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Abstract

WiFi networks based on the IEEE 802.11 standard are widely used indoors
or outdoors as simple and cost-effective wireless technology. However,
the data connection is significantly disrupted when mobile stations (STAs)
switch between access points (APs). Furthermore, high packet loss occurs
during the switching period. Therefore, mobility is a critical issue that
needs to be solved in WiFi networks.

In cellular networks, handover is used to keep ongoing data transfer
when network clients switch between base stations. However, the han-
dover algorithm is not supported in the 802.11 standard for WiFi net-
works. Self-Organizing Network (SON) functionality enables seamless
handover in cellular networks, improving network performance. How-
ever, the SON functionality has not been fully researched in WiFi net-
works, especially for mobility management.

Motivated by the SON functionalities, a SON approach is proposed to
automatically optimize the handover algorithms for WiFi networks. This
approach focuses on the SON functionalities including self-configuration,
self-optimization and self-healing using machine learning techniques to
develop new algorithms for WiFi mobility management. The overall goal
of this thesis is to optimize handover performance as well as enhance the
network’s capabilities.
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Chapter 1

Introduction

IEEE 802.11-based wireless local area networks (WLANs) have many ad-
vantages including low cost, easy deployment and high bandwidth ca-
pabilities [1]. For these reasons, they are used throughout campuses or
enterprises. The 802.11 standard for WiFi was designed for an indoor net-
work solution where the network clients are mostly stationary. However,
WiFi has been used where clients move, both indoors and outdoors. As
the mobile stations (STAs) move between access points (APs), there is a
significant disruption to ongoing data connections. Therefore, mobility is
becoming a critical issue in meeting real-time network requirements.

Handover can be used to keep the data connection active when STAs
move from one AP to another in wireless networks. However, handover
is not explicitly supported in the 802.11 standard for WiFi networks [2].
The standard 802.11 only supports the STAs switching between two APs
when the STAs move out of range of a serving AP. During the switching
period, the STAs break their association with the serving AP and the STAs
are potentially unable to communicate any type of data traffic within this
time. Therefore, handover algorithms need to be designed for mobility
management in WiFi networks.

Although some research has been done to improve throughput and re-
duce packet loss during handovers for WiFi networks, this research only

2
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considers one aspect to improve handover performance such as reduc-
ing the handover delay [3–5] or optimizing the handover related parame-
ters [6–8]. Most research optimizes handover algorithms based on nor-
mal network conditions. However, outages in WiFi networks need to be
considered in handover algorithms to meet the dynamic network require-
ments. Thus, seamless handover algorithms without any considerable
degradation of the quality of service required by applications [9] need to
be investigated.

1.1 Motivation

Self-Organizing Network (SON) technology has been used in cellular net-
works as a dynamic solution for handover issues including handover fail-
ures and handover delay [10–13]. The SON technology comprises three
functionalities: self-configuration, self-optimization and self-healing. One
function of self-configuration is to automatically manage the neighbor cells
relations using a Neighbor Cell List (NCL). Fast handover is achieved
based on the neighbor information provided by NCL. With the function
of self-optimization, the handover parameters are dynamically updated
based on the real-time network conditions, thus both the handover delay
and the handover failure rate is reduced. Finally, self-healing automati-
cally detects errors and performs recovery without downgrading the net-
work service. Therefore, all three of these SON functions combined can
overcome the handover issues [14].

Motivated by the SON technologies applied in cellular networks, a new
SON approach needs to be developed to fit the gap of limited handover
management in WiFi networks. With the SON approach used in WiFi
networks, the data disruption time and packet loss rate may be reduced
to keep ongoing data connections active when a STA switches between
APs. SON provides an approach for introducing mobility management
into WiFi networks.



4 CHAPTER 1. INTRODUCTION

1.2 Research Goals

The goal of this research is to solve mobile quality of service (QoS) issues
using SON functionality including configuration, optimization and net-
work healing in WiFi networks.

• Objective 1: To reduce handover delay using dynamic self-configuring neigh-
bor lists

This objective is to investigate updating strategies of neighbor lists
based on the IEEE 802.11k standard for radio management. The
IEEE 802.11k standard provides mechanisms for gathering data in-
cluding Received Signal Strength Indicator (RSSI), Signal to Noise
Ratio (SNR), noise histogram request/report and BSS average delay.
The self-configuring neighbor list will be updated based on these ca-
pabilities of the radio measurement reports and information. This
method can reduce the number of channels scanned and handover
decision time in turn to reduce the handover delay.

• Objective 2: To optimize the scanning parameters using self-optimizing
algorithms

This objective is to investigate an adaptive scanning method to auto-
matically adjust scanning parameters based on the real-time network
conditions. The values of the scanning parameters are not specified
in the 802.11 standard, instead these are fixed values pre-defined by
vendors. These fixed values cannot satisfy the real-time network en-
vironment and cause high scanning delay. A self-optimizing scan-
ning method is necessary to reduce the unnecessary waiting time of
probe responses of non-adjacent APs or faulty APs.

• Objective 3: To automatically diagnose network performance problems and
compensate for network degradation using a self-healing method
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This objective is to investigate an automated method to monitor and
detect the APs with degraded performance. Machine learning algo-
rithms will be investigated to find out how to detect an abnormal AP.
A corrective action will be used for network compensation when an
AP becomes abnormal.

1.3 Research Methodology

The main objective of this thesis is to solve the data disruption issues when
STAs switch between APs in WiFi networks. To achieve this objective, both
mathematical analysis and simulations have been used to study network
performance.

Mathematical Analysis is used because the mathematical formulation
provides a clear relationship between the input and output. In this study,
the results of the output cannot be easily obtained in dynamic network
environments. Therefore, machine learning algorithms and Genetic Al-
gorithms (GA) have been used to obtain the solutions of optimal output
after the problem is formulated. In Chapter 3, neighbor list updating is
formulated as a ranking problem. Three machine learning models are ap-
plied to solve the ranking problem and study network performance. In
Chapter 4, GA is used for solving a combinatorial optimization problem to
dynamically adjust scanning parameters. In Chapter 5, detecting a faulty
AP is constructed as a binary classification problem. Five machine learn-
ing algorithms are applied for faulty AP detection and used for network
performance evaluation.

However, machine-learning-based approaches need network data to
predict the results. Some network data can be obtained by some vendors
but these data are not public for academic research. Although free data is
available from network operators such as Google geolocation API, open
signal or websites such as ‘’data.world”, these data cannot be applied di-
rectly to IEEE 802.11k standard for solving the handover issues. Therefore,
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the network data needs to be collected by simulation or real measurement
in different network scenarios.

Using testbed is good to get the real measurement data. However, it is
difficult and expensive to set up testbed experiments with a large number
of nodes and multiple network topologies on campus. Simulation can eas-
ily construct different network scenarios and collect network data. There-
fore, simulation is used to evaluate network performance in this thesis.
Simulations are also used for validation of the proposed approaches by
comparing simulation results with conventional handover methods and
related studies in the literature.

1.4 Research Contributions

This thesis contributes to a SON approach including a self-configuring
neighbor list, a self-optimizing scanning algorithm and a self-healing sys-
tem for mobility management in WiFi networks. Specifically, a neighbor
list mechanism is designed for AP neighborhood management. With a
neighbor list, the scanning delay is reduced because the neighbor list re-
duces the number of channels and APs scanned. The scanning parame-
ters have been optimized by using Genetic Algorithms (GA) and adaptive
timers. The overall network performance has been improved by these self-
optimizing algorithms. Moreover, a self-healing system is implemented to
detect abnormal APs. Degraded network performance has been compen-
sated for due to the use of self-healing approach.

• A self-configuring neighbor list mechanism
This neighbor list mechanism will automatically establish up-to-date
neighbor lists to reduce handover delay. The neighbor list is updated
periodically with radio parameters such as SNR, load and delay as
STAs start a new scan. With the reduction of channels and APs using
the neighbor lists, the scanning delay is reduced. Moreover, the APs
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on the neighbor list are sorted by Quick-sort or machine learning
algorithms. During the handover, the STA will re-associate with the
highest priority AP in the neighbor list.

When using the machine learning based neighbor list mechanism,
the APs are sorted based on the AP score. The AP score consid-
ers several network predictors including RSSI, SNR, packet delay,
packet loss rate, data rate, throughput and AP load. The handover
decision is made based on the AP score instead of only one predictor
and is updated to meet dynamic network requirements. Therefore,
the total handover delay is reduced by using dynamic handover de-
cisions.

The contribution of this approach not only reduces the handover de-
lay but also improves the handover performance.

• A self-optimizing scanning algorithm
Some researchers optimize the handover delay by tuning the thresh-
old of predictors including RSSI, SNR or frame re-transmissions. Al-
though these solutions have reduced handover delay, the solutions
are based on the fixed probe timers MinChannelTime and MaxChan-
nelTime. The timer MinChannelTime is the minimum waiting time
a STA undergoes before considering that the channel is empty while
the timer MaxChannelTime is the maximum waiting time after a probe
response has been successfully received. Although the probe timers
(MinChannelTime and MaxChannelTime) or the number of channels
scanned are optimized in some research to reduce the scanning de-
lay, all related scanning parameters need to be optimized. The re-
lated scanning parameters include the probe timers, the probe re-
quest interval, channel switching time, the number of scanned chan-
nels and the channel sequence.

In this thesis, all the related scanning parameters have been opti-
mized by GA which is a simple and efficient algorithm to find the
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global optimum of scanning parameters to meet the dynamic net-
work requirements. These self-optimizing adaptive parameters are
dynamically adjusted based on real-time network conditions to re-
duce MAC layer handover delay. Each STA is made aware of the
scanning timers for each channel by a centralized controller. There-
fore, the STA probes a set of channels and APs with adaptive timers
instead of fixed values. The proposed algorithms reduce the num-
ber of scanned channels and probed access points and remove the
unnecessary waiting time of probe responses of non-adjacent APs or
faulty APs.

• A self-healing system
A new self-healing solution is proposed to reduce the handover fail-
ure rate and improve network performance. The self-healing func-
tion includes self-detection and self-compensation. The self-detection
function detects and locates faults promptly, accurately, and auto-
matically by processing network statistics. The self-compensation
function recovers or compensates for any breakdowns to consistent,
high-quality communication.

In this thesis, self-healing is used to monitor faulty APs and com-
pensate for network degradation. When an AP with degraded per-
formance is detected, the faulty AP will be added to the blacklist pre-
venting STAs from associating with the faulty AP. At the same time,
the current STAs that are associated with the faulty APs are forced
to handover to neighbor APs to compensate for the network degra-
dation. Machine learning algorithms are used for the self-detection
of faulty APs. The neighbor list mechanism provides the neighbor
APs’ information to the faulty AP in preparation for an impending
handover. Self-healing reduces the handover failure rate and com-
pensates for network degradation.
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1.5 Organisation of Thesis

The remainder of this thesis is outlined as follows. Chapter 2 presents a
comprehensive review of the background and related work in the field of
WiFi handover. The next three chapters introduce WiFi SON functional-
ities including the neighbor list mechanism, self-optimizing scanning pa-
rameters and self-healing solutions, respectively. Finally, the content and
outcome of this thesis are summarized in chapter 6. Several potential re-
search paths are also suggested to benefit the future development of SON.



Chapter 2

Background and Related Work

This research investigates approaches to improve handover performance
for IEEE 802.11 Wireless LAN networks (WLANs). Firstly, some key terms
used in this research are given and the IEEE 802.11 handover background
is introduced. Secondly, the handover issues and solutions are summarised
based on related works. Thirdly, the Self-Organizing Networks (SON)
functionalities used in cellular networks and the challenges of SON in
WiFi networks are introduced. Finally, the methods of handover evalu-
ation are discussed. This chapter summarizes the issues in WiFi handover
and SON technologies that motivate this research.

2.1 Definitions of Key Terms

This section introduces some key terms that are present in an IEEE 802.11
network. These key terms are used in the whole thesis to facilitate the
discussion.

• IEEE 802.11 networks: IEEE 802.11 is a set of media access control
(MAC) and physical layer (PHY) protocols to implement wireless
local area network (WLAN). The initial standard of 802.11 started
in the late 1990s. The initial standard has been extended to include

10
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amendments related to the increase of throughput (IEEE 802.11a, b,
g, n, ac, ad, ax), information reporting (IEEE 802.11k, u, v) or enhanc-
ing transitions (IEEE 802.11r, ai, aq) [15].

• IEEE 802.11a: This amendment was released in 1999. It provides
data rates of 1.5 to 54 Mbps using 5 GHz band. It was designed for
Orthogonal Frequency Division Multiplexing (OFDM) communica-
tion system. The modulation type includes Binary Phase Shift Key-
ing (BPSK), Quadrature Phase Shift Keying (QPSK), 16-Quadrature
amplitude modulation (QAM) and 64-QAM [16].

• IEEE 802.11b: This amendment was released in 1999. It provides
data rates up to 11 Mbps using 2.4 GHz band. The modulation type
used is complementary code keying (CCK) in 22 MHz wide channels
[17].

• IEEE 802.11g: This amendment was released in 2003. It provides
data rates of up to 54 Mbps using 2.4 GHz band. The modulation
type used is CCK in 20 MHz wide channels [18].

• IEEE 802.11k: This amendment was released in 2007. It is used for
radio resource management. It defines and exposes radio and net-
work information to facilitate the management and maintenance of
a mobile Wireless LAN [19].

• IEEE 802.11r: This amendment was released in 2008. It is used to per-
mit continuous connectivity aboard wireless devices in motion, with
fast and secure handovers from one base station to another managed
in a seamless manner [20].

• Station (STA): STA is a device can use the 802.11 protocol. Any de-
vice that contains an IEEE 802.11-conformant MAC and PHY inter-
face to the wireless medium [15].
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• Access Point (AP): AP is network hardware to provide access to the
wired network. If an AP is present, all communications between two
STAs are done through the AP, even though both STAs were close
enough to contact directly [15].

2.2 Standard 802.11 Handover

In the IEEE 802.11 standard, handover is the process of transferring ongo-
ing calls or data sessions when a STA moves from one access point (AP) to
another AP. In order to make a handover, the STA has to decide when to
handover. However, according to the IEEE 802.11 standard [15], there is no
specific handover algorithm to support such mobility management. IEEE
802.11 only supports a STA to change its association from one access point
to another owing to poor quality link. Some researchers use predefined
thresholds including Received Signal Strength Indicator (RSSI) or Signal
to Noise Ratio (SNR) to trigger a handover [21, 22]. For example, when a
STA moves away from its current AP and the RSSI is below the handover
RSSI threshold, a handover procedure is triggered.

A basic 802.11 handover process includes three phases: scanning/probe,
re-authentication and re-association. Scanning of channels for APs can be
accomplished in two ways according to the IEEE 802.11 standard, passive
and active [15].

In the passive mode, a STA selects an AP based on the information
including Basic Service Set Identifier (BSSID) and the signal strength from
beacon frames. The STA has to listen to the beacon frames from all APs
on each channel. Therefore, the STA at least waits for one beacon interval
about 100ms on each channel. The passive scanning delay TPS is given by

TPS = N ×BeaconInterval +N × ChannelSwitchT ime (2.1)

where BeaconInterval is the beacon interval, ChannelSwitchingT ime is
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the time that STA switches from one channel to another and N is the num-
ber of channels in the IEEE 802.11 spectrum.

In the active mode, the STA broadcasts probe requests and waits for
probe responses from APs actively without listening to any beacon frames.
Compared to passive scan, the active scan has less waiting time and is
more suitable for realizing seamless handover in 802.11 WLANs [23]. There-
fore, the active scan is considered to further reduce the handover delay in
this thesis.

The active scanning delay TAS is given byN ×MinChannelT ime+N × δ ≤ TAS,

TAS ≤ N ×MaxChannelT ime+N × δ
(2.2)

where δ is the channel switching time, N is the number of channels in the
IEEE 802.11 spectrum, MinChannelTime and MaxChannelTime are the scan-
ning timers. δ varies from 5 to 10ms specified by vendor implementation.

CHA 1 CHA 2 CHA N

AP AP

STA

Probe Request Probe Request Probe Request

Probing delay

CST CST

Wasted Channel

Phase A Phase B Phase C

Probe ResponseProbe Response

Probe Response

Figure 2.1: Active scanning process in 802.11 handover
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The active scanning process based on the IEEE 802.11 standard [15]
follows steps which are depicted in Figure 2.1. The handover procedures
using active scanning are illustrated in Figure 2.2 and the details of each
step are explained in the following paragraphs.

STA APs 

Select new AP

Scann
in

g all chan
nels

Figure 2.2: The standard 802.11 handover procedures using active scan-
ning

Firstly, the STA in the scanning phase starts to probe by switching to
channel 1 (CHA 1) and broadcasts a probe request frame to APs. The STA
then waits for probe responses on that channel, if no response has been
received within a time MinChannelTime (measured in seconds), the STA
probes the next channel. If one or more responses are received within Min-
ChannelTime, the probing STA continues accepting probe responses until



2.3. HANDOVER ISSUES AND PAST WORKS 15

MaxChannelTime (Phase A in Figure 2.1).

Next, the STA moves to the next channel and repeats the above steps.
The Channel Switching Time is termed as ’CST’. After STA scans all the
channels, the information received from probe responses is processed and
the STA can select the best AP to join next. Note that there is wasted time
on channel 2 (CHA 2) when no AP exists (wasted channel) (Phase B Fig-
ure 2.1). Moreover, the STA keeps waiting for more probe responses on
channel N (CHA N ) even after receiving the last probe response, which is
a wasted probe-wait (Phase C Figure 2.1). Thus, reducing the wasted wait-
ing time on non-AP channels and optimizing the probe timers can reduce
the scanning delay and in turn shorten the total handover delay.

After active scanning, the STA sends an authentication request to the
selected AP. The selected AP will send an authentication response frame
indicating whether to accept this STA or not.

If the STA is accepted by the selected AP, the re-association process is
performed. The STA sends a re-association request to the selected AP and
a re-association response containing acceptance or rejection of the STA will
be sent by this AP.

2.3 Handover Issues and Past Works

During the period of handover from the old AP to the new AP, the STA
breaks its association with the old AP and it is potentially unable to com-
municate any type of data traffic within this time. This break time is called
handover delay. The total handover delay includes scanning delay, re-
association delay and re-authentication delay [8]. In this thesis, active
scanning is considered. Therefore, the handover delay can be calculated
by Equation 2.3,

Thandover = Tscanning + Tauthentication + Tre−association (2.3)
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The handover delay is about 200ms on average in an IEEE 802.11b net-
works using 11 channels and active scanning [6]. Though active scanning
is much faster, it cannot satisfy the real-time applications whose delay re-
quirement is no more than 50ms [24]. Therefore, many researchers have
discussed the potential optimizations of the handover delay.

In the rest of this section, the existing solutions for how to reduce han-
dover delay and improve handover performance will be discussed.

2.3.1 Reducing of the Number of Scanned Channels

The reduction of the number of channels needed to be scanned is one
way to shorten the scanning delay. This solution reduces handover de-
lay sharply, but the trade-off is that it requires information of APs prior to
a handover. Therefore, some extra databases or caching mechanisms are
usually needed to provide such information. The drawback is that keeping
the information of APs up-to-date may pose challenges to the scalability
of the network.

Some researchers collected the neighbor APs information before han-
dover performance and aimed to reduce the number of channels scanned.
The neighbor APs are the candidate APs for next handover. The total
scanning delay can be reduced because only the channels of the neigh-
bor APs are scanned. Thus, the total number of APs scanned is reduced.
Mishra et al. [3] established neighborhood relationships based on Neigh-
bor Graph (NG). NG is generated using the re-association request message
from an STA containing BSSID. NG reduces not only the number of chan-
nels scanned but also the time wasted in scanning the empty channels
without APs [25]. Thus, the handover delay is significantly reduced.

Another way to reduce the number of channels scanned is to use selec-
tive scanning. For selective scanning, S. Shin et al. [4] selected the scanned
channels by a data structure called channel mask. STA only scan the se-
lected channels from non-overlapping channels (1, 6 and 11). As the prob-
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ability of a neighbor AP on the same channel of the current AP is small, the
channel of the previously connected AP will not be scanned. Combined
with the caching mechanism for storing information about surrounding
APs in the previous handovers, the latency attains further reduction.

The Global Positioning System (GPS) is also applied for selecting scan-
ning APs based on the location information provided by GPS receivers.
The location information requested by a STA can be obtained from its GPS
receiver, and the cooperation of APs is supported by a location server.
Tseng et al. [5] introduced a location-based handover algorithm. If an AP
is located within a certain range of movement direction of the STA, it will
be included in a candidate list as a potential AP for handover. Whenever a
handover occurs, only the channels on the candidate list will be scanned.
Therefore, the scanning delay is reduced.

In summary, the way to reduce the number of channels scanned is to es-
tablish a list of candidate APs for the next handover. The AP list discussed
above is not an up-to-date list based on the wireless network conditions.
Moreover, the candidate APs are not sorted and updated periodically on
the list. The sorted APs on the list will also reduce the probe waiting time
of probe responses. Therefore, an up-to-date AP list based on networks
conditions is highly needed.

2.3.2 Optimizing Scanning Parameters

The discussion above about how to reduce the number of channels scanned
is based on the fixed scanning parameters. Optimizing the scanning pa-
rameters is another method to reduce the scanning delay. The scanning
parameters MinChannelTime and MaxChannelTime have a big influence on
scanning delay because the probe waiting timer depends on these two val-
ues. The probe waiting time is the time an STA waits on one particular
channel after sending a probe request message. Thus, the STA waits on
one channel for at least MinChannelTime. If any traffic or probe response
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message was received within MinChannelTime, the STA extends the probe
waiting time to MaxChannelTime. If the values of these two parameters
are too high, unnecessary waiting time is wasted. On the other hand, a
STA may not have enough time to receive all probe responses from APs, if
the values are too low. Therefore, there is a trade-off between the AP dis-
covery rate and total handover delay. How to automatically optimize the
scanning parameters has a significant effect on the successful handover
rate.

The total probe delay t, for probing N channels, is defined as follows:

N ×MinChannelT ime ≤ t ≤ N ×MaxChannelT ime (2.4)

As the values of MinChannelTime or MaxChannelTime are not defined
in the IEEE 802.11 standard, some researchers search for the optimal val-
ues of them based on experiments. A.Mishra et al. recommended that the
proper values of MinChannelTime and MaxChannelTime should be 6.5ms
and 11ms, respectively [26] based on their extensive tests. The authors
in [6] presented an extensive analysis of the scanning process by mean of
simulation and real testbed. They observe that there is no single fixed opti-
mal pair (MinChannelTime and MaxChannelTime) that always gives the best
scanning performance in all deployment, which is consistent with earlier
studies [27] [28].

A few researchers have studied how to dynamically optimize the scan-
ning parameters such as MinChannelTime or MaxChannelTime to reduce the
probe waiting time. However, the adaption algorithms are based on some
assumptions. For example, the algorithm in [6] uses an adaptation method
for adjusting the scanning timers in order to increase the discovery rate.
This method assumes the discovery rate in the last scan is accurate. The
scanning timers are increased when no AP is found and decreased when
an AP is found in the last scan. The work in [6] departs from the trend
of increasingly complex algorithms and argues for a simple yet practical
solution. Also, R. Pazzi et al. [7] and A. Boukerche et al. [8] proposed scan-
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ning algorithms adapted to the scanning timers. The timers are dynami-
cally adjusted based on the predicted channel information. However, the
ideas in both [7] and [8] predict the target handover AP probability on each
channel based on the assumption that the information collected from the
last channel scan is accurate. This assumption is overly burdensome and
requires significantly higher computational complexity because it main-
tains the state of the channel for each known AP.

In a recent paper [29], an intelligent module using Cultural Algorithm
(CA) is introduced to get a sequence channel with optimized scanning
timers. In this work, the optimization problem is formulated as double
objective problems which aim to characterize the trade-off for a better dis-
covery process by using the discovery rate (APs per time unit) versus the
total latency for scanning. The optimal channel scanning sequence, the
number of AP discovered and its correspondent scanning timers includ-
ing MinChannelTime and MaxChannelTime are considered as the output of
CA. However, the channel sequence is sorted according to the number of
AP discovered. The number of AP discovered based on CA cannot reflect
the real channel conditions in the wireless network. This work is based
on the assumption that CA can adapt to the channel varying in different
network topologies.

Overall, the scanning parameters are needed to dynamically update in
the different network environment. Although some research works pro-
posed adaptive scanning parameters based on some prior or prediction as-
sumptions, these optimized scanning timers cannot adapt to the real-time
network environment. Thus, the handover performance is only enhanced
with some restrictions in a certain network environment.

2.3.3 Pre-scan Strategy

The handover delay also can be shorted when the scanning phase is ex-
ecuted before a handover is triggered. Such schemes are usually able to
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remove the scanning delay completely, but they increase system complex-
ity and introduce overheads.

SyncScan [30] is one such protocol that can sharply reduce handover
latency. APs are synchronized to send out beacons at fixed times so that
a STA can switch to other channels at the same time to check the signal
strength of a certain AP. Continuing this process, the STA will have com-
plete knowledge of surrounding APs in advance and then will select the
AP with the strongest signal, whenever a handover is required. SyncScan
does add some complexities, as time synchronization is required, which
can be achieved by NTP (Network Time Protocol) [31]. The main issue,
however, is that high throughput cannot be achieved, because the work-
ing channel of the STA periodically changes all the time.

DeuceScan [32]implements a similar pre-scan scheme for vehicular en-
vironments. The STA probes all channels first and then it constructs a
Spatio-temporal graph to record the RSS of each AP and only probes chan-
nels of neighbor APs in the following prescan operations. Variations of
the RSS imply possible movement directions of the vehicle. During a han-
dover, this scheme tends to select the AP whose RSS is increasing, so as to
avoid wrong decisions.

In Adaptive Preemptive Fast Handover (APFH) [33], the STA may also
send probe requests prior to a handover, and the APFH is adopted as the
scanning strategy to reduce overheads and to increase throughput on the
wireless channel. The STA will not start pre-scan unless the RSS of the
currently serving AP drops below a defined threshold.

2.3.4 IEEE 802.11k and 802.11r for Handover Optimization

The 802.11k [19] allows STAs to request a neighbor report containing infor-
mation about known neighbor APs that are candidates for handover. To
facilitate handover, an 11k capable STA associated with an AP sends a re-
quest to a list of neighbor APs. The request is sent in the form of an 802.11



2.3. HANDOVER ISSUES AND PAST WORKS 21

management frame, known as an action frame. The AP responds with a
list of neighbor APs on the same WLAN with their WiFi channel numbers.
The response is also an action frame. The STA identifies the APs candi-
dates for the next handover from the response frame. The use of 802.11k
radio resource management (RRM) process allows the STA to handover
efficiently and quickly. To find an AP to handover from the neighbor list
information, the 802.11k capable STA does not probe all of the 2.4 GHz
and 5 GHz channels. Therefore, it reduces handover time and improves
the decisions taken by the STA. However, the neighbor list is only recorded
based on RSSI. As RSSI is considered not to be the best predictor for han-
dover triggers [34], other parameters such as channel load, delay and STA
QoS should be considered when the neighbor list is updated.

802.11r [20] uses Fast Basic Service Set Transition (FT) to allow encryp-
tion keys to be stored on all of the APs in a network. This way, a STA
does not need to perform the complete authentication process. Thus, the
authentication delay is reduced. However, it only supports the STAs asso-
ciation to WLANs which have 802.11r enabled.

2.3.5 Handover Decision Criterion

The handover decision time also affects the handover performance. Late
handover execution may result in a long handover delay and service dis-
ruption. An early handover may force the handover execution to a new
AP even when the link quality of service AP is still strong enough, result-
ing in a loss of the benefits of the preceding interface, which can include
such factors as the bandwidth, QoS, and communication price [35].

The handover decision time can be affected by two aspects including
the handover predictors and the threshold of the handover predictors.
These two aspects determine when and how to trigger handover.

In the 802.11 standard [15], there are no specific predictors defined to
trigger the handover. Most handover algorithms are based on RSSI to
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trigger a handover [30, 32, 33, 36]. Besides RSSI, the number of frame re-
transmissions or frame losses is also used as predictors for handover deci-
sions [37]. A recent study by B. NG et al. [34] found that SNR, round-trip-
time (RTT) and RX Bytes were better predictors than RSSI but they did not
mention how to set the threshold in different network environments.

Usually, the threshold of the predictors is user pre-defined. However,
pre-defined predictors are not suitable for dynamic network requirements.
This is because several network parameters change over time such as the
channel conditions, the STA speed, and transmit power and it is difficult to
determine an optimal threshold in advance. Although some methods used
link monitoring to predict a threshold [35, 38, 39], they only used one spe-
cific predictor such as RSSI or frame loss rate. In cellular networks, some
researchers researched on the adaptive thresholds based on neighbor cells
information [11, 39, 40]. However, the 802.11 networks lack neighborhood
management. Therefore, it should be investigated how to dynamically
adjust the threshold considering all the network predictors in order to im-
prove 802.11 handover performance.

2.3.6 Summary of Reducing Handover Delay Solutions

Table 2.1 shows a summary of current solutions to reduce handover de-
lay. From the survey of the literature above, few previous works have op-
timized the scanning parameters and the number of channels together to
reduce both switching time and probe waiting time. Therefore, how to op-
timize all the affected scanning parameters together to improve handover
performance is necessary for 802.11 networks. These parameters include
MinChannelTime, MaxChannelTime, channel switching time, probe request
interval, the number of channels scanned and channel sequence. The chal-
lenges are how to optimize these parameters according to the changes in
the network environment.



2.4. SON FUNCTIONALITIES 23

Table 2.1: Summary of handover solutions

Work and Reference Strategy Contributions

A. Mishra et al. [3], [25],
S. Shin et al. [4],

C. Tseng et al. [5],
IEEE 802.11k [19],

Neighbor Graph,
Channel mask,
Location-based,
Neighbor report

Reduction of
the Number
of Channels

A. Mishra et al. [26], [27] [28],
G. Castignani et al. [6],

R. Pazzi et al. [7],
A. Boukerche et al. [8],

A. Arcia-Moret, et al. [29],

Fixed scanning parameters,
Adaptive scanning parameters,
Dynamically adjust parameters,
Self-congured parameters,
Sorting channels by Cultural
Algorithm

Optimizing
scanning
parameters

I. Ramani et al. [30],
YS.Chen et al. [32],

V.M.Chintala et al. [33],

SyncScan,
DeuceScan,
Adaptive Preemptive Fast
Handover (APFH)

Designed
pre-scan
schemes

IEEE 80211.r [20], FastTransition(FT) authentication
protocols,

Reduce
anthentication
delay

B. NG et al. [34], Measurement and multiple
regression

SNR, round-
trip-time
(RTT) and RX
Bytes are
better
predictors
than RSSI

V. Mhatre et al. [35],
G. Athanasiou et al. [38],

S.-J. Yoo et al. [39],

Link monitoring, Predict
thresholds

2.4 SON Functionalities

In the 3rd Generation Partnership Project (3GPP) current standards of mo-
bile communications, such as LTE (Long Term Evolution) and LTE-Advanced,
automated features is one of the key elements. Networks with those au-
tomated capabilities are known as Self-Organizing Networks (SON). SON
is a promising automation technology used to simplify planning, configu-
ration, optimization and healing. SON has been defined as a set of prin-
ciples and concepts to add automation to mobile networks requiring less
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maintenance than traditional networks while improving Quality of Ser-
vice (QoS) [41]. The SON functionalities are classified into three groups:
self-configuration, self-optimization and self-healing [42].

In the following sections, the details of the three SON functionalities
used for handover optimization in cellular networks and the challenges of
SON applied in WiFi networks will be discussed.

2.4.1 Self-configuration

The aim of the self-configuration function used in WiFi handover is to
automatically establish and update a neighbor list. This is because the
most important phase of handover is to select the target AP from neighbor
APs. In WiFi networks, there is no neighborhood management such as the
Neighbour Cell List (NCL) in cellular networks. The STAs have to scan
all the channels to find the target AP when a handover is initiated. This
can lead to degradation of the STAs’ throughput because of the additional
delay for scanning the whole bandwidth.

Although the standard 802.11k can provide information about neigh-
bor APs, this information is generated on-demand and is unable to be
maintained. There are also potential neighbor APs that may not be pro-
vided by a neighbor report because the neighbor reports are based on a
STAs moving path and only the neighbor APs on the moving path of STAs
can be heard. The lack of neighbor AP information may lead to handover
failure [43]. On the other hand, if the STAs scan an excessive number of
neighbor APs, the time to find the best candidate for handover is signifi-
cantly increased. It also results in a reduction in the throughput of STAs,
and lowered QoS due to the more frequent occurrence of measurement
gaps in data transmission [44].

Therefore, the neighbor list should be maintained and managed to pro-
vide better handover performance. However, it is a challenge to manu-
ally maintain and manage the neighbor APs in traditional WiFi networks.
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Thus, a self-configuring neighbor list that can be automatically managed
is necessary.

However, it is hard to automatically manage the neighbor relations in
WiFi networks. In 2G/3G, there is a base station controller (BSC) or a ra-
dio network controller (RNC) used to connect with base stations so that
the controller can get the information of each base station to configure
the neighbors [45, 46]. In addition, LTE networks can easily communicate
and broadcast neighbor cells’ information [47]. In particular, the Auto-
matic Neighbor Relation (ANR) technique can automatically optimize the
neighbor list [48]. However, in WiFi networks, it is difficult for APs to
communicate and cooperate. Although there is some research on generat-
ing neighbor relationships using a neighbor graph [3, 25, 49], the neighbor
graph was based on the IEEE 802.11f standard, also known as the Inter Ac-
cess Point Protocol (IAPP) [50], which has been withdrawn from the 802.11
standard since 2006. Also, the calculation time for producing a neighbor
graph is too long to meet the dynamic network requirements.

Recently, IEEE amendments 802.11k [19] have been added to the IEEE
802.11 standard to enable STAs to obtain the neighbor AP’s information by
requesting a neighbor report. However, the neighbor information is gener-
ated on-demand and based on the STAs moving path. Only the neighbor
APs on the moving path of STAs can be heard and the potential neighbor
APs that cannot be provided by the neighbor report. The standard 802.11r
considers configuration and data exchange for fast transitions, minimiz-
ing service interruptions. However, the standard 802.11r [20] still does not
mention how to manage neighborhood relations. Therefore, only using
these amendments is not suitable for managing the neighbor relations in
WiFi networks [41]. It is still much harder to automatically manage the
neighbor list in WiFi networks than in cellular networks because there is
no inter-AP communication protocol and no centralized controller to man-
age APs.

Table 2.2 and 2.3 show a summary of some approaches about how to
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Table 2.2: Summary of research about establishing and updating neighbor
list in wireless networks

Work and
Reference

Architectures Techniques Contributions Drawbacks

3GPP
TS32.500

[48]

Centralized ANR Automatically
establishing
neighbor
relations for
newly deployed
cells

Is not suitable for
Handover

F. Parodi et
al. [51]

Centralized
and
distributed

Using
geographic
and antenna
information

Automatically
establish initial
neighbor list for a
new deployed
Base Station

Is not suitable for
Handover

A. Mishra
et al. [25]

Distributed 802.11f-IAPP,
capturing the
mobility
topology
using the
reassociation
messages

Automatically
establish and
update neighbor
relations by
neighbor graph,
reducing
reassociation
delay

802.11f-IAPP was
withdrawn from
the 802.11
standard, long
computation time
to capture the
neighbor graph

A. Mishra
et al. [49]

Centralized Human
observation
of the
reassociation
messages

Automatically
establish and
update neighbor
relations using
the neighbor
graph, reducing
authentication
delay

Lacking potential
APs only by
human
observation

M. Shin et
al. [3]

Distributed 802.11f-IAPP Automatically
establish and
update neighbor
relations using
the neighbor
graph, reducing
scanning delay

802.11f-IAPP was
withdrawn from
the 802.11
standard, long
computation time
to capture the
neighbor graph
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Table 2.3: Summary of research about establishing and updating neighbor
list in wireless networks - continued

Work and
Reference

Architectures Techniques Contributions Drawbacks

Y. Zhang
et al. [52]

Distributed Installing
extra WiFi
interfaces to
broadcast
information

The neighbor
relations are
manually
established or
automatically
established based
on reassociation
messages, define
the handover
threshold by the
value of signal
quality

Making changes
of APs, cannot
automatically
update the
neighbor list
efficiently, signal
quality is the only
predictor for
handover, the
threshold is not
dynamic value

H. Zhang
et al. [53]

Centralized Periodically
collects RSSI
of neighbor
AP using a
full scan

Create and
update neighbor
list based on RSSI
value, define the
handover
threshold using
RSSI

The full scan
takes a long time,
RSSI is not the
only predictor for
handover, the
threshold is not
dynamic value

B. Zhang
et al. [54]

Centralized Periodically
collects RSSI
of neighbor
AP using a
full scan

Create and
update neighbor
list based on RSS
value, defined
scanning
threshold and
handover
threshold

The full scan
takes a long time,
RSSI is not the
only predictor for
handover, the
threshold is not
dynamic value

S. Pack et
al. [55]

Distributed Capturing
the mobility
topology
using
reassociation
messages

Create neighbor
list using
neighbor
graph [25], select
and update the
neighbor list
using neighbor
weight, define
neighbor weight
threshold to select
neighbor APs

Long
computation time
to capture the
neighbor graph,
neighbor weight
threshold is not
dynamic value

T. Lei et
al. [56]

Distributed Install
wireless
interfaces to
get the
wireless link
information
of
neighboring
APs

Create neighbor
list by neighbor
graph [25], sorted
the neighbor list
using predicted
RSSI, both frame
loss rate (FLR)
and RSSI are
handover
threshold

Thresholds are
empirical values
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establish and update the neighbor list in wireless networks.

Firstly, two different network architectures are used to store the neigh-
bor list. They are centralized architecture and distributed architecture. In
the centralized architecture, the neighbor list is stored in the controller
[48, 49, 51, 53, 54]. In the distributed architecture, the neighbor list may be
stored in the AP [3, 25, 51, 52, 55] or the STA [56]. Both centralized and
distributed architectures have their own advantages and disadvantages.
In the centralized architecture, the neighbor list is maintained and man-
aged consistently by a controller. The controller has enough storage space
to save the neighbor lists. The controller can also give a global view to
monitor the AP status and detect faulty APs. In the distributed architec-
ture, extra wireless interfaces need to be installed to monitor and collect
the neighbor AP’s information. If the neighbor list is large, the storage
space and computational complexity may not be acceptable to save and
update all neighbor AP’s information. The best candidate AP may not be
found because of the lack of all neighbor APs information. Therefore, the
centralized architecture is chosen in this thesis based on the assumption
that there is no link delay between controller and AP.

Secondly, the handover threshold using different predictors is defined
by different fixed values. Most of the existing research uses RSSI as the
handover predictor. Other predictors including packet loss, SNR, delay,
AP load also need to be considered in the WiFi handover decision. More-
over, the fixed values of the threshold are unable to meet the dynamic
network requirement in different network topologies. Thus, the handover
decision using dynamic threshold based on different predictors is neces-
sary to select the best candidate AP from the neighbor list.

