
CJing: Combining Live
Coding and VJing for Live

Visual Performance

by

Jack Voldemars Purvis

A thesis
submitted to the Victoria University of Wellington
in fulfilment of the requirements for the degree of

Master of Science in Computer Graphics.

Victoria University of Wellington
2019

Abstract
Live coding focuses on improvising content by coding in textual inter-
faces, but this reliance on low level text editing impairs usability by not al-
lowing for high level manipulation of content. VJing focuses on remixing
existing content with graphical user interfaces and hardware controllers,
but this focus on high level manipulation does not allow for fine-grained
control where content can be improvised from scratch or manipulated at
a low level. This thesis proposes the code jockey practice (CJing), a new
hybrid practice that combines aspects of live coding and VJing practice.
In CJing, a performer known as a code jockey (CJ) interacts with code,
graphical user interfaces and hardware controllers to create or manipulate
real-time visuals. CJing harnesses the strengths of live coding and VJing
to enable flexible performances where content can be controlled at both
low and high levels. Live coding provides fine-grained control where con-
tent can be improvised from scratch or manipulated at a low level while
VJing provides high level manipulation where content can be organised,
remixed and interacted with. To illustrate CJing, this thesis contributes
Visor, a new environment for live visual performance that embodies the
practice. Visor's design is based on key ideas of CJing and a study of
live coders and VJs in practice. To evaluate CJing and Visor, this thesis
reflects on the usage of Visor in live performances and feedback gathered
from creative coders, live coders, and VJs who experimented with the
environment.

ii

iii

Acknowledgments

This thesis has taken me on an incredibly inspiring and fulfilling journey
that would not have been possible without the input of many people.
I wish to thank everyone who has been involved and in particular the
following individuals and organisations:

To my research supervisors Craig Anslow and James Noble for their sup-
port, encouragement and guidance throughout this thesis. To Craig for
introducing me to the world of live coding and providing me with many
networking opportunities. To James for his performance based outlook
and constructive feedback.

To members of the University who provided me with support and guid-
ance throughout this thesis. In particular, to the HCI Group and Com-
puter Graphics Research Group. To my office mates. To the School of
Engineering and Computer Science administration staff. To Diana Siwiak
for her advice and hosting the productive writing sessions. To Victoria
University of Wellington for the Victoria Masters by Thesis Scholarship.
To the Faculty of Science for the Faculty Strategic Research Grant that
funded my travel to present at the ICLC conference in Madrid. Also to
Craig Anslow for the additional funding that went towards this travel.

To all of the interviewees that gave up their valuable time to contribute to
this thesis. Also to all of those who have started using Visor and provided
me with valuable feedback.

iv

To Optimal Workshop for providing me with flexible employment
throughout my studies. To my colleagues for their support and under-
standing, in particular when I needed to take leave to travel or focus on
this thesis. Also for providing me with the opportunity to pick up skills in
user research, development, and design.

To Art∼Hack for providing me with a space to test Visor and launch my
own performance practice. To all of the members for their support and
feedback towards my work. In particular, to Mikey Williams for leading
the organisation of the meetups, exhibitions, and concerts. Also to Matt
McKegg for collaborating with me and sharing his experiences building
software for live performances.

To my new friends that I met as part of the live music and visual commu-
nity in New Zealand. I am grateful to have had the opportunity to work
alongside you and look forward to future events. In particular, to Daniel
Aston for the insightful chats on live coding and VJing practice. To Alexia
George for her inspiring work which played an active role in motivating
this thesis. To Léo Podechard for collaborating with me. To Darrell Smith
for sharing his VJing experiences with me and supporting my practice.

To everybody I met as part of my travels for the ICLC conference in
Madrid and other events in Barcelona, London, and Berlin for their sup-
port, critique, and encouragement towards my work. The live coding
community was incredibly friendly and I enjoyed getting to meet and
perform alongside many of you. These people include Ryan Kirkbride,
Kofi Oduro, Neil Smith, Charlie Roberts, Shawn Lawson, Sam Aaron,
Dimitris Kyriakoudis, Evan Raskob, Ulysses Popple, Marianne Teixido,
Emilio Ocelotl, Lina Bautista, Ivan Paz, Olivia Jack, Alexandra Cárdenas,
Diego Dorado, and many others. Also to Alicia Champlin and Niklas
Reppel for kindly hosting me in Barcelona.

v

To my friends who supported and encouraged me throughout this jour-
ney. In particular, to Robbie for the late night jam sessions and joining me
on stage. To Orion for landing me that first underground gig. To Ben for
sharing this academic journey with me. To Kelly for introducing me to the
VJing scene and many key people in Wellington, I don't think I could have
achieved much of this without your input.

To my family and close family friends. To Mum, Dad and Tara for their
unconditional love, support and understanding throughout this journey.
You each show such passion and dedication to life. Your influence has
shaped me into who I am today and enabled me to tackle great challenges
such as this.

vi

Publications

This thesis covers research that was published in a conference paper:

Jack Purvis, Craig Anslow, and James Noble. CJing Practice:
Combining Live Coding and VJing. In Proceedings of the In-
ternational Conference on Live Coding (ICLC), Madrid, Spain,
2019.

Figures

All photographs, diagrams and other figures in this thesis are authored by
myself unless another source is explicitly credited or cited.

vii

Contents

1 Introduction 1
1.1 Research Questions . 3

1.2 Research Methodology . 4

1.3 Research Contributions . 4

1.4 Outline . 5

2 Background 7
2.1 Creative Coding . 7

2.2 Live Programming . 10

2.3 Live Coding . 12

2.4 VJing . 17

2.5 Summary . 20

3 Live Coding and VJing: Interviews 23
3.1 Interview Procedure . 24

3.2 Participants . 24

3.3 Analysis . 25

3.3.1 Features . 27

3.3.2 Interactions . 30

3.3.3 Practice . 32

3.4 Discussion . 36

3.5 Summary . 39

viii

4 CJing and Visor 43
4.1 Code Jockey Practice . 45

4.1.1 Context . 46

4.1.2 Key Ideas . 47

4.2 Visor: Design . 48

4.3 Visor: Features . 50

4.3.1 Live Coding . 50

4.3.2 State Management . 52

4.3.3 Layers . 53

4.3.4 Fast Fourier Transform 55

4.3.5 Tap Tempo . 57

4.3.6 MIDI . 58

4.3.7 Other . 60

4.4 Visor: Composing Layers . 61

4.4.1 Model Layer . 62

4.4.2 Particles Layer . 63

4.4.3 Mask Layer . 66

4.4.4 MIDI Control . 69

4.4.5 Final Composition . 69

4.5 Visor: Implementation . 72

4.5.1 Architecture . 72

4.5.2 Client . 74

4.5.3 Server . 74

4.5.4 Live Coding . 75

4.5.5 Handling State . 76

4.5.6 Integration with Processing 76

4.6 Visor: Development Approach 78

4.7 Discussion . 81

4.8 Summary . 84

5 Live Performances with Visor 87

ix

5.1 Performance Setup . 89

5.2 Performance Approach . 92

5.3 Visor in Action . 93

5.3.1 Live Coding . 94

5.3.2 State Management . 95

5.3.3 Layers . 96

5.3.4 MIDI . 98

5.3.5 Fast Fourier Transform 102

5.3.6 Tap Tempo . 103

5.4 Summary . 105

6 Visor Feedback Survey 107

6.1 Survey Procedure . 108

6.2 Participants . 108

6.3 Results . 109

6.3.1 Usage . 110

6.3.2 Learning . 111

6.3.3 Live Coding . 112

6.3.4 State Management . 112

6.3.5 Layers . 114

6.3.6 Fast Fourier Transform 115

6.3.7 Tap Tempo . 116

6.3.8 MIDI . 117

6.3.9 Interface . 118

6.3.10 Suggested Improvements 118

6.4 Discussion . 119

6.5 Summary . 124

7 Conclusions 127

7.1 Research Contributions . 130

7.2 Future Work . 130

x

Appendices 135

A Human Ethics Documents 137

B Interview Information Sheet 149

C Interview Schedule 153

D Feedback Survey Information Sheet 155

E Feedback Survey Questionnaire 159

xi

List of Figures

2.1 Abstract pattern coded in Processing [27]. 8
2.2 Tree fractal coded in VVVV [45]. 9
2.3 Light Table's real-time visualisation of program state in-line

with the associated code [13]. 11
2.4 Chemical Algorave, Newcastle 2017 [74]. 13
2.5 Live coding visuals in LiveCodeLab [15]. 14
2.6 Live coding music and shaders in Gibber [9]. 15
2.7 Live coding music and visuals in Praxis LIVE [26]. 16
2.8 VJ setup featuring PCs, a MacBook, and MIDI controllers [63]. 18
2.9 Taniwha's Den 2019 music festival. 19

3.1 Thematic map for the Features theme. 28
3.2 Thematic map for the Interactions theme. 30
3.3 Thematic map for the Practice theme. 32

4.1 Visor interface in action. 44
4.2 Visual output rendered from Visor based on Processing. . . . 45
4.3 CJing in the context of the broader subject areas that formu-

late it. 46
4.4 Live coding in Visor. 51
4.5 State management in Visor. 53
4.6 Layers in Visor. 54
4.7 FFT in Visor. 56

xii

4.8 Tap tempo in Visor. 57

4.9 MIDI in Visor. 59

4.10 Visor Learn Hub. 60

4.11 Model layer rendered independently. 62

4.12 Code for the Model layer. 63

4.13 Particles layer rendered independently. 64

4.14 Code for the Particles layer. 65

4.15 Particles layer rendered independently. 66

4.16 Code for the Mask layer. 67

4.17 Mask layer rendered independently. 68

4.18 Mask layer rendered independently. 68

4.19 MIDI controller annotated with the names of the mapped
parameters and MIDI variables used by the code for the
Model, Particles, and Mask layers. 69

4.20 Model and Mask layers composited together. 70

4.21 Model and Particles layers composited together. 71

4.22 Model, Particles, and Mask layers composited together. . . . 71

4.23 Model, Particles, and Mask layers composited together. . . . 72

4.24 Visor's client-server architecture. 73

4.25 Traditional approach to handling the matrix stack with the
Processing API in Visor. 77

4.26 New approach to handling the matrix stack using a method
that accepts a block as an argument in Visor. 77

4.27 Art∼Hack meetup where Visor was often tested in a live
performance context. 79

4.28 Maker Faire Wellington where Visor was demonstrated to
the public as part of the Art∼Hack stall. 80

5.1 My typical setup for live performance with Visor. 89

5.2 ICLC 2019 Algorave performance. 90

xiii

5.3 Taniwha's Den 2019 Cliff performance where Visor was used
to render visuals that were projected onto a large limestone
cliff face. 91

5.4 Limestone cliff face that was used as a projection surface
during the Taniwha's Den 2019 festival. 91

5.5 Taniwha's Den 2019 Mainstage performance. 92
5.6 TOPLAP 15th Birthday Livestream performance. 94
5.7 Eyegum Wednesdays performance. 96
5.8 Rendered visuals from the Taniwha's Den 2019 Mainstage

performance. 97
5.9 Vertigo gig performance. 102
5.10 Rendered visuals from the Burrowing Pufferfish Party per-

formance. 104

xiv

xv

List of Tables

2.1 Taxonomy presenting how the related software spans cre-
ative coding, live programming, live coding, and VJing prac-
tices. 21

3.1 Interview participants background. 26
3.2 Important features, interactions, and aspects of the partici-

pant's performance setup and practice. 40

4.1 Visor's core features and how they map to the three key
ideas of the CJing practice. 50

5.1 Performances conducted throughout this thesis. 88

6.1 Feedback survey participants background, estimated time
spent using Visor, and context in which they might use Visor. 109

xvi

1

Chapter 1

Introduction

The creation of visuals to accompany music is an essential part of any
audiovisual experience. Live coding and VJing (video jockey practice)
are both live performance practices that offer the ability to improvise and
manipulate visuals that sync with music in real-time. Live coding is the
application of live programming techniques to the performing arts [79].
Live coding offers the ability to improvise content such as generative mu-
sic or visuals by creative coding over the course of a performance [57].
Video jockeys (VJs) are the visual counterpart to the musical disc jockeys
(DJs); improvising visuals to accompany live music and create audiovisual
marriages that engage the senses [61]. VJs tend to work with pre-rendered
content such as looping video clips and conduct their performances by
layering and mixing clips together or applying parameterised video ef-
fects.

Live coding focuses on writing code to improvise or manipulate content,
providing fine-grained, low level control of the final output. VJs instead
focus on interacting with comprehensive graphical user interfaces (GUIs)
and hardware controllers to improvise or manipulate visuals, providing
overarching, high level control of the final output. This thesis proposes the

2 CHAPTER 1. INTRODUCTION

code jockey practice (CJing), a new hybrid practice that combines aspects
of live coding and VJing. In CJing, a performer known as a code jockey
(CJ) interacts with code, GUIs, and hardware controllers to improvise or
manipulate visual content in real-time. CJing harnesses the strengths of
live coding and VJing to enable flexible performances where content can
be controlled at both low and high levels.

This thesis claims that combining live coding and VJing can simultane-
ously remove limitations identified in each practice. Live coding environ-
ments focus solely on textual interfaces. All interactions with the content
must be conducted at a low level by modifying the code in these textual
interfaces. This limits a live coder's ability to interact with content, for
example, parameters in the code can only be assigned to discrete values
[67] that do not allow for easy exploration of the parameter space. In
addition, text editors do not offer visualisation of the underlying program
state to improve comprehension of the live code. While the live cod-
ing community [41] focuses on textual interfaces as an aesthetic choice,
this choice impairs the usability of the practice. These limitations can be
removed by incorporating features of VJing software into a live coding
environment. VJing software offers GUIs made up of many parameter
controls, tools to organise content such as layers, and provides mappings
to external hardware such as MIDI controllers. These features can be
used to abstract upon live code and provide high level interactions to
manipulate parameters or visualise the state of the underlying program.

VJing software focuses on working with pre-rendered content such as
video clips that can only be manipulated by configuring the speed and
direction of playback or by applying video effects. All interactions with
the content must be conducted at a high level through graphical user in-
terfaces or hardware controllers. This limits VJs as they do not have fine-
grained control over the video content itself [51]. In addition, VJs cannot
improvise content from scratch during a performance and must rely on

1.1. RESEARCH QUESTIONS 3

their existing material. These limitations can be removed by incorporating
live coding within VJing software. Live coding can be used as a method to
provide fine-grained control of content through the creative coding of vi-
suals. Generative content can be improvised from scratch or manipulated
at a low level during a live performance by live coding.

The goal of this thesis is to explore how CJing can combine live coding
and VJing to harness the strengths of both practices while simultaneously
removing limitations identified in each practice. This thesis demonstrates
CJing by contributing a new environment called Visor that embodies the
practice. Visor has been purpose-built following a user-centered, practice-
based approach to offer features of both live coding and VJing to enable
live visual performances. This research involved interviewing live coders
and VJs to better understand their practice, the development of Visor, and
the evaluation of Visor through live performances and an online feedback
survey.

1.1 Research Questions

The goal of this thesis can be articulated into three research questions:

RQ1: What are the needs and expectations of performers who practice live
coding and VJing?

RQ2: Can features of VJing software improve the usability of a live coding
performance?

RQ3: Can live coding be used as an effective method for improvising
visual content or manipulating existing content during a VJ performance?

4 CHAPTER 1. INTRODUCTION

1.2 Research Methodology

The underlying methodology of this research is user-centered design [49].
To begin, seven live coders and VJs were interviewed to better under-
stand their needs and expectations. A thematic analysis [55] of the inter-
view results was applied to explore the prominent ideas of the perform-
ers' practice and inform the design of the new environment, Visor. Visor
was then developed using a practice-based approach (§4.6) that involved
regular testing of the environment in a live performance context. Two
methods were then used to evaluate Visor's effectiveness. The first eval-
uation method was to reflect on my own live performances with Visor as
part of the practice-based approach. The second evaluation method was
to analyse the results of an online feedback survey that collected responses
from six creative coders, live coders, and VJs who had experimented with
Visor.

1.3 Research Contributions

This thesis makes the following research contributions:

• The CJing practice, a new hybrid practice that combines live coding
and VJing.

• Visor, a new environment for live visual performance that demon-
strates the CJing practice by combining features of live coding and
VJing software.

• An evaluation of Visor, based on a reflection of my own live perfor-
mances conducted throughout this thesis and the results of an online
feedback survey completed by six creative coders, live coders, and
VJs.

1.4. OUTLINE 5

1.4 Outline

The remainder of this thesis is as follows:

Chapter 2 summarises the related work in creative coding, live program-
ming, live coding, and VJing.

Chapter 3 presents a study of live coders and VJs in practice, based on in-
terviews that identified important features, interactions, and aspects
of their performance practice.

Chapter 4 provides an in-depth description of the proposed CJing prac-
tice and presents the Visor environment including details about the
environment's design, important features, implementation, develop-
ment approach, and comparison with related work.

Chapter 5 reflects on my usage of Visor in live performances including
details of my performance setup, performance approach, and a dis-
cussion of observations I made from the performances.

Chapter 6 presents a study of creative coders, live coders, and VJs who
evaluated Visor and provided feedback through an online survey.

Chapter 7 concludes this thesis by discussing the overarching strengths
and limitations of Visor and the underlying CJing practice along with
opportunities for future work.

6 CHAPTER 1. INTRODUCTION

7

Chapter 2

Background

This chapter provides an overview of work related to this thesis: First,
the practice of creative coding and related tools is described; second, the
practice of live programming and related applications is described; third,
the practice of live coding and related environments is described; fourth,
the practice of VJing and related tools is described; finally, the related work
is summarised and placed in the context of this thesis.

2.1 Creative Coding

Creative coding is the artistic application of programming to create con-
tent [52]. Unlike traditional artistic methods that make use of physical in-
struments like paint brushes or musical devices, creative coding harnesses
algorithms and computational techniques to generate outputs where dis-
tinct snippets of code can produce different outputs. Like other art forms,
creative coding can be used to generate content such as static artworks,
animations, music, posters, visualisations, and more. The practice of cre-
ative coding is different from conventional software engineering where
the aim is to develop a well thought out solution. Instead, the programmer

8 CHAPTER 2. BACKGROUND

acts as an artist might and sketches to quickly iterate on variations of a
loosely defined idea [50]. Sketches can be quickly created, iterated upon,
or discarded depending on if they meet the programmer's intent. Cre-
ative coding practice is continually developing. For example, the concept
of code bending shows how existing creative coding languages can be
adapted such that programs behave as plugins and the output of each can
be dynamically combined to create a single output [52].

Processing is a creative coding language for the visual arts used by artists,
designers and students with the intent to teach the fundamentals of com-
puter programming [72]. Processing uses a sketch based model, allowing
the programmer to quickly prototype ideas and iterate on them for cre-
ative exploration. Figure 2.1 demonstrates what it looks like to program
in Processing. Some creative coding tools and libraries also offer similar

Figure 2.1: Abstract pattern coded in Processing [27]. The Processing

development environment (right) displays the code used to render the visuals

(left).

2.1. CREATIVE CODING 9

APIs (application programming interface) to Processing but in different
languages such as p5.js [25] for the web or OpenFrameworks [23] for C++
applications. Another adaption is JRubyArt [11] which wraps Processing
to enable creative coding in the Ruby language. While these languages
focus on textual creative coding, others utilise visual programming, oth-
erwise known as patching. Patch-based tools produce sound or visuals
based on interconnected networks of nodes. Examples of patch-based
creative coding tools include Max/MSP/Jitter, Pure Data, and VVVV [19,
28, 46]. A VVVV patch to generate a fractal tree is shown in Figure 2.2.

Figure 2.2: Tree fractal coded in VVVV [45]. The VVVV patch (right) instructs the

rendered visuals (left).

10 CHAPTER 2. BACKGROUND

2.2 Live Programming

Live programming [79] is a software engineering practice that manifests
itself in many forms including interactive debuggers, interactive program-
ming environments for learning, integrated development environment
(IDE) inspectors and interpreter environments such as a Read-Eval-Print-
Loop (REPL). Live coding is also one of the practical uses of live program-
ming, helping to offer new insights into software engineering processes
[53]. Live programming is mainly concerned with the notion of liveness
[79], described as when a program exhibits a minimal latency between a
programming action occurring and seeing its effect as well as allowing
for dynamic manipulation of the program code at runtime. The program
development cycle normally involves editing, compiling and running a
program. In live programming the cycle is fundamentally different, the
program instead continuously runs even while edits occur to its source
code [79].

The Smalltalk language and environment [33] is an example of software
that embodies live programming. In Smalltalk, the state of the code and
every object is inspectable and editable at runtime within graphical user
interfaces. It has been observed that developers frequently manipulate the
state of a program when it is accessible through a graphical user interface
(GUI) [66]. It has also been discussed how even though a user interface can
give immediate control of some state, the underlying code still presumes
a fixed delimitation of what can be changed at runtime [76].

A key motivation of live programming is making the act of programming
more comprehensible and accessible by incorporating liveness [73]. The
visualisation and manipulation of the state are discussed in the context of
coding visuals using Processing [81]. By exposing the state of variables in
a piece of code it can be better understood by the programmer. If the state
is tangible or visualised over time the programmer can create a connection

2.2. LIVE PROGRAMMING 11

between the output of the program and the code itself. One IDE that
incorporates this kind of state visualisation is Light Table [14]. Light Table
features a ‘live document’ where all code typed is evaluated immediately
and the state of the program is monitored at runtime for effective real-
time debugging. Figure 2.3 shows the Light Table IDE where the state of
variables are presented next to the associated code at runtime.

Figure 2.3: Light Table's real-time visualisation of program state (highlighted) in-

line with the associated code [13].

Incorporating direct manipulation of program output is an interesting ex-
tension of live programming. This behaviour has been seen in Circa [62],
a purpose-built language and environment for live coding where the state
of the running program is available during the editing process. Circa is
a dataflow-based language where a program is represented as a directed
graph of terms and each term is a function that takes in inputs to produce
a single output. Circa features a hybrid textual and visual approach to
editing and inspecting the code and state at runtime. Circa is demon-
strated by drawing elements to a canvas and allowing direct manipulation

12 CHAPTER 2. BACKGROUND

of each element by clicking and dragging on them in the canvas. The
piece of code that is responsible for the clicked element is identified using
a backwards propagation technique and visualised. Direct manipulation
is also shown by Palimpsest [54], a purely visual language for image pro-
cessing. Palimpsest aims to bridge paradigms seen in image editors and
programming languages in a single environment. While minimising the
separation between editing and runtime, Palimpsest also provides perfor-
mance capabilities for live coding such as initialising colours to random
values as a starting point for creative exploration.

2.3 Live Coding

Live coding [41] is the practice of live programming techniques in the
performing arts [79]. The notion of liveness in live coding is motivated
by the ability to support programmers to produce effects in the real world
through computation [73]. These effects are often in the form of musical or
visual content, similar to the outputs of creative coding, except live coding
offers the ability to improvise content over the course of a performance
[57]. The output evolves over time as the live coder modifies the code. Live
coding lends itself to performance as shown by the algorave movement [56]
where artists produce electronic music and visuals for the enjoyment of a
live audience. It is common practice at algoraves to project the source code
onto a screen as shown by Figure 2.4, this way the audience can observe
how changes to the code affect the musical and visual outputs. The pro-
jection of live code enables the audience to engage with the performance
in a new way other than just dancing to the music or watching the visuals.
Live coders have expressed how they feel their musical style is encoded in
the code they write [70], aligning with the idea that live coding illuminates
the way in which programming can be an artistic practice [53].

2.3. LIVE CODING 13

Figure 2.4: Chemical Algorave, Newcastle 2017 [74].

There are a number of live coding environments for producing music in-
cluding Chuck, TidalCycles, and Sonic Pi, each using domain-specific lan-
guages [3, 47, 69]. In particular, Sonic Pi is built off the Ruby language with
the intent of being used by musicians as well as to teach programming [47].
Ruby has a relatively concise syntax but powerful meta-programming abil-
ities. Sonic Pi utilises these traits to support features like multiple in-
struments (which require concurrency) with a simple block-based syn-
tax, demonstrating how Ruby can make even a complicated programming
paradigm relatively easy to grasp. Sonic Pi illustrates how live coding
plays an important role in computing education [53].

In terms of live coding for visuals, there are a number of environments.
LiveCodeLab [60] is a web-based environment that allows for creative
coding in a domain specific language. Figure 2.5 shows LiveCodeLab
in action. In LiveCodeLab each frame is rendered purely as a function

14 CHAPTER 2. BACKGROUND

of time and the frame number with no other state, a deliberate choice to
avoid having to maintain data structures when the code changes. Live-
CodeLab also exhibits a transient behaviour when typing code as the pro-
gram is updated on every keystroke, causing the output to exhibit sudden
changes. This behaviour is intended to be part of the constructive nature of
the performance. Interestingly, one live coding environment that exhibits
the same transient behaviour as LiveCodeLab has been discussed with
respect to performative strategies that help to avoid unintended behaviour
or errors when live coding GLSL shaders [67]. A similar live coding envi-
ronment to LiveCodeLab is Cyril [4]. Cyril uses a similar domain-specific
language to LiveCodeLab but instead resides as a desktop application.

Figure 2.5: Live coding visuals in LiveCodeLab [15].

Another web-based live coding environment for producing sound and vi-
suals is Gibber [75]. Gibber uses the general purpose language JavaScript
for live coding and favours high level abstraction for enabling creative ex-

2.3. LIVE CODING 15

pression. Such abstractions allow features such as multi-modal mappings
between audio and visual elements as well as methods for scheduling
events or sequencing data. In Gibber, specific lines of code can be executed
from the editor allowing REPL like behaviour where arbitrary code can be
evaluated at any time. Gibber objects are stored in a graph that holds
state between code iterations. 2D graphics are available through access
to HTML canvas objects and 3D graphics are implemented by wrapping
the Three.js library [39]. The ability to live code GLSL shaders to define
visuals is also possible in Gibber, an approach taken by other live coding
systems such as KodeLife [12]. Figure 2.6 shows the live coding of music
and shaders in Gibber.

Figure 2.6: Live coding music and shaders in Gibber [9].

Praxis LIVE [78] is a live coding environment and IDE for producing music
and visuals. Praxis LIVE presents a hybrid approach by supporting visual
programming of a graph of interconnected components where each com-
ponent also has a textual representation that can be live coded at runtime.

16 CHAPTER 2. BACKGROUND

Figure 2.7 shows Praxis LIVE in action. In Praxis LIVE, programming is
performed in Java, allowing access to a multitude of libraries including
the Processing API for 2D and 3D creative coding. Praxis LIVE is based
on a declarative model where a component's code represents its state.
Praxis LIVE also offers GUIs to interact with and visualise the state of
components. Similar to Praxis LIVE, Siren [80] is a hybrid system for the
composition of algorithmic music and live coding performances that offers
GUIs to interact with code. Siren enables live coding of music at a low level
through the TidalCycles language and makes use of many GUI features to
interact with content at a high level. Examples of these features include the
pattern roll that visualises the pattern of a function in TidalCycles code or
the scene interface that enables organisation of many pattern functions.

