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Abstract

While spectroscopy is the standard method of measuring the redshift of luminous objects,

it is a time-intensive technique, requiring, in some cases, hours of telescope time for a single

source. Additionally, spectroscopy favours brighter objects, and therefore introduces an intrinsic

bias towards luminous or closer sources. A simple method of estimating the redshift through

photometry would prove invaluable to forthcoming surveys on the next generation of large radio

telescopes, as well as alleviating the inherent bias towards the most optically bright sources.

While there is a well-established correlation between the near-infrared K-band magnitude and

redshift for galaxies, we find that the K-z relation breaks down for samples dominated by

quasi-stellar objects (QSOs).

Current methods of estimating photometric redshift rely either on template spectra, which

requires a high number of infrared photometry points, or computationally intensive machine

learning methods.

Using photometric data from the Sloan Digital Sky Survey (SDSS) we investigate the

relationship between combinations of magnitudes of a group of quasars, and their redshift.

We find a high correlation between the colour relation (I-W2)/(W3-U) and redshift for a group

of broad-line emission sources from the SDSS, and we conclude that this could be a robust

estimator of the redshift.
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1 Introduction

1.1 Quasi-Stellar Objects and Quasars

1.1.1 Discovery

Karl Jansky is credited with the first detection of radio waves from an astronomical object, when

in 1932, he observed radiation coming from the Milky Way, which was particularly strong in the

direction of the constellation of Sagittarius. By the 1960s, rapid advances had been made in the

field of radio astronomy, and Hazard et al. (1963) performed an in-depth study of a star-like object

labelled 3C 273. Comparing the spectrum of 3C 273 with the Balmer lines of hydrogen showed that

the absorption lines in its spectrum were highly redshifted, by a factor of 1.16, with reference to the

laboratory frame (Figure 1.1). Additionally, while stars can exhibit proper motion against the sky,

typically on the order of ∼ 0.1 arcsec/year, 3C 273 had a proper motion of less than the detection

limit at the time (∼ 0.01 arcsec/year). This suggested that the source was at a far greater distance

than any star yet observed.

Figure 1.1: The original
spectrum, taken by
Greenstein and Schmidt
(1964), of the quasar 3C
273. Comparison spectrum
is H + He + Ne. Redshifted
emission lines of H and Oiii
are indicated.

Correcting for cosmological expansion yielded a redshift for 3C 273 of z = 0.154 (for the then-current

value of H0 ≈ 100 km.s−1 Mpc−1). Although consistent with the observed lack of any proper motion

against the sky, such a high redshift was unheard of, and Greenstein and Schmidt (1964) published

a detailed analysis of 3C 273, in which they considered explanations of the redshift by rapid motion

of objects in or near the Milky Way, and gravitational and cosmological redshifts. The lack of any

observed proper motion of the source, an absolute magnitude closer to that of galaxies than stars, and

the width of the emission lines (see, for example, Section 1.1.3) all pointed to cosmological expansion

as being the most likely cause of the redshift (Gunn, 1971). Furthermore, since 3C 273 varies in

flux by about 30% in a year, it could not be larger than ∼1 pc across, due to the minimum time it
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would take a light signal to cross the diameter. It was these arguments that established the source

to be a highly compact, but extremely powerful source of radio light – the source of this power is

now understood to be a supermassive black hole, with a mass on the order of ∼ 109 M�.

A star-like object with a very high redshift (and thus a large distance from Earth) is now called a

quasi-stellar object (QSO). Some QSOs also have a high luminosity in the radio spectrum, in which

case it is referred to as a quasar. The terms QSO and quasar are generally grouped under the more

general name Active Galactic Nuclei (AGNs).

1.1.2 The Nature and Phenomenology of AGN

Quasars, being very luminous AGN, are visible across the Universe; the most distant quasar known

is almost 29 billion light-years away (in terms of co-moving distance); the most luminous quasars can

have a core luminosity of ∼ 1049 erg s−1. By comparison, the Milky Way Galaxy’s (MW) luminosity

is ∼ 1044 erg s−1. AGN are now understood to be associated with an actively feeding supermassive

black hole (SMBH) at the core of a galaxy, and are believed to be powered by accretion of matter

onto the central black hole (BH). In fact, it is thought that almost every spiral galaxy harbours an

SMBH in its nucleus, and thus probably undergoes at least one AGN phase throughout its lifetime.

Indeed, Su et al. (2010) report on two large gamma-ray bubbles, extending as much as 50° above and

below the plane of the MW, imaged by the Fermi Gamma-Ray Large Area Telescope, Fermi-LAT. It

is thought that these bubbles are the result of some large episode of energy injection into the SMBH

at the Galaxy’s core.

As shown in Figure 1.2, the orientation-based obscuration model of Urry and Padovani (1995)

places a large, hydrostatically equilibrated torus around the accretion disk and the BLR. Observers

for whom the central SMBH and BLR are obscured see either a radio galaxy, or a Seyfert 2 galaxy

(a type of QSO with a low radio luminosity), depending on the total radio flux being produced by

the AGN. This torus acts to collimate the NLR, leading to jet-like plumes of line-emitting gas being

ejected axisymmetrically from the SMBH. The NLR is generally axially aligned with polar jets of

X-ray emitting relativistic electrons, and an AGN whose jet happens to be aligned with our viewpoint

looks like an extremely bright X-ray source called a blazar. Figure 1.3 is a schematic representation

of the unified model, illustrating the approximate scale and spectral contributions of the main regions

of an AGN.
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As matter falls onto the black hole, it emits energy as electromagnetic radiation of varying

wavelengths. Most of the radiation emitted by the accretion disk is due to accretion flow onto the

central BH, as well as frictional heating as a consequence of differential rotation within the disk. In

order to produce the observed AGN luminosities of L ∼ 1044− 1049 erg s−1, matter must be accreted

at a rate of ∼ 2 M� yr−1.

1.1.3 AGN spectra

The continuous spectrum of an AGN is unlike that of stars. A stellar spectrum has a blackbody

curve, having a peak at some wavelength λmax near the optical bands. The hottest stars emit a

significant fraction of their light at ultraviolet wavelengths, while cooler stars tend to emit mostly in

the red to infrared bands. This gives stars, and therefore quiescent galaxies, whose light is dominated

by the stellar population, the characteristic thermal spectrum typified by the blackbody curve. AGN,

on the other hand, are luminous in the X-ray, ultraviolet, visible, infrared and, in the case of quasars,

radio bands, and they have similar power at all wavelengths, and are thus not a single blackbody

object. The radio spectrum is the result of emission from synchrotron radiation produced by charged

particles spiralling around magnetic field lines at relativistic speeds, while the AGN contribution

depends on whether the central SMBH is obscured by a dusty circumnuclear medium. Since the

medium may not fully obscure the central source, some of the high-frequency radiation escapes, and

leads to the production of emission line contributions, notably from Mgiiλ2799, the semi-forbidden

Ciii ]λ1908, (see Figure 1.9) Oiiλ3727, Oiiiλ1666 and Hαλ6565 leading to a skew towards higher

magnitudes at certain redshifts. In certain AGN, the optical spectrum is dominated by non-thermal

emission. This is especially true of QSOs, for which the continuum radiation from the central source

outshines the stellar light of the host galaxy (Kauffmann et al., 2003).

Observationally, AGN can vary in their appearance, in terms of the width of their emission lines,

spectroscopic features, their variability, the relative position of high and low surface brightness (called

the Fanaroff-Riley class), and other parameters. These many different, and sometimes overlapping,

criteria have meant that the history of AGN classification has been rife with confusing classes and

groups, such as Seyfert Galaxies, Broad Line Radio Galaxies, Optically Violent Variable sources,

and more. It is now broadly accepted that what appear to be different types of sources can, in fact,

be explained as an orientation-based unified model, which satisfactorily explains the variation in
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luminosity among the different classes of AGN (Figure 1.2).

Figure 1.2: The orientation-based AGN unified model, showing the Broad Line Region (BLR) and
Narrow Line Region (NLR), as well as different types based on the observational angle. Based on a
schematic diagram by Urry and Padovani (1995).

Figure 1.3: Schematic representation of the AGN physical model, illustrating the approximate
scales of the main obscuring regions. The colours indicate the regions responsible for the main
spectral components of an AGN. Green: torus (IR), dark blue: accretion disk (IR-optical), red:
polar dust (IR), purple: BLR, light blue: NLR, dark blue: accretion disk. Arrows indicate outflow
of mass and energy. Adapted from Ramos Almeida and Ricci (2017).
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1.2 Motivation – Photometric redshifts

1.2.1 Redshift

Redshift is given by

z =
λ′ − λ0

λ0

=
λ′

λ0

− 1 , (1.1)

where λ′ is the observed wavelength of a line in the object’s spectrum and λ0 is the wavelength of

the same spectral line observed in the laboratory frame. Furthermore, for two spectral lines with the

same redshift, and with rest wavelengths λ1 and λ2, we have the relation

λ1

λ2

=
λ′1
λ′2

(1.2)

Thus, the amount of Doppler shift for two corresponding lines in a laboratory frame and in a

redshifted frame, is not dependent on the difference in wavelengths of the two lines. The standard

method of measuring redshift is by spectroscopy. Spectroscopy requires a bright source to produce

an optical spectrum, while photometric observation can identify much fainter objects than can be

found by spectroscopic observation at the same exposure time.

