaL techniques produce opaque results

with no clear mapping from the original data.

GP is well-known for producing functions, which map inputs (the domain)
to outputs (the codomain) using tree-based structures [135]. GP appears

to have several promising characteristics for solving this problem:

e It is a global learner, and so should be less prone to producing
partial-manifolds (i.e. local minima) unlike many existing methods

that use gradient descent or other approaches;

* As it uses an evolutionary-based search method, it does not require
a differentiable fitness function (unlike auto-encoders, t-SNE, etc.)
and so could be used with a range of optimisation criteria; and

185
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e It is intrinsically suited to producing interpretable mappings, as

tree-based GP in particular can be understood by evaluating the
tree from bottom to top. A wide range of tools are also available for
producing interpretable GP models, including automatic program

simplification and parsimony pressure.

Despite these traits, there is no work that uses GP to learn a manifold by

mapping an input dataset to a set of lower-dimensional outputs.

6.1.1 Chapter Goals

This chapter aims to propose the first GP approach to performing

interpretable manifold learning by automatically evolving functional

mappings from a high-dimensional space to a low-dimensional

manifold. Such an approach is expected to perform high-quality

dimensionality reduction using understandable models that provide

clear insight into manifold structure. This chapter will investigate:

1.

whether a multi-tree GP representation with specially designed
function and terminal sets can be used for performing manifold

learning;

. if an appropriate fitness function can be developed to evaluate how

effectively a GP individual preserves the structure of the

high-dimensional space;

. whether such an approach can compete with existing manifold

learning algorithms while also containing interpretable mappings;

. if the above approach can be extended to produce interpretable

visualisations (2D MaL) by finding a trade-off between quality and

complexity of models using a multi-objective approach; and

. whether such visualisations are competitive with existing manifold

learning visualisation techniques, and if the interpretability of the

GP models allows for greater understanding of the visualisations.
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6.1.2 Chapter Organisation

Sections 6.2 to 6.5 address the first three goals of this chapter by
introducing the first GP approach to directly perform manifold learning
(GP-MaL). The success of this approach is evaluated by comparing its
performance to a number of existing manifold learning methods across a
range of manifold sizes on a variety of datasets. Sections 6.6 to 6.10 tackle
the fourth, and fifth goals, by extending GP-MalL to focus on producing
interpretable visualisations (i.e. 2D manifold learning), by using a
multi-objective approach, which balances the two competing objectives
of model size and visualisation quality. This method, called GP-tSNE, is
compared extensively to the state-of-the-art visualisation method t-SNE,
with a particular focus on analysing the trade-off between visualisation
clarity and tree interpretability. A summary of the key findings of this
chapter is provided in Section 6.11.

6.2 GP for Manifold Learning (GP-MalL)

The proposed method, GP-MaL, will be introduced in three stages.
Firstly, the design of the terminal and function sets is discussed. Then, a
fitness function appropriate for manifold learning is formulated and
explained. Finally, a method to improve the computational efficiency of

GP-MaL (while maintaining good performance) is developed.

6.2.1 GP Representation

GP-MaL utilises a multi-tree GP representation, where each tree
represents a single dimension in the output (low-dimensional) space.
While multi-tree GP is known to scale poorly as the number of trees (t)
increases, manifold learning wusually assumes a low output
dimensionality (e.g. ¢t < 10). The terminal set consists of the d scaled
real-valued input features, as well as random constants drawn from
U[—1,+1] to allow for variable sub-tree weighting. The output of each

tree is not scaled or normalised in any way as this may introduce bias to
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Table 6.1: Summary of the function set used in GP-MaL.

Category Arithmetic Non-Linear Conditional

Function + x5+ Sigmoid ReLU Max Min If
No. of Inputs 2 2 5 1 1 2 2 3
No.of Outputs 1 1 1 1 1 1 1 1

the evolved trees or affect tree interpretability.

The function set (Table 6.1) chosen is inspired by existing feature
construction and manifold learning literature. It includes the standard
“+” and “x” arithmetic operators to allow simple combinations of
features/sub-trees, as well as a “5+” operator that sums over five inputs!
to encourage the use of many input features on large datasets. The
commonly used subtraction and division operators were not included as
they are the complements of addition and multiplication and so are
redundant in the “way” in which they combine sub-trees. To encourage
the learning of non-linear manifolds, two common non-linear activation
functions from auto-encoders were added: the sigmoid and rectified
linear unit (ReLU) operators. The function set also includes two
conditional (non-differentiable!) operators, “max” and “min”, which may
allow GP to produce more advanced functions. Finally, the “if” function
is also included, which takes three inputs a, b, c and outputs bif a > 0 or c

otherwise, to allow for more flexible conditions to be learnt.

Mutation is performed by selecting a random tree in a GP individual, and
then selecting a random sub-tree to mutate within that tree, as standard.
Crossover is performed in a similar way, by selecting a random tree from

each candidate individual, and then performing standard crossover.

6.2.2 Fitness Function

A common optimisation strategy among manifold learning algorithms is

to encourage preserving the high-dimensional neighbourhood around

!Five inputs were found to be a good balance between encouraging wider trees and
minimising computing resources required.
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each instance in the low-dimensional space. For example,
Multidimensional Scaling (MDS) attempts to maintain distances between
points, whereas t-SNE uses a probabilistic approach to model how
related different points are, and attempts to produce an embedding with
a similar joint probability distribution. =~ We refrain from using a
distance-based approach due to the associated issues with the curse of
dimensionality [42], and instead try to preserve the ordering of

neighbours from the high to low dimensions.

Consider an instance [, which has ordered neighbours
N = {N1,Ns,...,N,_1} for n instances neighbours in the
high-dimensional space, and neighbours N’ in the low-dimensional
space. If we were to perfectly retain all structure in the dataset, then the
ordering of N’ must be identical to that of V,i.e. N = N'. In other words,
the quality of the low-dimensional space can be measured by how similar
N'"is to N. In GP-MaL, we propose measuring similarity by how far each
instances” neighbours deviate in their ordering in the low-dimensional
space compared to the high-dimensional space. For example, if
N = {Ny, N, N3} and N’ = {N,, N3, N}, the neighbours deviate by 2, 1,
and 1 positions, respectively. Clearly, the larger the deviation, the more
inaccurately the orderings have been retained. Let Pos(a, X) give the
index of a in the ordering of X. We propose the following similarity

measure:

Similarity(N, N') = Z Agreement(|Pos(a, N) — Pos(a, N")|)  (6.1)

aeN

where Agreement is a function that gives higher values for smaller
deviations. GP-MaL uses an Agreement function based on a Gaussian
weighting to allow for small deviations without significant penalty, while
still penalising large deviations harshly. In this work, a Gaussian
function with a ¢ of 0 and 6 = 20 is used. 6 controls how harshly
deviations are punished — in preliminary testing we found a high 6 gave

best results as it created a smoother fitness landscape. The weighting for
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a given deviation dev is 1 — prob(—dev, +dev), i.e. the area of the Gaussian
not in this range. In this way, when there is no deviation, the weighting is
1 (perfect), whereas when it is maximally deviated the weighting tends to
0.

The complete fitness function is the normalised similarity across all

instances in the dataset (X):

: 1 T /
Fitness = 3 Z Similarity(Ny, N;) (6.2)
Iex

Fitness is in the range [0, 1] and should be maximised.

6.2.3 Tackling the Computational Complexity

Computing the above fitness requires ordering every instance’s
neighbours by their distances in the low-dimensional space, at a cost of
O(nlog(n)) using a comparison sort. This gives a net complexity of
O(n*log(n)) for each individual in the population. This scales poorly with
the number of instances in the dataset. Consider a given neighbour N,
which comes after N, and before N, for some instance. Even if we do not
optimise the deviation of N,, it seems likely that it will still be near N,
and N. in the low-dimensional ordering, as it is likely to have similar
teature values to N, and N, and hence will have a similar output from
the evolved function. Based on this observation, we can omit some
neighbours from our similarity function to reduce the computational
complexity. Clearly, removing any neighbours will slightly reduce the
accuracy of the fitness function, but this is made up by the significantly
decreased computational cost (similar to surrogate model
approaches [73]). An example of this can be seen in Figure 6.1, where the
number of edges are decreased significantly by only considering the two
nearest neighbours. Despite this, the global structure of the graph is still
preserved well, with E and G being connected by only two edges to the
rest of the (distant) nodes, and C, D, and F sharing many edges as they

are in close proximity.
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(a) Complete graph: 42 directed edges. (b) Pruned graph: each node
is connected to its two nearest
neighbours. 14 edges.

Figure 6.1: Pruning of a graph to reduce computational complexity.

When considering which neighbours to omit, it is more important to
consider the closer neighbours’ deviations, in order to preserve local
structure, as this is most likely to preserve useful information about
relationships in the data. However, it is still important to consider more
distant neighbours, so that the global structure is also preserved. Based
on this, we propose choosing neighbours more infrequently the further
down the nearest-neighbour list they are. One approach is to choose the
tirst £ neighbours, followed by k of the next 2k neighbours (evenly
spaced), then k of the next 4k, etc. This gives 7 neighbours according to
the following equation:

n= klogz(% +1) 6.3)

thus 7 is proportional to log(n) (¢ < n). The complexity per GP
individual is then O(nlog(n)) = O(log(n)log(log(n))), which gives a
sublinear complexity. In preliminary testing, we found using & = 10 to
give only minor differences in learning performance, which was
significantly outweighed by the ability to train for many more
generations in the same computational time. We use this approach in all
GP-MaL experiments in this chapter. While k could perhaps be decreased

turther, it would not reduce computational time asymptotically, as tree
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evaluation is now the main cost of the evolutionary process.