Figure 2.7: Live coding music and visuals in Praxis LIVE [26]. Visual

programming is shown (left) along with live coding (right), and the rendered

visual output (bottom-middle).

2.4. VJING 17

While the aforementioned live coding environments predominantly focus
on textual interfaces, new developments in live coding practice explore
how gestural and embodied interaction can be incorporated. For example,
Auraglyph [77] is a programming environment that allows for gestural
interactions in musical performance. Auraglyph achieves this by making
use of touch interfaces to interact with visual objects that program the
musical output, distancing itself from textual interfaces that are typical
in live coding environments. Visual programming environments such as
Max/MSP/Jitter and VVVV are also often considered for ‘live patching’
performances. These performances are similar to live coding except the
content is produced using patches instead of lines of code.

2.4 VJing

Video jockeys (VJs) are the visual counterpart to the musical disc jockeys
(DJs); improvising visuals to accompany live music and create audiovisual
marriages that engage the senses [61]. VJs tend to work with pre-rendered
content such as looping video clips and improvise their performances by
layering and mixing clips together or applying parameterised video ef-
fects. Unlike live coding software, VJing software offers comprehensive
GUIs made up of many individual parameter controls, video clip preview
windows and mappings to external hardware. In combination with soft-
ware, VJs utilise hardware such as MIDI controllers, touch interfaces and
other miscellaneous devices such as game console controllers to produce
and manipulate their visuals. Figure 2.8 shows a VJ setup with multiple
computers and MIDI controllers.

VJs make use of industry standard software such as Resolume and Modul8
[21, 30] for live visual performance. A variety of content can be used
as input in these software packages including video clips, camera feeds,
images and even real-time visual effects. This content is manipulated
using filters and special effects as well as being mixed with other content
to produce a final image. The resulting image is projected for the audience

18 CHAPTER 2. BACKGROUND

Figure 2.8: VJ setup featuring two PC's running Resolume (top-left, top-right), a

MacBook running video editing and patching software for supplemental content

(bottom-left), and numerous MIDI controllers (bottom-right) [63].

to see using projectors, LED walls, and digital displays. An example of
this VJ pipeline is used in a performance installation where the output of
an interactive Processing sketch is used as an input into Resolume and
then to MadMapper [17] to be projection mapped onto a surface [65]. The
Syphon and Spout frameworks [32, 36] are often used by VJs to stream
visuals in real-time between applications. Patch-based software such as
Touch Designer and VVVV are also commonly used to generate real-time
visual content [42, 46]. Figure 2.9 shows another example where visual
content is rendered by a VJ and projected onto multiple screens at a music
festival.

2.4. VJING 19

Figure 2.9: Taniwha's Den 2019 music festival. A VJ (left) is working with

Resolume to render visuals that are projected across multiple screens around the

DJ booth using multiple projectors.

One study of VJing practice from an HCI perspective observed performers'
methods of expressive interaction and identified a number of characteris-
tics that had an effect on their practice [64]. The observations made in this
study have influenced the design of a number of customised audiovisual
performance tools such as residUUm and ABP [58, 71]; developed follow-
ing a user-centered approach [59]. While these tools succeed in delivering
ready-made generative visuals that are straightforward to interact with,
they are not easily reused in other performances. In contrast, Bergström
et al. [51] suggest that code should be organised into reusable modules
that can be shared among programmers and even non-programmers to
allow for new performance compositions. This concept is demonstrated
by Mother [51], a set of tools that act as a middleware between Processing
sketches to enable VJ performance. Mother allows for the composition
of multiple sketches that can be shared as reusable code modules. Each

20 CHAPTER 2. BACKGROUND

sketch exposes parameters that Mother can interact with over OSC (Open
Sound Control). Mother is also discussed as an example of the aforemen-
tioned code bending practice [52].

2.5 Summary

This chapter has described the practices of creative coding, live program-
ming, live coding, and VJing. There are a number of software applica-
tions and environments that span these practices, but no software has
been purpose-built to offer features from each practice to support live
performance of visuals. In particular, no related work explicitly combines
aspects of live coding and VJing to harness the strengths of both practices,
addressing RQ2 and RQ3 (§1.1). Table 2.1 displays a subset of the related
software that best overlaps these practices.

This thesis builds upon the gap in the related work by contributing a new
purpose-built environment called Visor. Visor combines aspects of both
live coding and VJing to embody the CJing practice. Visor also incorporat-
ing aspects of creative coding and live programming practices.

The next chapter presents a study of live coders and VJs in practice based
on interviews that identified important features, interactions, and aspects
of their performance practice.

2.5. SUMMARY 21

Table 2.1: Taxonomy presenting how the related software spans creative coding,

live programming, live coding, and VJing practices. Y (yes) indicates that the

software explicitly supports this practice. S (some) indicates that the software

supports some aspects of this practice.

Software Creative coding Live programming Live coding VJing
Max/MSP/Jitter [19] Y S S S
VVVV [46] Y S S S
Palimpsest [54] Y S S
LiveCodeLab [60] Y Y S
Cyril [4] Y Y S
Gibber [75] Y S Y S
KodeLife [12] Y S Y S
Praxis LIVE [78] Y Y Y S
Siren [80] Y Y Y
Resolume [30] S Y
Modul8 [21] S Y
Touch Designer [42] S S S S
Mother [51] Y Y
Visor Y Y Y Y

22 CHAPTER 2. BACKGROUND

23

Chapter 3

Live Coding and VJing:
Interviews

As part of a user-centered design process [49], seven live coders and VJs
were interviewed to better understand their practice. The intent of the in-
terviews was to inform the design of new hybrid environments that com-
bine and improve upon live coding and VJing. The interviews solicited
qualitative insights around the needs and expectations of live coders and
VJs (RQ1 §1.1). Each interview participant was asked about their back-
ground, the software and hardware components that made up their typi-
cal performance setup, the types of interactions that they conducted dur-
ing a typical performance, and the important qualities or limitations of
their performance setup and practice. The analysis of the interview re-
sults revealed a number of themes with respect to the important features,
interactions, and aspects of their performance practice. Conducting these
interviews was also useful for developing my own understanding of live
performance practice, having never performed before. This research was
approved by the Victoria University of Wellington Human Ethics Com-
mittee (refer to Appendix A).

24 CHAPTER 3. LIVE CODING AND VJING: INTERVIEWS

3.1 Interview Procedure

Interview participants were recruited based on their existing experience
with some combination of live coding, creative coding, VJing, and live
performance. A targeted recruitment strategy was used to select partici-
pants that were local to the Wellington region so that interviews could be
performed in person. Participants were identified based on my existing
networks or were referred to me by other people in these networks. Par-
ticipants were provided with the information sheet found in Appendix B.

The interviews were semi-structured. The schedule in Appendix C out-
lines the base questions that were asked to each participant. The schedule
included: 4 questions to learn about the participant's performance back-
ground; 1 question to learn about their programming skills and how they
use code in performance; 5 questions to learn about their typical perfor-
mance setup, the common actions conducted during their performances,
the important qualities of their practice or performance setup, and the
limitations of their practice or performance setup; and 1 question to learn
about their future plans for developing their performance practice. The
interviews were conducted openly so that it was possible to explore the
topic of live performance more broadly than the questions set out in the
schedule. Notes were taken during each interview to record qualitative
data. Each set of notes was supported by an audio recording to justify the
findings and back up any claims.

3.2 Participants

The 7 participants that were interviewed came from a range of
backgrounds. 2 participants (P4, P5) were experimental musicians with
musical live coding experience while the other 5 participants (P1, P2, P3,
P6, P7) were visual artists with VJing experience. One of the visual artists

3.3. ANALYSIS 25

(P2) also had visual live coding experience. Both musicians also had some
experience creating visuals using Resolume or Cyril (P4), and OpenPro-
cessing (P5). Both musicians (P4, P5) had programming experience but
of the 5 participants with VJing experience, only 4 (P1, P2, P3, P6) had
programming experience and only 3 (P2, P3, P6) utilised coded content in
their performances. None of the interviewed participants classified them-
selves entirely as live coders, meaning the participants were predomi-
nantly VJs and hybrid or experimental musical performers. Further details
on each participant's background including their classification, software
and hardware used, and relevant experience are shown in Table 3.1.

3.3 Analysis

The qualitative data provided from the participants' responses to the inter-
view questions was analysed using thematic analysis [55]. This analysis
was applied using a step-by-step approach [68]. Firstly, the notes were
read to gain familiarity with the data. The data was organised by editing
the notes and splitting them into discrete observations. Each observation
was coded using an inductive approach where the codes were developed
based on the content of the data. Themes and subthemes were constructed
by grouping codes together and validating if the underlying data sup-
ported the theme. A number of iterations took place to refine the codes,
themes, and subthemes. As a result, 3 themes were produced and repre-
sented using thematic maps. Each thematic map presents the relationship
between the theme, subthemes, and codes. Themes are displayed as blue
circles, subthemes as blue boxes, and codes as white boxes. The lines
between themes, subthemes, and codes represent hierarchy while lines
between codes represent an observed correspondence between codes.

26 CHAPTER 3. LIVE CODING AND VJING: INTERVIEWS
Ta

bl
e

3.
1:

In
te

rv
ie

w
pa

rt
ic

ip
an

ts
ba

ck
gr

ou
nd

.

ID
C

la
ss

ifi
ca

ti
on

So
ft

w
ar

e
an

d
ha

rd
w

ar
e

us
ed

Li
ve

co
di

ng
ex

pe
ri

en
ce

V
Ji

ng
ex

pe
ri

en
ce

Pr
og

ra
m

m
in

g
ex

pe
ri

en
ce

1
Li

ve
vi

de
o

ar
ti

st
La

pt
op

,R
es

ol
um

e,
M

ID
I

ke
yb

oa
rd

,S
yp

ho
n

R
ec

or
de

r
8

ye
ar

s
2

ye
ar

s

2
Li

ve
di

gi
ta

lv
is

ua
l

ar
ti

st

La
pt

op
,V

V
V

V,
To

uc
hD

es
ig

ne
r,

jo
ys

ti
ck

,g
am

e
co

nt
ro

lle
r,

M
ID

I

co
nt

ro
lle

r,
cu

st
om

so
ft

w
ar

e

8
ye

ar
s

10
+

ye
ar

s
10

+
ye

ar
s

3
C

re
at

iv
e

co
de

r
an

d

V
J

D
es

kt
op

C
om

pu
te

r,
Pr

oc
es

si
ng

,

R
es

ol
um

e,
Su

bl
im

e
Te

xt
,M

ID
I

co
nt

ro
lle

r

1
ye

ar
1

ye
ar

4
Ex

pe
ri

m
en

ta
ls

ou
nd

ar
ti

st

La
pt

op
,P

ur
e

D
at

a,
M

ax
/M

SP
,

Su
pe

rC
ol

lid
er

,C
hu

ck
,C

yr
il,

R
es

ol
um

e,
M

ID
Ip

ad
co

nt
ro

lle
r,

cu
st

om
bu

ilt
ha

nd
co

nt
ro

lle
r

5
ye

ar
s

9
ye

ar
s

5
A

ud
io

pr
og

ra
m

m
er

an
d

im
pr

ov
is

er

La
pt

op
,C

hu
ck

,M
ax

/M
SP

,

O
pe

nF
ra

m
ew

or
ks

,d
ru

m
se

t,

G
am

e
Bo

y
sy

nt
he

si
se

r,
cu

st
om

M
ID

Ic
on

tr
ol

le
r,

cu
st

om
M

ID
I

fo
ot

pe
da

l

5
ye

ar
s

5
ye

ar
s

6
V

is
ua

la
rt

is
t

D
es

kt
op

C
om

pu
te

r,
U

ni
ty

,

V
D

M
X

,M
ID

Ic
on

tr
ol

le
r

7
ye

ar
s

6
ye

ar
s

7
V

J,
lig

ht
in

g,
ar

ti
st

,

pr
oj

ec
tm

an
ag

er
,

al
lr

ou
nd

er

D
es

kt
op

C
om

pu
te

r,
R

es
ol

um
e,

M
ag

ic
,v

id
eo

ca
m

er
as

,v
id

eo

ca
pt

ur
e

ca
rd

s,
M

ID
Ic

on
tr

ol
le

r

3
ye

ar
s

3.3. ANALYSIS 27

The finalised themes were: Features, Interactions, and Practice.

Features highlights the prominent features of the software and hardware
used in the participants' performance setup including subthemes cor-
responding to audio responsive behaviour, communication proto-
cols, and content arrangement.

Interactions highlights the prominent interactions that the participants
conducted using the software and hardware in their performance
setup.

Practice highlights interesting trends or ideas from within the general
performance practice of participants including interconnected sub-
themes corresponding to the usability of utilising code, the use of
instruments, visible interactions, and the role of other people.

The findings surrounding each theme are now discussed in detail.

3.3.1 Features

The first theme was Features which highlighted a number of prominent or
common features of the software and hardware utilised in the participant's
performance setups. The thematic map for the Features theme is presented
in Figure 3.1.

The use of features that enabled Audio responsive visuals was a subtheme
reported by the 5 participants with VJing experience. This was achieved
using two “real-time audio analysis” approaches, The first approach was
concerning “audio frequency” analysis (P1, P2, P3, P6), also known as “FFT”
(P6) which stands for ‘fast Fourier transform’, an algorithm for transform-
ing sound signals into the frequency domain. The second approach was
“beat responsive” behaviour (P1, P2, P7). Participants reported audio re-
sponsive visuals were important because it “makes VJing look and feel more
responsive” (P1), and allowed them to “create graphics that are actually in time
with the music” (P3).

28 CHAPTER 3. LIVE CODING AND VJING: INTERVIEWS

Features

Preview content

Audio responsive

FFT / spectrum

Beat reactive

Effects

Layers

Content library

Communication

OSCMIDISyphon / Spout

Arranging content

IDE Features

Figure 3.1: Thematic map for the Features theme and the relationship between the

theme, subthemes, and underlying codes. The subthemes are Audio responsive,

Communication, and Arranging content.

Another subtheme was Communication which highlighted the use of dif-
ferent protocols supported by participants' software to enable communi-
cation with other software or hardware devices. The first protocol was
MIDI which was used by all participants to communicate with some form
of “MIDI controller” device. The second protocol was Syphon / Spout and
was used by the 5 participants with VJing experience and by one musician
(P4) when they had performed visuals. P6 describes the protocol as “a big
feature, sharing graphics textures between programs.” P1 mentioned that they
used “Syphon Recorder to record sets” while P3 mentioned that they would
“use Syphon to get Processing into Resolume.” The last protocol was OSC
which was used by 2 participants. P4 used OSC for hardware controllers
by building “OSC ready devices.” P6 used OSC to communicate between
software programs, for example, they mentioned “VDMX would OSC out
to Unity for audio analysis data, which could then manipulate models, materials,
shaders.”

3.3. ANALYSIS 29

The last subtheme was Arranging content which was common amongst
the 5 participants with VJing experience and highlighted two ways that
content was arranged in VJ software. One way content could be arranged
was through layers. P3 mentioned how their final visual output was made
up of multiple clips in Resolume where “each clip in the column/layer grid is a
sketch that is running” and P1 mentioned how they would composite video
clips in different layers by “combining layers using alpha blends.” Three of
the participants with VJing experience also expressed how they made use
of a content library to arrange content, for example P7 “makes a whole new
library of content for each gig.” Similarly, P3 would “listen to the artists that I
am going to be playing with, create a library or adjust existing libraries to fit their
music style.” P1 also mentioned that they would “come prepared with layers,
sometimes find clips from library” when performing.

A number of other features were also mentioned by multiple participants
as important aspects of their performance software. The importance of fea-
tures standard in integrated development environments (IDEs) was dis-
cussed by P2 and P4 when live coding. For example, P2 mentioned that
“error highlighting is great” while P4 mentioned that it “would be nice to
use the same toolkit as an IDE”, for example by allowing “error highlighting,
syntax highlighting, autocompletion” when live coding. Another prominent
feature discussed by 3 participants (P1, P2, P3) was the ability to preview
content, in particular, the ability to visualise what it would be like to play a
certain clip. The importance of this was emphasized by P1 who mentioned
that “being able to visualise is less risky as you only push up things that look
good” and P3 who said that without this ability it was “hard to test out new
ideas in a live show without showing the audience.” The final feature was the
ability to apply effects onto content which was explicitly mentioned by
6 of the 7 participants. P5 used effects in music such as by applying a
“modulated filter to affect someone's voice in real-time” while P3 used effects
in visuals “like messing with colour or a polar kaleidoscope.”

30 CHAPTER 3. LIVE CODING AND VJING: INTERVIEWS

3.3.2 Interactions

The second theme, Interactions, highlights a number of prominent or com-
mon interactions conducted by participants during their performances.
The thematic map for the Interactions theme is presented in Figure 3.2.

Applying effects

Interactions

Writing code

Updating parameters

Mixing / transitioning
content

Mapping parameters

Using hardware
devices

Patching

Triggering content

Figure 3.2: Thematic map for the Interactions theme and the relationship between

the theme and underlying codes.

One common interaction was the performer's ability to trigger new con-
tent, as shown by the 5 participants with VJing experience, for example
(P1, P2, P6) mentioned how they would be “triggering clips” throughout
their performances. Applying or updating effects was also mentioned by
the participants such as how P3 would “tweak with effects” and how P7's
use of Resolume meant they “can try different effects.” Another common in-
teraction was to mix or transition content as mentioned by P2 and P6 based
on how they would be “video mixing.” P1 and P5 also mentioned how they
would “crossfade” visuals and music respectively. Mapping parameters
within the software or to hardware was also a common interaction men-

3.3. ANALYSIS 31

tioned by 3 of the participants. P2 mentioned how they would “arbitrarily
map controller to individual values” while P4 emphasized the “ability to map
anything with anything (visual, text, numbers), all represented by data.” In a
more concrete example, P6 mentioned how by “using MIDI controller to
map to VDMX” they could “drive an opacity layer or frequency band.”

Participants also described interactions at a low level, describing how they
achieved something rather than what they achieved. Three low level inter-
actions were identified, the first being writing code, as mentioned by the
3 participants with live coding experience through “editing GLSL” (P2),
“writing a script” (P4), and “changing code” (P5). The second low level
interaction was patching as mentioned by 2 participants who live coded
in visual programming languages by “shuffling nodes around” (P2), and
“repatching Max MSP with one hand” (P5). The third low level interaction
was through using hardware devices as mentioned by (P5) when they
“used the foot pedal to use MIDI to change parameters” or by (P6) through “us-
ing the MIDI controller to map to VDMX.” Other interactions are assumed
to have been performed through the mouse or keyboard, for example by
clicking through the software graphical user interface as mentioned by P1:
“clicking on a clip shows it in the preview” or by using keyboard shortcuts as
mentioned by P6: “simple interactions using keyboard shortcuts.”

Finally, updating parameters was shown to be one of the most promi-
nent interactions due to how highly connected it was to other interac-
tions. Updating parameters was conducted in a number of ways such
as through writing code as mentioned by P5 where they would “recompile
code on stage with different parameters” and by using hardware controllers
as mentioned by P4 with respect to their hand controller where the “hand
does continuous control of parameters.” Updating parameters was used to
achieve a variety of results including how P1 would update effects by
changing the “hue, saturation, pixelation” or layer properties “width, height,
opacity, speed.” Changing the opacity of a layer can be assumed to have the

32 CHAPTER 3. LIVE CODING AND VJING: INTERVIEWS

same effect as mixing or transitioning content. Similar to the relationship
between updating parameters and using hardware controllers, controllers
were also shown to be used to trigger content as mentioned by P4 with
respect to their “grid-based pads controller” which would do “discrete stuff,
note selection, octave selection.”

3.3.3 Practice

The third theme, Practice, highlights a number of interesting trends or
ideas of general performance practice that were identified across the par-
ticipants. The thematic map for the Practice theme is presented in Figure
3.3.

Integrating code in
VJ software

Usability of live
coding

Audience interaction

Projecting code

Context switching

Hardware devices

Collaboration with
VJs

Collaboration with
musicians

Gesture /
embodiment

Usability of code in
performance

People

Visible interaction Instruments in
performance

Practice

Figure 3.3: Thematic map for the Practice theme and the relationship between the

theme, subthemes, and underlying codes. The subthemes are Usability of code in
performance, Instruments in performance, Visible interaction, and People.

The Usability of code in performance was a subtheme that arose based on
how participants with VJing experience had gone about integrating coded
content into their practice as well as how participants reported on the us-
ability of live coding. The use of coded content in performance was shown
by P2 who was “now writing GLSL (in live code)” during the performance as

3.3. ANALYSIS 33

they found it easier than patching: “sometimes extending VVVV on the spot,
but it wasn't particularly built for live stuff.” They went on to comment on
the usability of visual programming languages where a “problem with most
graphical programming languages is that every object requires a click or selection
through a menu. Instead of typing a line of a code, click by click is slower.”
P6 mentioned how they also “used visual scripting” and preferred it over
textual coding as they “don't have to worry about text side of things, likes to
see how things are connected, pin down what's affecting what”, but they did not
do any live patching during performance. P3 also demonstrated the use of
coded content in performance by combining Processing sketches with VJ
software where the “coding done in Processing using Sublime, mix that in Res-
olume, projected from Resolume. Use Syphon to get Processing into Resolume.”
They also discussed how they prepared the sketch code upfront and that
they “don't always do a lot of work with live code at the gig, just because it was
easier not to.”

The need for using coded content in performance was emphasized by 2
participants. P1 mentioned that “working with pre-recorded content is not
expressive” and while the “level of detail of video is great”, they would prefer
“to work with both mediums”, be it video content and coded content as coded
content could allow for “real-time graphics that are smooth, drawn, and with
interactive parameters.” P3 also emphasised that code was an “easy way
of doing audio-reactive graphics, can quickly apply colour to different ranges of
music, apply movement, transformations. Not sure what kind of software gives
you that kind of fine control that you get with procedural graphics.” While some
participants managed to integrate coded content in their performances, it
was not without its limitations. Three participants reported limitations
when integrating coded content in VJing performances. P1 mentioned
how they wanted to use coded content in performance but could not due
to limitations of their software: “would write own FFGL plugins for Resolume,
but no documentation, not user-friendly.” P2 also reported issues writing
Python code in VJ software due to how “TouchDesigner builds Python but

34 CHAPTER 3. LIVE CODING AND VJING: INTERVIEWS

can't use Python within TouchDesigner.” P3 also reported usability issues
with their Processing to Resolume setup due to the fact that they “can't
launch Processing sketches from Resolume” and that it “takes a long time for
Processing to launch a sketch.”

The second subtheme was Instruments in performance due to how common
it was amongst the participants to utilise some kind of external hardware
controller or instrument in combination with their software to produce
music or visuals. As previously mentioned under the Features theme, all
of the participants used some kind of MIDI controller in their performance
setup. P4 mentioned how when “live coding, using a controller as a sound
input in the software is like using a live instrument in real-time.” The use of
instruments in performance was also linked to the usability of live coding
by P5 who used a drumset in their performance while live coding. They
mentioned that when using the computer that the “ability to interact is
extremely slow” whereas “on a drum set can interact instantly.” Through
their performances they found that “repatching Max MSP with one hand is
a disaster” and that it was “hard to act impulsively in a music setting with
code. As it is quite abstract, requires mathematical thinking. Very hard to play
the drums at the same time as it contrasts so much.” While this shows the
benefits of instrumental performance, it also highlights a usability issue
due to having to context switch between live coding and using the con-
troller. Similarly, P2 mentioned how they would be “writing code with one
hand and the other hand is fading between things that are already loaded up”,
but they also admitted that there was “always going to be a bit of context
switching.” Another benefit of instruments was discussed by P4 who used
a custom hand controller. They mentioned that it was “important to es-
tablish language” with the audience and reported that controllers allowed
for building a “relationship between physical gesture in audio (or something
visual).” P5 also emphasized how the opposite held true for computers by
stating that there are “not many situations where you are more disconnected,
when you are embodied in the computer.”

3.3. ANALYSIS 35

The discussion of gestural or embodied interaction in performance leads
into the next subtheme, Visible interaction, which highlights how the au-
dience perceives the performer's interactions. P2 discussed how “audience
interaction is pretty key, some performers are pretty gestural” and went on to
mention a specific DJ that was “so quick and expressive in the way he moves.
Physicality in his performance is half of what the audience see. The live aspect
is pretty inspiring.” P5 mentioned that it was important to “communicate
the creative process going into the performance.” Code projection was also
mentioned by 2 participants when discussing live coding as it allowed for
showing part of the performer's process to the audience. P2 mentioned
how as they “do not sit on stage as can see better from behind audience” that
“projecting code on the screen allows for appreciation of technique, rather than
just appreciation of the result.” P4 also mentioned that “projected code makes
music an artefact” because music is “always time-based but the text is static,
contrasting with the physical live embodiment.” Despite this, both participants
were also critical of code projection. P2 mentioned that they “can project
code but only in right contexts” and “generally focuses on creating results that
hold for their own merits.” P4 also stated that they “don't subscribe to showing
projection on screen, live coding is a method, does not define what can or cannot
be seen on stage.”

The importance of audience interaction also overlaps the last subtheme,
People, which highlights the importance of collaborating or interacting with
others. P7 reported how their use of live cameras when VJing would
“provide crowd interaction” and that the audience “love to see themselves.” All
of the participants emphasised the importance of collaboration with other
people to some degree. The participant's collaboration involved working
with others that were responsible for the music, lighting or visuals. P1
mentioned the need to “make your content fit the environment” and also
the need for “collaboration with lighting people, focus on lights or projections,
add smoke.” P1 also reported “worked with another VJ, two VJ environments
between a mixer, crossfade or blend in middle”, and the result was “chaotic or

36 CHAPTER 3. LIVE CODING AND VJING: INTERVIEWS

cool.” P7 reported they would use a video capture card for collaboration by
“capturing another ‘Guest’ VJs work” and that their “main pride is in working
with other people.” P6 who worked closely with a musician reported that
they would be “triggering clips throughout performance based on what I was
hearing in the audio world or what was rehearsed.” Similarly, P3 reported that
they “pays most attention to the DJ” and “puts on what they feel fits with the
music.” P2 reported “collaborating with bands, developing a look for each band.”
P4 also expressed an interest in collaboration with respect to live coding,
stating that they were “interested in how a live coder would work with a live
improv person.” This kind of collaboration could solve the issue of context
switching by enabling two performers to work together to live code and
improvise using a hardware controller at the same time.

3.4 Discussion

The analysis of the interview data unearthed some central ideas around
important features, interactions, and aspects of performance practice. The
following summarises and discusses the findings.