Continuum surveys of large parts of the sky are expected to add huge amounts of data to our

already substantial database of faint sky objects, for which an estimate of the redshift will prove

invaluable in extending the understanding of the sources and their distribution in space. The

Evolutionary Map of the Universe (EMU, Norris et al. (2011) on the Australian Square Kilometer

Array Pathfinder (ASKAP) will make a deep radio continuum survey of the entire Southern sky,

cataloging around 70 million galaxies (Allison et al., 2016), including AGN with distributions extending

to the edge of the visible Universe. Additionally, photometric techniques are useful because they

expand the volume of “distance-luminosity” space where redshifts can be measured. Expanding

this space is an important step in determining not only the type of templates used to estimate the

photometric redshift, but also the best coverage for the templates (see Section 3.4). The ability to

reliably determine the redshift of hundreds of objects by photometry alone will greatly increase the

value of such surveys in determining the population and structure of the Universe.

The absorption lines in the spectrum of an AGN can be due to gas associated with the host

galaxy, in the intergalactic medium (IGM), or within a galaxy lying along the line of sight to a
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background continuum source. Even surveys where wide-band radio spectroscopy is already available,

for example, the Boolardy Engineering Test Array (BETA) of the ASKAP (McConnell, 2016), often

require follow-up observations in order to ascertain the source of the absorbing gas (Allison et al.,

2015). This is also important in determining the populations of active and quiescent sources in the

distant Universe, and will provide a valuable addition to machine learning methods. For very large

surveys, such as the First Large Absoprtion Survey in Hi (FLASH), which is expected to yield spectra

for 150 000 radio sources, optical spectroscopy is not a viable option.

Furthermore, knowing the redshift is necessary in order to know the tuning frequency for radio

telescopes looking for redshifted Hi transition lines. However, since the amount of absorption is

correlated with the redness of the source (Webster et al., 1995; Carilli et al., 1998; Curran et al.,

2006) and this reddening is likely due to dust grains shielding the neutral gas from the local UV field,

this produces a bias in the surveys against dust-rich systems. Sources which are sufficiently bright

to be visible at large redshifts, also produce enough photons to ionise all of the neutral gas within

the host galaxy (Curran et al., 2008; Curran and Whiting, 2012). Hence, even the SKA will not be

able to detect star-forming regions in high redshift radio sources. Therefore, there is a need for some

other method to estimate the redshift for fainter objects. De Breuck et al. (2002) found a correlation

Figure 1.4: A plot of the relationship between the K-magnitude and redshift (K − z) for a large
sample of QSOs. The broken line shows the fit for galaxies (K = 4.43 log10 z + 17), De Breuck et al.
(2002).

between the near-infrared K magnitude at λ = 2.2 µm and the redshift of galaxies. Even though
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more distant objects will be fainter, the narrow spread of this correlation is remarkable, given that

each source will have its own intrinsic luminosity. When applied to QSOs, however, this relationship

is lost (Figure 1.4). It can be seen that the K-magnitude underestimates the redshift in the case of

QSOs, and thus, at best, the K magnitude can provide only a lower limit to the redshift.

Since the K−z relation for quasars is scattered to the left of the fit in Figure 1.4, we suspect there

to be a range of AGN contributions. Because a quasar is a result of the direct line of sight observation

of the central engine of an AGN (Netzer, 2013), even a partially obscured SMBH accretion disk would

contribute a significant portion of the K-band magnitude from the quasar. However, because of its

small angular diameter, this contribution would appear unresolved, and although the images were

not of a high enough quality to directly detect an AGN contribution, this may contribute to the

K-band emission, and thus been indirectly detected.

Glowacki et al. (2017) used the The Large Area Radio Galaxy Evolution Spectroscopic Survey

(LARGESS) catalogue to investigate a similarly simple method, to find a correlation between the W1

(λ = 3.4µm) and W2 (λ = 4.6µm) Widefield Infrared Survey Explorer (WISE) magnitudes (Wright

et al., 2010), including broad line sources such as quasars, and redshift. However, this correlation

has a low regression coefficient of just r = 0.56 for the W1 band and r = 0.36 for W2. From our

own photometry matching by NED name, we find r = 0.77 and 0.65, respectively (Figure 1.5), albeit

with much lower numbers of sources in the sample. Thus, it is hoped that there is a combination

of magnitudes sensitive to the AGN contribution, which can yield a tighter relationship with the

redshift. Furthermore, we favour a simple linear fit, since a polynomial will introduce degeneracies

into the predictions, with a photometric redshift matching more than one spectroscopic redshift.
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Figure 1.5: The Hubble W1 (top) and W2 (bottom) distributions from the LARGESS sample. The
solid line shows the least-squares best fit with the regression coefficient r. The dotted curves show
the fits from Glowacki et al. (2017) (their Table 2) to the QSOs (−0.15 log10 z

2 + 2.41 log10 z + 15.19
for W1 and 0.28 log10 z

2 + 2.48 log10 z + 14.12 for W2). The bottom panel shows as above, but for
our initial dataset (the Mgii sample). The red lines show best fit ±1σ.
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It is the aim of this investigation to find a tighter statistical correlation between the photometric

magnitude, or a combination of magnitudes of quasars, and their redshift, without the need for a

template fit or a full optical spectrum (Section 1.2.3).

1.2.2 Redshift distributions

The number of detected AGNs per unit area on the sky depends on the wavelength band and survey

depth (Netzer, 2013). The redshift distribution of the Sloan Digital Sky Survey (SDSS) sample is

shown in Figure 1.6. The sample is dominated by QSOs, particularly from z ≈ 1, but there is a

marked drop off in numbers with redshift, as is expected from the Malmquist bias.

Figure 1.6: Distribution of QSOs and galaxies with redshift from the SDSS dataset.

Since AGNs have been detected all the way to z ∼ 7, we can use them as tracers of the distribution

of matter in the early Universe. AGNs are valuable tracers of the intergalactic medium for a number

of reasons (Marziani et al., 2019):

• AGNs are plentiful, and easily recognizable by their spectra, luminosity and positions on a

colour-colour diagram,
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• having such a high luminosity means that they are visible across the Universe,

• they are observed over a wide range of redshifts, and

• unlike Type Ia supernovae and other transient phenomena that are employed as cosmological

yardsticks, they are very stable.

A fundamental first step in this understanding, is determining the redshift of the AGN.

1.2.3 Spectral and photometric sensitivities

For historical reasons, brightness measurements are normally given in magnitudes (an inverse logarithmic

measure of the flux). When collecting spectral data for a particular source or sample, it is necessary

to take an exposure for long enough (have a long enough integration time) that the signal-to-noise

ratio rises above a particular threshold, governed in part by the magnitude of the object. The

integration time t is (Prasad, 2007)

t =

[
σ2

rn (R? + npixRsky] +
[(
σ4

rn (R? + npixRsky)2 + 4R2
?σ

2
rnnpixρ

2
] 1

2

2R2
?

(1.3)

where σrn = signal/noise ratio, R? = count rate from source ∗ in e− s−1, npix = number of pixels in the

aperture, Rsky = count rate from the sky in e− s−1 pixel−1, and ρ = read noise †. For bright sources,

whose count rate is > 3× read noise, the noise from the source dominates the σrn contribution in

Equation 1.3, while the signal to noise ratio is

σrn '
√
R?t ∝ t

1
2 (1.4)

and in the sky-limited regime (in which the noise from the sky is greater than 3× read noise):

σrn '
R?t√
npixRskyt

, (1.5)

∗The number of photoelectrons emitted per second by the photomultiplier
†The static sources of noise that are independent of the signal
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Figure 1.7: The V-band flux density versus integration time for the Low Resolution Imaging
Spectrometer (LRIS) on the Keck Telescope (Oke et al., 1995) and the Prime Focus Camera (PFCam)
on the Shane 3-meter telescope, located at Lick Observatory (Allen and Clarke, 2000).

which can be written in terms of the radiometer equation (Wilson et al., 2000) as

∆S =
Ssys√
∆νt

(1.6)

where ∆S is the sensitivity, Ssys is the system flux density, both in Janskys, and ∆ν is the spectral

resolution.

The system flux density is related to the system temperature Tsys, in Kelvin, by the objective

area and efficiency of the telescope, so that

σrn =
Tsys

T?
√

∆νt
(1.7)

where T? is the power received from the source, and Tsys = Tsky + Trx describes the power received

due to both the sky Tsky, and the thermal noise from the receiver electronics Trx.

