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School of Mathematics and Statistics
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Abstract

In this thesis, a differential-geometric approach to the kinematics of multi-

body mechanisms is introduced that enables analysis of singularities of both

serial and parallel manipulators in a flexible and complete way. Existing

approaches such as those of Gosselin and Angeles [1], Zlatanov et al. [2]

and Park and Kim [3] make use of a combination of joint freedoms and

constraints and so build in assumptions. In contrast, this new approach is

solely constraint-based, avoiding some of the shortcomings of these earlier

theories.

The proposed representation has two core ingredients. First, it avoids

direct reference to the choice of inputs and their associated joint freedoms

and instead focuses on a kinematic constraint map (KCM), defined by the

constraints imposed by all joints and not requiring consideration of closure

conditions arising from closed loops in the design. The KCM is expressed

in terms of pose (i.e. position and orientation) variables, which are the co-

ordinates of all the manipulator’s links with respect to a reference frame.

The kinematics of a given manipulator can be described by means of this

representation, locally and globally. Also, for a family of manipulators de-

fined by a specific architecture, the KCM will tell us how the choice of design

parameters (e.g. link lengths) affects these kinematic properties within the

family.

At a global level, the KCM determines a subset in the space of all pose

variables, known as the configuration space (C-space) of the manipulator,

whose topology may vary across the set of design parameters. The Jacobian

(matrix of first-order partial derivatives) of the KCM may become singular
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at some specific choices of pose variables. These conditions express a sub-

set called the singular set of the C-space. It is shown that if a family of

manipulators, parametrised by a manifold Rd of design parameters, is “well-

behaved” then the pose variables can be eliminated from the KCM equations

together with the conditions for singularities, to give conditions in terms of

design parameters, that define a hypersurface in Rd of manipulators in the

class that exhibit C-space singularities. These are referred to as Grashof-type

conditions, as they generalise classically known inequalities classifying planar

4-bar mechanisms due to Grashof [4].

Secondly, we develop the theory to incorporate actuator space (A-space)

and workspace (W-space), based on a choice of actuated joints or inputs and

on the manipulator’s end-effector workspace or outputs. This will facilitate

us with a framework for analysing singularities for forward and inverse kine-

matics via input and output mappings defined on the manipulator’s C-space.

This provides new insight into the structure of the forward and inverse kine-

matics, especially for parallel manipulators.

The theory is illustrated by a number of applications, some of which

recapitulate classical or known results and some of which are new.
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Chapter 1

Introduction

In this thesis, we aim to introduce a robust approach that can be employed

to fully understand the kinematics of any serial or parallel manipulator. In

particular, the main problem which we are going to address is identifying

singularities of parallel manipulators (PMs) to which there is a lack of a

comprehensive approach. Understanding singularities of manipulators has

been one of the major challenges of robot kinematics for more than 35 years.

While there is now detailed understanding of singularities for many specific

robot architectures and a number of approaches to analysing and classifying

singularities in general, there is not a robust mathematical model underpin-

ning these.

1.1 Kinematic geometry

While the full mathematical study of manipulators and robot systems in-

volves statics, dynamics, control, sensing, environment and more, underpin-

ning all these is understanding their kinematics. Kinematics concern the mo-

tion capabilities of the system, without reference to forces, but may include

velocity and acceleration analysis. We make the assumption that manipu-

lators and robot systems comprise rigid components (i.e. links) connected

1
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by a variety of joints. Therefore, the basic requirement is a mathematical

description of the placement and movement of rigid bodies.

Kinematic geometry has a long history motivated by a desire to under-

stand the motion of, on the one hand, individual objects such as the planets

and projectiles, but on the other by machines and mechanisms combining

several components. The term kinematics is due to Ampère [5, 6], though

the conceptual history of the subject is much older. In the industrial age

kinematics evolved rapidly, as the development of machines as a means of

converting motion became increasingly important. Advances in kinematics

in the 19th century were linked very closely with new ideas in geometry.

Hamilton’s discovery of the quaternions [7] was motivated precisely by the

desire to describe spatial motion in an effective way and this then led to the

development of linear algebra. Grassmann, Cayley, Clifford [8, 9] and others

discovered further algebraic ways, including dual quaternions, for describing

geometric motion. By the beginning of the 20th century, Ball had set out the

foundations of screw theory [10] and its application to statics, and Study [11]

had significantly advanced the study and application of dual quaternions.

The advance of robotics in the second half of the 20th century led to

new questions in kinematics, in particular about modelling systems with

multiple degrees of freedom (dofs), in contrast to the predominantly 1-dof

models required for mechanisms. Several important distinctions arose in the

modelling. Robot systems were characterized primarily as either serial or

parallel. A serial manipulator or robot consists of an open chain of rigid

links with successive pairs connected by 1-dof joints. Typically, the purpose

of a serial manipulator is to convert inputs at the joints to motion of the final

link (i.e. end-effector). On the other hand, in a parallel manipulator there

are closed chains of links. Typical architectures for parallel manipulators

involve a number of serial chain legs connecting a base to a platform. The

existence of closed loops means that the number of joints exceeds the required
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dof(s) for the platform, so that only a subset of joints are required as inputs,

while other joints move passively. Moreover, the passive joints may have

greater than one dof, for example they may be universal (2-dof) joints or

ball-and-socket (3-dof) joints.

The description of serial and parallel manipulators also makes clear a dis-

tinction between inputs—typically thought of as joint variables—and outputs

which are typically the pose (i.e. position and orientation) or configuration

of the end-effector or platform. This distinction gives rise to what are usu-

ally regarded as the fundamental problems of robot kinematics, namely the

forward and inverse kinematic problems (FKP, IKP respectively). The FKP

concerns locating the output of the system for a given input, while the IKP

requires determining how to choose the input to realise a given output. It is

not clear that either of these problems has a well-defined or unique solution.

Generally, however, it is the case that the FKP is relatively straightforward

and well-defined for serial manipulators, while the IKP is more easily solved

for parallel manipulators. As a consequence, emphasis in the robot kine-

matics research has been placed on the serial IKP and the parallel FKP.

Important in the kinematics of both classes of mechanisms is the Jacobian

matrix, originally thought of in robotics as the instantaneous linear relation

between input and output velocities.

Early advances in solving the IKP for serial manipulators was made by

Peiper [12]. An important tool in the analysis and design of serial ma-

nipulators was the formulation of a matrix description due to Denavit and

Hartenberg [13]. Since serial manipulators were far more widely used in in-

dustry, the mathematical development of their kinematics was earlier than

that for parallel manipulators. While, the key prototype for parallel mech-

anisms, independently developed in quite different settings by Gough and

Stewart [14, 15] does have quite a long history, the mathematical descrip-

tions of such mechanisms have been more recent. Hunt [16] and Phillips [17]
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demonstrated that Ball’s screw theory was an essential tool. Line geome-

try [18] and algebraic geometry, especially modern computational techniques

like Gröbner base [19], also became important. By the early 21st century it

was clear that the kinematic geometry of parallel mechanisms is more com-

plicated than allowed for by earlier mathematical models—in particular, the

role of passive joints cannot be overlooked. It also had become clear that for

all types of mechanisms and robot systems, it is essential to understand and

analyse kinematic singularities.

1.2 Kinematic singularities

A singularity of a manipulator is usually interpreted physically as a configu-

ration where an instantaneous and uncontrollable change occurs in its motion

and more specifically its dofs which is the number of independent motions

that a manipulator is expected to have, either instantaneously or over a some

finite interval. A sudden (unexpected) change can be either loss or gain of

mobility.

The presence of singularities may result in dexterity issues caused by

loss of mobility [20] or controllability issues caused by gain of mobility [21]

in a manipulator. They also give rise to possible technical failures such as

irresistible torques/forces on the mechanical components [22], loss of stiff-

ness/compliance [23], and malfunctioning of control procedures [24].

Consequently, one of the crucial stages of designing a manipulator is anal-

ysis of singularities. Although it is mostly preferred to avoid singularities,

existence of singularities in some architectures may result in some advan-

tages such as a higher tolerance of extremely large external torques [25] and

a smoother control procedure of the end-effector [26].

Mathematically, a singularity of manipulator is determined by a drop in

rank of the Jacobian matrix of some mapping determining its kinematics.

How to specify the mapping and what variables are considered are the main
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differences among various approaches [1, 27, 28].

A key goal of singularity analysis of a given manipulator architecture is

to determine singular configurations and how they are influenced by choice of

design parameters [29]. There may be certain geometric conditions relating

the component links and joints of a manipulator, such as collinearity, copla-

narity or symmetries, represented by equations on the design parameters,

which assure existence of a singularity.

For a given manipulator with certain tasks to do, we may only need to

examine some particular aspects of its singular behaviour. For example, we

may wish to identify maximal singularity-free regions in its operational space;

or we may want to design in specific singular behaviour. Ideally, this needs

us to study the manipulator globally in order to capture relevant information

on possible singular configurations.

This presents a serious challenge. Many approaches to singularity analy-

sis establish that in a given configuration, a manipulator must have singular

behaviour. However, establishing all such configurations is not addressed.

Indeed, the fact that singularities are, in some sense, an instantaneous phe-

nomenon suggests that a global approach is not necessary or even possible.

This view is associated with the idea of that a Jacobian is simply a lin-

ear relationship between joint and input velocities and output (end-effector)

velocities. While this is true, it may lose sight of the way the Jacobian

varies as the manipulator moves and more significantly, exactly what the

possible configurations of the manipulator are. These shortcomings become

especially apparent for parallel manipulators where the total mobility may

involve joints and links that are not directly part of the input nor the output,

but are “passive”.

In order to give a more complete approach to singularity analysis for

manipulators, we return to basics and attempt to build a coherent kinematics

model that can capture all aspects.
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1.3 Literature review

Here is a brief review of the literature on kinematic singularities. To the

best of author’s knowledge, the idea of singularity analysis of mechanisms

and manipulators dates back to the late 1960s when Whitney [30] identified

singularities when he was trying to develop a control algorithm for manip-

ulators and prostheses. He proposed a method which is equivalent to the

pseudo-inverse of a singular Jacobian matrix. In the late 70s, Hunt [16]

defined uncertainty configurations for PMs where the mechanism has an in-

stantaneous increase in mobility.

Since then, the research literature has divided to mainly concentrate on

either serial or on parallel manipulators, rather than both. This review fo-

cuses on research that addresses general issues of kinematics modelling and

singularity analysis, rather than on specific manipulators.

In respect of PMs, Merlet [18] employed Grassmann line geometry in

order to explain singularities. Shortly after that, Gosselin and Angeles [1]

introduced a new approach to singularities of PMs. Their approach was

based on Jacobian analysis of an implicit kinematic formulation F (θ, x) =

0, where θ represents input joint variables and x output variables. It was

assumed that there are equal numbers of these. Their approach facilitated

understanding of PM singularities, and they introduced a simple classification

of singularities. Their approach is widely cited and underpins much of the

subsequent singularity analysis for PMs.

Several researchers have concentrated on mathematical aspects and used

singularity theory [31] to understand singularities of manipulators. Pai and

Leu [32] proposed the notion of a generic kinematic map for serial manip-

ulators, whose singular sets form smooth manifolds of prescribed dimension

in the joint space of the manipulator. This included consideration of second-

order derivatives of the forward mapping to formalise the so-called transver-

sality conditions [33]. Tchoń and Muszyński [34, 35] explicitly introduced
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an approach, which comes from the singularity theory of maps, to provide

normal forms of kinematic mappings. Although this approach was meant

to focus on kinematic singularities, it was also acknowledged that there are

special forms that significantly limit the so-called genericity of a serial ma-

nipulator.

Gibson, Donelan et al. [36, 37, 38, 39] analysed the relation between a

forward kinematic mapping and the singularities of trajectories based on

singularity-theoretic terms. In a review of singularity-theoretic methods

with application to kinematics, Donelan [29] emphasised the importance of

transversality as a tool for establishing genericity.

Burdick [40] proposed a geometric factorisation of the singularity set in

order to classify generic and non-generic cases in the class of spatial 3R

manipulators. In this context, Wenger et al. [41, 42] introduced the idea

of cuspidal manipulators which can change their posture without crossing a

singular set. Karger [43] explicitly used Lie group and Lie algebra structure

to develop a theory which allows to describe higher order singularities for

serial manipulators.

Lerbet [44] introduced concepts of analytic geometry, such as the tan-

gent cone, to provide an intrinsic analysis of singularities for both open and

closed chain mechanisms. Based on Lie group theory, he described the struc-

ture of the configuration space whether or not it has singularities. Lerbet

and Hao [45] also explicitly utilised product of exponentials (PoEs) [46] and

transversality in order to perform singularity analysis up to the second order.

By using algebraic geometry, Gibson et al. [47, 48] established a methodol-

ogy to analyse the topology and singularities for planar mechanisms. Karger

and Husty [49] also used algebraic equations to define spatial kinematics and

for classification of self-motions, which are finite branch of motions when ac-

tuated joints are static. Torras et al. [50], Ben-Horin and Shoham [51] have

approached kinematics and singularities of parallel manipulators by using
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geometric algebra.

Returning to the underlying kinematic model of Gosselin and Angeles

for PMs, Zlatanov et al. [2] noticed the importance of passive joints and

refined the classification of singularities for a general mechanism based on

instantaneous kinematics into six types based on various combinations of

ways in which the rank of a Jacobian matrix, involving input, output and

passive joint variables, drops below its expected value. This approach has

more recently been revised by Müller [52] and Bohigas et al. [53] so that the

input map is treated as a function from the configuration space.

Park and Kim [54] proposed a differential geometric framework to stratify

kinematic singularities into three types—namely configuration space singu-

larities, actuator singularities, and end-effector singularities. Zlatanov et

al. [55] re-examined singularities of PMs in more details and introduced the

idea of configuration space singularities where a passive switching between

different motion modes is possible. This is also considered by Shvalb et

al. [56], as topological singularities. Chen [57] emphasised the difference

between the global mobility and local mobilities with different orders and

revealed the corresponding relations in between.

Most recently, Müller [58] has returned to the concept of genericity of a

kinematic mapping—the likeliness of singularities to happen and their sta-

bility. He discussed whether singularities of a kinematic mapping comprise

smooth manifolds or not by examining two genericity concepts. He also revis-

ited the kinematic tangent cone [59, 60], as an approximation of the C-space,

and used it for identification of singularities by analysing the local geometry

of the set of critical points.

1.4 Further discussions

In this section, we provide a more detailed description of the research dis-

cussed briefly in the literature review that has had the most influence on
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developing the robust approach we propose for analysis and understanding

of PM singularities. The analysis for singularities of serial manipulators is in

many ways more straightforward, but does not lend itself to generalisation

to PMs. Whereas, our proposed approach is motivated by consideration of

PMs based on the the ideas addressed in this section, and therefore it easily

works also for serial manipulators.

Gosselin and Angeles [1] laid the foundations for most of the subsequent

work on PM singularities. They proposed an approach which begins by

selecting input coordinates θ and output coordinate x, where θ and x are

assumed to be of the same dimension and equal to the global mobility µ of the

mechanism. A relationship between the input (the actuated joint variables)

and the output (the pose variables of the end-effector) is then described by

an implicit function F (θ,x) = 0. Typically, this equation is assumed to arise

from some closure conditions on the manipulator.

Taking time derivatives of F and applying the chain rule yields

(DxF )ẋ + (DθF )θ̇ = 0 (1.1)

where DxF and DθF denote the matrices of partial derivatives of F with

respect to x and θ, respectively. Based on this approach, there are three

basics types of singularities: (i) if det(DθF ) = 0, ii) if det(DxF ) = 0, and iii)

if det(DθF ) = det(DxF ) = 0. In case (i), equation (1.1) can be satisfied by

some non-zero θ̇ with ẋ = 0 the end-effector loses a dof. On the other hand,

(ii) allows a non-zero ẋ with θ̇ = 0 so the end-effector is instantaneously

mobile with the actuators locked. Type (iii) involves a combination of these

and may be related to a configuration space singularities, which we discuss

in Chapter 5. This typically requires conditions on design parameters as

observed in examples in [1].

Zlatanov et al. [2] developed a methodology based on the study of the

instantaneous kinematics. They noted that for the purposes of passive joints,
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this becomes especially important for PMs with limited dofs (i.e. less than

six for a spatial mechanism). The n active joint velocities are referred to as

the input and a set of n velocities, which specify the instantaneous motion of

the end-effector, as the output. The output equation determines the output

T in terms of the input Ωa and the N − n passive joint velocities Ωp by

T = A(q)[ΩT
a ,ΩT

p ]T , where A(q) is an n× n Jacobian matrix and q uniquely

identifies the configuration of the PM.

For a PM, joint velocities must also satisfy the loop-closure equations

D(q)[ΩT
a ,ΩT

p ]T = 0, where D(q) is an (N − n)×N matrix. This is a system

of equations that gives necessary and sufficient conditions for the feasibility

of [ΩT
a ,ΩT

p ]T . By combining A(q) and D(q), a N × (N +n) matrix L(q) is in-

troduced and fully defines the instantaneous kinematics of the mechanism by

the velocity equation L(q)[T T ,ΩT
a ,ΩT

p ]T = 0. According to this formulation,

Zlatanov et al. [2] define six types of singular configurations: i) redundant

input: there exist Ωa 6= 0 and Ωp 6= 0 to satisfy the velocity equation while

T = 0, ii) redundant output: there exist T 6= 0 and Ωp 6= 0 to satisfy the

velocity equation while Ωa = 0, iii) impossible input: for some Ωa 6= 0 the

velocity equation cannot be satisfied for any combination of T and Ωp, iv)

impossible output: for some T 6= 0 the velocity equation cannot be satisfied

for any combination of Ωa and Ωp, v) increased instantaneous mobility: if

rankL < N , then the instantaneous mobility is greater than the global mo-

bility µ and both forward and inverse kinematic mappings are singular, and

vi) redundant passive motion: there exists Ωp 6= 0 to satisfy the velocity equa-

tion while Ωa = 0 and T = 0. We note that this analysis does not explicitly

define the configuration space of the PM and is simply instantaneous. It also

continues to base the (instantaneous) kinematics in terms of the pre-selected

inputs and outputs. These are limitations that we seek to remove in this

thesis.

Although the framework proposed by Park and Kim [54] carries simi-
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larities to that of Gosselin and Angeles [1], they extend its framework by

allowing for redundant actuation (more actuator dofs than output dofs) and

by more explicitly recognising the role of differential geometry. Specifically,

pseudo-Riemannian metrics are introduced on manifolds, namely the ambi-

ent space K, the joint configuration space M of all joint variables in the

absence of loop-closure constraints, and the end-effector space N . These

metrics are expressed in local coordinates x,u, f on K,M,N respectively by

symmetric positive definite matrices E,G, and H. Assuming a well-defined

(local) forward kinematics f = f(u), there is a Jacobian J = Duf , and an

embedding of the configuration space given in local coordinates by x = x(u).

Then G = (Dux)TE(Dux), where E may be semi-definite, depending on the

choice of actuators. Based on this approach three possible singularity types

are identified: i) a configuration space singularity (M is defined by Φ(x) = 0

and DxΦ is singular), ii) an actuator singularity: the rank of G decreases,

and iii) an end-effector singularity: the rank of J decreases. Although the

technical setting is differential geometry on manifolds, explicit computations

are largely lacking and as with the earlier research, assumptions are made

about the role of actuated joints and end-effector or output variables.

The complexity of PM kinematics and singularity analysis continued to

pose a challenge, but by the beginning of this decade (2010s) the central role

of the configuration space had become apparent. While there was recogni-

tion of the global geometric approach, instantaneous kinematics remained

the main tool. For example, Müller [52] constructed an approach which is

focused on an instantaneous kinematics model and analyses a PM in a given

configuration. This approach begins with considering a vector of joint vari-

ables q ∈ Vn, where Vn is the joint space of a PM. If h is the set of loop

constraints (i.e. geometric constraints), then solutions for h(q) = 0 deter-

mine the configuration space V that is the set of all feasible configurations.

The output mapping fO : V → SE(3) determines the position and orienta-
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tion of the end-effector in terms of a given q ∈ V . The workspace W of the

end-effector is then defined as the set of all feasible positions and orientations

of the end-effector so that W ⊂ SE(3). In addition, the relation between

active inputs and motions of the PM is described via the input mapping

fI : V → I, where I is the input space. In particular, the relation between

joint inputs and configurations is reversed from earlier models. Hence, fI
assigns feasible inputs to any configuration of PM. According to this formu-

lation, fI and fO are considered as mappings from the configuration space

V to I and W , respectively. Associated with the h, fO, and fI , there are

Jacobian matrices J,JO, and JI = [Ja,Jp], respectively. In this model, three

types of singularities arise: i) configuration singularity: rank J is not constant

in any neighborhood of q ∈ V , ii) input singularity: either rank Jp or rank Ja
is not constant in any neighborhood of q ∈ V , and iii) output singularity:

rank JO is not constant in any neighborhood of q ∈ V . These singularities

can occur simultaneously, and any possible combinations of them may lead

to instantaneously impossible input motions, or instantaneously redundant

inputs in the terminology of Zlatanov et al. [2].

At about the same time, a similar framework was proposed by Piipponen

and Tuomela [61] based on algebraic geometry. They proposed a formulation

to determine the constraints on configurations based on geometrical reason-

ing to provide polynomial equations for each joint without specifying which

are to be actuated. They propose that only three basic constraint types are

needed: i) coincidence constraint: given points in the coordinate systems of

the rigid bodies are the same point in the coordinate system of the ambient

space, ii) symmetric orthogonality constraint: two given vectors in the coor-

dinate systems of the rigid bodies must be perpendicular to each other in the

coordinate system of the ambient space, and iii) non-symmetric orthogonality

constraint: given a vector and two points in the coordinate systems of the

rigid bodies so that the difference of the points must be perpendicular to the
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vector in the coordinate system of the ambient space. By taking appropri-

ate combinations of the basic types, many lower-pair joints may be defined.

These constraints are identified as “local” (since they are defined on a single

pair of jointed bodies). Following the same judgment as [2], these local con-

straints are distinguished from global constraints or closure-loop equations

(which describe the structure of the mechanism as a whole). In fact, we

show in this thesis that joint constraints are entirely sufficient to describe

the configuration space since the loop-closure equations derive from them.

The detailed analysis in Piipponen and Tuomela [61] is in terms of algebraic

equations and geometry, whereas we use the setting of differential topology.

While it is not in the mainstream of robot/mechanism kinematics, it is

worth noting that a constraint-based approach has been proposed previously.

Kramer [62] was motivated by the challenge of symbolic or numerical com-

putation for kinematic systems. He introduced the idea of a marker, which is

made up of a point along with orthogonal x−, z−axes. Markers are attached

to the rigid bodies and thus constraints between markers constrain the bod-

ies. Joint constraints are then modelled as coincidence between a pair of

markers. This approach is similar to that subsequently used by Piipponen

and Tuomela [61]. While Kramer’s goal was to replace algebra by geometry,

his approach can be realised algebraically in terms of “absolute coordinates”,

in which the position and orientation of each rigid link is identified in terms

of a reference frame. This is the approach we will adopt in this thesis.

Finally, we note that recent work by Bohigas et al. [53] also adapts the ear-

lier work of Zlatanov et al. [2] to accommodate the perspective of Müller [52]

by treating the input and output mappings as functions from the configura-

tion space. Therefore, the framework we present in this thesis is in line with

other current research. However, it combines features of these in a novel

way that appears more comprehensive than any earlier work and which is

demonstrated to give geometric insight into the kinematics and singularity
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analysis of many types of manipulator.

1.5 A constraint-based approach

In this thesis, a comprehensive approach to multi-body mechanism kinemat-

ics is introduced enabling analysis of singularities of both serial and parallel

mechanisms. Existing approaches, like those of Gosselin and Angeles [1],

Zlatanov et al. [2] and Park and Kim [3], make use of a combination of joint

freedoms and constraints. However, a uniquely constraint-based approach

seems to be more desirable and universal. This is not entirely new—a few

other approaches, like those of Kramer [62] and Piipponen and Tuomela [61]

concentrate on constraints. The former describes configurations of a set of

rigid bodies using a geometric-based formulation for the purpose of defin-

ing a symbolic algorithmic approach to kinematics, while the latter is an

algebra-based method suitable for Gröbner basis techniques from algebraic

geometry. Similarly, Bohigas et al. [53] have recently proposed a model of

this sort. However, all these approaches either implicitly or explicitly retain

the use of joint variables as an intrinsic element of the kinematic model.

We also bear in mind that design parameters play an important role in

singularities occurring. By taking into account variation of design parameters

for a family of manipulators, we capture how the topological properties of its

kinematics vary. A member of this family is identified by a specific choice of

design parameters which may or may not have singularities.

The advantage of this consideration is that if we are asked to design a

manipulator with a given set of design parameters, it will help us to know for

what choices of design parameters the manipulator may have singularities.

In principle, we may also be able to identify overconstrained manipulators

in a family, where there is finite mobility that would not be expected. For

such manipulators, in some sense, all configurations are singular. However,

we have not been able to pursue this line of research.



1.5. A CONSTRAINT-BASED APPROACH 15

The proposed representation removes direct references to the freedoms

and focuses on the kinematic constraint mapping (KCM) based on constraints

imposed by joints on the relative motion of links, rather than the freedom of

motion they permit. The mapping is expressed in terms of parameters called

pose variables, which are displacement coordinates of links with respect to a

reference frame. The properties of a given mechanism can be described by

means of this representation, locally and globally. Also, the KCM will tell us

how the choice of design parameters affects these properties within a family

of mechanisms.

The KCM determines a subset in the space of pose variables called the

configuration space (C-space). Its Jacobian (the matrix of first-order partial

derivatives) may drop rank for some values of the pose variables, so that the

C-space has singularities. By parametrising the C-space in terms of design

parameters, we seek those choices of design parameters for which the C-

space has singularities, which we call Grashof-type conditions for the family

of manipulators.

As the second step towards full understanding of singularities, we de-

velop the theory to incorporate the actuator space (A-space) and workspace

(W-space), based on choice of actuated joints (inputs) and on the manipula-

tor’s workspace or end-effector (outputs). This provides us with a framework

for analysing singularities for forward and inverse kinematics via input and

output mappings defined on the manipulator’s C-space.

To summarise, this approach has a number of advantages over many

previous formulations:

(i) The roles of the variables describing link positions—pose variables in

our terminology—and joint variables are clearly distinguished. This distinc-

tion has been blurred because often joint variables act as surrogates for a

pose variables, or vice versa.

(ii) The analysis of singularities is global—the definition of the C-space
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captures all configurations of all the links in the manipulator in terms of

its pose variables, so singular configurations are explicitly identified. Rather

than treating Jacobians as purely local realisations of the instantaneous kine-

matic relationship between joint velocities and link velocities, they are ma-

trices of partial derivatives of globally defined mappings.

(iii) The KCM approach works for serial and parallel manipulators. It

does not require inclusion of “loop-closure” constraints, which are simply

corollaries of the joint constraints. As a result, it will be easy to see why, for

example, the forward kinematics of a serial mechanism are well defined.

1.6 Thesis structure

We start with some mathematical basics including background from differ-

ential geometry, Lie theory, and associative algebra. In Chapter 2, we review

the definition of a Lie group and discuss Euclidean groups, along with cor-

responding methods of parametrisation in more detail. An element of the

Euclidean group is used to describe rigid displacement. We review dual

quaternions as an efficient tool to express a rigid displacement. In the last

section of this chapter, we introduce the idea of pose space which consists of

pose variables of all moving components of a manipulator.

Chapter 3 is allocated to the Lie algebra of Euclidean groups SO(n) and

SE(n), n = 2, 3. We will start with several representations of Lie algebras.

The relation between the Euclidean Lie algebra and screw theory will be

discussed in detail. Following this, the Mozzi-Chasles theorem [63, 64], the

connections between line geometry and Plücker coordinates and screws—a

description of finite and instantaneous rigid body displacement—is given.

Next, the exponential function will be introduced as a mapping which trans-

forms an element of the Lie algebra to an element of the Lie group and

which gives rise to 1-parameter subgroups. The last section will be allocated

to infinitesimal displacement in the pose space.
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In Chapter 4, we introduce the core idea of our approach. Here, we model

each type of kinematic pair (joint) with a geometric object associated to each

joined link. Identification of these objects provides us with a set of constraint

equations for the joint. For a given manipulator with a number of different

joints, the collection of all constraint equations is a vector-valued function

called the kinematic constraint mapping (KCM). The KCM determines a

manifold called the configuration space (C-space) whose points correspond to

feasible configurations for a given manipulator. First-order partial derivatives

of the KCM with respect to pose variables form a Jacobian matrix which is

used for the purpose of singularity analysis. In the last section, we express

a joint in terms of its relative freedom, corresponding to a joint variable,

which can be described in terms of pose variables of two adjacent components

connected at the joint.

Chapter 5 describes a comprehensive singularity analysis of a given ma-

nipulator. The first part will discuss the most fundamental type of singular-

ities, C-space singularities. By considering transversality for the KCM, we

indicate how C-space singularities may be characterised by a Grashof-type

condition only defined in terms of design parameters. In the second part of

the chapter, based on the choice of inputs and outputs, an actuator space

(A-space) and workspace (W-space) will be determined. The resulting input

map and output map are defined and corresponding singularities described.

Finally in Chapters 6-9, we will apply our constraint-based approach to

several serial and parallel manipulators and perform a full kinematic analysis

including singularities. Some of the results in the thesis have been published

already or are planned to appear [65, 66, 67, 68, 69].
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Chapter 2

Euclidean group

In this chapter we study representation of the displacement of a rigid ob-

ject in Euclidean space. Such displacements are expressed by means of the

Euclidean group which is a Lie group. A Lie group is a group with the ad-

ditional structure of a differentiable manifold, such that its operations are

differentiable.

2.1 Lie group

We begin with the definition of a group [70, 71]

Definition 2.1. A group G is a set with a finite or infinite number elements

on which a binary operation (g1, g2) 7→ g1g2 is defined satisfying the following

four properties

• closure: ∀g1, g2 ∈ G, g1g2 ∈ G

• associativity: ∀ g1, g2, g3 ∈ G, g1(g2g3) = (g1g2)g3

• identity: ∃ e ∈ G, ∀g ∈ G ge = eg = g

• inversion: ∃ g−1 ∈ G, ∀ g ∈ G gg−1 = g−1g = e

19
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Note that ∀g1, g2 ∈ G, (g1g2)−1 = g−1
2 g−1

1 . A non-empty subset of a group

that is closed under the binary operation and inversion is called a subgroup.

Assume H is a subgroup of G and g ∈ G, then gH := {gh : h ∈ H} is a

left coset of H whilst Hg := {hg : h ∈ H} is a right coset of H. It can

immediately be concluded that ∀ g1, g2 ∈ G

g1H = g2H ⇐⇒ g−1
1 g2 ∈ H, Hg1 = Hg2 ⇐⇒ g1g

−1
2 ∈ H

Consequently, it can be deduced that left cosets (similarly right cosets) par-

tition G because these conditions define an equivalence relation on G and

the cosets equivalence classes.

Generally speaking, gH and Hg are distinct subsets of G although they

both contain g.

Definition 2.2. For all g ∈ G, if the left and right cosets coincide gH = Hg,

then H is a normal subgroup of G

H / G := {gHg−1 : g ∈ G} (2.1)

Let us consider two groups along with their binary operations (G1, ·) and

(G2,×).

Definition 2.3. A function φ : G1 → G2 is a group homomorphism if it

preserves the binary operation

∀ g1, g2 ∈ G1, φ(g1) · φ(g2) = φ(g1 × g2) ∈ G2 (2.2)

Based on this definition, it can be concluded that a group homomorphism

must also preserve the identity and group inversion; that is

• φ(g1) = φ(e1g1) = φ(e1) · φ(g1)⇒ φ(e1) = e2
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• φ(g) · φ(g−1) = φ(gg−1) = φ(eG1) = eG2 ∴ φ(g)−1 = φ(g−1)

The kernel of a homomorphism φ is kerφ = {g1 ∈ G1 | φ(g1) = eG2}

where eG2 is the identity element of G2; kerφ is a normal subgroup of G1. A

homomorphism φ is called an isomorphism if it is a bijection (i.e. one-to-one

and onto). In particular, it has an inverse which is also a homomorphism. In

this case, the two groups are isomorphic.

Now, we can introduce the idea of a Lie group. This requires some differ-

ential topology and in particular the definition of a differentiable manifold.

This is quite technical and we refer to, for example, [72, 73]. An alternative

simpler but more restrictive approach is in [74]. For our purpose, it will suf-

ficient to say that a differentiable manifold is a subset M of some Euclidean

space Rp such that a neighbourhood in M of every point x ∈ M can be

mapped bijectively to an open subset of some Rm (m ≤ p fixed) and that

this mapping or chart ϕ is differentiable and has differentiable inverse.