Features: A number of features in live performance software were com-
monly used by the interviewed participants. The majority of these features
were for VJing and is likely due to the larger number of participants with
VJing experience over live coding experience. Regardless, the results still
highlighted important features of VJing software.

The ability to create visuals that responded to music was prominent
amongst the participants with VJing experience and was either based on
analysing the audio frequency spectrum or the beat of the music in real-
time. Support for different communication protocols was also very com-
mon, in particular, the MIDI protocol due to how it enabled support for
external hardware devices like the MIDI controllers that were used by all

3.4. DISCUSSION 37

of the participants. The OSC protocol was also used by two of the par-
ticipants for communicating with hardware or between multiple software
applications. Syphon and Spout were also commonly used as a method
for sending visual content between applications or recording the visuals
for later playback.

The ability to arrange content at a high level was common amongst the
participants with VJing experience, for example, the ability to create lay-
ers of video content that are composited together into the final output.
Having access to a content library, the ability to preview content before
it's rendered to the audience and the ability to apply effects onto content
were also commonly used or important to the participants with VJing
experience. In terms of features related to live coding, some usability fea-
tures that are standard in IDEs were raised as important including syntax
highlighting, error highlighting, and code completion.

Interactions: A number of interactions conducted during live
performances were also shown to be important by the interviewed par-
ticipants. Updating parameters was the most prominent interaction due
to the variety of results it could achieve. For example, updating the opac-
ity parameter of a layer allows for mixing content while parameters of
individual effects can also be manipulated to change the final output. The
ability to easily tweak parameters enables performers to make changes in
the visuals that reflect changes in the music. Some participants explicitly
mentioned how they used live coding or hardware controllers to change
parameters. This also emphasises the importance of the ability to easily
create mappings between parameters and hardware controllers, another
common interaction conducted by the participants.

The ability to easily switch between or trigger new content was also a
common interaction conducted by the participants. Unlike updating pa-
rameters, triggering content was described as an action that would make
discrete changes to the final output, whereas updating parameters would

38 CHAPTER 3. LIVE CODING AND VJING: INTERVIEWS

allow for smooth changes to the final output. Patching was also an inter-
action commonly discussed by the participants who used visual program-
ming languages. It was apparent amongst these participants that patching
during live performance had usability issues and they instead favoured
to have the patches set up before a performance. One participant also
favoured live coding in a textual language over visual patching during
performances. Live coding and the act of writing code itself was also a
common interaction. Finally, the ability to apply effects that manipulate
the final output was a common interaction conducted by the participants.

Integration of code with VJ software: The need for more effective inte-
gration of code with VJ software was apparent based on the practice of
some of the participants. While a number of the participants with VJing
experience used coded content in their performances, they also identified
limitations based on how they went about integrating code. Some of these
limitations were due to the VJing software itself not providing an effective
approach to integrating coded content or providing an approach to easily
live code. There were also limitations where the visual content had to
be communicated between applications to achieve the desired results. For
example, one participant sent the output of Processing to other VJ software
to enable performances with coded content, an approach that came with
limitations and usability issues. These limitations highlight the need for
VJing software that provides an easy to use approach to incorporating
coded content in live performance.

Hardware controllers: The use of hardware controllers was a very promi-
nent aspect of the performance practice of the interviewed participants.
Each of the 7 participants used some form of physical controller to enable
gestural control during their performance. While the use of hardware con-
trollers creates an opportunity to introduce gestural and embodied inter-
action into live coding performance, it also comes at the cost of introducing
usability issues such as the need to switch contexts between the computer

3.5. SUMMARY 39

and the controller, as reported by the participants. This emphasises the
need to make interactions between code and controllers as easy as possible
and therefore reduce the friction caused by context switching. Hardware
controllers were also deemed important by the participants due to how
they enabled visible interaction of their practice to the audience. This
new form of transparency offers another opportunity to improve upon
live coding practice where the performer is typically hidden away behind
a laptop screen.

Visible interaction: An aspect of live coding practice discussed by the
participants with live coding experience was the ability to project the code
onto a screen. While the participants admitted that code projection was
a useful technique for showcasing a performer's process, overall they re-
ported that it was not important due to how they treated live coding as
a method. The participants placed more importance on the final output
of their work and stated that code projection forces the performance into
a specific genre. It is important to note that none of the participants with
live coding experience had performed at algoraves where code projection
is standard practice. The participants with VJing experience were also
clearly observed to not provide this kind of visible interaction and instead
focused on the quality of their visual output. This raises a key difference
between live coding and VJing. Live coders appear to be concerned with
making their process fully visible, even if it means revealing errors to the
audience, but VJs are more polished in the sense that they make use of
features such as the ability to preview content as a form of quality control
and care less for visible interaction.

3.5 Summary

This study of live coders and VJs in practice has identified a number of
important features, interactions, and aspects of performance practice. Ta-

40 CHAPTER 3. LIVE CODING AND VJING: INTERVIEWS

ble 3.2 summarises these outcomes as specific aspects that will help to
inform the design of future tools such as Visor. This study also raised a
number of important discussion points for consideration when evaluating
CJing and Visor including the usability of integrating coded content in VJ
software, the issue of context switching, and the differing stance on visible
interaction between live coding and VJing.

Table 3.2: Important features, interactions, and aspects of the participant's

performance setup and practice. Each aspect is shown alongside the participants

that explicitly stated it.

Theme/Subtheme Aspect Participants stated

Audio responsive
FFT P1, P2, P3, P6

Beat based P1, P2, P7

Communication

MIDI P1, P2, P3, P4, P5, P6, P7

OSC P4, P6

Syphon / Spout P1, P2, P3, P4, P6, P7

Arranging Content
Layers P1, P2, P3, P6, P7

Content library P1, P3, P7

Features

Syntax highlighting P4

Error highlighting P2, P4

Code completion P4

Preview content P1, P2, P3

Effects P1, P2, P3, P5, P6, P7

Interactions

Updating parameters P1, P2, P3, P4, P5, P6, P7

Mapping parameters P2, P4, P6

Triggering content P1, P2, P3, P6, P7

Patching P2, P5, P6

Writing code P2, P4, P5

Practice
Integrating coded content P1, P2, P3, P4, P6

Using hardware controllers P1, P2, P3, P4, P5, P6, P7

3.5. SUMMARY 41

The next chapter introduces the new hybrid CJing practice and the new
Visor environment that embodies CJing. The aspects identified as a result
of this study are important characteristics of CJing and a number of them
were incorporated into the design of Visor.

42 CHAPTER 3. LIVE CODING AND VJING: INTERVIEWS

43

Chapter 4

CJing and Visor

A new hybrid environment has been developed as part of this thesis to
embody CJing, exploring how live coding and VJing can be combined
to harness the strengths of both practices while simultaneously removing
limitations identified in each practice (RQ2, RQ3 §1.1). This new envi-
ronment is called Visor [44]. Visor combines aspects of live coding and
VJing software to enable live visual performance. In Visor, live coding is
conducted in the Ruby language and visuals are rendered using the Pro-
cessing API. A number of graphical user interface (GUI) elements are also
provided to support live performance. Figures 4.1 and 4.2 show Visor in
action by presenting the Visor interface and corresponding visual output
respectively. Visor has captured the interests of many live coders, creative
coders, and VJs, and has been downloaded more than 500 times since
January 2019. This chapter begins by providing an in-depth description of
the CJing practice, then describes Visor's design, features, implementation,
and development approach, and concludes by comparing CJing and Visor
with the related work.

44 CHAPTER 4. CJING AND VISOR

Figure 4.1: Visor interface in action. The interface is made up of multiple GUI

elements that offer different functions including a live code editor (left), layer

interface (top-right), state management interface (right-middle), console (bottom-

right), audio frequency spectrum / FFT display (bottom-middle), and tap tempo

interface (bottom-left). The visual output corresponding to this state of the

interface is shown in Figure 4.2.

4.1. CODE JOCKEY PRACTICE 45

Figure 4.2: Visual output rendered from Visor based on Processing. These visuals

correspond to the state of the interface shown in Figure 4.1.

4.1 Code Jockey Practice

The new hybrid code jockey practice (CJing) combines aspects of live cod-
ing and VJing. In CJing, a performer known as a code jockey (CJ) interacts
with code, GUIs, and hardware controllers to improvise or manipulate
visual content in real-time. CJing harnesses the strengths of live coding
and VJing to enable flexible performances while simultaneously removing
limitations identified in each practice. CJing is designed to complement
live coding and VJing by providing a new approach that enables per-
formers to utilise aspects of both practices in the same performance. For
example, a performance aesthetic of the CJing practice is the utilisation of
live coding as a method to improvise ‘visual instruments’ on the fly. Once
defined, visual instruments can be performed using GUIs and hardware
controllers to generate live visuals. CJing pushes live coding and VJing

46 CHAPTER 4. CJING AND VISOR

practices in new directions by blurring the lines between them. The live
coding practice is directed towards the incorporation of GUIs other than
text editors and the use of gestural inputs such as MIDI controllers. The
VJing practice is directed towards focusing on generative content that can
be edited at runtime using live coding. While this thesis focuses on VJing
to produce visual content, the same ideas could be applied with DJing
for producing musical content. CJing is now placed in the context of the
related subject areas and key ideas that it is based on.

4.1.1 Context

Figure 4.3 places CJing in the context of the broader subject areas that
formulate it: creative coding, live programming, and VJing. CJing com-
bines the expressive nature of creative coding to generate content with live
code and the utilisation of visualisation and interface techniques based
on live programming; all placed in the context of dynamic audiovisual
performance as illuminated by VJing.

Figure 4.3: CJing in the context of the broader subject areas that formulate it.

4.1. CODE JOCKEY PRACTICE 47

4.1.2 Key Ideas

CJing practice is based on three key ideas, each the synthesis of aspects
from creative coding, live programming, live coding, and VJing practices.
The first idea is code as a universal language that combines aspects of creative
coding and live coding, the second is complete content control that combines
aspects of live coding and VJing, and the final idea is user interfaces as
an abstraction that combines aspects of live programming and VJing. The
aspects of the related practices were identified from the related work and
the study of live coders and VJs in practice (Chapter 3).

1. Code as a universal language

CJing utilises creative coding to generate content from scratch, construct-
ing the final output primarily through the use of algorithms. Live coding
enables coded content to be manipulated on the fly at runtime. Code
is flexible enough that it can allow for endless permutations of possible
content, but also precise enough that it can allow an artist to produce
a specific aesthetic. Using code as a common language can enable an
ecosystem to be formulated and be treated akin to how looping video clips
are treated in the VJ community. CJs can also use supporting assets such
as images, videos, or 3D models if they are specified programmatically in
code. Software that relies on code to instruct the final output is fundamen-
tal to the CJing practice. If a DJ mixes musical tracks and a VJ mixes video
clips, then a CJ must mix code in their performances.

2. Complete content control

CJing should allow for content to be manipulated at both low and high lev-
els, enabling flexible control of the final output during performances. CJs
can improvise content from scratch, remix existing content, and composite
multiple content elements together. Live coding provides the low level
aspect of content creation and manipulation, while VJing provides the
high level aspect of orchestrating the final output through the organisation

48 CHAPTER 4. CJING AND VISOR

of layers and control of effects and parameters. CJing combines the two,
with all aspects of the final output accessible through code or manipulable
through user interfaces. Providing this kind of flexibility enables a CJ to
harness the strengths of live coding and VJing to perform with generative
content.

3. User interfaces as an abstraction

CJing employs user interfaces that abstract upon live code, providing high
level functionality that would not be easy to achieve by simply writing
code. CJing systems should maintain a relationship between user inter-
faces and code. Contextual interfaces should detect when changes occur
to the code and update themselves accordingly. At the same time, code
should be able to access the state of interactive user interfaces. For exam-
ple, as with VJing software, slider widgets or hardware controller knobs
could be used to manipulate parameters in the program, removing the
need for the CJ to inspect the code or manipulate parameters through live
coding. The same GUIs could also visualise the state of the program, im-
proving the CJ's comprehension of the inner workings of their live coded
program.

4.2 Visor: Design

Visor's primary design goal was to embody the CJing practice, demon-
strating how aspects of live coding and VJing software can be combined
into a single environment. Visor achieves this goal by offering a number of
features to facilitate live performance. These features are based on the gaps
identified in the related work (Chapter 2), the results of interviewing live
coders and VJs (Chapter 3), and the three key ideas of the CJing practice
(§4.1.2).

4.2. VISOR: DESIGN 49

Visor's design consists of a number of core features that facilitate live per-
formance. These features include the following: the ability to live code
visuals with the Processing API in the Ruby language; a state manage-
ment interface that allows for automatic visualisation of and interactions
to update live coded parameters; the ability to organise code into layers
that can be composited together into the final output using a variety of
blend modes; an interface to visualise the FFT spectrum of an audio in-
put which can be inspected and referenced in the code to create audio
responsive visuals; a tap tempo interface for setting a tempo that can be
referenced in the code to animate visuals to the beat; and a framework
for configuring MIDI input devices such as hardware controllers where
the individual controls can be directly referenced in the code or mapped
to state parameters. These core features are designed to embody the key
ideas of the CJing practice, as presented in Table 4.1.

A number of other notable features were factored into Visor's design in-
cluding an in-app tutorial, in-app documentation, support for multiple
display windows, support for Syphon [36], a reconfigurable interface, a
console, code syntax highlighting, code error highlighting, and an option
to project the code on top of the rendered visuals. Visor was also designed
with a focus on usability, aiming to make it as easy as possible to integrate
coded content into live performances. Visor achieves this by offering a
straightforward to use API that abstracts as much of the complexity of its
core features as possible, reducing the time spent by the performer writing
boilerplate code.

Due to time constraints, a number of features and interactions that were
identified as part of the interviews in Chapter 3 were not included in the
current version of Visor. The excluded items were: OSC support, con-
tent libraries, code completion, previewable content, effects, and patching.
These features and interactions are left as potential ideas for future work.

50 CHAPTER 4. CJING AND VISOR

Table 4.1: Visor's core features and how they map to the three key ideas of the

CJing practice. Y (yes) indicates if a feature is designed to embody a given idea

of the CJing practice.

Feature
User interfaces
as an abstraction

Complete content
control

Code as a universal
language

Live coding Y Y
State management Y Y
Layers Y Y
FFT Y
Tap tempo Y
MIDI Y

4.3 Visor: Features

Visor offers a number of features to facilitate the live performance of vi-
suals. These features are designed to meet the goal presented in Section
4.2. The following describes in detail how each of Visor's core features can
be used in live performance. A demonstration of Visor's features in live
performance can be seen in the TOPLAP 15th Birthday Livestream video1.

4.3.1 Live Coding

Live coding in Visor is the primary method for creating visual content. To
generate visuals, the performer can access methods from the Processing
API such as background, fill, translate, rect, and many others.
The performer can also use methods from an additional Visor API to ac-
cess features like the FFT, tap tempo, and many others. A key difference
between Visor and Processing is that programming in Visor is conducted
with the Ruby programming language, rather than Java. The use of Ruby

1https://tinyurl.com/visor-toplap15

https://tinyurl.com/visor-toplap15

4.3. VISOR: FEATURES 51

means that the performer does not need to specify types, and syntax fea-
tures like curly brackets and parameters are completely optional. The
result is that Processing code written in Visor is much less verbose than
Processing code written in Java. The performer also has access to all of the
language features of the Ruby language such as enumerators and blocks.
Another difference between Visor and Processing is that there is no need
for a setup method due to Visor's REPL like behaviour where arbitrary
code can be evaluated at runtime. Therefore, code that would typically go
in the setup method, such as code to define variables, should instead be
placed outside of the draw method.

Figure 4.4 presents a basic Visor program used to generate visuals. The
draw method defines the draw loop, the code that is run every frame as
per the usual Processing behaviour. The performer can run this code from
the code editor at any time to update the draw loop without restarting

Figure 4.4: Live coding in Visor. The live code editor (left) presents a basic

program to generate visuals using Processing (right).

52 CHAPTER 4. CJING AND VISOR

the program. The code editor itself is made up of one or more code tabs,
an execute (run) button, the result returned from the last time the code
was run, and a dropdown to select which layer the code tab is currently
targeting. In Visor, each layer specifies an independent draw loop and
holds its own state. When a code tab is run, the code is evaluated within
the targeted layer. More details on layers are provided in Section 4.3.3.
The code editor presents syntax errors and runtime errors by highlighting
the line the error occurred on and presenting an error message.

4.3.2 State Management

State management enables visualisation and interaction with live coded
state in the Visor GUI, similar to interactions seen with parameters in
VJing software. The performer can define state variables in their code
using Ruby instance variables, indicated by the @ character at the start of
a variable name. Visor will automatically detect the presence of state vari-
ables and show them in the interface, saving the performer from writing
boilerplate code to generate a GUI. Figure 4.5 shows how state variables
have been defined in a Visor program to parameterise three different vari-
ables. The Ruby conditional assignment operator (||=) is used here to
assign to variables only if they have not already been defined, preventing
previous values from being overwritten when the code editor is run again.
Once a state variable is defined, it will be shown in the state GUI with
a contextual interface based on the variable's type. For example, num-
bers are presented as sliders, booleans are presented as checkboxes, and
strings are presented as text fields. These GUI widgets provide immediate
interaction with parameters without requiring the performer to modify
the code. Number variables also support a range that the performer can
manually adjust using the set range method or by directly modifying
the minimum and maximum values in the interface. State variables can be
deleted if they are no longer required.

4.3. VISOR: FEATURES 53

Figure 4.5: State management in Visor. The live code editor (left) defines state

variables @circle size, @mode, and @num circles which are then displayed

in the state interface (top-right), along with the rendered visuals (bottom-right).

4.3.3 Layers

Like in VJing or image editing software, Visor supports layering of content
to compose complex final outputs. In Visor, each layer specifies an inde-
pendent draw loop and holds its own state, allowing for clean separation
of coded content. Multiple code tabs can be used in the code editor where
each code tab is responsible for a different layer. Visor's layer interface pro-
vides the ability to create new layers, delete layers, toggle layer visibility,

54 CHAPTER 4. CJING AND VISOR

or change a layer's blend mode or opacity. Layers can also be rearranged
to modify the order that they are drawn in. Figure 4.6 shows how layers
can be used to compose a final image. Section 4.4 demonstrates layers in-
depth by presenting how three distinct layers can be composed together.

Figure 4.6: Layers in Visor. The live code editor (left) maintains three code tabs

called Default, particles, and sphere, each of which corresponds with a layer in the

layer interface (top-right). Default generates the rainbow colour while particles
and sphere produce the shapes. The result of composing the three layers with

different blend modes is shown in the rendered visuals (bottom-right).

Layers in Visor provide a useful abstraction by enabling creative possibil-
ities without requiring the performer to write boilerplate code to imple-
ment similar features. Configuring blend modes is the most effective way
to create interesting effects, for example, the MULTIPLY blend mode can

4.3. VISOR: FEATURES 55

be used on a layer to apply a masking effect onto the layers below. Other
blending modes are also available such as ADD, SUBTRACT, and SCREEN as
per Processing. The performer can also use the Visor API to interact with
layers, for example, the set opacity and set blend modemethods can
be used to update layer properties. The performer also has the option to
put all of their layer code into one code tab using the layer method. This
method accepts a layer name and a block of code, evaluating the given
code within the layer of the given name. Similar to the state management
feature, providing these kinds of API methods gives the performer the
choice to interact with layers through the code as an alternative to using
the GUI.

4.3.4 Fast Fourier Transform

Visor makes use of real-time audio analysis techniques to enable audio
responsive visuals. The fast Fourier transform (FFT) interface visualises
the frequency spectrum of a configured audio input device over time,
allowing the performer to make informed decisions about how the visuals
should react to the music. The visualisation consists of multiple bands
where each band represents a group of frequencies. The lowest frequen-
cies appear on the left and increment to the higher frequencies on the right.
The frequencies are graphed against the band amplitude on a scale from 0
to 1. The FFT data can then be accessed in the code using methods such as
fft(n) which returns the amplitude of the frequency band at index n, or
fft range(n1, n2) which returns the average of the frequency bands
between the indexes n1 and n2. Figure 4.7 shows how the FFT has been
integrated into a Visor program to animate visuals to music in real-time.

56 CHAPTER 4. CJING AND VISOR

A number of other API methods are also available to configure the FFT
in Visor. The set fft scale method can be used to scale the ampli-
tude of every frequency band to account for variations between audio
devices or volume levels. The set fft smooth method can be used to
adjust the damping applied to each frequency band over time, making the
amplitudes animate more or less smoothly. The audio input device can
be configured through the Visor settings menu. Providing audio input
device configuration and in-built methods for accessing FFT values saves
the performer from writing boilerplate code to conduct their own audio
analysis, as is typical in Processing.

Figure 4.7: FFT in Visor. The FFT interface (top-right) displays the audio

frequency spectrum and the code editor (left) refers to the FFT data. The fft

method (line 17) and the fft range method (line 21) access the FFT data to

inform the visuals, as shown in the rendered output (bottom-right).

4.3. VISOR: FEATURES 57

4.3.5 Tap Tempo

The tap tempo enables beat based behaviour in Visor, similar to the ap-
proach seen in VJing software. The tap tempo allows the performer to set
a tempo by repeatedly clicking the tap tempo button in the interface or by
using a keyboard shortcut. The interface also visualises the current BPM
(beats per minute), temporal progress through the current beat, and offers
buttons to mute or clear the current tempo. The tap tempo can be utilised
in the code by using the on beat method to trigger events each time a
beat occurs. The beat progress method can also be used to access a
normalized value of the temporal progress. Figure 4.8 shows how the tap
tempo has been integrated into a Visor program to animate visuals to the
beat.

Figure 4.8: Tap tempo in Visor. The tap tempo interface is shown (top-right) and

the code editor (left) refers to the tap tempo data. The on beat method (line 7)

and the beat progress method (line 15) access the tap tempo data to inform

the visuals, as shown in the rendered output (bottom-right).

58 CHAPTER 4. CJING AND VISOR

A number of other tap tempo API methods are available in Visor such as
beat count which returns the total number of beats elapsed,
inv beat progress which returns the inverted beat progress value,
and request tap which can be used to programmatically trigger a tap,
a useful feature for setting the tempo in response to MIDI events. The
beat progress method can also take an optional argument to specify a
period, for example, to make visuals animate every four beats or every
half beat instead of every one beat.

4.3.6 MIDI

Visor supports the use of MIDI inputs to interact with Visor code, allowing
hardware devices such as MIDI controllers to be used for gestural interac-
tion with coded content. Visor provides a framework for configuring MIDI
devices and accessing individual controls in the code. The framework
enables individual knobs, sliders, notes, or buttons on a MIDI controller
to be mapped to unique variables that can be accessed directly in the code
to query the state of the controls. Slider and knob MIDI variables simply
return a normalized value of the state of the control. Button or note MIDI
variables return an object with methods such as down for detecting if the
button is pressed, velocity, and on or off which can be used to trigger
events when the button is pressed or released. Figure 4.9 shows how MIDI
variables can be integrated into a Visor program to multiply numbers
by a scalar, trigger conditional code, or map directly to state variables.
Visor's framework for configuring MIDI controllers allows parameters to
be remapped on the fly through live coding and saves the performer from
writing boilerplate code to handle MIDI inputs. Figure 4.19 in Section 4.4
presents a MIDI controller annotated with parameters and MIDI variables
to illustrate a mapped controller.

4.3. VISOR: FEATURES 59

Figure 4.9: MIDI in Visor. The code editor (left) makes use of four MIDI variables

to interact with the rendered visuals (right). knob 1 (line 8) is directly mapped to

the state variable controlling the number of boxes drawn, knob 2 (line 20) is used

to control the velocity of the boxes rotation, slider (line 23) is used to control

the size of the boxes, and button (line 13) changes the colour of the boxes every

time it is pressed.

Visor also supports direct mappings between state variables and MIDI
variables. The state to midi method can be used to map a state vari-
able to a MIDI variable. Number variables will be interpolated within
their specified range while boolean variables will be toggled on or off.
Mappings can also be created by clicking on the mapping icon on a state
variable in the state interface, presenting an interface to select which MIDI
variable should be mapped to the given state variable.

60 CHAPTER 4. CJING AND VISOR

4.3.7 Other

Visor also includes a number of other notable features. One important
feature is the Learn hub, a space for presenting documentation including
a tutorial, a list of keyboard shortcuts, and an API reference. Figure 4.10
shows what the Learn Hub looks like in the application.

Figure 4.10: Visor Learn Hub. The Learn Hub contains documentation including

a tutorial, list of keyboard shortcuts, and an API reference. Each type of

documentation can be accessed from the tabs at the top of the screen while

individual chapters can be navigated using the list on the left or the buttons at

the bottom of the screen.

4.4. VISOR: COMPOSING LAYERS 61

Another important feature is the customisable interface. GUI elements in
Visor can be added, removed, rearranged, and resized by the performer to
create a customised layout. Visor also features a console for debugging the
output of puts statements placed in the Ruby code. Another feature is the
ability to take screenshots of the visual output using a keyboard shortcut
or a button in the interface. Screenshots are written to a path specified in
the settings menu.

A number of additional features can also be enabled from the settings
menu, along with the configuration of audio and MIDI input devices.
These include Syphon, which can be used for sending the rendered output
of Visor to other software for recording videos or mixing with other VJ
software. Code projection can also be enabled to draw the code within the
currently focused code tab on top of the rendered visuals. This same code
string can be accessed in the code using the code string API method.
Display settings are also incorporated to enable configuration of the Pro-
cessing sketch display properties including the window width, height,
pixel density, and fullscreen toggle. Multiple displays are also supported,
enabling creation of preview windows or duplicating the visuals onto mul-
tiple displays.

4.4 Visor: Composing Layers

This section presents a concrete example of Visor code and rendered out-
puts for three distinct layers. The three layers presented are called Model,
Particles, and Mask. The visual output of each layer is presented alongside
the layer's code and description. Each layer makes use of state variables,
some of which are mapped to MIDI controls. The MIDI mappings are
presented by annotating an image of the MIDI controller itself. The vi-
sual output when all three layers are composited together using different
blend modes is then presented. Multiple images are presented to illustrate
how the rendered output varies due to animations based on time, the tap
tempo, audio, and MIDI inputs.

62 CHAPTER 4. CJING AND VISOR

4.4.1 Model Layer

The Model layer renders a 3D model in the center of the screen (Figure
4.11) from the code in Figure 4.12. The model itself is stored in the @model
state variable, loaded from an external file (line 4). The model rotates over
time (line 15). The scale of the model oscillates over time (line 16). The
colour of the model (lines 20, 22) is determined based on the HSB (hue,
saturation, brightness) colour model (line 8). The hue of the colour is
stored in a state variable (line 1) that is randomised on every tap tempo
beat (line 19). The thickness of the model's wireframe is determined by
the amplitude of high frequency sounds (line 21). The scale of the model
can be controlled using the knob 1 MIDI knob (line 17). The transparency
of the model can be controlled using the slider 1 MIDI slider (lines 20,
22).