From Equation 1.6, the sensitivity of a particular observation depends on the spectral resolution

∆ν. Thus, since spectral resolution for obtaining an optical spectrum is necessarily much finer than
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that for photometry, ∆Sspec � ∆Sphoto. Emission lines in the optical bands of AGN spectra can

have widths of ∼ 103 km s−1 (Netzer, 2013), although the redshift accuracy will be determined by

the spectral resolution

∆z = (z + 1)
∆v

c
(1.8)

where ∆v is the spectral resolution in km s−1 and c is the speed of light. Therefore, for instance, a

spectral resolution of ∆v = 100 km s−1 at z = 2 gives ∆z = 0.001. Although the integration time

required for a spectrum depends not only on the required signal-to-noise ratio (such as ∆S & 10σrms,

where σrms is the r.m.s noise) but also the strength of the emission line, we can compare the integration

time of a photometric observation with that of a spectral observation by considering the effect of a

spectrometer on the instruments in Figure 1.7. For example, the best fit to the LRIS data is the

power law log10 ∆S = −0.565 log10 t − 4.54. However, this is skewed by a region of non-linearity at

t . 10 s, possibly due to the saturation of pixels at high flux, and so forcing the expected slope of

-0.50, we obtain

log10 ∆S = −0.50 log10 t− 4.71⇒ ∆S =
10−4.71

√
t

(1.9)

If the photometric measurement is taken over the full V band with a wavelength of 551 ± 44 nm,

then ∆ν = 8.75 × 1013 Hz. Hence, from Equation 1.6,

10−4.71 =
Ssys√

8.75× 1013
⇒ Ssys = 10−4.71

√
8.75× 1013 = 182.4⇒ ∆S =

182.4√
∆νt

(1.10)

for the Low Resolution Imaging Spectrometer (LRIS) on the Keck Telescope.

Figure 1.8 shows the required integration times required to reach a given sensitivity at different

spectral resolutions, using, in the non-relativistic regime,

∆v = c
∆ν

νobs

(1.11)

where, for the V band, νobs = 5.44× 1014 Hz (551 nm). From this, it can be seen that for ∆v = 1000

km s−1, (∆z = 0.008 at z = 1.4), which is barely sufficient to resolve the Mgii emission line in

Figure 1.9, requires ∼ 50 times the integration time to reach the same sensitivity as the photometric

observation.
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Figure 1.8: The sensitivity per spectral channel for the LRIS at four different spectral resolutions
(from Equation 1.6, ranging from ∆v = 10 km s−1 (∆ν = 1.8 × 1010 Hz) to ∆v = 10 000 km s−1

(∆ν = 1.8× 1013 Hz). Stars show one channel over the full V-band for the LRIS
(∆ν = 8.75× 1013 Hz).

Figure 1.9: Example of an SDSS spectrum exhibiting both associated and intervening Mgii
absorption lines (labelled). The broad Mgii and the semi-forbidden Ciii ] emission lines are also
indicated. The full-width half maximum (FWHM) of the Mgii line is ∆λ ∼ 100 Å, giving ∆ ≈ 4000
km s−1 at λ ≈ 6830 Å. This gives the QSO a redshift of z = 1.443. Curran et al (in prep).
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1.2.4 Spectral lines

Another issue is the spectral line being redshifted out of the observing band. From Figure 1.8, we

see that the SDSS band spans 4000 - 9000 Å, although the spectrum is significantly noisier within

the edge ≈ 1000Å. In addition to the Ciii ] and Mgii lines, there are several other QSO emission lines

detected. The redshift ranges over which these lines can be detected within 5000− 8000 Å is shown

in Figure 1.10.

Figure 1.10: The redshift ranges of the QSO emission lines used by the SDSS over 5000− 8000 Å.
Weight is a measure of the relative strength of the emission line in a spectrum (Vanden Berk et al.,
2001).

From this, of the highly weighted lines in terms of line strength, we see that the highest redshift

probed is z = 5.583 (Lyα, at λ = 1215.24 Å). One of the strongest lines in the emission spectrum

is that of Mgii, which is limited to redshifts of z = 0.786 to z = 1.858 (or z = 0.429 to z = 2.215

for 4000 − 9000 Å). Figure 1.6 shows a steep drop-off in QSO numbers at z ≈ 3.5. The only

highly-weighted lines for the distribution are the Lyα and Civ emission lines, hence the sensitivity of

the survey is decreased at higher redshifts. In addition to this, higher magnitudes (dimmer sources)

require higher integration times to reach a given flux sensitivity, also contributing to the marked

decrease at higher redshift (Figure 1.6).

17



2 Initial testing and analysis

Preliminary testing used the Mgii catalogue (Zhu and Ménard, 2013) in the Sloan Digital Sky Survey

(SSDS) Data Release 12 (DR12), containing Mgii absorbing sources (mostly QSOs) up to z = 5.5

(log10 z = 0.74 in Figure 1.4). Added to this were the WISE W1, W2, W3 and W4 bands. Values

of wavelength λ and F0 (the flux, in Janskys, at m = 0, where 1 Jy = 10−26 W Hz−1 m−2) for each

of the bands used are given in Table 2.1.

Band Wavelength λ F0

[µm] [Jy]
FUV 0.152 3630
NUV 0.227 3630
U 0.365 1810
B 0.445 4260
V 0.551 3640
R 0.658 3080
I 0.806 2550
J 1.220 1600
H 1.630 1080
K 2.190 670
W1 3.4 309.54
W2 4.6 171.787
SPIT8 8 64.13
W3 12 37.674
W4 22 8.363

Table 2.1: Observed wavelengths and
fluxes for the wavelength bands used.
Wavelengths given are the effective
wavelength midpoint for standard filters.
F0 is the flux at a magnitude of 0.
Values of F for bands U to K are
from Harvard-Smithsonian Center for
Astrophysics; for the Wide-field Infrared
Survey (WISE) bands from Explanatory
Supplement to the WISE All-Sky Data
Release Products; and for the SPITZER
8µm band (SPIT8) from SPITZER,
2MASS, optical filtersets/bandpasses.

Figure 2.1 shows some example spectral energy distributions (SEDs) in terms of the photometric

magnitudes for some typical samples from the dataset.

For each source, we matched the coordinates to the closest source within a 6 arcsecond search

radius in the NASA/IPAC Extragalactic Database (NED), from which we obtained the specific flux

densities. The NED names were also used to query the WISE, Spitzer Space Telescope (Capak

et al., 2013), the Two Micron All-Sky Survey (2MASS) (Skrutskie et al., 2006) and the Galaxy

Evolution Explorer (GALEX data release GR6/7)‡ databases. In order to obtain a uniform measure

of magnitude, the measurements were added if they fell within ∆ log10 ν = ±0.05 of the central

frequency (Figure 2.1). For more than one point in the band, the fluxes were averaged before being

‡http://galex.stsci.edu/GR6/#mission
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Figure 2.1: Examples of the Spectral Energy Distribution, in terms of magnitudes, for several of
the sources in the Mgii dataset. Canonical band frequencies are shown as vertical bands, with a
thickness of ∆ log10 ν = ±0.05.
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converted to magnitude. The apparent magnitude is related to the flux density, F , via

m = −2.5 log10

(
F

F0

)
, (2.1)

where F is the observed flux, in Janskys, at the frequency of the wavelength band, and F0 is the flux

at m = 0 (Table 2.1).

2.1 Single magnitudes

As a preliminary test, each magnitude was tested against z to find the values of r. Table 2.2

summarises the results.

Magnitude |r| > 0.5 n

U 0.647813 5998

W2 0.594714 3266

NUV 0.591015 12 420

Table 2.2: Best fits for single magnitudes versus log10 z, for which |r| > 0.5.

While these all have high correlations with log10 z, their spreads are too wide to provide a good

estimate of photometric redshift (Figure 2.2).

2.2 Single magnitude combinations

A colour index is a difference in two magnitudes (U −B, U −V , . . . ), each at a different wavelength

(Bessell, 2005). As such, it is effectively the ratio between two fluxes, giving a distance-independent

measurement of a fundamental quantity of the source. Comparison of these magnitudes can allow

us to, for instance, separate populations of stars and galaxies based on the relative flux at different

wavelengths (Strait, 2015). This ratio does not change with redshift, even taking into account the

evolution of rest-frame wavelength with redshift. Therefore, since the photometric colours provide

a distance-independent measure of a fundamental property of the quasars (see Section 1.2.1), their

relationships to log10 z were investigated first.

Once the colours were computed, their Ordinary Least Squares regression (linear best fit – see

Section 6) against log10 z was calculated. At each stage of the computation, those combinations with
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Figure 2.2: The distributions for the three best-fitting magnitudes versus redshift for the Mgii
dataset over all redshift ranges. Top: r = 0.647813, r2n = 2517.13. Middle: r = 0.594714, r2n =
1155.13. Bottom: r = 0.591015, r2n = 4338.30. Red lines show the best fit ±1σ.
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the highest values of r were identified and plotted explicitly.