2.4.2 Self-optimization

The most important function of self-optimization is to enhance handover
performance. As shown in Table 2.4 and 2.5, the handover performance
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Table 2.4: Summary of research about optimizing handover parameters in
wireless networks

Work and
Reference

Method Optimized
parameters

Contributions Drawbacks

D. Aziz et
al. [57]

Genetic
programming
(GP)

Handover
mar-
gin(HOM)
and Time-to-
Trigger (TTT)
used for LTE
handover

Minimize the
number of
handovers and
dropped calls

Offline algorithm,
long computing
time, not suitable
for real-time
network
conditions

V.
Capdevielle

et al. [58]

Simulated
annealing
(SA)

HOM, TTT
and A3-offset
used for LTE
handover

Reduce
unnecessary
handovers and
dropped calls

Limited updated
parameters

A. Arcia-
Moret et

al. [29]

Cultural
Algorithm
(CA)

MinChannelTime,
MaxChannel-
Time, channel
sequence

Reduce
scanning delay

channel sequence
is sorted based on
the information of
last scan, cannot
meet dynamic
network
requirements

P. Bhat-
tacharya et

al. [59]

Artificial
Neural
Network
(ANN)

RSS, Traffic
Intensity (TI)

Online
algorithm, Fast
handover
based on high
accuracy of
handover
decision time

Limited handover
parameters are
updated

M.
Ekpenyong

et al. [60]

ANN Call block
rate, call drop
rate, carried
traffic and
signal
strength

Online
algorithm,
predict
handover
decision time,
reduce
handover
failure rate

Long training time
cannot meet
dynamic network
requirements

M. S. Dang
et al. [61]

Fuzzy logic Received
power level,
user
population
and used
bandwidth

Improved load
balance of base
station after
handover

Designed for an
indoor
environment

S. S.
Mwanje et

al. [62]

Q-learning HOM, TTT Update
handover
parameters
based on
mobility
changes

Does not consider
load balance after
handover
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Table 2.5: Summary of research about optimizing handover parameters in
wireless networks - continued

Work and
Reference

Method Optimized
parameters

Contributions Drawbacks

I. Balan et
al. [63]

Weighted
function

Signal
strength,
HOM, TTI

Reduce
handover
failure rate

Based on a
previous analysis,
unrealistic

G.
Castignani

et al. [6]

Adaption
function

MinChannelTime,
MaxChannel-
Time

Increase AP
discovery rate

Based on the
information of last
scan, cannot meet
dynamic network
requirements

R. W. Pazzi
et al. [7]

Adaption
function

MinChannelTime,
MaxChannel-
Time

Reduce
scanning
delay

Based on the
information of last
scan, cannot meet
dynamic network
requirements

may be improved by reducing the handover delay and handover failure
rate, or optimizing the handover decision time by different thresholds.

As the handover threshold is dynamically updated by the neighbor list
mechanism discussed in section 2.4.1, self-optimization aims to optimize
the scanning parameters which accounts for the majority of handover de-
lay [26] in WiFi. Currently, the value of scanning parameters are vendor
pre-defined. Thus, the scanning delay is the same in every scan initiated
by a STA even in different network conditions. The scanning time should
be dynamically adjusted based on real-time network requirements.

Many Artificial Intelligence (AI) algorithms [57–61] have been used for
handover optimization problems. Due to the high dynamic requirements
of WiFi networks, online learning is suitable for optimizing the scanning
parameters in response to the real-time network conditions. Most research
in Table 2.4 and 2.5 only considers optimizing a few handover parameters
to improve handover performance. However, the more parameters are
optimized, the more network performance is improved. Some research
[6,7,29] optimizes the handover parameters based on previous knowledge
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of network performance, which is unrealistic in real-time networks.
As WiFi networks have more dynamic and external influences than

cellular networks, the optimization algorithm has to update the scanning
parameters based on any change in the network environment. Compared
with different algorithms reviewed in Table 2.4 and 2.5, an intelligent on-
line algorithm that can optimize all the related scanning parameters is
needed.

A Genetic algorithm (GA) has a robust search ability to find the optimal
values of scanning parameters efficiently to meet the dynamic network
requirements. Thus, GA is considered as a solution for the optimization
problem and reviewed in the next section.

2.4.2.1 Related Work of Genetic Algorithm

In this section, a genetic algorithm (GA) is reviewed because GA is used
to optimize the scanning parameters. The reason why GA is chosen to
solve the self-optimizing scanning parameters problem is discussed in sec-
tion 4.2. The following subsection will discuss the related work about
different GA operators and how to choose for self-optimization in WiFi
networks.

2.4.2.1.1 Selection In this thesis, the selection methods including Tour-
nament Selection, Roulette Wheel Selection, Rank-based Roulette Wheel
Selection are used to compare the handover performance.

Tournament selection is one of the most popular selection methods in
the genetic algorithm due to its efficiency and simple implementation [64].
The efficient and simple algorithm is suitable to optimize the scanning pa-
rameters based on real-time network conditions. In tournament selection,
n individuals are randomly selected from the larger population and the
number of n is the tournament size. The selected individuals compete
against each other, and the individual with the highest fitness generation
population is selected.
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In Roulette Wheel Selection, all the individuals in the population are
placed on the roulette wheel according to their fitness value. Each individ-
ual is assigned a segment of the roulette wheel whose size is proportional
to the individual [65]. The problem of this selection is that the individuals
with the largest fitness probability have more opportunities to be selected.
This selection cannot guarantee to find the best solution for scanning pa-
rameters in the entire population.

Table 2.6: The advantages, disadvantages and time complexity compari-
son of three different selection operators

Methods Advantages Disadvantages Time
complexity

Tournament
Selection

Fitness scaling or
sorting not
required [66],
efficient [64, 67],
suitable for small size
problems [67, 68]

Cannot guarantee to
reproduce the best
solution of scanning
parameters for large
size population [69].

O(n)

Roulette Wheel
Selection

It gives a chance for
all of them to be
selected [70],
stable [71]

As population
converges, loss of
selection pressure [72]
and the optimal value of
scanning parameters
may not be found.

O(n2)

Rank-based
Selection

Prevents convergence
happening too
quickly, robust
towards optimal
solutions [73]

Populations must be
ranked on every cycle,
the ranking time
increases the optimizing
time so it is unable to
meet real-time network
conditions [66].

O(N lnn)

The rank-based election was introduced by Baker [74] to eliminate the
disadvantages of Roulette wheel selection. In the rank-based selection
schemes, the individuals in the population are ranked by their fitness and
then selection probabilities are computed according to their ranks rather
than fitness values. This selection provides high accuracy to find the best
solution for optimized scanning parameters. However, the computation
time is long because of sorting fitness values. Thus, it is not suitable for
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solving the self-optimization problem.

Several studies have been performed to compare the performance of
different selection methods. The Table 2.6 shows the advantages, disad-
vantages and the time complexity of the three selection methods. How-
ever, none of these researchers tested the algorithm on WiFi handover per-
formance.

For the self-optimizing scanning parameters problem in WiFi networks,
tournament selection is more suitable to solve this issue than Roulette
Wheel Selection and Rank-based Selection. This is because the tourna-
ment selection has a fast and efficient convergence rate to meet the real-
time network requirements [64, 67]. Also, the number of scanning para-
meters is not big and tournament selection is suitable for this small size
problem [67, 68].

2.4.2.1.2 Crossover Crossover operators aim to explore solutions over
a wider area. This wider area can provide opportunites to find better so-
lutions for optimized scanning parameters. The solutions of the crossover
depend on how effectively the crossover operation is performed.

How to choose a crossover operator depends on the representation
types and GA performance demanded by different applications. There
are three types of representation, which are Binary representation, Integer
representation and Real representation. The following sections will dis-
cuss how to select the representation type for the scanning parameters.

Binary representation is where an individual is a string represented by
zero and one. Any application that demands the representation of features
as either present or absent or can be represented using a discrete parameter
space can be naturally represented with the binary encoding scheme [75].
The scanning parameters are real values, thus the binary representation is
not suitable to deal with continuous search spaces in the scanning para-
meters optimization problem.

When there are more discrete variable values that should be repre-
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sented using binary encoding the length of a chromosome increases which
in turn reduces the rate of convergence. This problem can be overcome
by using integers for representing the chromosomes instead of a binary
value [76]. However, the scanning parameters are not able to be coded us-
ing integer representation either. Therefore, the binary representation and
integer representation are not suitable to optimize the scanning parame-
ters.

Both binary and integer representations are unable to deal with con-
tinuous search spaces and the scanning parameters demand high preci-
sion [77] [78]. Real representation results in increased efficiency and preci-
sion [79]. Therefore, real representation schemes and associated crossover
operators are considered to be used for the scanning parameters optimiza-
tion problem.

As the crossover operator is chosen by the representation types, the
real representation crossover including single-point crossover, N -points
crossover and uniform crossover are used to optimize scanning parame-
ters.

In WiFi networks, the scanning parameters need to be optimized based
on real-time network conditions. The continuous search spaces are needed
when the scanning is initiated periodically and high precision is required
to make sure handover can be timely and successful. Thus, the crossover
operator adopted real representation is suitable for the self-optimizing
problem.

The handover performance using real representation crossover includ-
ing single-point crossover, N -points crossover, uniform crossover are dis-
cussed and compared in Chapter 4.

2.4.2.1.3 Mutation The mutation in GA is used primarily to maintain
genetic diversity. The mutation operator along with a suitable crossover
operator can make the overall search efficient [80] to find the most opti-
mal values of scanning parameters. There are several types of mutation
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such as Random mutation, Boundary mutation, Non-uniform Mutation
and Normally distributed mutation.

The random mutation operator [81] replaces the value of the chosen
gene with a random value (uniform probability distribution) selected be-
tween the user-specified upper and lower bounds for that gene [82]. There-
fore, the Random mutation ensures that the GA can search the solution
space freely to find a better solution for the scanning parameters [83].

In boundary mutation, the value of the selected gene is randomly re-
placed with either the upper or lower bound [84]. As the gene represents a
scanning parameter, genes mutated by boundaries cannot meet the diver-
sity of scanning parameters in GA. It may lose the opportunity to find the
best optimal scanning parameters for each channel and affect the reducing
of scanning delay.

A non-uniform mutation is one of the commonly used mutation oper-
ators in real coded GAs [81] . This mutation operator tunes the upper or
lower bound as the GA generation increases. The solution also depends
on the size of the population. The search of this operator was performed
uniformly at the beginning and very locally towards the end in order to
reach equilibrium between exploration and exploitation [85]. This opera-
tor works better in a larger population with more generation. However,
the time consumption is not required in dynamic network environments.
Therefore, it is not suitable to optimize the scanning parameters which
needs an efficient algorithm to update the values of scanning parameters
to meet the real-time network requirements.

2.4.3 Self-healing

The fault management includes detecting faults in the network, diagnos-
ing and fixing the problem. The manual troubleshooting of a cellular net-
work is a complex task as it is time-consuming and laborious. Therefore,
the self-healing aims to automatically operate the overall fault manage-



36 CHAPTER 2. BACKGROUND AND RELATED WORK

ment process including the collection of information about network per-
formance, detection and diagnosis of faults and compensation or recovery
actions.

One of the fundamental cases used in self-healing for cellular networks
is Cell Outage Management (COM). COM comprises Cell Outage Detec-
tion (COD) and Cell Outage Compensation(COC).

COD aims to automatically detect outage cells when the cells are not
operating normally due to possible failures, or external failures such as
power supply or network connectivity, or even misconfiguration.

On the other hand, COC aims to reduce the degradation caused by
a failure in a cell until the fault is solved. The compensation for net-
work degradation can be made by modifying the configuration parame-
ters. These parameters are usually from neighbor cells. All the modified
parameters will be reverted when the network failure is solved [86].

Thus, the self-healing of COM processes should contain:

• Alarm correlation, a diagnosis process triggered alarms that try to
find the root cause of the alarm. If a is discovered, an automatic
recovery action can be started to try to resolve the problem.

• Sleeping cell or cell outage detection, locate cells that do not transmit
faults/alarms but still do not perform as planned.

• Cell outage compensation; reconfigure neighbor cells temporarily to
compensate for the failure of another cell.

Many research works use machine learning algorithms to solve COM
problems. In the literature [87–93], the machine learning techniques (e.g.,
K Nearest Neighbor(KNN), local outlier factor(LOF)) are applied to COD.
The KNN and LOF algorithms for cell outage detection are compared in
[89]. It is observed that KNN outperforms LOF in speed and reliability
since LOF can sometimes misclassify normal cells. Most of these works
are based on the analysis of the performance of the problematic cell or its
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neighbor cells. With this methodology, only the most severe cases can be
detected but many other outage situations may go unnoticed.

Several COC algorithms have been proposed in the literature [94–99].
In these works, the authors present different algorithms based on the mod-
ification of one or more control parameters and using different techniques
(e.g., Fuzzy Logic, Reinforcement Learning). With these modifications, the
algorithm tries to force users in the cell edge of the faulty cell to move to
a neighbor cell. As a consequence, the service area of the faulty cell is re-
duced. The main objective of COC algorithms is to reduce the degradation
produced by cell outage.

In the self-healing function, neighbor cells in the NCL will be recon-
figured and provide the coverage for the area of outage cells. After the
self-healing process is finished, self-optimization can be executed to find
optimal settings for the new network environment. Therefore, the three
functions of SON including self-configuration, self-optimization and self-
healing can work together automatically to adapt to the network condi-
tions.

The summary of the comparisons of COD and COC algorithms in cel-
lular networks is given in Table 2.7 and 2.8, respectively. These com-
parisons aim to show the key network performance metrics used in each
approach. This gives a better understanding of the advantages and dis-
advantages of different approaches for how to implement self-healing in
WiFi networks.

Self-healing in WiFi handover aims to keep the mobility connectivity
in faulty networks. However, it is not easy to automatically diagnose and
recover faulty networks. In WiFi networks, there is no network manage-
ment protocol since the AP are provided by different vendors. Without
the unmanaged neighborhood and network configuration protocol, the
self-healing becomes even harder due to dynamics and random access op-
erations. self-healing in WiFi networks is not the same as LTE networks
where the outage can be divided into cell outage and site (eNodeB) out-
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Table 2.7: Summary of self-healing COD using different machine learning
algorithms in cellular networks

Solution Method Performance
metrics

Advantages Drawbacks

Supervised
learning

KNN [87] RSRP,
SINR

Simple, efficient
to detect faulty
element,
handover can be
achieved based
on real-time
measurement

Hard to predict
the number of
clusters ‘’k” in
large data sizes,
so the accuracy of
detecting faulty
elements is
affected,
handover failure
rate increased
because of low
detection
accuracy

Unsupervised
learning

DAP [92] RSRP,
RSRQ, CQI

Automatically
classifying
clusters can meet
dynamic network
requirements

Quadratic
computational
cost means need
long computation
time, cause
handover failure
because of
detection latency

Unsupervised
learning

K-means [91] RSRP,
RSRQ,
CQI,
handover
attempts

Simple, efficient
to detect faulty
element,
handover can be
achieved based
on real-time
measurement

Hard to predict
the number of
clusters ”k” to
detect the faulty
element, causes
handover failure

Unsupervised
learning

LOF [88] inHO Simple, efficient
to detect faulty
element,
handover can be
achieved based
on real-time
measurement

Misclassifies
normal cell,
handover failure
because of lower
detection
accuracy

Unsupervised
learning

Neural
Networks
[93]

RSRP,
RRC, DCR,
HO, BCR

High accuracy,
the faulty
elements may be
detected correctly

Complicated, the
long training time
means handover
cannot perform
timely or
handover failure
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Table 2.8: Summary of self-healing COC using different machine learning
algorithms in cellular networks

Solution Method Performance
metrics

Advantages Drawbacks Objective

Heuristic Immune
Algorithm
[94]

SINR Fast com-
pensation
made
handover
perform
efficiently

Sensitive to
initial
parameters
can lead to
handover
failure

Coverage
and
quality

Heuristic Genetic
Algorithm
[100]

Capacity Immunity
to initial-
ization
means the
handover
can be
achieved
without the
initializa-
tion
effect

Handover
may fail in
large data
size
because of
long com-
putation
time

Capacity
uniliza-
tion

Supervised
learning

Neural
Networks
[99]

Bandwidth
signal, servers
status signals

High
accuracy
means
handover
may be
completed
success-
fully

Complicated
which
means
handover
may be
failed if the
parameter
setting is
wrong

Spectral
efficiency

Reinforcement
learning

Fuzzy-logic
based
RL [97]

SINR Online
learning
means
handover
may be
achieved
based on
real-time
measure-
ments

Complicated
means
handover
may be
failed if the
parameter
setting is
wrong

Coverage
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age. In case of cell outage in LTE networks, the data can also be collected
from the serving eNodeB or neighbor cells. However, the outage in WiFi
can only occur at site level. If the AP is faulty, it is impossible to col-
lect measurement data by the serving AP and even neighbor APs without
neighborhood management.

2.4.4 Summary of SON in WiFi Handover

This section gives a summary of the needs and challenges for SON in WiFi
networks.

The scanning delay in WiFi handover accounts for more than 90% of
the overall handover delay [26]. One reason for this is that there is no
neighborhood management in WiFi. The STAs have to scan all the chan-
nels to search for the candidate APs. Therefore, a self-configuration ap-
proach to establish the neighborhood of APs by relationship in a neighbor
list is necessary. With the neighbor list, the number of channels scanned
will be reduced and the handover decision time may be adjusted based on
the neighbor information. Thus, the total handover performance will be
improved by reducing the handover delay.

Moreover, after the self-configuring neighbor list, the scanning para-
meters also need to be automatically optimized. The scanning parameters
of MinChannelTime, MaxChannelTime, probe request interval and channel
switching time are not defined in the IEEE 802.11 standard. They are de-
fined in APs provided by different vendors. These fixed values cannot
adapt to dynamic network requirements. Therefore, the self-optimizing
algorithm is necessary to adapt to the network requirements.

Furthermore, fault management in WiFi networks is solved by human
intervention. When the fault is diagnosed, it is recovered by human be-
ing manually reset or replaced. It costs a long handling time to main-
tain the network. Without the timely recovery or compensation for the
faulty elements, it leads to intermittent or no connectivity between APs
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and STAs. Therefore, an intelligent self-healing approach is needed for
network maintenance in WiFi networks.

However, cellular and WiFi systems have fundamental differences in
the media access layer protocols. The SON functions of the cellular system
cannot apply to WiFi system directly.

The application of SON functionality is not straightforward due to the
followings:

• The WiFi networks lack coordination among APs. The coordination
may be done through a centralized controller for a specific deploy-
ment.

• In WiFi networks, there is no neighborhood management to provide
neighbor APs information.

• APs provided by different vendors may support different manage-
ment protocols and configuration of network parameters.

• The initial radio configuration is not available from an operators
management system. This is usually implemented using pre-defined
vendor-specific settings that may include radio enabling (2.4 GHz
vs. 5 GHz band), channel selection, modulation and coding scheme
(MCS) index, Tx power [41].

• Network selection is driven by an associated STA’s communication
manager without any influence by the AP.

The above differences pose significant challenges that need to be ac-
counted for implementing SON capabilities in WiFi networks.

2.5 Performance Evaluation

In wireless networks, there are three fundamental methods to evaluate
network performance and explore new technologies: mathematical analy-
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sis, simulation and real measurement. These three methods are discussed
in the following subsections.

2.5.1 Mathematical Analysis

Mathematical analysis provides a generic way to get performance results
in various conditions through a mathematical formulation. These condi-
tions are also perfectly controlled so that mathematical analysis provides
a clear relationship between inputs and outputs.

Chang et al. [101] used a Fuzzy-Logic model to reduce the number of
active scan process for every channel. They produce a FitAP factor as
a handover decision parameter. While the handover occurs, the Fuzzy-
Logic mechanism could choose a suitable channel according to the FitAP
factor and only one active scan process is performed. The handover de-
lay is reduced by approximately 70%. In [29], a multi-objective optimiza-
tion algorithm using the Cultural Algorithm (CA) to optimize scanning
timers including MinChannelT ime and maxChannelT ime [29]. The re-
sults show that the adaptive scanning strategies better manage the per-
formance trade-off and allow different application profiles to match with
specific scanning latency. Many machine learning models [57–60,62] were
used to obtain the optimal solutions when the output of the mathematical
models could not be easily obtained in dynamic network environments.

Although these mathematical analyses optimized handover algorithm
to reduce handover delay and increase successful handover rate, they are
based on many assumptions. The results may not be correct with respect
to what may happen in the real world. The accuracy of the analysis has to
be considered through the validity of these assumptions. The mathemati-
cal models can be validated either by simulation or testbed or a combina-
tion of both.
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2.5.2 Simulation

Simulation is used when the output of mathematical model cannot be de-
rived because of the large size of a model or dynamic network environ-
ments. Simulation tools need to be investigated and selected according to
different research issues. Simulation results also need to be validated to
ensure the accuracy of simulation models.

2.5.2.1 Selecting simulation tools

There are many popular simulation tools available that allow researchers
to control the network environment and parameters. Simulation tools
need to be investigated and selected according to different research issues.

The comparison of popular simulation tools used in the wireless net-
work is given in Table 2.9. Some simulation tools are open-source such as
NS-2, NS-3. The open-source network simulator has a free license. This
implies that everyone can freely study the source code, modify it and dis-
tribute it. The commercial simulator needs to buy a license at a high cost,
and it is not allowed to debug it. Some Commercial simulators are free for
academic research, including OPNET, OMNET++ and MATLAB. In this
research, new handover algorithms need to be implemented by coding
and debugging. Therefore, open-source or academic free simulators are
more suitable for this research.

Mehta et. al [102] studied the usage of simulation tools in wireless
networks. Their study shows that NS2 is the most popular tool for MAC
(17%) and routing (20%) experiments across a variety of wireless network
types (ad-hoc, mesh, sensor and cognitive radio) [103]. Other simulation
tools used in the research community for WiFi simulation include Qualnet
and Omnet++, which are also less popular than NS-2. MATLAB is only a
generic simulator that is not designed for wireless networks [104].

However, NS-2 is very slow with a long simulation run and consumes
high memory usage [105–107]. This slow and high consuming memory
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Table 2.9: Summary of simulation tools used in wireless networks

Simulators License Wireless
network
support

Language Energy
model
support

GUI Limitations

NS-2 Open
source

WLANs,
Ad Hoc

C++/
OTcl

Yes Poor High
computation
time, high
memory
consumption,
long time to
learn

NS-3 Open
source

WLANs,
Ad Hoc,
Cellular,
WSN

C++/
Python

Yes Good Long time to
learn

OPNET Academic
free

WLANs,
Ad Hoc,
Cellular

C/C++ No Excellent The number of
nodes
supported is
limited, high
memory
consuming,
insufficient
tutorials

OMNET++ Academic
free

WLANs,
Ad Hoc,
Cellular

C++ No Good Slow when
simulation
time is long,
high memory
consumption

QUALNET Commercial WLANs,
Ad Hoc,
cellular

C/C++ Yes Excellent The number of
nodes
supported is
limited,
difficult
installation on
Linux

NETSIM Commercial WLANs,
Ad Hoc,
Cellular,
WSN

C Yes Excellent Only support
Windows
platform,
energy
management
only support
in IoT module

MATLAB Academic
free

WLANs,
LTE

C/C++/
Java

No Excellent Slow when
simulation
time is long,
poor
programming
practices
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simulator is not suitable when the number of nodes increases in a dense
network environment or large network topologies scenarios.

NS-3 was intended to replace the popular NS-2 simulator and intro-
duces many features over its predecessor in order to become the leading
network simulator [108]). One of the fundamental goals in the NS-3 de-
sign was to improve the realism of the models for highly accurate and
scalable network simulation technologies [109]. Thus, NS3 is very easy to
build realistic scenarios. The simulation performance of NS-2 and NS-3
is also compared in [110]. The result shows that NS-3 outperforms NS-
2 by having far less memory usage and less execution time. Compared
to other simulators, NS3 consumes the lowest amount of memory as the
number of nodes increases [105–107]. Moreover, the energy model sup-
ported by NS-3 is very useful for the self-healing function to detect faulty
APs. Therefore, NS-3 is the most suitable simulation tool for this research.

2.5.2.2 Wireless Channel Model in NS-3

Wireless network simulators have their limitations. Due to the abstracted
physical layer modelling, simulators are often concerned about not pro-
viding reliable results compared with real measurement [111]. The wire-
less channel in NS-3 tries to model the real functionality of the standard
802.11.

In NS-3, the wireless channel is modeled by the class YansWifiChan-
nel which works together with WifiPhy class. WifiChannel includes the
helper class YansWifiChannelHelper [108]. Each channel is configured
by two models including PropagationLossModel and PropagationDelay-
Model [112].

There are fifteen PropagationLossModel in NS-3. These models calcu-
late the reception power considering the transmission power and position
of transmitting and receiving antennas [112, 113].

1. Cost231PropagationLossModel: This model applies to urban areas
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and evaluates path loss in suburban or rural open areas. The fre-
quency extends to the range of 1500 MHz to 2000 MHz [108, 112].

2. FixedRssLossModel: This model sets a constant received power level
independent of the transmit power. If this loss model is chained to
other loss models, it should be the first model to avoid excluding the
losses calculated by the other included models [112, 113].

3. FriisPropagationLossModel: This model is valid only for propaga-
tion in free space within the so-called far field region. However, this
model in such conditions shall not be considered realistic [108, 112].

4. ItuR1411LosPropagationLossModel: This model is designed for Line-
of-Sight (LoS) short range outdoor communication in the frequency
range 300 MHz to 100 GHz [108, 112]. The model expresses its loss
based on the sum of: loss of free space, the diffraction loss of the roof
to the street and the reduction due to the multiple diffraction screens
of buildings [113].

5. ItuR1411NlosOverRooftopPropagationLossModel: This model is de-
signed for Non-Line-of-Sight (LoS) short range outdoor communica-
tion over rooftops in the frequency range 300 MHz to 100 GHz. This
model includes several scenario-dependent parameters, such as av-
erage street width and orientation. It is advised to set the values of
these parameters manually (using the ns-3 attribute system) accord-
ing to the desired scenario [112].

6. JakesPropagationLossModel: This model is a deterministic model. It
is used in cellular mobile communications [113].

7. Kun2600MhzPropagationLossModel: This model is for urban areas
at a frequency of 2600 MHz [108, 112, 113].

8. LogDistancePropagationLossModel: This model implements a log
distance propagation model. The reception power is calculated with



2.5. PERFORMANCE EVALUATION 47

the logarithmic distance model [108, 112, 113].

9. MatrixPropagationLossModel: The propagation loss of this model
is fixed for each pair of nodes and does not depend on their actual
positions. This model should be useful for synthetic tests [108, 112,
113].

10. NakagamiPropagationLossModel: This model implements the fast
fading Nakagami model which explains the variations in signal strength
due to multipath fading. The model does not account for the path
loss due to the distance travelled by the signal. In a simulation, it is
recommended to using it in combination with other models that take
into account the path loss [108, 112, 113].

11. OkumuraHataPropagationLossModel: This model is used to model
open area path loss for long distance (i.e., >1Km). The original Oku-
mura Hata model is designed for frequencies of 150 MHz to 1500
MHz. Almost all models are designed for urban areas. Therefore,
the model cannot cover all scenarios in all frequencies [108,112,113].

12. RandomPropagationLossModel: This model considers a loss of ran-
dom propagation, and it changes each time the model is called. As
a consequence, all the packets (even those between two fixed nodes)
experience a random propagation loss [108, 112, 113].

13. RangePropagationLossModel: The propagation loss of this model
depends only on the distance in meters (range) between the trans-
mitter and the receiver. The single MaxRange attribute determines
the path loss. The receivers in or inside the MaxRange meters receive
the transmission at the transmission power level. Receivers beyond
MaxRange receive at power -1000 dBm (effectively zero) [108, 112,
113].

14. ThreeLogDistancePropagationLossModel: This model implements a
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log distance path loss propagation model with three distance fields.
This model is the same as LogDistancePropagationLossModel except
that it has three distance fields: near, middle and far with different
exponents [108, 112, 113].

15. TwoRayGroundPropagationLossModel: This model implements a
loss propagation model with a direct ray in line of sight and a sec-
ond one reflected to earth. This model does not give good results for
short distances due to the oscillations caused by the constructive and
destructive combination of the two rays [112, 113].

In NS-3, PropagationDelayModels are implemented in two models [112]:

1. RandomPropagationDelayModel: The propagation delay of this model
is completely random, and changes every time the model is called.
All packages, even those that are sent between two fixed nodes, ex-
perience a random delay.

2. ConstantSpeedPropagationDelayModel: In this model, the signal trav-
els with constant speed, equal to the speed of light. The delay is cal-
culated according to the positions of the transmitter and the receiver.
The Euclidean distance between the antennas Tx and Rx is used.

In NS-3, the default 802.11 channel models are LogDistancePropaga-
tionLossModel and ConstantSpeedPropagationDelayModel [112].

The LogDistancePropagationLossModel is a very popular model used
in wireless networks and can be used to predict the propagation loss for a
wide range of environments, including free space, urban, inside buildings
and obstacles in buildings [114, 115]. Moreover, LogDistancePropagation-
LossModel is an empirical model that is easier to implement, require less
computational effort, and are less sensitive to the environment [114, 116].
Compared with RandomPropagationDelayModel, the order of the trans-
mitted packets of ConstantSpeedPropagationDelayModel is maintained
and needs less computation time. Therefore, the default models are cho-
sen in this research.
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2.5.2.3 Validation of Simulation Results

The credibility of the simulation results may be questioned if the simu-
lation parameters were not correctly configured. Therefore, simulation
verification is important to test the reliability of the simulation results.

The NS-3 simulation model can be validated by comparing simulation
results with conventional handover methods and other approaches in the
literature using the same parameters.

The simulation model also can be validated using different values of
parameters by multiple runs. Each run uses a different random seed which
is used for traffic generation. The average of each performance metric
is taken after the total runs. The performance metric includes average
handover delay, average packet loss rate and average throughput. The
averages shown are reported with a confidence interval of 95.00% under
the assumption that the averages are normally distributed. This statisti-
cal methodology in reporting the results was designed consulting good
practices on wireless simulation [103, 117].

2.5.3 Real Measurement

Testbeds are used to do the real measurement on real hardware. Since
the experiment uses real equipment, the results obtained are practically
accurate.

Velayos et al. [27] measured handover time for different 802.11b cards
and concluded that different STAs showed different performance. The
measurement results showed that the scanning delay reduced by 20% when
the scanning timers minChannelT ime and maxChannelT ime were set to
1ms and 10.24ms respectively. In [3], geometrical mathematical models are
used to analyse the neighbor APs range to support the handover process
by selecting an appropriate AP. After analysing the theory of neighbour
graph algorithms, the author measures probe delay based on the neigh-
bor graph scheme and the traditional method in a campus building. The
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neighbour graph algorithm was verified by results of the experiment which
shows better performance than previous scanning schemes.

Altough the real measurement provides realistic results, it is very dif-
ficult to control the random issues caused by hardware, temperature, en-
vironment and solar radiation. In contrast, simulation can control the ran-
dom behaviour of the system’s components and environment conditions.

As the actual equipment may be expensive, only small-scale applica-
tions with a smaller number of nodes are involved. For economical ex-
periments, a simulation is better than testbed because simulation can be
carried out without the real hardware. Moreover, simulation is much eas-
ier to simulate a dense network with a large number of nodes and large
network topologies.

2.5.4 Summary of Performance Evaluation

The evaluation of SON functionalities of WiFi networks can be done through
mathematical analysis, simulation and real measurement. Simulation and
testbed can be used to verify the accuracy of mathematical models based
on some theory assumptions. However, it is difficult and expensive to set
up experiments using testbed with a large number of nodes and multiple
network topologies on campus. Compared with testbed, network scenar-
ios are easily constructed and modified by simulation. More importantly,
simulations can model large scale network topologies that could be very
expensive [111]. Therefore, mathematical analysis and simulation are cho-
sen for this research to evaluate the network performance.

2.6 Summary

This chapter reviewed the handover issues in WiFi networks and recent
solutions solving the handover issues. SON functionalities in cellular net-
works have been introduced. Motivated by SON in cellular networks,
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SON approaches will propose to improve handover performance in WiFi
networks. However, there are many challenges to implement SON func-
tionalities in WiFi networks. The challenges was discussed in this chapter.
In the following chapters 3, 4 and 5, these challenges will be considered
to propose a SON approach to improve handover performance in WiFi
networks. The methods used for evaluating handover performance are
discussed in this chapter.



Chapter 3

Self-configuring Neighbor List

As discussed in Chapter 2, the scanning delay is the dominant component
which accounts for more than 90% of the overall handover delay [26]. In
this chapter, a self-configuring neighbor list mechanism is proposed to re-
duce the scanning delay in WiFi networks. The neighbor list is a data
structure that tracks the neighboring APs suitability for accommodating a
handover.

The optimized neighbor list reduces the number of scanned channels,
the number of probed access points and the waiting time of probe re-
sponses of non-adjacent APs. Therefore, this optimization reduces the to-
tal handover delay and improves the handover success rate and Quality
of Service (QoS) experienced by users over the WiFi network.

The neighbor list reduces the number of channels scanned by a STA
and also provides the neighborhood relationship for self-healing discussed
in Chapter 5 to compensate for the network performance degraded by
faulty elements.

In the following sections, the proposed neighbor list mechanism is first
introduced. Then, the details of the algorithms including Quick-sort and
machine learning algorithms that are used to update the neighbor list are
presented. Finally, the handover performance is evaluated by using these
algorithms in different network scenarios.

52
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3.1 Proposed Neighbor List Mechanism

As discussed in section 2.3, the STA has to scan all channels in order to
find the best candidate AP in traditional 802.11 networks. This process
involves too much unwanted probe waiting time of probe responses. This
is because it is unnecessary to scan an AP that is not a neighbor of the
serving AP. Without the neighbor AP’s information, each STA associated
with the same AP has to process the whole scanning phase to scan all
channels when the handover is needed. In this case, if there is a neighbor
list of each AP, the STA only needs to scan the channels of neighbor APs.
Thus, the total scanning time can be reduced by the reduction of APs.

Although the neighbor report defined in IEEE 802.11k-2008 provides
neighbor information, it does not define the mechanism for APs to re-
trieve the neighbor information. The neighbor information is generated
on-demand and is not maintained in a controller. Also, the neighbor APs
on the neighbor report are based on the STAs moving path. Thus, only
the neighbor APs on the moving path of STAs can be heard so there are
potential neighbor APs that cannot be provided by neighbor report. The
neighbor information based on the neighbor report cannot be used in di-
verse network topologies.

In this proposed Neighbor List Mechanism (NLM), an up-to-date neigh-
bor list is used to reduce the scanning delay. The neighbor list is stored
in an AP Controller (APC) as shown in Figure 3.1. Each AP has its own
neighbor list. The initial neighbor list can be obtained by an 802.11-based
full scan and the 802.11k neighbor reports to get the neighbor AP infor-
mation including BSSID, channel number and so on. The full scan and the
802.11k neighbor reports are used together to make sure all the available
neighbor APs can be gathered by the first scan. After getting the initial
neighbor list, the STA sends a probe request to the APC for the next scan.
Once the STA starts a new scan, the APs on the neighbor list will be sorted
based on the current radio and network environment. The highest pri-
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STA ID Serving AP Neighbor APs BSSID Chanel number

AP2 00:00:00:00:00:1a 6

AP3 00:00:00:00:00:11 11

AP4 00:00:00:00:00:13 1

… … … … …

AP1 00:00:00:00:00:15 6

AP5 00:00:00:00:00:17 11

STA-1

STA-N

AP1

AP3

STA

AP4

AP1

AP5

AP3AP2

AP6

Ethernet

Switch Switch Switch

AP Controller

Figure 3.1: NLM Architecture using an AP controller (APC) containing
neighbor list information

ority AP on the neighbor list is considered as the best candidate AP for
handover. With the reduction of probing APs and the number of channels
scanned, the total scanning delay will be reduced.

The IEEE 802.11k-2008 standard provides mechanisms for gathering
data including Received Signal Strength Indicator (RSSI), Signal to Noise
Ratio (SNR), noise histogram request/report and BSS average delay. These
data gathered on radio link performance and on the radio environment are
called radio measurement reports. The capabilities of the radio measure-
ment reports can be leveraged and retrieved as following:

1. Signal strength: RSSI or SNR. RSSI is the received signal strength
reported from the STA’s WiFi module. It is not the same as transmit
power from the AP. Therefore, RSSI shows how well the STAs can
hear a signal from the AP. Hearing the signal is important and useful
for determining if the STAs has a link to the AP.
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SNR is the Signal-to-Noise Ratio. A high SNR suggests that the in-
tended communication signal is well differentiated from the interfer-
ence in the vicinity.

2. Load: Channel load, traffic load. The channel load and traffic load
can help resolve load balancing. This resolution will help optimize
the resources used by distributing loads fairly across different APs
and reduce the likelihood of overloading any single AP.

3. Delay: BSS access delay, transmit delay. These two parameters af-
fect the handover delay and data disruption. Reducing these delays
can maintain a good wireless connection and maintain ongoing data
session during handover. According to IEEE 802.11k standard, when
BSS Average Access Delay Elements are set to 1, the STA can measure
and report BSS Average Access Delay information.

The value of transmit delay can be obtained from the Transmit stream
measurement report.

4. STA QoS: the throughput, error rates, packets loss rates and trans-
mission delay are monitored to measure the overall QoS of the net-
work.

5. Channel number: the neighbor report provides the channel number
of each neigbhour AP.

After retrieving these values from the measurement reports, the APC
generates an initial neighbor list. However, this initial list does not con-
sider the packet loss, throughput performance, load balance and traffic
demand. This is because the initial neighbor list only obtains the neigh-
bor AP information based on RSSI. Thus, in NLM the neighbor list will be
further updated periodically with SNR, load and delay taken into account
when STAs start a new scan.

As illustrated in Figure 3.2 the STA does an initial scan to get each
neighbor AP’s information during the time T1 and sends it to the APC.
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Figure 3.2: NLM Handover process using neighbor list and APC to reduce
scanning delay
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Figure 3.3: Full flowchart for a STA to perform handover by using neigh-
bor list and APC



58 CHAPTER 3. SELF-CONFIGURING NEIGHBOR LIST

For the following scan, each STA requests a neighbor list from the APC
during the time T2 and then the APs are sorted on the neighbor list based
on the real-time radio measurement. After the STA obtains the updated
neighbor list, the first AP on the neighbor list is chosen as the best can-
didate AP. The STA performs handover directly to the first AP without
scanning more APs. After re-authentication and re-association with the
new AP, the MAC layer handover process is completed. The completed
NLM handover process is illustrated in Figure 3.3.

With the list, the scanning delay can be reduced and also the handover
success rate will be increased. Moreover, the highest priority AP will be
selected as the target AP for handover. The contribution of this approach
is that it not only reduces the scanning delay, but also optimizes the han-
dover performance. This is because the list generation is based on the
mobility QoS and traffic demand, not only signal strength.