In brief, M is locally Euclidean whose dimension is m. A simple example

is the unit sphere

S2 := {x ∈ R3 | ‖x‖ = 1}

Open hemispheres, xi > 0 or xi < 0; i = 1, 2, 3 can be mapped bijectively to

the open unit disc in R2 by omitting the ith coordinate. A typical inverse

has the form

(y1, y2) 7→
(√

1− y2
1 − y2

2, y1, y2
)

which is differentiable since y2
1 +y2

2 < 1. The unit sphere S2 is a 2-dimensional

(differentiable) manifold.

If M,N are differentiable manifolds and f : M → N a function, then f is

differentiable at x ∈M if there is a chart ϕ onM at x and a chart ψ on N at

f(x) such that ψ ◦f ◦ϕ−1 is differentiable at ϕ(x). This composition or local

representative maps between Rm and Rn where m = dimM and n = dimN .

Definition 2.4. A Lie group is a group which is also a differentiable manifold
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and whose binary and inverse operations are differentiable.

Note that the binary operation is a map G×G→ G. If G is a manifold then

so is the Cartesian product G×G.

2.2 Euclidean groups

In the previous section, we briefly reviewed the definition of a Lie group.

The Euclidean group is central to robot kinematics and is a Lie group that

expresses the symmetry of Euclidean space [75].

Definition 2.5. Euclidean space is the space of n-vectors of real numbers

x := (x1, x2, . . . , xn) ∈ Rn together with the Euclidean inner product

∀x,y ∈ Rn 〈x,y〉 = xTy =
n∑
i=1

xiyi (2.3)

where T as a superscript stands for transpose. Definition 2.5 gives rise to

the Euclidean norm ‖x‖2 =
√
〈x,x〉, which defines the Euclidean length of x,

and hence the Euclidean metric (or distance function) d : Rn × Rn → R

d(x,y) = ‖x− y‖2 (2.4)

This distance function gives rise to an isometry that preserves the Euclidean

metric.

We are interested in functions that preserve the inner product and the

metric. First, let us consider linear transformations fr : Rn → Rn that

preserve the Euclidean inner product i.e. ∀x,y ∈ Rn, 〈fr(x), fr(y)〉 = 〈x,y〉

are called orthogonal and O(n) denotes the set of these transformations.

Lemma 2.6. A ∈ O(n) if and only if ATA = In
1.

1In stands for the n-dimensional identity matrix.
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A proof can be found in standard texts, for example [76]. It follows that

O(n) is a group since products and inverses will also satisfy the equation.

The orthogonal group O(n) also forms a manifold because Lemma 2.6

implies that O(n) := g−1
s (In) where gs(A) = ATA. Since gs(A) is always

symmetric, it can be shown that gs is regular at any A ∈ O(n) that means

O(n) is a manifold of dimension 1
2n(n − 1) (see e.g. [31]). Furthermore, the

operations of matrix multiplication and inverse are differentiable. The latter

can be seen based on the matrix inverse formula

A−1 = adjA
detA

where adjA and detA stand for the adjugate 2 and the determinant of A,

respectively. Therefore, entries in A−1 are ratios of polynomials in the entries

of A and the denominator is non-zero. Hence O(n) is a Lie group.

Since detA = detAT and det In = 1, so detATA = detAT detA =

detA2 = 1, which implies that detA = ±1. As a result, the manifold

associated to O(n) is made up of two disjoint subsets. Matrices such that

detA = −1 represent reflections and reverse orientation in Rn whilst matrices

with detA = +1 preserve orientation. The latter form a Lie group called the

special orthogonal group SO(n) that is a connected subgroup and is a Lie

group with the same dimension as O(n). Accordingly, elements of SO(n) are

rotations about the origin o ∈ Rn. Although reflections are proper orthogonal

transformations, they are irrelevant in the kinematics of mechanisms because

no mechanical component can produce a reflection. Hence from now on, we

will only focus on SO(n) as the group of rotations. Note that rotations, in

general, form a non-abelian group; that is, they do not commute i.e. for

A1, A2 ∈ SO(n) A1A2 6= A2A1. The case n = 2 is the exception.

Definition 2.7. A Euclidean transformation is an isometry f : Rn → Rn;
2The adjugate of a square matrix is the transpose of its cofactor matrix. It is also

known as the adjoint and the adjunct.
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that is

∀x,y ∈ Rn, d
(
X,Y

)
= d(x,y) (2.5)

where X = f(x) and Y = f(y).

Euclidean transformations are bijective. If we assume f(x) = f(y), then

d
(
f(x), f(y)

)
= 0. Hence, d(x,y) = 0 and so x = y and f is injective (one-

to-one). Surjectivity (onto) is harder to prove but follows from (2.5). Clearly,

the composition of two Euclidean transformations is also in the Euclidean

space. Note that if f is a Euclidean transformation, there is an inverse func-

tion associated to it, f−1 : Rn → Rn. If x = f−1
(
X
)
and y = f−1

(
Y
)
, then

since f is an isometry, so d
(
f−1(X), f−1(Y)

)
= d(x,y) = d

(
f(x), f(y)

)
=

d
(
X,Y

)
, showing that f−1 is also an isometry. Therefore, they form a group,

called the Euclidean group, E(n). Since orthogonal transformations preserve

the Euclidean norm, they are also Euclidean transformations which fix the

origin o ∈ Rn.

A translation is linear transformation ft : Rn → Rn, X = ft(x) = x + t

that shifts every point x ∈ Rn by the same distance and in the same direction.

Clearly, every translation is an isometry of Rn as the Euclidean metric is

preserved. Let us assume x,y ∈ Rn that are transformed by t ∈ Rn so

X = x + t and Y = y + t then d
(
X,Y

)
= x + t− y− t = x− y = d(x,y).

The set of all translations establishes the translation group that is a Lie

group isomorphic to Rn. Translations form an abelian group; that is, they

are commutative as for t1, t2 ∈ Rn, t1 + t2 = t2 + t1.

The following theorem confirms that these two types of isometry—orthogonal

and translation—generate all Euclidean transformations (for proof see e.g. [77]

Page 26).

Theorem 2.8. Every Euclidean transformation f : Rn → Rn can be uniquely

written as a composition of an orthogonal transformation followed by a trans-

lation.
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Based on Theorem 2.8, it follows that an element of E(n) can be represented

uniquely by g := (A, t) where A ∈ O(n) and t ∈ Rn. The corresponding

transformation is defined by

X = g x = (A, t)x = Ax + t (2.6)

The special Euclidean group SE(n) is the connected subgroup in E(n) rep-

resented by pairs (A, t), where A ∈ SO(n). Thus SE(n) is the orientation-

preserving Euclidean transformations on which we will concentrate from now

on.

Given g1, g2 ∈ SE(n); g1 := (A1, t1), g2 := (A2, t2), then g1 acts on x ∈ Rn

so X1 = A1x+t1 and g2 acts on X1 so X2 = A2X1 +t2. The resultant of the

composition of transformations, g2 g1, is X2 = A2A1x + (A2t1 + t2). Thus,

the group operation is defined by

(A2, t2)(A1, t1) = (A2A1, A2t1 + t2) (2.7)

Definition 2.9. Given a group G acting on a vector space V , the semi-direct

product is the group Gn V with product (g2,v2).(g1,v1) = (g2g1, g2v1 + v2)

where g1, g2 ∈ G while v1,v2 ∈ V .

Theorem 2.8 and equation (2.7) give that SE(n) is isomorphic to the

semi-direct product of the rotations SO(n) with the translations Rn

SE(n) ∼= SO(n) nRn (2.8)

Note that the action of the rotation A2 on the translation t1 stops this being

a direct product. It follows that SE(n) is a Lie group whose dimension is

p = dimSO(n) + dimRn = 1
2n(n− 1) + n = 1

2n(n+ 1) (2.9)

It is clear that gt := (In, t) represents a translation in Rn whereas gr := (A,0)
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describes a rotation about the origin o ∈ Rn. The translation subgroup

InnRn is a normal subgroup of SE(n) whereas SO(n)n {0} is not normal.

It is common to represent an element of SE(n) using the homogeneous

representation as an (n+ 1× n+ 1) matrix [46, 70]

g :=


n 1

n A t

1 0T 1

 (2.10)

where 0T is a row vector, which will be only written as 0 from now on. In

the homogeneous representation, the composition of two Euclidean transfor-

mations g1, g2, can be expressed by matrix multiplication

A2 t2

0 1


A1 t1

0 1

 =

A2A1 A2t1 + t2

0 1

 (2.11)

Similarly, the inverse operation on an element of SE(n) is given by the matrix

inverse

g−1 :=

A t

0 1


−1

=

AT −AT t

0 1

 (2.12)

thus g−1 = (AT ,−AT t). This provides a group representation of SE(n) on

Rn+1.

Note that the action of SE(n) on x ∈ Rn, as in (2.5), is given in the

homogeneous representation for given coordinates by setting xn+1 = 1 so

that if x ∈ Rn  X

1

 =

A t

0 1


 x

1


In the next section, we will show how to assign a Euclidean coordinate

system to a rigid body and in a mechanism with a number of bodies how

their coordinates interact. A coordinate system is parametrised by a set

of parameters which will be employed as a representation of the Euclidean
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group.

2.3 Coordinate frames and pose variables

In the kinematics of a rigid body motion, we can make use of the Euclidean

group by assigning a Euclidean coordinate system to a rigid body that is free

to move in ambient space, along with its own coordinate system. It is an

underlying assumption that the components of a robot mechanism are rigid

and that the space in which they move has an inherently Euclidean structure.

Nevertheless, there is not usually a single natural choice of coordinates so we

are free to assign a coordinate system in a way that suits our analysis.

A Euclidean coordinate system in an n-dimensional space consists of a

choice of a point as the origin o ∈ Rn and n direction vectors e1, . . . , en
positioned at o that are of unit length and mutually orthogonal, thus they

form an orthonormal basis. Consequently, every point in the Euclidean space

x ∈ Rn is identified as a vector sum

x = x1e1 + . . .+ xnen

and hence it is uniquely represented by its coordinates x := (x1, . . . , xn).

A coordinate system attached to a moving body is called a moving frame

M . The body moves in an ambient space equipped with a coordinate system

is called the reference frame R. Now, the question is how are a moving frame

and the reference frame related? Let us suppose a rigid body, with moving

frame M , is located at a particular pose—position and orientation—in its

ambient space with reference frame R. Since both frames are orthonormal,

the transformation between coordinates x ∈ M and X ∈ R is Euclidean.

Moreover, we will ensure that the coordinates are ordered so that the trans-

formation is orientation-preserving. As a result, there is an element of SE(n)

defining the pose. We call a set of parameters for this transformation its pose
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variables. The transformation is sometimes called an absolute displacement

of a moving frame M in the ambient space (see, for instance, [78]).

We are only interested in Euclidean groups SE(n) where n = 2, 3. They

express 2-dimensional (plane) and 3-dimensional (space) kinematics, respec-

tively. We will discuss these two groups in the following section. As we

have already seen, different representations can be employed to describe an

element of SE(n). For SE(3), for example, dual quaternions are helpful. In

the following sections, we will discuss four common representations; namely

Euler angles, Euler parameters, quaternions, and dual quaternions.

2.4 Group parametrisations

In this section, we will describe representations of a spatial rigid displace-

ment. Planar displacements can be viewed as spatial displacements that

preserve a plane in R3.

Spatial rigid displacements in 3-dimensional soace have six degrees of free-

dom which is the dimension of the Euclidean group SE(3). They can be taken

to be three rotations about the origin and three translation along the axes of

the reference frame. There are several different parametrisations available.

Some of them have singularities defined globally. Others are singularity-free

everywhere but involve additional parameters and constraints.

Planar displacements form a 3-dimensional Lie group SE(2) that we can

view as a subgroup of SE(3). Therefore, only three parameters are required

in the planar case. We begin by presenting parametrisations of the rotations

about the origin.

2.4.1 Special orthogonal groups

There are several parametrisations to describe a spatial rotation, which is an

element of SO(3). Euler angles represent rotations about three axes [79, 80].
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These are usually about z-, y- (or x-) and z-axes. However, any three axes (so

long as adjacent ones are distinct) can be used. For convenience, we use the

parametrisation (θx, θy, θz) ∈ R3, where the (3×3) rotation matrix associated

to each angle corresponds to rotation about x-, y- and z-axes successively

Ax =


1 0 0

0 cx −sx

0 sx cx

 , Ay =


cy 0 sy

0 1 0

−sy 0 cy

 , Az =


cz −sz 0

sz cz 0

0 0 1

 (2.13)

where cx, sx respectively stand for cos θx and sin θx and similarly for cy, sy
and cz, sz. Therefore, an arbitrary rotation about the origin in R3 can be

expressed by multiplying those three rotation matrices which results in a

(3× 3) matrix

A = AxAyAz =


cycz −cysz sy

cxsz + czsxsy cxcz − sxsysz −cysx
sxsz − cxczsy czsx + cxsysz cxcy

 (2.14)

There are bounds on the choice of angle so that the parametrisation is not

continuous on SO(3). That is, the Euler angle coordinate involves a singu-

larity that has similarities to, but is not the same thing as, gimbal lock, which

is a mechanical/kinematic phenomenon (for more details see [81]).

Planar rotations belong to the Lie group SO(2). Thought of as a subset

of SO(3), this rotation occurs about an axis normal to a chosen plane. If we

think of that axis as the z-axis of the Cartesian coordinate system, then the

only required Euler angle will be θz ∈ R. We can write an element of SO(2)

as the (2× 2) submatrix cz −sz
sz cz

 (2.15)

The underlying manifold of SO(2) is therefore the unit circle S1 ⊆ R2. In

this case, θz ∈ R can be used as a continuous parameter without singularities.



30 CHAPTER 2. EUCLIDEAN GROUP

2.4.2 Quaternions and spatial rotations

We introduce quaternions 3 and show how unit quaternions can be employed

to represent spatial rotations. The quaternions form a 4-dimensional space

over the real numbers which we denote by H. They form an associative

algebra by introducing a multiplication operation. Consider {1, i, j, k} as a

basis, the following relations between these basis elements

i 1 = 1 i = i, j 1 = 1 j = j, k 1 = 1 k = k,

i j = k, j k = i, k i = j,

j i = −k, k j = −i, i k = −j,

i2 = j2 = k2 = i j k = −1

determine a non-commutative multiplication on H.

Therefore, a quaternion is written in the form q = e0 + e1 i + e2 j + e3 k

where ei ∈ R, i = 0, 1, 2, 3. It is convenient to write this in the form q :=

(e0, e) where e = e1 i + e2 j + e3 k can be identified with a 3-vector in R3.

We call e0 the scalar or real part of q while e is called a pure (imaginary)

quaternion. We often identify a scalar quaternion (e0,0) with e0 and a pure

quaternion (0, e) with e. One can immediately observe that a vector v ∈ R3

can be represented by a pure quaternion q := (0,v).

Given two quaternions q1 = (e0, e) and q2 = (f0, f), addition is repre-

sented componentwise

q1 + q2 = (e0 + f0, e + f)

while multiplication (quaternion product) can be written in the form

q1q2 =
(
(e0f0 − e · f), (e0f + f0e + e× f)

)
(2.16)

3Quaternions were first introduced by W. R. Hamilton in 1843 [7, 82].
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where e · f and e× f are dot product and cross product of vectors in R3.

A quaternion q := (e0, e) ∈ H has a conjugate of the form

q∗ := (e0,−e) ∈ H (2.17)

The product of a quaternion with its conjugate gives a non-negative real

number

qq∗ = q∗q = e2
0 + e2

1 + e2
2 + e2

3

We call its square root the norm of q, denoted ‖q‖. The inverse of a non-zero

quaternion is then given by

q−1 = q∗

||q||2
(2.18)

A unit quaternion q ∈ H is one that satisfies ‖q‖ = 1. The unit quater-

nions form a 3-sphere S3 ⊆ R4 ≡ H. Moreover, S3 is a group with product

and inverse given by quaternion product and conjugate and identity element

(1,0). Given q = (e0, e) ∈ S3, since e2
0 ≤ 1 we can write e0 = cos(θ) for some

0 ≤ θ ≤ π. Then, ‖e‖ = | sin(θ)| and we can write q = cos θ + u sin θ where

u ∈ R3 and ‖u‖ = 1, that is, u is a pure unit quaternion.

Now consider the action of this unit quaternion q ∈ S3 on pure quater-

nions v ∈ R3, through conjugation

v 7→ qvq∗ (2.19)

This can be shown to have the following properties

• it is an isometry of R3 : ‖qvq∗‖ = ‖v‖

• it fixes u, quq∗ = u

• it rotates the plane orthogonal to u through an angle 2θ
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It follows that fq(v) = qvq∗ is an element of SO(3). Since fq = f−q, there

is a 2 : 1 homomorphism S3 → SO(3) given by q 7→ fq.

Viewed the other way round, a rotation (anti-clockwise) about an axis

u ∈ R3 by an angle θ can be represented by the unit quaternion cos(θ/2) +

u sin(θ/2). Composition of rotations is given by quaternion product and it

is more straightforward to determine the axis and angle of rotation than

using Euler angles. If q = e0 + e1 i + e2 j + e3 k represents a rotation, then

the condition e2
0 + e2

1 + e2
2 + e2

3 = 1 is required. Furthermore, quaternions

provide a smooth parametrisation of SO(3), however, the representation is

not unique since −q represents the same rotation.

It can be convenient to use the (4 × 4) matrix representation of q =

e0 + e1 i + e2 j + e3 k as

Q =



e0 −e1 −e2 −e3

e1 e0 −e3 e2

e2 e3 e0 −e1

e3 −e2 e1 e0


(2.20)

This is the linear representation of quaternions product by q, that is if q, r ∈

H, then qr = Qr, where on the right hand side r is written as a 4-vector.

Further, for q ∈ S3, q∗ is represented by QT . Conjugation of the basis

vectors i, j, k by q yields, for example

q i q∗ = (e0 + e1 i + e2 j + e3 k) i (e0 − e1 i− e2 j− e3 k)

= 0 + (e2
0 + e2

1 − e2
2 − e2

3) i + 2(e1e2 + e0e3) j + 2(e1e3 − e0e2) k

Equivalently, using matrix multiplication of matrices as in (2.20)

Q IQT =


e0 −e1 −e2 −e3

e1 e0 −e3 e2

e2 e3 e0 −e1

e3 −e2 e1 e0




0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0




e0 e1 e2 e3

−e1 e0 e3 −e2

−e2 −e3 e0 e1

−e3 e2 −e1 e0


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=


0 −e2

0 − e2
1 + e2

2 + e2
3

e2
0 + e2

1 − e2
2 − e2

3 0

2(e1e2 + e0e3) −2(e0e2 − e1e3)

2(e1e3 − e0e2) −2(e1e2 + e0e3)

−2(e1e2 + e0e3) −2(e1e3 − e0e2)

2(e0e2 − e1e3) 2(e1e2 + e0e3)

0 −e2
0 − e2

1 + e2
2 + e2

3

e2
0 + e2

1 − e2
2 − e2

3 0


and we can easily extract the vector form

(
0, e2

0 + e2
1 − e2

2 − e2
3, 2(e1e2 + e0e3), 2(e1e3 − e0e2)

)T

Similarly, we can obtain the results of conjugation by q on j, k. We can

write the results in the form of following matrix whose columns correspond

to the pure quaternion parts of conjugation on the unit vectors i, j, k


e2

0 + e2
1 − e2

2 − e2
3 2(e1e2 + e0e3) 2(e1e3 − e0e2)

2(e1e2 − e0e3) e2
0 − e2

1 + e2
2 − e2

3 2(e2e3 + e0e1)

2(e1e3 + e0e2) 2(e2e3 − e0e1) e2
0 − e2

1 − e2
2 + e2

3

 (2.21)

This is the matrix form of an element of SO(3) in terms of its unit quaternion

representation. This representation of rotation matrices in 3-dimensional

spsce is often called the Euler parametrisation. The double representation

can be avoided by taking (e0 : e1 : e2 : e3) as homogeneous coordinates for

projective 3-space. In that case, the scalar multiple (e2
0 + e2

1 + e2
2 + e2

3)−1

of (2.21) is required.

Planar rotations are not as complicated as spatial ones so trigonometric

representation of the rotation matrix as in (2.15) is generally sufficient. Yet,

there is the possibility of representing an element of SO(2) by a unit quater-

nion. Assuming the z-axis to be the axis of rotation, we choose e1 = e2 = 0.

Thus, taking the leading (2× 2) submatrix in (2.21), a rotation matrix rep-
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resenting an element of SO(2) in terms of the unit quaternion e0 + e3 k is

e2
0 − e2

3 2e0e3

−2e0e3 e2
0 − e2

3

 (2.22)

2.4.3 The special Euclidean groups

We now show how to extend parametrisations for the orthogonal groups

to the Euclidean groups. First, we start with Euler angles θx, θy, θz ∈ R3

combined with a position vector t ∈ R3 whose components are three lin-

ear translations tx, ty, tz along the axes of the coordinate system of R3.

As a result, an element of SE(3) can be thought of as a real 6-vector i.e.

(θx, θy, θz, tx, ty, tz) ∈ R6. It is possible to write this representation as a

(4× 4) matrix whose shape is given in (2.10), where A is the rotation matrix

in (2.14) 

cxcycz − sxsz −cysx − cxcysz cxsy tx

cyczsx + cxsz cxcz − cysxszsz sxsy ty

−czsy sysz cy tz

0 0 0 1


(2.23)

Alternatively, we can employ a unit quaternion q (Euler parameters)

instead of Euler angles. Following this replacement, an element of SE(3)

will be given by a 7-vector i.e. (e0, e1, e2, e3; tx, ty, tz) ∈ R7 that we can still

describe as a (4× 4) matrix whose rotation part is given by (2.21)



e2
0 + e2

1 − e2
2 − e2

3 2(e1e2 + e0e3) 2(e1e3 − e0e2) tx

2(e1e2 − e0e3) e2
0 − e2

1 + e2
2 − e2

3 2(e0e1 + e2e3) ty

2(e0e2 + e1e3) 2(e2e3 − e0e1) e2
0 − e2

1 − e2
2 + e2

3 tz

0 0 0 1


(2.24)

We can easily deduce from (2.23) a way to represent a planar displace-
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ment. For translation only a 2-vector is required

t = (tx, ty) ∈ R2 (2.25)

Therefore, an element of SE(2) corresponding to a displacement in the xy-

plane, is represented by a (3× 3) matrix


cz −sz tx

sz cz ty

0 0 1

 (2.26)

or with planar Euler parameters


e2

0 − e2
3 2e0e3 tx

−2e0e3 e2
0 − e2

3 ty

0 0 1

 (2.27)

Most simply, an element of SE(2) can be parametrised by a 3-vector

(θz, tx, ty) ∈ R3 (2.28)

Note, however, that (θz + 2πk, tx, ty) represent the same displacement for all

integers k. These are three pose variables that are necessary and sufficient

to express the position and orientation of a moving frame M with respect to

the reference frame R.

In the same way that quaternions provide an algebraic structure for de-

scribing rotations, Clifford [9] showed that there is an algebraic model for

rigid displacements, which he called biquaternions. They are now usually

known as dual quaternions. In the next sections we describe them and their

connection to SE(3).



36 CHAPTER 2. EUCLIDEAN GROUP

2.4.4 Dual numbers

Dual numbers were initially introduced by Clifford [9] as an extension of

real numbers rather like complex numbers, and later used by Study [11] in

describing the geometry of lines in space. A dual number d̆ ∈ D has the form

p + εd where p, d ∈ R are called its primal and dual parts, respectively, and

ε is the dual unit satisfying ε2 = 0. Addition on dual numbers is defined

componentwise

(p1 + εd1) + (p2 + εd2) = (p1 + p2) + ε(d1 + d2)

while multiplication is defined distributively by

(p1 + εd1)(p2 + εd2) = p1p2 + εp1d2 + εd1p2 + ε2d1d2

= p1p2 + ε(p1d2 + d1p2) (2.29)

Since ε2 = 0.

Give a dual number d̆ = p+ εd, its conjugate is defined by

d̆∗ = p− εd (2.30)

and d̆d̆∗ = p2. Therefore, if p 6= 0, the inverse of d̆ is given by

d̆−1 = d̆∗

d̆d̆∗
= 1
p2 (p− εd) = p−1(1− εdp−1)

Note that if p = 0, i.e. d̆ is a pure dual, d̆ has no inverse. It follows that D

does not form a field but it is a ring, as well as a 2-dimensional real vector

space.

We can also define a dual vector v̆ = v + εv′ ∈ Dn where v,v′ ∈ Rn and

dual matrices. These are modules over the ring D or real vector spaces. We
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can define dot product and cross product on dual vectors

ŭ · v̆ = u · v + ε(u · v′ + u′ · v) (2.31)

and for n = 3

ŭ× v̆ = u× v + ε(u′ × v + u× v′) (2.32)

where · and × on the right stand for real vector dot product and cross

product.

2.4.5 Dual quaternions and spatial displacement

A dual quaternion is an object of the form

q̆ = qp + εqd ∈ DH (2.33)

where qp := (ep0 , ep) and qd := (ed0 , ed) are quaternions, called the primal

and dual, respectively. It can also be expressed in the form q̆ := (s̆, v̆) = s̆+v̆

where s̆ := (qp0 , qd0) = qp0 + εqd0 ∈ D is the dual scalar and v̆ := (ep, ed) =

ep + εed ∈ D3 is the dual vector. In addition, a dual quaternion q̆ can also

be seen as an 8-vector space over real numbers

q̆ = (qp0 , qp1 , qp2 , qp3 ; qd0 , qd1 , qd2 , qd3) ∈ R8 (2.34)

whose basis consists of {1, i, j, k, ε, εi, εj, εk}.

Addition on dual quaternions is done componentwise

q̆ + p̆ = (qp + pp) + ε(qd + pd)

while multiplication is given by

q̆p̆ = qppp + ε(qppd + qdpp) (2.35)
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where quaternion multiplication on the right is given in (2.16). Dual quater-

nion multiplication can also be stated in following format which is sometimes

more useful

q̆p̆ = (s̆1, v̆1)(s̆2, v̆2) =
(

(s̆1s̆2 − v̆1 · v̆2), (s̆1v̆2 + s̆2v̆1 + v̆1 × v̆2)
)

(2.36)

which follows from (2.31) and (2.32).

Since a dual quaternion q̆ = qp+εqd involves quaternions and dual num-

bers, there are three types of conjugations associated to it; namely quaternion

conjugation as in (2.17), dual number conjugation as in (2.30), or a combi-

nation of both of these

• quaternion conjugation: q̆∗ = q∗p + εq∗d

• dual conjugation: q̆• = qp − εqd

• combination of both: q̆� = q∗p − εq∗d

It turns out that this third type of conjugation is relevant for representing

spatial displacement. Extending what we already discussed in Section 2.4.2

regarding the quaternion norm, we have

q̆q̆∗ = q̆∗q̆ = ||qp||2 + ε2qp · qd (2.37)

We can regard this as a type of (squared) norm for a dual quaternion.

A dual quaternion q̆ with q̆q̆∗ = 1 is called a unit dual quaternion.

By (2.37), this is equivalent to the two conditions

||qp||2 = q2
p0 + q2

p1 + q2
p2 + q2

p3 = 1 (2.38a)

qp · qd = qp0qd0 + qp1qd1 + qp2qd2 + qp3qd3 = 0 (2.38b)

Accordingly, for a unit dual quaternion q̆, the primal must be a unit quater-

nion belonging to S3, while the dual must be perpendicular to it with respect
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to the standard dot product on R4. In effect, qd is a tangent vector to S3 at

qp so that the unit dual quaternions, denoted DS3, form the tangent bundle

to S3. Besides, they are a group under multiplication. In fact, it is a Lie

group (for more details see [70] Section 9.3). Equations (2.38a) and (2.38b)

impose two conditions on the eight variables so it is 6-dimensional.

The use of unit dual quaternions to represent spatial displacements ex-

tends the idea of conjugation that we discussed for spatial rotations. We now

regard the space R3 as the dual imaginary quaternions with primal part the

identity i.e. 1+εv ∈ DH where v = v1i+v2j+v3k ∈ H. Suppose q̆ = qp+εqd
is a unit dual quaternion, then

q̆(1 + εv)q̆� = (qp + εqd)(1 + εv)(q∗p − εq∗d)

= qpq∗p + ε(qpvq∗p + qdq∗p − qpq∗d)

= 1 + ε(qpvq∗p + t) (2.39)

where t = 2 Im(qdq∗p) is a pure quaternion. Since qp ∈ S3, the dual part

represents rotation followed by translation by t in R3. The choice qd = 1
2tqp

gives translation t. It is straightforward to check that

(qp + 1
2εtqp)(qp + 1

2εtqp)∗ = qpq∗p + 1
2ε(qpq

∗
pt∗ + tqpq∗p)

= 1 + 1
2ε(t

∗ + t)

= 1

since t∗ = −t for a pure quaternion, so that qp+εqd ∈ DS3. Since qp,−qp ∈

S3 represent the same spatial rotation in SO(3), it follows that q̆,−q̆ ∈ DS3

represent the same spatial rigid displacement in SE(3). In other words, there

is a 2 : 1 homomorphism DS3 → SE(3) (for more details see [70] Page 211).

As we showed for quaternions, sometimes, it is more convenient if we

write a dual quaternion q̆ in a matrix form [83, 84]. A dual quaternion
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q̆ = qp + εqd can be rewritten as the following (8× 8) matrix

Q̆ :=

Qp 04

Qd Qp

 (2.40)

where Qp and Qd are the (4×4) matrices representing qp,qd, respectively, as

in (2.20). As expected, dual quaternion multiplication corresponds to matrix

multiplication in this representation

Q̆P̆ =

Qp 04

Qd Qp


Pp 04

Pd Pp

 =

 QpPp 04

QdPp +QpPd QpPp

 (2.41)

Note that QpPp can be thought of as the matrix form of (2.16).

In a matrix form, the point v = (v1, v2, v3) ∈ R3, with dual quaternion

form 1 + εv is given by

V̆ :=

I4 04

V I4


where

V =



0 −v1 −v2 −v3

v1 0 −v3 v2

v2 v3 0 −v1

v3 −v2 v1 0


and its rigid displacement by q̆ = qp + εqd has matrix form

Q̆V̆ Q̆� =

Qp 04

Qd Qp


I4 04

V I4


 Q∗p 04

−Q∗d Q∗p



=

 I4 04

QdQ
∗
p +QpV Q

∗
p −QpQ

∗
d I4

 (2.42)

Finally, we are able to find a dual quaternion parametrisation for a planar

displacement although we already have a straightforward 3-parameter form



2.5. THE POSE SPACE 41

(θz, tx, ty). The rotation is given by a unit quaternion of the form qp = e0+e3k

as in (2.22). To represent the translation t = (tx, ty, 0), we require

qd = 1
2tqp

= 1
2
(
(e0tx + e3ty)i + (e0ty − e3tx)j

)

This gives the homogeneous matrix form for an element of SE(2)


e2

0 − e2
3 2e0e3

1
2(e0tx + e3ty)

−2e0e3 e2
0 − e2

3
1
2(e0ty − e3tx)

0 0 1

 (2.43)

2.5 The pose space

So far, we have discussed how a free displacement of a single rigid body

can be described by a set of pose variables which specify an element of the

Euclidean group g ∈ SE(n), n = 2, 3. Now a series of questions is raised:

how we describe relative motion if two rigid components are jointed together,

what is the impact if one of them is fixed, and what if a sequence or set

of connected components is given and we seek to describe the relative or

absolute displacement of each?

Let us start with two rigid links L−, L+, each assigned a moving frame,

respectively M−,M+, that are connected together by a joint J . Note that

−,+ nominally denote the preceding and the following components/moving

frames, respectively. However, there is not necessarily any natural ordering

between the links. These two components move freely in the ambient space,

which carries a reference frame R as defined in Section 2.3. Displacement of

each link relative to the ambient space is given by g−, g+ ∈ SE(n), n = 2, 3.

In effect, they form a 2-body system whose displacement is described by the
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pair of elements

(g−, g+) ∈ SE(n)× SE(n) (2.44)

This is a set of all pose variables that expresses the absolute coordinates

(absolute displacements) of the system with respect to the ambient space.

The significance of the joint is that it imposes constraints on the pose

variables. We describe this in Chapter 4. The motivation here is that a

robot device or manipulator consists of rigid bodies that, in the absence of

joints, are free to move independently in the ambient space. The introduction

of joints imposes constraints on the relative motions. However, if there is not

assumed to be a base—one rigid component fixed in the ambient space—then

the bodies are additionally able to move in unison freely within the ambient

space.

To model the relative displacement between a pair of links, consider the

simultaneous (right) action of SE(n) on the product SE(n)× SE(n)

(g−, g+) ◦ h = (g− ◦ h, g+ ◦ h)

The quotient space
[
SE(n)×SE(n)

]/
SE(n) is homogeneous and represents

the residual relative displacement. In practice, we can identify one of the

moving frames (e.g. M−) with the reference frame R, by choosing h = g−1
− .

So every element of the quotient [(g−, g+)], denoting the coset of (g−, g+),

can be represented by

(e, g) ∈
[
SE(n)× SE(n)

]/
SE(n) (2.45)

where g = g+g
−1
− , giving an identification of the quotient space with SE(n).

Although this element still involves pose variables, it only represents the

relative displacements of M+ with respect to M−.