Initial testing using the method employed here yielded, for example, 182 single magnitude subtractive

combinations (i.e. photometric colours), of which the one with the highest r value is (NUV − V )

(r = 0.702604, r = 52). However, since this combination has only 52 corresponding points, it would

be a poor predictor of redshift for large datasets. Thus, since a very low number of observations can

give a high r value, the value of r2n was also calculated for each combination, as a way of taking into

account both the r-value and the number of observations, both of which varied for each combination.

Visual inspection of the combinations shows the optimum value of r2n to be ∼ 1000, and for this

reason, only combinations with values of r2n > 1000 will be considered, as a way of selecting both

high r and high n combinations. Applying the constraint of |r| > 0.5 and r2n > 1000 reduces

the yield to 27 subtractive combinations, of which the one with the highest r value is (NUV − R)

(r = 0.676618, r = 3851, r2n = 1763.04). However, Figure 2.3 shows that the residuals for this

combination, when plotted against redshift, are not homogeneously spread throughout the redshift

range, indicating that this combination would have a high number of outliers, and therefore would

be a limited usefulness as a predictor of photometric redshift.

22



Figure 2.3: The NUV − R versus redshift for the Mgii dataset over all redshift ranges. The red
lines show best fit ±1σ.

2.3 Double magnitude combinations

The rationale behind finding double combinations, is that including more colour indices would

approach the same amount of information as a low dispersion spectrum, thus giving more information

than pairs of magnitudes. A colour-colour diagram, for example, is a means of comparing the

apparent magnitudes of sources at different wavelengths, using one or a pair of colour indices. Since

a colour-colour diagram plots two photometric colours against each other, each colour was divided

into the others, giving the combinations (U −B)/(U − V ), (U −B)/(U −R), (U −B)/(U −K) . . .

Using this as a starting point, the subtractive combinations already found were operated upon, giving

the following combinations:

23



(U −B)/(U − V ) (U −B)× (U − V ) (U −B) + (U − V ) (U −B)− (U − V )

(U −B)/(U −R) (U −B)× (U −R) (U −B) + (U −R) (U −B)− (U −R)

(U −B)/(U −K) (U −B)× (U −K) (U −B) + (U −K) (U −B)− (U −K)

...
...

...
...

The other arithmetic operations were also explored:

(U +B)/(U + V ) (U +B)× (U + V ) (U +B) + (U + V ) (U +B)− (U + V )
(U +B)/(U +R) (U +B)× (U +R) (U +B) + (U +R) (U +B)− (U +R)
(U +B)/(U +K) (U +B)× (U +K) (U +B) + (U +K) (U +B)− (U +K)

...
...

...
...

(U/B)/(U/V ) (U/B)× (U/V ) (U/B) + (U/V ) (U/B)− (U/V )
(U/B)/(U/R) (U/B)× (U/R) (U/B) + (U/R) (U/B)− (U/R)
(U/B)/(U/K) (U/B)× (U/K) (U/B) + (U/K) (U/B)− (U/K)

...
...

...
...

(U ×B)/(U × V ) (U ×B)× (U × V ) (U ×B) + (U × V ) (U ×B)− (U × V )
(U ×B)/(U ×R) (U ×B)× (U ×R) (U ×B) + (U ×R) (U ×B)− (U ×R)
(U ×B)/(U ×K) (U ×B)× (U ×K) (U ×B) + (U ×K) (U ×B)− (U ×K)

...
...

...
...

The first, and simplest combinations explored in this investigation were subtractive combinations of

the wavelength bands, such as U − B, U − V ,. . . , as given in Table 3.2. As an example, the B − V

colour index is:

B − V = −2.5 log10 fB + 2.5 log10 fV

= −2.5 log10

(
fB
fV

) (2.2)

while

B + V = −2.5 log10 fB − 2.5 log10 fV

= −2.5 log10 (fB · fV )

(2.3)

However, taking, for example, the product of two magnitudes would be:

B × V = (−2.5 log10 fB)(−2.5 log10 fV )

= 6.25 log10 f
−2.5 log10 fV
B

(2.4)
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while

B/V =

(
−2.5 log10 fB
−2.5 log10 fV

)
= logfV

fB

(2.5)

Like B and V individually, B × V and B/V would be distance-dependent, and therefore have no

relationship to any intrinsic property to the source. Furthermore, a combination like B/V would be

ill-behaved near V = 0, and so the algorithm generated for this investigation deliberately filters out

these invalid values. Beyond the photometric colours, since it is not known a priori what relationships

may yield corrections to the K − z relationship, all possible combinations of wavelength bands from

the Mgii dataset (e.g. U + B, U + V , . . . , U × B, U × V , . . . , U/B, U/V , . . . ) were calculated

in a brute-force manner in order to provide some insight on how best to proceed. Many of these

combinations produced r values in excess of r ∼ 0.7, so only those with r > 0.7 and r2n > 1000 are

considered.

Most of the magnitude combinations have complex physical interpretations (for example, the

multiplication of magnitudes), and may not have any physical significance in terms of the individual

quasars. However, the combinations explored in this study show high values of regression coefficient

when plotted against log10 z, and so, from a purely statistical standpoint, may be useful in estimating

a redshift based on photometric magnitude, despite not containing any information about the

individual sources themselves.

25



3 Results

3.1 Single magnitude combinations

A total of 84 magnitude combinations with r > 0.5, r2n > 1000 were found. Those with the highest

values are given in Table 3.1. To further test whether each combination would be a good predictor

of photometric redshift, other statistical tests were employed, as outlined in Section 6. These

other goodness-of-fit test statistics are also shown in the tables. Skew, optimally ∼ 0, indicates

a leftward (negative) or rightward (positive) tail in the distribution, thus giving an indication of

outliers. Kurtosis, optimally |k| ∼ 3, (Moors, 1986) is a measure of the sharpness of the peak in the

probability distribution, and, similarly to skew, gives an indication of how much any outliers will

affect the distribution (Section 6).

Combination |r| > 0.5 n r2n Skew Kurtosis

U +W2 0.733229 2054 1104.28 −0.151 3.135

U ×W2 0.725858 2054 1082.19 −0.172 2.968

I/W2 −0.707549 2086 1044.31 0.815 3.870

W2/I 0.698607 2086 1018.08 −0.650 3.594

U −R 0.596446 5971 2124.17 1.966 12.472

Table 3.1: Best fit models of the single magnitude combinations, for which |r| > 0.74 and r2n >
1000. U − R is recognizable as a photometric colour. It is compared with the results for the next
two best-fit colours in Table 3.2.

Table 3.1 shows the single magnitude combinations with the highest values of r and r2n. While there

are some high-r combinations, only U −R is recognisable as a photometric colour. This is compared

with the next two highest-scoring colours in Table 3.2.

Even given the high values of r and r2n, these other test statistics indicate that, as a predictor of z,

it may produce too many outliers to be useful. Figure 3.1 plots the photometric colour U − R, the

best of these models, against log10 z, along with the equation of the linear fit, the r value and r2n.
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Colour |r| > 0.5 n r2n > 1000 Skew Kurtosis

U-R 0.596446 5971 2124.17 1.966 12.472

U-I 0.580567 5605 1889.21 2.074 11.952

U-B 0.567813 5997 1933.5 1.737 16.913

Table 3.2: The photometric colours with the highest values of r and r2n when plotted against
log10 z. U − I, having a high positive skew, indicates that it would produce outliers at high redshift.
Each combination has high values of kurtosis, indicating the distribution has a sharp peak, and
therefore is not normally distributed (Section 6).

Figure 3.1: Top: Plot of U − R colour against log10 z. Among the photometric colours, this has
the highest value of r. Bottom: Residuals plot for U − R when plotted against log10 z as a test for
the goodness of fit. The red lines show best fit ±1σ.

The bottom plot in Figure 3.1 shows the residuals for U − R; that is, the distance in colour-space

of each point from the line of best fit. The fact that the residuals for U − R are less spread at low

z than at high z, indicates that a power law may not be the best fit for this set. It was noted that

photometric colours involving the higher frequencies (e.g. U−NUV ) tended to produce distributions
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that were both less correlated, and had more heterogeneous spread, than colours involving lower

frequencies (e.g. I − W2). This may be due to the fact that the spectral emission of quasars is

dominated by thermal dust emission from the near-infrared through to submillimeter wavelengths

(Sanders, 1999). For example, Figure 3.2 compares the plots of the comparatively short ultraviolet

wavelengths U − NUV (producing a poor fit, with much higher spread at high z), and the longer

infrared wavelengths I −W2.

Figure 3.2: Comparing the distributions of a short wavelength combination U −NUV to that of a
long wavelength combination I −W2. The red lines show best fit ±1σ.