6.3 Experiment Design

To evaluate the quality of our proposed GP-MaL algorithm, we focus
mainly on the attainable accuracy on classification datasets using the
evolved low-dimensional datasets. High classification accuracy generally
requires as much of the structure of the dataset to be retained as possible
in order to find the best decision boundaries between classes, and so is a
useful proxy for measuring the amount of retained structure. We refrain
from using the fitness function (or similar optimisation criteria) to
measure the manifold “quality” so as not to introduce bias towards any
specific manifold learning method. The scikit-learn [129] implementation
of the Random Forest (RF) classification algorithm (with 100 trees) is
used as it is a widely used algorithm with high classification accuracy, is
stable across a range of datasets, and has reasonably low computational
cost [182]. While other algorithms could also be compared, we found the
results to be generally consistent across algorithms, and so do not include
these for brevity. 10-fold cross-validation is used to evaluate every
generated low-dimensional dataset, and 40 evolved datasets (40 GP runs)
are used for each tested dataset in order to account for evolutionary
stochasticity.

The characteristics of the ten datasets we used for our experiments are
shown in Table 6.2. A range of datasets from varying domains were

chosen with different numbers of features, instances, and classes.

We compare the proposed GP-MalL method to a number of baseline
manifold learning methods: PCA (as a linear baseline), MDS (which uses
a similar optimisation criterion), LLE (a popular MaL method) and t-SNE
(state-of-the-art for 2D/3D manifold learning). These methods are
discussed further in Section 2.4 (page 43). Scikit-learn [129] was used for
all the baseline methods (except for t-SNE) with default settings. For

t-SNE, we wused van der Maaten’s more efficient Barnes-Hut
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Table 6.2: Classification datasets used for experiments. Most datasets are
sourced from the UCI repository [31].

Dataset Instances Features Classes Dataset Instances Features Classes
Wine 178 13 3 COIL20 1440 1024 20
Move. 360 90 15 Madelon 2600 500 10
Libras

Derm. 358 34 6 Yale 165 1024 15
Iono. 351 34 2 MFAT 2000 649 10
Image 2310 19 7 MNIST 2000 784 2
Seg. 2-class

Table 6.3: GP Parameter Settings.

Parameter Setting Parameter Setting
Generations 1000 Population Size 1024
Mutation 20% Crossover 80%

Elitism top 10 Selection Type Tournament
Min. Tree Depth 2 Max. Tree Depth 8
Tournament Size 7 Pop. Initialisation Half-and-half

implementation [170]. For each method and dataset, we produce
transformed datasets for two, three, five, and the cube root (“cr”) of the
number of original features. = Two/three features are useful for
visualisation but are unlikely to be sufficient to preserve all structure,
whereas the cube root approach was found in preliminary testing to be
the point at which all tested methods could capture maximal structure
from the datasets. Five features are used as a “middle-ground”. As all of
these implementations have stochastic components, we also ran each 40

times on each dataset.

We use standard GP parameter settings, as per Table 6.3. One notable
setting is that we use 1000 generations; as we are interested primarily in
exploring the potential of GP for this task, we are not particularly
concerned with optimising the number of generations for best efficiency;
this will be explored in future work.
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6.4 Results and Analysis

The full set of results for each method and dataset are shown in Table 6.4.
For each baseline method on each dataset, we label the result with a “+”
if the baseline was significantly better than GP-MalL, or a “—" if it was
significantly worse. If neither of these notations appear, there was no
significant difference in the results. We used a two-tailed Mann-Whitney
U test with a 95% confidence interval to compute significance. A
summary of these results are provided in Table 6.5, by totalling the
number of “wins” (significantly better), “losses” (significantly worse)
and “draws” (no significant difference) the proposed GP-MaL method
has compared with each baseline. We compare GP-MaL'’s performance to
PCA and MDS, and LLE and t-SNE in the following subsections, as these
pairs of methods exhibit similar patterns.

6.41 GP-MaL Compared to PCA & MDS

GP-MaL has a clear advantage over PCA when the most significant
amount of feature reduction — to two or three features — is required.
Given that PCA is a linear manifold learning method, it is not surprising
that GP-MaL is able to preserve more structure in two or three
dimensions by performing more complex, non-linear reductions. At
higher dimensions, the gap narrows somewhat, as at five or cr features
there are enough available output dimensions in order to make linear
combinations able to model the underlying structure of the data more
accurately. PCA weights every input feature in each component it
creates, which means the way in which it models this structure is rather
opaque when there are many input features. The MDS results have a
similar pattern to the PCA ones, except that MDS and GP-MalL are quite
even on three and five features. It is interesting to note that MDS uses a
similar optimisation criterion to GP-MaL, but struggles more in creating

a good two-dimensional manifold.
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Table 6.4: Experiment Results.

GPM refers to the proposed GP-MaL

method. The number after each method specifies the dimensionality
means the cube root approach

of the low-dimensional manifold; “cr”

determined the dimensionality.

Method Wine

Move. Derm. Iono. Image.

COIL20 Mad. Yale

MFAT

MNIST

GPM2
PCA2
MDS2
LLE2

tSNE2

0955 0485 0914 0.826 0.797

0.764—
0.711—
0.659—
0.718—

0.405— 0.769—
0.476— 0.723—
0.499+ 0.803—
0.782+ 0.852—

0.776— 0.675—
0.8374+ 0.716—
0.833  0.809+
0.890+ 0.921+

0.628

0.647+
0.732+
0.850+
0.948+

0.605 0.382 0.639 0.909

0.572—
0.574—
0.601—

0.244—
0.339—
0.120—

0.643
0.687+
0.843+

0.712+ 0.455+ 0.935+

0.906—
0.909

0.980+
0.986+

GPM3
PCA3
MDS3
LLE3

tSNE3

0.964

0.793—
0.726—
0.667—
0.712—

0.579 0.924

0.608+ 0.780—
0.594+ 0.774—
0.513— 0.824—
0.768+ 0.847—

0.872  0.892

0.877 0.805—
0.910+4 0.883—
0.847— 0.831—
0.756— 0.924+

0.773

0.823+
0.849+
0.923+
0.952+

0.688

0.681—
0.677—
0.648—
0.731+

0.472

0.374—
0.404—
0.297—
0.394—

0.765

0.749—
0.830+
0.847+
0.935+

0.925

0.9324
0.932+
0.984+
0.987+

GPM5
PCA5
MDS5
LLES

tSNE5

0.960

0.913—
0.732—
0.683—
0.718—

0.673 0.951

0.705+ 0.899—
0.719+ 0.817—
0.684+ 0.825—
0.747+ 0.835—

0.915 0.958

0.9234+ 0.911—
0.928+4 0.901—
0.817— 0.837—
0.714— 0.930—

0.847

0.8874
0.886+
0.930+
0.878+

0.864

0.881+
0.685—
0.665—
0.763—

0.553

0.531—
0.564+
0.456—
0.532—

0.888
0.885
0.881—
0.870—
0.939+

0.940

0.945+
0.948+
0.985+
0.987+

GPMcr
PCAcr
MDScr
LLEcr

tSNEcr

0.962

0.789—
0.725—
0.669—
0.710—

0.681
0.704+ 0.852—
0.722+ 0.792—
0.685 0.814—
0.759+ 0.853—

0.941

0.899 0.891

0.879— 0.804—
0.920+ 0.884—
0.803— 0.828—
0.713— 0.925+

0.913
0.950+
0.911
0.924+
0.730—

0.863

0.857—
0.670—
0.679—
0.765—

0.661
0.648—
0.651
0.577—
0.650—

0.935

0.939+
0.889—
0.912—
0.944+

0.952

0.957+
0.957+
0.984+
0.987+

Table 6.5: Summary of Experiment Results.
“losses”, and “draws” are shown for GP-MaL compared to each baseline.

The number of “wins”,
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6.4.2 GP-MaL Compared to LLE & t-SNE

Overall, GP-MaL is the most consistent of all the methods across the
different numbers of features produced. LLE wins on one more dataset
than GP-MaL for two features, but otherwise GP-MalL has a clear
advantage with seven wins on three/five/cr features. The performance
of LLE fluctuates quite widely across the datasets, and generally loses to
PCA as the number of features is increased.

While GP-MalL is clearly worse than t-SNE on the 2 and 3D results, it
outperforms t-SNE on five or cr features. On the Ionosphere and COIL20
datasets, t-SNE'’s performance actually decreases as the number of output
features are increased, which means it is much more sensitive to the
number of components that the user chooses than GP-MaL; GP-MaL
almost strictly improves as more output features are produced, which is

what we generally expect from dimensionality reduction techniques.

In a number of cases, t-SNE does actually outperform GP-MaL while
using fewer features — however, consider that t-SNE (and LLE) are
embedding methods, which do not have to manipulate the original
feature space to produce the output feature space (i.e. are not a functional
mappings). It is clearly more difficult to evolve such a mapping, but also
has significant benefits in that GP-MaLl’s output dimensions can be
interpreted in terms of how they combine the original features, which is
often as important as visualisation alone in exploratory data analysis.

This behaviour will be explored further in Section 6.5.

6.4.3 Summary

GP-MaL shows promising performance for an initial attempt at directly
using GP for manifold learning, winning against all baselines on at least
two of the four configurations tested. While GP-MalL faltered somewhat
on some datasets such as MNIST, it achieved much better performance
on other lower-dimensional datasets such as Wine and Dermatology. This
suggests that with further improvements to its learning capacity, GP-MaL
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may have the potential to outperform existing methods on these higher-
dimensional datasets too.

Another important consideration is the interpretability of the models
produced by each baseline. t-SNE, LLE, MDS, and PCA (to a lesser
extent) are almost black-boxes as they give little information about how
the manifolds in the data are represented in terms of the original features.
Interpretability is an increasing concern in data mining, and feature
reduction is often touted as a way to improve it; we will examine in the
following section if GP-MaL can be interpreted any more easily than
these existing methods.

