
Policy Direct Search for
Effective Reinforcement

Learning

by

Yiming Peng

A thesis
submitted to the Victoria University of Wellington

in fulfilment of the
requirements for the degree of

Doctor of Philosophy
in Computer Science.

Victoria University of Wellington
2019

Abstract
Reinforcement Learning (RL) problems appear in diverse real-world applications and

are gaining substantial attention in academia and industry. Policy Direct Search (PDS)

is widely recognized as an effective approach to RL problems. However, existing PDS

algorithms have some major limitations. First, many step-wise Policy Gradient Search

(PGS) algorithms cannot effectively utilize informative historical gradients to accu-

rately estimate policy gradients. Second, although evolutionary PDS algorithms do not

rely on accurate policy gradient estimations and can explore learning environments

effectively, they are not sample efficient at learning policies in the form of deep neural

networks. Third, existing PGS algorithms often diverge easily due to the lack of reliable

and flexible techniques for value function learning. Fourth, existing PGS algorithms

have not provided suitable mechanisms to learn proper state features automatically.

To address these limitations, the overall goal of this thesis is to develop effective
policy direct search algorithms for tackling challenging RL problems through technical

innovations in four key areas. First, the thesis aims to improve the accuracy of policy

gradient estimation by utilizing historical gradients through a Primal-Dual Approx-

imation technique. Second, the thesis targets on surpassing the state-of-the-art per-

formance by properly balancing the exploration-exploitation trade-off via Covariance

Matrix Adaption Evolutionary Strategy (CMA-ES) and Proximal Policy Optimization

(PPO). Third, the thesis seeks to stabilize value function learning via a self-organized

Sandpile Model (SM) meanwhile generalize the compatible condition to support flexi-

ble value function learning. Fourth, the thesis endeavors to develop innovative evolu-

tionary feature learning techniques that are capable of automatically extracting useful

state features so as to enhance various cutting-edge PGS algorithms.

In the thesis, we explore the four key technical areas by studying policies with in-

creasing complexity. First of all, we start the research from a simple linear policy repre-

sentation, and then proceed to a complex neural network based policy representation.

Next, we consider a more complicated situation where policy learning is coupled with

a value function learning. Subsequently, we consider policies modeled as a concatena-

tion of two interrelated networks, one for feature learning and one for action selection.

To achieve the first goal, this thesis proposes a new policy gradient learning frame-

work where a series of historical gradients are jointly exploited to obtain accurate policy

gradient estimations via the Primal-Dual Approximation technique. Under the frame-

work, three new PGS algorithms for step-wise policy training have been derived from

three widely used PGS algorithms; meanwhile, the convergence properties of these new

algorithms have been theoretically analyzed. The empirical results on several bench-

mark control problems further show that the newly proposed algorithms can signifi-

cantly outperform their base algorithms.

To achieve the second goal, this thesis develops a new sample efficient evolutionary

deep policy optimization algorithm based on CMA-ES and PPO. The algorithm has a

layer-wise learning mechanism to improve computational efficiency in comparison to

CMA-ES. Additionally, it uses a performance lower bound based surrogate model for

fitness evaluation to significantly reduce the sample cost to the state-of-the-art level.

More importantly, the best policy found by CMA-ES at every generation is further im-

proved by PPO to properly balance exploration and exploitation. The experimental

results confirm that the proposed algorithm outperforms various cutting-edge algo-

rithms on many benchmark continuous control problems.

To achieve the third goal, this thesis develops new value function learning methods

that are both reliable and flexible so as to further enhance the effectiveness of policy gra-

dient search. Two Actor-Critic (AC) algorithms have been successfully developed from

a commonly-used PGS algorithm, i.e., Regular Actor-Critic (RAC). The first algorithm

adopts SM to stabilize value function learning, and the second algorithm generalizes

the logarithm function used by the compatible condition to provide a flexible family of

new compatible functions. The experimental results show that, with the help of reliable

and flexible value function learning, the newly developed algorithms are more effective

than RAC on several benchmark control problems.

To achieve the fourth goal, this thesis develops innovative NeuroEvolution algo-

rithms for automated feature learning to enhance various cutting-edge PGS algorithms.

The newly developed algorithms not only can extract useful state features but also learn

good policies. The experimental analysis demonstrates that the newly proposed algo-

rithms can achieve better performance on large-scale RL problems in comparison to

both well-known PGS algorithms and NeuroEvolution techniques. Our experiments

also confirm that the state features learned by NeuroEvolution on one RL task can be

easily transferred to boost learning performance on similar but different tasks.

List of Publications

The publications completed during my PhD period are listed below in chrono-
logical order.

1. Y. Peng, G. Chen, M. Zhang, and S. Pang. “Generalized Compatible Func-
tion Approximation for Policy Gradient Search,” in The 23rd International
Conference on Neural Information Processing (ICONIP 2016), 2016.

2. Y. Peng, G. Chen, S. Holdaway, Y. Mei, and M. Zhang. “Automated
State Feature Learning for Actor-Critic Reinforcement Learning through
NEAT,” in The Genetic and Evolutionary Computation Conference (GECCO
Companion 2017), 2017.

3. Y. Peng, G. Chen, M. Zhang, and Y. Mei. “Effective Policy Gradient Search
for Reinforcement Learning through NEAT based Feature Extraction,” in
Simulated Evolution and Learning - 11th International Conference (SEAL 2017),
2017.

4. W. Hardwick-Smith, Y. Peng, G. Chen, Y. Mei and M. Zhang. “Evolving
Transferable Artificial Neural Networks for Gameplay Tasks via NEAT
with Phased Searching,” in Australasian Conference on Artificial Intelligence
2017 (AI 2017), 2017.

5. Y. Peng, G. Chen, M. Zhang, and S. Pang. “A Sandpile Model for Reliable
Actor-Critic Reinforcement Learning,” 2017 International Joint Conference
on Neural Networks (IJCNN 2017), 2017.

6. G. Chen, Y. Peng, and M. Zhang. “Constrained Expectation-Maximization
Methods for Effective Reinforcement Learning,” 2018 International Joint

iii

iv

Conference on Neural Networks (IJCNN 2018), 2018.

7. Y. Peng, G. Chen, H. Singh, and M. Zhang. “NEAT for Large-Scale Re-
inforcement Learning through Evolutionary Feature Learning and Policy
Gradient Search,” in The Genetic and Evolutionary Computation Conference
(GECCO 2018), 2018.

8. Y. Peng, G. Chen, and M. Zhang. “Proximal Evolutionary Strategies:
Achieving State-of-the-art Deep Reinforcement Learning through Evolu-
tionary Policy Optimization,” 2018. (Submitted for review to the journal
“IEEE Transaction on Evolutionary Computation”)

9. Y. Peng, G. Chen, and M. Zhang, “Primal-dual Sub-Gradient Approxima-
tion based Policy Gradient Search,” 2019. (To be submitted for review to
the journal “Machine Learning”)

10. G. Chen, Y. Peng, and M. Zhang. “An Adaptive Clipping Approach for
Proximal Policy Optimization,” arXiv:1804.06461, 2018.

11. G. Chen, Y. Peng, and M. Zhang. “Effective Exploration for Deep Rein-
forcement Learning via Bootstrapped Q-Ensembles with Tsallis Entropy
Regularization,” arXiv:1809.00403, 2018.

Acknowledgments

There are several people I would like to thank because without them this thesis
would have gone nowhere and it would not have turned out the same.

First and foremost, my deepest gratitude goes to my supervisors Dr. Aaron
Chen and Prof. Mengjie Zhang. Dr. Aaron Chen has supported me throughout
my studies in many ways. Without his encouragement and help, realizing this
work would have been much harder, if not impossible. He kept me motivated
and focused, patiently answered many my naive questions, suggested various
significant improvements or viable alternatives to my works. Aaron’s wealth of
knowledge in many aspects of machine learning and his excellent eye for de-
tails have helped shape this research into something far beyond what I could
have ever done alone. My Mom alway says that Aaron acts more like an elder
brother to me rather than a supervisor, which I can’t agree more. Prof. Mengjie
Zhang is a source of priceless advice and inspiration, who always provided sub-
stantial support to me in various ways during my Ph.D. journey. Thanks for his
helpful comments and sound technical advice whenever they were necessary.
Notably, his endless patience in correcting my less-than-perfect English as well
as valuable suggestions for improving the thesis was worth his weight in gold.

Furthermore, I am deeply grateful to my beautiful and lovely wife, Dr. Bing
Xue, for willing to marry me. She is always a constant source of love, support,
amusement, and motivations. Sometimes, she was just like an extra supervi-
sor who guided me towards the final step of the thesis and, more importantly,
indicated always the right direction for my life journey. Words are just power-
less at this moment to express how important to me she is, I just love her very
(very → ∞) much. Also, I would like to immensely thank my parents as well
as my brother’s family whose unconditional support, love and understanding

v

vi

throughout my life have always motivated me to work hard and pursue my
goals. I also wish to send my thanks to my aunt in law, my parents in law and
my brothers in law for being so supportive to me, more importantly being such
an excellent family to let Bing grow up.

I also want to thank my dear friends for their friendship, their support, and
a generally great time to relax me from the stressful Ph.D. life. I especially
thank Jason Hu for his yummy dishes and warm encouragement which sup-
ported me getting through the difficult and lonely time. Also, I am grateful
to Qi Chen, Jianyu Zhang, Shirley Chen, Yi Mei, Xiaohan Chen, Guanghui Li,
Sharon Gao, Linda Zhang, Ivy Liu, and Sandy Liu for support, sharing ideas,
thought-provoking discussions, delicious food and funny moments when being
with them. I also wish to thank my lab buddies Tony Zhang, Chen Wang, Victo-
ria Huang, and Hang Yu for the useful discussions and the interesting chitchats.
Another big thank goes to my Auckland friends Lin Yuan, Ian Yu, Peter Zhang,
Angelina Chai-Rodgers, Lei Zhu, Lei Song, Echo Peng, and Li You who have
ever helped and supported me in no matter what way along this journey. In ad-
dition, I would love to thank all the friends and colleagues in the ECRG group
for the great suggestions and useful comments for refining my research during
the past three years.

Last but not least, I want to thank our school ECS, particularly the ECRG
group, for being such an awesome environment for research and study. In
particular, I want to thank our subgroups, ECCO and FASLIP, for the fruitful
research discussions, informative knowledge sharing, and brilliant brainstorms
which inspired me a lot to complete this thesis. Additionally, I wish to thank the
High Performance Computing facilities provided New Zealand eScience Infras-
tructure (NeSI), which ensure the success of those computationally expensive
experiments required by the development of this thesis.

Finally, I acknowledge the financial support toward the completion of this
Ph.D. from Victoria Doctoral Scholarship and Thesis Submission Scholarship
provided by Victoria University of Wellington.

Contents

1 Introduction 1

1.1 Background . 1

1.2 Motivations . 5

1.3 Goals . 10

1.4 Major Contributions . 11

1.5 Organization of Thesis . 19

2 Literature Review 23

2.1 Background . 24

2.1.1 Machine Learning . 24

2.1.2 Reinforcement Learning . 25

2.1.3 Evolutionary Computation 31

2.1.4 Feature Learning . 36

2.2 Reinforcement Learning Methods 37

2.2.1 Reinforcement Learning Methods Taxonomy 38

2.2.2 Value Function Indirect Search 38

2.2.3 Discussion on Value Function Indirect Search 44

2.2.4 Policy Direct Search . 47

2.2.5 Model-free Gradient-based Policy Direct Search 50

2.2.6 Model-free Gradient-free Policy Direct Search 61

2.2.7 Discussion on Policy Direct Search 65

2.2.8 Feature Learning in Reinforcement Learning 68

2.2.9 Discussion on Feature Learning in Reinforcement Learning 70

2.3 Related Work . 72

vii

viii CONTENTS

2.3.1 Effective Policy Direct Search through Primal Dual Ap-
proximation . 72

2.3.2 Proximal Evolutionary Strategies for Sample Efficient Pol-
icy Direct Search . 74

2.3.3 Reliable and Flexible Value Function Learning for Policy
Direct Search . 75

2.3.4 Enhancing Policy Direct Search via Automated Evolution-
ary Feature Learning . 77

2.4 Chapter Summary . 79

3 Experimental Methodology 83
3.1 Benchmark Problems . 83

3.2 Statistical Treatment . 87

3.2.1 General Experiment Setup 87

3.2.2 Statistical Methods . 88

4 Effective Policy Direct Search through Primal-Dual Approximation 91
4.1 Introduction . 92

4.1.1 Chapter Goals . 93

4.1.2 Chapter Organization . 94

4.2 Preliminaries — A General Primal-Dual Approximation Method 94

4.3 The Proposed Algorithms . 96

4.3.1 General Dual Formulation for Policy Gradient Search . . . 97

4.3.2 Dual Regular Gradient Actor Critic Algorithm 99

4.3.3 Dual Natural Gradient Actor Critic with Fisher Informa-
tion Matrix . 103

4.3.4 Dual Natural Gradient Actor Critic with Advantage Pa-
rameters . 105

4.4 Theoretical Analysis . 107

4.4.1 Learning as Multi Time-Scale Stochastic Approximation . 108

4.4.2 Convergence Analysis . 111

4.5 Design of Experiments . 114

4.5.1 Experiment Setup . 114

CONTENTS ix

4.5.2 Experiment Design . 117

4.6 Results and Discussion . 119

4.6.1 Discussion on Results of Bipedal Walker 119

4.6.2 Discussion on Results of Lunar Lander 122

4.6.3 Discussion on Results of Mountain Car Continuous 122

4.6.4 Discussion on Results of Inverted Pendulum 124

4.6.5 Discussion on Results of Inverted Double Pendulum . . . 125

4.6.6 Discussion on Results of Inverted Pendulum Swingup . . 125

4.6.7 Result Summary . 125

4.7 Chapter Summary . 128

5 Proximal Evolutionary Strategies for Sample Efficient Policy Direct
Search 131

5.1 Introduction . 132

5.1.1 Chapter Goals . 133

5.1.2 Chapter Organization . 135

5.2 The Proposed Algorithm — Proximal Evolutionary Strategy . . . 136

5.2.1 PES-S1: Layer-wise Learning 136

5.2.2 PES-S2: Surrogate Model Based Learning 142

5.2.3 PES-S3: Local Search Enhanced Learning 147

5.2.4 Key Characteristics of Proximal Evolutionary Strategy . . 150

5.3 Design of Experiments . 152

5.3.1 Experiment Setup . 153

5.3.2 Network Architecture . 153

5.3.3 Hyper-Parameter Configurations 154

5.3.4 Evaluation Criteria . 156

5.3.5 Experiment Design . 156

5.4 Results and Discussion . 157

5.4.1 Results of Experiment (A1) 157

5.4.2 Results of Experiment (A2) 159

5.4.3 Results of Experiment (A3) 162

5.5 Chapter Summary . 165

x CONTENTS

6 Reliable and Flexible Value Function Learning for Policy Direct Search167
6.1 Introduction . 169

6.1.1 Chapter Goals . 170
6.1.2 Chapter Organization . 171

6.2 Preliminaries . 171
6.2.1 Regular Actor-Critic Algorithm 171
6.2.2 Sandpile Model . 172

6.3 The Proposed Algorithms — SM-RAC and GCFA-RAC 174
6.3.1 Sandpile Model based Regular Actor-Critic (SM-RAC) . . 174
6.3.2 Generalized Compatible Function Approximation base

Regular Actor-Critic (GCFA-RAC) 178
6.4 Design of Experiments . 179

6.4.1 Experiments on SM-RAC 180
6.4.2 Experiment on GCFA-RAC 184

6.5 Results and Discussion . 185
6.5.1 Discussion on Results of SM-RAC 186
6.5.2 Discussion on Results of GCFA-RAC 191

6.6 Chapter Summary . 194

7 Enhancing Policy Direct Search via Automated Evolutionary Feature
Learning 197

7.1 Introduction . 199
7.1.1 Chapter Goals . 199
7.1.2 Chapter Organization . 200

7.2 The Proposed Algorithms — NEAT+RAC and NEAT+PGS . . . 201
7.2.1 NEAT based Feature Learning enhanced Regular Actor-

Critic (NEAT+RAC) . 201
7.2.2 NEAT based Feature Learning enhanced Policy Gradient

Search (NEAT+PGS) . 205
7.3 Design of Experiments . 211

7.3.1 Experiments on NEAT+RAC 212
7.3.2 Experiments on NEAT+PGS 214

7.4 Results and Discussion . 218

CONTENTS xi

7.4.1 Discussion on Results of NEAT+RAC 218
7.4.2 Discussion on Results of NEAT+PGS 222

7.5 Chapter Summary . 225

8 Conclusions 229
8.1 Major Conclusions . 230

8.1.1 Effective Policy Direct Search through Primal-Dual Ap-
proximation . 231

8.1.2 Proximal Evolutionary Strategy for Sample Efficient Pol-
icy Direct Search . 232

8.1.3 Reliable and Flexible Value Function Learning for Policy
Gradient Search . 232

8.1.4 Enhancing Policy Direct Search via Automated Evolution-
ary Feature Learning . 233

8.2 Limitations . 234
8.2.1 Manual Network Architecture 235
8.2.2 Trial-and-Error based Hyper-parameter Tunning 235
8.2.3 Pre-defined Reward Settings 235

8.3 Future Work . 236
8.3.1 Combining Improvements for Policy Direct Search 236
8.3.2 Model-based vs. Model-free 237
8.3.3 Transfer Learning for Policy Direct Search 238
8.3.4 Automated Network Architecture Design 239
8.3.5 Automated Hyper-parameter Tunning 240
8.3.6 Cooperative Co-evolution for Policy Direct Search 240

List of Tables

4.1 The Hyper-parameter settings of all algorithms including RAC,
NACF, NACA, NACAF, Dual-RAC, Dual-NACF, Dual-NACA,
ARS and PPO-Linear used for all problems. 118

4.2 The final episode performance comparison of nine algorithms
(i.e., ARS, Dual-RAC, Dual-NACF, Dual-NACA, RAC, NACF,
NACA, NACAF, and PPO-Linear) on six benchmark problems
(i.e., Bipedal Walker, Inverted Double Pendulum, Inverted Pen-
dulum, Inverted Pendulum Swingup, Lunar Lander Continuous,
and Mountain Car Continuous). 128

5.1 Hyper-parameter configurations of all candidate algorithms:
CMA-ES, PES-S1, PES-S2, PES, OpenAI-ES, Uber-GA, TPRO,
PPO, and ACKTR. 155

5.2 The final episode performance comparison of two algorithms
(i.e., CMA-ES and PES-S1) on ten benchmark problems (i.e.,
Bipedal Walker, BipedalWalkerHardcore, HalfCheetah, Hop-
per, Inverted Double Pendulum, Inverted Pendulum, Inverted
Pendulum Swingup, Lunar Lander Continuous, Reacher, and
Walker2D). 159

5.3 The final episode performance comparison of four algorithms
(i.e., CMA-ES, OpenAI-ES, Uber-GA and PES-S2) on ten bench-
mark problems (i.e., Bipedal Walker, BipedalWalkerHardcore,
HalfCheetah, Hopper, Inverted Double Pendulum, Inverted Pen-
dulum, Inverted Pendulum Swingup, Lunar Lander Continuous,
Reacher, and Walker2D). 161

xii

LIST OF TABLES xiii

5.4 The final episode performance comparison of seven algorithms
(i.e., PES, PES-S2, OpenAI-ES, Uber-GA, PPO, TRPO, and
ACKTR) on ten benchmark problems (i.e., Bipedal Walker,
BipedalWalkerHardcore, HalfCheetah, Hopper, Inverted Double
Pendulum, Inverted Pendulum, Inverted Pendulum Swingup,
Lunar Lander Continuous, Reacher, and Walker2D). 163

6.1 The hyper-parameter configurations for experiments of RAC and
SM-RAC on the Puddle World problem and the Mountain Car
problem. 183

6.2 The hyper-parameter configurations for experiments of RAC on
the Puddle World problem, the Mountain Car problem, the Cart
Pole problem, and the Heating Coil problem. 184

6.3 Experiment Common Settings for One Trial. 185

6.4 The final episode performance comparison of different ν values
(i.e., 0.5, 0.7, 0.9, 1.0, 1.1, 1.5, 2.0) on three benchmark problems
(i.e., Cart Pole, Puddle World and Heating Coil). 195

7.1 The meta-parameter settings for NEAT+RAC across all experi-
ments. 213

7.2 Topology Setups for Policy Networks and Feature Networks. . . . 215

7.3 Hyper-parameter Configurations for PGS algorithms. 216

7.4 Hyper-parameter Configurations for NEAT. 216

7.5 The final episode performance comparison of two algorithms
(i.e., NEAT, and NEAT-RAC-PGS) on two benchmark problems
(i.e., Cart Pole and Mountain Car). 218

7.6 The final episode performance comparison of two algorithms
(i.e., NEAT, and NEAT-RAC-PGS) on two benchmark problems
(i.e., Cart Pole and Mountain Car). 220

7.7 The final episode performance comparison of seven algorithms
(i.e., NEAT, NEAT+A2C, NEAT+POWER, NEAT+TRPO, A2C,
POWER and TRPO) on six Atari games (i.e., Asteroids, Breakout,
Freeway, Seaquest, SpaceInvaders, and TimePilot). 222

xiv LIST OF TABLES

7.8 Sample Efficiency comparison of NEAT+PGS against NEAT,
A2C, POWER and TRPO. 224

List of Figures

2.1 A Reinforcement Learning problem is formally modeled as an
MDP, drawn based on Figure 3.1 in [212]. 26

2.2 Value Function Indirect Search Framework, drawn based on Fig-
ure 3 in [193]. 39

2.3 A generic feed-forward NN with four input units, two output
units, and two hidden layers, adapted from Figure 9.14 [212]. . . . 42

2.4 Categorization for Policy Direct Search, adapted from Figure
1.1 [52]. 47

2.5 Model-free Policy Direct Search Framework, prepared based on
Figure 4 in [193]. 48

2.6 Model-based Policy Direct Search Framework, prepared based on
Figure 4 in [193], Figure 3.1 in [52] and Algorithm 1 in [51]. 49

2.7 Actor-Critic Architecture, adapted from Figure 6.15 in [212]. . . . 54

4.1 The Primal-Dual Approximation based Actor-Critic Algorithms. . 98

4.2 An example of the biased learning following (4.11) when t is very
large. 102

4.3 The Architecture of NN for representing Value Function for Dual-
RAC, Dual-NACF, Dual-NACA, RAC, NACF, NACA, NACAF,
and PPO-Linear. 116

4.4 A performance comparison of the proposed dual algorithms in-
cluding Dual-RAC, Dual-NACF, Dual-NACA against the com-
peting algorithms including RAC, NACF, NACA, NACAF,
ARS [146] and PPO-Linear [191] on the Bipedal Walker problem. 120

xv

xvi LIST OF FIGURES

4.5 A performance comparison of the proposed dual algorithms in-
cluding Dual-RAC, Dual-NACF, Dual-NACA against the com-
peting algorithms including RAC, NACF, NACA, NACAF,
ARS [146] and PPO-Linear [191] on the Lunar Lander problem. . 121

4.6 A performance comparison of the proposed dual algorithms in-
cluding Dual-RAC, Dual-NACF, Dual-NACA against the com-
peting algorithms including RAC, NACF, NACA, NACAF,
ARS [146] and PPO-Linear [191] on the Mountain Car Contin-
uous problem. 123

4.7 A performance comparison of the proposed dual algorithms in-
cluding Dual-RAC, Dual-NACF, Dual-NACA against the com-
peting algorithms including RAC, NACF, NACA, NACAF,
ARS [146] and PPO-Linear [191] on the Inverted Pendulum prob-
lem. 124

4.8 A performance comparison of the proposed dual algorithms in-
cluding Dual-RAC, Dual-NACF, Dual-NACA against the com-
peting algorithms including RAC, NACF, NACA, NACAF,
ARS [146] and PPO-Linear [191] on the Inverted Double Pen-
dulum problem. 126

4.9 A performance comparison of the proposed dual algorithms in-
cluding Dual-RAC, Dual-NACF, Dual-NACA against the com-
peting algorithms including RAC, NACF, NACA, NACAF,
ARS [146] and PPO-Linear [191] on the Inverted Pendulum
Swingup problem. 127

5.1 The layer-wise training process via CMA-ES for a three-layer pol-
icy network, where all weights and biases for one layer are in-
cluded in the process. 138

5.2 The layer-wise training process via CMA-ES for a three-layer pol-
icy network, where only a proportion of weights and biases uni-
formly selected at random are included in the process. 140

LIST OF FIGURES xvii

5.3 The surrogate model based learning process for a three-layer
value function network and a three-layer policy network, where
value function network is trained via gradient ascent and policy
network is layer-wisely trained via CMA-ES (see Section 5.2.1). . . 143

5.4 The local search enhanced learning process for a three-layer value
function network and a three-layer policy network, where a value
function resilience re-training process and a PPO driven local
search process are added on the top of the surrogate model based
learning developed in Section 5.2.2. 148

5.5 The Architecture of DNN for CMA-ES, PES-S1, OpenAI-ES, and
Uber-GA. 154

5.6 The Architecture of DNN for PES-S2, PES, PPO, TRPO, and
ACKTR. 155

5.7 A comparison of average total rewards over running time (in sec-
onds) obtained by PES-S1 and CMA-ES [88] on the ten bench-
mark control problems. 158

5.8 A comparison of average total rewards per 10,000 samples
(5,000,000 samples in total) obtained by PES-S2, CMA-ES [88],
OpenAI-ES [186], and Uber-GA [210] on the ten benchmark con-
trol problems. 160

5.9 A comparison of average total rewards per 10,000 samples ob-
tained by PES (i.e., PES-S3), PES-S2, OpenAI-ES [186], Uber-
GA [210], TRPO [189], ACKTR [240] and PPO [191] on ten control
problems over total 5,000,000 samples. 162

6.1 The triangle basis function used for defining one single dimen-
sion of the state input. 182

6.2 Average of the absolute values generated from the value function
learned by RAC and SM-RAC at every 50 episodes on the Puddle
World problem. 187

6.3 Average cumulative rewards obtained by RAC and SM-RAC at
every 50 episodes on the Puddle World problem. 187

xviii LIST OF FIGURES

6.4 Correlation between the learning effectiveness and the learning
reliability of RAC on the Puddle World problem. 188

6.5 Average of the absolute values generated from the value function
learned by RAC and SM-RAC at every 50 episodes on the Moun-
tain Car problem. 189

6.6 Average value function learned by RAC and SM-RAC at every 50
episodes on the Mountain Car problem. 190

6.7 Correlation between the learning effectiveness and the learning
reliability of RAC on the Mountain Car problem. 190

6.8 Average steps to the goal region of the Puddle World problem
(ν = 1.0 is the original RAC). 192

6.9 Average ξ on the Cart Pole problem (ν = 1.0 is the original RAC). 192

6.10 Average balancing steps on the Cart Pole problem (ν = 1.0 is the
original RAC). 193

6.11 The average error (i.e., average deviation) between the output
temperature Tao and the target temperature Td (ν = 1.0 is the orig-
inal RAC) on the Heating-Coil problem. 194

7.1 The overall design of NEAT+RAC. 202

7.2 An Overview on the NN Architecture of NEAT+PGS. 207

7.3 The comparison of learning performance of NEAT+RAC and
NEAT on two benchmark problems: (a) displays the averaging
steps to reach the goal region on Mountain Car (the smaller the
better), (b) displays the averaging steps to balance the pole to the
upright position on Cart Pole (the larger the better). 219

7.4 The comparison of learning performance of RAC with two dif-
ferent feature extractors (an evolved NN feature extractor and a
predefined discretized feature extractor) on the two related prob-
lems (see Section 7.3.1): (a) displays learning performances ob-
tained on the standard Cart Pole problem, (b) displays learning
performances obtained on the modified Cart Pole problem. 220

LIST OF FIGURES xix

7.5 Average rewards per 10,000 steps obtained by NEAT, NEAT+A2C,

NEAT+POWER, NEAT+TRPO, A2C, POWER and TRPO on six Atari

games, including Asteroids, Breakout, Freeway, Seaquest, SpaceIn-

vaders, and TimePilot. As being highlighted with red color, for

NEAT+PGS, the NEAT based feature learning stage stops at two mil-

lion steps (i.e., 2,000,000 samples). 223

xx LIST OF FIGURES

List of Algorithms

4.3.1 Dual-RAC Algorithm . 103
4.3.2 Dual-NACF Algorithm . 104
4.3.3 Dual-NACA Algorithm . 106
5.2.1 Population Initialization in PES . 141
5.2.2 Proximal Evolutionary Strategy . 149
5.2.3 Experience Sampling . 150
5.2.4 Rollout Function . 151
6.3.1 Sandpile Model based Regular Actor-Critic (SM-RAC) 177
6.3.2 Generalized Compatible Function Approximation based Regular

Actor-Critic Algorithm (GCFA-RAC) 180
7.2.1 NEAT+RAC Initialization . 203
7.2.2 NEAT+RAC Evolution . 204
7.2.3 NEAT+RAC Evaluation . 206
7.2.4 NEAT+RAC Algorithm . 207
7.2.5 NEAT+PGS . 210
7.2.6 Policy Gradient Search . 210
7.2.7 NEAT Feature Learning . 211

xxi

xxii LIST OF ALGORITHMS

Chapter 1

Introduction

The chapter starts with an introduction to the general background of Reinforce-
ment Learning, then proceeds to the motivations, the research goals, the major
contributions and the organization of the thesis.

1.1 Background

Sequential decision making plays a vital role in various real-world problems,
such as budget setting [77, 156], baseball pitching [196], network monitor-
ing [93], playing board games [197, 199], intelligent gameplay [155, 242], robot
control [80, 209], self-driving cars [187], dynamic tasks scheduling [72], opera-
tional research [1, 177], and human-computer interactions [104, 201]. An impor-
tant abstraction of these problems is known widely as the Reinforcement Learn-
ing (RL) problem [136, 110, 153, 212, 236]. In general, an RL problem is described
through a scenario where an autonomous agent acts sequentially within an un-
known environment. The action performed by the agent influences the state of
the environment. Meanwhile, the agent receives feedback in terms of both im-
mediate reward and the total rewards as a consequence of its action. The goal
of the agent is to wisely choose actions to maximize the total rewards in a long
term [136, 153, 212, 236]. It is challenging to build effective algorithms to guide
the agent to achieve the goal as discussed in the literature [136, 153, 212, 236].

Generally, there are two main categories of approaches to addressing the RL

1

2 CHAPTER 1. INTRODUCTION

problems, i.e., search and planning [41, 24, 28, 35, 102, 148] and Machine Learning
(ML) [136, 212, 236]. For the search and planning techniques to be successful,
the environment model (i.e., system dynamics) must be known in advance [136,
41, 24]. However, it is often impractical to obtain a precise environment model
in advance [136, 212, 236]. In addition, search and planning are also vulnerable
when system dynamics change or uncertainties exist in the environment [212,
236].

In contrast to search and planning, ML avoids the necessity of knowing the
environment model in advance [212, 153, 236, 185]. Also, uncertainties can be
addressed by learning directly from trial-and-error interactions [212, 236]. Gen-
erally, ML is categorized into three major paradigms, namely Supervised Learn-
ing, Unsupervised Learning, and Reinforcement Learning. The suitability of each
paradigm for solving RL problems is discussed below.

Supervised learning seeks to identify important relations among given in-
puts sampled from a fixed distribution [153, 185, 195, 147]. This paradigm is
suitable for problems like classification and regression, but not applicable to RL
problems where agents have to learn from interactions. In such interactive prob-
lems, it is often impractical to obtain examples labeled with desired behaviors.
Given this, an agent must be capable of learning from its own experience.

Unsupervised learning aims to find certain patterns that frequently occur
among the given data inputs [153, 185, 147, 3]. Clustering or visualization are
primary applications of unsupervised learning algorithms [153]. They are in-
appropriate for solving RL problems because they do not receive any feedback
from the environment which is essential for decision making in interactive prob-
lems.

Different from supervised learning and unsupervised learning, RL agents
interact directly with an unknown environment through observing states and
then taking actions; after taking each action, the learner shall receive a result-
ing reward. Hereby, the goal of RL is to learn a policy 1 by using the feedback
from the environment, so as to maximize the long-term pay-off defined in the

1A policy defines the learning agent’s way of behaving at a given time. More specifically,
a policy is a mapping from observed states of the environment to actions to be taken when in
those states [212]. Please refer to Section 2.1.2 for details.

1.1. BACKGROUND 3

RL problems [136, 212, 153, 185, 195, 147]. In this sense, Reinforcement learning
is naturally suitable for learning to make correct decisions from direct interac-
tions [136, 212]. Several important reasons are given below:

(1) Different from search and planning, an RL agent is capable of learning to
accommodate uncertainties via interactions in an unknown environment
as demonstrated in many practical applications [212, 236, 185, 195, 147].

(2) Different from unsupervised learning, RL is capable of using the feedback
from the environment to learn to solve challenging RL problems [236, 147].

(3) Different from supervised learning, an RL agent does not rely on any
external instructors (the environment is the only source of experiences).
Moreover, supervised learning treats the decisions as completely indepen-
dent events, whereas RL treats them as dependent events. So RL is more
suitable to solve problems such as playing chess or robot navigation, as
success depends on a sequence of interrelated decisions [212, 236, 195].

To date a great number of algorithms have been proposed to solve complex
RL problems. We can largely divide them into two types [236, 218]: Value Func-
tion Indirect Search (VIS) [212, 217, 184, 214, 213, 155, 225, 230, 24, 28, 15, 116] and
Policy Direct Search (PDS) [21, 2, 173, 215, 31, 238, 192, 117, 119, 168, 20, 189, 191,
154, 229, 198, 49, 50, 53]. The following will present high-level introduction of
the two types respectively.

VIS algorithms rely on value functions which are used to measure the ex-
pected long-term pay-off obtainable by an agent who starts its journey from
any given state. Through value functions, the agent can indirectly define poli-
cies that guide action selection in the environment [195]. Typical VIS algo-
rithms mostly fall into the Temporal Difference learning scheme [212], including
TD(λ) learning [212, 217], Q-learning [231], State-Action-Reward-State-Action
(SARSA) [184], Gradient Temporal Difference (GTD) [214], GTD2 [213], and sev-
eral modern variations of Q-Learning [155, 225, 230].

Although these indirect learning algorithms contribute significantly to RL
research, there are still many challenges: (1) VIS algorithms, in comparison to
PDS algorithms, may be less suitable on problems where policy is simpler to

4 CHAPTER 1. INTRODUCTION

learn than value functions [24, 28, 15, 116]. For example, as reported by Sim-
sek et al. [200], one can play well in Tetris game without knowing any evalu-
ation functions but by simply choosing from all the available actions. In such
a case, PDS algorithms can learn faster and yield better policies than VIS al-
gorithms [200, 212]. (2) The majority of VIS algorithms are designed to cope
only with discrete states and discrete actions. However many real-world RL
problems, in particular, control and robot locomotion problems, demand for
an RL algorithm that is capable of handling continuous states and actions ef-
fectively [52, 215]. (3) VIS algorithms have no theoretical convergence guaran-
tee for implicit represented policies [212, 121]. For example, when being used
with VIS algorithms, the ε-greedy action selection mechanism may dramatically
change the action probabilities arbitrarily for a small change in value function
estimations [212]. (4) Most of VIS algorithms can only learn in Markovian envi-
ronments due to the problem of “incomplete perception” [212, 15].

PDS algorithms aim to directly search the optimal policy to solve RL
problems. For this purpose, the policy is often presented as a parametric
model. Moreover, the value function can be explicitly used to evaluate the pol-
icy [183, 21, 125, 89]. Either by using the gradient-based or gradient-free tech-
niques, we can search in the policy space to maximize the expected long-term
pay-off [212, 236, 195, 21]. So far, various successful PDS methods have been
brought onto the stage [21, 2, 173, 215, 31, 238, 192, 117, 119, 168, 20, 189, 191,
154, 229, 198, 49, 50, 53].

PDS algorithms are considered a promising approach to overcoming the lim-
itations faced by VIS [183, 21, 125, 89, 215, 31]. Firstly, they can scale well and
perform effectively in large state and action space, because the search is directly
performed on the parametric policy space whose dimensionality can be much
smaller [173, 31, 25, 247, 168]. Secondly, they are naturally suitable for continu-
ous state and action space [173, 31, 25, 247, 168]. Thirdly, the evidence of strong
convergence guarantees has already been shown in many works [122, 215, 31],
and such guarantees can also be made available to some algorithms developed
in this thesis. Last but not least, they are suitable for the non-Markovian en-
vironments, since we can effectively learn the policy by using only partially
observable information [173, 31, 160]. Furthermore, they can make better use of

1.2. MOTIVATIONS 5

every single sample collected by interacting with an environment to achieve a
certain level of effectiveness in comparison to VIS algorithms [229, 212].

Due to the key advantages mentioned above, PDS algorithms for RL become
a very hot research topic recently, as many new works are being conducted to
constantly push state-of-the-art performance to the next level [173, 31, 25, 247,
168, 183, 21, 125, 89, 215, 189, 191, 229, 135, 45]. However, there are still many
open challenges in PDS for RL, such as (1) how to obtain more accurate policy
gradient estimations for effective Policy Gradient Search (PGS), (2) how to im-
prove learning effectiveness with reasonable sample efficiency for evolutionary
PDS algorithms, (3) how to stabilize value function learning to facilitate policy
learning for PGS algorithms, and (4) how to automatically learn useful state fea-
tures to improve learning effectiveness of PDS algorithms. All these challenges
are worthy of substantial studies, which will be the focus of this thesis.

1.2 Motivations

Most of existing RL applications are either extremely computational costly or
highly dependent on VIS approaches that require a large number of samples.
For example, the distributed version of AlphaGo requires 1202 CPUs, 176 GPUs,
more than 100 human experts, and 30 million distinct positions sampled from
different games to become the world champaign in Go game [197]. More-
over, Deep Q Network (DQN) [155] and many of its variations can achieve
comparable human-level performances on playing 49 challenging Atari games.
However, they require many weeks of intensive Neural Network (NN) train-
ing and millions of environment samples (e.g., video frames collected from
Atari games) [155]. On the other hand, in comparison to VIS algorithms, PDS
algorithms have shown higher performance and less sample cost on prob-
lems such as Atari games or continuous control tasks as evidenced in many
works [189, 229, 80, 191, 240]. However, the practical use of PDS demands for
significant improvements in both the learning effectiveness and the sample ef-
ficiency [52, 12, 189, 229, 80, 191, 240].

In view of this understanding, we aim at conducting studies to improve

6 CHAPTER 1. INTRODUCTION

effectiveness both practically and theoretically for PDS to address challenging
RL problems. Driven by this goal, the principal research question that set the
central theme of this thesis is:

How can the effectiveness of policy direct search algorithms be signif-
icantly improved in order to tackle difficult Reinforcement Learning
problems?

In this thesis, the definition of effectiveness under the context of RL is specified
below:

The effectiveness refers to the agent’s ability to gain the maximum long-term pay-
off by consuming fewer environment samples.

Our principal research question is further decomposed into four sub-
questions. We arrive at these questions detailed below through extensive re-
view of numerous related works. According to our research, they are vital for
PDS to solve many RL problems effectively.

To ensure a smooth start of the research for this thesis, we decide to focus
on step-wise PGS 2 algorithms for training linear policies. This is because step
learning strategy 3(i.e., step-wise learning) is the most common and long-lived
learning strategy for PDS where learning occurs at every time step immediately
after observing an environment sample. Also, a linear policy is the most basic
form for policy representation.

In this context, to enhance the learning effectiveness of PGS, a possible way
is to improve the accuracy of policy gradient estimation by utilizing multiple
historical gradients for existing PGS algorithms. The majorities of step learning
strategy based PGS algorithms [21, 2, 173, 215, 31, 238, 192, 117, 168, 20] do not
preserve the gradients after every step of learning, which means that the current
step gradient will be simply discarded with the assumption that it is no longer
useful. However, the information of previous gradients can be better utilized
to enhance the effectiveness of the learning process [62, 158]. For example, the

2PGS is one typical branch of PDS algorithms where gradient descent technique is applied
for policy search.

3Please refer to Section 2.2.4 for details.

1.2. MOTIVATIONS 7

Adagrad algorithm [62] accumulates a series of consecutive historical gradients
to accurately estimate gradients required for future learning. Driven by this
understanding, we have formulated the first research question as in Q(1) below,
which also leads to the first research objective O(1) in Section 1.3.

Q(1): How can we estimate policy gradient accurately so as to improve the effective-
ness of step learning strategy based policy gradient search by using historical gradients?

While conducting research toward answering Q(1), we have found that step-
wise PGS algorithms with linear policies have difficulties to learn effectively
on several complicated continuous control problems, such as Hopper [189],
HalfCheetah [220], and Walker2D [220]. The control signals for these prob-
lems are often high-dimensional which require more sophisticated policy rep-
resentations, such as NNs [189]. In addition, gradient-based methods 4 per-
form less effective exploration in comparison to gradient-free methods (e.g.,
Evolutionary Algorithms (EAs)), and hence may be easily trapped to local op-
tima [210, 186, 45]. Driven by this understanding, we have decided to place our
second research focus on gradient-free PDS algorithms with deep structured
policies.

Particularly, we have explored a key issue that is vital for improving existing
EAs based PDS algorithms. The gist is to properly balance the exploration-
exploitation trade-off by combining and unleashing the advantages of both
EAs (suitable for exploration) and PGS (suitable for exploitation) for Deep Re-
inforcement Learning (DRL). Recent researches found that EAs can be com-
petitive alternatives to cutting-edge PGS algorithms, because EAs can explore
more effectively [186, 210, 101, 45]. On the other hand, PGS algorithms show
clear advantages in exploitation. In practice, existing EAs for DRL remain dis-
tant from state-of-the-art performance in comparison to cutting-edge PGS algo-
rithms, such as Trust Region Policy Optimization (TRPO) [189], Proximal Policy
Optimization (PPO) [191], and Actor-Critic using Kronecker-Factored Trust Re-
gion (ACKTR) [240]. Motivated by this understanding, we set up the second

4Please refer to Section 2.2.4 for more details.

8 CHAPTER 1. INTRODUCTION

research question Q(2) below as the basis of the second research objective O(2)
in Section 1.3.

Q(2): How can we surpass state-of-the-art performance in Evolutionary Algo-
rithms by properly balancing the exploration-exploitation trade-off through adopting
and improving off-policy and gradient-based training techniques developed by PDS al-
gorithms?

When conducting research to answer Q(2), we have discovered that the
learning effectiveness of Actor-Critic (AC) algorithms (i.e., an important family
of PGS algorithms) relies heavily on value function learning, which is consistent
with the findings reported in the literature [215, 190, 212]. In line with this find-
ing, we performed studies on the third possible way to achieve effective PGS
through developing innovative techniques for reliable and flexible learning of
value functions in AC algorithms.

Note that classical PGS algorithms, such as REINFORCE [238], use the em-
pirical total rewards to approximate policy gradients, which often leads to high
approximation variances [143, 52]. A good way [122, 69, 52] to reduce estima-
tion variances (or errors) is to learn a value function to replace empirical total
rewards in REINFORCE. As a result, value function learning and policy learn-
ing are tightly coupled together. Thus, the reliability and accuracy of value
function learning can have a significant impact on the performance of the pol-
icy learning. Several existing works have attempted to achieve reliable value
function learning, but none has been satisfactory for wide adoption. For exam-
ple, several methods (e.g., GTD [214] and GTD2 [213]) have adopted off-policy
training to achieve reliable value function learning, but the learning process can
still diverge in reality [214, 213, 49]. More specifically, we find that the reliabil-
ity of critic learning will deteriorate abruptly whenever the predicted rewards
by the value function fall outside the maximum/minimum possible cumula-
tive rewards obtainable from any state in a learning environment. Such maxi-
mum/minimum possible cumulative rewards are problem-specific but can of-
ten be determined easily. Inspired by this finding, we decide to stabilize value
function learning based on a Sandpile Model (SM) [18] with a self-organizing
property. With the help of the property, we can self-organize value function

1.2. MOTIVATIONS 9

learning, effectively preventing learned value functions from diverging. Fur-
thermore, inspired by the Policy Gradient Theorem (PGT) 5 [215], researchers
have studied different forms of value functions that are compatible with policy
parametrization. Nevertheless, to the best of our knowledge, very few works
have studied the possible generalization of the compatible condition introduced
in [215]. Such generalization can bring extra degrees of freedom for the com-
patible function (i.e., action-value function approximation 6), which can help
achieve more accurate value function learning. In view of this understanding,
we form the third research question Q(3), which gives rise to the third objective
O(3) in Section 1.3.

Q(3): How can we enable a more reliable and flexible value function learning to
enhance policy gradient search for tackling difficult RL problems via SandPile model
and the generalization of compatible conditions?

In-depth research in the thesis showed that the state features play a
paramount role for effective RL. Because in PGS, both value function and
policy are represented as parametric functions with respect to the state fea-
tures [153, 26]. As a result, the effectiveness of PGS is heavily dependent on
the quality of state features.

In line with this understanding, we have identified the fourth possi-
ble way to develop innovative feature-learning techniques to extract useful
state/environment information required for effective PDS. Traditionally, state
features that form the input to a policy are determined by human experts
through a purely manual process, which has two problems. Firstly, it is te-
dious, error-prone and even impossible for human experts to determine all re-
quired state features [70]. For example, a RAM-based Atari game playing task
has a 128-dimensional input (each dimension is an integer number), but not
all dimensions are useful as reported in [91]. However, it is extremely difficult
for human experts to manually determine suitable features on such a problem.
Secondly, once the features for a problem have been determined, they can no
longer be adapted according to the changing requirements of the problem do-

5Please refer to Section 2.2.5 for more technical details.
6Please refer to Section 2.2.5 for more technical details.

10 CHAPTER 1. INTRODUCTION

main [70, 246, 120, 150]. To address these problems, we formed another impor-
tant research question Q(4) (addressed in O(4) in Section 1.3),

Q(4): How can we develop innovative evolutionary feature learning techniques ca-
pable of automatically discovering useful state features to facilitate policy direct search
on large-scale RL problems?

1.3 Goals

The ultimate goal of the thesis is to develop effective policy direct search algo-
rithms for tackling challenging RL problems via several important techniques.
First, the thesis aims to improve the accuracy of policy gradient estimation by
utilizing informative historical gradients through the Primal-Dual Approxima-
tion (PDA) technique. Second, the thesis intends to achieve the state-of-the-art
performance by properly balancing the exploration-exploitation trade-off via
joint application of Covariance Matrix Adaption Evolutionary Strategy (CMA-
ES) and Proximal Policy Optimization (PPO). Third, the thesis seeks to sta-
bilize value function learning via Sandpile Model (SM) meanwhile generaliz-
ing the compatible condition to support flexible value function learning via q-
logarithm. Fourth, the thesis endeavors to enhance various PGS algorithms by
extracting useful features via newly developed NeuroEvolution techniques for
automated feature learning. To achieve this goal, four specific research objec-
tives O(1) to O(4) have been identified to address the four key research ques-
tions Q(1) to Q(4) described in Section 1.2.

O(1) Develop a new general policy gradient learning framework by using the
PDA technique. Algorithms developed under the framework are expected
to estimate policy gradients more accurately than the traditional policy
gradient estimation methods. The framework firstly converts the com-
plex primal problem to a simpler dual problem and then utilizes weighted
historical consecutive gradients to obtain a more accurate policy update.
Moreover, the algorithms are expected to perform empirically better in

1.4. MAJOR CONTRIBUTIONS 11

comparison to other PGS algorithms. In addition, the theoretical guaran-
tee of convergence of the three newly proposed dual algorithms has been
proven.

O(2) Develop a new sample efficient evolutionary deep policy optimization al-
gorithm on CMA-ES. The algorithm is expected to achieve state-of-the-
art performance in the DRL domain in terms of computational efficiency,
sample complexity, and learning effectiveness, especially while compar-
ing to cutting-edge PGS algorithms and advanced evolutionary DRL al-
gorithms.

O(3) Develop new policy gradient search algorithms by improving the reliabil-
ity and flexibility of value function learning. The algorithm is expected to
achieve reliable and accurate learning of value functions by either apply-
ing the SM or generalized compatible function approximation. As a result,
we expect to further achieve more effective policy learning in comparisons
to the PGS algorithms without adopting SM and generalized compatible
function approximation.

O(4) Develop a new NeuroEvolution (NE) based automated feature learning
based policy learning scheme. The scheme is expected to enable seamless
integration between automated feature learning and effective policy gra-
dient search, and achieve state-of-the-art performance on large-scale RL
problems in comparison to both well-known PGS methods and NE meth-
ods.

1.4 Major Contributions

The thesis makes four major contributions to the filed of RL.

1. Effective Policy Gradient Search through Primal-Dual Approximation
To improve the effectiveness of PGS, one key challenge is how to ob-
tain accurate policy gradient estimations as the analytical expression of
such gradients is not available. The situation becomes more challenging

12 CHAPTER 1. INTRODUCTION

in Actor-Critic (AC) learning framework because two learning processes
(value function learning and policy learning) are both realized via gradi-
ent based updating. In such a way, even if the estimation noise for one
learning process can be reduced to a reasonably low level, the strongly
interconnected learning on two separate parametric functions can lead to
error propagation and hence substantially affect the learning effectiveness.

Most PGS algorithms have been proposed with the focus on improving
the precision of policy gradient estimations, such as [202, 119, 238, 20, 21,
31, 112, 172, 14, 173, 30, 173, 31, 53, 131, 69]. However, these algorithms
neglect the importance of the historical gradients.

In the thesis, we show how this challenge can be addressed via the PDA
technique. In particular, we study possible ways of converting the chal-
lenging primal problem (i.e., the original policy optimization problem de-
fined in PGS) to simpler linear dual problems through averaged historical
gradients accompanied with a strongly convex regularization term. The
dual problems can, therefore, be treated as a locally linear estimation of
the original primal problems and can often be solved analytically. As a
result of the conversion between primal and dual problems, historical gra-
dients obtained in primal spaces can be naturally maintained and used to
reduce gradient estimation error. Following the idea, we have developed
a general policy learning framework based on PDA. With the framework,
we have developed three new Actor-Critic Algorithms, i.e., Dual Regu-
lar Actor-Critic (Dual-RAC), Dual Natural Actor-Critic with Advantage
Parameters (Dual-NACA), and Dual Natural Actor-Critic with Fisher Ma-
trix (Dual-NACF), on the basis of three classical PGS algorithms includ-
ing Regular Actor-Critic (RAC), Natural Actor-Critic with Advantage Pa-
rameters (NACA) and Natural Actor-Critic with Fisher Matrix (NACF).
We also theoretically prove that the proposed algorithms under the new
learning framework can converge under suitable conditions.

We experimentally evaluate the proposed algorithms on six benchmark
control tasks including Mountain Car, Inverted Pendulum, Inverted Dou-
ble Pendulum, Inverted Pendulum Swing Up, Lunar Lander, and Bipedal

1.4. MAJOR CONTRIBUTIONS 13

Walker. The results show that our algorithms not only are easily conver-
gent but also are more effective than respective base algorithms.

To sum up, with the newly developed algorithms, we can finally solve dif-
ficult benchmark problems effectively by using step-wise PDS algorithms
with linear policies. In addition, the new algorithms can even outperform
batch-based PDS algorithms, such as PPO-Linear, debunking the myth
that step-wise PDS is outdated. We, therefore, made the contribution to
the literature since existing step-wise PGS algorithms with linear policy
cannot solve those benchmark problems effectively and reliably.

Part of the contribution is formed as a journal article to be submitted:

- Y. Peng, G. Chen, and M. Zhang, “Primal-Dual Sub-Gradient Ap-
proximation based Policy Gradient Search,” Machine Learning, 2018.
(Targeting on the journal “Machine Learning”)

2. Proximal Evolutionary Strategies for Sample Efficient Policy Direct Search

To solve complex RL problems, another promising alternative to PGS is
Evolutionary Algorithms (EAs), such as Genetic Algorithms (GAs) [210]
and Evolutionary Strategy (ES) [186]. Because EAs are naturally suit-
able for exploration which provides more opportunities to find better
solutions. However, these EAs remain far away from the state-of-the-art
performance when being applied to training policies represented as Deep
Neural Networks (DNNs) since existing EAs focus mainly on exploration
and may converge much slowly (hence require much more samples) in
comparison to non-EA RL techniques. More specifically, these EAs are
facing three issues: low time efficiency, high sample complexity, and low
learning effectiveness. Thus, to achieve the state-of-the-art performance,
it is paramount to develop new EA methods that properly balance
exploration and exploitation.

Existing algorithms, such as Uber-GAs [210] or OpenAI-ES [186], have
made considerable efforts to outperform state-of-the-art non-EA meth-
ods with some success. However, these techniques remain more sample

14 CHAPTER 1. INTRODUCTION

complex compared to traditional PGS. Because EAs evaluate each individ-
ual through simulations involving sampling a long sequence of new state
transition samples. For example, as reported in [186], OpenAI-ES have
used 3x and 10x as many samples to perform well on most Atari game
playing tasks compared to A3C [154] and TRPO [189]. In addition, these
works require a considerable amount of computational resource as they
usually require large population sizes.

In the thesis, we have shown that CMA-ES, a typical EA, can be im-
proved in terms of time efficiency by using a layer-wise training mecha-
nism where only a portion of parameters of a DNN are trained each time.
Moreover, we have shown that, with the help of a performance lower
bound based surrogate model, the sample complexity can be further re-
duced while using CMA-ES for DRL. Lastly, to achieve the state-of-the-art
learning performance, the PGS can be utilized to promote local exploita-
tion to fine tune the best policy evolved by CMA-ES. By incorporating all
three improvements, we successfully develop a new ES-based algorithm
for DRL – Proximal Evolutionary Strategy (PES), which can achieve the
state-of-the-art performance regarding time efficiency, sample complexity,
and learning effectiveness.

The empirical experiments demonstrate that our proposed PES algo-
rithm can achieve competitive and sometimes better performance than
TRPO [189], PPO [191], and ACKTR [240] on ten continuous control
benchmarks, including Lunar Lander, Bipedal Walker, Bipedal Walker
Hardcore, Inverted Pendulum, Inverted Pendulum Swing Up, Inverted
Double Pendulum, HalfCheetah, Hopper, Walker2D and Reacher.

In summary,we made contribution to DRL research by developing the first
time in the literature an EA that can outperform cutting-edge DRL algo-
rithms in terms of both effectiveness and sample efficiency. Notably, the
key technical novelty of the newly proposed algorithm is the seamless in-
tegration of the EA based global search and the PGS based local search for
properly balancing the exploration-exploitation trade-off, which is essen-
tial for effective DRL.

1.4. MAJOR CONTRIBUTIONS 15

Part of the contribution is formed as a large journal paper:

- Y. Peng, G. Chen, and M. Zhang. “Proximal Evolutionary Strategies:
Achieving State-of-the-art Deep Reinforcement Learning through
Evolutionary Policy Optimization,” submitted for review to IEEE
Transaction on Evolutionary Computation, 2018.

3. Reliable and Flexible Value Function Learning for Policy Direct Search
The effectiveness of PGS often relies heavily on the quality of value func-
tion learning. In particular, AC algorithms, an important PGS approach,
are usually composed of two distinct learning processes, namely actor
(a.k.a, policy) learning and critic (a.k.a, value function) learning. Specifi-
cally for effective critic learning, the critic is usually represented as a para-
metric value function. This function is made up of two important com-
ponents, i.e., value function parameters and state features. They follow a
linear/nonlinear relationship to approximate the expected total rewards.
Similarly, the actor learning is responsible for learning a policy which is
often represented as a parametric function governed by a set of policy pa-
rameters. Accordingly, the gradient descent technique is adopted for the
actor learning, where the gradients of the expected cumulative rewards
with respect to policy parameters are known as policy gradients. In prac-
tice, unbiased estimation of the policy gradients is usually determined by
the learned critic. The unreliable and inaccurate critic learning can lead to
divergence to policy learning which can deteriorate the learning effective-
ness [214, 213].

Several algorithms have been developed to address the issue above,
but none has been satisfactory. For example, several methods, such as
GTD [214], GTD2 [213] and Least Square Temporal Difference (LSTD) [49],
have adopted off-policy training to achieve reliable value function learn-
ing, but the learning can still diverge eventually. Several second-order
methods, such as LSTD [37, 36], can guarantee the reliability but with high
computational complexity O(n2), where n is the number of state features.
In addition, it is fairly crucial for PGS to determine a proper form of value
function for estimating policy gradients. Because many PGS algorithms

16 CHAPTER 1. INTRODUCTION

rely on the PGS 7 [215], a suitable action-value function for estimating pol-
icy gradients must be a compatible function 8. However, most of the exist-
ing works [215, 190] focus on studying different approximations of action-
value function, such as Q function and Advantage function, which remain
compatible with policy parameterization. Nevertheless, to the best of our
knowledge, very few works have investigated the generalization of the
compatible condition introduced in [215], which can bring more flexible
and accurate policy gradient estimations for effective policy learning.

In the thesis, we firstly have shown that value functions can be learned
reliably in a simple and straightforward manner by applying a self-
organizing mechanism to the learning process. To do so, we choose the
SM which has been frequently shown to drive self-organized behavior
in many systems [18, 74, 55]. In this way, critic learning can adjust it-
self whenever it becomes unreliable based on our reliability measurement.
Moreover, as value function learning becomes reliable, the effectiveness of
policy learning in PGS can also be improved. Next, we have shown that
flexible value function learning can be achieved by generalizing the com-
patible function representation. For this purpose, we adopt q-logarithm to
formulate a general new family of the compatible functions which is used
for accurately approximating gradients. With the generalization, we can
introduce an extra degree of freedom to the value function learning, by
adjusting which we may achieve more accurate value function learning
that leads to more effective policy learning.

Empirical findings have demonstrated that learning effectiveness can be
significantly improved on benchmark Cart Pole and Puddle World prob-
lems, and also revealed the fact that value function learning reliability and
learning effectiveness are strongly correlated. Moreover, with the new
flexible family of compatible functions, the learning effectiveness of PGS
can also be improved.

To sum up, we have made contributions to the literature in two ways. We

7Please refer to Section 2.2.5 for more details.
8Please refer to Section 2.2.5 for more details.

1.4. MAJOR CONTRIBUTIONS 17

first developed a new effective PGS algorithm with reliable value function
learning enabled by the SM. Afterward, we proposed a new flexible family
of compatible functions via the generalization of the compatible condition
to achieve flexible value function learning. With such flexibility, we de-
veloped a new PGS algorithm with the well-demonstrated effectiveness
on many benchmark problems. Furthermore, our research also opened a
new direction to improve the effectiveness of PGS further.

Part of the contribution is evidenced in two conference publications:

- Y. Peng, G. Chen, M. Zhang, and S. Pang. “Generalized Compatible
Function Approximation for Policy Gradient Search,” in The 23rd In-
ternational Conference on Neural Information Processing (ICONIP 2016),
2016.

- Y. Peng., G. Chen., M. Zhang, and S. Pang. “A Sandpile Model for Re-
liable Actor-Critic Reinforcement Learning,” 2017 International Joint
Conference on Neural Networks (IJCNN 2017), 2017.

4. Enhancing Policy Direct Search via Automated Evolutionary Feature Learning

Our study of existing RL algorithms clearly shows that the effectiveness
of PDS is highly sensitive to state features, which are often designed man-
ually based on raw environment inputs. However manual feature design
requires tremendous efforts from domain experts. If important state
features were overlooked, the learning performance could be seriously
affected.

Many researches have considered to automate the feature learning pro-
cess [165, 57, 234] by optimizing/learning a parametric feature base func-
tions (e.g., Radial Basis Function (RBF) Network [165]). However, these
methods aim to accurately approximate the value function of given poli-
cies without attempting to learn effective policies. Some evolutionary ap-
proaches, such as NeuroEvolution of Augmenting Topology (NEAT) [206]
and Hypercube-based NEAT (Hyper-NEAT) [205], search directly in the
policy space by treating each policy represented as an NN as an action

18 CHAPTER 1. INTRODUCTION

selector. In such a setting, the state inputs are used directly by NNs to
produce action outputs. Hence the feature learning process is mingled
with the policy search process. However, these methods may completely
fail on large-scale problems as reported in [90, 152].

In this thesis, we have shown how the issues mentioned above can be
solved by seamlessly integrating NeuroEvolution based feature learning
with PGS based policy learning. First, unlike other methods that mingled
feature and policy learning into a single process, the proposed NEAT+PGS
scheme realizes a clear separation between the two processes to avert
interferences while learning them together. In our design, a fixed pre-
trained policy is used for evaluating the NNs evolved by NEAT for ex-
tracting useful features. Afterward, the extracted good features are used
to further search good policies with the help of PGS algorithms. Sec-
ond, only a single policy is required to be retained and be improved
across consecutive learning stages via PGS, and hence the number of
training samples is significantly reduced. Lastly, NEAT+PGS provides
a general scheme to accommodate various cutting-edge PGS algorithms
such as TRPO, Policy learning by weighting exploration with the returns
(POWER) [117] and Advantage Actor-Critic (A2C) [56].

The proposed algorithms have been evaluated on two types of problems,
1) control problems including Cart Pole and Mountain Car, and 2) Ram-
based Atari game playing tasks including Asteroids, Breakout, Freeway,
Seaquest, SpaceInvaders, and TimePilot. The evaluation results have con-
firmed the generalities, sample efficiency, and effectiveness, of the pro-
posed algorithms. Besides, the results of a specially designed experiment
have confirmed that the state features evolved from one task can be trans-
ferred to further facilitate the PGS algorithm in another similar but differ-
ent task.

With the development of NEAT+RAC and NEAT+PGS, we can summa-
rize our contribution to the literature from two aspects. First, we have
developed a novel NE based feature learning technique to construct a
new learning scheme that can improve the effectiveness of various PGS

1.5. ORGANIZATION OF THESIS 19

algorithms. Second, with the newly developed learning scheme, we have,
for the first time, proposed to clearly separate the feature learning from
the policy learning to enable effective knowledge sharing among multiple
agents in parallel for effective RL.

Part of the contribution is evidenced in three conference publications:

- Y. Peng, G. Chen, S. Holdaway, Y. Mei, and M. Zhang. “Auto-
mated State Feature Learning for Actor-Critic Reinforcement Learn-
ing through NEAT,” in The Genetic and Evolutionary Computation Con-
ference (GECCO Companion 2017), 2017.

- Y. Peng, G. Chen, M. Zhang, and Y. Mei. “Effective Policy Gradient
Search for Reinforcement Learning through NEAT based Feature Ex-
traction,” in Simulated Evolution and Learning - 11th International Con-
ference (SEAL 2017), 2017.

- Y. Peng, G. Chen, H. Singh, and M. Zhang. “NEAT for Large-Scale
Reinforcement Learning through Evolutionary Feature Learning and
Policy Gradient Search,” in The Genetic and Evolutionary Computation
Conference (GECCO 2018), 2018.

1.5 Organization of Thesis

The remainder of the thesis is structured as follows. Chapter 2 provides a lit-
erature survey on the background of RL and followed by a discussion of re-
lated works to motivate the research of the thesis. In Chapters 3-6, the primary
contributions of this thesis are presented, which correspond to each research
contribution stated above. The thesis concludes and proposes future research
directions in Chapter 8.

Chapter 2 presents a general background review for RL and a discussion on
related works to motivate the research of the thesis. It first introduces three fun-
damental ML paradigms, i.e., Supervised Learning (SL), Unsupervised Learn-
ing (UL) and Reinforcement Learning (RL). The main focus is to introduce the
RL framework with formal descriptions of the RL problem. Next, it describes

20 CHAPTER 1. INTRODUCTION

the essential techniques used in the thesis, including Evolutionary Computa-
tion (EC) with focus on NeuroEvolution (NE), Transfer Learning (TL) and Fea-
ture Learning (FL). Then it proceeds to a discussion on different approaches
to solving RL problems, mainly it discusses related works with respect to each
research objective introduced in Section 1.3 to support the motivations of the
thesis.

Chapter 4 proposes a new effective policy gradient search framework by
applying the primal-dual sub-gradient approximation based optimization. It
firstly discusses the issues that may be brought by traditional policy gradient
learning which occur in the sophisticated primal problem space. Then it pro-
poses a new learning scheme where a complex primal problem can be con-
verted to a simpler dual problem via the primal-dual sub-gradient approxi-
mate technique. In such dual space, more effective gradient updates can be
achieved. Following the learning scheme, three new PGS algorithms are de-
veloped, i.e., Dual-RAC, Dual-NACA, and Dual-NACF, from the three existing
PGS algorithms including RAC, NACA, and NACF. The proposed three new
algorithms are examined on two benchmark problems in comparison to RAC,
NACA, NACF and two state-of-the-art algorithms, i.e., Augmented Random
Search (ARS) and an adapted PPO algorithm with linear policy. Additionally,
the chapter provides theoretical analysis to analyze the convergence of all pro-
posed algorithms.

Chapter 5 proposes a new evolutionary deep policy optimization algorithm
that achieves state-of-the-art performance in terms of time efficiency, sample
complexity, and learning effectiveness. The chapter firstly discusses cutting-
edge research on DRL and the positions of evolutionary algorithms in the do-
main. Then it proposes a proximal evolutionary strategy algorithm to fulfill
the potential of EAs to achieve competitive performance in terms of both ef-
fectiveness and sample efficiency in comparison to several state-of-the-art DRL
algorithms such as PPO, TRPO, and ACKTR. This is achieved by incorporating
three new improvements: a CMA-ES based layer-wised training for improving
time efficiency, a proximal performance lower bound based surrogate model
for improving sample complexity, and a gradient-based local search method
to further boost learning effectiveness. PES is examined on nine continuous

1.5. ORGANIZATION OF THESIS 21

benchmark problems with comparisons to three cutting-edge PGS algorithms.
Chapter 6 proposes new policy gradient search algorithms by improving the

reliability of value function learning and generalizing approximation for com-
patible function. The chapter introduces the actor-critic scheme for policy gra-
dient search. Next, it highlights the fact that the effectiveness of policy learning
relies heavily on reliable and accurate value function learning. Driven by the
understanding, the chapter develops two complementary algorithms with two
improvements. One algorithm aims to enhance the reliability of value func-
tion learning with the help of a Sandpile model. The other algorithm targets to
generalize the compatible function condition to obtain a flexible family of new
compatible functions to improve the accuracy of policy gradient estimations
eventually. The two algorithms are all derived from the RAC algorithm and are
evaluated on two benchmark control problems. Experimental results show the
significant improvement in the effectiveness of the two proposed algorithms
compared to RAC, and more importantly, shed new light on how to enhance
policy learning through reliable and accurate learning of value functions.