3.2 Double magnitude combinations

When the photometric colours were divided into each other, the correlation coefficient increased by

around 50% compared to using just a single colour (e.g. r ∼ 0.5 c.f. r ∼ 0.75), with a smaller

drop in n for a particular combination of colours. For example, the colour with the highest values

of r and r2n is U − R (r = 0.596446, r2n = 2124.17), while the best-fitting colour combination is
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(I −W2)/(W3 − U) (r = 0.828545, r2n = 1328.35). These changes were balanced out by only a

slight drop in the value of r2n. Similar results were obtained when applying other operations to the

photometric magnitudes. A total of 10 208 colour combinations with r > 0.5, r2n > 1000 were found.

Those with the highest values are given in Table 3.3.

Combination |r| > 0.5 n r2n Skew Kurtosis

(I/U) + (I/W2) −0.840933 2039 1441.92 0.004 3.917

(I/U)/(W2/I) −0.838606 2039 1433.95 0.049 4.179

(B × I)/(U ×W2) −0.832803 2039 1414.17 0.403 4.587

(U/I)− (I/W2) 0.830791 2039 1407.35 0.379 5.048

(I −W2)/(W3− U) 0.828545 1935 1328.35 −0.374 3.560

(B + I)/(U +W2) −0.818597 2039 1366.33 0.191 4.834

(U ×W2)− (I ×W3) 0.753815 1935 1099.54 0.457 4.281

(U − I) + (W2− FUV ) 0.758322 1997 1148.38 0.135 5.082

Table 3.3: Best fit models of the double magnitude combinations, for comparison against each
other. Most of these imply a complex physical relationship between the magnitudes, and of these,
only (I −W2)/(W3− U), with r = 0.828545 is recognisable as a ratio of photometric colours.

Despite the fact that the values of r, n and r2n are not quite as high for (I −W2)/(W3 − U) as

they are for some of the other combinations, such as (I/U) + (I/W2) (r = −0.840933), the latter

implies a complex physical relationship, which is difficult to interpret and justify in terms of what

quantity the combination represents. Hence, (I−W2)/(W3−U) is likely to be the best combination

in this set, being the ratio of two photometric colours. Therefore, this is the colour combination

that the remainder of this report will focus on. It is compared with other colour combinations in

Table 3.4. It is not clear why the (I −W2)/(W3 − U) colour ratio should trace the redshift with

such high correlation, but it should be borne in mind that z � 0, these would have been emitted at

significantly shorter wavelengths (Figure 3.8).
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Combination |r| > 0.5 n r2n Skew Kurtosis

(I −W2)/(W3− U) 0.828545 1935 1328.35 −0.374 3.560

(I −W2)/(W4− U) 0.810052 2018 1324.18 −0.107 3.032

(R−W2)/(W3− U) 0.798750 1942 1239.00 −0.721 4.159

(B −W2)/(W3− U) 0.766935 1944 1143.44 −0.889 4.595

(R−W2)/(W4− U) 0.765999 2025 1188.18 −0.546 3.482

(U −W3)/(I −W2) 0.752859 1935 1096.75 0.609 4.352

(U −W4)/(I −W2) 0.745342 2018 1121.07 0.674 3.948

(U −W3)/(R−W2) 0.741070 1942 1066.52 0.261 4.288

Table 3.4: Best fit models of the colour combinations, for comparison against each other.

Figure 3.3: The distribution for the colour ratio (I −W2)/(W3−U) against log10 z. Residuals are
shown on the bottom plot. The red lines show best fit ±1σ.

One issue is the relatively small number of sources which have measurements in all four wavelength

bands, as discussed in Section 4. However, given the independence of relative redshift with distance,
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it was hoped that the fit should be comparable for any other four bands with similar separations.

Figure 3.4 shows the distributions for the wavelengths one band redward, i.e. (R−W1)/(W2−U),

and one band blueward, (J −W3)/(W4−B), of the best fit model. As can be seen, the fits for each

of these are not as good as the best fit model of (I −W2)/(W3− U).

Figure 3.4: The distributions for the wavelengths one band blueward (top), and one band redward
(bottom), of the best fit model (I −W2)/(W3− U). The red lines show best fit ±1σ.

3.3 Photometric redshift tests

3.3.1 Single combinations

In order to assess the value of each of the best combinations as a predictor of redshift, tests of the

prediction models were conducted on our sample. The best-fit magnitude combinations were each

self-tested against the original dataset. These were U −R (r = 0.596446), U −B (r = 0.567813) and

U − I (r = 0.580567). Figure 3.5 shows the distribution of zspec − zphoto for the best colour, U − R,

from the SDSS dataset. The strong upward curve and high standard deviation (σ = 0.2749) mean

this colour would make a very poor predictor of redshift.
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Figure 3.5: Distribution of zspec − zphoto for U −R over all redshift ranges with no source filtering,
and over all redshift ranges, from the SDSS dataset. The green lines show zphoto = zspec ± 1σ.

3.3.2 Redshift predictions for best fit model

The best fit model (I − W2)/(W3 − U) from the Mgii dataset was tested against the SDSS

dataset. The distribution is shown in Figure 3.6. The best fit model produces good estimates

of the photometric redshift for this datase, with a tight correlation and most points lying

within ±1 σ = 0.939 of zphoto = zspec. This compares favourably to the single colour prediction

(Figure 3.5).
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Figure 3.6: The distribution of zspec−zphoto for (I−W2)/(W3−U) versus z over all redshift ranges
with no source filtering, tested against the SDSS dataset. The green lines show zphoto = zspec ± 1σ.

It can be seen in Figure 3.6 that the best fit prediction is not as good in the ranges z < 1 and z > 3,

which is also evident in the increased scatter in the rightmost panel of Figure 3.7.

Figure 3.7: Redshift evolution of I −W2 versus W3− U colour-colour diagram. Error bars show
±1σ about the mean.

In an attempt to find a fit for the sources at either end of the redshift range, further combinations

of magnitudes were tested for z < 1 and z > 3. Due to the redshift, the rest-frame wavelengths

have been shifted to longer wavelengths; for example, at a redshift of ∼ 1, W2 ∼ U (see Figure 3.8).
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Figure 3.8: The evolution of rest-frame wavelength with redshift for W3, W2, I and U. Dotted
horizontal lines indicate the observed-frame near-infrared, optical and GALEX near-ultraviolet
(NUV) and far-ultraviolet (FUV) wavelengths.

Thus, for sources of redshift z � 0.1, the W3 and W2 bands trace the IR/near-IR wavelengths,

while I and U have been shifted to extreme blue/near UV. At z < 1, for example, I ∼ U , W2 ∼ K,

W3 ∼ W2 and U ∼ NUV , and thus our best fit model becomes

I −W2

W3− U
−→ U −K

W2−NUV
for z < 1 (3.1)

which we confirm (Figure 3.9). The (U −K)/(W2−NUV ) colour ratio is the best fit for the range

z < 1, as expected, with a correlation coefficient of r = 0.53194. At the higher redshift z > 3,

the rest-frame combination (U −K)/(W2−NUV ) will be approximately (J − SPIT8)/(W4− V ).

Possibly due to the limited data, the best fit for z > 3 is actually (I − SPIT8)/(W4−R), although

the numbers remain small. Table 3.5 gives a summary of the best fits for each range, and Figure 3.9

shows the fit for each of these redshift regimes.
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z range Best fit r n r2n

z < 1 (U −K)/(W2−NUV ) 0.531940 1242 351.44

1 < z < 3 (I −W2)/(W3− U) 0.724005 9023 4729.71

z > 3 (I − SPIT8)/(W4−R) 0.730038 49 26.11

Table 3.5: The best fits for each of the three redshift ranges. Figure 3.9 shows the distributions for
each combination in their respective redshift ranges.

The redshift predictions for these combinations were then tested for the SDSS dataset, as shown

in Figure 3.10. It can be seen that each of the best fits yields reasonably tight correlations, and

most points lie within zphoto = zspec± 1σ. However, for this method to provide accurate estimates of

photometric redshift, we would need to have prior knowledge of the redshift to determine which fit

to apply.

Given that a multicomponent fit requires a priori knowledge of the redshift, another method to find

the switch points was tried. The bottom panel of Figure 1.5 shows that at z = 1 (log10 z = 0.0),

the W2 magnitude is ∼ 12.5, and at z = 3 (log10 z = 0.47), W2 ∼ 15. Since we would not know

the redshift before applying the model, we used the W2 magnitude to estimate where the switch

should occur. Thus, the switch from (U −K)/(W2−NUV ) to (I −W2)/(W3−U) should occur at

a magnitude of W2 ≈ 12.5, and from (I −W2)/(W3− U) to (I − SPIT8)/(W4−R) at W2 ≈ 15.

These fits are shown in Figure 3.11, and the zphoto predictions in Figure 3.12.