3.2 NLM Algorithms

The initial neighbor list is the input to the NLM updating algorithm and
the output is a set of updated neighbors. The NLM problem can be for-
mulated as follows: Let Pi(n) denote the set of neighbors of the i-th AP
whereby each neighbor is indexed by i such that 1 ≤ i ≤ n and i ∈ Z+.
Using a set notation the neighbor set is expressed as:

Pi(n) = {ni,1, ..ni,k, ...ni,n}, ni,k ∈ N, (3.1)

where ni,k denotes the neighbor of the i-th AP with index k and N is natural
numbers {0, 1, 2, ...}. The set of the neighbor index will be updated and
sorted as a natural sorted set [118] (denoted by P o

i (n)). The natural sorted
neighbor list is sorted ascend based on the network metrics retrieved from
measurement reports once a STA initiates a new scan. The updated algo-
rithms of sorting neighbors can be quick-sort or machine learning algo-
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rithms, which are introduced in section 3.2.1 and 3.2.2. By updating the
neighbor APs on the neighbor list, the neighbor APs are sorted according
to real-time network conditions. The highest priority AP is considered as
the best candidate AP for handover. The scanning delay is reduced be-
cause the STA does not need to scan all the channels to find the best AP.
Thus, the total handover delay is reduced because the scanning delay is
reduced.

3.2.1 Quick-sort

Algorithm 1 is the main function that defines the data structure to hold
the i-th AP’s information (lines 5 - 10, Algorithm 1), it also initializes three
arrays (line 4, Algorithm 1) to hold RSSI, delay and packet loss measure-
ments for each neighboring AP. The neighbor list updating work is in-
voked in line 19 of Algorithm 1 whereby a call to Algorithm 2 is made.

According to 802.11k-2008 standard, the neighbor APs can be obtained
by the neighbor report. However, the number of neighbor APs is not de-
fined in 802.11k-2008. As the deployment of AP depends on different
network requirements such as AP coverage range and AP deployment
cost [119], the size of neighbor list also depends on the AP deployment.
In order to make sure the target AP for handover can be found on the
neighbor list, the maximum size of the neighbor list is defined as 32 that is
the same as specified by 3GPP in cellular networks [120] (lines 11, Algo-
rithm 1).

In lines 6 to 8 of Algorithm 2, a natural sorting of the neighbors is
achieved by a quick sort based on RSSI, packet delay and packet loss. Af-
ter sorting, the position of each AP in the neighbor list is determined by
the variable sum by line 9 in Algorithm 2, then AP priorities are sorted
again based on position in line 10. Algorithms 3 and 4 show the partition
and quicksort algorithms for generating natural sorting.
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Algorithm 1 Update neighbor list main function

1: global variables
2: global array sum;
3: end global variables
4: local array a, b, c;
5: struct AP
6: {
7: double rssi;
8: double delay;
9: double loss;

10: };
11: NeighbourSize = 32 ;
12: struct AP ∗arr;
13: for i = 1; i < NeighbourSize; i+ + do
14: sum[i] = 0;
15: a[i] = arr[i].rssi;
16: b[i] = arr[i].delay;
17: c[i] = arr[i].loss;
18: end for
19: UPDATELIST(a, b, c, NeighbourSize);

Algorithm 2 Update AP priorities on neighbor list for a STA

1: function VOID UPDATELIST(array a, b, c, int n)
2: mid = bn/2c;
3: pivotrssi = a[0]rssi;
4: pivotdelay = b[0]delay;
5: pivotloss = c[0]loss;
6: QUICKSORT(a, 0, n− 1, pivotrssi);
7: QUICKSORT(b, 0, n− 1, pivotdelay);
8: QUICKSORT(c, 0, n− 1, pivotloss);
9: POSITIONSUM(a, b, c, n);

10: QUICKSORT(sum, 0, n− 1, a[mid]);
11: end function
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Algorithm 3 Partition the array of a, b , c and sum

1: function INT PARTITION(array N , int left, int right, int pivot)
2: m = (left+ right)/2;
3: swap(N [m], N [left]);
4: pivot = N [left];
5: i = left+ 1; j = right;
6: while (i≤j)
7: while (N [j] > pivot)
8: j = j − 1;
9: while (i ≤ j and N [i] ≤ pivot)

10: i = i+ 1;
11: if i < j
12: swap(N [i], N [j]);
13: i = i+ 1;
14: j = j − 1;
15: swap(N [i− 1], N [left]);
16: return i− 1
17: end function

Algorithm 4 Quicksort algorithm for neighbor list

1: function VOID QUICKSORT(array N , int left, int right, int pivot)
2: if (left < right) then
3: q = PARTITION(N, left, right, pivot);
4: QUICKSORT(N, left, q − 1, pivot);
5: QUICKSORT( N, q + 1, right, pivot);
6: end if
7: end function

Algorithm 5 Calculate AP position sum

1: function VOID POSITIONSUM(array A,B,C, int n)
2: i = 0
3: while (i ≤ n)
4: sum[i] = 1/A[i] + 1/B[i] + 1/C[i];
5: i = i+ 1;
6: end function
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3.2.2 Machine Learning Based NLM

In the quick-sort algorithms, the APs on the neighbor list are sorted based
on the position of each AP’s parameters such as RSSI, delay or packet loss.
With the quick-sort algorithms, the five algorithms (Algorithm 1 - 5 ) have
to be executed whenever a STA requests a neighbor list. This cannot sat-
isfy the dynamic network requirements. Therefore, an online algorithm
that can sort the neighbor list immediately when a STA requests a neigh-
bor list is necessary, because the faster the neighbor list is updated, the less
scanning delay there is. By reducing the scanning delay, the data disrup-
tion time is reduced. The overall network performance will be improved
by using online updating algorithms.

Learning to rank is a machine learning based ranking approach. It uses
machine learning techniques to train a ranking model and uses the model
online to get the ranking results for real-time problems. Therefore, learn-
ing to rank is a supervised learning task.

3.2.2.1 Supervised Learning Architecture

The proposed supervised learning is processed in APC. Once a STA ini-
tiates a handover process, the APC will send the first priority AP to the
STA based on the supervised learning algorithms. In this thesis, the su-
pervised learning algorithms used are linear regression, support vector
regression(SVR)and artificial neural networks (ANN). The details of these
algorithms will be introduced in sections 3.2.2.2, 3.2.2.3, 3.2.2.4.

As can be seen in Figure 3.4, the supervised learning process includes
two phases that are the offline phase and the online phase. The offline
phase aims to build up an initial learning model. This initial model is
used for initialization, especially when the STA initiates a handover be-
fore the initial model is updated in the online phase. The initial model
is trained based on the dataset collected by various network scenarios to
ensure model accuracy. How to collect the offline data and normalize the



3.2. NLM ALGORITHMS 63

Offline 
phase

Online 
phase

Data 
collection

Training the supervised 
learning model

Getting the initial 
model

Normalizing the 
dataset

Updating the dataset every 10 
TTI (100ms)/STA initiates a new 

scan

Updating training 
model

STA initiating 
handover 
process

 Collecting 
measurement 

data

updating neighbor list and 
sending the AP with the 
highest priority to STA

Predicting the AP 
scores of neighbor 

APs on neighbor list

20% dataset

Figure 3.4: Supervised learning architecture including offline and online
phases in APC

dataset is described in section 3.2.2.1.1 and 3.2.2.1.2 respectively. In order
to obtain the initial model, the model has to be trained using the collected
dataset and the parameters of the model are tuned to increase the accuracy
of the model. How to validate and select the model is explained in section
3.2.2.1.3. After the model is selected, it is evaluated using the test dataset
that is 20% of the collected dataset. The regression metrics presented in
section 3.2.2.1.4 are used to evaluate the training model.

However, the initial learning model cannot meet the dynamic network
requirements. Thus, online training is used to update the initial model
based on real measurement data in the second phase. The real measure-
ment data is used as input to replace part of the old dataset that is 20%
of the offline phase dataset. The online dataset is updated every 10 TTI
(100ms) or when a STA initiates a new scan. Then, the training model
will be updated based on the new incoming measurement data. Finally,
the neighbor list is sorted by AP scores, which are predicted by the new
training model. The AP with the minimum AP score is chosen as the best
candidate AP because the AP score label is ascendingly sorted in the train-
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ing dataset(see section 3.2.2.1.1). The STA performs handover to the se-
lected best candidate AP without scanning all the channels. The handover
delay is reduced because the scanning delay is reduced. The handover
performance using learning based NLM is evaluated by comparing with
the 802.11 standard in section 3.3.4.

3.2.2.1.1 Offline Data Collection In order to obtain the initial learning
model, a large set of training data is needed to train the model. The sim-
ulation setup is the same as section 3.3.3. The measurement data of four
different network scenarios is collected. These four network scenarios in-
clude changing the speed of STAs, changing the number of APs, changing
the number of STAs and changing the network topologies. Each scenario
is run 50 times to collect the performance samples. Each sample is associ-
ated with one neighbor list of a STA. Table 3.1 shows the features of the
dataset samples.

In the dataset, RSSI, SNR, packet delay, packet loss, data rate, average
throughput and AP load are considered as the x vector of each neighbor
AP. The AP score denoted by y is defined in Equat.14ion 3.7. The AP score
is labeled based on the incoming handover (inHO) rate of each AP on the
neighbor list because the inHO indicates the AP performance status. This
is the statistical method used in cellular networks to monitor the cell sta-
tus [121]. The inHO for each AP can be calculated using re-association
response messages. The AP score is sorted ascendingly, which means the
first AP on the neighbor list is the best.

After collecting and labeling all the data in the dataset. The dataset is
shuffled randomly. Then, the dataset is divided into training and test sets
with an 80-20 split. The training dataset is used for learning and training
the model. The test dataset is used for testing the trained model.

3.2.2.1.2 Normalizing the Dataset As the network parameters are ex-
pressed with different units, the dataset used to predict and compare the
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Table 3.1: Training database for machine learning

Measurements Description Unit
TTI Transmission Time Interval 10ms
AP Identification (APID) BSSID which is AP MAC address Integer
RSSI Received Signal Strength Indicator dBm
SNR Signal to Noise Ratio dB
Packet delay The time of data takes to reach the AP s
Packet loss rate Ratio of packets loss/total packet sent percentage
Data rate Speed of data transferred bit/s
Average throughput Average data packet from AP to STA per second Mbps
AP load Number of STAs connected Integer
AP score The score caculated by Equation 3.7, 3.27, 3.30 float

scores obtained on different scales will be normalized first. The benefit of
normalizing data is that it eliminates the units of the measurement data.
Another reason why normalizing is applied is that gradient descent con-
verges much faster with normalizing than without it. The min-max nor-
malization, is the simplest method and consists in rescaling the range of
parameters to scale the range in [0, 1] or [-1, 1]. The general formula is
given as:

x
′
=

x−min(x)

max(x)−min(x)
(3.2)

where x is the value of the measurement data, and x
′ is the normalized

value of the measurement data.

3.2.2.1.3 Model Selection and Validation

• Model selection

Model selection is a process to choose different machine learning
models such as linear regression, SVR or ANN, or different hyper-
parameters or features for the same machine learning model such
as deciding between different layers of neural networks, or different
value of parameter γ in SVR.

A successful model has the ability to be extended and generalized to
unseen data. If a model has been trained too well on training data, it
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will be unable to generalize and it may make inaccurate predictions
when given new data. This is called over-fitting. For example, in Fig-
ure 3.4, if the initial model is over-fitted, the prediction of AP score
is not correct when new measurement data comes into the dataset.
Using this wrong prediction to update neighbor list can cause han-
dover failure. The inverse is also true. Under-fitting happens when a
model has not been trained enough on the data. In the case of under-
fitting, it also makes the model is not capable of making accurate
predictions, even with the training data. Thus, the data collection in
the offline phase in Figure 3.4 has to collect data that meet different
network scenarios.

In this thesis, learning curves are used to estimate if a model is over-
fitting or under-fitting. They show how the training and validation
errors change with respect to the number of training examples used
while training a machine learning model. By analysing these curves,
a balanced model without over-fitting and under-fitting problems
can be selected to predict the AP score of neighbor APs. The loss
errors converge to small values as the training sample size increases
in the balanced model such as the SVR model in Figure 3.7c. If the
loss errors fail to decrease no matter how many training samples are
in the training dataset, the model is suffering under-fitting such in
Figure 3.7d. If a model has an over-fitting problem, increasing the
training sample size decreases the training error but it fails to de-
crease the validation error, such as in Figure 3.7b.

• Model validation

Cross-validation (CV) is primarily used in applied machine learning
to estimate the skill of a machine learning model on unseen data. It
determines if a model is over-fitting or under-fitting. It is also used
for evaluating different hyperparameters for machine learning algo-
rithms. For example, in the case of training SVR, a range of γ is es-
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timated and the value with the minimal validation error is selected.
Therefore, CV is used effectively for model selection.

When the training set is split into k smaller sets, this approach is
called k-fold CV. Each of the k ‘’folds” follows the procedures as be-
low:

– A model is trained using k - 1of the folds as training data;

– the resulting model is validated on the remaining part of the
data (i.e., it is used as a test set to compute a performance mea-
sure such as accuracy).

The final accuracy is measured by the average of the values com-
puted in a loop. This method is suitable for a small dataset because
the computation time is large to calculate k loops for a large dataset.

3.2.2.1.4 Regression Metrics The following regression metrics are used
to evaluate the selected training model. The test dataset is 20% of the
collecting dataset in the offline phase.

• Explained variation regression score (EV): If ŷ is the predicted tar-
get output, y is the corresponding (correct) target output, and has
variance, the square of the standard deviation, then the explained
variance is estimated as follow:

EV(y, ŷ) = 1− V ar{y − ŷ}
V ar{y}

. (3.3)

The best possible score is 1.0, the lower the EV values are, the worse
the model is.

• Mean absolute error (MAE): In statistics, MAE is a measure of the
difference between two continuous variables. If ŷ is the predicted
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value of the i-th sample, and yi is the corresponding true value, then
the MAE estimated over nsamples is defined as:

MAE(y, ŷ) =
1

nsamples

nsamples−1∑
i=0

|yi − ŷi| . (3.4)

• Mean squared error (MSE): In statistics, the MSE or mean squared
deviation (MSD) of an estimator (or a procedure for estimating an
unobserved quantity) measures the average squared difference error
between the estimated values and what is observed. The MSE is a
measure of the quality of an estimator. It is always non-negative,
and values that are closer to zero are better.

If ŷ is the predicted value of the i-th sample, and yi is the correspond-
ing true value, then the mean squared error (MSE) estimated over
nsamples is defined as

MSE(y, ŷ) =
1

nsamples

nsamples−1∑
i=0

(yi − ŷi)2. (3.5)

• R2 score, the coefficient of determination: In statistics, the coeffi-
cient of determination, denoted R2, is the proportion of the variance
in the dependent variable that is predictable from the independent
variable(s). It provides a measure of how well observed outcomes
are replicated by the model, based on the proportion of total vari-
ation of outcomes explained by the model. The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily
worse). A constant model that always predicts the expected value of
y, disregarding the input features, would get a R2 score of 0.0.

If ŷ is the predicted value of the i-th sample and yi is the correspond-
ing true value, then the score R2 estimated over nsamples is defined as
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R2(y, ŷ) = 1−
∑nsamples−1

i=0 (yi − ŷi)2∑nsamples−1
i=0 (yi − ȳ)2

, (3.6)

where ȳ = 1
nsamples

∑nsamples−1
i=0 yi.

3.2.2.2 Linear Regression Model for Updating Neighbor List

In this section, a linear regression model is introduced to update the APs
on the neighbor list.

First, the dataset that is collected in the offline phase is split into train-
ing dataset and test dataset with an 80-20 split rule. The training dataset
is used to train the linear regression model to fit the model parameters.
The test dataset is used to evaluate the trained model using the regression
metrics explained in section 3.2.2.1.4.

Let APi denote the i-th AP on the neighbor list. Let (xi, yi) denote a
prepared dataset pair. yi denotes the AP score that is a figure of merit
for better handover performance. Let (xi,1, xi,2, ..., xi,k) denote k network
parameters measured by a STA using seven metrics such as RSSI, SNR,
packet delay, packet loss, data rate, average throughput and AP load, and
ŷi denotes the predicted value by using the trained model and xi vector
value on the test dataset. As there is already an AP score label yi from the
test dataset, the predicted ŷi will be compared with the original yi to test
the trained model accuracy by using the regression metrics expressed in
Equation 3.3, 3.4, 3.5, 3.6.

As yi is the dependent variable of the neighbor APi, the relation be-
tween the dependent variable (yi in Equation 3.7) and the independent (or
explanatory) variables (xi,1, xi,2, ..., xi,k) are assumed to be linear. That is:

yi = ω0 + ω1 ∗ xi,1 + ω2 ∗ xi,2,+...+ ωk ∗ xi,k, (3.7)

where yi the coefficients ω0, ω1, ..ωn are the regression coefficients associ-
ated with xi,1, xi,2, ..., xi,k respectively.
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Let i = 1, 2, ..., n, where n is the total number of APs on a neighbor list
in the training data set. The n equations of the linear training model are
obtained as follows:

y1 = ω0 + ω1 ∗ x1,1 + ω2 ∗ x1,2,+...+ ωk ∗ x1,k,

y2 = ω0 + ω1 ∗ x2,1 + ω2 ∗ x2,2,+...+ ωk ∗ x2,k,
...

yn = ω0 + ω1 ∗ xn,1 + ω2 ∗ xn,2,+...+ ωk ∗ xn,k,

(3.8)

These n linear training model equations can be written as:

y1

y2

y3
...

yn


=



1 x11 x12 · · · x1k

1 x21 x22 · · · x2k

1 x31 x32 · · · x3k
...

... . . . ...

1 xn1 xn2 · · · xnk





ω0

ω1

ω2

...

ωn


(3.9)

The aim of this training model is to find the best coefficients ωi which
can successfully predict the value of AP score ŷi with the smallest predict
error. ŷi can be expressed as follows:

ŷi = ω0 + ω1 ∗ xi,1 + ω2 ∗ xi,2,+...+ ωk ∗ xi,k + εi, (3.10)

where xi,1, xi,2, ..., xi,k are the test data set and ŷi is the predicted score of
each AP on a neighbor list. Let εi denote the random prediction error
called the residual which is the difference between the value yi on the test
dataset and the predicted value ŷi by the training model. The training
model can be evaluated by using Equation 3.3, 3.4, 3.5, 3.6.

After training and testing the linear regression model, the trained model
can be continuously learned and updated within a measurement period
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such as 10 Transmission Time Interval (TTI) that is 100ms in online train-
ing. When the new measurement data coming, the AP score will be auto-
matically labeled according to the inHO rate of each AP. The training mode
parameters will be tuned based on the dynamic network requirements.

Let (x
′
i, y

′
i) denote a real time measurement dataset pair. The predicted

new AP score y′
ican be expressed as follows:

y
′

i = ω
′

0 + ω
′

1 ∗ x
′

i,1 + ω
′

2 ∗ x
′

i,2,+...+ ω
′

k ∗ x
′

i,k, (3.11)

where ω′
0, ω

′
1, ..ω

′
n are the updated regression coefficients associated with

new measured network parameters x′
i,1, x

′
i,2, ..., x

′

i,k respectively.
Using this online training model, a neighbor list with updated AP score

can be obtained by a STA starting a new scan. Let y′
t denote the AP score

of the target AP for handover. As the AP score is ascendingly sorted on
the prepared dataset, the AP with the minimum AP score on the neighbor
list is chosen as the best candidate AP. Thus, the target AP score y′

t can be
expressed as follows:

y
′

t = min{y′

1, ..., y
′

i, ..., y
′

n} (3.12)

where {y′
1, ..., y

′
i, ..., y

′
n} is the updated neighbor list for a STA, for example,

in Figure 3.1, the neighbor list of STA-1 is {AP2, AP3, AP4}, AP2 has the
highest priority AP and has the lowest AP score. Thus, AP2 is the best
candidate AP for STA-1 to associate with.

3.2.2.3 Support Vector Regression for Updating Neighbor List

The linear regression has some drawbacks such as overfitting, which may
occur when there are many features. A support vector regression (SVR)
method is proposed to solve the overfitting problem. SVR is a new type of
machine learning method which has good features such as higher fitting
accuracy, fewer parameters, and global optimality. In real-time network
environments, the relationship among network parameters may not be
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linear. SVR has been successfully applied to solve nonlinear systems and
achieved good results [122]. Therefore, SVR model is chosen to compare
with the linear regression model in section 3.2.2.2 to evaluate handover
performance in 802.11 networks.

Let APi denotes the i-th AP on neighbor list. Let (xi, yi) denote a train-
ing data pair. yi denotes the AP score that is a figure of merit for better
handover performance. Let (xi,1, xi,2, ..., xi,k) denote k network parameters
measured by a STA using seven metrics such as RSSI, SNR, packet delay,
packet loss, data rate, average throughput and AP load.

In the real network environment, the relationship between the network
parameter xi and AP score yi is not linear. For nonlinear problems like this,
SVR can be used to map the original data x into a higher-dimensional fea-
ture space by utilizing a nonlinear function φ(x) and then performs linear
regression in the feature space

ŷ = f(x) = ωTφ(x) + b, (3.13)

where ŷ is the predicted AP score by f(x), φ(x) denotes a nonlinear map-
ping function from the input space x to a high-dimensional feature space,
ωT ∈ x is the transpose of weights vector, b ∈ R is the bias.

The goal of ε-SVR [123] is to find a flat function f(x) which can suc-
cessfully predict the AP score ŷ. To ensure the prediction accuracy, SVR
seeks to maximize the margin instead of minimizing the training error be-
cause the expectation is all the predicted values are within an ε-deviation
of f(x). As shown in Figure 3.5, if the predicted ŷ between f(x) − ε and
f(x)+ε, the prediction is considered to have no error. Thus, to find the flat
function Equation 3.13 means to seek the maximum margin, which means
to seek the smallest value of the Euclidean norm ‖ω‖2. Therefore, the SVR
regression problem can be written as a convex optimization problem:

minimize
1

2
‖ω‖2 + λ

n∑
i=1

|yi − f(xi)|ε, (3.14)
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Figure 3.5: Margin between ε-insensitive zone and slack variables outside
of ε-insensitive zone in support vector regression

where λ and ε are empirical parameters and |yi − f(xi)|ε represents the ε-
insensitive loss function [124]. Let n denote the total number of APs on a
neighbor list in the training dataset.

|yi − f(xi)|ε =

0 |yi − f(xi)| < ε

|yi − f(xi)| − ε if |yi − f(xi)| ≥ ε)
, (3.15)

The value of the loss function is 0 when the predicted value of the error is
less than ε; otherwise, a linear penalty is applied.

As the training dataset of the network parameters is unable to be com-
pletely separated without any errors (noise or outliers), positive slack vari-
ables are used to solve this issue and enhance the accuracy of the predicted
value ŷ. The slack variables account for training data that fall outside of
the ε-insensitive zone. A penalty parameterC is used to control how much
error SVR is willing to afford in the training data. The best value of C is
able to be found generally by CV.
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By introducing the positive slack variables ξi and ξ
′
i, the minimization

of Equation 3.14 is equivalent to minimizing the following constrained risk
function:

minimize
1

2
‖ω‖2 + C(

n∑
i=1

(ξi + ξ
′

i)) (3.16)

subject to the constraints

yi − ωTφ(xi) ≤ ε+ ξi,

ωTφ(xi)− yi ≤ ε+ ξ
′

i,

ξi ≥ 0, ξ
′

i ≥ 0, i = 1, ..., n,

(3.17)

where C > 0 and is a real constant that represents a penalty for a predic-
tion error that is greater than ε , and ξi and ξ

′
i represent upper and lower

constraints on the outputs of the model, respectively. For the soft-margin
SVR using slack variables, the prediction error of the AP score, which need
to be minimized, is proportional to C and the value of ξi and ξ

′
i.

To solve above optimization with constraints, the optimization can be
converted to a quadratic programming problem by using Lagrangian mul-
tipliers. Thus, this constrained optimization problem can be expressed as
the following Lagrangian function:

L :=
1

2
‖ω‖2 + C(

n∑
i=1

(ξi + ξ
′

i))−
n∑
i=1

(ηiξi + η
′

iξ
′

i)

−
n∑
i=1

αi(ω
Tφ(xi)− yi + ε+ ξ)

−
n∑
i=1

α
′

i(ω
Tφ(xi)− yi + ε

′
+ ξ

′

i),

(3.18)

where L is the Lagrangian function and ηi, η
′
i, αi, α

′
i are Lagrange multipli-

ers, L follows from the saddle point condition that the partial derivatives
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of L with respect to ω, b, ξi, ξ
′
i have to vanish for optimality:

∂L

∂ω
= ω −

n∑
i=1

(α− αi)φ(xi) = 0,

∂L

∂ξi
= η − (C − αi) = 0,

∂L

∂ξ
′
i

= η − (C − α′

i) = 0.

(3.19)

As the SVR model needs to be trained fast to satisfy the real-time net-
work requirements, the above problem is converted to a dual optimization
which can be solved efficiently. At the same time, dual optimization can
be easily cast as a convex quadratic optimization problem. The most im-
portant thing to use dual optimization is to introduce a kernel function,
which can solve the non-linear neighbor list updating problem. By substi-
tuting Equation 3.18 into 3.19, the convex function in Equation 3.20 can be
obtained.

Q(αi, α
′

i) =
n∑
i=1

yi(αi − α
′

i)− ε(αi + α
′

i)−
1

2

n∑
i=1

n∑
j=1

(αi − α
′

i)(αj − α
′

j)K(xi, xj).

(3.20)

The solution can be obtained by maximizing Equation 3.20 subject to a
new set of the constraints:

n∑
i=1

(αi − α
′

i) = 0,

0 ≤ αi ≤ C, 0 ≤ α
′

i ≤ C, i = 1, ..., n.

(3.21)

With the Lagrange multipliers αi and α′
i , the estimated output of AP score

ŷ can be represented by

ŷ = f(x) =
n∑
i=1

(αi − α
′

i)K(x, xi) + b, (3.22)
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where K(x, xi) is called the kernel function. The kernel function can map
the original training data into a space with a higher dimension to solve
the non-linear neighbor list updating problem. According to the Karush-
Kuhn-Tuckers (KKT) conditions of solving quadratic programming prob-
lem, only some of the coefficients, αi − α

′
i, are not zeros, and the corre-

sponding data vectors are called support vectors.

In SVR, a well selected kernel function determines how well the input
data are mapped. Commonly used kernels include

• Linear kernel
K(xi, xj) = xTi · xj, (3.23)

This linear kernel model can be used to solve a linear problem when
the training data is small even with a large number of feature vectors.
In the offline training, the training data is large to consider many
network scenarios to ensure the accuracy of the model.

However, the relationship between AP score and network parame-
ters is not linear. Thus, the linear kernel is not suitable in neighbor
list mechanism.

• Polynomial kernel

K(xi, xj) = (γ(xTi · xj) + c)d, (3.24)

where d is the degree of the polynomial and γ and c are constants.

The polynomial kernel is usually used when feature vectors are not
negative. It is a non-stationary kernel that is suited for problems
where all the training data is normalized. In the neighbor list train-
ing phase, the data has been normalized through the RSSI value is
negative. Thus, this polynomial kernel will be investigated in sec-
tion 3.2.3.1.
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• Gaussian RBF kernel with the following form:

K(xi, xj) = exp

(
− ‖xi − xj‖

2

σ

)
, (3.25)

where σ is a user-specified parameter and ‖·‖ denotes the distance
between two input vectors.

Gaussian RBF kernel is a general purpose kernel. It can be used
when the training data and the number of feature vectors are both
large. Therefore, the gaussian RBF kernel will be used and evaluated
in the offline training phase for updating the neighbor list because
the dataset and the number of network parameters are large.

• Sigmoid kernel

K(xi, xj) = tanh(γ(xTi · xj) + c), (3.26)

where γ and c are constant.

The sigmoid kernel is often used as an activation function for arti-
ficial neurons in neural networks. The SVR using a Sigmoid ker-
nel function is equivalent to a two-layer, perceptron neural network.
This Sigmoid kernel will be investigated in neural networks to solve
the neighbor list updating problem. The details of neural networks
will be introduced in section 3.2.2.4.

Overall, a good way to choose the kernel function is to use k-fold CV,
described in section 3.2.2.1.3, on the training dataset. Thus, these ker-
nel functions will be evaluated in the model selection section 3.2.3.1 and
a suitable kernel function for the SVR algorithm used for updating the
neighbor list will be selected.

Let (x
′
i, y

′
i) denote a real time measurement data pair. Letm = 1, 2, ..., n,

where n is the total number of APs on a neighbor list in the measurement
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dataset. When the SVR kernel model is selected, the predicted new AP
score y′

i can be expressed as follows:

y
′

i = f(x
′

i) =
n∑

m=1

(αm − α
′

m)K(x
′

i, x
′

m) + b
′
, (3.27)

where α′
m, α

′ are the updated Lagrange multipliers and b
′ is the updated

bias.

Using this SVR online training model, a neighbor list with updated AP
score can be obtained when a STA starts a new scan. Let y′

t denote the
AP score of the target AP for handover. As the AP score is ascendingly
sorted on the prepared dataset, the AP with the minimum AP score on the
neighbor list is chosen as the best candidate AP. Thus, the target AP score
y

′
t can be expressed as follows:

y
′

t = min{y′

1, ..., y
′

i, ..., y
′

n} (3.28)

where {y′
1, ..., y

′
i, ..., y

′
n} is the updated neighbor list for a STA, for example,

in Figure 3.1, the neighbor list of STA-1 is {AP2, AP3, AP4}, AP2 has the
highest priority AP and has the lowest AP score. Thus, AP2 is the best
candidate AP for STA-1 to associate with.

3.2.2.4 Artifical Neural Networks for Updating Neighbor List

In section 3.2.2.2, multiple linear regression is applied to the neighbor
list updating. The correlation among network parameters including RSSI,
SNR, packet delay, packet loss, data rate, average throughput and AP load
are assumed to be linear. However, the correlation of these parameters is
non-linear in the real world. A non-linear regression model using SVR is
built in section 3.2.2.3 to solve the overfitting issue caused by linear regres-
sion. Also, when the kernel function is the Sigmoid kernel, the SVR model
is equal to a two-layer Artificial Neural Networks (ANN) that has no hid-
den layers. In ANN, the number of nodes in a hidden layer, the number
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of hidden layers and the activation function used in a hidden layer will
affect the prediction accuracy when the neighbor list needs to be updated
because the learning time is longer when the number of nodes and hidden
layers are larger. In real networks, the training time needs to fast enough
to make sure the STA can find the best candidate AP. Usually, the ANN
needs a large dataset to improve training accuracy, while SVR just selects
the small size of the support vectors to train the model. The training time
of SVR is faster than ANN. However, the offline phase needs to ensure
the training model with high accuracy and a large dataset. Thus, the ANN
needs to be compared with SVR for the whole learning phase to make sure
that the neighbor list is updated accurately and timely.
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Figure 3.6: An example of four layers ANN model to predict the AP score
of APi
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In this thesis, a multilayer feedforward ANN algorithm is used to up-
date the neighbor list. The multilayer feedforward ANN is chosen because
it can solve the non-learning neighbor list updating problem more effi-
ciently than the backpropagation neural network. This efficient algorithm
is suitable for a real-time WiFi system.

In a multilayer feedforward ANN, the information moves in only one
direction from the input nodes, through the hidden nodes (if any) and to
the output nodes. The feedforward ANN contains one or more hidden
layers (apart from one input and one output layer).

Figure 3.6 depicts the proposed ANN model for 802.11. Let (xi, yi)

denote the training data pair. xi = {xi,1, xi,2, ..., xi,k} denote the mea-
surement information of APi such as seven network parameters including
RSSI, SNR, packet delay, packet loss, data rate, average throughput and
AP load. The output ŷi is the predicted AP score of the i-th neighbor on
the neighbor list. Thus, the ANN training model can be written as:

ŷi =

h2∑
k=1

ω3kσ

(
h1∑
j=1

(
ω2jσ

(
n∑
i=1

ω1ixi + b0

)
+ b1

))
+ b2, (3.29)

where ω1i is the weight vector associated with the input layer of n input
nodes to the first hidden layer and b0 is the bias at input layer for each
node, ω2j is the weight vector associated with the first hidden layer of
h1 hidden nodes to the second hidden layer and b1 is the bias at the first
hidden layer for each node, ω3k is the weight vector associated with the
second hidden layer of h2 hidden nodes to the output layer and b2 is the
bias at the second hidden layer for each node. The activiation function is
denoted as σ(·).

Let (x
′
i, y

′
i) denote a real time measurement data pair. The neighbor list

with a updated set of AP score y′
i can be obtained by a STA starts a new
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scan. The predicted new AP score y′
i can be expressed as follows:

y
′

i =

h2∑
k=1

ω
′

3kσ

(
h1∑
j=1

(
ω

′

2jσ

(
n∑
i=1

ω1i′x
′

i + b
′

0

)
+ b

′

1

))
+ b

′

2, (3.30)

Let y′
t denote the AP score of the target AP for handover. As the AP

score is ascendingly sorted on the prepared dataset, the AP with the min-
imum AP score on the neighbor list is chosen as the best candidate AP.
Thus, the target AP score y′

t can be expressed as follows:

y
′

t = min{y′

1, ..., y
′

i, ..., y
′

n} (3.31)

where {y′
1, ..., y

′
i, ..., y

′
n} is the updated neighbor list for a STA, for example,

in Figure 3.1, the neighbor list of STA-1 is {AP2, AP3, AP4}, AP2 has the
highest priority AP and has the lowest AP score. Thus, AP2 is the best
candidate AP for STA-1 to associate with.

3.2.3 Machine Learning Performance Evaluation

In this section, the training model will be selected based on the training
dataset and loss errors. The selected model will be validated by the CV
method described in section 3.2.2.1.3 and evaluated using the regression
metrics explained in section 3.2.2.1.4.

3.2.3.1 Model Selection

The Figures 3.7a, 3.7b, 3.7c, 3.7d show the learning curves of SVR model
with different kernel functions. In Figure 3.7b, there is a big gap between
the errors. This model is suffering high variance, which is an over-fitting
issue. In Figure 3.7d, the errors increase when the training examples are
bigger. This model suffers under-fitting with high bias. Both the mod-
els in Figures 3.7a and 3.7c show the good performance with lower error.
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When the SVR kernel=”rbf”, the training error is smallest. Therefore, ker-
nel=”rbf” is chosen for the SVR model.

Using the Gaussian RBF function, the value of γ is investigated as
shown in Figure 3.8. When γ = 0.00066, the SVR model shows the best
performance with the lowest loss error.

In Figure 3.9, three activation functions have been compared in ANN.
When the activation = ”tanh”, the performance of ANN with the smallest
error. Therefore, the activation function ”tanh” is chosen in this thesis.

Table 3.2 shows the summary of the model selection based on the above
analysis for these three machine learning algorithms.

Table 3.2: Regression metrics setting

Algorithm Parameters

MLR Ordinary Least Squares

SVR kernel=”rbf”,γ = 0.00066, ε = 0.1

ANN hidder layer=2, activation=”tanh”

3.2.3.2 Model Validation

Table 3.3 shows the results using k-folds CV to validate the three models of
MLR, SVR and ANN. The training data is split into five smaller sets. The
mean value of SVR is the highest of these models after 5-folds validation,
which means SVR is the best model to solve the neighbor list optimization
problem.

Table 3.3: Cross validation result of the models inlcuding MLR, SVR and
ANN

Algorithm k-folds
0 1 2 3 4 5 Mean

MLR 0.927596 0.929659 0.868625 0.936785 0.930781 0.923459 0.919484
SVR 0.930621 0.933104 0.868497 0.930042 0.929930 0.931338 0.920589
ANN 0.930713 0.914467 0.842921 0.928515 0.895739 0.929035 0.906899
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Figure 3.7: The learning curve for different SVR kernel and parameters to
select SVR model
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Figure 3.10: Learning time comparison of different machine learning algo-
rithms incluing MLR, SVR and ANN
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Figure 3.11: Selecting training model by using the learning curve of differ-
ent machine learning algorithms including MLR, SVR and ANN
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Table 3.4: Regression metrics evaluation of the models inlcuding MLR,
SVR and ANN

Algorithm EV MAE MSE R2

MLR 0.930009 0.337170 0.190819 0.930009

SVR 0.933951 0.323348 0.180074 0.933950

ANN 0.928588 0.341106 0.194697 0.928586

The Figures 3.10 and 3.11 show the learning time and learning curve
of the three algorithms MLR, SVR, ANN. In Figures 3.11a, 3.11b, when the
training size increases, the gap between training score and cross-validation
score becomes smaller for both MLR and SVR, which means the loss errors
converge to smaller values. However, the ANN model depends on the
training size. When the training size is around 640, the model can reach
optimal values.

Table 3.4 gives the comparison of Explained variation(EV), Mean ab-
solute error (MAE), Mean squared error (MSE) and R2 score for the three
algorithms. SVR has the highest EV score and R2 score compared with
MLR and ANN. The MAE and MSE of SVR are also the lowest among
the three algorithms. These results correspond to the validation results in
Table 3.3 .

3.3 Performance Evaluation

3.3.1 Handover Trigger Phase

The traditional handover is mainly based on the RSSI value. When the STA
goes out of the range of the associated AP and the RSSI value drops below
the predefined threshold, the STA initiates the handover process. With the
advancement of smartphones and other portable devices, the number of
STAs for different purposes is growing rapidly. For example, if one STA
application requires a higher data rate and another requires a lower data
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rate, it may be a good time to initiate handover for the application that
requires a high data rate but maybe not good for the one that requires less
data rate. However, handover triggered by RSSI cannot satisfy the data
rate requirement.

Therefore, a handover trigger based on multiple network attributes for
different application requirements is very necessary for 802.11 WLANs.
In the machine learning based handover approach proposed, seven at-
tributes including RSSI, SNR, packet delay, packet loss, data rate, average
throughput and AP load are all considered to initiate handover.

As the neighbor list is orddered based on the AP score measured by
the network attributes, the handover initiation is to compare the current
serving AP score with the lowest AP score in the neighbor list. Let Scur
denote the serving AP score and Tnei denote the lowest AP score in the
neighbor list. The lower score means better AP candidates. If Scur > Tnei,
the handover will be initiated. At the same time, the neighbor list will be
updated according to the latest network measurements.

3.3.1.1 Handover Algorithm Description

The proposed handover algorithm for the neighbor list based on machine
learning is summarized in Algorithm 6. The handover procedure is shown
in Figure 3.12.