Chapter 7 proposes a new policy gradient learning scheme, in which auto-
mated feature learning via NEAT is seamlessly integrated with various effective
policy gradient search algorithms. The chapter emphasizes on the importance
of feature learning for effective RL. Driven by the main research goal, it de-
velops a NEAT based three-stage learning scheme for effective feature learning,
which can be seamlessly integrated with different cutting-edge PGS algorithms.
The learning scheme has been deployed onto one classical PGS algorithm, i.e.,
RAC, and three state-of-the-art PGS algorithms including TRPO, PoWER, and
A2C. Our experimental results show that the proposed algorithms outperform
NEAT and the four PGS algorithms on six benchmark Atari games.

Chapter 8 gives a summary of all works proposed in this thesis and con-
cludes the thesis. The discussions are around the contributions of the thesis.
Also, possible future research opportunities are presented.

22 CHAPTER 1. INTRODUCTION

Chapter 2

Literature Review

The chapter presents the research background of the thesis and followed by
a discussion of related works that supports the motivations of the thesis. It
starts with a general introduction across different machine learning paradigms
in Section 2.1.1 including Supervised Learning (SL) , Unsupervised Learning
(UL), and Reinforcement Learning (RL), with a strong focus on the reinforce-
ment learning framework by introducing the formal description of the problem
in Section 2.1.2. Following that, the chapter discusses the background knowl-
edge about Evolutionary Computation (EC) including particularly NeuroEvo-
lution (NE) in Section 2.1.3, Transfer Learning (TL) in Section ?? and Feature
Learning (FL) in Section 2.1.4. The chapter then proceeds to discuss different
approaches to solving RL problems in Section 2.2. Subsequently, it discusses re-
lated works in Section 2.3 with respect to the four research objectives introduced
in Section 1.3 to motivate the research works reported in the thesis. To the end,
the chapter summarizes the discussions on related works in Section 2.4 to make
connections to the subsequent contribution chapters (i.e., Chapters 3-6).

23

24 CHAPTER 2. LITERATURE REVIEW

2.1 Background

2.1.1 Machine Learning

In the recent years, Machine Learning (ML) has become one of main driv-
ing forces of modern technology, which significantly changes our daily life
with massive useful applications from providing intellectual recommendations
of movies for your tastes [6] to defeating human-beings in the difficult GO
game [199]. Owing to the enormous economic and research potential, ML has
gained more and more popularity not only among industrial practitioners but
also among academic researchers.

A typical ML system is expected to optimize some performance measure-
ment for some task by learning from example data or past experiences [3, 153].
According to Mitchel [153], a formal definition of ML is given below:

“computer program is said to learn from experience E with respect to
some class of tasks T and performance measure P, if its performance
at tasks in T, as measured by P, improves with experience E”

Generally, ML systems can be classified into three broad paradigms accord-
ing to whether or not there are supervisors involved [153]. The paradigms
are Supervised Learning (SL), Unsupervised Learning (UL), and Reinforcement
Learning (RL) [153], which are introduced below respectively.

Supervised Learning

An SL system is to learn from examples containing desired outputs (i.e., labels)
provided by a supervisor [153, 3, 22]. The goal is to find a mapping relationship
from inputs to outputs that can be generalized to unseen inputs to make correct
predictions on unseen inputs. Two typical SL tasks are Classification and Re-
gression. In classification tasks, the learning system is given a set of instances
(i.e., input and output pairs) and is expected to learn a model that can make
predictions on categorical membership of each instance [153, 3, 22]. The spam
filter is a typical example of classification task where the agent is trained to clas-
sify new emails to spam or ham [67]. A regression learning agent is to predict

2.1. BACKGROUND 25

a target numeric value based on the given inputs [153, 3, 22]. House pricing
prediction for a specific area based on historical data with many features, such
as neighborhood, location, number of bathrooms, etc., is a good example of re-
gression [67].

Unsupervised Learning

A typical UL system is supplied with solely input data without any desired
outputs pre-determined by human supervisors [153, 3, 22]. UL aims to find reg-
ularities, for instance, regular patterns that occur more often than others, from
the input data. Typical UL methods include Clustering and Association Rule
Learning. Clustering is such a task of finding clusters or groupings within the
given input. Association Rule Learning is a task to discover associated relations
or patterns between feature within the input data. A typical example of UL is to
apply a clustering algorithm to detect groups of similar visitors to a particular
website, where none of group information is given to the algorithm and it finds
connections by itself [67].

Reinforcement Learning

An RL system takes observations from the environment that it interacts with
as inputs, and then produces a sequence of actions as outputs to be performed
in the environment. Meanwhile, it receives instant rewards from the environ-
ment. Its goal is to find a policy that can generate a series of correlated actions
that can enable the RL system to obtain the maximum total rewards. In this
scenario, there is no guidance of supervisors involved. RL is further discussed
in Section 2.1.2 below.

2.1.2 Reinforcement Learning

Reinforcement Learning is defined as a process where actions are drawn by an
agent via its iterative interactions with an unknown environment [153, 3, 22,
212]. The environment provides responsive feedbacks (i.e., reward) to the ac-
tions it receives from the agent. The agent learns from the interactions with the

26 CHAPTER 2. LITERATURE REVIEW

environment in order to maximize the long-term pay-off. Fig. 2.1 illustrates the
typical RL problem [212], which can be formally modeled as a Markov Decision
Process (MDP) (see Section 2.1.2)

Agent

Environment

s
(state/observation)

a
(action/decision)

r
(reward/feedback)

t t t

st+1

rt+1

Figure 2.1: A Reinforcement Learning problem is formally modeled as an MDP,
drawn based on Figure 3.1 in [212].

Markov Decision Process

An MDP [136, 212, 153, 236, 148, 185, 218] is modeled as a 5-tuple discrete-time
process at a discrete time interval, namely 〈S,A,P ,R, γ〉, in which:

• S is a state space, where ~st ∈ S is an observed state at time step t, and
n ∈ N.

– For the continuous case, the state space is an uncountable set, such
that S ⊆ Rn.

– For the discrete case, the state space is a countable non-empty set
containing all possible state.

• A is an action space. For any state ~s ∈ S , we have at ∈ A(~st) which
represents the action taken by the agent at time step t.

– For the continuous case, the action space is an uncountable set, such
that A(~s) ⊆ R.

2.1. BACKGROUND 27

– For the discrete case, the action space is a countable non-empty set
containing all available action for the given state.

• P is a transition function defined as,

P : S ×A× S → [0, 1], (2.1)

where P(~st, at, ~st+1) denotes Pr(~st+1|~st, at), i.e., a transition probability
from a state ~st taking an action at to a state ~st+1.

• R is a reward function defined as,

R : S ×A× S → R, (2.2)

where R(~st, at, ~st+1) denotes the immediate reward distribution, and r is
used to represent an immediate scalar reward sampled from the reward
distribution, i.e., rt+1 ∼ R(~st, at, ~st+1).

• γ ∈ [0, 1) is a discounted factor used for decaying the future reward.

The MDP model must satisfy the Markov Property below,

Pr(~st+1|~st, at, ~st−1, at−1, . . . , ~s0, a0) = Pr(~st+1|~st, at) = P(~st, at, ~st+1). (2.3)

According to (2.3), the probability of transiting to state ~st+1 only depends
on the action at taken in the state ~st, which does not depend on any previous
actions and states. The property implies that when the agent makes a decision
of performing the action at at the state ~st, it only needs to consider the current
state ~st without looking back to the historyHt = {~s0, a0, . . . , ~st−1, at−1}.

Foundational Concepts of Reinforcement Learning

By learning from its interactions with an unknown MDP, an RL agent attempts
to find an optimal policy, which guides the agent to obtain the maximum long-
term pay-off [212, 136, 236]. To better understand RL, we next introduce several
fundamental concepts in RL, including state features, value function, policy and
the optimality criteria respectively.

28 CHAPTER 2. LITERATURE REVIEW

State Feature. In RL, state features usually refer to high-level representations
of the raw state input (e.g. sensory input in a pole balancing control problem)
that will be used by an RL system to effectively learn its policy [212]. In RL
systems, it is beneficial to use such high-level representations because of two
reasons. First, it maps the raw inputs to a high-level feature space where the
relationships among attributes of the input may be extracted to promote the re-
inforcement learning [212, 234]. Second, carefully designed features can contain
prior domain knowledge, which can be essential to improve the effectiveness of
the RL system [212, 234, 70].

The extraction of state features is achieved through basis functions [218],
which can be defined as,

~φ(~s) = [~φ1(~s), . . . , φm(~s)], (2.4)

where ~φi ∈ R for i = 1, . . . ,m, and m is the dimension for the state features. For
a given state space S, one can construct the state features ~φ(~s) where ~s ∈ S by
using many different means, for example, discretization [212], tile coding [212],
Radial Basis Function (RBF) networks [92], Neural Networks (NNs) [212], and
so forth.

Value Function. For one specific state, Value Function (VF) specifies the ex-
pected long-term pay-off 1 that can be obtained by the agent in the future upon
starting its journey from any given state. It indicates the long-term desirability
of the state if the agent starts from the state following a specific policy, which
helps the agent make and evaluate decisions. However, the value function can-
not often be analytically determined. As a matter of fact, to achieve efficient
and precise estimation of value function brings a great many of challenges to
practical reinforcement learning.

Formally, value functions are defined as functions mapping states or state-
action pairs to the expected long-term pay-off when following a particular pol-
icy. There are two types of value functions, i.e., the state value function V π

1The expected long-term pay-off also refers to the expected total rewards, and are often used
interchangeably in the literature.

2.1. BACKGROUND 29

(see (2.5)) and the action value function Qπ (see (2.6)). The state value function is
defined as below,

V π(~s) = J (π)

= IE[
∑∞

t=0 γ
trt+1|~s0 = ~s, π],

(2.5)

where ~s0 represents the starting state arbitrarily initialized by any state ~s ∈ S.
This equation means that, the expected long-term pay-off is V π(~s) whenever an
agent starts from any state ~s ∈ S under a specific policy π.

Also, we can have the action value function defined as,

Qπ(~s, a) = IE[
∑∞

t=0 γ
trt+1|~s0 = ~s, a0 = a, π]. (2.6)

Different from the state value function in (2.5), the action value function in (2.6)
indicates that, the expected long-term pay-off Qπ(~s, a) is given when initiating
from any state ~s ∈ S and taking an action a ∈ A(~s), thereafter following the
policy π. The relationship between V π and Qπ is given below,

V π(~s) =

∫
a∈A(~s)

π(a|~s)Qπ(~s, a)da. (2.7)

Intuitively, the optimal value function is,

V ∗(~s) = max
π

V π(~s). (2.8)

Thus, we can obtain the optimal policy as,

π∗ = argmax
π

V π(~s). (2.9)

Policy. A Policy is a core concept of RL. Formally, the policy is a function out-
putting an action a ∈ A(~s) for each state ~s ∈ S [212, 236]. There are two types
of policy, i.e., deterministic and stochastic.

The deterministic policy is formulated as,

π : S → A. (2.10)

On the other hand, the stochastic policy 2 is formulated as,

π : S ×A → [0, 1], (2.11)
2Note that, a stochastic policy no longer outputs actions but probabilities of choosing actions

at the state.

30 CHAPTER 2. LITERATURE REVIEW

where π(a|~s) ≥ 0 and ∀~s,
∫
a∈A(~s)

π(a|~s)da = 1.

The stochastic policy in (2.11) actually defines a distribution over all possible
actions in a given state. Such a definition gives us a flexibility to consider both
stochastic and deterministic policies. There, we will only use the definition of
the stochastic policy in (2.11) throughout the thesis.

Optimality Criterion. In RL, the optimality criterion model is derived from
the expected long-term pay-off while the agent follows a particular policy [212,
236, 218]. Two common optimality model are the infinite horizon discounted re-
ward model and the average reward model. The former model is formulated as,

J (π) = lim
h→∞

IE[
1

h

h∑
t=0

rt+1|π], (2.12)

and the latter model is,

J (π) = IE[
∞∑
t=0

γtrt+1|π]. (2.13)

In this thesis, we employ the infinite horizon discounted model, as it is more
commonly studied in the literature [212]. In this model, later rewards are dis-
counted more than earlier rewards. Moreover, the discount factor γ determines
that only finite long-term pay-off by the agent even in an infinite horizon. Note
that, when γ = 0, it means that the agent only concerns about immediate re-
wards.

In summary, the goal of an RL agent is to learn a policy π that maximizes the
expected long-term pay-off J . Such a policy is said to be optimal. Thus, we can
have the optimal policy as,

π∗ = argmaxπ J (π)

= argmaxπ IE[
∑∞

t=0 γ
trt+1|π].

(2.14)

Note that, if the RL problem satisfies the Markov Property in (2.3), there will
exist at least one deterministic optimal policy.

2.1. BACKGROUND 31

2.1.3 Evolutionary Computation

In this subsection, we start with a general introduction to EC concerning its
applicability to RL, then proceed to briefly introduce several conventional EC
techniques including Evolutionary Algorithms (EA), Swarm Intelligence (SI),
and NeuroEvolution (NE). This subsection mainly focuses on the basic ideas
and techniques of NE. Also the relevant research of using NE for RL will be
discussed in detail in Section 2.2.6.

Evolutionary Computation

Evolutionary Computation (EC) is a family of computational algorithms in-
spired by biological evolution principles, which is widely used as optimization
or search techniques [244, 64]. Typical EC techniques can be generally cate-
gorized as Evolutionary Algorithms (EAs), Swarm Intelligence (SI), and others
such as NeuroEvolution (NE), which are briefly discussed below. Particularly,
Evolutionary Strategies and NeuroEvolution, as the main EC techniques used
in this thesis, are discussed with more details.

Evolutionary Algorithms

Evolutionary Algorithms are methods of conducting a stochastic search for a
near-optimal solution to a given problem [64, 7]. The search process generally
consists of several key components, including solution representation (chromo-
some encoding), fitness function, population initialization, selection operators,
and reproduction operators (recombination and mutation). A typical EA starts
by initializing a group of encoded solution individuals as an initial population.
Afterward, based on the evaluation of each individual by the fitness function,
the EA utilizes selection and reproduction operations to produce a new pop-
ulation of individuals for the next generation. The process repeats for many
generations until a near-optimal solution is located. Here, we briefly discuss
three important EAs, including Genetic Algorithm (GA) [7], Genetic Program-
ming (GP) [128], and Evolutionary Strategies (ES) [13].

32 CHAPTER 2. LITERATURE REVIEW

Genetic Algorithms. Genetic algorithms (GAs) [7] are one of the earliest algo-
rithms developed to mimic biological systems. The search process of GAs is
based on natural selection (i.e., the principle of biological evolution). Each indi-
vidual in standard GAs is expressed as a genotype encoded by a fixed length of
bits (bit-strings) or floating points. During the evolution process, GAs repeat-
edly adapts the population of individuals, which makes the entire population
evolve towards an optimal solution. The main operators in GAs are (1) selec-
tion operator that decides which individuals to survive to the next generation,
(2) recombination operator that combines selected parents to produce offspring
for the next generation, and (3) mutation operator that introduces new varia-
tions into an existing individual for the next generation. Although GAs, as a
global search mechanism, may less likely be trapped by local optima compared
to gradient descent methods, it can often be very computationally expensive
especially when individuals are encoded as large dimensional bit-strings [64].

Genetic Programming. Genetic programming (GP) [128] encodes computer
programs as a set of variable-length genes, and then evolves them via EAs such
as GAs. Each individual in GP is a computer program. For every generation,
each individual is directly evaluated based on a specific problem domain to
determine its fitness for that program. One advantage of GP is that the solu-
tions evolved by itself are interpretable, unlike other oracles such as Neural
Networks. However, the computational cost of using GP is often high [64].

Evolutionary Strategy. Evolution Strategies (ESs), different from GAs or GP,
consider both genotypic and phenotypic evolution 3, which is considered a spe-
cialization of EAs [13, 64, 179]. Thus, ES repeats a similar evolutionary process
as a typical EA to produce new individuals repeatedly by adopting selection,
recombination and mutation operators. However, ESs are distinguished in two
key design principles, namely Unbiasedness and self-adaptive control of strategy
parameters [85, 88].

3A genotypes refers to the genetic composition of an individual inherited from its parents,
whereas a phenotype is the expressed behavioral traits of an individual in a specific environ-
ment.

2.1. BACKGROUND 33

• Unbiasedness: In ESs, new information introduced by mutation or recombi-
nation to individuals are unbiased, but selection may bias the information
towards the direction of better fitness. Such bias can lead to premature
convergence, which can be addressed by adopting fitness independent re-
combination and environmental selection that are expected to be unbiased
operators [85, 88]. By doing so, ESs can achieve maximum exploration to-
gether with unbiasedness.

• Self-adaptive control of strategy parameters: In ESs, each individual is en-
coded with decision parameters as well as strategy parameters such as
step size [13]. Thus, these strategy parameters (e.g., step size) are self-
adapted so as to achieve most effective search along each possible direc-
tion.

Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES)

Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES) is a notable
member of the family of ES algorithms. It is a purposefully designed stochas-
tic search method for continuous optimization of non-linear and non-convex
functions [88]. In CMA-ES, it adapts the covariance matrix to learn a second-
oder model of the underlying objective function similar to the approximation of
the inverse Hessian matrix in the Quasi-Newton method in classical optimiza-
tion [88, 86]. Thus, CMA-ES has been widely shown to be more effective in con-
trast to many first-order gradient descent methods as well as other EAs [86, 88].

CMA-ES is implemented in four steps. First, CMA-ES samples a population
of new individuals from a multivariate normal distribution. For each generation
g = 0, 1, 2, . . . , this step is defined as,

~xg+1
k ∼ ~mg + σgN (~0, ~Cg), (2.15)

where N (~0, ~Cg) is the multivariate normal distribution with zero mean and co-
variance matrix ~Cg, ~xg+1

k denotes the k-th individuals of the generation g + 1,
~mg and σg represent the mean of search distribution and step-size at generation
g respectively. Second, it selects µ < λ out of λ individuals by truncated se-
lection, and then recombines these individuals with crossover (e.g., weighted

34 CHAPTER 2. LITERATURE REVIEW

intermediate recombination). This step can be represented as,

~mg+1 ∼ ~mg + cm
∑
i=1

µωi(~x
g+1
i:λ − ~mg), (2.16)

where cm ≤ 1 is a learning rate usually set to 1. Third, it updates the covariance
matrix C by different means, such as estimating it from scratch, rank-µ-update,
rank-one-update, and combining rank-µ-update and cumulation method. The
last option is generally adopted in literature, which can represented as,

~Cg+1 = (1− c1 − cµ
∑

ωj)~C
g + c1p

g+1
c pg+1T

c + cµ

λ∑
i=1

ωi~y
g+1
i:λ (~yg+1T

i:λ) (2.17)

where c1 ≈ 2
n2 , cµ ≈ min(µ

n2 , 1 − c1), yg+1
i:λ =

~xg+1
i:λ −~m

g

σg
,
∑
ωj =

∑λ
i=1 ωi ≈ −c1

cµ
, pg+1

c

is the evolution path 4 that reintroduces the sign information. Fourth, CMA-ES
also explicitly increases or decreases of the scale for covariance matrix adapta-
tion by tweaking the overall step size σ. Additionally, the step size is adapted
according to (2.18) below,

σg+1 = σge
cσ
dσ

(
||pg+1
σ ||

IE||N (~0,~I)||
−1

)
(2.18)

where pgσ is the evolution path for σ.

Swarm Intelligence

Swarm intelligence (SI) is the collective intelligence of using decentralized con-
trol and self-organization [114]. Typical SI systems consists of a population of
simple individuals interacting with each other and their environment, they aim
to optimize global objectives through collaborative search of the space. There
is no centralized control structure to regulate the behaviors of each individual.
These individuals follow simple rules to interact and move towards a center
of mass in the population on important dimensions with a general stochastic
(or chaotic) tendency. Such interaction leads to an “intelligent” global search
behavior that converges to an optimum [114]. Two main techniques in swarm
intelligence are Particle Swarm Optimization (PSO) [115] and Ant Colony Opti-
mization [58].

4The evolution path accumulates historical search directions in successive generations and
acts as a momentum to guide the search [134].

2.1. BACKGROUND 35

NeuroEvolution

Inspired by the evolution of a biological nervous system in nature, NeuroEvo-
lution (NE) is an important EC technique where EAs are applied to directly con-
struct/evolve artificial Neural Networks (NNs) [243]. In NE, each individual is
represented as an NN, and the algorithm tries to evolve a population of NNs
with varied weights and topologies. In each generation of NE, each network
is evaluated on a given problem. Based on the results of the evaluation, the
best performing networks are selected via different selection methods, such as
rank-based selection, roulette wheel selection, or tournament selection [243, 64].
Afterward, these selected networks are used to reproduce new networks for the
next generation via crossover and mutation.

While solving an RL problem, individual NNs evolved by a NeuroEvolution
algorithm represents a policy where the input nodes correspond to raw state
inputs or state features, and the output nodes are either actions or the proba-
bility of selecting each action. Each policy is evaluated by conducting multiple
roll-outs in a given MDP, and its fitness is determined by the average total re-
wards observed from the roll-outs. Two typical examples of NeuroEvolution
algorithms are NeuroEvolution of Augmenting Topology (NEAT) [206] and its
variation Hypercube-based NEAT [205], which are introduced below.

NeuroEvolution of Augmenting Topology (NEAT). NEAT is an evolutionary
approach towards learning flexible NNs for various machine learning problems
including RL [207]. It has gained prominent successes on classic RL tasks such
as double pole balancing [206] and robotic control [208]. In comparison to other
Neural Evolution methods, NEAT possesses the following technical strengths:

• Topology evolution: NEAT starts with a population of simplest networks
where no hidden neurons or connections are given. The topology is in-
crementally augmented via two mutation operators, adding nodes and
adding links. In this way, NEAT tends to find an NN with a minimum
number of weights and a suitably complex topology for a given problem.

• Innovation number: NEAT encodes its genome (i.e., an NN) in a direct way
where a group of connection genes defines each genome. Each connection

36 CHAPTER 2. LITERATURE REVIEW

gene is specified by one in-node gene, one out-node gene, the weight of
the connection, an enable indicator that determines whether the connec-
tion gene is expressed and an innovation number that helps identify cor-
responding genes for crossover. By using the simple innovation number,
the crossover operation can be efficiently performed without expensive
comparisons on topological similarities across different NNs.

• Speciation: NEAT also speciates its population so that an individual mainly
competes within its speciation rather than within the entire population.
In doing so, NEAT can prevent any topological innovations generated by
individuals within their niches from being overridden by other niches of
the population.

Hypercube-based NEAT. The Hypercube-based NEAT (HyperNEAT) was in-
troduced by Stanley et.al [205] to extend NEAT by using indirect encodings for
NNs. It is based on compositional pattern producing networks (CPPNs), which
are networks used to describes complex patterns such as images. The CPPN
can also be evolved by NEAT to address problems with complex input such as
image-based tasks. In this thesis, we focus more on NEAT over HyperNEAT
because of two reasons. First, HyperNEAT is more suitable for problems where
geometric knowledge is important [205], which are not typical settings of RL
problems. Second, HyperNEAT actually suffer from the “fractured” problems 5

severer than NEAT on some complicated problems as reported in [140, 118].

2.1.4 Feature Learning

The performance of almost all ML methods heavily relies on how the features
(i.e., data representation) are constructed. Traditionally, to properly represent
the data for effective ML, task related features must be carefully designed via
feature engineering with the support of knowledgeable domain experts [26].

5In a “Fractured” problem, the correct decision for the agent changes abruptly and often
rather than slowly and continuously, when the agent transits between states [140, 118]. Thus,
the agent may perform ineffectively in such problems.

2.2. REINFORCEMENT LEARNING METHODS 37

Despite the usefulness of feature engineering, it is still labor intensive. To ad-
dress this, Feature Learning (FL) is a way that can automatically learn general
features from the data so as to effectively extract useful information for ML
tasks.

It is also imperative to learn useful features for RL algorithms [212]. A
known limitation for raw state input (i.e., linear feature) is that it does not take
correlations among different state input dimensions into consideration which
sometimes are very useful for effective learning [212]. For example, in Cart-
Pole problem, it is difficult to judge the goodness of high angular velocity (i.e.,
the fourth dimension of the raw state input) since it depends closely on the an-
gle (the third dimension of the raw state input). If the angle is large, then high
angular velocity indicates a dangerous situation where the pole is falling.

In RL, there are many methods developed to learn/extract features from
raw state input, which can be generally categorized as four different ways. One
common approach is to use supervised learning techniques to learn basis func-
tions, such as [70, 109]. The second common approach is to apply traditional
unsupervised learning techniques to construct features before applying any RL
methods [127]. The third approach to directly apply NeuroEvolution to evolve
NNs that combine feature extraction and action selection together in the form
of high-performing policies [206]. The final approach, which is very popular re-
cently, is to combine deep learning with reinforcement learning autonomously
extract high-level features from raw state inputs, such as [81, 117, 132].

2.2 Reinforcement Learning Methods

In this section, we will focus on technical aspects of different methods for solv-
ing the difficult RL problems which are closely related to the thesis. The chapter
starts from a general taxonomy of RL methods, then proceeds to describe tech-
nical details of each method. It finally discusses several methods for feature
learning to improve the effectiveness of RL algorithms.

38 CHAPTER 2. LITERATURE REVIEW

2.2.1 Reinforcement Learning Methods Taxonomy

In literature, a massive number of algorithms have been proposed to address
the RL problem. In a broad sense, they can be simply separated into two ma-
jor categories, i.e., value function indirect search (VIS) and policy direct search
(PDS). VIS aims at learning directly the expected long-term pay-off by following
the optimal policy. Once the value function is determined, RL agent can select
actions under the guidance of the learned value function (without explicit rep-
resentation of the optimal policy). On the other hand, in PDS methods, policies
are explicitly represented and agents search directly in the space of policy rep-
resentations. We will introduce the two categories of methods respectively in
the following subsections.

2.2.2 Value Function Indirect Search

VIS [212, 195, 211, 231, 184, 213] is designed to find an optimal policy by indi-
rectly searching the optimal value function first, and then obtaining the optimal
policy from that optimal value function6 (see (2.8)) [236, 195]. However, value
function is often approximated since it is infeasible to determine it analytically.

In literature, there are three common ways to learn value functions based on
three different representations [212], i.e., tabular value function methods, linear
combination based value function approximation methods and neural network
based value function approximation. Tabular value function methods are the
simplest form to approximate value functions, where value functions are repre-
sented as arrays or tables [212]. These methods often give exactly the optimal
value function and the optimal policy, which contrasts to the other two approx-
imation ways where only approximated solutions can be found. However, tab-
ular methods assume the state and action spaces are sufficiently small (finite
MDP) to be represented as tables, which are impractical in reality 7 [236, 234].
To cope with this issue, one can represent value functions through parametric

6Note that VIS assumes that a greedy policy is always deployed, so if the value function is
optimal (i.e., the maximum long-term pay-off), then the policy will also be optimal.

7Due to its simplicity and unpopularity, we do not cover any technical details about these
tabular methods in the thesis. The technical details can be found in [212]

2.2. REINFORCEMENT LEARNING METHODS 39

functions (a.k.a, function approximation) [212, 236, 218]. Commonly, two types
of parameterization can be applied, linear or nonlinear, which will be detailed
in Subsection 2.2.2 and Subsection 2.2.2 respectively.

Figure 2.2 illustrates a general architecture followed by most VIS algorithms.
The value functions V π or Qπ are learned via an iterative process. When the
algorithm converges, the V π or Qπ is expected to closely approximate V ∗ or Q∗,
i.e., the optimal value functions are obtained. Then, the optimal policy π∗ can
be extracted from the optimal value functions.

Initialization
(Policy Parameters)

Agent-Environment
Interaction

Value Functions
Update

(on-policy/off-policy)
Converge?

No

Optimal Value
Functions

Yes Optimal Policy

Figure 2.2: Value Function Indirect Search Framework, drawn based on Figure
3 in [193].

Linear Value Function Approximation Methods

A linear parametric value function Ṽ π(~s) (i.e., linear state features explained in
Subsection 2.1.2) is defined as,

V π(~s) ≈ Ṽ π
υ (~s) = υπT · ~φ(~s), (2.19)

where υπ ∈ Υ ⊆ Rm represents the value function parameter vectors, and ~φ(~s) is
the m-dimensional state features (explained below). The linear value function
representation Ṽ π(~s) is linear to its parameters υπ, but its state features ~φ(~s)

may be nonlinear. The usefulness of linear value function representation relies
largely on the choices of proper state features [212, 218, 70, 246, 150].

Temporal Difference (λ). The TD(λ) algorithm is frequently utilized to learn
state value functions (represented in a tabular form). “Eligibility Trace” [212] is
integrated in the algorithm, which works as temporary records for the occur-
rence of events, such as visiting a state or taking an action. More specifically,

40 CHAPTER 2. LITERATURE REVIEW

the trace decides the eligibility of events for the undergoing learning process by
λ, hence only eligible records can be given temporal credits. When λ = 0, the
credit will only be given to last state ~st−1. On the other hand, when λ = 1, it
means all visited states will be credited.

Q-learning and State-Action-Reward-State-Action (SARSA). Different from
TD(λ), Q-Learning [231] and SARSA [184] are designed to learn the action value
function Qπ. The difference between Q-Learning and SARSA is that, the former
is off-policy and the latter is on-policy.

Off-policy Q-learning can directly learn the Q function of the optimal policy.
This is achieved by following the updating rule below at any time step t,

Qπ(~st, at)← Qπ(~st, at) + α[rt+1 + γmax
at+1

Qπ(~st+1, at+1)−Qπ(~st, at)]. (2.20)

On the other hand, on-policy SARSA is developed to learn the Q-function of
a specific policy known to the RL system. The corresponding updating rule at
any time step t is given below,

Qπ(~st, at)← Qπ(~st, at) + α[rt+1 + γQπ(~st+1, at+1)−Qπ(~st, at)]. (2.21)

The algorithms discussed above are the most representative VIS methods
only support tabular representation of value functions. In fact, many practical
problems require not only continuous state space but also continuous action
space, but these mentioned algorithms all appear to be incompetent. Next, we
will discuss an algorithm that enables traditional TD learning to handle contin-
uous problems, which is called Gradient Temporal-Difference (GTD) algorithm.

Gradient Temporal Difference Learning. Unlike other TD algorithms, GTD
uses the objective function as L2 form of the following vector:

J (~υ) = IE[δ~φ]T IE[δ~φ] (2.22)

where δ is the TD error defined in (2.38) and ~φ is the state feature vector defined
in (2.4). Its minimum value of 0 can be achieved when IE[δ~φ] = 0. Also, the
gradient of the objective function is,

∇~υJ (~υ) = −2IE[~φ(~φ− γ~φ′)T]T IE[δ~φ] (2.23)

2.2. REINFORCEMENT LEARNING METHODS 41

Following this, GTD forms the matrixA = IE[~φ(~φ−γ~φ′)T] and it can be estimated
from t samples as,

At =
1

k

t∑
i=1

~φi(~φi − γ ~φi
′
)T . (2.24)

Accordingly, we can have the value function parameter updating rule:

~υt+1 = ~υt + αtA
T
t δt

~φt. (2.25)

Neural Networks based Value Function Approximation Methods

In ML domain, NNs are widely utilized to approximate nonlinear value func-
tions. There are many value function approximation methods that have
adopted NN as representations for value function [212]. Based on the difference
of training methods, these NN based Value Function Approximation methods
can be divided into two groups, namely Back-Propagation training based meth-
ods and NeuroEvolution based methods.

Figure 2.3 shows a generic feed-forward NN 8. As can be seen from the fig-
ure, the network consists of one output layer with two output neurons, two
hidden layers with eight hidden neurons, and one input layer with four input
neurons. In addition, weights (real values) are assigned to each link which are
the core of a network.

Back-Propagation Training based Value Function Approximation. One of the
most successful algorithms to train NNs is the back-propagation algorithm,
which enables both forward and backward passes through the network. In one
forward pass, signals from inputs nodes are passed layer by layer to the out-
put nodes, meanwhile they are computed with weights along connections and
are activated by the activation functions of hidden nodes. After each forward
pass, a backward pass starts by computing the error from the output, and then
proceeds to distribute the obtained error back to input nodes by computing par-

8In this thesis, we are only interested in feed-forward networks, because generally recurrent
networks are used for solving partially observable MDP which is out of our research scope.

42 CHAPTER 2. LITERATURE REVIEW

Figure 2.3: A generic feed-forward NN with four input units, two output units,
and two hidden layers, adapted from Figure 9.14 [212].

tial derivatives of weights with respect to the error. In this way, an NN can be
trained towards the direction of error decrease.

With recent advancements in training deep structured NNs via back-
propagation (i.e., Deep Learning (DL)), NNs have become the most promising
function approximators for RL algorithms to solve challenging problems [212].
The use of Deep NNs (DNNs) in RL gives rise to many cutting-edge Deep
Reinforcement Learning (DRL) algorithms [189, 191, 229, 240], meanwhile has
shown many impressive results on solving very difficult problems such as play-
ing Atari games [12]. Note that, DNNs can be used not only to approximate
value functions, but also policy as well. In this subsection, we only focus on
those algorithms using DNNs for value function approximation, and deep pol-
icy search methods are described in Section 2.2.5. Next, we will discuss the most
popular two VIS algorithms that uses DNN as value function representations,
i.e., Deep Q Network (DQN) [155] and Double Deep Q Network (DDQN) [225].

• Deep Q Network (DQN): DQN is the seminal work that successfully used
deep representation to solve complex problems [155]. In comparison to
traditional Q learning stated in Section 2.2.2, DQN has several technical
advancements. First, it uses experience replay where one step experience
may be used for multiple rounds of weights updates thereby increasing

2.2. REINFORCEMENT LEARNING METHODS 43

sample efficiency. Second, learning is conducted on randomly selected
samples from experience repository that breaks the strong correlations be-
tween samples for improved learning reliability.

• Double Deep Q Network (DDQN): DDQN is proposed by [225] to tackle
the over-estimation problem in traditional Q learning as well as DQN,
because in Q learning and DQN, agent tends to select actions based on
over-estimated Q values. In DDQN, a separate target Q network is pro-
posed to estimate Q values, while another online Q network is being
trained through temporal difference. DDQN was shown to outperform
DQN [225].

• Other DQN extensions: Besides DQN itself and DDQN, there have been
many extensions proposed to further improve learning performance of
VIS. For example, Dueling DQN [230] uses a new network architecture
(Dueling Architecture) to estimate both the state value function (i.e., V (~s)

function) and the advantage function (i.e.,A(~s, a) function) to construct an
estimation of the action value function Q(~s, a). Average-DQN [10] aims
to reduce variances and instability by averaging previously obtained Q-
value estimations. Accelerated-DQN [99] uses a constrained optimization
technique (i.e., optimality tightening) to accelerate DQN with faster re-
ward propagation meanwhile achieving higher accuracy than the original
DQN.

NeuroEvolution Based Value Function Approximation. Another effective way
to train value functions in the form of NNs is the NeuroEvolution algorithms
introduced in Section 2.1.3. Here, we are interested on NeuroEvolution for
value function approximation methods, and leave the NeuroEvolution based
policy search in Section 2.2.6. In the literature, a typical NeuroEvolution based
VIS methods is NEAT based Q Learning (NEAT+Q) proposed by Whiteson and
Stone [232].

• NEAT based Q learning (NEAT+Q): NEAT+Q is also known as evolution-
ary function Approximation [232], which aims to combine evolutionary

44 CHAPTER 2. LITERATURE REVIEW

computation technique and temporal-difference methods into a single
method. The key idea is to use NEAT to directly evolve value functions
instead of action selectors (policies). The value functions are updated by
NEAT for topology adaptation and Q learning for weights adaptation.
Like most hybrid methods, NEAT+Q enjoys the advantages from both EC
and TD algorithms. In particular, it allows the agent to explore useful
topologies to enable effective value function approximation. By adapting
th topologies, NEAT+Q can automatically discover effective representa-
tions for the NN based function approximators which are potentially im-
prove the learning effectiveness. In NEAT+Q, each network (individual)
represents a value function which takes state features and actions as input
and outputs a corresponding single scalar as the Q value.

2.2.3 Discussion on Value Function Indirect Search

This section gives a brief review of VIS algorithms. It begins with a general in-
troduction to the three categorizations of VIS, and then it shows a general archi-
tecture followed by most VIS algorithms. Subsequently, the chapters describes
in details on two typical categories of VIS, i.e., Linear Value Function Approx-
imation methods and Neural Network based Value Function Approximation
methods. In linear methods, several well-known algorithms are presented in-
cluding Temporal-Difference methods, Q Learning and SARSA, as well as GTD.
In NN based methods, the popular DQN and DDQN have been briefly intro-
duced from a technical view of point.

VIS algorithms are still very popular in the RL research field owing to its
simplicity and intuitiveness [212]. Some long-standing open questions have
been gradually addressed. For instance, one of these questions claimed by Sut-
ton in [212, 215] is that VIS with linear value function representation lacks of
theoretical proofs on convergence, but as we discussed, some VIS algorithms
(e.g., GTD and GTD2) have already been proven to converge under suitable
conditions [213, 149, 17]. However, there are still several challenging issues for
VIS [168, 52].

• Deterministic Policy vs. Stochastic Policy VIS seeks only for a determinis-

2.2. REINFORCEMENT LEARNING METHODS 45

tic policy [212]. In practice, there may be multiple deterministic policies
satisfying (2.14). In contrast, the stochastic policy has an ability to repre-
sent multiple deterministic policy trajectories. In other words, one optimal
stochastic policy can capture simultaneously multiple optimal determinis-
tic policies. So it may be more desirable to learn a stochastic policy. More-
over, such a policy can often cope with a partially observable environment
more gracefully than a deterministic alternative.

In fact, one can straightforwardly learn stochastic policies, this gives rise
to the popularity of PDS algorithms. Many recent PDS algorithms show
high-level effectiveness in comparison to VIS algorithms [191, 189, 52]. We
will systematically discuss PDS in Section 2.2.4

Specifically, in this thesis, we mainly focus on learning stochastic policy.
Thus all policies discussed in the following contribution chapters (i.e.,
Chapter 3- 6) are stochastic.

• Implicit Policy vs. Explicit Policy

VIS aims to learn a deterministic policy, but the policy is only implicitly
represented. However, after learning the value function (i.e., the value
function converges), it is difficult to recreate the policy to achieve the
learned long-term pay-off. Many emerging research works [215, 218] pro-
posed to explicitly represent the policy and directly search in the policy
space to address the issue, which appears to be straightforward and effec-
tive.

By explicitly representing the policy associated with value function, we
can learn both the policy and the value function, eventually we can obtain
an optimal policy as well as an optimal value function. So the reconstruc-
tion issue stated above can be avoided directly. In fact, this is actually the
so-called Actor-Critic (AC) architecture falling into the PDS family. The
architecture will be depicted in Section 2.2.5.

Particularly, in this thesis, our major research works for developing effec-
tive PDS algorithms presented in Chapters 3-6 are all based on AC algo-
rithms.

46 CHAPTER 2. LITERATURE REVIEW

• Improper Representation vs. Proper Representation

Value function representation are the key to the success of VIS methods.
Improper representations may still guarantee the value function converge,
but a big gap highly likely appears in-between the true value function and
the learned value function, which may lead to “less optimal” performance
(the learned policy may converge to local optima). The improperness is
highly likely to happen whenever inadequate state features were used.
This urges us to develop mechanisms to learn proper state features.

In fact, with the help of feature learning, proper state features can be
learned automatically for constructing proper value function presenta-
tions. The success of DRL is a good example of using DL to extract useful
features from high-dimensional raw state inputs to enable effective rein-
forcement learning, which will be discussed in Section 2.3.

In this thesis, we specifically investigate how to enhance PGS algorithms
via evolutionary feature learning in Chapter 7.

• Stable Learning vs. Unstable Learning

Though value function provides a clear signal for learning and evaluating
policies in the RL framework, many VIS algorithms have difficulties stabi-
lizing the learning process. An unstable learning on the linear value func-
tion can lead to the divergence on specially designed environments [16]
if there are no proper corrections [142]. In fact, the problem is faced not
only by linear methods but also by DNN based methods. DQN is shown
to diverge due to the sparse reward distribution [44] or over-estimated Q
values [225].

The instable value function learning has been a long-standing issue. For
linear methods, though a recent work [214] has proposed a clear solu-
tion of the issue, the unstable learning can still occur resulting in the di-
vergence in value function learning with improper settings on the hyper-
parameters [213]. For DNN based methods, many techniques have been
proposed to stabilize value function learning, such as experience replay
with priority [155] and dueling networks[230]. Nevertheless, they still

2.2. REINFORCEMENT LEARNING METHODS 47

cannot guarantee the stability of learning on value functions, which re-
mains a big room to be studied.

In Chapter 6 of the thesis, we particularly are interested to study ap-
proaches to stabilizing the value function learning and hence eventually
improving policy learning.

2.2.4 Policy Direct Search

Very different from VIS, PDS searches directly in the policy space towards the
optimal policy in (2.14). PDS can address some limitations of VIS as discussed
in Section 2.2.3. In the past decades, massive PDS algorithms have been pro-
posed [15, 121, 183, 21, 2, 170, 215, 31, 192, 117, 119, 168, 20, 160, 143, 198, 53,
169, 194, 63, 8], and they have been successfully applied to solving many chal-
lenging RL problems (e.g., robotics [52, 170, 53], locomotion tasks and intelligent
game-play [189, 161, 190, 191]).

Figure 2.4 shows a taxonomic categorization for PDS algorithms [52]. As
seen from the figure, the PDS methodology is classified into two groups, namely
model-free and model-based policy direct search. Distinguished by the policy
updating process, we can further divide each group into gradient-based search
or gradient-free search.

Policy Direct Search

Model-free Model-based

Gradient-based Gradient-free Gradient-based Gradient-free

Figure 2.4: Categorization for Policy Direct Search, adapted from Figure 1.1 [52].

48 CHAPTER 2. LITERATURE REVIEW

Model-free vs. Model-based

Model-free PDS learning is driven completely by the samples (i.e., sampled tra-
jectories) obtained by an agent from interacting with an environment. A general
model-free policy search framework [52, 193] is given in Figure 2.5. Following
the trial-and-error process, policy improvement is achieved from either explic-
itly estimating gradients for gradient-descent policy update in policy space or
conducting population-based random search.

Initialization
(Policy Parameters)

Agent-Environment
Interaction

Estimate Gradients
(Gradient-based)

Or
Search Policy
Parameters

(Gradient-free)

Converge?

No

Yes Optimal PolicyPolicy Update

Figure 2.5: Model-free Policy Direct Search Framework, prepared based on Fig-
ure 4 in [193].

On the other hand, model-based PDS [52, 51] attempts to learn a predicted
environment model first, then to derive the optimal policy directly from the
learned model. Figure 2.6 gives a general framework for model-based PDS. The
model learning requires to train a model based on observed data to forecast
the environment behaviors. Subsequently through model-based internal simu-
lation, the algorithm evaluates policies with the learned model, and improves
the policy by following a similar approach to model-free PDS. The gradients
here can be computed analytically from the model. When the algorithm con-
verges, the learned policy will guide new rounds of environment sampling to
obtain more data to learn a more precise model. The process terminates until
the problem is solved.

In the thesis, we are only interested in model-free PDS due to several rea-
sons. First, it is usually very impractical to obtain an environmental model
because of the uncertainties of the environment and extremely high computa-
tional cost. Second, an inaccurate model with modeling bias may easily trap the

2.2. REINFORCEMENT LEARNING METHODS 49

Initialization
(Policy Parameters)

Agent-Environment
Interaction

(Record Data)

Compute Analytical
Gradients (Gradient-based)

Or
Search Policy Parameters

(Gradient-free)

Converge?

No

Yes

Policy Update

Model Learning
(Use all data)

No

Internal Simulations
(interactions)

Task Learned? Optimal Policy
Simulated Optimal

Policy
Yes

Figure 2.6: Model-based Policy Direct Search Framework, prepared based on
Figure 4 in [193], Figure 3.1 in [52] and Algorithm 1 in [51].

learning process to poor local optima. In consequence, in the following, we will
only concentrate on model-free policy search techniques.

Gradient-based vs. Gradient-free

Gradient-based algorithms require to directly compute/estimate gradients of
the expected long-term pay-off with respect to the policy parameters. In con-
trast, gradient-free algorithms do not rely on the policy gradients. Many
methods fall into the gradient-free category, such as cross-entropy optimiza-
tion based policy search [194] and evolutionary computation based policy
search [232].

Episode Learning vs. Step Learning

Another way to classify the PDS methods is to divide PDS according to its train-
ing strategy, i.e., Episode Learning and Step Learning [212]. In episode tasks,
the goal is to take the agent from a starting state to a goal state, thus the term
of episode refers to a fixed length of sequence of state transitions [212, 236].
Episode learning means that, after one episode (or multiple episodes) termi-
nates, the value function or policy learning is conducted based on the samples
obtained from the episode (or multiple episodes) [236]. On the other hand, Step

50 CHAPTER 2. LITERATURE REVIEW

learning refers to a learning strategy where the algorithm learns the policy (or
value functions) at every n steps (commonly n = 1) [236]. Note that, if n equals
to the length of an episode, the step learning essentially converts to the episode
learning. In this thesis, we will focus on step learning strategy in Chapter 4,
Chapter 6. Also, we will investigate episode learning strategy in Chapter 5. In
Chapter 7, both strategies are used for policy learning.

2.2.5 Model-free Gradient-based Policy Direct Search

Model-free gradient-based PDS is a widely-used effective framework for
searching the optimal policy parameter that satisfies (2.29) [52, 215]. The frame-
work is also known as PGS 9 [52, 215, 31].

In the following, we will introduce the concepts and examples of PGS algo-
rithms. We will first introduce the two popular representations of policy in the
literature which are also used in this thesis. After that, we will introduce both
the general PGS framework,as well as the specific Actor-Critic (AC) framework
for Direct Policy Optimization (DPO). Following the concepts of PGS, we will
introduce the technical details of several representative PGS algorithms.

Policy Representations

The effectiveness of PGS depends on the choices of policy representation. There
are three typical representations, linear representations, nonlinear representa-
tions, and dynamic movement primitives [52]. In this thesis, we primarily fo-
cus on linear representations and Neural Networks based nonlinear represen-
tations, which will be introduced in the following two subsections.

Linear Representation. Similar to value function representation, the policy
representation is said to be linear in its parameter space, but may be nonlin-
ear in the state features. The policy function with a linear policy representation

9In the following text, we just use PGS to represent Model-free Gradient-based PDS for ex-
pressive convenience.

2.2. REINFORCEMENT LEARNING METHODS 51

can be described as below,

a ∼ π~θ(a|~s)
IE[a|π] = ~θ · ~φ(~s)

(2.26)

where ~θ ∈ Θ denotes the policy parameter, and the policy π is only linearly
dependent on ~θ. Additionally ~φ(~s) is defined as the state features in (2.4).

Neural Network based Representation. In contrast to linear representation,
NN based nonlinear representation is the dominant representation in the RL
field owing to its great power on solving very complex problems. Very simi-
lar to the policy represented linearly, a NN based policy representation can be
described as below,

a ∼ π~θ(a|~s)
IE[a|π] = f(~s, ~θ)

(2.27)

where ~θ ∈ Θ denotes the policy parameter, and the policy π is a function f

described by a NN over state inputs ~s with respect to its parameters ~θ.

The Goal of PDS. Based on the policy representations (either linear or nonlin-
ear), we can reformulate the expected long-term pay-off for PDS as,

J (~θ) = IE[
∞∑
t=0

γtrt+1|π~θ]. (2.28)

The goal of PDS is to find the optimal policy parameter 10 such that,

~θ? = argmax
~θ

J (~θ). (2.29)

In what follows, we use J (π~θ) and J (~θ) interchangeably, which represents the
expected long-term pay-off when the policy π~θ parameterized by ~θ has been
followed.

10Different from ∗ used previously for “true-optimal”, we use ? to denote “near-optimal”. This
is because, after representing π with a set of parameters ~θ, we may only obtain a “near-optimal”
policy sharing the similar performances (e.g., value functions) with the “true-optimal” policy.
However, it is NOT “true-optimal” at all, thus for the precision of expression, we distinguish
them with different symbols.

52 CHAPTER 2. LITERATURE REVIEW

General Policy Gradient Search Framework

The general PGS framework follows a basic idea,

∆~θ ∝ ∇~θJ (~θ), (2.30)

which means that the policy parameters updating is proportional to the gradi-
ents of the expected long-term pay-off with respect to policy parameters. Note
that, ∇~θJ (~θ) is not directly computable, but we can use sampled trajectories to
construct unbiased estimators of it.

To conduct the PGS, firstly let us explicitly present the expected long-term
pay-off by following (2.28) as,

J (~θ) = V π(~s0)

= IE[
∑∞

t=0 γ
trt+1|~s0 = s, π~θ(a|~s)]

=
∫
~s∈S p

π(~s)
∫
a∈A(~s)

π~θ(a|~s)R(~s, a, ~s′)dad~s,

(2.31)

where pπ(~s) =
∑∞

t=0 γ
tPr(~st = ~s|~s0, π~θ(a|~s)) is a discounted weighting of en-

countering states (a.k.a, stationary state distribution) initiating from ~s0 follow-
ing a certain policy π.

Next, to search the policy by PGS, we are required to obtain unbiased esti-
mations of∇~θJ (~θ). One of the most influential way to construct this estimation
is the so-called Policy Gradient Theorem proposed by [215]. Most traditional PGS
algorithms or recent state-of-the-art PGS are based on or extended from Policy
Gradient Theorem (PGT), which will be introduced in details below.

Policy Gradient Theorem (PGT). Policy Gradient Theorem proposed by Sutton
[215] is given below,

∂J (~θ)

∂~θ
=
∫
~s∈S p

π(~s)
∫
a∈A(~s)

∂π~θ(a|~s)
∂~θ
R(~s, a, ~s′)dad~s

=
∫
~s∈S p

π(~s)
∫
a∈A(~s)

∂π~θ(a|~s)
∂~θ

Qπ(~s, a)dad~s
(2.32)

where
∫
a∈A(~s)

∂π~θ(a|~s)
∂~θ

Qπ(~s, a)da is an unbiased estimate of ∂J (~θ)

∂~θ
when ~s comes

from sampled trajectories of π.
Obviously, Qπ(~s, a) is unknown and must be estimated. In the same work

[215], Sutton also proposed Compatible Function Approximation Theorem as a suit-
able way to estimate Qπ(~s, a).

2.2. REINFORCEMENT LEARNING METHODS 53

Compatible Function Approximation Theorem. Before discussing the Com-
patible Function Approximation theorem, we need to define a function approx-
imator for Qπ. According to (2.19), we can linearly approximate Qπ as,

Qπ(~s, a) ≈ Q̃π
~ω(~s, a) = ~ωπT · Φ(~s, a), (2.33)

where Φ(~s, a) is compatible features defined below in (2.37).
Following (2.33), the Compatible Function Approximation theorem [215] is

presented below:
Given two conditions,

(1) Compatibility Condition:

∂Q̃π
~ω(~s, a)

∂~ω
=
∂ lnπ~θ(a|~s)

∂~θ
, (2.34)

(2) Mean Squared Error (MSE) Minimization Condition:

ε(~ω) = IE[(Qπ(a|~s)− Q̃π
~ω(~s, a))2|~ω], (2.35)

where we require to find ~ω? = argmin~ω ε(~ω),

if both conditions are satisfied, policy gradient can be precisely determined as,

∂J (~θ)

∂~θ
=

∫
~s∈S

pπ(~s)

∫
a∈A(~s)

∂π~θ(a|~s)
∂~θ

Q̃π
~w?(~s, a)dad~s, (2.36)

and we also have,

Φ(~s, a) =
∂ lnπ~θ(a|~s)

∂~θ
, (2.37)

Consequently, based on (2.36), many PGS algorithms have been developed. We
will further investigate several representative works in Section 2.2.5.

Actor-Critic Architecture

The AC architecture is widely recognized as a sub-branch of PGS framework
[212, 31, 52]. An AC algorithm maintains an explicit policy (i.e., actor) sepa-
rately from the value function (i.e., critic). The value function is used for policy

54 CHAPTER 2. LITERATURE REVIEW

Actor
(Policy)

Environment

state action

reward

Critic
(Value Function)

Figure 2.7: Actor-Critic Architecture, adapted from Figure 6.15 in [212].

evaluation. The agent learns both the value function and the policy. Figure 2.7
shows a typical AC architecture. As seen from Figure 2.7, the general actor-
critic architecture is using state value function V π to criticize the action chosen
by policy, normally the criticizing credit is defined as the TD error formulated
below,

δπt = R(~st, at, ~st+1) + γV π(~st+1)− V π(~st), (2.38)

where V π(~st) is the expected long-term pay-off for current state ~st, and V π(~st+1)

is for next state ~st+1 observed when following the policy π to take action at at
state ~st.

Based on δπt in (2.38), if the critic is approximated linearly, it can be learned
by following an incremental updating process,

~υt+1 = ~υt + αtδ
π
t
~φ(~st), (2.39)

with the aim of minimizing

ε(~υ) = ||rt+1 + γ~υ · ~φ(~st+1)− ~υ · ~φ(~st)||2. (2.40)

Simultaneously, actor learning in AC algorithms is realized in general by fol-
lowing the direction of critic improvements, which essentially estimates the gra-
dient of cumulative rewards with respect to all policy parameters, also known

2.2. REINFORCEMENT LEARNING METHODS 55

as the policy gradient, i.e.,∇~θJ (~θt) in (2.36),

~θt+1 = ~θt + βt∇~θJ (~θt), (2.41)

so as to maximize (2.31).
AC methods combine the advantages of both VIS and PDS as mentioned in

Section 2.2.3. It can learn stochastic policies but may require less samples com-
paring to PDS algorithm without explicitly maintaining value functions (e.g.,
REINFORCE [238]). Thus, AC architecture has become one of the most popular
RL framework recently [189].

Direct Policy Optimization

Besides the PGT, another popular way to estimate policy gradients is called Di-
rect Policy Optimization (DPO) [173, 111]. In DPO, the performance of a policy
π with respect to ~θ on a trajectory 11 is defined as,

J(~θ) =

∫
ξ

π~θ(ξ)R(ξ)dξ (2.42)

where R(ξ) is the observed total rewards for the given trajectory ξ.
The ultimate goal for RL is hence to identify the optimal policy parameters

~θ∗ so as to achieve the maximum learning performance in (2.42). Driven by this
goal, some RL algorithms choose to optimize a performance lower bound L~θ(~θ

′)

as derived below [117, 111],

log J(~θ′) = log

∫
ξ

Pr~θ(ξ)

Pr~θ(ξ)
Pr~θ′(ξ)R(ξ)dξ

≥
∫
ξ

Pr~θ(ξ)R(ξ) log
Pr~θ′(ξ)

Pr~θ(ξ)
dξ + C

∝
∫
ξ

Pr~θ(ξ)R(ξ) logPr~θ′(ξ)dξ = L~θ(
~θ′)

(2.43)

where ~θ refers to the policy parameters before update and ~θ′ stands for the up-
dated policy parameters. Given fixed ~θ, the aim is to find suitable ~θ′ that max-
imize L~θ(~θ

′). Thus, the DPO algorithms have the goal to optimize directly the
11In RL, a trajectory ξ is a sequence of state transitions over a set of contiguous timestamps

from a single episode.

56 CHAPTER 2. LITERATURE REVIEW

performance lower bound L~θ(
~θ′). Many popular algorithms are developed fol-

lowing this framework, such as Policy learning by weighting exploration with
the returns (PoWER) [117] and Trust Region Policy Optimization (TRPO) [189],
which will be introduced in Section 2.2.5.

Policy Gradient Search Methods

In this subsection, we will introduce the technical details about several typ-
ical PGS algorithms, starting from the earlies PGS (i.e., REINFORCE) to the
latest DPO based algorithms such as TRPO and Proximal Policy Optimization
(PPO) [191].

REINFORCE. REINFORCE proposed by Williams [238] is the first policy gra-
dient methods, which can be considered as a special case of PGT [215]. In REIN-
FORCE, it still uses stochastic gradient descent to update the policy parameters
and following the PGT as stated in Section 2.2.5. However, it does not construct
the Q approximator but uses the sampled total return as an unbiased estimation
of Qπ~θ(~st, at). The gradient estimation in REINFORCE is defined as,

∇~θJ (~θ) = ∇~θ lnπ~θ(~st,at)Rt. (2.44)

where Rt is the actual return. Although REINFORCE enjoys the benefits of low
biases, its learned policy actually yields very high variances.

Actor-Critic Algorithms. To address the high-variance problem, AC methods
have been developed to balance the bias-variance trade-off. AC methods are
to learn from total rewards and/or TD errors to improve value functions so as
to search good policies. Due to this popularity, a great number of AC algo-
rithms are proposed, such as Regular Actor-Critic (RAC) [31], Natural Actor-
Critic (NAC) [31, 170], Asynchronous Advantage Actor-Critic (A3C) [154], Ad-
vantage Actor-Critic(A2C) [56], Actor-Critic using Kronecker-factored Trust Re-
gion(ACKTR) [240] and so forth.

• Regular Actor-Critic (RAC): Following the general AC architecture stated

2.2. REINFORCEMENT LEARNING METHODS 57

in above, RAC derives the TD-error as,

δπt = R(~st, at, ~st+1) + γυπt
T · ~φ(~st+1)− υπt T · ~φ(~st), (2.45)

where υπt denotes the state value function parameter at time t, and υπT ·
~φ(~s) represents an estimated value function as shown in (2.19).

Based on the TD error derived above, RAC estimates the policy gradient
as

∂J (~θ)

∂~θ
= IE[δΦπ(~s, a)|~θ]. (2.46)

• Natural Actor-Critic (NAC): In NAC algorithms, the policy gradients are
transformed to the natural gradients proposed by Amari [5], which give
more reliable estimation of policy gradients. NAC first computes the
natural-gradient estimation from the inverse of a Fisher Information Ma-
trix G , i.e.,

∂J (~θ)

∂~θ
= G−1(~θ)IE[δΦπ(~s, a)|~θ]. (2.47)

. where the Fisher Information matrix G is computed by,

G(~θ) = IE[Φ(~s, a)Φ(~s, a)T |~θ]
= IE[∇~θ lnπ~θ(a|~s)∇~θ lnπ~θ(a|~s)T |~θ].

(2.48)

However, the computation of G−1(~θ) is often extremely complicated and
error-prone. Following the idea of NAC, several algorithms are proposed
to use different ways to estimate the fisher information matrix G. For ex-
ample, Bhatnagar et.al. [31] proposed to use Sherman-Morrison to in-
crementally update G, where the inverse of the fisher information matrix
is initialized as G−1

0 (~θ) = kI where k ∈ R as a tunable meta parameter.
Further, G−1

t is incrementally updated within the learning process by fol-
lowing the Sherman-Morrison matrix inversion lemma as,

G−1
t =

1

1− α [G−1
t−1 − α

(G−1
t−1Φ(~s, a))(G−1

t−1Φ(~s, a))T

1− αt + αtΦ(~s, a)TG−1
t−1Φ(~s, a)

]. (2.49)

Moreover, Peter [170] computes the inverse directly by least square meth-
ods. Recently, ACKTR [240] adopts Kronecker-factored approximation

58 CHAPTER 2. LITERATURE REVIEW

to estimate the natural gradients. With help of trust region optimization
technique to restrict the policy updates in a reasonable level, ACKTR have
shown very prominent results on a number of benchmark problems, such
as Atari games. Another interesting work under the AC framework has
been proposed by Rajeswaran et.al, [178]. In their work, a new NAC al-
gorithm with a linear policy has been developed to solve many difficult
RL tasks which previously was supposed to be only solvable by the agent
with deeply structured policy.

• Asynchronous Advantage Actor-Critic(A3C)/Advantage Actor-Critic(A2C):
A3C [154] is one of the cutting-edge AC algorithms, whereas A2C [56]
is just a synchronous and deterministic variant of A3C. Both algorithms
have achieved state-of-the-art performance on playing Atari games and
controlling locomotion tasks. Here, we will describe A3C as an example.

A3C has three key characteristics, Asynchronous, Actor-Critic, and Advan-
tage. Referring to Asynchronous, unlike other DRL algorithms, A3C uses
multiple agents (i.e., multiple neural networks) to learn from multiple en-
vironments. There is a global network, also each individual agent has
an independent network to interact with its own environment instance.
The advantages of this design are, (1) parallel execution greatly speeds
up the learning, and (2) experiences obtained by multiple independent
agents increase the diversity of learning. In addition, A3C also benefits
from training the advantage function below that determines the prefer-
ence of selecting any action in comparison to the average (expected).

Aπ~θ(~s, a) = Qπ~θ(~s, a)− V π~θ(~s) (2.50)

Direct Policy Optimization Algorithms. Here, we explain the technical de-
tails of three typical DPO algorithms, including PoWER, TRPO and PPO.

• Expectation Maximization based PGS: The key idea of Expectation Maxi-
mization based Policy Gradient Search (EM-PGS) is to construct lower
bound for the policy, and instead of maximizing J in (2.42), the lower
bound is expected to be optimized during learning [52]. In line with this

2.2. REINFORCEMENT LEARNING METHODS 59

idea, EM-PGS derives a lower bound shown below,

lnJ (~θ) ≥ L~θ(~θ′) = E
p
~θ′ (τ)

[R(τ) ln p
~θ(τ)], (2.51)

where τ represents any trajectory, ~θ′ is the old policy parameter (i.e., sam-
pling policy) whereas ~θ′ is the new policy parameter, p~θ(τ) and p

~θ′(τ) are
the probabilities of generating the trajectory τ following the new policy π~θ

and π
~θ′ respectively.

Based on (2.51), if ~θ′ and ~θ are close enough, we can estimate the policy
gradient estimation according to

∇~θJ(~θ) = lim
~θ→~θ′
∇~θL

~θ(~θ′) = E
p
~θ′ [
T−1∑
t=0

Qπ
t (~st, at)∇~θ ln π

~θ(~st, at)] (2.52)

In this thesis, we consider a typical EM-PGS algorithm (i.e., PoWER), be-
cause it has shown proven effectiveness on many practical applications
like robotic controls [117].

• Trust Region Policy Optimization: Similar to EM-PGS, TRPO [189] is to opti-
mize a lower bound on learning performance according to a surrogate ob-
jective function L~θ′(~θ) subject to some behavioral constraints as described
below,

maximize~θ[L
~θ′(~θ)]

subject to DKL(π
~θ′ ||π~θ) ≤ δ

(2.53)

where

L~θ′(~θ) = η(~θ′) + E
ρ~θ(~s)

Ea∼π~sA~θ′(~s, a), (2.54)

with DKL(π
~θ′||π~θ)] is the expected KL divergence between the old policy

parameter ~θ′ and the new policy parameter ~θ, ρ~θ(~s) is state visiting fre-
quency which is approximated by using ρ~θ′(~s0). Note, DKL(π

~θ′||π~θ)] is also
known as the Trust Region which guarantees policy parameter updating
to be reasonably small (i.e., “be trusted”) so as to stabilize policy learning.
TRPO is a prominent PGS approach that has been successfully applied to
many difficult RL problems like playing Atari games [189].

60 CHAPTER 2. LITERATURE REVIEW

• Proximal Policy Optimization: As discussed previously, TRPO has already
shown great effectiveness on many difficult RL tasks. However, it is tricky
to handle the TRPO constraint given in (2.54), no matter whether to use
it as a hard constraint as what TRPO practically does, or to use it as a
penalty with a fixed coefficient β [191]. To solve the constraint issue, PPO
was proposed. In PPO, a simple approach has been adopted to handle
the constraint by using a clipped probability ratio νt(~θ) as an importance
weight.

In particular, PPO defines a different learning objective from TRPO as,

Jπ = IEt

[
LCLIP
t (~θ)− c1LV Ft (~θ) + c2S(π~θ(~st))

]
(2.55)

where

LCLIP
t (~θ) = IEt

[
min

(
νt(~θ)A

π(~st, at), clip
(
νt(~θ), 1− ε, 1 + ε

)
Aπ(~st, at)

)]
,

(2.56)
and

LVF
t (~θ) = IEt

[
||V ~φold(~st)− V̂t||2], (2.57)

additionally, c1, c2 are coefficients, S is the entropy bonus.

By optimizing the surrogate policy learning objective LCLIP
t (~θ), PPO is able

to control the policy update reliably and adaptively. If Aπ(~st, at) > 0, the
νt will be increased to encourage to select current action at. This is because
that at is the better-than-average action according to the definition of the
advantage function. On the other hand, if Aπ(~st, at) < 0, it implies that a
worse-than-average action at has been selected, thus νt will be decreased
to discourage to select the action. Note that, the clip function limits the
increase/decrease on νt within the range [1− ε, 1 + ε].

In practice, PPO optimizes the entire objective (2.55) to seek for optimal
policy. By doing so, accurate value functions, in particular advantage
function, can be obtained. Meanwhile the entropy term encourages con-
tinued exploration [191].

2.2. REINFORCEMENT LEARNING METHODS 61

2.2.6 Model-free Gradient-free Policy Direct Search

Under the model-free framework, another important method to conduct PDS is
using gradient-free techniques [236], including Cross-Entropy (CE) Optimiza-
tion, Random Search Optimization (RSO), and EC. Each approach is discussed
briefly below

Cross-Entropy Optimization based Policy Direct Search

CE optimization method is considered as a gradient-free optimization tech-
nique in the optimization domain [48], which has been widely used to solve
combinatorial and multi-extremal continuous optimization problem. Let us
consider the following general maximization problem as below,

S(~x∗) = Γ∗ = max
~x∈X

S(~x), (2.58)

where X is a finite set of states, S is real-valued performance function on X ,
and the maximum is denoted as Γ∗. Next, the CE method is to associated an
estimation problem to (2.58). To do so, one firstly define a collection of indi-
cator functions I{S(~x)≥Γ} on X with various thresholds Γ ∈ R. Subsequently,
let {f(~·, ~v, ~v ∈ V)} be a family of discrete Probability Density Functions (PDFs)
over X with parameters of ~v. Then, for a certain ~u ∈ V , (2.58) can be associated
with a problem of estimating the number

l(Γ) = P~u(S(X) ≥ Γ) =
∑
~x

I{S(~x)≥Γ}f(~x; ~u) = IE~uI{S(X)≥Γ}, (2.59)

where P~u is the probability measure under which the random state X has a pdf
f(~·; ~u). The estimation problem of (2.59) is called associated stochastic problem
(ASP). After transforming (2.58) to simpler (2.59), CE first generates a random
sample from the data distribution and then randomly updates the parameters
of the data distribution to produce a better sample. The process repeats until
the random sequence of solutions converges to the optimal or near-optimal.
Following the idea of CE, there are some PGS methods proposed [194, 40].