Figure 4.11: Model layer rendered independently.

4.4. VISOR: COMPOSING LAYERS 63

1 @hue ||= 0.0

2

3 if @model == nil

4 @model = load_shape ’path/to/model.obj’

5 @model.disable_style

6 end

7

8 color_mode HSB, 100, 100, 100, 100

9 hint DISABLE_DEPTH_TEST

10

11 def draw

12 clear

13

14 translate width * 0.5, height * 0.5

15 rotate_y radians(frame_count)

16 scale 200 + sin(frame_count * 0.05) * 50

17 scale knob_1

18

19 @hue = random(100) if on_beat

20 stroke @hue, 100, 100, 100 * slider_1

21 stroke_weight 1 + fft_range(20, 26) * 1

22 fill @hue, 100, 100, 30 * slider_1

23

24 shape @model

25 end

Figure 4.12: Code for the Model layer.

4.4.2 Particles Layer

The Particles layer renders a 2D particle system where each particle is a
random digit (Figure 4.13) from the code in Figure 4.14. The coordinates
of 250 particles are stored in the @positions state variable (line 1). Each
particle moves downwards over time (line 31). If a particle hits the bottom
of the screen it will be moved to the top of the screen (line 32). The velocity

64 CHAPTER 4. CJING AND VISOR

of each particle is determined by a state variable (line 8), initialised with a
range (line 9), and mapped to the knob 3 MIDI knob (line 10). The colour
of each particle is based on a function of time (line 23). The transparency of
each particle is mapped to the slider 2 MIDI slider (line 23). The size of
each particle is determined by the amplitude of low frequency sounds (line
27). A parallax scrolling effect is created by making larger particles move
faster while smaller particles move slower (lines 21, 27, 31), giving the
illusion of depth. Particles leave a trail that fades over time, achieved by
mapping the transparency of the background colour to the knob 2 MIDI
knob (line 18). This works because transparent background colours only
partially clear the last rendered frame, unlike opaque background colours
which completely clear the last rendered frame. Figure 4.15 shows another
variation of the rendered layer.

Figure 4.13: Particles layer rendered independently.

4.4. VISOR: COMPOSING LAYERS 65

1 @positions ||= 250.times.map do

2 PVector.new(

3 random(-100, width + 100),

4 random(-100, height + 100)

5)

6 end

7

8 @velocity ||= 15

9 set_range :@velocity, 0, 50

10 state_to_midi :@velocity, :knob_3

11

12 color_mode HSB, 100, 100, 100, 100

13 text_font createFont(’Code’, 64, nil, nil)

14 text_size 64

15 text_align CENTER, CENTER

16

17 def draw

18 background_transparent 0, 255 - 255 * knob_2

19

20 @positions.each.with_index do |position, i|

21 norm = i / @positions.size.to_f

22

23 fill frame_count * 0.3 % 100, 100, 100, 100 * slider_2

24 no_stroke

25

26 with_translate position.x, position.y do

27 scale norm * fft_range(0, 6) * 1.5

28 text (i % 10).to_s, 0, 0

29 end

30

31 position.y += @velocity * norm

32 position.y -= height + 200 if position.y > height + 100

33 end

34 end

Figure 4.14: Code for the Particles layer.

66 CHAPTER 4. CJING AND VISOR

Figure 4.15: Particles layer rendered independently.

4.4.3 Mask Layer

The Mask layer, represented by the code in Figure 4.16, renders a set of
rings that ripple outward from the center of the screen (Figures 4.17 and
4.18) with the intention to be used for masking. The shape of all the rings
can be either a circle or a diamond (line 23, 25). Which shape is drawn
is determined by the @shape state variable (line 1) that is mapped to
the button 1 MIDI button (line 2) such that pressing the button toggles
which shape should be drawn (line 22). The width of the rings can be
controlled using the knob 4 MIDI knob (line 13). The ripple effect is
created by offsetting the size of the rings by a function of the tap tempo
(line 20). The rings are coloured white (line 12) to indicate which part
of the screen should be masked. The background colour is based on a
grayscale value mapped to the slider 3 MIDI slider (line 7) so that the
mask can be faded in or out.

4.4. VISOR: COMPOSING LAYERS 67

1 @shape ||= false

2 state_to_midi :@shape, :button_1

3

4 rect_mode CENTER

5

6 def draw

7 background_transparent 255 - 255 * slider_3

8

9 translate width * 0.5, height * 0.5

10 rotate QUARTER_PI

11

12 stroke 255

13 stroke_weight 100 - 100 * knob_4

14 no_fill

15

16 num_rings = 8

17 ring_spacing = 1.5 * width / num_rings.to_f

18

19 num_rings.times do |i|

20 ring_size = i * ring_spacing + ring_spacing * beat_progress

21

22 if @shape == true

23 ellipse 0, 0, ring_size, ring_size

24 else

25 rect 0, 0, ring_size, ring_size

26 end

27 end

28 end

Figure 4.16: Code for the Mask layer.

68 CHAPTER 4. CJING AND VISOR

Figure 4.17: Mask layer rendered independently.

Figure 4.18: Mask layer rendered independently.

4.4. VISOR: COMPOSING LAYERS 69

4.4.4 MIDI Control

Visor's support for MIDI inputs is used to map parameters of the three
layers to individual knobs, sliders, and buttons of a MIDI controller. Fig-
ure 4.19 presents the MIDI controller used for this example and annotates
which parameters and MIDI variables are mapped to which controls.

Figure 4.19: MIDI controller annotated with the names of the mapped parameters

and MIDI variables used by the code for the Model, Particles, and Mask layers.

4.4.5 Final Composition

The three layers can be composited together to create a result that is more
visually interesting than rendering the layers independently. Figure 4.20
shows the rendered result of compositing the Model and Mask layers to-

70 CHAPTER 4. CJING AND VISOR

gether, demonstrating the MULTIPLY blend mode. The Model layer is ren-
dered first followed by the Mask layer using the MULTIPLY blend mode.
The result is that the Model layer is only displayed in the white parts of
the Mask layer.

Figure 4.21 shows the rendered result of compositing the Model and Par-
ticles layers together, demonstrating the EXCLUSION blend mode. The
Particles layer is rendered first followed by the Model layer using the
EXCLUSION blend mode. The result is that both the Particles and Model
layer are displayed, but the colour of the Particles layer is inverted in the
parts that overlap the Model layer.

Figures 4.22 and 4.23 show the rendered result when all three layers are
composited together. The Particles layer is rendered first, followed by the
Model layer using the EXCLUSION blend mode, and finally the Mask layer
is rendered using the MULTIPLY blend mode. The result is that both the
Particles and Model layer are displayed, but the colour of the Particles
layer is inverted in the parts that overlap the Model layer, and both layers
are only displayed in the white parts of the Mask layer.

Figure 4.20: Model and Mask layers composited together.

4.4. VISOR: COMPOSING LAYERS 71

Figure 4.21: Model and Particles layers composited together.

Figure 4.22: Model, Particles, and Mask layers composited together.

72 CHAPTER 4. CJING AND VISOR

Figure 4.23: Model, Particles, and Mask layers composited together.

4.5 Visor: Implementation

This section describes in detail how Visor is implemented including its
system architecture, notable third party software used, approach to han-
dling live coding, approach to handling state management, and approach
to integrating with Processing.

4.5.1 Architecture

Visor is designed using a client-server architecture, as illustrated in Fig-
ure 4.24. The client application is written as a desktop application using
the Electron [6] framework, enabling the use of web technologies such
as HTML, CSS, and JavaScript. The client application is responsible for
handling all of the GUI aspects including the code editor, state manage-
ment, and other interfaces. The server application is written in JRuby

4.5. VISOR: IMPLEMENTATION 73

[10], an implementation of the Ruby programming language on the Java
virtual machine. The server application has a number of responsibilities
including hot swapping code, maintaining program state, managing input
devices, and calling into the Processing API to render the visuals onto the
screen. The client and server applications communicate using HTTP and
WebSockets. While both client and server applications are typically run
on the same machine, this architecture opens up a future possibility where
the client and server are run on different machines, enabling remote live
coding where the performer live codes on one machine while the output
is rendered on another.

Client

MIDI Controller

Tap Tempo Interface

Audio Input
(Microphone / Line-In)

Audio Manager

State Manager

MIDI Manager

Managers

Tap Tempo Manager

...

FFT Display

State Management Interface

Sketch

Server

Layer Manager

Layer Interface

LayerLayerLayersCode Editor LayerLayerCode Tabs

Render
Window

...

Figure 4.24: Visor's client-server architecture. The client application consists

of multiple GUI components that communicate with the server. The server

application consists of multiple classes that communicate with each-other, the

client, the Processing API, and external inputs.

74 CHAPTER 4. CJING AND VISOR

4.5.2 Client

The client application is constructed using many open source JavaScript
packages including Electron. One key package that is used is the React
[29] framework, enabling the Visor GUI to be built out of nested, modular,
reusable components. Each component is concerned with a separate piece
of the GUI, for example, individual code tabs, menus, and modals. A num-
ber of components are also maintained within a grid layout component to
enable the reconfigurable interface. These components include the live
code editor, state management interface, layer interface, FFT visualisation,
tap tempo interface, and console. The visual style of Visor was inspired
by the sleek design of modern code editors and makes use of the colour
palette from the popular Monokai [22] theme.

4.5.3 Server

The server application consists of a number of objects, as illustrated in
Figure 4.24. The sketch object supplies the draw method that is called
every frame and allows for calls to be made into the Processing API. Next,
there are the manager objects, each manager is responsible for a specific
part of Visor's internal behaviour such as the FFT for audio analysis, the
tap tempo algorithm, state management capabilities, layers, and more.
Each manager provides callback methods to be called from the Processing
sketch lifecycle. For example, each manager can specify code to be called
before the draw method is run, after the draw method is run, when a
WebSocket message is received, and so on.

The server also maintains multiple layer objects where each object rep-
resents a single Visor layer. Each layer object encapsulates its own draw

method and state as defined by the performer when live coding. The
layer manager calls the draw methods on each layer every frame in the

4.5. VISOR: IMPLEMENTATION 75

correct order. Delegation is used to allow each layer to access methods
in the sketch and manager objects, thereby allowing the performer to
access the Processing and Visor APIs. Each manager explicitly chooses
which methods should be exposed to layer objects. For example, the tap
tempo manager exposes the on beat method. Each manager can also
expose its own internal state to layer objects and the client GUI. This is
useful in the case of an internal variable that should be made accessible
to the performer, for example, the audio analysis algorithm exposes the
parameter that controls the amount of smoothing that is applied to the
FFT data.

4.5.4 Live Coding

Visor makes use of Ruby's metaprogramming features to enable live cod-
ing by evaluating arbitrary code strings to define and redefine state or pro-
gram behaviour. Whenever the performer submits the contents of a code
tab from the live code editor, the server application dynamically executes
that code in context of the layer object associated with the code tab. If
a draw method is specified in this code, then the existing draw method
will be overwritten, essentially performing a hot swap and causing the
rendered visuals to update on the next frame. As code is simply evaluated
in the context of objects in Visor, code can be deleted in the code editor
while the state of the program remains unchanged, therefore the code does
not present a declarative view of the current state of the program. Instead,
Visor's state management feature helps to keep track of what state has
been defined by inspecting the layer objects in real-time.

76 CHAPTER 4. CJING AND VISOR

4.5.5 Handling State

State in Visor is handled using Ruby's instance variables. Live code is
executed within the context of layer objects such that any defined in-
stance variables are placed on the layer object itself. This state is per-
sisted throughout the course of the program, even between modifications
to the code. To enable manipulation of the state in the client, the state is
abstracted upon by the state manager. The state manager uses reflection
to read from and write to any defined state on the layer objects or any
exposed state on other manager objects. The state manager observes
changes to the state and sends them to the client to be visualised in the
state management interface. In turn, any changes to the state made in
the state management interface are sent back to the state manager to be
applied to the respective layer or manager. The state management inter-
face supports manipulation of integer and floating point data types using
sliders where the range of each variable is adjusted dynamically based on
the variable's observed values over time or by manual adjustment from the
performer. Manipulation of boolean data types is also supported using
checkboxes. String data types can also be manipulated using text fields.
All other data types such as arrays, hashes, or arbitrary objects are cur-
rently visualised using their string representations.

4.5.6 Integration with Processing

Due to the seamless integration between Java and Ruby in JRuby, Java
methods can be transparently called from Ruby code. Therefore, there is
no need for a substantial amount of explicit binding between Visor and
Processing. Visor's ability to access the Processing API enables all kinds of
graphics rendering including 2D and 3D primitives, text, images,
shaders, and 3D models. Visor utilises a number of Processing libraries
to implement internal behaviour. The MidiBus [38] is used for handling

4.5. VISOR: IMPLEMENTATION 77

MIDI input devices, the Syphon Processing implementation [34] is used
for enabling Syphon support, and Minim [20] is used for handling audio
input devices and performing the FFT algorithm.

Visor also extends Processing by making use of Ruby language features.
Ruby supports the use of blocks, also known as lambda expressions. A
Ruby method can accept a block as an argument and apply useful opera-
tions before and after executing the block. For example, the with matrix

method uses a block to replace the need for separate calls to the
push matrix and pop matrix methods. This is helpful as forgetting
to call pop matrix can cause unintended program behaviour. Figure
4.25 demonstrates the traditional approach with the Processing API while
Figure 4.26 demonstrates the new approach with the Visor API.

push_matrix

translate 100, 100

rect 0, 0, 200, 200

pop_matrix

Figure 4.25: Traditional approach to handling the matrix stack with the Processing

API in Visor.

with_matrix do

translate 100, 100

rect 0, 0, 200, 200

end

Figure 4.26: New approach to handling the matrix stack using a method that

accepts a block as an argument in Visor.

78 CHAPTER 4. CJING AND VISOR

4.6 Visor: Development Approach

Visor was developed using a practice-based approach, similar to usability
testing in a user-centered design process [49]. This meant the environment
was tested in a performance context throughout development to ensure
it met the needs of a performer. In this case, I was the performer. The
motivation for this approach is similar to Aaron et al. [48] who devel-
oped a practice regime to maintain a research focus on live coding as a
performance practice. It was important that this research also focused on
developing and evaluating Visor in the context of live performance due
to Visor's intention to embody CJing. A practice-based approach can be
used to validate the effectiveness of features, identify features that need
improvement, and inform the development of new features, as demon-
strated by the approach used by the Sonic Pi and Palimpsest environments
[47, 54]. Both of these environments were also evaluated by reflecting
on their use in live performance. This thesis takes a similar approach to
evaluating Visor, as presented in Chapter 5.

The practice-based development approach was achieved through my reg-
ular attendance of a meetup called Art∼Hack [1], a weekly event that
provides a space for like-minded individuals to hack together on projects
related to art and technology. As some of the regular members of the
collective were electronic musicians, they often performed live electronic
music, providing an opportunity to create live visuals at the same time. In
addition, the space that Art∼Hack occupied always had projectors avail-
able. This infrastructure provided by Art∼Hack and my own performance
equipment meant I had all that was needed to perform with Visor on
a regular basis. Figure 4.27 shows Visor in action during an Art∼Hack
meetup. In addition to these regular performances, I performed with Visor
at a number of organised events. The performances conducted at these
events are reflected on in Chapter 5 as part of Visor's evaluation.

4.6. VISOR: DEVELOPMENT APPROACH 79

Figure 4.27: Art∼Hack meetup where Visor was often tested in a live performance

context. Live music is being produced by members of the collective using a

variety of electronic musical instruments. Visor (bottom-left) is used to render

visuals that are then projected (top) to accompany the music.

Performing with Visor on a regular basis provided an opportunity to val-
idate the effectiveness of existing features, identify features that needed
improvement, and inform the development of new features. For example,
the need for allowing Visor to support multiple MIDI input devices had
not been considered until working with Livestock Pixel [16]. Allowing
multiple MIDI devices was crucial for our collaboration during the per-
formance at the Vertigo gig, as described in Chapter 5. Another example
is shown by an improvement to the usability of the Visor API. The API
method for querying the sum of a range of FFT bands was fft range

and the method for querying the average of a range of FFT bands was
fft range avg. Based on performances with Visor, it was identified
that the method for querying the sum was not used while the method

80 CHAPTER 4. CJING AND VISOR

for querying the average often was. Based on this observation, the API
was consolidated to provide only one method for querying a range of FFT
bands. The finalised method was called fft range and it queried the av-
erage of a range of FFT bands. Using Visor in live performance provided a
means to identify usability issues, bugs, and validate the need for features
such that the effectiveness of the environment could be improved.

Being a member of Art∼Hack also enabled opportunities to demonstrate
Visor to the public. Figure 4.28 shows Maker Faire Wellington [18] where
Visor was demonstrated to the public as part of the Art∼Hack stall. Visor
managed to capture the attention of many people, in particular children,
who really enjoyed playing with the MIDI controller and watching the
visuals evolve in unison.

Figure 4.28: Maker Faire Wellington where Visor was demonstrated to the public

as part of the Art∼Hack stall.

4.7. DISCUSSION 81

4.7 Discussion

Visor shares traits with a number of existing software applications for live
coding, VJing, and audiovisual performance. The following discussion
compares CJing and Visor with these software applications.

CJing and Visor can be compared with the characteristics of expressive
interaction observed in VJing practice [58, 64]. Visor presents all of the
observed characteristics except for one with respect to ‘visible interac-
tion.’ While Visor supports the ability to project the source code on top
of the visuals or utilise the code string in the live code, it does not offer a
complete representation of the performer's process due to the introduction
of user interfaces hidden behind the laptop screen. The whole interface
could be projected to the audience, but that may detract from the quality
of the performance. This issue highlights the differing stance on visible
interaction between live coding and VJing that was discussed as part of
the interviews in Chapter 3.

Visor can be compared with a number of live coding environments. Live-
CodeLab [60] allows for on the fly live coding where each keystroke auto-
matically updates the rendered output. The rendered output of LiveCode-
Lab is a function of time and does not allow for any state to be defined
between frames, thus the performer does not need to be concerned about
maintaining the state. Visor takes an opposite approach and allows the
performer to define persistent state, enabling complex effects such as par-
ticle systems that require lists of objects to be maintained over multiple
frames.

Auraglyph [77] makes use of touch interfaces to interact with visual ob-
jects that program the musical output, distancing itself from textual in-
terfaces when live coding. Visor makes use of similar interface abstrac-
tions through the state management interface and mappings to MIDI con-
trollers, offering both indirect and gestural manipulation respectively.

82 CHAPTER 4. CJING AND VISOR

Visor can be compared to live coding environments for producing visuals
using shaders such as Kodelife [12]. Shaders can provide highly complex
and engaging visuals with high performance due to making use of the
capabilities of the GPU. Visor instead trades performance for usability by
making use of CPU based technologies like Processing to produce visuals.
Processing is aimed at novice programmers and does not require the shift
in mindset towards parallel computing that shaders and GPU program-
ming require.

Visor can also be compared against existing approaches that enable perfor-
mance with Processing. JRubyArt [11] enables live coding with Processing
in the Ruby language. It achieves this through a command line application
that has the ability to watch a source code file for changes over time while
also providing REPL like interactions. Visor instead opts for GUIs with
code editing and interactive features built-in and aimed specifically for
use in live coding or VJing performances.

Mother [51] provides a set of tools to enable VJing performances with
multiple layered Processing sketches, illustrating code bending [52]. Visor
is similar to Mother in that it allows for VJing with Processing, but it
improves upon Mother by allowing new content to be live coded, in-
stead of just using pre-written sketches. While Mother requires boiler-
plate code to be written to enable sketches to communicate, Visor instead
abstracts away this complexity through internal behaviour and a GUI to
interact with layers. What Visor does not provide is a system for sharing
layers as reusable modules, which is possible with sketches in Mother,
but these ideas have directly influenced the proposed CJing practice and
are planned as future work for Visor. In terms of code bending, Mother
uses OSC to allow Processing sketches to communicate and be composited
together during live performances. CJing is also concerned with how
existing content can be modified and composited together, but not from
the perspective of networking multiple programs. Instead, CJing focuses
on providing a single purpose-built environment where content can be
live coded in a common language, as shown by Visor.

4.7. DISCUSSION 83

Praxis LIVE [78] can be used for live coding performances with Processing
and offers a number of features that can be used for VJing. These features
include support for OSC and MIDI. Praxis LIVE exhibits features of CJing
by incorporating user interfaces that abstract upon live code, all while
treating code as the main source of content generation. Visor differs from
Praxis LIVE in that live coding is performed in Ruby and that its user
interfaces focus on improving the usability of live performance. For exam-
ple, by providing audio responsive tools by default and by automatically
exposing state in the client rather than having to manually type code or
navigate visual nodes to see it. Visor differs from Praxis LIVE in that the
code does not offer a declarative representation of the live program. While
Praxis LIVE offers this clear view, it loses flexibility in that the state of
components cannot be maintained between iterations of the code unless
the state is explicitly annotated or referenced from other components. Vi-
sor takes a different approach by focusing on REPL like behaviour where
arbitrary code can be evaluated against objects instead of being used as a
complete representation of objects. This approach ensures that the state is
maintained by default between iterations to the code. While this means
Visor gains flexible control over the state, performers cannot rely on just
the code to understand the underlying program and must instead rely on
features such as the state management interface to inspect the state of the
program.

Visor can also be compared with VJing software such as Resolume [30].
Resolume offers support for audio responsive features such as a real-time
FFT or tap tempo that can both be used to drive video effect parameters.
Visor incorporates both of these audio responsive features by visualising
the FFT and tempo in the client GUI, and allowing the code to access them
through exposed methods to generate audio responsive content. While
Resolume focuses on traditional video mixing, Visor instead allows for
improvisation of content by live coding.

84 CHAPTER 4. CJING AND VISOR

4.8 Summary

This chapter introduced Visor, a new environment for live visual perfor-
mance. Visor was designed to embody the CJing practice, demonstrat-
ing how aspects of live coding and VJing can be combined to harness
the strengths of both practices while simultaneously removing limitations
identified in each practice (RQ2, RQ3 §1.1). Visor illustrates the CJing
practice by implementing features that embody the three key ideas of
CJing:

• Code as a universal language is demonstrated by Visor's focus on live
coding to enable creative coding of visual content using the Pro-
cessing API. In Visor, all content is represented using code, even
assets such as images and 3D models are loaded using Processing
API methods. Code can be organised into separate layers where
each layer is responsible for a separate visual element. Layers can
then be mixed or blended together, enabling the performer to mix
the outputs of different pieces of code.

• Complete content control is demonstrated by Visor's ability to live code
in the Ruby language. Live coding provides low level control where
content can be improvised from scratch or manipulated at a fine-
grained level. More specifically, writing a line of code can generate
new visual content while editing a line of code can manipulate the
existing content. GUIs and hardware controllers then provide inter-
actions to orchestrate high level aspects of performance. The state
manager provides manipulation of individual parameters while the
layers provide high level functionality that controls how different
visual elements should be composited together. Visor's combination
of low and high level interactions enable flexible control of the final
output.

4.8. SUMMARY 85

• User interfaces as an abstraction is demonstrated by Visor's support for
GUIs that abstract upon live code to support different aspects of per-
formance. Visor maintains relationships between GUIs and code in a
number of ways. The state manager detects changes to the program
state by visualising the state of variables in real-time and enables
interaction with them using widgets such as sliders or checkboxes.
The FFT GUI visualises the state of an audio input in real-time and
can be accessed in the code using the Visor API. Similarly, the tap
tempo illustrates an interactive interface that can be accessed in the
code to provide high level functionality.

The next chapter discusses and reflects on Visor's use in live performances
to evaluate the environment's effectiveness in a live context.

86 CHAPTER 4. CJING AND VISOR

87

Chapter 5

Live Performances with Visor

This chapter reflects on my usage of Visor in 14 live performances to eval-
uate the effectiveness of the environment as part of a practice-based ap-
proach (§4.6). The performances are listed in Table 5.1. The intent of
most of the performances was to provide visuals to accompany music
performed by DJs, live coders, and other musicians, demonstrating Visor's
effectiveness in a live context. By using Visor in real performances I hoped
to explore and demonstrate what it meant to perform with an environment
that embodies CJing. I had never live coded or performed as a VJ before
undertaking this thesis and as a result, my own performance skills have
developed alongside the development of Visor.

This chapter describes my typical performance setup, my approach to
using Visor in live performances, and my reflections on using Visor in live
performances. I have reflected on a number of valuable insights, usability
issues, and areas for improvements that were observed with respect to
each of Visor's core features. The utility of Visor as an environment for
live coding, VJing, and CJing (RQ2, RQ3 §1.1) is also discussed along
with issues raised about the design of CJing environments and the broader
CJing practice.

88 CHAPTER 5. LIVE PERFORMANCES WITH VISOR
Ta

bl
e

5.
1:

Pe
rf

or
m

an
ce

s
co

nd
uc

te
d

th
ro

ug
ho

ut
th

is
th

es
is

.‘
Fr

om
sc

ra
tc

h’
pe

rf
or

m
an

ce
s

w
er

e
fu

lly
im

pr
ov

is
ed

w
hi

le

‘P
re

pa
re

d’
pe

rf
or

m
an

ce
s

m
ad

e
us

e
of

pr
e-

w
ri

tt
en

co
de

.P
le

as
e

no
te

th
at

th
is

lis
te

xc
lu

de
s

m
an

y
ca

su
al

or
im

pr
om

pt
u

pe
rf

or
m

an
ce

s
th

at
oc

cu
rr

ed
su

ch
as

th
os

e
at

th
e

A
rt
∼

H
ac

k
m

ee
tu

p.

