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Abstract 

Prospect Theory models behaviour in one-off decisions where outcomes are described. 

Prospect Theory describes risk aversion when the choice is between gains and risk seeking 

when the choice is between losses. This asymmetry is known as the reflection effect. In 

choices about experienced outcomes, individuals show risk seeking for gains and risk 

aversion for losses. This change in the direction of gain-loss asymmetry is known as the 

description-experience gap. Across eight experiments, we examined gain-loss asymmetry in 

two experiential choice procedures. We compared the obtained results with predictions 

derived from Prospect Theory and the description-experience gap literature.  

In Study 1, we evaluated the predictions of the reversed reflection effect in probability 

discounting. Probability discounting is loss in reinforcer value as a function of uncertainty. In 

typical tasks measuring discounting, participants choose between smaller, certain amounts 

and a larger amount at one of several probabilities. In choice from description, most 

participants show a gain-loss asymmetry consistent with the predictions of the reflection 

effect, discounting gains more steeply than losses. Across three experiments, we examined 

whether gain-loss asymmetry also occurred when participants experienced the outcomes they 

chose, when they chose between two uncertain options, and when these two contexts were 

combined. Across all of the above contexts, no consistent mean difference in discounting of 

gains and losses was observed. Rather, in most of the tasks that provided experienced 

outcomes, the participants showed steeper discounting in the first condition completed, 

whether it involved choices about gains or losses. Furthermore, subsequent conditions 

produced shallower discounting, but notably, not shallower than choice based on the expected 

value of the options. In Studies 2 and 3, we followed-up on this order effect by providing the 

participants with experience of probabilistic outcomes before the discounting tasks. 

Participants discounted losses more steeply than gains, consistent with the predictions of a 

reversed reflection effect. 

In Study 2, we examined gain-loss asymmetry in a rapid-acquisition choice procedure using 

concurrent variable-interval schedules – the Auckland Card Task. Participants repeatedly 

chose between two decks of cards that varied in the frequency or magnitude of available 

gains or losses. Participants were more sensitive to changes in gain than loss frequency 

between the two decks, consistent with the predictions of a reversed reflection effect, while 

sensitivity to gain and loss magnitude did not show an asymmetry. We found a novel 
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asymmetry in the local effects of gains and losses. In the frequency tasks, gains disrupted the 

general pattern of responding more than losses. In the magnitude tasks, varying the 

magnitude of losses had a bigger effect on local-level patterns following outcomes than 

varying the magnitude of gains. 

Across the two tasks we observed patterns of gain-loss asymmetry consistent with the 

predictions of a reversed reflection effect. We also observed several inconsistencies, 

particularly when comparing behaviour to choices that would maximize the expected returns. 

Our research suggested that sufficient exposure to chance outcomes and ensuring delivery of 

scheduled events are key challenges in further refinement of experiential choice in human 

operant tasks. 
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General Introduction 

Gain-loss asymmetry in choice from description 

Rational decision making predicts that when an individual is faced with probabilistic 

outcomes, they ought to choose according to the expected return, or expected value, of the 

options. Expected value is calculated as amount multiplied by probability. For example, the 

expected value of a 0.50 probability of $100 is $50, and this is greater than the expected 

value of a 1.00 probability of $40, which is $40. Thus rational choice would be to choose the 

first option which has the highest expected value, yet human behaviour has consistently 

shown systematic violations of expected value predictions. Expected Utility Theory states 

that the subjective value of an outcome to the individual often varies from the expected value 

by assigning a numerical utility to these outcomes (Bernoulli, 1738; Von Neumann & 

Morgenstern, 1944). It further postulates that individuals ought to choose options that will 

maximize the expected utility of the outcomes, but this too has often been shown to be 

inconsistent with choice (e.g. Allais, 1953; Starmer, 2000; Bleichrodt, Abellan-Perpinan, 

Pinto-Prades, & Mendez-Martinez, 2007). One of the most popular theories that makes 

predictions about the systematic difference in behaviour when faced with risky gains or 

losses is Prospect Theory (Kahneman & Tversky, 1979) and its modified version, Cumulative 

Prospect Theory (Tversky & Kahneman, 1992). The central premise is that under some 

conditions, neither the expected value of a given prospect, nor its expected utility, predict 

behaviour. Here, we focus on three principles regarding decision under risk modelled by 

Prospect Theory that are key to this series of studies: loss aversion, probability weighting and 

the reflection effect. Together, these constitute a gain-loss asymmetry in how humans 

respond to probabilistic gains compared to probabilistic losses. 