We will brief the key ideas of the first CE based PDS proposed in [194]. In
this work, CE first generates N random trajectories T = {ξ0, ξ1, . . . , ξN} using a

62 CHAPTER 2. LITERATURE REVIEW

parametric policy π~θ and meanwhile compute the performance (i.e., the average
total reward obtained by the policy). Afterwards, it updates the parameters ~θ on
the basis of those collected trajectories by solving the stochastic program below,

~θ = argmax
~θ

1

N

N∑
i=1

~IS(ξi)≥γt lnπ(ξi|~θ), (2.60)

where I stands for the indicator function, and γt is predefined threshold. By
iteratively conduct these two steps, the algorithm is able to constantly improve
policy parameters.

Random Search Optimization based Policy Direct Search

Random Search (RS) is one of the simplest gradient-free optimization tech-
niques [248], which randomly selects a direction with the uniform distribution
in the parameter space and then updates the parameters along the direction.
RS normally are considered slow in convergence speed, which hence is seldom
used in RL domain until very recent. Mania et al. [146] shows that a simple ran-
dom search algorithm with only linear policy can be competitive to a number
of state-of-the-art PGS or EC algorithms equipped with deep-layered policy.

The algorithm is named as Augmented Random Search (ARS), which is de-
veloped on the basis of Basic Random Search (BRS) [248]. In BRS, the algorithm
approximates a finite difference along the random direction as follows,

r(π~θ+ν~δ, ε1)− r(π~θ−ν~δ, ε2)

ν
, (2.61)

where r(π~θ,ξ) is the total reward achieved on one trajectory ξ generated by the
policy π~θ,ε1 and ε2 are two i.i.d random variables, ν is a positive real number,
and ~δ ∼ N (~0, ~I). Next, BRS uses a line search to take one step updating in the
direction.

ARS follows a similar strategy of BRS, it starts with the first iteration j = 0

and samples noises δ1, δ2, . . . , δN of the same size as the policy parameters ~θj
with i.i.d standard normal entries. Next, ARS collects 2N trajectories and corre-
sponding rewards following the policies, πj,k,+(~θj) = π~θj + ν~δk and πj,k,−(~θj) =

2.2. REINFORCEMENT LEARNING METHODS 63

π~θj − ν~δk, where k ∈ {1, 2, . . . , N}. Afterward, ARS updates the policy parame-
ters by

~θj+1 = ~θj +
α

N

N∑
k=1

[r(πj,k,+)− r(πj,k,−)]δk. (2.62)

Lastly, ARS enters the next iteration by j = j + 1.

Evolutionary Computation based Policy Direct Search

Evolutionary Computation (EC) has been proven to be a suitable technique for
solving RL problems without relying on estimated policy gradients, because of
its ability of automatically finding proper representations, handling continuous
spaces, etc [236, 234, 232, 206]. Here, we introduce a few typical EC based RL
algorithms.

NEAT based Policy Direct Search. NEAT was frequently utilized to evolve a
direct action selector, i.e., policy networks. In this setting, NEAT starts with
a population of individuals (i.e., policy networks) that are initiated with the
simplest form where there are only fully connected input and output nodes.
Afterwards, NEAT attempts to use specially designed crossover and mutation
operators to reproduce new networks for next generation. Each evolved NN
represents a policy network, which takes raw state input and produce the ac-
tion to be selected for the encountered state. NEAT was previously shown its
effectiveness on solving some simple control tasks, for example, pole balancing
problem.

Evolutionary Strategies based Policy Direct Search. Evolution Strategies (ES),
as a class of black box optimization algorithms, have already shown their great
power on heuristically searching optimal solutions for continuous optimization
problems [179, 13, 151]. Based on the differences of how the population is rep-
resented and how the evolutionary operators perform, ES have many differ-
ent but related variations, such as 1+1 ES [179], µ/λ-ES [179], CMA-ES [85],
and so forth. For solving RL problems, CMA-ES has already been widely
used [226, 14]. A more recent work is reported by Salimans et.al [186] of Open

64 CHAPTER 2. LITERATURE REVIEW

AI labs to use a simple variant of the basic ES to solve very challenging RL prob-
lems with highly competitive results compared to most of cutting-edge DRL
algorithms. We use OpenAI-ES to represent the algorithm for convenience of
expression.

• CMA-ES based PDS: CMA-ES have already been widely used as a policy
search algorithm for solving RL problems, such as [103, 228, 82, 83, 219],
etc. The key principle behind these work is to directly apply CMA-ES to
optimizing policy parameters to improve its performance on different RL
tasks. The evolution process of CMA-ES can be found in Section 2.1.3.
However, as it is a second-order method, CMA-ES becomes more difficult
when being applied to large-scale RL problems in terms of high computa-
tional cost [14, 85].

• OpenAI-ES: OpenAI-ES belongs to the family of Natural Evolution Strate-
gies (NES) [237]. In general, given an objective function J with respect to
~θ. The population of NES is represented as a distribution over ~θ, i.e., p~ψ(~θ)

parametrized by ~ψ. NES proceeds to maximize IE~θ∼p~ψ
F (~θ) over the pop-

ulation with gradient descent. Moreover, NES conducts gradient updates
with the estimator below,

∇~ψIE~θ∼p~ψ
F (~θ) = IE~θ∼p~ψ

[F (~θ)∇~ψ ln(p~ψ(~θ))] (2.63)

In (2.63), F (·) is the total rewards from the environment, and ~θ is the pol-
icy parameter. The population is initialized with mean ~ψ and fixed covari-
ance σ2~I . More specifically, in OpenAI-ES, the gradient estimation based
on (2.63) is approximated by samples, which is described as,

∇~θIE~ε∼N (~0,~I)F (~θ + σ~ε) =
1

σ
IE~ε∼N (~0,~I)[F (~θ + σ~ε)~ε] (2.64)

Accordingly, we can have the updating rule for the policy parameters as,

~θt+1 = ~θt + α
1

nσ

n∑
i=1

Fi~εi, (2.65)

where n is the number of individuals.

2.2. REINFORCEMENT LEARNING METHODS 65

Evolutionary Algorithms based Policy Direct Search. In literature, there have
already been attempts of using Evolutionary Algorithms to solve simple RL
tasks as reported in [157, 236]. A very recent successful application of GA al-
gorithm for DRL is reported by Such et.al. [210] from Uber AI group. In the
following, we use Uber-GA to represent the algorithm for convenience.

• Uber-GA: Uber-GA is a variant of the traditional Genetic Algorithm pro-
posed in [7] where a population of N individuals are evolved. In Uber-
GA, the individuals are parameter vectors of the policy network. The
average total reward over multiple trajectories collected by one individ-
ual (π~θ) is used as a fitness score for evaluation. A truncation selection is
adopted to select the top-ranked T individuals as parents to produce off-
spring for next generation. The evolution in Uber-GA repeats the follow-
ing process: A parent is selected uniformly at random and then is mutated
by introducing a Gaussian noise as follows,

~θg+1 = ~θg + σ~ε, (2.66)

where ~ε ∼ N (~0, ~I), σ is the step-size which is determined empirically for
different experiment. In addition, elitism is also adopted to maintain n

individuals where n << N . Note that, Uber-GA does not include the
crossover operator and hence functions more like an ES algorithm. Af-
ter new population is generated, it then will be evaluated. The process
repeats for g generations or until other stopping criteria are met.

2.2.7 Discussion on Policy Direct Search

In the above subsection, we have elaborated many representative model-free
PDS algorithms. In particular, we have described both gradient-based and
gradient-free PDS techniques. In this subsection, we will discuss the advan-
tages and challenges of these methods in comparison to VIS algorithms.

PDS enjoys many advantages in comparison to VIS algorithms, more im-
portantly, these advantages help PDS address several challenges stated in Sec-
tion 2.2.3. Firstly, PGS can straightforwardly handle problems with a contin-
uous action space (see (2.26)). Secondly, PDS can directly search for both de-

66 CHAPTER 2. LITERATURE REVIEW

terministic and stochastic policies. Thirdly, PGS can achieve higher sample ef-
ficiency than VIS algorithms [12]. Fourthly, some gradient-free methods can
be effectively exploited to balance the exploration and exploitation during the
learning process. This is because PDS they directly perturbs in the policy pa-
rameter space whereas VIS can only perturb in action space. The latter is em-
pirically found less efficient than the former [45].

However, we also have identified several challenges after reviewing state-
of-the-art PDS algorithms:

• Linear Function Approximation vs. Nonlinear Function Approximation

Linear function approximation is straightforward but lacks accuracy. In
view of this understanding, nonlinear function approximation may be
more appropriate for addressing complicated problems. On the other
hand, nonlinear approximation sometimes over-complexify the problem,
and produce overcomplicated model that is overfitted by a specific tasks.
This may cause the agent performing badly in environments with high
uncertainty. It is a challenge to find proper approximation for solutions
on specific problems.

Particularly, in this thesis, we investigate how to improve step learning
based PGS with linear policy representation in Chapter 4. Next, we study
the nonlinear policy representations (i.e., NN based representation) in
Chapter 5. In addition, to better examine the reliability of value function
learning in Chapter 6 and the usefulness of feature learning in Chapter 7,
we must ensure the minimum impact of policy learning, therefore we also
adopt linear policy representation in these chapters.

• Accurate Gradient Estimation vs. Inaccurate Gradient Estimation

A critical factor for the success of PGS is to obtain accurate policy gradient
estimations. Almost all PGS algorithms discussed so far are designed to
obtain more accurate estimations of the policy gradients than before so as
to eventually enable effective reinforcement learning. In particular, step
learning based PGS algorithms estimate the gradients based on one step
sample, then follow the stochastic gradient descent to update the policy

2.2. REINFORCEMENT LEARNING METHODS 67

parameters. In this way, the estimation can vary significantly from step
to step, which results in unstable learning. This is because step learn-
ing based PGS algorithms disregard all historical gradients with an as-
sumption that the past gradients are no longer useful, which is not always
true [61]. In view of this, it raises another challenge of how to effectively
use these historical gradients.

More specifically, we aim to answer this question by obtaining more ac-
curate policy gradient estimations for several representative step learning
based PGS algorithms with historical gradients in Chapter 4.

• Sample Efficiency vs. Learning Effectiveness

The key of all model free methods is to learn from samples. For example,
PGS uses Monte Carlo methods to estimate the expected return. Gradient-
free methods require policies to be evaluated by actual simulations in the
environment. However, it is very difficult to collect millions of samples in
a real-world application. For instance, it is almost impossible to conduct
thousands of real Lunar Lander experiments. This raises a new question
how can we use less samples to achieve reasonable effectiveness (i.e., im-
prove sample efficiency). It is clear that using less samples may degrade
the learning effectiveness. Consequently, it is truly challenging to find a
trade-off between these two factors (sample efficiency and learning effec-
tiveness).

To particularly answer these questions, we investigate the improvements
of sample efficiency on evolutionary policy optimization with the help of
a surrogate model in Chapter 5. Also, we study to enhance sample effi-
ciency of NEAT by integrating NEAT based automated feature learning
with cutting-edge PGS algorithms in Chapter 7.

• Exploration vs. Exploitation

The exploration-exploitation trade-off is a long standing dilemma for all
RL methods. The dilemma is about, at a time point, whether the agent
needs to behave greedily with the best action found so far or to explore

68 CHAPTER 2. LITERATURE REVIEW

the environment for better actions. It is widely accepted that gradient-
based methods are good at exploitation, as they always follow the direc-
tion of improving the best policy found so far [45]. In contrast, gradient-
free methods, especially EC based PDS, possess clear strengthen on explo-
ration. In fact EC methods are population-based which greatly increases
the policy diversity to encourage more exploration. However, gradient-
free methods are more sample inefficient than gradient-based methods.
Thus, it is a challenge to balance the exploration-exploitation trade-off
while developing new policy direct search algorithms.

In this thesis, we specifically to investigate balancing the exploration and
exploitation in PGS by adopting an seamless integration of EC based
global search and PGS based local search in Chapter 5.

2.2.8 Feature Learning in Reinforcement Learning

As introduced in Section 2.1.4, Feature learning (FL) plays an important role
in RL. FL generally aims to achieve two goals by incorporating feature learn-
ing with RL algorithms [71, 236]: first, FL can extract useful features or reduce
the dimensionality of raw state inputs; second, with the learned (extracted) fea-
tures, FL can realize more effective RL in comparison to learning from raw state.
There are four common approaches developed to achieve feature learning so as
to improve RL performance as shown in Section 2.1.4, which will be discussed
in details below.

Basis Function Adaptation

For methods that search linear policy, the state features are often consid-
ered as basis functions. Many researchers have considered to implement self-
adaptive basis functions to assist RL. These methods usually combine super-
vised learning approach into RL for training the basis functions, which is nor-
mally achieved through two steps. First, a parametric function is chosen care-
fully as a feature base, including Radial Basis Function Network [165], Fourier
Basis Function [123] and other types of bases [212]. Next, the feature function

2.2. REINFORCEMENT LEARNING METHODS 69

parameters are learned by optimizing carefully-designed score functions such
as the Bellman Error [150, 165], and Mean Squared Error [57].

Unsupervised Feature Learning

UL can help grouping similar features, eliminating useless features, or trans-
forming low-level features to high-level features so as to improve the general
learning performance for its subsequent tasks particularly RL [26, 71, 132, 239].
Two typical examples of using unsupervised feature learning in conjunction
with reinforcement learning are given below:

HORDE. HORDE was proposed by Sutton et. al [216], where general value
function, policy, termination function, reward function, and terminal reward
function are all represented as parametric functions (i.e., so-called knowledge).
Essentially, HORDE is a scalable real-time architecture consisting of many inde-
pendent sub-agents and a base-agent. Each sub-agent is responsible for learning
one small piece of knowledge about the base-agent’s interaction with the envi-
ronment. By using HORDE, one can learn to predict the sensor inputs, build
general value functions, and identify policies to maximize those sensor values.
It follows essentially off-policy learning where it learns in real-time while fol-
lowing some behavior policy, and updates value functions with gradient-based
TD learning methods.

Unsupervised Auxiliary Learning. UNsupervised REinforcement and Auxil-
iary Learning (UNREAL) is an algorithm proposed by Jaderberg et al. [106] to
improve learning efficiency by maximizing pseudo-reward functions associated
with the usual cumulative reward. The pseudo-reward functions and the usual
cumulative reward share a common representation. Long-Short-Term-Memory
based Recurrent Neural Network (LSTM-RNN) is used to compose of the learn-
ing agent in UNREAL. It has technical features such as pixel control, reward
prediction, and value function replay. The RL agent is trained on-policy with
A3C [154]. Experiences of state transitions are stored in a replay buffer, for aux-
iliary tasks. To maximize changes in pixel intensity of different regions of the

70 CHAPTER 2. LITERATURE REVIEW

input images, the auxiliary policies use the base Convolution Neural Network
(CNN) and LSTM-RNN, together with a deconvolutional network. To tackle
the issue of reward sparsity, it also equips with a reward prediction module
which is to predict short-term rewards in next frame by observing the last three
frames. Value function replay is further adopted to train the value function to
stabilize the value function learning. UNREAL outperforms A3C on Atari game
playing tasks and a 3D Labyrinth game.

Deep Learning and NeuroEvolution

In fact, most of RL algorithms that adopt Deep Neural Networks as represen-
tations for either value function or policy have already embedded the feature
learning through end-to-end training of NNs [12]. As discussed in Section 2.1.4,
the multi-layered structures of NNs can be treated as two consecutive parts.
The first several layers can be viewed as feature networks and the last layer is
treated as the model for the value function or the policy. The training of both
feature learning and reinforcement learning are coupled together as a whole,
which can be done by either gradient-based back-propagation or gradient-free
evolutionary operations.

NeuroEvolution based RL algorithms are similar to DRL algorithms [204],
the feature learning is already mingled with policy search process as a couple.
The only difference is about the topology representations and training meth-
ods [204, 152]. As introduced in Section 2.1.3, some NeuroEvolution algorithms
are capable of adapting the topology as well as weights simultaneously. In addi-
tion, NeuroEvolution algorithms use evolutionary algorithms to adapt network
parameters instead of gradient-descent techniques.

2.2.9 Discussion on Feature Learning in Reinforcement Learn-

ing

In the above subsections, we have introduced the research progress made in
literature on FL for RL. To better understand the effect of FL in RL and moti-
vate our research in the thesis, we next discuss the importance as well as the

2.2. REINFORCEMENT LEARNING METHODS 71

challenges of FL in RL.
There are several obvious advantages of introducing FL into the RL algo-

rithms. First, some FL algorithms are capable of largely reducing the dimen-
sions of the raw state input which help improve the time efficiency of RL al-
gorithms. Second, feature learning straightforwardly automates the feature ex-
traction process which releases human experts from the labor-intensive feature
engineering process. Third, self-adapted feature extractor obtained by FL algo-
rithms can improve the generalization of RL algorithms on different problems.
Fourth, the learned features, in comparison to the raw state inputs, can be more
informative and less noisy which enables more effective learning.

Despite of these superiorities, the integration of feature learning and rein-
forcement learning may still encounter some challenges as below.

• Complete Automation vs. Partial Automation

One of the objectives for feature learning is actually to automate the fea-
ture extraction process hereby to avoid human interferences during the
learning process. However, current existing feature learning approaches,
when being applied to RL domain, still require domain knowledges. In
other words, these feature learning methods have achieved only partial
automation. For example, DRL algorithms require to pre-determine the
network topology which is usually a very challenging task. For training
the self-adaptive basis functions, one must determine the error function as
well as target values in advance before applying the supervised learning
techniques. Thus, complete automation on feature learning remains a big
challenge for us at current stage.

• Reusable Features vs. Problem Specific Features

Another key objective of feature learning is to extract useful features. In
literature, the useful features normally refers to two aspects. First, the fea-
ture must promote the learning on current task. Second, it can be reused
for the case when environments or the learning tasks change. Thus, the
learned features that are strongly limited to the specific tasks cannot be
treated as useful features. However, in literature, there are few attempts
being made to improve the re-usability of features.

72 CHAPTER 2. LITERATURE REVIEW

• Coupling vs. Decoupling

For DRL or NeuroEvolution based RL algorithms, feature learning and re-
inforcement learning are coupled together. The upside of such a coupling
approach is that training is viewed as a whole where no extra require-
ments on designing different training strategy for FL. However, the down-
side of coupling is also prominent. First, the couple of the two learning
processes blend the feature output with final decisions (actions), result-
ing in learned features with poor generality. Second, it hinders effective
knowledge (feature) sharing across agents for algorithms that use multi-
ple learning agents. Therefore, this raises a challenge of how to effectively
decouple the two learning processes so as to obtain useful features as well
as find good policies.

In particular, we study how to achieve more effective PDS by adopting com-
pletely automated feature learning decoupled from policy learning to extract
reusable state features in Chapter 7.

2.3 Related Work

In this section, we will introduce the research works that are closely related to
this thesis regarding their pros and cons to better motivate the research of this
thesis. The section is organized in correspondence to research objectives stated
in Section 1.3.

2.3.1 Effective Policy Direct Search through Primal Dual Ap-

proximation

Recently, the challenge of using linear approximation or non-linear approxima-
tion stated in Section 2.2.7 has gained more attention [146, 178]. For instance,
Rajeswaran et al. [178] and Mania et al. [146] have found that linear policy with
simple search techniques can achieve competitive performance as opposed to
state-of-the-art DRL algorithms with reasonable computational resources. They
argued that the reasons for such findings are as follows. First, current DRL

2.3. RELATED WORK 73

systems have been found prone to over-fitting problems, especially when large
data collection is unavailable [178]. Second, results of many current RL methods
are difficult to be reproduced due to their high sensitivity to hyper-parameters,
random seeds, or even the diversities of implementations [146]. Third, the en-
gagement of DNN (e.g., Convolutional Neural Networks (CNN)) brings ex-
tra workload for engineers/researchers to carefully choose/design the network
structure for hard problems [178]. In addition, the randomness and sparseness
of reward distributions can significantly affect the effectiveness of RL methods,
which is often addressed by carefully engineering the reward functions [146].
Fourth, extremely high demands of computational resources are common in
the DL field, especially DRL [178]. Besides the heavy computations of back-
propagation, effective learning also requires to process massive trial samples
from simulations or real-world applications.

However, there remain some limitations with the two works of [178]
and [146]. For the NAC algorithm proposed by Rajeswaran et al’s [178], it actu-
ally learns from high-level state features extracted by an NN rather than from
the raw state input. In addition, it focuses only on episode learning strategy
but overlooks another training strategy, i.e., step learning. For ARS proposed
by Mania et. al [146], it is also episode learning. Moreover it can be very sample
inefficient, because as a random search technique, it normally requires much
more samples for performance evaluation than those for PGS algorithms such
as TRPO [189], PPO [191], ACKTR [240].

In view of this, we aim to study simple step-wise PGS algorithm also with
linear policy. We choose is RAC and its variants proposed by [31] as base algo-
rithms. This is because 1) RAC features a simple structure that are easy to be
customized and extended, and 2) its effectiveness has already been witnessed
in the literature [31].

Nonetheless, referring to step learning strategy, we have confronted with
another challenge of how to obtain accurate estimations of policy gradients
with lower variances as mentioned in Section 2.2.7. One possibility is to use
the historical gradients to stabilize the gradient-based learning as suggested
in [62, 241]. However, to our best knowledge, there are no existing studies about
how to utilize the historical gradients on step-based PGS such as RAC.

74 CHAPTER 2. LITERATURE REVIEW

Motivated by this understanding, we intend to develop new step learning
based PGS algorithms by properly utilizing historical gradients via the Primal-
Dual Approximation (PDA) technique. With the help of PDA, the algorithm
is expected to achieve more accurate policy gradients resulting more effective
policy updates. The development and evaluations of the new PGS algorithms
are presented in Chapter 4.

2.3.2 Proximal Evolutionary Strategies for Sample Efficient

Policy Direct Search

The applicability of EAs for RL to solve continuous control problems has been
an enduring research topic for many decades. Among all different EAs for RL,
NeuroEvolution (NE) plays a dominating role. This is because 1) Neural Net-
works (NN) provides flexible representations that are suitable proven suitable
for solving RL problems, 2) NN provides a good platform where most optimiza-
tion methods are directly applicable. NE approaches can be simply classified as
two branches by whether or not the topology is changed. Typical representa-
tives for the NE approaches where topologies and weights are co-evolved are
NEAT and its variation HyperNEAT. They have been found to perform effec-
tively on solving classic control problems, such as pole-balancing and mountain
car [205]. Another type of NE is only to adapt weights leaving the topology un-
changed, typical examples are ES based algorithms. The successful applications
of these methods in RL are fruitful, such as [228, 82, 83, 219, 94, 227].

However, all the NE approaches discussed above are proven difficult to
solve complex problems [186, 210]. In an attempt to evolve DNNs, a few Deep
NE approaches have been proposed recently, such as OpenAI-ES [186] and
Uber-GA [210]. They have shown outstanding performance on very compli-
cated problems, such as Atari games or locomotion problems. Thanks to the
efforts made in [186, 210], EAs have been widely accepted now as an alterna-
tive to the gradient-based DRL approach.

There are three issues faced by EAs when they are used for DRL, includ-
ing (I1) Low Time Efficiency, (I2) High Sample Complexity and (I3) Low Learning
Effectiveness, which are discussed below:

2.3. RELATED WORK 75

(I1) EAs can be very time inefficient while handling a large search space. For
example, both OpenAI-ES [186] and Uber-GA [210] must maintain an im-
mense population size to reasonably cover the search space better in order
to solve complex RL problems. The time complexity in the situation can
be significant because they require a large number of evaluations that in-
creases linearly with respect to the population size. Although the issue can
be mitigated by large-scale parallelization, it requires large computational
facility.

(I2) EAs are more sample complex compared to traditional PGS. For exam-
ple, as reported in [186], OpenAI-ES have used 3x and 10x as many sam-
ples to perform well in some environments compared to A3C [154] or
TRPO [189].

(I3) EAs cannot challenge cutting-edge PGS algorithms in terms of learning
performance on many benchmark problems. For example, OpenAI-ES has
only achieved moderate performance on 23 games but worse on 28 games
compared to A3C [186].

Aiming to address the above issues, we are urged to investigate new EA based
DRL algorithm which can achieve state-of-the-art performance regarding high
time efficiency, low sample complexity, and high learning effectiveness. Par-
ticularly, in Chapter 5, we aim to develop a sample efficient evolutionary deep
policy optimization algorithm based on CMA-ES. The algorithm is expected to
resolve the issues mentioned above while being compared to cutting-edge PGS
algorithms (e.g., TRPO [189], PPO [191], ACKTR [240]) and advanced EAs (e.g.,
OpenAI-ES [186], Uber-GA [210]).

2.3.3 Reliable and Flexible Value Function Learning for Policy

Direct Search

One of the critical challenges for VIS is how to stabilize the learning on value
functions as stated in Section 2.2.3. It is also a challenge particularly for AC algo-
rithms where value function must be learned to guide policy search. The overall

76 CHAPTER 2. LITERATURE REVIEW

effectiveness of AC algorithms largely depends on critic learning. Traditionally,
Aimed at improving reliability of critic learning, various research works have
been proposed [122, 212, 213, 66, 49, 37, 36]. For example, Sutton and his col-
leagues [214] proposed Gradient Temporal Difference (GTD) to use off-policy
gradient-based training techniques to stabilize the temporal difference learn-
ing, but the algorithm converges very slowly. A later version GTD2 was pro-
posed in [213] by replacing the objective function from the common used Mean
Squared Bellman Error (MSBE) [122, 212, 213, 66] to the mean-square projected
Bellman error (MSPBE) to further enhance the learning reliability with a faster
convergent pace compared to GTD. However, both GTD and GTD2 empirically
exhibit the behavior of divergence on critic learning, calling into question its
practical utility. Several second-order methods, such as Least Square Temporal
Difference (LSTD) [37, 36], can guarantee the reliability but with high computa-
tional complexity O(n2), where n is the number of state features. The problems
of the existing works motivate us to consider another possible solution to im-
prove the reliability in critic learning in a fast manner without incurring extra
learning complexity.

Another common challenge for PDS is to accurately estimate policy gradi-
ent estimations based on the value function learning process under the Policy
Gradient Theorem [215]. Most existing PGS algorithms focus on constructing
accurate policy gradients by replacing the other component, i.e.,Qπ(~s, a) as seen
in (2.36). However, these algorithms overlooked the importance of another key
component to form the policy gradient, i.e., Φ(~s, a) = ∇~θ lnπ

~θ(~s, a). To our best
knowledge so far, existing works that study different forms of the compatible
features Φ(~s, a) are very limited. This urges us to dive into this direction to
investigate the effects of different form of compatible features to the learning
effectiveness of PGS.

In line with this understanding, we intend to address the two challenges
mentioned above in Chapter 6 by developing new PGS algorithms via differ-
ent techniques to improve reliability and flexibility of value function learning.
Specifically, the algorithms can stabilize value function learning via the SM or
can generalize compatible features via q-logarithm to provide a new flexible
family of compatible functions. The developed algorithms are expected to even-

2.3. RELATED WORK 77

tually achieve effective policy learning on benchmark RL problems.

2.3.4 Enhancing Policy Direct Search via Automated Evolu-

tionary Feature Learning

The importance of Feature Learning (FL) has gained more and more notices in
RL research domain, which has been considered as an effective auxiliary ap-
proach to promote reinforcement learning [132, 71, 138]. Traditionally, features
are manually designed, it has been considered to be time-consuming and error-
prone, because the design process normally requires special domain knowledge
from human experts. In practice, the human experts are not often available, and
such a manual process can also bring biases into the extracted features possi-
bly producing unexpected results. Some early methods have been developed,
such as [123, 212], by using fixed feature functions to transform low-level states
to high-level features. These methods are problem-specific, as some features
may only be suitable for specific tasks. In view of this, a group of methods
have been proposed to implement self-adaptive basis functions (feature func-
tions) [150, 165, 57]. These methods have adopted SL techniques to train the ba-
sis functions, but the SL techniques require human experts to carefully choose
error functions and determine labels.

To address the issue, many methods adopted NNs or DNNs as representa-
tions for policy or value function where feature learning is considered coupled
with the reinforcement learning. Such approaches face two main challenges,
i.e., 1) completed automation vs. partial automation and 2) coupling vs. decou-
pling, as stated in Section 2.2.7.

To address these challenges, in comparison to DRL, NeuroEvolution has
more potential for the complete automation on feature learning. First, NEAT
can automatically evolve the topology without specifying it in advance. Second,
NEAT gradually complexify the topology which can result in a reasonably suit-
able (i.e., less complicated than some pre-defined DNNs) representations [152].
Because of this, we consider that NEAT can be a good candidate for feature
learning during RL. However, we are not the first to explore this idea. For ex-
ample, FS-NEAT [233] and its variations [139] have been proposed to perform

78 CHAPTER 2. LITERATURE REVIEW

feature selection but not feature extraction, where no high-level features are
explicitly evolved. NEAT+Q [232] considers feature extraction, but it is a VIS
algorithm which does not explicitly learn a policy. Besides, the features learned
through NEAT+Q are embedded in value functions. They cannot be directly
reused for other learning algorithms.

Another challenge of “decoupling vs. coupling” introduced in Section 2.2.7
becomes severe when NEAT is applied to solving large-scale RL problems. For
NEAT, it must evolve a highly sophisticated NN, since the network by itself
has to accomplish two tasks, i.e., feature extraction and policy search. Also,
it must evolve the network from the simplest initial structure with no hidden
neurons and connections. This makes the tasks even more difficult and sample
inefficient. In addition, extensive investigations of HyperNEAT [205] suggest
that HyperNEAT may perform much worse than NEAT on many large-scale
problems including Atari games, especially in the presence of high-level fea-
tures [90]. Besides, NEAT was found vulnerable to the fracture issue, i.e. the
mapping from states to optimal actions is highly discontinuous [118]. The same
issue is proven to be even more challenging for HyperNEAT in [224].

To address these important issues, we make a first a first attempt to
split feature learning from policy learning, resulting in a new algorithm
called NEAT+RAC in Chapter 7. Despite of clear performance advantages of
NEAT+RAC on classic control problems, NEAT+RAC still has limited effective-
ness for large-scale RL. This is because, NEAT+RAC relies on the traditional
RAC which often fails to learn reliably with non-linear and more powerful pol-
icy networks. Moreover, feature learning and policy learning are heavily min-
gled in a single process, preventing easy sharing of learned knowledge (e.g.
policy networks) across multiple agents. Further motivated by this, we study
how to clearly separate the feature learning and policy learning, meanwhile to
achieve policy improvements by using cutting-edge PGS algorithms suitable for
training deeply-structured policy networks in the same Chapter(i.e., Chapter 7).

2.4. CHAPTER SUMMARY 79

2.4 Chapter Summary

The Chapter provided a comprehensive literature review, including fundamen-
tal concepts of ML with focus on RL, the general principles and formulation
of the RL framework, and several popular techniques widely used in the RL
domain. Besides, in order to motivate the research of the thesis, the chapter
analyzed and discussed advantages as well as challenges of related works with
the focus on PDS approach.

Although PDS has become more and more popular and influential in the
RL domain, there are still rooms to develop new policy direct search algo-
rithms further. In comparison to existing work, the new algorithms ought to
1) be more effective, 2) be more sample efficient, 3) achieve better balance of
the exploration-exploitation trade-off, 4) support seamlessly integration with a
decoupled feature learning to extract useful features, and 5) be capable to stabi-
lizing learning on value functions. Our understanding on the challenges of RL
methods discussed in prior sections, form the fundamental motivations of the
thesis.

Despite the general challenges, more specific limitations of existing works
discussed in Section 2.3 are summarized below to motivate the research of the
thesis further.

• Episode learning based PGS with linear policy has already been inves-
tigated in the literature. However, the existing works overlooked an-
other important learning strategy, i.e., step-learning. Nevertheless, the
step learning strategy conducts the policy updates based on a single step
sample, which often yields high variances in the updated policy. There-
fore, it is necessary to investigate techniques further to improve policy
gradient estimation accuracy and stability to further improve the learning
effectiveness for step learning based PGS.

• Some existing work has shown that EAs can be useful algorithms for
solving RL problems when the solution dimensions are reasonably small.
However, all existing EAs are still facing three critical issues, i.e., low
time efficiency, high sample complexity and low learning effectiveness,

80 CHAPTER 2. LITERATURE REVIEW

when they are applied to training deep structured policy networks. This
makes EAs lagging behind cutting-edge PGS algorithms. Given this situ-
ation, it is worthy to investigate new EA based DRL algorithms to address
the above three issues so that EAs can truly become state-of-the-art algo-
rithms.

• Value function learning is vital for AC algorithms, as the learned value
function is used to estimate the policy gradients. However, value func-
tions learned from samples by Monte Carlo methods often exhibit high
variances, resulting in the unstable and fluctuated value function learning,
and hence deteriorated policy learning. Some existing works attempted to
address the issue by introducing extra complexity into the objective func-
tion, which may lead to performance degradation as well. Hence, it is
necessary to discover new methods to stabilize the value function learning
without introducing any extra complexity. Moreover, most existing works
overlooked the importance of compatible features proposed in [215] for
accurately estimating policy gradients. To our best knowledge, there is no
existing work studying this important problem that must be investigated
further.

• Feature learning is another key factor for the success of reinforcement
learning. In traditional RL, features are normally hand-crafted by human
experts, which is considered time-consuming and error-prone. Many ex-
isting algorithms can naturally address these issues by naturally coupling
the feature learning into policy learning. However, such a coupled learn-
ing process has limitations in terms of the effective knowledge sharing and
easy splitting features from final decisions. Motivated by this, some other
existing work proposed to decouple the feature learning and policy learn-
ing and automate the feature learning process. Nevertheless, these meth-
ods either have to use a fixed policy or have to adopt domain knowledge
from human experts. Therefore, it is useful to study a fully automated
feature learning process that is capable of extracting useful features and
finding good policies.

Multiple chapters in the thesis is constructed will address the above issues.

2.4. CHAPTER SUMMARY 81

Chapter 4 will develop three new AC algorithms for training linear policies
based on a primal-dual approximation technique. Chapter 5 will develop a
CMA-ES based deep policy optimization algorithm. Chapter 6 will develop
two PGS algorithms. One algorithm is a new RAC algorithm with stabilized
critic learning by self-organized SandPile Model. The other algorithm is a new
RAC algorithm where the compatible function is generalized based on a gen-
eralized logarithm function. Chapter 7 will develop two new PGS algorithms.
The first algorithm integrates NEAT based feature learning with the RAC al-
gorithm for PGS called NEAT+RAC. The second algorithm presents a major
improvement of NEAT+RAC by explicitly decoupling the NEAT based feature
learning from PGS to enable effective knowledge sharing and by integrating
with various state-of-the-art PGS algorithms.

82 CHAPTER 2. LITERATURE REVIEW

Chapter 3

Experimental Methodology

The chapter presents the core experimental methodology of this thesis. It starts
with the benchmark problems used throughout the thesis. At the end of the
chapter, it summarizes statistical treatment used in this thesis including general
experiment setup and the statistical methods for experimental results analysis.

3.1 Benchmark Problems

To evaluate RL algorithms, there are many applicable benchmark prob-
lems [212]. In this thesis, we have primarily focused on control problems, be-
cause of two reasons: (1) It is widely recognized challenging to RL agents in
the literature [212], which can genuinely reflect the true capability of the agent.
(2) It has good coverage on both continuous and discrete problems. In this the-
sis, we have adopted 16 commonly used benchmark continuous control prob-
lems. Four problems, i.e., Mountain Car Continuous, LunarLander, Bipedal-
Walker, and BipedalWalkerHardcore, are provided by GYM environment [39].
The other six problems are simulated by using Bullet Physics Engine [220], in-
cluding HalfCheetah, Hopper, Inverted Double Pendulum, Inverted Pendulum,
Inverted Pendulum Swingup, and Walker2D. We briefly describe each problem
used in experiments in the rest of the subsection, more detailed descriptions
about these problems can be found in [65, 221, 95].

• Mountain Car Continuous is a continuous version of the classic Mountain

83

84 CHAPTER 3. EXPERIMENTAL METHODOLOGY

Car Problem. In the problem, a car is positioned between two ”moun-
tains” in a one-dimensional axis. The goal is to drive the car up to the
mountain on the right side. To make the problem difficult, the car’s en-
gine is not strong enough to reach the goal in a single pass. The key to
success is the use of the momentum produced by driving the car back and
forth. Moreover, the instant reward is the distance from the current car
position to the goal region, and a +10 is directly given once the car reaches
the goal region. It is designed to have one continuous action in [-1.0, 1.0].

• Lunar Lander is to control an agent accepting 8-dimensional continuous
sensor input to produce a two-dimensional continuous action ranging
from −1.0 to 1.0. It aims to smoothly and accurately guide the lander
robot to land on a target pad which is always set at the origin (0.0, 0.0).
While moving from the top of the screen to the target pad with zero speed,
the agent will be awarded a reward ranging from 100 to 140. However, it
loses rewards due to it is moving away from the pad. As long as the lan-
der crashes or comes to rest, it receives an additional −100 or 100, and the
episode completes.

• Bipedal Walker is to drive a robot move along flat terrain. It is constituted
of 24-dimensional continuous state space and 4-dimensional continuous
action space. The agent is rewarded +1 point by moving forward, and a
total of +300 points are given at the far end. The fallen of the robot will
cause a −100 penalty; also motor torque costs a small number of points.

• Inverted Pendulum(i.e., Cart Pole) is the classical pole balancing problem,
where a pole is attached by a joint to a cart moving horizontally. It aims
to find a plot that balances the pole to the upright angle as long as possi-
ble. It is designed to have four state inputs and one continuous action in
[−1.0, 1.0]. As long as the pole maintains upright, it receives a +1 reward.

• Inverted Pendulum Swingup is an analogy to Inverted Pendulum, but it re-
quires additional swing the pole up to maintain its balance to the upright
angle.

3.1. BENCHMARK PROBLEMS 85

• Inverted Double Pendulum is a hardcore version of Inverted Pendulum, as
it contains two joints connecting two poles to a fixed point. The controller
actuates the joint to swing the end of the lower pole to a given height from
the initial situation where both poles are hanging downwards.

• Bipedal Walker Hardcore is very similar to the Bipedal Walker. The only dif-
ference is that the robot travels on a tough terrain where ladders, stumps,
and pitfalls are placed. These obstacles increase the time limit hence the
difficulty of the problem.

• Half Cheetah is a planar locomotion task where the agent is required to con-
trol a cheetah-like robot to move along a flat plane as quickly as possible.
It contains 26 state inputs and six action outputs; each action dimension
is located in the range [-1.0, 1.0]. The rewards is given by the function
r = vx + 0.1 ∗ ||a||2, where vx is the velocity along x-axis.

• Hopper aims to move one-legged robot travel forward as fast as possible
on a 2D plane in a 3D environment. It consists of 15-dimensional state
space and three-dimensional action space within the range [-1.0, 1.0]. The
reward is given by the velocity position of x and y with an alive bonus 1
point. Note, there is a 0.001 ∗ ||a||2 cost on control.

• Walker2D is like a two-legged Hopper with a larger state space and action
space. It uses 24-dimensional inputs to generate six-dimensional contin-
uous actions ranging from -1.0 to 1.0 for each dimension. The reward
consists of x-velocity of the torso with penalties of quadratic control cost,
distance between the torso and the target height, and the orientation.

• Reacher describes a problem where a robot with two links aiming at
reaching a target position. It contains 11-dimensional state space and 2-
dimensional action space. It receives rewards by using the negative dis-
tance from the end of the arm to the target. Each movement control costs
||a||2.

• Puddle World is a two-dimensional continuous environment (i.e., [0, 1]2) in
which round puddles are placed at (0.2, 0.25) to (0.55, 0.25) and (0.45, 0.2)

86 CHAPTER 3. EXPERIMENTAL METHODOLOGY

to (0.45, 0.6) with a radius 0.1. A mobile agent initiates at a random posi-
tion in the environment and learns to reach the goal region (i.e., x+y ≥ 1.9)
without entering the puddles. When reaching the goal region, the agent
will receive an instant reward of +40. Otherwise, it will be penalized with
−1 for its movement. In particular, when entering the puddle area, it re-
ceives a penalty computed by multiplying −400 with the agent’s short-
est distance to the border of the puddle [43]. In this problem, a learning
episode is defined as the learning period from the agent’s initial state to
the moment when it arrives at the goal region.

• Heating-Coil Problem is one member of the challenging Heating, Ventila-
tion, and Air Conditioning (HVAC) problem set [9, 84]. The problem has
several dynamics (i.e., state dimensions), and theses dynamics are catego-
rized as IPV and EPV respectively. IPV are variables directly influenced
by the controller, whereas EPV is controller-independent variables solely
reflecting the environment changes (i.e., environment disturbance). In or-
der to simulate the environment disturbance, the EPVs (i.e., Tai, Twi, fa) are
changed by random walk every κ (benchmarked as 30 in [84]) time-steps
within their own intervals. The goal of the problem is to make the output
air temperature Tao close enough to the target temperature of Td. This can
be achieved by adjusting the opening valve c to control the system [84].

In addition to control problems, we have also adopted six Atari gameplay
tasks to evaluate the effectiveness of our algorithms in Chapter 6. This is be-
cause the proposed algorithms must be evaluated on large-scale reinforcement
learning to fulfill our research goals. Hence Atari game playing tasks are con-
sidered as suitable benchmarks for our experiments. However, due to a limited
computational resource, we consider mainly six widely-used/representative
games, including Asteroids, Breakout, Freeway, Seaquest, SpaceInvaders, and
TimePilot, implemented in Atari Learning Environment (ALE) [23]. In the RL
literature, ALE is a set of well-known and highly challenging benchmark prob-
lems [23, 59, 91, 189, 154, 155]. ALE provides two types of Atari game play-
ing tasks with the key difference on state representations: one is RAM-based
games where states are represented as 128-bit integers stored in memory, the

3.2. STATISTICAL TREATMENT 87

other is IMAGE-based games where states are represented as video frames cap-
tured directly from the games. In Chapter 6, we choose RAM-based games,
because they are more suitable for NeuroEvolution of Augmenting Topology
(NEAT) [206] as 128 dimensions of raw state inputs are considered sufficiently
large for our empirical study. Because when the number of samples allowed for
training is limited at a certain number, NEAT has shown bad performances on
the 128-dimensional ram-based Atari game playing tasks as reported in [90].

3.2 Statistical Treatment

In this section, we depict the statistical treatment used in this thesis to determine
the performance significance among experiments results. We firstly describe
our general experiment setup to explain how the experiments are performed.
Then we explain different statistical methods used in this thesis, including Stu-
dent’s t-test, and Analysis of Variance (ANOVA) [4].

3.2.1 General Experiment Setup

To determine any performance significant differences in experiment results, we
conduct a standard experiment setup for all experiments in this thesis. Firstly,
we perform 30 independent runs for all algorithms on each continuous control
task. At every 10,000 samples or the end of every 50 training episode, we con-
duct one independent testing episode with the learned policy (deterministic).
The testing episode is performed in a separated testing environment with the
same random seed as the one used for training. In doing so, we can also identify
the true effectiveness of each algorithm. All these independent tests are carried
out by using the best policy learned so far till the testing point (i.e., every 10,000
samples or every training episode). For all experiments, we have performed
training on each algorithm for only 5,000,000 samples or only 10,000 training
episodes due to the computational resource limitation.

88 CHAPTER 3. EXPERIMENTAL METHODOLOGY

3.2.2 Statistical Methods

In this thesis, we have used four different statistical methods for experiment
analysis. To show the significant differences of algorithms visually, we have
plotted the confidence intervals for each algorithm on the learning curve fig-
ures. To determine the performance significance among a group of algorithms,
we have performed ANOVA. Specifically, when comparing two algorithms, we
have performed a student’s t-test on the performance. Lastly, we have per-
formed correlation analysis particularly in Chapter 5 to examine the correlation
between the stability of value function learning and the effectiveness of police
learning. In the following subsection, we will brief these statistical methods.

Confidence Interval

One classic method to examine the statistical difference is to compute the con-
fidence interval, which is an estimated range of values that likely includes an
unknown population parameter [4]. Such an estimated range can be calculated
from a given set of sample data [4].

In this thesis, we consider the confidence interval where the population of
interest is not known, i.e., both the population mean and standard deviations
are unknown. In addition, in this thesis, we have only a small portion of sam-
ples, so we consider t-distribution rather than the normal distribution. Thus, in
this case, we use the following formula to compute the confidence interval,

X ± t∗ S√
n
, (3.1)

where n is the sample size,t∗ is the upper (1−C)
2

critical value for the t-
distribution with n− 1 degrees of freedom, i.e., t(n− 1).

Student’s t-test

Student’s t-test is a classical statistical method to test the null hypothesis of
whether there is a significant difference between the means of two groups [4].
It can be generally used for checking the means estimated by two dependent
samples differ significantly, i.e., the paired t-test.

3.2. STATISTICAL TREATMENT 89

In this thesis, we have adopted the paired t-test in the experiments when
determining the significance between the performances of two algorithms. The
formula we used for the paired t-test is,

t =
(
∑

D) /N√
ΣD2−

(
(
∑

D)2

N

)
(N−1)(N)

(3.2)

where D is the difference and N is the number of samples.
As every t-value has a p-value associated with it, so after obtaining the t-

value, we can find the p-value in the t-table [4]. In this thesis, we define the
alpha level as 0.05 (5%). Next, we can check whether the computed t-value is
greater than the given table value at an alpha level of 0.05. If p < 0.05, we can
reject the null hypothesis that there is no difference between the means.

ANOVA

However, in our thesis, we have cases where more than two algorithms are
compared to determine the significance. In this case, the Student’s t-test is not
applicable. Thus, we consider ANOVA for analysis of such experiments.

ANOVA is to test if there is any significant difference between the means of
two or more groups [4]. In this thesis, we consider one-way ANOVA, as there
is only one independent variable to be taken into account. In fact, one way
ANOVA is a generalisation of the two sample Student’s t-test [4]. In particular,
ANOVA compares the variability between the groups to the variability within
the groups. The formula we use in the thesis is,

F =
MST

MSE

MST =

∑k
i=1 (T 2

i /ni)−G2/n

k − 1

MSE =

∑k
i=1

∑ni
j=1 Y

2
ij −

∑k
i=1 (T 2

i /ni)

n− k ,

(3.3)

where F is the overall test variance ratio, MST is the mean square between
groups, MSE is the mean square within groups, Yij is an observation, Ti is a
group total, G is the grand total of all observations, ni is the number in group i

and n is the number of all observations.

90 CHAPTER 3. EXPERIMENTAL METHODOLOGY

Chapter 4

Effective Policy Direct Search
through Primal-Dual Approximation

This chapter is developed to answer the research question Q(1) in Section 1.2
and achieve the research objective O(1) in Section 1.3. In particular, we develop
a Primal-Dual Approximation (PDA) technique based step learning framework,
where the primal policy optimization problem is converted to a simpler dual
problem through averaging historical gradients accompanied with a strongly
convex regularization term. This enables us to obtain a more precise policy
gradient estimation for effective policy direct search. Based on this idea, we de-
velop three new PGS algorithms on the basis of three existing conventional step-
wise learning based PGS algorithms proposed in [31] (i.e., Regular Actor-Critic
(RAC), Natural Actor-Critic with Fisher Matrix(NACF), Natural Actor-Critic
with Advantage Parameters(NACA)), with the aim to achieve high-performing
learning of linear parametric policies. With the development of the three algo-
rithms, we have made two contributions in below:

1. With our formulation of PDA for PGS and the newly derived learning
rules, we show that each of the three original PGS algorithms (i.e., RAC,
NACF, NACA) can be treated, respectively, as special cases of our pro-
posed PDA based PGS algorithms (i.e., Dual-RAC, Dual-NACF, Dual-
NACA).

2. We theoretically prove that our PDA based PGS algorithms can eventually

91

92 CHAPTER 4. EFFECTIVE PDS THROUGH PDA

converge under suitable conditions.

The evaluations are conducted in-between the three newly proposed dual algo-
rithms (i.e., Dual-RAC, Dual-NACF, Dual-NACA) against six competitors. The
six competitors can be split into two streams. One purely uses a step learn-
ing strategy including RAC, NACF, NACA, and Natural Actor-Critic with Ad-
vantage Parameters and Fisher Matrix (NACAF) [31], The other is based on
episodic learning including Augmented Random Search (ARS) [146] and Proxi-
mal Policy Optimization with linear policies [191]. The testing benchmark prob-
lems include Mountain Car, Inverted Pendulum, Inverted Double Pendulum,
Inverted Pendulum Swingup, Lunar Lander and Bipedal Walker. The obtained
results have shown that

• Step-wise PGS 1 can be equivalently effective but more sample efficient in
comparison to episodic learning based algorithms, and

• PDA based PGS algorithms perform significantly better than all other six
competing algorithms.

4.1 Introduction

As discussed in Section 2.2.4, PDS searches an explicitly represented policy di-
rectly for solving RL problems. There are two common ways to represent the
policies, namely linear parametrization and non-linear parameterization [212].
The former way is the simplest form where a policy is represented by a linear
combination of a group of parameters, and the latter way is to use a complex
non-linear parametric model, such as a Neural Network (NN), to represent the
policy [212]. Despite the simplicity of linear parametrization, PGS algorithms
with linear policies have three significant advantages over those with non-linear
policies: (1) they are easier to be interpreted and understood [54]; (2) they are
more efficient in terms of computational cost [164]; (3) they have strong theoret-
ical guarantees of convergence [212, 215, 164]. However, traditional PGS with

1For simplicity, we use “Step-wise PGS” to represent the term of “PGS on linear parametric
policies with step learning strategy” in the remainder of the chapter.

4.1. INTRODUCTION 93

linear policies are believed difficult to solve difficult continuous RL problems,
and hence NN based complex representations are often considered as the first
choice in recent PDS algorithms such as [52, 191, 189, 135].

Till very recently, two original works [178, 146] have recreated the glory of
PGS with linear parametric policies with empirical evidence of effectively solv-
ing the complicated RL continuous control problems. However, the two works
both focus on the context of episodic learning and neglect a big family of algo-
rithms that learn linear policies in a step-wise manner (i.e., step learning strat-
egy).

In view of this understanding, in this chapter, we intend to build new PGS
algorithms with linear policy in the context of step learning that is effective to
tackle the complicated RL problems. To achieve this, we are required to address
a critical technical challenge of step learning strategy. Currently, following the
Stochastic Gradient Descent (SGD) technique, all current step learning methods
use the current step policy gradient to update the policy, which is a volatile
process and the resultant policies are often associated with high variances [78,
52, 170, 176].

Ideally, the issue can be tackled by cumulating historical gradients, but it
remains a critical challenge of how to properly use the historical gradients to
maintain the effectiveness and the convergence of the policy learning. To the
best of our knowledge, the research towards addressing the challenge for step-
wise PGS remains unveiled, which is worthwhile for further exploration.

4.1.1 Chapter Goals

The overall goal of the chapter is to develop a new PDA framework for building
new linear policy search algorithms with stable step-wise learning, good learn-
ing performance as well as theoretical convergence guarantees. In particular,
we intend to achieve three research objectives in this chapter:

1. To build a new PGS framework based on the general PDA technique,
and under which to derive new dual problems with respect to three
commonly-used step-wise PGS algorithms, i.e., RAC, NACA, and NACF.

94 CHAPTER 4. EFFECTIVE PDS THROUGH PDA

2. To theoretically analyze the convergence behaviors of the PDA based PGS
algorithms under suitable conditions.

3. To empirically evaluate the learning effectiveness of PDA based PGS (i.e.,
Dual-RAC, Dual-NACA, and Dual-NACF) against the original PGS (i.e.,
RAC, NACA, NACF) and two cutting-edge PGS algorithms (i.e., ARS and
PPO-Linear) on six benchmark continuous control problems.

4.1.2 Chapter Organization

The chapter is structured as follows. Section 4.2 presents a preliminary knowl-
edge of the general PDA. Next, Section 4.3 gradually builds the new PGS frame-
work using the PDA technique, and under the framework, the section develops
three new PGS algorithms (i.e., Dual-RAC, Dual-NACA, Dual-NACF). Subse-
quently, a theoretical analysis for convergence of the proposed algorithms are
presented in Section 4.4. The design of experiments and the discussion on re-
sults are given in Section 4.5 and Section 4.6 respectively. The chapter is finally
summarized in Section 4.7.

4.2 Preliminaries — A General Primal-Dual Ap-

proximation Method

This section introduces the preliminary background of the general PDA tech-
nique to pave the way for the development of new algorithms in Section 4.3.
Moreover, we refer readers to the details about the general PGS framework and
the typical algorithms such as RAC, NACA, NACF and NACAF in Section 2.2.5

The core notion of PDA [158] is to approximate a complicated primal prob-
lem for learning through a simpler linear dual problem that can be solved im-
mediately. The work [158] showed that, although PDA works on a simplified
linear dual problem with some loss of precision, the technique can still guaran-
tee to solve the original learning problem accurately. A mathematical descrip-
tion of PDA is given below. Given a general optimization/learning problem

4.2. PRELIMINARIES — A GENERAL PRIMAL-DUAL APPROXIMATION METHOD95

(i.e., the primal problem)
f(~x?) = max

~x∈D
f(~x), (4.1)

where D ⊆ Rm is a convex subset of the real vector space, and the convex scalar
objective function f : D → R is Lipschitz continuous.

To solve (4.1), the work [158] reformulated (4.1) to a simple dual problem. To
construct the dual formulation, we assume that k (k ≥ 0) candidate solutions
{~xi}ki=0 ⊂ D are available in advance. Based on these candidate solutions, the
dual problem is defined as

lk(~x
?) = max

~x∈D
[

1

k + 1

k∑
i=0

[f(~xi) +∇~xf(~xi)
T · (~x− ~xi)]− µkd(~x, ~x0)], (4.2)

where µk = 1
2β(k+1)

is a scaling parameter, and d(~x, ~x0) is an arbitrary distance
measure between any two solutions, e.g., ~x and ~x0. In order to provide such k

candidate solutions in (4.2), an iterative learning process is often adopted [158,
241]. Assuming that d(~x, ~x0) gives the Euclidean distance, then during each
learning iteration, (4.2) can be solved directly to produce the next candidate
solution as

~xk+1 = ~x0 + β 1
k+1

∑k
i=0∇~xf(~xi)

= ~xk + β 1
k+1
∇~xf(~xk),

(4.3)

where β is the learning rate.
Comparing (4.3) to (2.39) or (2.41), they are essentially identical for both

critic learning and actor learning. This implies that the dual formulation of (4.3)
is not suitable to achieve our goal mentioned in Section 4.1. Therefore, we must
investigate the usefulness of different reformulations from (4.2), which have not
been investigated in-depth in the literature.

Recall the SGD method, (4.3) is fairly similar to the iterative process in SGD.
The difference is that, for one iterative update, the gradient in SGD is com-
puted based on the current sample, but the PDA approach uses an average of
all k steps historical gradients. In other words, the iterative learning process of
SGD is one-step based whereas that of PDA is k-steps based. The advantage of
the PDA approach is that the error of parameter updates caused by noises of
gradient estimations can be reduced. For example, if assuming the gradient es-
timation∇xf(x) and the estimation noise ε are identical for every step in k-step

96 CHAPTER 4. EFFECTIVE PDS THROUGH PDA

learning, by following SGD updating, the xk will have an accumulated noise of
k×ε. However, in PDA, the noises are averaged which results in xk with a noise
of only ε. In consequence, for PGS in RL, the effectiveness of policy gradient is
highly dependent on the variance of gradient estimation [78]. The main concern
of direct use of SGD onto RL algorithms relates to the high variance problem in
policy gradient estimations [78, 68]. The drawback can be conquered by apply-
ing the low-variant PDA approach to policy-gradient based search algorithms.

In addition, though the work [158] has proposed a dual formulation for the
general optimization, the true usefulness of such a formulation has not been
assessed in RL ever before. Even similar techniques, such as mirror-descent,
have been successfully applied to a single time-scale learning of VIS in [143],
but its applicability to two time-scale learning in AC architecture still demands
in-depth investigations. Moreover, owing to the complexity of the strongly cou-
pled parametric learning processes in the AC framework, the suitability of the
newly derived dual formulations requires further investigations.

Hence, it is worth exploring, whether there are any other suitable formula-
tions (primal or dual), and whether these formulations can improve effective-
ness for the PGS algorithms. To the utmost of our awareness, there are still
very few research works in the literature focusing on investigating the useful-
ness of PDA from the challenging perceptive discussed above. Motivated by
these understandings above, we intend to take the first step to adopt PDA for
developing new PGS algorithms to solve difficult RL problems.

4.3 The Proposed Algorithms

In this section, we will gradually build up a general PDA framework for RL.
We start with an introduction to a general formulation of the dual problem in
PGS. Through various extensions of the dual problem formulations, we subse-
quently develop three different RL algorithms. Meanwhile, an analysis of the
relationships with some important existing algorithms will also be highlighted.

4.3. THE PROPOSED ALGORITHMS 97

4.3.1 General Dual Formulation for Policy Gradient Search

In this subsection, we study some general dual problem formulations based on
the primal problem defined as,

J (~θ?) = max~θ∈~ΘJ (~θ)

= max~θ∈~Θ[
∫
~s∈S p

π(~s)
∫
a∈A(~s)

π~θ(a|~s)R(~s, a, ~s′)dad~s]
. (4.4)

for actor learning as well as in (2.40) and (2.35) for critic learning. Instead of
using the dual formulation given in (4.2), we will consider other useful prob-
lem formulations based on (4.2) in order to develop new and effective RL algo-
rithms.

Without exploring all possible dual problem formulations, we concentrate
on three main aspects to build new dual problems: (A1) changing the arith-
metic averaging in (4.2) to the exponentially-weighted averaging in (4.5); (A2)
adopting varied distance measurements for d(~x, ~x0) in (4.2); (A3) applying PDA
to different primal problems for actor learning in (2.41) and critic learning in
(2.35).

We consider mainly these three aspects because they enable us to construct
different dual problems straightforwardly. They also cover the main factors
and differences in formulating the dual problems. As seen from Figure 4.1, a
few important dual problem formulations can be derived from (4.2). In fact,
several possible aspects can be considered. For example, we can make the scal-
ing parameter µk in the dual problem formulation self-adaptive. Also, we can
use a different weighted averaging method by setting the norm of the gradients
as the weights [158]. This implies that only the directions of the gradients will
be considered during the learning process. However, we have not found empir-
ical deviations in terms of effectiveness with the use of other possible aspects.
Thus, they are not considered in this chapter. Moreover, to accurately evaluate
the usefulness of adopting each specific aspect, in this study every aspect will
be considered individually while developing any new algorithms.

Based on these aspects, we can build up three different dual problem formu-
lations. These formulations give rise to three new AC algorithms as we summa-
rize in Figure 4.1. Particularly, from Aspect (A1), we develop the dual problem

98 CHAPTER 4. EFFECTIVE PDS THROUGH PDA

Critic

Actor

Regular Gradient Actor Critic
(RAC)

Natural Gradient Actor Critic
with Fisher Information Matrix

(NACF)

Natural Gradient Actor Critic
with Advantage Parameters

(NACA)

Improvement Evaluation

Dual Regular Gradient Actor
Critic

(Dual-RAC)

Dual Natural Gradient Actor
Critic with Fisher Information

Matrix
(Dual-NACF)

Dual Natural Gradient Actor
Critic with Advantage

Parameters
(Dual-NACA)

Using the dual problem formulation in (3.5) Using the dual problem formulation in (3.14)

Using the dual problem formulation in (3.19)

Figure 4.1: The Primal-Dual Approximation based Actor-Critic Algorithms.

formulation in (4.5) and generalize the RAC algorithm to the new Dual Regu-
lar Gradient Actor-Critic (Dual-RAC) algorithm. Meanwhile, following Aspect
(A2), we propose another dual problem formulation (4.14), which serves as the
basis for the development of the new Dual Natural Gradient Actor-Critic with

4.3. THE PROPOSED ALGORITHMS 99

Fisher Information Matrix (Dual-NACF) algorithm. In line with Aspect (A3),
we further derive the dual problem formulation in (4.19). Based on (4.19), Dual
Natural Gradient Actor-Critic with Advantage Parameters (Dual-NACA) al-
gorithm is obtained from the NACA algorithm. The technical details of each
algorithm are presented in the following subsections.

4.3.2 Dual Regular Gradient Actor Critic Algorithm

Following Aspect (A1), the dual problem formulation for actor learning defined
in (4.2) can be presented as

l(~θ?) = max
~θ∈Θ

[
t∑
i=0

ρt−i[J (~θi) +∇~θJ (~θi)
T · (~θ − ~θi)]− µt||~θ − ~θ0||22]. (4.5)

It is clear to see that, in this new formulation, we no longer use the arithmetic
averaging method. Instead the exponentially-weighted averaging is applied.
Particularly, ρ ∈ (0, 1] is the weighting parameter given for measuring the im-
portance of historical gradients (i.e., gradients obtained from the prior t time
points) at an exponential scale. In the meantime, the regularization term can be
arbitrary distance measures. For example, one can consider Kullback–Leibler
divergence [170] which is normally difficult to be computed analytically. In our
case, we consider the Euclidean distance for simplicity.

To analytically solve (4.5), we can simply compute the gradient of l(~θ?) with
respect to ~θ as,

∂l′t(
~θ)

∂~θ
=

∂[1
t+1

∑t
i=0[f(~θi)+(

∂J (~θi)

∂~θi
)T ·(~θ−~θi)]+µtd(~θ)]

∂~θ

= (1
t+1

)
∑t

i=0(∂J (~θi)

∂~θi
) + µt

∂d(~θ)

∂~θ
.

(4.6)

Afterward, we just simply let (4.6) equal to ~0,

(
1

t+ 1
)

t∑
i=0

(
∂J (~θi)

∂~θi
) + µt

∂d(~θ)

∂~θ
= ~0, (4.7)

Following (4.7), we can generalize the framework by introducing a tunable
parameter 0 < ρ ≤ 1,

1

(t+ 1)
∑t

i=0 ρ
t−i

t∑
i=0

[ρt−i(
∂J (~θi)

∂~θi
)] = µt

∂d(~θ)

∂~θ
, (4.8)

100 CHAPTER 4. EFFECTIVE PDS THROUGH PDA

According to the definition of µt in [158] and (4.7), we can have the scaling
parameter µt as,

µt =

∑t
i=0 ρ

t−i

2t(t+ 1)
∑t

i=0 ρ
t−i
, (4.9)

Thereby, (4.8) can be reformulated as,
t∑
i=0

[ρt−i(
∂J (~θi)

∂~θi
)] = (

∑t
i=0 ρ

t−i

2t
)
∂d(~θ)

∂~θ
. (4.10)

In such a way, we have actually generalize the typical stepwise gradient-based
learning. If ρ = 1, the learning can downgrade to original average model shown
in (4.7). Additionally, the scaling parameter is obtained as µt =

∑t
i=0 ρ

t−i

2(t+1)
.

Following the above derivations, we can obtain the policy parameter updat-
ing rule as

~θt+1 ← ~θ0 + βt(
t+ 1∑t
i=0 ρ

t−i
)

t∑
i=0

[ρt−i∇~θJ (~θi)], (4.11)

where βt is the learning rate for the t step.
By using the exponentially-weighted averaging method, we emphasize

more on recently obtained policy gradients which are considered more impor-
tant in a two time-scale learning process. Furthermore, in a two time-scale
learning process, the change to policy parameter can be made to be reason-
ably small while learning the value function in the fast time-scale. Along with
the entire learning process, the value function becomes better and better, which
implies that the estimated policy gradients become more and more accurate.
In fact, for a t-step learning, the gradients obtained in early steps (e.g., when
t = 0) may not be as crucial as those obtained in later steps if the time elapsed
to the t time is very long. However, in (4.2), the historical gradients are treated
equally, they may not be as accurate as the gradients obtained recently. Thus
we introduce the dual problem formulation in (4.5), where gradients obtained
more recently are considered more important in contrast to those gradients ob-
tained from candidates close to ~θ0. Moreover, in the literature, numerous re-
search works have shown that the adaptive changes of weights for each linear
subproblem, i.e., the approximation of original problem at each candidate solu-
tion point, can potentially result in better convergence rat [130, 32]. We also per-
formed several preliminary numerical studies on simple functions. Our study

4.3. THE PROPOSED ALGORITHMS 101

consistently shows that the convergence rate of using exponentially-weighted
averaging method is faster than that of using the arithmetic averaging method.

However, there is a key issue of directly using (4.11). The issue is that fol-
lowing the rule (4.11), if t is very large, the policy gradients obtained close to
the time point t = 0 will become useless as they are not very important. This
may lead to biased learning.

To demonstrate this issue further, we give a simple example in Figure 4.2.
Here, we use a 2D contour graph to represent the policy parameter space. Each
parameter value is represented as a black point at different time points. The
red dashed vectors represent the normal updating trajectories from ~θ0 to ~θt+1

generated by following regular gradients. Particularly, Figure 4.2 shows that,
at the time point t, based on the parameter ~θt and the gradient of ∇~θJ (~θt), we
will get the updated parameter ~θt+1. On the other hand, considering the up-
dating rule (4.11), its second part can be illustrated as the solid blue vector, i.e.,

t+1∑t
i=0 ρ

t−i

∑t
i=0 ρ

t−i∇~θJ (~θt). This is because, when t is very large, the policy gra-
dient (the dashed blue vector) is largely determined by the recent gradients,
namely the two parts A and B shown in the figure. If still following the direc-
tion of the solid blue vector (i.e., the dashed blue vector) to conduct the updat-
ing from ~θ0, the updated parameter ~θ′t+1 will end up at an unideal position as
shown in the figure. As seen clearly, ~θ′t+1 and ~θ0 are almost locating on the same
contour line, resulting in no improvement in performance.