D
at

e
Pe

rf
or

m
an

ce
Lo

ca
ti

on
Ty

pe
A

pp
ro

ac
h

V
id

eo
li

nk

23
/0

6/
20

18
A

rt
∼

H
ac

k
W

in
te

r
Ex

po
N

ew
to

w
n

C
om

m
un

it
y

&
C

ul
tu

ra
l

C
en

tr
e,

W
el

lin
gt

on
,N

ew
Z

ea
la

nd
Ex

hi
bi

ti
on

Fr
om

sc
ra

tc
h

13
/1

0/
20

18
FR

EA
K

S
00

1
W

el
lin

gt
on

,N
ew

Z
ea

la
nd

G
ig

Fr
om

sc
ra

tc
h

[8
]

14
/1

1/
20

18
C

om
pu

te
r

G
ra

ph
ic

s
M

ee
ti

ng
V

ic
to

ri
a

U
ni

ve
rs

it
y,

W
el

lin
gt

on
,

N
ew

Z
ea

la
nd

R
es

ea
rc

h
gr

ou
p

m
ee

ti
ng

Fr
om

sc
ra

tc
h

17
/1

1/
20

18
Bu

rr
ow

in
g

Pu
ff

er
fis

h
Pa

rt
y

W
el

lin
gt

on
,N

ew
Z

ea
la

nd
Pr

iv
at

e
pa

rt
y

Pr
ep

ar
ed

[2
]

01
/1

2/
20

18
Ve

rt
ig

o
V

al
ha

lla
,W

el
lin

gt
on

,N
ew

Z
ea

la
nd

G
ig

Pr
ep

ar
ed

16
/0

1/
20

19
IC

LC
20

19
N

av
e

D
e

Te
rn

er
as

,M
ad

ri
d,

Sp
ai

n
A

lg
or

av
e

Fr
om

sc
ra

tc
h

25
/0

1/
20

19
V

IU
:A

lg
or

av
e

H
an

ga
r.o

rg
,B

ar
ce

lo
na

,S
pa

in
A

lg
or

av
e

Fr
om

sc
ra

tc
h

27
/0

1/
20

19
liv

ec
od

en
yc

H
os

ts
In

Ex
ile

N
ew

R
iv

er
St

ud
io

s,
Lo

nd
on

,
U

ni
te

d
K

in
gd

om
A

lg
or

av
e

Fr
om

sc
ra

tc
h

28
/0

1/
20

19
So

ni
c

Pi
m

ee
ts

V
is

or
St

re
am

ed
fr

om
C

am
br

id
ge

,
U

ni
te

d
K

in
gd

om
Li

ve
st

re
am

Fr
om

sc
ra

tc
h

[3
1]

01
/0

2/
20

19
So

un
d

N
ig

ht
09

:
A

lg
or

av
e

pa
nk

e.
ga

lle
ry

,B
er

lin
,G

er
m

an
y

A
lg

or
av

e
Fr

om
sc

ra
tc

h

09
/0

2/
20

19
Ta

ni
w

ha
s'

s
D

en
20

19
M

ai
ns

ta
ge

H
in

ak
ur

a,
M

ar
ti

nb
or

ou
gh

,
N

ew
Z

ea
la

nd
Fe

st
iv

al
Pr

ep
ar

ed
[3

7]

10
/0

2/
20

19
Ta

ni
w

ha
s'

s
D

en
20

19
C

lif
f

H
in

ak
ur

a,
M

ar
ti

nb
or

ou
gh

,
N

ew
Z

ea
la

nd
Fe

st
iv

al
Fr

om
sc

ra
tc

h

17
/0

2/
20

19
TO

PL
A

P
15

th
Bi

rt
hd

ay
St

re
am

ed
fr

om
W

el
lin

gt
on

,
N

ew
Z

ea
la

nd
Li

ve
st

re
am

Fr
om

sc
ra

tc
h

[4
0]

06
/0

3/
20

19
Ey

eg
um

W
ed

ne
sd

ay
s

Sa
n

Fr
an

,W
el

lin
gt

on
,N

ew
Z

ea
la

nd
G

ig
Pr

ep
ar

ed
[7

]

5.1. PERFORMANCE SETUP 89

5.1 Performance Setup

My typical performance setup consisted of a number of hardware and
software components. The hardware components are shown in Figure 5.1.
A MacBook Pro laptop was used to run the Visor software. A Novation
Launch Control XL was used as a MIDI controller, offering 8 sliders, 24
knobs, and 16 buttons. A USB sound card was used to get a line-in from
the sound desk. If no line-in was available then the laptop microphone
was used instead. The line-in or the microphone was then configured as
the audio input device for Visor's FFT. Visor's support for multiple dis-
plays was often used to create preview windows depending on the phys-
ical environment. An additional preview window was used if I could not
clearly see the projected visuals. For example, in the ICLC 2019 Algorave
I was positioned facing the audience while the visuals were projected be-
hind me, as shown in Figure 5.2. In addition to Visor, the Syphon Recorder
[35] software was occasionally used to record the rendered visuals.

Figure 5.1: My typical setup for live performance with Visor.

90 CHAPTER 5. LIVE PERFORMANCES WITH VISOR

Figure 5.2: ICLC 2019 Algorave performance. Shows live coding of visuals by

myself (left) and live coding of music by TYPE [43] (right). Photo credit: Steven

David Delvalle.

Projectors were always provided by the venue and were either connected
directly to the laptop or routed through another computer running the
Resolume VJ software. Resolume was used to projection map the ren-
dered output of Visor's onto complex surfaces. This approach was used
for both performances at the Taniwha's Den 2019 festival. The Taniwha's
Den 2019 Cliff performance involved projecting the visuals rendered from
Visor onto a large limestone cliff face. This offered a novel live coding
and VJing experience. A photograph of Visor in action on the cliff face is
shown in Figure 5.3 while Figure 5.4 shows what the cliff face looks like
during the day. The Taniwha's Den 2019 Mainstage performance involved
projecting the visuals rendered form Visor onto multiple screens using
multiple projectors, as shown by Figure 5.5.

5.1. PERFORMANCE SETUP 91

Figure 5.3: Taniwha's Den 2019 Cliff performance where Visor was used to render

visuals that were projected onto a large limestone cliff face. Note the reflection of

the visuals in the water.

Figure 5.4: Limestone cliff face that was used as a projection surface during the

Taniwha's Den 2019 festival. Note the size of the people standing at the base of

the cliff.

92 CHAPTER 5. LIVE PERFORMANCES WITH VISOR

Figure 5.5: Taniwha's Den 2019 Mainstage performance. The rendered visuals are

projected across multiple screens around the DJ booth using multiple projectors.

The VJ booth is situated out of shot, behind where this photograph was taken.

5.2 Performance Approach

The performances I conducted were generally approached in one of two
ways. The first approach was to live code from scratch and was most
similar to a traditional live coding performance due to starting with an
empty screen. This approach was used in 10 of my performances as out-
lined in Table 5.1. This approach involved live coding the visual con-
tent throughout the course of an entire performance. This included the
live coding of visual elements such as shapes, animations, and colours.
Individual layers of content were created progressively and introduced,
manipulated or removed at different points in time throughout the perfor-
mance. Live coding of mappings between parameters and MIDI variables
also occurred, followed by the performance of these parameters on the
MIDI controller. This approach showcased the performance aesthetic of

5.3. VISOR IN ACTION 93

the CJing practice where live coding can be used as a method to impro-
vise visual instruments that are then performed using GUIs and hardware
controllers.

The second approach was to perform with prepared code. This approach
involved coding the visual content in preparation for the performance
and was most similar to a traditional VJ performance due to primarily
making use of existing content. This approach was used in 4 of my per-
formances as outlined in Table 5.1. This approach involved organising vi-
sual elements into layers where parameters of each layer were assigned to
groupings of controls on the MIDI controller. These performances mostly
involved interacting with the MIDI controller as the content and MIDI
mappings had already been defined in advance. Live coding also occurred
during these performances to improvise content or to manipulate the ex-
isting content.

In addition to these two approaches, during the FREAKS 001 and Tani-
wha's Den 2019 Mainstage performances I invited a collaborator to per-
form alongside me for a small section of each performance. This collabora-
tor focused solely on interacting with the MIDI controller while I focused
on live coding and interacting with the GUI.

5.3 Visor in Action

Visor's core features are now reflected upon based on my experience using
them in live performance. This reflection describes the positive aspects of
each feature, a number of usability issues that were identified, a num-
ber of improvements that could be made to address these issues, and a
discussion of issues that arose with respect to the overall design of CJing
environments and the broader CJing practice.

94 CHAPTER 5. LIVE PERFORMANCES WITH VISOR

5.3.1 Live Coding

Live coding was conducted during all of my performances to either im-
provise content from scratch or manipulate existing content. Live coding
made it possible to iteratively develop visual elements where changes to
the code were immediately reflected in the visuals. This was demonstrated
in the TOPLAP 15th Birthday Livestream performance where visual ele-
ments were built up over time in three separate layers. Each code execu-
tion committed a new version of the code to a layer and often resulted in
updating the rendered visuals. The performance began with the creation
of a particle system layer, followed by an animated mask layer, and then
finally a layer to render a 3D model. The remainder of the performance
involved the manipulation of these three layers.

Figure 5.6: TOPLAP 15th Birthday Livestream performance. The Visor GUI (left)

is displayed alongside the rendered visuals (top-right) and a camera recording

of the physical performance by myself and DESTROY WITH SCIENCE (bottom-

right).

5.3. VISOR IN ACTION 95

5.3.2 State Management

The state management interface was primarily utilised for the visualisa-
tion that it offered during performances. Inspecting the interface was
effective for debugging, for example, to check if a state variable had been
initialised, if the value of a state variable was updating over time, or if a
MIDI variable had been correctly mapped to a state variable. One usability
issue was observed where many state variables would overpopulate the
interface. State variable widgets were usually collapsed to mitigate this
issue by taking up less space. This issue could be solved by providing
options to filter which parts of the state are displayed or organise how
the state is arranged. For example, the state could be filtered by layer or
organised by type.

The MIDI controller was primarily used to interact with numeric and
Boolean state variables, rather than making use of the GUI sliders and
checkboxes in the state management interface. The MIDI controller was
preferred as it offered an effective embodied approach to manipulating
parameters and allowed for updating multiple parameters at the same
time. Interacting with the GUI interface using the trackpad was less ef-
fective as it only allowed for manipulation of one parameter at any one
time. It is possible the state management interaction features would have
been used more in my performances if a MIDI controller was not available.
The interface was used to interact with string based state variables to
achieve a live typing effect where text was typed onto the rendered visuals
in real-time. This effect was used in the VIU Algorave and the Eyegum
Wednesdays performances to communicate with the audience. Figure 5.7
shows how the musician's name was displayed to the audience at one
point during the Eyegum Wednesdays performance.

96 CHAPTER 5. LIVE PERFORMANCES WITH VISOR

Figure 5.7: Eyegum Wednesdays performance. Shows live performance of music

by DESTROY WITH SCIENCE (left) and live performance of visuals by myself

(right). Recording credit: Matt Mckegg.

5.3.3 Layers

The use of layers was very effective at enabling new creative possibil-
ities during performances. The feature was implemented between the
Vertigo and the ICLC 2019 Algorave performances, meaning all earlier
performances such as the Freaks 001 and Burrowing Pufferfish Party could
not make use of layers, while later performances such as the Eyegum
Wednesdays and Taniwha's Den 2019 Mainstage performance could make
use of the feature. In the later performances, it was used to create new
compositions by combining layers using different blend modes. One tech-
nique was to create a masking effect by applying the MULTIPLY blend
mode to a layer placed above other layers. Figure 5.8 demonstrates this
effect where a masking layer that rendered circular geometry was placed
above two other layers, one that rendered a particle system, and another
that rendered a set of 3D double helix models. The result is that the circular
geometry conceals parts of the layers underneath.

5.3. VISOR IN ACTION 97

Figure 5.8: Rendered visuals from the Taniwha's Den 2019 Mainstage

performance.

Code tabs were also found to be an effective approach to organising lay-
ers where the code for each layer was stored in distinct code tabs. For
example, in the TOPLAP 15th Birthday Livestream performance, three
code tabs were used to represent the three layers. The Default tab held
the particle system code, the Grow tab held the animated mask code, and
the Model tab held the 3D model code. This clean separation of code made
it easy to identify which parts of the code corresponded to which visual
elements.

One issue was observed where conflicting behaviour would be caused
when interacting with layers using both the GUI and the Visor API. For
example, when set blend mode was used, the GUI blend mode could
be unintentionally overridden after executing the code. The result was
that the GUI was almost exclusively used to manipulate blend modes
except for in pre-prepared content where setup code was sometimes used
to initialise blend modes. This setup code was structured in a way that the
API code only ran the first time it was executed, for example by checking if

98 CHAPTER 5. LIVE PERFORMANCES WITH VISOR

a state variable had been defined. This was useful for initialising the blend
mode through one code execution without overriding any later changes
made through the GUI. Regardless, this issue highlights the importance of
the relationship between code and user interfaces in CJing environments.
Careful consideration should be taken when designing a CJing environ-
ment such that it offers the flexibility to be used by both live coding and
VJing approaches without forcing the performer to adopt one approach.

5.3.4 MIDI

Support for MIDI inputs in Visor was utilised in all of the performances
through the use of a MIDI controller (see Figure 5.1). This use of exter-
nal hardware allowed for dynamic visuals where parameters could be
tuned in reaction to what was happening in the music. This was demon-
strated by my physical interactions with the MIDI controller in the Eye-
gum Wednesdays performance video recording.

MIDI controller interactions offered the ability to easily explore the pa-
rameter space of a live coded program, often generating unique and unex-
pected visual results. An example of this was demonstrated in the Eyegum
Wednesdays performance where a rotating 3D model was positioned us-
ing a MIDI knob to create a scan line effect. The experience interacting
with the MIDI controller felt most akin to playing an instrument, unlike
live coding where immediate feedback only occurs when code is executed.
Interactions with the MIDI controller also offered an instinctive feel to
changing parameters in comparison to the effects of automated features
like the FFT, which was more sporadic, and the tap tempo, which was
more systematic. Interacting with the MIDI controller offered a VJ-like
experience where different layers could be selectively mixed in or out.
Parameters of each layer could be tuned individually or at the same time
as parameters of other layers, resulting in changes to multiple visual ele-
ments at the same time.

5.3. VISOR IN ACTION 99

One usability issue that arose during performances was the need to switch
contexts between live coding and using the MIDI controller, an issue that
was also observed in the results of the interviews in Chapter 3. As both
contexts required almost full attention, it seemed impossible to effectively
live code and perform with the MIDI controller at the same time. This
was observed in the early stages of the TOPLAP 15th Birthday Livestream
performance. In this performance, parameters of existing content could
not be tuned using the MIDI controller while I was focused on live coding
content from scratch. The opposite holds true for later in the performance
where I was focused on the MIDI controller, only using live coding to
make minor adjustments to the content. This issue emphasises that CJs
must not only develop their skills in live coding and using the controller,
but must also learn to strike an effective balance between working be-
tween the two modalities. This highlights the importance of automated
features such as the FFT and tap tempo which produce dynamic effects
without requiring the attention of the performer.

One feature that could be implemented to reduce the friction of context
switching would be the ability to record parameter interactions. Recorded
interactions could be replayed using a hotkey while live coding or auto-
matically in time with the tap tempo. Another way to completely remove
the issue is to utilise two performers where one performer live codes while
the other uses the controller. This collaborative approach was experi-
mented with during the FREAKS 001 and Taniwha's Den 2019 Mainstage
performances when a collaborator was invited to perform alongside me
for a small section of each performance. The result was that content could
be improvised while the parameters of existing content were being per-
formed at the same time.

Setting up mappings between parameters and MIDI variables was an im-
portant interaction for utilising the MIDI controller in live performances.
Mappings were either live coded, such as in the TOPLAP 15th Birthday
Livestream performance, or were defined upfront, such as in the Tani-

100 CHAPTER 5. LIVE PERFORMANCES WITH VISOR

wha's Den 2019 Mainstage performance. Mappings were typically or-
ganised where parameters of individual layers were mapped to separate
columns on the MIDI controller. The MIDI controller consisted of 8 columns
where each column was made up of a slider, three knobs, and two but-
tons. The slider was always mapped to the layer opacity, the knobs were
typically mapped to numeric parameters on the layer, and the buttons
were sometimes mapped to trigger events or toggle boolean parameters
on the layer. An example of this organisation is presented in Figure 4.19
of Chapter 4 where parameters of three layers are mapped to separate
columns on the MIDI controller.

One issue that arose during the Taniwha's Den 2019 Mainstage perfor-
mance was the inability to flexibly remap the MIDI controller to enable
interaction with content improvised during the performance. This was
due to the existing layers utilising almost all of the controls on the MIDI
controller. This constrained the performance where live coding tended
to manipulate existing layers, rather than create new content. While no
attempt was made to remap any controls during the performance, there
would be two approaches to doing so, each with limitations. Firstly, an
existing layer could simply be overwritten with new content that utilised
the same mappings, but then the old content would not be available. The
code for the old content could be kept for later reuse, but even then, both
sets of content could not be used at the same time, limiting creative possi-
bilities. Secondly, a new layer could be created that maps to the same MIDI
controls as an existing layer, but now the parameters of one layer cannot
be updated without also updating the parameters of the other layer.

While the issue of remapping MIDI controls could be solved with hard-
ware, for example, by using more MIDI controllers or MIDI controllers
that offer more controls, Visor could instead be improved to provide a
flexible solution. For example, a method could be implemented to easily
re-assign layer parameters to groups of MIDI controls, such as a group per

5.3. VISOR IN ACTION 101

column on the MIDI controller. With the concept of arbitrary groups of
MIDI controls in place, a GUI could be used to easily update mappings
between groups and layers. This way, layers could be easily repositioned
on the MIDI controller during a performance.

An inconsistency in Visor's behaviour was also observed with respect to
how MIDI mappings could be created using either the Visor API in the
code or through the GUI. The inconsistency was that using the API meth-
ods enabled mappings to be recreated the next time Visor was run due
to being persisted in the code. In contrast, mappings set up using the
GUI were not persistent when Visor was shut down and needed to be
reconfigured. While this inconsistency could be solved by implementing
a solution that saves the state of the GUI alongside the code, the issue once
again highlights the importance of the relationship between code and user
interfaces in CJing environments.

Visor's support for MIDI was also used to receive MIDI messages from
inputs other than a MIDI controller in two performances. In these per-
formances I collaborated closely with musicians who provided me with
MIDI data generated from their own performance setup. In one perfor-
mance, Vertigo, I collaborated with Livestock Pixel [16] who performed
by interacting with cubes on a table surface, as shown in Figure 5.9. To
put it simply, each time a cube was placed on the table or moved, a new
instrument would start or stop playing and a MIDI message was sent over
a local area network to Visor, triggering a change in the visuals. In the
other performance, Eyegum Wednesdays, I collaborated with DESTROY
WITH SCIENCE [5] who performed with synths and other MIDI devices.
Each time a kick sound was played, a MIDI message was sent over a
MIDI cable to Visor, triggering beat based behaviour with the intention
to replace the tap tempo.

102 CHAPTER 5. LIVE PERFORMANCES WITH VISOR

Figure 5.9: Vertigo gig performance. Livestock Pixel (featured) is performing

music using a tabletop instrument. The visuals rendered by Visor are projected

onto the surrounding surfaces. Photo credit: Marie-Sophie Fabre.

5.3.5 Fast Fourier Transform

The use of the FFT was effective at creating relationships between the
visuals and the music in performances. An example of how the FFT was
used in the live performances was during the FREAKS 001 performance
where particles grew in size based on certain frequencies. Similarly, the
FFT was used to enlarge the size of rendered text during the Eyegum
Wednesdays performances. A screenshot of the latter is shown in Figure
5.7. The FFT was effective because it automatically reacted to changes
in the music, unlike the MIDI controller which required manual input to
make changes to the visuals. The FFT visualisation in the GUI was also
used to effectively identify distinct sounds in the music based on how the

5.3. VISOR IN ACTION 103

amplitude of specific bands changed over time. The indexes of these bands
were then used directly in the code through the fft range method to
access the sound data and influence the visuals.

Despite the effectiveness of the FFT visualisation, it did take a few seconds
to inspect the visualisation to identify the band indexes to use as argu-
ments for the FFT code. This is unlike the tap tempo and MIDI features
which could be utilised by simply adding a beat progress or MIDI
variable straight into the code. The current approach to utilising the FFT
in the code could be improved by implementing new functionality to the
FFT visualisation. For example, clicking and dragging across a range of
FFT bands and releasing the mouse could automatically generate the code
required to access that FFT data. This code could then be pasted into the
code editor where the cursor is placed, reducing the effort required by the
performer to incorporate the feature. Alternatively, simpler API methods
to access the FFT could be provided such as a low, mid, and high methods
that each return predetermined frequency ranges.

5.3.6 Tap Tempo

The tap tempo feature was used in all of the performances and proved
useful for creating animated visuals that mapped directly to the tempo
of the music. These animations effectively communicated the beat of the
music. Examples of how the tap tempo was used in the performances
included a mask that pulsed to the beat during the TOPLAP 15th Birthday
Livestream performance, particles that regenerated on the beat during the
Taniwha's Den 2019 Mainstage performance, and models that scaled to the
beat during the Burrowing Pufferfish Party performance. A screenshot of
the latter is shown in Figure 5.10.

104 CHAPTER 5. LIVE PERFORMANCES WITH VISOR

Figure 5.10: Rendered visuals from the Burrowing Pufferfish Party performance.

Despite the feature's convenience, some difficulty was observed when tim-
ing the taps such that the tempo looked correct. Sometimes the tempo
would drift out of sync over time or would be offset from the correct value.
Some music was easy to follow and predict the tempo, such as house or
techno, while other types of music were harder to follow, such as jungle
or drum and bass. In some occasions it took a few attempts to set a correct
tempo, though the skill got easier with practice. This difficulty could be
solved by improving the usability of the tap tempo in a number of ways.
For example, a keyboard shortcut to clear the current tempo or a button to
add a small offset to the tempo could potentially improve the performer's
ability to use the feature.

Alternatively, more effort could be put towards utilising data from the
musician. An example of this was conducted in an experiment during
the Eyegum performance where MIDI events based on a kick sound were
used to replace the tap tempo. The result was that the kick was not a
good substitute for indicating when a beat occurred, as it was often un-

5.4. SUMMARY 105

known when the next kick would occur. Configuring the kick was also
less convenient than the tap tempo as it required the use of a MIDI ca-
ble and extra configuration in Visor. In contrast, the tap tempo does not
rely on external data from the musician and therefore does not need any
configuration. A better approach to utilising external data would be to
synchronize the tempo with a MIDI clock from the musician if one is
available. This approach would still require extra configuration upfront
but it would remove the need for the performer to manually set the tempo,
preventing inaccuracies and being more predictable than the kick sound
experiment.

5.4 Summary

This chapter has described my use of Visor in live performances. Per-
forming on 14 separate occasions in a variety of settings with a variety
of collaborators has demonstrated Visor's effectiveness in this context, at
least in combination with my own performance skills.

Two approaches to performance were described: live coding content from
scratch, and performing with existing content. These approaches demon-
strate respectively how Visor can be used for live coding and VJing style
performances. The crossover of these two approaches also highlights Vi-
sor's demonstration of the CJing practice where aspects of both live coding
and VJing can be used together in the same performance. Live coding
can be used as a method to improvise visual instruments that are then
performed using GUIs and hardware controllers, addressing both RQ2
and RQ3 §1.1. During the live coding style performances, I was able
to make use of VJing features such as the layers, tap tempo, and MIDI
controllers to interact with live coded content at a high level, addressing
RQ2. Also, during the VJing style performances, I was able to improvise
or manipulate existing content at a low level using live coding, addressing
RQ3.

106 CHAPTER 5. LIVE PERFORMANCES WITH VISOR

This chapter has also reflected on the usage of Visor's core features in
live performance. Overall, each feature was effective to some extent as
demonstrated by their use in multiple performances. A number of usabil-
ity issues were also identified with respect to these features along with
potential improvements to solve the issues. Two issues were also raised
around the wider CJing practice. One of these issues highlighted the need
for careful design of the relationship between code and user interfaces in
CJing environments, an important aspect of a system that aims to offer
interactions from both live coding and VJing. The issue of context switch-
ing was also raised in the CJing practice where the focus of the performer
must be split between live coding and using the MIDI controller. While
collaboration between two performers was demonstrated as a potential
solution to this issue, it remains a notable aspect of CJing that challenges
the virtuosity of the performer and invites further consideration to the
design of interactions between both modalities.

The next chapter presents a study of creative coders, live coders, and VJs
who experimented with Visor and provided feedback through an online
feedback survey.

107

Chapter 6

Visor Feedback Survey

This chapter describes the results of an online feedback survey that was
used to evaluate the effectiveness of Visor as part of the user-centered
design process [49]. The survey solicited feedback from people with cre-
ative coding, live coding, and VJing experience who had used Visor. This
feedback was used to evaluate the effectiveness of Visor.

Each Visor user who participated in the survey was asked to complete the
questionnaire presented in Appendix E. The questionnaire asked each par-
ticipant about their background, their outlook on some of Visor's specific
features, how difficult they found Visor to learn, the context in which they
might use Visor, and what they liked or disliked about Visor.

The discussion of the participants' responses was used to evaluate the
effectiveness of Visor, and in turn, CJing, to help address both RQ2 and
RQ3 §1.1. Results of the survey will be used to inform the future develop-
ment of Visor. This research was approved by the Victoria University of
Wellington Human Ethics Committee (refer to Appendix A).

108 CHAPTER 6. VISOR FEEDBACK SURVEY

6.1 Survey Procedure

Survey participants were recruited through recruitment messages placed
on the Visor website [44] and within the software itself. Visor was ad-
vocated through various online forums, chat channels, and social media
groups relating to live coding, creative coding, Processing, and VJing.
Visor was advocated through existing networks of live coders, creative
coders, and VJs. Participants who started the survey were provided with
the information sheet presented in Appendix D before continuing on to the
survey questionnaire. Participants were invited to participate if they had
used Visor in any capacity but were also asked how much time they spent
using Visor in the questionnaire. The survey questionnaire contained 15
questions consisting of both multiple choice and free form answer ques-
tions, providing a mix of quantitative and qualitative data in the results.
The survey was expected to take between 5 and 10 minutes for participants
to complete.

6.2 Participants

In total, six participants completed the feedback survey. While a larger
number of participants would have been preferred, there were a number
of factors as to why it was difficult to recruit for this study. The target
audience for this study was particularly specialised in that it required peo-
ple who had used Visor for some period of time while also having some
experience with live coding, VJing, Processing or Ruby. It was difficult
to find participants who met most of these criteria on a large scale, in
particular within the time restrictions of a master's thesis. With more time,
more participants could be expected to complete the survey.

6.3. RESULTS 109

Participants were asked to provide background information with respect
to their experience with Ruby, Processing, live coding, and VJing. To
answer these questions, participants could choose from the following op-
tions: no experience, a little experience, a fair amount of experience, or
professional experience. The results are shown in Table 6.1. All six partici-
pants reported having more than three years of programming experience.

Table 6.1: Feedback survey participants background, estimated time spent using

Visor, and context in which they might use Visor. For the experience questions,

participants could choose from having either: no experience (None), a little

experience (Little), a fair amount of experience (Fair), or professional experience

(Professional).

ID
Ruby
experience

Processing
experience

Live coding
experience

VJing
experience

Visor
time

Visor
context

1 Little Professional Little Little
1-5
hours

Performance
(live coding)

2 Little A little None None
1-5
hours

Performance
(VJing)

3 Little Professional None Little
1-5
hours

Creative
coding

4 Little Professional Professional Professional
5-10
hours

Teaching

5 Fair Fair Little Little
10+
hours

Performance
(VJing)

6 None Professional None None
1-5
hours

Creative
coding

6.3 Results

The following section reports the results of the feedback survey. The re-
sults were grouped based on usage, learning, each of Visor's core features,
and the general user interface.