3.3.2 Handover Performance Evalutation

In this section, the handover performance of NLM is compared with the
802.11 standard and Neighbor Graph (NG) [3] which is a widely used
method to establish neighborhood relationships. Four scenarios have been
investigated including changing the speed of STAs, changing the number
of APs, changing the number of STAs and changing the network topol-
ogy. The network performance including throughput, packet loss rate and
handover delay has been discussed in these four scenarios.
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Algorithm 6 Machine learning based neighbor list

1: Define simulation parameters and collect the scanning parameters by
measurement report provided by 802.11;

2: Save parameters of all APs in the Neighbor AP List Matrix (NALM);
3: Train machine learning model (MLR, ANN, SVR) to get the value of

metric for better handover performance of APi named APSV (Access
point score Value);

4: Save the APSV in NALM;
5: Rank the AP based on APSV value, ascending;
6: Monitor and compare the serving AP’s APSV with the lowest AP’s

APSV in NALM;
7: If the serving AP’s APSV is higher than the lowest APs APSV, han-

dover will be performed.

3.3.3 Simulation Setup

The NLM optimization is implemented in NS-3 with each AP operating in
the 2.412 GHz band (Channel 11) using the IEEE 802.11k protocol (802.11g
PHY layer). Each AP has four Omni-directional antennas and deliberately
limited to a maximum data rate of 54 Mbps (at the physical layer, 36.5
Mbps at the application layer). All results shown in this chapter are av-
erages from 35 runs. Each run uses a different seed to generate a random
data rate and packet size. The random traffic generation aims to satisfy
different application requirements including voice call, video call, video
streaming, online gaming in the different density network environments
and network topologies. The averages shown are reported with a confi-
dence interval of 95.00% under the assumption that the averages are nor-
mally distributed. This statistical methodology validates the simulation
results. The simulation results are also validated by comparing proposed
algorithms with conventional 802.11 standard and Neighbor Graph (NG)
[3] using the same parameters. The simulation parameters are shown in
Table 3.5.
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Table 3.5: Simulation Parameters

Parameter Value

Simulation time (t) 60s, 100s

Speed 2m/s - 6m/s

Number of AP 6 - 30

Distance between two APs 12 - 60m

Number of Mobile Nodes 1-35

ActiveProbing true

WiFi Standard 802.11g, 802.11k

Packet size 10 - 10000 byte

Maximum data rate 54 Mbps

ProbeRequest Interval 0.20s

Channel Switching Interval 0.00025s

MaxChannelTime 0.15s

MinChannelTime 0.01s

SVR kernel rbf

SVR γ 0.00066

SVR ε 0.1

ANN hidder layer 2

ANN activation tanh

3.3.4 Analysis of Results

3.3.4.1 Changing Speed of STAs

In the first scenario (Scenario I), the handover performance is studied with
increasing the speed of STAs. The speed of STAs takes a value between
2m/s to 6m/s within the distance of 360m. At the simulation start time
t = 0s, the STAs are on the same location and are connected to the first
AP. The simulation time is 60s for each run. The scenario is set up with six
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APs and two STAs and the distance between each AP is 60m. The STAs
start to move from AP0 to AP5 at t=0s with a constant speed. As the STAs
move from AP0 to AP5, a handover occurs, but the handover performance
is different when using different algorithms.

• Throughput
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Figure 3.13: Throughput vs. Speed using different algorithms (Scenario I)

The average throughput has been compared when varying the speed
of STAs to better understand the handover performance of NLM.
The average throughput decreases as the moving speed increases in
all mechanisms. This is because a faster STA causes a greater han-
dover frequency. In Figure 3.13, the average throughput of IEEE
802.11 drops 8.30% when the speed changes from 2m/s to 6m/s. The
average throughput has been improved by 1.24% using NG com-
pared with the 802.11 standard. However, in the case of the proposed
NLM handover scheme, throughput is less affected compared with
the 802.11 standard and NG. The standard 802.11 scans all channels
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and NG generates neighborhood relationships based on more STAs
and a long computation time. The NLM approach keeps the neigh-
bor list updated for the STAs to associate with a new AP faster than
802.11 and NG by reducing the number of scanned channels and the
time to establish neighborhood relationships.

In Figure 3.13, the average throughput has been improved by around
1.97% with NLM-Qsort, 2.44% with SVR, 2.35% with MLR and 2.25%
with ANN. The NLM-Qsort algorithm is worse than machine learn-
ing algorithms. This is because the Quick-sort needs more time to
update the neighbor list every scan. The long calculation time causes
a long scan time. The machine learning algorithms without calcula-
tion time can get the updated neighbor list much faster than Quick-
sort. The learning based NLM further reduces scanning delay com-
pared with the NLM using Quick-sort.

Among the three machine learning algorithms, SVR shows the best
performance. This is because SVR can avoid the problems such as
overfitting which happens in linear regression. The overfitting prob-
lem can increase the prediction error of the AP score. If the AP score
cannot be predicted correctly, the best target AP cannot be selected
by the STAs. This can affect the throughput performance if the STAs
handover to a wrong AP. Thus, the throughput performance of SVR
is better than MLR. Also, ANN is a deep-learning algorithm so it
uses more layers and hidden nodes to improve the learning accuracy.
This deep learning algorithm needs more training time, so it cannot
meet the real-time network requirements. The AP score predicted by
SVR has high accuracy because SVR is without overfitting and has
a fast training time using the small size of the support vectors [122].
Therefore, SVR easily satisfies the change of RSSI and communica-
tion quality caused by different speed movement and achieves the
best improvement of throughput.
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• Packet loss rate

When handover occurs, it usually causes packets loss due to the mo-
mentary loss in connectivity.
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Figure 3.14: Packet loss rate using different algorithms (Scenario I)

Figure 3.14 illustrates the impact of handover on the data reception
in different methods: 802.11, NG, NLM Q-sort and NLM using ma-
chine learning algorithms. The average packet loss rate for the 802.11
standard, NG, NLM-Q-sort, NLM-ANN, NLM-MLR, NLM-SVR are
6.48%, 4.85%, 4.07%, 3.99%, 3.88%, 3.83%, respectively. The average
packet loss rate of NG, NLM-Q-sort, NLM-ANN, NLM-MLR, NLM-
SVR compared with the standard 802.11 are reduced by 25.15%, 37.19%,
38.42%, 40.12%, 40.90% respectively.

When the speed of STAs increases from 2m/s to 6m/s, the communi-
cation time between the faster APs and STAs is reduced. This means
the scanning process needs to be faster for a higher speed than for
a lower speed for the STAs to find the best candidate AP success-
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fully. In traditional 802.11 networks, the STAs always scan the same
number of channels and APs. Thus, the scanning delay generates
more packet loss for the faster STAs. In NG, the neighbor graph
is established based on the reassociation request messages collected
from STAs. The short communication time of high speed STAs can-
not provide and update the neighbor information in time. However,
the proposed neighbor list can be updated periodically based on dy-
namic network conditions. With the updated neighbor list, the STAs
only scan the updated APs on the list and selects the best candidate
AP, informed by the APC, based on the prediction by the NLM al-
gorithms. Thus, the data disruption time is reduced by reducing the
scanning delay and the packet loss rate is reduced because of the
ongoing data transfer.

• Handover delay

Figure 3.15 shows how the average handover delay is impacted by
different algorithms with various speeds. For higher speed, the num-
ber of handovers certainly increased. However, compared with stan-
dard 802.11, the average handover numbers of the NLM using ma-
chine learning algorithms are all reduced to three.

The 802.11 standard handover has an average handover delay of
0.20s/ho (handover number). The average handover delay is re-
duced by 26.63% (0.15s/ho) using NG, 33.62% (0.14s/ho) using NLM-
Qsort, 35.28% (0.13s/ho) using NLM-ANN, 40.11% (0.12s/ho) using
NLM-MLR and 55.09% (0.09s/ho) using NLM-SVR. The total han-
dover number of machine learning based NLM is reduced to three.
NG and NLM-Qsort are reduced to four as shown in Figure 3.15.
Thus, the total handover delay of NLM-Qsort is higher than ma-
chine learning based NLM. As the learning-based NLM is based on
the dynamic network requirements and includes more network pa-
rameters than NG and NLM-Qsort to update the neighbor list, the
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Figure 3.15: Handover delay vs. Handover number using different algo-
rithms (Scenario I)

STAs can associate with a better AP than NG and NLM-Qsort. With
faster STAs, unnecessary handover is avoided. Therefore, the total
number of handovers is reduced.

3.3.4.2 Changing the Number of APs

In scenario II, the density of the network has been investigated by chang-
ing the number of APs. The STAs move between different numbers of APs
(6, 12, 18, 24, 30) at a constant speed of 3m/s within the distance of 360m.
The distance between each AP ranges from 12m to 60m. At the simulation
start time t = 0, the STAs are at the same location and are connected to
the first AP. The STAs start to move at t=0s from the first AP to the last AP
with a constant speed. The simulation time is 60s for each run.

• Throughput

With the increasing number of APs, the handover frequencies in-
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crease and the STAs have more chances to find new APs that can
provide better throughput than the current serving AP.
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Figure 3.16: Throughput vs. Number of APs (Scenario II)

As can be seen in Figure 3.16, when the number of APs changes from
6 to 30, the throughput of standard 802.11 increases. This is because
the STAs have more chances to find a new AP which can provide bet-
ter throughput than the current serving AP. However, comparing the
throughput when the number of APs is 12, 18 and 24, the observa-
tion is that increasing the number of APs does not always lead to in-
creases in the throughput. The throughput becomes saturated. This
is because the interference increases in dense networks even though
the APs provide more and better candidate APs. Although the av-
erage throughput of NG is improved 2.93%, the throughput of NLM
is less affected in the dense environment than NG when the number
of APs increases. This is because NG does not consider the AP load
and priority of APs when the neighbor graph is generated. The load
imbalance and no-sorted AP causes a long scanning time to find the
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best candidate AP for STAs to reassociate with.

Figure 3.16 shows the average throughput of 802.11, NG and NLM
approaches. The average throughput of the proposed NLM method
has been improved by 3.98% with Q-sort, 4.43% with SVR, 4.12%
with MLR and 4.29% with ANN compared with the 802.11 standard.
As the learning-based neighbor list takes into consideration the den-
sity of AP, the average throughput and the interference between APs,
the APs are sorted based on real-time network conditions. Thus, the
throughput performance is less affected than 802.11 and NG in the
dense network environment. The STAs are prevented from associat-
ing with an AP providing lower throughput. Therefore, the overall
throughput performance of learning based NLM is better than 802.11
and NLM-Qsort.

• Packet loss rate
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Figure 3.17: Packet loss rate vs. Number of APs (Scenario II)

Packet loss happens when handover occurs because of the disrup-
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tion time. The packet loss rate also strongly depends on the den-
sity of a network. When the number of APs increases from 6 to 12,
the trend of packet loss rate reduces because the STAs have more
chances to associate with new APs that can provide better service
than the current AP. However, as the number of APs increases, the
packet loss rate is higher because of the increased interference be-
tween APs

The average packet loss rate of NG is reduced by 26.74% compared
with 802.11. However, the average packet loss rate of NLM com-
pared with 802.11 is reduced by 36.32% using Q-sort, 39.95% using
SVR, 39.76% using MLR and 39.15% using ANN. The NLM algo-
rithms consider the packet delay and packet loss parameters when
the neighbor list is updated. The best candidate AP on the neigh-
bor list is selected based on the dynamic network conditions. Thus,
the STAs can handover to an AP that causes the lowest packet loss
rate. With the NLM, the overall packet loss rate is reduced when
compared with the 802.11 standard and NG.

• Handover delay

Figure 3.18 shows how the average handover delay is impacted by
different algorithms with various numbers of APs. The number of
handovers increases because the density of APs increases. This in-
volves more handover delay when handover occurs. However, com-
pared with standard 802.11, NG and NLM-Qsort, the average han-
dover delay of NLM using the machine learning algorithms is re-
duced.

The average handover delay of 802.11 is 0.29s. The average handover
delay of NG is reduced by 18.24% compared with 802.11. The NLM
approaches compared with 802.11 reduce handover delay by 29.87%
using Q-sort, 53.55% using MLR, 56.51% using SVR and 54.33% us-
ing ANN. As the dense network can increase the interference be-
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Figure 3.18: Handover delay vs. Number of APs (Scenario II)

tween APs, this interference forces the STAs to spend a longer time
finding the best candidate AP. However, the learning-based NLM
algorithms use multiple network parameters to sort the APs on the
neighbor list. These network parameters including RSSI, SNR, de-
lay and packet loss rate reflect the real-time network conditions. The
STAs can select the best AP faster using the up-to-date neighbor list.
Therefore, the handover delay is reduced. Overall, the handover per-
formance of NLM algorithms shows better performance than stan-
dard 802.11 with the sorted neighbor APs and reduced channel num-
bers.

3.3.4.3 Changing the Number of STAs

In Scenario III, the number of STAs has been increased to see the impact on
handover performance. The STAs move at t=0s with at a constant speed of
3m/s from AP0 to AP5. The distance between APs is 30m. The simulation
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time is 60s for each run.

• Throughput
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Figure 3.19: Throughput vs. Number of STAs (Scenario III)

As can be seen in Figure 3.19, the more STAs there are to utilize the
capacity of APs, the lower the network throughput becomes. This
is because all the STAs move at the same time and they all try to
associate with the same AP. When the AP offered load is high, the
imbalanced load leads to considerable degradation of throughput
performance. In the traditional 802.11 standard, a STA selects an
AP with a higher signal strength without considering the amount of
load experienced by an AP. Compared with 802.11, although the av-
erage packet loss rate of NG has been reduced by around 16.02%,
NG has not taken into account the overload issue in dense STA en-
vironment. However, NLM using machine learning algorithms up-
dates the neighbor list not only based on the signal strength but also
considers the AP load balancing. Therefore, the throughput is less
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affected by the STAs density.

Compared with the 802.11 standard, the average throughput has
been improved by around 0.96% with NG, 1.20% with NLM-Qsort,
2.03% with NLM-SVR , 1.81% with NLM-MLR and 1.75% with NLM-
ANN. The improvement of machine learning based NLM is better
than NG and NLM-Qsort. This is because the learning based neigh-
bor list is updated considering average throughput and AP load met-
rics based on real-time networks conditions. With the updated neigh-
bor list, the STAs can be prevented from reassociating with an AP
with degraded throughput and imbalanced load.

• Packet loss rate
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Figure 3.20: Packet loss rate vs. Number of STAs (Scenario III)

Figure 3.20 illustrates the average packet loss rate changes when the
number of STAs increases. The packet loss rate increases when the
number of STAs increases. This is because the larger the number of
STAs is, the more contention there is among them. Thus, the larger
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STA density causes a high packet loss rate. Also, if the AP load is
not balanced, an overloaded AP cannot provide better performance
even with strong signal strength. This leads to the STAs spending
more time searching for a new AP. Therefore, the packet loss rate in-
creases when using the 802.11 standard. As the NG approach has
overload issue, the packet loss rate only reduces by around 18.37%
compared with 802.11. However, the packet loss rate has been re-
duced by the NLM approaches with the updated neighbor list. The
updated neighbor list with the reduction of APs can reduce the scan-
ning time. Also, the machine learning-based algorithms of NLM-
SVR, NLM-MLR and NLM-ANN sort the neighbor list considering
the AP load conditions. Thus, compared with 802.11, the average
packet loss rate has been reduced by around 33.23% using NLM-
Qsort, 55.63% with NLM-SVR, 50.69% with NLM-MLR and 52.25%
with NLM-ANN.

• Handover delay

Figure 3.21 shows the average handover delay impacted by different
algorithms by varying the number of STAs. As the number of STAs
increases, the average handover delay increases because of the den-
sity of STAs in 802.11. In this scenario, the STAs move at the same
time and try to associate with the same AP. This leads to a load un-
balanced and causes the STAs to spend more time finding a new AP.
However, compared with standard 802.11, the average handover de-
lay of NLM using machine learning algorithms is not affected by the
number of different STAs because it considers the AP load balance.

Alghouth the NG approach reduces handover delay by 38.43%, the
NLM algorithms further reduce the handover delay. The NLM ap-
proaches reduced handover delay by 41.71% using Q-sort, 51.97%
using ANN, 52.03% using MLR and 54.09% using SVR, respectively.
As the three machine learning based algorithms consider the AP load
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conditions, it avoids potentially poor handover decision that may
overload the APs. Thus, the handover delay and unsuccessful han-
dover are reduced compared with Q-sort.
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Figure 3.21: Handover delay vs. Number of STAs (Scenario III)

3.3.4.4 Changing the Network Topologies

In scenario IV, different topologies of AP placement are investigated. First,
the APs are placed in one line as shown in Figure 3.22. The distance be-
tween any two APs is 30m. One STA moves from AP0 to AP5 at t=0s with
a constant speed of 3m/s from left to right backwards and forwards three
times. The simulation time is 100s for each run.

Then, the APs are placed in a grid as shown in Figure 3.23. The distance
between the two lines is 16m and 4 APs placed on each line. At t=0s,
one STA moves in the middle among lines back and forth with a constant
speed of 3m/s. The distance between each row of APs is 60m.

Finally, Figure 3.24 shows the random AP placement (Poisson point
distribution) in a 90×80m full coverage area. One STA moves with a con-
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Figure 3.22: AP placement of 1D line topology in NS3
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Figure 3.23: AP placement of 2D grid topology in NS3
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Figure 3.24: AP placement of random topology in NS3

stant speed of 3m/s from left to right backward and forwards for the full
width of the coverage area.

• Throughput

In Figures 3.25, 3.26 and 3.27, the average throughput of the NLM
approaches and the standard 802.11 has been compared in three dif-
ferent network topologies. Figure 3.25 shows the average through-
put changing when STA moves in a line netwoq1rk topology. Com-
pared with 802.11, the average throughput of the proposed NLM
method has been improved by 1.00% with NLM-Qsort, 1.28% with
NLM-SVR, 1.18% with MLR and 1.08% with NLM-ANN, respec-
tively. The average throughput of the proposed NLM method has
been improved by 0.45% with NG. The throughput of line topology
is not affected a lot by using different NLM algorithms. This line
topology is not dense, and the STA moves with a constant speed.
Thus, the STA can easily find the best candidate AP to handover.
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Figure 3.25: Throughput vs. Simulation time -1D topology (Scenario IV)

As SVR can predict with a high fitting accuracy in the simple topol-
ogy networks, SVR achieves the best performance. ANN is a deep
learning algorithm usually needs a large dataset with longer train-
ing time to improve accuracy. This can cause longer scanning de-
lay than SVR. Figure 3.26 shows the average throughput when the
STA moves in a grid network topology. The average throughput
of the proposed NLM method has been improved by 4.13% with
NG. Compared with 802.11, the average throughput of the proposed
NLM method has been improved by 4.53% with NLM-Qsort, 5.41%
with NLM-SVR, 5.37% with MLR and 5.28% with NLM-ANN. Q-sort
shows the worst improvement in the grid network topology. This is
because in the dense network, the number of APs is increasing and
Q-sort needs more time to update the neighbor list. However, SVR,
MLR and ANN can sort the neighbor list faster than Q-sort because
of less learning time.
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Figure 3.26: Throughput vs. Simulation time - 2D topology (Scenario IV)

Figure 3.27 shows the average throughput changing when the STA
moves in a random network topology. The average throughput of
the proposed NLM method has been improved by 2.58% with NG.
Compared with 802.11, the average throughput of the proposed NLM
method has been improved by 3.47% with NLM-Qsort, 4.20% with
NLM-SVR, 5.37% with MLR and 4.34% with NLM-ANN. SVR shows
the best improvement for the random network topology. This is be-
cause in the dense network, the number of APs is increasing and SVR
can update the neighbor list with fast updating time. The three learn-
ing algorithms including SVR, MLR and ANN update the neighbor
list considering the interference between APs, average throughput
and packet delay. Thus, machine learning based NLM shows better
performance than NLM-Qsort.

Compared with the throughput improvement in these three differ-
ent topologies, the results show that 1D topology has less impact on
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Figure 3.27: Throughput vs. Simulation time - Random topology (Scenario
IV)

throughput than 2D and random topologies. This is because the AP
density is different in different topologies. The different AP density
and placement affect the STA’s scanning time to find a new AP. In
the 2D Scenario, the number of APs is larger than in the 1D and ran-
dom topologies. Therefore, the NLM improvement is more obvious
than the other two topologies because NLM reduces the number of
scanning channels and APs. This reduces the total scanning time to
improve throughput performance.

• Packet loss rate

In Figures 3.28, 3.29 and 3.30, the packet loss rate of NLM approaches
is compared with the standard 802.11 in three network topologies.

Figure 3.28 shows the average packet loss rate changing when STA
moves in a line network topology. Compared with 802.11, the aver-
age throughput of the proposed NLM method has been improved
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Figure 3.28: Packet loss rate vs. Simulation time - 1D topology (Scenario
IV)

 0

 10

 20

 30

 40

 50

 60

 70

 0  10  20  30  40  50  60  70  80  90  100  110  120

P
a
c
k
e
t 

lo
s
s
 r

a
te

(%
)

Time(Sec)

802.11
NG

NLM-Qsort
NLM-SVR
NLM-MLR
NLM-ANN

Figure 3.29: Packet loss rate vs. Simulation time - 2D topology (Scenario
IV)
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Figure 3.30: Packet loss rate vs. Simulation time - Random topology (Sce-
nario IV)

by 48.51% with NLM-Qsort, 62.37% with NLM-SVR, 57.43% with
MLR and 52.48% with NLM-ANN. The average throughput of the
proposed NLM method has been improved by 32.67% with NG.

Figure 3.29 shows the average packet loss rate when STA moves in a
grid network topology. Compared with 802.11, the average through-
put of the proposed NLM method has been improved by 65.17%
with NLM-Qsort, 78.01% with NLM-SVR, 77.40% with MLR and
76.63% with NLM-ANN. The average throughput of the proposed
NLM method has been improved by 59.13% with NG.

Figure 3.30 shows the average packet loss rate changing when STA
moves in a random network topology. Compared with 802.11, the
average throughput of proposed NLM method has been improved
by 54.39% with NLM-Qsort, 65.70% with NLM-SVR, 67.74% with
MLR and 64.34% with NLM-ANN. The average throughput of the
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proposed NLM method has been improved by 39.86% with NG.

As Q-sort does not consider the effect of packet loss rate effect when
the neighbor list is updated, its effect on the packet loss rate is less
than the machine learning-based algorithms. As discussed in sec-
tion 3.2.2.3, SVR can learn fast to find the global optimal solution
with high fitting accuracy. Thus, SVR performs the best to solve the
non-linear neighbor list updating problem. While ANN needs more
learning time than SVR, the improvement is less than SVR but still
higher than MLR which is more suitable for solving the linear issue.

• Handover delay

Figure 3.31 illustrates the handover delay comparison among three
different topologies. In the 2D topology, as the density of APs is
higher than 1D and random topology, the handover occurs more fre-
quently than the other two topologies. Therefore, the average han-
dover delay of 2D is larger than the 1D and random topologies in
802.11. However, the NLM approaches reduce all the handover de-
lay for the three topologies. The NLM approaches have less effect
on handover performance when the network topologies are differ-
ent. This is because the NLM dynamically updates the neighbor list
based on the real-time network environment. The best AP on the list
can be updated timely when STA starts a new scan. Compared with
the learning algorithms, NG and Q-sort achieve less improvement
than SVR, MLR or ANN. This is because NG has overload issues
and Q-sort has to calculate the sorting algorithm every time for up-
dating the neighbor list and the sorting time is much longer than
the learning time. This cannot satisfy the dynamic network require-
ments. The NLM-SVR still shows the best performance because it
can update neighbor list with the highest accuracy and fastest learn-
ing time for solving the non-linear problem.
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Figure 3.31: Handover delay in three different topologies (Scenario IV)

3.4 Summary

The proposed neighbor list mechanism reduces handover delay to im-
prove mobility QoS for WiFi networks. The neighbor list can be updated
by the ranking algorithms including Q-sort or the three machine learning
algorithms including SVR, MLR and ANN. Compared with the standard
802.11 and NG, the NLM-Qsort has enhanced the handover performance
because of the reduction of scanning channels and APs. Moreover, the ma-
chine learning algorithms consider more network features such as RSSI,
delay and AP load to adapt to the dynamic network environment. There-
fore, the performance has been further improved by machine learning-
based algorithms. However, the scanning timers that can also affect the
scanning delay are not considered in NLM. Thus, the next chapter will
introduce a self-optimization approach to further improve handover per-
formance.

The proposed NLM is stored in the AP controller. In the future, the
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neighbor list will be updated on the mobile host in order to reduce the
link latency between the controller, AP and STAs.



Chapter 4

Self-optimizing Scanning
Parameters

The Neighbor List Mechanism (NLM) discussed in Chapter 3 has reduced
handover delay by reducing the number of channels and APs scanned by
STAs. However, the scanning parameters in the NLM are based on the
default fixed values. In this chapter, a Self-Organizing Network (SON) in-
spired approach using self-optimizing scanning parameters optimized by
a Genetic Algorithm(GA) is proposed. These self-optimizing adaptive pa-
rameters are dynamically adjusted based on real-time network conditions
to reduce MAC layer handover delay. Each STA is made aware of the scan-
ning parameters of each channel by a centralized controller. Therefore, the
STA probes a set of channels and APs with adaptive parameters instead
of fixed values. The proposed algorithms consider all the parameters in
the scanning phase including MinChannelTime, MaxChannelTime, channel
switching time, probe request interval, the number of channels scanned
and the channel sequence. The scanning delay is reduced by reducing the
unnecessary waiting time of probe responses of non-adjacent APs or APs
faulty APs.

In the following sections, the proposed self-optimizing scheme will be
firstly introduced and then give the problem formulation. Furthermore,

117
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how the scanning parameters are optimized by GA is explained. Finally,
GA performance and handover performance are evaluated and analyzed.

4.1 Proposed Self-optimizing Scheme

STA

AP4

AP1

AP5

AP3AP2

AP6

Ethernet

Switch Switch Switch

AP ControllerSSID Channel MaxChTime(S) MinChTime(S) SNR(dB) T_sw(s) T_pre(s)

AP4 #1 0.25 0.01 43.21 0.00025 0.01

AP1 #6 0.5 0.015 19.87 0.00024 0.05

AP2 #11 0.3 0.0167 22.03 0.00015 0.02

… … … … …

Figure 4.1: Self-optimizing network architecture including an AP con-
troller (APC) and the table sent by the APC containing scanning parame-
ters

In this section, the self-optimizing scheme of optimizing scanning pa-
rameters is introduced. The proposed self-optimizing approach uses a
Genetic Algorithm (GA) to optimize scanning parameters and configure
the scanning parameters for each STA before the scan process is initiated.
Once the GA finds the optimal initial values of the scanning parameters,
the table of GA optimized scanning parameters and channels are stored
in the AP controller (APC). The GA parameters are refreshed when STAs
start a new scan. Hence, GA parameters are unlikely to be outdated. More-
over, scanning timers can be further adjusted by the adaptive timers. The
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motivation behind using GA is to find the best candidate AP by scanning
an up-to-date list instead of scanning all available channels by a STA. The
up-to-date list with GA optimized timers for each channel is maintained
in the APC.

The network scenario used is shown in Figure 4.1. It depicts a cen-
tralized controller connected to all the APs. Once the STA detects that
the current associated AP’s signal strength is lower than the predefined
threshold, the active scanning is initiated. The tables of GA optimized
scanning parameters and channels are sent to the STA by the controller,
and then the STA starts to search for the best candidate AP using the opti-
mized parameters.

4.2 Problem Formulation

The total handover time includes scanning time, re-association time and
re-authentication time [8]. Therefore, the handover delay for a handover
in 802.11 WLANs can be calculated by Equation 4.1,

N∑
i=1

THandover(i) =
N∑
i=1

{Tsc(i) + Tau(i) + Tas(i)}, (4.1)

where THandover(i) is the handover delay of each channel i; Tsc(i), Tas(i) and
Tau(i) are scanning delay, association delay and authentication delay of
each channel, respectively.

Self-optimizing aims to reduce the scanning delay because the scan-
ning delay is accounting for 90% of the overall handover delay [26]. In the
active scan, the scan time includes the probe time that is the time used to
broadcast probe messages on the i-th channel, the switching time that is
the time used by the STA to switch from current channel to the next chan-
nel and the waiting time that is the time used for collecting the response
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messages [8]. The scan delay can be calculated using Equation 4.2,

N∑
i=1

Tsc(i) =
N∑
i=1

{TPreq(i) + Twt(i) + Tsw(i)}

=
N∑
i=1

{TPreq(i) + pe(i) ∗ tmin(i)) + (1− pe(i)) ∗ tmax(i) +Tsw(i)},

(4.2)

where the number of channels is denoted by N and the probability of the
i-th channel is empty (given by pe(i)); TPreq(i) denotes probe request time
on channel i; Tsw(i) denotes the switching time between channels; Twt(i)
denotes the probe response waiting time on channel i; MinChannelT ime

of i-th channel is denoted as tmin(i) and MaxChannelT ime of ith channel
is denoted as tmax(i).

If the probe time is longer on each channel, the probability of discov-
ered AP will be higher. Therefore, the scanning process is assumed as an
exponential distribution, the probability density function(PDF) as below:

f (t) = λe−λt, (4.3)

where λ is the channel load, t is the probing time. The probability of AP
discovery within tmin(i) of each channel can be calculated by Equation 4.4:

Pmin(0 ≤ t ≤ tmin(i)) =

tmin(i)∫
0

λe−λtdt = 1− λe−λtmin(i). (4.4)

Therefore, the average discovery number of APs within tmin(i) is cal-
culated by Equation 4.5:

NMin = Pmin ∗Nap, (4.5)

where Nap is the discovery number of APs over each scanning time tmax(i)
on channel i.

The average discovery rate of APs over a duration of tmax(i) is ex-
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pressed as follows:

D =
NMin

tmin(i)
+

Nap −NMin

tmax(i)− tmin(i)

=
Pmin ∗Nap

tmin(i)
+

(1− Pmin) ∗Nap

tmax(i)− tmin(i)
.

(4.6)

Let Ai(ap) denote a set of available APs on channel i where 1 ≤ i ≤ n and
i ∈ Z+ and Si denote the set of Signal-to-Noise (SNR) value of each AP on
channel i. The set of Ai(ap)and Si are expressed as follows:

Ai(ap) = {api,1, ..api,k, ...api,n}, api,k ∈ N, (4.7)

Si = {snri,1, ..snri,k, ...snri,n}, snri,k ∈ R, (4.8)

where api,k denotes the AP of channel iwith index k and snri,k denotes the
SNR value of api,k, N is the natural numbers {0, 1, 2, ...} and R is the real
number. Therefore, the highest SNR on channel i is expressed as follows:

SNRh(i) = max{snri,1, ..snri,k, ...snri,n}, snri,k ∈ R, (4.9)

where SNRh(i) denotes the highest SNR value in the set of Si, and the
sum of the highest SNR value for all the scanned channels can be written
as
∑N

i=1 SNRh(i) where N is the number of channels scanned. Intuitively,
a higher value of

∑N
i=1 SNRh(i) means that the number of APs discovered

is high for this scan because the sum of
∑N

i=1 SNRh(i) is proportional to
the discovery rate of APs (i.e.

∑N
i=1 SNRh(i) ∝ D ). Therefore, for each

channel i, the problem is formulated as follows:

arg{TPreq (i),Tsw(i),tmin(i),tmax(i)︸ ︷︷ ︸
chromosome

}max

∑N
i=1 SNRh(i)∑N
i=1 Tsc(i)

(4.10)
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subject to :

0 ≤ TPreq(i) ≤ 200ms, 0 ≤ Tsw(i) ≤ 0.5ms, (4.11)

5 ≤ tmin(i)) ≤ 15ms, 3 ≤ tmax(i) ≤ 90ms, (4.12)

tmin(i) ≤ tmax(i), (4.13)

where the constraints expressed in Equation 4.11 - 4.13 are the boundary
values for the scanning timers as used in [29].

The self-optimizing approach aims to search for the maximum value
of the objective Equation 4.10 subject to the constraints in Equation 4.11-
4.13. Also, the solutions of scanning parameters are in a finite and discrete
set of objects to satisfy Equation 4.10 with conditions. The scanning para-
meters have interactions between each other to affect the scanning delay.
For example, if the tmin(i)) is too long and STA finds available APs on the
scanning channel, the STA has to spend tmax(i)) waiting time to search for
more APs. The probe interval TPreq(i) also affects the tmin(i)) waiting time
for a STA to find at least one AP. The channel switching time Tsw(i) affects
a STA when it starts to scan a new channel. Thus, these scanning parame-
ters are considered as a group to affect the scanning delay. How to find a
group that can satisfy the objective equation 4.10 subject to the constraints
in Equation 4.11-4.13 can be considered as a combinatorial problem of non-
linear objective and constraint functions. In this chapter, a GA algorithm
is used to solve this problem because GA is well suited for solving non-
linear objective and constraint functions expressed as both discrete and
continuous variables [125].

4.3 Genetic Algorithm

In this section, the details about GA procedures and how to choose the GA
operators in each procedure are introduced based on the scanning para-
meter optimization problems. Firstly, the chromosome representation and
initializing the chromosome in the population is described. Then, the se-
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Algorithm 7 Optimization of scanning parameters based on GA

1: α: Population size;
2: β: Elitism rate, β = 1/α;
3: γ: Crossover rate;
4: θ: Mutation rate;
5: δ: Number of generations;
6: Generate initial population Pop;
7: while termination conditions is not true do
8: Calculate and evaluate fitness value of Pop by Equation 4.14;
9: Select the parents using the selection operators described in sec-

tion 4.3.4;
10: Generate new children by crossover with rate γ;
11: Mutate the children with mutation rate θ;
12: Select α× β of best solutions as elitism for next generation
13: Update Pop with new population;
14: end while

lection operator, crossover operator and mutation operation are discussed
to select the most suitable operators that are suitable to the self-optimizing
algorithm in real-time network conditions. Furthermore, how to evaluate
the selected chromosomes for reproduction and how to terminate the GA
process are presented. Finally, the optimized scanning parameters by GA
also be further adjusted based on the dynamic changing network environ-
ments.

4.3.1 Chromosome Representation

The first aspect of a GA is how the solutions are encoded as chromosomes.
A chromosome is a fixed-length string of genes represented for an indi-
vidual. The genes can be binary or real-value numbers depending on the
type of problems. The genes in a chromosome and the length of each chro-
mosome depend on the parameters involved in the problems.

Conventionally, binary strings are used to represent the decision vari-
ables of the optimization problem in the genetic population, irrespective of
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Figure 4.2: Chromosome representation: (A) chromosome encoding (B) an
example of chromosome

the nature of the decision variables. A binary-coded GA has many difficul-
ties in dealing with continuous search spaces in the scanning parameters
optimization problem. The use of real value-coded (RVC) GA representa-
tion has many advantages over binary coding. The efficiency of the GA is
increased as there is no need to convert the solution variables to the binary
type, less memory is required, there is no loss in precision by discretiza-
tion to binary or other values, and there is greater freedom to use different
genetic operators [126].

Therefore, RVC GA is proposed in which the optimization variables
are represented as the real-valued parameters. In the RVC representation,
the scanning timers of all channels are considered genes. They are tmin(i),
tmax(i), TPreq(i) , Tsw(i) and i is the channel number. Each gene represents
a parameter in the problem. If the number of scanning channels is N , the
size of each chromosome is an array of strings of length N ∗ 4.

In Figure 4.2, a chromosome representation is shown. Each gene is
indicated as below: S1 is denoted as tmin(1), S2 is denoted as tmax(1), S3 is
denoted as TPreq(1), S4 is denoted as Tsw(1), S5 is denoted as tmin(2) and so
on.

4.3.2 Population Initialization

The initial population described by Pop is a randomly generated set of
chromosomes. The population size in our proposed GA is α (see line 1, 6
in Algorithm 7). Each chromosome is a set of scanning parameters. For
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example, if the number of channels is 11, then each channel i has four
scanning parameters tmin(i) , tmax(i), TPreq(i) and Tsw(i). Thus, one chro-
mosome has 44 genes. The initial values of scanning parameters tmin(i),
tmax(i), TPreq(i) and Tsw(i) are randomly generated by pseudorandom num-
ber generators.

4.3.3 Calculating Fitness Value

The fitness value is used to accurately evaluate the quality of the chromo-
somes in the population (see line 8 in Algorithm 7). The fitness value can
be calculated using the fitness function given by Equation 4.14. It gives
a fitness value to each chromosome. The chromosomes with high fitness
values have more chances to be selected for reproduction. The probability
that a chromosome will be selected for reproduction is based on the fit-
ness value. The selected chromosomes will generate optimal solutions for
scanning parameters until the termination condition is satisfied.

fj =

∑N
i=1 SNRh(i)∑N
i=1 Tsc(i)

, (4.14)

where fj represents the fitness value of the jth chromosome. The expecta-
tion of the fitness function is to use the lowest scanning time

∑N
i=1 Tsc(i) to

find more available APs with higher SNR values. The fitness value fj is
used for selection that will be introduced by section 4.3.4.

4.3.4 Selection

There are several selection methods to select the chromosome with the best
fitness value. These include Tournament Selection, Proportional Roulette
Wheel Selection, Rank-based Roulette Wheel Selection. The details of these
selections are explained in the following subsections and the summary of
the main three selection methods is show in Table 2.6.
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For the scanning parameters optimization problem in WiFi networks,
tournament selection is used to solve this issue. As tournament selection
has a fast and efficient convergence rate, it will satisfy the real-time net-
work requirements [67]. Also, the number of scanning parameters is not
big and tournament selection is suitable for this small size problem [127].
After selection, the chromosome with the better fitness value will be se-
lected as parents to produce new child chromosomes by the crossover
and mutation operations. At the end of each generation, another selection
method called elitism is employed. This method selects the best chromo-
some in the current generation to pass to the next generation. This action
is important to ensure that the relevant features of the chromosomes, se-
lected so far by the survival of the fittest principle, will not be discarded
during the process of recombination (see lines 2, 9, 12 in Algorithm 7).

4.3.4.1 Tournament Selection

Tournament selection is considered probably the most popular selection
methods in GA due to its efficiency and simple implementation [64]. As
the scanning parameters need to be updated efficiently to reduce the scan-
ning delay, the optimal value of scanning parameters needs to be obtained
by GA as fast as possible to ensure the handover is timely and success-
ful. Tournament selection also maintains steady pressure towards conver-
gence [64]. Thus, tournament selection is chosen to evaluate the handover
performance.