6.5 Further Analysis

6.5.1 GP-MalL for Data Visualisation

A common use of manifold learning techniques such as t-SNE and PCA
is for visualisation of datasets in two- or three-dimensions. Figures 6.2
and 6.3 plot the two-dimensional outputs of each manifold learning
method for the Dermatology and COIL20 datasets, which GP-MaL
performed best and worst on, respectively. To show the potential of each
method, we used the results that had the highest classification accuracy
for plotting.

On the Dermatology dataset, GP-MaL clearly separates each class better
than the baseline manifold methods. PCA, MDS, and t-SNE struggle to
seperate the purple, green, and pink classes apart, whereas GP-MalL is
able to separate them while keeping them reasonably close to signify their
similarities. t-SNE splits both the purple and blue classes into two disjoint
groups with other classes appearing in the middle of the split. LLE clearly
struggles to give a good visualisation at all — it is only able to split the
blue class from the others.

On the COIL20 dataset, LLE is able to separate the classes somewhat
more effectively along one dimension, but still fails to produce a
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Figure 6.2: The two created features on Dermatology, coloured by class
label.

reasonable visualisation. t-SNE clearly does very well, but does continue
to separate some classes into disjoint clusters (all of the green ones). It is
not clear which of GP-MaL, PCA, and MDS produces the best result;
MDS tends to incorrectly separate some classes like t-SNE, whereas
GP-MaL and PCA have poorer separation of different classes overall.
Unlike the other methods, the two dimensions produced by GP-MaL can
be interpreted in terms of how they use the original features — this will

be explored further in the next subsection.

6.5.2 Tree Interpretability

Part of an individual evolved on the MFAT dataset is shown in Figure 6.4.
While the left tree is large (containing 73 features), the right tree is very

simple: it adds two features together, and outputs the sum. This gives a
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Figure 6.3: The two created features on COIL20, coloured by class label.

strong indication that these features are very important for modelling the
underlying structure of the data. While the left tree is harder to analyse,
it is useful to note that four of the children of the root node are again very
simple: three features (two of which are transformed non-linearly) and a
constant weighting. This again suggests that these features particularly
model the instances in the MFAT dataset, with X292 appearing in both
trees. X292 and X294 are the first and third Karhunen-Loeve coefficients
extracted from the original images; these coefficients are extracted in a
similar way to PCA, so it makes sense that GP would recognise them as
very useful features: being the first and third coefficients, they represent a

significant amount of the variance present in this dataset.

Figure 6.5 shows an example GP individual evolved on the
500-dimensional Madelon dataset, with five trees used. Of the five trees,

four are simple enough to be human-interpretable, with the fifth being
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CDACRCIREORCD =

(a)
Figure 6.4: An example of two simplified trees (features) evolved on the
MFAT dataset, giving 65% classification accuracy. Only the top of the left
tree is shown.

larger, but still interpretable at the root. Trees 6.5b to 6.5e each combine
between three and five features in an intuitive manner, but which would
not be able to be represented by many existing manifold learning
methods. For example, consider Tree 6.5¢, which uses either the original
value of X475, or a non-linear sigmoid transformation of X475
depending on the value of X138. This suggests that there is a particular
feature interaction between X138 and X475 that may be important to the
underlying structure of the dataset. In fact, X475 is the feature that has
the second-highest information gain (IG) in this dataset. Tree 6.5e is just a
single selected feature — X455 clearly is important in the manifold of
this dataset.

Although Tree 6.5a is clearly more complex, the top of the tree still
provides an interesting picture of the most important aspects of the
dataset. For example, if X48 is a very low value, then this is simply the
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Figure 6.5: An example of five simplified trees (features) evolved on

the Madelon dataset, giving 87.8% classification accuracy. Tree (a) was

truncated to save space, but the full tree in the box to the right to show
that is is comparatively small; the original dataset had 500 features.

output of the tree. Examining X48 more closely reveals that it is in the
top 3% of features in terms of IG, and that at its smallest values it always
predicts the positive class. Also of note is that X475 appears twice again
in the top of this tree as well as in Tree 6.5c.

Summary:

As the focus of this work was to show the potential of GP for direct
manifold learning, no parsimony pressure (or other such methods) were
applied to encourage simple trees. Nevertheless, aspects of the evolved
individuals can be analysed with ease and provide insight into the
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structure of the datasets. This is a clear advantage over existing manifold
learning techniques, which are black (or very grey) boxes, and bodes well
for future work. The use of GP also has the benefit of allowing the
evolved trees to be re-used on future examples without having to
perform the whole manifold learning process again (as t-SNE or the other

methods would require).

6.6 GP for Creating Interpretable Visualisations:
GP-tSNE

The most successful application of manifold learning in recent years has
been in visualisation tasks. State-of-the-art visualisation methods such as
t-SNE use manifold learning to reduce dimensionality to two dimensions
in order to preserve as much structure as possible, thereby making a
highly accurate/representative visualisation. However, t-SNE, like most
manifold learners, does not use a model-based approach to produce the
two-dimensional representation, and so is very much a black box in
terms of what the visualisation actually means. For example, if we find
there are five “clusters” in a t-SNE visualisation, this is clearly useful
information. But what we do not know is why the instances in these
clusters are related — what characteristics of the original features makes
them close neighbours? The remainder of this chapter extends GP-MaL
to perform visualisation, focusing on making high-quality visualisations
using GP models that are as simple and understandable as possible.
Particular emphasis is put on the trade-off between visualisation
accuracy and interpretability of models in terms of model complexity,
through in-depth analysis that gives significant insight that is

unattainable with existing black-box approaches.

6.7 Proposed Method: GP-tSNE

Generally when applying GP to a problem, there are two main decisions to
be made: what terminal and functional nodes are suitable for the problem
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(i.e. the architecture), and how to formulate a fitness function to solve the
problem. In addition, there are often other improvements made to the
standard GP evolutionary process to further tailor it to the problem. Each
of these three considerations are discussed in the following subsections.
While each of these components builds on established work, the use of
them together to produce a range of interpretable models producing high-

quality visualisations is a new and substantial advance in this field.

6.7.1 GP Representation

In order to project a high-dimensional space to a two-dimensional space
for visualisation, it is important that a range of powerful and varied
functions are available to the evolutionary process in order to produce
compact but representative models. As exactly two dimensions are
required for visualisation, we use a multi-tree approach where each
individual contains two trees and each tree produces one dimension (i.e.

the x- or y- axes) of the visualisation.

Table 6.6 lists the nine functions and four terminals used in the proposed

GP-tSNE method. These are similar to those used by GP-MaL (Table 6.1),
but with two key additions, which are highlighted below.

The four arithmetic functions are standard, with the exception of the f+
(flexible addition) function, which is the only function that can take the
Zero node as input. This has the effect of allowing a variable number of
inputs to this addition function, which allows the evolutionary process to
easily perform mutation that effectively removes whole trees (hopefully
introns®) in the pursuit of model simplification. The use of a Zero node is
a key change compared to GP-MaL. Given that model simplicity is
directly optimised in this work, it is important that GP individuals are
easily able to add and remove sub-tree components; in GP-MaL introns
were not particularly troublesome as the focus was on manifold
retention. The f+ function replaces the 5+ one in GP-MalL.

2Introns are “useless” sub-trees whose outputs do not affect the tree output.
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Table 6.6: The function and terminal sets of GP-tSNE.
*:  Technically, the f+ function always has five inputs, but as the
Zero node can be an input, semantically it can have fewer.

Function No. of Inputs Description

Arithmetic Functions

+ 2 Std. Addition
I+ 1-5* Flexible Addition
X 2 Std. Multiplication
— 2 Std. Subtraction

Non-Linear Functions

Sigmoid 1 1
ReLU 1 max(0, x)

Conditional Functions

Max 2 max(x,y)
Min 2 min(z, y)
If 3 if (z < 0): y; else z
Terminal Nodes

F; 0 ith feature value.
N;F; ‘ith featur.e Yalue of

neighbour j; j € [1, 3]
Constant 0 From U[-1, 1]
Zero* 0 The number 0.

As in GP-MalL, the sigmoid and ReLU functions are included to allow
easy transformation of (linear) inputs into a non-linear output space.
Again, the three conditional operators provide different kinds of
non-linear transformations, which are quite unique to GP due to their
non-differentiability, and that are expected to allow a single tree to
exhibit varied behaviour depending on its inputs.

In addition to the F; terminal, GP-tSNE introduces the N;F; terminal.

th

This terminal gives the i'" feature value of the j'* neighbour of the

instance being processed by the GP tree. This inclusion is based on the
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observation that the feature values of a neighbouring instance in the
high-dimensional space are likely to be useful for computing a point in
the low-dimensional output space. The three nearest-neighbours for each
point are pre-computed using Euclidean distance. While this terminal
may also be useful in GP-Mal, it is particularly key in GP-tSNE as
maintaining the local structure of a manifold is very important for
visualising data accurately. As in GP-MalL, the constant terminal is
included here with a range of [—1, +1] to allow different parts of the tree
to have different levels of impact on the final output. The Zero node is
included solely for the f+ function, and is not used by any other

functions® as it is either destructive or has no effect.

6.7.2 Multi-Objective Approach

There is an intrinsic trade-off in machine learning between the potential
performance of a model and the minimum complexity required to attain
that level of performance. For example, the simplest model to
differentiate two classes would be a decision boundary that simply
thresholds at a certain point in space, whereas for three
linearly-separable classes, at least two thresholds would be required*.
The same is true in visualisation: the more granular (specific) a
visualisation is, the more complex the function used to produce that
visualisation must be. To recreate the high-dimensional structure of a
complex dataset in two dimensions would require two very big and
complex GP trees. Each node removed from a tree decreases the accuracy
with which the tree can reproduce the probability distribution from the
high-dimensional space (in the case of t-SNE). As an analogy, consider
evolving a very complex polynomial function with GP — the fewer
components (nodes) in the evolved functions, the fewer inflection points
available to approximate the function.