To address the issue demonstrated in Figure 4.2, we considered a periodical
updating process for learning the policy parameters. This means that the policy
parameters are updated every K (i.e.,the periodic interval) steps where K >

0 is a small constant. In other words, after every K steps, we will apply the
updating rule (4.11), as a result, ~θ0 becomes ~θK . Accordingly, we can rewrite
(4.11) to a more general periodic updating rule as

~θ(n+1)K ← ~θnK + βnK(
nK∑nK

i=0 ρ
n(K−i)

)
nK∑
i=0

[ρn(K−i)∇~θJ (~θi)], (4.12)

where n ∈ N. Additionally, within one single period, we have the step-updating
rule as

~θt+1 ← ~θt + βt∇~θJ (~θi). (4.13)

102 CHAPTER 4. EFFECTIVE PDS THROUGH PDA

Figure 4.2: An example of the biased learning following (4.11) when t is very
large.

where 0 ≤ t < K.

Note that, the RAC algorithm can be viewed as a special case of the Dual-
RAC algorithm. This is because under the specific setting of ρ = 1, the proposed
updating rules in (4.12) and (4.13) are equivalent to (2.41) adopted directly by
the RAC algorithm. Hence Dual-RAC algorithm is a generalization of RAC.

Follow (4.12) and (4.13) for actor learning, we present the complete Dual-
RAC algorithm in Algorithm 4.3.1. In addition, we obtain the regular gradi-
ent estimator at each learning step as ∇~θJ (~θi) = IE~θ[δ

πi
i Φ(~si, ai)], where δπii and

Φ(~si, ai) can be obtained by (2.38) and (2.37) respectively.

4.3. THE PROPOSED ALGORITHMS 103

Algorithm 4.3.1 Dual-RAC Algorithm

Require: an MDP 〈S,A,P ,R, γ〉, the periodic step interval K.
Ensure: ~θ, ~υπ

1: Initialization:
2: ~θ ← ~θ0, ~υπ ← υπ0 , ~st ← ~s0, ~̂g ← ~0, ~g ← ~0, k ← 0

3: Learning Process for one episode:
4: for t = 0, 1, 2, ... do
5: at ∼ π~θ(a|~st)
6: Take action at, observe reward rt+1 and new state ~st+1

7: δπt ← rt+1 + γ~υπTt · ~φ(~st+1)− ~υπTt · ~φ(~st)

8: ~υπt+1 ← ~υπt + ~αδπt
~φ(~st)

9: ~̂g ← ~̂g + ρδπt
~Φ(~st, at)

10: k ← k + 1

11: ~g ← k∑k
i=0 ρ

k−i
~̂g

12: ~θt+1 ← ~θt + β~Φ(~st, at)

13: if k ≥ K then
14: ~θt+1 ← ~θ0 + β~g

15: ~θ0 ← ~θt+1

16: k ← 0

17: end if
18: end for
19: ~θ0 ← ~θt+1, ~υπ ← υπ0 , ~st ← ~s0, ~̂g ← ~0, ~g ← ~0, k ← 0

20: return ~θ, ~υπ

4.3.3 Dual Natural Gradient Actor Critic with Fisher Informa-

tion Matrix

Following Aspect (A2), we derive the new dual problem formulation for actor
learning where the Riemannian Distance is used as the regularization term in
(4.2),

lt(~θ
?) = max

~θ∈Θ
[

1

t+ 1

t∑
i=0

[J (~θi)+∇~θJ (~θi)
T ·(~θ−~θi)]−µt(~θ−~θ0)TG(~θt)(~θ−~θ0)], (4.14)

104 CHAPTER 4. EFFECTIVE PDS THROUGH PDA

Algorithm 4.3.2 Dual-NACF Algorithm

Require: an MDP 〈S,A,P ,R, γ〉.
Ensure: ~θ, ~υπ

1: Initialization:
2: ~θ ← ~θ0, G← G0, ~υπ ← ~υπ0 , ~st ← ~s0, ~̂g ← ~0, ~g ← ~0,k ← 0

3: Learning Process:
4: for k = 0, 1, 2, ... do
5: for t = 0, 1, 2, ... do
6: at ∼ π~θ(a|~st)
7: Take action at, observe reward rt+1 and new state ~st+1

8: δπt ← rt+1 + γ~υπTt · ~φ(~st+1)− ~υπTt · ~φ(~st)

9: ~υπt+1 ← ~υπt + αδπt
~φ(~st)

10: ~̂g ← ~̂g + δπt ~Φ(~st, at)

11: G−1
t+1 = 1

1−α [G−1
t − α (G−1

t
~Φ(~st,at))(G

−1
t
~Φ(~st,at))T

1−α+α~Φ(~st,at)TG
−1
t
~Φ(~st,at)

]

12: ~θt+1 ← ~θt + βδπt
~Φ(~st, at)

13: end for
14: ~g ← t(ρ−1)

ρt−1
G−1
t+1 × ~̂g

15: ~θk ← ~θ0

16: ~θk+1 ← ~θk + β~g

17: ~θ0 ← ~θkc+1, ~θ ← ~θ0, ~̂g ← ~0, G← G0, ~υπ ← ~υπ0 , ~st ← ~s0

18: end for
19: return ~θ, ~υπ

where G(~θt) =
∫
~s∈S d

π(s)
∫
a∈A π(~s, a)∇ ln π(~s, a)∇ lnπ(~s, a)Td~sda is the Fisher In-

formation Matrix [172], here we use the same unbiased estimation G(~θt) ≈
1
t+1

∑t
i=0

~Φ(~si, ai)~Φ(~si, ai)
T presented in [31] and the scaling factor µt = 1

2(t+1)

as in [158].

Similar to the derivation of Dual-RAC, following (4.14), we can analytically
obtain the policy parameter updating rule by introducing a tunable parameter
0 ≤ ρ < 1 as

~θt+1 ← ~θ0 + βt
t(ρ− 1)

ρt+1 − 1
G(~θt)

−1

t∑
i=0

∇~θρ
t−iJ (~θi). (4.15)

4.3. THE PROPOSED ALGORITHMS 105

For the policy parameters updating, we can have two choices, namely step-
by-step updating and periodic updating. Either of the two choices can be ap-
plied to our Dual-NACF algorithm. To have a better approximation of G(~θt),
we choose the second choice, where the periodic interval K as explained in Sec-
tion 4.3.2.

Accordingly, we can have an K interval updating rule for Dual-NACF rep-
resented as

~θ(n+1)K ← ~θnK + βnK
nK(ρ− 1)

ρnK − 1
G(~θnK)−1

nk∑
i=0

∇~θJ (~θi), (4.16)

where n ∈ N denotes the total steps for the specified interval K. Moreover, in
each specified interval, we can also have a step-based updating rule using the
regular gradient as,

~θt+1 ← ~θt + βt∇~θJ (~θt). (4.17)

If setting ρ = 0, then the Dual-NACF algorithm becomes the NACF algo-
rithm, which shows the latter is a special case of the former.

Moreover, based on (4.16) and (4.17), we have the pseudo codes of Dual-
NACF is derived and given in Algorithm 4.3.2. Note that, we also use the
Sherman-Morrison matrix inversion lemma given in (30) of NACF in [31] to
update the G(~θ)−1 incrementally in avoidance of the complex computation on
G(~θ)−1.

4.3.4 Dual Natural Gradient Actor Critic with Advantage Pa-

rameters

Following Aspect (A3), in this subsection, we concentrate on the primal prob-
lem in critic learning, i.e.,

ε(~ω?) = min
~ω∈Ω

IE~s∼dπ(~s),a∼π[(Qπ(~s, a)− ~ωT · ~Φ(~s, a))2], (4.18)

to derive the new dual problem from (4.2) as

lt(~ω
?) = min

~ω∈Ω
[
t∑
i=0

ρt−i[ε(~ωi) +∇~ωε(~ωi)
T · (~ω − ~ωi)] + µt||~ω − ~ω0||22], (4.19)

106 CHAPTER 4. EFFECTIVE PDS THROUGH PDA

Algorithm 4.3.3 Dual-NACA Algorithm

Require: an MDP 〈S,A,P ,R, γ〉, the periodic step interval K.
Ensure: ~θ, ~υπ

1: Initialization:
2: ~θ ← ~θ0, ~ωπ ← ~ωπ0 , ~υπ ← ~υπ0 , ~st ← ~s0, ~̂g ← ~0,~g ← ~0, k ← 0

3: Learning Process:
4: for E = 0, 1, 2, ... do
5: for t = 0, 1, 2, ... do
6: at ∼ π~θ(a|~st)
7: Take action at, observe reward rt+1 and new state ~st+1

8: δπt ← rt+1 + γ~υπTt · ~φ(~st+1)− ~υπTt · ~φ(~st)

9: ~υπt+1 ← ~υπt + αδπt
~φ(~st)

10: ~̂g ← ~̂g + [~Φ(~st, at)~Φ(~st, at)
T~ωt − δt~Φ(~st, at)]

11: k ← k + 1

12: ~g ← k∑k
0 ρ

k
~̂g

13: if k ≥ K then
14: ~ωπ0 ← ~ωπt

15: ~g ←∑k
0 ρ

k~̂g

16: ~ωπt+1 ← ~ωπ0 − α~g
17: k ← 0

18: else
19: ~ωπt+1 ← ~ωπ0 − α[~Φ(~st, at)~Φ(~st, at)

T~ωt − δt~Φ(~st, at)]

20: end if
21: end for
22: ~ωπ0 ← ~ωπt+1

23: ~θE+1 ← ~θE + β~ωπ0 ,
24: ~̂g ← ~0, k ← 0

25: end for
26: return ~θ, ~υπ

where the gradient of ε(~ωi) is given and approximated in the original NACA
algorithm, i.e.,

∇~ωε(~ωi) = 2
∫
~s∈S d

π(~s)
∫
a∈A π(~s, a)[Qπ(~s, a)− ~ωT · ~Φ(~s, a)]~Φ(~s, a)d~sda,

≈ ~Φ(~si, ai)~Φ(~si, ai)
T~ωi − δπii ~Φ(~si, ai).

(4.20)

4.4. THEORETICAL ANALYSIS 107

Analogue to Dual-RAC and Dual-NACF, we can also obtain the critic param-
eter updating rule by analytically solving (4.19) with introducing the parameter
0 ≤ ρ < 1 and let µt =

∑t
i=0 ρ

t−i

2(t+1)
, i.e.,

~ωπt+1 ← ~ωπ0 − αt(
t+ 1∑t
i=0 ρ

t−i
)

t∑
i=0

[ρt−i∇~ωε(~ωi)], (4.21)

where ρ ∈ (0, 1] and αt is the learning rate for critic learning at step t.
The development of the Dual-NACA algorithm and the Dual-RAC algo-

rithm follow the same principle. Particularly, the K step periodic learning for
Dual-NACA can be defined as

~ω(n+1)K ← ~ωnK − αnK(
nK∑nK

i=0 ρ
nK−i

)
nK∑
i=0

[ρnK−i∇~ωε(~ωi)]. (4.22)

Additionally, within one episode, we have the single step updating rule,

~ωt+1 ← ~ωt − αt∇~ωε(~ωt), (4.23)

where 0 ≤ t < K.
After K steps periodic learning, ~ω(n+1)K becomes an accurate approximation

of the natural gradient as evidenced in [31]. Because of this, the policy parame-
ter updating will be conducted at the end of each episode, i.e.,

~θE+1 ← ~θE + β~ω(n+1)K , (4.24)

where ~ω(n+1)∗K is the updated critic parameter obtained by following the pe-
riodic updating in (4.22) until the end of an episode E. The pseudo code of
Dual-NACA is given in Algorithm 4.3.3.

Note that, following the discussion for Dual-RAC in Section 4.3.2, the Dual-
NACA algorithm also generalizes NACA algorithm which adopts the setting of
ρ = 1 and K = 1 in (4.22).

4.4 Theoretical Analysis

In this section, we present a theoretical convergence analysis for our algorithms.
Similar to the analysis procedure in [31], our investigation starts at introducing

108 CHAPTER 4. EFFECTIVE PDS THROUGH PDA

the learning as a multi-scale learning process, and later turns to view the ACRL
algorithms as two time-scale learning process where the convergence under cer-
tain conditions can be guaranteed. Essential assumptions for the correctness of
our proof have also been discussed in details. Lastly, we present the conver-
gence analysis for each of our generalized dual AC algorithms.

4.4.1 Learning as Multi Time-Scale Stochastic Approximation

Learning as the two time-scale stochastic approximation is a process adhered to
two coupled updating recursions. Each recursion has different decreasing step-
sizes so that one recursion can learn faster than the other. In contrast, learning
in the manner of single time-scale approximation involves solely one recursive
learning process. Here, we first present the single time-scale learning process
briefly, followed by a detailed description of two time-scale learning process,
and finally discuss their applicabilities to convergence analysis for reinforce-
ment learning algorithms.

Single Time-Scale Learning Process

Single time-scale learning process is also known as the classical stochastic ap-
proximation algorithm [129]. The algorithm has only a recursive updating a
sequence along with a time interval t ≥ 0 shown as,

Xt+1 = Xt + αt(f(Xt) +Nt+1), (4.25)

where f : Rd → Rd, d ≥ 1 is a Lipschitz continuous function, {αt} ⊂ {0,∞}
satisfy

∑
t αt = ∞,

∑
t αt < ∞, as well as limt→∞ αt → 0, and {Nt,Ft} is a

martingale sequence for the σ-fields Ft = σ(Xn, Nn, n ≤ t), t ≥ 0.
To analyze the asymptotic behavior of (4.25), one can consider the following

Ordinary Differential Equation (ODE) as,

Ẋt = f(Xt), (4.26)

where we assume that 1) a unique solution exists for any initial conditions for
all t ≥ 0, 2) there is a globally asymptotically stable attractor =. Following that,

4.4. THEORETICAL ANALYSIS 109

let =ε denote the ε-neighborhood of =, i.e., =ε = {X|||X − Y || < ε, Y ∈ =} for a
given ε > 0.

Following the Lemma 6 presented in [31], the learning process can ensure
Xt as well as a (T,4)-perturbation of (4.26) converging to =ε with probability
one for given ε > 0, T > 0,4 > 0. Sophisticated derivations and proofs can be
found in works [31, 34].

Two Time-Scale Learning Process

Evidenced in literature, the aforementioned paradigm is inadequate for some
recent applications [76, 121, 122, 34]. This is because RHS of (4.25) may require
an extra recursion to evaluate in these applications. Motivated by this, the two
time-scale learning process had been brought to the foreground and applied
to many areas like reinforcement learning, signal processing, and admission
control in communication networks [34, 113].

Two time-scale learning process can be viewed as a variant of the aforemen-
tioned single time-scale learning process. Following the same notations stated
above, we can have the two time-scale learning process as two coupled itera-
tions, i.e.,

Xt+1 = Xt + αt(f(Xt, Yt) +Nt+1),

Yt+1 = Yt + βt(g(Xt, Yt) +N ′t+1),
(4.27)

where f : Rd+d′ → Rd, g : Rd+d′ → Rd are Lipschitz continuous; {αt},
{βt} are step-sizes subject to

∑
t αt =

∑
t βt = ∞,

∑
t α

2
t ,
∑

t β
2
t < ∞.

{Nt, F̄t}, {N ′t , F̄t} are two martingale sequences with respect to the σ-fields
F̄t = σ{Xn, Yn, Nn, N

′
n, n ≤ t}, t ≥ 0 satisfying

∑
t αtNt <∞,

∑
t βtN

′
t <∞.

Owing to βt = o(αt), the schedule with step size α achieves faster conver-
gence speed than the second schedule with rate β. Thus, to analyze the asymp-
totic behavior of (4.27), one can track the following ODE,

Ẋt = f(Xt, Yt)

Ẏt = 0.
(4.28)

As Ẏt = 0, one may also consider the ODE,

Ẋ = f(Xt, Y), (4.29)

110 CHAPTER 4. EFFECTIVE PDS THROUGH PDA

where Y is a constant.

Essential Assumptions

For the correctness of convergence analysis, six assumptions in the litera-
ture [33, 129, 31] are essential which are given in this subsection.

Assumption 1.
supt ||Xt|| <∞
supt ||Yt|| <∞

Assumption 2. The ODE (4.29) has a unique global asymptotically stable equilibrium
λ(Y (t)) and λ : Rd → Rd′ is a Lipschitz continuous function.

Assumption 3. The ODE
Ẏ = g(λ(Yt), Yt) (4.30)

also has a unique global asymptotically stable equilibrium Y ∗.

Under the above assumptions, one can follow Theorem 1 presented in [31]
to prove that the two time-scale learning process converges with probability
one, i.e., (Xt, Yt) → (λ(Yt), Yt) as t → ∞. Related proofs can be found in works
[31, 34, 129].

Assumption 4. The sequence of states {~st}, t = 0, 1, 2, . . . (i.e., a Markov Chain)
produced by an MDP is irreducible and aperiodic while following arbitrary policy.

Assumption 5. Every policy π(~s, a) is continuously differentiable w.r.t its parameter
~θ for any state-action pair (~s, a).

Assumption 6. The state features (i.e., basis functions) ~φ has full column rank, which
means that ~φ(~s) = {φi(~s)}, i = 0, 1, 2, . . . , k (i.e., a d× k matrix) are linearly indepen-
dent and k ≤ d. Also, for every υ ∈ Rk, ~φυ 6= e where e is the k-dimensional vector
with all entries equal to one.

Additionally, we regard the total rewards maximization problem as a cost
minimization problem associating with negative rewards. Followed the discus-
sion above, the convergence of our dual algorithms has been presented below.

4.4. THEORETICAL ANALYSIS 111

4.4.2 Convergence Analysis

In this section, we first provide Proposition 1 that guarantees the convergence
of Dual-RAC followed by a complete theoretical proof. Next, we present the
other two propositions (i.e., Proposition 2 and Proposition 3) for convergence
guarantees of Dual-NACF and Dual-NACA respectively. The proofs for the
latter two propositions are very similar to that of Proposition 1, which are hence
not explicitly given in the chapter.

The convergence analysis of Dual-RAC follows and extends the analysis of
RAC presented in [31]. The key idea of this analysis is to find a way to cat-
egorize Dual-RAC into the two time-scale learning process. Distinct from the
single-step parameter updating process of RAC, Dual-RAC features a k-step pa-
rameter updating process where k is a pre-defined step-length. In what follows,
we give a detailed analysis on the case k = 2 and explain how to transform the
2-step updating to its step counterpart. Afterward, we also discuss how to ex-
tend the analysis to k →∞.

Proposition 1. Under Assumptions 1- 6, given some small η > 0 2 and ε > 0, ∃δ > 0

such that for ~θt, t ≥ 0 obtained from Dual-RAC, if
∑t

i=0 sup~θi ||e
~θi || < tδ, also∇~θJ (~θ)

and∇2
~θ
J (~θ) are bounded, then ~θt → =ε as t→∞ with probability one.

Proof. Assumptions 1- 6 are required here. Let us recall that the single-step
policy parameter learning can be regarded as,

~θt+1 = ~θt − βt∇~θt
J (~θt). (4.31)

Following (4.31), we can obtain a sequence of policy parameters over time, i.e.,

~θ0, . . . , ~θt.

Our idea for the parameter updating in Dual-RAC is to treat the k-step as a
single step shown as below,

~θ0, . . . , ~θk︸ ︷︷ ︸
~̂θ1

, ~θk+1, . . . , ~θk+k︸ ︷︷ ︸
~̂θ2

, . . . , ~θt−k, . . . , ~θt︸ ︷︷ ︸
~̂θt

.

2η is a new learning rate introduced to mitigate the affect of higher order terms, when ex-
panding the first order gradient of J , i.e., ∇~θJ (~θ), with Taylor Series. Thus, the value must be
assumed to be small enough.

112 CHAPTER 4. EFFECTIVE PDS THROUGH PDA

Accordingly, we can have another variant single-step updating sequence of pa-
rameters, i.e.,

~̂θ0, . . . , ~̂θt.

Thus, following the findings in previous research [31], we can easily understand

the convergence of sequence ~̂θt if each ~̂θt is bounded.

Next, we need to further investigate the boundedness of each ~̂θt. For sim-
plicity, here we only consider the case while k = 2, i.e.,

~θ0, ~θ1, ~θ2︸ ︷︷ ︸
~̂θ1

, ~θ2, ~θ3, ~θ4︸ ︷︷ ︸
~̂θ2

, . . . , ~θt−2, ~θt−1, ~θt︸ ︷︷ ︸
~̂θt

.

Let us consider the objective functionJ (~θ) which expanded at ~θ0, we can obtain,

J (~θ) ≈ Ĵ (~θ) = J (~θ0) +∇~θ0
J (~θ − ~θ0) +

1

2
∇2
~θ0
J (~θ − ~θ0)2 + ε(~θ − ~θ0)3, (4.32)

where we conventionally assume∇~θJ (~θ) and∇2
~θ
J (~θ) are bounded, ε(~θ−~θ0)3 is

the infinitesimal of higher order which can be viewed as a noise term N ′. Using
the first small sequence ~θ0, ~θ1, ~θ2 as a starting point, based on (4.11), (4.27), (4.31)
and (4.32), we can obtain the equation,

~θ2 = ~θ0 − β1[
1 + ρ

ρ
[ρ∇~θ0

J (~θ0) +∇~θ1
J (~θ1) + ρe

~θ0(~s0) + e
~θ1(~s1)] +N ′], (4.33)

where ρ ∈ [0, 1], N ′ is the noise term. Here, we keep expanding the first order
gradient ∇~θ1

J (~θ1) with Taylor Series, afterwards, we introduce another learn-
ing rate η which is reasonably small to mitigate the impacts of higher order
terms. Consequently, based on (4.32) we can have,

∇~θ1
J (~θ1) = ∇~θ0

J (~θ0) + η∇~θ0
J (~θ0)∇2

~θ0
J (~θ0) + η2ε[∇~θ0

J (~θ0)]2. (4.34)

From (4.33) and (4.34), let β1
1+ρ
ρ

= A, we can show that,

~θ2 = ~θ0 − A[(ρ+ 1)∇~θ0
J (~θ0) + η∇~θ0

J (~θ0)∇2
~θ0
J (~θ0)

+η2ε[∇~θ0
J (~θ0)]2 + ρe

~θ0(~s0) + e
~θ1(~s1)].

(4.35)

4.4. THEORETICAL ANALYSIS 113

Let ρ+1 = B, η∇2
~θ0
J (~θ0) = C, η2ε∇~θ0

J (~θ0) = D, then from (4.35) we can obtain,

~θ2 = ~θ0 − A[B∇~θ0
J (~θ0) + C∇~θ0

J (~θ0)

+D∇~θ0
J (~θ0) + ρe

~θ0(~s0) + e
~θ1(~s1)].

(4.36)

Consequently, we can see that if η is reasonably small, the update to ~θ2 can be
bounded as,

~θ2 ≤ ~θ0 − A(B + C +D)∇~θ0
J (~θ0)− A[ρe

~θ0(~s0) + e
~θ1(~s1)]. (4.37)

Note that, we assume that supπt ||eπt(~s)|| < δ for some small δ > 0. Therefore

t∑
i=0

sup
πi

||eπi(~s)|| <
t∑
i=0

δ = tδ, (4.38)

where t→∞ gives δ → 0.

Following the above derivations, we can easily extend the conclusion of
(4.37) to other cases when k ≥ 2, i.e.,

~θk ≤ ~θ0−(k−1)A(B+C+D)∇~θ0
J (~θ0)−(k−1)A[ρe

~θ0(~s0)+e
~θ1(~s1)+· · ·+e~θk−1(~sk−1)].

(4.39)

Up to now, we can consider the ODE,

~̇θ = Γ̂(−∇~θ0
J (~θ0)− e~θ), (4.40)

where e
~θ = ρ

∑
~s∈S d

~θ0(~s)[∇V̄ ~θ0(~s) − ∇~υ~θ0~φ(~s)] +
∑

~s∈S d
~θ1(~s)[∇V̄ ~θ1(~s) −

∇~υ~θ1T ~φ(~s)], as following (4.38), e~θ is bounded. Meanwhile, let us consider an-
other ODE,

~̇θ = Γ̂(−∇~θ0
J (~θ0)), (4.41)

Following similar steps in the proof for Theorem 2 in [31], we can let ~̄θ(z), z > 0

be continuous linear interpolation of ~θt over intervals [n(t), n(t + 1)], t ≥ 0, i.e.,
~̄θ(n(t)) = ~θt. Thus, we can have for any4 > 0, ∃z(4) > 0 such that ~̄θ(z(4) + ·)
is a (T,4)-perturbation of ODE (4.40). As a consequence, we follow Lemma 6
proposed in [31], the learning process of ~θ converges to a local equilibrium of
(4.41) as (4.38) holds.

114 CHAPTER 4. EFFECTIVE PDS THROUGH PDA

Following the similar proof of Dual-RAC above and Theorem 3 in [31], we
can also have the following convergence guarantee for Dual-NACF as in Propo-
sition 2 below,

Proposition 2. Under Assumptions 1- 4, given some small η > 0 and ε > 0, ∃δ > 0

such that for ~θt, t ≥ 0 obtained from Dual-NACF, if
∑t

i=0 sup~θi ||e
~θi || < tδ, also

∇~θJ (~θ) and ∇2
~θ
J (~θ) are bounded, then ~θt → =ε as t→∞ with probability one.

Furthermore, with a similar proof manner in the proof of Proposition 1 and
Theorem 4 in [31], we obtain the following Proposition 3.

Proposition 3. Under Assumptions 1- 6, given some small η > 0 and ε > 0, ∃δ > 0

such that for ~θt, t ≥ 0 obtained from Dual-NACA, if
∑t

i=0 sup~θi ||e
~θi|| < tδ, also

∇~θJ (~θ) and∇2
~θ
J (~θ) are bounded, then ~θt → =ε as t→∞ with probability one.

4.5 Design of Experiments

In this section, we investigate the usefulness of different dual problem formu-
lations by evaluating the effectiveness of corresponding dual algorithms pre-
sented in Section 4.3. The evaluations have been conducted on six benchmarked
continuous control tasks provided by Bullet Physical Engine [220] and GYM
benchmark environments [39], including Bipedal Walker, LunarLander, Moun-
tain Car Continuous, Pendulum, Inverted Double Pendulum, and Inverted Pen-
dulum Swingup. The detailed descriptions of each benchmark problem can
be found in Section 3.1. Subsequently, the detailed setups for experiments in-
cluding competing algorithms, value function and policy representations, and
hyper-parameter configurations. Lastly, the experiment design in line with our
research goals stated in Section 4.1.1 is presented.

4.5.1 Experiment Setup

We describe the overall experimental setups in this subsection. The description
includes: (1) the competing algorithms including ARS and PPO-Linear, (2) the
stochastic policy distribution adopted by the agent to learn, i.e., the Gaussian

4.5. DESIGN OF EXPERIMENTS 115

distribution; (3) the representations for value function (i.e., NNs) and policy
(i.e., linear parametric representations) used in our experiments; (4) the hyper-
parameter configurations for adjusting the behaviors of the algorithms, such as
the learning rate and the discount factor.

Competing Algorithms

In our experiments, we consider six competing algorithms, including RAC,
NACF, NACA, NACAF, ARS, and PPO-Linear, because of two major reasons.
First, to evaluate the effectiveness of our dual algorithms, we need to compare
the performance of newly proposed algorithms to that of their counterparts, i.e.,
RAC, NACF, and NACA. Second, to position our dual algorithms in the context
of state-of-the-art algorithms, we compare with two cutting-edge algorithms
closely related to our work in this chapter, i.e., ARS [146] and PPO-Linear [191].
As a matter fact, we have not included another related work [178], because it es-
sentially is an episodic natural actor-critic with a linear policy which is very sim-
ilar to the design of PPO. Also, PPO has been reported as the best-performing
algorithms on challenging control problems in comparison to many state-of-
the-art PGS algorithms [191]. Thus, we have decided to modify the PPO algo-
rithm [178] to support linear policy representation for our experiments. Empir-
ically, we have found that the adapted PPO (i.e., PPO-Linear) is still effective
on most control continuous problems, which satisfies our experimental require-
ments. To ensure good performance for all competing algorithms, we rely on
high-quality algorithm implementations provided by OpenAI Baselines 3 [56].

Value Function and Policy Representations

As discussed in Section 2.2.5, AC algorithms rely heavily on the quality of value
function learning. To ensure the quality of value function learning, we decided
to represent the value function by using an NN which has shown proven ef-
fectiveness in the literature [178, 212]. Thus, we present the NN architecture

3Our implementations of all algorithms can be found at
https://github.com/yimingpeng/primal dual baseline

116 CHAPTER 4. EFFECTIVE PDS THROUGH PDA

for value function representation first in this subsection. Following that, we de-
scribe the stochastic policy implementation where the policy is represented as a
linear parametric function.

Value Function Representation

Sensor
Inputs
(state)

Value
Function

Input
Layer

Fully
Connected

Layer
(64 units)

Fully
Connected

Layer
(64 units)

tanhtanh linear

Figure 4.3: The Architecture of NN for representing Value Function for Dual-
RAC, Dual-NACF, Dual-NACA, RAC, NACF, NACA, NACAF, and PPO-
Linear.

For fair comparisons, we consistently use the same network architecture for
all competing AC algorithms except for ARS which does not require a value
function for policy search. In our experiments, we adopt the commonly-used
network architecture when being applied to continuous control problems in the
literature [191, 189, 56]. The architecture is illustrated in Figure 4.3.

Stochastic Policy Implementation

Two commonly used stochastic policy implementations in the literature are the
Gaussian distribution for continuous problems or Gibbs distribution for dis-
crete problems [168, 52]. As our research only is interested in the continuous

4.5. DESIGN OF EXPERIMENTS 117

problem, we select the Gaussian policy for all experiments which is parameter-
ized by ~θ as

π~θ(a|~s) =
1

σ
√

2π
e−

(a−µ)2

2σ2 , (4.42)

where µ = ~θT · ~φ(~s) 4 is the mean action output from policy π~θ in state ~s, which
can be adjusted by changing policy parameters ~θ. Following the common setup
in the literature [171], the exploration meta-parameter (i.e., the standard devi-
ation) is fixed for all experiments, i.e., σ = 1.0. Note that, π at the RHS of
the (4.42) is the regular circumference ratio.

Hyper-parameter Configurations

Regarding the meta-parameters settings (e.g., learning rate, discount factor, etc.)
algorithms’ performance comparisons, we have adopted the hyper-parameter
configurations differently according to the best reported settings for competing
algorithms (i.e., ARS, PPO-Linear, RAC, NACF, NACA and NACAF) in the lit-
erature [146, 191, 31]. For our proposed dual algorithms, we followed the same
settings to their counterparts. All the important configurations can be found in
Table 4.1, we refer readers to relevant papers or our implementation in Github
for more detailed configurations.

Based on Table 4.1, we briefly recapitulate the essence of these meta-
parameters here: α and β are learning rates for critic and actor respectively;
γ is the future reward discount factor; κ represents the coefficient for Fisher In-
formation matrix; ρ controls the importance level of historical gradients while
estimating new gradient in dual algorithms;K is a periodic interval window for
Dual-RAC and Dual-NACA to conduct the periodic updating, σ is the standard
deviations for noise in ARS.

4.5.2 Experiment Design

In the experiments, we evaluate our algorithms in terms of learning effective-
ness. Following the standard setting in the literature [191, 56, 189], effectiveness

4Note that, the policy adopts a linear parametric representation.

118 CHAPTER 4. EFFECTIVE PDS THROUGH PDA

Table 4.1: The Hyper-parameter settings of all algorithms including RAC,
NACF, NACA, NACAF, Dual-RAC, Dual-NACF, Dual-NACA, ARS and PPO-
Linear used for all problems.

Algorithms
Hyper-parameters

α β γ κ ρ K σ

RAC 3e-4 3e-5 0.99 N/A N/A N/A N/A
NACF 3e-4 3e-5 0.99 1.0 N/A N/A N/A
NACA 3e-4 3e-5 0.99 N/A N/A N/A N/A

NACAF 3e-4 3e-5 0.99 N/A N/A N/A N/A
Dual-RAC 3e-4 3e-5 0.99 N/A 0.95 5 N/A

Dual-NACF 3e-4 3e-5 0.99 1.0 1.0 5 N/A
Dual-NACA 3e-4 3e-5 0.99 N/A 0.95 5 N/A

ARS N/A 0.025 0.99 N/A N/A N/A 0.1
PPO-Linear 3e-4 3e-4 0.99 N/A N/A N/A N/A

is defined as the average total rewards of the last 100 episodes 5.

To determine any performance significant differences in experiment results,
we perform 30 independent runs for all algorithms on each continuous control
task. At every 10,000 samples, we conduct one independent testing episode
with a deterministic policy. The testing episode is performed in a separated
testing environment with the same random seed as the one used for training.
In doing so, we can also identify the true effectiveness as well as sample effi-
ciency of each algorithm. All these independent tests are carried out by using
the best policy learned so far till the testing point (i.e., every 10,000 samples).
For all three experiments, we have performed training on each algorithm for
only 5,000,000 samples (i.e., 5 million steps) due to the computational resource
limitation.

5One episode indicates a sequence of interactions (i.e., state transitions) between an agent
and an environment, which ends with some terminal conditions. For example, in the Cart Pole
problem, one episode starts when the agent balances the pole and terminates when the pole
falls down.

4.6. RESULTS AND DISCUSSION 119

4.6 Results and Discussion

In what follows, we present experimental results with discussions of nine
algorithms (i.e., Dual-RAC, Dual-NACF, Dual-NACA, RAC, NACF, NACA,
NACAF, ARS, and PPO-Linear) on the six benchmark problems (i.e., Bipedal
Walker, Lunar Lander, Mountain Car Continuous, Inverted Pendulum, Inverted
Double Pendulum, and Inverted Pendulum Swingup). We present evaluations
with respect to each problem to clearly show the performance difference, since
the performance of the same algorithm may vary largely on different problems.

In the experiment on each problem, we first compare each newly proposed
dual algorithm against its primal counterpart to assess the performance dif-
ference. Next, an overview of all dual algorithms in comparison to all their
counterparts is presented. Lastly, we investigate the performance of all dual al-
gorithms in comparison to the two cutting-edge algorithms, i.e., ARS and PPO-
Linear.

4.6.1 Discussion on Results of Bipedal Walker

Figure 4.4 illustrates the learning curves of the proposed dual algorithms in
comparison to the competing algorithms. As can be seen from Figure 4.4a- 4.4c,
all three new dual algorithms (i.e., Dual-RAC, Dual-NACF and Dual-NACA)
perform significantly better than their counterparts (i.e., RAC, NACF, NACA)
on the Bipedal Walker problem. In addition, Figure 4.4d shows that there is
no significant performance difference among all three dual algorithms. Lastly,
compared to the cutting-edge algorithms, all three dual algorithms outperform
ARS and achieve competitive performance to PPO-Linear.

An interesting finding is that ARS did not manage to achieve good perfor-
mance on the problem. This is because fitness evaluation in ARS requires a large
number of samples. In our case, 5,000,000 learning steps may not be sufficient
for the algorithm to converge. In the original paper of ARS [146], the average
number for solving one particular control task at minimum is 1,000,000 steps,
but it searches the optimal policy with 100 CPU cores in parallel. This implies
that, in total, it actually requires 100,000,000 samples which are far more what

120 CHAPTER 4. EFFECTIVE PDS THROUGH PDA

0 1 2 3 4 5
Million Steps

−100

−50

0

50

100

150

A
ve

ra
ge

T
ot

al
R

ew
ar

ds

(a) Dual-RAC vs. RAC

0 1 2 3 4 5
Million Steps

−100

−50

0

50

100

150

A
ve

ra
ge

T
ot

al
R

ew
ar

ds

(b) Dual-NACF vs. NACF

0 1 2 3 4 5
Million Steps

−100

−50

0

50

100

150

200

A
ve

ra
ge

T
ot

al
R

ew
ar

ds

(c) Dual-NACA vs. NACA

0 1 2 3 4 5
Million Steps

−150

−100

−50

0

50

100

150

200

A
ve

ra
ge

T
ot

al
R

ew
ar

ds

(d) Dual Algorithms vs. Primal Algorithms

0 1 2 3 4 5
Million Steps

−100

−50

0

50

100

150

200

A
ve

ra
ge

T
ot

al
R

ew
ar

ds

(e) Dual Algorithms vs. Cutting-edge Algorithms

Figure 4.4: A performance comparison of the proposed dual algorithms includ-
ing Dual-RAC, Dual-NACF, Dual-NACA against the competing algorithms in-
cluding RAC, NACF, NACA, NACAF, ARS [146] and PPO-Linear [191] on the
Bipedal Walker problem.

we can support in our experiments.

To sum up, on the Bipedal Walker problem, we can confirm that our dual

4.6. RESULTS AND DISCUSSION 121

algorithms performed generally better than the competing algorithms in terms
of both learning effectiveness and sample efficiency.

0 1 2 3 4 5
Million Steps

−300

−200

−100

0

100

A
ve

ra
ge

T
ot

al
R

ew
ar

ds

(a) Dual-RAC vs. RAC

0 1 2 3 4 5
Million Steps

−300

−200

−100

0

100

A
ve

ra
ge

T
ot

al
R

ew
ar

ds

(b) Dual-NACF vs. NACF

0 1 2 3 4 5
Million Steps

−250

−225

−200

−175

−150

−125

−100

A
ve

ra
ge

T
ot

al
R

ew
ar

ds

(c) Dual-NACA vs. NACA

0 1 2 3 4 5
Million Steps

−300

−200

−100

0

100

A
ve

ra
ge

T
ot

al
R

ew
ar

ds

(d) Dual Algorithms vs. Primal Algorithms

0 1 2 3 4 5
Million Steps

−300

−200

−100

0

100

200

A
ve

ra
ge

T
ot

al
R

ew
ar

ds

(e) Dual Algorithms vs. Cutting-edge Algorithms

Figure 4.5: A performance comparison of the proposed dual algorithms includ-
ing Dual-RAC, Dual-NACF, Dual-NACA against the competing algorithms in-
cluding RAC, NACF, NACA, NACAF, ARS [146] and PPO-Linear [191] on the
Lunar Lander problem.

122 CHAPTER 4. EFFECTIVE PDS THROUGH PDA

4.6.2 Discussion on Results of Lunar Lander

We present the performance comparisons of all algorithms on the Lunar Lan-
der problem in Figure 4.5. In this experiment, we can clearly see significant
performance difference between Dual-RAC and RAC in Figure 4.5a as well as
between Dual-NACF and NACF in Figure 4.5b. Additionally, the performance
advantage of Dual-RAC and Dual-NACF in comparison to all primal counter-
parts including RAC, NACF, NACA and NACAF can also be witnessed in Fig-
ure 4.5d.

Interestingly, a small performance gap can be seen between the dual algo-
rithms (i.e., Dual-RAC and Dual-NACF) and PPO-Linear. In fact, the Lunar
Lander problem is a complicated problem where the system performance is
highly sensitive to precise control signals. This implies that the changes to
the policy cannot be too large otherwise it may generate unexpected behaviors.
PPO naturally can keep the policy changes properly bounded by a gradually
reducing threshold. However, this ability may prevent PPO-Linear from ex-
ploring effectively on other problems such as Mountain Car Continuous and
Inverted Double Pendulum.

In consequence, we can also conclude the two dual algorithms (i.e., Dual-
RAC and Dual-NACF) are highly competitive algorithms on the Lunar Lander
problem.

4.6.3 Discussion on Results of Mountain Car Continuous

On the Mountain Car Continuous problem, all algorithms except for NACAF
have completely solved the problem by reaching average rewards of 90 for 100
consecutive episodes as illustrated in Figure 4.6. In Figure 4.6a- 4.6c, the pro-
posed dual algorithms including Dual-RAC, Dual-NACF, and Dual-NACA can
learn much faster than their counterparts. In addition, Figure 4.6e shows that all
of our dual algorithms are more sample efficient than PPO-Linear. For example,
PPO-Linear requires 1,000,000 more steps to reach the competitive performance
in comparison to all our dual algorithms.

4.6. RESULTS AND DISCUSSION 123

0 1 2 3 4 5
Million Steps

−75

−50

−25

0

25

50

75

100

A
ve

ra
ge

T
ot

al
R

ew
ar

ds

(a) Dual-RAC vs. RAC

0 1 2 3 4 5
Million Steps

−75

−50

−25

0

25

50

75

100

A
ve

ra
ge

T
ot

al
R

ew
ar

ds

(b) Dual-NACF vs. NACF

0 1 2 3 4 5
Million Steps

0

20

40

60

80

A
ve

ra
ge

T
ot

al
R

ew
ar

ds

(c) Dual-NACA vs. NACA

0 1 2 3 4 5
Million Steps

−100

−50

0

50

100
A

ve
ra

ge
T

ot
al

R
ew

ar
ds

(d) Dual Algorithms vs. Primal Algorithms

0 1 2 3 4 5
Million Steps

−75

−50

−25

0

25

50

75

100

A
ve

ra
ge

T
ot

al
R

ew
ar

ds

(e) Dual Algorithms vs. Cutting-edge Algorithms

Figure 4.6: A performance comparison of the proposed dual algorithms includ-
ing Dual-RAC, Dual-NACF, Dual-NACA against the competing algorithms in-
cluding RAC, NACF, NACA, NACAF, ARS [146] and PPO-Linear [191] on the
Mountain Car Continuous problem.

124 CHAPTER 4. EFFECTIVE PDS THROUGH PDA

0 1 2 3 4 5
Million Steps

0

200

400

600

800

1000

A
ve

ra
ge

T
ot

al
R

ew
ar

ds

(a) Dual-RAC vs. RAC

0 1 2 3 4 5
Million Steps

0

200

400

600

800

1000

A
ve

ra
ge

T
ot

al
R

ew
ar

ds

(b) Dual-NACF vs. NACF

0 1 2 3 4 5
Million Steps

25

50

75

100

125

150

175

A
ve

ra
ge

T
ot

al
R

ew
ar

ds

(c) Dual-NACA vs. NACA

0 1 2 3 4 5
Million Steps

0

200

400

600

800

1000

A
ve

ra
ge

T
ot

al
R

ew
ar

ds

(d) Dual Algorithms vs. Primal Algorithms

0 1 2 3 4 5
Million Steps

0

200

400

600

800

1000

A
ve

ra
ge

T
ot

al
R

ew
ar

ds

(e) Dual Algorithms vs. Cutting-edge Algorithms

Figure 4.7: A performance comparison of the proposed dual algorithms includ-
ing Dual-RAC, Dual-NACF, Dual-NACA against the competing algorithms in-
cluding RAC, NACF, NACA, NACAF, ARS [146] and PPO-Linear [191] on the
Inverted Pendulum problem.

4.6.4 Discussion on Results of Inverted Pendulum

Similar to the results obtained on the Lunar Lander problem, two of our dual
algorithms, Dual-RAC and Dual-NACF are significantly more effective than

4.6. RESULTS AND DISCUSSION 125

RAC, NACF, NACA, NACAF, and ARS on Inverted Pendulum as shown in
Figure 4.7. More importantly, as can be seen in Figure 4.7e, both algorithms
achieved a significantly higher performance level eventually compared to PPO-
Linear although they converge slightly slower than PPO-Linear at the early
learning stage.

4.6.5 Discussion on Results of Inverted Double Pendulum

Figure 4.8 generally shows that Dual-RAC and Dual-NACF remain the leading
algorithms on Inverted Double Pendulum in terms of effectiveness as well as
sample efficiency against all other algorithms such as RAC, NACF, ARS and
PPO-Linear.

4.6.6 Discussion on Results of Inverted Pendulum Swingup

As can been witnessed in Figure 4.9, all our proposed dual algorithms, includ-
ing Dual-RAC, Dual-NACF and Dual-NACA, are much more sample efficient
than ARS and PPO-Linear on the Inverted Pendulum Swingup problem. More-
over, they also significantly outperform ARS.

4.6.7 Result Summary

By conducting the experiments discussed above, we have successfully achieved
the third research objective of this chapter in Section 4.1.1. Specifically, as can
be seen in Table 4.2 the experimental results on all benchmark problems show
that the proposed dual algorithms, i.e., Dual-RAC, Dual-NACF, Dual-NACA,
are generally more effective as well as more sample efficient than their coun-
terparts, i.e., RAC, NACF, and NACA. In particular, two out of three dual algo-
rithms (i.e., Dual-RAC and Dual-NACF) significantly outperform all other algo-
rithms on five out of six benchmark problems including Bipedal Walker, Lunar
Lander, Mountain Car Continuous, Inverted Pendulum, and Inverted Double
Pendulum. In addition, Dual-NACA algorithm achieved highly competitive

126 CHAPTER 4. EFFECTIVE PDS THROUGH PDA

0 1 2 3 4 5
Million Steps

0

2000

4000

6000

8000

A
ve

ra
ge

T
ot

al
R

ew
ar

ds

(a) Dual-RAC vs. RAC

0 1 2 3 4 5
Million Steps

0

2000

4000

6000

8000

A
ve

ra
ge

T
ot

al
R

ew
ar

ds

(b) Dual-NACF vs. NACF

0 1 2 3 4 5
Million Steps

340

360

380

400

420

A
ve

ra
ge

T
ot

al
R

ew
ar

ds

(c) Dual-NACA vs. NACA

0 1 2 3 4 5
Million Steps

0

2000

4000

6000

8000

A
ve

ra
ge

T
ot

al
R

ew
ar

ds

(d) Dual Algorithms vs. Primal Algorithms

0 1 2 3 4 5
Million Steps

0

2000

4000

6000

8000

A
ve

ra
ge

T
ot

al
R

ew
ar

ds

(e) Dual Algorithms vs. Cutting-edge Algorithms

Figure 4.8: A performance comparison of the proposed dual algorithms includ-
ing Dual-RAC, Dual-NACF, Dual-NACA against the competing algorithms in-
cluding RAC, NACF, NACA, NACAF, ARS [146] and PPO-Linear [191] on the
Inverted Double Pendulum problem.

performances to Dual-RAC and Dual-NACF on Lunar Lander, Mountain Car
Continuous, and Inverted Pendulum Swingup. Particularly, on the Inverted

4.6. RESULTS AND DISCUSSION 127

0 1 2 3 4 5
Million Steps

−1000

−800

−600

−400

−200

0

200

A
ve

ra
ge

T
ot

al
R

ew
ar

ds

(a) Dual-RAC vs. RAC

0 1 2 3 4 5
Million Steps

−1000

−800

−600

−400

−200

0

200

A
ve

ra
ge

T
ot

al
R

ew
ar

ds

(b) Dual-NACF vs. NACF

0 1 2 3 4 5
Million Steps

−1000

−800

−600

−400

−200

0

200

A
ve

ra
ge

T
ot

al
R

ew
ar

ds

(c) Dual-NACA vs. NACA

0 1 2 3 4 5
Million Steps

−1000

−800

−600

−400

−200

0

200
A

ve
ra

ge
T

ot
al

R
ew

ar
ds

(d) Dual Algorithms vs. Primal Algorithms

0 1 2 3 4 5
Million Steps

−1000

−800

−600

−400

−200

0

200

A
ve

ra
ge

T
ot

al
R

ew
ar

ds

(e) Dual Algorithms vs. Cutting-edge Algorithms

Figure 4.9: A performance comparison of the proposed dual algorithms includ-
ing Dual-RAC, Dual-NACF, Dual-NACA against the competing algorithms in-
cluding RAC, NACF, NACA, NACAF, ARS [146] and PPO-Linear [191] on the
Inverted Pendulum Swingup problem.

Pendulum Swingup problem, all three of our dual algorithms also performed
competitively to both their counterparts and ARS and PPO Linear.

128 CHAPTER 4. EFFECTIVE PDS THROUGH PDA

Table 4.2: The final episode performance comparison of nine algorithms (i.e.,
ARS, Dual-RAC, Dual-NACF, Dual-NACA, RAC, NACF, NACA, NACAF, and
PPO-Linear) on six benchmark problems (i.e., Bipedal Walker, Inverted Double
Pendulum, Inverted Pendulum, Inverted Pendulum Swingup, Lunar Lander
Continuous, and Mountain Car Continuous).

Algorithms/Problems Bipedal Walker Inverted Double Pendulum Inverted Pendulum Inverted Pendulum Swingup Lunar Lander Continuous Mountain Car Continuous

ARS -27.78±51.43 4000.07±4017.15 135.63±231.02 19.30±25.84 -77.04±83.59 0.00±0.00
Dual-NACA 187.08±44.91 412.03±7.26 53.49±57.52 106.37±51.86 -179.04±28.20 93.07±0.15
Dual-NACF 141.59±57.52 7969.90±479.66 998.35±2.33 143.15±12.14 147.93±8.60 92.96±0.22
Dual-RAC 145.13±30.54 9271.13±131.03 1000.00±0.00 156.14±7.54 155.77±4.37 92.79±0.07

NACA 23.31±105.47 420.30±15.76 54.77±49.92 -194.63±324.26 -183.95±45.48 91.95±0.89
NACF 108.75±64.89 1376.44±102.71 20.41±15.60 116.56±8.84 -62.57±20.06 90.84±0.16

PPO-Linear 146.32±28.03 426.51±6.43 931.19±3.56 140.48±29.33 188.04±20.80 90.19±0.08
RAC 39.76±63.33 1184.29±116.89 215.41±356.46 149.52±14.31 -16.73±37.79 91.10±0.06

NACAF -95.04±59.32 450.21±37.82 15.61±1.38 -65.40±146.56 -186.04±80.61 -99.90±0.00

4.7 Chapter Summary

The primary goal of this chapter was to adopt the Primal-Dual Approximation
technique to simplify and generalize several typical PGS to improve step-wise
learning on linear policies. We have successfully achieved the goal by deriving
three dual problems from the primal problems given in the original PGS (i.e.,
RAC, NACA, and NACF). As a result, we have developed three new step-wise
PGS algorithms, i.e., Dual-RAC, Dual-NACA, and Dual-NACF.

More specifically, in Dual-RAC, we have utilized weighted historical gra-
dients to obtain more accurate policy gradient estimations for effective actor
learning. Instead of treating all historical gradients equally, Dual-RAC mitigates
the effects of gradients which are far away from and less useful for current step
updating. For Dual-NACF, by using of Riemannian distance with Fisher In-
formation Matrix on the regularizing components for actor learning, we extend
the policy parameter space into more generalized Riemannian space rather than
simple Euclidean space. The adaptation of Dual-NACA is to adopt the primal-
dual approximation on critic learning rather than to apply it to actor learning.
In such a way, we have shown a wide applicable range of our proposed dual
generalization.

In addition, we have experimentally shown the superiorities on the effec-
tiveness of applying dual algorithms to most benchmark cases in comparison
to primal algorithms as well as other competing algorithms. Meanwhile, the

4.7. CHAPTER SUMMARY 129

convergence of the dual algorithms is also theoretically guaranteed.
This work provides possibilities for future exploration. Firstly, in our work,

the variance for the policy distribution is predefined and maintained the same
throughout the experiments, which can be learned by the algorithms to im-
prove the effectiveness as shown in [43]. Secondly, the algorithms we discussed
here are all gradient-based learning, which often suffers from high variances on
gradient estimations. Gradient-free methods, as exemplified in ARS, usually ex-
hibit much more stable learning despite its poor sample efficiency. Lastly, this
chapter develops the algorithms based on the linear policy which enjoys the
benefits like proved convergence and efficient learning, but it may fail in more
complex scenarios, such as continuous locomotion tasks with high-dimensional
control signals. This can be addressed by generalizing the policy represen-
tation in a non-linear manner, for example, adopting Deep Neural Networks,
which may also result in more improvements in terms of effectiveness. In view
of these situations, in the next chapter, we will further study to develop new
PGS algorithms based on an integration of both gradient-free global search and
gradient-based local search for effectively finding good policies to tackle diffi-
cult RL problems.

130 CHAPTER 4. EFFECTIVE PDS THROUGH PDA

Chapter 5

Proximal Evolutionary Strategies for
Sample Efficient Policy Direct
Search

This chapter presents the second core contribution of the thesis, which aims
at addressing the research question Q(2) in Section 1.2 as well as the research
objective O(2) in Section 1.3. In particular, we develop a new evolutionary
deep policy optimization algorithm on the basis of Covariance Matrix Adap-
tation Evolutionary Strategy (CMA-ES). The algorithm exploits the proximal
(performance lower bound driven) policy optimization techniques [191], which
is called Proximal Evolutionary Strategy (PES). PES has three key technical ad-
vancements.

1. We develop a layer-wise learning strategy for CMA-ES to improve its com-
putational efficiency for training Deep Neural Networks (DNNs).

2. We establish a proximal performance lower bound based surrogate model
for fitness evaluation to reduce the sample cost.

3. We introduce a gradient-based local search technique to significantly im-
prove the performance of evolutionary policy optimization.

Our experiments on ten continuous control problems show that,

131

132 CHAPTER 5. PES FOR SAMPLE EFFICIENT PDS

• PES with layer-wise training can be more computationally efficient in
terms of running time to reach high performance in comparison to other
EAs, such as CMA-ES [88], OpenAI-ES [186], Uber-GA [210]);

• PES with a surrogate model can substantially reduce the sample cost;

• Upon using the gradient-based local search technique, PES can achieve
better effectiveness in comparison to three state-of-the-art PGS algorithms
(i.e., Trust Region Policy Optimization (TRPO) [189], Actor-Critic using
Kronecker-Factored Trust Region (ACKTR) [240], Proximal Policy Op-
timization(PPO) [191]) and two recently developed evolutionary algo-
rithms (i.e., OpenAI-ES [186], Uber-GA [210]).

5.1 Introduction

Building intelligent agents to solve complex tasks in unknown environments ef-
fectively is the ultimate goal of reinforcement learning (RL). Recent significant
breakthroughs in RL are marked by the engagement with deep learning that fu-
els the development of a series of prominent deep reinforcement learning (DRL)
algorithms, such as Distributed Deterministic Policy Gradient (DDPG) [135],
Trust Region Policy Optimization (TRPO) [189], Proximal Policy Optimization
(PPO) [191], Actor-Critic with Experience Replay (ACER) [229], OpenAI Evo-
lutionary Strategies (OpenAI-ES) [186] and Uber Genetic Algorithms (Uber-
GA) [210]. By using DNNs to represent policies (i.e., policy direct search) di-
rectly, these algorithms are capable of directly processing raw state represen-
tations to solve complicated tasks without relying on any feature engineering.
DRL so far has achieved outstanding success on many difficult problems, es-
pecially in the domain of automated control characterized by continuous and
high-dimensional action spaces [240, 191, 189, 229, 135].

In general, there are two approaches of training DNNs in PGS algorithms, 1)
back-propagation with policy gradients [215, 52], a.k.a., Policy Gradient Search
(PGS) and 2) fitness guided evolutionary search, a.k.a, Evolutionary Algorithms
(EAs) [186, 210]. PGS applies Stochastic Gradient Descent (SGD) to learn the

5.1. INTRODUCTION 133

weights of policy networks (sometimes value function networks [155, 225, 230]).
It conducts a search based on one policy (or one value function) by following
the direction of its gradient with respect to some performance measure (e.g., the
expected total rewards) in a more exploitative manner. Meanwhile, it requires
to carefully select suitable exploration techniques for balancing exploration and
exploitation, which is often a tricky part [45]. On the other hand, guided by
a general fitness measure, EAs constantly evolve a population of DNNs in the
hope of discovering the most suitable DNN for solving any given RL problems.
Different from PGS, EAs focus more on exploration and are particularly reliable
for tackling complex RL problems whose learning goals have many local op-
tima. Hence they are widely considered as a promising alternative to PGS for
effective DRL [186, 210, 45].

5.1.1 Chapter Goals

In this paper, we aim to develop a new EA-based DRL algorithm that can satis-
factorily address all the three challenges above. As a result, our new algorithm
is expected to achieve high sample efficiency and state-of-the-art performance,
in comparison to many advanced DRL algorithms developed in recent years.
Our algorithm will also demonstrate the potential of EAs as a strong competi-
tor of PGS for DRL. It particularly encourages the fusion of EAs and PGS in the
DRL research community. The development of PES enables us to achieve three
main research goals as summarized below.

(G1) To address (C1), we propose to reduce computation efficiency by using
the divide-and-conquer strategy. Specifically, while training DNNs, we
can decompose the search space based on the layering structures of the
DNNs, where each layer is treated as a smaller subspace to be trained sep-
arately. Such layer-wise training techniques have already been well inves-
tigated in the literature, such as [27]. Different from these existing works,
within each layer of a DNN, our algorithm is designed to train a portion
of the weights (parameters) in that layer which are selected uniformly at
random during the evolutionary process. This is because, in CMA-ES, the
dimensionality of a solution should be kept in a reasonable small level to

134 CHAPTER 5. PES FOR SAMPLE EFFICIENT PDS

keep the computation cost in association with the processing of the co-
variance matrix at a reasonable level and achieve effective and efficient
adaptation on the covariance matrix. However, this raises new questions
regarding whether or when to retrain the weights in previous learning
iterations and how to balance in between training new weights and re-
training old weights. To answer these questions, we further develop an
epsilon-greedy based weights selection method, following which we can
ensure mathematically that a suitable proportion of weights will be re-
trained across consecutive iterations.

(G2) To tackle (C2), we propose to avoid a direct evaluation of candidate
DNNs, instead the performance lower bound of any DNN is estimated
through a surrogate model. The use of surrogate model has already been
widely recognized as an effective way to reduce search cost for EAs in lit-
erature [249]. Inspired by years of development of RL technologies, sev-
eral different performance lower bounds as surrogate models for evalu-
ating DNNs as evidenced in [111, 189, 111, 191, 117]. In this paper, we
are particularly interested in the proximal performance lower bound ini-
tially proposed by Kakade in [111] and subsequently improved for train-
ing deep neural networks in TRPO [189] and PPO [191]. By optimizing
this performance lower bound, PES enjoys the theoretical advantage of
consistently improving the learning performance without consuming sub-
stantial environment samples. Following the design of PPO, we use gra-
dient descent techniques to train the surrogate model which is further uti-
lized to evaluate the policy networks evolved by CMA-ES. In this way,
we expect to significantly improve sample efficiency without noticeable
impact on learning effectiveness.

(G3) To solve (C3), we propose to introduce gradient-based local search to en-
hance learning performance further. As discussed previously, EAs do not
require to follow a gradient but conducting extensive exploration via a
population of candidates searching in the solution space. However, it
requires more computational efforts and often can only reach near opti-
mal (i.e., the optima with less precision) [133]. This can be problematic

5.1. INTRODUCTION 135

in the situations of dealing with RL problems. For instance, those loco-
motion tasks are very challenging because of their high sensitivity high-
dimensional control signals. A small variation along with one degree of
the freedom often can cause failure to the system fatally, sometimes such
failure is by no means affordable (e.g., a real lunar landing mission). Ap-
parently, it is essential for a controller (i.e., an RL solution) to produce
precise actions for these problems. Gradient-based approaches seem to be
able to locate such optimal solutions within a local vicinity precisely and
quickly, but are often trapped by the first found optima and unable to have
further improvements [133]. Therefore it can be seen that neither EAs nor
gradient-based search alone is suitable for handling this situation. A bet-
ter way is to take merits of both sides, namely to combine both EAs and
gradient-based local searches to efficiently explore globally meanwhile ef-
fectively exploit locally [133, 11]. Motivated by this understanding, we in-
corporate the gradient-based policy search of PPO as an exploitative local
search to locally fine-tune the fitted policy chosen by CMA-ES. By doing
so, the learning performance is expected to be further boosted.

Driven by the proposed three goals, we develop a new algorithm named PES
for DRL. With the aim for direct policy optimization, PES is particularly suit-
able for tackling challenging continuous control problems. The effectiveness
of PES is further evidenced in promising experimental results obtained on ten
benchmark control tasks [220], including Inverted Pendulum, Inverted Double
Pendulum, Inverted Pendulum Swingup, Hopper, Walker2D, HalfCheetah, Lu-
nar Lander, BipedalWalker, Bipedal Walker Hardcore and Reacher.

5.1.2 Chapter Organization

The remainder of the chapter is organized as follows. The next section, Sec-
tion 5.2, describes the new algorithm, i.e., PES, which is followed by design of
experiments in Section 5.3. Section 5.4 discusses experimental results with de-
tailed analysis. Finally, the chapter draws conclusions and briefs future work in
Section 5.5.

136 CHAPTER 5. PES FOR SAMPLE EFFICIENT PDS

5.2 The Proposed Algorithm — Proximal Evolution-

ary Strategy

In this section, we propose a new evolutionary deep reinforcement learning
algorithm, i.e., Proximal Evolutionary Strategy (PES), for tackling challenging
continuous control tasks. In line with the three research goals presented in
Section 5.1.1, we design PES progressively across three stages. The first stage
aims at supporting layer-wise training of deep neural networks for improved
computation efficiency. The resulting algorithm will be named as PES-S1 ex-
plained in Section 5.2.1. The second stage targets at sample efficient learning
through evaluating evolved deep neural networks based on a proximal surro-
gate model. An improved algorithm called PES-S2 (see Section 5.2.2) is devel-
oped based on PES-S1. Finally, the third stage aims at further boosting learning
effectiveness via effective incorporation of PPO’s gradient-based local search
with PES-S2. The final resulting algorithms is named as PES-S3 1 to be pre-
sented in Section 5.2.3. A complete algorithmic description of PES is presented
in Algorithm 5.2.2. The section summarizes the key characteristics of all these
improvements against existing works to the end.

5.2.1 PES-S1: Layer-wise Learning

It is challenging to use CMA-ES directly for DRL. To address challenging RL
problems, the NN models (i.e., value function network or policy network) in
DRL must be sufficiently complex, and hence their parameter spaces are often
with huge dimensionality. However, as being discussed previously, a critical
issue of CMA-ES is its lower computational efficiency when the search space
size becomes more significant. Particularly, CMA-ES requires to maintain the
covariance matrix in a reasonable small level, for example, it is suggested that
the dimension of the solution should be no more than hundreds [86].

To make CMA-ES effective for DRL, we overcome the limitations with by
designing a layer-wise learning process with two steps of improvements.

1Note that, PES-S3 is essentially the overall algorithm, i.e., PES. In the following text, we will
use the two acronyms interchangeably.

5.2. THE PROPOSED ALGORITHM — PROXIMAL EVOLUTIONARY STRATEGY137

Layer-wise Training

Divide-and-conquer strategy is always a natural choice to tackle complex prob-
lems, by which a complicated problem can be decomposed into several simpler
sub-problems such that the original complexity can be significantly reduced
[180]. Owing to the layered hierarchical structure of DNNs, such decompo-
sition for DNNs can be straightforwardly realized by treating the learning on
each layer as a subproblem. Thus for each sub learning problem, we are only re-
quired to take care of a portion of weights of the entire network (i.e., the weights
of one layer), which significantly reduces the impact of dimensionality in con-
trast to that of training the NN as a whole.

In this stage, as being illustrated in Figure 5.1, the layer-wise training pro-
cess is designed to repeat over ni learning iterations. Inside one iteration, we
use CMA-ES to train a DNN one layer at a time, whereas other layers remain
fixed. For each layer, CMA-ES evolves all weights as well as biases within the
layer for ng generations. The fitness of an individual can be determined either
by averaging the total rewards obtained over ne full-length simulations 2 (i.e.,
episodes) or by computing the performance bound from a surrogate model de-
picted in Section 5.2.2. Until all layers have been updated, the algorithm enters
next iteration.

Epsilon-Greedy based Uniform Random Selection

In fact, the direct use of layer-wise learning has already been witnessed in the
literature [27], where all weights within one layer are learned at a time for deep
belief networks. However, even if layer-wise training to a large extent can re-
duce the complexity limitation faced by CMA-ES for DRL, the total number of
weights in one layer can still be high, unsuitable for simultaneous and direct
evolutionary search through CMA-ES. For example, some layer of a DNN with
64 × 64 hidden neurons can have 4160 parameters (i.e., weights and biases) in

2Here, a full-length simulation or an episode means one rollout where an agent interacts
with an unknown environment repeatedly until some termination condition is reached. For
example, Algorithm 5.2.4 defines a rollout function that conducts ne full-length simulations.