Figure 4.3 shows an example of tournament selection. K chromosomes
are selected from the population at random and the best out of these are
chosen to become a parent (see lines 2-3 in Algorithm 8). The same process
is repeated for selecting the next parent. This process is repeated n times
to produce the next generation of chromosomes (see lines 1-5 in Algorithm
8).
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Figure 4.3: Tournament Selection

Algorithm 8 Tournament Selection
Input: Population P (t) = {α1, ..., αn} and tournament size: k ∈

{1, 2, ..., n};
Output: Population P (t)

′
= {α′

1, ..., α
′
n} after selection

1: for i← 0 to n do
2: randomly select k chromosomes from {α1, ..., αn};
3: calculated the fitness value by Equation 4.14, the fitness values of

the selected k chromosomes are denoted as {f1, ..., fk}
4: α

′
i ← choose the chromosome with the maximum fitness value

from k randomly selected chromosomes as parent;
5: end for
6: return {α′

1, ..., α
′
n}

4.3.4.2 Roulette Wheel Selection

Roulette Wheel Selection was proposed by Holland [65] and assumes that
the selection probability of an individual chromosome is directly related to
fitness. In this selection, all the chromosomes in the population are placed
on the roulette wheel according to their fitness value [71]. Each chromo-
some is assigned a segment of the roulette wheel whose size is propor-
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tional to the value of the fitness of the chromosome. Those chromosomes
with the largest fitness (i.e. largest segment sizes) have a higher proba-
bility of being chosen. As Roulette Wheel Selection gives a chance to all
chromosomes, it can help search for a global optimal group of scanning
parameters. The accuracy of the selection method to make sure the scan-
ning delay can be reduced and the best candidate AP can be found during
search time. However, the time taken to compute the optimal scanning
parameters is larger than the Tournament Selection.

Following are the steps for Roulette Wheel selection:

1. Calculate the fitness value of each individual denoted by fi.

2. Compute the probability that an individual is chosen by dividing the
individual’s fitness by the sum of fitness values of the whole popu-
lation.

pi =
fi∑n
i=1 fj

; j = 1, 2, ..., n, (4.15)

where n is the size of population.

3. Choosing one individual from the population with its probability pi
can be accomplished by defining its cumulative probability,

qi =
i∑

j=1

pj (4.16)

4. Generate a uniform random number r ∈ (0, 1] (see lines 3 in Algo-
rithm 9).

5. If r ≤ q1, select the first chromosome, else select the ith indiviual
such that qi−1 ≥ r ≤ qi(see lines 3-9 in Algorithm 9).

6. Repeat steps 4-5 n times to create n candidates for new population.



4.3. GENETIC ALGORITHM 129

Algorithm 9 Roulette Wheel Selection
Input: Population P (t) = {α1, ..., αn}
Output: Population P (t)

′
= {α′

1, ..., α
′
n} after selection

1: for i← 0 to n do
2: Calculate the cumulative probability by Equation 4.15, 4.16;
3: Generate a uniform random number r ∈ (0, 1];
4: if r ≤ q1 then
5: α

′
i ← select the first chromosome from {α1, ..., αn};

6: else
7: if qi−1 ≥ r ≤ qi then α

′
i ← select the ith chromosome;

8: end if
9: end if

10: end for
11: return {α′

1, ..., α
′
n}

4.3.4.3 Ranked-based Selection

The roulette wheel selection has a problem when there are big differences
between the fitness values in the initial population. If the best chromo-
some fitness is 90%, its circumference occupies 90% of the Roulette wheel,
and then other chromosomes have too few chances to be selected [128].
This causes a premature convergence and a loss of diversity [129]. Thus,
the optimal scanning parameters may not be found and the scanning delay
will not be reduced.

The rank-based selection was introduced by Baker [74] to eliminate the
disadvantages of the Roulette wheel selection. Rank-based selection is the
selection strategy that the probability of a chromosome is selected based
on its fitness rank in the entire population. Thus, the optimal value of scan-
ning parameters could be explored without losing diversity. Compared
with the roulette wheel selection, the rank-based selection is more robust
towards the optimal value of scanning parameters [73]. In the rank-based
selection scheme, the chromosomes in the population are ranked accord-
ing to their fitness and then selection probabilities are computed according
to their ranks rather than fitness values. Therefore, the rank-based selec-
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tion can be computationally expensive because of the need to sort popu-
lations [129]. This long computation of soring fitness cannot ensure GA
find the optimized scanning parameters fast enough to meet the dynamic
network environment.

Algorithm 10 Linear Rank-based Selection
Input: Population P (t) = {α1, ..., αn}
Output: Population P (t)

′
= {α′

1, ..., α
′
n} after selection

1: for i← 0 to n do
2: Assign the fitness by the rank Equation 4.17;
3: Calculate the cumulative probability by Equation 4.15, 4.16;
4: Sort the population according the rank;
5: Generate a uniform random number r ∈ (0, 1];
6: if r ≤ q1 then
7: α

′
i ← select the first chromosome from {α1, ..., αn};

8: else
9: if qi−1 ≥ r ≤ qi then α

′
i ← select the ith chromosome;

10: end if
11: end if
12: end for
13: return {α′

1, ..., α
′
n}

In linear ranked-based selection, chromosomes are first sorted accord-
ing to their fitness value and then the ranks are assigned to them (see lines
2-4 in Algorithm 10). The best chromosome is ranked at the last in the pop-
ulation and the worst one is ranked at the first in the population. The se-
lection probability is then assigned linearly to the chromosomes according
to their ranks (see lines 6-11 in Algorithm 10). The rank for a chromosome
may be scaled linearly using the following formula,

Rank(Pos) = 2− SP + (2.(SP − 1).
(Pos− 1)

n− 1
). (4.17)

where Pos is the position of an individual in the population and SP is
the selective pressure, which is the probability of the best individual se-
lected by comparing to the average probability of selection of all individ-
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uals [130].

4.3.5 Crossover

The combination of two-parent chromosomes produces a new child chro-
mosome and this is called a crossover. With the real value-coded repre-
sentation, the evaluation procedure and reproduction operator remain the
same as in binary-coded GA, but crossover and mutation operators for the
RVC GA need to be redefined. For this scanning parameter optimization
problem, real encoding is adopted because the continuous search spaces
are needed when the scanning initiated periodically and high precision is
required to make sure handover is timely and successful.

There are many types crossover for RVC GA including single-point
crossover, N -points crossover and uniform crossover. In the N -points
crossover, according to the number of crossover points, there are also two-
points, three-points and so on.

As the representation shown in Figure 4.2 in the proposed GA method,
the scanning parameters tmin(i) , tmax(i), TPreq(i) and Tsw(i) are considered
as a group of parameters per channel. Therefore, the N -points crossover
method is suitable to use for cutting the random position based on channel
numbers. By the operation of crossover, the scanning parameters for each
channel of two selected parents will be exchanged. The crossover rate is γ
(see lines 3, 10 in Algorithm 7).

Let P1 = (p11, ..., p
1
n) and P2 = (p21, ..., p

2
n) denote two selected parents for

crossover operation. The new offsprings are denoted as C1 = (c11, ..., c
1
n)

and C2 = (c21, ..., c
2
n). Different crossover operators will be described in

following sections.

4.3.5.1 Simple-point Crossover

Simple-point crossover is the earliest crossover operator used in the past
[65, 76]. This crossover uses the single-point fragmentation of the parents
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at the crossover point to create the child [131]. Simple point crossover
first selects two parents used for a crossover (see line 3-4 in Algorithm
11). Then, randomly selects a crossover point k, k ∈ {1, ..., n − 1} where
n is the number of channels. The crossover point is generated by pseudo-
random number generators and the pseudorandom number should be an
integer that is uniformly distributed between 1 and n − 1. The crossover
point is based on the channel numbers because the scanning parameters
tmin(i) , tmax(i), TPreq(i) and Tsw(i) are considered as a group of parameters
per channel in one chromosome as shown in Figure 4.2. Two new chro-
mosomes are created by combining the parents at the crossover point (see
line 5-8 in Algorithm 11), which are

C1 = (p11, p
1
2, ..., p

1
i , p

2
i+1, ..., p

2
n),

C2 = (p21, p
2
2, ..., p

2
i , p

1
i+1, ..., p

1
n).

(4.18)

Algorithm 11 Simple-point crossover
Input: Two parents chromosomes P1, P2

Output: Two new chromosomes C1, C2

1: Simple-point-crossover(i, P1, P2):
2: int cp;
3: Select two parents P1, P2 from a parent pool;
4: cp ← randomly select a crossover point position by pseudorandom

number generators following uniform distribution
5: for i← 0 to cp− 1 do

C1[i]← P1[i];
C2[i]← P2[i];

6: end for
7: for i← cp to n do

C1[i]← P2[i];
C2[i]← P1[i];

8: end for
9: return C1, C2
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4.3.5.2 N -point Crossover

Algorithm 12 N -point crossover
Input: Two parents chromosomes P1, P2

Output: Two new chromosomes C1, C2

1: N-point-crossover(i, P1, P2):
2: Select two parents P1, P2 from a parent pool;
3: local array Points;
4: Points ← randomly select k different crossover points by pseudoran-

dom number generators following uniform distribution
5: for i← 0 to n− 1 do
6: if j < k, i = Points[j] then
7: j ← j + 1;
8: end if
9: if j is an even number then

C1[i]← P1[i];
C2[i]← P2[i];

10: else
C2[i]← P1[i];
C1[i]← P2[i];

11: end if
12: end for
13: return C1, C2

N -point crossover uses the point to combine the parents the same as
per simple point crossover. N -Point Crossover first selects parents used for
crossover (see line 2 in Algorithm 12). Then randomly selects n crossover
points [132]. The N crossover points are selected based on the number
of channels because the scanning parameters tmin(i) , tmax(i), TPreq(i) and
Tsw(i) are a group of parameters per channel in one chromosome. Let k
denote the number of crossover points. The k different crossover points
are generated by pseudorandom number generators and the pseudoran-
dom number should be an integer that is uniformly distributed between
1 and n − 1 where n is the number of channels (see line 3-4 in Algo-
rithm 12). Two parents combine at the crossover points and generate new



134 CHAPTER 4. SELF-OPTIMIZING SCANNING PARAMETERS

children. Compared with single-point crossover, N -point crossover has a
wide search space that can find global optimal scanning parameters for
the self-optimizing problem. This is because the single-point crossover
only selects one cross point to combine the parents to produce new child
chromosomes and makes it harder to move out of the local optimum.

Taking N = 2, two crossover points are selected randomly at position
i and j (i, j ∈ {1, 2, ..., n − 1} with i ≤ j), with i and j being different
numbers of channels as described in section 4.3.5.1. Two new chromsomes
are created (see line 5 - 12 in Algorithm 12) as follows:

C1 = (p11, p
1
2, ..., p

2
i , p

2
i+1, ..., p

2
j , p

1
j+1, ..., p

1
n),

C2 = (p21, p
2
2, ..., p

1
i , p

1
i+1, ..., p

1
j , p

2
j+1, ..., p

2
n).

(4.19)

4.3.5.3 Uniform Crossover

Algorithm 13 Uniform crossover
Input: Two parents chromosomes P1, P2

Output: Two new chromosomes C1, C2

1: Uniform-crossover(i, P1, P2):
2: Select two parents P1, P2 from a parent pool;
3: Define a value for probability pc.
4: for i← 0 to n do
5: Caculate each chromosome vector cki by Equation 4.20;
6: end for
7: return C1, C2

In contrast to previous crossover operators, the uniform crossover op-
erator does not divide the parent chromosome into segments for recom-
bination. Rather, it provides the uniformity in combining both parents
[131]. The uniform crossover first selects two parents used for crossover
(see line 2 in Algorithm 13). Two new chromosomes can be described as
Ck = (ck1, ..., c

k
i , ..., c

k
n), k = 1, 2. Each chromosome vector cki can be calcu-
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lated by Equation 4.20,

cki =

p2i if u = 0

p1i if u = 1
, (4.20)

where u is a random number that can have a value of zero with probability
pc, and a value of one with probability 1− pc; With probability pc the value
of the first parents gene p1i is assigned to the second child and the value of
the second parents gene p2i is assigned to the first child. The new children
can be created by line 4-7 in Algorithm 13. An example of this operator has
been used successfully by Gonalves et al. [133] with probability pc = 0.7.

As the uniform operator can distribute solutions widely across the search
space, it avoids convergence to a local optimum. In the self-optimizing
problem, the uniform operator can make sure to find global values of the
scanning parameters to reduce scanning delay. However, the fixed prob-
ability of pc cannot satisfy the dynamic network requirements to find the
optimal scanning parameters fast enough. The reason is that the probabil-
ity of pc controls the number of genes swapping between the two parents.
With the number of generation increases, the genes of two parents are
more and more similar. Thus, swapping probability should be reduced.
The fixed probability pc may increase the time complexity.

4.3.6 Mutation

Mutation operator in GA is used primarily as a mechanism for maintain-
ing diversity in the population [80]. In contrast to a crossover operator, a
mutation operator operates on only one population member at a time and
modifies it independent to the rest of the population members. Although
mutation operator alone may not constitute an efficient search, along with
a suitable crossover operator, mutation operator plays an important role
in making the overall search efficient [80].
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There are several types of mutation such as random mutation, bound-
ary mutation, and non-uniform mutation. As boundary mutation only
selects the upper or lower value of the user-defined boundaries to replace
a gene, the diversity of scanning parameters cannot be satisfied in the self-
optimizing problem. Thus, boundary mutation cannot ensure to find the
global optimums of scanning parameters to reduce scanning delay. The
parameters used in the non-uniform mutation have to be tuned with the
generation increasing. The tuning time can increase the scanning delay
that is not suitable to solve the self-optimizing problem which aims to re-
duce the scanning delay.

Compared with boundary mutation and Non-uniform mutation, ran-
dom mutation replaces the gene with a uniformly distributed random
value. As a gene is a scanning parameter, the randomly selected value in-
creases the diversity of the scanning parameters. The diversity can make
sure the optimal value of scanning parameters can be found in the global
search space. Thus, random mutation is considered to be one of the most
suitable mutation operators for RVC GA [134] and used to solve the self-
optimization problem.

In the Random mutation, a random gene is selected and its value is
changed within the entire parameter range. The mutation rate is θ (see
lines 4, 11 in Algorithm 7). The example is given in Figure 4.4. 
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Figure 4.4: Mutation: (A) before mutation (B) after mutation

Let C = (c1, ...ci, ...cn) denote a chromosome and ci ∈ [ai, bi] denote a
gene to be mutated. Next, the gene, c′i, resulting from the application of
different mutation operators is shown in following subsections.
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4.3.6.1 Random Mutation

Michalewicz [81] proposed a random (uniform) mutation based on float-
ing point representation. The random mutation operator replaces the value
of the chosen gene with a random value (uniform probability distribu-
tion) selected between the user-specified upper and lower bounds for that
gene [82] (see line 2-5 in Algorithm 14). This operator ensures that the GA
can search the solution space freely [83]. Thus, the global optimums of
scanning parameters can be found to be used in the scanning phase. The
handover delay can be reduced with the optimal scanning parameters.

Algorithm 14 Random mutation
Input: Chromosomes C = (c1, ...ci, ...cn) before mutation
Output:Chromosomes C ′

= (c1, ...c
′
i, ...cn) after mutation

1: Random-mutation(C):
2: Select a random integer number i from [1, n];
3: ai is the lower bound of the i-th scanning parameter;
4: bi is the upper bound of the i-th scanning parameter;
5: Set ci ∈ [ai, bi]
6: return C

′

4.3.6.2 Boundary Mutation

Boundary mutation is variation of the uniform mutation with c
′
i being ei-

ther the lower bound ai or upper bound bi with equal probability (see line
2-11 in Algorithm 15). This operator cannot meet the diversity of scan-
ning parameters in GA because the genes are mutated only by boundaries.
With the generation increases, the chromosomes become less different.
The gene mutated only with boundary values means the chromosomes
have less opportunity for mutation. The chromosomes may be the same
in the later generations. Thus, it is a waste of time to do mutation. The
time consumption cannot meet the dynamic network requirements to find
the best scanning parameters as fast as possible. Thus, the best solutions
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Algorithm 15 Boundary mutation
Input: Chromosomes C = (c1, ...ci, ...cn) before mutation
Output:Chromosomes C ′

= (c1, ...c
′
i, ...cn) after mutation

1: Boundary-mutation(C):
2: Select a random integer number i from [1, n];
3: r is a random selected value between 0 and 1.
4: Select a random real value r from (0,1)
5: ai is the lower bound of the i-th scanning parameter;
6: bi is the upper bound of the i-th scanning parameter;
7: if r > 0.5 then
8: c

′
i ← bi;

9: else
10: c

′
i ← ai;

11: end if
12: return C

′

of scanning parameters may not be guaranteed using boundary mutation.
If the selected scanning parameters are not the best solutions, the scanning
delay cannot be reduced and handover delay will be high.

4.3.6.3 Non-uniform Mutation

Algorithm 16 Non-uniform mutation
Input: Chromosomes C = (c1, ...ci, ...cn) before mutation
Output:Chromosomes C ′

= (c1, ...c
′
i, ...cn) after mutation

1: Non-uniform-mutation(C):
2: Select a random integer number i from [1, n];
3: Select a random real value r from (0,1)
4: ai is the lower bound of the i-th scanning parameter;
5: bi is the upper bound of the i-th scanning parameter;
6: Set c′i by Equation 4.21;
7: return C

′

Non-uniform mutation is one of the commonly used mutation opera-
tors in real coded GAs [81] . If this operator is applied in a generation t,
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and gmax is the maximum number of generations then

c
′

i =

ci + ∆(t, bi − ci) if τ = 0

ci −∆(t, ci − ai) if τ = 1

∆(t, y) = y(1− r(1−
t

gmax
)σ),

(4.21)

where τ is a random value which may be zero or one, and r is a uniformly
distributed random number from the interval [0, 1], σ is a parameter cho-
sen by the user, which determines the degree of dependency on the num-
ber of iterations. The function ∆(t, y) gives a value in the range [0, y] such
that the probability of returning a number close to zero increases as t in-
creases. In the initial generations of non-uniform mutation tends to search
the space uniformly and in the later generations, it tends to search the
space locally [135]. This can ensure the GA to find the good solutions of
scanning parameters in the global searching space and refine the global
solutions accurately in local space. Although the accuracy of finding the
optimal scanning parameters is high using non-uniform mutation, the cal-
culation time of the operator is long. This does not satisfy the objective to
reduce the scanning delay.

4.3.7 Termination

The GA process is terminated in two ways. The first way is when the best
AP is discovered before the maximum generation is reached. When the
SNRh defined in Equation 4.9 of a certain AP is higher than a pre-defined
maximum threshold SNRup, the GA process and active scan are termi-
nated. The current chromosome will be selected as the best chromosome.
The second way is that the GA will continue to run until the last genera-
tion.

Ngen =

j, if SNRh ≥ SNRup

Nmax, otherwise
(4.22)
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where Ngen is the generation needed to run GA procedures, j is the jth
generation when SNRh ≥ SNRup is satisfied before the best chromosome
is found, Nmax is the maximum generation size.

4.3.8 Sorting Selected Channels

To provide seamless handover for real-time applications, reducing scan
time for each channel is not enough. The total scanning time is affected by
both the probe waiting time and the channel switching time when TPreq(i)
is fixed, described in Equation 4.2. Thus, after the GA process, the channel
will be sorted according to the value of SNRh(i).

There are two thresholds, a pre-defined maximum threshold SNRup

and a pre-defined minimum threshold SNRlow. The channel will be ranked
and selected between two thresholds SNRlow and SNRup. For the active
scan, only the selected channel will be scanned by a STA. The reduction of
the number of channels will shorten the scan time. At the same time, the
sorted channel list will help to find the best candidate AP faster than the
original scan sequence.

Let C(ch) denote the set of scanning channels whereby each channel
is indexed by i such that 1 ≤ i ≤ n and i ∈ Z+. Using a set notation we
express the channel set as:

Ci(ch) = {ch1, ..chk, ...chn}, chk ∈ N, (4.23)

where chk denotes the channel with index k. The update algorithm finds
a natural sorted set [118] (denoted by Co

i (ch)) based on the three radio
parameters (SNR, packet delay and load). The IEEE 802.11k standard pro-
vides mechanisms to retrieve these radio parameters from measurement
reports such as SNR (signal to noise ratio), load and neighbor report. Af-
ter retrieving these values from measurement reports, the list of channels
is sorted from best to worst potential APs for handover. This information
is recorded in a table stored in the controller.
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4.4 Adaptive Timers

After setting the scanning timers by GA, these timers are dynamically
adapted using Algorithm 17.

Algorithm 17 describes the dynamic adaptation of probe timers based
on GA. With the information of GA readily known, the value of the timers
MinChannelTime and MaxChannelTime for the channels on the GA list is
optimized to reduce the wasted channel probing time (lines 12 - 15, 17 - 20
in Algorithm 17), because we already have the sorted channel information.

Algorithm 17 Dynamic adaptation of MinChannelTime and MaxChannel-
Time

1: Channel(i): channel i;
2: tmin(i): MinChannelT ime of channel i;
3: tmax(i): MaxChannelT ime of channel i;
4: tPreq(i): Probe request interval TPreq(i);
5: tsw(i): Channel switching time Tsw(i);
6: tmin(i)new : Optimized MinChannelT ime;
7: tmax(i)new : Optimized MaxChannelT ime;
8: tPreq(i)ga : GA Optimized probe request interval;
9: tsw(i)ga : GA Optimized channel switching time;

10: for GA selected sorting Channel(i) do
11: if AP is found then
12: tmin(i)←min{0, tmin(i)new - α};
13: tmax(i)←min{0, tmax(i)new - β};
14: tPreq(i) = tPreq(i)ga ;
15: tsw(i) = tsw(i)ga ;
16: else
17: tmin(i)←min{tmin(i)new + α, γ};
18: tmax(i)←min{tmax(i)new + β, γ};
19: tPreq(i) = tPreq(i)ga ;
20: tsw(i) = tsw(i)ga ;
21: end if
22: end for

When new APs are discovered in a scan, the timers of tmin(i) and tmax(i)
are reduced by α and β respectively to avoid excessive waiting time (see
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Figure 4.5: Flowchart of self-optimizing handover scheme
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lines 12 - 15 in Algorithm 17). For existing APs in the list that have not
replied to a probe request, the timers are increased to avoid missing out
potential APs (see lines 17 - 20 in Algorithm 17). The values of α and β are
the step increments for the timers. In this thesis these values are constant,
γ is the maximum allowed scanning time specified by the 802.11 standard
(12ms). After the scanning phase, we obtain the best AP for reassociation.
The complete proposed handover process is illustrated in Figure 4.5.

4.5 Performance Evaluation

In this section, the performance of the proposed self-optimizing approach
for scanning parameters is evaluated compared with the 802.11 standard
using the fixed timers suggested in [26] and the previous neighbor list
mechanism (NLM) handover scheme [136]. The reason why the proposed
self-optimizing approach is compared with NLM is to evaluate whether
the performance using dynamic scanning parameters is better than using
fixed values in NLM.

4.5.1 Simulation Setup

The proposed algorithms are implemented in NS-3 with all AP operat-
ing in the 2.412 GHz band using the IEEE 802.11k protocol. The values
of simulation parameters are listed in Table 4.1. The measurement data
of the handover delay, throughput and packet loss rate are collected over
35 runs. Each run uses a different seed to generate a random data rate
and packet size. The random traffic generation aims to satisfy different
application requirements including voice call, video call, video streaming,
online gaming in the different density network environment and network
topologies. The averages shown are reported with a confidence interval
of 95.00% under the assumption that the averages are normally distrib-
uted. This statistical methodology validates the simulation results. The
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simulation results are also validated by comparing proposed algorithms
with conventional 802.11 standard and NLM using the same simulation
parameters.

Table 4.1: Simulation Parameters

Parameter Value

Simulation time (t) 60s, 100s

Speed 1m/s - 10m/s

Number of AP 6 - 30

Distance between two APs 30 m

Number of Mobile Nodes 1-35

ActiveProbing true

WiFi Standard 802.11g, 802.11k

Packet size 10-10000 byte

Maximum data rate 54 Mbps

GA population size 50

GA Maximum number of generations 1000

GA Crossover rate 0.80

GA Mutation rate 0.15

GA Elitism rate 0.02

In the simulation, five different network scenarios are investigated.
The first two scenarios involve six APs and five STAs. The APs are placed
on a line topology and each AP is separated from its neighbors by 30 me-
ters. These two scenarios are investigated by changing STAs speed and
moving directions. The third scenario investigates the density of the net-
work by changing the number of APs. The fourth scenario investigates the
impact on handover performance by varying the number of STAs. Finally,
three different network topologies of AP placement are compared to show
the handover performance comparison. These three topologies are line
topology, grid topology and random topology. All five scenarios reflect a
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typical indoor office or campus WLAN.

In order to evaluate the Self-Optimizing approach by different GA op-
erators, three GA algorithms using different selection operators, crossover
operators and mutation operators are used to compare the results with
802.11 standard and NLM handover scheme. These GA algorithms are
GA-TNR using Tournament selection,N -point crossover and Random mu-
tation, GA-RSR using Roulette Wheel Selection, Single-point crossover
and Random mutation, GA-RNB Ranked-based Selection,N -point crossover
and Boundary mutation.

4.5.2 Analysis of Results

4.5.2.1 Changing Speed of STAs

In the first scenario (Scenario I), the handover performance is evaluated by
varying the speed of STAs. The speed of STAs is increased from 1m/s to
6m/s. At the simulation start time t = 0, the STAs are on the same location
and are connected to AP0. All the STAs start to move at simulation time
t = 0. The simulation time is 60s for each run.

• Throughput

The average throughput has been compared when varying the speed
of STAs to better understand the handover performance using differ-
ent self-optimizing algorithms. The average throughput decreases
with the moving speed increasing in all mechanisms. This is be-
cause the increased speed of STAs causes more handover frequen-
cies. However, in the case of the proposed self-optimizing handover
scheme, throughput is less affected by the increase of speed com-
pared with standard 802.11.

As can be seen in Figure 4.6, the average throughput of IEEE 802.11
drops 9.06% when the speed change from 2m/s to 6m/s. The NLM
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Figure 4.6: Throughput vs. Speed when the speed of STAs is changed
(Scenario I)

method has improved the average throughput by around 1.97% com-
pared with 802.11. However, with the proposed self-optimizing ap-
proach, the average throughput has been improved by 2.52% using
GA-TNR, 2.48% using GA-RSR and 2.35% using GA-RNB, respec-
tively. The average throughput performance improved is because
the self-optimizing scanning parameters are dynamically optimized
based on the network environment changing. Although the speed
of STAs has been increased, the scanning parameters can be dynami-
cally adjusted by the changes in speed. Thus, even though increasing
the speed can cause more handovers and data disruption, the scan-
ning delay has been reduced to adapt to the network changes.

Although the NLM method has already enhanced the overall av-
erage throughput, the GA based self-optimization approaches still
show better performance than NLM when the speed of STAs is in-
creased to five and six. This is because the self-optimizing approach
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not only reduces the number of scanning channels but optimizes the
scanning parameters based on the dynamic network environment.
The scanning parameters are adjusted when the speed of STAs in-
creases. These adaptive parameters can satisfy the dynamic chang-
ing environment.

The GA-TNR shows the best throughput performance in this speed
changing scenario. This is because tournament selection has a fast
and efficient converge rate to satisfy the speed changing require-
ments. Moreover, N -points crossover is more suitable for this scan-
ning parameter optimization because these parameters are consid-
ered as a group of parameters per channel. Random mutation is also
one of the most suitable mutation operations for RVC GA and can
search the solution space freely [83]. The throughput improvement
of GA-RSR is 0.13%, which is worse than GA-TNR. This is because
the roulette wheel selection in GA-TNR has a longer computing time
shown in Table 2.6 than tournament selection. GA-RNB shows worse
improvement than GA-TNR and GA-RSR because the boundary mu-
tation cannot maintain the diversity of scanning parameters in GA.
The boundary mutation just randomly selects the upper or lower
value to replace the current gene of the chromosome. As the gene
is the scanning parameter, the scanning parameter is not limited to
the upper or lower value. Thus, the boundary mutation cannot make
the overall search efficiently and the best solutions of scanning para-
meters may not be found.

• Packet loss rate

Figure 4.7 illustrates the impact of handover on the data reception
in different methods: 802.11, NLM GA-TNR, GA-RSR and GA-RNB.
The average packet loss rate for standard 802.11, NLM, GA-TNR,
GA-RSR and GA-RNB are 6.03%, 4.16%, 3.64%, 3.65%, 3.81%, re-
spectively. The NLM method improved 31.01% compared with stan-
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dard 802.11. The proposed self-optimizing algorithms using GA-
TNR, GA-RSR and GA-RNB improved 39.64%, 39.47%, 36.82%, re-
spectively. The GA-TNR achieves the best performance among these
five approaches is corresponding to the results of throughput. This is
because tournament selection can converge very fast and efficiently
to satisfy the speed changing environment. Furthermore, N -points
crossover is quite suitable for the scanning parameters cutting as a
group per channel. Random mutation can maintain the diversity of
the scanning parameters and also make the overall search efficient.
As GA-RNB uses the boundary mutation that cannot make the diver-
sity of scanning parameters in GA, the improvement of the packet
loss rate is worse than GA-TNR and GA-RSR. Compared with NLM,
the performance of packet loss rate are further improved by 8.63%
with GA-TNR, 8.46% with GA-RSR, 5.81% with GA-RNB, respec-
tively. This reducing is because both the number of channels scanned
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and the scanning parameters have been dynamically adjusted when
the network environment changes as discussed in section 4.3.

• Handover delay
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is changed (Scenario I)

Figure 4.8 shows the average handover delay impacted by varying
STAs speed. The number of handovers certainly increases with in-
creased moving speeds. However, compared with standard 802.11
and NLM, the average number of handovers of the proposed self-
optimizing approach is reduced to three. The standard 802.11 and
NLM method shows five and four handovers for 802.11 and NLM
respectively on average. The reduced number of handovers of the
self-optimizing approach means the STAs can find a better AP to
associate with than 802.11 and NLM. Although the speed of STAs
changes, the STAs can find the best candidate AP within a short scan-
ning time using the optimized scanning parameters. Also, the chan-
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nels are sorted from best to worst potential APs for handover as dis-
cussed in section 4.3.8. The number of handovers is reduced because
the STAs are associated with a better AP searched by self-optimizing
algorithm than the AP found based on the 802.11 standard.

The standard layer 2 handover scheme exhibits a lower performance,
with an average handover delay of 0.33s/ho (handover numbers).
The average handover delay of the proposed self-optimizing method
is 0.04s/ho, 0.05s/ho and 0.07s/ho by using GA-TNR, GA-RSR and
GA-RNB, respectively. Although the NLM improves to 0.19s/ho,
the self-optimizing still achieves a better handover performance than
NLM because the number of scanned channels and scanning timers
is both optimized, while NLM only reduces the set of scanning APs.
Compared with GA-RSR and GA-RNB, GA-TNR uses tournament
selection,N -point crossover and random mutation operators that are
most suitable to solve the scanning parameters optimization prob-
lem. This is because tournament selection is suitable for this small
data size optimization problem. Also N -point crossover can be used
to cut the scanning parameters as a group of parameters per chan-
nel. Furthermore, random mutation can maintain the diversity of
scanning parameters to enhance the searching efficiency.

4.5.2.2 STAs Moving in Random Directions

In the second scenario (Scenario II), the STAs move at a constant speed but
in random directions. At the simulation start time t = 0, the STAs are at
different locations and are connected to different APs. All the STAs start
to move at simulation time t = 0. The simulation time is 60s for each run.

• Throughput

In Figure 4.9, the average throughput of standard 802.11 has been
improved by around 2.64% using the NLM method by reducing the
number of channels scanned.
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With the proposed self-optimizing approaches, the average through-
put has been improved by 5.10% with GA-TNR, 5.05% with GA-RSR
and 4.75% with GA-RNB, respectively. All the GA optimization algo-
rithms perform better than NLM. Compared with NLM, the average
throughput is further enhanced. This is because the self-optimizing
approaches not only optimize the number of channels scanned by a
STA but also automatically adjust the scanning parameters.

With the self-optimizing approach, the STAs can detect the best can-
didate AP faster than 802.11 standard and NLM. GA-TNR achieves
better throughput performance than GA-RSR and GA-RNB because
the tournament selection, N -point crossover and random mutation
operators used in GA-TNR can converge quickly to find the opti-
mal values of scanning parameters as discussed in section 4.3. The
roulette wheel selection used in GA-RSR and ranked-based selec-
tion used in GA-RNB has larger time complexity as shown in Ta-
ble 2.6 than tournament selection used in GA-TNR. Also, the single-
point crossover in GA-RSR has less searching space than N -point
crossover and boundary mutation in GA-RNB cannot maintain the
diversity in the population of scanning parameters as discussed in
section 4.3.5.2 and 4.3.6.2.

• Packet loss rate

Figure 4.10 illustrates the impact of handover on the data reception
in the five methods: 802.11, NLM, GA-TNR, GA-RSR and GA-RNB.
These five packet loss rates are 10.10%, 7.70%, 5.52%, 5.57% and
6.73% respectively on average. The proposed self-optimizing ap-
proaches achieve average 4.58% , 4.53% and 3.37% lower packet loss
rate compared with the standard 802.11 mechanism by using GA-
TNR, GA-RSR and GA-RNB respectively. With the reduced number
of channels in NLM, the packet loss rates have already been reduced.
However, the packet loss rate of the proposed self-optimizing ap-
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proaches drops by 28.31% with GA-TNR , 27.66% with GA-RSR and
12.60% with GA-RNB compared to NLM because the self-optimizing
timers further optimized the scanning parameters which in turn pro-
vides more responsive handovers. The GA-TNR achieves the best
performance among these five approaches. This is because tourna-
ment selection used in GA-TNR is more suitable for this small data
size optimization problem. Moreover, N -points crossover is suit-
able for the scanning parameters cutting as a group per channel and
random mutation can make the population of scanning parameters
more diverse. As GA-RNB uses the boundary mutation using the
upper and lower boundary values to mutate the genes, it cannot
make the diversity of scanning parameters in GA discussed in sec-
tion 4.3.6.2. Thus, the improvement of the packet loss rate is worse
than GA-TNR and GA-RSR.

• Handover delay

Figure 4.8 shows the total handover delay during the simulation
time. Compared with the 802.11 standard, the handover delay is
reduced by 15.56% by using NLM. The handover of self-optimizing
approaches is reduced by 29.46% with GA-TNR, 29.19% with GA-
RSR and 27.03% with GA-RNB compared with NLM, respectively.
With the reduction of total handover delay, the data disruption time
is reduced to provide seamless handover performance. When the
STAs move randomly, the GA-TNR method can find the best can-
didate AP faster than GA-RSR and GA-RNB because tournament
selection can converge faster to the optimal value. Also N -point
crossover is more suitable to this scanning parameter optimization
problem because the scanning parameters are considered as a group
of parameters per channel. Furthermore, the random mutation that
follows the uniform distribution probability can select a value for a
gene between the upper and lower boundary. However, the bound-
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ary mutation used in GA-RNB can only choose the upper or lower
boundary value to replace the value of genes. GA-RNB cannot keep
the diversity of the population and affect the efficiency of the solu-
tions search space. Thus, the handover delay reduced by GA-RNB is
less than GA-TNR and GA-RSR.
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Figure 4.11: Handover delay vs. Cumulative distribution function when
the STAs move randomly (Scenario II)

4.5.2.3 Changing the Number of APs

In Scenario III, one STA moves between different number of APs (6, 12,
18, 24, 30) at a constant speed of 3m/s. At the simulation start time t = 0,
the STA is connected to AP0. The STA starts to move at simulation time
t = 0. The simulation time is 60s for each run. This scenario is used to
investigate the density impact on handover performance.

With the increasing number of APs, the handover frequencies increase
and the STA has more chances to find new APs that can provide better
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throughput than the current serving AP. However, the expected commu-
nication time between the STA and AP is reduced because of the dense
environment. The proposed self-optimizing approach affect throughput
less than the 802.11 and NLM mechanisms because it considers the net-
work conditions and dynamically adjusted scanning timers and scanning
channels.

• Throughput
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Figure 4.12: Throughput vs. Number of APs (Scenario III)

Figure 4.12 gives the average throughput among 802.11, NLM and
the proposed self-optimizing method. The average throughput of
the proposed methods is improved by 4.70% with GA-TNR, 4.70%
with GA-RSR and 4.41% with GA-RNB compared with the 802.11
standard respectively. Compared with NLM, the average through-
put of the proposed method is improved by 0.71% with GA-TNR,
0.71% with GA-RSR and 0.42% with GA-RNB.
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The performance of GA-TNR and GA-RSR are almost the same in
these density changing environments. When the number of AP in-
creases, the improvements are also stable by using GA-TNR and GA-
RSR. GA-TNR and GA-RSR achieve better throughput performance
than GA-RNB because the boundary mutation in GA-RNB only uses
upper or lower value to mutate the scanning parameter. This method
cannot maintain the diversity of population and affect the efficiency
to find better solutions of scanning parameters discussed in section
4.3.6.2. However, The GA-RNB performs better when the number
of APs increased to 30 just because the rank-based selection is more
robust towards optimal in a higher density environment.

• Packet loss rate

 4

 6

 8

 10

 12

 14

 6  12  18  24  30

P
a
c
k
e
t 

lo
s
s
 r

a
te

(%
)

Number of APs

802.11
NLM

GA-TNR
GA-RSR
GA-RNB

Figure 4.13: Packet loss rate vs. Number of APs (Scenario III)

The packet loss happens when handover occurs because of the dis-
ruption time. The packet loss rate also strongly depends on the
density of networks. When the number of AP increases from six
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to twelve, the packet loss rate is reduced because the STA has more
chances to associate with new APs that can provide better service
than the current AP. However, when the number of AP increases, the
packet loss rate increases a little because of the interferences between
APs.

Compared with 802.11, the average packet loss rate of self-optimizing
methods is reduced by 42.99% with GA-TNR, 42.99% with GA-RSR,
40.26% with GA-RNB. Although the average packet loss rate of NLM
is reduced by 36.32%, the proposed approaches further reduce the
packet loss rate by 10.46%, 10.46% and 6.18%, receptively. The GA-
TNR and GA-RSR achieve the same improvement of reducing the
average packet loss rate. This is because tournament selection used
in GA-TNR and roulette wheel selection used in GA-RNB is faster
than the ranked-based selection used in GA-RNB as shown in Ta-
ble 2.6. Also, the random mutation used in both GA-TNR and GA-
RSR can enhance the search efficiency to find better solutions than
GA-RNB [83]. Therefore, the scanning parameters can be optimized
faster to search for the best candidate AP to perform handover. The
packet loss is reduced by reducing the disruption time caused by
long handover delay.

• Handover delay

Figure 4.14 shows the average handover delay impacted by different
algorithms with varying the number of APs. As the number of AP
increases, the total handover delay is not always increased. When
the number of AP is increased to 12 and 18, the handover delay re-
duced because of the density of APs. The STA can easily find new
APs to associate. However, when the number of AP is increased to
24, the handover delay starts to increase because of the interference
between APs. Compared with standard 802.11 and NLM, the aver-
age handover delay of self-optimizing approaches is less affected by
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Figure 4.14: Handover delay vs. Number of APs (Scenario III)
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Figure 4.15: Handover delay vs. Handover number when the number of
APs is changed (Scenario III)
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the various density network. This is because the self-optimizing ad-
justs the scanning time according to the density change. Therefore,
the total handover delay is reduced.