110 CHAPTER 6. VISOR FEEDBACK SURVEY

The results on the participants' usage of Visor were reported based on two
multiple choice questions. The remainder of the results were reported
based on direct quotes from the free form questions that solicited qual-
itative feedback from the participants. The direct quotes were sourced
from multiple questions and grouped for the results. In terms of the free
form questions that were created to solicit feedback about Visor's features,
participants were asked to report what aspects of each feature they found
to be effective or not.

6.3.1 Usage

The participants were asked to report how much time they had spent
using Visor. Participants could choose from one of the following options:
less than 1 hour, 1 to 5 hours, 5 to 10 hours, and more than 10 hours.
While the time participants spent using Visor could not be controlled, it
was estimated that participants would need to spend at least one hour
experimenting with Visor before they could provide any feedback. The
results reported that all of the participants used Visor for at least one hour
before completing the survey. P1, P2, P3, and P6 used Visor for between 1
and 5 hours, P4 used Visor for between 5 and 10 hours, and P5 used Visor
for more than 10 hours. The responses to this question are also presented
in Table 6.1.

The participants were also asked to report the context in which they might
use Visor. Participants could choose from one of the following options:
performance (live coding new material), performance (VJing with pre-
coded material) creative coding, and other (please specify). The results
reported that P1 would use Visor in performances for live coding new ma-
terial, P2 and P5 would use Visor in performances for VJing with precoded
material, P3 and P6 would use Visor for creative coding, and P4 would
use Visor for teaching. The responses to this question are also presented
in Table 6.1.

6.3. RESULTS 111

6.3.2 Learning

The participants were asked to report how difficult they found Visor to
learn. Participants could choose from one of the following options:
strongly agree, agree, neutral, disagree, and strongly disagree. The results
reported that P2 strongly disagreed it was difficult, P1 and P4 disagreed,
P3 was neutral, and P5 agreed it was difficult. The participant who re-
sponded neutral (P3) commented in the extra feedback section why they
chose this response, reporting that Visor's learning difficulty was depen-
dent on the user's coding experience:

“Regarding the ‘Visor is difficult to learn’ question. I responded with
‘neutral’. To explain: for someone with creative coding experience, I
picked it up easily. For an absolute newbie coder, I'd put it on a par
with something like Processing.” (P3)

The participant who agreed that Visor was difficult to learn (P5) had spent
more than 10 hours using Visor. The participant commented in the extra
feedback section the reason why they agreed, reporting that they found
it difficult due to a lack of help and went on to suggest how it could be
improved:

“I put difficult to learn as not a great deal of help, although improving.
I found the most useful way to learn was to work through published
videos, building the same in my copy of visor as the video progressed
... Also a bit more help in syntax changes when using Processing
commands in Ruby context. Basically adding more examples would
help...” (P5)

P3, P4, and P6 reported explicitly on the effectiveness of Visor's docu-
mentation. P4 stated that they enjoyed the documentation in that “reading
through the Learn Hub and the examples jump-started where I wanted to be fairly
quickly”, P6 mentioned that “the learning hub was super useful to get started”,
and finally P3 commented that “the documentation is fine for somebody with

112 CHAPTER 6. VISOR FEEDBACK SURVEY

coding experience. However, a beginner may struggle.” P4 also discussed how
their existing experience with Processing helped them to get started with
Visor: “learning curve was pretty good, I knew Processing already, had a sense
of what I could draw and how to draw it.”

6.3.3 Live Coding

All of the participants reported on the effectiveness of live coding (§4.3.1)
in Visor. P1 and P2 liked Visor's use of or similarity to Processing. P4 and
P5 both enjoyed using Ruby, stating that “I can see how it's really efficient
for live-coding” (P4) and “Ruby like code. Fits nicely with Sonic Pi which I
use a lot.” (P5). P6 discussed the benefits of being able to live code with
Processing: “Having sketch constantly updating vs having to restart sketch all
the time (like what typically happens in Processing) helped a lot with keeping
in the flow of exploring ideas.” P1 also mentioned how they enjoyed the
“fast iteration time” that Visor provided through live coding. P2 simply
stated how they enjoyed that Visor “enables live coding.” P4 and P5 also
raised some difficulties they experienced when live coding in Visor. P4
mentioned how they “struggled on the improvisation side making changes
quickly to get results I wanted - this could also be my lack of experience with
the IDE.” P5 raised a usability issue with respect to code tabs due to how
it was a “bit tedious having to execute different code files individually.”

6.3.4 State Management

Five of the participants (P1, P2, P3, P5, P6) claimed that they found the
state management features (§4.3.2) in Visor effective for particular pur-
poses. P1 reported that “it's neat, and I can definitely see myself using it
in future.” P2, P3, P4 and P6 described a variety of tasks for which they
found the feature effective. P2 mentioned the ability to set ranges on

6.3. RESULTS 113

values: “it's an amazing feature (very convenient the fact that you can set
limits in code). Great way to expose controls.” P3, P4 and P6 discussed how
it was effective for interaction and visual confirmation or debugging of
what the underlying code was doing: “found state management particularly
useful for experimenting with how Visor operated - like, what did what” (P3),
“especially for debugging, and visual confirmation of values e.g: MIDI input
(although I also used puts statements to see these in the console). Also for setting
values with sliders.” (P4), “useful for making high level adjustments within the
sketch (eg. a speed multiplier that affects the whole sketch, that I can use the
change the mood based on the music).” (P6), and “a nice way to keep track of
variables you want to monitor (vs. just using ”puts” to the console)” (P6). P6
also discussed specifically how the state management provided high level
control of a coded sketch: “It was also useful for compartmentalizing the sketch
into different key pieces I can control once they were setup.”

P1 and P2 reported a usability issue around how the state management
interface could become cluttered. P1 stated that “although it does get quite
cluttered as the program gets bigger. I find myself changing numbers in the code
because I have an easier time finding them.” Both P1 and P2 suggested that
this issue could be solved by adding the ability to organise or hide parts of
the state. They mentioned that: “I'd probably use the state management more
if there were more options for organisation” (P1) and “would be nice to have a
way to ignore some of the variables, to avoid polluting UI.” (P2).

P4 reported that they did not use the state management: “Oddly enough,
I didn't use them. I tended to bind FFT values in where I probably may have
wanted to have some other type of control.” They then went on to mention
how they saw the value in the feature and reasoned why they didn't make
use of it: “I can see now where having them would have been useful instead of
changing/testing values by typing. I guess I didn't want to reach for the mouse?”
This raises a potential issue where the feature requires the performer to
take their hands off the keyboard, which for a dedicated live coder like P4,
may not be something that they are accustomed to doing.

114 CHAPTER 6. VISOR FEEDBACK SURVEY

6.3.5 Layers

All 6 of the participants claimed that they found the layers feature (§4.3.3)
in Visor effective. P1 mentioned that they enjoyed the layering and that
it was “very useful. Especially if you're used to Photoshop, the metaphor for
composing layers like that makes a lot of intuitive sense.” P2 discussed how it
allowed for the composition of visual content: “it felt essential, as it allows to
combine different sketches, and switch between scenes. Very useful the fact, that
you can manipulate layers programmatically.” P3 talked about the novelty of
the feature, in particular for someone who had come from a Processing
background: “I would imagine layers are useful in a VJ setting - but I just
enjoyed messing around with them because it's a pretty novel feature compared
to what I'm used to (more standard Processing stuff).” P5 mentioned how one
of the demonstration videos inspired them to use the feature: “especially
after seeing their power in video ‘Visor and Destroy with Science’ Once I got the
hang of it, they were useful to use.” P6 mentioned that the “blending modes
especially were fun to experiment with since it was easy to make many variations
with just a few sketches” and “it was also great to have a completely new sketch to
branch into once the starting sketch got too complicated.” P4 reported how the
layers and code tabs enabled effective organisation of content: “could more
easily separate visual elements more cleanly and know that changes here were not
affecting changes elsewhere by accident.”

P4 and P5 also reported on a number of usability issues with the layers
feature. P4 highlighted issues with both the Visor interface and API: “be-
cause I had to flip between tabs and I was having trouble remembering how to
assign classes to layers. NoStroke and noFill gave me trouble, until I kept them
local to each layer's draw function.” They then suggested that Visor needed a
“key command for switching tabs” which would alleviate the friction caused
by needing to switch code tabs. The second issue could be addressed by
refactoring the API or improving documentation. P5 also reported on the
lack of ability to “reset blend modes” and that it: “took me some time [sic] to

6.3. RESULTS 115

spot where to delete a layer.” These issues could be solved by implementing
an action to reset a layer's blend mode and improving the design of the
user interface respectively.

6.3.6 Fast Fourier Transform

All 6 participants claimed that they found the FFT feature (§4.3.4) in Visor
effective for a variety of reasons. It was also apparent that it was a feature
to which they were already accustomed. P1, P3, P5 and P6 all reported its
ease of use: “very helpful - really nice for VJing to have it ready to go, no fuss
no muss” (P1), “it was definitely easier than my previous experiences analysing
audio (in ActionScript and Processing)” (P3), “built in functions make it easy to
use” (P5), and “was really easy to set up and throw into something that needed
just a little bit of variation or randomness” (P6). P2 also discussed the ability
to visualise the frequency spectrum: “it is useful to see the frequency profile
of the music.” P4 discussed how it differed from what they were used to
due to the resolution of the spectrum: “I had to get used to having more
options for frequency spectrum. I spent more time looking at the FFT to see where
interesting sound was showing up.” P3 and P6 also reported on how Visor
supported them to utilise audio reactive behaviour despite not having
worked with audio visualisation much before: “I haven't messed around
much with visualising audio much, but I was able to put something together very
easily.” (P3), and “for someone with little experience with working with audio,
the visualization for tempo and FFT were helpful to understand how to use them.”
(P6).

P2 and P5 requested additional features for the FFT. P5 requested the
ability to access “separate left right channels” and for an “input preset volume
setting” to solve an issue they experienced when switching to different
audio input devices to “compensate for different levels of input.” Similarly,
P2 requested to have more control over the FFT: “I'd like to have control

116 CHAPTER 6. VISOR FEEDBACK SURVEY

of smoothing.” Visor already supports control over the level (scale) and
smoothness of the FFT, but it only does so through the API. While the
documentation could be improved to articulate this, a more effective ap-
proach could be to implement sliders in the GUI that directly manipulate
the scale and smoothness. P2 also suggested a new way to use the FFT
to influence the visuals: “ideally would be great to set trigger points on FFT
display with mouse, which could be accessible from code (global boolean variables,
or event handlers), which could be used to drive changes in visualisation.”

6.3.7 Tap Tempo

Four of the participants (P2, P3, P5, P6) claimed that they found the tap
tempo feature (§4.3.5) in Visor effective. P2 reported on the interface de-
sign and the use in VJing: “tap tempo is essential for VJing. I like the design
on tap tempo widget - it [sic] visible, but not distracting.” P3, P5, and P6
discussed how the feature enabled them to easily set a tempo or sync with
the music: “this made it very easy and intuitive for me to set the tempo” (P3),
“useful to sync to input music” (P5), and “Tap tempo and the ‘beat’ features was
useful to quickly get something visually interesting that was synced to the music.
As someone with limited musical experience, being able to tap to set the tempo
was much more intuitive than typing a number.” P1 was unsure about the
tap tempo and suggested some improvements that could give them more
control over the feature: “Still on the fence about this one. I like it in theory. I
think I might like it better with a few more options for manually tuning the BPM
and offset instead of having to tap.”

P4 reported that they did not use the tap tempo due to not being ac-
customed to using it in context of visuals and the fact that the type of
music they visualised would require the tempo to be updated regularly:
“I didn't use this, but I think I would have used it. I'm more a visual artist than
musician, so it's not the first thing I think of. Most of the music I was testing with

6.3. RESULTS 117

changed beat frequently and the code was taking most of my attention.” P2 and
P5 also raised some usability issues with the feature that could be easily
addressed. P2 stated: “I'd like tap tempo to react on ‘mouse pressed’ instead on
‘mouse click’. This could be very personal, but for me clicking always gives a bit of
delay.” P5 also brought up an issue where Visor does not persist the tempo:
“when restarting sketches I sometimes forgot to tap in a tempo and wondered what
had happened to the display.” P5 also requested a feature in that it “would be
nice to have MIDI input to supply tap.” While Visor already allows tapping to
be supplied through code using the request tap method, the visibility
of this API method is not well documented and could be improved.

6.3.8 MIDI

Only one participant, P5, successfully made use of the support for MIDI
(§4.3.6) in Visor. They reported that they “used Oxygen 8 keyboard and
also configured TouchOSC for midi input.” They also stated that they found
the “last midi event on midi settings window was very useful for confirming
connectivity” along with a usability issue where “it is a bit of a pain to have to
restart Visor if the midi devices change (on a Mac)” and went on to suggest a
solution based on the way Sonic Pi handles the same situation. P2 tried to
use a MIDI controller but could not use it effectively due to an issue with
Visor or the controller: “I connected my nanoKONTROL2 and Visor detected
it. But after restart it stopped reacting on events.” P2 and P5 also highlighted
usability issues with the MIDI support in that they “had to write JSON file.
However it's just one off” (P2) and the need to “reconnect and choose MIDI
JSON files each time you restart” (P5).

The remaining 4 participants (P1, P3, P4, P6) did not use the MIDI feature.
This is understandable as it would not be reasonable to expect all of the
participants to own a suitable MIDI device. P4 went on to justify why they
did not use the feature: “I think for the same reason as the state management

118 CHAPTER 6. VISOR FEEDBACK SURVEY

variables. I find it faster to zip through code than reach for a controller/mouse.
Sometimes the fine tuning I need may not map to a MIDI 255 range.” This high-
lights the same issue that P4 raised with respect to the state management:
the feature requires the performer to step away from the code, something
a dedicated live coder may not be used to doing. P4 went on to discuss
that they might use the MIDI feature if they took a more VJ style approach
to performance: “I think if I was someone who mixed layers or build things and
then blended them in (like VidVox or something) then I think I would use the state
MIDI controller more.”

6.3.9 Interface

Some of the participants reported on Visor's general interface and recon-
figurable layout. P2 mentioned how they enjoyed that the interface was
“simple.” In contrast, P1 and P4 commented on issues with the layout,
stating: “the interface with the rearranging panels is too fiddly; would rather
have something a little simpler” (P1) and “on load the layout seemed jumbled up,
and I had to resize window to get all the elements visible in the window” (P4).

6.3.10 Suggested Improvements

In addition to any aforementioned suggested improvements to Visor's core
features, 4 participants (P1, P2, P4, P5) made suggestions for additional
features that they would like to see in Visor. P1 requested that they “would
love to have an option to superimpose the code on top of the video output; it's a big
part of the live coded visual aesthetic”. While Visor does support a simplistic
code projection, this comment highlights the need to more clearly com-
municate how the feature can be enabled from the application settings.
P2 mentioned a need for an improved user experience when editing code:
“would be great to have code assist and ability to move split screen to see two

6.4. DISCUSSION 119

or more parts of my project”, P4 asked if there were “feedback buffers”, and
P5 stated: “I would love to have the ability to use OSC messages (which are very
easy from Sonic Pi and TouchOSC) to control Visor” and also for Visor to allow
for “remembering the latest state in a project”.

6.4 Discussion

The results of the feedback survey have revealed some key insights that
can be used to evaluate the effectiveness of CJing and Visor. These insights
were with respect to Visor's learnability, features, usability, and CJing.

Learning: Overall, most of the participants reported that Visor was not
more difficult to learn than Processing. The documentation largely proved
effective as all of the participants had no problem getting started with
Visor, though all of them had at least three years of programming expe-
rience and some experience with Processing or Ruby. It was suggested
by one participant (P3) that the documentation would not cater to begin-
ner programmers. Improving the documentation to account for novices
would lower Visor's barrier to entry, enabling a more diverse user base
and creating an opportunity for the software to be more easily applied in
education.

Core features: The results have also evaluated each of Visor's core fea-
tures. Overall, Visor's core features were mostly proven to be effective for
their intended purposes. Participants reported enjoying the live coding
experience in Visor, in particular, due to how it used Ruby and enabled
fast iteration of Processing code. The state management interface proved
effective for allowing interaction with program state without the need
to type code, as well as for debugging through the visualisation of the
state. The layers were particularly popular due to how they effectively
enabled new creative explorations through combination and organisation

120 CHAPTER 6. VISOR FEEDBACK SURVEY

of coded content. The FFT visualisation also proved effective for allowing
for identification of interesting sounds to map to visual elements. The tap
tempo proved effective for syncing visuals to the beat of the music.

One feature that could not be evaluated to the same extent as the other
features was Visor's support for MIDI. P5 managed to use their controller
successfully, P2 did not get theirs working, and the remaining 4 partici-
pants did not have access to or chose not to use a controller. This highlights
a disadvantage of this type of study. A better approach to testing MIDI
support would be to conduct an in-person user study where a controller
is provided for participants to use.

Usability issues: A number of usability issues were identified with respect
to Visor's features. In some cases, potential solutions for these issues were
also suggested by the participants. One of the prominent suggestions
was to implement filtering in the state management interface to prevent
it from getting too cluttered, the same solution that what was discussed in
Chapter 5 when reflecting on Visor's use in live performance.

Another prominent issue was the need to write a JSON file to configure
MIDI controllers. While writing this JSON file is a one-off, there are poten-
tial solutions that could remove the need for a configuration file. Instead,
MIDI mappings could be configured in real-time based on interaction with
the controller. For example, when the performer creates a mapping, the
GUI could display a prompt to select which control should be mapped.
The performer could then select the control by moving the desired knob
or slider on the controller, or in the case of a button, simply pressing
the desired button. This interaction would remove the need to create an
explicit mapping file and make it easier for performers to make use of
MIDI controllers in Visor.

A number of usability issues were also reported with respect to the inter-
face's reconfigurable layout in that it was poorly responsive and fiddly to
interact with. Potential solutions for these issues could be to make the in-

6.4. DISCUSSION 121

terface more responsive when resizing or perhaps even remove the ability
to fine-tune the layout entirely. Instead, pre-determined views could be
provided that offer discrete layouts for particular use cases. For example,
one layout could be aimed at live coders while another is aimed at VJs.

Context switching: The participant with the most live coding experience
out of all of the participants (P4) raised a usability issue regarding the
need to switch contexts between using the keyboard for live coding, using
a mouse to interact with the state manager, or using a MIDI controller.
Switching between from the keyboard to other modalities was not some-
thing they were familiar with doing when live coding and as a result, they
chose not to use these features. They went on to discuss how they would
have used the MIDI, tap tempo, and state management features more if
they conducted VJ style performances: “I think If I was loading up a composed
set, then this would be nice to have things ready.” This highlights that the
effectiveness of Visor's features comes down to the performer's approach.
A dedicated live coder may focus on the code editor for low level content
improvisation, while those taking a VJ style approach may focus on the
user interfaces that provide high level interactions. This emphasises the
need for CJing environments to be designed flexibly with the interactions
of both live coding and VJing in mind, ensuring that either approach can
harness the full capabilities of the environment. For example, in Visor, per-
formers can create MIDI mappings programmatically or through the GUI,
enabling both dedicated live coders and VJs to create MIDI mappings.

Suggested improvements: A number of suggestions were also reported
by the participants to implement new functionality or extend Visor's exist-
ing features. One suggestion was to allow the user to set thresholds in the
FFT GUI and trigger code when the audio amplitude meets a threshold.
This feature would further demonstrate how the relationship between the
GUI and code can be used to enable more complex creative expression,
as per the idea of user interfaces as an abstraction in CJing. It was also

122 CHAPTER 6. VISOR FEEDBACK SURVEY

suggested to incorporate more control over the internal FFT scale and
smoothness parameters. While this could be solved by improving the
documentation around the existing FFT API, a better solution would be to
provide built-in GUI widgets such as sliders to manipulate the parameters
without requiring the performer to write any code.

Another suggestion was to implement the ability to remember the com-
plete state of Visor when the application is re-opened after being closed.
Persisting the state of the code, user interfaces, and Visor's internal state
would allow for performances to be continued from where they were left
off and would solve the reported issue where MIDI controllers need to be
reconfigured every time Visor is re-opened. This feature could be imple-
mented using mechanisms for serializing and storing state, moving Visor
closer to the design of a language like Smalltalk [33] where the code and
system state are heavily intertwined and persistent.

Two features were also suggested that had also appeared in the results
of the interviews in Chapter 3, but were not implemented in Visor. The
first feature was to support the OSC protocol, allowing for communication
between Visor and other applications such as Sonic Pi. The second feature
was to support code assist, improving the programming experience in
Visor by suggesting API methods as the user types. These suggestions
validate the importance of these features and encourage their prioritisa-
tion in future Visor development.

Ease of use: One prominent theme in the results was the ease of use
of some of Visor's features that was made apparent by a number of the
participants (P1, P3, P5, P6). For example, the audio input for the FFT
could be configured through the GUI and the built-in methods to access
the data were straightforward to use. The ability to readily access features
provided an improved user experience over Processing which would usu-
ally require the user to write boilerplate code to achieve the same effect.
In general, the ease of use of Visor's features can be summed up based
on a comment made by P6: “It was very quick to launch Visor and just start

6.4. DISCUSSION 123

making something interesting and dynamic, and not have to worry about set-
ting up different libraries.” This comment validates why a simple API that
does not necessitate external libraries or extraneous boilerplate code is
important for improved user experience. The overall ease of use of Visor's
features demonstrates how the environment enables easy integration of
coded content in performance software, an important aspect of practice
that was identified from the interviews in Chapter 3.

Use cases: The participants indicated that they would use Visor for a
variety of different use cases including live coding, VJing, creative coding,
and teaching. This highlights how Visor can be used for both live coding
and VJing style performances. The participants' feedback around Visor's
core features also emphasises its effectiveness in these contexts. Firstly,
the participants' supportive feedback on live coding in Visor shows that
it is effective at providing low level control of coded content. Secondly,
the participants' supportive feedback on features such as the state man-
agement, layers, and tap tempo, shows that it is effective at providing
high level control of coded content for VJing. Further supporting this, P2
also explicitly mentioned how the combination of features equips Visor
for VJing: “has all essential features needed for VJing (tap, fft, layers).” P6
also made explicit mention of how they enjoyed high level control of the
coded content: “I liked that many options for getting dynamic input (FFT, tap
tempo, setting up buttons and sliders) and that it was straight forward [sic] to
access them within the sketch. I found these features to be better to explore/control
the sketch's style than typing up variables.” This comment reiterates the
motivation for this thesis in that the high level control provided by features
of VJing software can improve the usability of live coding.

Visor's support for features that effectively bridge aspects of live coding
and VJing were also observed. For example, the layers feature was popu-
lar due to how it effectively combined coded content with GUIs to provide
high level functionality, demonstrating itself to be an exemplary feature
for CJing environments. Overall, Visor's effective support for both live

124 CHAPTER 6. VISOR FEEDBACK SURVEY

coding and VJing demonstrates Visor's illustration of CJing, addressing
both RQ2 and RQ3 §1.1. Additionally, the results also suggest that Visor
is suitable for general creative coding based on the environment's general
ease of use and how it improves upon Processing by supporting live cod-
ing and programming with Ruby.

Despite Visor's general support for CJing, there is still room for improve-
ment in terms of Visor's support for live coding. The need for code pro-
jection was brought up by P1, highlighting how a feature standard in live
coding practice is still a desired aspect in a CJing environment. This is
in contrast to the results of the interviews in Chapter 3 that did not place
importance on the feature. This emphasises the need for future work to
improve the state of the code projection in Visor.

To conclude, 3 participants (P2, P5, P6) also expressed some overall pos-
itive comments on what they thought about Visor: “This is an amazing
application!” (P2), “I think it is a fantastic system, already very useful, and
with tremendous potential for further development.” (P5), and “There is nothing
I can think of that I didn't enjoy. The overall experience was quite good.” (P6).
These comments motivate the further development of Visor.

6.5 Summary

This chapter has evaluated the effectiveness of Visor from the perspective
of creative coders, live coders, and VJs who provided feedback through an
online survey. Each of Visor's core features were reported to be effective
for their intended purpose except for the support for MIDI, which was
only used successfully by one participant. A number of usability issues
were also identified with respect to Visor's features along with potential
solutions to solve the issues or improve the features in general. Visor
also proved effective for supporting aspects of both live coding and VJing,
demonstrating CJing, and addressing RQ2 and RQ3 §1.1.

6.5. SUMMARY 125

With respect to the broader CJing practice, the issue of context switching
was discussed where the performer must split their attention between live
coding and other modalities, similar to the issue that was identified by
the results of the interviews (Chapter 3) and the reflection of Visor's use
in live performances (Chapter 5). This time the issue was expanded to
include the need to switch between typing and using the mouse to interact
with the GUI, rather than just the need to switch between a laptop and a
MIDI controller. The need to design CJing environments such that they
cater to live coding, VJing, and hybrid approaches to performance was
also emphasised. Overall, the survey results were highly supportive of
Visor and encourage further development of the software and exploration
of CJing.

The next chapter concludes this thesis by discussing the overarching
strengths and limitations of Visor and the underlying CJing practice along
with future work.

126 CHAPTER 6. VISOR FEEDBACK SURVEY

127

Chapter 7

Conclusions

The goal of this thesis was to explore how combining live coding and
VJing could harness the strengths of both practices while simultaneously
removing limitations identified in each practice, as introduced in Chapter
1. The limitation of live coding was due to its focus on low level improvi-
sation of content by coding in textual interfaces, impairing usability by not
allowing for high level manipulation of content. The limitation of VJing
was due to its focus on high level manipulation of pre-rendered content
by interacting with GUIs and hardware controllers, limiting VJs by not
allowing for content to be improvised from scratch or manipulated at a
low level.

This thesis proposed the code jockey practice (CJing) to combine aspects of
live coding and VJing, enabling flexible performances where content could
be controlled at both low and high levels. In CJing, a performer known as
a code jockey (CJ) interacts with code, GUIs, and hardware controllers to
improvise or manipulate visual content in real-time.

This thesis has introduced Visor, a new environment for live visual per-
formance that embodies CJing, as presented in Chapter 4. Visor's core
features include the ability to live code visual content, a state management
interface, the ability to organise code into layers, support for real-time

128 CHAPTER 7. CONCLUSIONS

audio analysis using an FFT, a tap tempo, and a framework for configuring
MIDI input devices. Visor's features were designed to embody three key
ideas of CJing practice: code as a universal language, complete content control,
and user interfaces as an abstraction.