If a set of k + 1 rigid bodies Li, i = 0, . . . , k, constrained together in

pairs via t joints Jj, j = 1, . . . , t is considered, then there will be a product
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of k + 1 copies of SE(n) to be taken into account. This describes possible

displacements of a (k+ 1)−body system in terms of pose variables for gi, i =

0, . . . , k. The relative displacements of the links are, as for a pair of links,

represented by the homogeneous space

[
SE(n)

]k+1/
SE(n)

Equivalently, we can assume one link, say L0, to be fixed such that the

rest of the system has six or fewer degrees of freedom. This space, called the

pose space (or M-space) is isomorphic to a product of k copies of SE(n)

M :=
[
SE(n)

]k
(2.46)

Its dimension is m = k × p, where p is as defined in (2.9). Note that the M-

space can be locally parametrised by m−dimensional Euclidean space. Thus,

we may sometimes think of theM as the Euclidean space Rm where there is

no confusion likely. Alternatively, we may use a parametrisation, such as by

dual quaternions (Section 2.4.5) with more parameters requiring additional

equations such as (2.38a) and (2.38b).

In the next chapter, we will explore the tangent spaces of the Euclidean

group and in particular the Lie algebra associated to that group. Line geom-

etry will be studied, as a central core, and will be followed by screw theory

as a powerful tool to represent the Lie algebra.
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Chapter 3

The Euclidean Lie algebra &

associated geometry

A very nice aspect of Lie theory is that a Lie group G, which is usually

a nonlinear (curved) smooth manifold, can be analysed and studied to a

significant extent by considering a linear (flat) space associated to it. This

linear object is the tangent space of the group at its identity element, TeG.

This tangent space inherits the binary operation from the group and is called

the Lie algebra g associated to the group G. The Lie algebra can be thought

of as infinitesimal elements of the group G.

Having considered the group G to be a smooth manifold, its associated

tangent space is made up of tangent vectors to all smooth paths σ(t) in G

such that σ(0) = e. Thus, a tangent vector is defined as the first–order

derivative at the identity σ̇(0) = d
dt

[σ(t)]t=0.

When, in the 19th century, Sir Robert S. Ball [10] developed his theory

of screws and defined a twist as the canonical motion of a rigid body, he

also noticed that a screw can carry an instantaneous twist—effectively an

infinitesimal element of the special Euclidean group SE(3). This is right be-

cause we can think of a tangent vector to represent a velocity at the identity.

Yet, both points of view are fine and true, the only matter is that Ball’s

45
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perspective was rather like that of Sophus Lie in the more general setting of

Lie groups.

In this Chapter, we shall introduce the Lie algebras for the groups con-

sidered in Chapter 2 and give several representations of them. We also show

how they relate to Screw theory.

3.1 Tangent spaces & Lie algebras

In general, a Lie group is an abstract differentiable manifold as described in

Chapter 2. However, the groups we are interested in—the orthogonal and

Euclidean groups—can be thought of as groups of matrices. Therefore, a

group-valued function of real variables is smooth if and only if each matrix

entry is a smooth function of its variables.

Consider a mapping σ : R→ G which corresponds to a smooth path 1 in

a Lie group G through an element g ∈ G i.e. σ(0) = g. Its derivative at g is

called a tangent vector ζ := d
dt

[σ(t)]t=0.

Assume two different smooth paths of this type—σ1, σ2. These paths are

equivalent as long as their tangent vectors at t = 0—ζ1, ζ2—are identical

i.e. σ̇1(0) = σ̇2(0). Consequently, it is right to think of the tangent space

to be a set of all equivalent classes of smooth paths. However, when G is a

matrix Lie group, the tangent vectors ζ1, ζ2 are themselves matrices and it is

necessary to know what properties they satisfy.

Denote the set of all tangent vectors ζ at g ∈ G by TgG. This is called the

tangent space to G at g [76]. It is a (real) vector space of the same dimension

as the Lie group G itself. In particular, when g = e, the identity in G, denote

the tangent space TeG by g. Suppose ζ, η ∈ g and that σ, τ : R → G are

paths that represent them, so σ(0) = τ(0) = e and σ̇(0) = ζ and τ̇(0) = η.

For fixed s ∈ R, the function t 7→ σ(s)τ(t)σ−1(s) is a smooth path through

1A path is smooth as long as its derivatives of all order exist and are continuous.
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e ∈ G at t = 0 so that

d

dt

[
σ(s)τ(t)σ−1(s)

]
t=0

= σ(s)ησ−1(s) ∈ g (3.1)

This gives a smooth path in g and, since it is a vector space, its derivative

is also in g
d

ds

[
σ(s)ησ−1(s)

]
s=0

= ζη − ηζ (3.2)

This commutator of ζ and η is denoted by [ζ, η], and called the Lie bracket

of ζ, η. The tangent space g, together with this binary operation, is called

a Lie algebra. The Lie bracket is bilinear, anti-symmetric and satisfies a

further property called the Jacobi identity, which we will not require. See

any standard textbook, such as [76] for more details.

3.2 Lie algebra of SO(3)

We already discussed that an element g ∈ SO(3) is represented by (3 × 3)

rotation matrix A as in (2.14). Consider a smooth path associated to SO(3)

i.e. A : R → SO(3) such that A(0) = I3 and thus A(t)TA(t) = I3 for all

t ∈ R. Differentiating this equality with respect to t and evaluating it at

t = 0 gives [
d

dt
A(t)TA(t) + A(t)T d

dt
A(t)

]
t=0

= 03 (3.3)

From now on, 0n stands for the n-dimensional zero matrix. Since
[
A(t)

]
t=0

=[
A(t)T

]
t=0

= I3, we can define Ω = d
dt

[
A(t)

]
t=0

= Ȧ(0). Thus, equation 3.3

can be written as

ΩT + Ω = 03 (3.4)

and so so(3) = TeSO(3) := {Ω ∈ GL(3,R) : ΩT = −Ω}. That is, Ω is a

skew-symmetric matrix
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Ω :=


0 −ωz ωy

ωz 0 −ωx
−ωy ωx 0

 (3.5)

and confirms that so(3) is a 3-dimensional vector space spanned by the three

matrices

I =


0 0 0

0 0 −1

0 1 0

 , J =


0 0 1

0 0 0

−1 0 0

 , K =


0 −1 0

1 0 0

0 0 0

 (3.6)

These correspond to infinitesimal rotations about three unit vectors i, j, k in

the Cartesian coordinate system arising from the paths defined in (2.13).

Suppose p ∈ R3, p 6= 0 and consider the path P(t) = A(t)p ∈ R3, which

satisfies P(0) = p. Its velocity at t = 0 is Ṗ(0) = Ȧ(0)p = Ωp. Since A(t) is

orthogonal, ‖P(t)‖2 is constant, so that Ṗ(0) is orthogonal to p. Moreover,

it is easy to check that

Ωp = ω × p

where ω = (ωx, ωy, ωz)T ∈ R3 and × is the vector (cross) product in R3.

For this reason some authors write Ω as “ω×”. Physically, the vector ω

represents the angular velocity of a point p moving along the path P(t) at

t = 0 or, equivalently, of a moving frame M of rigid body rotating by A(t).

More generally, if A(t) is a path in the special orthogonal group with

A0 := A(0) ∈ SO(3) then similarly to (3.3)

ȦT0A0 + AT0 Ȧ0 = 03 (3.7)

where Ȧ0 := Ȧ(0). It follows that AT0 Ȧ0 = ΩL is skew-symmetric. This

defines a function TA0SO(3) → so(3), Ȧ0 7→ ΩL called the left pullback.

Likewise, the right pullback is Ȧ0 7→ ΩR = Ȧ0A
T
0 . In terms of coordinate
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frames for a rigid body, these pullbacks correspond to a change of moving

frame M so that it (instantaneously) coincides with the reference frame R—

left pullback—or the other way around—right pullback. We discuss this

further is Section 3.3.

We saw in Section 2.4.2 the close relation between unit quaternions, S3,

and the rotation group SO(3). Since the relationship is 2 : 1, it provides an

isomorphism between their Lie algebras. The condition qq∗ = e2
0 + e2

1 + e2
2 +

e2
3 = 1 means that for a path q : R→ SO(3), q(0) = 1, 2 Re(q̇q∗) = q · q̇ = 0

where the product is the usual scalar product on R4

d

dt
[q(t)q∗(t)]t=0 = [q̇(t)q∗(t) + q(t)q̇(t)]t=0

= q̇q∗ + (q̇q∗)∗

= 2 Re(q̇q∗)

= 2 Re [(ė0 + ė1 i + ė2 j + ė3 k)(e0 − e1 i− e2 j− e3 k)]

= 2 [e0ė0 + e1ė1 + e2ė2 + e3ė3]

= q · q̇

It follows that the tangent space T1S
3 consists of the pure imaginary quater-

nions and is spanned by i, j, k. These correspond to the infinitesimal rotations

in (3.6).

In Section 2.4.1, we treated SO(2) as a subset of SO(3) by fixing the

axis of rotation as the z-axis. The Lie algebra so(2) then corresponds to the

1-dimensional subalgebra of so(3) spanned by the matrix K in (3.6). We can

represent elements by the (2× 2) matrix

 0 −wz
wz 0


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3.3 Lie algebra of SE(3)

In this section, we study the Lie algebra of the 3-dimensional Euclidean

group which represents a general rigid displacement which is undertaken by

a rotation about an axis through the origin followed by a translation—that

is SE(3) ∼= SO(3) n R3. It is worth noting that the theorem of Mozzi-

Chasles [63, 64] gives a different but equivalent way of describing a general

rigid displacement (for proof and more discussion, see [16] Page 49 and [70]

Section 2.5.2). Note, however, that for a pure translation the axis is “at

infinity”. This description is often called a screw displacement, or finite screw.

Theorem 3.1 (Mozzi-Chasles Theorem). Every spatial displacement is the

composition of a rotation about an axis—a line anywhere in R3—together

with a translation along that axis.

Consider rigid body displacement parametrised by s, that is a smooth

path σ := (A, t)(s) : R → SE(3), which in the homogeneous representation

has the form

σ(s) =

A(s) t(s)

0 1

 (3.8)

and suppose A(0) = I3, t(0) = 0. Differentiation of σ with respect to s yields

σ̇(s) =

Ȧ(s) ṫ(s)

0 0

 ∈ Tσ(s)SE(3) (3.9)

Equating (3.9) at s = 0 will provide us with an element of Lie algebra se(3)

which is called a twist

X :=

Ω v

0 0

 ∈ se(3) (3.10)

where Ω is the (3 × 3) skew-symmetric matrix given in (3.5) whilst v =

(vx, vy, vz)T ∈ R3. As it is explained in Section 3.2, a skew-symmetric matrix

Ω ∈ GL(3,R) can be rewritten as a 3-vector ω ∈ R3. Accordingly, it is often
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convenient to write a twist given in (3.10) in the vector form

ξ := (ω; v)T = (ωx, ωy, ωz; vx, vy, vz) ∈ R6 (3.11)

In Section 2.4.5, we showed how rigid displacements in SE(3) can be rep-

resented by dual quaternions q̆ = qp + εqd, qp,qd ∈ H, satisfying the two

conditions (2.38a) and (2.38b). The associated group DS3, like its non-dual

version S3, has as its Lie algebra the pure imaginary (or vectorial) dual

quaternions ω + εv where

ω = ω1 i + ω2 j + ω3 k, v = v1 i + v2 j + v3 k

Of course, we can represent these as 6-vectors (ω; v). This provides another

way to represent twists. We return to this in Section 3.4.2.

A twist as in (3.10) is also called instantaneous screw (see, for exam-

ple, [10]) because it describes the infinitesimal motion along the screw axis

arising from a 1-parameter screw displacement in R3. We will explore this in

more detail in Section 3.4.3.

Suppose we are interested in the velocity of an arbitrary point attached

to a moving rigid body with moving frame M and reference frame R. As-

sume, its body coordinates are given as p = (px, py, pz)T ∈ M . If a smooth

displacement given in (3.8) acts on this body, its coordinates in R at time s

will be

P(s) = σ(s)p = A(s)p + t(s) (3.12)

Differentiating (3.12) with respect to s, we can obtain the infinitesimal dis-

placement of the point in the ambient space

Ṗ(s) = Ȧ(s)p + ṫ(s) (3.13)
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(3.12) allows us to rewrite (3.13) as

Ṗ(s) = σ̇(s)σ−1(s)P

By using the homogeneous representation in (2.10) and (3.5), we can

express σ̇σ−1 in the following matrix form

Ȧ ṫ

0 0


A−1 −A−1t

0 1

 =

ȦA−1 −ȦA−1t + ṫ

0 0

 (3.14)

By comparing (3.14) with what we already obtained in (3.7), it can be im-

mediately confirmed that ȦA−1 = ΩR ∈ so(3) is the right pullback. In this

case, the velocity of P can be obtained by

Ṗ = ΩRP + v (3.15)

where v = ṫ− ΩRt.

3.3.1 Adjoint representation

Following our discussion in Section 2.4.5 on matrix representation for SE(3)

in terms of dual quaternions, and pullback in the previous section, we now

explain the adjoint representation of a group in which the result of the con-

jugation by a group element on its Lie algebra is represented. Suppose G

is a matrix Lie group and h ∈ G. Conjugation in G by h is the operation

g 7→ hgh−1. Clearly, conjugation fixes the identity e ∈ G so the derivative of

this map (with respect to g) at the identity is a linear map g→ g on the Lie

algebra.

If ζ ∈ g and ζ = σ̇(0) for a smooth path σ : R → G, σ(0) = e, then the

derivative is effectively given by (3.1), that is

ζ 7→ hζh−1 (3.16)
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This makes sense so long as elements of G, and hence g, can be written

as matrices. This is called the adjoint representation of G and we write

Adhζ := hζh−1. For each h ∈ G, this is a linear map g → g and can be

written in matrix form with respect to a choice of basis for g.

Specifically, for the Euclidean group SE(3), consider an element h :=

(A, t) ∈ SE(3) whose inverse is given by h−1 := (AT ,−AT t) ∈ SE(3).

Consider a twistX ∈ se(3) given in (3.10), using homogeneous representation

and (3.6), we can write

AdhX = hXh−1

=

A t

0 1


Ω v

0 0


AT −AT t

0 1



=

AΩAT Av− AΩAT t

0 0

 (3.17)

We can convert this into a different form in terms of the vector form ξ =

(ω; v) in (3.7). By doing a little bit of algebraic manipulation, it is possible

to show that AΩAT has vector form Aω and then −AΩAT t = −(Aω)× t =

TAω where T ≡ t× is the skew-symmetric matrix corresponding to t. As a

result, it is possible to rewrite (3.17) in the following matrix form

Adh(ω; v) =

 A 0

TA A


ω

v

 (3.18)

Clearly, this (6 × 6) matrix is indeed another representation of the rigid

displacement h = (A, t).

It is worth noting that if G is a matrix Lie group, h ∈ G, and ξ ∈ ThG,

then left and right pullbacks ξL = h−1ξ, ξR = ξh−1 in the Lie algebra g are

related by the adjoint representation

AdhξL = h(h−1ξ)h−1 = ξh−1 = ξR
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That means that important geometric features of an infinitesimal displace-

ment or twist are those invariant under adjoint action.

From (3.18), the adjoint action of (A, t) ∈ SE(3) on a twist (ω; v) gives

(Aω;TAω + Av) ∈ se(3)

Since A ∈ SO(3)

〈Aω, Aω〉 = 〈ω,ω〉

so that the inner product ω ·ω is invariant. Also, we saw that TAω = t×Aω

which is orthogonal to Aω, so 〈Aω, TAω〉 = 0. Hence,

〈Aω, TAω + Av〉 = 〈Aω, Av〉

= 〈ω,v〉

so that the inner product ω · v is also invariant. These two invariants ω · ω

and ω ·v are known as the Killing and Klein forms on se(3) and they generate

all polynomial invariants (see [70] Sections 4.7 and 6.3). Their ratio

p = ω · v
ω · ω

(3.19)

is called the pitch of a twist. In the case ω = 0, the pitch is defined to be

p =∞.

3.4 Line geometry

Lines in space and their geometry are central in the study of rigid body kine-

matics. One of the very earliest theorems in the field of theoretical kinematics

is the Mozzi-Chasles Theorem referred to at the start of Section 3.3. Accord-

ing to this theorem, a general rigid body displacement in space is identical

to a screw displacment (or simply a screw) in which a rotation is performed
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Figure 3.1: Lines in 3-space

about a screw axis followed by a translation along the same axis [16]. The

screw axis is considered as a line ` in R3. We start this section with an

overview of lines in space and then we will discuss the more general screw

theory.

3.4.1 Lines in R3

There are various different representations of a line in 3-dimensional space.

In this section, we focus on the parametric form, which we use throughout

this thesis, especially in Chapter 4, where we model kinematic pairs using

geometric objects such as points and lines.

v := p2 − p1 = (v1, v2, v3)T ∈ R3 (3.20)

A point pλ on that line can be determined in the parametric form

pλ := p1 + λv ∈ ` (3.21)

where λ ∈ R is a free parameter. Note that there are infinitely many para-

metric representations of a given line `. The point p1 could be replaced by

any other point on ` and if µ ∈ R, µ 6= 0, the vector

v1 = µv (3.22)
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can be used as a direction vector.

Suppose `1 : p1 +λ1v1 and `2 : p2 +λ2v2 are two lines. We will sometimes

want to determine if `1 = `2. This requires p2 ∈ `1 so for some λ1 ∈ R,

p2 = p1 +λ1v1. It also requires v2 = µv1 for some µ ∈ R 6= 0. Each of these

is a vectorial equation in R3 so contains three scalar equations. However,

there is a dependency among these three equations due to the presence of the

parameters λ1, µ. This dependency can be eliminated, reducing the number

of scalar equations to two in each case. As a result, there will be four scalar

equations in total. So, only four scalar equations are sufficient to specify

equality of lines `1, `2 in R3.

3.4.2 Plücker coordinates

Alternatively, we can describe a line ` using a direction vector v and a mo-

ment vector associated to `. Consider two points p1 and p2 and the line `

passing through them. Then, there exists a moment vector m := p1 × v =

(m1,m2,m3)T ∈ R3 is the moment of ` about o. Note that, up to scalar mul-

tiple, m is independent of the particular parametrisation used. Replacing p1

by p1 + λv and v by µv (µ 6= 0),

(p1 + λv)× µv = µ(p1 × v) = µm

Moreover,

p1 × v = p1 × (p1 − p2) = p1 × p2

so the coordinates are

m1 = a2b3 − b2a3, m2 = b1a3 − a1b3, m3 = a1b2 − b1a2 (3.23)

Clearly m is perpendicular to v.

So we have associated two vectors, v,m ∈ R3 with the line `. However,
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they are not independent since we know v · m = 0. On the other hand,

multiplying v and m by a non-zero constant µ gives the same line. This

leads us to another description of lines, called Plücker coordinates.

This representation employs six coordinates u = (p01, p02, p03; p23, p31, p12)

to specify a line ` ∈ R3. Generally speaking, we can assume these coordinates

to determine a point in 6-dimensional hyperspace i.e. u ∈ R6. Given a pair

of points p1 = (a1, a2, a3)T and p2 = (b1, b2, b3)T in R3 set

pij = aibj − ajbi, i 6= j = 0, 1, 2, 3

where a0 = b0 = 1. More generally, Plücker coordinates can be defined on

projective 3-space P3, by taking (a0, a1, a2, a3) and (b0, b1, b2, b3) as homoge-

neous coordinates for points p1,p2 ∈ P3. Plücker coordinates are then also

homogeneous and define a point in P5. So, the Plücker coordinates of ` are

p01 = b1 − a1, p02 = b2 − a2, p03 = b3 − a3,

p23 = a2b3 − b2a3, p31 = b1a3 − a1b3, p12 = a1b2 − b1a2

(3.24)

By comparing (3.24) with (3.20) and (3.23), Plücker coordinates are simply

the direction vector and a moment vector of a line, that is, u := (v; m) ∈ R6.

As noted above, a direction vector and moment vector of a line ` in R3

must be perpendicular i.e. v ·m = 0. If we expand this condition in terms

of the Plücker coordinates

p01p23 + p02p31 + p03p12 = 0 (3.25)

Furthermore, for a line ` to be defined, we require v 6= 0. Since we may

take non-zero multiples of the coordinates, it is common for the direction

vector can be normalised i.e. v · v = 1, which gives the additional condition

p2
01 + p2

02 + p2
03 = 1 (3.26)
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Clearly, equations (3.25) and (3.26) are quadratic equations in R6 each defin-

ing a hypersurface. The intersection of these is a 4-dimensional variety which

contains all sets of coordinates in R6 that represent lines in R3. We shall refer

to this set as the Klein quadric, K ⊆ R6. Strictly, that term refers to the

projective variety in P5 defined by (3.26) 2. In R6, the points u,−u ∈ K

correspond to the same line in R3.

3.4.3 Screw theory

In this section, we return to the idea of a screw as a description of finite and

instantaneous rigid body displacements and show their connections to lines

and their Plücker coordinates.

Following Chasles’ Theorem, consider a finite rigid body displacement

having a screw axis `, so rotating about ` and translating along it. First, let

us assume that ` passes through the origin o and the direction is given by a

unit vector v̂ ∈ R3. The displacement can be written in the following (4× 4)

matrix form Aφ φ
2πpv̂

0 1

 (3.27)

where Aφ is the (3× 3) rotational matrix representing rotation φ about the

axis `. Note that φ is unique only up to addition of multiples of 2π. In

addition, p is a scalar called the pitch of the screw representing the ratio of

translation along the line φp to the angle of rotation φ.

More generally, suppose the screw axis is free to be anywhere in the space

as pictured in Figure 3.1. We want to choose a point on that line. To be

specific, we choose the foot p⊥ of the normal from o to `. This is the point

having the shortest distance from the origin. Note that if ` passes through o,

we choose p⊥ = 0. We now change coordinates so that the origin is shifted

to p⊥. In other words, it is a rigid displacement which only involves a pure

2In this setting, v = 0 corresponds to a line at infinity in P3.
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translation, given in matrix form by

I3 p⊥
0 1

 (3.28)

The impact of this change of coordinates is given by the conjugation operation

in Section 3.3.1. Once the axis passes through the origin, we can use (3.27)

to represent the rotation about it and so the matrix form is

I3 p⊥
0 1


Aφ φ

2πpv̂

0 1


I3 −p⊥

0 1

 =

Aφ φ
2πpv̂ + (I3 − Aφ)p⊥

0 1

 (3.29)

This is a representation of an arbitrary finite screw displacement.

Conversely, suppose any rigid displacement is written in homogeneous

form given in (2.10). The rotation A has a fixed axis spanned by a non-zero

vector ω, so Aω = ω. We want to write t in terms of (3.29) [70]

t = φ

2πpω + (I3 − A)p (3.30)

So we must solve this equation for p and p in terms of φ, t and ω. Taking

scalar product with ω gives

ω · t = φ

2πpω · ω + ωT (I3 − A)p (3.31)

From Aω = ω, and since A−1 = AT , we deduce ATω = ω and ωTA = ωT

so the second term vanishes. Hence

p = 2π
φ

ω · t
ω · ω

(3.32)

This is the finite displacement version of the pitch defined in (3.19) for twists.
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Now rearrange (3.30) as

(I3 − A)p = t−
(
ω · t
ω · ω

)
ω (3.33)

The choice of p ensures the equations are consistent and , since (I3−A)ω = 0,

there is a line of solutions of the form p0 + λω. For some λ = λ0, p⊥ =

p0 + λ0ω minimises the distance from o. In the special case A = I3, there

is no privileged eigenvector ω and φ = 0 so (3.30) is inconsistent. This

corresponds to pure translation.

The Plücker coordinates for the screw axis are (ω; p0 × ω) ∈ K. Notice

that if we add a component pω to the second vector, orthogonal to it, we

obtain a general 6-vector (ω; v) = (ω; p0 × ω + pω) that satisfies ω · v = p.

This gives a natural way to extend Plücker coordinates to describe rigid

displacements.

3.5 The exponential map and 1-parameter

subgroups

Thus far, we have observed that associated with a Lie group G is the Lie

algebra g consisting of the derivatives at t = 0 of paths σ(t) in G with

σ(0) = e. In this section, we introduce a mapping that transforms X ∈ g

to an element g ∈ G. This is done by means of the following power series

that is called the exponential function. Assume X to be an (n × n) matrix

representing an element of g, then

expX = I +X + X2

2! + X3

3! + . . . (3.34)

Note that this series converges for any X, so expX is well defined.

It is a remarkable property of (matrix) Lie groups G and their Lie algebra

g that for any X ∈ g, expX ∈ G, see for example [76]. Thus, exp : g→ G.
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If G is not an abelian group, in general, exp (X + Y ) 6= expX expY .

However, if XY = Y X, then exp (X + Y ) = expX expY . In particular, if

s, t ∈ R, then exp [(s+ t)X] = exp (sX) exp (tX). Hence, the function

σX : R→ G, σX(t) = exp (tX) (3.35)

is a group homomorphism and the image {exp (tX)|t ∈ R} is a subgroup of

G, called a 1-parameter subgroup. Note that

d

dt
[σX(t)]t=0 = X

so that σx(t) is a path defining X ∈ g.

For the rotation and Euclidean groups SO(3) and SE(3), we can use

the quaternion and dual quaternion representations to compute the expo-

nential functions, using the homomorphisms S3 → SO(3) and DS3 → SE(3)

described in Sections 2.4.2 and 2.4.5.

3.6 Infinitesimal displacements and twists in

the pose space

In the previous sections, we studied the Lie algebra and the tangent space of

the Euclidean group, describing the infinitesimal displacement of an individ-

ual rigid body which moves freely in space. We saw that its rigid displacement

is expressed by g ∈ SE(n) and its instantaneous rigid velocity is defined by

a twist ξ ∈ se(n). The tangent space at a general point g ∈ SE(n) can be

identified with the Lie algebra by a right (or left) pullback as in (3.14).

Following our discussion in Section 2.5, we are going to address the in-

finitesimal displacement of two bodies connected together by a joint, a 2-body

system in which one is fixed, and finally a multi-body system. Let us start

with the first case when two rigid bodies L± with moving frames M± are
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constrained together by a joint J . We already saw in (2.44) that the possible

displacements of this 2-body system are described by a product of two copies

of element of the SE(n). Path derivatives in this product space give tangent

space

T(g−,g+)
[
SE(n)× SE(n)

] ∼= Tg−SE(n)× Tg+SE(n) (3.36)

To describe the instantaneous velocity of one link relative to the other

we should work in a tangent space of the homogeneous space
[
SE(n) ×

SE(n)
]/
SE(n). As noted in Section 2.5, it is sufficient to assume one link

fixed and hence to consider just the instantaneous velocity in the second

component only. Suppose (ξ−, ξ+) ∈ Tg−SE(n) × Tg+SE(n) is represented

by a path
(
σ−(t), σ+(t)

)
in
[
SE(n) × SE(n)

]
with σ±(0) = g±. Then a

representative path in the homogeneous space is
(
e, σ(t)

)
=
(
e, σ+(t)σ−1

− (t)
)
.

Differentiating with respect to t and setting t = 0 gives (0, ξ), where

ξ = σ(0) ∈ TgSE(n)

and g = σ(0). Since elements of the Lie algebra se(n) have a nice form, it

may be useful to now obtain a pullback of ξ into se(n). We will use this idea

in Section 4.6.

Similarly, relative displacements in M-space given by (2.46) correspond

to elements of the product of tangent spaces of k components moving with

respect to a fixed base

Tg1SE(n)× Tg2SE(n)× . . .× TgkSE(n) (3.37)

This is a fibre 3 of the tangent bundle over (g1, . . . , gk) ∈ [SE(3)]k, associated

to the free motions of the multi-body systems. If we regard all tangent spaces

at their associated identity elements and want to represent elements bymulti-

3A fibre of a mapping f : M → N is the preimage of an element y ∈ N [85].
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twists, then we can pullback component-wise to k copies of the Lie algebra

(ξ1, ξ2, . . . , ξk) ∈
[
se(n)

]k
(3.38)

Note that the form in (3.38) is associated to the home configuration (i.e.

gi = e, i = 1, . . . , k). Every twist ξi may depend on design parameters as

well as the current configuration.

In the robot kinematics literature, the matrix whose columns are these

twists is sometimes called a Jacobian matrix and its properties, particularly

its rank, tells us about the kinematics of the multi-body system. We will

explain it with more details in Section 5.1. In this thesis, we use the term

Jacobian matrix in its mathematical meaning as the matrix of partial deriva-

tives of a vector-valued multivariable function f : Rm → Rn. This more

general approach, which has the kinematic version as a special case, enables

us to make use of results from differential geometry.



64 CHAPTER 3. THE EUCLIDEAN LIE ALGEBRA



Chapter 4

Constraints versus freedoms

So far, we have reviewed preliminaries and mathematical tools that we em-

ploy for developing an approach to study kinematics including singularities.

This approach involves two main parts. The first part concerning configu-

ration spaces is going to be explained in this chapter whilst the second part

concerning singularities will be introduced in the next chapter.

In this chapter, we will discuss how to model the kinematics of a family

of manipulators by means of joint constraint equations. This approach will

provide us with a set called the design-configuration space (D-space). A fam-

ily of manipulators consists of a fixed topology, referred to as the architecture

of the family, which can be represented combinatorically by a graph in which

the links are vertices and edges connect pairs of links that are connected

by a joint [86, 87, 88]. Moreover, the edges are annotated by the type of

joint, which also determines its degrees of freedom or constraints. So the ar-

chitecture includes given types of joints. A particular mechanism requires a

number of design parameters that can vary within the family. However, topo-

logical characteristics are fixed within the family. Now, if a fixed choice of

design parameters is assumed, then we will have a subset of D-space, called a

configuration space (C-space) determined by a mapping called the kinematic

constraint map (KCM). In effect, this is a cross-section of the D-space for

65
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fixed choices of design parameters.

The C-space of a manipulator with specific choices for design parameters

indicates all feasible configurations that the manipulator can occupy. In

effect, whether a configuration is feasible depends on the displacements of

all components involved in that particular manipulator. This means that we

should take into account pose variables corresponding to all links without

discrimination. A C-space is generally regular, yet it may occasionally be

singular under special circumstances that will occur if certain Grashof-type

conditions are satisfied by the design parameters.

The idea of a KCM is to provide a consistent description of the kinematic

capabilities of a manipulator, independent of the choice of inputs (actuated

joints) and outputs (end-effector poses). While the choice of these is ulti-

mately critical to the application of a manipulator, the KCM will be able

to capture any such choice and from that to determine, among other things,

all types of kinematic singularity. The KCM itself is essential for capturing

underlying C-space singularities of the whole mechanism.

In this chapter, we are going to perceive a joint from two different per-

spectives. In the first part, we will specify a joint in terms of constraints

that it imposes on two adjacent bodies which are connected together via the

joint. In the second part, on the other hand, we will define a joint in terms of

freedoms that it permits two adjacent bodies to move relatively with respect

to each other. In Section 4.1, we contrast approaches to kinematics based on

constraint and on freedom of motion. Then in Section 4.2, we present the

associated idea of constraint equations, leading to the concept of the kine-

matic constraint map defined in Section 4.5. In the following sections we give

explicit constraint equations for planar and spatial mechanism joints.
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4.1 Chebyshev-Grübler-Kutzbach formula

Suppose two rigid bodies are connected together by a joint J that allows them

to displace relative to each other in an ambient space. The joints commonly

used in spatial mechanisms are described as Reuleaux’s lower pairs, which

are determined by the coincidence of surfaces in the rigid bodies. (see, for

example, [70]). These give the familiar revolute (R), helical (H) and prismatic

(P) joints, the cylindrical (C), spherical (S), and planar (E) joints. All of

them are characterised by the fact that the relative freedom between the links

is determined by a subgroup in the quotient space. The degrees of freedom

(dofs), δ, of the joint is the dimension of the subgroup. In the planar case,

the contacting surfaces reduce to curves and we just have R and P joints.

Following an approach proposed by Piipponen and Tuomela [61], our

primary goal is to establish constraint equations representing a joint. That

is, instead of introducing a joint based on the degrees of freedom δ that

it provides the two connected bodies, we model it in terms of r = p −

δ constraints (where p = dimSE(n), given in (2.9)) that are imposed on

relative displacements between the bodies.

Our motivation has arisen from two different forms of the Chebyshev-

Grübler-Kutzbach (CGK) formula used for determining the global mobility,

µ, of a generic multi-body system

µ =
t∑

j=1
δj − p(t− k + 1) (4.1a)

= p(k − 1)−
t∑

j=1
(p− δj) (4.1b)

where t, δj, k are the number of joints, the degrees of freedom of joint Jj,

j = 1, . . . , t, and the number of links respectively. In particular, the formulae

acknowledge a necessary distinction between an approach based on freedoms

and one based on constraints.
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The essential point is that although the formulae are equivalent, they

describe the global mobility µ from different perspectives. (4.1a) expresses

mobility in terms of joint freedoms, whereas (4.1b) is expressed in terms

of joint constraints, so that the forms are complementary. This is because

the degrees of freedom and the number of constraints are complementary

for a given (either planar or spatial) joint, relative to the dimension of the

Euclidean groups. In space where p = 6, for example, an S-joint has δ = 3

so r = 3. Likewise, for a C-joint δ = 2 so r = 4. In the plane where p = 3,

an R-joint has δ = 1 and r = 3− 1 = 2.