Loss aversion captures the tendency for people to be more affected by the prospect of 

a loss than the prospect of a gain of the same magnitude. The way in which Prospect Theory 

models loss aversion is through the value function illustrated in the left panel of Figure 1.1, 

by plotting a range of gain and loss outcomes on the x axis against the subjective value an 

individual might assign to each outcome on the y axis1. Prospect Theory predicts that change 

                                                           
1The value functions for outcomes zero and above was plotted using 𝑣(𝑥) = 𝑥𝛼 and for outcomes below zero 

was 𝑣(𝑥) = −𝜆(−𝑥)𝛽. Here, 𝑣 is the value function applied to outcome 𝑥, α and β are scaling parameters 

describing sensitivity to value (note that we assumed α = β) and λ is the loss aversion scaling parameter. In our 

example, α and β were set to 0.88 and λ to 2.25 (Tversky & Kahneman, 1992). 
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in subjective value for negative outcomes, like losses, is steeper than change in subjective 

value for positive outcomes, like gains, that are equivalent in magnitude. This difference in 

rate captures the prediction of Prospect Theory that an outcome of -75 is not symmetrical in 

subjective value to an outcome of +75 (both indicated by dashed arrows); losing $75 is 

subjectively worse than gaining $75 is good.  

Figure 1.1. Left panel: value function that plots outcomes on the x axis and subjective value 

on the y axis. The function plots a hypothetical rate at which subjective value of positive and 

negative outcomes changes with change in magnitude as predicted by Prospect Theory. Right 

panel: concave (top) and convex (bottom) value functions. The solid line corresponds to the 

value function described in the left panel. The dotted line indicates change in subjective value 

of the plotted outcomes if the relationship was linear rather than concave/convex.  

Furthermore, the shape of the function described by Prospect Theory for positive 

outcomes is concave, predicting risk aversion, while for negative outcomes it is convex, 

predicting risk seeking (Kahneman & Tversky, 1979). This is better illustrated on the right 

panel of Figure 1.1 which plots concave (top) and convex (bottom) functions, with monetary 

amounts on the x axis and their subjective value to the individual on the y axis. The dotted 

line indicates risk neutrality and choice in accordance to expected value, where an increase in 

outcome amount is accompanied by a linear increase in subjective value. Consider a choice 

between gaining $60 for certain and a risky prospect of a 50% chance of $40 and a 50% 

chance of $80. In terms of expected value, the two options are equivalent and the individual 
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should show indifference. However, the top graph demonstrates that if the change in 

subjective value is concave rather than linear, then the individual would prefer to receive $60 

for certain rather than the expected value of the risky prospect, given that at the $60 mark on 

the x-axis, the value function is higher than the dotted line on the y-axis. Conversely, if the 

change is convex (bottom graph), the value function predicts that the individual would prefer 

to risk the prospect rather than gain $60 for certain. The value function of Prospect Theory 

predicts a concave function for choices about gains and a convex function for choices about 

losses. Hence, a concave change in the value of a gain would predict risk averse behaviour 

and a convex change in the value of a loss would predict risk seeking behaviour. 

 

Figure 1.2. Probability weighting function for choice from description that plots objective 

probability on the x axis and weighted probability on the y axis. The dotted line corresponds 

to linear weighting of probabilities. The solid black and grey lines correspond to probability 

weighting predicted by Prospect Theory for gains and losses respectively.  

Probability weighting is the application of decision weights to objective probabilities. 

Figure 1.2 demonstrates Prospect Theory’s prediction by plotting objective probability on the 

x axis and weighted (distorted) probability on the y axis. The dotted line shows linear 

weighting of probability and the solid black and grey lines show probabilities for gains and 
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losses transformed by a weighting function2. Note that the weighting function assumes that 

small probabilities will be overweighted and medium to large probabilities underweighted 

relative to the dotted line, showing an inverse S-shaped function. The greatest deviation from 

linear weighting of probabilities can be observed at probabilities that are very high or very 

low. The separate weighting functions for gains and losses also predict a greater deviation 

from linear weighting of probabilities for gains rather than losses.  

Together, the value and probability weighting functions demonstrate the reflection 

effect: we expect opposite choice behaviour for gains and losses. Consider a choice between 

a smaller gain for certain and a larger, probabilistic gain, which are equal in expected value. 

Underweighting at moderate to high probabilities implies that the risky option will be less 

attractive at these probabilities, which, in combination with risk averse behaviour suggested 

by the concave value function, predicts that people will be risk averse and choose the smaller 

gain. The reverse relationship is predicted for losses, where the choice is between a smaller 

loss for certain and a larger, probabilistic loss. That is, underweighting of moderate to large 

probabilities makes the risky choice more attractive and, combined with the risk seeking 

behaviour suggested by the convex value function, predicts that people will be risk seeking 

and choose the larger, chance loss. A similar reversal is expected at lower probabilities, 

although the predictions of Prospect Theory are less clear given that the probability weighting 

predicts changes in behaviour while the value function remains unchanged (see Hershey & 

Shoemaker, 1980 for a discussion). Overweighting at lower probabilities implies that risky 

gains will become more attractive and risky losses less, while the value function encourages 

risk aversion and risk seeking respectively. According to the four-fold pattern of risk attitudes 

elaborated on by Cumulative Prospect Theory, we would generally expect risk seeking 

behaviour for gains and risk averse behaviour for losses when probabilities are low (Tversky 

& Kahneman, 1992). 