In this work, we employ a multi-objective approach to produce a set of

3The Zero node is strongly typed so it is only used by the f+ node.
4That is, for some real o, 3: Classs < a < Classg < 5 < Classc.
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solutions that allow for a trade-off between visualisation quality and
model interpretability to be chosen. This is strictly a more difficult
problem than optimising only visualisation quality (i.e. as in t-SNE) as a
model must be found that maps the high-dimensional to the
low-dimensional space. We choose to use NSGA-II [29] due to its wide
acceptance and popularity on two-objective problems. The first objective
uses t-SNE to measure the visualisation quality of an evolved GP tree,
whereas the second objective uses tree size as a proxy measure for the
interpretability of the evolved tree. Each of these will be discussed in

turn.

6.7.3 Objective 1: Visualisation Quality

t-SNE uses conditional probabilities to represent the similarity between
instances in a given dimensional space. Given two instances in the high-
dimensional space, z; and z, the conditional probability p;; that z; would

be chosen as a neighbour of z; is defined as [171]:

exp(—||lz; — z;||*/207)
Zk;ﬁl exp(—|lzy — x1|?/207)

given a Gaussian with variance o; centred at z;. t-SNE employs a

(6.4)

Pjli =

symmetric approach where joint probability distributions are used; p;; is
computed as the symmetrised conditional probabilities, which for n

instances is defined as:

_ Pili TP
” 2n

(6.5)

In order to remedy the crowding problem (see [171] for further details),
t-SNE uses a slightly different approach in the low-dimensional space,
which is based on a Student t-distribution. The joint probabilities of two
instances, y; and y;, in the low-dimensional space, called ¢;; is computed

as:
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ol
’ Zk;ﬁl(l + lye — wl[*)

The cost function (C), which measures the extent to which the

(6.6)

low-dimensional probability distribution does not match the
high-dimensional probability distribution, is the difference between the
two distributions as measured using the sum of the Kullback-Leibler
(KL) divergences:

C=KLPIQ) =" p; ng— 6.7)
i j K

We use this cost function as the first objective, which should be
minimized. The parameter o is computed based on a perplexity of 40

using the approach outlined in [171].

6.7.4 Objective 2: Model Complexity

A common issue encountered in GP is the production of bloated trees,
where a GP tree is significantly bigger than is necessary to achieve a
given level of fitness. Traditionally, there is no evolutionary pressure to
encourage compact trees, and so trees may contain unnecessarily
complex sub-trees, or in the worst case, introns. Bloated trees are
computationally inefficient, but more importantly are also much harder

for humans to interpret and understand.

Parsimony pressure, which treats minimisation of model size as a
(minor) objective in the optimisation process, is the most frequently used
method for controlling bloat in GP [107,136]. Weighted sum approaches,
where a small component of overall fitness is based on tree size, has been
often used for attempting to control bloat [19], but choosing the right
weighting is difficult and generally must be set empirically [155].
Lexicographic parsimony pressure, where the evolutionary selection

process is modified to prefer smaller trees when fitnesses are nearly
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equal [106], has also been frequently used to reduce the effect of bloat.
More recently, multi-objective approaches have been proposed for
addressing bloat, whereby tree size is used as a second objective to be
minimised [176]. This approach allows a trade-off between fitness and
model complexity to be found according to the approximated Pareto
front produced by the GP process, while also producing a range of
solutions of varying complexity in a single GP run, which can be
compared by the user for better insight into the problem being tackled.

We use a simple formula for complexity in this work, which is based on

the number of nodes in each of the two trees, T,, T}, in a GP individual I:

0, if N; = ZeroNode
Complezity(I) = Z Z (6.8)
Tel N;eT 1, otherwise
A given node N; is counted towards the complexity unless it is a
ZeroNode; these are not counted as they exist only to allow flexibility in
the arity of the addition function, and can be removed from the tree

structure when interpreting it as they have no semantic meaning.

6.7.5 Other Considerations

We use a slight variation to the standard NSGA-II, whereby we prevent
the breeding process from producing two identical individuals in a single
generation. Standard NSGA-II was found to often produce a new
population containing a large number of the simplest individuals (i.e.
tree size 1-2), which causes a collapse of the approximation front early on
in the EC process. By enforcing this uniqueness constraint, a much more

diverse and well-spread front is formed.

To further increase the visualisation quality without introducing
additional model complexity, we use the covariance matrix adaptation
evolution strategy (CMA-ES) [57] to fine-tune the numerical constants in
each tree in the final front at the end of the evolutionary process.
Standard GP has no ability to fine-tune its numerical coefficients
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efficiently (as it effectively randomly searches the parameter space); by
employing CMA-ES we can do so. CMA-ES is only used at the end of the
evolutionary process both due to its computational cost and to prevent
GP falling into local minima that would result from fine-tuning during

evolution.

The evolutionary process was sped up through the use of multi-threaded
evaluation, caching of quality values for previously-seen trees, and the
use of linear algebra libraries such as Nd4j [34], which allows significantly

faster matrix operations through native code libraries.

6.8 Experiment Setup: GP-tSNE

The proposed GP-tSNE method was applied to a range of representative
datasets that contain well-formed classes that lend well to visualisation.
The 10 datasets are summarised in Table 6.7, and have a range of
numbers of instances, features, and classes. These datasets are from a
number of different domains including general classification, biology,
and image analysis. Most of these datasets were sourced from the UCI
repository [31]. The standard t-SNE implementation [171] was chosen as
a baseline method as it has the same optimisation measure as GP-tSNE,
and is seen as the state-of-the-art in visualisation techniques. We used a
standard perplexity value of 40 (the same as in GP-tSNE), and used the
exact method of calculating nearest-neighbours. We also compare to
GP-MalL as a “generic” GP-based MaL method.

We found that the use of a multi-objective approach necessitated a large
number of generations (10,000) in the evolutionary process in order to
allow the biggest trees (with the best performance) to be trained
sufficiently. However, only a reasonably small population size of 256
individuals was needed to achieve reasonable coverage of the Pareto
front, especially due to the restrictions used to prevent NSGA-II
duplicating individuals. The remaining parameters, shown in Table 6.8

are standard settings; a maximum tree depth of 12 was found to be a
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Table 6.7: Classification datasets used for experiments.

Dataset Instances Features Classes
Iris 150 3 3
Wine 178 13 3
Dermatology 358 34 6
Breast Cancer Wisconsin 683 9 2
Vehicle 846 18 4
COIL20 1440 1024 20
Isolet 1560 617 26
MFAT 2000 649 10
MNIST 2-class 2000 784 2
Image Segmentation 2310 19 7

Table 6.8: GP Parameter Settings.

Parameter Setting Parameter Setting
Generations 10,000 Population Size 256

Mutation 20% Crossover 80%

Min. Tree Depth 2 Max. Tree Depth 12

No. Trees 2 Pop. Initialisation Half-and-half

good trade-off between allowing complex and powerful trees while not

increasing the search space and computational cost unreasonably.

All three methods were run 30 times on each dataset due to their stochastic
nature. As our evaluation is primarily based on qualitative analysis (as is
standard in visualisation [111,171]), we chose the median result out of the
30 runs according to the objective function used by the method: t-SNE’s
cost function for t-SNE and GP-tSNE, and GP-Mal's own fitness function
for GP-MalL.

6.9 Results and Discussion: GP-tSNE

The results across each of the 10 datasets are shown in Figures 6.6 to 6.15.
Each figure contains eight plots, which we refer to as (a)-(h) reading
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left-to-right and top-to-bottom. Plot (a) shows the approximated Pareto
front of the (median) GP result, with blue crosses showing each
individual in the front, and the black line showing the shape of the front.
The y and x-axes show each individual’s value for Objectives 1
(visualisation quality) and 2 (model complexity) respectively. Plots
(b)—(e) show representative visualisations — coloured by class label —
produced by individuals at different levels of model complexity: (b) is
the simplest possible model where each tree is a single feature (i.e.
feature selection), (c) is the model at the lower-quartile of complexity, (d)
is the median complexity model, and (e) is the most complex model, with
the most accurate visualisation. The upper quartile is excluded as it is
always very similar to the most complex model. Plot (f) shows the model
that is closest to the origin (0,0) reference point on the approximated
Pareto front, i.e. the model that could be considered to have the best
trade-off between quality and model complexity based on scaled
Euclidean distance to the origin. This model is also indicated on the
approximated Pareto front in (a) by a red cross. Plots (g) and (h) are the
t-SNE and GP-MaL baseline results with median performance, where the
quality written above the plots is calculated using t-SNE’s objective
function for both, to allow for sensible comparisons. The tree size for
GP-MalL is omitted as it was not optimised by GP-MaL and so is not
indicative of the true complexity of models produced by GP-MalL.

6.9.1 Specific Analysis

On the simplest dataset, Iris (Figure 6.6), all three methods provide a
clear 2D visualisation, although t-SNE and GP-tSNE more distantly
separate the green class. The LQ result for GP-tSNE is quite similar to
that produced by GP-MaL, but with less continuous spacing of points,
likely due to the trees being too small to convert the low-granularity
feature space to a more complex output space. The approximated Pareto
front shows that diminishing returns are quickly found on this dataset:
after ~25 tree size, quality only gradually improves as tree size quickly
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Figure 6.6: Iris. Figure 6.7: Wine.

increases.