In the following section, we will explain how to attain required constraint

equations for a single joint between two rigid bodies.

4.2 Joint constraint equations

In a manipulator, suppose that two links L± are connected to each other

by a joint J , thereby constraining their relative displacement. As the first

step towards determining the constraint equations associated to the given

joint, we allocate a geometric object to it. A particular type of joint can be

characterised by a specific object. This object is geometrically equivalent to

the joint in regard of freedoms and constraints and is intended to replicate

Reuleaux’s contact surfaces (for example, see [70] Section 3.6). For instance,

an S-joint and a C-joint are modelled by a point p ∈ R3 and a directed line

` ∈ R3, respectively, in each link. The constraint is defined by the objects

coinciding. For example, there are three constraint equations required to

determine coincidence of points whereas four constraint equations are needed

to specify coincidence of directed lines in space. These correspond to the

degrees of freedom and constraints mentioned above.

In the planar case, only two main objects are required, namely a point

p and a directed line `. On the other hand, in space, in addition to point

and directed line, an oriented plane π may be needed. Objects are either
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employed individually like the abovementioned examples, or they may join

together to form another object 1. For instance, a point-line is used in order

to model a spatial revolute joint, whilst a line-plane is required in order to

model a spatial prismatic joint. It is important that the assigned objects

are invariant (fixed) with respect to the relative displacements permitted by

the joint. We will study all different (planar and spatial) joints and find

corresponding constraint equations in Secs. 4.3 and 4.4.

Returning to the general procedure, after identifying the right object

which is attached to each rigid body L±, for a given joint, body coordinates

are assigned to each link via moving frames M±. In principle, the frames

are arbitrary but it is generally helpful to assign coordinates that specifically

align to the joint objects, noting that many links will have more than one

joint assigned, so that choices are required. In this case, the positions of

the joint objects involve design parameters, e.g. Denavit-Hartenberg (DH)

parameters [89]. The design parameters themselves are independent of the

choice of frames in the link. We also assign a reference frame R and coordi-

nates to the ambient space.

The choice of frames M± (for two connected links) and R determine the

displacements of the links as elements g± = (A±, t±) ∈ SE(n), n = 2, 3.

The two copies of SE(n), forM±, can each be assigned pose variables, which

may include quaternions or dual quaternions with additional constraints.

We denote the pose variables u± ∈ Rp (or potentially Rp+c where additional

variables and equations are used).

As the second step in obtaining constraint equations, we need to trans-

form the body coordinates j± for the joint object inM± to the reference frame

by means of pose variables u±, respectively. For this purpose, (2.6)—called

the absolute displacement [78]—is utilised and returns the reference-frame

coordinates J± ∈ Rn, n = 2, 3 associated to the given joint in the reference

1These objects are independent and often called oriented flags, i.e. a sequence of
oriented linear subspaces [70].
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frame R

J± = A±j± + a± (4.2)

The pair of sets of reference-frame coordinates J± are defined in terms

of the pair of pose variables (u−,u+) ∈ R2p and may also involve design

parameters s in the relevant space Rd. Reference-frame coordinates for the

joint object must be equal to each other. In effect, the geometric condition

translates into an algebraic condition in reference-frame coordinates

J− ∼ J+ (4.3)

where ∼ denotes coincidence, parallelism, or perpendicularity, the three main

geometric conditions that address the dependency of the pair of reference-

frame coordinates in the reference frame R.

According to the type of joint, (4.3) provides us with a set of r constraint

equations f := (f1, . . . , fr) imposed on the pose variables of the moving

components and design parameters

f(u−,u+, s) = 0 ∈ Rr (4.4)

We call f and Rr a joint constraint mapping and a joint constraint space,

respectively. For now, we will treat the design parameters as fixed.

Following our discussion of pose space and relative displacement in Sec-

tion 2.5, two moving links create a 2-body system in the ambient space.

Since (2.44) identifies an element describing the absolute displacement of the

whole system, a joint constraint mapping can be thought of as

f : SE(n)× SE(n)→ Rr (4.5)

and the set of displacements of the 2-body system in the ambient space is
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the joint configuration space

C := {(g−, g+) | f(g−, g+) = 0} ⊆ SE(n)× SE(n) (4.6)

Given (g−, g+) ∈ C and any h ∈ SE(n), the fact that the 2-body system

is free to move without any relative motion between the links means the

following relation holds true

f(g−, g+) = 0⇔ f(h ◦ g−, h ◦ g+) = 0 (4.7)

that is, the joint configuration space C is invariant under the simultaneous

Euclidean group action.

As in Section 2.5, let us assume h = g−1
− in (4.7), so in effect, L− in the

2-body system is fixed and g− = e ∈ SE(n). Then, we can take the quotient

of C by SE(n) to obtain the relative joint configuration space

Crel = C
/
SE(n). (4.8)

The relative displacement within the system is given by

Crel ∼= {(e, g) | f(e, g) = 0} ⊆ {e} × SE(n) (4.9)

where g = g+ ◦ g−1
− .

The set of g ∈ SE(n) such that (e, g) ∈ Crel describes the relative dis-

placements permitted by the joint connecting L− and L+. It is well known

that these sets are subgroups of SE(n) [46, 70] or, more generally, cosets,

since they only contain the identity if the moving frames M± coincide in L±
for some feasible configuration. In our approach, it will depend on the joint

constraint mapping f that we obtain the same cosets as the relative joint

configuration spaces and we will show that is the case later in this chapter.

For now, let us assume the above. For the 1-dof joints, namely R, P and H
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the subgroups of SE(n) with dimension 1 are just the 1-parameter subgroups

discussed in Section 3.5. These have the form exp(tX) where X ∈ se(n) and

t ∈ R.

Given the constraint mapping f : SE(n)×SE(n)→ Rp−1, we can identify

X by computing the kernel of its Jacobian at a point (e, g) ∈ Crel. This only

requires partial derivatives with respect to the second component g ∈ SE(n),

so consider f+(g) = f(e, g) and find

ker Jf+(g) ⊆ TgSE(n) (4.10)

This should be 1-dimensional and spanned by a vector ξ ∈ TgSE(n). The

right pullback of ξ gives X ∈ se(n). Accordingly, the motion of link L+,

resulting from the freedom of the joint J , has the form exp(tX) ◦ g.

In the next two sections, we shall determine constraints associated to each

type of joint and write down the corresponding joint constraint mapping f .

Section 4.3 will be about three types of planar joints; namely revolute, pris-

matic, and double-prismatic, while Section 4.4 will discuss five types spatial

joints; namely revolute, prismatic, cylindrical, universal, spherical, and pla-

nar. The helical (screw) joint is discussed briefly, but presents significant

technical difficulties.

4.3 Planar kinematic pairs

As was explained in Section 2.4.3, a planar displacement is described by

means of an element of SE(2) given in (2.26). A group element is (globally)

parametrised by a 3-vector given in (2.28). (2.6) is employed to transform

given body coordinates in a moving frame M into the reference frame R and

obtain corresponding reference-frame coordinates.

There are three types of planar joints; namely revolute (R), prismatic (P),

and 2-prismatic (2P). The first two correspond to the 1-parameter subgroups
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Figure 4.1: Adjacent links constrained at a planar R-joint

while the 2P-joint corresponds to the translation subgroup {I}×R2 ⊆ SE(2).

An R-joint allows two connected components L± to relatively rotate about

a point whereas a P-joint permits them to translate relatively. The third

type can be thought of as two P-joints that are unparalleled so it allows

translation in any direction in the plane.

4.3.1 R-joint constraints

An R-joint allows two adjacent components to have a relative rotation with

respect to each other in the plane, so δ = 1. Thus, we can model this

joint with a point p± in each link, which should coincide in the reference

frame. The next step is to assign moving frames M± to the adjacent links

L±. Although M± can be freely attached anywhere on the rigid bodies, a

judicious choice is that the associated point p lies on the positive x−-axis

in M− and is the origin in M+. The distance l− between the origins in the

M± is a design parameter—the link length—in the case that there are two

successive R-joints.

As shown in Figure 4.1, the body coordinates p± ∈ R2 in the preceding

and the following moving frames M± are

p− = (l−, 0)T , p+ = (0, 0)T

If the pose variables of L± are given by (A±, t±), as given in (2.15) and (2.25),

respectively, which are used to transform the body coordinates into the ref-
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erence frame R, the corresponding pair of reference-frame coordinates are

P± = A±p± + t± (4.11)

The required condition for establishing an R-joint is the coincidence of

reference-frame coordinates in the reference frame R. This condition entails

the vector equation in terms of the two sets of pose variables

P− −P+ = 0⇒ A−p− + t− − A+p+ − t+ = 0 ∈ R2 (4.12)

This gives two scalar constraint equations on the pose variables. Note that
p− involves l− as a design parameter which is therefore embodied in the
constraint equations 2. As a result, the joint constraint mapping f := (f1, f2)
associated to an R-joint is determined by

(tx− , ty− , θ−, tx+ , ty+ , θ+) 7→
[
l− cos θ− + tx− − tx+ , l− sin θ− + ty− − ty+

]T (4.13)

Thus two constraint equations, f1 = f2 = 0, are imposed on the pose vari-

ables. These fix the translations t+ in terms of (A−, t−) and only allow them

to have relative rotation with respect to each other. It is worth noting that

other geometric objects could be used to model the relative freedom. In the

case of R-joints, circles of equal radius would suffice.

4.3.2 P-joint constraints

A P-joint allows two adjacent links to have relative translation in a fixed

direction with respect to each other in the plane, so δ = 1. This is geomet-

rically modelled by a directed line `± in each link, whose direction vector

indicates the direction of translation. Here, we follow [90] in modelling the

constraints. As for the R-joint in Section 4.3.1, assigning two moving frames

2While the design parameters are features of the coordinate frames M±, for a 2-body
system they do not have an effect on the relative displacement. They arise when there is
more than one joint to consider.
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Figure 4.2: Adjacent links constrained at a planar P-joint: a) RPR-chain
and b) RPP-chain

M± is the next step. Figure 4.2 shows two cases in which successive joints

are RP or PP.

Suppose a judicious choice has been made for the origin ofM−, for exam-

ple located at the centre of a previous R-joint. Choose the x−-axis to lie along

the direction of the line of the P-joint. Therefore, the y−-axis is along a line

perpendicular to the P-joint. The perpendicular distance d− ∈ R is a design

parameter, an offset distance between successive joints. Choose the origin

for M+ to be a point on the line `+. If L+ also has an R-joint with a further

link, this may be the foot of the perpendicular from the point associated to

the R-joint. We may be free to choose the line to pass through that point, in

which case it will be the origin. Again, choose the x+-direction to be parallel

to the direction of the line. On the other hand, if L+ also has a P-joint,

then the origin of M+ is somewhere on the line of the preceding P-joint (or.

may be the intersection of the lines of the two successive P-joints) whereas

the x+-axis is parallel to the direction of the following P-joint, as shown in

Figure 4.2b. Note that there is a design parameter α+ ∈ R denoting on the

possible angle between successive P-joints.

Suppose the, parametric representation of a line, given in (3.21), is em-

ployed to express `, and so requires a point p ∈ R2 on it and a direction

vector r ∈ R2, together with a parameter λ. Note that, as for the R-joint,

there are alternative choices of object. In the case of a P-joint, any other line

parallel to the chosen one can be used. However, the constraint equations
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between the successive objects must model the relative displacement.

Identifying the lines provides constraint equations for a P-joint. As visu-

alised in Figure 4.2a, body coordinates of p± and r± in the preceding and

the following moving frames M± are

p− = (d−, 0)T , p+ = (0, 0)T ,

r− = (1, 0)T , r+ = (1, 0)T

The choice of unit vectors for r± means that the parameters for `± have

the same scale (distance measure), so can be identified, λ− = λ+ = λ, say.

Pose variables (A±, t±) for the links are employed to identify reference-frame

coordinates of points of the given directed lines in the reference frame R

(A±, t±)(p± + λ r±) = P± + λR±, (4.14)

where P± is given by (4.11) and R± = A±r±.

There are two required conditions imposed on reference-frame coordinates

for modelling a planar P-joint. The two direction vectors must be parallel,

and must also be parallel to the vector connecting the two points. These

geometric conditions provide us with two scalar constraint equations in terms

of the sets of pose variables

(R− ×R+)z = 0, (4.15a)(
(P− −P+)×R+

)
z

= 0 (4.15b)

Here, × denotes the 3-dimensional cross product and we treat 2-vectors

as 3-vectors by appending a third coordinate z = 0. The subscript z is a

reminder that each equation is essentially scalar, the other components of

the cross product being zero.

Although d− ∈ R as a design parameter appears in the constraint equa-
tions, it does not affect the relative displacements of the links. Using the
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above choice of moving framesM±, the joint constraint mapping f := (f1, f2)
associated to a P-joint is

(tx− , ty− , θ−, tx+ , ty+ , θ+) 7→ [− sin(θ+ − θ−), d− − (tx− − tx+) sin θ+

+(ty− − ty+) cos θ+
]T (4.16)

The constraint equations given by setting the right-hand side of (4.16) to

zero are imposed on free rotation and a translation of the two components

and only allow them to have a relative translation with respect to each other.

That is, given (A−, t−) the rotation θ+ is given by the first equation, while

the second restricts t+ to lie on a line.

4.3.3 2P-joint constraints

Although a 2P-joint can be thought of as two separated 1-dof P-joints, let

us consider it as an individual joint whose δ = 2. Two adjacent links are

only free to translate along the x, y-axes, so the only constraint is imposed

on their orientation. Thus, the geometric object will be a vector whose

body coordinates are given by any non-zero vector e.g. r± = (1, 1)T . By

transforming these coordinates to the reference frame R via pose variables,

reference-frame coordinates R± are obtained.

The geometric condition required for a 2P-joint is that direction vectors

must always remain parallel in the ambient space i.e. (R− × R+)z = 0.

Accordingly, a joint constraint mapping associated to this joint only involves

a single constraint equation

sin(θ+ − θ−) = 0 (4.17)

which is imposed on free displacement of two adjacent links and so allows

them to have arbitrary relative translations with respect to each other.
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4.4 Spatial kinematic pairs

As discussed in Section 2.4.3, a spatial displacement in R3 has six degrees

of freedom usually described as three rotations about and three translations

along orthogonal axes. This displacement is an element of the Euclidean

group SE(3). If a dual quaternion is utilised to represent this element, then

it is locally represented by an 8-vector given in (2.34) whose entries meet

the conditions given in (2.38). We employ (2.6) in order to transform given

body coordinates in a moving frameM into the reference frame R and obtain

corresponding reference-frame coordinates.

There are five lower types of spatial joints, namely revolute (R), prismatic

(P), helical (H), cylindrical (C), spherical (S), and planar (E). It is also

common to include the universal (U) joint which is an arrangement of two

R-joints with intersecting axes. However, it is not a lower pair and the

relative displacement it allows, does not form a subgroup of SE(3). The

first three types provide adjacent components with one degree of freedom.

R-joints and P-joints allow connected components L± to be relatively rotated

and translated, respectively. An H-joint permits two links to have a relative

screw motion as described in Section 3.4.3. A screw motion is regarded as

a composition of a rotation about an axis followed by a translation along

that axis. Note that in continuous motion, this rotation cannot be made

independently from the translation.

The other four types, on the other hand, provide connected links with

more relative freedoms i.e. δ ≥ 2

• C-joint: δ = 2, a translation along and an independent rotation about

an axis

• S-joint: δ = 3, three independent rotations about three orthogonal axes

through a point

• E-joint: δ = 3, two translations along axes in a plane and a rotation
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about an axis perpendicular to that plane

• U-joint: δ = 2, two independent rotations about two perpendicular

axes

Note that an E-joint permits relative planar displacements. In effect, the

relative displacements generated by each of these four spatial joints are in

the form of combination of either translations, rotations, or both. Those

joints can be considered as a combination of some P-joints and R-joints.

4.4.1 R-joint constraints

A spatial R-joint provides connected components with a relative rotation,

so δ = 1. Hence, there are five constraints required in the 3-dimensional

space. It can be modelled by a directed line ` with a point on it. The

procedure is started by assigning two moving frames M± to the adjacent

moving components L±. This can be done following the procedure of modi-

fied Denavit-Hartenberg (DH) convention [91] provided successive joints are

R-joints. Helpful guidelines for placing a frame M are as follows

• z-axis along the direction of the joint axis

• origin at the foot of common normal between successive axes

• x-axis is along the common normal between successive axes

• y-axis chosen to form a right-handed basis of coordinates

In general, we may assume that a line determining the z-axis has been

assigned for the frame M− and we construct the common normal from this

line to the line ` representing the R-joint axis in L−. The foot of this normal

is the origin of the M− frame and the x−-axis is directed along it. The line `

in L+ determines the z+-axis and the origin and the x+-axis are then chosen.

The choice may depend on any additional joint connecting L+. As in the DH
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Figure 4.3: Adjacent links constrained at a spatial R-joint

procedure, a number of design parameters determine the relations between

successive coordinates in frames M±. These are

• the link length a− which is the distance between the feet of the common

normal between z±-axes in M±

• the joint angle 0 ≤ ψ− ≤ π which is the angle between the directions

of the z±-axes in M±

• the offset d+ which is the distance along the z+-axis between the foot

of the common normal in the L− and the origin in M+

Having assigned coordinate frames, the point-line modelling the joint can

be given by parametric representation of a line given in (3.21), p + λr, in

which the point p ∈ R3 indicates a chosen base point and the direction

vector r ∈ R3 gives the direction of the axis about which the rotation is

performed. As illustrated in Figure 4.3, we choose the foot of the common

normal between the z±-axes on the line, so that body coordinates associated

to the point and the direction vector in the preceding and the following

moving frames M± are

p− = (a−, 0, 0)T , p+ = (0, 0, d+)T ,

r− = (0,− sinψ−, cosψ−)T , r+ = (0, 0, 1)T

Note that r± are chosen to be unit vectors so that the lines’ parameters

match. Pose variables (A±, t±) are used to determine reference-frame coor-
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dinates in the reference frame R

(A±, t±)(p± + λ r±) = P± + λR± (4.18)

where P± = A±p± + t± while R± = A±r±.

The lines must coincide in the reference frame so two geometric conditions

must be satisfied by their reference-frame coordinates. The first condition is

that the two points must coincide, while the second condition requires the

direction vectors remain equal in the reference frame R

P− = P+, R− = R+ (4.19)

In effect, the second equation amounts to two constraints since R± are unit

vectors, so points on a 2-sphere. Nevertheless, we would like to be able

to replace this single vector equation in R3 by just two equations. It is

worth noting that, since R± are unit vectors, the condition is equivalent

to R− · R+ = 1 which is just a single equation. However, as we shall see

in Section 5.1, the solutions, R− − R+ = 0, are not regular points of the

associated function R3 → R and we cannot use this condition if we later

wish to determine singularities. An alternative approach is to observe that

R− ‖ R+ and so R− × λR+ = 0 for some (non-zero) λ ∈ R. Eliminating

λ reduces this condition to two scalar equations in the pose variables. It,

however, introduces spurious solutions corresponding to R− = −R+. We

will address this issue later.

In practice, we use dual quaternions q̆± := qp± + εqd± as pose variables.

We know that each dual quaternion has to fulfil two extra conditions given

in (2.38a) and (2.38b) in order to represent an element of SE(3). In dual

quaternions, from (2.39) in Section 2.4.5, the constraint conditions (4.19) are

(qp+p+q∗p+ + t+)− (qp−p−q∗p− + t−) = 0, (4.20a)
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Figure 4.4: Adjacent links constrained at a spatial P-joint

qp+r+q∗p+ − qp−r−q∗p− = 0 (4.20b)

where t± = qd±q∗p± − qp±q∗d± . As above, we can reduce equation (4.20b)

to two scalar equations by eliminating a parameter. As a result, there are

in total nine constraint equations, as in (A.1), that specify a joint constraint

mapping f := (f1, . . . , f9) associated to a spatial R-joint.

4.4.2 P-joint constraints

A spatial P-joint connecting two links allows them to have a relative transla-

tion, so δ = 1. Thus, there are five constraints required in the 3-dimensional

space. An equivalent geometric object that characterises a P-joint is an ori-

ented plane π defined by a point and a directed line. Note that this object is

described by three separate objects—a point, a directed line, and an oriented

plane—for obtaining constraint equations. Moving frames M± are assigned

to the links L± according to the guidelines provided in Section 4.4.1. As illus-

trated in Figure 4.4, a−, ψ− are design parameters determining the relations

between successive coordinates in frames M±.

An oriented plane is specified by a point p on it and its normal vector n

π := n · (x− p) = 0 (4.21)

where x is any point on the plane. There is a line in the plane, p+λr, whose

direction vector, r ∈ R3, is parallel to the plane. Note that n is perpendicular
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to r, which represents the direction along which the translation is carried out.

The point p ∈ R3 can be chosen anywhere on the directed line.

As illustrated in Figure 4.4, consistent with guidelines, body coordinates

associated to the point, direction and normal vectors in the preceding and

the following moving frames M±are

p− = (a−, 0, 0)T , p+ = (0, 0, 0)T ,

r− = (0,− sinψ−, cosψ−)T , r+ = (0, 0, 1)T ,

n− = (0, cosψ−, sinψ−)T , n+ = (0, 1, 0)T

Note that r±,n± are chosen to be unit vectors. Pose variables (A±, t±) are

employed to determine reference-frame coordinates in the reference frame R

P± = A±p± + t±, R± = A±r±, N± = A±n± (4.22)

Note that since A± are orthogonal, R± ·N± = 0.

The constraints imposed by the P-joint are modelled by requiring the

oriented plane and directed line in each of the joined links to coincide in the

reference frame. This gives three geometric conditions that must be satisfied.

The direction vectors R± and normal vectors N± must be pairwise equal in

the ambient space. The displacement vector between the two points needs

to be parallel to the direction vectors of the lines in the reference frame R

R− = R+, N− = N+, P− −P+ = λR+

The first two conditions prevent any relative rotation between the links and

amount to three independent constraints. In fact, they can be more simply

expressed in the form

A+A
−1
− = constant

where the ‘constant’ is the rotation aligning the reference frames M± in
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any given configuration. The third condition restricts two translations and

reduces to two constraint equations. A dual quaternion representation of a

spatial displacement satisfies two extra conditions. Consequently, there are

totally nine constraint equations, as in (A.2), that specify a joint constraint

mapping f := (f1, . . . , f9) associated to a spatial P-joint.

4.4.3 H-joint constraints

The H-joint is harder to model by constraints than the other joints because

the screw motion involves both rotation about, and translation along, an axis

that are related to each other. The H-joint is not used in most manipulators

so we do not picture it in much detail. As noted in [92], the constraint variety

is not an algebraic variety.

4.4.4 C-joint constraints

A C-joint permits adjacent components to have both relative rotation about

and translation along an axis, so δ = 2. It is then equivalent to an R-joint

and a P-joint, independently. However, we can avoid imposing two sets of

constraint equations by use of an appropriate geometric object for the joint.

The required object is a directed line p + λr with a point p on it. As usual,

we choose r to be a unit direction vector.

Moving frames M± are placed based on the guidelines given in Sec-

tion 4.4.1. Thus, body coordinates of points and the direction vectors in

the preceding and the following moving frames M± are

p− = (a−, 0, 0)T , p+ = (0, 0, 0)T ,

r− = (0,− sinψ−, cosψ−)T , r+ = (0, 0, 1)T

where a−, ψ− are design parameters. There are two conditions satisfied by

reference-frame coordinates for establishing a C-joint. In terms of pose vari-
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ables (A±, t±), if we set P± = A±p± + t± and R± = A±r±, then we require

R− = R+, P− −P+ = λR+

By eliminating two scalars, only four constraint equations are left for

a C-joint in terms of pose variables. Using dual quaternions for the pose

variables and including the four extra constraints, there are totally eight

constraint equations, as in (A.3), that specify a joint constraint mapping

f := (f1, . . . , f8) associated to a C-joint.

4.4.5 S-joint constraints

An S-joint is equivalent to three independent R-joints through a fixed point

and provides three rotational degrees of freedom between adjacent compo-

nents, so δ = 3. The obvious object to model the constraints of an S-joint is

therefore the centre point p. Note that origin of M+ is at the centre point,

as illustrated in Figure 4.5. Denote the distance between the origins of M±
by a− which is a design parameter. Then, body coordinates corresponding

to the point in the preceding and the following moving frames M± are

p− = (a−, 0, 0)T , p+ = (0, 0, 0)T

Pose variables (A±, t±) are employed to transform the given point coor-

dinates to the reference frame R. This transformation yields reference-frame
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coordinates associated to the S-joint in the ambient space

P± = A±p± + t± (4.23)

Coincidence is the only geometric condition to be satisfied by reference-frame

coordinates given in (4.23) for initiating an S-joint

P− = P+

This condition gives three scalar equations in terms of pose variables. In

addition to these equations, for the dual quaternion representation, there

are four extra constraints that must be fulfilled. As a result, there are to-

tally seven constraint equations, as in (A.5), that specify a joint constraint

mapping f := (f1, . . . , f7) associated to an S-joint.

4.4.6 E-joint constraints

An E-joint allows adjacent links to have two relative translations in a plane

and a relative rotation about an axis perpendicular to the plane, so δ = 3.

This is therefore planar motion with respect to that plane. A geometric

object which characterises an E-joint is an oriented plane π on which a point

p lies. An oriented plane is specified by its normal vector n.

The procedure of placing moving frames M± follows what is suggested in

Section 4.4.1. Except, the origin of M− is where the plane meets the joint

axis while the origin ofM+ is somewhere on the plane and z+ is perpendicular

to it. Denote the angle between z± by ψ− which is a design parameter. As

illustrated in Figure 4.6, body coordinates associated to the point and the

normal vectors in the preceding and the following moving frames M± are

p− = (0, 0, 0)T , p+ = (0, 0, 0)T

n− = (0,− sinψ−, cosψ−)T , n+ = (0, 0, 1)T
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Figure 4.6: Adjacent links constrained at an E-joint

Pose variables (A±, t±) are utilised to determine reference-frame coordinates

of points and normal vectors in the reference frame R

P± = A±p± + t±, N± = A±n± (4.24)

For specifying an E-joint, two conditions must be met by reference-frame

coordinates: normal vectors must be equal while the displacement vector

between two points should be perpendicular to the normal vectors

N− = N+, (P− −P+) ⊥ N+

Since normal vectors are chosen to be unit vectors, so the first condition

implies only two constraint equations.

Four extra constraints are required if the dual quaternion representation

is used, so there are totally seven constraint equations, as in (A.4), that

specify a joint constraint mapping f := (f1, . . . , f7) associated to a spatial

E-joint.
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Figure 4.7: Adjacent links constrained at a U-joint

4.4.7 U-joint constraints

A U-joint consists of two R-joints with intersecting axes, so it provides two

relative rotations between adjacent components and δ = 2. Hence, a geo-

metric object associated to a U-joint is two directed lines `′, `′′ intersecting

at a point p. Although these lines can be assumed to be in any directions,

a special case occurs when they are orthogonal (say along x, z-axes of the

Cartesian coordinate system), then the normal vector will be along the y-axis.

The procedure of assigning moving frames M± to the adjacent compo-
nents L± is similar to what is explained in Section 4.4.1. As illustrated in
Figure 4.7, it is supposed that `′ represents the joint axis so r′ is along the
z+-axis. Denote the angle between the two directed lines by ϕ+ and the angle
between z+ and z− by ψ− which are design parameters along with a−, d+.
Hence, body coordinates associated to the point, direction vectors and the
normal vector in the preceding and the following moving frames M± are

p+ = (0, 0, d+)T , p− = (a−, 0, 0)T

r′+ = (0, 0, 1)T , r′− = (0,− sinψ−, cosψ−)T

r′′+ = (cosϕ+, sinϕ+, 0)T , r′′− =
(
0,− sin(ψ− + ϕ+), cos(ψ− + ϕ+)

)T
n+ = (− sinϕ+, cosϕ+, 0)T , n− = (sinϕ+, 0, 0)T

where d+, a−, ϕ+, ψ− are design parameters. Pose variables (A±, t±) are used

to transform given body coordinates to the reference frame R. This trans-

formation yields reference-frame coordinates corresponding to the U-joint in



4.4. SPATIAL KINEMATIC PAIRS 89

the ambient space

(A±, t±)(p± + τ n±) = P± + τ N±, R′± = A±r′± (4.25)

where P± = A±p± + t± and N± = A±n±.

To establish a U-joint, two geometric conditions ought to be fulfilled by

reference-frame coordinates. The first condition emphasises coincidence of

two points while the second one stresses perpendicularity of a normal vector

with either of the direction vectors in the reference frame R

P− = P+, R′− ⊥ N+

These two conditions provides us with four constraint equations for a U-joint

in terms of a pair of pose variables in the reference frame R. In addition,

there are four extra constraints that must be fulfilled by dual quaternions

corresponding to two moving components. As a result, there are totally eight

constraint equations, as in (A.6), that specify a joint constraint mapping

f := (f1, . . . , f8) associated to a U-joint.

In Sections 4.3 and 4.4, we have presented geometric objects whose invari-

ance constrains the relative displacement between links according to the way

in which they are joined. The invariance can be expressed in terms of joint

constraint equations. The number of joint’s constraints is the complement

of the joint’s degrees of freedom. Further, we have shown how, in general,

coordinate frames can be chosen so that the equations take a relatively sim-

ple form. In the planar case, pose variables are simply (θ, tx, ty) ∈ R3. In

the spatial case, dual quaternions can be used. However, this requires the

addition of further equations to ensure that a dual quaternion represents a

spatial rigid displacement.

In the next section, we generalise the setting to multi-body (rather than

2-body) systems.
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4.5 Kinematic constraint mapping

Consider a family of manipulators, with k + 1 rigid bodies Li, i = 0, . . . , k,

in which one component (e.g. L0) is fixed. The family is assumed to have a

fixed architecture—that is, its kinematic graph is fixed—but has a number of

design parameters that may vary. Pose variables of the k moving components

generate the pose spaceM := SE(n)k as discussed in Section 2.5. Further,

suppose this system involves t joints Jj, j = 1, . . . , t pairwise connecting links

Lj− , Lj+ where j−, j+ ∈ 1, . . . , t, j− 6= j+. For a parallel manipulator, where

a link is connected to more than one other, the choice of moving frame can

only be made with respect to one of the joints and there will be additional

design parameters relating to the second or subsequent joints. Each joint,

Jj, imposes rj constraint equations on the pose variables of the connected

links.

There are t joint constraint equations like the one given in (4.4)

fj(uj− ,uj+ , sj) = 0 ∈ Rrj , j = 1, . . . , t

where rj is the number of constraints imposed by the joint Jj and sj is a vector

of design parameters associated with the joint. All constraint mappings

together form a vector-valued mapping called the design-kinematic constraint

mapping (D-KCM)

F̂ := (f1, . . . , fs) :M× Rd → Rs (4.26)

where s = ∑t
j=1 rj is the total number of constraint equations and Rd is the

design space whose dimension d is the total number of design parameters

corresponding to a manipulator’s architecture.

The D-KCM consists of constraint equations imposed by all joints on free

displacements of moving components dependent on the design parameters.

Varying them may alter the topology of the configuration space. As a result,
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F̂−1(0r)—with the assumption that 0r is a regular value of F̂—defines a

manifold called design-configuration space (D-space) associated to a family

of mechanisms

D := {(g1, . . . , gk, s) | F̂ (g1, . . . , gk, s) = 0r} ⊆ M× Rd (4.27)

For a fixed choice of design parameters s ∈ Rd there is a function, called

the kinematic constraint mapping (KCM)

F = F̂s :M→ Rs, F (g1, . . . , gk) = F̂ (g1, . . . , gk, s) (4.28)

which corresponds to a given manipulator within the family. Consequently,

F−1(0r) defines a section of D-space, called the configuration space (C-space)

C := {(g1, . . . , gk) | F (g1, . . . , gk) = 0r} ⊆ M (4.29)

which is associated with the particular manipulator. Note that while we

assumed 0 to be a regular value of the D-KCM F̂ , it is not necessarily

regular for F̂s for every choice of s ∈ Rd. The C-space encodes every feasible

configuration (reachable point) the manipulator can adopt.

A multi-body system with t joints and k + 1 links Li, i = 0, . . . , k has

t 2-body systems (Lj−, Lj+), j = 1, . . . , t. These 2-body systems, whose

relative displacements are expressed by their joint configuration spaces Cj
given in (4.6), together encode all the system’s constraints. Assuming one

component (e.g. L0) is fixed, so g0 = e, then an alternative definition for the

C-space is introduced in terms of displacements of its t 2-body systems

C :=
t⋂

j=1
Cj
/
SE(n) (4.30)

where Cj = {(g0, . . . , gk) | fj(gj−, gj+) =}, j = 1, . . . , t and we factor out free

displacement of the base link L0.
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It is worth noting here that the construction of C as the intersection of a

collection of 2-body constraints is helpful later in analysing singularities since

it ensures a valuable block structure to the Jacobian matrices that determine

singularities.