The exact shape of the value and probability weighting functions has been contested 

in the literature, but have largely supported the regularities we have plotted above (see 

Gonzalez & Wu, 1999 for a review). The reflection effect and the predictions it makes about 

                                                           
2The weighting functions were plotted using a one-parameter model (𝑝) =

𝑝𝛾

(𝑝𝛾+(1−𝑝)𝛾)
1

𝛾⁄
 , where 𝜔 is the 

probability weighing function applied to probability 𝑝, and 𝛾 is the parameter that specifies the inverse-S shape. 

In our example, the gain and loss curves were plotted with 𝛾 = 0.61 and 𝛾 = 0.69 respectively (Tversky & 

Kahneman, 1992). 
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a gain-loss asymmetry appears robust (e.g. Baucells & Villasis, 2010; Schoemaker, 1990). 

Baucells and Villasis (2010) found that most individuals showed the predicted reflection 

effect, although only around 50% of individuals displayed both risk averse behaviour for 

gains and risk seeking behaviour for losses. A significant minority of subjects showed risk 

averse behaviour for both gains and losses. The size of the reflection effect has also been 

contested, with Hershey and Schoemaker (1980) concluding that, if present, it was strongest 

with either small amounts, very large amounts or extreme probabilities.  

Gain-loss asymmetry in choice from experience 

Prospect Theory was developed based on a descriptive, non-experiential context 

where individuals are faced with a one-off decision (Kahneman & Tversky, 1979) and its 

predictions appear to largely hold in that context. Such non-experiential choice tasks where 

the individual relies on descriptions resemble some, but not all, decisions made in every-day 

life. An individual might make a one-off decision about whether to undergo surgery based on 

probabilistic information about the risks and benefits of that decision: a context that Prospect 

Theory was designed to model. Alternatively, they might make repeated decisions about 

whether to take a daily medication that reduces their risk of a medical problem, but also 

creates the risk of side effects, experiencing the outcome of their choices and adjusting which 

alternatives they subsequently choose accordingly. Prospect Theory was not designed to 

model this second type of context in which people make repeated decisions from experience.  

Research using experiential choice procedures suggests that we should expect 

different behaviour from humans making decisions from experience as opposed to decisions 

from description. In one of the earliest demonstrations of this, Barron and Erev (2003) had 

participants choose between a 100% chance of 9 points (-9 in the loss condition) and a 90% 

chance of 10 points (-10 in the loss condition; Experiment 3b). Participants did not have 

descriptions of these probabilities but did receive feedback following each choice about the 

number of points they had received. The study showed the opposite pattern to what is 

typically seen in choice from description, with a greater proportion of risky choices for gains 

(indicative of greater risk seeking) than for losses. Hertwig, Barron, Weber and Erev (2004) 

found that responding in an experiential context reversed risk preference at both low and high 

probabilities relative to decisions from description. When the probability of a larger outcome 

was high and the participants were deciding from description, the majority showed the typical 

pattern of risk aversion for gains and risk seeking for losses. However, when the same choice 
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was offered in an experiential context, the majority of participants showed risk seeking for 

gains and risk aversion for losses. Such a reversal was also observed when the probability of 

the larger outcome was small. 

It appears that the relative preference for the risky option, and the direction of the 

gain-loss asymmetry, differ depending on whether participants experience the outcomes of 

their choices, which is known as the description-experience gap (Hertwig et al., 2004; 

Hertwig & Erev, 2009). The opposite pattern of behaviour suggested that the probability 

weighting function for decisions from experience might reverse from that described in 

Prospect Theory. Studies attempting to determine the shape of the probability weighting 

function in experiential choice have shown mixed results, an issue further compounded by a 

lack of consistency in the exact shape of the probability weighting function in decisions from 

description. As the recent meta-analysis by Wulff, Mergenthaler-Canseco, and Hertwig 

(2018) noted, the cause of this is largely methodological differences (also see Glöckner, 

Hilbig, Henninger, & Fiedler, 2016), but some consistencies existed: when participants 

experienced the outcomes in roughly the same frequency as intended, their choices were in 

the direction of less overweighing of small probabilities, which ranged from approximately 

linear to underweighting. We have demonstrated this in Figure 1.3, with arbitrarily chosen 

values3 corresponding to an S-shaped function that is overall closer to a linear weighting of 

probabilities. We also included a distinction between the functions for gains and losses, 

which has been observed in some studies (e.g. Hau, Pleskac, Kiefer, & Hertwig, 2008; 

Abdellaoui, L'Haridon, & Paraschiv, 2011) and corresponds to Cumulative Prospect Theory’s 

original prediction of greater deviation from linear probability for gains as compared to losses 

(Tversky & Kahneman, 1992).  