Visor's design was informed based on the results of a study that inter-
viewed seven practicing live coders and VJs, as presented in Chapter 3.
This study revealed a number of key themes with respect to important
features, interactions, and aspects of performance practice. Some of the
prominent subthemes and codes included: audio responsiveness, commu-
nication protocols, updating parameters, use of hardware devices, content
arrangement, the usability of code in performance, visible interaction, and
people. These themes help to present a clearer understanding of the needs
and expectations of live coders and VJs, addressing the first research ques-
tion: “What are the needs and expectations of performers who practice live coding
and VJing?” (RQ1 §1.1).

Visor was evaluated using two methods to answer the remaining research
questions: “Can features of VJing software improve the usability of a live cod-
ing performance?” and “Can live coding be used as an effective method for
improvising visual content or manipulating existing content during a VJ per-
formance?” (RQ2, RQ3 §1.1). The first evaluation was a reflection on my
usage of Visor's in 14 live performances, as presented in Chapter 5. These
performances demonstrated Visor's ability to effectively produce visuals
that accompanied music performed by DJs, live coders, and other musi-
cians in a live context. These performances were approached as a live
coder would by improvising content from scratch and also as a VJ would
by interacting with or remixing existing content. The crossover of these
approaches showcases the CJing practice in action where aspects of live
coding and VJing practice can be used together in the same performance.
Live coding is used as a method for improvising visual instruments that
are then performed using GUIs and hardware controllers, addressing RQ2
and RQ3.

129

The second evaluation was the analysis of feedback from six live coders,
VJs, and creative coders who used Visor, as presented in Chapter 6. The
feedback suggested that each of Visor's core features were effective for
their intended purpose except for the support for MIDI, which could not
be evaluated to the extent of the other features. One feature that was par-
ticularly popular amongst the participants was the support for layers. The
layers were effective due to how they enabled new creative explorations
through combination and organisation of coded content. The effectiveness
of layers to provide high level functionality by bridging coded content
and GUIs show them to be an exemplary feature for CJing environments.
Overall, the results from the feedback survey were highly supportive of
Visor and demonstrated that the environment was effective at conducting
aspects of both live coding and VJing, demonstrating CJing, and address-
ing RQ2 and RQ3.

The evaluations of Visor identified two prominent issues with respect to
the broader CJing practice. The first was to emphasise the need for careful
consideration of the relationship between code and user interfaces when
designing CJing environments. APIs and GUIs in CJing environments
should be designed to avoid conflicting behaviour when used in conjunc-
tion. The second was the issue of context switching that highlighted the
need for performers to split their focus between live coding, interacting
with GUIs, and using hardware controllers. The friction of context switch-
ing could be reduced with improvements to the software or by focusing on
collaboration where multiple performers work across the different modal-
ities at the same time. Nevertheless, context switching remains a notable
aspect of CJing practice that challenges the virtuosity of the performer.

130 CHAPTER 7. CONCLUSIONS

7.1 Research Contributions

This thesis makes the following research contributions:

• The CJing practice, a new hybrid practice that combines live coding
and VJing.

• Visor, a new environment for live visual performance that demon-
strates the CJing practice by combining features of live coding and
VJing software.

• An evaluation of Visor, based on a reflection of my own live perfor-
mances conducted throughout this thesis and the results of an online
feedback survey completed by six creative coders, live coders, and
VJs.

7.2 Future Work

This thesis presents a number of opportunities for future work. The evalu-
ations of Visor have raised usability issues to be fixed amongst suggestions
to improve existing features or implement new features. In addition, some
features and interactions that were identified as part of the interviews in
Chapter 3 were not implemented into Visor and left for future work. Four
of the more interesting ideas are now presented.

• Effects: Support for effects was identified as an important feature in
VJing based on the interview results. Some common video effects
include the ability to mirror visuals, apply a kaleidoscope effect, per-
form edge detection, and adjust hue or saturation. Like the layers
feature, implementing easy to use effects in Visor would open up
many creative possibilities for performers. One approach to imple-
menting effects would be to utilise a shader language such as GLSL.

7.2. FUTURE WORK 131

While Visor could support a number of effects by default, it would
also make sense to support live coding of custom GLSL shaders too,
as many other live coding environments provide. Effects could then
be applied to any layer using the layer GUI or Visor API methods.
Effects could even be parameterised to enable dynamic interactions
using the state manager, MIDI controllers or other inputs. Support
for configuring effects through the GUI would also further empha-
sise the idea of user interfaces as an abstraction in CJing, while the
ability to apply existing effects and live code custom effects would
further emphasise the idea of complete content control.

• Collaboration in CJing performance: Collaboration was used briefly
in two of the live performances conducted with Visor where one per-
former live coded and the other interacted with the MIDI controller.
The result of these collaborations demonstrated how content could
be improvised using live coding while parameters of existing content
were simultaneously being manipulated on the MIDI controller. This
removes the friction that occurs in solo CJing performances where
the performer needs to continuously switch contexts.

This insight motivates further exploration of what it means to col-
laborate in CJing performance. If CJing offers a new performance
aesthetic where live coding is used to improvise visual instruments
that are then performed with hardware controllers, how does collab-
orative CJing implicate this aesthetic? Perhaps some novel experi-
ences can arise during performance. For example, interesting effects
may occur where the live coders updates something in a way that
surprises the controller user, causing them to react in unexpected
ways. In addition, perhaps the controller user explores the param-
eter space of the program or triggers content in a way that the live
coder did not expect. The exploration of collaboration in CJing per-
formances could investigate how different communication protocols

132 CHAPTER 7. CONCLUSIONS

affect the performer's collaboration. For example, how should MIDI
controller mappings be communicated to the controller user as they
are live coded on the fly? Perhaps the breakdown in communi-
cation presents idiosyncrasies that offer novel performance experi-
ences, similar to the unpredictability of generative algorithms or user
error that can occur in live coding practice.

Another way to introduce collaboration in CJing performances
would be to incorporate multiple live coders. Live coders could
work in parallel to build up different sections of code that are then
combined into the final output. In the case of Visor, each performer
could work on separate layers that are then composited together.
This approach to collaboration would require a method for multi-
ple computers running Visor to communicate. Fortunately, Visor's
client-server architecture could be easily adapted to support this type
of communication. Overall, collaboration in CJing performances of-
fers multiple avenues for exploration. The use of collaboration would
also be interesting to observe if CJing was applied in the context of
an environment for live musical performance instead of visuals.

• OSC support: Support for the OSC protocol was identified as an im-
portant feature based on the interview results and was a suggested
feature in the results of the Visor feedback survey. Support for OSC
in Visor would enable the environment to communicate with other
applications that also support OSC. For example, Sonic Pi could be
used to send OSC messages when events occur in the music and
Visor could listen for these messages. Visor could then be live coded
to trigger or manipulate visuals when messages are received, similar
to how MIDI messages are currently being interpreted. The result of
using OSC to integrate Visor with Sonic Pi would allow live visuals
to react to specific events in the music.

7.2. FUTURE WORK 133

• Content library: Support for a content library was identified as an
important feature in VJing based on the interview results. Support
for a content library would enable performers to easily store new
content or browse for existing content to utilise during a
performance. The library could store different types of content in-
cluding layers, general code snippets, and assets such as images or
3D models. Content could even be previewed in the GUI, another
important feature identified in the interview results.

Some reworking of the current API may need to take place to ensure
that content is as modular as possible and therefore easy to incorpo-
rate from the library during live performance. For example, layers
could be decoupled from specific MIDI controls to make remapping
to new controls as easy as possible, an issue that was discussed as
part of the reflection on live performances. If content is modularised
then it would also be easy to share in an online ecosystem where
performers can download, fork, and remix content, similar to how
video loops are treated by VJs, and how code is treated by software
developers. OpenProcessing [24] demonstrates this kind of ecosys-
tem by enabling Processing code to be uploaded and shared amongst
creative coders online. A content library GUI that provides high level
organisation of content would also further emphasise the idea of user
interfaces as an abstraction in CJing, while modularised layers or code
snippets that can be shared would also further emphasise the idea of
code as a universal language.

134 CHAPTER 7. CONCLUSIONS

135

Appendices

137

Appendix A

Human Ethics Documents

ResearchMaster

Human Ethics Application

Application ID : 0000025996
Application Title : Live Coding for Visual Performance
Date of Submission : N/A
Primary Investigator : Jack Purvis; Principal Investigator
Other Personnel : Dr Stuart Marshall; Head of School (or delegate)

Dr Craig Anslow; Supervisor
Prof James Noble; Supervisor

23/07/2019 Page 1 / 9

Research Form

Application Type

1.

IMPORTANT: Please select type of research below and click on 'Save' to access the rest of the form.

*

Research

Application Details

Category

B

3. Application ID

0000025996

5. Title of project
(Click the ? icon for more info)*

Live Coding for Visual Performance

6. School or research centre*

Engineering and Computer Science

7. Personnel*

1 Given Name

Surname Purvis

Full Name Jack Purvis

AOU Engineering and Computer Science

Position Principal Investigator

Primary? Yes

8. Are any of the researchers from outside Victoria?*

Yes

No

9. Is the principal investigator a student?*

Yes

No

Student Research

9a. What is your course code (e.g. ANTH 690)?*

CGRA 591

9b. Supervisor*

1 Given Name Craig

Surname Anslow

Full Name Dr Craig Anslow

AOU Engineering and Computer Science

Position Supervisor

2 Given Name James

Surname Noble

Full Name Prof James Noble

AOU Engineering and Computer Science

Position Supervisor

23/07/2019 Page 2 / 9

9c. What is your email address? (this is needed in case the committee needs to contact you about this application)*

jack.v.purvis@gmail.com

Project Details

10. The following question is meant to help applicants consider their research application and any protocols that should be uploaded and to help committee members
review the application. Please check the box if if your research:

Is an anonymous questionnaire

Uses tertiary students as participants

Is a health or disability research project

Includes Māori participants, or otherwise has an impact on Māori

Includes participants from another significant cultural group, or has an impact on that group

Uses highly sensitive information (see Policy for definition)

Collects or uses human tissue, including blood, saliva and genetic material

Uses noninvasive physiological procedures (e.g., EEG, heart rate monitor)

Uses equipment (e.g., TMS) that may temporarily alter mental function

Administers substances (e.g., food, alcohol, placebo pill) to be ingested by participants

11. Does this application relate to any previous applications submitted to an ethics committee?*

Yes

No

12. Describe the aims and objectives of the project
Provide a brief summary in plain language of the purpose, research questions/hypothesis, and objectives of your project. *

The aim of the research project is to develop a new software environment for live coders. The new environment will be used for creative coding
of visuals in live audiovisual performances. The new environment will provide an alternative to existing environments and also answer two
research questions:

RQ1: How can we improve state transition capabilities in live coding?
RQ2: How can integrating VJ (Video Jockey) practices improve the capabilities of live coders?

We hypothesize that the our new environment will improve the capabilities of live coders. The new environment will demonstrate the
implications of the research questions and will be evaluated to conclude whether it improves the capabilities of live coders.

The aim of the proposed interviews is to get a better perspective on the current practice of live coders and VJs. The collected data will help to
inform the design of the new software environment.

13. Describe the benefits and scholarly value of the project
Briefly place the project in perspective, explaining its significance and worthwhile outcomes. Include how this project will build on relevant literature, including references if
appropriate.*

The project will provide benefits to the live coding community by providing an alternative software environment for use in the practice. The
environment could then be used for entertainment in the form of live audiovisual performances as seen by the Algorave movement [1], or for
education in the form of teaching creative coding as seen by the live coding software SonicPi [2]. The developed software environment will be
new intellectual property with potential commercial value.

The project will provide scholarly value by exploring two research questions which have not been seen to be explicitly discussed in the live coding
research field. The results and implications of the project can then be contributed to the live coding research field.

[1] COLLINS, N., AND MCLEAN, A. Algorave: Live performance of algorithmic electronic dance music. In Proceedings of the International
Conference on New Interfaces for Musical Expression (2014), pp. 355–358.

[2] AARON, S. Sonic pi performance in education, technology and art. International Journal of Performance Arts and Digital Media 12, 2 (2016),
171–178.

14. Explain any ethical issues your research raises for participants, yourself as the researcher, or wider communities and institutions, and how you will address these. This is
an opportunity to present what you think the key risks are in your project and show how you have taken them into account.*

The proposed research is not seen to pose any ethical risks to any party.

Key Dates

If approved, this application will cover this research project from the date of approval

15. Proposed start date for data collection*

14/05/2018

16. Proposed end date for data collection*

31/10/2018

17. Proposed end date for research project*

09/04/2019

23/07/2019 Page 3 / 9

Proposed source of funding and other ethical considerations

18. Indicate any sources of funding, including selffunding (tick all that apply)

Internally: by a University grant, such as the University Research Fund
Externally: funding from an external organisation for this project, or a scholarship awarded by an external organisation
Selffunded: paying for research costs such as travel, postage etc. from your own funds

Internally funded

Externally funded

Selffunded

19. Is any professional code of ethics to be followed?*

Yes

No

19a. Name the professional code(s) of ethics *

Standard Human Computer Interaction methods will be adopted. See Jakob Neilsen Usability Engineering 1994.

20. Do you require ethical approval from any other organisation, such as another tertiary institution in New Zealand or overseas, or a District Health Board?*

Yes

No

Data Collection and Recruitment

21. Please select all forms of data collection you will use in your project*

Interviews

Focus groups

Questionnaires

Observation

Other

22. Provide an explanation of the sampling rationale for your study.
E.g. representative sampling of a particular population, purposive sampling, convenience sampling. Include here your eligibility criteria for potential participants will there
be particular criteria for participants to be included in your study, or criteria that will exclude them? *

Purposive sampling will be used to select interview participants that best align with the eligibility criteria:
 Have worked with live coding environments.
 Have worked with visual jockey (VJ) software.
 Have worked with creative coding environments.
 Have computer programming experience.

The criteria will be flexible to allow for interviewing a broader range of people, for example: a person who does not have computer programming
experience but has experience with VJ software.

23. How many participants will be involved in your research?
If there will be several different groups of participants, please specify how many groups and how many participants in each group. *

There will be up to 10 participants involved. It is expected around 23 of the participants will be tertiary students.

24. What are the characteristics of the people you will be recruiting?*

Participants will ideally be people who:
 Have worked with creative technologies.
 Have experience creating audio or visuals using software or code.
 Have experience in live performance.
 Have have some form of computer programming experience.

Participants will be a mix of professionals and tertiary students.

25. Outline in detail the method(s) of recruitment you will use for participants in your study. Include here how potential participants will be identified, who will contact
them and how. Please include copies of all advertisements, online posts or recruitment emails in the ‘Documents’ section. *

All participants have been identified through existing professional relationships or by direct recommendations. Participants will be identified in the
collected data by their name, email and stage name. Participants will only be contacted by the primary investigator. Participants will be recruited
and contacted using email or existing social media or mobile phone connections where appropriate. Despite existing relationships with some of
the participants, they will not be coerced into participation in the study. All participants will be provided with the information sheet and consent
form before meeting for the interview and allowed to decide for themselves if they would like to participate.

26. Explain the details of the method of data collection. For example, describe the location of your research procedures, if appropriate (e.g. where your interviews will
take place). If necessary, upload a research protocol in the ‘Documents’ section.*

23/07/2019 Page 4 / 9

The intended method of data collection is through interviews. The primary investigator will be the sole interviewer. The proposed location for
each interview will be a public space such as a Cafe or at Victoria University, agreed upon by the participant and the interviewer. If it is more
convenient for the participant and the interviewer, an online Skype call may be used. No interviews will be conducted in private residences.

27. Will your research project take place overseas?*

Yes

No

28. Does the research involve any other situation which may put the researcher at risk of harm (e.g. gathering data in private homes)?*

Yes

No

Participants and Informed Consent

29. Does your research target members of a vulnerable population?
This includes, but is not limited to, children under the age of 16, people with significant mental illness, people with serious intellectual disability, prisoners, employees and
students of a researcher, and people whose health, employment, citizenship or housing status is compromised. Vulnerability is a broad category and encompasses people
who may lack the ability to consent freely or may be particularly susceptible to harm.*

Yes

No

30. Have you undertaken any consultation with the groups from which you will be recruiting, regarding your method of recruitment, data collection, or your project more
widely?*

Yes

No

31. Will your participants receive any gifts/koha in return for participating?*

Yes

No

32. Will your participants receive any compensation for participation (for instance, meals, transport, or reimbursement of expenses)?*

Yes

No

32a. Give details of the compensation participants will receive.*

Reimbursement for travel, parking, childcare or other expenses required to attend the interview. Reimbursement will be paid in the form of
supermarket vouchers. The value of each voucher will be $10. Each participant will receive a voucher.

33. How will informed consent be obtained? (tick all that apply to the research you are describing in this application)*

Informed consent will be implied through voluntary participation (anonymous research only)

Informed consent will be obtained through a signed consent form

Informed consent will be obtained by some other method

Treaty of Waitangi

How does your research conform to the University's Treaty of Waitangi Statute? (you can access the statute from Victoria's Treaty of Waitangi page)*

This research conforms to the University’s Treaty of Waitangi Statute by acknowledging and abiding by the principles set out in the statute and
in particular, the Principle of Equality and the Principle of Reasonable Cooperation. This research is not intended to be a study that specifically
involves Māori participants, all potential participants that meet the eligibility criteria (Q22, Q24) will be treated equally during the recruitment and
interview process, even if they are of Māori descent.

Minimisation of Harm

34. Is it possible that participants may experience any physical discomfort as a result of the research?*

Yes

No

35. Is it possible that participants may experience any emotional or psychological discomfort as a result of the research? (E.g. asking participants to recall upsetting events,
viewing disturbing imagery.)*

Yes

No

36. Will your participants experience any deception as a result of the research?*

23/07/2019 Page 5 / 9

Yes

No

37. Is any third party likely to experience any special hazard/risk including breach of privacy or release of commercially sensitive information? This may occur in the instance
participants are asked to discuss identifiable third parties in the research.*

Yes

No

38. Do you have any professional, personal, or financial relationship with prospective research participants? *

Yes

No

38a. Give details and indicate how you will manage this.*

The interviews will adhere to the supplied script, focusing on the research topic. As the existing relationships I have with the prospective
participants are not directly related to the research topic, the relationship should not interfere with the results.

Existing relationships will not interfere with each participants ability to freely consent or decline to participate in the study. All participants will be
provided with the information sheet and consent form before meeting for the interview and allowed to decide for themselves if they would like
to participate.

39. What opportunity will participants have to review the information they provide? (tick all that apply)*

Will be given a full transcript of their interview and given an opportunity to provide comments

Will be given a full transcript of their interview and NOT given an opportunity to provide comments

Will be given a summary of their interview

Other opportunity

Will not have an opportunity to review the information they provide

Confidentiality and Anonymity

40. Will participation in the research be anonymous?
'Anonymous' means that the identity of the research participant is not known to anyone involved in the research, including researchers themselves. It is not possible for
the researchers to identify whether the person took part in the research, or to subsequently identify people who took part (e.g., by recognising them in different
settings by their appearance, or being able to identify them retrospectively by their appearance, or because of the distinctiveness of the information they were asked to
provide).*

Yes

No

41. Will participation in the research be confidential?
Confidential means that those involved in the research are able to identify the participants but will not reveal their identity to anyone outside the research team.
Researchers will also take reasonable precautions to ensure that participants' identities cannot be linked to their responses in the future.*

Yes

No

42. Will participation in the research be neither confidential nor anonymous, and participants will be identifiable in any outputs or publications relating to the research? *

Yes

No

42a. Please tick all that apply to your research.*

Names will be confidential, but other identifying characteristics may be published with consent

Participants will be referred to by association with an organisation rather than by name

Participants will be named in a list of interviewees

Participants will be named and their contribution attributed to them

42a. Please explain how this will occur and ensure this is clear to participants on your information sheet.*

The participant's stage name will be the only piece of identifying information that can be published. Participants do not need to provide their
stage name in the interview and will be given the option to consent to having it published or not in the consent form. If a participant chooses
not to provide a stage name, they will be identified in published material by an anonymous code, e.g: P2.

Access, storage, use, and disposal of data

43. Which of the following best describes the form in which data generated in your study will be stored during the study?
See help text for guidance on these terms. Further info available on human ethics website*

23/07/2019 Page 6 / 9

Identifiable

Potentially identifiable

Partially deidentified

Deidentified

Anonymous

Other

44. Which of the following best describes the form in which data generated in your study will be stored after the study is completed?
See help text for guidance on these terms. Further info available on human ethics website*

Identifiable

Potentially identifiable

Partially deidentified

Deidentified

Anonymous

Other

45a. Proposed date for destruction of identifiable research data (i.e. the date when data will be deidentified and personal information on participants destroyed)

*

30/04/2019

45b. Proposed date for destruction of deidentified research data, including anonymous data

*

30/04/2019

46. Will any research data will be kept for longer than 5 years after the conclusion of the research?*

Yes

No

47. Who will have access to identifiable, deidentified or anonymous data, both during and at the conclusion of the research?*

Access restricted to the researcher only (whoever is named as PI)

Access restricted to researcher and their supervisor

Access restricted to researcher and immediate research team, e.g. coinvestigators, assistants

Other

48. Are there any plans to reuse either identifiable, deidentified or anonymous data?*

Yes

No

49. What procedures will be in place for the storage of, access to and disposal of data, both during and at the conclusion of the research? (Check all that apply)
Information regarding appropriate data storage is available on the human ethics website. Note that storing research data on USB drives is strongly discouraged for security
reasons. *

All hard copy material will be stored securely e.g. in a locked filing cabinet

All electronic material will be held securely, e.g. only on University servers, password protected

All hard copy material will be appropriately destroyed (e.g. shredded) on the dates given above

All electronic data will be deleted on the dates given (ITS should be consulted on proper method)

Dissemination

50. How will you provide feedback to participants?*

Via email

51. How will results be reported and published? Indicate which of the following are appropriate. The proposed form of publications should be indicated to participants on
the information sheet and/or consent form*

Publication in academic or professional journals

Dissemination at academic or professional conferences

Availability of the research paper or thesis in the University Library and Institutional Repository

Other

52. Is it likely that this research will generate commercialisable intellectual property?
(Click the ? icon for more info)*

Yes

No

23/07/2019 Page 7 / 9

Documents

53. Please upload any documents relating to this application. Sample documents are available on the Human Ethics web page.

Please ensure that your files are small enough to upload easily, and in formats which reviewers can easily download and review. To replace a document, click the tick in
the column to the right of the document title. A green arrow will appear click this arrow to upload a new document. To add a new document click on 'Add New
Document', at top right of the documents window. Then enter the document name in the box that appears and click the green tick. A green arrow will appear to the
right of the file name which allows you to upload the new file.

Please also collate all your documents into one PDF or Word file, and upload as a new document. This should be labelled as 'Combined Documents'.*

Description Reference Soft copy Hard copy

Participant information sheet(s) Jack Purvis Interview Information Sheet.pdf

Participant consent form(s) Jack Purvis Interview Consent Form.pdf

Combined Documents Jack Purvis Combined Documents.pdf

Interview questions or guide Jack Purvis Interview Schedule.pdf

Amended consent (19 Nov 2018) Jack Purvis Evaluation Interviews Consent Form.pdf

Amended interview info (19 Nov 2018) Jack Purvis Evaluation Interviews Information Sheet.pdf

Amended interview schedule (19 Nov 2018) Jack Purvis Evaluation Interviews Schedule.pdf

Amended questionnaire (19 Nov 2018) Jack Purvis Feedback Survey Questionnaire.pdf

Amended recruitment (19 Nov 2018) Jack Purvis Feedback Survey Recruitment Messaging.pdf

Amended survey info (19 Nov 2018) Jack Purvis Feedback Survey Information Sheet.pdf

Amendment explanation (19 Nov 2018) Jack Purvis further explanation.pdf

Amendment or extension request (available only for approved applications)

43. Are you applying for an extension, an amendment, or both?*

Extension

Amendment

Both an extension and an amendment

43a. What changes would you like to make for this application?*

Method 1: User test the software

12. The aims of this project have progressed we now also want to evaluate the software that has been built with user tests
18. Sources of funding I have been offered funding to travel to Madrid for the International Conference on Live Coding to present a paper. I
will use this opportunity to interview experts in the field
21. Forms of data collection Observation checked
22. Explanation of sampling rationale Purposive sampling will be used to select participants that have experience with some of the use cases of
the software. These use cases include live coding, creative coding, VJing, and audiovisual art. Participants will be professionals or hobbyists
23. How many participants There will be up to 3 expert participants interviewed from overseas and up to 3 more participants sourced locally
25. Method of recruitment Some participants have been identified through existing professional relationships or by direct recommendations.
These participants will be recruited and contacted using email or existing social media or mobile phone connections where appropriate. Other
participants have been identified as authors of published work in live coding or as active users in online live coding forums. These participants will
be recruited using email or direct messaging on the online forums. Despite existing relationships with some of the participants, they will not be
coerced into participation in the study. All participants will be provided with the information sheet and consent form before meeting for the
interview and allowed to decide for themselves if they would like to participate. Participants will only be contacted by the primary investigator.
26. Method of data collection As well as interviewing the participant, they will be presented with my software and given a guided walkthrough
of how it works so they can play with it and provide feedback. The proposed location for each interview will be a public space such as a Cafe or
at Victoria University, agreed upon by the participant and the interviewer. Interviews performed internationally will also be held at a public space
or at the location of the conference (a research lab). If it is more convenient for the participant and the interviewer, an online Skype call may be
used. No interviews will be conducted in private residences. Audio will be recorded during the interview as well as a screen recording showing
how the participant interacted with the software during the user test
27. Research will take place overseas is now checked

Method 2: Online feedback survey

10. Is an anonymous questionnaire is now checked
12. The aims of this project have progressed we now also want to evaluate the software that has been built using an online feedback survey
17. Proposed end date of data collection extended till 02/04/2019 to allow for collection of survey data
21. Forms of data collection Questionnaires checked
23. How many participants The exact number of participants to fill in the survey is unknown at this point but we estimate anywhere from 10 to
25
25. Methods of recruitment Links to the online survey will be displayed on the software website and inside the software itself
26. Method of data collection Online anonymous survey with questionnaire including likert scales and openended answer based questions
32a. Participant compensation details Online survey participants will not receive any compensation
33. Informed consent Online survey participant consent will be implied through voluntary participation is now checked
40. Will participants be anonymous Yes, online survey participants will be anonymous
43/44. Form of data storage Some of the data stored is now anonymous
46. Research data kept for longer than 5 years Yes, the online survey data may be kept for much longer
48. Plans to reuse anonymous data Yes, the online survey data may be reused in future research and publications

43b. Please enter the date you are submitting this request*

19/11/2018

23/07/2019 Page 8 / 9

Please check that you have answered all mandatory questions and have saved the application before submitting your form. Any new or amended documents (e.g.
Participant Information Sheet) to be added to your application should be emailed to ethicsadmin@vuw.ac.nz before submission. To submit your form, click on the Action
tab and then click on Submit for review

44. Do you have a second amendment/extension request to make?

Yes

No

44a. What additional changes do you wish to make? If this amendment includes a request to extend the end data of your approval, please specify your new end date.