As can be seen in Figure 4.15, the average handover delay of the
802.11 standard is 0.30s/ho(handover number). The average han-
dover delay of NLM is reduced to 0.25s/ho. However, the aver-
age handover delay of the self-optimizing approaches is reduced to
0.04s/ho with GA-TNR, 0.12s/ho with GA-RSR and 0.13s/ho with
GA-RNB. The handover delay is significantly reduced by proposed
algorithms because the adaptive scanning timers and channels are
dynamically adjusted based on network conditions. This can reduce
the scanning delay to make handover faster than the fixed value
used in 802.11 standards. When the number of AP increases, GA-
TNR method can converge faster to the optimal scanning parame-
ters [64] than GA-RSR and GA-RNB because of the smallest compu-
tation time as shown in Table 2.6. Also, N -point crossover can cut
the scanning parameters as a group per channel, which is suitable
for this scanning optimization problem as discussed in section 4.3.5.
Furthermore, random mutation performs better than boundary mu-
tation used in GA-RNB. This is because the boundary mutation only
chooses the upper or lower boundary value to replace the value of
the gene. The diversity of the population is hard to be increased by
GA-RNB and affect the efficiency of finding the best solution of scan-
ning parameters [85]. Thus, the GA-RNB may not find the global op-
timal scanning parameters to reduce the scanning delay. The scan-
ning delay causes the handover delay longer using GA-RNB than
GA-TNR and GA-RSR.

4.5.2.4 Changing the Number of STAs

In Scenario IV, the number of STAs has been increased to see the impact on
handover performance. The STAs move at t=0s with a constant speed of
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3m/s from AP0 to AP5. The distance between APs is 30m. The simulation
time is 60s for each run. This scenario is used to investigate the density
impact on handover performance.

• Throughput
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Figure 4.16: Throughput vs. Number of STAs (Scenario IV)

Figure. 4.16 shows the average STAs throughput impacted by differ-
ent algorithms with various numbers of STAs. The average through-
put of IEEE 802.11 drops 2.28% when the number of STAs changes
from one to five, while the average throughput has been improved
by around 0.75% using NLM method. This is because the NLM re-
duces the number of channels scanned. At the same time, the NLM
considers the AP load balance. The STAs are prevented from hand-
ing over to overloaded APs. Thus, throughput performance is im-
proved by NLM. However, NLM still uses fixed scanning parameters
that cannot meet the dynamic network requirements. These fixed
scanning parameters used by STAs can increase the scanning delay
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because the STAs spend the same time to scan each channel. The self-
optimizing algorithms automatically adjust the scanning parameters
based on real-time network environments such as channel condi-
tions and AP load. Therefore, the average throughput has been fur-
ther improved compared with NLM. Compared with the 802.11 stan-
dard, the average throughput has been improved by 1.37% with GA-
TNR, 1.27% with GA-RSR and 1.25% with GA-RNB, respectively.

• Packet loss rate
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Figure 4.17: Packet loss rate vs. Number of STAs (Scenario IV)

Figure 4.17 illustrates the average STAs packet loss rate changes when
the number of STAs increases. When the number of STAs is increas-
ing, the contention among STAs increases. This contention causes
a higher packet loss rate when the STAs become denser in the net-
works. Compared with 802.11, the average packet loss rate has been
reduced by around 35.80% with the NLM method because NLM con-
siders the packet loss rate, packet delay, and AP load when the neigh-
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bor list is updated. This NLM method prevents STAs from handing
over to unnecessary AP and reduces the handover failure rate. Thus,
the packet loss rate is reduced.

The packet loss rate has been further reduced by self-optimizing al-
gorithms. The self-optimizing algorithms achieve more improve-
ment than NLM because they not only reduce the number of chan-
nels but also optimize the scanning parameters. The packet loss rate
compared with 802.11 has been reduced by 50.69% with GA-TNR,
49.14% with GA-RSR and 48.80% with GA-RNB respectively. With
the self-optimizing algorithms, the collision among STAs has been
reduced because the STAs do not have to re-associate with the same
AP. The scanning parameters are dynamically adjusted based on dif-
ferent STAs QoS such as packet loss, packet delay, and throughput.
Thus, the scanning time is different for each STA. This reduces the
collision and contention among STAs. Thus, the overall packet loss
rate has been improved more using self-optimizing algorithms than
NLM.

• Handover delay

Figure. 4.18 shows the average handover delay impacted by differ-
ent algorithms with various numbers of STAs. As the number of
STAs increases, the average handover delay of STAs increases be-
cause the density of STAs causes more collisions among STAs. This
makes STAs spend more time scanning for the best candidate AP.
Also, the STAs try to associate with the same AP without consider-
ing load balance because they start to move at the same time with the
same speed and direction. This leads to load imbalance and causes
the STAs to spend more time to find a new AP. However, compared
with standard 802.11, the average handover delay of NLM and the
self-optimizing approaches is reduced because the scanning list and
parameters are updated based on network environment changes in-
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Figure 4.18: Handover delay vs. Number of STAs (Scenario IV)

cluding channel conditions, STA QoS and AP load. Thus, the aver-
age handover delay has been reduced by 51.06% with NLM, 74.47%
with GA-TNR, 72.34% with GA-RSR and 70.21% with GA-RNB, re-
spectively.

4.5.2.5 Changing the Network Topologies

In Scenario V, different topologies of AP placement are investigated. First,
the APs are placed in one line as shown in Figure 4.19. The distance be-
tween two APs is 30m. One STA moves from AP0 to AP5 at t=0s with a
constant speed of 3m/s from left to right backwards and forwards three
times. The simulation time is 100s for each run.

Then, the APs are placed in grid as shown in Figure 4.20. The distance
between the two lines is 16m and 12 APs are placed on each line. At t=0s,
one STA moves in the middle among lines back and forth with a constant
speed of 3m/s. The distance between APs is 60m.

Finally, Figure 4.21 shows the random AP placement (Poisson point
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Figure 4.19: AP placement of 1D line topology for self-optimizing ap-
proach in NS3
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Figure 4.21: AP placement of random topology for self-optimizing ap-
proach in NS3

distribution) in a 90×80m full coverage area. One STA moves with a con-
stant speed of 3m/s from left to right backwards and forwards.

• Throughput

In Figure 4.22 4.23 4.24, the average throughput of self-optimizing
approaches, NLM and 802.11 standard has been compared in three
different network topologies.

Figure 4.22 shows the average throughput changing when STA moves
in a line topology. Compared with 802.11, the average throughput of
the proposed self-optimizing method has been improved by 1.00%
with NLM, 1.25% with GA-TNR, 1.00% with GA-RSR and 1.25%
with GA-RNB, respectively. As this line topology is not dense, the
number of neighbor APs is small for each AP. When a STA initiates
a handover, the scanning time cannot be affected too much by the
scanning parameters. Thus, the self-optimizing approaches achieve
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Figure 4.22: Throughput vs. Simulation time - 1D topology (Scenario V)

almost the same improvement of throughput as NLM that uses the
fixed scanning parameters.

Figure 4.23 shows the average throughput changing when STA moves
in a grid network topology. Compared with 802.11, the average
throughput of the proposed self-optimizing method has been im-
proved by 4.29% with NLM, 5.03% with GA-TNR, 4.81% with GA-
RSR and 4.79% with GA-RNB, respectively. Compared with 1D net-
work topology, the improvement of average throughput using the
self-optimizing approach has been enhanced more in the 2D grid net-
works. This is because the AP density is increased in the 2D topol-
ogy. More APs need to be scanned by a STA when the handover
is initiated. The scanning time affects the throughput performance.
With the GA algorithms, the scanning delay is reduced by the opti-
mized scanning parameters that can meet the real-time network re-
quirement. As GA-RNB algorithm uses ranked based selection, the
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searching time of optimal scanning parameters is much longer than
GA-TNR and GA-RSR [129]. Thus, the performance of GA-RNB is
worse than GA-TNR and GA-RSR. As the data size of scanning para-
meters is not big, GA-TNR using tournament selection can find the
optimal scanning parameters very fast [127].
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Figure 4.23: Throughput vs. Simulation time -2D topology (Scenario V)

Figure 4.24 shows the average throughput changing when STA moves
in a random topology network. Compared with 802.11, the average
throughput of the proposed self-optimizing method has been im-
proved by 3.65% with NLM, 3.80% with GA-TNR, 3.70% with GA-
RSR and 3.93% with GA-RNB, respectively. Compared with the 2D
topology, the AP placement is less dense than the 2D topology in
this random topology network. In this random topology, the im-
provement of GA-RNB is better than GA-TNR. This is because the
individual scanning parameters in the population are sorted using
ranked based selection in GA-RNB. The ranked based selection is
more efficient at finding optimal scanning parameters in this less
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dense topology network. GA-TNR still outperforms GA-RSR be-
cause of fast convergence time. The faster the GA algorithms find the
optimal value of scanning parameters, the lower the scanning delay
is. Therefore, the average throughput can be improved by reducing
the scanning delay to keep the data transfer continuously.
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Figure 4.24: Throughput vs. Simulation time - Random topology (Scenario
V)

• Packet loss rate

In Figure 4.25 4.26 4.27, the packet loss rate of NLM approaches is
compared with the 802.11 standard in three network topologies.

Figure 4.25 shows the average packet loss rate changing when STA
moves in a line network topology. Compared with 802.11, the av-
erage packet loss rate of self-optimizing approaches has been im-
proved by 51.31% with NLM, 64.40% with GA-TNR, 51.31% with
GA-RSR and 64.40% with GA-RNB, respectively. GA-TRN and GA-
RNB show the same performance in this topology. This is because
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Figure 4.25: Packet loss rate vs. Simulation time - 1D topology (Scenario
V)
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Figure 4.27: Packet loss rate vs. Simulation time - Random topology (Sce-
nario V)

the tournament selection and ranked based selection is much more
stable and faster than roulette wheel selection used in GA-RSR [73]
[64]. These two algorithms can find the optimal scanning parameters
quickly to reduce the scanning delay.

Figure 4.26 shows the average packet loss rate changing when the
STA moves in a grid network topology. Compared with 802.11, the
average packet loss rate of the proposed NLM method has been im-
proved by 69.45% with NLM, 78.01% with GA-TNR, 74.46% with
GA-RSR and 73.71% with GA-RNB, respectively. Compared with
the 1D network topology, the packet loss rate of self-optimizing ap-
proach in 2D grid topology has been reduced more compared with
the 802.11 standard and NLM. This is because the AP density is in-
creased in the 2D topology. With an increasing number of APs, the
interference is increased between APs. The scanning delay is also
increased because of the dense AP placement. More APs need to
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be scanned by a STA when the handover is initiated. In traditional
802.11 networks, the data disruption time is increased because of fre-
quency handover. With the GA algorithms, the scanning delay is re-
duced by the optimized scanning parameters and reduced number
of channels. As GA-RNB algorithm uses ranked based selection, the
searching time of optimal scanning parameters is much longer than
GA-TNR and GA-RSR in the dense environment, the performance of
GA-RNB is worse than GA-TNR and GA-RSR. GA-TNR achieves the
best performance in the dense 2D networks because GA-TNR using
tournament selection can converge very fast in this small data size
optimization. The optimal scanning parameters of GA-TNR can be
obtained fast enough to meet the dynamic network environments.
Thus, the packet loss rate is reduced by more than GA-RSR and GA-
RNB.

Figure 4.27 shows the average packet loss rate changing when STAs
move in a random network topology. Compared with 802.11, the
average packet loss rate of the proposed NLM method has been im-
proved by 52.70% with NLM, 58.80% with GA-TNR, 55.28% with
GA-RSR and 55.25% with GA-RNB, respectively. Compared with
the 2D topology, the AP placement is less dense in this random topol-
ogy network. The issue of interference between APs is reduced com-
pared with 2D topology. Thus, the improvement of the packet loss
rate is less than in the 2D topology. However, as the APs are ran-
domly placed in the random topology, the distance between APs
is not the same. The AP assignment to each channel is more ran-
domly than 1D and 2D topologies. In the 802.11 standard, if one AP
uses the same channel assigned to a neighbor AP, the network per-
formance is degraded due to the channel interference [137]. In the
self-optimizing approach, the channel is sorted based on the SNR,
packet delay and AP load information. The STA will scan for the
best candidate AP by the priority of channels. The best candidate
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AP can be found earlier than the 802.11 standard. Thus, the scanning
delay is reduced by the sequence channels with optimized scanning
parameters.

• Handover delay

Figure 4.28 illustrates the handover delay comparison among three
different topologies.

In 1D line topology, the average handover delay has been reduced
by 0.12s/ho(handover numbers) with NLM, 0.15s/ho with GA-TNR,
0.14s/ho with GA-RSR, 0.15s/ho with GA-RNB compared with 802.11.
NLM reduces less handover delay because it only reduces the num-
ber of channels scanned by a STA. With the self-optimizing algo-
rithms, the scanning parameters and the number of channels are
all optimized in order to reduce the scanning delay. GA-TNR and
GA-RNB show the same improvement in handover delay. This is
because the N -point crossover has a wide search space than single-
point crossover. Thus, GA-TNR and GA-RNB can find better solu-
tions for scanning parameters than GA-RSR. These scanning para-
meters can meet the network environments to reduce the scanning
delay.

Compared with the 1D topology, the APs are placed very densely in
a 2D grid topology. The STA needs to scan longer to select the best
candidate AP among the dense APs. The scanning delay increases
the handover delay caused by the density. As the self-optimizing al-
gorithms consider network conditions such as load, SNR and packet
delay, the scanning parameters are dynamically adjusted to suit the
network requirements. Thus, the scanning delay is reduced and the
handover success rate has been increased. The average handover de-
lay has been reduced by self-optimizing algorithms. The handover
delay has been reduced more than NLM because NLM only reduces
the number of channels and APs scanned by a STA. Self-optimizing
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algorithms optimized both the sequence of channels and scanning
timers. Therefore, the results are better than NLM.
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Figure 4.28: Handover delay in different network topologies (Scenario V)

In the random topology, the average handover delay has been re-
duced by 0.22s/ho(handover numbers) with NLM, 0.28s/ho with
GA-TNR, 0.25s/ho with GA-RSR, 0.23s/ho with GA-RNB compared
with 802.11. The main difference among random topology, 2D and
1D topology is that random AP placement causes different distances
between APs. However, the scanning time that STA has to wait for
the probe responses from each AP on each channel is the same in
traditional 802.11 networks. This same scanning time can generate
wasted waiting time if there is no AP on a channel or can miss the
best AP if the scanning time is very small. In this random topology,
the scanning time is even more affected than 1D and 2D topology
because of varying distances between APs. The scanning time that
is affected by the probe waiting time has to be dynamically adjusted
by the adaptive scanning parameters. With the self-optimizing al-
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gorithms, the scanning parameters have been optimized based on
the network environment. Therefore, the average handover delay is
reduced compared with 802.11 and NLM.

4.5.3 GA Performance Evaluation

In this section, different GA selection, crossover and mutation operators
are investigated for solving scanning parameters optimization problem in
WiFi networks.

4.5.3.1 GA Selection Performance

In order to evaluate the selection operators performance, the crossover
operator and mutation operator are fixed. The simple point crossover and
random mutation are chosen to investigate different selection methods.

In Figure 4.29a 4.29b 4.29c, the average fitness and best fitness are com-
pared to investigate GA performance. The average fitness is the mean
fitness value across the entire population. In each generation, the popu-
lation changes and will get a new average population fitness. The best
fitness tends to be improved as the iterations increase and the average fit-
ness is always inferior to the best fitness, but the difference between them
narrows at different generations in these three selection operators. This
plateau occurs because the algorithm finds better and better solutions that
are harder to improve upon.

In Figure 4.29a, the difference between the average fitness and best fit-
ness narrows to a constant after 110 generations. The convergence using
roulette wheel selection in Figure 4.29b is slower than tournament selec-
tion. The difference between the average fitness and best fitness narrows
after 300 generations. In Figure 4.29c, there is always a big difference be-
tween the average fitness and best fitness during 1000 generations. As
the data size of this scanning parameters optimization problem is small,
tournament selection converges very fast in the small size problem [127].
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(b) Roulette Wheel Selection
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(c) Ranked-base selection

Figure 4.29: The mean fitness and best fitness of the different GA selections
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Therefore, the tournament selection has the best GA performance among
these three operators.

As seen in Figure 4.30, as the number of generations increases, the
trend of the best fitness value goes higher. In the beginning, the best fitness
increases rapidly and then plateaus at 110 generations for tournament se-
lection, 300 generations for roulette wheel selection and 50 generations for
ranked based selection, respectively. Compared with roulette wheel se-
lection and ranked based selection, tournament selection reaches the best
fitness value of 0.2060.
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Figure 4.30: The best fitness of different GA selections with increasing gen-
erations

4.5.3.2 GA Crossover Performance

As tournament selection is the best, the tournament selection and random
mutation are fixed to evaluate different crossover operators performance.
Three crossover operators are compared by the best fitness and average
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(a) Single-point crossover
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(b) N-point crossover
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(c) Uniform crossover

Figure 4.31: The mean fitness and best fitness of the different GA crossover
operators
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Figure 4.32: The best fitness of different GA crossover operators with in-
creasing generations

fitness values. These are single-point crossover, N-point crossover and
uniform crossover.

In Figure 4.31a 4.31b 4.31c, the average fitness and best fitness are com-
pared to investigate GA performance. In Figure 4.31a, the difference be-
tween the average fitness and best fitness narrows to a constant after 112
generations. In Figure 4.31b and 4.31c, the convergences using N-point
crossover and uniform crossover are faster than single-point crossover.
The difference between the average fitness and best fitness narrows after
42 generations and 41 generations, respectively. As single-point crossover
only selects one cross point to combine the parents to produce a new child
chromosome, it is harder to move out of the local optimum. N -point
can randomly select more crossover points than single-point and uniform
crossover can also uniformly combine two parents. Both of them have a
wide search space that can find global optimal scanning parameters for
this optimization problem. Therefore, the N -point crossover and uniform
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crossover are more suitable for the RVC GA applied in this self-optimizing
approach.

Figure 4.32 shows the fitness value trend when the number of genera-
tions increases. After around 40 generations, both N-point crossover and
uniform crossover converge to a constant value of 0.2058 and 0.2060. How-
ever, single-point crossover needs to wait until 473 generations to reach
the best fitness value. As discussed in section 4.3.5, the scanning para-
meters tmin(i) , tmax(i), TPreq(i) and Tsw(i) in the proposed GA method are
considered as a group of parameters per channel. Therefore, the N-points
crossover method is suitable to use for cutting the random position based
on channel numbers.

4.5.3.3 GA Mutation Performance

As tournament selection andN -point crossover are investigated to be used
for solving the scanning parameters problems, these are chosen as fixed se-
lection and crossover operators to evaluate crossover performance. Three
mutation operators including random mutation, boundary mutation and
non-uniform mutation are compared by best fitness and average fitness
values.

In Figure 4.33a 4.33b 4.33c, the average fitness and best fitness are com-
pared to investigate GA performance. The performance of random muta-
tion shown in Figure 4.33a is the best of these three mutation operations.
In random mutation, the difference between the average fitness and best
fitness narrows to a constant after 46 generations. Random mutation is
better than boundary and non-uniform mutation because random muta-
tion replaces the value of a gene with a random value(uniform probability
distribution). This can ensure the GA can search the solution space freely.
However, for the boundary mutation shown in Figure 4.33b, there is al-
ways a big difference between the average fitness and best fitness during
the whole GA process. The average fitness value and the best fitness value
cannot converge with an optimal solution. As a gene represents a scanning
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(a) Random mutation
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(b) Boundary mutation
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(c) Non-uniform mutation

Figure 4.33: The mean fitness and best fitness of the different GA mutation
operators
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parameter, the boundary mutation mutes the genes only by the upper or
lower boundary value. The diversity of scanning parameters cannot be
satisfied by the boundary mutation. Thus, the boundary mutation cannot
find an optimal solution for the scanning parameters. The convergence
using non-uniform mutation in Figure 4.33c is slower than random muta-
tion. This is because the value used to replace the gene need to be tuned.
Compared with random mutation, the computation time is longer. Thus,
the convergence is slower than non-uniform mutation.

As seen in Figure 4.34, the random mutation can obtain the best fit-
ness value of 0.2060. The best fitness value of non-uniform mutation is
0.204. The boundary mutation has the lowest best fitness value of 0.1985.
Therefore, the random mutation is chosen in the RVC GA for solving the
scanning parameter optimization problem.
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Figure 4.34: The best fitness of different GA mutation operators with in-
creasing generations
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4.6 Summary

The proposed self-optimizing approach based on Genetic Algorithms opti-
mized the scanning parameters dynamically to adapt to the changes in the
network environment. Due to the adaptive scanning parameters and re-
duction of scanning channels, the overall handover performance has been
improved compared with 802.11 standard and NLM.

As the self-optimizing using GA only consider the candidate AP prior-
ity based on SNR, other radio parameters such as RSSI, delay and load can
be considered to evaluate the self-optimizing approach in future. More-
over, the crossover rate and mutation rate have fixed values in this thesis.
These two parameters can be optimized dynamically based on different
data size and GA generations to get more optimal scanning parameters.



Chapter 5

Self-healing System

Chapters 3 and 4 described how the scanning delay has been reduced by
the self-configuring neighbor lists and self-optimizing algorithms, respec-
tively. The study shows that the best candidate AP can be found within
a short scanning time, improving handover performance when compared
with traditional 802.11 networks. However, the self-configuring and self-
optimizing algorithms only focus on the scanning phase. Even though
the best AP is found, the STA cannot be prevented from associating with
an AP that suddenly cannot work during the association phase. This
will cause the handover failure and degrade the network performance.
Also, the STAs associated with the faulty APs cannot be detected by self-
configuring neighbor lists and self-optimizing algorithms. Therefore, fault
management is needed to automatically monitor the network elements
and compensate for the network degradation when faults occur.

A self-healing approach for WiFi networks is proposed to solve the un-
expected outage issues described in this chapter. In WiFi networks, self-
healing is divided into two parts: self-detection and self-compensation.
Self-detection aims to automatically detect the faulty APs in dynamic net-
works. After the self-detection phase, the STAs associated with a faulty
AP will handover to the neighbor APs. The neighbor APs’ information
can be obtained by the neighbor list discussed in Chapter 3. At the same

184
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time, the neighbor list will be updated and the scanning parameters will
be optimized. Therefore, the three Self-Organizing Networks (SON) func-
tionalities can work together to improve the overall network performance
for WiFi networks.

5.1 Self-healing System

In this section, the proposed self-healing approach is introduced for WiFi
networks. The proposed approach uses the ideas from Software Defined
Networking (SDN) by using an AP controller (APC) to collect the mea-
surement data from APs attached to the APC. The APC uses the OpenFlow
1.3 protocol [138] to communicate with individual APs. The self-healing
network architecture is shown in Figure 5.1

STA

AP4

AP1

AP5

AP3AP2

AP6

Ethernet

Switch Switch Switch

AP Controller

APID Time Remain Energy Neighbor APs

AP1 0.0007826 999.998 AP2, AP3

AP1 0.001548 999.996 AP2, AP3

AP1 0.0017186 999.993 AP2, AP3

… … … …

AP2 0.0007826 999.998 AP1, AP3

AP2 0.001548 999.995 AP1, AP3

… … … …

Figure 5.1: Self-healing architecture including an AP controller (APC) con-
taining measurement dataset
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Measured AP data is collected periodically and recorded in a table and
stored in the APC. The neighbor APs information on each AP, which can
be obtained based on the “Neighbor Report” mechanism specified in the
IEEE 802.11k [136, 139], is saved in the table. The machine learning algo-
rithms are triggered to detect the faulty APs periodically. Once the faulty
APs are found, this information will be sent to STAs. The STAs are pre-
vented from initiating a handover to faulty APs. The STAs that are as-
sociated with the faulty APs will be forced to handover to the neighbor
APs promptly. Each STA in the vicinity will drop the faulty AP from its
neighbor list until the AP can operate in its normal state.

5.1.1 Self-healing Framework

Self-healing is a functionality aiming to minimize the network performance
deterioration when failures occur in a network element such as an AP.
This self-healing approach includes detecting faulty APs and compensat-
ing for network degradation caused by faulty APs. Figure 5.2 shows the
self-healing framework which consists of measurement collection, a self-
healing process and performance evaluation.

5.1.1.1 Measuring AP Health

As discussed in section 3.1, the IEEE 802.11k-2008 standard provides mech-
anisms for gathering data on radio link performance and on the radio
environment (called radio measurement reports). In the self-healing ap-
proach, the radio measurement reports are still collected for measuring
the AP status. These measurement reports include radio and network in-
formation such as RSSI, load information, neighbor report, delay informa-
tion, power constraints, power capability, Transmit Power Control (TPC)
report, Received Channel Power Indicator (RCPI) to facilitate the manage-
ment and maintenance of a Wireless Local Area Network (WLAN).

In this section, the collected measurement data including TPC report,
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APC

ap2ap1 ap3

ap6ap5ap4

Collected 
measurements

Performance 
evaluation

Self-healing 
process

Model-learning

Problem-detecting

Compensation

Figure 5.2: Self-healing process by using machine learning algorithms

Table 5.1: AP-level data for self-healing

Measurements Description Unit
TTI Transmission Time Interval 10ms
AP Identification (APID) BSSID Integer
Energy measurement The remaining energy of each AP Joule (J)
Neighbor APs information Refer to Table 3.1 Unit of Table 3.1

RCPI, power constraints and power capability are used to monitor the AP
energy consumptions and the AP status is detected using machine learn-
ing algorithms based on these collected measurements.

The required AP-level data in a self-healing system is shown in Ta-
ble 5.1. The measurement data is measured by individual STAs and sent
to the APC via the APs. This happens as part of the standard 802.11 asso-
ciation process (called the probing phase). The proposed framework takes
the measured data and sends it to the APC via custom OpenFlow mes-
sages (called experimenter fields in OpenFlow 1.3 [138]). When the APC
obtains the measured data, the neighbor list will be updated with the re-
moval of faulty APs. The STAs use the optimized scanning parameters
to find the best AP to associate with in order to compensate for network
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degradation.

5.1.1.2 Self-detection

Since the data is collected from different APs at different times, the time se-
quences are sliced to sub-sequences and the data of each AP is selected in
the same sub-sequences. These data sequences are used to find the faulty
AP time and correctly identify a faulty AP (via its APID). The details are
given in section 5.2.

5.1.1.3 Self-compensation

After the self-detection phase, if a faulty AP is found, the APC will send
the neighbor AP’s information to the STAs associated with the faulty APs.
As discussed in chapter 3, the APs on the neighbor lists are updated based
on the real-time network parameters shown in Table 3.1. Thus, the neigh-
bor list can be updated when a faulty AP is detected and the STAs are
prevented from associating with a faulty AP. With the neighbor APs’ in-
formation, the STAs associated with a faulty AP will also be forced to han-
dover to the neighbor APs. Therefore, the neighbor list is used for network
compensation when the faulty AP is detected.

The ratified 802.11k amendment makes it possible for an AP to inform
the STAs how to use TPC capabilities to change their transmit amplitude
dynamically to match the APs power. For the faulty APs, they will be
deleted from the neighbor list until the AP is restored, which is also a
self-configuration function for neighbor list. Note that the 802.11k amend-
ment [139] was incorporated into the IEEE 802.11 standard in 2012.

5.2 Problem Formulation

In this section, a detailed description of the faulty AP detection algorithms
is presented. Self-detection aims to determine the existence of faulty APs
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and allow the APC to handover on-going connections to non-faulty APs
in the vicinity. This self-detection improves the QoS through minimising
throughput degradation and packet loss during a handover.

Let Aj(ap) denote a set of APs in the network on the jth TTI and Xj(n)

denote the measured data of each AP whereby AP is indexed by j such
that 1 ≤ j ≤ n and j ∈ Z+. The sets Aj(ap) and measurement data Xj(n)

are expressed as follows:

Aj(ap) = {apj,1, ..apj,k, ...apj,n}, apj,k ∈ N, (5.1)

Xj(n) = {xj,1, ..xj,k, ...xj,n}, (5.2)

where apj,k denotes the AP on the jth TTI with index k and N is natural
numbers; xj,k denotes the measurement data of apj,k and xj,k is a n-tuple
defined as:

xj,k = {energys, energyn1 , ..., energynm}, (5.3)

where energys denotes the remaining energy of the apj,k and energyn1 de-
notes the remaining energy of the first neighbor AP of apj,k on the neigh-
bor list, and the number of neighbor AP is m. The neighbor list can be
obtained by APC as described in section 3.2.

Let f(xj,k) denote a learned decision function for the measurement data
xj,k and θ is corrsponding threshold, which is used to determine whether
an AP is normal and faulty. Thus, the detection function can be formulated
as a binary classification problem as follows:

yk =

Normal if f(xj,k) ≥ θ

Faulty if f(xj,k) < θ
, k = 1, ..., n (5.4)

where xj,k is the measurement data reported by each AP, and yk denotes
the status of apj,k, which can be normal or faulty.

This detection problem can be solved using machine learning algo-
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rithms including classification and clustering algorithms. These algorithms
are used for the faulty AP detection and will be introduced in section 5.3.

The loss function can be defined as flows:

L(yk, ŷk) =

0 if yk 6= ŷk

1 if yk = ŷk
, (5.5)

5.3 Self-healing Algorithms

In this section, the machine-learning-based self-healing algorithms includ-
ing K-nearest Neighbor (KNN), Local Outlier Factor (LOF), Support vector
machine (SVM), K-means and Random Forest (RF) are examined and the
performance is compared in terms of detecting faulty APs. The aim of the
comparison is to find out which machine learning algorithm is suitable for
the self-healing problem in WiFi networks. The details of these algorithms
will be introduced in the following sections.

5.3.1 K-nearest Neighbor (KNN)

KNN is a supervised learning algorithm where the result of new measure-
ment data is classified based on the majority of K nearest neighbors. Un-
like the unsupervised classification approach, supervised KNN requires
prior labeling of training data [87].

Let Tj denote the sequence of labeled training data during the j-th TTI,
thus Tj can be written as follows:

Tj(n) = {(tj,1, y1), (tj,2, y2), ..., (tj,k, yk), ..., (tj,n, yn)}, (5.6)

where tj,k is a n-tuple as defined in Equation 5.3, yi is the label indicating
if the AP is faulty or otherwise, yk ∈ {Normal, Faulty}, k = 1, 2, ...n. Thus,
Tj can be viewed as training data for the self-detection of faulty APs.

The main procedures for KNN are as follows:



5.3. SELF-HEALING ALGORITHMS 191

(i) Calculate distance: Let Dknn = (||xj,k − tj,k||)nj=1 be the array of dis-
tance of the measured data xj,k to all training data tj,k.

(ii) Find closest neighbors: Let Sj(n) be the above array Dknn sorted in
the increasing order and T

′
j (n) denotes the corresponding training

data. Let NK(T
′
) denote the first nearest K elements in T ′

j (n).

(iii) Predict AP status label ŷk: Let vi denote the label of the i-th elements
in NK(T

′
). In NK(T

′
), calculate the number of elements with label vi.

The majority number of label vi is taken as the predicted results of
xj,k.

Let V = {v1, ..., vi, ..., vk} denote the list of labels in NK(T
′
).

I(vi, yk) is the indicator function, if vi = yk, I = 1, otherwise I = 0.

Let g(vi) denote the number of elements with label vi in NK(T
′
).

g(vi) =
∑
i

I(vi, yk),

i = 1, 2, ..., K.

(5.7)

Therefore, the predicted function can be described as follows:

ŷk = arg max
vi

g(vi), k = 1, ..., n, (5.8)

where ŷk is the predicted AP status.

Referring back to the loss function in Equation 5.5, the aim of KNN
algorithm is to reduce the error detection rate and can be described as
follows:

max
n∑
i=1

L(yk, ŷk). (5.9)
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5.3.2 Local Outlier Factor (LOF)

LOF detection is an unsupervised anomaly detection algorithm that com-
pares the local densities of sequences of incoming measured AP data. The
local densities denoted by ρ of target points are calculated by LOF and
used to compare with its k neighbors. The larger the difference between
the sample and its neighbors is, the larger the outage factor score assigned
to the sample [140].

The advantage of LOF is that no prior knowledge is required in ad-
vance to detect the unknown AP outage. The detailed definitions of LOF
are explained as follows.

Let xj = {xj,1, ..., xj,k, ..., xj,n} denote a set of measurement data during
the jth TTI, and xj,k is a n-tuple as defined in Equation 5.3. The goal of the
unsupervised learning LOF is to predict the label ŷk indicating if the AP is
faulty or otherwise, ŷk ∈ {Normal, Faulty}, k = 1, 2, ...n.

The main procedures of LOF are as follows:

1. Firstly, computing the k-distance of each instance measurement xj,k
that is denoted as a point p. k-distance is the distance of p to its k-th
nearest neighbor. Let dk(xj,k) denote the k-distance of p. The mea-
surement data points that lies within dk(xj,k) are called its k-distance
neighborhood.

2. The second step is to construct a neighborhood of p by including the
measurement data points that fall within the dk(xj,k) range. Those
measurement data points are the neighbors of p, denoted as xj,i ∈ xj.

3. The third step is to compute the reachability distance. The neighbors
of p within dk(xj,k) have the same reachability distance. The reacha-
bility distance of a measurement data point xj,i, which is outside the
dk(xj,k) range, is the real distance between p and xj,i. The reachability
distance is used to predict a stable result of an AP’s status because it
can ensure the measurement data point which is far away from p has
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less effect on the local reachability density. This will be explained in
the next step.

Let d(xj,k, xj,i) denote the distance between p. Therefore, the reach-
ability distance denoted by dr(xj,k, xj,i) is equal to the maximum of
dk(xj,k) and d(xj,k, xj,i):

dr(xj,k, xj,i) = max{dk(xj,k), d(xj,k, xj,i)} (5.10)

The fourth step is to compute the local reachability density of p. The
local reachability density shows the distance between a measure-
ment point and p. The measurement point is further from p when
the value of local reachability density is lower.

The local reachability density ρ is the inverse of average dr and can
be defined as

ρ(xj,k) =
|Nk(xj,k)|∑

xj,i∈Nk(xj,k) dr(xj,k, xj,i)
(5.11)

where Nk(xj,k) is the number of neighbors of point p.

4. Finally, the Dlof represents a local density-estimation score and can
be computed as follows:

Dlof (xj,k) =

∑
xj,i∈Nk(xj,k)

ρ(xj,i)

ρ(xj,k)

Nk(xj,k)
(5.12)

When the value of Dlof is close to 1, it means the measurement data
point p has same density relative to its neighbors. On the contrary, a
significantly high Dlof score indicates the APs are faulty. The predic-
tion function of an AP’s status can be defined as follows:

ŷk =

Normal Dlof < 1

Faulty otherwise
, k = 1, .., n, (5.13)
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where ŷk is the predicted AP status.

5.3.3 Support Vector Machine (SVM)

Support vector machines are a supervised learning algorithm that can be
used to separate two classes of data [141] by finding an optimal hyper-
plane. Usually, an SVM conducts an N -dimensional hyperplane, which
optimally separates the data into two categories in the feature space [142].
The vector that is the nearest to a hyperplane is called the Support Vector
(SV) [143].

Let xj denote the sequence of labeled training data during the j-th TTI,
thus xj can be written as :

xj = {(xj,1, y1), (xj,2, y2), ..., (xj,i, yi), ..., (xj,n, yn)}, (5.14)

where xj,i is a n-tuple as defined in Equation 5.3, yi is the label indicating
if the AP is faulty or otherwise, yi ∈ {Normal, Faulty}, i = 1, 2, ...n. Thus,
xj can be viewed as training data for the self-detection of faulty APs.

yi =

Normal C1

Faulty C2

. (5.15)

where Cm,m = {1, 2} are the classes labels, Cm ∈ {−1, 1}.
In SVM, the standard formulation for a two-class classification problem

is as flows:

f(x) = ωTφ(x) + b, (5.16)

which is a linear model, where x = {xj,1, xj,2, ..., xj,i, ..., xj,n} is the input
vector and ω is the vector of coefficients for the linear model, φ is a gen-
eral feature-space transformation function (which can eventually be non-
linear) and b represents the bias of the model.

As defined in Equation 5.14 and 5.15, each measurement vector xj,i is
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associated with one of the two classes labels (C1, C2) representing the AP
status, C1 is denoted as Normal AP and C2 is denoted as Faulty AP. If
f(x∗) > 0 , the unknown measurement vector x∗ belongs to class C1. If
f(x∗) < 0, the unknown measurement vector x∗ belongs to class C2 . The
implicit assumption is that the training data is linearly separable, so that
the coefficient vector ω and the parameter b can be determined (i.e., there
exists at least one feasible combination of ω and b).

As the training data is assumed linearly separable, two parallel hyper-
planes are used to separate the two classes of data. The larger the distance
between two parallel hyperplanes is, the higher the accuracy of the pre-
dicted AP status is. Therefore, the training process of an SVM can be seen
geometrically as the problem of maximizing the minimum Euclidean dis-
tance between the two parallel hyperplanes. The optimization problem
can be expressed as:

min ‖ω‖2,

subject to :

yi(ω
Tφ(xi) + b)− 1 > 0

(5.17)

where yi ∈ {−1, 1} is the label of AP status.

Once the model is trained, the predicted AP status for the input mea-
surement vector x∗ can be obtained by simply evaluating the sign of f(x)

in the original linear model f(x) = ωTφ(x) + b, with the coefficient vector
ω populated using the results from the minimization of the cost function
in Equation 5.17, hence the predicted value of AP status denoted as ŷ can
be calculated as:

ŷ = f(x) =
n∑
i=1

yiαiK(x, xi) + b,

αi > 0, yif(xi)− 1 > 0, αi(yif(xi)− 1) = 0

(5.18)
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where αi are the Lagrange multipliers of the dual problem, and K(x, xi)

is a kernel function can be Linear kenel, Polynomial kenel and Gaussian
radial basis kenel (RBF).

5.3.4 Random Forest (RF)

Decision trees (DT) [144] is an algorithm to solve classification and predic-
tion problems to use an ensemble of trees. The best way to increase the
prediction accuracy of DT is to use an ensemble of trees. Random Forest is
an ensemble of randomly constructed decision trees for classification and
regression purposes. One of the efficient properties of the RF algorithm is
that the algorithm does not tend to overfit, even if more trees are added
to the forest. Breiman [145] states that the trees always converge so that
overfitting is not a problem.

Let xj denote the sequence of labeled training data during the j-th TTI,
thus xj can be written as:

xj = {(xj,1, y1), (xj,2, y2), ..., (xj,k, yk), ..., (xj,n, yn)}, (5.19)

where xj,k is a n-tuple as defined in Equation 5.3 and yk is the label indicat-
ing if the AP is faulty or otherwise. Note that for the faulty APs prediction,
only binary classification is considered, so yk ∈ {0, 1} where class label 1
represents the normal AP and 0 represents the faulty AP.

A random forest’s classifier consists of a collection of decision tree clas-
sifiers defined as {h(xj,Θk), k = 1, ...}. Here, Θk represents identically
distributed random vectors and each tree gives a unit vote for the most
popular class at input xj [145].