4.6 Joint variables

So far, the description of the possible displacements of the links in a multi-

body system has been expressed in terms of constraints on their free motion

in the plane or space. On the other hand, much of the literature on robot

kinematics concentrates on the complementary view point of freedom asso-

ciated with the joints. In (4.10), it was noted that the relative displacements

between a pair of links connected by a 1-dof joint can be parametrised by

an exponential function associated with an element of the Euclidean Lie al-

gebra or, in other words, as a coset of a 1-parameter subgroup. So, a joint

variable describes a relative freedom of a joint, see Figure 4.8a. Of course,

the freedom of displacement depends on the type of the joint. An R-joint,

for instance, allows a relative rotation about an axis while a P-joint permits

a relative translation along an axis between two bodies.

From our point of view, however, we would like to define joint variables

explicitly in terms of pose variables, rather than by introducing a new set

of independent variables. In the following, we will show how to do this for

rotational and translational joints in both planar and spatial cases.

4.6.1 Planar joint variables

As pictured in Figure 4.8a, a planar R-joint constrains a pair of components

in the plane such that they are only allowed to relatively rotate about an

implicit axis perpendicular to this plane. Such a relative rotation can be

defined by a variable φ in terms of the bodies’ pose variables of their moving
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Figure 4.8: Planar joint variables

frames M± with respect to the reference frame R

φ := θ+ − θ− (4.31)

A planar P-joint, on the other hand, constrains a pair of components

in the plane such that they are only allowed to relatively translate along a

direction (or line) in the plane, see Figure 4.8b. Thus, a relative translation

variable φ between two adjacent sliding components, whose moving frames

are M±, is defined by the displacement of the frames’ origins along the P-

joint with respect to the reference frame R. In terms of pose variables, this

is

φ :=
(
(x+ − x−)2 + (y+ − y−)2 − d2

−

)1/2
(4.32)

where d− is a design parameter (see Section 4.3.2). This has the disadvantage

of not being everywhere differentiable. In practice, it is sufficient and easier

to work with φ2. Further, it is clear that we can omit the term involving d−
since this simply shifts the origin of the joint variable.

4.6.2 Spatial joint variables

A spatial R-joint constrains a pair of components in the 3-dimensional space

such that they are only allowed to relatively rotate about an axis with re-
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spect to each other. Suppose the rotating components have moving frames

M±. Unit quaternions q± may be employed to express the two bodies’ ori-

entations with respect to the reference frame R as described in Section 2.4.2.

Recall that a rotation by angle θ about an axis u is represented by the unit

quaternion cos 1
2θ + u sin 1

2φ, where u is a unit 3-vector. The relative rota-

tion is given by φ = θ+− θ−, where θ± are the angles of rotation of M± with

respect to R. This follows because the axes of rotation in the two bodies are

constrained to coincide. We may use cos 1
2θ as the joint variable and so if

q− = qp0
−

+ qp1
−

i + qp2
−

j + qp3
−

k and q+ = qp0
+

+ qp1
+

i + qp2
+

j + qp3
+

k then

cos 1
2φ = cos 1

2(θ+ − θ−) = qp0
+
qp0

−
+ qp1

+
qp1

−
+ qp2

+
qp2

−
+ qp3

+
qp3

−
(4.33)

A spatial P-joint constrains the pose variables of a pair of bodies such

that they are only permitted to translate relatively along an axis with respect

to each other. As for the planar P-joint, the relevant measure is the relative

displacement of the origins of the frames M±. In the spatial case, the origins

are at t± in the reference frame so that we can use as joint variable

φ2 = ‖t+ − t−‖2
2 (4.34)

Recall from (2.39) that if the displacement of the two bodies relative to R

are given by dual quaternions q̆± = qp± + εqd±, then t± = 2 Im(qd± q∗p±) so

that φ2 can be written in terms of the pose variables.

4.7 Actuator space and workspace—input and

output maps

We discussed in Section 4.5 that for a fixed choice of design parameters, a

multi-body system has a KCM F :M→ Rs, whereM = SE(n)k is the pose

space, which defines the C-space C = F−1(0). As a result, the C-space is
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described in terms of pose variables of all the system’s moving components.

Pose variables are not distinguished at this stage because we want to model

the kinematics of the whole mechanism.

For the given manipulator, there may be several possible choices of ac-

tuated joints or inputs. Each actuator may be represented by an associated

joint variable. While, mathematically, any joint could be used, practical

considerations usually reduce the choices. Similarly, there may be different

choices for the end-effector or output. For a typical parallel manipulator,

having a platform connected to a base by several serial legs, the typical out-

put is the configuration of the platform.

Let us suppose a choice of actuators is given as a set of λ joints; each

with just 1-dof. We assume λ ≤ µ, where µ = dim C is the global mobility

given in (4.1), allowing for under-actuation. However, λ > µ would impose

constraints on the freedoms of actuated joints. The actuator space (A-space)

A, where dimA = λ, is the space parametrised by the actuated joint variables

φ1, . . . , φλ, also called the inputs, which depend on what quantities actuators

have. Although the inputs are distinct from pose variables, they can be

expressed in terms of pose variables. In Section 4.6, we discussed how an

input can be defined in terms of some relevant pose variables.

For a given choice of end-effector or output link, the workspace (W-

space) W is parametrised by a subset u1, . . . , uν of pose variables û :=

(u1, . . . , up, up+1, . . . , u2p, . . . , ukp), also called the outputs, which describe

poses of the end-effector. Note that ν = dimW ≥ µ; we allow inequal-

ity since the outputs may not be able to be parametrised by exactly µ pose

variables.

Note that the A-space andW-space can be locally considered as Euclidean

spaces, Rλ and Rν , respectively. Associated with these two spaces are func-

tions defined on the manipulator’s C-space. The input map πa : C → A is
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W-space

A-space

πa
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Figure 4.9: Kinematic mappings and the C-space

defined by

πa(û) = (φ1, . . . , φλ) (4.35)

where the joint variables φi, i = 1, . . . , λ are each functions of the pose

variables. The output map πw : C → W is defined by

πw(û) = (u1, . . . , uν) (4.36)

which is the local projection of C onto the space of pose variables for the

end-effector—in general, W ⊂ C. Note that πa, πw are instantaneous and

local because they vary from point to point. The overall model is illustrated

in Figure 4.9 (see [53]).

In the case of a serial manipulator with 1-dof joints Ji, i = 1, . . . , k

connecting Li−1, Li, i = 1, . . . , k and with L0 the fixed base, the KCM is

a mapping F : SE(n)k → R(p−1)k, p = dimSE(n). Each of the k sets

of p − 1 components of F , say F1, . . . , Fk involves only the pose variables

for Li−1 and Li. Therefore, the C-space F−1(0) is the product of the 1-

parameter subgroups (or their cosets) defined by the successive joints. Since

each of these is parametrised by the corresponding joint variable, the map

πa : C → A is a diffeomorphism—a smooth, invertible function, with smooth

inverse.
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A significant feature of this kinematics model is that both inputs and out-

puts are treated as functionally dependent on the C-space and pose variables

rather than as independent of each other. In the next Chapter, we show how

the input and output mappings combine to address the forward and inverse

kinematic problems for manipulators.
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Chapter 5

Singularities

In the previous Chapter, a framework for kinematics models of manipulators

was established. This involved defining a Kinematic constraint map (KCM)

on the space of pose variables, SE(n)k, for the moving links. This determines

the configuration space for the manipulator. Then input and output maps

were introduced.

The goal of this Chapter is to understand the role that the singularities

of these maps has on kinematics of individual manipulators and on families

of manipulators, with design parameters.

5.1 Singularities of mappings

The appropriate mathematical language for singularities is that of differential

topology (see, for example, [31]). The objects are (differentiable) manifolds—

spaces that are everywhere locally parametrised by a fixed number of parame-

ters, the dimension of the manifold—and differentiable functions or mappings

between them. This encompasses the familiar spaces in kinematics such as

Lie groups (the Euclidean group), constraints, actuator space, workspace,

and families of design parameters.

We start with the definitions of regularity and singularity of a given func-

99
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tion at a point of its domain:

Definition 5.1. Given a differentiable function f : M → N between man-

ifolds and a point y ∈ N . If for every x ∈ M for which f(x) = y the

derivative dfx : TxM → TyN of f at x has maximum rank then y is called

a regular value and each such x is called a regular point. Otherwise, y is a

singular value and if rank dfx is less than the maximum, then x is a singular

point.

Note that, for computational purposes, the derivative (which is the linear

map that approximates f in a neighbourhood of x) can be represented by

a Jacobian matrix Jxf , which can be computed with respect to any choice

of local parametrisations for M and N and whose rank is invariant. Hence,

the Jacobian is the matrix representation of this linear map with respect

to choices of basis for the tangent spaces at x and y determined by the

parametrisations.

As a specific example, the KCM defined in (4.28) is a differentiable map-

ping between manifolds

F :M→ Rs (5.1)

where M = SE(n)k and n = 2, 3 is the ambient dimension of the manipu-

lator. Given a local parametrisation û := (u1, . . . , up, up+1, . . . , u2p, . . . , ukp)

on a neighbourhood of ĝ := (g1, . . . , gk) ∈ M, we compute first-order par-

tial derivatives of the s components of the KCM F with respect to ui,

i = 1, . . . ,m, where m = kp, to attain the (s×m) Jacobian matrix

JF (û) =
[
∂fj
∂ ui

]j=1,...,s

i=1,...,m
∈ L(Rm,Rs) (5.2)

The Jacobian matrix represents the linear mapping between corresponding

tangent spaces

dFĝ : TĝM→ TF (ĝ)Rs (5.3)
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Note that for n = 3, we may prefer to use dual quaternions as parametri-

sations for SE(3) in which case, for each link there are two additional con-

straint equations of the form (2.38a) and (2.38b). In effect, M is replaced

by DHk and s is the sum of the total joint constraints and 2k.

Returning to the general setting f : M → N , suppose that dimM ≥

dimN . Two theorems of analysis, which we state here, play a fundamental

role (see any standard textbook, such as [93] Pages 35 and 41).

Theorem 5.2 (Inverse Function Theorem). Suppose F : Rm → Rm is a

continuously differentiable function and x0 ∈ Rm. Then, f has a local dif-

ferentiable inverse on some neighbourhood of x0 if and only if its Jacobian

Jf(x0) is non-singular.

The strong part of this theorem is the “if” part since it asserts an inverse

function exists given only information at the point x0. It is an existence

theorem and does not provide a formula for f−1.

Theorem 5.3 (Implicit Function Theorem). Suppose F : Rm → Rn is a

continuously differentiable function, m ≥ n, x0 ∈ Rm, y0 = f(x0) and

rank Jf(x0) = n. Let 1 ≤ i1 < i2 < . . . < in ≤ m be indices such that

the (n × n) submatrix of Jf(x0) formed by the corresponding columns is

non-singular. Denote by j1, . . . , jm−n the remaining indices. Then there are

neighbourhoods U of (xi1 , . . . , xin) ∈ Rn and V of (xj1 , . . . , xjm−n) ∈ Rm−n

and a continuously differentiable function g : U → V , so that for all x =

(x1, . . . , xm) ∈ f−1(y0) with π1(x) ∈ U and π2(x) ∈ V (where π1, π2 denote

projections onto the relevant subspaces)

(xj1 , . . . , xjm−n) = g(xi1 , . . . , xin)

The theorem says that the inverse image f−1(y0) is locally the graph of a
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Figure 5.1: An implicit function with associated projections

function in terms of a certain subset of coordinates. There may be several

possible choices for i1, . . . , in at any given point x0.

Let us state a fundamental theorem of differential topology here (see [31]

Page 21)

Theorem 5.4 (Preimage Theorem). If y is a regular value, so that for any

x ∈ P = f−1(y) the image of TxM under the derivative dfx is the whole of

Tf(x)N , then P ⊂ M is a submanifold (or possibly empty). Moreover, the

codimension of P is the dimension of N , or equivalently dimP = dimM −

dimN .

This follows from Theorem 5.3, by representation f in terms of local parametri-

sations. The submanifold P can be locally parametrised by a subset of coor-

dinates for M . Moreover, it generalises the familiar result of linear algebra

concerning the dimension of the solution space of an equation Ax = b, where

A has maximum rank. In the case of a KCM, F , if we establish that 0 ∈ Rs is

a regular value, then the C-space, C = F−1(0) will be a manifold of dimension

kp− s.

Suppose y ∈ N is a singular value of f . So for at least some point x ∈M ,

with f(x) = y, rank Jxf < min(dimM, dimN). Singular values are scarce

in the following sense (see [31] Page 39)

Theorem 5.5 (Sard’s Theorem). If f : M → N is a smooth mapping, then
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the set of singular values, which is a subset of N , has measure zero.

Here, a subset of a manifold has measure zero if it can be covered via

parametrisations by at most a countably infinite union of hypercubes in Rn

whose total volume can be made arbitrarily small. The idea of the proof is

that in the neighbourhood of any singular point, f reduces volumes by at

least an order of magnitude. Think of the image of an interval [−r, r] under

the function f(x) = x2. This is [0, r2] with length r2. A property of points

in a set that is true except on a set of measure zero is said to hold almost

everywhere. So the theorem states that for almost all y ∈ N , y is a regular

value. This may lead us to expect that in the “most” cases, the C-space for

a manipulator should be a manifold.

5.2 C-space singularities

5.2.1 Design parameters

For a given manipulator architecture, actual models are determined by fix-

ing its design parameters. For serial manipulators, the Denavit-Hartenberg

(DH) parameters [89] are widely used to represent the design parameters.

The design parameters defined in Chapter 4 are mainly of this type. An-

other approach [94] uses invariants defined in terms of screw coordinates for

successive joints. Among parallel manipulators, the simplest examples are

planar 4-R mechanisms for which the design parameters are the link lengths

which are DH parameters. However for more complex examples, such as a

planar 3-RRR mechanism, in which the platform is connected to multiple

links, additional design parametrs must be included (see Section 7.1).

It is reasonable to ask then how the design parameters affect the kine-

matics of the manipulator. This may involve determining whether certain

properties are generic, which is to ask whether the property holds for almost

all choices of design parameters. At a more refined level, one may look for bi-
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furcation conditions. These correspond to non-generic choices of parameters

across which there may be a significant change of behaviour.

A classical case is the condition of Grashof [4] which distinguishes be-

tween planar 4-R mechanisms in terms of rotatability of links and, implicitly

between those whose C-space has one or two connected components [47, 95].

It is worth noting, however, that the requirement of symmetry or generation

of special motion may be precisely what renders a choice of design parame-

ters non-generic so that, from the engineering point of view, genericity may

not be a desirable characteristic.

An important observation is that the separating or bifurcation cases are

precisely those for which the C-space has singular points—typically double

points where two branches of configurations intersect [47]. A goal of our

approach is to generalise this result to other, more complex, families of ma-

nipulators.

5.2.2 Transversality

Transversality is a concept generalising that of regularity, by which we can

seek to answer genericity questions in general. In particular, establishing

transversality for functions with respect to certain submanifolds will enable

us to deduce not only genericity results, but also information about the di-

mensions of a hierarchy of singularity sets. For example, if transversality

could be verified for a kinematic mapping with respect to submanifolds that

encode the rank (or its complement, the corank) of derivatives—in effect, Ja-

cobian matrices of partial derivatives—then the set of configurations at which

there is a singularity of a given corank will be a submanifold of a specified

dimension. Although not used extensively, these ideas have appeared already

in the kinematics literature in the work of Pai [96], Tchoń [97] and others.

More recently, applications of transversality to the analysis of singularities

of mechanisms and related notions of genericity have been explored [98, 99].
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In this section, we will first review transversality and some of the impor-

tant theorems it gives rise to. More general consideration of Grashof-type

conditions, based on transversality considerations is then illustrated in both

negative and positive senses.

Here, a key motivation for transversality is to generalise the submanifold

criterion in Section 5.1 to f−1(Q), where Q ⊂ N is a submanifold. The idea

is that for regularity, the image of the derivative dfx must be the whole of

the tangent space, TyN , at the image f(x) = y. Since TyQ already fills up a

subspace of TyN , we now only require the image of dfx where f(x) ∈ Q, to

span a complement to TyQ.

Definition 5.6. Let f : M → N be a differentiable map between (differen-

tiable) manifolds and Q ⊂ N a submanifold. Define f to be transverse to Q

(written f −t Q) if for all x ∈M such that f(x) ∈ Q,

dfx(TxM) + Tf(x)Q = Tf(x)N (5.4)

In this case, an extension of Sard’s Theorem states that P = f−1(Q)

is a submanifold of M and codimP = codimQ (see, for example, [31]). A

corollary of that theorem is the following [31]

Theorem 5.7 (Parametric Transversality Theorem). Given a family of func-

tions F : M×S → N , where S is a manifold of parameters, then for each fixed

s ∈ S there is a function Fs : M → N where, for x ∈ M , Fs(x) = F (x, s).

If Q ⊂ N is a submanifold and F −t Q then for almost all s ∈ S, Fs
−t Q.

This has direct interpretations in kinematics. We could take M as the C-

space for a family of mechanisms, S as the space of design parameters and

N the workspace, for example the Euclidean group. In this case, Q may be

a submanifold that characterises some desired geometry for the end-effector

or platform such as that it has a fixed orientation.
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Alternatively, suppose the D-KCM F̂ : M× Rd → Rs explained in Sec-

tion 4.5 where M = M is the pose space given in (2.46) for a family of

manipulators, S = Rd the design space and N = Rs the constraint space.

Here, the role of Q is more limited, as there is typically only one relevant

choice of values (usually zero) for each equation, so that Q = {0}. This

corresponds to a special case of Theorem 5.7, when Q = {y0} ⊂ Rs, that

is a single point or 0-dimensional submanifold. In this case, F̂ −t Q if and

only if y0 is a regular value of F̂ , since the second term in the defining con-

dition (5.4) reduces to {0}. That is, the Jacobian has maximum rank for all

(û, s) ∈ M× Rd for which F̂ (û, s) = y0. In this case, we can conclude that

for almost all s ∈ Rd

Cs := F̂−1
s (y0) ⊂M (5.5)

is a C∞ submanifold with dim Cs = m − s (or else an empty set). In the

context of the KCM, note that F̂s is the KCM given in (4.28) thus Cs is the

C-space for the specific choice of design parameters, s ∈ Rd, as in (4.29).

5.2.3 Grashof-type conditions

It is reasonable to pose the question whether we can find Grashof-type condi-

tions on the design space for singularities of the C-space. We can undertake

some dimensional analysis to indicate what is likely. The set of points where

the corank of the Jacobian matrix of a mapping f : M → N between mani-

folds is positive is called its singular set, denoted as follows

ΣF := {x | rank Jxf < min(dimM, dimN)} (5.6)

This may be further refined by considering the sets of matrices of a fixed

corank. Set dimM = m, dimN = n and let us suppose that m ≥ n; we are

interested (locally) in the map Jf : M → L(Rm,Rn) where the codomain is

the set of linear functions between Rm and Rn, or (n × m) matrices. It is
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then defined that Σκ = {A ∈ L(Rm,Rn) | corankA = κ}. It can be shown

(see, for example, [33]) that these sets are submanifolds, satisfying

codim Σκ = κ(m− n+ κ) (5.7)

In the case that Jf −t Σκ, we would have Σκf = Jf−1(Σκ) a submanifold of

M of the same codimension; in the simplest case, κ = 1, this is m− n+ 1.

Let us apply this to the setting of D-KCM F̂ : M× Rd → Rs. Under

the assumption of transversality on F̂ , the D-space D = F̂−1(0) ⊂ M× Rd

is a submanifold of codimension s. For each s ∈ Rd we have a C-space

C = D ∩ (M× {s}) ⊂ M× {s}, with the same codimension (provided it is

a submanifold). Each C may have singularities but the simplest singularity

set Σ1F , where F = F̂s has codimension m − s + 1. Since the sum of the

codimensions of C and Σ1F in M is (m − s + 1) + s > m we would not

typically expect a given C to have any singularities.

On the other hand, in the D-space, the singularity set of interest is

Σ1
1 F̂ = J1F̂

−1(Σ1), where J1F̂ : M × Rd → L(Rm,Rs) is the Jacobian

map, which treats Rd as a parameter space rather than as variables to be

differentiated. Transversality then gives codimΣ1
1 F̂ = m− s+ 1. Under the

additional assumption that D and Σ1
1 F̂ meet transversely, their intersection

is a submanifold satisfying

codim (D ∩Σ1
1 F̂ ) = codimD + codimΣ1

1 F̂ = m+ 1 (5.8)

In other words, in M× Rd, the singularity set is defined by m + 1 si-

multaneous (non-linear) equations. If it is possible to eliminate the m pose

variables we should arrive at just one equation in the d design parameters.

If such a condition can be found, we call it the Grashof-type condition for

the family of manipulators. Note that there should be a single condition,

independent of the number of links, joints or design parameters. We give
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examples in Chapters 6-9.

5.3 Input and output singularities

While the KCM and associated C-space is a fundamental problem in kine-

matics, there are two central practical problems in this field, namely the in-

verse kinematic problem (IKP) and forward kinematic problem (FKP). Solv-

ing these, or showing they cannot be solved, is closely related to singularity

analysis. Most of the other approaches to kinematic singularities, like those of

Gosselin and Angeles [1] and Zlatanov et al. [2], address these two problems.

In simple terms, suppose a manipulator has a chosen set of actuator joints

and a given end-effector or output. The FKP requires to determine the end-

effector pose given the joint inputs. Conversely, the IKP asks how to choose

the joint inputs in order to achieve a given output (end-effector pose).

In some cases, one or other of these may be relatively straightforward. For

example, in a serial manipulator the FKP can be uniquely solved—the end-

effector pose may be computed as a product of exponentials in terms of the

joint variables. The Gough-Stewart (GS) platform (see, for example, [100,

101, 102]) is a well-known type of parallel manipulator in which a platform

is supported by 6-RPU legs with P-joints actuated, and the axes of the P-

joints pass through the centres of the R- and U-joints in each leg. For a given

pose of the platform, the leg lengths—effectively the joint variables for the

P-joints—are able to be uniquely found so the IKP is solved. On the other

hand, the IKP for serial manipulators with six degrees of freedom only has

closed-form solution for special (wrist-separated) architectures [70], while the

FKP for the GS platform may have many solutions [103, 104].

There are also instantaneous versions of these problems. Let us suppose

a pose of the end-effector is given, then the instantaneous IKP tells us what

joint velocities are required to generate a given end-effector (generalised)

velocity. On the other hand, let us assume the velocities of actuators are
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W-space
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πa

πw
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Figure 5.2: Forward and inverse kinematic mappings

given. Then, the instantaneous FKP indicates what the end-effector velocity

is.

In this section, we are going to develop the theory to incorporate inputs

and outputs, based on choice of actuated joints (inputs) and on the manip-

ulator’s workspace or end-effector (outputs).

In the language of C-space, input and output maps, the relationships

in each direction between the inputs and the outputs represent the forward

kinematic problems (FKP) ρ : A →W and inverse kinematic problems (IKP)

υ : W → A. The ρ, υ are relations between A,W , but not necessarily well-

defined functions. These are illustrated in Figure 5.2.

As noted previously, in much of the manipulator singularity literature the

kinematic models have been encoded by an implicit function

F (θ,x) = 0 (5.9)

involving both input and output variables. The ability to express inputs θ or

outputs x explicitly in terms of the other can generally only be solved locally

and requires the conditions for the Implicit Function Theorem 5.3, which we

stated in Section 5.1, to be met. However, it is known that analysing this

implicit function alone does not provide full information about manipulator

singularities in the parallel case, because equation (5.9) does not capture
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information about non-actuated joints.

In our model, the C-space is known via the KCM, then the A-space and

W-space can be related together by means of the input and output maps. As

is clear from Figure 5.2, the forward and inverse relations can be determined

in terms of the input and output maps, provided these have well defined

(local) inverses

ρ = π−1
a ◦ πw, υ = π−1

w ◦ πa (5.10)

The existence of the inverses is a local question. Assume, for the moment,

that dimA = dim C = dimW 1. Then, by the Inverse Function Theorem 5.2,

πa or πw has a local inverse at some û ∈ C if and only if its Jacobian at that

point is non-singular. Therefore, the input and output singularities are critical

to the solutions of the FKP and IKP. We observed in Section 4.7 that for a

serial manipulator, the C-space is locally isomorphic to the actuator space

so that πa is always invertible and the FKP is well-posed.

In order to detect the input and the output singularities, we apply an

extension of the method of constrained optimisation which we state here

in terms of mappings between Euclidean spaces, but which generalises to

smooth manifolds.

Theorem 5.8. Let F : Rm → Rs (m > s) and suppose that 0 ∈ Rs is a

regular value so that C := F−1(0) is a smooth manifold of dimension µ =

m − s. Given a differentiable function g : Rm → Rp (p ≥ µ) then û ∈ C

is a singular point of g|C : C → Rp if and only if rank JG(û) < m, where

G := (g, F ).

The theorem follows from the fact that if û ∈ C then TûC = ker JF (û), so

the rank of JG(û) falls if and only if the nullity of the derivative of g|C at û

increases. This seems to be a standard result but a reference has not been

identified.
1This corresponds to the regular type of manipulators. Of course, there are other types

to be considered such as redundant manipulators where dimA > dim C. This can be
subject for future work.
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In the case p = µ, the JG(û) is an (m × m) square matrix whose first

µ rows are associated to first-order partial derivatives of g whereas the last

m − µ rows are associated to F given in (5.2). In this case, rank deficiency

requires simply

det JG(û) = 0 (5.11)

We can apply Theorem 5.8 when F is a KCM and g is the input map

πa given in (4.35). Then, equation (5.11) will correspond to a configuration

where some actuator joint velocity cannot be realised. Therefore, the FKP

cannot be solved instantaneously or locally. That is, the inputs are instanta-

neously fixed, but the output will not vanish and thus the end-effector will

admit instantaneous displacement. On the other hand, if the output map

πw given in (4.36) is involved, equation (5.11) will correspond to some in-

stantaneous input (joint velocity) which does not produce an instantaneous

displacement of the end-effector.

5.3.1 Ceva’s theorem

In Chapter 7, examples show that input and output singularities occur if

some particular geometrical conditions are instantaneously satisfied within

the whole mechanism. One important example that occurs for planar ma-

nipulators is contained in the following theorem.

Ceva’s theorem can be found in many texts on Euclidean geometry, for

instance [105]. This theorem is essential to our discussion on the input and

the output singularities because it reveals a geometrical condition which will

facilitate detecting a singular configuration within a mechanism. We state

the theorem here in terms of angle division, rather than the more common

side division.

Let us consider a triangle ABC in 2D with interior angles α, β, γ as illus-

trated in Figure 5.3. Three lines `a, `b, `c pass through the vertices A,B,C



112 CHAPTER 5. SINGULARITIES
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Figure 5.3: A triangle considered for Ceva’s theorem

dividing each internal angle into two subangles

α = α1 + α2, β = β1 + β2, γ = γ1 + γ2

Note that the angles should be measured with a consistent orientation. The

first subangle may be chosen between 0 and π. If the line is wholly exterior

to the triangle then the second subangle will be negative.

One classical form of Ceva’s Theorem states that `a, `b, `c are concurrent

if and only if

sinα1 sin β1 sin γ1 = sinα2 sin β2 sin γ2 (5.12)

It will be more helpful for us to present this condition in a terms of design

parameters and external angles of the triangle, which will correspond to the

platform of a planar parallel mechanism.

Theorem 5.9 (Ceva’s Theorem). With the notation above, suppose that

`a, `b, `c make angles ψa, ψb, ψc, while the base of triangle ABC makes an

angle ψt, to the horizontal in a fixed reference frame. Let `a, `b meet at D2,

a distance d2 from A, and `a, `c meet at D1, a distance d1 from A. Then,
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D1 = D2 (so the three lines are concurrent) if and only if

a1 sin(ψa − ψc) sin(ψb − ψt) = a2 sin(ψa − ψb) sin(ψc − α− ψt) (5.13)

Proof. By looking at Figure 5.3, we can obtain the following relations be-

tween the angles

δ1 − ψa + ψc = 2π, (5.14a)

β2 − ψt + ψb = π ⇒ ψb − ψt = π − β2, (5.14b)

ψa + δ2 = ψb, (5.14c)

ψt + α + γ1 = ψc − π ⇒ π + γ1 = ψc − α− ψt (5.14d)

These hold independent of whether the lines are concurrent. Taking sines

from both sides of equations (5.14a-5.14d) gives

sin δ1 = sin(ψa − ψc), (5.15a)

sin β2 = sin(ψb − ψt), (5.15b)

sin δ2 = − sin(ψa − ψb), (5.15c)

sin γ1 = − sin(ψc − α− ψt) (5.15d)

Therefore, equation (5.13) can be rewritten

a1 sin δ1 sin β2 = a2 sin δ2 sin γ1 (5.16)

Now, the law of sines gives

sin δ1

a2
= sin γ1

d1
, (5.17a)

sin δ2

a1
= sin β2

d2
(5.17b)
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Hence, equation (5.13) is equivalent to

d2 sin δ1 sin δ2 = d1 sin δ1 sin δ2

or d1 = d2, as required.

Equation (5.13) will be employed in Sections 7.1 and 7.2 as a tool to

explain the input and the output singularities.



Chapter 6

Classical planar mechanisms

In Chapters 2-5, a comprehensive model for manipulator kinematics has been

set up. This is based on the observation that the motion of all the links in

a manipulator should be included, independent of the choice of inputs and

outputs. The constraints on motion are completely modelled by the joints

connecting pairs of linkages. From these constraints, equations can be writ-

ten down defining the full configuration space (C-space) of the manipulator.

Moreover, these equations depend on design parameters for the manipula-

tor architecture. In addition, for any choice of inputs (actuated joints) and

outputs (end-effector), input and output mappings can be defined on the

C-space.

In the following Chapters, we introduce a range of examples to illustrate

how the model can be used to identify singularities of the C-space and the

input/output maps. These range from classical planar linkages such as the

planar 4-bar to spatial platforms, and also include an analysis of singularities

for a planar geared mechanism.

115
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Figure 6.1: 4-R linkage with associated frames and design parameters

6.1 Planar 4-R linkage

As illustrated in Figure 6.1, this linkage is made up of four rigid links (k = 4)

and has four design parameters li, i = 0, 1, 2, 3 which are the lengths of its

links. Note that l0 is the base which we will regard as fixed. The linkage

is fundamental in the early history of mechanisms and has been the subject

of extensive analysis [106, 4, 107, 47, 59]. This example provides a test case

for the model since the relevant singularities are already available in the

literature (for example see [47, 1, 2, 54]).