138 CHAPTER 5. PES FOR SAMPLE EFFICIENT PDS

Policy Network

Policy Network

Policy Network

Learning Iterations
0 ni

<latexit sha1_base64="EoyIL9Klx3jqUrq7qR5Pz0tKx0M=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGltoQ9lsJ+3SzSbsboQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTAXXxnW/ndLK6tr6RnmzsrW9s7tX3T941EmmGPosEYlqh1Sj4BJ9w43AdqqQxqHAVji6mfqtJ1SaJ/LBjFMMYjqQPOKMGivdyx7vVWtu3Z2BLBOvIDUo0OxVv7r9hGUxSsME1brjuakJcqoMZwInlW6mMaVsRAfYsVTSGHWQz06dkBOr9EmUKFvSkJn6eyKnsdbjOLSdMTVDvehNxf+8TmaiyyDnMs0MSjZfFGWCmIRM/yZ9rpAZMbaEMsXtrYQNqaLM2HQqNgRv8eVl4p/Vr+re3XmtcV2kUYYjOIZT8OACGnALTfCBwQCe4RXeHOG8OO/Ox7y15BQzh/AHzucPvuuNog==</latexit><latexit sha1_base64="EoyIL9Klx3jqUrq7qR5Pz0tKx0M=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGltoQ9lsJ+3SzSbsboQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTAXXxnW/ndLK6tr6RnmzsrW9s7tX3T941EmmGPosEYlqh1Sj4BJ9w43AdqqQxqHAVji6mfqtJ1SaJ/LBjFMMYjqQPOKMGivdyx7vVWtu3Z2BLBOvIDUo0OxVv7r9hGUxSsME1brjuakJcqoMZwInlW6mMaVsRAfYsVTSGHWQz06dkBOr9EmUKFvSkJn6eyKnsdbjOLSdMTVDvehNxf+8TmaiyyDnMs0MSjZfFGWCmIRM/yZ9rpAZMbaEMsXtrYQNqaLM2HQqNgRv8eVl4p/Vr+re3XmtcV2kUYYjOIZT8OACGnALTfCBwQCe4RXeHOG8OO/Ox7y15BQzh/AHzucPvuuNog==</latexit><latexit sha1_base64="EoyIL9Klx3jqUrq7qR5Pz0tKx0M=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGltoQ9lsJ+3SzSbsboQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTAXXxnW/ndLK6tr6RnmzsrW9s7tX3T941EmmGPosEYlqh1Sj4BJ9w43AdqqQxqHAVji6mfqtJ1SaJ/LBjFMMYjqQPOKMGivdyx7vVWtu3Z2BLBOvIDUo0OxVv7r9hGUxSsME1brjuakJcqoMZwInlW6mMaVsRAfYsVTSGHWQz06dkBOr9EmUKFvSkJn6eyKnsdbjOLSdMTVDvehNxf+8TmaiyyDnMs0MSjZfFGWCmIRM/yZ9rpAZMbaEMsXtrYQNqaLM2HQqNgRv8eVl4p/Vr+re3XmtcV2kUYYjOIZT8OACGnALTfCBwQCe4RXeHOG8OO/Ox7y15BQzh/AHzucPvuuNog==</latexit><latexit sha1_base64="EoyIL9Klx3jqUrq7qR5Pz0tKx0M=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGltoQ9lsJ+3SzSbsboQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTAXXxnW/ndLK6tr6RnmzsrW9s7tX3T941EmmGPosEYlqh1Sj4BJ9w43AdqqQxqHAVji6mfqtJ1SaJ/LBjFMMYjqQPOKMGivdyx7vVWtu3Z2BLBOvIDUo0OxVv7r9hGUxSsME1brjuakJcqoMZwInlW6mMaVsRAfYsVTSGHWQz06dkBOr9EmUKFvSkJn6eyKnsdbjOLSdMTVDvehNxf+8TmaiyyDnMs0MSjZfFGWCmIRM/yZ9rpAZMbaEMsXtrYQNqaLM2HQqNgRv8eVl4p/Vr+re3XmtcV2kUYYjOIZT8OACGnALTfCBwQCe4RXeHOG8OO/Ox7y15BQzh/AHzucPvuuNog==</latexit>

CMA-ES

Layer 1

Layer 2

Layer 3

CMA-ES

CMA-ES

1

nl
<latexit sha1_base64="afnj90nc01TTaSa9CMY/Mr+EMx8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGltoQ9lsJ+3SzSbsboQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTAXXxnW/ndLK6tr6RnmzsrW9s7tX3T941EmmGPosEYlqh1Sj4BJ9w43AdqqQxqHAVji6mfqtJ1SaJ/LBjFMMYjqQPOKMGivdy57oVWtu3Z2BLBOvIDUo0OxVv7r9hGUxSsME1brjuakJcqoMZwInlW6mMaVsRAfYsVTSGHWQz06dkBOr9EmUKFvSkJn6eyKnsdbjOLSdMTVDvehNxf+8TmaiyyDnMs0MSjZfFGWCmIRM/yZ9rpAZMbaEMsXtrYQNqaLM2HQqNgRv8eVl4p/Vr+re3XmtcV2kUYYjOIZT8OACGnALTfCBwQCe4RXeHOG8OO/Ox7y15BQzh/AHzucPw3SNpQ==</latexit><latexit sha1_base64="afnj90nc01TTaSa9CMY/Mr+EMx8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGltoQ9lsJ+3SzSbsboQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTAXXxnW/ndLK6tr6RnmzsrW9s7tX3T941EmmGPosEYlqh1Sj4BJ9w43AdqqQxqHAVji6mfqtJ1SaJ/LBjFMMYjqQPOKMGivdy57oVWtu3Z2BLBOvIDUo0OxVv7r9hGUxSsME1brjuakJcqoMZwInlW6mMaVsRAfYsVTSGHWQz06dkBOr9EmUKFvSkJn6eyKnsdbjOLSdMTVDvehNxf+8TmaiyyDnMs0MSjZfFGWCmIRM/yZ9rpAZMbaEMsXtrYQNqaLM2HQqNgRv8eVl4p/Vr+re3XmtcV2kUYYjOIZT8OACGnALTfCBwQCe4RXeHOG8OO/Ox7y15BQzh/AHzucPw3SNpQ==</latexit><latexit sha1_base64="afnj90nc01TTaSa9CMY/Mr+EMx8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGltoQ9lsJ+3SzSbsboQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTAXXxnW/ndLK6tr6RnmzsrW9s7tX3T941EmmGPosEYlqh1Sj4BJ9w43AdqqQxqHAVji6mfqtJ1SaJ/LBjFMMYjqQPOKMGivdy57oVWtu3Z2BLBOvIDUo0OxVv7r9hGUxSsME1brjuakJcqoMZwInlW6mMaVsRAfYsVTSGHWQz06dkBOr9EmUKFvSkJn6eyKnsdbjOLSdMTVDvehNxf+8TmaiyyDnMs0MSjZfFGWCmIRM/yZ9rpAZMbaEMsXtrYQNqaLM2HQqNgRv8eVl4p/Vr+re3XmtcV2kUYYjOIZT8OACGnALTfCBwQCe4RXeHOG8OO/Ox7y15BQzh/AHzucPw3SNpQ==</latexit><latexit sha1_base64="afnj90nc01TTaSa9CMY/Mr+EMx8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGltoQ9lsJ+3SzSbsboQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTAXXxnW/ndLK6tr6RnmzsrW9s7tX3T941EmmGPosEYlqh1Sj4BJ9w43AdqqQxqHAVji6mfqtJ1SaJ/LBjFMMYjqQPOKMGivdy57oVWtu3Z2BLBOvIDUo0OxVv7r9hGUxSsME1brjuakJcqoMZwInlW6mMaVsRAfYsVTSGHWQz06dkBOr9EmUKFvSkJn6eyKnsdbjOLSdMTVDvehNxf+8TmaiyyDnMs0MSjZfFGWCmIRM/yZ9rpAZMbaEMsXtrYQNqaLM2HQqNgRv8eVl4p/Vr+re3XmtcV2kUYYjOIZT8OACGnALTfCBwQCe4RXeHOG8OO/Ox7y15BQzh/AHzucPw3SNpQ==</latexit>

Policy Network

Policy Network

Policy Network

CMA-ES

CMA-ES

CMA-ES

2

Policy Network

Policy Network

Policy Network

CMA-ES

CMA-ES

CMA-ES

ni�1
<latexit sha1_base64="YPfQa7cbKOegBM/KVOC+qrq5gGI=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBiyURQb0VvXisYGyhDWWznbRLN5uwuxFK6I/w4kHFq//Hm//GbZuDtj4YeLw3w8y8MBVcG9f9dkorq2vrG+XNytb2zu5edf/gUSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hoduq3nlBpnsgHM04xiOlA8ogzaqzUkr2cn3mTXrXm1t0ZyDLxClKDAs1e9avbT1gWozRMUK07npuaIKfKcCZwUulmGlPKRnSAHUsljVEH+ezcCTmxSp9EibIlDZmpvydyGms9jkPbGVMz1IveVPzP62QmugpyLtPMoGTzRVEmiEnI9HfS5wqZEWNLKFPc3krYkCrKjE2oYkPwFl9eJv55/bru3V/UGjdFGmU4gmM4BQ8uoQF30AQfGIzgGV7hzUmdF+fd+Zi3lpxi5hD+wPn8AV6ojyA=</latexit><latexit sha1_base64="YPfQa7cbKOegBM/KVOC+qrq5gGI=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBiyURQb0VvXisYGyhDWWznbRLN5uwuxFK6I/w4kHFq//Hm//GbZuDtj4YeLw3w8y8MBVcG9f9dkorq2vrG+XNytb2zu5edf/gUSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hoduq3nlBpnsgHM04xiOlA8ogzaqzUkr2cn3mTXrXm1t0ZyDLxClKDAs1e9avbT1gWozRMUK07npuaIKfKcCZwUulmGlPKRnSAHUsljVEH+ezcCTmxSp9EibIlDZmpvydyGms9jkPbGVMz1IveVPzP62QmugpyLtPMoGTzRVEmiEnI9HfS5wqZEWNLKFPc3krYkCrKjE2oYkPwFl9eJv55/bru3V/UGjdFGmU4gmM4BQ8uoQF30AQfGIzgGV7hzUmdF+fd+Zi3lpxi5hD+wPn8AV6ojyA=</latexit><latexit sha1_base64="YPfQa7cbKOegBM/KVOC+qrq5gGI=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBiyURQb0VvXisYGyhDWWznbRLN5uwuxFK6I/w4kHFq//Hm//GbZuDtj4YeLw3w8y8MBVcG9f9dkorq2vrG+XNytb2zu5edf/gUSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hoduq3nlBpnsgHM04xiOlA8ogzaqzUkr2cn3mTXrXm1t0ZyDLxClKDAs1e9avbT1gWozRMUK07npuaIKfKcCZwUulmGlPKRnSAHUsljVEH+ezcCTmxSp9EibIlDZmpvydyGms9jkPbGVMz1IveVPzP62QmugpyLtPMoGTzRVEmiEnI9HfS5wqZEWNLKFPc3krYkCrKjE2oYkPwFl9eJv55/bru3V/UGjdFGmU4gmM4BQ8uoQF30AQfGIzgGV7hzUmdF+fd+Zi3lpxi5hD+wPn8AV6ojyA=</latexit><latexit sha1_base64="YPfQa7cbKOegBM/KVOC+qrq5gGI=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBiyURQb0VvXisYGyhDWWznbRLN5uwuxFK6I/w4kHFq//Hm//GbZuDtj4YeLw3w8y8MBVcG9f9dkorq2vrG+XNytb2zu5edf/gUSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hoduq3nlBpnsgHM04xiOlA8ogzaqzUkr2cn3mTXrXm1t0ZyDLxClKDAs1e9avbT1gWozRMUK07npuaIKfKcCZwUulmGlPKRnSAHUsljVEH+ezcCTmxSp9EibIlDZmpvydyGms9jkPbGVMz1IveVPzP62QmugpyLtPMoGTzRVEmiEnI9HfS5wqZEWNLKFPc3krYkCrKjE2oYkPwFl9eJv55/bru3V/UGjdFGmU4gmM4BQ8uoQF30AQfGIzgGV7hzUmdF+fd+Zi3lpxi5hD+wPn8AV6ojyA=</latexit>

……

Figure 5.1: The layer-wise training process via CMA-ES for a three-layer policy
network, where all weights and biases for one layer are included in the process.

total, which violates the design assumption of CMA-ES and makes the covari-
ance matrix adaptation difficult and time-consuming.

To reduce computation complexity, we propose to select a suitable portion of
parameters uniformly at random from one layer to conduct layer-wise learning
as shown in Figure 5.2. In the literature, Nesterov [159] applied coordinate de-
scent methods to perform only random updates on partial decision variables for
huge-scale optimization problems, and numerical examinations demonstrate
the computation efficiency and effectiveness. Unlike Nesterov’s work [159]
where the portion of parameters is randomly chosen from the entire set of pa-
rameters, we only focus on the parameters of one layer for smoothing integrat-
ing with layer-wised learning to further reduce the computational complexity.

By doing so, it raises yet a new question about how to balance between train-
ing new parameters (i.e., exploration) and re-training old parameters (i.e., ex-
ploitation), more specifically, whether or when to re-train parameters already
trained in previous iterations. As can be seen in Figure 5.2, for one specific
layer at two consecutive learning iterations, the parameters to be trained are

5.2. THE PROPOSED ALGORITHM — PROXIMAL EVOLUTIONARY STRATEGY139

different since they are randomly selected at each iteration. Particularly, some
parameters may be trained in one iteration but may be skipped in the next it-
eration, or even may never be trained again until the end of the entire learning
process.

To address the issue, in this stage, we adopt the epsilon-greedy algorithm
which is commonly used to balance exploration-exploitation trade-off [212].
Following the epsilon-greedy algorithm, the learning process alters between
uniformly random selecting new parameters to train with a probability of ε and
re-training old parameters already trained in the last iteration with a proba-
bility of 1 − ε at the beginning of each iteration. Furthermore, it is suggested
in [222] that the exploration ought to be encouraged at the early stages of learn-
ing whereas the exploitation should play more role with learning proceeding.
Thus, ε value is expected to gradually reduced. For this purpose, we consider a
linear decay schedule in this paper as,

εt = max(0, ε0 − t
T

) (5.1)

where ε0 denotes the initial value of ε, t and T denote the number of current
learning steps 3 and the maximumly allowed number of learning steps respec-
tively.

When the epsilon-greedy mechanism chooses to explore a new proportion
of weights for training, there are possibilities of which newly selected param-
eters at one iteration and old parameters from the previous iteration have an
overlap. The overlap is important because it helps identify how much expected
exploitation can be ensured for two consecutive iterations, which is also a key
for balancing the exploration-exploitation trade-off. Suppose that, at the iter-
ation, we have m parameters of one particular layer in total. Given an event
X that there are k among m parameters overlapped between two consecutive
iterations when the parameters are randomly re-selected for training, hence the

3One learning step indicates one sample interaction between the agent and the environment
at one time point.

140 CHAPTER 5. PES FOR SAMPLE EFFICIENT PDS

expectation of X can be represented as,

IE[X] =
∑k

i=1

[
(mi)(

m−k
k−i)

(mk)
i
]

=
∑k

i=1

[
(k!)2((m−k)!)2

(i−1)!((m−i)!)2m!(i−2k+m)!

]
= k2

m

(5.2)

Further, let k = u × m where u is a fixed ratio of parameters to be randomly
selected from a layer at every iteration (e.g., u = 0.5 means 50% proportion
of the layer weights are selected for re-training at random), then we can have
IE[X] = u2 × m. This expectation theoretically guarantees that there exist at
least u2 × m samples that can be still exploited between the two consecutive
iterations. By adjusting u, we ensure a reasonable level of exploitation to ensure
the learning stability without being affected much by too much exploration.

The key steps of PES-S1 are located in the function for initializing the CMA-
ES population, accordingly, we present the algorithmic description in Algo-
rithm 5.2.1.

Policy Network

Policy Network

Policy Network

Learning Iterations
0 ni

<latexit sha1_base64="EoyIL9Klx3jqUrq7qR5Pz0tKx0M=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGltoQ9lsJ+3SzSbsboQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTAXXxnW/ndLK6tr6RnmzsrW9s7tX3T941EmmGPosEYlqh1Sj4BJ9w43AdqqQxqHAVji6mfqtJ1SaJ/LBjFMMYjqQPOKMGivdyx7vVWtu3Z2BLBOvIDUo0OxVv7r9hGUxSsME1brjuakJcqoMZwInlW6mMaVsRAfYsVTSGHWQz06dkBOr9EmUKFvSkJn6eyKnsdbjOLSdMTVDvehNxf+8TmaiyyDnMs0MSjZfFGWCmIRM/yZ9rpAZMbaEMsXtrYQNqaLM2HQqNgRv8eVl4p/Vr+re3XmtcV2kUYYjOIZT8OACGnALTfCBwQCe4RXeHOG8OO/Ox7y15BQzh/AHzucPvuuNog==</latexit><latexit sha1_base64="EoyIL9Klx3jqUrq7qR5Pz0tKx0M=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGltoQ9lsJ+3SzSbsboQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTAXXxnW/ndLK6tr6RnmzsrW9s7tX3T941EmmGPosEYlqh1Sj4BJ9w43AdqqQxqHAVji6mfqtJ1SaJ/LBjFMMYjqQPOKMGivdyx7vVWtu3Z2BLBOvIDUo0OxVv7r9hGUxSsME1brjuakJcqoMZwInlW6mMaVsRAfYsVTSGHWQz06dkBOr9EmUKFvSkJn6eyKnsdbjOLSdMTVDvehNxf+8TmaiyyDnMs0MSjZfFGWCmIRM/yZ9rpAZMbaEMsXtrYQNqaLM2HQqNgRv8eVl4p/Vr+re3XmtcV2kUYYjOIZT8OACGnALTfCBwQCe4RXeHOG8OO/Ox7y15BQzh/AHzucPvuuNog==</latexit><latexit sha1_base64="EoyIL9Klx3jqUrq7qR5Pz0tKx0M=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGltoQ9lsJ+3SzSbsboQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTAXXxnW/ndLK6tr6RnmzsrW9s7tX3T941EmmGPosEYlqh1Sj4BJ9w43AdqqQxqHAVji6mfqtJ1SaJ/LBjFMMYjqQPOKMGivdyx7vVWtu3Z2BLBOvIDUo0OxVv7r9hGUxSsME1brjuakJcqoMZwInlW6mMaVsRAfYsVTSGHWQz06dkBOr9EmUKFvSkJn6eyKnsdbjOLSdMTVDvehNxf+8TmaiyyDnMs0MSjZfFGWCmIRM/yZ9rpAZMbaEMsXtrYQNqaLM2HQqNgRv8eVl4p/Vr+re3XmtcV2kUYYjOIZT8OACGnALTfCBwQCe4RXeHOG8OO/Ox7y15BQzh/AHzucPvuuNog==</latexit><latexit sha1_base64="EoyIL9Klx3jqUrq7qR5Pz0tKx0M=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGltoQ9lsJ+3SzSbsboQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTAXXxnW/ndLK6tr6RnmzsrW9s7tX3T941EmmGPosEYlqh1Sj4BJ9w43AdqqQxqHAVji6mfqtJ1SaJ/LBjFMMYjqQPOKMGivdyx7vVWtu3Z2BLBOvIDUo0OxVv7r9hGUxSsME1brjuakJcqoMZwInlW6mMaVsRAfYsVTSGHWQz06dkBOr9EmUKFvSkJn6eyKnsdbjOLSdMTVDvehNxf+8TmaiyyDnMs0MSjZfFGWCmIRM/yZ9rpAZMbaEMsXtrYQNqaLM2HQqNgRv8eVl4p/Vr+re3XmtcV2kUYYjOIZT8OACGnALTfCBwQCe4RXeHOG8OO/Ox7y15BQzh/AHzucPvuuNog==</latexit>

CMA-ES

Layer 1

Layer 2

Layer 3

CMA-ES

CMA-ES

1

nl
<latexit sha1_base64="afnj90nc01TTaSa9CMY/Mr+EMx8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGltoQ9lsJ+3SzSbsboQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTAXXxnW/ndLK6tr6RnmzsrW9s7tX3T941EmmGPosEYlqh1Sj4BJ9w43AdqqQxqHAVji6mfqtJ1SaJ/LBjFMMYjqQPOKMGivdy57oVWtu3Z2BLBOvIDUo0OxVv7r9hGUxSsME1brjuakJcqoMZwInlW6mMaVsRAfYsVTSGHWQz06dkBOr9EmUKFvSkJn6eyKnsdbjOLSdMTVDvehNxf+8TmaiyyDnMs0MSjZfFGWCmIRM/yZ9rpAZMbaEMsXtrYQNqaLM2HQqNgRv8eVl4p/Vr+re3XmtcV2kUYYjOIZT8OACGnALTfCBwQCe4RXeHOG8OO/Ox7y15BQzh/AHzucPw3SNpQ==</latexit><latexit sha1_base64="afnj90nc01TTaSa9CMY/Mr+EMx8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGltoQ9lsJ+3SzSbsboQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTAXXxnW/ndLK6tr6RnmzsrW9s7tX3T941EmmGPosEYlqh1Sj4BJ9w43AdqqQxqHAVji6mfqtJ1SaJ/LBjFMMYjqQPOKMGivdy57oVWtu3Z2BLBOvIDUo0OxVv7r9hGUxSsME1brjuakJcqoMZwInlW6mMaVsRAfYsVTSGHWQz06dkBOr9EmUKFvSkJn6eyKnsdbjOLSdMTVDvehNxf+8TmaiyyDnMs0MSjZfFGWCmIRM/yZ9rpAZMbaEMsXtrYQNqaLM2HQqNgRv8eVl4p/Vr+re3XmtcV2kUYYjOIZT8OACGnALTfCBwQCe4RXeHOG8OO/Ox7y15BQzh/AHzucPw3SNpQ==</latexit><latexit sha1_base64="afnj90nc01TTaSa9CMY/Mr+EMx8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGltoQ9lsJ+3SzSbsboQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTAXXxnW/ndLK6tr6RnmzsrW9s7tX3T941EmmGPosEYlqh1Sj4BJ9w43AdqqQxqHAVji6mfqtJ1SaJ/LBjFMMYjqQPOKMGivdy57oVWtu3Z2BLBOvIDUo0OxVv7r9hGUxSsME1brjuakJcqoMZwInlW6mMaVsRAfYsVTSGHWQz06dkBOr9EmUKFvSkJn6eyKnsdbjOLSdMTVDvehNxf+8TmaiyyDnMs0MSjZfFGWCmIRM/yZ9rpAZMbaEMsXtrYQNqaLM2HQqNgRv8eVl4p/Vr+re3XmtcV2kUYYjOIZT8OACGnALTfCBwQCe4RXeHOG8OO/Ox7y15BQzh/AHzucPw3SNpQ==</latexit><latexit sha1_base64="afnj90nc01TTaSa9CMY/Mr+EMx8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGltoQ9lsJ+3SzSbsboQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTAXXxnW/ndLK6tr6RnmzsrW9s7tX3T941EmmGPosEYlqh1Sj4BJ9w43AdqqQxqHAVji6mfqtJ1SaJ/LBjFMMYjqQPOKMGivdy57oVWtu3Z2BLBOvIDUo0OxVv7r9hGUxSsME1brjuakJcqoMZwInlW6mMaVsRAfYsVTSGHWQz06dkBOr9EmUKFvSkJn6eyKnsdbjOLSdMTVDvehNxf+8TmaiyyDnMs0MSjZfFGWCmIRM/yZ9rpAZMbaEMsXtrYQNqaLM2HQqNgRv8eVl4p/Vr+re3XmtcV2kUYYjOIZT8OACGnALTfCBwQCe4RXeHOG8OO/Ox7y15BQzh/AHzucPw3SNpQ==</latexit>

Policy Network

Policy Network

Policy Network

CMA-ES

CMA-ES

CMA-ES

2

Policy Network

Policy Network

Policy Network

CMA-ES

CMA-ES

CMA-ES

ni�1
<latexit sha1_base64="YPfQa7cbKOegBM/KVOC+qrq5gGI=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBiyURQb0VvXisYGyhDWWznbRLN5uwuxFK6I/w4kHFq//Hm//GbZuDtj4YeLw3w8y8MBVcG9f9dkorq2vrG+XNytb2zu5edf/gUSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hoduq3nlBpnsgHM04xiOlA8ogzaqzUkr2cn3mTXrXm1t0ZyDLxClKDAs1e9avbT1gWozRMUK07npuaIKfKcCZwUulmGlPKRnSAHUsljVEH+ezcCTmxSp9EibIlDZmpvydyGms9jkPbGVMz1IveVPzP62QmugpyLtPMoGTzRVEmiEnI9HfS5wqZEWNLKFPc3krYkCrKjE2oYkPwFl9eJv55/bru3V/UGjdFGmU4gmM4BQ8uoQF30AQfGIzgGV7hzUmdF+fd+Zi3lpxi5hD+wPn8AV6ojyA=</latexit><latexit sha1_base64="YPfQa7cbKOegBM/KVOC+qrq5gGI=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBiyURQb0VvXisYGyhDWWznbRLN5uwuxFK6I/w4kHFq//Hm//GbZuDtj4YeLw3w8y8MBVcG9f9dkorq2vrG+XNytb2zu5edf/gUSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hoduq3nlBpnsgHM04xiOlA8ogzaqzUkr2cn3mTXrXm1t0ZyDLxClKDAs1e9avbT1gWozRMUK07npuaIKfKcCZwUulmGlPKRnSAHUsljVEH+ezcCTmxSp9EibIlDZmpvydyGms9jkPbGVMz1IveVPzP62QmugpyLtPMoGTzRVEmiEnI9HfS5wqZEWNLKFPc3krYkCrKjE2oYkPwFl9eJv55/bru3V/UGjdFGmU4gmM4BQ8uoQF30AQfGIzgGV7hzUmdF+fd+Zi3lpxi5hD+wPn8AV6ojyA=</latexit><latexit sha1_base64="YPfQa7cbKOegBM/KVOC+qrq5gGI=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBiyURQb0VvXisYGyhDWWznbRLN5uwuxFK6I/w4kHFq//Hm//GbZuDtj4YeLw3w8y8MBVcG9f9dkorq2vrG+XNytb2zu5edf/gUSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hoduq3nlBpnsgHM04xiOlA8ogzaqzUkr2cn3mTXrXm1t0ZyDLxClKDAs1e9avbT1gWozRMUK07npuaIKfKcCZwUulmGlPKRnSAHUsljVEH+ezcCTmxSp9EibIlDZmpvydyGms9jkPbGVMz1IveVPzP62QmugpyLtPMoGTzRVEmiEnI9HfS5wqZEWNLKFPc3krYkCrKjE2oYkPwFl9eJv55/bru3V/UGjdFGmU4gmM4BQ8uoQF30AQfGIzgGV7hzUmdF+fd+Zi3lpxi5hD+wPn8AV6ojyA=</latexit><latexit sha1_base64="YPfQa7cbKOegBM/KVOC+qrq5gGI=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBiyURQb0VvXisYGyhDWWznbRLN5uwuxFK6I/w4kHFq//Hm//GbZuDtj4YeLw3w8y8MBVcG9f9dkorq2vrG+XNytb2zu5edf/gUSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hoduq3nlBpnsgHM04xiOlA8ogzaqzUkr2cn3mTXrXm1t0ZyDLxClKDAs1e9avbT1gWozRMUK07npuaIKfKcCZwUulmGlPKRnSAHUsljVEH+ezcCTmxSp9EibIlDZmpvydyGms9jkPbGVMz1IveVPzP62QmugpyLtPMoGTzRVEmiEnI9HfS5wqZEWNLKFPc3krYkCrKjE2oYkPwFl9eJv55/bru3V/UGjdFGmU4gmM4BQ8uoQF30AQfGIzgGV7hzUmdF+fd+Zi3lpxi5hD+wPn8AV6ojyA=</latexit>

……

Figure 5.2: The layer-wise training process via CMA-ES for a three-layer policy
network, where only a proportion of weights and biases uniformly selected at
random are included in the process.

5.2. THE PROPOSED ALGORITHM — PROXIMAL EVOLUTIONARY STRATEGY141

Algorithm 5.2.1 Population Initialization in PES
Require: p: population size, µ: parameters selection ratio, ε: exploration rate,

~Θ[l]: parameters of a specific layer l, σ: standard deviation for CMA-ES, ~τ :
the indexes of trained parameter proportion from last learning iteration

Ensure: P : a population of partial parameters of the layer
1: function INIT POPULATION(p, µ, ε, ~Θ[l])
2: P []← new array of size p
3: if RANDOM() < ε then
4: ~τ = UNIFORM RANDOM SELECT(µ, ~Θ[l]). . Uniformly select µ

proportion of parameters from ~Θ[l] at random and return their indexes
5: end if
6: Initiate the covariance matrix ~C0 as an identify matrix
7: for k = 1, 2, ..., p do
8: P [k]← ~Θ[l][~τ] + σN (~0, ~C0) . See Section 2.1.3 for more details
9: end for

10: return P , ~τ
11: end function

Complexity Analysis of PES-S1

PES-S1 is designed to largely improve computational complexity for the origi-
nal CMA-ES when training DNNs with a great number of parameters. To better
show the improvement, we provide a theoretical time complexity analysis for
PES-S1 in contrast to CMA-ES while they are presumably applied to the same
problem. Moreover, the empirical results that are consistent to our theoretical
findings are presented in Section 5.4.1.

For simplicity, we only analyze the computational complexity of covariance
matrix adaptation. Because this complexity is the dominant factor of compu-
tational efficiency of CMA-ES [88, 87, 182], other factors are less critical and
omitted, for example, the complexity of sampling a multivariate normally dis-
tributed random vector.

To optimize a h-layered NN with n parameters in total, CMA-ES searches a
near optimal solution (i.e., a n-dimensional vector of all parameters of the NN)

142 CHAPTER 5. PES FOR SAMPLE EFFICIENT PDS

by adapting a symmetric covariance matrix with n2+n
2

elements [88, 87, 182].
Thus, it requires n2+n

2
flops to complete one adaptation for optimizing the whole

network. In contrast, when facing the same problem, PES-S1 optimizes only
50% (if u = 0.5) parameters of one layer at a time. Therefore, it holds a much
smaller covariance matrix with only n2+hn

2h2 elements. However, to complete the
optimization of the whole NN, it requires to repeat h times. Accordingly, it
needs n2+hn

2h
flops to optimize the whole NN.

Given n >> 0 and h > 1, we can have

n2 + n

2
− n2 + hn

2h
=

(h− 1)n2

2h
>> 0 (5.3)

From (5.3), we can see that PES-S1 uses much less flops to complete one
optimization of the entire network in comparison to CMA-ES, if the problem
dimension n is large enough. This implies that PES-S1 can be more computa-
tionally efficient than CMA-ES.

5.2.2 PES-S2: Surrogate Model Based Learning

The conventional use of CMA-ES for DRL, as demonstrated in PES-S1, is vul-
nerable to high sample complexity in comparison to classical PGS for DRL. The
primary cause is because each candidate neural network in a large population
must be separately and independently evaluated based on a large number of
direct simulated (or real/physical) interactions with the learning environment.
This results in a considerable amount of samples to be consumed simply for
evaluating one evolved neural network. Moreover, these samples will be dis-
carded without reusing them for evaluating other evolved neural networks. On
the other hand, PGS actually uses every sample it obtained to estimate policy
gradients and accumulatively updates the policy. In other words, PGS can reuse
the samples more effectively than CMA-ES.

To reduce the sample complexity of CMA-ES for DRL, we decide to adopt a
surrogate model based learning process to address the mentioned issue above
for improved sample reuse. With the help of the surrogate model for the fitness
evaluation, PES (i.e., PES-S2) can achieve the same level of sample efficiency as
other cutting-edge PGS algorithms.

5.2. THE PROPOSED ALGORITHM — PROXIMAL EVOLUTIONARY STRATEGY143

In this paper, we develop three key steps to complete the surrogate model
based learning process as illustrated in Figure 5.3.

Learning Iterations
0 ni

<latexit sha1_base64="EoyIL9Klx3jqUrq7qR5Pz0tKx0M=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGltoQ9lsJ+3SzSbsboQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTAXXxnW/ndLK6tr6RnmzsrW9s7tX3T941EmmGPosEYlqh1Sj4BJ9w43AdqqQxqHAVji6mfqtJ1SaJ/LBjFMMYjqQPOKMGivdyx7vVWtu3Z2BLBOvIDUo0OxVv7r9hGUxSsME1brjuakJcqoMZwInlW6mMaVsRAfYsVTSGHWQz06dkBOr9EmUKFvSkJn6eyKnsdbjOLSdMTVDvehNxf+8TmaiyyDnMs0MSjZfFGWCmIRM/yZ9rpAZMbaEMsXtrYQNqaLM2HQqNgRv8eVl4p/Vr+re3XmtcV2kUYYjOIZT8OACGnALTfCBwQCe4RXeHOG8OO/Ox7y15BQzh/AHzucPvuuNog==</latexit><latexit sha1_base64="EoyIL9Klx3jqUrq7qR5Pz0tKx0M=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGltoQ9lsJ+3SzSbsboQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTAXXxnW/ndLK6tr6RnmzsrW9s7tX3T941EmmGPosEYlqh1Sj4BJ9w43AdqqQxqHAVji6mfqtJ1SaJ/LBjFMMYjqQPOKMGivdyx7vVWtu3Z2BLBOvIDUo0OxVv7r9hGUxSsME1brjuakJcqoMZwInlW6mMaVsRAfYsVTSGHWQz06dkBOr9EmUKFvSkJn6eyKnsdbjOLSdMTVDvehNxf+8TmaiyyDnMs0MSjZfFGWCmIRM/yZ9rpAZMbaEMsXtrYQNqaLM2HQqNgRv8eVl4p/Vr+re3XmtcV2kUYYjOIZT8OACGnALTfCBwQCe4RXeHOG8OO/Ox7y15BQzh/AHzucPvuuNog==</latexit><latexit sha1_base64="EoyIL9Klx3jqUrq7qR5Pz0tKx0M=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGltoQ9lsJ+3SzSbsboQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTAXXxnW/ndLK6tr6RnmzsrW9s7tX3T941EmmGPosEYlqh1Sj4BJ9w43AdqqQxqHAVji6mfqtJ1SaJ/LBjFMMYjqQPOKMGivdyx7vVWtu3Z2BLBOvIDUo0OxVv7r9hGUxSsME1brjuakJcqoMZwInlW6mMaVsRAfYsVTSGHWQz06dkBOr9EmUKFvSkJn6eyKnsdbjOLSdMTVDvehNxf+8TmaiyyDnMs0MSjZfFGWCmIRM/yZ9rpAZMbaEMsXtrYQNqaLM2HQqNgRv8eVl4p/Vr+re3XmtcV2kUYYjOIZT8OACGnALTfCBwQCe4RXeHOG8OO/Ox7y15BQzh/AHzucPvuuNog==</latexit><latexit sha1_base64="EoyIL9Klx3jqUrq7qR5Pz0tKx0M=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGltoQ9lsJ+3SzSbsboQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTAXXxnW/ndLK6tr6RnmzsrW9s7tX3T941EmmGPosEYlqh1Sj4BJ9w43AdqqQxqHAVji6mfqtJ1SaJ/LBjFMMYjqQPOKMGivdyx7vVWtu3Z2BLBOvIDUo0OxVv7r9hGUxSsME1brjuakJcqoMZwInlW6mMaVsRAfYsVTSGHWQz06dkBOr9EmUKFvSkJn6eyKnsdbjOLSdMTVDvehNxf+8TmaiyyDnMs0MSjZfFGWCmIRM/yZ9rpAZMbaEMsXtrYQNqaLM2HQqNgRv8eVl4p/Vr+re3XmtcV2kUYYjOIZT8OACGnALTfCBwQCe4RXeHOG8OO/Ox7y15BQzh/AHzucPvuuNog==</latexit>1 2 ni�1
<latexit sha1_base64="YPfQa7cbKOegBM/KVOC+qrq5gGI=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBiyURQb0VvXisYGyhDWWznbRLN5uwuxFK6I/w4kHFq//Hm//GbZuDtj4YeLw3w8y8MBVcG9f9dkorq2vrG+XNytb2zu5edf/gUSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hoduq3nlBpnsgHM04xiOlA8ogzaqzUkr2cn3mTXrXm1t0ZyDLxClKDAs1e9avbT1gWozRMUK07npuaIKfKcCZwUulmGlPKRnSAHUsljVEH+ezcCTmxSp9EibIlDZmpvydyGms9jkPbGVMz1IveVPzP62QmugpyLtPMoGTzRVEmiEnI9HfS5wqZEWNLKFPc3krYkCrKjE2oYkPwFl9eJv55/bru3V/UGjdFGmU4gmM4BQ8uoQF30AQfGIzgGV7hzUmdF+fd+Zi3lpxi5hD+wPn8AV6ojyA=</latexit><latexit sha1_base64="YPfQa7cbKOegBM/KVOC+qrq5gGI=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBiyURQb0VvXisYGyhDWWznbRLN5uwuxFK6I/w4kHFq//Hm//GbZuDtj4YeLw3w8y8MBVcG9f9dkorq2vrG+XNytb2zu5edf/gUSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hoduq3nlBpnsgHM04xiOlA8ogzaqzUkr2cn3mTXrXm1t0ZyDLxClKDAs1e9avbT1gWozRMUK07npuaIKfKcCZwUulmGlPKRnSAHUsljVEH+ezcCTmxSp9EibIlDZmpvydyGms9jkPbGVMz1IveVPzP62QmugpyLtPMoGTzRVEmiEnI9HfS5wqZEWNLKFPc3krYkCrKjE2oYkPwFl9eJv55/bru3V/UGjdFGmU4gmM4BQ8uoQF30AQfGIzgGV7hzUmdF+fd+Zi3lpxi5hD+wPn8AV6ojyA=</latexit><latexit sha1_base64="YPfQa7cbKOegBM/KVOC+qrq5gGI=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBiyURQb0VvXisYGyhDWWznbRLN5uwuxFK6I/w4kHFq//Hm//GbZuDtj4YeLw3w8y8MBVcG9f9dkorq2vrG+XNytb2zu5edf/gUSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hoduq3nlBpnsgHM04xiOlA8ogzaqzUkr2cn3mTXrXm1t0ZyDLxClKDAs1e9avbT1gWozRMUK07npuaIKfKcCZwUulmGlPKRnSAHUsljVEH+ezcCTmxSp9EibIlDZmpvydyGms9jkPbGVMz1IveVPzP62QmugpyLtPMoGTzRVEmiEnI9HfS5wqZEWNLKFPc3krYkCrKjE2oYkPwFl9eJv55/bru3V/UGjdFGmU4gmM4BQ8uoQF30AQfGIzgGV7hzUmdF+fd+Zi3lpxi5hD+wPn8AV6ojyA=</latexit><latexit sha1_base64="YPfQa7cbKOegBM/KVOC+qrq5gGI=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBiyURQb0VvXisYGyhDWWznbRLN5uwuxFK6I/w4kHFq//Hm//GbZuDtj4YeLw3w8y8MBVcG9f9dkorq2vrG+XNytb2zu5edf/gUSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hoduq3nlBpnsgHM04xiOlA8ogzaqzUkr2cn3mTXrXm1t0ZyDLxClKDAs1e9avbT1gWozRMUK07npuaIKfKcCZwUulmGlPKRnSAHUsljVEH+ezcCTmxSp9EibIlDZmpvydyGms9jkPbGVMz1IveVPzP62QmugpyLtPMoGTzRVEmiEnI9HfS5wqZEWNLKFPc3krYkCrKjE2oYkPwFl9eJv55/bru3V/UGjdFGmU4gmM4BQ8uoQF30AQfGIzgGV7hzUmdF+fd+Zi3lpxi5hD+wPn8AV6ojyA=</latexit>

……

Policy Network

CMA-ES

Value Network

SGD

Surrogate model

Evaluation

Construct

Policy Network

CMA-ES

Value Network

SGD

Surrogate model

Evaluation

Construct

Policy Network

CMA-ES

Value Network

SGD

Surrogate model

Evaluation

Construct

Surrogate
Model
based

Learning

1

2

3

Figure 5.3: The surrogate model based learning process for a three-layer value
function network and a three-layer policy network, where value function net-
work is trained via gradient ascent and policy network is layer-wisely trained
via CMA-ES (see Section 5.2.1).

Surrogate Model Construction

We propose to construct a surrogate model based on the performance lower
bound formulated in (2.56) proposed by PPO [191]. The reason of doing so
instead of using any learned value functions (e.g., Q functions) as a surrogate
model is because that the learned value function can be so unreliable that it
brings adverse affection to the final policy learning [167]. Besides, in the tra-
ditional value function based PGS algorithms, the improvement on the per-
formance of policies is not theoretically guaranteed where severe degradations
may occur due to large updating steps [47, 117, 189]. As a matter of fact, these
issues can be mitigated by optimizing policies with respect to a performance
lower bound as suggested in [117, 189], but it is tricky and challenging to handle

144 CHAPTER 5. PES FOR SAMPLE EFFICIENT PDS

the constraints involved in the optimization. In this context, PPO is proposed
to optimize a simplified performance lower bound, which achieves state-of-the-
art effectiveness across a series of difficult RL tasks. Given this, we expect that
this simplified performance lower bound can be an excellent surrogate model
for our policy learning.

However, a key technical challenge faced by PES-S2 is how to obtain ac-
curate value function (specifically the advantage function Aπ(~st, at)) on which
the performance lower bound relies. In the original design of PPO, this is
achieved by optimizing the objective function in (2.55) from past environment
samples. However, the objective function in (2.55) contains two objectives, i.e.,
the squared loss of value function in (2.57) and the performance lower bound
in (2.56). If optimizing both objectives simultaneously as what PPO does, PES-
S1 may take extra computational efforts, because both policy and value function
networks 4 with apparently more layers have to be evolved. Consequently, in
PES-S2, we propose to first learn the value functions by optimizing the squared
loss of value function in (2.57) via PPO to obtain accurate value function estima-
tions. Afterward, we use PES-S1 to evolve solely the policy neural network that
maximizes the lower bound in (2.56). In doing so, the sample efficiency of value
function learning can be guaranteed equivalent to that of PPO, and PES-S1 can
also avoid the risk of learning the entire network.

Surrogate Model Training

For PES-S2, we decide to train the value function network through PPO [191].
Original, PPO firstly samples η new interaction steps at the beginning of every
learning iteration, and then, based on which it computes the estimations of ad-
vantage functions via Generalized Advantage Estimation (GAE) [190]. With the
obtained advantage function estimations, PPO learns the value function (i.e., Vπ
function) as well as the policy (i.e., π) at the same time, and then it discards
the η samples to proceed to next learning iteration. However, this may not be
the most effective way. Some samples may be very informative for guiding the
algorithm converge to the optima, but they can be rarely being revisited in the

4The network architecture can be seen in Figure 5.6.

5.2. THE PROPOSED ALGORITHM — PROXIMAL EVOLUTIONARY STRATEGY145

later learning due to the stochasticity of the environment and the learning pro-
cess. In consequence, it is not sufficient to learn them only once because their
impacts will decay quickly along with the learning proceeds.

To address the issue of PPO so as to maximumly reuse the samples, we adopt
the technique of Experience Replay with Importance Sampling [229, 144, 131].
By doing so, we can firstly maintain a vast repository for past interactions to
without losing important information. Secondly, with the Importance Sampling
technique, we can further reuse those samples stored in the experience repos-
itory which are obtained by previous different policies. With the help of the
design, we expect to achieve a higher sample efficiency in PES-S2 in compari-
son to those advanced EAs such as OpenAI-ES and Uber-GA.

In general, PES-S2 divides the entire neural network evolution process into
multiple learning iterations. Each learning iteration contains two learning
phases. The first phase is to use PPO to learn value functions for obtaining ac-
curate estimations of advantage functions. The second phase is further divided
into multiple evolution generations for PES-S1 to optimize the lower bound for
finding good policies (see next subsection). One learning iteration of PES-S2 can
be divided into the following four sequential steps.

Step 1 We use π~θold(at|~st) determined by the best individual obtained from the
previous learning iteration to perform simulations for T time steps by us-
ing π~θold to obtain T experience data points. Each experience data point
contains a state transition at one time point t, i.e., {~st, at, ~st+1, rt} and value
function predictions of the current time step t as well as next time step t+1

computed by vevaluatet = Vπ~θold
(~st) and vtargett = Vπ~θold

(~st+1) respectively. In
addition, each instance also contains the probability of choosing at at ~st
following the current policy π~θold , i.e., q(~s, a) = π~θold(~st, at). Afterward,
the experience data are augmented to the experience repository Ξ which
allows maximumly 50,000 instances.

Step 2 We adopt importance sampling to update the value function prediction
of all historical data instances in Ξ. To do so, we first re-compute all
probabilities across all state transitions of the historical data instances, i.e.,
p(~s, a) = π~θold(~s, a) where ~s and a represent any past state transitions in Ξ.

146 CHAPTER 5. PES FOR SAMPLE EFFICIENT PDS

Following that, we update all target value function predictions (i.e., vtargett)
for all past experiences by the following equation,

vtargett = 1∑N
i
p(~s,a)
q(~s,a)

[
p(~s,a)
q(~s,a)

(rt + Vπ~θold
(~st+1))

]
(5.4)

Step 3 We learn the value functions (i.e., Vπ~θold (~st)) via experience replay with
importance sampling. In this step, we conduct nv training cycles. For
each cycle, we firstly uniformly select T data instances from Ξ at random,
and then we use the same procedure of PPO [191] to optimize the squared
loss of value function in (2.57) for T/b times where M is the given batch
size.

Step 4 We adopt the GAE to estimate the advantage functions for constructing
the performance lower bound. Based on the T newly obtained samples in
the current learning interaction as stated in Step 1 above, we can obtain a
sample based advantage function estimation as,

Â
GAE(γ,λ)
t =

∑T
t=0

[
(γλ)t(rt + γV

π~θold (~st+1)

−V π~θold (~st))
] (5.5)

where Â
GAE(γ,λ)
t is the generalized advantage estimator defined in [190]

to achieve reliable learning, λ is a hyper-parameter to adjust the balance
between bias and variance.

With the help of the advantage estimator ÂGAE(γ,λ)
t , we obtain the trained surro-

gate model that can be used for fitness evaluation in next step.

Surrogate Model based Fitness Evaluation

The CMA-ES fitness evaluation is directly conducted based on computing the
fitnesses for each individual by the trained surrogate model. This surrogate
model based fitness function can be described as,

LCLIP
t (~θ) = IEt

[
min

(
νt(~θ)Â

GAE(γ,λ)
t (~st, at), clip

(
νt(~θ), 1− ε, 1 + ε

)
Â

GAE(γ,λ)
t (~st, at)

)]
,

(5.6)

5.2. THE PROPOSED ALGORITHM — PROXIMAL EVOLUTIONARY STRATEGY147

For optimizing the policy network, we use PES-S1 developed in Sec-
tion 5.2.1. In the second phase of one learning iteration, π~θold(at|~st) remain
unchanged within the learning iteration. Each individual generated by CMA-
ES is treated as a π~θ(at|~st). Consequently, the fitness value of each individual
can be directly computed based on (5.6) with regard to the π~θold(at|~st) and the
π~θ(at|~st). Note that, we follow the same principle of PPO where all T sam-
ples generated by π~θold(at|~st) within the learning iteration are used to compute
the fitness. The algorithm of PES-S2 can be converted by changing Line 14 to
P [p].f itness = ROLLOUT (~Θ, I, ne, T, l) and removing Line 19 to Line 26. The
entire surrogate model based learning process repeats over many iterations un-
til a sufficiently fitted policy can be found. The algorithmic details can be found
in Algorithm 5.2.2.

5.2.3 PES-S3: Local Search Enhanced Learning

CMA-ES and PGS are complementary learning techniques for solving diffi-
cult RL problems. Specifically, we found that by using PGS as a local search
technique to further improve the best neural network evolved by CMA-ES can
achieve a desirable balance between exploration and exploitation. Motivated by
this, we develop PES-S3 to realize this local search enhanced learning process.
In the process, we use PPO as an local search strategy to fine-tune the policy
network obtained from the global evolutionary search (i.e., CMA-ES).

However, it is doomed a failure of bluntly augmenting PPO as an additional
learning process on the top of PES-S2, as value functions cannot be learned
accurately after policy updating by PES-S2. As can be seen in (2.55), PPO opti-
mizes a joint objective function including a term for optimizing value function
by starting from the same policy π~θold . But as designed in PES-S2, after training
the value function under π~θold , CMA-ES is used to learn only policy network
resulting in π~θnew whereas the value function remains the same as under π~θold .
Therefore, such inconsistency can be exaggerated along the learning proceeds,
and it can lead to a more and more inaccurate value function if PPO is directly
applied on the top of PES-S2.

148 CHAPTER 5. PES FOR SAMPLE EFFICIENT PDS

Learning Iterations
0 ni

<latexit sha1_base64="EoyIL9Klx3jqUrq7qR5Pz0tKx0M=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGltoQ9lsJ+3SzSbsboQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTAXXxnW/ndLK6tr6RnmzsrW9s7tX3T941EmmGPosEYlqh1Sj4BJ9w43AdqqQxqHAVji6mfqtJ1SaJ/LBjFMMYjqQPOKMGivdyx7vVWtu3Z2BLBOvIDUo0OxVv7r9hGUxSsME1brjuakJcqoMZwInlW6mMaVsRAfYsVTSGHWQz06dkBOr9EmUKFvSkJn6eyKnsdbjOLSdMTVDvehNxf+8TmaiyyDnMs0MSjZfFGWCmIRM/yZ9rpAZMbaEMsXtrYQNqaLM2HQqNgRv8eVl4p/Vr+re3XmtcV2kUYYjOIZT8OACGnALTfCBwQCe4RXeHOG8OO/Ox7y15BQzh/AHzucPvuuNog==</latexit><latexit sha1_base64="EoyIL9Klx3jqUrq7qR5Pz0tKx0M=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGltoQ9lsJ+3SzSbsboQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTAXXxnW/ndLK6tr6RnmzsrW9s7tX3T941EmmGPosEYlqh1Sj4BJ9w43AdqqQxqHAVji6mfqtJ1SaJ/LBjFMMYjqQPOKMGivdyx7vVWtu3Z2BLBOvIDUo0OxVv7r9hGUxSsME1brjuakJcqoMZwInlW6mMaVsRAfYsVTSGHWQz06dkBOr9EmUKFvSkJn6eyKnsdbjOLSdMTVDvehNxf+8TmaiyyDnMs0MSjZfFGWCmIRM/yZ9rpAZMbaEMsXtrYQNqaLM2HQqNgRv8eVl4p/Vr+re3XmtcV2kUYYjOIZT8OACGnALTfCBwQCe4RXeHOG8OO/Ox7y15BQzh/AHzucPvuuNog==</latexit><latexit sha1_base64="EoyIL9Klx3jqUrq7qR5Pz0tKx0M=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGltoQ9lsJ+3SzSbsboQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTAXXxnW/ndLK6tr6RnmzsrW9s7tX3T941EmmGPosEYlqh1Sj4BJ9w43AdqqQxqHAVji6mfqtJ1SaJ/LBjFMMYjqQPOKMGivdyx7vVWtu3Z2BLBOvIDUo0OxVv7r9hGUxSsME1brjuakJcqoMZwInlW6mMaVsRAfYsVTSGHWQz06dkBOr9EmUKFvSkJn6eyKnsdbjOLSdMTVDvehNxf+8TmaiyyDnMs0MSjZfFGWCmIRM/yZ9rpAZMbaEMsXtrYQNqaLM2HQqNgRv8eVl4p/Vr+re3XmtcV2kUYYjOIZT8OACGnALTfCBwQCe4RXeHOG8OO/Ox7y15BQzh/AHzucPvuuNog==</latexit><latexit sha1_base64="EoyIL9Klx3jqUrq7qR5Pz0tKx0M=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGltoQ9lsJ+3SzSbsboQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTAXXxnW/ndLK6tr6RnmzsrW9s7tX3T941EmmGPosEYlqh1Sj4BJ9w43AdqqQxqHAVji6mfqtJ1SaJ/LBjFMMYjqQPOKMGivdyx7vVWtu3Z2BLBOvIDUo0OxVv7r9hGUxSsME1brjuakJcqoMZwInlW6mMaVsRAfYsVTSGHWQz06dkBOr9EmUKFvSkJn6eyKnsdbjOLSdMTVDvehNxf+8TmaiyyDnMs0MSjZfFGWCmIRM/yZ9rpAZMbaEMsXtrYQNqaLM2HQqNgRv8eVl4p/Vr+re3XmtcV2kUYYjOIZT8OACGnALTfCBwQCe4RXeHOG8OO/Ox7y15BQzh/AHzucPvuuNog==</latexit>1 2 ni�1
<latexit sha1_base64="YPfQa7cbKOegBM/KVOC+qrq5gGI=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBiyURQb0VvXisYGyhDWWznbRLN5uwuxFK6I/w4kHFq//Hm//GbZuDtj4YeLw3w8y8MBVcG9f9dkorq2vrG+XNytb2zu5edf/gUSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hoduq3nlBpnsgHM04xiOlA8ogzaqzUkr2cn3mTXrXm1t0ZyDLxClKDAs1e9avbT1gWozRMUK07npuaIKfKcCZwUulmGlPKRnSAHUsljVEH+ezcCTmxSp9EibIlDZmpvydyGms9jkPbGVMz1IveVPzP62QmugpyLtPMoGTzRVEmiEnI9HfS5wqZEWNLKFPc3krYkCrKjE2oYkPwFl9eJv55/bru3V/UGjdFGmU4gmM4BQ8uoQF30AQfGIzgGV7hzUmdF+fd+Zi3lpxi5hD+wPn8AV6ojyA=</latexit><latexit sha1_base64="YPfQa7cbKOegBM/KVOC+qrq5gGI=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBiyURQb0VvXisYGyhDWWznbRLN5uwuxFK6I/w4kHFq//Hm//GbZuDtj4YeLw3w8y8MBVcG9f9dkorq2vrG+XNytb2zu5edf/gUSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hoduq3nlBpnsgHM04xiOlA8ogzaqzUkr2cn3mTXrXm1t0ZyDLxClKDAs1e9avbT1gWozRMUK07npuaIKfKcCZwUulmGlPKRnSAHUsljVEH+ezcCTmxSp9EibIlDZmpvydyGms9jkPbGVMz1IveVPzP62QmugpyLtPMoGTzRVEmiEnI9HfS5wqZEWNLKFPc3krYkCrKjE2oYkPwFl9eJv55/bru3V/UGjdFGmU4gmM4BQ8uoQF30AQfGIzgGV7hzUmdF+fd+Zi3lpxi5hD+wPn8AV6ojyA=</latexit><latexit sha1_base64="YPfQa7cbKOegBM/KVOC+qrq5gGI=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBiyURQb0VvXisYGyhDWWznbRLN5uwuxFK6I/w4kHFq//Hm//GbZuDtj4YeLw3w8y8MBVcG9f9dkorq2vrG+XNytb2zu5edf/gUSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hoduq3nlBpnsgHM04xiOlA8ogzaqzUkr2cn3mTXrXm1t0ZyDLxClKDAs1e9avbT1gWozRMUK07npuaIKfKcCZwUulmGlPKRnSAHUsljVEH+ezcCTmxSp9EibIlDZmpvydyGms9jkPbGVMz1IveVPzP62QmugpyLtPMoGTzRVEmiEnI9HfS5wqZEWNLKFPc3krYkCrKjE2oYkPwFl9eJv55/bru3V/UGjdFGmU4gmM4BQ8uoQF30AQfGIzgGV7hzUmdF+fd+Zi3lpxi5hD+wPn8AV6ojyA=</latexit><latexit sha1_base64="YPfQa7cbKOegBM/KVOC+qrq5gGI=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBiyURQb0VvXisYGyhDWWznbRLN5uwuxFK6I/w4kHFq//Hm//GbZuDtj4YeLw3w8y8MBVcG9f9dkorq2vrG+XNytb2zu5edf/gUSeZYuizRCSqHVKNgkv0DTcC26lCGocCW+Hoduq3nlBpnsgHM04xiOlA8ogzaqzUkr2cn3mTXrXm1t0ZyDLxClKDAs1e9avbT1gWozRMUK07npuaIKfKcCZwUulmGlPKRnSAHUsljVEH+ezcCTmxSp9EibIlDZmpvydyGms9jkPbGVMz1IveVPzP62QmugpyLtPMoGTzRVEmiEnI9HfS5wqZEWNLKFPc3krYkCrKjE2oYkPwFl9eJv55/bru3V/UGjdFGmU4gmM4BQ8uoQF30AQfGIzgGV7hzUmdF+fd+Zi3lpxi5hD+wPn8AV6ojyA=</latexit>

……

Local
Search

Enhanced
Learning

1

2

3

Policy Network

CMA-ES

Value Network

SGD

Surrogate model

Evaluation

Construct

Value Network

SGD

Value Function
Resilience

Value Network

Policy Network

SGD

Local Search4

5

Policy Network

CMA-ES

Value Network

SGD

Surrogate model

Evaluation

Construct

Value Network

SGD

Value Function
Resilience

Value Network

Policy Network

SGD

Local Search

Policy Network

CMA-ES

Value Network

SGD

Surrogate model

Evaluation

Construct

Value Network

SGD

Value Function
Resilience

Value Network

Policy Network

SGD

Local Search

Figure 5.4: The local search enhanced learning process for a three-layer value
function network and a three-layer policy network, where a value function re-
silience re-training process and a PPO driven local search process are added on
the top of the surrogate model based learning developed in Section 5.2.2.

To address the issue, as shown in Figure 5.4 we added an extra value func-
tion learning phase to achieve smooth the integration between PPO-based local
search and PES-S2. The key to the phase is to ensure the value function accu-
rately estimate the value of any state while following the new policy π~θnew . Thus

5.2. THE PROPOSED ALGORITHM — PROXIMAL EVOLUTIONARY STRATEGY149

Algorithm 5.2.2 Proximal Evolutionary Strategy
Require: ~Ω: DNN parameters of value function Vπ , ~Θ: DNN parameters of policy π, ~Θ′: DNN

parameters of policy π′, nl: number of layers, np: population size, σ: step size, ng : number
of generations, ne: number of episodes, T : the maximumly allowed steps for one iteration,
ni: number of iterations, I∗: the best individual evolved by CMA-ES, Ξ: the experience
repository, ξ: a batch of experience data points with size M

Ensure: ~Θ: the best evolved DNN parameters
1: function PES(~Θ, nl, np, ng , ne, ni, σ)
2: for i = 1, 2, ..., ni do
3: Ξ[], ξ ← EXPERIENCE SAMPLING(~Ω,~Θ, ne, T , l) . See Algorithm 5.2.3.
4: Update all the past target value function predictions in Ξ according to (5.4)
5: Optimize the ~Ω for K epochs with a batch size M ≤ ni ∗ T according to (2.57)
6: Compute advantage function estimations Â1, . . . , ÂT by (5.5) under π~θ based on ξ
7: for l = 1, 2, ..., nl do

8: P ← INIT POPULATION(~Θ[l], np) . See Algorithm 5.2.1.

9: for g = 1, 2, ..., ng do
10: for p = 1, 2, ..., np do
11: ~Θ[l]← P [p]

12: P [p].fitness← LCLIP
t (~Θ) . See (2.56)

13: end for
14: P ′, I∗, σ′ ← CMA− ES EVOLE(P, σ) . See [86].

15: σ ← σ′; P ← P ′; ~Θ[l]← I∗

16: end for
17: Ξ[], ξ ← EXPERIENCE SAMPLING(~Ω,~Θ, ne, T , l) . See Algorithm 5.2.3.

18: Compute advantage function estimations Â1, . . . , ÂT by (5.5) under π~θ
based on ξ

19: ~Θold ← ~Θ′

20: Optimize ~Θ for K epochs with a batch size M ≤ ni ∗ T according to (2.55)

21: end for
22: end for
23: return ~Θ . Return the fittest DNN parameters

24: end function

after obtaining π~θnew , we re-generate new samples in the environment under
π~θnew and use the gradient ascent to re-train the value function network again
to approximate V π~θnew . By doing so, the PPO can be smoothly integrated as a

150 CHAPTER 5. PES FOR SAMPLE EFFICIENT PDS

local search mechanism onto PES-S2 resulting in PES-S3 without experiencing
the inconsistent issue mentioned above. The pseudo code of PES-S3 is given in
Algorithm 5.2.2.

Algorithm 5.2.3 Experience Sampling

Require: an MDP 〈S,A,P ,R, γ〉, ~Ω: DNN parameters of value function Vπ, π~Θ:
DNN parameters of policy π, l: the selected layer No., T : the maximumly
allowed steps for one episode, ~Ξ: a repository of trajectories

Ensure: ~Ξ: the experience repository
1: function EXPERIENCE SAMPLING(~Ω,~Θ, I , ne, T , l)
2: ξ ← ROLLOUT(~Ω,~Θ, ne, T , l) . See Algorithm 5.2.4.
3: if SIZE(Ξ) > 50, 000 then
4: Delete the oldest M data points from Ξ

5: end if
6: Ξ[]← ξ

7: return Ξ, ξ . Return the experience repository and newly sampled
experience data of current iteration

8: end function

5.2.4 Key Characteristics of Proximal Evolutionary Strategy

By combining the above described three key technical advancements (i.e., PES-
S1, PES-S2, and PES-S3), we completed the design of PES for DRL. Here, we
summarize distinguishing characteristics of PES in comparison to prominent
research works for DRL in recent years.

Use layer-wise learning to enable efficient learning for CMA-ES

Through layer-wise training of DNN (PES-S1), PES can largely reduce the di-
mensionality of the solution search space, and effectively addresses the compu-
tational cost problem of CMA-ES. For example, for training a given DNN with
two hidden layers (64× 64) containing 4610 parameters (including both weights

5.2. THE PROPOSED ALGORITHM — PROXIMAL EVOLUTIONARY STRATEGY151

Algorithm 5.2.4 Rollout Function

Require: an MDP 〈S,A,P ,R, γ〉, ~Θ: DNN weights, π~Θ: the policy parameter-
ized by ~Θ, I : an individual of CMA-ES, l: the selected layer No., ne: number
of evaluations, T : the maximumly allowed steps for one episode, ~Ξ: a repos-
itory of trajectories

Ensure: R̄: the averaged total reward of the given individual
1: function ROLLOUT(~Θ, I , ne, T , l)
2: ~Θ[l]← I

3: Initial total reward R← 0

4: for e = 1, 2, ..., ne do
5: Initial state ~s0

6: for t = 0, 1, ..., T − 1 do
7: at ∼ π~Θ(~st)

8: Take action at, observe reward rt and new state ~st+1

9: R← R+ rt

10: end for
11: end for
12: R̄← R

ne

13: return R̄, ~Ξ . Return the average reward and a repository of trajectories

14: end function

and biases), the direct use of CMA-ES yields a covariance matrix with size 4610
× 4610. To reduce the dimensionality, PES firstly splits the network into three
layers where the largest layer has 4096 parameters (i.e., the layer between 64
× 64 hidden neurons). Next, by setting u = 0.5, PES only trains 50% propor-
tion of parameters of each layer, thus for the large layer mentioned above, the
covariance matrix only has a size of 2048 × 2048. Naturally, PES can largely re-
duce the dimensionality of the solution search space to improve computational
efficiency.

152 CHAPTER 5. PES FOR SAMPLE EFFICIENT PDS

Use surrogate model based learning to reduce sample complexity for CMA-
ES

The surrogate model-based learning (PES-S2) helps significantly reduce the
samples used for evaluations and highly improves the re-usability of samples
in CMA-ES. As we only have to train the surrogate model by using T samples 5

in one iteration, the fitness of each individual is computed via the surrogate
model without generating new samples. In this way, our PES only requires the
same number of samples as PPO, which is much less than any current cutting-
edge EAs reported, for example, OpenAi-ES reports achieving 10x as much to
TRPO [186].

Use local search enhanced learning to improve learning effectiveness for
CMA-ES

PES-S3 uses a PPO-based local search technique to achieve high learning pre-
cision, producing a state-of-the-art performance on many challenging RL prob-
lems (see Section 5.4.3 for empirical results). This is because of two reasons.
Firstly, PES takes advantages of another state-of-the-art PGS, i.e., PPO, by in-
tegrating it as a local search mechanism. The integration gives PES an ability
to reuse samples to strengthen the exploitation of DRL in contrast to other EAs
such as CMA-ES, OpenAI-ES and Uber-GA and guarantees at least an equiv-
alent performance to PPO. Secondly, PES is beneficial for its extra strength of
exploration brought by CMA-ES where multiple policies are kept and learned.
In comparison to the state-of-the-art PGS algorithm where normally a single
policy is learned, PES is less easy to get trapped to local optima.

5.3 Design of Experiments

To empirically evaluate the proposed algorithm, in this section we present the
design of experiments. We initiate our discussion from describing ten bench-
marked continuous control tasks provided by Bullet Physical Engine [220] and

5See Section 5.2.2 for details

5.3. DESIGN OF EXPERIMENTS 153

GYM benchmark environments [39]. Next, we explain how the experiments
are set up with details on competing algorithms, DNN architecture, hyper-
parameter configurations, and evaluation criteria. Subsequently, we discuss in
details the experiment design in line with our research goals stated in Section
5.1.1.

5.3.1 Experiment Setup

In this subsection, we discuss competing algorithms chosen for our experi-
ments, network architecture, hyper-parameter configurations and evaluation
criteria.

Competing Algorithms

In our experiments, the following algorithms are included as competing al-
gorithms: CMA-ES, PES-S1, PES-S2, PES (i.e., PES-S3), OpenAI-ES, Uber-GA,
TPRO, PPO, and ACKTR. We select these algorithms according to two crite-
ria: 1) they are either advanced EAs or PGS algorithms for DRL, which are
highly suitable for continuous control tasks, and algorithms including Deep Q-
Learning Network [155] which are designed for problems with discrete actions
such as Atari games will not be considered; 2) they have achieved outstanding
and reproducible performance on many difficult continuous control tasks. To
ensure good performance for all competing algorithms, we rely on high-quality
algorithm implementations provided by OpenAI baselines 6 [56].

5.3.2 Network Architecture

For fair comparisons, we consistently use the same network topologies for all
algorithms. DNNs trained by EAs contain only policy networks, we hence only
make them topologically identical to the policy networks of the DNNs trained
by PGS. The topology used by PES-S1, OpenAI-ES, and Uber-GA is presented
in Figure 5.5, whereas the other used for CMA-ES-SM, PES-S2, PPO, TRPO, and

6Our implementation of all algorithms can be found at
https://github.com/yimingpeng/cmaes baselines

154 CHAPTER 5. PES FOR SAMPLE EFFICIENT PDS

ACKTR is given in Figure 5.6. As can be seen from Figure 5.6, the value function
network and the policy network shares the same input layer, which follows the
exact configurations in [191]. Note that, in PES-S2 and PES, only the policy
network will be evolved by CMA-ES, and the value function network is solely
trained by PPO.

Sensor
Inputs

Policy
Network

Control
Signals

Input
Layer

Fully
Connected

Layer
(64 units)

Fully
Connected

Layer
(64 units)

Standard
Deviations

tanhtanh linear

Figure 5.5: The Architecture of DNN for CMA-ES, PES-S1, OpenAI-ES, and
Uber-GA.

5.3.3 Hyper-Parameter Configurations

All hyper-parameter configurations are adopted by following the best settings
for PPO, TRPO, and ACKTR given in baseline implementation [56]. For CMA-
ES training DNNs, including PES-S1, PES-S2, and PES, we use the setting in
consistency with [59]. Additionally, we make the local search component follow
the same setting to PPO to ensure a fair competition.

5.3. DESIGN OF EXPERIMENTS 155

Sensor
Inputs

Policy
Network

Control
Signals

Input
Layer

Fully
Connected

Layer
(64 units)

Fully
Connected

Layer
(64 units)

Standard
Deviations

tanhtanh linear

Value
Function

tanhtanh linear

Value
Function
Network

Figure 5.6: The Architecture of DNN for PES-S2, PES, PPO, TRPO, and ACKTR.

Table 5.1: Hyper-parameter configurations of all candidate algorithms: CMA-
ES, PES-S1, PES-S2, PES, OpenAI-ES, Uber-GA, TPRO, PPO, and ACKTR.