A decision tree in the forest is constructed by the following steps:

1. The number of trees (T ) needs to be grown is chosen. Generally, the
more trees are chosen, the higher the prediction accuracy of faulty
AP is [146]. However, more trees need more computation time, which
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is not suitable for real-time network requirements to improve han-
dover performance. The number of trees is chosen by cross-validation
based on different training dataset in self-healing. Figure 5.4c shows
an example of how to choose the number of trees by cross-validation
accuracy.

2. The number of features (f) splits for each node is chosen. If the fea-
ture set of the input data is denoted by F , then f < F must be satis-
fied. The subset of features f is kept constant during the formation
of the forest.

Choosing more features increases the chance of finding a better split.
However, it also increases the correlation between trees and the pre-
diction accuracy of faulty AP will be affected by the correlation [145].
The default values are set using the square root of the total number
of features for the self-healing problems [147].

T number of trees in the forest is grown with the following criteria:

1. Bootstrap samples are randomly chosen from training data and the
size of the samples is n. These random selecting bootstrap samples
mean the training data will be replaced by multiple times. This will
reduce the entire forest variance and provide high detection accu-
racy.

2. To grow a tree at each node, m features are selected randomly and
they are used to find the best split. The best split will ensure the
faulty AP is able to be detected with high accuracy.

3. The tree is grown to the maximal extent with no pruning.

To classify the label of a sample xj,k, a majority voting scheme is used
to evaluate votes from every tree in the forest. The sample xj,k is passed
through each tree to calculate the class for this tree. Giving a set of votes
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to all possible classes, the class having a maximum number of votes is
considered as the predicted class of this sample.

Let c ∈ {0, 1} denote the class label of one random forest tree.

Let V = {v1, ..., vi, ..., vT} denote the list of class label of the T number
of trees.

I(vi, c) is the indicator function, if vi = c, I = 1, otherwise I = 0.

Let g(vi) denote the number of trees with label vi.

g(vi) =
∑
i

I(vi, c),

i = 1, 2, ..., T.

(5.20)

Therefore, the predicted label of xj,k can be written as::

ŷk = arg max
vi

g(vi), k = 1, ..., n, (5.21)

where ŷk is the predicted AP status.

5.3.5 K-means

K-means is an unsupervised learning algorithm used to solve the cluster-
ing problem. The aim of K-means is to divide the measurement data into
K clusters.

Let xj = {xj,1, ..., xj,k, ..., xj,n} denote a set of measurement data during
the j-th TTI, and xj,k is a n-tuple as defined in Equation 5.3. The goal of
the unsupervised learning K-means is to predict the label ŷk indicating if
the AP is faulty or otherwise, yk ∈ {Normal, Faulty}, k = 1, 2, ...n.

The first step is to choose the number of k clusters. As the APs are
needed to be detected as normal APs and faulty APs, k is chosen as two in
the self-healing approach.

The next step is to randomly initialize the centroids of the clusters. The
measurement data that are closest to a centroid are considered as the same
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cluster as described in Equation 5.22.

ŷk = arg min
cm

‖x(m)
j,k − cm‖

2 (5.22)

where K is the number of clusters, cm is the centroid for cluster m, ‖x(m)
j,k −

cm‖2 is a chosen distance between a measurement data xj,k and the cluster
centre cm.

Then the centroids will be updated by calculating the average of all the
measurement data in the centroid. After the new centroids are obtained,
the measurement data are also updated. A loop has been generated to
update the centroids. Once the centroids will not be updated. The loop
of the clustering algorithm is done. Finally, the measurement data are
divided into different clusters.

5.3.6 Evaluation Metrics

Some prediction metrics are used to evaluate machine learning algorithms
performance. The metrics include Precision-Recall, F1 score and accuracy
score.

Precision (P ) is defined as the number of true positives (Tp) over the
number of true positives plus the number of false positives (Fp). In the
self-healing approach, precision can be used to measure the ratio of the
number of correctly predicted normal APs to the total number of predicted
normal APs. When the value of precision is high it means the number
of correctly predicted normal APs is high among the predicted results.
Precision (P ) is defined as follows:

P =
Tp

Tp + Fp
(5.23)

Recall (R) is defined as the number of true positives (Tp) over the num-
ber of true positives plus the number of false negatives (Fn). In the self-
healing approach, recall is the ratio of the number of correctly predicted



200 CHAPTER 5. SELF-HEALING SYSTEM

normal APs to the number of all normal APs in the training dataset. Re-
call means how many normal APs are predicted correctly among the total
number of normal APs. Recall (R) is defined as follows:

R =
Tp

Tp + Fn
(5.24)

F1 Score is defined as the weighted average of precision and recall. As
can be seen in Equation 5.23 and 5.24, the accuracy of AP detection cannot
be measured by precision and recall when false positives (Fp) and false
negatives (Fn) are the same. Therefore, F1 is usually used to look at both
precision and recall. A high F1 score means that the prediction error is low.
Thus, the high F1 score means the accuracy of the predicted AP status is
high. The F1 score is 1 when the prediction of the AP status is all correct,
while the value of F1 is 0 when the prediction of AP status is all wrong.
The F1 score is defined as follows:

F1 = 2× R× P
R + P

(5.25)

The accuracy score function computes the accuracy, either the fraction
or the count of correct predictions. In multi-label classification, the func-
tion returns the subset accuracy. If the entire set of predicted labels for a
sample strictly match with the true set of labels, then the subset accuracy
is 1.0; otherwise, it is 0.0 [148].

The fraction of correct predictions over nsamples is defined as:

Accuracy(y, ŷ) =
1

nsamples

nsamples−1∑
i=0

1{ŷi=yi}, (5.26)

where ŷi is the predicted value of the i-th sample, yi is the corresponding
true value and 1 is an indicator function.

Accuracy is a ratio of the correctly predicted number of observations
to the total number of observations. When the dataset is not symmetric,
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a high accuracy alone cannot evaluate the quality of the training model.
For example, 98 normal APs and 2 faulty APs are in training dataset. If
the Tp is 97 and Tn is 0, the accuracy score is 97%. However, the faulty
AP has not been detected at all, though the accuracy score of this model is
high. Therefore, all the evaluation metrics including precision, recall, F1

and accuracy score have to be considered together to evaluate a machine
learning algorithm in self-healing approach.

5.4 Performance Evaluation

In this section, the performance of the proposed self-healing approach us-
ing machine learning algorithms including KNN, SVM, RF, LOF and K-
means is evaluated and compared with the IEEE 802.11 standard.

The self-healing approach only compared with 802.11 is because this is
a new approach using self-healing to do the fault management based on
NLM in WiFi networks. Self-healing is widely developed in cellular net-
works and hard to find a similar approach to compare in WiFi networks.
However, different machine learning algorithms are used to evaluate han-
dover performance.

5.4.1 Simulation Setup

The proposed algorithms are implemented in ns-3 with all AP operating in
the 2.412 GHz band using the IEEE 802.11k protocol and each AP has four
omni-directional antennas with a maximum data rate of 54 Mbps (at the
physical layer). The values of simulation parameters are listed in Table 5.2.
The measurement data collected includes handover delay, throughput and
packet loss rate over 35 runs. Each run uses a different seed to generate a
random data rate and packet size. The random traffic generation aims to
satisfy different application requirements including voice call, video call,
video streaming, online gaming in the different density network environ-
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ment and network topologies. The averages shown are reported with a
confidence interval of 95.00% under the assumption that the averages are
normally distributed. This statistical methodology validates the simula-
tion results. The simulation results are also validated by comparing pro-
posed algorithms with conventional 802.11 standard using the same sim-
ulation parameters.

Table 5.2: Simulation Parameters

Parameter Value

Simulation time (t) 100s, 120s, 180s, 300s

Speed 1 - 6m/s

Number of AP 6

Distance between two APs 20-60m

Number of Mobile Nodes 1-35

ActiveProbing true

WiFi Standard 802.11g, 802.11k

PacketSize 10 - 10000 byte

Maximum dataRate 54 Mbps

AP transmit power 16.02dBm

Figure 5.3 shows an example of the AP placement in the simulation
scenarios. There are 30 APs and 5 STAs placed in two lines and each AP
is separated from its neighbors by 20-60 meters depends on different sim-
ulation scenarios. The STAs randomly move from t = 0s with different
constant speeds ranging from 2m/s to 6m/s. The simulation time is 120s
for each run.

5.4.2 Machine Learning Performance Evaluation

In this section, the selection and evaluation of machine learning models
is explained based on one simulation scenario. In this scenario, six APs
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(AP0-AP5) are placed in one line. The distance between two APs is 60m.
One STA moves from the start time of simulation t = 0s with a constant
speed of 4m/s. At t = 35s, AP3 has been set to sleep status and transmit
power is set to 0.1dBm to simulate hardware failures for 10 seconds. Dur-
ing the sleep mode, there is no energy consumed by AP3. The remaining
energy logs of all APs are collected every 10 TTIs to do the temporal and
spatial prediction. KNN is used to detect faulty APs. Then KNN is also
compared with other classification and cluster algorithms to evaluate the
network performance.

5.4.2.1 Model Selection

How the parameters of the machine learning model are evaluated and
selected using cross-validation is described in section 3.2.2.1.3. In Figure
5.4a, when k= 2 or 3, the cross-validation accuracy score is highest. Thus,
the optimal number of neighbors can be two or three. In Figure 5.4b, the
evaluation if K clusters show that when the number of clusters is two, the
cross-validation accuracy is high. The APs are divided into normal APs
and faulty APs. Figure 5.4c shows the number of trees for RF. When the
number of trees is two, four or six, the RF model has its high accuracy.

In Figure 5.5, the best value of γ is investigated using RBF kernel func-
tion. When γ = 0.00012, the SVM model shows the best performance with
the highest cross-validation score.

5.4.2.2 Algorithms Comparison

In order to understand the KNN algorithm, different Classification and
cluster algorithms are compared in Table 5.3. KNN, SVM and RF are su-
pervised learning algorithms. K-mean and LOF are unsupervised learn-
ing algorithms. The results show that supervised learning algorithms have
high accuracy for abnormal detection. KNN has the best performance with
an accuracy of 99.28% and fast learning time is 0.01838s. The comparison
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(b) Evaluating the number of K clusters and selecting the best value of K for
K-means

results show that KNN has a high accuracy and fast learning time. This
is because the KNN is a lazy supervised learning that it does not learn a
training model but depends on the selectedK nearest neighbors to predict
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Figure 5.4: Parameters evaluation and selection for KNN, K-means and RF
models
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Figure 5.5: Evaluating the value of γ for SVM-kernel=”rbf” and selecting
the best γ to fit the SVM model
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Table 5.3: Classifiers performance comparison for self-detection

Algorithms F-measurement Accuracy Learning time

KNN 0.99 99.28% 0.01838s

SVM 0.98 98.38 % 0.10421s

Random forest 0.98 98.38% 0.03901s

K-mean 0.87 86.87 % 0.04387s

LOF 0.92 88.35% 0.02832s

the AP status. At the same time, in the self-healing system model, the fea-
ture of the dataset is a lower-dimension and KNN is more suitable for the
lower-dimensional data.

5.4.2.3 Temporal Analysis
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Time(Second)
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Faulty AP
Normal AP

Figure 5.6: K-nearest neighbors classification is used to detect the faulty
occurrence

The aim of the temporal analysis is to find out the time when a fault
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happened. In Figure 5.6, the x-axis shows the measurement time including
the faulty time from 35s and 45s and y-axis shows the APID. The faulty
AP can be detected by monitoring the remaining energy. If the remaining
energy of an AP is unchanged during observation, the AP is detected as
a fault because there is no energy consumed by the faulty AP. As can be
seen in Figure 5.6, the blue points represent the faulty APs and the orange
points are regarded as the normal APs. From the results, AP3 is detected
as a faulty AP by KNN between 35s and 45s, which is in accordance with
the faulty occurrence in this simulation.

5.4.2.4 Spatial Analysis
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Figure 5.7: The AP status is shown at t=35s when a faulty AP is detected
using KNN

The spatial analysis focuses on the temporal data of different APs at
the same time period. Figure 5.7 shows the KNN result of each AP at 35s.
It can be seen that the value of the remaining energy of AP3 is 904.166J
during this measurement period. This means there is no energy consumed
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by AP3. Therefore, AP3 is in the faulty state.

5.4.3 Handover Performance Evalutation

In section 5.4.2.1, five machine learning algorithms including KNN, SVM,
RF, LOF and K-means are investigated in eight network scenarios to eval-
uate the handover performance of the self-healing approach.

5.4.3.1 Changing the Number of Faulty APs

100
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-50

200150100500

AP0 AP1 AP2 AP3 AP4 AP5 AP6

Figure 5.8: AP placement when the number of faulty APs is changed
(Scenario I)

The first scenario is intended to show how the network performance
is affected by the different number of faulty APs. Seven APs are placed
in a line. The distance between the APs is 30m. At the simulation start
time t = 0s, five STAs are connected to AP0. The STAs start to move
between AP0 and AP6 at a constant speed of 3m/s back and forth three
times within 180s.

As shown in Figure 5.8, the three lines mean that the STAs move three
times. Each time, the number of faulty APs is increased by one. Therefore,
AP3 is set as a faulty AP at t = 20s for 40s when the STAs move from AP0
to AP6 at the first time. Then, AP2 and AP3 are set as faulty APs at t = 80s
for 40s as STAs move back from AP6 to AP0 . Finally, AP2, AP3 and AP4
are set as faulty APs at t = 130s for 50s when STAs move from AP0 to
AP6 again. The transmit power of faulty APs is set to 0.1dBm to simulate
hardware failures and the faulty APs are into sleep status.
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• Throughput
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Figure 5.9: Throughput vs. Simulation time when the number of faulty
APs is changed (Scenario I)

In Figure 5.9, the average throughput performance of different num-
bers of faulty APs is shown. At t = 48s, the throughput of 802.11
starts to drop because AP3 is faulty before the STAs move to AP3.
Therefore, the STAs cannot associate with AP3 and this causes a
longer scanning time to find a new AP to associate with. In this sit-
uation, the throughput of 802.11 standard drops by 5.07% because
of one faulty AP. At t = 90s, the throughput of 802.11 continues to
drop by 8.74% because two faulty APs cause an even a longer scan-
ning time compared with one faulty AP. At t = 160s, the throughput
of 802.11 dropped by 10.68% because three APs are faulty. There-
fore, as the number of faulty AP increases, the average throughput
performance worsens.

In order to improve the throughput performance, machine learning
algorithms are used to detect faulty APs and then do the compen-
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sation for network degradation. All the compensation algorithms
show an improvement over the standard 802.11. This is because
the STAs are prevented from reassociating with a faulty AP and the
STAs that are associated with a faulty AP are forced to handover to
neighbor APs. The detection of faulty APs reduces the scanning time
wasted by searching for faulty APs.

In these machine learning algorithms, Random forest (RF) shows the
best performance. This is because the RF model can predict the un-
seen new measurement data with the highest accuracy without a
problem of overfitting [145]. The training model with the overfitting
problem has a higher error rate to predict the faulty AP because the
training model is so dependent on that training data but cannot fit
with the new measurement data. At t = 40s, the throughput of RF is
improved by 6.82% compared with 802.11. At t = 90s, the through-
put of RF has been improved by 12.34% compared with 802.11. At
t = 160s, the throughput of RF has been improved by 13.61% com-
pared with 802.11.

• Packet loss rate

As can be seen in Figure 5.10, when the number of faulty APs in-
creases, the packet loss rate of standard 802.11 increases. The packet
loss rate increases for two reasons in this scenario. One reason is that
the packet delivery of the STAs that are associated with the faulty AP
is disturbed. The other reason is that the STAs have to scan for a long
time to find a new candidate AP to associate with when the faults
happen. This scanning time causes a long data disruption time. At
t = 48s, the packet loss rate is around 8.94% if there is one faulty AP.
At t = 90s, the packet loss rate increases to around 12.82% when the
number of faulty APs increases to two. At t = 160s, the packet loss
rate continues to increase to 13.75% compared with two faulty APs
because of the three faulty APs. The more faulty APs there are, the
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higher the packet loss rate is.
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Figure 5.10: Packet loss rate vs. Simulation time when the number of
faulty APs is changed (Scenario I)

With the self-healing algorithms, the overall packet loss rate has been
reduced. RF shows the best improvement among these machine
learning algorithms because of its fast convergence and high detec-
tion accuracy [145]. Compared with 802.11, the RF algorithm reduces
the packet loss rate by 66.00% when there is one faulty AP, 87.44%
when the number of faulty APs is increased to two and 85.65% when
the number of faulty APs is increased to three. The packet loss rate
of the self-healing approach has less affected by the number of faulty
APs because the STAs are prevented from reassociating with a faulty
AP.

• Handover delay

Figure 5.11 describes the handover delay with different self-healing
algorithms. In the 802.11 standard, the total handover delay is up
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to 10.00s. The long handover delay is because the STAs spend a
long time searching for a new AP when the number of faulty APs
increases. With the introduction of self-healing algorithms, the total
average handover delay of the five self-healings has been reduced by
around 72.30% compared with 802.11 standard.
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Figure 5.11: Handover delay vs. Cumulative distribution function when
the number of faulty APs is changed (Scenario I)

The overall handover delay is reduced because of the following rea-
sons. Firstly, the faulty APs has been detected and removed from the
neighbor list. The STAs only scan the normal APs on the neighbor
list. This reduces the scanning time wasted on faulty APs. Secondly,
the scanning parameters have been updated using the approach dis-
cussed in section 4. The reduced scanning time further reduces the
handover delay. Finally, the AP load information is considered in
the neighbor list and this reduces the collisions between STAs to
handover to neighbor APs. Therefore, the handover delay is signifi-
cantly reduced by self-healing algorithms.
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5.4.3.2 Changing the Positions of Faulty APs
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Figure 5.12: AP placement when the positions of faulty APs are changed

In the second scenario, different positions of faulty APs have been in-
vestigated by adding different hops among faulty APs. A hop is a normal
AP between two faulty APs. Figure 5.12 shows the hops changing be-
tween three faulty APs, marked as blue. At t = 0, one STA starts to move
from AP0 to AP9 at a constant speed of 3m/s back and forth three times
within 300s. The three lines showed in Figure 5.12 mean the STA moves
three times. The first time, the STA moves from AP0 to AP9. There is no
hop between three faulty APs. The simulation time is 300s for each run.
At t = 20s, the transmit powers of three APs (AP3, AP4 and AP5) are set
to 0.1dBm to simulate hardware failures as shown in the first line. The sec-
ond time, the STA moves from AP9 to AP0. There is one hop between two
faulty APs. At t = 100s, AP3, AP5 and AP7 are set as faulty APs shown in
the second line. The third time, the STA moves from AP0 to AP9. There
are two hops between each pair of faulty APs. At t = 200s, AP3, AP6 and
AP9 are set as faulty APs shown in the third line. The distance between
the APs is 30m.

• Throughput

In Figure 5.13, the throughput of different faulty AP positions has
been investigated. In traditional 802.11 networks, at t = 54s, the STA
loses connection because there are three faulty APs. The average
throughput of 802.11 dropped by 27.08%. At t = 140s, the through-
put of 802.11 dropped by 23.80% when there is one hop between two
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Figure 5.13: Throughput vs. Simulation time when the positions of faulty
APs are changed (Scenario II)

faulty APs. At t = 270s, the throughput of 802.11 dropped by 18.21%
when there are two hops between faulty APs. When the number
of hops increases, the performance of average throughput increases.
This is because the distance is reduced between the normal APs. The
STA can search for APs with better throughput service to associate
with. However, the long scanning time still degrades throughput
performance.

The average throughput has been improved significantly by the self-
healing algorithms. The throughput has not been affected a lot by
the hops changing between faulty APs. The reason is that the STA
has been advised the faulty APs information by APC in advance.
The scanning time is reduced by removing the faulty APs from the
neighbor list. Therefore, the STA is prevented from associating with
a faulty AP. The supervised learning algorithm RF shows the best
performance among these algorithms. With the fast detection and
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high accuracy rate of RF, the faulty AP can be found as soon as the
outage happens. When the faulty AP is found, then STA reassociates
to neighbor APs to compensate for the network degradation. As can
be seen in Figure 5.13, at t = 54s, the throughput of RF has been im-
proved by 34.98% compared with 802.11. At t = 140s, the through-
put of RF has been improved by 23.26% compared with 802.11. At
t = 270s, the throughput of RF has been improved by 22.13% com-
pared with 802.11. Compared with RF, other algorithms also shows
improvement in throughput compared to 802.11. As unsupervised
learning algorithms, LOF and K-means have a lower accuracy rate
compared with supervised learning. Therefore, the improvement
using these two algorithms are less than supervised learning KNN,
SVM and RF.

• Packet loss rate
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Figure 5.14: Packet loss rate vs. Simulation time when the positions of
faulty APs are changed (Scenario II)
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When the number of hops between two faulty AP increases, the
packet loss rate becomes lower. At t = 54s, the packet loss rate
is around 28.49% when there is no hop between faulty APs. At
t = 140s, the packet loss rate drops to 24.44% when there is one hop
between faulty APs. At t = 270s, when the number of hops between
faulty APs is two, the packet loss is 19.37%. As the number of hops
is increased, it is easy for STA to find the best neighbor APs. This
is because of reducing the distance between normal APs. The data
disruption time is reduced by reducing the density of faulty APs.

Compared with standard 802.11, the overall packet loss rate is re-
duced. RF achieves the best results among the five machine learn-
ing algorithms because the RF algorithm depends on the diversity
of trees in the forest. This provides a high level of learning accuracy
because of the diversity of features and RF does not tend to over-
fit even when more trees are added, as discussed in section 5.3.4.
Without the problem of overfitting, the RF algorithm can predict the
faulty AP fast with less predict errors.

Compared with 802.11, the RF algorithm reduces the packet loss rate
by 93.39% when there is no hop between faulty APs. The packet
loss rate is reduced by 94.56% when there is one hop between faulty
APs. The packet loss rate is reduced by 92.13% when the number of
hops between faulty APs is two. Overall, the average packet loss rate
of self-healing algorithms is less affected when the number of hops
between faulty APs changes. This is because the STA performs han-
dover to normal APs once it obtains the information of faulty APs
sent by the APC. The data disruption time is reduced by the seam-
less handover. Thus, the packet loss rate is reduced by shortening
the data disruption time caused by faulty APs.

• Handover delay

Figure 5.15 shows the handover delay with different self-healing al-
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Figure 5.15: Handover delay vs. Cumulative distribution function when
the positions of faulty APs are changed (Scenario II)

gorithms. In the 802.11 standard, the total handover delay is in-
creased to 14.00s, caused by the faulty APs. The high handover de-
lay is because the STA takes a long time to find a new AP to associate
with when the outage happens. The long scanning time searching for
the target AP generates a long handover delay. When there is no hop
between three faulty APs, it is hard for the STA to find the target AP
than when there is one hop between faulty APs because the distance
between normal APs is too large and the STA cannot search for avail-
able neighbor APs. The total handover delay of self-healing has been
reduced by around 80.32% compared with standard 802.11. This is
because the STA can know the information of faulty APs in advance
and are prevented from scanning the faulty APs. Thus, handover de-
lay and failure handover rate are reduced. Also, the STA associated
with the faulty AP can handover to neighbor APs to compensate for
network degradation.
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5.4.3.3 Changing the Transmit Power of APs
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Figure 5.16: AP placement when the transmit power of APs is changed
(Scenario III)

In the third scenario, there are two different values of transmit power
is used to evaluate the self-healing algorithms. In Figure 5.16, 10 APs are
placed in a line. The distance between APs is 30m. The simulation time
is 100s for each run. At t = 0s, one STA moves with a constant speed
of 3m/s from AP0 to AP9. The transmit power is set to 6.0206dBm and
the coverage range of each AP is 30m. At t = 10s, AP2, AP3 and AP4
(blue nodes) are set to sleep status and transmit power is set to 0.1dBm
to simulate hardware failures for 90 seconds. The STA loses connection
when STA moves from AP2 to AP4. This is because the distance between
AP2 and AP4 is 90m that is out of the coverage range of 30m. In this situa-
tion, the self-healing cannot do compensation for the network degradation
caused by faulty APs. Therefore, the transmit power has to be increased
to 16.02dBm to compensate for network degradation with self-healing al-
gorithms together.

• Throughput

Figure 5.17 shows the average throughput performance when the
transmit power is changed. When the transmit power is set to 6.02dBm,
the self-healing algorithms cannot improve throughput performance.
This is because the STA wants to handover to neighbor APs when it
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Figure 5.17: Throughput vs. Simulation time when the transmit power of
APs is changed (Scenario III)

moves to AP2. However, AP2, AP3 and AP4 are set to faulty APs
before STA reaches AP2. The AP coverage range is 30m but the dis-
tance between AP2 and AP5 90m.

Although the self-healing algorithms can detect the three faulty APs,
the best candidate AP in the neighbor list cannot be obtained because
it is out of coverage range. Thus, the STA throughput performance is
still suddenly degraded when it moves to AP2. In this situation, the
transmit power has to be increased to make sure the STA is within
the coverage of all the neighbor APs. This can allow the STA to per-
form handover successfully and keep connectivity. After the trans-
mit power is increased to 16.02dBm, the STA can handover to AP5
even though AP2, AP3 and AP4 are faulty APs. The overall average
throughput has been improved by 42.25% compared with standard
802.11 by using self-healing algorithms.
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• Packet loss rate
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Figure 5.18: Packet loss rate vs. Simulation time when the transmit power
of APs is changed (Scenario III)

As can be seen in Figure 5.18, the packet loss rate cannot be improved
by self-healing algorithms when the transmit power of each AP is
6.0206dBm. The data connection is disturbed because of handover
failure. The reason causes handover failure is the STA cannot find
a target AP to associate with. As the coverage range of each AP is
30m, the STA is out of coverage range when it moves from AP2 and
AP4. Thus, the STA loses connectivity. Although the self-healing
algorithms can detect the faulty AP in advance, the STA still cannot
handover to neighbor AP. This is because the STA is out of the range
of the nearest normal AP that is AP5. Thus, the data connection is
disrupted and causes a high packet loss rate. After increasing the
transmit power to 16.02dBm, almost all the self-healing algorithms
achieve the same improvement and reduce the average packet loss
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rate by round 93.42%.

• Handover delay
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Figure 5.19: Handover delay vs. Cumulative distribution function when
the transmit power of APs is changed (Scenario III)

The total handover delay of the 802.11 standard is up to 24.28s. As
AP2, AP3 and AP4 are set as faulty APs before the STA moves to
AP2, it spends long scanning time to find a new AP to associate
with. The long scanning time causes handover failure. Thus, the
handover delay is long in traditional 802.11 networks. In self-healing
algorithms, when the faulty APs are detected, the neighbor list is up-
dated. However, there is no AP on the neighbor list that can be asso-
ciated with by the STA before it moves to AP5 because the coverage
area is 30m when the transmit power of AP is 6.0206dBm.

In this situation, the handover delay cannot be reduced by only using
self-healing algorithms. Therefore, the transmit power is increased
to increase the coverage range of each AP. As can be seen in Fig-
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ure 5.19, compared with standard 802.11, the total handover delay of
self-healing is reduced to around 83.33% when the transmit power
increases to 16.02dBm. With the increased transmit power, the STA
can find a new target AP to associate with and the total handover
delay is reduced.

5.4.3.4 Changing the Faulty Setting Time for Faulty APs
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Figure 5.20: AP placement when the faulty setting time is changed (Sce-
nario IV)

In the fourth scenario, the time of setting an AP to fault is investigated.
Seven APs are placed in a line. The distance between APs is 30m. The
transmit power of each AP is 16.02dBm. When AP3 is set as faulty AP,
it is in sleep status and the transmit power is set to 0.10dBm to simulate
hardware failures. During the sleep mode, there is no energy consumed
by AP3. The Figure 5.20 shows the AP placement of this scenario. The
blue node, AP3, is the faulty AP.

There are three different times to set faulty AP when the STA is moving.
Figure 5.20 shows when AP3 is set as faulty AP. One STA moves from AP0
to AP6 back and forth three times within 180s. As shown in Figure 5.20, the
three lines mean the STA moves three times. At the start of the simulation
t = 0s, the STA is connected to AP0 and the STA starts to move from AP0
to AP6. Firstly, at t = 20s, when the STA moves to AP2, AP3 is set as faulty
AP. Then, when the STA moves back from AP6 to AP0, at t = 90s, AP3
is set as faulty just at the same time STA moves to AP3. Finally, the STA
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moves from AP0 to AP6 again, and at t = 160s the STA moves to AP4 but
at this time AP3 is set as faulty AP. The simulation time is 180s for each
run.

• Throughput
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Figure 5.21: Throughput vs. Simulation time when the faulty setting time
is changed (Scenario IV)

Figure 5.21 shows the throughput comparison of different faulty time
of AP3. In 802.11, at t = 48s, the throughput drops by 0.39% because
AP3 is faulty before the STA moves to it, and at t = 92s, the through-
put drops by 0.38% because AP3 is set as a faulty AP at the same
time as the STA moves to AP3. At t = 170s, the throughput of 802.11
drops by 0.39% when AP3 is set to fault the third time. The through-
put performance of these three different faulty times of AP3 is almost
the same in this scenario.

With the self-healing approach, the average throughput has been im-
proved by all the machine learning algorithms. KNN shows the best
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performance in this scenario. This is because KNN is a lazy super-
vised learning algorithm. The lazy supervised training dataset is the
training model, so it learns very fast [149]. Therefore, KNN is more
suitable for this scenario with one AP becoming faulty at different
time. Compared with standard 802.11 , the average throughput has
been improved by 1.80% with KNN algorithm.

• Packet loss rate
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Figure 5.22: Packet loss rate vs. Simulation time when the faulty setting
time is changed (Scenario IV)

Figure 5.22 shows how the packet loss rate is affected by different
faulty time of AP3. In standard 802.11, the packet loss rate increases
almost the same at different faulty time. Each time, the packet loss
rate is increased by around 8.02% when the outage happens. At t =

48s, the packet loss rate increases because AP3 is set as a faulty AP
before the STA moves to it. The faulty AP3 causes the STA to spend a
long time searching for a target AP to associate with. At t = 92s, AP3
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is set as faulty AP at the same time when the STA moves to AP3. In
this case, AP3 is considered as the target AP for the STA to associate
with. The fault causes the STA to be unable to perform a handover
to AP3 and to scan for a new target AP. The additional scanning time
generates the disruption of data transfer. At t = 170s, the increased
packet loss rate is because the STA is de-associated from AP3 and
starts to scan for a new AP to associate with. The suddenly disturbed
data connection generates a high packet loss rate.

Compared with standard 802.11, the average packet loss rate is re-
duced by 51.63% with KNN, by 37.98% with SVM, by 37.09% with
LOF, by 40.65% with RF and by 32.04% with K-means. The super-
vised learning algorithms, KNN and RF show better performance
than other algorithms because of higher detection efficiency. In dif-
ferent faulty time, the faulty AP needs to be detected quickly to avoid
losing the data connection. With KNN it is easier to detect the single
AP status using its k neighbors without spending the time to train
the training models. Thus, KNN is still superior to RF. The unsu-
pervised algorithm K-means shows the worst performance. This is
because one major drawback of K-means is it often falls in local op-
tima [150]. Therefore, the faulty AP cannot be detected correctly.
This can cause the packet loss rate to increase if the detection is not
correct.

• Handover delay

Figure 5.23 shows the comparison of handover delay at different
faulty time of AP3. In this scenario, the total handover delay of
802.11 is smallest. Although there is one faulty AP causing through-
put to drop and the packet loss rate to increase, the STA still main-
tains data connection during the simulation time. In self-healing,
when the faulty AP is detected, the STA is forced to handover to
neighbor APs. The number of handover increased is to improve
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throughput and reduce packet loss. However, increasing the number
of handover leads to total handover delay being increased.
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Figure 5.23: Handover delay vs. Cumulative distribution function when
the faulty setting time is changed (Scenario IV)

The handover delay of KNN is the smallest among all the five ma-
chine learning algorithms. Compared with SVM and RF algorithms,
the faulty AP is easily detected with KNN when the new measure-
ment data is collected without changing the parameters of the train-
ing models. The calculation involved with updating training model
behavior is largely reduced. Thus, the handover delay is reduced by
fast detection.

5.4.3.5 Changing Speed

In the fifth scenario (Scenario V), how the handover performance changes
with increasing STAs speed is investigated. The speed of STAs takes a
value between 2m/s and 6m/s within the distance of 360m. At the sim-
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ulation start time t = 0, the STAs are on the same location and are con-
nected to the same AP number 0. The scenario is set up with six APs and
five STAs. The distance between each AP is 60m. The simulation time is
60s for each run. The STAs start to move from AP0 to AP5 at t=0s with a
constant speed between 2m/s and 6m/s. At the beginning (t = 0), STAs
are associated with AP0. At t = 35s, AP3 is set to sleep status and the trans-
mit power is set to 0.1dBm to simulate hardware failures for 25 seconds.
During the sleep mode, there is no energy consumed by AP3.

• Throughput

In Figure 5.24, the throughput is evaluated by comparing different
machine learning algorithms with standard 802.11. There is no self-
healing mechanism in standard 802.11. The STAs associated with
faulty a AP are de-associated when an outage happens in WiFi net-
works. It is hard for the STAs to scan and re-associate with new APs.
Therefore, the average throughput decreases by 37.42%.

With the self-healing approach, all the machine learning algorithms
improve throughput. However, the average throughput of the pro-
posed KNN algorithm shows the best performance. The average
throughput has been improved by 63.64% compared with standard
802.11. This is because the KNN can detect the faulty AP faster than
other algorithms with high accuracy. K-means shows the worst per-
formance detecting the faulty AP because when the speed of the
STAs increases, the cluster approach cannot detect the fault quickly
with high accuracy.

• Packet loss rate

When the AP is faulty, it usually causes a high packet loss rate due
to the momentary loss in connectivity. In the results shown in Fig-
ure 5.25, the packet loss rate of machine learning algorithms includ-
ing KNN, SVM, RF, LOF and K-means are compared with the stan-
dard 802.11 as the STAs are moving at the speed 2, 3, 4, 5 and 6m/s.
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Figure 5.25: Packet loss rate vs. Speed when the speed of STAs is changed
(Scenario V)

The traditional 802.11 standard shows very high average packet loss
rate around 22.18%. When the speed of the STAs is 2m/s, the packet
loss rate is not affected even though AP3 is a faulty because the STAs
move before AP3 during the faulty occurrence. When the moving
speed of STAs is 3, 4, 5 and 6m/s, the STAs move close to AP3 and
try to re-associate with it. The fault of AP3 cause the STAs cannot
associate with AP3 and generates high packet loss.

With the self-healing algorithms, the packet loss rate of KNN is 16.62%
lower than standard 802.11. The results of KNN are not affected by
varying STA speed. This is because KNN is more suitable for dy-
namic environments that require frequent updates of the training
data [151, 152]. KNN is also an efficient learning algorithm and has
successfully been used in real-applications [153]. With these advan-
tages, the faulty AP can be detected efficiently by KNN to reduce
the data disruption time. When the speed of STAs is very slow, the
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SVM, random forest and LOF show performance as good as KNN.
However, when the speed of the STAs increases, the accuracy of the
other three supervised learning algorithms decreased. This is be-
cause SVM and RF need more learning time than KNN to update the
training models. Therefore, KNN is more suitable for self-detection
in the changing speed scenario.

• Handover delay
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Figure 5.26: Handover delay vs. Handover number when the speed of
STAs is changed (Scenario V)

Figure 5.26 shows the handover delay vs. the average number of
handover is recorded. When the number of handovers is low (one
or two handovers), all six mechanisms achieve almost identical han-
dover delays, which is because there is no outage AP in the two han-
dovers. As the STAs continue to move to AP3, the outage happens.
When the speed of the STAs is 2m/s or 3m/s, the STAs only per-
forms two handovers and the outage does not have any effect on the
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handover numbers. When the moving speed of STAs is 3, 4, 5 and
6m/s, the STAs move close to AP3 and try to re-associate with it at
the third handover. However, the handover fails because the STAs
lost connectivity of 802.11. Therefore, there is no reading for 802.11
since the third handover.

The handover is restored by self-healing algorithms at the third han-
dover. At the fourth handover, the average handover delay of self-
healing is lower compared with the fifth handover because the STAs
do not perform handover when the STAs move at speed of 4 and
5m/s. Although K-means detects the faulty AP with the lowest han-
dover delay at the third and fourth handovers, the STAs lose con-
nectivity (hence no reading) at the fifth handover because of a lower
detection accuracy rate when the speed increased to 5m/s or 6m/s.

Overall, KNN achieves the lowest average handover delay among
the five machine learning algorithms. The advantage of KNN is that
no assumption of a global training model is required but only a met-
ric on the data domain [154]. Therefore, KNN can detect the faulty
AP more quickly than SVM and RF. Compared with LOF, KNN still
shows better performance though they are both based on computing
the distance between neighbors. LOF is not able to detect the faulty
AP with higher accuracy than KNN due to the low-density of APs in
this senarios [155]. Once the STAs obtain the faulty AP information
sent by the APC, the STAs can be prevented from associating with
faulty APs. At the same time, the scanning delay can be reduced
by the updated neighbor list removing the faulty APs. The STA will
re-associate with the best candidate on the neighbor list.

5.4.3.6 Changing the Number of APs

In Scenario VI, the density of the network has been investigated by chang-
ing the number of APs. One STA moves between a different number of
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APs(4, 6, 8, 10, 12) at a constant speed of 3m/s within the distance of
180m. At t = 25s, AP3 has been set to sleep status and transmit power
is set to 0.1dBm to simulate hardware failures for 40 seconds. During the
sleep mode, there is no energy consumed by AP3. The simulation time is
60s for each run.

• Throughput

In Figure 5.27, the throughput of five machine learning algorithms
including KNN, SVM, RF, LOF and K-means has been compared
with standard 802.11. With the self-healing approach, all the ma-
chine learning algorithms show an improvement of throughput. How-
ever, the average throughput of proposed KNN, SVM, and RF meth-
ods are improved by 4.69%, 4.54% and 4.59% respectively compared
with the IEEE 802.11 standard. The average throughput of LOF and
K-means only improved by 4.24% and 4.11% respectively.

K-means is a clustering algorithm that divides the AP into different
clusters. However, K-means is not stable in a dynamic network envi-
ronment when the number of AP is changed because it is not robust
to outliers, especially with only one faulty AP in this scenario [156].
Another drawback of K-means is the local minima problem, where
it is possible to reach a local minimum but it may not be a global
optimum [157]. These drawbacks of K-means lead to the STA not be-
ing to obtain the faulty AP information in advance and causing han-
dover failure with faulty APs. Thus, the performance of throughput
degrades.

Although LOF is a local density-based algorithm, it can reduce the
local minima problem of K-means. LOF may miss some potential
outliers whose local neighborhood density is very close to that of its
neighbors [158]. This reduced detection accuracy means LOF cannot
improve throughput performance significantly.