Despite achieving the best quality on the Wine dataset (Figure 6.7), the
baseline t-SNE method seems to give a poorer visualisation compared to
the two GP methods. t-SNE appears to put too much emphasis on
maintaining the local structure of the data, such that the three classes
begin to overlap significantly. Both GP methods showcase the three
separate classes well, with the most fit GP-tSNE visualisation grouping
each class compactly. Even at the LQ, GP-tSNE is able to start to separate
the classes well compared to simple feature selection (two features).

Both t-SNE and GP-tSNE clearly separate the two classes on the
Wisconsin Breast Cancer dataset (Figure 6.8), whereas GP-MaL does not

give a clear separation boundary. A large model complexity is required
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Figure 6.8: Breast Cancer Wisconsin. Figure 6.9: Dermatology.

for GP-MaL to remove artificial separations within the green class,
though the global structure of the two classes starts to appear as early as
a tree size of 80 (the median). Indeed, it appears that from the LQ
through to the max tree size, the GP models retain the same general
“approach”, but become increasingly refined and accurate. In this way, it
could be possible to use the simpler models to explore the more accurate
patterns found by the bigger un-interpretable models by exploring how

points move as complexity increases.

The Dermatology dataset (Figure 6.9) further shows this pattern: as
GP-tSNE produces increasingly complex models, the visualisation
becomes “higher-resolution” and produces points that appear to be in a
continuous space, rather than a discrete space. GP-tSNE also clearly
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produces the best visualisation on this dataset, despite t-SNE again
having a better quality value. t-SNE artificially separates the blue class in
two, while failing to separate the purple and red classes well at all. This
suggests a possible unintended benefit of the proposed GP-tSNE
approach: by forcing a functional mapping model to be used to produce
the output, GP-tSNE is much less prone to artificially separating classes,
as it cannot freely move points about the output space. GP-MaL is clearly
worse than GP-tSNE, even when GP-tSNE has a tree size as low as 75.

Figure 6.10 shows the visualisations for the Vehicle dataset, one on which
all three methods struggle to separate the four classes well at all. This
suggests that the class labels may not provide a good representation of
the underlying data. Some small patterns, such as the two groups of blue
instances that are separated from the main set of instances, can be seen
even at very low model complexity.

The COIL20 dataset (Figure 6.11) highlights t-SNE’s ability to freely
move points throughout the 2D space, as it clearly produces the best
visualisation. It is interesting to note however that GP-tSNE is able to
separate some classes well, even at low model complexity. For example,
at the LQ, a number of classes are “clustered” quite well along the top of
the visualisation. As the complexity increases, the lilac class becomes
separable, and the curve topology of the blue/pink/red classes seen in
the t-SNE visualisation starts to form for GP-tSNE too.

Figure 6.12 shows how the Isolet dataset has many overlapping classes,
with only a few classes distinctly separated by t-SNE. The GP methods
generally overlap the same classes as t-SNE, but do not manage to
separate the groups as successfully. Isolet has the highest number of
classes (26) of all the datasets, which makes it especially challenging for
GP-based methods, since evolving two functions that can provide
sufficient granularity to separate 26 classes is clearly very challenging
and requires sufficiently complex trees. Despite this, it may be possible to
gain some insight into why given classes overlap, as the general

overlapping patterns start to be visible even at a low complexity of 65
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t-SNE performs quite well on the MFAT dataset (Figure 6.13), clearly
separating six classes, but overlapping the other four significantly. The

GP methods struggle somewhat, with GP-MaL not separating the classes

well (especially the light green and purple). GP-tSNE manages to nearly

separate the pink and yellow classes, and while it produces less class

overlap than GP-MalL, the other classes do not have clear separation

boundaries.

The Pareto front is quite sparsely covered at the higher

complexities, which suggests that the EC process did not focus enough

on producing high-quality, complex models.

The visualisations in Figure 6.14 (MNIST 2-class) provide an example of a

large dataset with a small number of classes. All three methods are able
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Figure 6.12: Isolet. Figure 6.13: MFAT.

to separate the two classes reasonably well, with GP-tSNE and t-SNE
producing quite similar results. This separation is evident even at low
model complexity in GP-tSNE — at a complexity of 2 (feature selection), it
is possible to draw a diagonal line through the middle of the
visualisation that would separate the two classes with reasonable
accuracy. GP-MaL produces a less clear separation and struggles to

distribute the points in the visualisation space well.

On the final dataset, Image Segmentation (Figure 6.15), all three methods
are able to separate the green and orange classes out, with t-SNE and
GP-tSNE providing clearer separation margins. While t-SNE also
manages to separate the red class, it does artificially separate parts of the
blue, yellow, pink and purple classes. Conversely, GP-tSNE fails to
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Figure 6.15: Image Segmentation.

separate the red class, but also keeps instances of the same class close to

each other: the blue class appears in the same part of the large group

rather than being split up as in t-SNE. Another useful observation is that

the orange, and to a lesser extent the green classes, are separated at very

low model complexity. The orange class is easily separated using only

one feature, whereas the green class can be separated at a complexity of

65. This suggests that perhaps these are more natural/intrinsic classes in

the dataset;

particularly distinct from the other instances.

perhaps they exhibit characteristics that make them



6.10. FURTHER ANALYSIS: GP-TSNE 218

6.9.2 General Findings

The visualisations produced by GP-tSNE were consistently superior to
those of our previous GP method, GP-MaL. GP-MaL was developed for
more general manifold learning (i.e. not just reducing to two
dimensions); by using a visualisation-specific quality measure, GP-tSNE
is clearly better suited to visualisation. As the number of instances
increased, t-SNE began to produce clearer visualisations than GP-tSNE,
although the same general patterns were shown by both methods. Given
GP-tSNE is in essence tackling a strictly more difficult task, of evolving a
functional model to produce a visualisation, we see this as a success for

the first such approach to this task.

One particularly interesting observation was how GP-tSNE produced
similar overall visualisations at different model complexities, with the
more complex models being more granular/refined than the simpler
ones. This demonstrates the advantages of an evolutionary approach:
good sub-trees of a complex tree can be used to improve simpler trees
(and vice-versa) via crossover, allowing for more efficient search that
produces models with different levels of trade-off. In the following
section, we will explore this phenomenon in more depth to highlight the
novel advantages of GP-tSNE.

6.10 Further Analysis: GP-tSNE

The results of GP-tSNE on the Dermatology dataset (Figure 6.9) were of
particular interest as they clearly showed the potential of GP-tSNE;
showed the same general visualisation, but at different qualities across
tree sizes; and achieved good visualisations even at reasonably small
model complexities. To further demonstrate the value of GP-tSNE, this
section analyses a selection of increasingly complex trees produced by
the median GP run on this dataset.
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Figure 6.16: GP-tSNE at a Figure 6.17: GP-tSNE at a
complexity of 14 (Dermatology). complexity of 20 (Dermatology).

6.10.1 Simple Models

The simplest model that gives a reasonable visualisation is shown in
Figure 6.16, which contains one tree with six nodes, and the other with
eight, for a total complexity of 14. Even at such low complexity, four of
the classes start to appear, with the blue class already showing a clear
separation to the others. The first tree uses only two unique features: the
instance’s X 3 value as well as its nearest-neighbour’s X3 value, and the
values of the three nearest-neighbour’s X 32 values. The second tree uses
three unique features: the instance’s X 27 value; the instance’s X'19 and its
two nearest-neighbours X19 values; and its two nearest-neighbours X20
values. This gives a total of five unique features of the 34 in the feature
set. The blue class is separated from the other classes along the x-axis (the
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tirst GP tree). The blue class is the third class in the Dermatology dataset,
which is a type of skin rash called “lichen planus”. The two features used
by the first tree, X3 and X 32, represent the amount of itchiness and the
amount of band-like infiltrate affecting a patient’s skin. A clinician can
use this knowledge from the GP tree to realise that lichen planus can

potentially be diagnosed based on these two symptoms alone.

When the model complexity is increased to 20 (Figure 6.17), the
separation of points within classes starts to become better-defined. The
first tree (x-axis) does not change significantly, except that the second
nearest-neigbour’s X3 value (N1 : X3) is added, and the NO : X32 and
N2 : X32nodes are duplicated, to give a total summation of eight feature
values, but still only two unique features. The duplication of these two
nodes essentially doubles the effect of these features in the output of the
tree. This suggests that these nodes are particularly important for
improving the within-class separation along the x-axis. The second tree
(y-axis) changes very little, with only the N1 : X15 node added, which
causes a slight reshaping of the y-axis.

Figure 6.18 represents an increase of only one complexity to the previous
model, but with a very different appearance. The second tree is actually
identical to the first tree of the previous model but has swapped position,
causing an inversion of the visualisations from here on in. The first tree
is surprisingly different to the second tree of the previous model, as it
adds features X21 and X30 and removes the use of features X15. This
change is sufficient to give a clearer separation between the red and purple
classes, and between the purple and green/orange classes, which suggests
that features X21 and X'30 may be particularly characteristic of the purple
class.

Figure 6.19 further increases the amount of detail in the visualisation. The
second model (y-axis) is still semantically unchanged from the first model
of Figure 6.17. The first model (x-axis) however, now uses a total of seven
unique features: X6, 16,19, 20, 21,27, 29. This allows it to spread the blue
class out further, as well as adding clear distinction between the green and
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Figure 6.18: GP-tSNE at a Figure 6.19: GP-tSNE at a
complexity of 21 (Dermatology). complexity of 30 (Dermatology).

orange classes, which was not present before. The yellow class also begins

to separate somewhat.