EA PGS
Hyper-parameters CMA-ES PES-S1 PES-S2 PES OpenAI-ES Uber-GA PPO TRPO ACKTR

Maximum number of samples 5× 106 5× 106 5× 106 5× 106 5× 106 5× 106 5× 106 5× 106 5× 106

Iterations (ni) 2000 2000 2000 2000 2000 2000 2000 2000 2000
Internal Generations (ng) - 10 10 10 - - - - -

Population Size (np) 32 32 32 32 32 32+1 1 1 1
Number of Evaluations (ne) 3 3 1 1 3 3 1 1 1

Horizon (T) - - 2048 2048 - - 2048 2048 2500
Adam Stepsize - - 3× 10−4 3× 10−4 - - 3× 10−4 3× 10−4 2.5× 10−4

Num. of Epoch (gradient learning) - - 10 10 - - 10 10 10
Mni-batch Size - - 64 64 - - 64 64 64

Discount Factor (γ) 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
GAE Factor (λ) - - 0.95 0.95 - - 0.95 0.95 -

Variance (σ) 0.001 0.001 0.001 0.001 0.001 0.001 - - -
Initial Exploration Rate (ε) - 0.5 0.5 0.5 - - - - -

Stagnation (sd) 3 3 3 3 3 3 - - -
Clipping Factor (ε) - - 0.2 0.2 - - 0.2 - -

156 CHAPTER 5. PES FOR SAMPLE EFFICIENT PDS

5.3.4 Evaluation Criteria

In the experiments, we aim to assess our algorithms from three aspects, i.e.,
effectiveness, sample efficiency, and time efficiency. Following the standard set-
ting in the literature [191, 56, 189], effectiveness is defined as the average total
rewards of the last 100 episodes 7. Sample efficiency is interpreted as the num-
ber of samples used for achieving similar effectiveness. Time efficiency is mea-
sured by the training time (i.e., the average running time for training on 10,000
samples) of each algorithm for the whole training/learning process.

5.3.5 Experiment Design

Following our research objectives, we expect to answer three specific questions
through the empirical study. These questions are: (C1) can CMA-ES with layer-
wise training can also be a viable algorithm for evolving DNN in terms of ef-
fectiveness and computational efficiency? (C2) can the surrogate model help
CMA-ES to achieve competitive performance as CMA-ES that evaluates the
fitness of each evolved deep neural network through simulations and in the
meantime achieve significantly higher sample efficiency? (C3) can the final de-
sign of PES supported by PPO-based local search technique perform effectively
in comparison to four cutting-edge DRL algorithms (i.e., PPO, TRPO, ACKTR)
and two modern EAs based RL algorithms (i.e., OpenAI-ES, Uber-GA)?

To answer these questions, we design three independent experiments fol-
lowing identical settings are given in Section 5.3.1. Each experiment helps an-
swer one of the three questions above. In the first experiment (A1), we compare
the effectiveness and time efficiency of six different algorithms, CMA-ES, PES-
S1, OpenAI-ES, Uber-GA on the given ten problems. In the next experiment
(A2), we focus on the learning performance as well as the sample efficiency ob-
tained by PES-S2 against the algorithms using actual simulations, such as CMA-
ES, PES-S2, OpenAI-ES, and Uber-GA. In the last experiment (A3), we assess the

7One episode indicates a sequence of interactions (i.e., state transitions) between an agent
and an environment, which ends with some terminal conditions. For example, in the Cart Pole
problem, one episode starts when the agent balances the pole and terminates when the poles
falls.

5.4. RESULTS AND DISCUSSION 157

effectiveness, sample efficiency, time efficiency of PES which combines all im-
provements (i.e., layer-wise learning, surrogate model-based learning, and local
search enhanced learning) in comparison to PPO, TRPO, ACKTR, OpenAI-ES,
and Uber-GA.

5.4 Results and Discussion

In this section, we discuss the experimental results and provide some insightful
analysis. Firstly, the results of PES-S1 obtained from Experiment (A1) are com-
pared to CMA-ES with focus on time efficiency as well as learning performance.
Next, the average total rewards obtained from Experiment (A2) by different al-
gorithms (including PES-S2, CMA-ES, OpenAI-ES, and Uber-GA) are depicted
as performance curves with respect to the number of samples. Lastly, the fi-
nal learning performances of our PES algorithm in comparison to PPO, TRPO,
ACKTR, OpenAI-ES and Uber-GA are presented and analyzed.

5.4.1 Results of Experiment (A1)

In this experiment (A1), we are interested in comparing the computational effi-
ciency between PES-S1 and CMA-ES. Figure 5.7 presents a learning curve mea-
sured in the average total rewards along the y-axis and the total running time
along the x-axis. The running time is tracked based on training time required
for processing every 10,000 samples by each algorithm.

As can be seen from Figure 5.7 and Table 5.2, PES-S1 clearly uses much less
running time to reach higher total rewards in comparison to CMA-ES across all
problems. In particular, PES-S1 performs significantly better than CMA-ES on
seven out of ten problems, including Bipedal Walker, Bipedal Walker Hardcore,
Lunar Lander, Inverted Double Pendulum, Hopper, Walker2D and Reacher. On
other three problems, i.e., Inverted Pendulum, Inverted Pendulum Swingup,
and HalfCheetah, PES-S1 rises slowly at the begging, but eventually surpasses
CMA-ES after a short while. For example, PES-S1 starts to outperform CMA-ES

158 CHAPTER 5. PES FOR SAMPLE EFFICIENT PDS

0 1000 2000 3000 4000
Average Running Time (seconds)

−100

−50

0

50

100

150

200

A
ve

ra
ge

T
ot

al
R

ew
ar

ds

(a) BipedalWalker

0 5000 10000 15000 20000 25000 30000
Average Running Time (seconds)

−130

−125

−120

−115

−110

−105

−100

−95

A
ve

ra
ge

T
ot

al
R

ew
ar

ds

(b) BipedalWalkerHardcore

0 2000 4000 6000 8000
Average Running Time (seconds)

−400

−300

−200

−100

0

100

200

A
ve

ra
ge

T
ot

al
R

ew
ar

ds

(c) LunarLander

0 500 1000 1500 2000
Average Running Time (seconds)

0

200

400

600

800

1000

A
ve

ra
ge

T
ot

al
R

ew
ar

ds

(d) InvertedPendulum

0 1000 2000 3000 4000 5000
Average Running Time (seconds)

0

2000

4000

6000

8000

A
ve

ra
ge

T
ot

al
R

ew
ar

ds

(e) InvertedDoublePendulum

0 5000 10000 15000
Average Running Time (seconds)

−1000

−750

−500

−250

0

250

500

A
ve

ra
ge

T
ot

al
R

ew
ar

ds

(f) InvertedPendulumSwingup

0 1000 2000 3000 4000 5000 6000
Average Running Time (seconds)

0

200

400

600

800

1000

A
ve

ra
ge

T
ot

al
R

ew
ar

ds

(g) Hopper

0 1000 2000 3000 4000 5000 6000
Average Running Time (seconds)

−1000

−500

0

500

A
ve

ra
ge

T
ot

al
R

ew
ar

ds

(h) HalfCheetah

0 2000 4000 6000 8000 10000 12000
Average Running Time (seconds)

0

100

200

300

A
ve

ra
ge

T
ot

al
R

ew
ar

ds

(i) Walker2D

0 2000 4000 6000
Average Running Time (seconds)

−25

−20

−15

−10

−5

0

5

A
ve

ra
ge

T
ot

al
R

ew
ar

ds

(j) Reacher

Figure 5.7: A comparison of average total rewards over running time (in sec-
onds) obtained by PES-S1 and CMA-ES [88] on the ten benchmark control prob-
lems.

after the first 2201 seconds of training time.

These observations are consistent with the results of our complexity analysis
presented in Section 5.2.1. In line with the findings, we can conclude that our

5.4. RESULTS AND DISCUSSION 159

Table 5.2: The final episode performance comparison of two algorithms (i.e.,
CMA-ES and PES-S1) on ten benchmark problems (i.e., Bipedal Walker, Bipedal-
WalkerHardcore, HalfCheetah, Hopper, Inverted Double Pendulum, Inverted
Pendulum, Inverted Pendulum Swingup, Lunar Lander Continuous, Reacher,
and Walker2D).

Problems/Algorithms CMA-ES PES-S1

BipedalWalker 62.26±98.48 209.88±11.24
BipedalWalkerHardcore -106.53±5.32 -99.87±2.67

HalfCheetah 539.62±229.70 714.88±289.76
Hopper 377.19±259.54 752.02±353.75

InvertedDoublePendulum 3816.13±2120.07 8118.64±532.40
InvertedPendulum 960.76±71.37 998.31±3.77

InvertedPendulumSwingup 198.88±28.45 482.85±226.83
LunarLanderContinuous -13.85±123.27 153.86±108.56

Reacher -7.35±2.10 2.41±1.49
Walker2D 264.58±101.24 318.56±139.05

proposed layer-wise learning mechanism (i.e., PES-S1) can significantly reduce
the computational cost of the original CMA-ES algorithm when being applied
to training DNNs without sacrificing learning effectiveness.

5.4.2 Results of Experiment (A2)

The experiment (A2) aims to examine the sample efficiency of PES-S2 against
CMA-ES, and two advanced EAs, i.e., OpenAI-ES and Uber-GA. The learning
curves of averaging total rewards are presented in Figure 5.8.

As evidenced in Figure 5.8, PES-S2 is generally more effective and more sam-
ple efficient than those competing algorithms on all ten problems. More impor-
tantly, PES-S2 performed significantly better than all other algorithms on five
out of ten problems, including Bipedal Walker Hardcore, Hopper, HalfCheetah,
and Reacher. Regarding the other five problems, i.e., Bipedal Walker, Inverted

160 CHAPTER 5. PES FOR SAMPLE EFFICIENT PDS

0 1 2 3 4 5
Million Steps

−100

−50

0

50

100

150

A
ve

ra
ge

T
ot

al
R

ew
ar

ds

(a) BipedalWalker

0 1 2 3 4 5
Million Steps

−140

−120

−100

−80

−60

−40

A
ve

ra
ge

T
ot

al
R

ew
ar

ds

(b) BipedalWalkerHardcore

0 1 2 3 4 5
Million Steps

−400

−300

−200

−100

0

100

A
ve

ra
ge

T
ot

al
R

ew
ar

ds

(c) LunarLander

0 1 2 3 4 5
Million Steps

0

200

400

600

800

1000

A
ve

ra
ge

T
ot

al
R

ew
ar

ds

(d) InvertedPendulum

0 1 2 3 4 5
Million Steps

0

2000

4000

6000

8000

A
ve

ra
ge

T
ot

al
R

ew
ar

ds

(e) InvertedDoublePendulum

0 1 2 3 4 5
Million Steps

−1000

−750

−500

−250

0

250

500

A
ve

ra
ge

T
ot

al
R

ew
ar

ds

(f) InvertedPendulumSwingup

0 1 2 3 4 5
Million Steps

0

250

500

750

1000

1250

1500

A
ve

ra
ge

T
ot

al
R

ew
ar

ds

(g) Hopper

0 1 2 3 4 5
Million Steps

−1500

−1000

−500

0

500

1000

A
ve

ra
ge

T
ot

al
R

ew
ar

ds

(h) HalfCheetah

0 1 2 3 4 5
Million Steps

0

100

200

300

400

500

600

A
ve

ra
ge

T
ot

al
R

ew
ar

ds

(i) Walker2D

0 1 2 3 4 5
Million Steps

−50

−40

−30

−20

−10

0

10

A
ve

ra
ge

T
ot

al
R

ew
ar

ds

(j) Reacher

Figure 5.8: A comparison of average total rewards per 10,000 samples (5,000,000
samples in total) obtained by PES-S2, CMA-ES [88], OpenAI-ES [186], and Uber-
GA [210] on the ten benchmark control problems.

Pendulum, Inverted Double Pendulum, Inverted Pendulum Swingup, PES-S2
also clearly outperform its base algorithm CMA-ES. In addition, PES-S2 is more
sample efficient than OpenAI-ES and Uber-GA, as it can reach higher rewards

5.4. RESULTS AND DISCUSSION 161

Table 5.3: The final episode performance comparison of four algorithms (i.e.,
CMA-ES, OpenAI-ES, Uber-GA and PES-S2) on ten benchmark problems (i.e.,
Bipedal Walker, BipedalWalkerHardcore, HalfCheetah, Hopper, Inverted Dou-
ble Pendulum, Inverted Pendulum, Inverted Pendulum Swingup, Lunar Lan-
der Continuous, Reacher, and Walker2D).

Problems/Algorithms CMA-ES OpenAI-ES PES-S2 Uber-GA

BipedalWalker 62.26±98.48 146.71±23.52 137.01±92.01 -21.46±69.31
BipedalWalkerHardcore -106.53±5.32 -99.82±0.63 -60.35±15.18 -121.11±17.47

HalfCheetah 539.62±229.70 434.18±29.93 856.38±298.15 -878.93±179.98
InvertedDoublePendulum 3816.13±2120.07 9399.54±111.06 9163.02±282.70 8631.40±314.94

InvertedPendulum 960.76±71.37 1009.12±0.00 985.39±46.20 924.23±49.29
InvertedPendulumSwingup 198.88±28.45 226.22±8.32 456.65±241.24 542.75±81.24

LunarLanderContinuous -13.85±123.27 128.15±5.97 140.22±16.49 137.83±18.25
Reacher -7.35±2.10 -0.51±1.13 7.58±5.44 -21.85±13.85

Walker2D 264.58±101.24 511.33±56.64 595.94±139.11 177.34±108.50
Hopper 377.19±259.54 712.25±6.38 1389.84±369.33 543.82±131.80

earlier with fewer samples, as can be seen on the results of Lunar Lander, In-
verted Pendulum, Inverted Pendulum Swingup.

Interestingly, on Bipedal Walker Hardcore, we also find that PES-S2 starts
quickly to reach a high reward of -20, but afterwards, it experiences a sudden
drop and performance decrease onwards. It is possibly because of the hyper-
parameter configurations, specifically the step size for the algorithm which re-
quires further tunning. Similar decreasing behaviors can also be found with
Uber-GA on Bipedal Walker Hardcore, HalfCheetah, Walker2D, and Reacher.
This is mainly because of the population size 32 for Uber-GA may be not
enough. As reported in the original paper of Uber-GA [210], they have chosen
12,501 individuals to form a population, which extremely is very computational
costly and cannot be reproduced in our experiments with the computation fa-
cilities available to us.

With the above findings, we can confidently confirm that CMA-ES enhanced
by surrogate model base learning, i.e., PES-S2, is more sample efficient than
CMA-ES, OpenAI-ES, and Uber-GA.

162 CHAPTER 5. PES FOR SAMPLE EFFICIENT PDS

5.4.3 Results of Experiment (A3)

0 1 2 3 4 5
Million Steps

−100

0

100

200

300

A
ve

ra
ge

T
ot

al
R

ew
ar

ds

(a) BipedalWalker

0 1 2 3 4 5
Million Steps

−140

−120

−100

−80

−60

−40

A
ve

ra
ge

T
ot

al
R

ew
ar

ds

(b) BipedalWalkerHardcore

0 1 2 3 4 5
Million Steps

−300

−200

−100

0

100

200

A
ve

ra
ge

T
ot

al
R

ew
ar

ds

(c) LunarLander

0 1 2 3 4 5
Million Steps

0

200

400

600

800

1000

A
ve

ra
ge

T
ot

al
R

ew
ar

ds

(d) InvertedPendulum

0 1 2 3 4 5
Million Steps

0

2000

4000

6000

8000

A
ve

ra
ge

T
ot

al
R

ew
ar

ds

(e) InvertedDoublePendulum

0 1 2 3 4 5
Million Steps

−1000

−500

0

500

A
ve

ra
ge

T
ot

al
R

ew
ar

ds
(f) InvertedPendulumSwingup

0 1 2 3 4 5
Million Steps

0

500

1000

1500

2000

2500

A
ve

ra
ge

T
ot

al
R

ew
ar

ds

(g) Hopper

0 1 2 3 4 5
Million Steps

−1000

0

1000

2000

A
ve

ra
ge

T
ot

al
R

ew
ar

ds

(h) HalfCheetah

0 1 2 3 4 5
Million Steps

0

500

1000

1500

A
ve

ra
ge

T
ot

al
R

ew
ar

ds

(i) Walker2D

0 1 2 3 4 5
Million Steps

−50

−40

−30

−20

−10

0

10

20

A
ve

ra
ge

T
ot

al
R

ew
ar

ds

(j) Reacher

Figure 5.9: A comparison of average total rewards per 10,000 samples obtained
by PES (i.e., PES-S3), PES-S2, OpenAI-ES [186], Uber-GA [210], TRPO [189],
ACKTR [240] and PPO [191] on ten control problems over total 5,000,000 sam-
ples.

5.4. RESULTS AND DISCUSSION 163

Table 5.4: The final episode performance comparison of seven algorithms (i.e.,
PES, PES-S2, OpenAI-ES, Uber-GA, PPO, TRPO, and ACKTR) on ten bench-
mark problems (i.e., Bipedal Walker, BipedalWalkerHardcore, HalfCheetah,
Hopper, Inverted Double Pendulum, Inverted Pendulum, Inverted Pendulum
Swingup, Lunar Lander Continuous, Reacher, and Walker2D).

Problems/Algorithms ACKTR OpenAI-ES PES PES-S2 Uber-GA PPO TRPO

BipedalWalker 229.26±99.74 146.71±23.52 283.87±19.19 137.01±92.01 -21.46±69.31 273.29±25.27 277.75±7.91
BipedalWalkerHardcore -40.07±0.00 -99.82±0.63 -37.05±3.35 -60.35±15.18 -121.11±17.47 -43.28±4.67 -119.89±8.90

HalfCheetah 1453.33±151.07 434.18±29.93 2675.90±46.58 856.38±298.15 -878.93±179.98 2154.35±140.12 2067.42±194.73
InvertedDoublePendulum 6690.00±1956.89 9399.54±111.06 8983.04±332.35 9163.02±282.70 8631.40±314.94 8850.75±210.50 8892.38±328.20

InvertedPendulum 926.88±86.35 1009.12±0.00 1000.00±0.00 985.39±46.20 924.23±49.29 1000.00±0.00 993.35±8.50
InvertedPendulumSwingup 332.00±51.00 226.22±8.32 881.85±13.92 198.88±28.45 542.75±81.24 871.53±19.49 878.27±7.35

LunarLanderContinuous -57.45±0.00 128.15±5.97 199.42±11.53 140.22±16.49 137.83±18.25 129.05±16.62 -12.60±118.56
Reacher 18.23±1.31 -0.51±1.13 18.53±0.53 7.58±5.44 -21.85±13.85 10.04±2.83 6.03±4.84

Walker2D 652.20±150.58 511.33±56.64 1827.97±107.22 595.94±139.11 177.34±108.50 1603.44±215.07 1101.82±407.30
Hopper 903.50±395.06 712.25±6.38 2559.39±19.92 1389.84±369.33 543.82±131.80 2503.88±68.37 1713.87±917.22

The experiment (A3) is conducted with the aim of evaluating the learning
effectiveness of PES (i.e., PES-S3, the overall algorithm) in comparison to state-
of-the-art algorithms including ACKTR, TRPO, PPO, OpenAI-ES and Uber-GA
on the ten benchmarks. Note that, we also include PES-S2 in the comparison
to highlight the performance improvement achieved by PES through adopting
an extra PPO based local search technique. The learning curves of average total
rewards obtained by the six algorithms are reported in Figure 5.9.

Overall, we can clearly see from Figure 5.9 that PES achieved significantly
higher performance compared to all the other competing algorithms in terms
of both effectiveness and sample efficiency on three problems, i.e., Lunar Lan-
der, HalfCheetah, and Walker2D. Additionally, on Bipedal Walker, PES also
outperforms other algorithms, except TRPO and PPO that produced compet-
itive performance. Similar observations can also be found on InvertedPendu-
lum, Inverted Double Pendulum, Inverted Pendulum Swingup, Hopper and
Reacher where PES achieves better or the same performance in comparison to
the cutting-edge algorithms such as ACKTR, TRPO, and PPO. Furthermore, it
is clear to see that the performance of PES-S2 falls far below that of PES on eight
out of ten problems. Even on the other two problems, Inverted Pendulum, and
Inverted Double Pendulum, PES-S2 shows slower convergence speed than PES.

Besides, we can also see how PES can better balance exploration and ex-
ploitation to improve learning effectiveness. For example, compared to the be-

164 CHAPTER 5. PES FOR SAMPLE EFFICIENT PDS

havior of PPO on Hopper, PES exhibits a higher variance (i.e., a large shade
area) for learning the first 1,800,000 samples, but its performance surpasses the
PPO after learning 2,800,000 samples meanwhile the variance (i.e., the shaded
area) becomes smaller and smaller. This is because that the CMA-ES in PES
encourages more exploration at the beginning of learning which may fall into
some poor-performing regions. In such regions, the learning may vary con-
siderably. However, as the learning proceeds, it gradually converges to high-
quality policies, and the learning becomes stable. Meanwhile, during the learn-
ing, the local search through PPO helps PES fine-tune (i.e., exploit) the best pol-
icy evolved by CMA-ES to find better policies in the vicinity to achieve better
learning effectiveness. The same observations can also be found on the prob-
lems of Half Cheetah and Walker2D. These all indicate that PES has a better
exploration-exploitation trade-off.

Interestingly, we also find that the Bipedal Walker Hardcore is difficult for
all algorithms. It seems that PES performs slightly better than other algorithms.
Also, it seems that, with more training samples made available, PES, PPO, and
ACKTR can possibly achieve better performance as the corresponding perfor-
mance curves continue to rise till 5,000,000 samples. This implies that Bipedal
Walker Hardcore is more difficult than other benchmark control problems.

Based on these observations and understandings, we can draw three con-
clusions. First, PES achieves competitive and frequently better performances in
terms of learning effectiveness as well as sample efficiency in comparison to the
state-of-the-art RL algorithms, i.e., ACKTR, TRPO, PPO, OpenAI-ES and Uber-
GA. Second, PES can effectively balance the exploration-exploitation trade-off
than all the competing algorithms, especially EAs for DRL. Third, PES performs
better than PES-S2, which shows that PPO-based local search can significantly
enhance the CMA-ES based global search with regard to the learning effective-
ness and sample efficiency.

5.5. CHAPTER SUMMARY 165

5.5 Chapter Summary

The goal of the chapter was to develop a new evolutionary deep reinforcement
learning algorithm, i.e., PES, based on CMA-ES for solving difficult continu-
ous control tasks, which is expected to achieve the state-of-the-art performance
in terms of time efficiency, sample complexity, and learning effectiveness. To
achieve this goal, we propose to make improvements from three aspects in-
cluding, 1) improving time efficiency by training a DNN via layer-wise learn-
ing mechanism, 2) reducing sample complexity by using a performance lower
bound based surrogate model for fitness evaluation, 3) enhancing learning ef-
fectiveness via integrating a gradient-based local search with previous two ad-
vancements. The new algorithm has been developed successfully to achieve
state-of-the-art performance in comparison to three cutting-edge policy gradi-
ent search algorithms (i.e., ACKTR, TRPO, and PPO) and two advanced evolu-
tionary algorithms (i.e., OpenAI-ES and Uber-GA).

Firstly, we show that layer-wise learning (PES-S1) can significantly reduce
computational cost without sacrificing learning effectiveness for CMA-ES. The
layer-wise learning aims to train a DNN layer by layer rather than to train it
as a whole. In this way, the solution dimensionality can be largely reduced,
which paves the way for CMA-ES to be applied to training a large-scale DNN
effectively and improves the computational efficiency of CMA-ES.

Secondly, we show that a surrogate model based learning (PES-S2) can
largely improve the re-usability of interaction samples for CMA-ES meanwhile
maintain competitive effectiveness to cutting-edge algorithms. PES-S2 is devel-
oped with two stages, one is to learn a surrogate model with gradient-descent
technique, and the other is to use the model to replace the actual simulation
for individual fitness evaluation of CMA-ES. By avoiding evaluating the indi-
viduals by collecting new samples from the environment every time, PES-S2 is
significantly more sample efficient than other EAs, such as CMA-ES, OpenAI-
ES, and Uber-GA.

Thirdly, we show that a local search enhanced learning (PES-S3) can further
boost the learning effectiveness by locally fine-tuning the best solution evolved
by CMA-ES. In this way, PES seamlessly integrates gradient-based local search

166 CHAPTER 5. PES FOR SAMPLE EFFICIENT PDS

with evolutionary global search, which takes metrics from both EAs and PGS
to better balance the exploration and exploitation. Empirically, PES shows bet-
ter learning performance with equivalent sample efficiency that state-of-the-art
DRL algorithms such as ACKTR, TRPO, and PPO.

In summary, PES can solve DRL problems efficiently and effectively with a
reasonable level of sample complexity. The PES algorithm developed in this
chapter focuses on improving PGS with evolutionary algorithms to reach a
state-of-the-art performance level. However, the algorithm can still experi-
ence unreliable learning on value functions, which can cause the degradation
in learning performance. Clearly, the reliability of value function learning is the
key to the success of PGS algorithms. Especially those algorithms rely greatly on
value functions. To achieve reliable learning on value functions, it is expected to
use some mechanisms to stabilize value function learning. In addition, for most
PGS algorithms that follow Policy Gradient Theorem (PGT) 8, a flexible fam-
ily of compatible functions can also help to improve the learning effectiveness
of policy learning as such flexibility can provide opportunities to obtain more
accurate estimations of policy gradients. In view of this, the next chapter will
develop two approaches, one aims at stabilizing the value function learning,
and the other is to generalize compatible function to provide a flexible value
function learning.

8Please refer to Section 2.2.5 for more technical details about PGT.

Chapter 6

Reliable and Flexible Value Function
Learning for Policy Direct Search

This chapter of the thesis aims at achieving the research objective O(3) in Sec-
tion 1.3 meanwhile answering the research question Q(3) in Section 1.2. Actor-
Critic (AC) algorithms, as typical Policy Gradient Search (PGS) algorithms, are
usually composed of two distinct learning processes, namely actor (a.k.a, pol-
icy) learning and critic (a.k.a, value function) learning. Actor learning is heavily
dependent on critic learning. Particularly when critic learning becomes unsta-
ble, the learned value function diverges. This will significantly affect the effec-
tiveness of AC algorithms. To address this issue, many successful algorithms
have been developed recently with the aim of achieving reliable and flexible
learning of value functions. To achieve reliable learning, Gradient Temporal
Difference (GTD) algorithm [214] and GTD2 [213] have been proposed to use
off-policy training techniques, but they both empirically exhibit divergence on
learning. Least Square Temporal Difference (LSTD) [37, 36] as second-order
methods can guarantee the value function learning reliability, but they possess
high computational complexity O(n2) (n is the number of state features). These
issues can actually lead to less effective policy learning either because of the di-
vergence of value function learning or because of the high sample cost. On the
other hand, to achieve flexible value function learning for PGS, the Policy Gradi-

167

168 CHAPTER 6. RELIABLE AND FLEXIBLE VFL FOR PDS

ent Theorem (PGT) 1 proposed by Sutton et.al. [215] provides a theoretical foun-
dation to learn a variety of different value functions as long as the compatible
condition 2 is fulfilled. Almost all the PGS algorithms [215, 190, 170, 121, 29, 31]
developed so far are strictly stick to the PGT, but they have overlooked that the
compatible condition itself can be generalized by q-logarithm [223, 42] to poten-
tially provide more flexible compatible functions. Because the q-logarithm gen-
eralization can introduce an extra parameter q to control the degree of freedom
of the function, which enables a family of function forms. Thus, in this chapter,
we develop two approaches resulting in two new PGS algorithms. One ap-
proach is to improve the critic learning reliability by integrating with the Sand-
pile Model (SM) [18] with a self-organized property, and the other is to gener-
alize the logarithm function based on the q-logarithm principle for compatible
function condition to achieve more flexible value function learning. With the
development of the two algorithms, we have achieved two contributions as fol-
lows:

1. We propose to adopt the Sandpile Model into value function learning pro-
cess to achieve self-adaptive and reliable learning of value functions. This
new technique for critic learning is further integrated with a commonly
used PGS algorithm, i.e., Regular Actor-Critic (RAC) [31]. The algorithm
is called Sandpile Model based RAC (SM-RAC).

2. We propose to use a generalized logarithm function to create a new and
flexible family of compatible functions. The widely used compatible func-
tion based on natural logarithm can then be treated as a special case of
our compatible functions. This enables us to achieve flexible and adaptive
critic learning and more accurate estimation of policy gradients. We have
subsequently developed a new algorithm called Generalized Compatible
Function Approximation based Regular Actor-Critic (GCFA-RAC).

Our experiments on four benchmark control problems, including Puddle
World [212], Cart Pole [212], Mountain Car [212], and Heating Coil [84], have
shown that,

1Please refer to Section 2.2.5 for more technical details about PGT.
2Please refer to Section 2.2.5for more technical details about the compatible function.

6.1. INTRODUCTION 169

• SM-RAC can perform significantly better than its base algorithm, i.e.,
RAC.

• Under suitable generalization of compatible function approximation, any
algorithms that use traditional compatible functions for critic learning can
benefit from using our generalized new family of compatible functions.

6.1 Introduction

As introduced previously in Section 2.2.5, AC algorithms are important PGS
methods for solving RL problems [121, 122, 79]. In practice, it is difficult to
obtain analytical policy gradients, thus unbiased estimation of the policy gra-
dients is often used for actor learning [212, 215, 112, 30, 52]. In AC framework,
the policy gradient estimation can be determined from PGT [190],

∇~θJ(~θ) = IE
[∞∑
t=0

Ψt · Φ(~st, at)
]

(6.1)

where J(~θ) denotes the expected total rewards. Φ(~st, at) = ∇~θ ln π~θ(at|~st) in PGT
serves as a function compatible with policy parameterization. Based on Φ(~s, a),
Q function can be approximated further as Qπ(~s) ≈ ~ωπT · Φ(~s, a). Moreover, Ψt

in (6.1) have several different but related expressions as follows:

• δt = rt + V π(~st+1)− V π(~st): Temporal Difference (TD) error [212]

• Qπ(~st, at): state action value function [212]

• Aπ(~st, at) = Qπ(~st, at)− V π(~st): advantage value function [215]

According to (6.1), accurate estimation of policy gradients and effective rein-
forcement learning depends on both Ψt and Φ(~st, at). In general, the former
is learned via critic learning process and the latter is directly computed from
policy π.

170 CHAPTER 6. RELIABLE AND FLEXIBLE VFL FOR PDS

6.1.1 Chapter Goals

The overall goal of the chapter is to develop new techniques for reliably adap-
tive and flexible approximation of valuation functions. As a result, we expect
to improve the effectiveness of PGS algorithms further. To achieve this goal, we
develop two new mechanisms, i.e., an adapted Sandpile Model based technique
to stabilize the critic learning and a flexible new family of compatible functions
based on a generalized logarithm function to estimate policy gradients adap-
tively and accurately. Although we focus primarily on evaluating both tech-
niques on the RAC algorithm [31], they are general enough to be straightfor-
wardly applied to many AC algorithms. RAC is chosen in this chapter due to
its theoretical convergence guarantee and proven effectiveness on many bench-
mark RL problems.

Our research in this chapter also leads to the development of two new algo-
rithms, and the first algorithm is called Sandpile Model based Regular Actor-Critic
(SM-RAC), which is expected to improve the learning effectiveness of PGS by
enhancing the reliability of value function learning. With SM-RAC, we intend
to answer two important research questions:

Q1 Can the learning effectiveness of AC algorithms, such as RAC, be signifi-
cantly improved upon using our adapted SM to stabilize the critic learn-
ing?

Q2 Are effective RL and stable critic learning strongly correlated in AC algo-
rithms, including RAC and SM-RAC?

The second proposed algorithm is called Generalized Compatible Function Ap-
proximation based Regular Actor-Critic (GCFA-RAC), which is expected to im-
prove the learning effectiveness of PGS by adopting a generalized family of
compatible functions. With the development of GCFA-RAC, we aim to study
the research question specifically:

Q3 When the generalized logarithm function G(·) is used to produce flexible
compatible features Φ, will RAC algorithm become more effective and re-
liable for RL?

6.2. PRELIMINARIES 171

6.1.2 Chapter Organization

This chapter is structured as follows. A preliminary knowledge about RAC
and SM is given in Section 6.2. The two proposed algorithms, SM-RAC and
GCFA-RAC, are presented in Section 6.3. The design of experiments, including
feature design, general setup, and experiment design, is detailed in Section 6.4,
followed by results and discussions in Section 6.5. A chapter summary is pre-
sented in Section 6.6.

6.2 Preliminaries

This section introduces the preliminary knowledge for the research of this chap-
ter and paves the way for the development of two new PGS algorithms. Firstly,
the RAC algorithm is depicted. Secondly, the concept of SM is explained.

6.2.1 Regular Actor-Critic Algorithm

Critic learning in RAC is guided by the well-known Temporal Different error
(TD error) defined as

δπt = rt+1 + γV π(~st+1)− V π(~st). (6.2)

Meanwhile the critic in RAC also approximates the true value function V π(~s) in
(2.38) by

V π(~s) ≈ Ṽ π(~s) = ~υπT · φ(~s), (6.3)

where ~υπT consists of the value function parameters that are linearly associated
with the basis function φ(~s) = [φ1(~s), . . . , φm(~s)] ∈ Rm. Accordingly, the goal
of critic learning is to adjust the value function parameters in the direction of
reducing the TD error, i.e.,

~υπt+1 ← ~υπt + αtδ
π
t φ(~st), (6.4)

where α is the critic learning rate at time t.

172 CHAPTER 6. RELIABLE AND FLEXIBLE VFL FOR PDS

Actor learning in RAC aims to find the optimal policy parameter ~θ∗ so as to
find the optimal policy. The learning follows the direction given by the policy
gradient where Qπ is approximated as,

Qπ(~s) ≈ Q̃π(~s) = ~ωπT · Φ(~s, a), (6.5)

where ~ωπ is made up of parameters that estimate Qπ(~s), and the compatible
feature is defined as Φ(~s, a) = ∇~θ ln π(~s, a). Subsequently, through an unbiased
estimation of∇~θJ(~θ), the incremental rule for actor learning is further proposed
in [31] as

~θt+1 = ~θt + βtδ
π
t Φ(~s, a), (6.6)

where βt is the actor learning rate.
Through iterative application of (6.4) and (6.6), RAC is widely shown to suc-

cessfully solve many benchmark RL problems. It is clear to see that in RAC the
estimation of the policy gradients in (6.6) is strongly dependent on the quality
of critic learning as well as the effect of the compatible function approximation.
Also note that, Algorithm 6.3.1 can be regarded as the exact algorithmic de-
scription of RAC after excluding lines from 12 to 26. Also, Algorithm 6.3.2 can
be directly adapted to RAC by changing the line 11 back to the original policy
updating rule in (6.6).

6.2.2 Sandpile Model

The SM (a.k.a., Bak-Tang-Wiesenfeld model) is a model proposed in [18] to ex-
plain an important property of dynamical systems called Self Organized Critical-
ity (SOC). SOC refers to a phenomenon that a system evolves towards a critical
point through self-adjustments over its lifetime. In SM, whenever a system (e.g.,
a sand pile) reaches its critical point, any small perturbation (e.g., dropping a
grain of sands) may trigger a noise propagation (e.g., an avalanche of the sand
pile) of varying sizes. After a short while, the system is guaranteed to return to
its the critical point through self-organization.

In [18], the SM is simulated in a 2DN×N grid with a boundary (i.e., [0, N]2),
where each cell (i.e., site (x, y)) of the grid contains an integer value z(x, y) rep-
resenting the slope of the sand pile on-site. It is also assumed that, if a grain of

6.2. PRELIMINARIES 173

sand is added one at a time on a random site and it leads to an avalanche, then
only after the avalanche stops can the next grain of sand be added. Following
this setting, SM as a mathematical model contains three key components:

• Neighborhoods and Boundaries

In the 2D SM, the neighborhoods of any site (x, y) are defined as its four
adjoining sites, namely (x±1, y) and (x, y±1). Besides, the sites on bound-
aries are defined as (0, y), (N, y), (x, 0), and (x,N).

• The Reliability Criterion

A key factor of the SM is to determine the condition under which an
avalanche will be triggered upon adding a new grain of sand. This is
equivalent to defining a reliability criterion as below,

ε(z) =

{
0, K − z(x, y) ≥ 0

1, K − z(x, y) < 0
(6.7)

where K is the predefined threshold (the critical value). As seen in (6.7),
the site is reliable when its z value is smaller than K, i.e., ε(z) = 0. On
the other hand, an avalanche will be triggered at any site (x, y) when the
value z(x, y) exceeds K.

• The Propagation/Updating Rule

An avalanche causes a noise propagation to its neighborhoods, such a
propagation can be defined as

z(x, y) ← z(x, y)−∆

z(x± 1, y) ← z(x± 1, y) + ∆
4

z(x, y ± 1) ← z(x, y ± 1) + ∆
4

, (6.8)

where ∆ represents the noise to be propagated from the site (x, y) to its
neighborhoods. Note that, the noise being propagated to the boundaries
will be disregarded, i.e., z(x, y) ≡ 0.

Clearly, although the model description above considers only two dimensions,
the SM can be easily expanded to multiple dimensional cases [18]. In Sec-
tion 6.3.1, we show how to construct an adapted SM for reliable critic learning
in RL scenario.

174 CHAPTER 6. RELIABLE AND FLEXIBLE VFL FOR PDS

6.3 The Proposed Algorithms — SM-RAC and

GCFA-RAC

To achieve the research objectives of this chapter, we develop two new PGS
algorithms, i.e., Sandpile Model based Regular Actor-Critic (SM-RAC) and
Generalized Compatible Function Approximation based Regular Actor-Critic
(GCFA-RAC). In the following section, we first propose SM-RAC to stabilize
critic learning. Next, we propose GCFA-RAC to generalize the compatible func-
tion so as to further improve the quality of policy gradients.

6.3.1 Sandpile Model based Regular Actor-Critic (SM-RAC)

In this subsection, we propose the SM-RAC algorithm with the aim of improv-
ing the critic learning reliability. For this purpose, we firstly propose a criterion
for measuring the learning reliability. Following that, we show how to adapt
the SM to combine it with the critic learning process in RAC. Lastly, we present
an algorithmic description of SM-RAC.

Critic Learning Reliability

We define the concept of the critic learning reliability below.

Definition 6.3.1. The Critic Learning Reliability refers to the total probability for
the absolute value of the value function’s output to be higher than a predefined
threshold across all visited states across all possible episodes.

Since ~υ and ~θ jointly determine the behavior of RAC, the reliability criterion
for critic learning during any learning episode τ can be presented mathemati-
cally as

ετ (~υ, ~θ) =

∫
~s∼dπ(~s)

I(~s)dπ(~s)d~s, (6.9)

where

I(~s) =

{
0, R̄− |~υT · φ(~s)| ≥ 0

1, R̄− |~υT · φ(~s)| < 0
, (6.10)

6.3. THE PROPOSED ALGORITHMS — SM-RAC AND GCFA-RAC 175

is an indicator function based on a predefined threshold R̄. The choices of R̄ for
practical learning tasks will be explained in Section 6.4.1.

ε in (6.9) is a continuous measure of critic learning reliability. In particular,
ετ (~υ, ~θ) = 0 indicates that the critic learning is completely reliable. Otherwise,
ετ (~υ, ~θ) > 0 shows the degree of divergence in the learned value function.

An Adapted Sandpile Model for Critic Learning

To integrate the SM into RAC, based on the three components of the SM de-
scribed in Section 6.2.2, we propose the adapted SM for critic learning as fol-
lows.

• Neighborhoods and Boundaries

Our adapted SM is defined over the history H of all previously visited
states in an episode. In particular, each state (and its corresponding value)
is treated as a separate site in the SM. Hence, any state V π(~sj) has its neigh-
borhoods made up of V π(~sj−1) and V π(~sj+1). Moreover, the boundary of
the SM is determined by the most recent and least recently visited states
in the history, whereas the length of history is bounded from above by lH.

• The Reliability Criterion

Referring to the reliability criterion in Section 6.3.1, the critical point value
K in (6.7) for our criterion is defined as the upper bound of the expected
cumulative reward, i.e., R̄. Intuitively whenever the critic in RAC predicts
non-achievable cumulative rewards, falling outside the range defined by
R̄, it is highly skeptical that critic learning starts to become unreliable.
Based on this idea, we can define the absolute bound R̄ as,

R̄ =
T∑
i=0

γi|ri|+ ε, (6.11)

where ε is a small error margin which is necessary since the value function
is estimated by linear function approximation in RAC.

• The Propagation/Updating Rule

176 CHAPTER 6. RELIABLE AND FLEXIBLE VFL FOR PDS

Suppose that at least one site, i.e., ~sj , over the full history has been
identified as unreliable, similar to the original SM in [18], the propaga-
tion/updating rule described below can be applied:

Ṽ π
t+1(~sj) ← Ṽ π

t+1(~sj)−∆

Ṽ π
t+1(~sj−1) ← Ṽ π

t+1(~sj−1) + ρ∆
2

Ṽ π
t+1(~sj+1) ← Ṽ π

t+1(~sj+1) + ρ∆
2

. (6.12)

∆ in (6.12) is defined below

∆ = sign(Ṽ π(~st))ψR̄R̄ , (6.13)

where sign(Ṽ π(~st)) =

{
1, Ṽ π(~st) ≥ 0

−1, Ṽ π(~st) < 0
.

Note that, ψR̄ ∈ [0, 1] is the noisy level factor. For example, if ψR̄ = 0.1,
it means that 90% of the maximum allowed cumulative rewards will be
maintained.

In (6.12), we define a new hyper-parameter ρ ∈ [0, 1] as the damping factor
to avoid big changes to the critic that can potentially affect the learning ef-
fectiveness of RAC. Moreover, based on (6.3), we can have (6.12) re-written
as

~υt+1 ← ~υt+1 − ∆
φ(~sj)

~υt+1 ← ~υt+1 + 0.5ρ∆
φ(~sj−1)

~υt+1 ← ~υt+1 + 0.5ρ∆
φ(~sj+1)

. (6.14)

The adapted SM proposed above will be applied iteratively at every learning
step so as to guarantee critic learning reliability.

The SM-RAC Algorithm

Our adapted SM stated above can be easily incorporated into the RAC algo-
rithm. First, we maintain at most lH recently visited states in history. Next, the
reliability of the SM over all visited states is examined according to (6.9). Sub-
sequently, if there exists one or multiple unreliable sites, one of them will be

6.3. THE PROPOSED ALGORITHMS — SM-RAC AND GCFA-RAC 177

Algorithm 6.3.1 Sandpile Model based Regular Actor-Critic (SM-RAC)
Require: an MDP 〈S,A,P,R, γ〉, the expected reward upper bound R̄, the noisy level factor ψR̄, the damping factor

ρ, the maximum length for the state history lH
Ensure: ~θ, ~υπ

1: Initialization:
2: ~θ ← ~θ0, ~υπ ← ~υπ0 ,
3: ~st ← ~s0, where ~s0 is an arbitrary initial state
4: H ← {}, l← 0, j ← 0, ∆← 0

5: Learning Process:
6: for τ = 0, 1, 2, . . . , τmax do
7: for t = 0, 1, 2, . . . , T do
8: at ∼ π~θ(a|~st)
9: Take action at, observe reward rt+1 and new state ~st+1

10: δπt ← rt+1 + γ~υπTt · φ(~st+1)− ~υπTt · φ(~st)

11: ~υπt+1 ← ~υπt + αtδπt φ(~st)

12:
13: H ← H∪ {~st}
14: if l < lH then
15: l← l + 1

16: else
17: H ← H \ ~st−l
18: end if
19: while ετ (~υt+1, ~θt) > 0 do
20: while ~sj ∈ H do
21: if R̄ < |~υTt+1 · φ(~sj)| then
22: ∆← sign(~υπTt+1 · φ(~sj))R̄ψR̄
23: ~υt+1 ← (1− ∆

~υt+1·φ(~sj)
)~υt+1

24: if j > 1 then
25: ~υt+1 ← (1 + 0.5ρ∆

~υt+1·φ(~sj−1)
)~υt+1

26: end if
27: if j < lH − 1 then
28: ~υt+1 ← (1 + 0.5ρ∆

~υt+1·φ(~sj+1)
)~υt+1

29: end if
30: end if
31: j ← j + 1

32: end while
33: end while
34:
35: ~θt+1 ← ~θt + βtδπt Φ(~st, at)

36: end for
37: H ← {}, l← 0, j ← 0, ∆← 0

38: end for
39: return ~θ, ~υπ

randomly selected and the propagation rule (6.14) will be applied to it. This
procedure will be repeated until all sites in the SM are reliable. We present an
algorithmic description of SM-RAC in Algorithm 6.3.1.

178 CHAPTER 6. RELIABLE AND FLEXIBLE VFL FOR PDS

6.3.2 Generalized Compatible Function Approximation base

Regular Actor-Critic (GCFA-RAC)

In this subsection, we propose the GCFA-RAC algorithm to seek a flexible fam-
ily of compatible functions to improve the effectiveness of RAC. Firstly, we de-
rive the generalized compatible function approximation to formulate new pol-
icy updating rule. Following that, we present the pseudo code of GCFA-RAC.

Generalized Compatible Function Approximation

Here, we focus primarily on generalizing compatible function Φπ(~s, a). To do
so, we propose to use a generalized logarithm function G(·) as shown below to
construct the compatible feature Φπ,

G(π~θ(a|~s), ν) =
π~θ(a|~s)1−ν − 1

1− ν . (6.15)

It is clear to see from (6.15) that the level of generalization in G(·) is controlled
by ν. Whenever ν = 1, G(·) degrades to the standard logarithm function, i.e.

lim
ν→1
G(π~θ(a|~s), ν) = lnπ~θ(a|~s). (6.16)

Hence, we can formulate the generalization below,

G(π~θ(a|~s), ν) =

{
π~θ(a|~s)1−ν−1

1−ν , ν 6= 1

ln π~θ(a|~s), ν = 1
(6.17)

For simplicity, ν in (6.17) will be called the compatible generalization factor. In
consequence, the generalized compatible feature can be constructed as,

Φπ(~s, a) =
∂G(π~θ(a|~s),ν)

∂~θ

=
∂π~θ(a|~s)

∂~θ
π~θ(a|~s)1−ν ,

(6.18)

Based on (6.2), (6.6) and (6.18), the updating rule for the policy parameter ~θ can
be determined as,

~θt+1 ← ~θt + βηδπt
∂π~θ(a|~s)
∂~θ

π~θ(a|~s)1−ν , (6.19)

6.4. DESIGN OF EXPERIMENTS 179

where a new constant factor η is introduced in (6.19) to ensure that ~θ will be
updated at the same scale as in the original RAC. For this purpose, we need to
solve the following equation,

IE[|∂ lnπ~θ(a|~s)
∂~θ

|
∣∣a] = IE[|η ∂G(π(a|~s),ν)

∂~θ
|
∣∣a]. (6.20)

Follow the convention in many existing RL algorithms [76, 212, 31], we dictate
action sampling to obey a Gaussian distribution in any state according to policy
π~θ(a|~s), hence,

π~θ(a|~s) =
1

σ
√

2π
e−

(a−µ)2

2σ2 , (6.21)

where µ = ~θT · φ(~s) is the mean action output from policy π in state ~s, which
can be adjusted by changing policy parameters ~θ. On the other hand, the stan-
dard deviation σ in (6.21) is pre-determined (i.e., σ = 1.0). Note that π in RHS
of (6.21) refers to the circumference ratio. Therefore, from (6.20) and (6.21), we
can directly determine the value for η below,

η =


(2π)

1−ν
2 (ν−2)σ1−ν

(
1−e−

(µ+k)2

2σ2

)

e
(ν−2)(k−µ)2

2σ2 +e
(ν−2)(µ+k)2

2σ2 −2

, ν 6= 2

√
2
π
σ

(
1−e−

(µ+k)2

2σ2

)
(µ+k)2 , ν = 2

. (6.22)

Again π in (6.22) is the circumference ratio. Meanwhile, k and−k give the upper
and lower bounds for the action output from any policy, respectively.

The GCFA-RAC Algorithm

As discussed above, our generalized compatible function can directly utilized
in the RAC algorithm by replacing the policy learning rule in (6.6) to (6.19). The
detailed algorithmic description of GCFA-RAC is given in Algorithm 6.3.2.

6.4 Design of Experiments

This section of the chapter introduces our designed experiments for evaluating
the two proposed algorithms respectively. For SM-RAC, it introduces general

180 CHAPTER 6. RELIABLE AND FLEXIBLE VFL FOR PDS

Algorithm 6.3.2 Generalized Compatible Function Approximation based Reg-
ular Actor-Critic Algorithm (GCFA-RAC)

Require: an MDP 〈S,A,P ,R, γ〉
Ensure: ~θ, ~υπ

1: Initialization:
2: ~θ ← ~θ0

3: ~υπ ← ~υπ0

4: ~s← ~s0

5: Learning Process:
6: for t = 0, 1, 2, ... do
7: at ∼ π~θ(~st, a)

8: Take action at, observe reward rt+1 and new state ~st+1

9: δπt ← rt+1 + γ~υπTt · φ(~st+1)− ~υπTt · φ(~st)

10: ~υπt+1 ← ~υπt + αδφ(~st)

11: ~θt+1 ← ~θt + βηδπt
∂π~θ(a|~s)

∂~θ
π~θ(a|~s)1−ν

12: end for
13: return ~θ, ~υπ

experimental setups including policy implementation, state feature design, and
hyper-parameter configurations. Following that, it discusses the SM-RAC ex-
periment design. For GCFA-RAC, it follows the descriptive structure as that of
SM-RAC experiments.

6.4.1 Experiments on SM-RAC

Experiment Setup

In this subsection, we describe the detailed setups of our experiments for SM-
RAC. We first formulate the stochastic policy (i.e., Gaussian Policy). Sub-
sequently, we discuss the state feature as well as some important hyper-
parameters settings.

6.4. DESIGN OF EXPERIMENTS 181

Policy Implementation

In this experiment, we consider the stochastic policy, i.e., π : S × A → [0, 1],
which is more robust than a deterministic policy when environments are
stochastic [212, 198]. Here, we implement our stochastic policy as a Gaussian
distribution which is well-studied for continuous problems [168]. Specifically,
the probability density for taking each action is given by (6.21). In (6.21),
µ is determined by the policy parameters ~θ and the basis function φ(~s), i.e.,
µ = ~θT · φ(~s). On the other hand, σ is considered an exploration parameter and
is fixed to 1.0 for all problems. Note that, π at the RHS of (6.21) is the circumfer-
ence ratio.

State Feature Design

In this chapter, we design our state features as triangle basis functions which
have been used in [43]. We have also empirically assessed discretization fea-
ture function [126, 212], which performed worse in comparison to our choice.
This is because, when projecting the low-level state inputs to the high-level fea-
ture spaces, discretization feature function creates discontinuities in policies.
Since continuous control problems require a smooth feature space, state fea-
tures based on triangle basis functions, as shown below, are considered more
suitable,

φ : Rd → Rm,

where d is the dimension of the state input, andm is the dimension of the feature
space.

Figure 6.1 depicts how the triangle basis function is used for one dimension
of the state input. As seen in the figure, each dimension of the state input is
limited to the range interval [ιmin, ιmax]. We then split the interval into n equal
segments with n− 1 vertexes. In our experiments, n = 10. Next, we select each
vertex as an apex to connect with the adjacent vertexes to construct a group
of triangles. For the cases when the adjacent vertexes are ιmin or ιmax, we con-
nect the apex to the boundary instead of vertexes. For each triangle, it covers
a partial range of the state input. When the value of the dimension sd for the

182 CHAPTER 6. RELIABLE AND FLEXIBLE VFL FOR PDS

incoming state input (i.e., ~s = [s0, s1, . . . , sd] ∈ Rd) falls into the range, its corre-
sponding features will be computed as,

φ(sk)i =



1, ιmin ≤ sk < ιmin + κ

1, ιmax − κ < sk ≤ ιmax
sk−κ∗(i+1)
κ∗(i+1)−κ∗i + 1, sk ≤ ιmin + κ ∗ (i+ 1)

sk−κ∗(i+2)
κ∗(i+2)−κ∗(i+1)

, sk ≥ ιmin + κ ∗ (i+ 1)

0, otherwise

,

where k ≤ d, and i = 0, 1, . . . , n − 1, meanwhile κ = |ιmin|+|ιmax|
n

. Note that, the
final feature dimension is determined as m = d ∗ n.

0

1

Figure 6.1: The triangle basis function used for defining one single dimension
of the state input.

Hyper-Parameter Configurations

Here, we discuss the hyper-parameter configurations for SM-RAC. To investi-
gate the impact of the critic learning reliability on the learning performance, we
followed those hyper-parameter settings summarized in Table 6.1. They enable
us to study the behavior of RAC when critic learning is clearly unreliable or
even diverging. This is important because, when the learned value function
satisfies our reliability criterion, SM-RAC and RAC behave the same.

The settings for R̄ as seen in Table 6.1 are problem-specific. Regarding the
Puddle World problem, following the reward scheme described in Section 3.1
and (6.11), the maximum expected cumulative reward R̄ is determined as 120.

6.4. DESIGN OF EXPERIMENTS 183

Table 6.1: The hyper-parameter configurations for experiments of RAC and SM-
RAC on the Puddle World problem and the Mountain Car problem.

Algorithms Problems
Meta Parameters

α β γ R̄ ψR̄ ρ lH

RAC
Puddle World 0.01 0.0001 0.99 N/A N/A N/A N/A
Mountain Car 0.1 0.005 0.99 N/A N/A N/A N/A

SM-RAC
Puddle World 0.01 0.0001 0.99 120 0.1 0.1 100
Mountain Car 0.1 0.005 0.99 100 0.1 0.1 100

We can easily think that the worst case is that the agent is trapped in the en-
vironment obtaining −1.0 mostly for 100 steps so that we can have theoretical
maximum cumulative rewards as +100. Additionally, the error margin (i.e., ε)
here is set to 20% of the maximum theoretical value. Similarly, in the Mountain
Car problem, the threshold R̄ can be determined as +100.

Experiment Design

Firstly, to obtain reliable experimental results, we give the general running set-
tings for the experiments. For every learning algorithm and every benchmark
problem, we will perform 30 independent trials (i.e., one complete training and
testing process) over 10000 training episodes. For one trial, after every 50 train-
ing episodes, we will run 30 tests to verify the current performance of the actor
learned by RAC and SM-RAC respectively. Furthermore, a maximum number
of 100 steps applies to every training and testing episode.

Secondly, we design two experiments aiming at addressing the two specific
research questions (i.e., Q1 and Q2). In the first experiment, we perform both
RAC and SM-RAC based on the running settings given above. During the ex-
periment, we track two important metrics, namely the average total rewards
obtained by each algorithm during their testing phases and the average value of
value function (i.e., the average expected total reward). Base on the two metrics,
we can tell the influences of the reliability variations of critic learning (defined
in Section 6.3.1) on the final learning effectiveness (in terms of the average total

184 CHAPTER 6. RELIABLE AND FLEXIBLE VFL FOR PDS

rewards). In the second experiment, we use the results of the two metrics ob-
tained from the last experiment to conduct correlation analysis. Here, we only
consider the linear correlation between these two metrics.

6.4.2 Experiment on GCFA-RAC

Experiment Setup

Policy Implementation

For experiments of GCFA-RAC, we have adopted the exactly same policy im-
plementation as that of SM-RAC described in Section 6.4.1 above.

State Feature Design

For experiments of GCFA-RAC, we have adopted the exactly same state feature
design as that of SM-RAC described in Section 6.4.1 above.

Hyper-Parameter Configurations

For GCFA-RAC, to study the effect of generalization level of compatible func-
tion approximation on the final learning effectiveness, we summarized the
hyper-parameter setting for RAC on each problem in Table 6.2.

Table 6.2: The hyper-parameter configurations for experiments of RAC on the
Puddle World problem, the Mountain Car problem, the Cart Pole problem, and
the Heating Coil problem.

Algorithms Problems
Meta Parameters
α β γ

RAC

Puddle World 0.1 0.01 0.99
Mountain Car 0.2 0.07 0.99

Cart Pole 0.01 0.005 0.99
Heating Coil 0.1 0.05 0.99

6.5. RESULTS AND DISCUSSION 185

Experiment Design

To understand the efficacy of using generalized updating rule for learning pol-
icy parameters in (6.19), we will evaluate the performance of RAC on three
benchmark problems. Thus, here we collect only the average total rewards ob-
tained by RAC during its testing phase. In order to obtain reliable results, 30
independent trials will be performed on each benchmark problem and with re-
spect to different settings of the compatible generalization factor ν (note that
when ν = 1, the original updating rule in (6.6) is realized). A total of eight dif-
ferent settings for ν have been examined in our experiments (see Table 6.3). To
simplify our discussion, in this section, CASE-X will denote the experiments on
RAC when ν = X .

Table 6.3: Experiment Common Settings for One Trial.

Problem
Training Testing

Evaluating ν values
Episodes Steps Episodes Steps

Puddle world 10000 1000 50 100 {0.5, 0.7, 0.9, 1.0, 1.1, 1.5, 2.0}
Cart Pole 20000 50 50 1000 {0.5, 0.7, 0.9, 1.0, 1.1, 1.5, 2.0}

Heating Coil 5000 500 50 500 {0.5, 0.7, 0.9, 1.0, 1.1, 1.5, 2.0}

6.5 Results and Discussion

In this section, we present and analyze the experimental results. First, we focus
on the experimental results of SM-RAC. In particular, we first discuss results of
SM-RAC on Puddle World and Mountain Car in comparison to that of RAC to
answer Q1 in Section 6.1.1. We then analyze the correlation between the learn-
ing effectiveness and the critic learning reliability to answer Q2 in Section 6.1.1.
Second, we focus on the experiment results of GCFA-RAC. For GCFA-RAC, we
particularly are interested in analyzing the effect of generalization to learning
effectiveness on RAC algorithm so as to answer Q3 in Section 6.1.1.

186 CHAPTER 6. RELIABLE AND FLEXIBLE VFL FOR PDS

6.5.1 Discussion on Results of SM-RAC

We will discuss the experimental results on two benchmark problems sepa-
rately. For the discussion on results collected from each problem, we will first
compare the critic learning reliability of RAC and SM-RAC. Based on the re-
liability differences, we further compare the learning performance of the two
algorithms. Lastly, we investigate the relationship in-between the learning ef-
fectiveness and the learning reliability by adopting a correlation analysis.

Discussion on Results of SM-RAC in Puddle World

To evaluate the critic learning reliability, we present the average of the absolute
values generated from the value function learned by RAC and SM-RAC at ev-
ery 50 episodes in Figure 6.2. As seen in Figure 6.2, the RAC algorithm exhibits
a very unreliable behavior since its corresponding learned critic values fluctu-
ate severely. A sudden change occurs at the 1350th episode indicated as a black
dashed line, and then it tends to diverge rapidly. Such a change results in an
immediate degradation in the learning performance in terms of the average cu-
mulative rewards as shown in Figure 6.3. In contrast, also from Figure 6.2, the
critic learning reliability of SM-RAC has been well maintained at a reasonable
level, staying mostly beneath the predefined threshold R̄. Correspondingly, the
learning performance of SM-RAC also shows a converging behavior evidenced
in Figure 6.3.

Next, we will compare the learning performance of SM-RAC and RAC based
on average cumulative rewards in Figure 6.3. As discussed above, after the
1350th episode, the entire learning process of RAC diverges and never recovers
due to its unreliable critic learning. In contrast, SM-RAC shows a continuous
improvement on the learning performance, although it tends to converge after
1350th episode thanks to the convergence of its critic learning. Additionally,
we have performed a Student T-test for comparing the performances of the two
algorithms which produces a p-value of 9.6864 × 10−10. This suggests that SM-
RAC performs significantly better than RAC on the Puddle World problem.

In summary, Figure 6.2 and Figure 6.3 reflect some facts that 1) SM-RAC

6.5. RESULTS AND DISCUSSION 187

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Number of Training Episodes

0

50

100

150

200

250
Average Critic Value Per Training Episode

SMRAC RAC

A
v
e

ra
g

e
 C

ri
ti

c
 V

a
lu

e

Figure 6.2: Average of the absolute values generated from the value function
learned by RAC and SM-RAC at every 50 episodes on the Puddle World prob-
lem.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Number of Training Episodes

-1400

-1300

-1200

-1100

-1000

-900

-800

-700

-600

-500

A
v
e
ra

g
e

 C
u

m
u
la

ti
v
e

 R
e
w

a
rd

s

Average Cumulative Rewards Per Training Episode

SMRAC RAC

Figure 6.3: Average cumulative rewards obtained by RAC and SM-RAC at ev-
ery 50 episodes on the Puddle World problem.

performs learning more reliably and more effectively than RAC does, and 2)
the learning reliability to some extent correlates to the learning effectiveness.

188 CHAPTER 6. RELIABLE AND FLEXIBLE VFL FOR PDS

 Correlation Matrix

0 0.5 1

Reliability

-1600 -1200 -800

Effectiveness

0

0.2

0.4

-1500

-1000

-500 -0.87

-0.87

E
ff

e
c
ti
v
e
n

e
s
s

R
e
li
a
b

ili
ty

Figure 6.4: Correlation between the learning effectiveness and the learning reli-
ability of RAC on the Puddle World problem.

Aiming at knowing to what extent the critic learning reliability affects the
learning effectiveness, we also perform correlation analysis. As seen from Fig-
ure 6.2 and Figure 6.3, it is easy to observe that there exists a correlation in-
between the learning reliability and the learning effectiveness. To verify this
correlation, we adopt the Pearson Correlation analysis here. Firstly, we fol-
low (6.9) to quantify the learning reliability. Besides, we follow the conven-
tion to use average cumulative rewards to measure the learning effectiveness.
The correlation matrix for RAC on the Puddle World problem is given in Fig-
ure 6.4, which shows a correlation coefficient of -0.87 close to -1. This suggests
that learning reliability has a strong positive correlation because a higher value
in 6.9 indicates poorer reliability for critic learning to the learning performance.

Discussion on Results of SM-RAC in Mountain Car

In comparison to the Puddle World problem, very similar experimental results
can be obtained on the Mountain Car problem. Accordingly, most of the claims
made in Section 6.5.1 also hold here.

6.5. RESULTS AND DISCUSSION 189

Figure 6.5 shows the average value of the learned critic by RAC and SM-
RAC on the Mountain Car problem. Clearly, the critic learning of RAC diverges
quickly after 450 episodes, and the value of critic keeps increasing until the
3650th episode. Even the critic value starts to decrease after the 3650th episode,
and it cannot prevent policy parameters from diverging further. In contrast, a
clear converging trend of SM-RAC can be witnessed in Figure 6.5 towards the
critical point R̄, suggesting the higher reliability of SM-RAC compared to that
of RAC.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Number of Training Episodes

0

50

100

150

200

250

300
Average Critic Value Per Training Episode

SMRAC RAC

A
v

e
ra

g
e

 C
ri

ti
c
 V

a
lu

e

Figure 6.5: Average of the absolute values generated from the value function
learned by RAC and SM-RAC at every 50 episodes on the Mountain Car prob-
lem.

As in Figure 6.6, the apparent difference can be easily identified the fact that
SM-RAC performs significantly better than RAC. This fact is supported by the
significance test where the p-value is 0.0145.

The correlation analysis based on the results collected by RAC on the Moun-
tain Car problem is presented in Figure 6.7. This analysis also indicates that
the strong positive correlation exists in-between the learning reliability and the
learning effectiveness of RAC, as demonstrated by the correlation coefficient

190 CHAPTER 6. RELIABLE AND FLEXIBLE VFL FOR PDS

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Number of Training Episodes

-65

-60

-55

-50

-45

-40

-35

A
v
e
ra

g
e

 C
u

m
u
la

ti
v
e

 R
e
w

a
rd

s

Average Cumulative Rewards Per Training Episode

SMRAC RAC

Figure 6.6: Average value function learned by RAC and SM-RAC at every 50
episodes on the Mountain Car problem.

 Correlation Matrix

-1 -0.5 0 0.5 1

Reliability

-55 -50 -45 -40 -35 -30

Effectiveness

0

0.2

0.4

0.6

0.8

-55

-50

-45

-40

-35

-30
-0.74

-0.74

R
e
li
a
b

ili
ty

E
ff

e
c
ti
v
e
n

e
ss

Figure 6.7: Correlation between the learning effectiveness and the learning reli-
ability of RAC on the Mountain Car problem.

equals to -0.74.

6.5. RESULTS AND DISCUSSION 191

6.5.2 Discussion on Results of GCFA-RAC

We will discuss the experimental results on three benchmark problems sepa-
rately. Here, we only focus on comparisons of learning performances obtained
by RAC under different generalization level.

Discussion on Results of GCFA-RAC in Puddle World

To compare the performance differences among various settings of ν, the aver-
age steps to reach the goal region upon using the policies learned through the
proposed algorithm is presented in Figure 6.8. As seen from Figure 6.8, near-
optimal policies can be learned successfully whenever ν ∈ [0.9, 2.0]. On the
other hand, CASE-0.5 and CASE-0.7 failed to solve this problem satisfactorily.
Among all the results presented in Figure 6.8, CASE-1.5 appears to achieve the
best performance by observation (i.e. on average 19.2 steps to reach the goal
region). In comparison, for CASE-1.0 (i.e. original Algorithm 6.3.2), the average
steps to reach the goal region is 46.4 after 10,000 learning episodes have been
completed. A t-test is performed in between CASE-1.0 and CASE-1.5, and it
produces a p-value of 0.10, insufficient to prove that CASE-1.5 is significantly
better. However, we found that the problem is solved successfully by CASE-1.5
100% of the time. For CASE-1.0, the problem is solved on only 94% of the trials.
This observation suggests that CASE-1.5 can solve the problem more reliably.