Displacement of each moving component belongs to SE(2) and is repre-

sented by three pose variables (xi, yi, θi)T , i = 1, 2, 3. From Section 4.3.1, the

geometric representation of a planar R-joint is given by coincidence of a point

in each connected link. With a choice of moving frames Mi, i = 1, 2, 3 and

reference frame R, the body coordinates of each joint pi ∈ R2, i = 1, 2, 3, 4

with respect to the frames 1 of links it connects are

pR1 = (0, 0)T , p1
2 = (l1, 0)T , p2

3 = (l2, 0)T , p3
4 = (l3, 0)T ,

p1
1 = (0, 0)T , p2

2 = (0, 0)T , p3
3 = (0, 0)T , pR4 = (l0, 0)T

(6.1)

We now obtain the reference-frame coordinates of the joints in both con-

1The superscript identifies the frame.
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nected links, by using (2.6)

PR
1 = ARpR1 + aR, P1

2 = A1p1
2 + a1, P2

3 = A2p2
3 + a2, P3

4 = A3p3
4 + a3,

P1
1 = A1p1

1 + a1, P2
2 = A2p2

2 + a2, P3
3 = A3p3

3 + a3, PR
4 = ARpR4 + aR

(6.2)

Equation (4.12) can now be applied to each joint in turn

• joint 1 connecting L1 to L0: PR
1 −P1

1 = 0⇒ a1 − pR1 = 0

• joint 2 connecting L2 to L1: P1
2 −P2

2 = 0⇒ A1p1
2 + a1 − a2 = 0

• joint 3 connecting L3 to L2: P2
3 −P3

3 = 0⇒ A2p2
3 + a2 − a3 = 0

• joint 4 connecting L0 to L3: P3
4 −PR

4 = 0⇒ A3p3
4 + a3 − pR4 = 0

Altogether, these give eight scalar joint constraint equations, so the result-

ing KCM F : SE(2)3 → R8 can be written in terms of the parametrisation

in (2.28)

(xi, yi, θi)i=1,2,3 7→ [−x1,−y1, x1 − x2 + l1c1, y1 − y2 + l1s1, x2 − x3 + l2c2,

y2 − y3 + l2s2, x3 − l0 + l3c3, y3 + l3s3]T (6.3)

where ci = cos θi and si = sin θi, i = 1, 2, 3. The null-set F−1(0) defines the

C-space for the 4-R linkage.
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6.1.1 C-space singularities and Grashof-type conditions

Taking partial derivatives of (6.3) with respect to the pose variables yields

an (8× 9) Jacobian matrix

J1F =



x1 y1 x2 y2 x3 y3 θ1 θ2 θ3

−1 0 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0 0

1 0 −1 0 0 0 −l1s1 0 0

0 1 0 −1 0 0 l1c1 0 0

0 0 1 0 −1 0 0 −l2s2 0

0 0 0 1 0 −1 0 l2c2 0

0 0 0 0 1 0 0 0 −l3s3

0 0 0 0 0 1 0 0 l3c3


which, following row operations and deletions of rows and columns with

leading 1s, can be reduced to a (2× 3) matrix that is sufficient to determine

rank deficiency

J1F
red =

−l1s1 −l2s2 −l3s3

l1c1 l2c2 l3c3

 (6.4)

In this case, the translational pose variables have been eliminated so that

the singularity condition depends only on the “free” rotational parameter

for each joint and the design parameters. The singular set Σ1
1F (defined in

Section 5.2.3) is determined by all maximal (2×2) non-zero 1-minors of (6.4)

vanishing simultaneously

−l1l2s1,2 = −l1l3s1,3 = −l2l3s2,3 = 0

where si,j = sin(θi − θj). These equations hold if

θi = θj + ηijπ, i, j = 1, 2, 3 ηij ∈ Z (6.5)
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Figure 6.2: A C-space singularity for 4-R linkage

Geometrically, the three mobile links must be parallel or antiparallel. It

follows that cj = ±ci and sj = ±si for each pair i, j. We are only interested

in points in the C-space. Substituting equation (6.5) in (6.3) and setting

F = 0 results in

(l1 ± l2 ± l3) s1 = 0 (6.6a)

(l1 ± l2 ± l3) c1 = l0 (6.6b)

Assuming l0 6= 0, we obtain from equation (6.6a) that θ1 = 0 or π and thus

from equation (6.6b)

l0 ± l1 ± l2 ± l3 = 0 (6.7)

which are Grashof-type conditions. The conditions correspond to eight hy-

perplanes in the design space. These separate the positive orthant into re-

gions characterised by the possible motion of the moving links [107]. Only

when one of the cases in equation (6.7) holds is there a C-space singularity

and geometrically this corresponds to the 4-R reaching a flat configuration, as

illustrated in Figure 6.2. Although equation (6.7) is well known, we include

its derivation as a case study to validate the approach.

To illustrate the application of Theorem 5.7 we consider the property

“that the C-space for a given family of mechanisms is a manifold” is generic.

We will revisit the theorem for a slightly more complicated case in Section 6.3.

By adding design parameters lj, j = 1, 2, 3 to (6.3) and allowing them to vary,

the D-KCM associated to the 4-R mechanism can be obtained

F̂ (θi, xi, yi, lj)j=0,...3
i=1,...3 : SE(2)3 × R4 → R8
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Here, design parameters are allowed to vary. Hence, the extended Jacobian
JF̂ with respect to both pose variables and design parameters is an (8× 13)
matrix. By doing row operations, we can obtain the row-reduced echelon
form (rref)

JF̂ rref =



1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 l1s1 0 0 −c1 0 0

0 0 0 1 0 0 0 −l1c1 0 0 −s1 0 0

0 0 0 0 1 0 0 l1s1 l2s2 0 −c1 −c2 0

0 0 0 0 0 1 0 −l1c1 −l2c2 0 −s1 −s2 0

0 0 0 0 0 0 1 l1s1 l2s2 l3s3 −c1 −c2 −c3

0 0 0 0 0 0 0 −l1c1 −l2c2 −l3c3 −s1 −s2 −s3



(6.8)

This clearly has full rank because the last row cannot be identically zero—

there is no solution to the simultaneous equations sin θ = cos θ = 0.

We have thus established that F̂ −t {0} and thus for almost all (l0, . . . , l3)T

∈ R4 the C-space has no singularity. Of course, in this case we already know

that C is non-singular unless the Grashof-type condition given in (6.7) holds

for the design parameters. This tells us directly that C is non-singular except

on the closed subset of the positive orthant defined by the union of these

hyperplanes.

As an aside, we note that Grashof-type conditions can be found by solving

the KCM, F = 0, along with the equations that determine positive corank

for its Jacobian J1F
red given in (6.4), namely that all the 1-minors vanish

simultaneously. Since all the equations are algebraic in xi, yi, ci, si, i = 1, 2, 3

and subject to the additional conditions c2
i + s2

i = 1, we may use Gröb-

ner bases (see any standard textbook, such as [108]) to eliminate the pose

variables and obtain

l80 − 4l60l21 + 6l40l41 − 4l20l61 − 4l60l22 + 4l40l21l22 + 4l20l41l22 + 6l40l42 + 4l20l21l42 − 4l20l62
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Figure 6.3: A shaky (immobile) configuration for 4-R linkage

− 4l60l23 + 4l40l21l23 + 4l20l41l23 + 4l40l22l23 − 40l20l21l22l23 + 4l20l42l23 + 6l40l43 + 4l20l21l43

+ 4l20l22l43 − 4l20l63 + l81 − 4l61l22 + 6l41l42 − 4l21l62 + l82 − 4l61l23 + 4l41l22l23 + 4l21l42l23

− 4l62l23 + 6l41l43 + 4l21l22l43 + 6l42l43 − 4l21l63 − 4l22l63 + l83 = 0 (6.9)

which factorises as

(l0 − l1 − l2 − l3)(l0 + l1 − l2 − l3)(l0 − l1 + l2 − l3)(l0 + l1 + l2 − l3)

(l0 − l1 − l2 + l3)(l0 + l1 − l2 + l3)(l0 − l1 + l2 + l3)(l0 + l1 + l2 + l3) = 0
(6.10)

or, simply, the product of the linear Grashof-type conditions. This union

of eight hyperplanes has codimension 1 as an algebraic variety in the design

space R4. Furthermore, the factorisation yields non-generic mechanisms that

include some overconstrained cases. Consider the case l0 − l1 − l2 − l3 = 0,

for instance; it has a single shaky (infinitesimally mobile) configuration but

is immobile, see Figure 6.3.

6.1.2 Input mapping and singularities

Classically, L1 is considered to be the input link so J1 is the actuated joint.

Assuming L0 is the base to which the reference frame R is attached, we have

θ0 = 0 in (4.31) and the joint variable φ1 = θ1. This spans the A-space and

the input map is the restriction to C-space of the projection

π̂a(xi, yi, θi)i=1,2,3 = θ1 (6.11)

Following Theorem 5.8, taking derivatives of Πa := (π̂a, F ) : R9 → R8×R

results in the (9 × 9) Jacobian which can be reduced, for the purpose of

calculating singularities, to a (3× 3) matrix by row operations and deletions



122 CHAPTER 6. CLASSICAL PLANAR MECHANISMS
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Figure 6.4: An input singularity for 4-R linkage

of rows and columns with leading 1s

JΠred
a =


1 0 0

−l1s1 −l2s2 −l3s3

l1c1 l2c2 l3c3

 (6.12)

Its columns correspond to partial derivatives with respect to θi, i = 1, 2, 3.

This matrix is rank deficient if the determinant of the bottom right (2 × 2)

block matrix vanishes

− l2l3s2,3 = 0 (6.13)

Suppose l2, l3 6= 0, then equation (6.13) holds if θ2 = θ3 mod π. As illus-

trated in Figure 6.4, this input singularity corresponds to a configuration

where L2, L3 are aligned.

6.1.3 Output mapping and singularities

Following the classical consideration of mechanism theory, we first choose L3

and then L2 to be the output link. Since L3 is connected to the base, only

one pose variable (the orientation) is sufficient to specify the output map.

However, if L2 is the output, then at least two pose variables are needed to

locate it in the plane. By these two different choices for the output link, we

aim to show that other approaches, like that of Zlatanov et al. [2] or Gosselin

and Angeles [1], are not capable of giving a full analysis (dimension-wise) if

L2 is considered as output.



6.1. PLANAR 4-R LINKAGE 123

l0

l1

l2

l3

Figure 6.5: An output singularity corresponding to L3 for 4-R linkage

If L3 is the output link, then the W-space can be parametrised by θ3 ∈ R

alone and dimW = 1. The output map is then the restriction to the C-space

of the projection

π̂w(xi, yi, θi)i=1,2,3 = θ3 (6.14)

In order to determine the output singularities, partial derivatives of Πw :=

(π̂w, F ) : R9 → R8 × R are considered. After row operations and deletions

of rows and columns with leading 1s, the (3× 3) reduced Jacobian matrix is

obtained

JΠred
w =


0 0 1

−l1s1 −l2s2 −l3s3

l1c1 l2c2 l3c3

 (6.15)

This matrix is rank deficient if determinant of the bottom left (2× 2) block

matrix vanishes

− l1l2s1,2 = 0 (6.16)

Assume l1, l2 6= 0, equation (6.16) holds if θ1 = θ2 mod π. As shown in

Figure 6.5, the output singularity corresponds to a configuration where L1, L2

are aligned. In this case, there is a “symmetry” between input and output

maps which is absent in the next case.

If L2 is considered as the output link, then no single pose variable suf-

ficient to describes its displacement so θ2, y2 are chosen to parametrise the

W-space. The output map associated to L2 is the restriction to the C-space
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Figure 6.6: An output singularity corresponding to L2 for 4-R linkage

of the projection

π̂w(xi, yi, θi)i=1,2,3 = [θ2, y2]T (6.17)

In order to determine the output singularities, partial derivatives of Πw :=

(π̂w, F ) : R9 → R8 × R2 are considered. For the purpose of singularity

analysis, the (5× 4) reduced Jacobian matrix is obtained by row operations

and deletions of rows and columns with leading 1s

JΠred
w =



0 0 1 0

0 0 0 1

l1s1 l3s3 0 l2s2

−l1c1 −l3c3 0 −l2c2

−l1c1 0 1 0


(6.18)

Its columns correspond to partial derivatives with respect to θ1, θ3, y2, θ2.

This matrix is rank deficient if the (2 × 2) determinants of the bottom left

(3× 2) block matrix vanish simultaneously

− l1l3s1,3 = l1l3c1s3 = −l1l3c1c3 = 0 (6.19)

Assume l1, l3 6= 0, these equations hold true if θi = π
2 + ηiπ, i = 1, 3 for some

integers ηi. As illustrated in Figure 6.6, the output singularity corresponds
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Figure 6.7: 3RP linkage with associated moving frames and design parame-
ters

to a configuration where L1, L3 are parallel.

6.2 Planar RRRP linkage

To illustrate the model when a P-joint is involved, we adapt the previous

example. This linkage consists of four rigid links connected by three R-joints

and one P-joint, so that k = t = 4 in the notation of Section 4.1. Assume

L0 connected by the P-joint is fixed. The reference frame R and the moving

frames Mi, i = 1, 2, 3 are shown in Figure 6.7. The free displacement of each

remaining link is represented by pose variables (θi, xi, yi)T , i = 1, 2, 3.

As in Sections 4.3.1 and 4.3.2, the R-joint are geometrically modelled by

points in each connected links and the P-joint by a directed line. Design

parameters are lengths l1, l2 of the first and second links and the perpendic-

ular distances d3 in the third one. Symbolically, body and reference-frame

coordinates of the three R-joints are in the form (6.1) and (6.2). They give

rise to constraint equations of the form (4.12). On the other hand, body co-

ordinates associated to the ` representing the P-joint with parametric form

p + λr are

pR1 = (0, 0)T , p3
4 = (0,−d3)T , r3

4 = rR4 = (1, 0)T (6.20)
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l1
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d3

Figure 6.8: A C-space singularity for RRRP linkage

By using (2.6), reference-frame coordinates associated to the P-joint are de-

termined

P3
4 = A3p3

4 + a3, PR
1 = ARpR1 + aR, R3

4 = A3r3
4, RR

4 = ARrR4 (6.21)

which give rise to two equations of the form (4.15a) and (4.15b)

(
R3

4 ×RR
4

)
z

= 0,
([

P3
4 −PR

1

]
×RR

4

)
z

= 0

In terms of the given choice of coordinates, from (4.13) and (4.16), the

eight constraint equations give rise to the KCM F : SE(2)3 → R8

(xi, yi, θi)i=1,2,3 7→ [−x1,−y1, x1 − x2 + l1c1, y1 − y2 + l1s1, x2 − x3 + l2c2,

y2 − y3 + l2s2,−s3, s3x3 − c3y3 + d3]T (6.22)

6.2.1 C-space singularities and Grashof-type conditions

The positive corank condition on the resulting (8 × 9) Jacobian matrix can

be reduced to considering the following (2×3) matrix by row operations and

deletions of rows and columns with leading 1s
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l1 l2

d3

Figure 6.9: An input singularity for RRRP linkage

J1F
red =

 −l1c1,3 −l2c2,3 c3x3 + s3y3

0 0 −c3

 (6.23)

where ci,3 = cos(θi − θ3), i = 1, 2.

The singular set Σ1
1F is defined by three (2× 2) minors vanishing simul-

taneously and the equations yield

θ1 = θ2 + η1 π, θ2 = θ3 + π
2 + η2 π η1, η2 ∈ Z (6.24)

Geometrically, the three R-joints must be collinear and on a line perpendicu-

lar to the direction of the P-joint i.e. the first two links must be perpendicular

to the translational axis of the P-joint.

Substituting (6.24) into (6.22) and eliminating xi, yi, i = 1, 2, 3, we obtain

Grashof-type conditions

d3 ± l1 ± l2 = 0 (6.25)

A corresponding C-space singularity configuration is illustrated in Figure 6.8.

This is the simplest case of the conditions found by Xue et al. [109] deter-

mining rotatability of components of closed chains with P-joints.
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Figure 6.10: An output singularity corresponding to L3 for RRRP linkage

6.2.2 Input mapping and singularities

As in Section 6.1.2, we choose L1 as input so the actuated joint variable is

φ1 = θ1. Applying Theorem 5.8, the (9× 9) Jacobian matrix can be reduced

(by row operations and deletions of rows and columns with leading 1s) so

that input singularites are determined by the (3× 3) determinant

det


1 0 0

−l1c1,3 −l2c2,3 c3x3 + s3y3

0 0 −c3

 = l2c3c2,3 = 0 (6.26)

Clearly from the KCM in (6.22), s3 = 0 so θ3 = 0 mod π. Assuming l2 6= 0,

equation (6.26) holds true if θ2 = θ3 + π/2 + η2π for some integer η2. This

input singularity corresponds to a configuration where L2 is perpendicular

to the direction of the prismatic joint, as shown in Figure 6.9.

6.2.3 Output mapping and singularities

According to what is explained in Section 6.1.3, we are going to consider L3

and L2 to be output.

Suppose L3 is output, then the W-space is parametrised by x3 ∈ R. So

the output map is the restriction to the C-space of the projection

π̂w(xi, yi, θi)i=1,2,3 = x3 (6.27)

Then, output singularities can be determined by the reduced (3 × 3) deter-
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Figure 6.11: An output singularity corresponding to L2 for RRRP linkage

minant

det


−l1s1 −l2s2 0

−l1c1c3 −l2c2c3 x3c3 + y3s3

0 0 −c3

 = −l1l2c2
3s1,2 (6.28)

Assume l1, l2 6= 0, equation (6.28) equals zero if θ1 = θ2 mod π. As shown

in Figure 6.10, the output singularity corresponds to a configuration where

L1, L2 are aligned.

If L2 is considered as output, then its displacement should be described

by θ2, y2. The output map associated to L2 is the restriction to the C-space

of the projection

π̂w(xi, yi, θi)i=1,2,3 = [θ2, y2]T (6.29)

In order to determine the output singularities, partial derivatives of Πw :=

(π̂w, F ) : R9 → R8 × R2 are considered. After row operations and deletions

of rows and columns with leading 1s, for the purpose of singularity analysis,

the (3× 2) reduced Jacobian matrix is considered

JΠred
w =


l1c1 0

−l1s1s3 x3c3 + y3s3

0 −c3

 (6.30)
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Figure 6.12: Extended Watt 7-R linkage with associated moving frames and
design parameters

This matrix is rank deficient if its three (2×2) minors vanish simultaneously

− l1c1c3 = l1c3s1s3 = l1c1(x3c3 + y3s3) = 0 (6.31)

Assume l1 > 0, these equations hold true if θ1 = π
2 + ηπ for some integers

η. Note that θ3 = 0 mod π from the KCM in (6.22). As illustrated in

Figure 6.11, the output singularity corresponds to a configuration where L1

is perpendicular to the direction of the prismatic joint.

6.3 Extended Watt planar linkage

To complete the examples of classical planar linkages, the final case has two

degrees of freedom and in some respects is a counterexample to universal

statements about genericity.

As shown in Figure 6.12, this mechanism consists of six mobile links

together with a fixed base, which can be considered as a combination of planar

4-R and planar 5R mechanisms that share common links L2, L3. The frames

Mi, i = 1, . . . 6 are assigned to the moving bodies whose poses are described

by (θi, xi, yi), i = 1, . . . , 6 measured in the reference frame R attached to

fixed link L0. There are 11 design parameters ai, i = 0, . . . , 6, b2, b3, α, β. It

is assumed that all ai, bi > 0.
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The eight R-joints each imposes two constraint equations, so the KCM
has the form F : SE(2)6 → R16 given by

(xi, yi, θi)i=1,...,6 7→ [x1, y1,−a0 + x2, y2,−x1 + x3 − a1c1,−y1 + y3 − a1s1

−x2 + x4 − a2c2,−y2 + y4 − a2s2,−x3 + x5 − b3cβ,3,

−y3 + y5 − b3sβ,3,−x4 + x6 − a4c4,−y4 + y6 − a4s4,

−x5 + x6 − a5c5 + a6c6,−y5 + y6 − a5s5 + a6s6,

−x2 + x3 − b2cα,2 + a3c3,−y2 + y3 − b2sα,2 + a3s3]T (6.32)

Here cα,2 = cos(α + θ2), cβ,3 = cos(β + θ3) and similarly for sines. For a

fixed choice of design parameters, we would anticipate the C-space to have

dimension 2, corresponding to its mobility.

In order to determine whether this family of mechanisms is generic in the
sense that its C-space is a 2-dimensional manifold for almost all choices of
design parameters, it is necessary to check whether the (16 × 29) Jacobian
matrix of F̂ (with respect to all 18 pose variables and 11 design parameters)
has full rank. The Jacobian can be reduced to a (3× 16) matrix

JF̂ red =


a1c1 −a2c2 b3cβ,3 −a4c4 a5c5 −a6c6 s1

0 a2s2 − b2sα,2 a3s3 − b3sβ,3 a4s4 −a5s5 a6s6 0

−a1c1 b2cα,2 −a3c3 0 0 0 −s1

sβ,3 b3cβ,3 0 0 −s2 −s4 s5 0 −s6

cβ,3 −b3sβ,3 cα,2 −b2sα,2 −c2 −c4 c5 −c3 −c6

0 0 sα,2 b2cα,2 0 0 0 −s3 0

 (6.33)

Given the assumptions on design parameters, this matrix is never rank defi-

cient so that F̂ −t {0} and the D-space is a submanifold of codimension 16.

We can conclude that for almost all choices of design parameters, the C-space

is a manifold (non-singular).

Turning to the C-space singularities and possible Grashof-type conditions,

the rank of the (16 × 18) Jacobian matrix J1F is the same as the following

reduced (4× 6) matrix which can be obtained after row operations and dele-
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Figure 6.13: A C-space singularity associated to the 4-R at a flat configura-
tion

tions of rows and columns with leading 1s

J1F
red =



a1s1 −a2s2 b3sβ,3 −a4s4 a5s5 −a6s6

−a1c1 a2c2 −b3cβ,3 a4c4 −a5c5 a6c6

−a1s1 b2sα,2 −a3s3 0 0 0

a1c1 −b2cα,2 a3c3 0 0 0


(6.34)

Of the 15 (4×4) minors, 12 are non-trivial and can be solved simultaneously

using Mathematica (see [110]) to give distinct solutions determining the

set Σ1
1F . From (5.7), it is expected that this set has codimension 3. However,

one of the possible solutions is given by

θ2 = θ1 − α + η2π, θ3 = θ1 + η3π η2, η3 ∈ Z (6.35)

defining submanifolds of codimension 2 in the space of pose variables. Al-

though there are other singular branches with various codimensions, this

solution set relates simply to the base 4-R linkage visible in Figure 6.12.

This tells us that there is a branch of singularities along which the Jacobian

J1F is not transverse to Σ1. As illustrated in Figure 6.13, nevertheless, since

the conditions only relate to the 4-R, we may still obtain the Grashof-type

conditions

a0 ± a1 ± b2 ± a3 = 0 (6.36)
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Figure 6.14: A flat configuration corresponding to the C-space singularity

As mentioned, there are other singular branches among which the most

relevant one is of the form

θ1 = h(θ2, θ3, θ4), θ5 = θ4 + η5π, θ6 = θ4 + η6π η5, η6 ∈ Z (6.37)

where h is a specific function. Given this branch has the correct codimension,

it is likely that it will give rise to corresponding Grashof-type conditions but

the form of this has not yet been determined. One special case of (6.37) is

given by adding conditions on the remaining pose variables

θi = θ1 + ηiπ, i ∈ {2, 4, 5, 6}, θ3 = θ1 − β + η3π ηi, η3 ∈ Z (6.38)

These correspond to the configuration where all the mobile links (i.e. all the

x-axes of the moving frames) are parallel. Eliminating pose variables leads

to a collection of Grashof-type conditions on the design parameters as follows

a0 ± a1 ± a2 ± a4 ± a5 ± a6 ± b3 = 0

a0 ± a1 ± b2cα ± a3cβ = 0

b2sα ± a3sβ = 0 (6.39)

This flat configuration is illustrated in Figure 6.14.
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Chapter 7

Planar parallel manipulators

In this Chapter, the constraint-based kinematic modelling approach is ap-

plied to two extensively studied planar parallel manipulator (PPM) archi-

tectures. These are in the standard form for providing full mobility for a

platform. The platform is connected by three serial legs to the base and each

leg has three 1-dof joints. The CGK formula readily demonstrates that, in

the general case, the PPM has mobility µ = 3. In practical applications, one

joint in each leg is actuated.

The constraint-based approach provides what appears to be a Grashof-

type condition that is new. It also demonstrates the effect of many different

choices of actuator.

7.1 Planar 3-RRR parallel manipulator

The 3-RRR has an extensive structure on its kinematics and singularities [111,

28]. We work in complete generality so that the three base and three plat-

form anchor points may have any layout. This includes the possibility that

they may coincide or be collinear. The variations are captured by design

parameters.

The 3-RRR PPM is illustrated in Figure 7.1, which shows a choice of

135
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Figure 7.1: 3-RRR PPM with associated moving frames and design param-
eters

moving and reference frames together with design parameters. The mecha-

nism consists of k = 8 rigid bodies where we regard the ambient space as the

fixed base. Therefore we require 21 pose variables and there are 12 design

parameters

• design parameters of the links (link lengths): li, i = 1, . . . , 6

• design parameters of the platform: a1, a2, α

• design parameters of the base: b1, b2, β

With the chosen reference and moving frames, the body coordinates of

each of the nine R-joints in ‘preceding’ and ‘following’ frames are

p−i = (li−3, 0)T , p+
j = (0, 0)T , i = 4, . . . , 9 j = 1, . . . , 7

pR1 = (0, 0)T , pR2 = (b1, 0)T , pR3 = (b2cβ, b2sβ)T ,

p7
8 = (a1, 0)T , p7

9 = (a2cα, a2sα)T
(7.1)

To find the reference-frame coordinates of each point in (7.1), we can follow
the same procedure as in (6.2). Each R-joint imposes a pair of constraint
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equations of the form (4.12), so the KCM has the form F : SE(2)7 → R18

given by

(xi, yi, θi)i=1,...,7 7→ [x1, y1, x2 − b1, y2, x3 − b2cβ, y3 − b2sβ,−x1 + x4 − l1s1,

−y1 + y4 − l1s1,−x2 + x5 − l2c2,−y2 + y5 − l2s2,

−x3 + x6 − l3c3,−y3 + y6 − l3s3,−x4 + x7 − l4c4,

−y4 + y7 − l4s4,−x5 + x7 − l5c5 + a1c7,

−y5 + y7 − l5s5 + a1s7,−x6 + x7 − l6c6 + a2cα,7,

−y6 + y7 − l6s6 + a2sα,7]T (7.2)

with the usual terminology for cosines and sines.

7.1.1 C-space singularities and Grashof-type conditions

The associated Jacobian matrix is (18 × 21). By row operations and dele-

tions of rows and columns with leading 1s, the problem of determining rank

deficiency can be reduced to considering the following (4× 7) matrix



−l1s1 l2s2 0 −l4s4 l5s5 0 −a1s7

l1c1 −l2c2 0 l4c4 −l5c5 0 a1c7

0 −l2s2 l3s3 0 −l5s5 l6s6 a1s7 − a2sα,7

0 l2c2 −l3c3 0 l5c5 −l6c6 −a1c7 + a2cα,7


(7.3)

Its columns correspond to partial derivatives with respect to θi, i = 1, . . . , 7.

To determine Σ1
1F we must solve simultaneously the vanishing of 35 (4 ×

4) minors (see Appendix B for part of the calculation). From (5.7), the

corank 1 singularities are expected to have codimension 4, in other words,

four equations are required to determine singularity. Many of the minors

factorise and it becomes relatively straightforward to deduce that there are

three possible conditions that correspond to collinearity of three closed 6-

R chains within the mechanism and one further condition corresponding to
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Figure 7.2: C-space singularities for 3-RRR PM
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collinearity of the six leg links

θi = θj + ηijπ i, j ∈ {1, 2, 4, 5, 7} (7.4a)

θi = θj + δj7α + ηijπ i, j ∈ {1, 3, 4, 6, 7} (7.4b)

θi = θj + δj7(π − γ) + ηijπ i, j ∈ {2, 3, 5, 6, 7} (7.4c)

θi = θj + ηijπ i, j ∈ {1, 2, 3, 4, 5, 6} (7.4d)

Here ηij ∈ Z and δj7 is zero unless j = 7 when it is 1; the corresponding

angles, θ7 +α and θ7 +π− γ in (7.4b) and (7.4c) are the angles the platform

makes with the corresponding line joining the base anchor points in the closed

chain. Note that the first three conditions are expressed by four equations but

the fourth requires five equations and therefore imposes additional conditions

on design parameters.

Substituting the singularity conditions into the KCM and setting equal to

zero determines Grashof-type conditions necessary for C-space singularities.

Equation (7.4a) fairly easily leads to

b1 ± a1 ± l1 ± l4 ± l2 ± l5 = 0 (7.5)

Geometrically, the bottom closed 6-R chain folds into a flattened hexagon.

This is illustrated in Figure 7.2a. It is possible to make similar deductions for

the following two singularity sets in equations (7.4b) and (7.4c), providing

two different Grashof-type conditions in the form of (7.5) for the other closed

chains.

However, an argument by symmetry, via an appropriate relabelling of

the base and platform design parameters leads more simply to the same

conclusion for the other closed chains, as is shown in Figures 7.2b and 7.2c.

The diagram also shows that in a singular configuration there are potentially

four combinations (see Appendix B for more details) of pose variables for the

remaining 2-link leg though in practice not all of these may be feasible.
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Figure 7.3: Special C-space singularities for 3-RRR PPM

The final singularity condition in (7.4d), when combined with the KCM,

can be shown to give the following pair of Grashof-type conditions

b2
1ϑ

2 + b2
2ζ

2−2b1b2ζϑ cos β

= a2
1ϑ

2 + a2
2ζ

2 − 2a1a2ζϑ cosα (7.6a)

a2
1b

2
1 + a2

2b
2
2−2a1a2b1b2 cos(β − α)

= a2
1ϑ

2 + a2
2ζ

2 − 2a1a2ζϑ cosα (7.6b)

where ζ = ±l1± l4± l2± l5 and ϑ = ±l1± l4± l3± l6. These special cases are

illustrated in Figure 7.3 (see Appendix B for a summary of this analysis).

7.1.2 Output mapping and singularities

Although each moving component could be considered as the end-effector, the

central link or platform, as shown in Figure 7.1, is naturally chosen as the end-

effector so that the workspace W is parametrised by (x7, y7, θ7) ∈ R3. The

KCM F is given in (7.2). Let π̂w : R21 →W denote projection onto the W-

space, so that πw is the restriction of π̂w to C. To find the output singularities

of 3-RRR, we apply Theorem 5.8, so consider Πw := (π̂w, F ) : R21 → R18×R3

(xi, yi, θi)i=1,...,7 7→ [x7, y7, θ7, F (x1, . . . , θ7)]T (7.7)
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Figure 7.4: 3-RRR PPM output singularities

The (21 × 21) Jacobian matrix can be reduced by deleting rows and

columns of leading 1s in reduced-row echelon form to a (9× 9) matrix

JΠred
w =



0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 0 0

−l1s1 0 0 −l4s4 0 0 0 0 −1

l1c1 0 0 l4c4 0 0 0 −1 0

0 l2s2 0 0 l5s5 0 −a1s7 0 −1

0 −l2c2 0 0 −l5c5 0 a1c7 −1 0

0 0 l3s3 0 0 l6s6 −a2sα,7 0 −1

0 0 −l3c3 0 0 −l6c6 a2cα,7 −1 0



(7.8)

Its columns correspond to partial derivatives with respect to θ1, . . . , θ7, y7, x7,

and the top right (3× 3) block matrix corresponds to the non-singular Jaco-

bian of πw. The bottom left (6× 6) block matrix may be rank deficient if its

determinant

l1l2l3l4l5l6 sin(θ1 − θ4) sin(θ2 − θ5) sin(θ3 − θ6) = 0 (7.9)

Assuming design parameters li 6= 0, i = 1, . . . , 6, equation (7.9) holds if θi =

θi+3 + ηiπ, i = 1, 2, 3, for some integers ηi, corresponding to a configuration

in which one or more pair of leg links is collinear, as illustrated in Figure 7.4

for the pair l1, l4.
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Figure 7.5: 3-RRR PPM input singularities

7.1.3 Input mapping and singularities

In this section, we will discuss two different possibilities as actuated joints [111,

28]. First, we assume actuators are placed at the base R-joints p1,p2,p3.

Next, we consider the medial R-joints p4,p5,p6 to be actuated.

3-RRR

The three base joints p1,p2,p3 are the actuators. Identifying the base frame

with the reference frame sets θi− = 0, i = 1, 2, 3 in (4.31). The joint variables

are then given by φi = θi, i = 1, 2, 3 which span the A-space and the input

map is the restriction to C of the projection

π̂a(xi, yi, θi)i=1,...,7 = [θ1, θ2, θ3]T (7.10)

Taking partial derivatives of Πa := (π̂a, F ) : R21 → R18 × R3 yields its

(21× 21) Jacobian matrix which can be reduced to a (9× 9) matrix by row
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operations and deletions of rows and columns with leading 1s

J red
a =



1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

−l1s1 0 0 −l4s4 0 0 0 0 −1

l1c1 0 0 l4c4 0 0 0 −1 0

0 −l2s2 0 0 −l5s5 0 a1s7 0 −1

0 l2c2 0 0 l5c5 0 −a1c7 −1 0

0 0 −l3s3 0 0 −l6s6 a2sα,7 0 −1

0 0 l3c3 0 0 l6c6 −a2cα,7 −1 0



(7.11)

In a similar manner to the output map, the input singularities are given

by the determinant of the bottom right (6 × 6) submatrix of the reduced

Jacobian

−l4l5l6
(
a1 sin(θ4−θ6) sin(θ5−θ7)+a2 sin(θ4−θ5) sin(α−θ6+θ7)

)
= 0 (7.12)

Given li 6= 0, i = 4, 5, 6, we employ a variant of Ceva’s Theorem, given

in (5.13), to interpret equation (7.12) geometrically. Setting θ4 = ψa, θ5 = ψb,

θ6 = ψc and θ7 = ψt, shows that this is equivalent to the lines spanned by

links L4, L5, L6 being concurrent. This input singularity is independent of

platform orientation θ7. The intersection may take place either internally or

externally to the platform triangle, as in Figure 7.5. Special cases include

when two inner links and a side of the platform are collinear so one of the

following sets of equations holds

θ4 = θ5 = θ7 mod π (7.13a)

θ4 = θ6 = α + θ7 mod π (7.13b)

θ5 = θ6 − α = θ7 mod π (7.13c)

A final special case is when θ4 = θ5 = θ6 mod π. This input singularity
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Figure 7.6: Special input singularities for 3-RRR PPM

corresponds to a configuration where the three inner links are parallel and

intersect at infinity. Special cases are illustrated in Figure 7.6.