Interesting, all of Figures 6.16 to 6.19 use only linear functions (addition,
subtraction), despite the wide range of functions available. A potential
explanation is that at such low complexity, there is insufficient “room” in
the tree to use non-linear functions in a sophisticated enough manner
that would better separate the classes of the dataset. This is also quite
beneficial in terms of these trees being easily interpretable, as linear
functions are clearly simpler to understand than if conditional operators
or sigmoid operators were used. Given that only linear functions are
being utilised, another natural question is whether GP-tSNE is any better
than PCA at this level of complexity — after all, PCA finds the best
possible linear combination of features. However, PCA (in its primal
form) has no ability to choose a small subset of features to combine,
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whereas GP-tSNE uses only a few features, producing more concise and

minimal models that are far simpler.

The sequential analysis of increasingly more complex models clearly
provides additional insight that would be lacking in a
non-multi-objective approach.  This analysis technique is also an
exclusive benefit of GP-MaL among other visualisation techniques,
which are primarily black-boxes with one visualisation produced per
run.

Quality: 0.801 Complexity: 60

Figure 6.20: GP-tSNE at a complexity of 60 (Dermatology).
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Figure 6.21: GP-tSNE at a complexity of 122 (Dermatology).

6.10.2 Complex Models

From here, the improvement in quality with the addition of more
complexity begins to show clear diminishing returns: from a complexity
of 14 to 30 gave an improvement in quality from 1.040 to 0.854, whereas
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doubling the complexity again to 60 gives a further reduction only to
0.801, and to 122 a reduction to 0.746. These two models (Figures 6.20
and 6.21) do not fundamentally change the class separations present in
Figure 6.19, but better separate within-class instances, as well as moving
the purple class away from the other classes. Figure 6.21 also begins to
separate the orange class. The GP trees in these models are also difficult
to interpret — at a complexity of 60, the second tree is still quite simple,
with only four unique features used (X3, 15, 20, 32), but the first tree uses
nine unique features. These are also the first trees examined so far that
use functions beyond arithmetic operators: earlier models achieved best
results through simple addition and subtraction, whereas these trees use

non-linear transformations (multiply, ReLU, sigmoid, max).

By the time that the maximal tree size (and best visualisation quality) is
reached in Figures 6.22 and 6.23, the trees are nearly un-interpretable. The
main change in the visualisation is the separation of the orange class to the
bottom of the y-axis, as well as a more compact and separated purple class.
This suggests that the “pityriasis rubra pilaris” skin disorder represented
by the orange class is difficult to diagnose, and requires complex decision
making based on many features to isolate clearly.

6.10.3 Summary

In this section, we showed how progressive examination of the
approximated Pareto front from least to most complex models allowed
insight into the structure of the data that is not easily achievable through
traditional visualisation algorithms. Using the Dermatology dataset as a
case study, we showed that even simple models could separate out some
classes clearly, with the use of only two features. As we increased the
complexity, we found that the granularity/local structure within classes
improved, but the overall patterns changed only slowly. In this way, it is
possible to use simple, understandable models to provide insight into
how more complex models are able to produce high-quality

visualisations.
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Figure 6.22: GP-tSNE at a complexity of 493 (Dermatology): Visualisation.

6.11 Chapter Conclusions

This chapter explored the potential for GP to be used for interpretable
manifold learning through the development of two methods: GP-MaL
and GP-tSNE.

GP-MaL was proposed as a generic manifold learning method, capable of
doing dimensionality reduction to an arbitrary number of output
dimensions. Appropriate terminal and function sets were presented,
along with a fitness function tailored to the task, and further techniques
for reducing computational complexity. GP-MaL was shown to be
competitive, and in some cases clearly better than, existing manifold
learning methods, and was generally more stable across the datasets
tested. GP-MaL was also shown to produce interpretable models that
help the user to gain concrete insight into their dataset, unlike many
existing manifold learning methods. The potential of GP-MaL for
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Figure 6.23: GP-tSNE at a complexity of 493 (Dermatology): Trees.
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visualisation purposes was highlighted. Furthermore, the functional
nature of the models produced by GP-MaL allows it to be applied to
future data without re-training. As the first work using GP for directly
performing manifold learning, these findings showcased the potential of
GP to be applied further to this domain.

GP-tSNE extended GP-MalL significantly for specialised use as a
visualisation algorithm. Visualisation is a fundamental task in data
exploration that is used to provide insight into data that is too
high-dimensional to be understood correctly, or that has not been
collected for a particular purpose. GP-tSNE was motivated by the need
for not only high-quality visualisations in data exploration, but for
interpretable visualisations that can be understood in terms of the original
features of the dataset. In addition to a refinement of the GP architecture
and a visualisation-specific fitness function, GP-tSNE proposed a
multi-objective approach to capture this critical trade-off between
visualisation clarity and model complexity. Results on ten different
datasets highlighted the promise in using a GP approach for this task,
with visualisations produced that showed clear characteristics of datasets
even at model complexities that could be low enough to understand.
This was further showcased through an in-depth analysis of an evolved
front on the Dermatology dataset, where concrete insight into how the
dataset was structured was found by examining a range of models with
different complexities.






Chapter 7

Conclusions

This thesis represents the first comprehensive investigation of applying
EC techniques to perform feature manipulation (FM) in unsupervised
learning. The overall goal was to improve algorithmic performance and

model interpretability in unsupervised learning.

To achieve this goal, four main directions were investigated. First,
EC-based FM was applied to the well-established and widespread
unsupervised problem of clustering. A refined PSO-based approach for
simultaneous clustering and FS was proposed that improved
performance while selecting fewer features, even when the number of
clusters was unknown. Secondly, two GP-based FC approaches were
proposed that significantly improved -clustering performance on a
variety of datasets, while using only a small number of features in a way
that could be understood by humans. These methods showcase the
ability of EC-based FM approaches to improve results on common

unsupervised learning tasks.

The third and fourth directions considers unsupervised learning
problems where traditional algorithms have struggled, and that EC
methods have not previously been applied to. By using novel EC-based
FC approaches, this thesis proposes the first EC methods for
automatically creating redundant features for benchmarking FS datasets.

Finally, it also proposes the first GP-based methods for automatically

229
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performing interpretable manifold learning. The results attained on these
tasks highlight the potential for EC-based FM approaches to tackle

difficult unexplored unsupervised problems in an interpretable manner.

This chapter will present the conclusions of each of the four research
objectives, summarise the main findings of each contribution, and

highlight promising future directions of research.

7.1 Achieved Objectives and Major Conclusions

7.1.1 PSO for Simultaneous Feature Selection and

Clustering

The first objective of this thesis was to develop a new PSO-based
algorithm to perform clustering and feature selection simultaneously in a
single particle (Chapter 3). A medoid-based representation was proposed
that allowed the number of clusters (/) to be automatically found within
a fixed-length representation. A sophisticated three-stage extension was
also proposed that improved the estimation of K; refined the fitness
function further; and introduced a pseudo-local search to fine-tune
clusters. Empirical evaluation showed clear benefits for the proposed
approach, selecting fewer features than existing approaches while
increasing clustering performance. This is the first PSO-based approach
using a medoid representation for simultaneous feature selection and

automatic clustering.

The Benefits of a Medoid Representation

The medoid representation — where each instance in a dataset can be
selected as a cluster centre — had seen little use in the literature
compared to the classic centroid representation. This thesis demonstrated
the clear benefits to a medoid approach: cluster partitions produced by a
medoid PSO method were better-structured while using fewer features

than centroid PSO methods. Using a medoid approach constrains the
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search space to only “sensible” solutions by forcing instances to be
cluster centres. This improves the learning efficiency of PSO, and may
allow the learning process to better focus on removing less useful

features.

The medoid representation was found to have its own share of limitations.
It has an intrinsic inability to fine-tune solutions due to the constraint of
cluster centres needing to be instances. While this is useful during the
exploration phase of PSO, it affects the exploitation that can be achieved. A
psuedo-local search was proposed that converts the best particle of the
run into a centroid representation, and then performs a small PSO run
to fine-tune it. In this way, the benefits of both the medoid and centroid
representations can be combined, while addressing the limitations of each.

Finding K

One key advantage of the medoid representation is its ability to produce
a dynamic number of clusters with a fixed-length representation.
However, using such a dynamic medoid approach introduces a new
difficulty: the much larger search space introduced by allowing a
variable number of clusters, as discussed in Section 1.2.1. Indeed, it was
found that the dynamic medoid approach had significantly more trouble
producing good solutions than the fixed medoid approach,which
necessitated the introduction of a heuristic that produces an estimate of
K, K.q. This heuristic was used to guide the PSO search, but still
allowed flexibility in the chosen K, given the heuristic itself is imperfect.
This significantly improved the accuracy of this method, allowing for a
more useful algorithm that can automatically find the number of clusters,
select features, and perform clustering.

Interaction between Feature Selection and Clustering

Performing clustering and feature selection simultaneously has the
potential to produce a more cohesive set of features and clusters than if
the two tasks are done sequentially.  However, as discussed in
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Section 1.2.2, there is a clear interaction between finding a small feature
set and finding the most appropriate K. Chapter 3 clearly demonstrated
this issue, and also showed that fewer features tended to be selected, at
the expense of clustering performance as the feature selection task gave a
much smoother/easier fitness space to optimise. The three-stage
dynamic medoid approach addressed this limitation by exploring
variations to the fitness function. Instead of linearly penalising fitness as
the number of features selected increased, an elliptical weighting was
proposed that punished a solution harshly only when the number of
selected features was particularly large. Investigating an alternative
multi-objective approach to balance these tasks may prove an interesting
future direction of research.