Discussion on Results of GCFA-RAC in Cart Pole

To compare the learning performances, the average ξ and the average balancing
steps (i.e., the duration for the pole to be balanced continually) are presented in
Figure 6.9 and Figure 6.10. It can be observed in Figure 6.9 that, in compari-
son to other cases, during a long learning period from 3000 training episodes
to the end, CASE-1.5 can manage to bring the pole closer to the upright posi-
tion on average. For example, at 3000 training episodes, the average ξ achieved
by CASE-1.5 is -0.01. In comparison, CASE-1.0 can only manage to achieve on
average of -0.07 for ξ. However, this observed performance difference is not ver-
ifiable through statistical tests (perhaps more repeated tests are to be performed

192 CHAPTER 6. RELIABLE AND FLEXIBLE VFL FOR PDS

0 2000 4000 6000 8000 10000
Number of Training Episodes

0

200

400

600

800

1000

1200

A
ve

ra
ge

S
te

ps
ν = 0.5

ν = 0.7

ν = 0.9

ν = 1.0

ν = 1.1

ν = 1.5

ν = 2.0

Figure 6.8: Average steps to the goal region of the Puddle World problem (ν =

1.0 is the original RAC).

in order to reveal significant differences between CASE-1.0 and CASE-1.5).

0 2000 4000 6000 8000 10000
Number of Training Episodes

−0.1

0.0

0.1

0.2

A
ve

ra
ge

A
ng

le
(R

ad
ia

ns
)

ν = 0.5

ν = 0.7

ν = 0.9

ν = 1.0

ν = 1.1

ν = 1.5

ν = 2.0

Figure 6.9: Average ξ on the Cart Pole problem (ν = 1.0 is the original RAC).

On the other hand, by checking the average balancing steps in Figure 6.10,
we found that most of the cases can solve this problem reasonably well. The
only case that falls apart is when ν = 2.0, suggesting that the value for ν cannot
significantly differ from 1.0.

6.5. RESULTS AND DISCUSSION 193

0 2000 4000 6000 8000 10000
Number of Training Episodes

0

20

40

60

80

100

120
A

ve
ra

ge
S

te
ps

ν = 0.5

ν = 0.7

ν = 0.9

ν = 1.0

ν = 1.1

ν = 1.5

ν = 2.0

Figure 6.10: Average balancing steps on the Cart Pole problem (ν = 1.0 is the
original RAC).

Discussion on Results of GCFA-RAC in Heating Coil

Figure 6.11 displays the learning effectiveness (i.e., average errors) of the algo-
rithm with different ν (from 0.5 to 2.0) as being performed on the Heating-Coil
Problem. Similar to evaluations on other benchmark problems, CASE-1.5 main-
tains the lowest average deviation with a decreasing trend from start to fin-
ish in comparison with other cases. In the end, it reaches 1.57 degree whereas
CASE-1.0 only learns to reduce the average error to 1.68 degrees. However,
the statistical significance is not attained between CASE-1.0 and CASE-1.5 with
the p-value 0.11. In fact, regardless of the values of ν, the algorithm does not
satisfactorily resolve the problem, as even the lowest degree temperature differ-
ence (1.57 degree) obtained so far is still not acceptable for a real-world HVAC
system. Perhaps, a fine-tuning process for meta parameters (e.g., learning rate)
may be required to ensure the learning effectiveness.

194 CHAPTER 6. RELIABLE AND FLEXIBLE VFL FOR PDS

0 2000 4000 6000 8000 10000
Number of Training Episodes

1.0

1.2

1.4

1.6

1.8

2.0

2.2

E
rr

or

ν = 0.5

ν = 0.7

ν = 0.9

ν = 1.0

ν = 1.1

ν = 1.5

ν = 2.0

Figure 6.11: The average error (i.e., average deviation) between the output tem-
perature Tao and the target temperature Td (ν = 1.0 is the original RAC) on the
Heating-Coil problem.

6.6 Chapter Summary

In this chapter, we have successfully achieved the goal of developing for stable,
flexible and accurate critic learning in an AC algorithm. More specifically, we
investigated both the impacts of critic learning reliability and the effects of gen-
eralized compatible function on the learning effectiveness of a particular PGS
algorithm – RAC.

Experimental results have confirmed the effectiveness of both SM-RAC and
GCFA-RAC. By conducting experiments with SM-RAC, we can confidently an-
swer the two research questions (Q1 and Q2) presented in Section 6.1.1. Re-
garding Q1, we found that SM-RAC outperformed RAC on two benchmark
problems significantly, yet neither algorithm has obtained the theoretical best
performances shown in [43]. In fact, to achieve the best performance, a fine-
tuning process for hyper-parameters must be conducted. To answer Q2, we
have adopted the correlation analysis on the RAC algorithm on two benchmark
problems. The correlation coefficients are respectively -0.87 and -0.74, clearly
indicating a strong positive correlation between learning reliability and learn-
ing performance. Regarding GCFA-RAC, our experimental evaluation clearly

6.6. CHAPTER SUMMARY 195

Table 6.4: The final episode performance comparison of different ν values (i.e.,
0.5, 0.7, 0.9, 1.0, 1.1, 1.5, 2.0) on three benchmark problems (i.e., Cart Pole, Pud-
dle World and Heating Coil).

ν/Problems Cart Pole Heating Coil Puddle World

0.5 10650.12±2472.31 -1471.94±577.65 -20.87±45.07
0.7 11048.34±2120.16 -1454.68±681.98 -1.39±35.14
0.9 10884.25±2406.71 -1672.25±801.01 9.00±23.54
1.0 10287.91±2750.27 -1537.19±576.76 8.32±24.42
1.1 11199.29±3364.35 -1704.35±832.52 14.23±5.46
1.5 11432.56±3380.95 -1608.01±701.52 15.01±3.20
2.0 8474.00±5418.03 -1590.10±596.38 13.52±8.38

shows that there exists a strong correlation between the degree of generalization
in (6.19) and the learning effectiveness as well as reliability. Whenever we set ν
in (6.19) to a proper value, e.g. 1.5, clear improvements on learning performance
and reliably can be witnessed.

With the development of SM-RAC, this chapter shows that stable critic
learning and learning effectiveness are strongly correlated. Moreover, we show
that the adapted sandpile model can be effectively utilized for improving critic
learning reliability in AC algorithms. These findings shed new lights on the
future development of AC algorithms.

With the development of GCFA-RAC, this chapter shows the possibility
of using generalized compatible features for value function approximation.
GCFA-RAC shows the potential of achieving effective and reliable RL through
using generalized compatible features and compatible functions. It invites the
research community to re-investigate the meaning of compatible value function
under the general AC framework.

This chapter does not pay strong attention to state features. Similar to many
existing research works, the state features are manually designed in this chap-
ter which is often a tedious task even for domain experts. With the aim of
effectively extracting useful state features automatically, the next chapter will
develop innovative evolutionary algorithms for automated feature extraction.

196 CHAPTER 6. RELIABLE AND FLEXIBLE VFL FOR PDS

Chapter 7

Enhancing Policy Direct Search via
Automated Evolutionary Feature
Learning

In this chapter, we aim at answering the research question Q(4) presented in
Section 1.2 to achieve the research objective O(4) in Section 1.3. As discussed
in the previous chapter, Actor-Critic (AC) Algorithms have proven effective-
ness on tackling difficult Reinforcement Learning (RL) tasks, where the critic
model defines the value function learner whereas the actor model defines the
policy [121, 215]. Both models share the same collection of state features. Such
features are typically extracted from the raw environmental inputs. However,
most of existing AC algorithms focus on improving the critic learning via var-
ious gradient-descent algorithms without significantly enhancing the feature
extraction process. It is often assumed that good state features can be designed
by experienced domain experts, which is usually time-consuming and error-
prone [26, 52, 232]. Recently, the issue has seemed to be mitigated due to the
progress of deep representation learning where features are expected to be au-
tomatically learned through deep network structure [26]. However, the prede-
termination of the network structure requires the injection of prior knowledge
which is human-biased [152].

In order to address the issue and further improve the effectiveness of PGS,

197

198CHAPTER 7. ENHANCING PDS VIA AUTOMATED EVOLUTIONARY FL

we develop two new PGS algorithms based on automated evolutionary fea-
ture learning. First, we propose to use NeuroEvolution, in particular, Neu-
roEvoluion with Augmenting Topology (NEAT) [206], which can evolve Neu-
ral Networks’ topologies that are suitable to extract useful features, to automate
the feature extraction process. Following the idea, we develop a new algorithm
called NEAT with Regular Actor-Critic (NEAT+RAC). Second, NEAT+RAC is
further generalized further to construct NEAT with PGS (NEAT+PGS) with im-
proved sample efficiency and effectiveness. With the development of the two
algorithms, we successfully achieved three contributions:

1. With NEAT+RAC, we demonstrate the suitability of NEAT for automated
feature learning in conjunction with RAC. The resulted algorithm (i.e.,
NEAT+RAC) is capable of learning not only useful state features but also
good policies to tackle complex RL problems.

2. While developing NEAT+PGS, we propose a new three-stage learning
scheme that can clearly separate feature learning and policy learning, al-
lowing effective knowledge sharing and learning among multiple concur-
rently learning agents.

3. Under the framework of NEAT+PGS, various PGS algorithms can be
seamlessly integrated with NEAT for training policy networks with deep
structures to achieve effective and sample efficient RL.

The experiments have been conducted on two benchmark control problems (i.e.,
Cart Pole and Mountain Car) and six benchmark Atari game playing tasks (i.e.,
Asteroids, Breakout, Freeway, Seaquest, SpaceInvaders, and TimePilot). Results
of the experiments have shown that,

• NEAT+RAC is significantly more effective than NEAT in terms of learning
performance. The learned features through NEAT on one learning prob-
lem can be reused to improve the effectiveness of RAC on solving related
learning problems.

• NEAT+PGS is more effective and more sample efficient than NEAT and
three state-of-the-art Deep Reinforcement Learning (DRL) algorithms

7.1. INTRODUCTION 199

(i.e., Trust Region Policy Optimization (TRPO) [189], Policy learning by
weighting exploration with the returns (POWER) [117], Advantage Actor-
Critic (A2C) [56]).

7.1 Introduction

Many existing AC algorithms assume that the policy (i.e., actor) can be math-
ematically described through a linear function of multiple numerical state fea-
tures. Accordingly, the critic is often modeled through another linear function of
compatible state features. In [215], Sutton discovered an important relationship
between the critic and the actor such that the compatible state features can be
uniquely derived from the state features for the actor. Driven by this mathemat-
ical framework, many effective AC algorithms have been proposed, including
Regular Actor-Critic (RAC) [31], Natural Actor-Critic (NAC) [170, 112] and so
forth [79, 52, 168].

For all these algorithms, it is taken for granted that suitable state features are
immediately accessible during reinforcement learning. However, the validity
of this assumption is often under challenge in practice. As a matter of fact,
researchers found that, for effective RL, these state features must be carefully
designed, usually with the support of domain experts. Obviously, engineering
useful state features is a time-consuming and error-prone procedure [150, 165,
26, 232]. Even for experienced domain experts, it is difficult to predetermine
suitable state features accurately [236, 26]. This difficulty increases the chance
of using inappropriate state features, where important state features may be
overlooked, resulting in serious deterioration in learning performance.

7.1.1 Chapter Goals

The overall goal of the chapter is to develop new algorithms to improve the
learning effectiveness and sample efficiency of existing PGS algorithms with the
help of automated evolutionary feature learning. To achieve this goal, we first
extend RAC with a new NEAT based automated feature learning component,
resulting in the development of the NEAT+RAC algorithm. Next, we further

200CHAPTER 7. ENHANCING PDS VIA AUTOMATED EVOLUTIONARY FL

improve the effectiveness and sample efficiency with the development of the
NEAT+RAC algorithm that features the use of an innovative three-stage learn-
ing scheme and various cutting-edge DRL algorithms. In this chapter, we aim
to achieve four research objectives with the development of NEAT+RAC and
NEAT+PGS:

1. (NEAT+RAC) To develop a new method to automatically extract suitable
state features through Neural Networks (NN) evolved by NEAT and uti-
lize state features extracted by the evolved NNs in RAC for effective policy
search.

2. (NEAT+RAC) To evaluate the effectiveness of NEAT-RAC on two bench-
mark small-dimensional problems, and to examine the usefulness (i.e., re-
usability) of the feature learned by NEAT-RAC on one learning problem
in improving the effectiveness of RAC on a related learning problem.

3. (NEAT+PGS) To design a three-stage learning scheme that jointly accom-
modates NEAT based automated feature learning with various PGS algo-
rithms for effective policy learning.

4. (NEAT+PGS) To assess the effectiveness and sample efficiency of
NEAT+PGS on large-scale RL problems particularly Atari game playing
tasks.

7.1.2 Chapter Organization

The chapter is organized as follows. Session 7.2 presents the two proposed
algorithms, NEAT+RAC and NEAT+PGS. Next, Section 7.3 describes the de-
sign of the experiments including descriptions on hyper-parameters settings
and experiment design. Following that, results and discussions are given in
Section 7.4. The chapter is summarized in Section 7.5.

7.2. THE PROPOSED ALGORITHMS — NEAT+RAC AND NEAT+PGS 201

7.2 The Proposed Algorithms - NEAT+RAC

and NEAT+PGS

The chapter develops two new PGS algorithms enhanced by NEAT based fea-
ture learning, i.e., NEAT based Feature Learning enhanced Regular Actor-
Critic (NEAT+RAC) and NEAT based Feature Learning enhanced Policy Gra-
dient Search (NEAT+PGS). We first propose NEAT+RAC to demonstrate the
effectiveness of using evolutionary automated feature learning for a conven-
tional PGS algorithm – RAC. Afterward, we propose a generalized algorithm
NEAT+PGS by adopting a three-stage learning scheme to enable knowledge
sharing among learning agent. NEAT+PGS is expected to achieve better effec-
tiveness and sample efficiency in comparison to both NEAT and NEAT+PGS.

7.2.1 NEAT based Feature Learning enhanced Regular Actor-

Critic (NEAT+RAC)

In this section, we propose the NEAT+RAC algorithm to tackle RL prob-
lems. Firstly, we present the overall design of NEAT+RAC. Next, we describe
NEAT+RAC in detail. Lastly, we discuss the new characteristics of NEAT+RAC
in comparison to existing RL algorithms including NEAT and RAC.

Overall Design of NEAT+RAC

Figure 7.1 shows an overall design of our NEAT+RAC algorithm. As shown
in the figure, NEAT+RAC evolves a population of RL learning agents, P =

{A1, . . . , Ap}. Each agent Ai consists of three components: an NN ~φ(~s) ∈ Rz,
a parameter vector for value function ~ωi, and a parameter vector for policy ~θi.
Based on the extracted features ~φ(~s), the value function in each agent is approx-
imated as,

V π(~s) ≈ ~ωπT · ~φ(~s), (7.1)

202CHAPTER 7. ENHANCING PDS VIA AUTOMATED EVOLUTIONARY FL

Policy

Value Function

Neural
Network

NEAT+RAC

...Learning
Agent

(individual)

Learning
Agent

(individual)

Learning
Agent

(individual)

State Action

Reward

TD Error

(6.1)

(6.5)

(6.2)

NEAT RAC

Figure 7.1: The overall design of NEAT+RAC.

and is learned following the reducing direction of Temporal Difference (TD)
error at every t time when the agent reaches a new state at t+ 1, i.e.,

δπt = rt+1 + γV π(~st+1)− V π(~st). (7.2)

Additionally, the policy for action selection is formulated as,

π~θ(a|~s) =
1

σ
√

2π
e−

(a−µ)2

2σ2 , (7.3)

where µ = ~θT · φ(~s). σ = 1.0 is used to control the level to explore new actions.
Note that, π at the RHS of (7.3) is the circumference ratio.

In association with (7.1), (7.2) and (7.3), the updating rule for value function
parameters is,

~ωπt+1 ← ~ωπt + αtδ
π
t
~φ(~st), (7.4)

and the rule for policy parameters is

~θt+1 ← ~θt + βtδ
π
t Φ(~s, a), (7.5)

respectively. Note, αt and βt are the learning rates, and Φ(~s, a) = ∇~θ ln π(~s, a) =
at−~θ·~φ(~st)

σ2 · ~φ(~st) [215].

7.2. THE PROPOSED ALGORITHMS — NEAT+RAC AND NEAT+PGS 203

NEAT based Feature Learning enhanced Regular Actor-Critic

NEAT+RAC is designed with four learning stages, namely initialization, evolu-
tion, evaluation, and termination.

Initialization

The initialization stage of NEAT+RAC is to initialize a population with p learn-
ing agents (i.e., individuals). For the NN in each agent, its inputs and outputs
are defined as states ~s and extracted state features ~φ(~s) respectively. Addition-
ally, its input nodes are directly connected to its output nodes without any hid-
den nodes, and weights of each NN are randomly initialized. For the critic and
actor model in each agent, the value function parameters and policy parame-
ters are initialized to ~ω0 and ~θ0 respectively. Note, ~ω0 and ~θ0 are vectors with
arbitrary values. This stage is described in Algorithm 7.2.1.

Algorithm 7.2.1 NEAT+RAC Initialization
Require: p: population size, d: state dimension, z: feature dimension
Ensure: P : a population of learning agents

1: function INITIALIZATION(p, d, z:)
2: P []← new array of size p
3: for k = 1, 2, ..., p do
4: P [k].~ω ← ~ω0

5: P [k].~θ ← ~θ0

6: P [k].N ← INIT NETWORK(d, z)
7: P [k].N.fitness← 0 . See [206]
8: end for
9: return P

10: end function

Evolution

NEAT+RAC evolves a new population of agents by performing two sequential
tasks according to Section 7.2.1. The first task is to evolve p NNs ({~φ1, . . . , ~φp})

204CHAPTER 7. ENHANCING PDS VIA AUTOMATED EVOLUTIONARY FL

based on the standard evolutionary operators of NEAT defined in [206]. The
second task is to initialize ~ωi and ~θi to~0 for every agentAi in the new population.
This ensures a fair evaluation across all agents. This algorithmic description of
this state is given in Algorithm 7.2.2.

Algorithm 7.2.2 NEAT+RAC Evolution
Require: P : a population of learning agents, p: population size, mn: add node

mutation rate, ml: add link mutation rate, mw: weight mutation rate
Ensure: P : a reproduced population of learning agents

1: function EVOLUTION(P , p, mn, ml, mw)
2: P ′[]← new array of size p
3: for k = 1, 2, ..., p do
4: P ′[k].~ω ← ~ω0

5: P ′[k].~θ ← ~θ0

6: P ′[k].N ← BREED NET(P [].N) . See [206]
7: if RANDOM() < mn then
8: ADD NOTE MUTATION(P ′[k].N) . See [206]
9: end if

10: if RANDOM() < ml then
11: ADD LINK MUTATION(P ′[k].N) . See [206]
12: end if
13: if RANDOM() < mw then
14: WEIGHTS MUTATION(P ′[k].N) . See [206]
15: end if
16: P ′[k].N.fitness← 0

17: end for
18: return P ′

19: end function

Evaluation

The evaluation stage of the NEAT+RAC has two objectives: one is to compute
the fitness value for a single individual, and the other is to find good policies.

7.2. THE PROPOSED ALGORITHMS — NEAT+RAC AND NEAT+PGS 205

The fitness value of each individual is directly computed by averaging total re-
wards obtained by the learning agent over all episodes. Using an average value
can help reduce the variance as rewards are collected in a stochastic environ-
ment. To search for the good policies, we use the RAC to learn the critic and
actor models for an individual from its continuous interactions with the envi-
ronment. This stage is presented in Algorithm 7.2.3.

Termination

The termination stage manages the stop criteria for the learning process of
NEAT+RAC. To stop the feature extraction process, we define two stop crite-
ria: the first is to stop when the predefined maximum number of generations
is reached, and the second is when the fitness values of all individuals do not
improve over ten generations. To cease the policy search process, we set up
the maximumly allowed learning episodes for an RL agent to interact with an
environment. Each episode is composed of multi interaction steps, and it termi-
nates at the situations when, either the predefined maximum number of steps is
reached, or the target RL problem is solved (see Section ??). A full algorithmic
description for NEAT+RAC is given in Algorithm 7.2.4.

7.2.2 NEAT based Feature Learning enhanced Policy Gradient

Search (NEAT+PGS)

This section presents our new NEAT+PGS learning scheme in detail. We firstly
provide an overview of the three-stage learning scheme. Next, we give detailed
algorithmic descriptions of all key functions involved.

An Overview of NEAT+PGS

NEAT+PGS is proposed with the aim of achieving three design objectives: (O1)
feature learning, and policy learning should be wholly separated and supported
by their learning techniques; (O2) the knowledge obtained through learning,

206CHAPTER 7. ENHANCING PDS VIA AUTOMATED EVOLUTIONARY FL

Algorithm 7.2.3 NEAT+RAC Evaluation
Require: P : a population of learning agents, p: population size, eg: maximum

training episodes per generation, T : maximum training steps per episode,
α: value function learning rate, β: policy learning rate, R̃: total rewards

Ensure: P : a population of learning agents
1: function EVALUATION(P , p, eg, T , α, β)
2: for k = 1, 2, ..., p do
3: R̃← 0

4: for j = 1, 2, ..., eg do
5: ~st ← ~s0

6: for t = 0, 1, . . . , T − 1 do
7: at ∼ π~θ(a|~st) . See (7.3)
8: Take action at, observe reward rt+1 and new state ~st+1

9: δt ← rt+1 + γ~ωTt · ~φ(~st+1)− ~ωTt · ~φ(~st) . See (7.2)
. Note: ~φ = P [k].N , ~ωt = P [k].~ω, ~θt = P [k].~θ

10: ~ωt+1 ← ~ωt + αδt · ~φ(~st) . See (7.4)
11: ~θt+1 ← ~θt + βδt · Φ(~st, at) . See (7.5)
12: R̃← R̃ + rt+1

13: if TERMINAL-STATE(~st+1) then
14: break
15: end if
16: end for
17: end for
18: P [k].N.fitness← R̃

eg

19: end for
20: return P

21: end function

in particular, the trained policy network, must be shared across all learning
agents to avoid unnecessary wastage of training samples; and (O3) policy net-
work training should be realized with the flexibility of using arbitrary PGS al-
gorithms.

7.2. THE PROPOSED ALGORITHMS — NEAT+RAC AND NEAT+PGS 207

Algorithm 7.2.4 NEAT+RAC Algorithm
Require: an MDP 〈S,A,P ,R, γ〉, p: population size, g: number of generations,

eg: maximum training episodes per generation, T : maximum training steps
per episode, d: state dimension, z: feature dimension, α: value function
learning rate, β: policy learning rate, ~ω0: initial value function parameters,
~β0: initial policy parameters

Ensure: P : the population of individuals, N∗: the optimal Neural Network
(φ(~s)), ~ω∗: the best value function parameter, ~θ∗: the best policy parameter

1: Initialization:
2: P ← INITIALIZATION(p, d, z, ~ω0, ~β0) . See Section 7.2.1
3: Learning Process:
4: for i = 1, 2, ..., g do
5: P ← EVALUATION(P , p, eg, T , α, β) . See Algorithm 7.2.3
6: if i < g then . Stop evolution at the final generation
7: P ← EVOLUTION(P) . See [206]
8: end if
9: end for

10: k∗ ← argmaxk(P [k].N.fitness)

11: N∗ ← P [k∗].N

12: ~ω∗ ← P [k∗].~ω

13: ~θ∗ ← P [k∗].~θ

14: return P , N∗, ~ω∗, ~θ∗

Sensor
Inputs

Feature
Network

Feature
Outputs

Policy
Network

Control

Input
Layer

Hidden
Layer

Action
Probabilities

ActionInput
Layer

Output
Layer

Hidden
Neurons
(No layer)

Figure 7.2: An Overview on the NN Architecture of NEAT+PGS.

208CHAPTER 7. ENHANCING PDS VIA AUTOMATED EVOLUTIONARY FL

A Neural Network Architecture

Figure 7.2 depicts the NN architecture to be adopted by NEAT+PGS for RL. As
shown, the architecture features a sequential combination of one feature net-
work and one policy network. At any time, the raw observation from the learn-
ing environment (i.e., current memory status of an Atari game) is provided first
as the state input to the feature network which subsequently produces a group
of high-level features to be further fed into the policy network. The policy net-
work then generates stochastic action selection decisions (i.e., the probability
of selecting each optional action) that an agent can use to determine one ac-
tion which will be performed finally in the learning environment, resulting in a
sampled transition to a new environment state. An instant reward is also gen-
erated as the immediate feedback for continued RL. In NEAT+PGS, the policy
network has a fixed topology which will be determined before learning starts.
The feature network, on the other hand, has the flexibility for its topology to be
evolved by NEAT.

A Three-Stage Design for Feature and Policy Learning

To meet all of our design objectives, NEAT+PGS introduces three consecutive
learning stages as briefly explained below:

(1) Interim Policy Search Stage: This is the first learning stage with the purpose
of quickly pre-training a single interim policy network. This trained policy net-
work establishes preliminary discrimination overall alternative actions that can
be performed at any environment state based on a randomly created feature net-
work. It presents a stable starting point and guides the subsequent evolution of
feature networks in the second learning stage. Without the policy network pre-
training, all high-level features produced by an evolved feature network cannot
impose a clear preference of performing any desirable actions. The overall RL
performance will be affected as a consequence.

(2) NEAT based Feature Learning Stage: This is the second learning stage, at
the beginning of which the pre-trained interim policy network is distributed to
a group of learning agents, each of which maintains a separate feature network.
The population of such feature networks is further evolved through NEAT to

7.2. THE PROPOSED ALGORITHMS — NEAT+RAC AND NEAT+PGS 209

produce eventually one feature network, which can achieve the best learning
performance upon using it together with the interim policy network. The high-
level features created by this feature network is hence considered suitable for
tackling the RL problem.

(3) Policy Gradient Search Stage: This is the third learning stage. At this stage,
based on the best feature network evolved by NEAT, the policy network is
trained again using a state-of-the-art PGS algorithm that is expected to achieve
clearly better performance than both NEAT and PGS algorithms when the entire
learning process finishes.

The three-stage design of NEAT+PGS enables complete separation of feature
learning and policy learning, thereby realizing design objective (O1) mentioned
previously. Meanwhile, all feature networks evolved by NEAT in the second
learning stage share the same goal of enhancing the effectiveness of the same
interim policy network. Therefore, by breaking the independence constraint
among learning agents in NEAT+RAC, objective (O2) is fulfilled in NEAT+PGS.
Moreover, in the third learning stage, we directly treat high-level features pro-
duced by the trained feature network as the state inputs to the policy network.
This approach permits arbitrary PGS algorithms to be employed for continued
training of the policy network and gives our learning scheme the highest flex-
ibility of using many cutting-edge RL technologies, as required by objective
(O3).

Algorithmic Description of NEAT+PGS

In this subsection, we present the high-level algorithmic description of
NEAT+GPS in Algorithm 7.2.5, followed by detailed algorithmic descriptions
of each learning stage in Algorithm 7.2.6 and Algorithm 7.2.7 respectively. In
Algorithm 7.2.6, we present a general description of PGS algorithms which will
be employed to train policy networks in the interim policy search stage as well
as the policy gradient search stage. In Algorithm 7.2.7, we adopt the standard
implementation of NEAT [206] for evolving feature networks.

210CHAPTER 7. ENHANCING PDS VIA AUTOMATED EVOLUTIONARY FL

Algorithm 7.2.5 NEAT+PGS
Require: an MDP 〈S,A,P,R, γ〉, n1: the number of interim policy search iter-

ations, n2: the number of feature learning iterations (generations), n3: the
number of policy gradient search iterations, ~θ0: the randomly initial policy
parameters, p: the population size, P []: a population of NNs

1: Initialization:
2: ~θ ← ~θ0

3: P []← INIT POPULATION(S,A, p)
4: Interim Policy Search:
5: φ0 ← RANDOM(P [])

6: ~θ ← PGS(~θ, φ0, n1) . See Algorithm 7.2.6
7: NEAT based Feature Learning:
8: φ∗ ← EVOLVE(~θ, P [], p, n2, mn, ml, mw) . See Algorithm 7.2.7
9: Policy Gradient Search:

10: ~θ∗ ← PGS(~θ, φ∗, n3) . See Algorithm 7.2.6
11: return ~θ∗, φ∗

Algorithm 7.2.6 Policy Gradient Search
Require: an MDP 〈S,A,P,R, γ〉, n: the number of learning iterations, T : the

horizon, l: maximum length for one trajectory, M : the batch size, T : sample
repository

1: function PGS(~θ, φ, n)
2: for i = 1, 2, ..., n do
3: for t = 1, 2, ..., T/l do
4: T ← ROLLOUT(~θ, φ) . Store T samples into sample repository

(See [117]).
5: end for
6: Update Policy Parameters ~θ based on the principle of the chosen PGS

algorithm with a batch of M samples from T .
7: end for
8: return ~θ∗ . Return a learned policy
9: end function

7.3. DESIGN OF EXPERIMENTS 211

Algorithm 7.2.7 NEAT Feature Learning
Require: P : a population of learning agents, p: population size, mn: add node

mutation rate, ml: add link mutation rate, mw: weight mutation rate
Ensure: P : a reproduced population of learning agents

1: function EVOLVE(~θ, P , p, n2, mn, ml, mw)
2: for i = 1, 2, ..., n2 do
3: P ′[]← new array of size p
4: for k = 1, 2, ..., p do
5: P ′[k]← BREED NET(P [])
6: if RANDOM() < c then
7: P ′[k], P ′[k′]← SELECT(P ′[])

8: P ′[k + 1]← CROSS OVER(P ′[k], P ′[k′])
9: if RANDOM() < mn then ADD NOTE(P ′[k])

10: if RANDOM() < ml then ADD LINK(P ′[k])
11: if RANDOM() < mw then WEIGHTS MUTATE(P ′[k].φ)
12: P ′[k].f itness← ROLLOUT(~θ, P ′[k])

13: end for
14: end for
15: return P ′[k∗] . Return the fittest feature network
16: end function

7.3 Design of Experiments

This section provides general settings of the experiments for NEAT+RAC
and NEAT+PGS respectively. We first discuss the experimental settings for
NEAT+RAC including experiment setups as well as the design of the experi-
ment in Section 7.3.1. Following the same structure, we discuss the experimen-
tal settings for NEAT+PGS in Section 7.3.2.

212CHAPTER 7. ENHANCING PDS VIA AUTOMATED EVOLUTIONARY FL

7.3.1 Experiments on NEAT+RAC

Experiment Setup

Here, we introduce experiment setups for evaluating NEAT+RAC. Firstly, we
discuss the stochastic policy implementation for RAC algorithm. Secondly, we
explain specifically the feature design for RAC. Lastly, we show the hyper-
parameter configurations.

Stochastic Policy Implementation for RAC

We choose a Gaussian distribution to explicitly represent the stochastic policy
used for NEAT+RAC, as the distribution has already been well-studied for cop-
ing with continuous problems [168]. Based on this policy, the action a to be
taken at any state ~s is defined by the probability density given in (7.3). In (7.3),
we have µ = ~θT · φ(~s), and σ is a hyper-parameter used to control the level to
explore new actions, which is fixed to 1.0 for all experiments. Note that, π at the
RHS of (7.3) is the circumference ratio.

State Feature Design for RAC

To compare learning performances between NEAT+RAC and RAC so as to
show the usefulness of features learned automatically through evolutionary
algorithms, we implement the common discretization technique [126] for state
feature design with respect to all benchmark problems. One important reason
to choose discretized features is that of their simplicity, making the technique
widely applicable to many continuous RL problems [212]. Meanwhile, it avoids
providing too much domain knowledge to the learning algorithms so that we
can focus on verifying the usefulness of NEAT to learn state features automati-
cally.

The discretization technique we adopted in this chapter is so-called equal-
width discretization [126]. Within the range of one dimension of the state input,
we split it into n bins. For a given state input, a discretized feature vector will
be a zero vector with a length of n expect that one dimension will be marked
as one where the value of the dimension falls in the particular bin. This dis-

7.3. DESIGN OF EXPERIMENTS 213

cretization will be performed on the rest of dimensions of the state input as
well. Afterward, the obtained feature vectors are concatenated together to form
the final feature vector representing the raw state input. For example, in Moun-
tain Cart problem, the state input has two dimensions of which the position of
the car x ∈ [−1.2, 0.6] and the velocity of the car ẋ ∈ [−0.07, 0.07]. Let us sup-
pose that the number of bins for each dimension are set equally to 5 and a given
input (−1.1, 0). Then, we can have a sub feature vector for the dimension x as
[1, 0, 0, 0, 0], and the sub feature vector for ẋ as [0, 0, 1, 0, 0]. Accordingly, we can
obtain the final feature vector for the given input as [1, 0, 0, 0, 0, 0, 0, 1, 0, 0].

Hyper-Parameter Configuration

Some important hyper-parameter settings are summarized as follows. Firstly,
for hyper-parameters of the NEAT and NEAT component of NEAT+RAC, we
adopt identical settings reported in [232] where the effectiveness of NEAT with
these settings has been verified on many benchmark problems. Secondly, we
choose the commonly used settings (α = 0.1, β = 0.01, γ = 0.99) reported in
[31, 167] for RAC algorithm and RAC component of NEAT+RAC. These hyper-
parameter settings are used for experiments on all benchmark problems pre-
sented in Table 7.1.

Table 7.1: The meta-parameter settings for NEAT+RAC across all experiments.

Algorithm Problems
Meta Parameters
α β γ z

NEAT+RAC
Mountain Car 0.1 0.01 0.99 20

Cart Pole 0.1 0.01 0.99 20

Experiment Design for NEAT+RAC

For NEAT+RAC, driven by the second research goal in Section 7.1.1, we will
conduct two different types of experiments. In the first type of experiment, we

214CHAPTER 7. ENHANCING PDS VIA AUTOMATED EVOLUTIONARY FL

evaluate the performance of NEAT+RAC on each benchmark problem to un-
derstand the effectiveness of the algorithm. The performance is measured by
the number of steps for balancing the pole, or the number of steps to drive the
car to a mountaintop. To identify any significant performance difference, for
each benchmark problem, we conduct 30 independent runs for all algorithms.
Among all runs, the population size and the number of generations are set to
100 and 100 respectively. For the Mountain Car problem, we perform 1000
learning episodes with 200 steps in each episode and 25 independent testing
episodes where each has 200 testing steps. For the Cart Pole problem, we per-
form 200 learning steps in each of the 5000 learning episodes. Also, we conduct
1000 testing steps in each of 25 independent testing episodes. All independent
tests are performed by the best learning agent of each generation.

In the second type of experiment, we intend to evaluate the usefulness of
the state features on a relevant problem. We hypothesize that the learned use-
ful state features can be reused on a related problem to improve the learning
performance. For this purpose, in our feature evaluation, we firstly maintain
the feature extractor of the current best learning agent by NEAT+RAC (i.e., the
NN evolved by NEAT) on Cart Pole. Next, we modify the Cart Pole problem to
obtain a relevant problem. The original Cart Pole problem starts at the same po-
sition [0.0, 0.0, 0.0, 0.0] for every episode, whereas the modified version is set to
start at random initial positions. Lastly, we adopt the RAC learning algorithm
with the pre-trained feature extractor on the modified Car Pole problem to de-
termine whether any noticeable improvement in learning performance can be
witnessed.

7.3.2 Experiments on NEAT+PGS

Experiment Setup

Here, we present experiment settings for NEAT+PGS, including the network
topology and hyper-parameters configuration.

7.3. DESIGN OF EXPERIMENTS 215

Network Topology

The NN topologies of policy and feature networks for competing algorithms
are given in Table 7.2. The table does not specify NEAT’s topology which is
actually automatically evolved. In addition, the topology of feature network in
NEAT+PGS is also expected to be automatically evolved by NEAT. All feature
networks are configured to output 32-dimension high-level features. We have
examined three opinions: 32, 64 and 128. They do not appear to have any signif-
icant impact on final performance. PGS algorithms employed a single NN with
32 by 32 hidden neurons, the first hidden layer and the second layer can be con-
sidered as the feature network and policy network respectively. Note that, for
all networks, we use the same activation function “RELU” that can help reduce
the likelihood of vanishing gradients [73].

Table 7.2: Topology Setups for Policy Networks and Feature Networks.

Network Topology Layer NEAT+A2C NEAT+POWER NEAT+TRPO A2C POWER TRPO
Feature Input 128 128 128 128 128 128

Network Hidden Evolved by NEAT 32 32 32
Structure Output 32 32 32 32 32 32

Policy Input 32 32 32 32 32 32
Network Hidden 32 32 32 32 32 32
Structure Output Number of Actions

Hyper-Parameter Configuration

Hyper-parameter settings for all algorithms have been specified in Table 7.3.
For all PGS algorithms, we follow the same settings in [189]. For NEAT, we
follow the setting of a work published on GitHub 1 which has applied NEAT to
some RAM-based Atari games with reasonably good performance.

Regarding the implementations, we adopt OpenAI-GYM 2 [39] that imple-

1https://github.com/HackerHouseYT/OpenAI-NEAT
2https://github.com/openai/gym

216CHAPTER 7. ENHANCING PDS VIA AUTOMATED EVOLUTIONARY FL

Table 7.3: Hyper-parameter Configurations for PGS algorithms.

Hyper-Parameters A2C POWER TRPO
policy step size (α) 2.5 × 10−6 2.5 × 10−6 2.5 × 10−6

discount factor (γ) 0.99 0.99 0.99
max size of sample repository 40,000 40,000 40,000

batch size (M) 10,000 10,000 10,000
max trajectory length (l) 10,000 10,000 10,000

interim policy training iterations (n1) 1 1 1
policy gradient search iterations (n3) 1,000 1,000 1,000

conjugate gradient iterations 10 - -
GAE factor (λ) 0.95 - -

optimization epoch (ε) 5 5 5

Table 7.4: Hyper-parameter Configurations for NEAT.

HyperParameters NEAT
population size (p) 100

max generations (n2) 100
add node rate (mn) 0.02

add connection rate (ml) 0.5
weight init mean 0.0

weight init std 1.0
weight mutate rate (mw) 0.46

weight mutate power 0.825
activation function relu
crossover rate (c) 0.1

ments ALE, NEAT-python 3 that implements NEAT, and rllab 4 [59] that imple-
ments PGS algorithms including A2C, POWER and TRPO.

3https://github.com/CodeReclaimers/neat-python
4https://github.com/rll/rllab

7.3. DESIGN OF EXPERIMENTS 217

Experiment Design for NEAT+PGS

For NEAT+PGS, driven by the fourth research goal in Section 7.1.1, we choose
seven algorithms for evaluation. Firstly, as NEAT+PGS is an improvement to
NEAT, we choose NEAT as the baseline for comparison. Besides, HyperNEAT
is not taken into account due to weak performance on RAM-based Atari Games
in comparison to NEAT reported in [91]. Next, in order to examine the effective-
ness of NEAT+PGS, we select three PGS algorithms, including A2C, POWER,
and TRPO, for policy training in NEAT+PGS, resulting in three new algorithms:
NEAT+A2C, NEAT+POWER, NEAT+TRPO. Note that, NEAT+Q can also be
implemented by adopting our scheme of combining NEAT feature network and
Q learning network. We do not include NEAT+Q in experiments because of two
reasons: 1) Deep Q learning is reported to perform poorly in comparison to the
above cutting-edge PGS methods in the literature [189, 56]. 2) In contrast to Q
learning, feature learning is more critical to PGS methods because feature net-
work is shared by both critic and actor. Thus, to investigate the effectiveness
of feature learning for PGS algorithms, it is not necessary to further employ the
learned features in the Q-learning algorithm. In addition, NEAT+RAC is not
necessary to be included in experiments, as it cannot be used to train NNs with
deep structures thus not suitable for our experiments. Other than this, we use
A2C instead which can be viewed as an enhanced version of RAC.

In the experiments, we track learning performances in terms of average
long-term cumulative rewards per episode that an algorithm can obtain after
being trained on every 10,000 samples. In total, each algorithm has been trained
for 10,000,000 samples. For NEAT as a population-based algorithm, we have
put a counter to track the number of samples used for fitness evaluation. As
long as the counter reaches a multiple of 10,000, we will select the best known
NN in the current population, and its testing performance will be recorded.
Regarding NEAT+PGS, we use a total of 10,000 samples in the interim policy
search stage. In fact, we have experimentally found that more samples for pre-
training the interim policy will not lead to better performance. Moreover, the
purpose of this stage is only to let the interim policy distinguish different ac-
tions. Thus, we do not require a great number of samples here. Furthermore,

218CHAPTER 7. ENHANCING PDS VIA AUTOMATED EVOLUTIONARY FL

Table 7.5: The final episode performance comparison of two algorithms (i.e.,
NEAT, and NEAT-RAC-PGS) on two benchmark problems (i.e., Cart Pole and
Mountain Car).

Algorithms/Problems Cart Pole Mountain Car

NEAT-RAC-PGS 1000.00±0.00 128.82±9.98
NEAT 85.60±13.41 135.68±11.19

in the NEAT base feature learning stage, we allow exact 2,000,000 samples to
be used for evolving good feature networks. Lastly, we will consume another
7,990,000 samples to train policy network in the PGS stage.

7.4 Results and Discussion

This section presents and discusses the experimental results for both
NEAT+RAC and NEAT+PGS respectively. To achieve the first two research
goals stated in Section 7.1.1, we firstly show the results of NEAT+RAC to an-
alyze the effectiveness of the algorithm as well as the usefulness of feature ex-
tracted by NEAT feature extraction process. Next, to achieve the last two re-
search goals in Section 7.1.1, we focus on the results of NEAT+PGS to compare
with NEAT, A2C, TRPO and PoWER regarding learning effectiveness and sam-
ple efficiency.

7.4.1 Discussion on Results of NEAT+RAC

The experimental results of NEAT+RAC are presented and analyzed in this sub-
section. We first analyze the learning effectiveness of NEAT+RAC contrary to
NEAT on the two benchmark problems. Next, we discuss the usefulness of
learned features by NEAT+RAC.

7.4. RESULTS AND DISCUSSION 219

0 20 40 60 80 100
Generations

120

140

160

180

200

A
ve

ra
ge

 S
te

ps

Average Balancing Steps Per Learning Episode

NEAT-RAC-PGS
NEAT

(a) Mountain Car

0 20 40 60 80 100
Generations

0

200

400

600

800

1000

A
ve

ra
ge

 S
te

ps

Average Balancing Steps Per Learning Episode

NEAT-RAC-PGS
NEAT

(b) Cart Pole

Figure 7.3: The comparison of learning performance of NEAT+RAC and NEAT
on two benchmark problems: (a) displays the averaging steps to reach the goal
region on Mountain Car (the smaller the better), (b) displays the averaging steps
to balance the pole to the upright position on Cart Pole (the larger the better).

Learning Effectiveness Evaluation

To evaluate the learning effectiveness, we present the learning performances ob-
tained by NEAT+RAC and NEAT on the Mountain Car problem in Figure 7.3(a)
and on the Cart Pole problem in Figure 7.3(b) respectively.

As shown in Figure 7.3(a), after a certain period, both NEAT+RAC and
NEAT achieve reasonably good performance (around 120 steps), which is con-
sistent with the results of NEAT reported in [232]. The two high peaks of
NEAT+RAC do not imply that it sometimes performs worse than NEAT, as no
significance can be found after the 53rd generation according to a statistical test.
Meanwhile, owing to the capability of NEAT+RAC to make more effective use
of learned features, it eventually achieved better performance than NEAT.

Figure 7.3(b) evidently shows that NEAT+RAC outperforms NEAT with av-
eraging 1000 steps after the 10th generation. As a matter of fact, NEAT achieves
the desirable performance (approximately 100 steps) according to the OpenAI
GYM benchmark [79]. Without comparing it with NEAT+RAC, NEAT should
be treated as an effective algorithm.

220CHAPTER 7. ENHANCING PDS VIA AUTOMATED EVOLUTIONARY FL

Table 7.6: The final episode performance comparison of two algorithms (i.e.,
NEAT, and NEAT-RAC-PGS) on two benchmark problems (i.e., Cart Pole and
Mountain Car).

Algorithms/Problems Cart Pole Modified Cart Pole

RAC with Evolved NN based Features 311.86±407.35 399.34±467.98
RAC without Evolved NN based Features 89.26±22.04 94.46±11.91

Feature Usefulness Evaluation

0 2000 4000 6000 8000 10000
Learning Episodes

0

100

200

300

400

500

A
ve

ra
ge

 S
te

ps

Average Balancing Steps Per Learning Episode

RAC with Evolved NN based Features
RAC with Discretization based Features

(a) Cart Pole

0 2000 4000 6000 8000 10000
Learning Episodes

0

100

200

300

400

500

A
ve

ra
ge

 S
te

ps

Average Balancing Steps Per Learning Episode

RAC with Evolved NN based Features
RAC with Discretization based Features

(b) Modified Cart Pole

Figure 7.4: The comparison of learning performance of RAC with two different
feature extractors (an evolved NN feature extractor and a predefined discretized
feature extractor) on the two related problems (see Section 7.3.1): (a) displays
learning performances obtained on the standard Cart Pole problem, (b) displays
learning performances obtained on the modified Cart Pole problem.

To evaluate the usefulness of features, in Figure 7.4, we compare the learn-
ing performances of RAC with two different feature extractors on the standard
Cart Pole problem and the modified Cart Pole problem respectively. The first
feature extractor is a learned NN by the NEAC component of a NEAT+RAC
learning agent on the standard Cart Pole with the highest fitness value. The sec-
ond feature extractor is the widely-used discretization feature extractor where
each dimension of the environment state is discretized into 20 bins as described

7.4. RESULTS AND DISCUSSION 221

in [212].

Figure 7.4(a) reveals that, on the standard Cart Pole problem, RAC with
evolved NN features performs significantly and consistently better than RAC
with discretized features after the 2370th generation. On the other hand, when
the learning environment is changed to the modified Cart Pole problem, we are
still able to find a similar observation in Figure 7.4(b) that RAC with evolved
NN features outperforms RAC with discretized features after the 2214th gen-
erations. Statistical tests reject the null hypothesis after the time points. The
RAC with discretized features achieves averaging 100 steps on both problems,
which can be regarded as effective as reported in [166]. These results suggest
that the features learned by NEAT+RAC on one problem can not only be used to
solve the original problem, but also be employed to solve similar but different
problems.

Nevertheless, on both problems, the RAC with evolved NN features ap-
pears to fluctuate. Actually, the step-based learning process of NNs has already
been reported unstable in the literature [81], because step-based learning always
picks up the recent state transitions for estimating gradients, which may bring
bias into gradient estimation resulting in the unstable updating. A possible so-
lution to address the issue is the use of experience replay, but this is not the
focus of this thesis, which will be investigated in the future.

The reason that evolved NN features are superior to discretized features is
given below. Firstly, the real-world environment (e.g., Cart Pole) often exhibits
high non-linearity, NN is well known as suitable non-linear models in compar-
ison to other models. Secondly, the raw environment input is continuous, some
essential information, that is useful for finding good policies, may be lost dur-
ing the discretization. On the other hand, NN is capable of smoothly producing
continuous values as high-level features. More importantly, NEAT can evolve
both weights and structures for NNs, which further provides higher chances to
find suitable state features.

222CHAPTER 7. ENHANCING PDS VIA AUTOMATED EVOLUTIONARY FL

Table 7.7: The final episode performance comparison of seven algorithms (i.e.,
NEAT, NEAT+A2C, NEAT+POWER, NEAT+TRPO, A2C, POWER and TRPO)
on six Atari games (i.e., Asteroids, Breakout, Freeway, Seaquest, SpaceInvaders,
and TimePilot).

Algorithms/Problems Asteroids Breakout Enduro Freeway Seaquest SpaceInvaders TimePilot

A2C 3295.74±112.59 8.48±1.22 0.01±0.01 3.53±3.59 452.29±145.01 740.16±48.70 8502.00±125.96
NEAT 1253.75±498.32 2.89±2.99 27.67±8.69 21.44±3.50 216.11±97.84 397.78±224.94 4041.25±1686.53

NEAT+A2C 3162.75±255.49 9.25±0.34 24.72±15.32 26.45±1.63 719.80±49.71 784.72±25.49 9143.50±430.04
NEAT+POWER 2977.58±342.94 7.71±1.17 27.49±17.42 26.12±1.29 737.75±28.31 703.50±48.70 9618.00±776.70
NEAT+TRPO 3139.31±186.63 8.11±1.32 31.38±21.50 26.34±1.28 733.88±54.43 744.48±47.00 9225.00±802.58

POWER 2783.25±216.33 9.13±0.99 0.00±0.00 3.80±5.79 387.62±135.22 736.06±35.94 8667.92±145.77
TRPO 2940.38±263.73 8.78±1.09 0.32±1.10 5.71±6.13 360.78±138.78 705.16±60.39 8668.00±273.24

7.4.2 Discussion on Results of NEAT+PGS

In this subsection, we are interested in a discussion on the results of NEAT+PGS.
At first, we present the learning effectiveness evaluations of NEAT+PGS con-
trary to NEAT, A2C, TRPO and PoWER. Afterward, we analyze the sample
efficiency of NEAT+PGS in particular comparison to the state-of-the-art PGS
algorithms.

Evaluations on Learning Effectiveness

We depict learning curves for all seven algorithms on six different Atari
games in Figure 7.5. We can see that NEAT+PGS (including NEAT+A2C,
NEAT+POWER, NEAT+TRPO) is generally more effective than other com-
peting algorithms especially NEAT on all six Atari games. In particular,
NEAT+PGS apparently outperforms all competing algorithms on Seaquest. On
Asteroids and TimePilot, after using the trained feature networks after 2,000,000
samples, NEAT+PGS can clearly learn faster than PGS algorithms that use pre-
defined policy networks, and eventually, surpass these algorithms.

Interestingly, we have also found that, on Freeway, the cutting-edge PGS al-
gorithms have all failed. This result is agreeable with recent findings in [191].
On the other hand, NEAT+PGS manages to perform well and eventually sur-
pass NEAT. This evidence further shows the importance of using NEAT for fea-

7.4. RESULTS AND DISCUSSION 223

0 2 4 6 8 10
Million Steps

0

500

1000

1500

2000

2500

3000

A
ve

ra
ge

T
ot

al
R

ew
ar

ds

(a) Asteroids

0 2 4 6 8 10
Million Steps

0

2

4

6

8

A
ve

ra
ge

T
ot

al
R

ew
ar

ds

(b) Breakout

0 2 4 6 8 10
Million Steps

0

5

10

15

20

25

A
ve

ra
ge

T
ot

al
R

ew
ar

ds

(c) Freeway

0 2 4 6 8 10
Million Steps

0

200

400

600

800

A
ve

ra
ge

T
ot

al
R

ew
ar

ds

(d) Seaquest

0 2 4 6 8 10
Million Steps

0

200

400

600

800

A
ve

ra
ge

T
ot

al
R

ew
ar

ds

(e) SpaceInvaders

0 2 4 6 8 10
Million Steps

0

2000

4000

6000

8000

10000

A
ve

ra
ge

T
ot

al
R

ew
ar

ds

(f) TimePilot

Figure 7.5: Average rewards per 10,000 steps obtained by NEAT, NEAT+A2C,

NEAT+POWER, NEAT+TRPO, A2C, POWER and TRPO on six Atari games, including

Asteroids, Breakout, Freeway, Seaquest, SpaceInvaders, and TimePilot. As being high-

lighted with red color, for NEAT+PGS, the NEAT based feature learning stage stops at

two million steps (i.e., 2,000,000 samples).

224CHAPTER 7. ENHANCING PDS VIA AUTOMATED EVOLUTIONARY FL

ture learning. In addition, NEAT+PGS algorithms performed competitively as
PGS algorithms on Breakout. For NEAT+PGS, we found this is because that
NEAT cannot find useful feature networks for the problem for only learning
over 2,000,000 samples. In fact, NEAT itself also performed poorly on this game
for learning 10,000,000 samples. Even though, NEAT+PGS can still manage to
achieve similar or even slightly better performance than PGS, indicating the
strong resilience of NEAT+PGS on low-quality feature networks.

Note that, we are aware of that NEAT can actually achieve state-of-the-art
performance on some Atari games as reported in [91, 38]. However, the purpose
of developing NEAT+PGS is not to make the best scores on different games but
to understand the effectiveness of feature learning.

Based on these findings, we can conclude that NEAT+PGS is a generally ef-
fective approach. In NEAT+PGS, feature learning and policy learning are mutu-
ally supplementary processes. Particularly, even one process fails on a problem,
and the other process can cope and ensure final good performance. When both
processes are effective, NEAT+PGS can achieve clearly better performance.

Analysis on Sample Efficiency

Algorithm Asteroids Breakout Freeway Seaquest SpaceInvaders TimePilot
NEAT+A2C 246.44 ± 30.05 0.69 ± 0.04 2.39 ± 0.27 62.75 ± 5.96 61.99 ± 3.03 756.26 ± 51.60

NEAT+POWER 257.79 ± 24.42 0.59 ± 0.10 2.42 ± 0.18 63.95 ± 4.81 57.03 ± 4.95 800.66 ± 62.90
NEAT+TRPO 258.38 ± 20.80 0.62 ± 0.10 2.43 ± 0.22 64.96 ± 6.21 59.37 ± 4.43 773.14 ± 77.21

NEAT 131.82 ± 47.85 0.02 ± 0.03 2.28 ± 0.25 16.33 ± 5.96 42.04 ± 22.62 370.95 ± 205.36
A2C 246.52 ± 28.37 0.73 ± 0.11 0.30 ± 0.32 37.17 ± 15.80 64.62 ± 4.96 779.89 ± 29.44

POWER 245.75 ± 21.10 0.78 ± 0.09 0.33 ± 0.55 33.63 ± 13.37 64.83 ± 4.58 778.77 ± 23.58
TRPO 259.85 ± 20.80 0.76 ± 0.10 0.54 ± 0.61 32.08 ± 13.18 61.96 ± 5.74 789.64 ± 26.32

Table 7.8: Sample Efficiency comparison of NEAT+PGS against NEAT, A2C,
POWER and TRPO.

Sample efficiency can be understood as the learning speed of an algorithm
which is measured in terms of the number of samples used for achieving good
performance. Given this, we choose the following learning speed metric to mea-

7.5. CHAPTER SUMMARY 225

sure sample efficiency, i.e.,

Score =
1000∑
t=0

1

10000
Rt, (7.6)

where t is the tracking point (i.e., 10,000 samples), Rt is the average total reward
obtained after learning 10,000 samples across different trials. With the metric,
higher learning speed implies higher sample efficiency. Note that, the metric
can be intuitively interpreted as the area under the curve.

In Table 7.8, we present the sample efficiency comparisons measured by
using (7.6), and top three results for each game are highlighted. Evidently,
NEAT+PGS algorithms achieved highlighted results in most cases. For cases
on Freeway and Seaquest, the superiority of NEAT+PGS to PGS algorithms is
observably significant. For other cases, NEAT+PGS achieves competitive re-
sults to those PGS Baselines (even on Breakout). These findings indicate that
NEAT+PGS can be more sample efficient than NEAT and PGS algorithms on
RAM-based Atari games.

7.5 Chapter Summary

In this chapter, we have the primary goal to develop new techniques with evolu-
tionary feature learning to enhance the effectiveness of existing PGS algorithms.
We have successfully achieved the goal by developing two new PGS algorithms
enhanced by automated feature learning based on NEAT. The first algorithm
is called NEAT+RAC, which is designed to integrate a popular PGS algorithm,
i.e., RAC, with NEAT for automated feature extraction. The second algorithm is
called NEAT+PGS, where NEAT based feature learning is designed to support
a newly proposed three-state scheme that enables effective knowledge sharing
among multiple concurrently learning agents. Moreover, NEAT+PGS general-
izes NEAT+RAC by replacing the policy search component with modern PGS
methods that support policies with deep structures.

The development of NEAT+RAC in this chapter showed that the integra-
tion between RAC and NEAT brings two main advantages. First, different

226CHAPTER 7. ENHANCING PDS VIA AUTOMATED EVOLUTIONARY FL

from most existing approaches that only concentrate on automated feature ex-
traction, the proposed NEAT+RAC algorithm can simultaneously find better
policies for the RL problems resulting in improved sample efficiency. Second,
compared to traditional policy search methods, NEAT+RAC can identify useful
state features that can be further reused in related learning problems. Experi-
ment results confirmed both of the two advantages of the proposed algorithm.
This work opens new possibilities of exploiting other cutting-edge AC-PGS al-
gorithms based on the same design principle of NEAT+RAC.

However, we also find that NEAT+RAC may fail to perform effectively on
large-scale problems due to two reasons. First, the original RAC is designed
to train simple policies represented as linear functions of policy parameters.
They can easily lose effectiveness while encountering complicated problems
that require non-linear and powerful models with deep structures. Second,
in the original design of NEAT+RAC, feature learning and policy learning are
heavily mingled in a single process, preventing easy sharing of learned knowl-
edge across multiple agents. These issues become major obstacles hindering
the learning effectiveness as well as the sample efficiency of NEAT+RAC when
solving large-scale problems.

Motivated by the limitations of NEAT+RAC for large-scale RL problems,
we have developed NEAT+PGS that seamlessly integrates NEAT based feature
learning and advanced PGS algorithms. In comparison to NEAT+RAC, this
scheme possesses two major advantages. First, a clear separation between fea-
ture learning and policy learning is realized in NEAT+RAC for effective knowl-
edge sharing and learning among agents so as to significantly improve the
sample efficiency. Second, a promising way of integrating NEAT with various
cutting-edge PGS algorithms is developed to enable effective training of deep
policy networks on large-scale RL problems. The experimental results also con-
firmed these advantages for NEAT+PGS.

In the future, we will further investigate the reliability of NEAT+PGS to
hyper-parameter settings. It is also interesting to investigate the effectiveness of
using other suitable evolutionary methods for training feature networks. Possi-
ble methods can be HyperNEAT, Evolutionary Strategies (Es), Covariance Ma-
trix Adaptation Evolutionary Strategy (CMA-ES) and so forth. These methods

7.5. CHAPTER SUMMARY 227

may be more suitable for IMAGE-based Atari game playing tasks rather than
RAM-based Atari game playing tasks. Additionally, we can explore possibili-
ties of using other advanced PGS algorithms such as Actor-Critic with Experi-
ence Replay (ACER) [229], Actor-Critic using Kronecker-Factored Trust Region
(ACKTR) [240], and Proximal Policy Optimization (PPO) [191]. By using these
techniques as mentioned earlier, we are expecting to tackle IMAGE-based Atari
games.

228CHAPTER 7. ENHANCING PDS VIA AUTOMATED EVOLUTIONARY FL

Chapter 8

Conclusions

In the thesis, we have successfully achieved our overall goal, which is to de-
velop new effective Policy Direct Search (PDS) algorithms to tackle difficult RL
problems through different techniques. Firstly, the goal was to utilize historical
gradients for accurate policy gradient estimation through Primal-Dual Approx-
imation technique. Next, it was to enhance Covariance Matrix Adaption Evo-
lutionary Strategy (CMA-ES) based global search, and Proximal Policy Opti-
mization (PPO) based local search for better balancing between exploration and
exploitation. Thirdly, it aimed at, for PDS, stabilizing value function learning
through Sandpile Model and generalizing the compatible condition to support
flexible value function learning through q-logarithm. Lastly, it was to enhance
a variety of PDS algorithms through seamless integration with NeuroEvolution
based automated feature learning. Based on the understanding of general RL
obtained from an intensive review, we have decomposed this central objective
into four sub-objectives corresponding to four research questions:

(Q1) How can we improve learning effectiveness of step-wise learning based
Policy Gradient Search on solving difficult control problems by better uti-
lizing historical step gradients?

(Q2) How can we achieve state-of-the-art performance by better balancing
the exploration-exploitation trade-off with the use of Evolutionary Algo-
rithms and PGS algorithms?

229

230 CHAPTER 8. CONCLUSIONS

(Q3) How can we enable a more reliable and accurate value function learning
to further boost PGS for tackling difficult RL problems?

(Q4) How can we effectively find useful features via automated feature learn-
ing to facilitate PDS on particular RL problems?

To answer these questions, we first have investigated the challenges/limitations
of existing PGS algorithms. By utilizing different techniques, we have devel-
oped eight new PGS algorithms in the thesis that are capable of addressing the
challenges/limitations. We have empirically evaluated the proposed new algo-
rithms in comparison to the related PDS algorithms on a range of RL tasks from
the control/locomotion benchmarks to the Atari game playing tasks.

The remainder of the chapter first summarizes the major conclusions drawn
from the theoretical and empirical evidence presented in preceding contribution
chapters. Next, it examines the possible directions for future work.

8.1 Major Conclusions

Through substantial improvement of several existing PDS algorithms, this the-
sis has achieved (or even surpassed) the state-of-the-art performance on several
benchmark problems. More specifically, Chapter 4 demonstrates the proper uti-
lization of historical gradients enables more accurate estimation of policy gradi-
ents and hence significantly improves the efficacy of PGS. Following that, Chap-
ter 5 further shows that, with the support of EAs, cutting-edge PGS can better
balance the exploration-exploitation to achieve state-of-the-art performances.
Next, Chapter 6 shows that the effectiveness of traditional Actor-Critic algo-
rithms can be substantially enhanced through stabilizing the critic (i.e., value
function) learning and generalizing compatible features. Finally, Chapter 7 pro-
vides pieces of evidence that the learning performance of existing PGS algo-
rithms can be further improved by using useful features automatically extracted
from raw state inputs based on an evolutionary feature learning process.

8.1. MAJOR CONCLUSIONS 231

8.1.1 Effective Policy Direct Search through Primal-Dual Ap-

proximation

Chapter 4 has successfully answered the research question Q(1) and addressed
the research objective O(1) stated in Chapter 1 by proposing three Primal-Dual
Approximation (PDA) based PGS algorithms. The proposed algorithms im-
prove the learning effectiveness of traditional step-wise learning based pol-
icy gradient search algorithms. The improvement is achieved by adopting the
primal-dual approximation technique to obtain more precise policy gradient
estimation with the support of cumulative historical gradients.

With the development of the algorithms in the chapter, we have obtained
the following three findings:

• We have demonstrated that our PDA based PGS is a generalized frame-
work for step learning based PGS algorithms. Based on this new frame-
work, new learning rules have been successfully developed to transform
three existing step-wise PGS algorithms (i.e., Regular Actor-Critic, Natu-
ral Actor-Critic with Fisher Information Matrix and Natural Actor-Critic
with Advantage Parameters) into their respective new counterparts (i.e.,
Dual Regular Actor-Critic, Dual Natural Actor-Critic with Fisher Informa-
tion Matrix and Dual Natural Actor-Critic with Advantage Parameters).

• We have theoretically proved that all three PDA based PGS algorithms
can eventually converge under suitable conditions. The proof extends the
coverage of convergence guarantee to algorithms that rely on historical
gradients, to the best of our knowledge, which has never been explored
so far in the literature.

• We have empirically discovered that 1) PGS on linear parametric policies
with step learning strategy can be equivalently effective but more sam-
ple efficient in comparison to episodic learning strategy based PGS al-
gorithms, such as PPO with linear policies; 2) the proposed PDA based
PGS algorithms can perform significantly better than their original coun-
terparts.

232 CHAPTER 8. CONCLUSIONS

8.1.2 Proximal Evolutionary Strategy for Sample Efficient Pol-

icy Direct Search

Chapter 5 has successfully achieved the state-of-the-art performance as ques-
tioned in Q(2) and the objective O(2) in Chapter 1 by developing an EA (i.e., Co-
variance Matrix Adaptation Evolutionary Strategy (CMA-ES)) based deep pol-
icy search algorithm named Proximal Evolutionary Strategy (PES). In compari-
son to traditional PGS algorithms, the proposed algorithm has made three tech-
nical improvements. It firstly adopts a layer-wise training strategy for CMA-ES
to improve time/computation efficiency for training large Deep Neural Net-
works (DNNs). Secondly, its fitness evaluation is constructed on a proximal
performance lower bound based surrogate model that significantly reduces the
sample cost. Thirdly, it incorporates a new gradient-based local search tech-
nique to improve the effectiveness of the evolutionary policy search.

Through developing the PES algorithm, we have discovered the following
three findings:

• We have empirically shown that layer-wise learning can significantly re-
duce the computational cost for policy search without sacrificing on per-
formance. The finding justifies the first time in literature the possibility of
using CMA-ES to train large-scale deeply-layered networks.

• We have also found that PES can be more sample efficient than the ad-
vanced Evolutionary Algorithms, such as CMA-ES itself, OpenAI-ES, and
Uber-GA.

• We have demonstrated that local search enhanced learning (PES) can
further boost the learning effectiveness by fine-tuning the best solution
evolved by CMA-ES global search.

8.1.3 Reliable and Flexible Value Function Learning for Policy

Gradient Search

In Chapter 6, the research question Q(3) and the research objective O(3) in Chap-
ter 1 have been successfully addressed by developing two new Actor-Critic

8.1. MAJOR CONCLUSIONS 233

(AC) algorithms. In the first algorithm, we adopted a so-called Sandpile Model
(SM) with self-organizing behaviors into PGS to stabilize the critic learning.
With the SM, the value function can be learned in a self-adaptive manner that
prevents the learning from divergence. In the second algorithm, we generalized
the logarithm function used for constructing the compatible functions resulting
in flexible policy gradient estimation and effective PGS. Particularly, with the
generalization, we provide a flexible family of compatible functions which can
be applied to any PGS that follows the Policy Gradient Theorem (PGT).

By developing the two new algorithms, we have identified the following
three findings:

• We have demonstrated that the Sandpile Model enables self-adaptive and
stable learning of value functions. Reliable critic learning can further im-
prove the learning effectiveness of policy learning on a commonly used
PGS algorithm such as RAC.

• We have also identified and quantified, the strong relationship between
the reliability of critic learning and the effectiveness of policy learning.
This finding is essential for the future development of effective powerful
AC algorithms.

• We have experimentally discovered that the learning effectiveness of PGS
with generalized compatible functions can be noticeable, under suitable
conditions, improved in comparison to algorithms without using gener-
alized compatible functions. This finding shows that any PGS algorithms
that rely on standard compatible functions for critic learning can benefit
from our generalized new family of compatible functions.

8.1.4 Enhancing Policy Direct Search via Automated Evolu-

tionary Feature Learning

Chapter 7 has successfully addressed the research question Q(4) and achieved
the research objective O(4) in Chapter 1 by developing two new PGS algo-
rithms seamlessly integrated with a NeuroEvolution based feature learning. In

234 CHAPTER 8. CONCLUSIONS

the chapter, we first developed a PGS algorithm based on the commonly used
RAC algorithm by adopting a NEAT based feature extraction process, which is
named NEAT+RAC. Following that, NEAT+RAC is further generalized to vari-
ous PGS algorithm (i.e., NEAT+PGS) with better sample efficiency and learning
effectiveness. This is achieved by clearly separating feature learning from policy
learning.