From Figure 3.11 we can see that the equations of the lines of best fit for each redshift regime, using

the W2 magnitude as a guide to the switching points, are:

z range Best fit Equation

z < 1 (U −K)/(W2−NUV ) U−K
W2−NUV

= 0.2285× log10 z − 0.3061

1 < z < 3 (I −W2)/(W3− U) I−W2
W3−U = 0.1637× log10 z − 0.6025

z > 3 (I − SPIT8)/(W4−R) U−SPIT8
W4−R = 0.1525× log10 z − 0.6381

Table 3.6: The best fits and their equations for each of the three redshift ranges (Figure 3.11).

Hence, this method of estimating the switching points gives the following relations:

log10 z =


1

0.2285

(
U−K

W2−FUV
+ 0.3061

)
if W2 ≤ 12.5

1
0.1637

(
I−W2
W3−U + 0.6025

)
if 12.5 < W2 ≤ 15

1
0.1525

(
I−SPIT8
W4−R + 0.6381

)
if W2 > 15
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Figure 3.9: The best fits for each redshift range in the SDSS dataset, (U −K)/(W2 −NUV ) for
z < 1 (top), (I −W2)/(W3 − U) for 1 < z < 3 (middle) and (I − SPIT8)/(W4 − R) for z > 3
(bottom). The red lines show best fit ±1σ.
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From Figure 3.11, there is some scatter at z < 0.5 (log10 z ∼ −0.30, middle panel), possibly due to an

imperfect split at W2 = 12.5, as well as a low number of data points. However, the multicomponent

fit based on the W2 magnitude switch does give accurate predictions of the photometric redshift.

3.3.3 Testing on other databases

Since the best fit model presented in this study is derived from an optically selected sample, we hope

to maximise the robustness of our model by testing it on disparate and heterogeneous datasets, so

that it may be applied to future datasets for which information may be limited.

The LARGESS catalogue comprises 19 179 radio sources matched with SDSS counterparts, providing

redshifts for 10 883 sources (Ching et al., 2017). After removing duplicate lines of sight, the

constraints U ∩ K ∩ W2 ∩ NUV , U ∩ I ∩ W2 ∩ W3, I ∩ SPIT8 ∩ W4 ∩ B required to cover

all redshift ranges yielded only 263 sources. When the best fit model is applied to the LARGESS

dataset (Figure 3.13), the fit is good, but with a wide spread. At smaller redshifts, galaxies contribute

a large number of sources to the sample, and |zphoto − zspec| � 0. Figure 1.6 shows that, at z < 1,

galaxies contribute a large number of sources to the sample. Hence, the bottom panel of Figure 3.13

shows the distribution of ∆z for the LARGESS sample filtered for broad line sources (mostly QSOs).

Filtering the LARGESS sample for broad line sources reduces the total number of samples from

n = 287 to n = 253, but it eliminates the outliers at z ≈ 0, and lowers the standard deviation from

σ = 1.6 to σ = 1.1.

The Second Realization of the International Celestial Reference Frame (ICRF2) by Very Long

Baseline Interferometry (Ma et al., 2009), comprises strong flat-spectrum radio sources, of which

1 682 have known redshifts. Upon removal of duplicate lines of sight and unreliable redshifts, 123

sources satisfy the magnitude constraints. However, the standard deviation (σ = 1.05) is comparable

to that of the LARGESS sample (σ = 1.11). Figure 3.14 shows the distribution of zphoto against zspec

for the ICRF2 sample.

3.4 Comparison with other studies

Other studies have also used releases of the SDSS data to determine accurate photometric redshifts

for quasars, with narrower distributions of ∆z, typically with a spread of σ∆z ≈ 0.1 (Richards et al.,

2001; Weinstein et al., 2004; Maddox et al., 2012). The Hubble Deep Field (HDF) has also been
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Figure 3.10: Comparison of zspec− zphoto for (U −K)/(W2−NUV ), z < 1 (top), (I −W2)/(W3−
U), 1 < z < 3 (middle), and (I − SPIT8)/(W4−R), z > 3 (bottom) against z, applied to the SDSS
dataset. The green lines show zphoto = zspec ± 1σ.
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Figure 3.11: As for Figure 3.9, but with the split based on the magnitudes in the bottom panel
of Figure 1.5. The red lines show best fit ±1σ. Standard deviations are σ =0.1116 (top panel),
σ =0.0641 (middle panel), σ =0.0868 (bottom panel).
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Figure 3.12: Predictions of zphoto from the SDSS dataset, with the split based on the W2
magnitudes. Symbols as per Figure 3.10 to show switch points at each W2 magnitude.

extensively surveyed for photometric estimates of redshifts (Gwyn and Hartwick, 1996; Massarotti

et al., 2001; Fernández-Soto et al., 2002). All of these produce estimates with σ∆z < 0.1, but they

either rely on template spectra, or methods considerably more complex than our own, in that they

employ sophisticated machine learning algorithms, or complex techniques to break degeneracies.

Section 6 gives an outline of these.

Our method is much simpler than those of Han et al. (2016), which used the computationally

intensive kNN machine learning algorithm; Richards et al. (2001) which used a conflagration of

four photometric colours compared to the two used for our method; and those of Massarotti et al.

(2001) and Weinstein et al. (2004), both of which used a multicomponent fit for every source in

their surveys. Our sample set is much larger than those of Polsterer et al. (2013) (1106 sources)

and Maddox et al. (2012) (324 sources). Unlike the studies which used χ2 (Gwyn and Hartwick,

1996; Richards et al., 2001; Fernández-Soto et al., 2002; Wu et al., 2004)) to determine redshift, our

method is not subject to degeneracies; this is also a drawback of the probability method employed

by Richards et al. (2001), which also had high uncertainties for z < 0.3.
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Figure 3.13: Comparison of zspec−zphoto for (I−W2)/(W3−U) against z, applied to the LARGESS
dataset with no source filtering (top), and filtered for broad line sources (bottom). The green lines
show zphoto = zspec ± 1σ.
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Figure 3.14: As for Figure 3.13 bottom panel, but for the ICRF2 dataset.

4 Discussion

4.1 Physical interpretation

The near-infrared emission in QSOs is believed to be due to torus dust around the nucleus being

heated by the AGN (Hatziminaoglou, 2010), while the UV emission gives rise to an excess blue colour

of the QSO (Shields, 1978). Because of this, an increasing AGN contribution may be apparent as a

decrease in U−K. The emitted U−K is redshifted to the observed I−W2, which does indeed decrease

with redshift (Figure 3.7), as expected. At z < 1, we see no correlation between W2−NUV , which

traces a wider wavelength range than U −K, and redshift. The fact that U −K is correlated with

redshift while W2−NUV is not, suggests that the U −K colour may be sufficient for estimating the

photometric redshift. However, the top panel of Figure 4.1 shows that there is a degeneracy between

the U −K colour and redshift, where the colour index matches more than one spectroscopic redshift,

and the W2 − NUV colour is required to break this degeneracy and improve the fit. Hence, this

suggests that the rest-frame U −K colour traces the excess flux due to the AGN, and thus offers a

measure of the redshift. Figure 4.1 shows the U −K colour for z > 1 (top panel), and W2−NUV

for z < 1 (bottom panel). Figure 3.7 shows that the I −W2 and W3 − U colours both decrease,

and become more scattered, with redshift. It is not clear why these colours should be particularly

sensitive to the redshift, although we offer the following speculation.

42



Figure 4.1: The U −K and W2−NUV colours versus log10 z for the SDSS sample. The top plot
has r = 0.500439, n = 3912, r2n = 979.72 for the range z > 1. The bottom plot has r = 0.326653,
n = 3640, r2n = 338.40 for the range z < 1. The red lines show best fit ±1σ.
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The hot dusty torus of an AGN emits mostly in the infrared§, with a substantial fraction of their

bolometric luminosity being emitted at wavelengths ∼ 8 – 1000 µm (Sanders, 1999), and, in the

case of an obscured AGN, we can expect most of the UV emission to be blocked by the optically

thick disk. This dusty torus can be considered to cool the outer regions of the accretion disk by

absorbing the ultraviolet emission and isotropically re-emitting it at infrared wavelengths (Goulding

et al., 2012). The axisymmetric, but anisotropic geometry of the torus means that for some lines

of sight, the emission from the accretion disk is obscured, while for other, narrower lines of sight,

the central accretion disk is directly observable. Obscuration of the accretion disk can also be due

to the host galaxy, in the form of dust-obscured star forming regions and dust lanes. This can be

expected to have some impact on the demography of the observed sample of AGNs. Different sized

tori will have a different covering factor (the fraction of the sky covered by the obscuring material,

from the point of view of the SMBH), and this is one of the main elements affecting the intensity of

the reprocessed radiation (Ramos Almeida and Ricci, 2017). This, in addition to the small angular

size of the accretion disk, means that the obscuration is likely to be more significant for inclined and

edge-on galaxies, since, on average, the typical optical depth at any given viewing angle will be higher

than for a face-on view. Higher obscuration can be expected to be correlated with higher infrared

emission, due to the re-emission of shorter wavelengths by the dusty torus. The best-fit model with

the widest range of redshifts, (I−W2)/(W3−U), traces mostly infrared emission (the I, W2 and W3

bands), and therefore likely reflects the higher proportion of obscured AGN in the sample. Figure 1.3

shows the main components responsible for the obscuration of an AGN, colour-coded to indicate their

impact on the observed spectrum.