3-RRR

Selecting the medial joints p4,p5,p6 to be actuated, their joint variables, as

in (4.31), are φi = θi−θi−3, i = 4, 5, 6 and the input map π̂a is the restriction

to C of the projection

(xi, yi, θi)i=1,...,7 7→ [θ4 − θ1, θ5 − θ2, θ6 − θ3]T (7.14)

The resulting condition for input singularities reduces to

det



−l1s1 − l4s4 0 0 0 0 −1

l1c1 + l4c4 0 0 0 −1 0

0 −l2s2 − l5s5 0 a1s7 0 −1

0 l2c2 + l5c5 0 −a1c7 −1 0

0 0 −l3s3 − l6s6 a2sα,7 0 −1

0 0 l3c3 + l6c6 −a2cα,7 −1 0


= 0 (7.15)

This closely resembles the matrix given in (7.11) except the terms in the

first three columns denote the coordinates of the leg vectors connecting cor-

responding base and platform anchor points `i := (xi,i+3, yi,i+3) = (lici +

li+3ci+3, lisi + li+3si+3), i = 1, 2, 3. From Ceva’s Theorem, the geometric
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Figure 7.7: 3-RRR PPM input singularities

interpretation of this condition is that these vectors intersect (internally or

externally) as in Figure 7.7.

7.2 Planar 3-RPR parallel manipulator

A fully general 3-RPR PPM is shown in Figure 7.8, along with a choice

of moving and reference frames and design parameters. It is worth noting

that the literature on this PPM generally assume that the direction of the

prismatic joint is parallel to the line joining base and platform anchor points

in each leg. However, we allow the P-joint to have arbitrary direction.

There are k = 7 mobile links hence 21 pose variables, t = 9 joints and nine
design parameters, namely the P-joint offsets di, i = 1, 2, 3, base parameters
b1, b2, β, and the platform parameters a1, a2, α. We make the non-triviality
assumptions that ai, bi > 0, i = 1, 2. The body coordinates of all joints in
the relevant moving frames are

p−i = (0, 0)T , p+
j = (0, 0)T , i = 7, 8, 9 j = 1, 2, 3

p−k = (0, dk−3)T , r−k = r+
k = (1, 0)T , k = 4, 5, 6

pR1 = (0, 0)T , pR2 = (b1, 0)T , pR3 = (b2 cosβ, b2 sin β)T

p7
7 = (0, 0)T , p7

8 = (a1, 0)T , p7
9 = (a2 cosα, a2 sinα)T

(7.16)
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Figure 7.8: 3-RPR PPM with associated moving frames and design param-
eters

After transforming these body coordinates to the reference frame R, each
P-joint imposes a pair of constraints of the form equation (4.15) while each
R-joint imposes a pair of constraints of the form equation (4.12). Then, the
KCM F : SE(2)7 → R18 is given by

(xi, yi, θi)i=1,...,7 7→ [−x1,−y1, b1 − x2,−y2, b2cβ − x3, b2sβ − y3, x4,7, y4,7,

x5,7 − a1c7, y5,7 − a1s7, x6,7 − a2cα,7, y6,7 − a2sα,7,

s1,4, s2,5, s3,6, d1 + y1,4c1 − x1,4s1, d2 + y2,5c2 − x2,5s2,

d3 + y3,6c3 − x3,6s3]T (7.17)

where si,i+3 = sin(θi − θi+3), xi,i+3 = xi − xi+3, yi,i+3 = yi − yi+3, xi+3,7 =

xi+3−x7, yi+3,7 = yi+3−y7, i = 1, 2, 3, cα,7 = cos(α+θ7) and sα,7 = sin(α+θ7).

The associated Jacobian is an (18× 21) matrix. Rather than solving first
for rank deficiency, we can eliminate pose variables via the KCM; clearly
from si,i+3 = 0, θi = θi+3 mod π for i = 1, 2, 3. From this, for the purposes
of rank computation the Jacobian can be reduced to a (3× 6) matrix by row
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operations and deletions of rows and columns with leading 1s

x1,4c1 + y1,4s1 0 0 −s1 c1 0

0 x2,5c2 + y2,5s2 0 −s2 c2 a1c2,7

0 0 x3,6c3 + y3,6s3 −s3 c3 a2cα,3,7

 (7.18)

where c2,7 = cos(θ2 − θ7) and cα,3,7 = cos(α − θ3 + θ7). Columns in (7.18)

correspond to partial derivatives with respect to θ1, θ2, θ3, x7, y7, θ7.

7.2.1 Corank 1 singularities

The conditions for a singularity are the vanishing of 19 non-trivial (3 ×

3) minors of (7.18). Assuming the KCM F is well-behaved, dimensional

considerations indicate that the corank 1 singular set Σ1
1F ought to have (at

least) codimension 4, so that four conditions on pose variables are expected.

There are three cases that can readily be seen to result in singularity. Clearly,

two of the non-trivial terms in the first three columns must vanish. Then,

finding two further conditions is straightforward. For example, if the first

two terms vanish then the condition for singularity is realised by

x1,4c1 + y1,4s1 = x2,5c2 + y2,5s2 = 0, s1,2 = 0, c2,7 = 0 (7.19)

Further elimination of pose variables from (7.17) and (7.19) results in the

following Grashof-type condition on design parameters

± d1 ± a1 ± b1 ± d2 = 0 (7.20)

Geometrically, this relates to the lower closed 2-RPR loop comprised of the

base, two legs and platform. As shown in Figure 7.9a, It requires the two

platform and two base anchor points to be collinear while the direction of

the P-joints must be perpendicular to these. Similar configurations for the

other two loops also correspond to singular configurations, see Figures 7.9b
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and 7.9c.

7.2.2 Corank 2 singularities

As explained in Section 7.1, there are other components of the singular set

with higher codimension. Rather, we examine the conditions for the KCM

to have a corank 2 singularity in the C-space. At such a point, the cokernel

of the Jacobian has dimension 2. This can only happen for very special

geometries of the 3-RPR and is a high codimension condition. Necessary

and sufficient conditions are that all (2 × 2) minors of (7.18) vanish, but

at least one entry is non-zero.There are 28 such 2-minors leading to seven

conditions as follows

x1,4c1 + y1,4s1 = x2,5c2 + y2,5s2 = x3,6c3 + y3,6s3 = 0,

θ1 = θ2 = θ3 mod π, c2,7 = cα,3,7 = 0 (7.21)

This is simply the union of the three closed-loop conditions giving corank 1

singularities. Thus, the three Grashof-type conditions like equation (7.20)

must hold simultaneously and these entail α = β = 0 mod π, see Fig-

ure 7.10. These five equations correspond to four independent conditions.

7.2.3 Output mapping and singularities

Assuming displacement of the platform L7 determines the workspace, the

associated output mapping is of the form (7.7) as for the 3-RRR manipulator.

To find output singularities, we compute the Jacobian of Πw := (π̂w, F ) :

R21 → R18×R3 which, after row operations and deletions of rows and columns
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with leading 1s, simplifies to a (6× 6) matrix



0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 1 0 0

x1,4c1 + y1,4s1 0 0 −s1 c1 0

0 x2,5c2 + y2,5s2 0 −s2 c2 a1c2,7

0 0 x3,6c3 + y3,6s3 −s3 c3 a2cα,3,7


(7.22)

Once again, the upper right (3 × 3) block is non-singular so we require the

bottom left (3× 3) block matrix to be rank-deficient requiring

(x1,4c1 + y1,4s1)(x2,5c2 + y2,5s2)(x3,6c3 + y3,6s3) = 0 (7.23)

Let vectors vi = (xi,i+3, yi,i+3), i = 1, 2, 3 connect the R-joints in each leg,

while ui = (ci, si) designate (unit) directions of the P-joints ri+3, i = 1, 2, 3.

Hence, an output singularity occurs if and only if ξi := vi · ui = 0 for some

i = 1, 2, 3 i.e. one of the vi is orthogonal to the corresponding joint direction

or vanishes (so that base and anchor joints coincide), as shown in Figure 7.11

for the lower left leg.
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Figure 7.12: 3-RPR PPM input singularities

7.2.4 Input mapping and singularities

In this section, we will discuss two different possibilities for the actuated

joints [28, 112]. First, we assume actuators are placed at the base R-joints

i.e. p1,p2,p3. Secondly, we consider the medial P-joints i.e. r4, r5, r6 to be

actuated.

3-RPR

Choosing the base R-joints p1,p2,p3 as actuators, as for the 3-RRR in Sec-
tion 7.1.3, the actuated joint variables are φi = θi, i = 1, 2, 3. Applying
Theorem 5.8, the (21 × 21) Jacobian matrix can then be reduced (by row
operations and deletions of rows and columns with leading 1s) so that input
singularities are determined by the (3× 3) determinant

det


−s1 c1 0

−s2 c2 a1c2,7

−s3 c3 a2cα,3,7

 = a1 sin(θ1 − θ3) sin
(
θ2 − θ7 + π

2

)

+ a2 sin(θ1 − θ2) sin
(
α− θ3 + θ7 + π

2

)
= 0 (7.24)

This corresponds to Ceva’s condition (5.13), where ψa = θ1 + π
2 , ψb = θ2 + π

2 ,

ψc = θ3 + π
2 and ψt = θ7. Geometrically, the lines through the platform
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anchor points and orthogonal to the P-joints r4, r5, r6 are concurrent, see

Figure 7.12. This input singularity is independent of platform orientation θ7.

There is a special input-singular configuration if any of the following

conditions is met

θ1 = θ2 = θ7 mod π/2 (7.25a)

θ1 = θ3 = α + θ7 mod π/2 (7.25b)

θ2 = θ3 − α = θ7 mod π/2 (7.25c)

These special input singularities correspond to configurations where 2 P-

joints in a closed chain are parallel and perpendicular to a side of the plat-

form. Figure 7.13 depicts, for example, a special input singularity of the

bottom closed chain where r4, r5 are parallel and perpendicular to a1.

3-RPR

Actuating the P-joints r4, r5, r6, so φi, i = 4, 5, 6 as given in equation (4.32),

are joint variables, the input mapping can be taken as

(xi, yi, θi)i=1,...,7 7→
[
(x2

1,4 + y2
1,4), (x2

2,5 + y2
2,5), (x2

3,6 + y2
3,6)

]T
(7.26)



7.2. PLANAR 3-RPR PARALLEL MANIPULATOR 153

b2

a2

a1

b1

a2 a1

ψ1

ℓ1

ψ2

ℓ2

ℓ3

-ψ3

γ2γ1

β1

β2
d1

d2

d3

b2
a2

a1

b1

a2

a1

ψ1

ℓ1

ψ2

ℓ2

ℓ3

-ψ3

γ2

γ1

β1

β2

d1

d2

d3

Figure 7.14: 3-RPR input singularities

Theorem 5.8 yields a (21 × 21) Jacobian matrix which can be reduced and
simplified to give the determinant

ξ1ξ2ξ3
(
a1 sin(ψ1 − ψ3) sin(θ7 − ψ2)− a2 sin(ψ1 − ψ2) sin(α+ θ7 − ψ3)

)
= 0 (7.27)

where ψi denote the angles of the legs `i (green dashed lines) with respect

to the reference frame, as illustrated in Figure 7.14. Corresponding input

singularities are given by (i) ξi = 0, i = 1, 2, 3, which are the output sin-

gularity conditions, or (ii) the vanishing of the bracket, which by Ceva’s

condition (5.13), corresponds to the extensions of the leg vectors being con-

current.
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Chapter 8

Planar geared manipulators

The use of gear pairs in a mechanism may confer a number of advantages. For

example, they can enable more efficient placement of the actuators, thereby

reducing their mass and inertia. Epicyclic gear trains (EGTs), in which the

centre of one gear wheel revolves around that of another, are the simplest

form and therefore play an important role in geared mechanisms (GMs). By

utilising EGTs, we can easily place actuators close to the base of a GM and

rotation of inputs can be efficiently transmitted to the end-effector. Careful

choice of gear ratios can also enable end-effector motion to be tailored to

specific inputs.

The fundamental kinematic equations for an epicyclic gear are due to

Willis [113]. Subsequent authors have introduced methods of global anal-

ysis for GMs that ensure that the equations are correctly formulated for a

given mechanism topology and design. Notably, Buchsbaum and Freuden-

stein [114] introduced combinatoric methods to represent the topology of

the mechanism. This approach was later developed by Tsai [86], Hsu and

Lam [115]. In order to enhance the computational effectiveness of the method,

Talpasanu et al. [87] refined and to some extent recast the approach, intro-

ducing the ‘incidence and transfer method’ that uses the cycle matroid of the

mechanism’s directed graph. A comparison of Talpasanu’s method with that

155
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Figure 8.1: 3-dof geared planar manipulator

of Tsai-Tokad was made in [88]. In this Chapter, we illustrate Talpasanu’s

method for a simple geared version of a planar 3R mechanism in order to

determine its kinematic mapping and thereby its singularities.

There does not appear to be an established literature on singularities of

geared mechanisms. For this reason, we explore both a traditional input-

output kinematic model and a constraint-based approach.While the example

presented is straightforward, it is intended to provide a model for extending

singularity analysis of GMs to more complex cases, including those which are

genuinely spatial in their kinematics and to parallel mechanisms incorporat-

ing gearing.

8.1 The mechanism

A simple planar GM consists of n + 1 links, L0, . . . , Ln, and m joints that

include t revolute (turning) pairs, T1, . . . , Tt, and g gear pairs, G1, . . . , Gg,

so that m = t + g. Note that the number of links, excluding the base L0,

is assumed equal to the number of simple pairs, i.e. t = n. In effect, the

mechanism without gears contains no closed chains.

By placing three actuator joints at the base and using simple spur-gear

pairs to transmit motion to the end-effector, one obtains a geared mechanism

based on a simple serial planar 3R mechanism (see Figure 8.1). One EGT,

consisting of three gear wheels and using link L1 as carrier, transmits motion

to the link L7, while a second EGT of five gear wheels with links L1 and L7
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Figure 8.2: Functional schematic of the manipulator in Figure 8.1

as carriers transmits motion to the end-effector.

A functional schematic for the mechanism is illustrated in Figure 8.2.

The inputs, which are attached to the base L0, are via Ti, i = 1, 2, 3 while

link L9 is the output planet gear or end-effector. Note that the carrier arms

L1 and L7 that form the first two links in the underlying planar 3R are also

gear wheels. Other links are intermediate (idler) gear wheels.

In its directed graph (digraph) representation, Figure 8.3, the links (in-

cluding gear wheels) are vertices (L0, . . . , L9) while joints are edges. Specifi-

cally, the revolute pairs (T1, . . . , T9) are solid edges and gear pairs (G1, . . . ,

G6) are dashed. Note that the solid edges form a spanning tree for the graph;

put another way, each simple cycle contains at least one gear pair as an edge.

The direction of an edge connecting vertices (links) Li and Lj is Li → Lj if

the transmission from input to output flows from Li to Lj.

Application of the CGK formula, given in (4.1), shows that the GM has

three degrees of freedom, noting that a gear pair has two degrees of freedom.

Talpasanu [87] and Tsai [86] also observe that there is a relation between the

degrees of freedom of the GM, the number of links and the number of gear

pairs

δ = n− g (8.1)

again yielding δ = 3.
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Figure 8.3: Associated digraph

8.2 Input-output analysis via the matroid

method

To perform the standard input-output kinematic analysis, we apply the ma-

troid method of Talpasanu [87] to obtain the Willis kinematic equations for

all gear pairs and solve these equations to express all joint variables in terms

of the input variables. This enables us to express the forward kinematic

mapping as a product of exponentials (PoEs) in terms of input variables

alone and consequently to undertake the singularity analysis. It is worth

noting that the Willis equations usually express the relation between angu-

lar velocities in a gear-pair/carrier cycle but since the relations between the

joint variables themselves are linear, the same equations hold between the

underlying variables as between their velocities.

There are essentially three stages to the matroid or incidence-transfer

method: the first stage codifies the topology of the digraph representation



8.2. INPUT-OUTPUT ANALYSIS 159

of the GM in matrix form. The second stage builds the specific design on to

this by introducing dimensions that can then be interpreted as gear ratios.

The method ensures that we obtain a minimal set of linear (Willis) equations

and the third stage is to solve these for the joint variables in terms of the

input variables.

Associated to the digraph are two matrices. The incidence matrix Π0

has rows labelled by the vertices and columns by edges and its entries π0
ij are

−1 or 1 according as edge j leaves or enters vertex i, or else is 0. In this
setting, the base L0 is fixed and its row (containing only −1 and 0) is linearly
dependent on the other rows. So, for the purpose of analysis we omit this row
and arrive at the reduced incidence matrix Πn×m, which can be partitioned
into submatrices

Π =
[
Pn×t

∣∣ P̂n×g]

=



T1 T2 T3 T4 T5 T6 T7 T8 T9 | G1 G2 G3 G4 G5 G6

L1 1 0 0 −1 −1 −1 −1 0 0 | 0 0 0 0 0 0

L2 0 1 0 0 0 0 0 0 0 | −1 0 0 0 0 0

L3 0 0 1 0 0 0 0 0 0 | 0 −1 0 0 0 0

L4 0 0 0 1 0 0 0 0 0 | 1 0 −1 0 0 0

L5 0 0 0 0 1 0 0 0 0 | 0 1 0 −1 0 0

L6 0 0 0 0 0 1 0 0 0 | 0 0 1 0 −1 0

L7 0 0 0 0 0 0 1 −1 −1 | 0 0 0 1 0 0

L8 0 0 0 0 0 0 0 1 0 | 0 0 0 0 1 −1

L9 0 0 0 0 0 0 0 0 1 | 0 0 0 0 0 1



(8.2)

A cycle basis matrix Γ for a digraph consists of a maximally independent

set of rows Gi, i = 1, . . . , g, each row corresponding to a cycle, whose entries

γij, j = 1, . . . ,m are −1 or 1 according to whether edge j appears in that

cycle directed with, or opposed to, a given vertex order for the cycle, or

otherwise 0. The cycle space is in fact the nullspace of the incidence matrix

so, according to Euler’s formula, its dimension is m − n. Given the special
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structure of the digraph for a GM, we have m − n = g and a basis for the

cycle space can be indexed by the gear pairs, G1, . . . , Gg. For the given GM,

with the vertex order as indicated in Figure 8.3 by arrows in each basis cycle,

Γ can be partitioned into submatrices

Γg×m =
[
Cg×t

∣∣∣ Ig×g]

=



T1 T2 T3 T4 T5 T6 T7 T8 T9 | G1 G2 G3 G4 G5 G6

G1 −1 1 0 −1 0 0 0 0 0 | 1 0 0 0 0 0

G2 −1 0 1 0 −1 0 0 0 0 | 0 1 0 0 0 0

G3 0 0 0 1 0 −1 0 0 0 | 0 0 1 0 0 0

G4 0 0 0 0 1 0 −1 0 0 | 0 0 0 1 0 0

G5 0 0 0 0 0 1 −1 −1 0 | 0 0 0 0 1 0

G6 0 0 0 0 0 0 0 1 −1 | 0 0 0 0 0 1


(8.3)

where the second block is the identity matrix. Note that Γ is the cycle basis

matrix corresponding to the specific spanning tree for the digraph, which

one can obtain by deleting the dashed lines in Figure 8.3. In any graph

with edge set E, the collection I of subsets of E that do not include a

cycle form a matroid—mathematical objects that capture the abstract idea

of independence. Spanning trees are maximally independent while simple

cycles are minimally dependent objects [116, 87].

The second step is to introduce design parameters into the matrices. The
constraint imposed by the cycles on the motion of the GM is captured by
the joint position matrix ∆ whose entries are δij = cijdij, where cij are
components of the (reduced) cycle basis matrix C and dij = yTj

− yGi
where

yTj
, j = 1, . . . , t and yGi

, i = 1, . . . , g are distances of the axes of turning
joint Tj and meshing joint Gi from the base in home configuration. These
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distances are the radii of the various gear wheels rk, k = 2, . . . , t so that

∆ =



T1 T2 T3 T4 T5 T6 T7 T8 T9

G1 r2 −r2 0 −r4 0 0 0 0 0

G2 r3 0 −r3 0 −r5 0 0 0 0

G3 0 0 0 −r4 0 −r6 0 0 0

G4 0 0 0 0 −r5 0 −r7 0 0

G5 0 0 0 0 0 −r6 r6 −r8 0

G6 0 0 0 0 0 0 0 −r8 −r9


(8.4)

For an oriented gear pair Gi, some i = 1, . . . , g, connecting link (gear

wheel) Lp to Lq, denote the corresponding gear ratio

ρi := −rp
rq

(8.5)

The rows of the matrix represent equations that hold between the joint vari-
ables at each revolute pair (or equivalently their angular velocities) so that
each row can be independently scaled by one of the radii to realise the gear
ratio matrix

Λ =



T1 T2 T3 T4 T5 T6 T7 T8 T9

G1 ρ1 −ρ1 0 −1 0 0 0 0 0

G2 ρ2 0 −ρ2 0 −1 0 0 0 0

G3 0 0 0 −ρ3 0 −1 0 0 0

G4 0 0 0 0 −ρ4 0 −1 0 0

G5 0 0 0 0 0 −ρ5 ρ5 −1 0

G6 0 0 0 0 0 0 0 −ρ6 −1


(8.6)

To arrive finally at a complete set of Willis equations for the GM, it is

necessary to incorporate the component P of the reduced incidence matrix

that provides the connection between the angles of rotation θi for each link

Li and the joint variables φj at each revolute pair Tj, i, j = 1, . . . , n (= t

as noted in Section 8.1). Specifically, set Σg×t = Λg×t P
T
t×t, then the Willis
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equations have the matrix form

Σ θ = 0 (8.7)

where θ is the vector of link rotations and can be partitioned between in-

put variables and passive variables. Following (8.1), there are three input

variables and six passive variables. Explicitly

θ =
[
θδ
∣∣∣ θg]T =

[
θ1 θ2 θ3

∣∣∣ θ4 θ5 θ6 θ7 θ8 θ9

]T
(8.8)

Partitioning Σ in a similar way, and expanding the product gives

Σ =
[
Zδ
∣∣∣Zg]

=



L1 L2 L3 L4 L5 L6 L7 L8 L9

G1 ρ1 + 1 −ρ1 0 | −1 0 0 0 0 0

G2 ρ2 + 1 0 −ρ2 | 0 −1 0 0 0 0

G3 ρ3 + 1 0 0 | −ρ3 0 −1 0 0 0

G4 ρ4 + 1 0 0 | 0 −ρ4 0 −1 0 0

G5 0 0 0 | 0 0 −ρ5 ρ5 + 1 −1 0

G6 0 0 0 | 0 0 0 ρ6 + 1 −ρ6 −1


(8.9)

Now, we can rewrite equation (8.7) in the form of

[
Zδ
∣∣∣Zg]

θδ
θg

 = 0

from which it follows that, provided Zg is non-singular, which is easily verified

in this case,

θg = −Z−1
g Zδ θδ (8.10)

Solving equation (8.10), gives passive variables in terms of input variables as
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follows

θ4

θ5

θ6

θ7

θ8

θ9


=



ρ1 + 1 −ρ1 0

ρ2 + 1 0 −ρ2

1− ρ1ρ3 ρ1ρ3 0

1− ρ2ρ4 0 ρ2ρ4

ρ1ρ3ρ5 − ρ2ρ4(1 + ρ5) + 1 −ρ1ρ3ρ5 ρ2ρ4(1 + ρ5)

−ρ1ρ3ρ5ρ6 + ρ2ρ4(ρ5ρ6 − 1) + 1 ρ1ρ3ρ5ρ6 −ρ2ρ4(ρ5ρ6 − 1)




θ1

θ2

θ3

 (8.11)

8.3 KCM and C-space singularities

In the previous section, we showed how to find relations between turning

pairs in a GM by using the matroid method. In this section, we are going to

determine the KCM corresponding to the GM in Figure 8.2 and then examine

whether there are C-space, input, and output singularities or not.

There are two ways we could approach the GM using the KCM approach.

It is possible to do the analysis from scratch. As in Figure 8.1, the manip-

ulator has nine mobile links, L1, . . . , L9, including gear wheels. It has nine

R-joints, T1, . . . , T9 and six gear pairs, G1, . . . , G6. The domain of the KCM

should be SE(2)9 with 27 pose variables. The R-joints give 18 constraint

equations, with nine pairs as in (4.13). So far, we have not discussed con-

straint equations for gear pairs. Since each pair has two degrees of freedom,

we have only one constraint. This is given in terms of the gear ratio (8.5).

Since the relative rotations of the gear pair are related by this, if the gear

pair Gi involves links Lp and Lq with gear ratio ρi, then

θp = ρiθq (8.12)

This gives a KCM F : SE(2)9 → R24. Indeed, it is relatively straightforward

to compute its Jacobian and observe that it always has maximum rank.

On the other hand, we have already shown how to eliminate the passive

joint variables using (8.11) so a simpler approach is to find the KCM for
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Figure 8.4: Planar GM with associated frames and links’ lengths

the underlying serial manipulator determined by the carrier arms L1, L7 and

end-effector L9. Ultimately, the two approaches can be seen to be equivalent

by eliminating variables and constraints.

As shown in Figure 8.4, the planar GM is based on the serial manipulator

consisting of four rigid bodies L0, L1, L7, L9 which are connected via planar

R-joints T1, T7, T9. Assume L0 is fixed, so there are totally nine pose variables

and three design parameters (link lengths) li, i = 1, 7, 9.

Based on the choice of reference and moving frames, body coordinates of

three revolute joints in M± frames are

pR1 = (0, 0)T , p1
7 = (l1, 0)T , p7

9 = (l7, 0)T

p1
1 = (0, 0)T , p7

7 = (0, 0)T , p9
9 = (−l9, 0)T

Reference-frame coordinates of each joint can be obtained using (4.11). Each
joint imposes a pair of constraint equations like those given in (4.12). There-
fore, the KCM F : SE(2)3 → R6 can be defined in terms of pose variables

(xi, yi, θi)i=1,7,9 7→ [−x1,−y1, x1 − x7 + l1c1, y1 − y7 + l1s1, x7 − x9 + l7c7 + l9c9,

y7 − y9 + l7s7 + l9s9]T (8.13)

Taking derivatives of (8.13) results in a (6 × 9) Jacobian matrix which

can be reduced to a (2× 5) matrix by row operations and deletions of rows
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and columns with leading 1s

J1F
red =

−l1s1 −l7s7 −1 0 −l9s9

l1c1 l7c7 0 −1 l9c9

 (8.14)

Clearly, this matrix is non-singular because it contains one (2 × 2) minor

whose determinant equals one. As a result, C-space singularities never occur.

This is an example to show that the C-space of a serial manipulator is always

a smooth manifold.

Since dim C = 3, three actuated joints are required, in the serial manip-

ulator, these are revolute pairs T1, T7, T9. As in (4.31), their joint variables

are φ1 = θ1, φ7 = θ7− θ1 and φ9 = θ9− θ7, respectively. Thus, its input map

π̂a is the restriction to C

(xi, yi, θi)i=1,7,9 7→ (θ1, θ7 − θ1, θ9 − θ7) (8.15)

However, the GM inputs are θ1, θ2, θ3 and using (8.11), we can replace θ7, θ9

in Πa := (π̂a, F ) by these inputs

(xi, yi, θ1, θ2, θ3)i=1,7,9 7→ [−x1,−y1, x1 − x7 + l1cθ1 , y1 − y7 + l1sθ1 , x7 − x9

+l7cα1θ1cα3θ3 + l9cβ1θ1cβ2θ2cβ3θ3 − l9cβ3θ3sβ1θ1sβ2θ2

−l7sα1θ1sα3θ3 − l9cβ2θ2sβ1θ1sβ3θ3 − l9cβ1θ1sβ2θ2sβ3θ3 ,

y7 − y9 + l7cα3θ3sα1θ1 + l9cβ2θ2cβ3θ3sβ1θ1

+l9cβ1θ1cβ3θ3sβ2θ2 + l7cα1θ1sα3θ3 + l9cβ1θ1cβ2θ2sβ3θ3

−l9sβ1θ1sβ2θ2sβ3θ3 , θ1,−θ1 + α1θ1 + α3θ3,−α1θ1

+β1θ1 + β2θ2 − α3θ3 + β3θ3]T (8.16)

where α1 = 1 − ρ2ρ4, α3 = ρ2ρ4, β1 = −ρ1ρ3ρ5ρ6 + ρ2ρ4(ρ5ρ6 − 1) + 1,
β2 = ρ1ρ3ρ5ρ6, and β3 = −ρ2ρ4(ρ5ρ6 − 1). Taking derivatives of Πa results
in a (9 × 9) Jacobian matrix which can be reduced (by row operations and
deletions of rows and columns with leading 1s) so that input singularities are
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determined by the (5× 5) determinant

det



−1 0 −l1s1 − l7α1s1,3 − l9β1s1,2,3 −l9β2s1,2,3 −l7α3s1,3 − l9β3s1,2,3

0 −1 l1c1 + l7α1c1,3 + l9β1c1,2,3 l9β2c1,2,3 l7α3c1,3 + l9β3c1,2,3

0 0 1 0 0

0 0 α1 − 1 0 α3

0 0 β1 − α1 β2 β3 − α3


= −α3β2 (8.17)

where c1,3 = cos(α1θ1+α3θ3) and c1,2,3 = cos(β1θ1+β2θ2+β3θ3) and similarly

for sines. Assume α3, β2 > 0 (they are products of gear ratios), this non-zero

determinant shows that for a serial manipulator like the one in Figure 8.4

there are no input singularities.

Since the displacement of the end-effector L9 is planar and represented by

an element of SE(2), so dimW = 3. Hence, the W-space is parametrised by

(x9, y9, θ9) and the output map is the restriction of π̂w to C. For identifying

output singularities, we follow Theorem 5.8 so

Πw := (π̂w, F ) : (xi, yi, θi)i=1,7,9 →
(
x9, y9, θ9, F (x1, . . . , θ9)

)
(8.18)

The Jacobian of Πw can be reduced (by row operations and deletions of rows

and columns with leading 1s) to a (5× 5) matrix whose determinant is used

to detect output singularities

det



0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

−l1s1 −l7s7 −1 0 −l9s9

l1c1 l7c7 0 −1 l9c9


= −l1l7 sin(θ1 − θ7) (8.19)

Clearly, an output singularity occurs if θ1 = θ7 mod π—geometrically, when
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L1, L7 are aligned.

In the next section, we are going to study FKP based on the input-output

relation which is formulated by using a PoEs. We will show that singularities

corresponding to FKP include both input and output singularities. However

since the input mapping is non-singular, so the FKP singularities only depend

on the output map.

8.4 Forward kinematic and singularity anal-

ysis

The forward kinematic map of the mechanism can be written in terms of the

revolute pair rotations as a product of exponentials (PoE) in the relevant

Euclidean group (see Murray et al. [80]). In this case, as the mechanism is

planar, the group is SE(2). The form of PoE derives from the corresponding

open-loop chain (see Tsai [117]) as follows

T (φ) = eX1φ1eX7φ7eX9φ9T (0) (8.20)

where T (0) is the transformation between base and end-effector frames at

the rest position φ = 0 and Xi denote the infinitesimal rotations of revolute

joints Ti, i = 1, 7, 9 about their centres of rotation. Explicitly, we can use

homogeneous representations as follows

Xi =


0 −1 0

1 0 −ξi
0 0 0

 (8.21)

where (with respect to appropriate choices of body coordinates) ξ1 = 0,

ξ7 = l1, ξ9 = l1 + l7 with l1 = r2 +2r4 +r6 = r3 +2r5 +r7 and l7 = r6 +2r8 +r9
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the lengths of the carrier arms L1 and L7 (see Figure 8.2); and

T (0) =


1 0 l1 + l7

0 1 0

0 0 1

 (8.22)

Then the homogeneous form of the forward kinematic map is

T (φ) =


cos(φ1 + φ7 + φ9) − sin(φ1 + φ7 + φ9) l1 cosφ1 + l7 cos(φ1 + φ7)

sin(φ1 + φ7 + φ9) cos(φ1 + φ7 + φ9) l1 sinφ1 + l7 sin(φ1 + φ7)

0 0 1

 (8.23)

This can be more simply expressed in terms of link rotation variables using

θ1 = φ1, θ7 = φ1 + φ7, and θ9 = φ1 + φ7 + φ9. Moreover, for purposes

of singularity analysis it is preferable to work with a local representation

of the kinematic mapping T . Simply using the angle θ9 to parametrise the

rotation matrix that constitutes the top left (2×2) block of the homogeneous

transformation, the local representation is

(θ1, θ7, θ9) 7→


θ9

l1 cos θ1 + l7 cos θ7

l1 sin θ1 + l7 sin θ7

 (8.24)

In this form, we have simply made use of the passive variables that de-

scribe the kinematics of the underlying 3R mechanism. These can now be

expressed using (8.11) in terms of the input variables. Hence, the kinematic

mapping for the GM can be expressed as a function f : R3 → R3, where

f(θ1, θ2, θ3) =


β1θ1 + β2θ2 + β3θ3

l1 cos θ1 + l7 cos(α1θ1 + α3θ3)

l1 sin θ1 + l7 sin(α1θ1 + α3θ3)

 (8.25)

It is worth noting that by judicious choice of gear ratios the rotation of the
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end-effector can be made independent of one or more input variables. For

example, setting ρ1ρ3 = ρ5ρ6 = 1 (equivalently r2 = r6 = r9) ensures the

rotation is independent of θ1, θ3 and is directly equal to θ2.
Finally, to find singularities we need to investigate the Jacobian of the

kinematic mapping f . From (8.25) we obtain

J =


β1 β2 β3

−l1 sin θ1 − α1l7 sin(α1θ1 + α3θ3) 0 −α3l7 sin(α1θ1 + α3θ3)

l1 cos θ1 − α1l7 cos(α1θ1 + α3θ3) 0 α3l7 cos(α1θ1 + α3θ3)

 (8.26)

For a singularity, we require

det J = α3β2l1l7 sin(θ1 − α1θ1 − α3θ3) = 0 (8.27)

The design parameters α3, β2, l1, l7 are assumed non-zero so the GM is sin-

gular if and only if sin(θ1 − α1θ1 − α3θ3) = 0 and hence

θ1 − θ3 = η3π

ρ2ρ4
η3 ∈ Z

We note that, of course, this corresponds precisely to the output map singu-

larities found in (8.19).