Figure 5.28 shows the throughput affected by increasing the num-
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Figure 5.28: Throughput vs. Number of APs (Scenario VI)

ber of APs. Although there is a faulty AP, the high density AP en-
vironment means the STA still has more chances to find new APs
that can provide better throughput than the current serving AP. The
average throughput is not affected too much in high density envi-
ronment. This is because when the number of AP increases, the dis-
tance between APs is reduced. Thus, the STA always moves within
an APs’ coverage range and can easily handover to neighbor APs.
However, the expected communication time between the STA and
AP is reduced because of the dense environment. As the proposed
self-healing method considers detecting the faulty APs, the through-
put is less affected than 802.11.

• Packet loss rate

Packet loss happens during handover because of the disruption time.
When the AP is faulty, it also causes a high packet loss rate due to
the disconnectivity. The packet loss rate also depends strongly on the
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density of networks. In the results shown in Figure 5.29, the packet
loss rate of the machine learning detection methods are compared
with the standard 802.11 as the number of APs increase from four to
twelve.
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Figure 5.29: Packet loss rate vs. Number of APs (Scenario VI)

When the number of AP increases from four to eight, the packet loss
reduces because the STA has more chances to associate with new APs
that can provide better service than the current AP. However, when
the number of AP continues to increase, the packet loss rate increases
a little bit because of the interferences between APs.

With the self-healing for WiFi networks, the average packet loss rate
of KNN has been reduced to 6.61%. The packet loss rate of KNN is
25.98% lower than standard 802.11. The packet loss rate of KNN is
lower than other algorithms such as SVM and random forest, which
means the KNN method is not affected significantly by the AP den-
sity changing. When the number of AP is six to ten, the average
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packet loss is almost the same using KNN, SVM, random forest and
LOF. Compared with the standard 802.11, the average packet loss
of K-means only reduced by 21.94%. The permanence of K-means
becomes worse and worse when the number of AP reaches ten and
twelve. In dense AP networks, K-means cannot detect the faulty
AP with high accuracy because of its poor scalability. This causes
K-means to be unable to detect the faulty AP correctly in a global
view. Therefore, the packet loss reduces less than other self-healing
algorithms because the low detection accuracy can still cause data
disruption.

• Handover delay

Figure 5.30 shows the handover delay vs. the number of APs.

The average handover delay is lowest for 802.11 when the number
of APs is four because the STA loses connection when the outage
happens and fails to find better AP to associate with. Thus, there
is actually no handover for 802.11, which leads to the lowest total
handover delay.

When the number of AP is six, all six mechanisms achieve almost
identical handover delays, which is because the faulty AP3 has not
affected the handover performance. The STA associated with AP2
handovers to AP4 directly. When the number of APs is eight, the
handover delay is affected by the faulty AP because the STA moves
before AP3 and just wants to associate with AP3. As the number
of AP increased (10 and 12 APs), KNN and RF achieve better han-
dover performance. This is because KNN detects the faulty AP based
on only the K nearest neighbors and increasing the number of APs
does not affect the efficiency of the algorithm. RF has no over-fitting
problem so it can detect the faulty AP with higher accuracy. The un-
supervised learning LOF and K-means cause high handover delay
when the number of APs increases to 10 or 12 because the clustering
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algorithms take longer to detect the AP status when the number of
AP increases.
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Figure 5.30: Handover delay vs. Number of APs (Scenario VI)

5.4.3.7 Changing the Number of STAs

In Scenario VII, the number of STAs has been increased to see the impact
on handover performance. The STAs start to move at t=0s with at a con-
stant speed of 3m/s from AP0 to AP5. The distance between APs is 30m.
At t = 25s, AP2 has been set to sleep status and transmit power is set to
0.1dBm to simulate hardware failures for 40 seconds. During the sleep
mode, the remaining energy of APs is assumed unchanged. The simula-
tion time is 60s for each run.

• Throughput

Usually, the more STAs utilize the capacity of APs, the higher the
network throughput becomes. However, the throughput is not al-
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ways increased when the number of STAs increases in the WiFi net-
works exiting faulty AP. This is because the STAs lose connectivity
when they want to handover to the faulty APs. The scanning time
becomes larger for STAs to find a better AP to associate with, which
may cause handover failure.
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Figure 5.31: Throughput vs. Number of STAs (Scenario VII)

In Figure 5.31, the throughput of five machine learning algorithms
including KNN, SVM, RF, LOF, K-means are compared with the 802.11
standard. With the self-healing approach, all the machine learn-
ing algorithms show an improvement in throughput. However, the
improvement in throughput does not always increase. This is be-
cause the larger the number of STAs, the more contention there is
among them. Thus, the larger STAs density achieves lower through-
put improvement. Compared with the standard 802.11, the average
throughput of supervised learning KNN, SVM, and RF have been
improved by 9.07%, 8.80% and 8.79% respectively and the average
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throughput of unsupervised learning LOF and K-means has been
improved by 8.67% and 7.26% respectively. The improvement of un-
supervised learning algorithms is worse than supervised learning
algorithms, especially K-means shows the worst performance in this
scenario. This is because K-means needs to run many iterations to
find the faulty AP with a high cost of computation time [159]. Al-
though K-means is a simple algorithm, it cannot meet the dynamic
network requirements. When the dense of STA increases, the slower
detection of faulty AP by K-means cannot ensure the STAs can as-
sociate with a new target AP before the fault is detected. Thus, the
average throughput using K-means shows the lowest improvement.

• Packet loss rate

When the number of STAs increases, it usually causes a high packet
loss rate due to disconnectivity. In the results shown in Figure 5.32,
the packet loss rate of the proposed self-healing methods is com-
pared with the standard 802.11 as the number of STAs increases from
1 to 5.

In the traditional 802.11 networks, the packet loss rate is reduced
when the number of STAs increases from one to three, while the
packet loss rate is increased when the number of AP is increased
to four and five. This is because the STAs cannot find a better AP to
associate with when there is a faulty AP. All the STAs try to associate
with the same AP when the outage happens. When the AP load is
high, the imbalanced load leads to considerable packet loss.

In Figure 5.32, the packet loss rate of five machine learning algo-
rithms including KNN, SVM, RF, LOF, K-means has been compared
with standard 802.11. With the self-healing approach, the packet loss
rate is reduced by all the machine learning algorithms. Compared
with standard 802.11 , the average packet loss rate of the supervised
learning algorithms KNN, SVM, RF, LOF and K-means has been re-
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Figure 5.32: Packet loss rate vs. Number of STAs (Scenario VII)

duced by 63.28%, 61.49%, 61.78%, 59.28% and 54.27% respectively.
The supervised algorithms show better improvement than unsuper-
vised algorithms. This is because supervised algorithms have lower
detection error than unsupervised algorithms. When the STAs ob-
tain the faulty AP’s information, they re-associate with a new AP
on the neighbor list. The successful handover not only reduces the
collision probability among the STAs but also prevent STAs from as-
sociating with a faulty AP. Thus, the packet loss rate of supervised
algorithms is reduced higher than unsupervised algorithms.

• Handover delay

Figure 5.33 shows the average handover delay vs. the number of
STAs. As the number of STAs increases, the handover delay is re-
duced by all self-healing algorithms. The average handover delay is
reduced by 39.09% with KNN, 13.63% with SVM, 21.61% with RF
and 12.03% with LOF and 13.45% with K-means. KNN achieves
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the lowest handover delay among the five machine learning algo-
rithms. When the number of STAs increases, the dataset becomes
larger. SVM and RF have to spend more time training to update
the training model based on the incoming measurement data. LOF
and K-means are not sensitive with the less dense AP environment
so the faulty AP cannot be detected with higher accuracy. As KNN
is only based on the data domain that the incoming measurement
data compares with the AP status ofK nearest APs without updating
the training model, it has less detection time than other algorithms.
This efficient learning method reduces the unwanted scanning time
of faulty APs and prevented the STAs from associating with a faulty
AP. Therefore, the handover delay is reduced.
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Figure 5.33: Handover delay vs. Number of STAs (Scenario VII)

5.4.3.8 Changing the Network Topology

In Scenario IV, three different topologies of AP placement are investigated.
First, the APs are placed in one line as shown in Figure 5.34. The distance
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between two APs is 30m. One STA moves from AP0 to AP5 begins at t=0s
with a constant speed of 3m/s from left to right, then moves backward
and forwards between AP5 and AP0. At t = 20s, AP3 and AP4 have been
set to sleep status and transmit power is set to 0.1dBm to simulate hard-
ware failures for 80 seconds. During the sleep mode, there is no energy
consumed by AP3 and AP4. The simulation time is 100s for each run.
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Figure 5.34: AP placement of 1D line topology for self-healing approach

In the second topology, the APs are placed in a grid as shown in Fig-
ure 5.35. The distance between the rows is 16m and 12 APs placed on each
line. At t=0s, one STA moves in the middle among lines back and forth
with a constant speed of 3m/s. The distance between APs is 30m. At t =
20s, AP5 and AP9 have been set to sleep status and transmit power is set
to 0.1dBm to simulate hardware failures for 80 seconds. During the sleep
mode, there is no energy consumed by AP3 and AP5.

The third topology showed in Figure 5.36 consists of a random AP
placement in a 90×80m area. One STA moves with a constant speed of
3m/s from left to right backward and forwards horizontally. At t = 20s,
AP3 and AP5 have been set to sleep status and transmit power is set to
0.1dBm to simulate hardware failures for 80 seconds. During the sleep
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Figure 5.35: AP placement of 2D grid topology for self-healing approach
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Figure 5.36: AP placement of random topology for self-healing approach
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mode, there is no energy consumed by AP3 and AP5.

• Throughput

In Figures 5.37 5.38 and 5.39, the throughput of self-healing algo-
rithms are compared with the 802.11 standard in three different net-
work topologies.
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Figure 5.37: Throughput vs. Simulation time - 1D topology (Scenario VIII)

Figure 5.37 shows the average throughput when STA moves in a
line network topology. In traditional 802.11 networks, the average
throughput drops twice at t = 43s and t =61s because of the faulty
AP3 and AP5. At t =43s, the STA associated with AP4 tries to han-
dover to AP5. However, the STA takes a long time to scan for the
best candidate AP because both the closest APs to AP4 are faulty
APs (AP3 and AP5). At t = 50s, when the STA moves back from AP5,
the throughput continues to degrade because the STA scans a long
searching for the best candidate AP.
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Figure 5.38: Throughput vs. Simulation time - 2D topology (Scenario VIII)
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Figure 5.39: Throughput vs. Simulation time - Random topology (Scenario
VIII)
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Compared with 802.11, the average throughput of self-healing algo-
rithms has been improved by 5.81% with KNN, 5.91% with SVM,
5.71% with RF and 5.68% with LOF and 5.97% with K-means. The
performance of K-means shows the best improvement in the line net-
work topology. This is because there are four normal APs and two
faulty APs in this line topology networks and it is easier for K-means
algorithm to cluster the normal APs and faulty APs in this simple
line topology.

Figure 5.38 shows the average throughput when the STA moves in a
grid network topology. Compared with standard 802.11, the average
throughput of self-healing is improved by 0.78% with KNN, 0.64%
with SVM, 1.12% with RF and 0.38% with LOF and 0.37% with K-
means.

Compared with 1D line topology, the self-healing algorithms show
less improvement to the average throughput in the 2D grid topology.
This is because even though there are two faulty APs in this topology,
the dense network can keep the data connection the STA can find
the best candidate easily because of multiple neighbor APs. How-
ever, the self-healing approaches still improved throughput perfor-
mance. This is because the scanning delay is reduced by informing
the STA of the faulty AP in advance. Thus, the STA is prevented
from scanning and associating with the faulty APs. The throughput
is improved because of the fast handover performance.

Figure 5.39 shows the average throughput when the STA moves in
a random network topology. Compared with 802.11, the average
throughput of self-healing is improved by 0.82% with KNN, 0.74%
with SVM, 0.96% with RF and 0.89% with LOF and 0.87% with K-
means.

Compared with the 2D grid topology, the unsupervised algorithms
LOF and K-means still show better improvement in this less dense
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random topology. Thus, the AP density is a key factor to choose
self-healing algorithms. If the AP density is low, the unsupervised
learning can detect the AP very fast without longer training time.
However, supervised learning is more suitable to the dense network
environment because the unsupervised clustering algorithms cannot
guarantee accuracy when the number of APs is large. If the faulty AP
cannot be detected in a real-time network environment, the through-
put is unable to be improved because of handover failure.

• Packet loss rate
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Figure 5.40: Packet loss rate vs. Simulation time - 1D topology (Scenario
VIII)

When there are two faulty APs, it usually causes a higher packet loss
rate than one faulty AP due to the loss of data connectivity. In the
results shown in Figure 5.40 5.41 5.42, the packet loss rate of self-
healing methods are compared with 802.11 standard in three net-
work topologies.
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Figure 5.41: Packet loss rate vs. Simulation time - 2D topology (Scenario
VIII)
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Figure 5.42: Packet loss rate vs. Simulation time - Random topology (Sce-
nario VIII)
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The traditional 802.11 standard shows very high average packet loss
rate of 15.16%, 10.50% and 7.41% respectively in the 1D, 2D and ran-
dom topologies when the outage happens. In the 1D line topology,
there is no hop between the two faulty APs and the faulty time occurs
just before the STA moves to the faulty AP. The distance between the
normal AP2 and AP5 is long and the STA scans a long time to search
for a new AP to associate with. Thus, it generates a higher packet
loss rate compared with the grid topology and the random topology.
In this grid topology, the AP placement is dense. Although the two
faulty APs are next to each other, the STA can still find a better AP
to re-associate with more easily than in the 1D topology. However,
the dense network of a grid topology involves more interference be-
tween APs. The scanning delay also increases because the number
of AP is larger. Thus, the packet loss rate is higher than with the ran-
dom topology. In the random topology, the APs are placed not too
dense. Therefore, the STA can find the best candidate AP more eas-
ily than in the 1D line topology because the distance between normal
APs is not very far.

With the self-healing approaches, the average packet loss rate has
been reduced by 6.88% in the line topology, 6.64% in the grid topol-
ogy and 2.07% in random. In the 1D topology, the average packet
loss rate improved most. This is because two faulty APs cause more
data disruption due to the long scanning in traditional 802.11 net-
works. The self-healing approach detects the faulty AP before the
STA moves to the faulty APs so the data disruption time is reduced.
The STA performs handover to neighbor APs once they obtain the
faulty APs information. Thus, the average packet loss is reduced a
lot in the line topology with the use of self-healing algorithms. As
the STA does not need to scan the faulty APs in the dense 2D grid
topology, the fast handover reduces the packet loss by self-healing
algorithms. Thus, the packet loss rate is still reduced a lot.
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Compared with 1D and 2D topology, the faulty APs has less effect
on packet loss in the random topology. This is because the random
topology is a lower AP density so it has fewer interference issues
and shorter scanning time than in the 2D topology. Even though two
APs are faulty, the STA still can find the best candidate AP when the
outage happens. Thus, the packet loss rate is reduced less than 1D
line topology. With the self-healing algorithms, the STA reduces the
scanning time and the faulty AP is prevented from associating with
a faulty AP. Therefore, the packet loss rate is reduced in the random
topology networks.

• Handover delay

Figure 5.43 shows the average handover delay vs. different topolo-
gies. The handover delay of the 1D topology is higher than the han-
dover delay of the 2D and random topologies. This is because of the
longer scanning time caused by two faulty APs in the less dense 1D
line topology. The STA is hard to find the best candidate AP because
of the long distance between normal APs.

In the 2D topology, the handover delay is lower than 1D because the
number of AP is increased. The STA has more chances to find a new
AP to associate with than 1D topology. However, the density of AP
causes the STA to scan more APs than the random topology. Thus,
the average handover delay is higher than random topology. In the
random topology, the AP placement is less dense than 2D topology
and the APs are randomly placed not like the line topology. The STA
spends less scanning time than 1D and random topology. Thus, the
handover delay is the smallest among the three topologies.

The self-healing algorithms reduce handover delay when the outage
happens in the three network topologies. This is because self-healing
can dynamically detect the faulty APs based on the real-time net-
work environment. The average handover delay has been reduced
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by 54.47%, 26.19%, 6.50% in 1D, 2D and random topologies, respec-
tively. In the 1D line topology, the average handover delay is re-
duced most because the handover delay of 802.11 is the largest in
the three topologies. When the faulty AP is detected, the STA can
associate with a normal AP on the neighbor list. In the 2D topol-
ogy, the handover delay has also been reduced in the dense network
topology because the STA can find the best candidate easier than 1D
topology. The average handover delay of random topology has less
affected by the faulty APs because the positions of faulty AP and
the faulty time has fewer effects on scanning for the best candidate
AP. Thus, the handover delay is reduced less than in the 1D and 2D
topologies.
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topologies (Scenario VIII)
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5.5 Summary

This proposed self-healing method for WiFi networks automatically de-
tects the faulty APs and compensates for the network degradation. On
the basis of network measurements from APs, the machine learning algo-
rithms KNN, SVM, RF, LOF and K-means have been implemented suc-
cessfully in the simulation environment. The simulation results demon-
strate that the network performance is significantly better than the tradi-
tional 802.11 standard.

In the future, how to optimize the transmit power considering AP place-
ment and faulty time to avoid the faulty APs effects on handover perfor-
mance will be further investigated to provide more practical solutions.



Chapter 6

Conclusions

Self-Organizing Network (SON) is a promising concept for improving net-
work service automatically by reducing operational and maintenance costs.
The goal of this thesis is to use SON functionalities to provide seamless
handover for WiFi networks. The three SON functionalities used in this
thesis are self-configuring neighbor lists, self-optimizing scanning para-
meters and a self-healing system working together to significantly en-
hance the handover performance in WiFi networks. Therefore, this thesis
contributes to the SON solutions that provide mobility management for
WiFi networks taking into consideration the major challenges discussed
in Chapter 2.

In Chapter 3, a self-configuring Neighbor List Mechanism (NLM) is
proposed. A centralized AP controller (APC) is used to store the up-to-
date neighbor lists and manage the AP cooperation. The neighbor APs’
information is obtained based on the neighbor reports and the radio pa-
rameters retrieved from radio measurement reports provided in standard
802.11k. Compared with the 802.11 standard, the average handover delay
using NLM is reduced by approximately 41.46%, the average throughput
using NLM is improved by approximately 5.10%, and the average packet
loss rate using NLM is reduced by approximately 36.14%.

However, NLM uses the fixed scanning parameters which also affect

254
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the scanning delay. In response to this, the scanning parameters were
optimized in Chapter 4 to further reduce the unnecessary waiting time
(around 24% compared to NLM) of probe responses from non-adjacent
APs or APs with poor QoS. Thus, compared with NLM, the average han-
dover delay is reduced by approximately 10.88%, the average throughput
is improved by approximately 2.83% and the average packet loss rate is
reduced by approximately 12.44%.

The SON functionalities in Chapters 3 and 4 reduce the scanning de-
lay based on the assumption that the network elements all work normally.
However, it is inevitable that an AP may suddenly be faulty during the
handover process. This may lead to a handover failure. Faulty APs can
also cause network degradation. In Chapter 5, a self-healing system is
implemented to automatically detect faulty APs and compensate for the
network degradation. Classification and clustering algorithms are used
for the self-detection phase to find the faulty APs. In self-healing, com-
pared with the 802.11 standard, the average handover delay is reduced by
approximately 71.86%, the average throughput is improved by approxi-
mately 30.53%, the average packet loss rate is reduced by approximately
68.27%.

6.1 Contributions

The contributions of this thesis are summarized as follows:

1. An up-to-date NLM is designed and evaluated to establish neigh-
borhood management in WiFi networks. This NLM is the first so-
lution for establishing neighborhood relationships under dynamic
network conditions using machine learning algorithms based on the
IEEE 802.11k standard. The number of channels and APs is reduced
during handover process. Therefore, the total scanning delay is re-
duced, in turn reducing the handover delay in WiFi networks.
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2. In NLM, the handover decision is made by the AP score which is
a dynamic handover threshold. The AP score calculated using ma-
chine learning algorithms is updated based on radio parameters and
network parameters including RSSI, SNR, packet delay, packet loss,
data rate, average throughput and AP load in the real-time network.
This is the first time that the dynamic threshold using more than
one predictor has been used to make a handover decision. There-
fore, handover performance is improved because of the dynamic
handover decision criterion.

3. A self-optimizing scanning algorithm is used to optimize scanning
parameters. This algorithm is the first solution to reduce the scan-
ning delay by optimizing all the scanning parameters together us-
ing a Genetic Algorithm (GA). All the scanning parameters includ-
ing MinChannelTime, MaxChannelTime, probe request interval, chan-
nel switching time , the number of channels scanned and channel
sequence are dynamically adjusted based on real-time network con-
ditions.

4. A new self-healing system is designed for fault detection and com-
pensation for network degradation in WiFi networks. This is the
first time SON functionalities are used together to automatically de-
tect and compensate for network failures to improve handover per-
formance in WiFi networks. Self-healing includes self-detection of
faulty APs and self-compensating for network degradation. When a
faulty AP is detected in the self-detection phase, the neighbor list will
be updated with the removal of faulty APs. The STAs search for the
best candidate AP to perform handover using the optimized scan-
ning parameters. Thus, self-configuring, self-optimizing and self-
healing functionalities work together to reduce handover delay and
handover failure rate in WiFi networks.
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6.2 Practical Implications

The SON functionalities continuously improve handover performance and
the seamless handover increases customer satisfaction. As the SON ap-
proach does not need extra hardware and human intervention, the cost
and time of operation are reduced by this automation technique.

The practical implications of this SON approach are discussed as fol-
lows:

1. This SON approach is implemented based on machine learning tech-
niques. Machine learning is a data analytics technique. The output is
predicted by the algorithm learning from the data. The data collected
in this study is through simulation by NS-3. The results by using dif-
ferent simulation tools or real measurement need to be tested and
validated using this SON approach.

2. The data collection of this SON approach is based on multiple sce-
narios including dense network environment and different network
topologies. Moreover, this SON approach aims to meet different ap-
plication requirements. Therefore, the traffic is generated randomly
to simulate different applications including voice call, video calls,
video streaming, online gaming. In the system design and planning,
large network topologies and dense network environments need to
be supported. Furthermore, the data should be collected by running
multiple applications in different network environments.

3. This SON approach uses a centralized architecture to develop novel
solutions for handover in WiFi networks. A centralized controller is
used to manage the network elements, establish and update neigh-
borhood information, optimize scanning parameters and monitor
AP status for the fault management. Therefore, this SON approach
is only suitable for centralized networks.



258 CHAPTER 6. CONCLUSIONS

6.3 Future Work

There are still some limitations in terms of the scope of this research. This
section gives some directions for future study of each SON functionality
in WiFi networks. In the future work, the real measurement can be used
to validate the accuracy of mathematical analysis and simulation results.

6.3.1 Self-configuration

1. The neighbor list storage: The current neighbor lists are stored in
the APC under the assumption that there is no link delay between
the APC, APs and STAs. In the real-world applications, the link de-
lay which may increase the handover delay should be considered.
One suggestion to reduce the link delay is to store the neighbor list
on the STAs. As STAs adapt to local changes rapidly, the neighbor
list can be obtained and updated immediately when scanning is ini-
tiated by a STA.

However, AP is vendor-specific and does not allow for easy coor-
dination among equipment from different infrastructure vendors.
Therefore, it is still a challenge to establish a neighborhood with-
out a centralized controller. In future, the neighbor list stored in STA
needs to be compared with the neighbor list stored in APC.

2. Initial configuration for newly deployment: The proposed NLM
is only for enhancing the handover performance. However, self-
configuration can also be used for the initial configuration of newly
deployed APs. Currently, the initial radio and network parameters
of APs are defined by different operator and vendors. These initial
parameters would be dynamically configured by remote and intel-
ligent firmware management to reduce human intervention using
self-configuration in WiFi networks.



6.3. FUTURE WORK 259

6.3.2 Self-optimization

1. Fitness function in GA: The current fitness function of GA only con-
siders the candidate AP priority based on SNR, which means the op-
timal scanning parameters are selected mainly depending on SNR.
As the fitness function is the key point to find the optimal scanning
parameters, the network parameters used in the fitness function may
affect the value of the optimal scanning parameters. In the future
work, other radio and network parameters including RSSI, packet
delay, packet loss, data rate, throughput and AP load should be con-
sidered to meet the requirements of different applications.

2. Crossover rate and mutation rate of GA: The crossover rate and mu-
tation rate values are fixed in this approach. The fixed crossover and
mutation rate cannot fit the dynamic network environment. As the
crossover and mutation affect the algorithm computation time, if the
chromosomes do not need to be changed, it is a waste of time to
do these operations. Therefore, it is necessary to find a solution to
dynamically adjust crossover and mutation rates based on real-time
network conditions.

6.3.3 Self-healing

1. Faulty AP detecting: In self-healing, the remaining energy is used
to detect the faulty AP. Sometimes, an AP without energy consump-
tion might not be a faulty AP such as a sleep AP. Therefore, other
effects including the signal strength, traffic and load balance need
to be considered to monitor and detect the faulty AP using different
network parameters. These network parameters can be RSSI, SNR,
packet delay, packet loss, data rate, throughput and AP load. In NS3,
low transmit power and sleep AP are used to simulate hardware fail-
ures. In future, the real measurement needs to be used for detecting
the real AP status.
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2. Dynamically adjusting transmit power:

In the current self-healing, network degradation cannot be recovered
if the STA is out of the normal AP’s coverage range when the large
number of faulty AP happens. The neighbor information may be
missing because of the limitation of the coverage range. In this sit-
uation, the transmit power of normal APs are manually increased
to a higher value. The STA can find the best AP to reassociate with
when the neighbor information is obtained because of the increased
transmit power. However, this method cannot satisfy the dynamic
network requirements. Therefore, the transmit power should be dy-
namically adjusted to meet the network requirements when the out-
age happens.
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[22] A. Böhm and M. Jonsson, “Handover in ieee 802.11 p-based delay-
sensitive vehicle-to-infrastructure communication,” 2009.

[23] Z. Zhang, W. P. Richard, and A. Boukerche, “A fast mac layer hand-
off protocol for wifi-based wireless networks,” in Local computer net-
works (LCN), 2010 IEEE 35th conference on, pp. 684–690, IEEE, 2010.



BIBLIOGRAPHY 265

[24] A. R. Rebai and S. Hanafi, “An adaptive multimedia-oriented hand-
off scheme for ieee 802.11 wlans,” arXiv preprint arXiv:1102.5189,
2011.

[25] A. Mishra, M. Shin, and W. A. Arbaush, “Context caching using
neighbor graphs for fast handoffs in a wireless network,” in INFO-
COM 2004. Twenty-third AnnualJoint Conference of the IEEE Computer
and Communications Societies, vol. 1, p. 361, March 2004.

[26] A. Mishra, M. Shin, and W. Arbaugh, “An empirical analysis of the
ieee 802.11 mac layer handoff process,” ACM SIGCOMM Computer
Communication Review, vol. 33, no. 2, pp. 93–102, 2003.

[27] H. Velayos and G. Karlsson, “Techniques to reduce the ieee 802.11 b
handoff time,” in Communications, 2004 IEEE International Conference
on, vol. 7, pp. 3844–3848, IEEE, 2004.

[28] S. Shin, A. G. Forte, A. S. Rawat, and H. Schulzrinne, “Reducing mac
layer handoff latency in ieee 802.11 wireless lans,” in Proceedings of
the second international workshop on Mobility management & wireless
access protocols, pp. 19–26, ACM, 2004.

[29] A. Arcia-Moret, A. Araujo, J. Aguilarz, L. Molinax, and A. Sathiasee-
lan, “Intelligent network discovery for next generation community
wireless networks,” in Wireless On-demand Network Systems and Ser-
vices (WONS), 2016 12th Annual Conference on, pp. 1–7, IEEE, 2016.

[30] I. Ramani and S. Savage, “Syncscan: practical fast handoff for 802.11
infrastructure networks,” in Proceedings IEEE 24th Annual Joint Con-
ference of the IEEE Computer and Communications Societies., vol. 1,
pp. 675–684 vol. 1, March 2005.

[31] D. Mills, “Network time protocol (version 3) specification, imple-
mentation,” 1992.



266 BIBLIOGRAPHY

[32] Y.-S. Chen, C.-K. Chen, and M.-C. Chuang, “Deucescan: Deuce-
based fast handoff scheme in ieee 802.11 wireless networks,” in VTC,
2006.

[33] V. M. Chintala and Q. A. Zeng, “Novel mac layer handoff schemes
for ieee 802.11 wireless lans,” in 2007 IEEE Wireless Communications
and Networking Conference, pp. 4435–4440, March 2007.

[34] B. Ng, A. Deng, Y. Qu, and W. K. Seah, “Changeover prediction
model for improving handover support in campus area wlan,”
in NOMS 2016-2016 IEEE/IFIP Network Operations and Management
Symposium, pp. 265–272, IEEE, 2016.

[35] V. Mhatre and K. Papagiannaki, “Using smart triggers for improved
user performance in 802.11 wireless networks,” in Proceedings of the
4th international conference on Mobile systems, applications and services,
pp. 246–259, ACM, 2006.

[36] A. Bacioccola, C. Cicconetti, and G. Stea, “User-level performance
evaluation of voip using ns-2,” in Proceedings of the 2nd international
conference on Performance evaluation methodologies and tools, p. 20, ICST
(Institute for Computer Sciences, Social-Informatics and , 2007.

[37] K. Tsukamoto, T. Yamaguchi, S. Kashihara, and Y. Oie, “Experi-
mental evaluation of decision criteria for wlan handover: Signal
strength and frame retransmission,” IEICE transactions on communi-
cations, vol. 90, no. 12, pp. 3579–3590, 2007.

[38] G. Athanasiou, T. Korakis, O. Ercetin, and L. Tassiulas, “Dynamic
cross-layer association in 802.11-based mesh networks,” in IEEE IN-
FOCOM 2007-26th IEEE International Conference on Computer Commu-
nications, pp. 2090–2098, IEEE, 2007.



BIBLIOGRAPHY 267

[39] S.-J. Yoo, D. Cypher, and N. Golmie, “Timely effective handover
mechanism in heterogeneous wireless networks,” Wireless Personal
Communications, vol. 52, no. 3, pp. 449–475, 2010.

[40] A. Bagwari and G. S. Tomar, “Adaptive double-threshold based en-
ergy detector for spectrum sensing in cognitive radio networks,” In-
ternational Journal of Electronics Letters, vol. 1, no. 1, pp. 24–32, 2013.

[41] H. Gacanin and A. Ligata, “Wi-fi self-organizing networks: Chal-
lenges and use cases,” IEEE Communications Magazine, vol. 55, no. 7,
pp. 158–164, 2017.

[42] S. Feng and E. Seidel, “Self-organizing networks (son) in 3gpp long
term evolution,” Nomor Research GmbH, Munich, Germany, vol. 20,
2008.

[43] H. Zhou, “A dynamic neighbor cell list generating algorithm in cel-
lular system,” in 2009 5th International Conference on Wireless Commu-
nications, Networking and Mobile Computing, pp. 1–4, IEEE, 2009.

[44] D. Kim, B. Shin, D. Hong, and J. Lim, “Self-configuration of neighbor
cell list utilizing e-utran nodeb scanning in lte systems,” in 2010 7th
IEEE Consumer Communications and Networking Conference, pp. 1–5,
IEEE, 2010.

[45] 3GPP, “Digital cellular telecommunications system (phase 2+); base
station controller - base transceiver station (bsc- bts) interface; inter-
face principles,” 3GPP TS 48.052, vol. V8.0.0, January, 2009.

[46] 3GPP, “3rd generation partnership project; technical specification
group radio access network; utran iub interface: General aspects and
principles,” 3GPP TS 25.430, vol. V3.8.0, June, 2002.

[47] 3GPP, “Lte; access network (e-utran); x2 application protocol
(x2ap),” 3GPP TS 136.423, vol. V11.2.0, October, 2012.



268 BIBLIOGRAPHY

[48] 3GPP, “Telecommunication management; automatic neighbo bour
relation (anr) managemement; concepts and requirements,” 3GPP
TS 32.500, vol. v13.0.0, Feb, 2016.

[49] A. Mishra, M. H. Shin, N. L. Petroni, T. C. Clancy, and W. A. Ar-
baugh, “Proactive key distribution using neighbor graphs,” IEEE
Wireless communications, vol. 11, no. 1, pp. 26–36, 2004.

[50] “Draft ieee recommended practice for multi-vendor access point in-
teroperability via an inter-access point protocol across distribution
systems supporting ieee 802.11 operation (superseded by 802.11f-
2003),” IEEE Std P802.11F/D6, 2003.

[51] F. Parodi, M. Kylvaja, G. Alford, J. Li, and J. Pradas, “An automatic
procedure for neighbor cell list definition in cellular networks,” in
2007 IEEE International Symposium on a World of Wireless, Mobile and
Multimedia Networks, pp. 1–6, IEEE, 2007.

[52] Y. Zhang, Y. Liu, Y. Xia, and Q. Huang, “Leapfrog: Fast, timely wifi
handoff,” in IEEE GLOBECOM 2007-IEEE Global Telecommunications
Conference, pp. 5170–5174, IEEE, 2007.

[53] H. Zhang, Z. Lu, X. Wen, and Z. Hu, “Qoe-based reduction of han-
dover delay for multimedia application in ieee 802.11 networks,”
IEEE Communications Letters, vol. 19, no. 11, pp. 1873–1876, 2015.

[54] B. Zhang, X. Wen, Z. Lu, T. Lei, and X. Zhao, “A fast handoff scheme
for ieee 802.11 networks using software defined networking,” in
2016 19th International Symposium on Wireless Personal Multimedia
Communications (WPMC), pp. 476–481, IEEE, 2016.

[55] S. Pack, H. Jung, T. Kwon, and Y. Choi, “A selective neighbor
caching scheme for fast handoff in ieee 802.11 wireless networks,”
in IEEE International Conference on Communications, 2005. ICC 2005.
2005, vol. 5, pp. 3599–3603, IEEE, 2005.



BIBLIOGRAPHY 269

[56] T. Lei, X. Wen, Z. Lu, W. Jing, B. Zhang, and G. Cao, “Handoff man-
agement scheme based on frame loss rate and rssi prediction for ieee
802.11 networks,” in 2016 International Symposium on Wireless Com-
munication Systems (ISWCS), pp. 555–559, IEEE, 2016.

[57] D. Aziz, A. Ambrosy, L. T. Ho, L. Ewe, M. Gruber, and H. Bakker,
“Autonomous neighbor relation detection and handover optimiza-
tion in lte,” Bell Labs Technical Journal, vol. 15, no. 3, pp. 63–83, 2010.

[58] V. Capdevielle, A. Feki, and A. Fakhreddine, “Self-optimization of
handover parameters in lte networks,” in 2013 11th International
Symposium and Workshops on Modeling and Optimization in Mobile, Ad
Hoc and Wireless Networks (WiOpt), pp. 133–139, IEEE, 2013.

[59] P. Bhattacharya, A. Sarkar, S. Chatterjee, et al., “An ann based call
handoff management scheme for mobile cellular network,” arXiv
preprint arXiv:1401.2230, 2014.

[60] M. Ekpenyong, J. Isabona, and E. Isong, “Handoffs decision opti-
mization of mobile celular networks,” in 2015 International Confer-
ence on Computational Science and Computational Intelligence (CSCI),
pp. 697–702, IEEE, 2015.

[61] M. S. Dang, A. Prakash, D. K. Anvekar, D. Kapoor, and R. Shorey,
“Fuzzy logic based handoff in wireless networks,” in VTC2000-
Spring. 2000 IEEE 51st Vehicular Technology Conference Proceedings
(Cat. No. 00CH37026), vol. 3, pp. 2375–2379, IEEE, 2000.

[62] S. S. Mwanje and A. Mitschele-Thiel, “Distributed cooperative q-
learning for mobility-sensitive handover optimization in lte son,”
in 2014 IEEE Symposium on Computers and Communications (ISCC),
pp. 1–6, IEEE, 2014.



270 BIBLIOGRAPHY

[63] I. Balan, T. Jansen, B. Sas, I. Moerman, and T. Kürner, “Enhanced
weighted performance based handover optimization in lte,” in 2011
Future Network & Mobile Summit, pp. 1–8, IEEE, 2011.

[64] D. E. Goldberg and K. Deb, “A comparative analysis of selection
schemes used in genetic algorithms,” in Foundations of genetic algo-
rithms, vol. 1, pp. 69–93, Elsevier, 1991.

[65] J. H. Holland et al., Adaptation in natural and artificial systems: an in-
troductory analysis with applications to biology, control, and artificial in-
telligence. MIT press, 1992.

[66] B. A. Julstrom, “It’s all the same to me: Revisiting rank-based prob-
abilities and tournaments,” in Evolutionary Computation, 1999. CEC
99. Proceedings of the 1999 Congress on, vol. 2, pp. 1501–1505, IEEE,
1999.

[67] R. Oladele and J. Sadiku, “Genetic algorithm performance with
different selection methods in solving multi-objective network de-
sign problem,” International Journal of Computer Applications, vol. 70,
no. 12, 2013.

[68] J. Zhong, X. Hu, J. Zhang, and M. Gu, “Comparison of perfor-
mance between different selection strategies on simple genetic algo-
rithms,” in Computational Intelligence for Modelling, Control and Au-
tomation, 2005 and International Conference on Intelligent Agents, Web
Technologies and Internet Commerce, International Conference on, vol. 2,
pp. 1115–1121, IEEE, 2005.

[69] H. M. Pandey, “Performance evaluation of selection methods of ge-
netic algorithm and network security concerns,” Procedia Computer
Science, vol. 78, pp. 13–18, 2016.



BIBLIOGRAPHY 271

[70] E. D. Goodman, “Introduction to genetic algorithms,” in Proceedings
of the Companion Publication of the 2014 Annual Conference on Genetic
and Evolutionary Computation, pp. 205–226, ACM, 2014.

[71] A. D. Irfianti, R. Wardoyo, S. Hartati, and E. Sulistyoningsih, “Deter-
mination of selection method in genetic algorithm for land suitabil-
ity,” in MATEC Web of Conferences, vol. 58, p. 03002, EDP Sciences,
2016.

[72] P. Sharma and A. Wadhwa, “Analysis of selection schemes for solv-
ing an optimization problem in genetic algorithm,” International
Journal of Computer Applications, vol. 93, no. 11, 2014.

[73] O. Al Jadaan, L. Rajamani, and C. Rao, “Improved selection operator
for ga.,” Journal of Theoretical & Applied Information Technology, vol. 4,
no. 4, 2008.

[74] J. E. Baker, “Adaptive selection methods for genetic algorithms,”
in Proceedings of an International Conference on Genetic Algorithms and
their applications, pp. 101–111, Hillsdale, New Jersey.

[75] G. Pavai and T. Geetha, “A survey on crossover operators,” ACM
Computing Surveys (CSUR), vol. 49, no. 4, p. 72, 2017.

[76] T. Weise, “Global optimization algorithms-theory and application,”
Self-Published Thomas Weise, 2009.
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