4.2 Limitations

The best results are achieved when using colours, rather than magnitudes. This may be because the

effects of differences in the intrinsic characteristics of the objects are minimized by the dimension

reduction from filter band to colour space, giving a normalisation effect. Additionally, it suggests

that our (I−W2)/(W3−U) colour ratio gives an accurate measure of the AGN activity (Section 4).

The use of both I −W2 and W3 − U colours from the sample dataset requires the sources in the

survey to have readings at I ∩W2 ∩W3 ∩ U . This requirement significantly limits the number of

§Although stars also heat interstellar dust. It would be difficult to distinguish the source of the heating.
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sources for which the best fit model can be used. From Table 4.1, we see that the limiting factor

is the measurements of the WISE wavebands. However, the inclusion of the W2 and W3 bands is

necessary to provide reliable redshift predictions.

Sample Total W3 W2 I U

Mgii 16 580 2911 3316 6150 6032

SDSS 50 000 17 230 17 717 49 205 48 522

LARGESS 10 931 326 377 10 846 9746

Table 4.1: The total number of
measurements in each of the magnitude
bands for the sample datasets.

The multicomponent fit shown in Section 3.3.2 (Figures 3.9 and 3.10) provide good photometric

redshifts, but the requirement of measurements in U ∩ K ∩ W2 ∩ NUV , U ∩ I ∩ W2 ∩ W3, I ∩

SPIT8 ∩W4 ∩B to cover all redshift ranges further limits the number of sources.

5 Conclusion

Given that a simple, accurate and reliable photometric estimate of redshift will be invaluable for

upcoming large extragalactic radio surveys, we have tested the feasibility of a statistical estimate of

redshift from near-infrared and visible magnitudes. This builds upon the work of De Breuck et al.

(2002), who find a tight correlation between the K-band magnitude of galaxies, and their redshift.

When applied to our sample, dominated by illuminated Mgii absorption systems (mostly QSOs), the

fit of De Breuck et al. (2002) provides only a lower limit to the redshift, underestimating the redshift

of QSOs in the sample.

Glowacki et al. (2017) estimated photometric redshifts from the WISE W1 and W2 bands in the

LARGESS catalogue. However, with low correlation coefficients of r = 0.56 and r = 0.36, the

correlation is not tight enough to provide an accurate estimate of redshift, with poor predictions

when applied to other datasets. We therefore test the correlations of numerous combinations of

magnitudes with spectroscopic redshift in the Mgii sample, with 17 285 sources. We find that the

ratio of (I −W2) to (W3−U) colours yields a regression coefficient of r = 0.83 for the 1 975 sources

for which all four magnitudes are available. Upon application of this ratio to the 50 000-source

SDSS DR12 sample, the fit fails to provide accurate estimates at redshifts of z ≤ 1 and z ≥ 3,

and we further test two different combinations over these redshift ranges. We find that the ratio
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(U−K)/(W2−NUV ), which is essentially the observed (I−W2) to (W3−U) ratio in the rest-frame

of the source, provides the best fit for z ≤ 1, and (I − SPIT8)/(W4 − R) provides the best fit at

z ≥ 3, where SPIT8 is the Spitzer 8.0 µm wavelength. However, given that we have no a priori

knowledge of the redshift, we attempt to estimate this with the weak W2− z relation, where we find

W2 > 12.5 at z > 1 and W2 > 15 at z > 3. This gives the following relations:

log10 z =


1

0.2285

(
U−K

W2−FUV
+ 0.3061

)
if W2 ≤ 12.5

1
0.1637

(
I−W2
W3−U + 0.6025

)
if 12.5 < W2 ≤ 15

1
0.1525

(
I−SPIT8
W4−R + 0.6381

)
if W2 > 15

Even though the standard deviations are larger than those of other studies, with σ∆z ∼ 0.1, these

often have long ∆z wings extending past the Gaussian, and apply only over a limited range of

redshifts. Furthermore, the methods are often significantly more complex, requiring either machine

learning algorithms, or complex techniques to break the degeneracies which these methods introduce.

We also apply our model to radio samples for which we have redshifts. For these sources, the ∆z

distribution is very similar to that of the SDSS dataset, which indicates that the model may also be

applicable to other, future surveys, which may lack spectroscopic redshift measurements.

It is, in fact, the rest-frame U − K colour which is anticorrelated with redshift, which is to be

expected if the ultraviolet emission traces the AGN activity, while the far-infrared is dominated by

stellar activity. Thus, the relation provides an analogue of the K − z relation for galaxies. The

major drawback with our method, is the requirement of having measurements for nine individual

magnitudes (U ∩K ∩W2 ∩NUV , U ∩ I ∩W2 ∩W3, I ∩ SPIT8 ∩W4 ∩ B). Relying on only two

magnitudes, as for the W1− z and W2− z of Glowacki et al. (2017) would increase the applicability

of this method as an estimator of photometric redshift. However, the WISE bands are required to

measure K at z ≥ 1, and W2 is required to estimate the redshift range for the application of the

multicomponent fit. Nevertheless, even a 2% yield will allow us to obtain photometric redshifts for

over one million of the sources expected to be detected with the Evolutionary Map of the Universe.
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6 Appendices

Statistical tests

Since the regression coefficient r is the most important statistical parameter in this investigation,

this was the main focus of the goodness of fit for the correlations investigated. However, applying a

linear fit for the data comes with some underlying assumptions. Violations of these assumptions can

affect the conclusions reached, and therefore, the following statistical tests were applied to ensure

that the assumptions are met, and hence that the linear fit is valid.

Ordinary Least Squares

In order to ensure that a linear fit is valid for a certain set of data, the following assumptions must

be satisfied:

1. The expected value of y (in this case, magnitude, or combination of magnitudes) is

a linear function of x (log10 z); that is, the slope of the line does not depend on the values

of other variables. In the case of this investigation, since we are not working with a time series,

non-linearity is best diagnosed by taking a plot of residuals (i.e. the difference between the

plotted value and the best fit line) versus log10 z. For a good linear fit, the residuals should be

distributed symmetrically about zero.

2. The unexplained variations of y are independent random variables. This can be

tested for using the Durbin-Watson statistic, which should be close to 2.

3. All of the data points have the same variance (“homoscedasticity”). Deviation from

homoscedasticity (called heteroscedasticity) implies that either:

(a) a linear fit is not appropriate – in which case a polynomial fit may be tried, or

(b) there are other variables which affect the dependent variable.

Homoscedasticity can also be judged by plotting the residuals against the independent variable.

4. All of the data points are normally distributed. This was tested for by using the

Jarque-Bera test (Jarque and Bera, 1980), which is a goodness-of-fit test based on the skew
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(which should be close to zero) and kurtosis (which should have an absolute value of < 3, as a

rule of thumb) of a sample.

Kendall’s Rank Coefficient

Kendall’s τ can be formulated as a special case of r, and provides a way to measure the ordinal

association between two quantities. A value of τ = 1 indicates that the two quantities have identical

rank (relative position label of the observations within the variables), while τ ∼ 0 indicates that

there is little to no correlation between the relative positions of the two variables.

Previous studies of photometric estimates of quasar redshift

Methods employing template spectra

In an effort to investigate the redshift distribution and luminosity functions of objects in the Hubble

Deep Field, Gwyn and Hartwick (1996) converted the magnitude in each bandpass to a flux using

the same method as described from Equation 2.1 onwards, and then, by plotting the flux against

wavelength, to a low-resolution spectral energy distribution (SED). Using a set of template spectra

of all Hubble types, the SED of each object was matched with the closest spectrum, determined by

minimizing χ2, defined as

χ2 =

Nf∑
i=1

(Fi − αTi)2

σFi2
(6.1)

for each source, where Fi and σFi are the flux and the uncertainty in the flux, respectively in each

bandpass of the observed galaxy, Ti is the flux in each bandpass of the template, α is a normalisation

constant, and the sum is over the number of filters Nf in the set. The photometric redshift was

then tested against simulations and photometric observations of galaxies with known spectroscopic

redshifts. They used this method to show that the redshift distribution of HDF objects contains

two peaks: one at z ≈ 0.6 and another at z ≈ 2.2. This indicates that larger galaxies form stars

early in the Universe’s history, at z ∼ 3, while in the dwarf galaxies star formation is delayed, until

around z ∼ 1.