7.1.2 GP for Feature Construction in Clustering

Chapter 4 introduced two new methods for using GP to perform FC to
improve clustering performance, achieving the second objective of this
work. Two wrapper-based FC approaches for clustering were proposed,
improving clustering performance and interpretability by evolving a
small set of high-level constructed features. The first method used a
relatively direct approach, where constructed features (from GP trees)
were fed into k-means clustering and the performance of the resulting
clusters were used as the fitness of the constructed features. The second
method (GPGC) utilised the functional nature of GP to evolve tailored
similarity functions specific to the dataset (and algorithm) forming a
clustering problem. Existing similarity functions, such as Euclidean
distance, are designed with generality in mind: they are limited in the
performance they can achieve and their behaviour on a specific dataset is
very difficult to understand. The GPGC approaches (proposed in
Section 4.6) directly addressed these limitations.
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Benefits of Feature Construction in Clustering

While the benefits of using FC in supervised learning tasks are well
known, this thesis provided clear evidence of the benefits in clustering as
well. Many common clustering algorithms utilise rigid algorithmic
approaches that mean they cannot automatically adapt to different
domains or situations. By using a wrapper-based FC approach, the
methods in this chapter are able to automatically tailor the search space
as needed. By using operations such as max, min, and if, the constructed
features can combine information across different features in a way that
most clustering algorithms cannot. This allows for a much more flexible
solution space, which allows the wrapped clustering algorithm to
achieve higher performance than it would using only the original feature
set.

Another key benefit to FC in clustering is the ability to construct multiple
features that have heterogeneous behaviour across different
clusters/parts of the feature space. Both the approaches in this chapter
employed multi-tree approaches to produce multiple distinct constructed
features using different sets of original features, which represent different
characteristics of the dataset.

Interpretability of Cluster Partitions

Clustering, as a data exploration task, is generally used to give insight
into datasets for which little information is known. For example, using
clustering to find groups of related people may provide useful
information about the customer base of a business. However, when data
dimensionality is high, clustering becomes less meaningful even if
high-quality clusters can be found. Using the same example, we would
like to know not only that a group of people are related, but also how they
are related. The FS approaches in Chapter 3 begun to show this, but the
FC approaches in Chapter 4 highlighted this even more clearly. In
Section 4.5, we explored how performance could be increased using 11
constructed features, which only used 12 unique original features in total
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compared with the original 100-dimensional dataset. These constructed
features were also very simple and easy to understand by examining the
evolved GP trees.

The interpretability of the evolved tailored similarity functions were also
highlighted in Section 4.10.1. An analysis of a multi-tree similarity
function provided deep insight into how the clustering algorithm had
decided to allocate different instances into different clusters. Only 15
features of the original 1000 were used, and performance was
significantly better than when clustering methods used the standard
Euclidean distance measure; this niching-style approach was able to give

interpretable results while even improving cluster quality.

Chapter 4 clearly demonstrated the potential of GP for FC in clustering to
not only improve performance, but also to improve the outcomes of the
data exploration process by producing solutions that give clearer insight
into the data.

7.1.3 Generating Benchmark Feature Selection Datasets
with GP

The GPRFC and GPMVRFC methods proposed in Chapter 5 addressed
the third objective by providing ways of automatically generating
difficult uni or multivariate redundant features for creating benchmark
FS datasets. GPRFC introduced a novel mutual information-based fitness
function in conjunction with a multi-tree approach to create a set of
(distinct) redundant features given a source feature. Experimental testing
of GPRFC demonstrated the promise of GP for this task, but showed a
clear need for a better fitness function and a way to create more complex
multivariate redundant features. GPMVREFC is an extension of GPRFC
designed to address both of these limitations, using a multivariate
representation with a gradient-based fitness function to create more
sophisticated redundant features. While GPMVRFC produced better
results than GPRFC in some regards, it uncovered a particularly
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interesting phenomenon: classification performance would actually often
improve when the multivariate redundant features were added, despite

them being created in an unsupervised manner.

Performing Unsupervised Filter-based Feature Construction using MI

In hindsight it seems somewhat obvious that creating multivariate
redundant features would create high-quality features that could be
directly useful for classification tasks. In order for a created feature to
have a high MI with a set of source features, it must combine as much
information from these features together as possible. If we assume that
the classes in a dataset are reasonably well-structured, then it follows that
such combined information is likely to be useful for predicting the class
label. Furthermore, multiple distinct constructed features are created in
tandem, further increasing the chance that at least one of these will
contain useful information for a classification algorithm. This
phenomenon is clearly a significant issue for the task of redundant
feature creation; more importantly it offers an exciting future direction of
research for creating powerful constructed features as an unsupervised
pre-processing step that has the potential to be used to improve the

performance on a diverse set of data mining tasks.

Ability of GP to Create Trees with Distinct Behaviour

One of the main challenges in developing these algorithms (in Chapter 5)
was finding appropriate ways to encourage diversity across the created
redundant features. GPRFC used a Ml-based approach to reduce the
redundancy between created features, with good success as seen in the
created visualisations (shown in Chapter 5). These plots show that GP
has clear potential to model a variety of complex functions by using a
multi-tree representation with diversity pressure in the fitness function.
This reinforces the findings discussed earlier in this chapter:
heterogeneous behaviour across trees is a particularly distinctive and

promising property of multi-tree GP, which could be exploited in a range
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of data mining tasks. Minimising MI across GP trees in order to
encourage this heterogeneity/niching is likely to be even more effective

in other tasks, which do not otherwise employ MI in the fitness function.

7.1.4 Interpretable Manifold Learning using GP

The final objective of this thesis was to develop a GP-based approach to
perform interpretable manifold learning. As previously discussed in
Section 1.2.5 and Chapter 6, state-of-the-art manifold learning techniques
achieve high performance at the expense of poor interpretability of the
discovered low-dimensional manifold. The two methods proposed in
Chapter 6 addressed this objective by introducing the first GP-based
approaches to manifold learning, with a particular emphasis on the
interpretability of the trees used to represent the discovered manifold.

The first method, GP-MaL, showed the potential of GP for performing
general MaL (i.e. to any sized low-dimensional space). Despite being
restricted by using a model-based approach, GP-Mal was often
competitive with (or better than) existing MaL methods in the conducted
experiments. More importantly, the ability of GP-MaL to produce
interpretable manifold structures was demonstrated.

To further highlight the potential and practicality of using GP for MaL,
an extension to GP-MalL called GP-tSNE was proposed that is specifically
designed for producing interpretable visualisations of data. GP-tSNE
showed strong evidence for the ability to use EC for feature manipulation
in problems previously not tackled by EC methods. Visualisation
methods consistently struggle to explain how produced visualisation
were formed from the original dataset: GP-tSNE provided clear insight in
this regard, especially when a series of increasingly complex
visualisations were examined along the approximated Pareto front. This
is a particularly important finding, as it is an advantage of GP-tSNE that
is not possible in state-of-the-art manifold learning techniques.
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Suitability of GP for Manifold Learning

The use of GP for MaL in Chapter 6 was motivated by the observation
that manifold learning can be represented by learning a function that
maps a high-dimensional dataset to a low-dimensional embedding. Such
functions have previously not been proposed given the MaL. community
has focused on approaches that use gradient descent-style optimisation,
which requires a differentiable cost function. GP, as an EC method, does
not have this restriction: it can take advantage of non-differentiable
function components such as conditional operators, which are much
more powerful and flexible in representing manifolds with complex
topologies.

The above motivation was convincingly validated through the results
achieved by GP-MaL and GP-tSNE. While the raw performance of the
GP-based methods may not have always matched those of the
state-of-the-art methods, it is important to recognise that this is the first
approach to using GP for MaL — the state-of-the-art MaL methods were
created through many years of iterative improvement by a large and
active research community. Continued research into the use of GP for
Mal is likely to lead to further performance improvements. Furthermore,
it was highlighted that creating a functional model that maps a manifold
is strictly more difficult than directly creating the low-dimensional
structure as an embedding (as t-SNE etc. do). In this regard, the GP MaL
approaches proposed in this thesis show significant promise and novelty
as they give both reasonable MaL performance as well as clear benefits

for interpretability, which is often key in real-world use.
Understanding Data by Examining Increasingly Complex Models

While GP-tSNE showed a clear ability to produce interpretable
visualisations, one of the most useful findings was the manner in which
the approximated Pareto front produced by its EMO approach could be
used to provide deeper insight. A single run of GP-tSNE produces many
candidate visualisations at varying complexity (unlike t-SNE etc.). The
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least complex of these gives a very coarse visualisation of the dataset,
hopefully along the most defining axis of the manifold. While this
visualisation is unlikely to fully show all the characteristics of the data, it
provides one of the strongest patterns that is present. As we move along
the front, models gradually get more complex, but still tend to maintain
the earlier patterns found, while adding additional “detail” or aspects of
the manifold at each step. This is seen in the GP trees through the
addition of new features, and more complex combinations of features
that encode feature interactions in the manifold. By adding a small
amount of complexity at each step, it is much easier for humans to
understand the increasingly complex trees as one only needs to focus on
what has changed in the visualisation and tree compared to the previous
slightly less complex model. This approach is unique to multi-objective
ML methods, of which EC methods are seen as state-of-the-art. Indeed,
this advantage of GP-tSNE is a strong and valuable contribution of this
thesis. This approach is not necessarily specific to visualisation — other
domains in which model complexity is critical could clearly benefit from

such analysis.

7.2 Major Findings

While each of the four chapters in this thesis are self-contained
investigations, there are a number of common conclusions reached,
which provide particular insight into the use of EC for FM in
unsupervised learning tasks:

1. The interpretability of models in unsupervised learning is even
more critical than in supervised learning: unsupervised learning is
part of data exploration where pre-existing knowledge (such as
labels) is generally unavailable. Despite this, many techniques
focus overly on raw performance with interpretability considered
only as an afterthought, if at all. EC models that use FM are
particularly suitable for addressing this, as they work by
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simplifying a model’s representation through smaller or more
sophisticated feature spaces. This was especially true in the GP
methods proposed in this thesis, whose interpretability was a key

success. There is an obvious need for further efforts in this area.