With the development of NEAT+RAC and NEAT+PGS, we have obtained
the following findings:

• With the development of NEAT+RAC, we have experimentally demon-
strated that NeuroEvolution, as exemplified by NEAT, is capable of au-
tomating feature learning to extract useful features. Based on the extracted
features, the effectiveness of RAC can be further improved on various
complex RL problems.

• With the development of NEAT+PGS, we have found that, with the newly
designed three-stage learning scheme, NEAT+PGS can separate feature
learning from policy learning and achieves effective knowledge sharing
and learning across multiple parallel learning agents.

• With the development of NEAT+PGS, we have also empirically demon-
strated that the learning effectiveness can be further improved by inte-
grating with various PGS algorithms capable of training deep policy net-
works.

8.2 Limitations

Although the thesis has taken great efforts to address some issues existing in the
current literature, we acknowledged some potential limitations which could be
addressed in future research. Here, we identified that three aspects can be fur-
ther improved, i.e., manual network architecture, trial-and-error based hyper-
parameter tuning, and pre-defined reward settings.

8.2. LIMITATIONS 235

8.2.1 Manual Network Architecture

In this thesis, we have adopted commonly used architectures in the literature for
both policy and value function to maintain fair comparisons against baseline al-
gorithms. This may limit the true effectiveness of the algorithms. It is widely ac-
cepted that network architecture plays an important role to achieve effective RL.
For instance, Islam et al. [105] showed that policy network architecture can sig-
nificantly impact results in different PGS algorithms, such as TRPO and DDPG.
However, the architectures used in our research is manually designed, which
may not be able to show the true effectiveness of the algorithms.

8.2.2 Trial-and-Error based Hyper-parameter Tunning

The experiments in the thesis have followed the same conventional hyper-
parameter settings as reported in related literature whose algorithms are used
as baseline algorithms. The hyper-parameter settings also play a significant
role in eliciting the best performance of an RL algorithm. As reported in [96],
the performance of algorithms can be diminished due to poor hyper-parameter
settings, and such settings are often inconsistent in related literature. Though
we have taken efforts to apply trial-and-error approaches to test a range of set-
tings before applying any algorithms, it still has two limitations with regard to
hyper-parameter settings. First, it remains difficult to determine whether the
range we selected is appropriate and has good coverage of suitable settings.
Second, trial-and-error approaches have been widely accepted as a tedious pro-
cess.

8.2.3 Pre-defined Reward Settings

Another limitation of the thesis appears to be the pre-defined settings of reward
schemes for the benchmark problems used in our experiments. Reward settings
have already been shown as a key factor that may significantly affect the exper-
imental results as reported in [59, 96], and a well-learned reward function can
help improve the actual performance of the algorithms [212, 96]. However, it
can be biased to pre-define a reward function which may not cover the true

236 CHAPTER 8. CONCLUSIONS

landscape of the reward scheme of the environment.

8.3 Future Work

Though we have successfully answered the research questions raised in the the-
sis, the thesis apparently could not cover all the possible research directions that
deserve further studies. In this section, we intend to discuss the possible future
work following three directions, namely (1) to improve learning effectiveness
by combining improvements developed in the thesis, (2) to improve the effec-
tiveness by wisely combining model-based PDS with model-free PDS, (3) to im-
prove the effectiveness by developing transferable policies, transferable value
functions or other transferable key elements in RL, (4) to improve the effective-
ness by automating network architecture design and hyper-parameter tuning,
and (5) to improve both learning effectiveness and computational efficiency by
leveraging the cooperative co-evolutionary techniques.

8.3.1 Combining Improvements for Policy Direct Search

The thesis opens many possible directions for improving the effectiveness of
PDS for additional research. Besides exploring deeply into a single direction,
the combination across different directions may also be an effective way to
achieve the primary goal of our research. Combining different improvements
for one particular approach to improving its effectiveness is not new, for ex-
ample, the Rainbow algorithm proposed by Hessel et al. [98] combines six dif-
ferent extensions of the DQN algorithm and empirically shows the significant
improvement on effectiveness. Inspired by this, we can expect the additional
improvements in the learning effectiveness of existing PDS algorithms by com-
bining improvements achieved in the thesis.

In the thesis, we can summarize the technical contributions for boosting PDS
from four aspects:

• In PDA based PGS, We have adopted the PDA technique to construct ef-
fective policy gradient estimations.

8.3. FUTURE WORK 237

• In PES, we have used CMA-ES as global search in conjunction with PPO
based local search to better balance exploration-exploitation trade-off.

• In NEAT+PGS, we have employed NEAT based feature learning in com-
bination with PGS algorithms to automatically extract useful features so
as to further better promote policy search.

• In SM-RAC, we have stabilized value function learning to enable effec-
tive policy learning, and have further generalized compatible functions in
GCFA-RAC to obtain accurate policy gradient estimations.

Some of the improvements listed above can be combined effectively. For ex-
ample, NEAT+PGS can be integrated with PDA based PGS or PES algorithms to
extract useful features as well as to find good policies. Besides, GCFA-RAC can
be generalized to all PGS to achieve better effectiveness. Furthermore, PES can
be combined with PDA based PGS to encourage exploration and retain active
exploitation.

Though it seems straightforward to conduct the combinations across differ-
ent improvements directly in theory, there remain many challenges in practice.
For instance, the formulations of PDA based PGS are derived based on linear
represented policies while being trained via step-wise learning, and therefore
their direct applicability to deep policies is questionable. In consequence, the
combination of PDA based PGS and PES may not be accessible as expected.
Therefore, the study of how to properly combine these improvements and ad-
dress different challenges raised during the combination can be a good direction
to be further explored.

8.3.2 Model-based vs. Model-free

Sample inefficiency is one of the severe obsessions that hinders the practical us-
age of model-free reinforcement learning approaches. The key reason is that
model-free approaches learn from the sampled data with emphasis on the re-
ward scalar but overlooking other important information such as state transi-
tions. The issue can be solved by model-based approaches, which fully use
the sampled data to construct an approximate model of the environment. They

238 CHAPTER 8. CONCLUSIONS

learn the transition function as well as the reward function that is critical to an
MDP. Given the MDP model, one can either learn a value function via dynamic
programming [52] or improve policy by analytically computing the policy gra-
dients rather than inaccurately estimating the policy gradients based on newly
collected environment samples [53].

However, model-based approaches also have limitations. First, they require
substantial computational costs on constructing the model, and hence their ap-
plicabilities usually are restricted to finite and small MDPs [52]. Second, the
goodness of the policy found by model-based approaches may be suboptimal
due to the biases in the learned model.

These issues can be addressed effectively by developing hybrid methods
that can effectively leverage the benefits of both model-based and model-free
approaches. Some recent work has already started some studies in this direc-
tion, such as [19, 175]. However, these works either have only shown prelimi-
nary results on simple RL problems or have only focused on VIS as the model-
free part. Hence, there remains a large room for investigating how to bridge
the gap between model-based and model-free approaches, particularly model-
based PDS and model-free PDS.

8.3.3 Transfer Learning for Policy Direct Search

In Machine Learning, there is another promising sub-field called Transfer
Learning (TL). TL aims to develop methods capable of transferring/reusing the
knowledge learned from a set of source tasks onto a target task [46]. With the
transfer methods, it is expected to improve the learning performance on the
target task. The success of TL has already been widely witnessed in many Su-
pervised Learning tasks, such as recommendation systems, classification tasks,
and so forth [162, 203].

Many research work [181, 100, 203, 46, 124] have already studied the adop-
tion of TL into RL in order to solve difficult RL tasks. These works have
shown that many components in RL, such as policy parameters, state fea-
tures, or reward functions, can be learned via transfer learning rather than from
scratch [181, 100, 203, 46, 124, 236]. In this way, RL algorithms can either have

8.3. FUTURE WORK 239

a good starting point on a new task or reduce sample cost which can be very
expensive in some practical circumstances [236].

In the future, it can be foreseen that some of the algorithmic components of
RL discussed in this thesis can be further improved by using TL. For example,
the transferability of the reusable state features developed in Chapter 7 can be
further investigated. In addition, other algorithmic components improved in
our PGS algorithms, such as policy parameters trained by PES (see Chapter 5)
or value functions learned from SM-RAC (see Chapter 6), can also be learned
via TL. This understanding creates many possibilities for future research.

8.3.4 Automated Network Architecture Design

It is clear that network architecture has important impacts on the effectiveness
of NN model based learning as explained in [92, 230, 97]. It is agreed that signif-
icant architecture engineering is required for developing NN models [174, 137].
Recent research interests in ML domain mainly focus on designing new Net-
work Architecture Search (NAS) algorithms for automatically designing CNN
architecture to solve computer vision tasks such as as [174, 137]. Only a few re-
search work such as [230] briefly touched the impact of architecture design on
the learning effectiveness on solving RL problems. This implies that the topic
can be an interesting and potential research direction worth further investiga-
tion.

In this thesis, to maintain a fair comparison to our competing algorithms,
we have used a 2-layer architecture where each layer contains 32 neurons as
conventionally defined in [191, 189, 135]. The NN model with this architecture
can be sufficient enough to solve the testbeds used in this thesis. However, it
is not clear whether or not this architecture provides the most effective model.
Apparently, the trial-and-error process for the tunning architecture of an RL
model can be very time-consuming and sample inefficient, as each RL model
requires massive interactions to learn to be effective. A possible solution can be
explored for this problem is the combination of TL and NAS. More specifically,
we can search the architecture for an RL model on a simple task, and apply
it to a complex task with the help of TL. In this way, learning effectiveness is

240 CHAPTER 8. CONCLUSIONS

expected to be improved.

8.3.5 Automated Hyper-parameter Tunning

The right choices of hyper-parameters can result in the improvement of learn-
ing performance [96]. Traditionally, such hyper-parameters are either tuned
manually or via a trial-and-error process, which has been proven a tedious and
error-prone process[188]. Recent research has shown that such tunning process
can be automated by using meta-learning concepts [145, 188]. These work has
successfully demonstrated that automated hyper-parameter tunning can fur-
ther improve the effectiveness of solving RL problems.

Given this, to address the limitations of this thesis, we can first apply meta-
learning to learn hyper-parameters for our proposed algorithms. More specif-
ically, we can define the meta-learning process independent to the RL process
as another optimization process as evidenced by in [60]. Different from [60]
where the optimization process is defined as another RL process, we can use
EC approaches instead. Besides, we can also adopt Bayesian Optimization to
avoid trial-and-error approaches to tune the hyper-parameters. Bayesian Opti-
mization has recently applied to machine learning hyper-parameters tunning,
which achieves better performance while requiring fewer iterations than other
methods such as random search.

8.3.6 Cooperative Co-evolution for Policy Direct Search

Cooperative co-evolution is one type of evolutionary algorithms where differ-
ent species represent solution components mutually benefits each other. It aims
at reducing the problem complexity by modularizing each component. By re-
combining other components that are beneficial for solving the task, each com-
ponent is evolved toward a complete solution via measuring its contribution.
Many works have shown that cooperative co-evolutionary approach can out-
perform single population algorithms in many situations, as it is clear to think
that many problems can be decomposed into low-dimensional subspaces which
can be searched by separate species [141].

8.3. FUTURE WORK 241

The cooperative co-evolutionary approaches have already been adopted to
solve difficult RL tasks as evidenced in [245, 75, 235, 107, 108, 163]. These work
particularly have shown that the applicability of cooperative co-evolution on
training NN either at the level of a single neuron or the level of a group of neu-
rons [75]. In line with our layer-wised PES approach in Chapter 5, it is natural
to consider the potential use of cooperative co-evolutionary approach at a layer
level. In this way, weights of different layers can be decomposed as different
populations and can be co-evolved to further improve learning performance.

242 CHAPTER 8. CONCLUSIONS

Bibliography

[1] ABE, N., VERMA, N., APTE, C., AND SCHROKO, R. Cross channel op-
timized marketing by reinforcement learning. In Proceedings of the tenth
ACM SIGKDD international conference on Knowledge discovery and data min-
ing (2004), ACM, pp. 767–772.

[2] ABERDEEN, D. Policy-gradient algorithms for partially observable Markov de-
cision processes. PhD thesis, The Australian National University, 2003.

[3] ALPAYDIN, E. Introduction to machine learning. MIT press, 2009.

[4] ALTMAN, D. G., AND BLAND, J. M. Parametric v non-parametric meth-
ods for data analysis. Bmj 338 (2009), a3167.

[5] AMARI, S.-I. Natural gradient works efficiently in learning. Neural Com-
putation 10, 2 (1998), 251–276.

[6] AMATRIAIN, X. Big & personal: data and models behind netflix recom-
mendations. In Proceedings of the 2nd international workshop on big data,
streams and heterogeneous source Mining: Algorithms, systems, programming
models and applications (2013), ACM, pp. 1–6.

[7] AMERICAN, J. H. S., AND 1992. Genetic algorithms. JSTOR.

[8] ANDERSON, C. W. Approximating a policy can be easier than approxi-
mating a value function. Computer Science Technical Report (2000).

[9] ANDERSON, C. W., HITTLE, D. C., KATZ, A. D., AND KRETCHMAR,
R. M. Synthesis of reinforcement learning, neural networks and PI con-

243

244 BIBLIOGRAPHY

trol applied to a simulated heating coil. Artificial Intelligence in Engineering
11, 4 (1997), 421–429.

[10] ANSCHEL, O., BARAM, N., AND SHIMKIN, N. Averaged-dqn: Variance
reduction and stabilization for deep reinforcement learning. arXiv preprint
arXiv:1611.01929 (2016).

[11] ARAB, A., SCIENCES, A. A. I., AND 2015. An adaptive gradient descent-
based local search in memetic algorithm applied to optimal controller de-
sign. Elsevier 299 (Apr. 2015), 117–142.

[12] ARULKUMARAN, K., DEISENROTH, M. P., BRUNDAGE, M., AND

BHARATH, A. A. A Brief Survey of Deep Reinforcement Learning. IEEE
Signal Process. Mag., 6 (Aug. 2017), 26–38.

[13] BÄCK, T., FOGEL, D. B., AND MICHALEWICZ, Z. Evolution strategies.
Evolutionary Computation (2000), 119–126.

[14] BAGNELL, J. A., AND SCHNEIDER, J. Covariant policy search. In IJCAI
(2003), Citeseer, pp. 1019–1024.

[15] BAGNELL, J. A., AND SCHNEIDER, J. G. Autonomous helicopter control
using reinforcement learning policy search methods. In Proceedings 2001
ICRA. IEEE International Conference on Robotics and Automation (Cat. No.
01CH37164) (2001), IEEE, pp. 1615–1620.

[16] BAIRD, L. Residual algorithms: Reinforcement learning with function ap-
proximation. In Machine Learning Proceedings 1995. Elsevier, 1995, pp. 30–
37.

[17] BAIRD III, L. C., AND MOORE, A. W. Gradient descent for general re-
inforcement learning. In Advances in neural information processing systems
(1999), pp. 968–974.

[18] BAK, P., TANG, C., AND WIESENFELD, K. Self-organized criticality: An
explanation of the 1/f noise. Physical review letters 59, 4 (1987), 381.

BIBLIOGRAPHY 245

[19] BANSAL, S., CALANDRA, R., CHUA, K., LEVINE, S., AND TOMLIN, C.
MBMF: Model-Based Priors for Model-Free Reinforcement Learning.

[20] BAXTER, J., AND BARTLETT, P. L. Direct gradient-based reinforcement
learning. In Circuits and Systems, 2000. Proceedings. ISCAS 2000 Geneva.
The 2000 IEEE International Symposium on (2000), IEEE, pp. 271–274.

[21] BAXTER, J., AND BARTLETT, P. L. Infinite-horizon policy-gradient esti-
mation. 1 15 (2001), 319–350.

[22] BELL, J. Machine Learning. Hands-On for Developers and Technical Pro-
fessionals. John Wiley & Sons, Nov. 2014.

[23] BELLEMARE, M. G., NADDAF, Y., VENESS, J., AND BOWLING, M. The
arcade learning environment: An evaluation platform for general agents.
1 47 (2013), 253–279.

[24] BELLMAN, R. Dynamic programming, vol. 342. Princeton University Press,
1957.

[25] BENBRAHIM, H., AND FRANKLIN, J. A. Biped dynamic walking using rein-
forcement learning. PhD thesis, Elsevier, 1997.

[26] BENGIO, Y., COURVILLE, A., AND VINCENT, P. Representation Learning:
A Review and New Perspectives. IEEE Transactions on Pattern Analysis
and Machine Intelligence 35, 8 (2013), 1798–1828.

[27] BENGIO, Y., LAMBLIN, P., POPOVICI, D., AND LAROCHELLE, H. Greedy
Layer-Wise Training of Deep Networks. NIPS (2006).

[28] BERTSEKAS, D. P., AND TSITSIKLIS, J. N. Neuro-dynamic Programming.
Athena Scientific, 1996.

[29] BHATNAGAR, S. An actor–critic algorithm with function approximation
for discounted cost constrained Markov decision processes. Systems &
Control Letters 59, 12 (2010), 760–766.

246 BIBLIOGRAPHY

[30] BHATNAGAR, S., SUTTON, R. S., GHAVAMZADEH, M., AND LEE, M. In-
cremental Natural Actor-Critic Algorithms. NIPS (2007).

[31] BHATNAGAR, S., SUTTON, R. S., GHAVAMZADEH, M., AND LEE, M. Nat-
ural actor-critic algorithms. Automatica 45, 11 (2009), 2471–2482.

[32] BLATT, D., HERO, A. O., AND GAUCHMAN, H. A convergent incremen-
tal gradient method with a constant step size. SIAM J. Optim. 18, 1 (2007),
29–51.

[33] BORKAR, V. S. Stochastic approximation with two time scales. Systems &
Control Letters 29, 5 (Feb. 1997), 291–294.

[34] BORKAR, V. S., AND KONDA, V. R. The actor-critic algorithm as multi-
time-scale stochastic approximation. Sadhana 22, 4 (1997), 525–543.

[35] BOUTILIER, C., DEAN, T., AND HANKS, S. Decision-theoretic planning:
Structural assumptions and computational leverage. 1 11 (1999), 1–94.

[36] BOYAN, J. A. Technical update: Least-squares temporal difference learn-
ing. Mach Learn 49, 2-3 (2002), 233–246.

[37] BRADTKE, S. J., AND BARTO, A. G. Linear least-squares algorithms for
temporal difference learning. Mach Learn 22, 1-3 (1996), 33–57.

[38] BRAYLAN, A., HOLLENBECK, M., MEYERSON, E., AND MIIKKULAINEN,
R. Frame skip is a powerful parameter for learning to play atari. In Work-
shops at the Twenty-Ninth AAAI Conference on Artificial Intelligence (2015).

[39] BROCKMAN, G., CHEUNG, V., PETTERSSON, L., SCHNEIDER, J., SCHUL-
MAN, J., TANG, J., AND ZAREMBA, W. OpenAI Gym. arXiv (June 2016).

[40] BUSONIU, L., ERNST, D., DE SCHUTTER, B., AND BABUSKA, R. Policy
search with cross-entropy optimization of basis functions. In Adaptive
Dynamic Programming and Reinforcement Learning, 2009. ADPRL’09. IEEE
Symposium on (2009), IEEE, pp. 153–160.

BIBLIOGRAPHY 247

[41] CAMPBELL, M., HOANE JR., A. J., AND HSU, F.-H. Deep Blue. Artificial
Intelligence 134, 1-2 (2002), 57–83.

[42] CARTWRIGHT, J. Roll over, boltzmann. Physics World 27, 05 (2014), 31.

[43] CHEN, G., DOUCH, C. I., AND ZHANG, M. Accuracy-based learning
classifier systems for multistep reinforcement learning: a fuzzy logic ap-
proach to handling continuous inputs and learning continuous actions.
IEEE Transactions on Evolutionary Computation 20, 6 (2016), 953–971.

[44] CHEN, R. Y., SIDOR, S., ABBEEL, P., AND SCHULMAN, J. UCB Explo-
ration via Q-Ensembles. arXiv preprint arXiv:1706.01502 (2017).

[45] COLAS, C., SIGAUD, O., AND OUDEYER, P.-Y. GEP-PG: Decoupling Ex-
ploration and Exploitation in Deep Reinforcement Learning Algorithms.
arXiv preprint arXiv:1802.05054 (2018).

[46] DA SILVA, F. L., AND COSTA, A. H. R. Transfer Learning for Multiagent
Reinforcement Learning Systems. IJCAI (2016).

[47] DAYAN, P., AND HINTON, G. E. Using Expectation-Maximization for
Reinforcement Learning. Neural Computation (1997).

[48] DE BOER, P.-T., KROESE, D. P., MANNOR, S., AND RUBINSTEIN, R. Y. A
Tutorial on the Cross-Entropy Method. Annals of Operations Research 134,
1 (2005), 19–67.

[49] DEGRIS, T., WHITE, M., AND SUTTON, R. S. Off-Policy Actor-Critic.
arXiv (2012).

[50] DEISENROTH, M. P. Efficient Reinforcement Learning Using Gaussian Pro-
cesses. PhD thesis, KIT Scientific Publishing, 2010.

[51] DEISENROTH, M. P., FOX, D., AND RASMUSSEN, C. E. Gaussian Pro-
cesses for Data-Efficient Learning in Robotics and Control. IEEE Trans.
Pattern Anal. Mach. Intell. (2015).

248 BIBLIOGRAPHY

[52] DEISENROTH, M. P., NEUMANN, G., AND PETERS, J. A survey on policy
search for robotics. Foundations and Trends® in Robotics 2, 1–2 (2013), 1–
142.

[53] DEISENROTH, M. P., AND RASMUSSEN, C. E. PILCO - A Model-Based
and Data-Efficient Approach to Policy Search. arXiv (2011).

[54] DEVORE, R., AND KUNOTH, A. Multiscale, Nonlinear and Adaptive Ap-
proximation. Dedicated to Wolfgang Dahmen on the Occasion of his 60th
Birthday. Springer Science & Business Media, Sept. 2009.

[55] DHAR, D. The abelian sandpile and related models. Physica A: Statistical
Mechanics and its Applications 263, 1-4 (1999), 4–25.

[56] DHARIWAL, P., HESSE, C., KLIMOV, O., NICHOL, A., PLAPPERT, M.,
RADFORD, A., SCHULMAN, J., SIDOR, S., WU, Y., AND ZHOKHOV, P.
OpenAI Baselines. Tech. rep., 2017.

[57] DI CASTRO, D., AND MANNOR, S. Adaptive bases for reinforcement
learning. In Joint European Conference on Machine Learning and Knowledge
Discovery in Databases (2010), Springer, pp. 312–327.

[58] DORIGO, M., AND BIRATTARI, M. Ant colony optimization. In Encyclo-
pedia of machine learning. Springer, 2011, pp. 36–39.

[59] DUAN, Y., CHEN, X., HOUTHOOFT, R., SCHULMAN, J., AND ABBEEL,
P. Benchmarking deep reinforcement learning for continuous control. In
Proceedings of the 33rd International Conference on Machine Learning (ICML)
(2016).

[60] DUAN, Y., SCHULMAN, J., CHEN, X., ARXIV, P. B. A. P., AND 2016. RL:
Fast Reinforcement Learning via Slow Reinforcement Learning. arxiv.org.

[61] DUCHI, J. C., AGARWAL, A., AND WAINWRIGHT, M. J. Dual averaging
for distributed optimization: Convergence analysis and network scaling.
IEEE transactions on automatic control 57, 3 (2012), 592–606.

BIBLIOGRAPHY 249

[62] DUCHI, J. C., HAZAN, E., AND SINGER, Y. Adaptive Subgradient Meth-
ods for Online Learning and Stochastic Optimization. Journal of Machine
Learning Research (2011).

[63] EL-FAKDI, A., CARRERAS, M., AND PALOMERAS, N. Direct Policy Search
Reinforcement Learning for Robot Control. CCIA (2005).

[64] ENGELBRECHT, A. P. Computational Intelligence : An Introduction. 1–
630.

[65] EREZ, T., TASSA, Y., AND TODOROV, E. Infinite-Horizon Model Predic-
tive Control for Periodic Tasks with Contacts. Robotics - Science and Sys-
tems (2011).

[66] GEIST, M., AND PIETQUIN, O. Algorithmic survey of parametric value
function approximation. IEEE Transactions on Neural Networks and Learn-
ing Systems 24, 6 (2013), 845–867.

[67] GÉRON, A. Hands-On Machine Learning with Scikit-Learn and Tensor-
Flow. 1–564.

[68] GHAVAMZADEH, M. Variance-Constrained Actor-Critic Algorithms for
Discounted and Average Reward MDPs. arXiv preprint arXiv:1403.6530
(2014).

[69] GHAVAMZADEH, M., AND ENGEL, Y. Bayesian actor-critic algorithms.
In Proceedings of the 24th international conference on Machine learning (2007),
ACM, pp. 297–304.

[70] GIRGIN, S., AND PREUX, P. Basis function construction in reinforce-
ment learning using cascade-correlation learning architecture. In Machine
Learning and Applications, 2008. ICMLA’08. Seventh International Conference
on (2008), IEEE, pp. 75–82.

[71] GIRGIN, S., AND PREUX, P. Feature Discovery in Reinforcement Learning
Using Genetic Programming. EuroGP 4971, Chapter 19 (2008), 218–229.

250 BIBLIOGRAPHY

[72] GLAUBIUS, R., TIDWELL, T., GILL, C., AND SMART, W. D. Real-time
scheduling via reinforcement learning. arXiv preprint arXiv:1203.3481
(2012).

[73] GLOROT, X., BORDES, A., AND BENGIO, Y. Deep Sparse Rectifier Neural
Networks. AISTATS (2011).

[74] GOLES, E., LATAPY, M., MAGNIEN, C., MORVAN, M., AND PHAN, H. D.
Sandpile models and lattices: a comprehensive survey. Theoretical Com-
puter Science 322, 2 (2004), 383–407.

[75] GOMEZ, F., SCHMIDHUBER, J., AND MIIKKULAINEN, R. Accelerated neu-
ral evolution through cooperatively coevolved synapses. Journal of Ma-
chine Learning Research 9, May (2008), 937–965.

[76] GOSAVI, A. Reinforcement learning: A tutorial survey and recent ad-
vances. INFORMS Journal on Computing 21, 2 (2009), 178–192.

[77] GOUMAGIAS, N. D., HRISTU-VARSAKELIS, D., AND ASSAEL, Y. M. Us-
ing deep Q-learning to understand the tax evasion behavior of risk-averse
firms. Expert Systems with Applications 101 (2018), 258–270.

[78] GREENSMITH, E., BARTLETT, P. L., AND BAXTER, J. Variance Reduction
Techniques for Gradient Estimates in Reinforcement Learning. Journal of
Machine Learning Research (2004).

[79] GRONDMAN, I., BUSONIU, L., LOPES, G. A. D., AND BABUSKA, R. A
Survey of Actor-Critic Reinforcement Learning: Standard and Natural
Policy Gradients. IEEE Trans. Syst., Man, Cybern. C 42, 6 (2012), 1291–1307.

[80] GU, S., HOLLY, E., LILLICRAP, T., AND LEVINE, S. Deep reinforcement
learning for robotic manipulation with asynchronous off-policy updates.
In Robotics and Automation (ICRA), 2017 IEEE International Conference on
(2017), IEEE, pp. 3389–3396.

[81] GU, S., LILLICRAP, T. P., SUTSKEVER, I., AND LEVINE, S. Continuous
Deep Q-Learning with Model-based Acceleration. arXiv (2016).

BIBLIOGRAPHY 251

[82] HA, S., AND LIU, C. K. Iterative training of dynamic skills inspired by
human coaching techniques. ACM Transactions on Graphics (TOG) 34, 1
(2014), 1.

[83] HA, S., AND LIU, C. K. Evolutionary optimization for parameterized
whole-body dynamic motor skills. In Robotics and Automation (ICRA),
2016 IEEE International Conference on (2016), IEEE, pp. 1390–1397.

[84] HAFNER, R., AND RIEDMILLER, M. Reinforcement learning in feedback
control. Mach Learn 84, 1-2 (Feb. 2011), 137–169.

[85] HANSEN, N. The CMA evolution strategy: a comparing review. In To-
wards a new evolutionary computation. Springer, 2006, pp. 75–102.

[86] HANSEN, N. The CMA Evolution Strategy: A Tutorial. arXiv (Apr. 2016).

[87] HANSEN, N., MÜLLER, S. D., AND KOUMOUTSAKOS, P. Reducing the
time complexity of the derandomized evolution strategy with covariance
matrix adaptation (CMA-ES). Evolutionary Computation 11, 1 (2003), 1–18.

[88] HANSEN, N., AND OSTERMEIER, A. Completely derandomized self-
adaptation in evolution strategies. Evolutionary Computation 9, 2 (2001),
159–195.

[89] HASSELT, H. V., AND WIERING, M. A. Reinforcement learning in contin-
uous action spaces. In Proceedings of the IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning, ADPRL (2007), pp. 272–
279.

[90] HAUSKNECHT, M., LEHMAN, J., MIIKKULAINEN, R., AND STONE, P. A
neuroevolution approach to general atari game playing. IEEE Trans. Com-
put. Intell. AI Games 6, 4 (2014), 355–366.

[91] HAUSKNECHT, M. J., LEHMAN, J., MIIKKULAINEN, R., AND STONE, P.
A Neuroevolution Approach to General Atari Game Playing. IEEE Trans.
Comput. Intellig. and AI in Games 6, 4 (2014), 355–366.

252 BIBLIOGRAPHY

[92] HAYKIN, S. Neural networks: a comprehensive foundation. Prentice Hall
PTR, 1994.

[93] HE, Q., AND SHAYMAN, M. A. Using reinforcement learning for pro-
active network fault management. In Communication Technology Pro-
ceedings, 2000. WCC-ICCT 2000. International Conference on (2000), IEEE,
pp. 515–521.

[94] HEIDRICH-MEISNER, V., AND IGEL, C. Similarities and differences be-
tween policy gradient methods and evolution strategies. ESANN (2008).

[95] HENDERSON, P., CHANG, W.-D., SHKURTI, F., HANSEN, J., MEGER, D.,
AND DUDEK, G. Benchmark Environments for Multitask Learning in
Continuous Domains. arXiv cs.AI (2017).

[96] HENDERSON, P., ISLAM, R., BACHMAN, P., PINEAU, J., PRECUP, D.,
AND MEGER, D. Deep reinforcement learning that matters. arXiv preprint
arXiv:1709.06560 (2017).

[97] HERMUNDSTAD, A. M., BROWN, K. S., BASSETT, D. S., AND CARLSON,
J. M. Learning, Memory, and the Role of Neural Network Architecture.
PLoS Computational Biology 7, 6 (2011), e1002063.

[98] HESSEL, M., MODAYIL, J., VAN HASSELT, H., SCHAUL, T., OSTROVSKI,
G., DABNEY, W., HORGAN, D., PIOT, B., AZAR, M. G., AND SILVER, D.
Rainbow - Combining Improvements in Deep Reinforcement Learning.
arXiv (2017).

[99] HESTER, T., VECERIK, M., PIETQUIN, O., LANCTOT, M., SCHAUL, T.,
PIOT, B., HORGAN, D., QUAN, J., SENDONARIS, A., AND DULAC-
ARNOLD, G. Deep Q-learning from Demonstrations. arXiv preprint
arXiv:1704.03732 (2017).

[100] HINRICHS, T. R., AND FORBUS, K. D. Transfer Learning through Anal-
ogy in Games. AI Magazine (2011).

[101] HOUTHOOFT, R., CHEN, R. Y., ISOLA, P., STADIE, B. C., WOLSKI, F., HO,
J., AND ABBEEL, P. Evolved Policy Gradients. arXiv (Feb. 2018).

BIBLIOGRAPHY 253

[102] HSU, F.-H. Behind Deep Blue: Building the Computer that Defeated the World
Chess Champion. Princeton University Press, 2004.

[103] IGEL, C. Neuroevolution for reinforcement learning using evolution
strategies. In Evolutionary Computation, 2003. CEC’03. The 2003 Congress
on (2003), IEEE, pp. 2588–2595.

[104] ISBELL, C. L., KEARNS, M., SINGH, S., SHELTON, C. R., STONE, P.,
AND KORMANN, D. Cobot in LambdaMOO: An adaptive social statistics
agent. Autonomous Agents and Multi-Agent Systems 13, 3 (2006), 327–354.

[105] ISLAM, R., HENDERSON, P., GOMROKCHI, M., AND PRECUP, D. Repro-
ducibility of Benchmarked Deep Reinforcement Learning Tasks for Con-
tinuous Control.

[106] JADERBERG, M., MNIH, V., CZARNECKI, W. M., SCHAUL, T., LEIBO,
J. Z., SILVER, D., AND KAVUKCUOGLU, K. Reinforcement Learning with
Unsupervised Auxiliary Tasks. arxiv (Nov. 2016).

[107] JANSEN, T., AND WIEGAND, R. P. Exploring the explorative advantage
of the cooperative coevolutionary (1+ 1) ea. In Genetic and Evolutionary
Computation Conference (2003), Springer, pp. 310–321.

[108] JANSEN, T., AND WIEGAND, R. P. The cooperative coevolutionary (1+ 1)
ea. Evolutionary Computation 12, 4 (2004), 405–434.

[109] JOHNS, J., AND MAHADEVAN, S. Constructing basis functions from di-
rected graphs for value function approximation. arXiv (2007).

[110] JORDAN, M. I., AND MITCHELL, T. M. Machine learning: Trends, per-
spectives, and prospects. Science 349, 6245 (2015), 255–260.

[111] KAKADE, S., AND LANGFORD, J. Approximately optimal approximate
reinforcement learning. In ICML (2002), pp. 267–274.

[112] KAKADE, S. M. A natural policy gradient. In Advances in neural informa-
tion processing systems (2002), pp. 1531–1538.

254 BIBLIOGRAPHY

[113] KARMAKAR, P., AND BHATNAGAR, S. Two time-scale stochastic approx-
imation with controlled Markov noise and off-policy temporal-difference
learning. Mathematics of Operations Research 43, 1 (2017), 130–151.

[114] KENNEDY, J. Swarm intelligence. In Handbook of nature-inspired and inno-
vative computing. Springer, 2006, pp. 187–219.

[115] KENNEDY, J. Particle swarm optimization. In Encyclopedia of machine
learning. Springer, 2011, pp. 760–766.

[116] KOBER, J., BAGNELL, J. A., AND PETERS, J. Reinforcement learning in
robotics: A survey. The International Journal of Robotics Research 32, 11
(Aug. 2013), 1238–1274.

[117] KOBER, J., AND PETERS, J. R. Policy search for motor primitives
in robotics. In Advances in neural information processing systems (2009),
pp. 849–856.

[118] KOHL, N., NETWORKS, R. M. N., AND 2009. Evolving neural networks
for strategic decision-making problems. Elsevier 22, 3 (Apr. 2009), 326–337.

[119] KOHL, N., AND STONE, P. Policy gradient reinforcement learning for fast
quadrupedal locomotion. In Robotics and Automation, 2004. Proceedings.
ICRA’04. 2004 IEEE International Conference on (2004), IEEE, pp. 2619–2624.

[120] KOLTER, J. Z., AND NG, A. Y. Regularization and Feature Selection in
Least-Squares Temporal Difference Learning . In ICML ’09 (New York,
New York, USA, 2009), ACM Press, pp. 521–528.

[121] KONDA, V. R., AND TSITSIKLIS, J. N. Actor-critic algorithms. In Advances
in neural information processing systems (2000), pp. 1008–1014.

[122] KONDA, V. R., AND TSITSIKLIS, J. N. Convergence rate of linear two-
time-scale stochastic approximation. The Annals of Applied Probability 14,
2 (2004), 796–819.

BIBLIOGRAPHY 255

[123] KONIDARIS, G., OSENTOSKI, S., AND THOMAS, P. S. Value Function
Approximation in Reinforcement Learning Using the Fourier Basis. AAAI
(2011).

[124] KONIDARIS, G., SCHEIDWASSER, I., AND BARTO, A. Transfer in Rein-
forcement Learning via Shared Features. Journal of Machine Learning Re-
search 13, May (2012), 1333–1371.

[125] KORMUSHEV, P., AND CALDWELL, D. G. Reinforcement learning with
heterogeneous policy representations.

[126] KOTSIANTIS, S., AND KANELLOPOULOS, D. Discretization techniques:
A recent survey. GESTS International Transactions on Computer Science and
Engineering 32, 1 (2006), 47–58.

[127] KOUTNÍK, J., SCHMIDHUBER, J., AND GOMEZ, F. Evolving deep unsu-
pervised convolutional networks for vision-based reinforcement learn-
ing. In GECCO ’14 (New York, New York, USA, 2014), ACM Press,
pp. 541–548.

[128] KOZA, J. R. Genetic programming II, automatic discovery of reusable subpro-
grams. MIT Press, Cambridge, MA, 1992.

[129] KUSHNER, H., AND YIN, G. Stochastic Approximation and Recursive Algo-
rithms and Applications. Springer Science & Business Media, Nov. 2013.

[130] LE ROUX, N., SCHMIDT, M., AND BACH, F. A Stochastic Gradient
Method with an Exponential Convergence Rate for Finite Training Sets.
arXiv (Feb. 2012).

[131] LEVINE, S., AND KOLTUN, V. Guided Policy Search. arXiv (2013).

[132] LEVINE, S., POPOVIC, Z., AND KOLTUN, V. Feature Construction for
Inverse Reinforcement Learning. NIPS (2010).

[133] LI, B., ONG, Y. S., LE, M. N., AND GOH, C. K. Memetic gradient search.
In Evolutionary Computation, 2008. CEC 2008.(IEEE World Congress on Com-
putational Intelligence). IEEE Congress on (2008), IEEE, pp. 2894–2901.

256 BIBLIOGRAPHY

[134] LI, Z., AND ZHANG, Q. What does the evolution path learn in CMA-ES?
In International Conference on Parallel Problem Solving from Nature (2016),
Springer, pp. 751–760.

[135] LILLICRAP, T. P., HUNT, J. J., PRITZEL, A., HEESS, N., EREZ, T., TASSA,
Y., SILVER, D., AND WIERSTRA, D. Continuous control with deep rein-
forcement learning. arXiv (Sept. 2015).

[136] LITTMAN, M. L. Algorithms for sequential decision making. PhD thesis, 1996.

[137] LIU, C., ZOPH, B., NEUMANN, M., SHLENS, J., HUA, W., LI, L.-J., FEI-
FEI, L., YUILLE, A., HUANG, J., AND MURPHY, K. Progressive neural
architecture search. In Proceedings of the European Conference on Computer
Vision (ECCV) (2018), pp. 19–34.

[138] LIU, D.-R., LI, H.-L., AND WANG, D. Feature selection and feature learn-
ing for high-dimensional batch reinforcement learning: A survey. Int. J.
Autom. Comput. 12, 3 (May 2015), 229–242.

[139] LOSCALZO, S., WRIGHT, R., AND YU, L. Predictive feature selection for
genetic policy search. Autonomous Agents and Multi-Agent Systems 29, 5
(2015), 754–786.

[140] LOWELL, J., GRABKOVSKY, S., AND BIRGER, K. Comparison of NEAT
and HyperNEAT performance on a strategic decision-making problem.
In 2011 Fifth International Conference on Genetic and Evolutionary Computing
(2011), IEEE, pp. 102–105.

[141] MA, X., LI, X., ZHANG, Q., TANG, K., LIANG, Z., XIE, W., AND ZHU, Z.
A survey on cooperative co-evolutionary algorithms. IEEE Transactions on
Evolutionary Computation 23, 3 (2018), 421–441.

[142] MAEI, H. R., SZEPESVÁRI, C., BHATNAGAR, S., AND SUTTON, R. S. To-
ward off-policy learning control with function approximation. In ICML
(2010), pp. 719–726.

BIBLIOGRAPHY 257

[143] MAHADEVAN, S., 0006, B. L., THOMAS, P. S., DABNEY, W., GIGUERE, S.,
JACEK, N., GEMP, I., AND 0002, J. L. Proximal Reinforcement Learning
- A New Theory of Sequential Decision Making in Primal-Dual Spaces.
arXiv (2014).

[144] MAHMOOD, A. R., VAN HASSELT, H., AND SUTTON, R. S. Weighted
importance sampling for off-policy learning with linear function approx-
imation. NIPS (2014).

[145] MAKMAL, A., MELNIKOV, A. A., DUNJKO, V., AND BRIEGEL, H.-J.
Meta-learning within Projective Simulation. IEEE Access 4 (2016), 2110–
2122.

[146] MANIA, H., GUY, A., AND RECHT, B. Simple random search provides a
competitive approach to reinforcement learning. arXiv cs.LG (2018).

[147] MARSLAND, S. Machine learning: an algorithmic perspective. Chapman and
Hall/CRC, 2011.

[148] MAUSAM, A. K. Planning with Markov decision processes: an AI per-
spective. Morgan & Claypool Publishers (2012).

[149] MELO, F. S., MEYN, S. P., AND RIBEIRO, M. I. An analysis of reinforce-
ment learning with function approximation. arXiv (2008), 664–671.

[150] MENACHE, I., MANNOR, S., AND SHIMKIN, N. Basis Function Adapta-
tion in Temporal Difference Reinforcement Learning. Annals OR 134, 1
(2005), 215–238.

[151] MICHALEWICZ, Z. Evolution strategies and other methods. In Genetic
Algorithms+ Data Structures= Evolution Programs. Springer, 1996, pp. 159–
177.

[152] MIIKKULAINEN, R., LIANG, J., MEYERSON, E., RAWAL, A., FINK, D.,
FRANCON, O., RAJU, B., SHAHRZAD, H., NAVRUZYAN, A., AND DUFFY,
N. Evolving deep neural networks. In Artificial Intelligence in the Age of
Neural Networks and Brain Computing. Elsevier, 2019, pp. 293–312.

258 BIBLIOGRAPHY

[153] MITCHELL, T. M. Machine learning. McGraw-Hill Sci-
ence/Engineering/Math, 1997.

[154] MNIH, V., BADIA, A. P., MIRZA, M., GRAVES, A., LILLICRAP, T. P.,
HARLEY, T., SILVER, D., AND KAVUKCUOGLU, K. Asynchronous Meth-
ods for Deep Reinforcement Learning. arXiv (2016).

[155] MNIH, V., KAVUKCUOGLU, K., SILVER, D., RUSU, A. A., VENESS, J.,
BELLEMARE, M. G., GRAVES, A., RIEDMILLER, M., FIDJELAND, A. K.,
OSTROVSKI, G., PETERSEN, S., BEATTIE, C., SADIK, A., ANTONOGLOU,
I., KING, H., KUMARAN, D., WIERSTRA, D., LEGG, S., AND HASSABIS,
D. Human-level control through deep reinforcement learning. Nature
518, 7540 (Feb. 2015), 529–533.

[156] MOODY, J., AND SAFFELL, M. Learning to trade via direct reinforcement.
IEEE transactions on neural Networks 12, 4 (2001), 875–889.

[157] MORIARTY, D. E., SCHULTZ, A. C., AND GREFENSTETTE, J. J. Evolution-
ary Algorithms for Reinforcement Learning. J. Artif. Intell. Res. (1999).

[158] NESTEROV, Y. Primal-dual subgradient methods for convex problems.
Math. Program. 120, 1 (June 2007), 221–259.

[159] NESTEROV, Y. Efficiency of Coordinate Descent Methods on Huge-Scale
Optimization Problems. SIAM J. Optim. 22, 2 (2012), 341–362.

[160] NG, A. Y. Shaping and policy search in reinforcement learning. PhD thesis,
University of California, Berkeley, 2003.

[161] OSBAND, I., VAN ROY, B., AND WEN, Z. Generalization and Exploration
via Randomized Value Functions. arXiv (2016).

[162] PAN, S. J., AND YANG, Q. A survey on transfer learning. IEEE Transac-
tions on knowledge and data . . . (2010).

[163] PANAIT, L., LUKE, S., AND HARRISON, J. F. Archive-based cooperative
coevolutionary algorithms. In Proceedings of the 8th annual conference on
Genetic and evolutionary computation (2006), ACM, pp. 345–352.

BIBLIOGRAPHY 259

[164] PARR, R., LI, L., TAYLOR, G., PAINTER-WAKEFIELD, C., AND LITTMAN,
M. L. An analysis of linear models, linear value-function approximation,
and feature selection for reinforcement learning. arXiv (2008).

[165] PARR, R., PAINTER-WAKEFIELD, C., LI, L., AND LITTMAN, M. L. Ana-
lyzing feature generation for value-function approximation. arXiv (2007),
737–744.

[166] PENG, Y., CHEN, G., ZHANG, M., AND PANG, S. Generalized compat-
ible function approximation for policy gradient search. In International
Conference on Neural Information Processing (2016), Springer, pp. 615–622.

[167] PENG, Y., CHEN, G., ZHANG, M., AND PANG, S. A sandpile model for
reliable actor-critic reinforcement learning. In Neural Networks (IJCNN),
2017 International Joint Conference on (2017), IEEE, pp. 4014–4021.

[168] PETERS, J., AND SCHAAL, S. Policy gradient methods for robotics. In
Intelligent Robots and Systems, 2006 IEEE/RSJ International Conference on
(2006), IEEE, pp. 2219–2225.

[169] PETERS, J., AND SCHAAL, S. Reinforcement learning by reward-weighted
regression for operational space control. ACM, New York, New York, USA,
June 2007.

[170] PETERS, J., AND SCHAAL, S. Natural Actor-Critic. Neurocomputing 71, 7
(Mar. 2008), 1180–1190.

[171] PETERS, J., AND SCHAAL, S. Reinforcement learning of motor skills with
policy gradients. Neural Networks 21, 4 (May 2008), 682–697.

[172] PETERS, J., VIJAYAKUMAR, S., AND SCHAAL, S. Reinforcement learning
for humanoid robotics. In Proceedings of the third IEEE-RAS international
conference on humanoid robots (2003), pp. 1–20.

[173] PETERS, J. R. Machine learning of motor skills for robotics. PhD thesis, Uni-
versity of Southern California, 2007.

260 BIBLIOGRAPHY

[174] PHAM, H., GUAN, M. Y., ZOPH, B., LE, Q. V., AND DEAN, J. Ef-
ficient neural architecture search via parameter sharing. arXiv preprint
arXiv:1802.03268 (2018).

[175] PONG, V., GU, S., DALAL, M., AND LEVINE, S. Temporal Difference
Models: Model-Free Deep RL for Model-Based Control.

[176] PRASHANTH, L. A., AND GHAVAMZADEH, M. Variance-constrained
actor-critic algorithms for discounted and average reward MDPs. Mach
Learn 105, 3 (Aug. 2016), 367–417.

[177] PROPER, S., AND TADEPALLI, P. Scaling model-based average-reward
reinforcement learning for product delivery. In European Conference on
Machine Learning (2006), Springer, pp. 735–742.

[178] RAJESWARAN, A., LOWREY, K., TODOROV, E. V., AND KAKADE, S. M.
Towards Generalization and Simplicity in Continuous Control. 6550–
6561.

[179] RECHENBERG, I. Evolutionsstrategie–Optimierung technisher Systeme
nach Prinzipien der biologischen Evolution.

[180] ROBERT SEDGEWICK, K. W. Algorithms, Fourth Edition. 1–969.

[181] ROMAIN LAROCHE, M. B. Transfer Reinforcement Learning with Shared
Dynamics. 1–7.

[182] ROS, R., AND HANSEN, N. A simple modification in CMA-ES achieving
linear time and space complexity. In International Conference on Parallel
Problem Solving from Nature (2008), Springer, pp. 296–305.

[183] ROSENSTEIN, M. T., AND BARTO, A. G. Robot weightlifting by direct pol-
icy search. In International Joint Conference on Artificial Intelligence (2001),
Citeseer, pp. 839–846.

[184] RUMMERY, G. A., AND NIRANJAN, M. On-line Q-learning using connec-
tionist systems. Tech. rep., 1994.

BIBLIOGRAPHY 261

[185] RUSSELL, S. J., AND NORVIG, P. Artificial intelligence: a modern approach,
3rd ed. Pearson Education Limited, 2016.

[186] SALIMANS, T., HO, J., CHEN, X., SIDOR, S., AND SUTSKEVER, I. Evolu-
tion strategies as a scalable alternative to reinforcement learning. arXiv
preprint arXiv:1703.03864 (2017).

[187] SALLAB, A. E., ABDOU, M., PEROT, E., AND YOGAMANI, S. Deep rein-
forcement learning framework for autonomous driving. Electronic Imag-
ing 2017, 19 (2017), 70–76.

[188] SANTORO, A., BARTUNOV, S., BOTVINICK, M., WIERSTRA, D., AND

LILLICRAP, T. P. Meta-Learning with Memory-Augmented Neural Net-
works. arXiv (2016).

[189] SCHULMAN, J., LEVINE, S., ABBEEL, P., JORDAN, M. I., AND MORITZ, P.
Trust Region Policy Optimization. arXiv (2015).

[190] SCHULMAN, J., MORITZ, P., LEVINE, S., JORDAN, M. I., AND ABBEEL,
P. High-Dimensional Continuous Control Using Generalized Advantage
Estimation. arXiv cs.LG (2015).

[191] SCHULMAN, J., WOLSKI, F., DHARIWAL, P., ARXIV, A. R. A. P., AND

2017. Proximal policy optimization algorithms. arxiv.org.

[192] SEHNKE, F., OSENDORFER, C., RÜCKSTIESS, T., GRAVES, A., PETERS,
J., AND SCHMIDHUBER, J. Policy gradients with parameter-based explo-
ration for control. In International Conference on Artificial Neural Networks
(2008), Springer, pp. 387–396.

[193] SENCIANES, A. E.-F. GRADIENT-BASED REINFORCEMENT LEARN-
ING TECHNIQUES FOR UNDERWATER ROBOTICS BEHAVIOR
LEARNING. PhD thesis, Dec. 2010.

[194] SHIE MANNOR, R. R., AND GAT, Y. The Cross Entropy Method for Fast
Policy Search. 1–8.

262 BIBLIOGRAPHY

[195] SI, J., BARTO, A. G., POWELL, W. B., AND WUNSCH, D. Handbook of
learning and approximate dynamic programming, vol. 2. John Wiley & Sons,
2004.

[196] SIDHU, G., AND CAFFO, B. MONEYBaRL: exploiting pitcher decision-
making using reinforcement learning. The Annals of Applied Statistics
(2014), 926–955.

[197] SILVER, D., HUANG, A., MADDISON, C. J., GUEZ, A., SIFRE, L.,
VAN DEN DRIESSCHE, G., SCHRITTWIESER, J., ANTONOGLOU, I., PAN-
NEERSHELVAM, V., LANCTOT, M., DIELEMAN, S., GREWE, D., NHAM,
J., KALCHBRENNER, N., SUTSKEVER, I., LILLICRAP, T., LEACH, M.,
KAVUKCUOGLU, K., GRAEPEL, T., AND HASSABIS, D. Mastering the
game of Go with deep neural networks and tree search. Nature 529, 7585
(Jan. 2016), 484–489.

[198] SILVER, D., LEVER, G., HEESS, N., DEGRIS, T., WIERSTRA, D., AND

RIEDMILLER, M. A. Deterministic Policy Gradient Algorithms. arXiv
(2014).

[199] SILVER, D., SCHRITTWIESER, J., SIMONYAN, K., ANTONOGLOU, I.,
HUANG, A., GUEZ, A., HUBERT, T., BAKER, L., LAI, M., BOLTON, A.,
CHEN, Y., LILLICRAP, T., HUI, F., SIFRE, L., VAN DEN DRIESSCHE, G.,
GRAEPEL, T., AND HASSABIS, D. Mastering the game of Go without hu-
man knowledge. Nature 550, 7676 (Oct. 2017), 354–359.

[200] SIMSEK, O., ALGORTA, S., AND KOTHIYAL, A. Why Most Decisions Are
Easy in Tetris—And Perhaps in Other Sequential Decision Problems, As
Well. 1757–1765.

[201] SINGH, S., LITMAN, D., KEARNS, M., AND WALKER, M. Optimizing di-
alogue management with reinforcement learning: Experiments with the
NJFun system. 1 16 (2002), 105–133.

[202] SPALL, J. C. Multivariate stochastic approximation using a simultane-
ous perturbation gradient approximation. IEEE transactions on automatic
control 37, 3 (1992), 332–341.

BIBLIOGRAPHY 263

[203] STAMATE, C., MAGOULAS, G. D., AND THOMAS, M. S. C. Transfer learn-
ing approach for financial applications. arXiv (Sept. 2015).

[204] STANLEY, K. O. Neuroevolution: A different kind of deep learning.

[205] STANLEY, K. O., D’AMBROSIO, D. B., AND GAUCI, J. A hypercube-
based encoding for evolving large-scale neural networks. Artificial Life
15, 2 (2009), 185–212.

[206] STANLEY, K. O., AND MIIKKULAINEN, R. Efficient Reinforcement Learn-
ing Through Evolving Neural Network Topologies. Gecco, Chapter 6
(2002).

[207] STANLEY, K. O., AND MIIKKULAINEN, R. Evolving Neural Networks
through Augmenting Topologies. Evolutionary Computation 10, 2 (2002),
99–127.

[208] STANLEY, K. O., AND MIIKKULAINEN, R. Evolving a roving eye for go. In
Genetic and Evolutionary Computation Conference (2004), Springer, pp. 1226–
1238.

[209] STONE, P., AND SUTTON, R. S. Scaling reinforcement learning toward
RoboCup soccer. In ICML (2001), Citeseer, pp. 537–544.

[210] SUCH, F. P., MADHAVAN, V., CONTI, E., LEHMAN, J., STANLEY, K. O.,
AND CLUNE, J. Deep Neuroevolution - Genetic Algorithms Are a Com-
petitive Alternative for Training Deep Neural Networks for Reinforce-
ment Learning. arXiv cs.NE (2017).

[211] SUTTON, R. S. Learning to predict by the methods of temporal differ-
ences. Mach Learn 3, 1 (1988), 9–44.

[212] SUTTON, R. S., AND BARTO, A. G. Reinforcement learning: An introduction.
MIT press, 2018.

[213] SUTTON, R. S., MAEI, H. R., PRECUP, D., BHATNAGAR, S., SILVER, D.,
SZEPESVÁRI, C., AND WIEWIORA, E. Fast gradient-descent methods for

264 BIBLIOGRAPHY

temporal-difference learning with linear function approximation. arXiv
(2009).

[214] SUTTON, R. S., MAEI, H. R., AND SZEPESVÁRI, C. A Convergent O(n)

Temporal-difference Algorithm for Off-policy Learning with Linear Func-
tion Approximation. 1609–1616.

[215] SUTTON, R. S., MCALLESTER, D. A., SINGH, S. P., AND MANSOUR, Y.
Policy Gradient Methods for Reinforcement Learning with Function Ap-
proximation. NIPS (1999).

[216] SUTTON, R. S., MODAYIL, J., DELP, M., DEGRIS, T., PILARSKI, P. M.,
WHITE, A., AND PRECUP, D. Horde: a scalable real-time architecture for
learning knowledge from unsupervised sensorimotor interaction. International
Foundation for Autonomous Agents and Multiagent Systems, May 2011.

[217] SUTTON, R. S., PRECUP, D., AND SINGH, S. P. Between MDPs and Semi-
MDPs - A Framework for Temporal Abstraction in Reinforcement Learn-
ing. Artif. Intell. 112, 1-2 (1999), 181–211.

[218] SZEPESVÁRI, C. Algorithms for reinforcement learning, vol. 9. Synthesis
Lectures on Artificial Intelligence and Machine Learning, Aug. 2010.

[219] TAN, J., GU, Y., TURK, G., AND LIU, C. K. Articulated swimming crea-
tures. ACM Transactions on Graphics (TOG) 30, 4 (2011), 58.

[220] TAN, J., ZHANG, T., COUMANS, E., ISCEN, A., BAI, Y., HAFNER, D., BO-
HEZ, S., AND VANHOUCKE, V. Sim-to-Real: Learning Agile Locomotion
For Quadruped Robots. arXiv preprint arXiv:1804.10332 (2018).

[221] TASSA, Y., EREZ, T., AND TODOROV, E. Synthesis and stabilization of
complex behaviors through online trajectory optimization. IROS (2012),
4906–4913.

[222] TOKIC, M. Adaptive ε-Greedy Exploration in Reinforcement Learning
Based on Value Differences. In KI 2010: Advances in Artificial Intelligence.
Springer, Berlin, Heidelberg, Berlin, Heidelberg, Sept. 2010, pp. 203–210.

BIBLIOGRAPHY 265

[223] UMAROV, S., TSALLIS, C., AND STEINBERG, S. On a q-central limit the-
orem consistent with nonextensive statistical mechanics. Milan journal of
mathematics 76, 1 (2008), 307–328.

[224] VAN DEN BERG, T. G., AND WHITESON, S. Critical factors in the per-
formance of HyperNEAT. In Proceedings of the 15th annual conference on
Genetic and evolutionary computation (2013), ACM, pp. 759–766.

[225] VAN HASSELT, H. Double Q-learning. NIPS (2010).

[226] VIEN, N. A., DANG, V.-H., AND CHUNG, T. A covariance matrix adap-
tation evolution strategy for direct policy search in reproducing kernel
hilbert space. In Asian Conference on Machine Learning (2017), pp. 606–621.

[227] WAMPLER, K., AND POPOVIC, Z. Optimal gait and form for animal loco-
motion. ACM Trans. Graph. 28, 3 (2009), 1.

[228] WANG, J. M., HAMNER, S. R., DELP, S. L., AND KOLTUN, V. Optimizing
Locomotion Controllers Using Biologically-Based Actuators and Objec-
tives Supplemental Material.

[229] WANG, Z., BAPST, V., HEESS, N., MNIH, V., MUNOS, R.,
KAVUKCUOGLU, K., AND DE FREITAS, N. Sample efficient actor-critic
with experience replay. arXiv preprint arXiv:1611.01224 (2016).

[230] WANG, Z., SCHAUL, T., HESSEL, M., VAN HASSELT, H., LANCTOT, M.,
AND DE FREITAS, N. Dueling network architectures for deep reinforce-
ment learning. arXiv preprint arXiv:1511.06581 (2015).

[231] WATKINS, C. J., AND DAYAN, P. Q-learning. Mach Learn 8, 3-4 (1992),
279–292.

[232] WHITESON, S., AND STONE, P. Evolutionary Function Approximation
for Reinforcement Learning. Journal of Machine Learning Research (2006).

[233] WHITESON, S., STONE, P., STANLEY, K. O., MIIKKULAINEN, R., AND

KOHL, N. Automatic feature selection in neuroevolution. Gecco (2005),
1225.

266 BIBLIOGRAPHY

[234] WHITESON, S. A. Adaptive Representations for Reinforcement Learning. PhD
thesis, May 2007.

[235] WIEGAND, R. P., LILES, W. C., AND JONG, K. A. D. An empirical anal-
ysis of collaboration methods in cooperative coevolutionary algorithms.
In Proceedings of the 3rd annual conference on genetic and evolutionary compu-
tation (2001), Morgan Kaufmann Publishers Inc., pp. 1235–1242.

[236] WIERING, M., AND VAN OTTERLO, M. Reinforcement learning. Springer,
2012.

[237] WIERSTRA, D., SCHAUL, T., GLASMACHERS, T., SUN, Y., PETERS, J.,
AND SCHMIDHUBER, J. Natural evolution strategies. Journal of Machine
Learning Research (2014).

[238] WILLIAMS, R. J. Simple Statistical Gradient-Following Algorithms for
Connectionist Reinforcement Learning. Mach Learn 8, 3-4 (1992), 229–256.

[239] WOOKEY, D. S., AND KONIDARIS, G. D. Regularized feature selection in
reinforcement learning. Mach Learn 100, 2-3 (July 2015), 655–676.

[240] WU, Y., MANSIMOV, E., GROSSE, R. B., LIAO, S., AND BA, J. Scalable
trust-region method for deep reinforcement learning using Kronecker-
factored approximation. 5279–5288.

[241] XIAO, L. Dual averaging methods for regularized stochastic learning and
online optimization. Journal of Machine Learning Research 11, Oct (2010),
2543–2596.

[242] YAN, X., DIACONIS, P., RUSMEVICHIENTONG, P., AND ROY, B. V. Soli-
taire: Man versus machine. In Advances in neural information processing
systems (2005), pp. 1553–1560.

[243] YAO, X., AND LIU, Y. A new evolutionary system for evolving artificial
neural networks. IEEE Trans. Neural Networks (1997).

[244] YAO, X., AND XU, Y. Recent advances in evolutionary computation. Jour-
nal of Computer Science and Technology 21, 1 (2006), 1–18.

BIBLIOGRAPHY 267

[245] YONG, C. H., AND MIIKKULAINEN, R. Cooperative coevolution of multi-
agent systems. University of Texas at Austin, Austin, TX (2001).

[246] YU, H., AND BERTSEKAS, D. P. Basis function adaptation methods for
cost approximation in MDP. In Adaptive Dynamic Programming and Re-
inforcement Learning, 2009. ADPRL’09. IEEE Symposium on (2009), IEEE,
pp. 74–81.

[247] YU, J., ABERDEEN, D., AND SCHRAUDOLPH, N. N. Fast online policy
gradient learning with smd gain vector adaptation. In Advances in neural
information processing systems (2006), pp. 1185–1192.

[248] ZABINSKY, Z. B. Random search algorithms. Wiley Encyclopedia of Opera-
tions Research and Management Science (2010).

[249] ZHOU, Z., ONG, Y. S., NAIR, P. B., AND ON, A. K. Combining global
and local surrogate models to accelerate evolutionary optimization. ieeex-
plore.ieee.org (2007).

	Introduction
	Background
	Motivations
	Goals
	Major Contributions
	Organization of Thesis

	Literature Review
	Background
	Machine Learning
	Reinforcement Learning
	Evolutionary Computation
	Feature Learning

	Reinforcement Learning Methods
	Reinforcement Learning Methods Taxonomy
	Value Function Indirect Search
	Discussion on Value Function Indirect Search
	Policy Direct Search
	Model-free Gradient-based Policy Direct Search
	Model-free Gradient-free Policy Direct Search
	Discussion on Policy Direct Search
	Feature Learning in Reinforcement Learning
	Discussion on Feature Learning in Reinforcement Learning

	Related Work
	Effective Policy Direct Search through Primal Dual Approximation
	Proximal Evolutionary Strategies for Sample Efficient Policy Direct Search
	Reliable and Flexible Value Function Learning for Policy Direct Search
	Enhancing Policy Direct Search via Automated Evolutionary Feature Learning

	Chapter Summary

	Experimental Methodology
	Benchmark Problems
	Statistical Treatment
	General Experiment Setup
	Statistical Methods

	Effective Policy Direct Search through Primal-Dual Approximation
	Introduction
	Chapter Goals
	Chapter Organization

	Preliminaries — A General Primal-Dual Approximation Method
	The Proposed Algorithms
	General Dual Formulation for Policy Gradient Search
	Dual Regular Gradient Actor Critic Algorithm
	Dual Natural Gradient Actor Critic with Fisher Information Matrix
	Dual Natural Gradient Actor Critic with Advantage Parameters

	Theoretical Analysis
	Learning as Multi Time-Scale Stochastic Approximation
	Convergence Analysis

	Design of Experiments
	Experiment Setup
	Experiment Design

	Results and Discussion
	Discussion on Results of Bipedal Walker
	Discussion on Results of Lunar Lander
	Discussion on Results of Mountain Car Continuous
	Discussion on Results of Inverted Pendulum
	Discussion on Results of Inverted Double Pendulum
	Discussion on Results of Inverted Pendulum Swingup
	Result Summary

	Chapter Summary

	Proximal Evolutionary Strategies for Sample Efficient Policy Direct Search
	Introduction
	Chapter Goals
	Chapter Organization

	The Proposed Algorithm — Proximal Evolutionary Strategy
	PES-S1: Layer-wise Learning
	PES-S2: Surrogate Model Based Learning
	PES-S3: Local Search Enhanced Learning
	Key Characteristics of Proximal Evolutionary Strategy

	Design of Experiments
	Experiment Setup
	Network Architecture
	Hyper-Parameter Configurations
	Evaluation Criteria
	Experiment Design

	Results and Discussion
	Results of Experiment (A1)
	Results of Experiment (A2)
	Results of Experiment (A3)

	Chapter Summary

	Reliable and Flexible Value Function Learning for Policy Direct Search
	Introduction
	Chapter Goals
	Chapter Organization

	Preliminaries
	Regular Actor-Critic Algorithm
	Sandpile Model

	The Proposed Algorithms — SM-RAC and GCFA-RAC
	Sandpile Model based Regular Actor-Critic (SM-RAC)
	Generalized Compatible Function Approximation base Regular Actor-Critic (GCFA-RAC)

	Design of Experiments
	Experiments on SM-RAC
	Experiment on GCFA-RAC

	Results and Discussion
	Discussion on Results of SM-RAC
	Discussion on Results of GCFA-RAC

	Chapter Summary

	Enhancing Policy Direct Search via Automated Evolutionary Feature Learning
	Introduction
	Chapter Goals
	Chapter Organization

	The Proposed Algorithms — NEAT+RAC and NEAT+PGS
	NEAT based Feature Learning enhanced Regular Actor-Critic (NEAT+RAC)
	NEAT based Feature Learning enhanced Policy Gradient Search (NEAT+PGS)

	Design of Experiments
	Experiments on NEAT+RAC
	Experiments on NEAT+PGS

	Results and Discussion
	Discussion on Results of NEAT+RAC
	Discussion on Results of NEAT+PGS

	Chapter Summary

	Conclusions
	Major Conclusions
	Effective Policy Direct Search through Primal-Dual Approximation
	Proximal Evolutionary Strategy for Sample Efficient Policy Direct Search
	Reliable and Flexible Value Function Learning for Policy Gradient Search
	Enhancing Policy Direct Search via Automated Evolutionary Feature Learning

	Limitations
	Manual Network Architecture
	Trial-and-Error based Hyper-parameter Tunning
	Pre-defined Reward Settings

	Future Work
	Combining Improvements for Policy Direct Search
	Model-based vs. Model-free
	Transfer Learning for Policy Direct Search
	Automated Network Architecture Design
	Automated Hyper-parameter Tunning
	Cooperative Co-evolution for Policy Direct Search