Wu et al. (2004) used the χ2 minimization technique on data from the SDSS to estimate the

48



photometric redshifts on a colour-colour diagram of a large sample of quasars, by comparing

theoretical photometric colours with the observed colours. They show that identifying the redshift

corresponding to the smallest value of χ2 for a given quasar can give a reasonable estimate (to

within |∆z| ≤ 0.2 in most cases) of its redshift. However, this method can lead to incorrect

results. If the spectrum of the quasar is very different from the composite spectrum, or if there

are large uncertainties in the photometric magnitudes, the calculated χ2 can reach a minimum

at the wrong redshift. More composite spectra for different types of quasars can alleviate this

problem. In addition, their selection criteria can miss many quasars, especially those with lower

redshifts, as they may be located in the same colour-space as stars. The experimental results from

this template-fitting method have shown that the accuracy of their estimates rely on templates

constructed by either simulation or by observational data.

Machine Learning and Statistical methods

In addition, and complementary to, the template-fitting methods, machine learning is a fundamental

component of current photometric estimation methods. In this approach, a computerised algorithm

learns the relationship between colour and redshift, based on a training sample of either purely

photometrically derived redshifts, or a full template of both photometry and reliable spectroscopically

determined redshifts, for the training sample (Salvato et al., 2019).

Han et al. (2016) used the data-mining method k -nearest neighbour (kNN) to estimate the

redshift. The kNN algorithm compares the Euclidean distance between a test sample point and

its k nearest neighbours in a feature space, such as colour or luminosity, and assigns a weighted

combination of the redshifts of those nearest neighbors to the test object in order to sort each

source into a group. They then maximised the separation of the groups, thereby minimizing the

classification error, to help mitigate the catastrophic failure inherent in other photometric redshift

approaches. The kNN algorithm, however, is computationally intensive, and for a sample of, for

example ∼ 105 samples, can be prohibitively difficult. However, it is possible to apply specific

spatial data structures, such as k-dimensional trees, which can be used to pre-organise the data

points into a reduced space, thus facilitating its implementation on large datasets (Norris et al., 2019).
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Also using the kNN method, Polsterer et al. (2013) found that the best results in terms of

the separation of the groups in the algorithm are obtained using colours, rather than magnitudes.

They found that their method performed well for z > 4.8, and as the redshifts in the reduced

reference sample were homogeneously distributed, they avoided catastrophic outliers at these high z

values, despite the sample size being decreased by 98.5% (i.e. from 77096 to 1106 samples).

Fernández-Soto et al. (2002) describe a technique of assigning confidence limits to redshift

measurements, along with their associated probability functions. In order to mitigate the

uncertainty in redshift associated with uncertainty in the photometric measurements, they

calculated the likelihood function,

L (z, T ) =
N∏
i=1

exp

{
−1

2

[
fi − AFi (z, T )

σi

]2
}

(6.2)

where the product extends to the number of filters used, A is a normalization constant, fi and σi

are the flux and associated error of the source measured in the ith band, and Fi (z, T ) are the model

fluxes for a galaxy of type T at redshift z in the ith band. Using a template model to produce the

fluxes cannot reproduce the SEDs of all galaxies, particularly for very bright sources. High-quality

photometry will amplify any differences between the model and the observations, producing a very

bad χ2 fit for a very bright source.

Massarotti et al. (2001) used the Hubble Deep Field North to minimize the residuals between

photometric zphot and spectroscopic zspec redshifts. Photometric redshifts were obtained by

comparing the observed broad-band colours of galaxies with the model fluxes provided by Buzzoni

(1989, 1995); Buzzoni (2002). For each source in their sample they used a multi-component fit to

the galaxy SED, finding the best template that minimized the χ2 value. They then analysed the

residuals by defining two statistical moments

∆z =

Ng∑ (zspec − zphot)

Ng

(6.3)
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and

σ2
z =

Ng∑[
(zspec − zphot)−∆z

]2
Ng − 1

(6.4)

for the number of galaxies Ng in each sample. Catastrophic outliers were discarded, and the

photometric redshifts were compared to the spectroscopic values across different library templates.

They found that all of their templates found very good agreement between zphot and zspec for

zspec < 1.5, while for zspec > 2 they had to account for the absorption effects of the interstellar and

intergalactic media (ISM and IGM), which scatter and absorb light, reddening the SED.

Weinstein et al. (2004) constructed an empirical colour-redshift relation (CZR) using a set of

quasars for which both the spectroscopic redshift zspec and photometric redshift zphot are known.

The most heavily reddened quasars in the u − g and g − r colours were removed to prevent the

CZR being heavily skewed toward the red. They then computed the mean colour vector Mi (in four

dimensions, one for each colour), and the 4 × 4 colour covariance Vi (a sixteen-element matrix) for

all Q quasars in each of N redshift bins (a total of 3814 quasars) in the study using the u− g, g− r,

r − i, and i− z colours, for which

M j
i =

1

Qi

Qi∑
q=1

xj,q (j = 1, 2, 3, 4) (6.5)

and

V jk
i =

1

Qi − 1

Qi∑
q=1

(
xj,q −M j

i

) (
xk,q −Mk

i

)
(j, k = 1, 2, 3, 4) (6.6)

where j and k are integers representing the colours and x1,q, x2,q, x3,q, and x4,q are the four

photometric colours of the qth nonreddened quasar in the ith bin. They tested their algorithm first

on the entire training set, and then on a subset of the same training set, finding similar results in

both tests. They were able to predict the zphot to within 0.3 for up to 80.8% of the quasars with

known zspec in the subset test.
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Bovy et al. (2012) use a similar method to Weinstein et al. (2004), in that they compute the

joint probability of an object’s fluxes, its redshift, and the proposition that it is a quasar, which

they write as

p (fluxes, z, quasar) = p (fluxes|z, quasar)× p (z|quasar)P (quasar) (6.7)

= p (fluxes|z, quasar)P (quasar) (6.8)

They used the extreme deconvolution method of Bovy et al. (2011) to optimize the uncertainty

distribution function for noisy, incomplete, or heteroscedastic datasets, which is often the case in

astronomy. Their predictions (Figure 15 in Bovy et al. (2012)) show high levels of uncertainty for

z < 3, and the ugriz-only photometric data they use suffers from inherent degeneracies, which are

propagated through their algorithm (see their Figure 12).

Richards et al. (2001) used a sample of 2625 quasars from the SDSS to show that it is possible

to determine accurate and precise photometric redshifts for quasars. They had reasonably good

photometric redshift estimates using a combination of four colours to determine the CZR for each

of three redshift bins, and then minimizing the χ2 value between all four observed colours and the

median colour for each redshift bin. Their χ2 value is computed as

χ2
Z =

[(u′ − g′)− (u′ − g′)Z ]2

σ2
u′−g′ + σ2

(u′−g′)Z

+ Cgr + Cri + Ciz (6.9)

where (u′ − g′) is the measured colour for a quasar, (u′ − g′)Z is the median CZR at a given

redshift, σ(u′−g′) is the error in the u′ − g′ colour, and σ(u′−g′)Z is the 1σ error width of the

median CZR with respect to redshift. Cgr, Cri and Ciz have the same form as the first term,

but for the g′ − r′, r′ − i′, i′ − z′ colours respectively. As with other techniques involving

minimizing χ2, this method can give multiple possible redshifts, leading to degeneracies in the

estimate. After testing the method on a subset of the training set, they also applied their algorithm

to a set of 642 quasars from the NASA/IPAC Extragalactic Database (NED) to obtain similar results.

Maddox et al. (2012) attempted to exploit the K-band excess shown by all quasars to construct
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a more complete quasar catalogue for 1 ≤ z ≤ 3.5. They used a combination of optical and near

infrared (NIR) colours to take advantage of the K-band flux excess of quasars, and discriminate

between stars and quasars at all redshifts. Their data are taken from the SDSS Data Release 7 and

the United Kingdom Infrared Telescope Infrared Deep Sky Survey (UKIDSS) Data Release 4, with

the measured redshifts being obtained from the catalogue published by Hewett and Wild (2010).

From their initial dataset, objects with SDSS spectra were removed, as were SDSS quasar objects

with no spectroscopic data. This was to facilitate follow-up spectroscopic observations. They further

restricted their samples to objects with zphot ≥ 1.0 to ensure that the remaining objects have long

path lengths for the occurrence of intervening absorbers. For their entire survey region, which spans

−5 < dec < 15 and 0 < R.A. < 360, the magnitudes were limited to

[K, i] =

 K ≤ 16.5, i ≤ 19.7 for R.A. < 210

K ≤ 16.6, i ≤ 22.0 for R.A. > 210

The final step in cleaning up their data was the removal by visual inspection of objects with poor

photometric environment, such as nearby bright stars. The effective area surveyed was 567.0 deg2,

with a total of 324 objects observed. After being reduced using standard software made available

by the Image Reduction and Analysis Facility at the National Optical Astronomy Observatory, the

spectra were calibrated from observations of standard stars, resulting in an offset calibration being

required, and then individually classified by hand into groups based on the type of object. This

method allowed them to compile a quasar sample with fewer biases than optical selection.
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