The choice of fitness function in unsupervised learning is inherently
more critical than in supervised learning. Unlike tasks such as
classification and regression, which have ground truths, there is
often no clear fundamental basis on which to model a fitness
function. This may be further complicated when FM is used, such
as when the number of features selected interact in a complex
manner with the cluster quality measure (Chapter 3). In Chapters 4
to 6, two different approaches to fitness functions for the same (or
similar) problems were proposed, with different benefits and
limitations. There is a clear need for careful consideration and

evaluation of fitness functions used in unsupervised domains.

Multi-tree GP approaches can be used to improve performance and
interpretability (Chapters 4 to 6). It was discovered that GP is very
well suited to producing individuals that exhibit heterogeneous
behaviour across different trees, which is of particular benefit in
complex tasks, which benefit from such niching-style approaches.
Multi-tree clustering (Chapter 4) allowed different clusters to be
treated in diverse ways; multi-tree redundant feature creation
(Chapter 5) allowed multiple distinct features to be created; and
GP-based MaL (Chapter 6) clearly necessitated a multi-tree
approach to allow separate trees to encode discrete components of
the manifold in a cohesive manner. Single-tree GP has historically
been favoured in GP literature, but difficult unsupervised learning

problems clearly benefit from a multi-tree approach.

The use of FM for unsupervised learning problems very often
introduces two or more conflicting objectives. At the very least,
complexity (# features or model size) should be traded-off against
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performance. Often there are three or more objectives, such as
when k is unknown in clustering or when the created redundant
tfeatures should be distinct as well as redundant with the source
feature. GP-tSNE (Chapter 6) clearly showcased the benefits of an
EMO approach in this regard, as it allowed for a more elegant and
useful balance between complexity and performance. Many
unsupervised learning problems utilising FM, including those in
this thesis, would likely benefit from an EMO approach —
although, the increased computational cost of this would need to be
carefully considered.

7.3 Future Work

The overall conclusions of this thesis (Section 7.2) provide clear direction
for general work utilising EC for FM in unsupervised learning. This
section will specifically highlight concrete areas of future work for each
of the four contributions of this thesis in turn.

7.3.1 Particle Swarm Optimisation for Simultaneous

Feature Selection and Clustering

Chapter 3 highlighted a number of opportunities for further improving
PSO algorithms for simultaneous FS and clustering. In particular, an
EMO approach could greatly help balance the three overall competing
objectives of FS, cluster quality, and the number of clusters found. A clear
interaction between these competing objectives necessitates finding a
good balance that clearly provides understandable and representative
clusters for a variety of data. Indeed, measuring clustering quality is in
and of itself a multi-objective task due to the need to balance cluster
compactness, separability, and connectedness. Subspace clustering also
naturally benefits from FS, given the need to find clusters in different
subspaces (i.e. feature subsets) of the data. Extending the approaches in

this work to subspace clustering could be useful.
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7.3.2 GP for Feature Construction in Clustering

Both the proposed approaches to using GP for FC in clustering
(Chapter 4) were relatively unprecedented, leaving many possible
directions for future research. These are discussed in turn for each

approach below.

GP for Wrapper-Based FC in Clustering

As GP has seen little use in wrapper-based FC for clustering, there are
many promising future research areas that could be explored. The
representations and fitness functions proposed could be further
improved, and many other representations and fitness functions are
possible. For example, the vector approach could be adapted to directly
encourage shorter constructed feature vectors to be produced thereby
producing more powerful constructed features, by using a mechanism
such as parsimony pressure. This would also significantly improve the
interpretability of the constructed features. The multi-tree approach
would be improved if the number of trees could be determined
automatically — for example, using a heuristic based on K (a higher
number of clusters should generally mean more constructed features are
required). It may also be worthwhile to investigate using other clustering
algorithms besides k-means; while in theory it is possible for GP to
produce optimal constructed features that k-means can use to produce
perfect partitions, other clustering algorithms may be more powerful and
perform well with a wider range of constructed features. The methods
we proposed were all designed to work when K was pre-defined, as
k-means requires K to be known. This is somewhat inflexible, and
extending these methods to automatically determine K would be

beneficial.
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GP for Evolving Similarity Functions

While the investigation in this thesis was focused on graph-based
clustering, due to its ability to model a range of cluster shapes, we also
hope our proposed approaches can be applied to nearly any clustering
method that uses a similarity function to perform clustering. By
replacing the graph-based clustering approach with another given
clustering algorithm, the evolved similarity functions will need to be
optimised to work with that algorithm instead. We would also like to test
our proposed approaches on real-world data that has “gold standard”
labels, but all real-world datasets we have found provide class labels
only, which are not suitable for measuring cluster quality. This thesis
focused on using a scalar fitness function so as to constrain the scope of
this work, allowing us to directly evaluate the quality of the proposed GP
representation. In future work, we would like to extend our proposed
titness function by using an evolutionary multi-objective optimisation
(EMO) approach — the three key measures of cluster quality
(compactness, separability, connectedness) partially conflict with each
other, and so using an EMO approach may allow better and more varied
solutions to be generated. Initial experiments showed that GPGC had
promise for subspace clustering, but that better performance could likely
be achieved in the future by developing a new fitness function and
designing new genetic operators to be specific to subspace clustering
tasks. There is also scope for refining the GP program design used: the
terminals and functions could be further tailored to the clustering
domain through the use of other feature comparison operators.

7.3.3 Generating Benchmark Feature Selection Datasets
with GP

The use of GP for redundant feature creation (Chapter 5) showed
significant potential for this new research area. Two promising areas of

future work were identified.
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Firstly, further investigation is needed into ways to make challenging
redundant features that decrease FS algorithms’ performance. One
potential approach is the use of adversarial learning, where the
performance of FS algorithm /s is directly used to evaluate the quality of
candidate created features. Given the complex relationship between
multivariate feature redundancies and the class label, an adversarial
approach would allow a much more direct and stable optimisation to be
performed. By creating features that are both meaningfully redundant as
well as difficult for a variety of FS algorithms, useful benchmark FS
datasets will be able to be developed. However, this would likely mean
the redundant features created are no longer feature selection
algorithm-agnostic, and so their use for general FS benchmarking may be
limited.

The second direction is to take advantage of the finding that
unsupervised redundant feature construction can actually improve
classification performance through the creation of features that contain
high levels of information about the class labels. Using MI (or similar)
techniques could produce useful methods for performing FC as an
(unsupervised) pre-processing step without the risk of feature bias,
potentially improving supervised learning performance. This is a
particularly unexpected and interesting discovery that warrants in-depth

future investigation.

7.3.4 Interpretable Manifold Learning using GP

This thesis provided strong evidence for the development of interpretable
manifold learning using GP in Chapter 6. Given that GP-MaL and GP-
tSNE are the first methods to pursue this research direction, there are a
range of possible directions of future work.

Future Work: GP-MaL

GP-MaL was the first general GP manifold learning technique, and could
benefit from further iterative improvements to the fitness function and
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representations used. GP-MalL is (purposefully) quite flexible, and could
easily be extended further with other function sets and fitness functions
(that do not have to be differentiable!). Inspiration from GP-tSNE could
also be used by exploring a multi-objective approach that balances the
often-conflicting objectives of maintaining global and local structure of a
manifold. It is also clear that techniques to encourage simpler/more
concise trees would further improve the usefulness of GP-MaL. For
example, an EMO approach such as the one used in GP-tSNE could also
be easily applied to GP-MaL to better encourage the creation of
interpretable models.

Future Work: GP-tSNE

As GP-tSNE is the first multi-objective GP approach to balance
unsupervised visualisation and model complexity, there is a clear need
for continued future research. While the quality of visualisations were
encouraging, on more complex datasets they failed to compare to those
produced by t-SNE. This is not unexpected given t-SNE does not produce
a functional mapping, but rather an embedding of the data, but further
improvement to GP-tSNE'’s visualisations would make it significantly
more useful in practice. The measure of visualisation quality used in this
work was based on the one used by t-SNE given it is the state-of-the-art
measure. However, the design of t-SNE was constrained by the need for
a differentiable cost function; as an EC-based method, GP-tSNE need not
have this constraint on its objective function — there is likely to be better

measures of visualisation quality that could be used in an EC context.

Further study is also needed to determine which functions and terminals
contribute most effectively to performance: we found that simple
arithmetic operators were exclusively used in simple models. Designing
more complex (but understandable) functions could allow more concise,
powerful trees. It was also found that the more unique features used by a
GP tree, the more difficult it was to understand; some sort of
evolutionary pressure towards trees using a small set of (cohesive)
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features may improve this.

Our analysis on the Dermatology dataset showed that it was possible for
the location of two trees in an individual to be swapped without any
penalty, but this makes the sequential visualisations harder to compare.
Preventing crossover between trees in different positions in an individual
would resolve this, but may restrict the evolutionary process from
sharing useful sub-trees across the x and y-axes. Finally, it may be fruitful
to investigate how to further improve the Pareto front analysis
techniques used in this work for non-expert users such as through
software graphical interfaces.

7.3.5 Final Thoughts

This thesis represents the first substantive investigation into the use of
EC-based feature manipulation for unsupervised learning problems.
Indeed, a common theme throughout this work was the dearth of
literature that even tangentially considers this research direction. Given
the promising results obtained and interesting patterns discovered in this
work, there is clear motivation for wider research efforts in this area.
Unsupervised learning remains a research frontier with many open
questions and unaddressed problems. Evolutionary computation, and in
particular EC-based feature manipulation, has untapped potential to give

state-of-the-art and interpretable results in unsupervised learning.
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