I wish to extend the proposed end date for data collection through my online feedback survey AND the proposed end date of this research
project to 08/05/2019.

The reason for this is to account for the fact that my thesis deadline has been extended by one month (from 09/04/2019 until 08/05/2019) and
I wish to continue collecting data through the online survey until my project is complete.

The previous end date for data collection through the online survey was 02/04/2019 and the end date for the research project was the
09/04/2019.

44b. Please enter the date you are submitting this request

09/04/2019

45. Do you have a third amendment/extension request to make?

Yes

No

This question is not answered.

46. Do you have a fourth amendment/extension request to make?

Yes

No

This question is not answered.

Incident Reporting

Research teams must immediately advise the Human Ethics Committee if an adverse incident occurs in the course of their
research project.

Adverse incidents are instances of potential or actual physical harm to participants or researchers; emotional harm
or distress to participants or researchers; and any other unforeseen events that raise ethical issues.

A full incident report must be completed and emailed to ethicsadmin@vuw.ac.nz. You can download this form here (link to be
added). After you have emailed the form, please complete the questions below, then click on the Action tab and click Report
Incident

Do you have an incident to report?

Yes

This question is not answered.

Do you have a third incident to report?

Yes

This question is not answered.

Please go to the Action tab and click on Report Incident to complete the process.

23/07/2019 Page 9 / 9

148 APPENDIX A. HUMAN ETHICS DOCUMENTS

149

Appendix B

Interview Information Sheet

Live Coding for Visual Performance

INFORMATION SHEET FOR PARTICIPANTS

You are invited to take part in this research. Please read this information before deciding
whether or not to take part. If you decide to participate, thank you. If you decide not to
participate, thank you for considering this request.

Who am I?

My name is Jack Purvis and I am a Masters student in Computer Graphics at Victoria University

of Wellington. This research project is work towards my thesis.

What is the aim of the project?

The aim of the research project is to develop a new software environment for live coders. The

new environment will be used for creative coding of visuals in live audio-visual performances.

The new environment will provide an alternative to existing environments and answer two

research questions:

● How can we improve state transition capabilities in live coding?

● How can integrating VJ (Video Jockey) practices improve the capabilities of live coders?

The aim of this interview is to get a better perspective on the current practice of live coders and

VJs. The collected data will help to inform the design of the new software environment.

This research has been approved by the Victoria University of Wellington Human Ethics

Committee, with approval ID 0000025996. The end date of the research is the 9th of April 2019.

How can you help?

You have been invited to participate because you are familiar with or have worked with some

combination of live coding, creative coding or VJ software. It is possible you also experience

with live performance. If you agree to take part I will interview you either at Victoria University,

a public Cafe or at a location of your choice. I will ask you questions about your creative and

performance practice. The interview will take between 30 and 60 minutes and I will audio

record the interview with your permission and write it up later. You can choose to not answer

any question or stop the interview at any time, without giving a reason. You can withdraw

from the study by contacting me at any time within two weeks after the interview. If you

withdraw, the information you provided will be destroyed or returned to you.

What will happen to the information you give?

1

This research is confidential. This means that the researchers named below will be aware

of your identity but the research data will be combined and your identity will not be revealed in

any reports, presentations, or public documentation. However, you should be aware that

persons familiar with your practice may be able to identify you based on the distinctness of the

information you provide.

Only myself and my supervisors will access the information recorded from the interview. Any
recorded information will be kept securely on an ECS computer or locked filing cabinet and will
be destroyed one month after the research is finished.

What will the project produce?

The information from my research will be used in my Masters dissertation may be used in

academic publications or presented to conferences. The developed software environment will

be new intellectual property with potential commercial value.

If you accept this invitation, what are your rights as a research participant?

You do not have to accept this invitation if you don’t want to. If you do decide to participate,

you have the right to:

● choose not to answer any question;

● ask for the recorder to be turned off at any time during the interview;

● withdraw from the study from up to two weeks after the interview;

● ask any questions about the study at any time;

● receive a copy of your interview recording;

● read over and comment on a written summary of your interview;
● be able to read any reports of this research by emailing the researcher to request a

copy.

If you have any questions or problems, who can you contact?
If you have any questions, either now or in the future, please feel free to contact either:

Student:

Name: Jack Purvis

University email address:
purvisjack@myvuw.ac.nz

Primary Supervisor:

Name: Dr. Craig Anslow

Role: Lecturer of Software Engineering

School: Engineering and Computer Science

Phone: 04 463 6449

craig.anslow@ecs.vuw.ac.nz

2

Human Ethics Committee information

If you have any concerns about the ethical conduct of the research you may contact the

Victoria University HEC Convenor: Dr Judith Loveridge. Email hec@vuw.ac.nz or telephone

+64-4-463 6028.

3

153

Appendix C

Interview Schedule

5

Schedule	
	

1. If	you	have	one	and	would	like	to	share	it,	what	is	your	stage	name?	
	

2. How	do	you	classify	yourself	in	your	creative	profession?	
E.g:	Live	coder,	creative	coder,	VJ.	

	
3. What	mediums	do	you	normally	work	with?	

E.g:	Electronic	music,	digital	visualisations,	physical	art.	
	

4. What	are	the	sort	of	events	you	have	performed	at?	Can	you	describe	these	events?	
E.g:	Concert,	gig,	art	installation.	People,	genre,	environment.	
	

5. What	is	your	computer	programming	experience?	If	so,	how	do	you	use	code	in	your	live	
performance?	
	

6. What	does	your	typical	performance	setup	look	like?	What	kind	of	software	and	
hardware	do	you	use?	How	does	each	component	of	the	setup	relate	and	why	are	they	
important?	
	

7. Can	you	describe	the	steps	involved	when	using	your	setup	to	perform?	What	are	some	
of	the	common	tasks	and	actions	you	need	perform	during	the	event?	
E.g:	Write	new	music	code	and	fade	it	in,	select	a	new	video	clip	and	mix	it	with	the	
current	one.	
	

8. What	aspects	of	your	or	setup	performance	are	important	to	you	for	creating	a	good	
performance?	
E.g:	Allowing	improvisation,	audience	interaction,	experimentation,	collaboration	with	
other	performers.	
	

9. What	are	some	of	the	important	features	or	interactions	made	possible	by	the	software	
or	hardware	that	are	really	important	for	your	performance?	
E.g:	Code	error	highlighting,	ability	to	map	parameters	to	MIDI	controller.	
	

10. What	direction	are	you	intending	of	taking	your	performance	work	in	future?	Are	you	
planning	on	experimenting	with	new	styles	or	using	new	software	or	hardware?	
	

11. Is	there	any	kind	of	limitation	with	your	current	setup?	Is	there	some	things	you	wish	you	
could	bring	to	your	performance	but	cannot?	

	
	

155

Appendix D

Feedback Survey Information
Sheet

Live Coding for Visual Performance

INFORMATION FOR PARTICIPANTS

You are invited to take part in this research. Please read this information before deciding
whether or not to take part. If you decide to participate, thank you. If you decide not to
participate, thank you for considering this request.

Who am I?

My name is Jack Purvis and I am a Masters student in Computer Graphics at Victoria
University of Wellington. This research project is work towards my thesis.

What is the aim of the survey?

The purpose of this survey is to evaluate Visor, a new software environment for live coding
of graphics in audiovisual performances. Visor has been developed as part of a Masters
research project by myself, Jack Purvis, at Victoria University of Wellington. Visor is intended
to be used by live coders, VJs, creative coders, and audiovisual performers. This survey aims
to evaluate the effectiveness of Visor and to inform the future development of the software.
This research has been approved by the Victoria University of Wellington Human Ethics
Committee, with approval ID 0000025996.

How can you help?

You have been invited to participate because you have used Visor in some capacity. If you
agree to take part you will complete a survey. The survey will ask you questions about Visor.
The survey will take you 10 to 15 minutes to complete.

What will happen to the information you give?

This research is anonymous. This means that nobody, including the researchers will be
aware of your identity. By answering it, you are giving consent for us to use your responses
in this research. Your answers will remain completely anonymous and unidentifiable. Once
you submit the survey, it will be impossible to retract your answer. Please do not include
any personal identifiable information in your responses.

What will the project produce?

The information from my research will be used in my Masters dissertation and may be used
in academic publications or presented to conferences. The information from my research
will also be used to inform future development of Visor.

If you have any questions or problems, who can you contact?
If you have any questions, either now or in the future, please feel free to contact either Jack
Purvis at jack.purvis@ecs.vuw.ac.nz, or my supervisor Dr. Craig Anslow at
craig.anslow@ecs.vuw.ac.nz.

Human Ethics Committee information

If you have any concerns about the ethical conduct of the research you may contact the
Victoria University HEC Convenor: Dr Judith Loveridge. Email hec@vuw.ac.nz or telephone
+64-4-463 6028.

158 APPENDIX D. FEEDBACK SURVEY INFORMATION SHEET

159

Appendix E

Feedback Survey Questionnaire

Visor Feedback Survey Questionnaire

How much time have you spent using Visor? (select one)

 Less than 1 hour
 1 to 5 hours
 5 to 10 hours
 More than 10 hours

How many years of programming experience do you have? (select one)

 Less than 1 year
 1 to 2 years
 2 to 3 years
 More than 3 years

How much experience do you have with the Ruby programming language? (select one)

 No experience
 A little experience
 A fair amount of experience
 Professional experience

How much experience do you have with the Processing library / integrated development
environment? (select one)

 No experience
 A little experience
 A fair amount of experience
 Professional experience

How much live coding experience do you have? (select one)

 No experience
 A little experience
 A fair amount of experience
 Professional experience

How much VJing experience do you have? (select one)

 No experience
 A little experience
 A fair amount of experience
 Professional experience

Did you find the state management interface useful? Why did you find it useful / not useful? (text
field)

Did you find the layer manager interface useful? Why did you find it useful / not useful? (text
field)

Did you configure an audio input? (yes / no)

If so, were the FFT display and tap tempo interfaces useful? Why did you find them
useful / not useful? (text field)
If not, why did you not configure an audio input? (text field)

Did you configure a MIDI controller? (yes / no)

If so, were the interactions with the MIDI useful? Why did you find them useful / not
useful? (text field)
If not, why did you not configure a MIDI controller? (text field)

Visor is difficult to learn (select one)

 Strongly agree
 Agree
 Neutral
 Disagree
 Strongly disagree

In which context would you use Visor? (select all that apply)

 Performance live coding new material
 Performance VJing with precoded material
 Creative coding
 Other (please specify)

The features(s) I enjoyed most about Visor were? (text field)

The features(s) I enjoyed least about Visor were? (text field)

Do you have anything else you would like to share? (text field)

162 APPENDIX E. FEEDBACK SURVEY QUESTIONNAIRE

163

Bibliography

[1] Art∼Hack website. http://arthack.nz/. Accessed: 01/05/2019.

[2] Burrowing Pufferfish Party performance recording. https:

//tinyurl.com/visor-pufferfish-2018/. Accessed:
11/05/2019.

[3] Chuck website. http://chuck.cs.princeton.edu/. Accessed:
01/05/2019.

[4] Cyril website. http://cyrilcode.com/. Accessed: 01/05/2019.

[5] DESTROY WITH SCIENCE website. http://

destroywithscience.com/. Accessed: 01/05/2019.

[6] Electron website. https://electronjs.org/. Accessed:
01/05/2019.

[7] Eyegum Wednesdays performance recording. https://tinyurl.
com/visor-eyegum-2019/. Accessed: 11/05/2019.

[8] FREAKS 001 performance recording. https://tinyurl.com/

visor-freaks-2018/. Accessed: 11/05/2019.

[9] Gibber screenshot. https://charlie-roberts.com/work.

htm/. Accessed: 01/05/2019.

[10] JRuby website. http://jruby.org/. Accessed: 01/05/2019.

http://arthack.nz/
https://tinyurl.com/visor-pufferfish-2018/
https://tinyurl.com/visor-pufferfish-2018/
http://chuck.cs.princeton.edu/
http://cyrilcode.com/
http://destroywithscience.com/
http://destroywithscience.com/
https://electronjs.org/
https://tinyurl.com/visor-eyegum-2019/
https://tinyurl.com/visor-eyegum-2019/
https://tinyurl.com/visor-freaks-2018/
https://tinyurl.com/visor-freaks-2018/
https://charlie-roberts.com/work.htm/
https://charlie-roberts.com/work.htm/
http://jruby.org/

164 BIBLIOGRAPHY

[11] JRubyArt website. http://ruby-processing.github.io/

JRubyArt/. Accessed: 01/05/2019.

[12] KodeLife website. https://hexler.net/software/

kodelife/. Accessed: 01/05/2019.

[13] Light Table screenshot. http://lighttable.com/2013/08/22/
light-table-050/. Accessed: 01/05/2019.

[14] Light Table website. http://lighttable.com/. Accessed:
01/05/2019.

[15] LiveCodeLab screenshot. http://livecodelab.net/. Accessed:
01/05/2019.

[16] Livestock Pixel website. http://livestockpixel.com/. Ac-
cessed: 01/05/2019.

[17] MadMapper website. https://madmapper.com/. Accessed:
01/05/2019.

[18] Maker Faire Wellington website. https://wellington.

makerfaire.com/. Accessed: 01/05/2019.

[19] Max/MSP/Jitter website. https://cycling74.com/. Accessed:
01/05/2019.

[20] Minim website. http://code.compartmental.net/tools/

minim/. Accessed: 01/05/2019.

[21] modul8 website. http://www.garagecube.com/modul8/. Ac-
cessed: 01/05/2019.

[22] Monokai author website. https://www.monokai.nl/. Accessed:
06/05/2019.

[23] OpenFrameworks website. http://openframeworks.cc/. Ac-
cessed: 01/05/2019.

http://ruby-processing.github.io/JRubyArt/
http://ruby-processing.github.io/JRubyArt/
https://hexler.net/software/kodelife/
https://hexler.net/software/kodelife/
http://lighttable.com/2013/08/22/light-table-050/
http://lighttable.com/2013/08/22/light-table-050/
http://lighttable.com/
http://livecodelab.net/
http://livestockpixel.com/
https://madmapper.com/
https://wellington.makerfaire.com/
https://wellington.makerfaire.com/
https://cycling74.com/
http://code.compartmental.net/tools/minim/
http://code.compartmental.net/tools/minim/
http://www.garagecube.com/modul8/
https://www.monokai.nl/
http://openframeworks.cc/

BIBLIOGRAPHY 165

[24] OpenProcessing website. https://www.openprocessing.org/.
Accessed: 07/05/2019.

[25] p5.js website. https://p5js.org/. Accessed: 01/05/2019.

[26] Praxis LIVE screenshot. https://praxisintermedia.

wordpress.com/. Accessed: 01/05/2019.

[27] Processing website. https://processing.org/. Accessed:
01/05/2019.

[28] Pure Data website. https://puredata.info/. Accessed:
01/05/2019.

[29] React website. https://reactjs.org/. Accessed: 01/05/2019.

[30] Resolume website. https://resolume.com/. Accessed:
01/05/2019.

[31] Sonic Pi meets Visor performance recording. https://tinyurl.

com/visor-meets-sonicpi/. Accessed: 11/05/2019.

[32] Spout website. http://spout.zeal.co/. Accessed: 01/05/2019.

[33] Squeak - Smalltalk Environment website. http://squeak.org/.
Accessed: 01/05/2019.

[34] Syphon Implementation for Processing website. https://github.
com/Syphon/Processing/. Accessed: 01/05/2019.

[35] Syphon Recorder website. http://syphon.v002.info/

recorder/. Accessed: 12/05/2019.

[36] Syphon website. http://syphon.v002.info/. Accessed:
01/05/2019.

[37] Taniwha's Den 2019 Mainstage performance recording. https:

//tinyurl.com/visor-taniwhasden-2019/. Accessed:
11/05/2019.

https://www.openprocessing.org/
https://p5js.org/
https://praxisintermedia.wordpress.com/
https://praxisintermedia.wordpress.com/
https://processing.org/
https://puredata.info/
https://reactjs.org/
https://resolume.com/
https://tinyurl.com/visor-meets-sonicpi/
https://tinyurl.com/visor-meets-sonicpi/
http://spout.zeal.co/
http://squeak.org/
https://github.com/Syphon/Processing/
https://github.com/Syphon/Processing/
http://syphon.v002.info/recorder/
http://syphon.v002.info/recorder/
http://syphon.v002.info/
https://tinyurl.com/visor-taniwhasden-2019/
https://tinyurl.com/visor-taniwhasden-2019/

166 BIBLIOGRAPHY

[38] The MidiBus website. http://www.smallbutdigital.com/

projects/themidibus/. Accessed: 01/05/2019.

[39] three.js website. https://threejs.org/. Accessed: 01/05/2019.

[40] TOPLAP 15th Birthday Livestream performance recording. https:
//tinyurl.com/visor-toplap15/. Accessed: 11/05/2019.

[41] Toplap website. https://toplap.org/about/. Accessed:
01/05/2019.

[42] Touch Designer website. http://www.derivative.ca/. Ac-
cessed: 01/05/2019.

[43] TYPE website. https://typeensemble.wordpress.com/.
Accessed: 01/05/2019.

[44] Visor website. http://www.visor.live/. Accessed: 01/05/2019.

[45] VVVV screenshot. https://vvvv.org/screenshots/. Ac-
cessed: 01/05/2019.

[46] VVVV website. https://vvvv.org/. Accessed: 01/05/2019.

[47] AARON, S. Sonic Pi performance in education, technology and art.
International Journal of Performance Arts and Digital Media 12, 2 (2016),
171–178.

[48] AARON, S., BLACKWELL, A. F., HOADLEY, R., AND REGAN, T. A
principled approach to developing new languages for live coding. In
Proceedings of the International Conference on New Interfaces for Musical
Expression (NIME) (2011), pp. 381–386.

[49] ABRAS, C., MALONEY-KRICHMAR, D., AND PREECE, J. User-
centered design. Bainbridge, W. Encyclopedia of Human-Computer
Interaction. Thousand Oaks: Sage Publications 37, 4 (2004), 445–456.

http://www.smallbutdigital.com/projects/themidibus/
http://www.smallbutdigital.com/projects/themidibus/
https://threejs.org/
https://tinyurl.com/visor-toplap15/
https://tinyurl.com/visor-toplap15/
https://toplap.org/about/
http://www.derivative.ca/
https://typeensemble.wordpress.com/
http://www.visor.live/
https://vvvv.org/screenshots/
https://vvvv.org/

BIBLIOGRAPHY 167

[50] BERGSTRÖM, I., AND BLACKWELL, A. F. The practices of
programming. In IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC) (2016), pp. 190–198.

[51] BERGSTRÖM, I., AND LOTTO, B. Mother: Making the performance
of real-time computer graphics accessible to non-programmers. In re)
Actor3: The Third International Conference on Digital Live Art Proceedings
(2008), pp. 11–12.

[52] BERGSTRÖM, I., AND LOTTO, R. B. Code Bending: A New Creative
Coding Practice. Leonardo 48, 1 (2015), 25–31.

[53] BLACKWELL, A., MCLEAN, A., NOBLE, J., AND ROHRHUBER, J.
Collaboration and learning through live coding (Dagstuhl Seminar
13382). Dagstuhl Reports 3 (2013), 130–168.

[54] BLACKWELL, A. F. Palimpsest. J. Vis. Lang. Comput. 25, 5 (2014), 545–
571.

[55] BRAUN, V., AND CLARKE, V. Using thematic analysis in psychology.
Qualitative research in psychology 3, 2 (2006), 77–101.

[56] COLLINS, N., AND MCLEAN, A. Algorave: Live performance of
algorithmic electronic dance music. In Proceedings of the International
Conference on New Interfaces for Musical Expression (NIME) (2014),
pp. 355–358.

[57] COLLINS, N., MCLEAN, A., ROHRHUBER, J., AND WARD, A. Live
coding in laptop performance. Organised sound 8, 3 (2003), 321–330.

[58] CORREIA, N. N. Prototyping Audiovisual Performance Tools : A
Hackathon Approach. In Proceedings of the International Conference on
New Interfaces for Musical Expression (NIME) (2015), pp. 12–14.

[59] CORREIA, N. N., AND TANAKA, A. User-Centered Design of a Tool
for Interactive Computer-Generated Audiovisuals. In International
Conference on Live Interfaces (ICLI) (2014).

168 BIBLIOGRAPHY

[60] DELLA CASA, D., AND JOHN, G. LiveCodeLab 2.0 and Its Language
LiveCodeLang. In Proceedings of the ACM SIGPLAN International
Workshop on Functional Art, Music, Modeling & Design (FARM) (2014),
ACM, pp. 1–8.

[61] FAULKNER, M., AND D-FUSE. VJ: Audio-Visual Art and VJ Culture:
Includes DVD. Laurence King Publishing, 2006.

[62] FISCHER, A. Introducing Circa: A dataflow-based language for live
coding. In International Workshop on Live Programming (LIVE) (2013),
pp. 5–8.

[63] GHOSTDAD. My command center. https://www.flickr.com/

photos/ghostdad/7577003990/, 2012. License: CC BY-SA 2.0.
Accessed: 01/05/2019.

[64] HOOK, J., GREEN, D., MCCARTHY, J., TAYLOR, S., WRIGHT, P., AND

OLIVIER, P. A VJ Centered Exploration of Expressive Interaction. In
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (CHI) (2011), ACM, pp. 1265–1274.

[65] JUNG, H., LEE, J., CHOI, H.-J., AND KIM, H. Real-Time DJING+
VJING with Interactive Elements. Contemporary Engineering Sciences
(2014), 1321–1327.

[66] KUBELKA, J., ROBBES, R., AND BERGEL, A. The road to live
programming: insights from the practice. In Proceedings of the
International Conference on Software Engineering (ICSE) (2018), IEEE,
pp. 1090–1101.

[67] LAWSON, S. Performative Code: Strategies for Live Coding Graphics.
In Proceedings of the International Conference on Live Coding (ICLC)
(2015), pp. 35–40.

[68] MAGUIRE, M., AND DELAHUNT, B. Doing a thematic analysis:
A practical, step-by-step guide for learning and teaching scholars.

https://www.flickr.com/photos/ghostdad/7577003990/
https://www.flickr.com/photos/ghostdad/7577003990/

BIBLIOGRAPHY 169

AISHE-J: The All Ireland Journal of Teaching and Learning in Higher
Education 9, 3 (2017).

[69] MCLEAN, A. Making programming languages to dance to: live
coding with tidal. In Proceedings of the ACM SIGPLAN international
workshop on Functional art, music, modeling & design (FARM) (2014),
ACM, pp. 63–70.

[70] MCLEAN, A., AND WIGGINS, G. A. Live Coding Towards
Computational Creativity. In Proceedings of the International Conference
on Computational Creativity (2010), pp. 175–179.

[71] OLOWE, I., MORO, G., AND BARTHET, M. residUUm: user mapping
and performance strategies for multilayered live audiovisual
generation. In Proceedings of the International Conference on New
Interfaces for Musical Expression (NIME) (2016), pp. 271–276.

[72] REAS, C., AND FRY, B. Processing: programming for the media arts.
AI & SOCIETY 20, 4 (2006), 526–538.

[73] REIN, P., RAMSON, S., LINCKE, J., HIRSCHFELD, R., AND PAPE, T.
Exploratory and live, programming and coding: A literature study
comparing perspectives on liveness. The Art, Science, and Engineering
of Programming 3 (2018).

[74] ROBERTS, A. Chemical Algorave. https://www.flickr.com/

photos/hellocatfood/33851477483/, 2017. License: CC BY-
SA 2.0. Accessed: 01/05/2019.

[75] ROBERTS, C., WRIGHT, M., KUCHERA-MORIN, J., AND HÖLLERER,
T. Gibber: Abstractions for creative multimedia programming. In
Proceedings of the International Conference on Multimedia (2014), ACM,
pp. 67–76.

[76] ROHRHUBER, J., DE CAMPO, A., AND WIESER, R. Algorithms today
notes on language design for just in time programming. In Proceedings

https://www.flickr.com/photos/hellocatfood/33851477483/
https://www.flickr.com/photos/hellocatfood/33851477483/

170 BIBLIOGRAPHY

of the International Computer Music Conference (2005), p. 291.

[77] SALAZAR, S. Searching for Gesture and Embodiment in Live Coding.
In Proceedings of the International Conference on Live Coding (ICLC)
(2017).

[78] SMITH, N. C. Praxis LIVE - hybrid visual IDE for (live) creative
coding. In Proceedings of the International Conference on Live Coding
(ICLC) (2016).

[79] TANIMOTO, S. L. A Perspective on the Evolution of Live
Programming. In Proceedings of the International Workshop on Live
Programming (2013), pp. 31–34.

[80] TOKA, M., INCE, C., AND BAYTAS, M. A. Siren: Interface for
pattern languages. In Proceedings of the International Conference on New
Interfaces for Musical Expression (NIME) (Blacksburg, Virginia, USA,
2018), T. M. Luke Dahl, Douglas Bowman, Ed., Virginia Tech, pp. 53–
58.

[81] VICTOR, B. Learnable programming: Designing a programming
system for understanding programs. http://worrydream.com/

LearnableProgramming/, 2012. Accessed: 01/05/2019.

http://worrydream.com/LearnableProgramming/
http://worrydream.com/LearnableProgramming/

	Introduction
	Research Questions
	Research Methodology
	Research Contributions
	Outline

	Background
	Creative Coding
	Live Programming
	Live Coding
	VJing
	Summary

	Live Coding and VJing: Interviews
	Interview Procedure
	Participants
	Analysis
	Features
	Interactions
	Practice

	Discussion
	Summary

	CJing and Visor
	Code Jockey Practice
	Context
	Key Ideas

	Visor: Design
	Visor: Features
	Live Coding
	State Management
	Layers
	Fast Fourier Transform
	Tap Tempo
	MIDI
	Other

	Visor: Composing Layers
	Model Layer
	Particles Layer
	Mask Layer
	MIDI Control
	Final Composition

	Visor: Implementation
	Architecture
	Client
	Server
	Live Coding
	Handling State
	Integration with Processing

	Visor: Development Approach
	Discussion
	Summary

	Live Performances with Visor
	Performance Setup
	Performance Approach
	Visor in Action
	Live Coding
	State Management
	Layers
	MIDI
	Fast Fourier Transform
	Tap Tempo

	Summary

	Visor Feedback Survey
	Survey Procedure
	Participants
	Results
	Usage
	Learning
	Live Coding
	State Management
	Layers
	Fast Fourier Transform
	Tap Tempo
	MIDI
	Interface
	Suggested Improvements

	Discussion
	Summary

	Conclusions
	Research Contributions
	Future Work

	Appendices
	Human Ethics Documents
	Interview Information Sheet
	Interview Schedule
	Feedback Survey Information Sheet
	Feedback Survey Questionnaire