Thus, the singular configurations of mechanism in Figure 8.1 are strictly

contingent on the difference between input variables θ1 and θ3. It can be

concluded that increasing the product of gear ratios ρ2ρ4 connecting gear

wheels L3 and L7 can cause more singular points in the joint space, while

keeping it close to zero will reduce singularities. It must be noticed that

having ρ2ρ4 � 1 may have dynamic consequences. The images of the sin-

gularity set in the workspace of course correspond to the expected singular

configurations in which carrier arms L1 and L7 are collinear.
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Chapter 9

Spatial parallel manipulators

Having demonstrated the application of the constraint-based approach across

a range of planar manipulators, the next goal is to test its effectiveness for

spatial parallel manipulators (SPMs). A number of challenges have to be ad-

mitted. Firstly, a link in space requires at least six pose variables as opposed

to three in the planar case. In effect, to obtain a single global description, it

may be preferable to work with dual quaternions, involving eight variables

subject to two additional constraints. Secondly, SPM typically require more

links than their planar counterparts. For example, the natural extension of

the 3-RPR PPM is the (general) Gough-Stewart (GS) platform [100], which

may be interpreted as a 6-UPS (or sometimes 6-SPS) SPM.

Finally, as well as a great number of links, there are more joints and hence

a larger number of constraint equations. In the case of the GS platform,

there are 13 moving links requiring 78 (or 104 using dual quaternions) pose

variables and, for the 6-SPS version, 6×11 = 66 (or 66+22 = 92) constraint

equations. Six of the resulting degrees of freedom corresponding to legs

rotating about the prismatic joint. As a result, the Jacobian is very large

and the number of minors required to vanish is intractable.

Nevertheless, the analysis is attempted for a simpler mechanism, with

the aim of finding some patterns that may indicate a way to proceed in more

171
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complex cases.

9.1 Spatial 3-RPS parallel manipulator

A general spatial 3-RPS PM is illustrated in Figure 9.1, along with a choice of

moving and reference frames, together with design parameters. This mech-

anism is made up of k = 7 moving components. Using dual quaternions

in (2.33) to represent spatial displacements, there are totally 56 pose vari-

ables required to express displacement of the whole mechanism in the ambient

space. In addition, there are totally 18 design parameters

• the base: b2, b3, β

• offset distances: d1, d2, d3

• angles between joint axes: ψ1, . . . , ψ6

• link lengths: a4, a5, a6

• the platform: a8, a9, α

This spatial PM consists of three R-joints, three P-joints, and three S-joints.

As shown in Figure 9.1, the body coordinates of these joints in the preceding

and following frames are

r−i = (0,− sinψi, cosψi)T , r+
i = (0, 0, 1)T i = 1, . . . , 6

p−j = (aj, 0, 0)T , p+
j = (0, 0, 0)T

n−j = (0, cosψj, sinψj)T , n+
j = (0, 1, 0)T j = 4, 5, 6

p+
k = (0, 0,−dk)T k = 1, 2, 3

pR1 = (0, 0, 0)T , pR2 = (b2, 0, 0)T , pR3 = (b3 cos β, b3 sin β, 0)T

p7
7 = (0, 0, 0)T , p7

8 = (a8, 0, 0)T , p7
9 = (a9 cosα, b3 sinα, 0)T

p4
7 = p5

8 = p6
9 = (0, 0, 0)T
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Figure 9.1: 3-RPS spatial PM with associated moving frames and design
parameters

Each R-, P-, and S-joint imposes a set of constraint equations of the form

(A.1), (A.2), (A.5), respectively. Every R- and P-joint imposes five constraint

equations while every S-joint imposes three. Since a dual quaternions is

employed to represent an element of SE(3), there are two extra pose variables

and conditions (2.38a), (2.38b) corresponding to each mobile link.
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−
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+
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p
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p
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−
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2p
23
q 2

0q
52
q 5

3
+

2p
22
q 2
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−
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−
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3q
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p
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−
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0q
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+
p
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q 2

1q
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+

p
20
q 2
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−
p
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q 2

3q
2 53
−
p
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q 5

0q
2 53
−
p

53
q 5

1q
2 53

+
p

50
q 5
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2 53

+
p

51
q3 53
,p

32
q 3

0q
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−
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+
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−
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−
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−
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q 3

0q
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+
p

33
q 3

1q
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+
p
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q 3

2q
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−
p

31
q 3

3q
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−

p
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q 6

0q
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−
p
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q3 61

+
p
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2
+

2p
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q 3
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q 6

2
−

2p
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q 3

1q
61
q 6

2
+

2p
33
q 3

2q
61
q 6

2
−

2p
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q 3

3q
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q 6

2+

p
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q2 61
q 6

2
+
p

32
q 3

0q
2 62
−
p

33
q 3

1q
2 62
−
p

30
q 3

2q
2 62

+
p

31
q 3

3q
2 62
−
p

62
q 6

0q
2 62
−
p

63
q 6

1q
2 62

+
p

60
q3 62
−

2p
31
q 3

0q
60
q 6

3
+

2p
30
q 3

1q
60
q 6

3
−

2p
33
q 3

2q
60
q 6

3
+

2p
32
q 3

3q
60
q 6

3
+
p

61
q2 60
q 6

3
+
p

61
q2 61
q 6

3+

2p
33
q 3

0q
62
q 6

3
+

2p
32
q 3

1q
62
q 6

3
−

2p
31
q 3

2q
62
q 6

3
−

2p
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q 3

3q
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q 6

3
+
p

61
q2 62
q 6

3
−
p

32
q 3

0q
2 63

+
p

33
q 3

1q
2 63

+
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p

30
q 3

2q
2 63
−
p

31
q 3

3q
2 63
−
p

62
q 6

0q
2 63
−
p

63
q 6

1q
2 63

+
p

60
q 6

2q
2 63

+
p

61
q3 63

]T
(9
.1
)

w
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=
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c α

=
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=
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d
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r
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.
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The KCM in (9.1) specifies the D-space for the full family of 3-RPS

SPMs with design parameters. However in the literature [118, 119], a specific

architecture has been widely studied, with the following specific choices of

design parameters

• axes of three R-joints coplanar: di = 0, ψi = π/2, i = 1, 2, 3

• in each leg, the P-joint is perpendicular to and passes through the

R-joint: ai = 0, ψi = π/2, i = 4, 5, 6

An additional assumption is that the three RP intersect and the three S-

joints form an equilateral triangle that does not have a significant impact on

the analysis.

These assumptions simplify the KCM and so the Jacobian, which is a

(53× 56) matrix, can be partitioned

JF =

A C

B D


where A,B,C,D are (24× 24), (29× 24), (24× 32), (29× 32) block matrices,

respectively. A mathematica worksheet detailing the computation can be

found here [110]. A summary is as follows.

Further, block matrix A consists of six diagonal (4×4) block submatrices



A11 04 04 04 04 04

04 A22 04 04 04 04

04 04 A33 04 04 04

04 04 04 A44 04 04

04 04 04 04 A55 04

04 04 04 04 04 A66


(9.2)
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where

Aii =



qi1 −qi0 qi3 −qi2
qi2 −qi3 −qi0 qi1

qi3 qi2 −qi1 −qi0
qi0 qi1 qi2 qi3


i = 1, . . . , 6

Block matrix B is of the form
026×12 026×12

B21 B22

 (9.3)

where B2j is (3× 12), j = 1, 2 with

B21 =


bT27 0T 0T

0T bT28 0T

0T 0T bT29


where 0T = (0, 0, 0, 0)T is a row vector.

bT27 =
[
−2(q13q40q41 + q11q41q42 − q11q40q43 + q13q42q43) + q12(−q2

40 + q2
41 − q2

42 + q2
43),

−2(q12q40q41 − q10q41q42 + q10q40q43 + q12q42q43) + q13(q2
40 − q2

41 + q2
42 − q2

43),

2(q11q40q41 − q13q41q42 + q13q40q43 + q11q42q43) + q10(q2
40 − q2

41 + q2
42 − q2

43),

2(q10q40q41 + q12q41q42 − q12q40q43 + q10q42q43) + q11(−q2
40 + q2

41 − q2
42 + q2

43)
]T
,

bT28 =
[
−2(q23q50q51 + q21q51q52 − q21q50q53 + q23q52q53) + q22(−q2

50 + q2
51 − q2

52 + q2
53),

−2(q22q50q51 − q20q51q52 + q20q50q53 + q22q52q53) + q23(q2
50 − q2

51 + q2
52 − q2

53),

2(q21q50q51 − q23q51q52 + q23q50q53 + q21q52q53) + q20(q2
50 − q2

51 + q2
52 − q2

53),

2(q20q50q51 + q22q51q52 − q22q50q53 + q20q52q53) + q21(−q2
50 + q2

51 − q2
52 + q2

53)
]T
,

bT29 =
[
−2(q33q60q61 + q31q61q62 − q31q60q63 + q33q62q63) + q32(−q2

60 + q2
61 − q2

62 + q2
63),

−2(q32q60q61 − q30q61q62 + q30q60q63 + q32q62q63) + q33(q2
60 − q2

61 + q2
62 − q2

63),

2(q31q60q61 − q33q61q62 + q33q60q63 + q31q62q63) + q30(q2
60 − q2

61 + q2
62 − q2

63),

2(q30q60q61 + q32q61q62 − q32q60q63 + q30q62q63) + q31(−q2
60 + q2

61 − q2
62 + q2

63)
]T
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and

B22 =


q42 q43 −q40 −q41 0 0 0 0 0 0 0 0

0 0 0 0 q52 q53 −q50 −q51 0 0 0 0

0 0 0 0 0 0 0 0 q62 q63 −q60 −q61


Block matrix C has shape



C11 04 04 04 04 04 04 04

04 C22 04 04 04 04 04 04

04 04 C33 04 04 04 04 04

04 04 04 C44 04 04 C47 C48

04 04 04 04 C55 04 C57 C58

04 04 04 04 04 C66 C67 C68


(9.4)

with each Ci,j and 04 all (4× 4) blocks and
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C
ii

=

       −
p
i1

p
i0

−
p
i3

p
i2

−
p
i2

p
i3

p
i0

−
p
i1

−
p
i3
−
p
i2

p
i1

p
i0

p
i0

p
i1

p
i2

p
i3

       
C
j
8

=

       0
0

0
0

q 7
1
−
q 7

0
q 7

3
−
q 7

2

q 7
2
−
q 7

3
−
q 7

0
q 7

1

q 7
3

q 7
2
−
q 7

1
−
q 7

0       
i

=
1,
..
.,

6
j

=
4,

5,
6

C
47

=

       0
0

0
0

−
p

71
p

70
−
p

73
p

72

−
p

72
p

73
p

70
−
p

71

−
p

73
−
p

72
p

71
p

70

       
C

57
=

          

0
0

0
0

−
p

71
+
a

8q
70

p
70

+
a

8q
71

−
p

73
−
a

8q
72

p
72
−
a

8q
73

−
p

71
+
a

8q
70

p
70

+
a

8q
71

−
p

73
−
a

8q
72

p
72
−
a

8q
73

−
p

72
+
a

8q
73

p
73

+
a

8q
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p
70

+
a

8q
71

−
p

71
+
a

8q
70

−
p

73
−
a

8q
72
−
p

72
+
a

8q
73

p
71
−
a

8q
70

p
70

+
a

8q
71

          

C
67

=

       
0

0
0

0

−
p

71
+
a

9q
70
c α
−
a

9q
73
s α

p
70

+
a

9q
71
c α

+
a

9q
72
s α

−
p

73
−
a

9q
72
c α

+
a

9q
71
s α

p
72
−
a

9(
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α

+
q 7

0s
α

)

−
p

72
+
a

9q
73
c α

+
a

9q
70
s α

p
73

+
a

9q
72
c α
−
a

9q
71
s α

p
70

+
a

9q
71
c α

+
a

9q
72
s α

−
p

71
+
a

9q
70
c α
−
a

9q
73
s α

−
p

73
−
a

9q
72
c α

+
a

9q
71
s α

−
p

72
+
a

9q
73
c α

+
a

9q
70
s α

p
71
−
a

9q
70
c α

+
a

9q
73
s α

p
70

+
a

9q
71
c α

+
a

9q
72
s α

       
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Finally, Block D is given by



D11 04 04

04 D22 04

04 04 D33

D14 04 04

04 D25 04

04 04 D36

012×8

D41 04 04

04 D52 04

04 04 D63

09×12 09×8

03×12

qT4 0T 0T

0T qT5 0T

0T 0T qT6

03×8

02×12 02×12
qT7 0T

pT7 qT7
d1

27
T 0T 0T

0T d1
28
T 0T

0T 0T d1
29
T

d2
27
T 0T 0T

0T d2
28
T 0T

0T 0T d2
29
T

03×8


where qTi = (qi0, qi1, qi2, qi3), i = 4, . . . , 7, pT7 = (p70, p71, p72, p73) and

d1
27
T =

[
2(p13q40q41 + p11q41q42 − p11q40q43 + p13q42q43) + p12(q2

40 − q2
41 + q2

42 − q2
43),

2(p12q40q41 − p10q41q42 + p10q40q43 + p12q42q43) + p13(−q2
40 + q2

41 − q2
42 + q2

43),

−2(p11q40q41 − p13q41q42 + p13q40q43 + p11q42q43) + p10(−q2
40 + q2

41 − q2
42 + q2

43),

−2(p10q40q41 + p12q41q42 − p12q40q43 + p10q42q43) + p11(q2
40 − q2

41 + q2
42 − q2

43)
]T
,

d2
27
T =

[
−2p13q11q40 − 2p10q12q40 + 2p11q13q40 − 3p42q

2
40 + 2p13q10q41 − 2p11q12q41

−2p10q13q41 − 2p43q40q41 − p42q
2
41 + 2p40q40q42 − p42q

2
42 + 2(−p11q10 + p10q11

−p13q12 + p41q40)q43 − p42q
2
43 + 2p12(q10q40 + q11q41 + q13q43),−2p11q12q40

−2p10q13q40 − p43q
2
40 + 2p10q12q41 − 2p11q13q41 − 2p42q40q41 − 3p43q

2
41

+2p11q10q42 − 2p10q11q42 + 2p40q41q42 − p43q
2
42 + 2p13(q10q40 + q11q41 + q12q42)

+2p12(q11q40 − q10q41 − q13q42) + 2p41q41q43 − p43q
2
43, 2(p11q10 − p10q11 + p13q12

−p12q13)q41 − 2(−p12q10 + p13q11 + p10q12 − p11q13 + p42q40 + p43q41)q42

+2(p13q10 + p12q11 − p11q12 − p10q13 + p41q42)q43 + p40(q2
40 + q2

41 + 3q2
42 + q2

43),
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−2p13q12q40 + 2p12q13q40 + p41q
2
40 + p41q

2
41 + 2p13q10q42 + 2p12q11q42 + p41q

2
42

−2(p12q10 − p13q11 + p42q40 + p43q41 − p40q42)q43 + 3p41q
2
43 + 2p10(q11q40

−q13q42 + q12q43)− 2p11(q10q40 + q12q42 + q13q43)]T ,

d1
28
T =

[
2(p23q50q51 + p21q51q52 − p21q50q53 + p23q52q53) + p22(q2

50 − q2
51 + q2

52 − q2
53),

2(p22q50q51 − p20q51q52 + p20q50q53 + p22q52q53) + p23(−q2
50 + q2

51 − q2
52 + q2

53),

−2(p21q50q51 − p23q51q52 + p23q50q53 + p21q52q53) + p20(−q2
50 + q2

51 − q2
52 + q2

53),

−2(p20q50q51 + p22q51q52 − p22q50q53 + p20q52q53) + p21(q2
50 − q2

51 + q2
52 − q2

53)
]T
,

d2
28
T =

[
−2p23q21q50 − 2p20q22q50 + 2p21q23q50 − 3p52q

2
50 + 2p23q20q51 − 2p21q22q51

−2p20q23q51 − 2p53q50q51 − p52q
2
51 + 2p50q50q52 − p52q

2
52 + 2(−p21q20 + p20q21

−p23q22 + p51q50)q53 − p52q
2
53 + 2p22(q20q50 + q21q51 + q23q53),−2p21q22q50

−2p20q23q50 − p53q
2
50 + 2p20q22q51 − 2p21q23q51 − 2p52q50q51 − 3p53q

2
51

+2p21q20q52 − 2p20q21q52 + 2p50q51q52 − p53q
2
52 + 2p23(q20q50 + q21q51 + q22q52)

+2p22(q21q50 − q20q51 − q23q52) + 2p51q51q53 − p53q
2
53, 2(p21q20 − p20q21

+p23q22 − p22q23)q51 − 2(−p22q20 + p23q21 + p20q22 − p21q23 + p52q50 + p53q51)q52

+2(p23q20 + p22q21 − p21q22 − p20q23 + p51q52)q53 + p50(q2
50 + q2

51 + 3q2
52 + q2

53),

−2p23q22q50 + 2p22q23q50 + p51q
2
50 + p51q

2
51 + 2p23q20q52 + 2p22q21q52 + p51q

2
52

−2(p22q20 − p23q21 + p52q50 + p53q51 − p50q52)q53 + 3p51q
2
53 + 2p20(q21q50 − q23q52

+q22q53)− 2p21(q20q50 + q22q52 + q23q53)]T ,

d1
29
T =

[
2(p33q60q61 + p31q61q62 − p31q60q63 + p33q62q63) + p32(q2

60 − q2
61 + q2

62 − q2
63),

2(p32q60q61 − p30q61q62 + p30q60q63 + p32q62q63) + p33(−q2
60 + q2

61 − q2
62 + q2

63),

−2(p31q60q61 − p33q61q62 + p33q60q63 + p31q62q63) + p30(−q2
60 + q2

61 − q2
62 + q2

63),

−2(p30q60q61 + p32q61q62 − p32q60q63 + p30q62q63) + p31(q2
60 − q2

61 + q2
62 − q2

63)
]T
,

d2
29
T =

[
−2p33q31q60 − 2p30q32q60 + 2p31q33q60 − 3p62q

2
60 + 2p33q30q61 − 2p31q32q61

−2p30q33q61 − 2p63q60q61 − p62q
2
61 + 2p60q60q62 − p62q

2
62 + 2(−p31q30 + p30q31

−p33q32 + p61q60)q63 − p62q
2
63 + 2p32(q30q60 + q31q61 + q33q63),−2p31q32q60

−2p30q33q60 − p63q
2
60 + 2p30q32q61 − 2p31q33q61 − 2p62q60q61 − 3p63q

2
61

+2p31q30q62 − 2p30q31q62 + 2p60q61q62 − p63q
2
62 + 2p33(q30q60 + q31q61 + q32q62)

+2p32(q31q60 − q30q61 − q33q62) + 2p61q61q63 − p63q
2
63, 2(p31q30 − p30q31 + p33q32

−p32q33)q61 − 2(−p32q30 + p33q31 + p30q32 − p31q33 + p62q60 + p63q61)q62

+2(p33q30 + p32q31 − p31q32 − p30q33 + p61q62)q63 + p60(q2
60 + q2

61 + 3q2
62 + q2

63),
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−2p33q32q60 + 2p32q33q60 + p61q
2
60 + p61q

2
61 + 2p33q30q62 + 2p32q31q62 + p61q

2
62

−2(p32q30 − p33q31 + p62q60 + p63q61 − p60q62)q63 + 3p61q
2
63 + 2p30(q31q60 − q33q62

+q32q63)− 2p31(q30q60 + q32q62 + q33q63)]T
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and

Dji =


qi2 qi3 qi0 qi1

−2qi0 2qi1 2qi2 −2qi3
qi0 qi1 qi2 qi3

 , i = 1, 2, 3, j = i+ 3

Since A is non-singular, the determinant of JF is then given in terms of

the Schur complement of A by

det JF = detA det(D −BA−1C) (9.5)

where, since detAii = (q2
i0 + q2

i1 + q2
i2 + q2

i3)2 = 1, i = 1, . . . , 6, detA = 1. On

the other hand, the Schur complement M := D −BA−1C may be singular.

Indeed, we have a C-space singularity whenever the KCM satisfies F = 0

and rank < 29. After finding A−1 and doing the rest of computation, the

(29× 32) matrix M can be partitioned as

M11 024×8

M21 M22


where M11 is a (24× 24) square matrix, whose determinant factorises as

detM11 = m1n1m2n2m3n3m4n4m5n5m6n6 (9.6)
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In principle, the C-space singularities correspond to any of these 12 fac-

tors vanishing together with rankM22 < 5 at any point in the C-space. So

far, explicit solutions to the resulting equations have not been computed.

Nonetheless, it seems possible that relevant geometric conditions could be

isolated. But finding Grashof-type conditions seems much more distant since

the analysis here has been already restricted to a specific choice of design pa-

rameters.



Chapter 10

Conclusion

In the robot kinematics literature, existing approaches to modelling manip-

ulator kinematics and singularity analysis make use of combination of joint

or input variables, pose or output variables and loop-closure equations. This

approach has largely been successful for serial manipulators. However, it

has been less effective for parallel manipulators. Joint variables measure the

mobility between links. Whereas, pose variables measure positions and ori-

entations of links, usually in some reference frame. Rather than regarding

joints as allowing freedom between link, a complementary approach is to

treat them as imposing constraints on the free motion of links, and thus,

on their pose variables. This makes a constraint-based approach in terms of

pose variables alone more desirable and even universal in that any (serial or

parallel) manipulator can be represented as a collection of links and joints.

The core idea beyond the proposed approach in this thesis is to first

remove all direct references to joint variables in the kinematic model and then

define a global map (i.e. the KCM) just based on constraints. Moreover, we

observe that apparent mobility constraints such as closed loops are in fact

simple consequences of the joint constraints. Then, we can identify constraint

singularities of the given mechanism by analysing the associated Jacobian of

the KCM.
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As noted in Chapter 1, most existing approaches analyse instantaneous

configurations. This type of analysis (instantaneous analysis) is like taking

different snapshots from the mechanism and working on them separately.

The logic behind those approaches is to determine geometric conditions for

singularity without computing the global set of singular points. The main

drawback of an instantaneous analysis is that it may lose information by not

computing the full configuration space.

A fundamental feature of our approach is to provide a reliable method

for representing the configuration space, independent of the choice of input

and output. The configuration space—as we define it—uniquely represents

all possible pose variables of all moving links.

The proposed approach is theoretically robust. That is, the KCM is

complete and generic because it fully captures the topological properties

within a family of mechanisms. Although theoretically it can be utilised

to study any constrained mechanical system, the approach has some limits

in practice. For most spatial mechanisms, the large number of constraint

equations and pose variables mean that the analysis faces computational

difficulties. This could be a possible path in the future for investing whether

a method of reduction based on algebraic geometry would be a candidate to

overcome the complexity of a spatial mechanism.

A special feature of the proposed approach is that the impact of design pa-

rameters on mechanism singularities is examined more fundamentally. While

some research has explored the impact of design parameters on kinematics,

mostly it focuses on either specific choices or on generic cases. In this thesis,

we have shown that configuration space singularities typically occur when

the design parameters satisfy a single (i.e. codimension 1) condition, which

was termed a Grashof-type condition. Existing Grashof-type conditions in

the robot kinematics literature are for fairly simple mechanisms, such as the

planar 4-R. This has been extended to more complex mechanisms such as
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the planar 3-RRR. As a future work, it would be interesting to study the

geometry of these singularities more deeply to determine conditions for say,

simple double points, cusps, tacnodes etc.

Recent research has started to identify the configuration space as the

basic object for kinematic modelling and that inputs and outputs may be

then selected in various ways. Therefore, the input and output mappings

are defined from the C-space into relevant actuator and work spaces. In this

thesis, this approach is explicitly defined in terms of pose variables. As a

result, direct calculation of input and output singularities can be done. We

show how this relates to the existence or otherwise of forward and inverse

kinematic mappings. This approach seems to clarify the various existing

classifications of manipulator singularities. However. fully connecting our

results with, say, the classification of Zlatanov [2] would be worthwhile.

Several possible research directions have already been mentioned. The

author would like to briefly mention a few more paths that could be taken

in the future.

This thesis has focused on symbolic calculation and closed-form solutions.

Nevertheless, as mentioned, this has shortcomings. It would be interesting

to revisit some of the problems based on the numerical or interval analysis.

Numerical and interval analysis approaches have been applied by Merlet [120]

and Bohigas et al. [53]. It would be worthwhile to explore if they can be

adapted to our model.

Kinematics and singularities of redundant manipulators is another direc-

tion to follow based on the proposed approach. In a regular robot manipula-

tor number of inputs is equal to the degrees of freedom—all examples in this

thesis are of this type. On the other hand, a redundant robot has greater

number of inputs. This can help the robot to have a wider workspace and

also to avoid singularities. One major impact will be the Jacobian of the

input mapping will no longer be square. This is already consistent with our
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approach but it would be interesting to explore the impact on the dimensions

of singularity sets via transversality.

Finally, dynamic analysis of manipulators may be adapted to this ap-

proach along the lines proposed by Park and Kim [54]. Given the precision

of the kinematic model, there should be a real advantage in capturing the

dynamics on the C-space since it can play a significant role in constructing

control systems that are adapted for singularities [121].



Appendix A

Constraint equations for spatial

joints

Here, we list all spatial joints along with their constraint equations. The full

detail can be found in [110].
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5. S-joint:

(qpi ; qdi)i=0,1,2,3
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−
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−
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(A.5)

6. U-joint:
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Appendix B

Singularities and Grashof-type

conditions for 3-RRR PPM

To illustrate the derivation of the conditions in (7.4) eight of the (4 × 4)
minors are shown. In the following, we write sij = sin(θi − θj) and similarly
for cosine.

S1 =


−l1s1 l2s2 0 −l4s4

l1c1 −l2c2 0 l4c4

0 −l2s2 l3s3 0

0 l2c2 −l3c3 0

 , S2 =


−l1s1 l2s2 0 l5s5

l1c1 −l2c2 0 −l5c5

0 −l2s2 l3s3 −l5s5

0 l2c2 −l3c3 l5c5

 ,

S3 =


−l1s1 l2s2 0 0

l1c1 −l2c2 0 0

0 −l2s2 l3s3 l6s6

0 l2c2 −l3c3 −l6c6

 , S4 =


−l1s1 l2s2 0 −a1s7

l1c1 −l2c2 0 a1c7

0 −l2s2 l3s3 m34

0 l2c2 −l3c3 m44

 ,

S5 =


−l1s1 l2s2 −l4s4 l5s5

l1c1 −l2c2 l4c4 −l5c5

0 −l2s2 0 −l5s5

0 l2c2 0 l5c5

 , S6 =


−l1s1 l2s2 −l4s4 0

l1c1 −l2c2 l4c4 0

0 −l2s2 0 l6s6

0 l2c2 0 −l6c6

 ,

S7 =


−l1s1 l2s2 −l4s4 −a1s7

l1c1 −l2c2 l4c4 a1c7

0 −l2s2 0 m34

0 l2c2 0 m44

 , S8 =


−l1s1 l2s2 l5s5 0

l1c1 −l2c2 −l5c5 0

0 −l2s2 −l5s5 l6s6

0 l2c2 l5c5 −l6c6



201
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where m34 = a1s7 − a2sα,7 and m44 = −a1c7 + a2cα,7. Their determinants,
together with the other 27 which have similar shapes, must vanish simulta-
neously for a singular point of F and

detS1 = −(s23)(s14)l1l2l3l4,

detS2 = (s13)(s25)l1l2l3l5,

detS3 = −(s12)(s36)l1l2l3l6,

detS4 =
[
− a1(s13)(s27) + a2(s12)(sα,3,7)

]
l1l2l3,

detS5 = −(s14)(s25)l1l2l4l5,

detS6 = (s14)(s26)l1l2l4l6,

detS7 = (s14)
[
a1(s27) + a2(sα,2,7)

]
l1l2l4,

detS8 = −(s16)(s25)l1l2l5l6,

(B.1)

where sα,3,7 = sin(α − θ3 + θ7) and sα,2,7 = sin(α − θ2 + θ7). Assume that

lk > 0, k = 1, . . . 6, then it is clear from (B.1) that, for example

• detS1 = 0 ⇐⇒ θ2 = θ3 mod π or θ1 = θ4 mod π

• detS2 = 0 ⇐⇒ θ1 = θ3 mod π or θ2 = θ5 mod π

• detS3 = 0 ⇐⇒ θ1 = θ2 mod π or θ3 = θ6 mod π

• detS5 = 0 ⇐⇒ θ1 = θ4 mod π or θ2 = θ5 mod π

• detS6 = 0 ⇐⇒ θ1 = θ2 mod π or θ2 = θ6 mod π

• detS8 = 0 ⇐⇒ θ1 = θ6 mod π or θ2 = θ5 mod π

From these and similar solutions for all the minors we deduce that one of the

sets of equalities in (7.4) must hold. In all such cases, expressions such as

those in detS4, detS7, detS9, detS10 also vanish, ensuring singularity. The

full set of conditions can be found in [110].

Let us consider a configuration where θ1 = θ2 = θ4 = θ5 = θ7 mod π,

satisfying singularity conditions in (7.4a) and substitute it into F (xi, yi, θi) =

0 where F is given in (7.2). It follows that cj = ±ci, sj = ±si, i, j =

1, 2, 4, 5, 7. Eliminating xi, yi, i = 1, . . . , 7 from the first 14 equations, we end
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up with the following relations for the design parameters and pose rotations

in Figure 7.1

µc1 = b1, (B.2a)

µs1 = 0, (B.2b)

ξc1 = a2s1sα + l3c3 + l6c6 + b2cβ, (B.2c)

ξs1 = −a2c1sα + l3s3 + l6s6 + b2sβ, (B.2d)

where µ = ±a1 ± l1 ± l4 ± l2 ± l5 and ξ = ±a2cα ± l1 ± l4. Assuming b1 > 0,

equations (B.2a) and (B.2b) imply that µ 6= 0 and θ1 = 0 or π and thus the

generalised Grashof condition µ = b1 in equation (7.5) is readily obtained.

At the same time, equations (B.2c) and (B.2d) imply that, in such a singu-

lar configuration, θ3, θ6 may have several solutions, so the limb l3l6 may be po-

sitioned in different configurations as illustrated Figure 7.2a. Mathematically

speaking, given θ1 as above, we can write equations (B.2c) and (B.2d) as lin-

ear equations in c3, s3, c6, s6 together with the identities c2
3+s2

3 = 1, c2
6+s2

6 = 1

l3c3 + l6c6 + b2cβ − ξ = 0, (B.3a)

l3s3 + l6s6 + b2sβ − a2sα = 0 (B.3b)

This gives four equations, two linear and two quadratic, in the four variables

c3, s3, c6, s6 and hence can have up to four distinct (complex) solutions. One

way to view this is that solving equations (B.3a) and (B.3b) for c3, s3 and

substituting them into c2
3 + s2

3 = 1 gives

(l6c6 + b2cβ − ξ)2 + (l6s6 + b2sβ − a2sα)2 = l23 (B.4)

which represents a circle. This can only intersect the circle c2
6 + s2

6 = 1 in at

most two real points, the other solutions being the complex circular points

at infinity.
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Finally, let us consider a configuration where θi = ηiπ, ηi ∈ Z, i = 1, . . . , 6

satisfying singularity set in (7.4d) and substitute the conditions into (7.2).

It follows that cj = ±ci, sj = ±si, i, j = 1, . . . , 6. By setting F = 0 and

eliminating xi, yi, i = 1, . . . , 7, we end up with the following four linear

relations in c1, s1, c7, s7:

a1c7 − ζc1 = b1,

a1s7 − ζs1 = 0,

a2cαc7 − a2sαs7 − ϑc1 = b2cβ,

a2sαc7 + a2cαs7 − ϑs1 = b2sβ (B.5)

where ζ = ±l1 ± l4 ± l2 ± l5 and ϑ = ±l1 ± l4 ± l3 ± l6. Solving these and

combining with the identities c2
1 + s2

1 = c2
7 + s2

7 = 1 gives the Grashof-type

conditions (7.6). We conjecture that these equations equate three geometric

expressions relating to the three closed-loop chains in Figure 7.1, that enable

a feasible configuration in which the three limbs are parallel.
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