Despite the lack of a universal prediction as to the shape of the probability weighting 

function, the differences between decisions based on description to that of experience remain 

fairly consistent. The opposite pattern of responding on the experiential task has been 

observed at aggregate (e.g. Barron & Erev, 2003) and individual (e.g. Kudryavtsev & 

Pavlodsky, 2012) levels of comparison, when the experience of number of outcomes vs. 

number of decisions is controlled for (Camilleri & Newell, 2013) and when the options 

included no small probabilities (i.e. 50% chance; Ludvig & Spetch, 2011). Wulff and 

colleagues (2018) concluded that the description-experience gap is a robust phenomenon, 

                                                           
3 In our example, an S-shaped function was created with 𝛾 = 1.39 for gains and 𝛾 = 1.31 for losses. 
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with participants being more likely to choose the option in an experiential task that is 

opposite to what they have chosen in a purely descriptive task in a significant majority of the 

studies. The description-experience gap was more pronounced when participants chose 

between a safe and a risky option, rather than between two risky options, although both 

contexts confirmed its effect. A safe option is one in which an outcome is to occur at 100% 

probability, and a risky option is one in which an outcome has less than a 100% chance of 

occurrence. 

 

Figure 1.3. Probability weighting function for choice from experience that plots objective 

probability on the x axis and weighted probability on the y axis. The dotted line corresponds 

to linear weighting of probabilities. The solid black and grey lines correspond to probability 

weighting predicted by the description-experience gap literature for gains and losses 

respectively.  

The consistent differences between behaviour based on description and experience 

emphasizes the necessity of further study into the extent of a gain-loss asymmetry. It would 

allow us to understand choice about gains and losses across the full variety of everyday 

decision contexts. Research using experiential tasks also facilitates comparisons to the non-

human animal literature by addressing one common procedural difference: animal subjects 

are only able to experience the scheduled probabilities while human participants can rely on 
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description, experience or both. Differences in preference for the risky option due to 

experience and its specific procedural components indicates how research from exclusively 

experiential animal procedures should be applied to human behaviour (see Kalenscher & van 

Wingerden, 2011 for a discussion). Animal literature has often demonstrated the same 

violations of expected utility observed with human participants (e.g. Real, 1996; Kacelnik & 

Bateson, 1996). However, inconsistencies have also been documented, where animal subjects 

behaved according to predictions of choice from description rather than experience 

(MacDonald, Kagel, & Battalio, 1991; Shafir, Reich, Tsur, Erev, & Lotem, 2008), suggesting 

that methodological refinements are necessary before effective translation can occur. 

Overview of Current Studies  

We aimed to compare the differences between making decisions about gains and 

losses in two experiential contexts where gain-loss asymmetry has not yet been demonstrated. 

In Study 1, we examined choice in probability discounting tasks combining description and 

experience in both safe-risky and risky-risky contexts. Probability discounting quantifies the 

effect of changing probability on the subjective value of an outcome. There is a lack of 

discounting studies looking at gain-loss asymmetry, particularly in experiential tasks, but the 

safe-risky procedures based on description have generally supported the reflection effect 

modelled by Prospect Theory. Whether the description-experience gap occurs and the 

reflection effect reverses in probability discounting procedures is unknown. In Study 2, we 

examined whether a gain-loss asymmetry occurs in a concurrent schedules task, which has 

also been used to examine the effect of changes in probability on preference among two 

alternatives. In Study 3, we addressed follow-up questions raised in Studies 1 and 2 on the 

effects of magnitude and cross-task experience.  
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Study 1: Gain-loss asymmetry in probability discounting 

We often encounter choices among outcomes differing across multiple dimensions, 

such as probability and amount. For example, when deciding whether to purchase insurance, 

one alternative - buying insurance - requires a small, guaranteed payment while the other - 

foregoing insurance - might produce a larger loss in the future. Most individuals prefer 

guaranteed rather than chance gains, and chance rather than guaranteed losses. That is, the 

subjective value of an outcome is discounted with decreasing chance of its occurrence 

(probability discounting). We also prefer larger outcomes if positively valued (i.e. gains or 

rewards) and smaller outcomes if negatively valued (i.e. losses or punishers). However, in 

many decision-making situations, such as whether to purchase insurance, one alternative 

produces an outcome of a more preferred amount (e.g. a certain but smaller loss) and the 

other alternative produces an outcome of a more preferred probability (e.g. a larger loss that 

may not occur), and the person deciding must trade-off probability and amount. 

Probability discounting 

Probability-amount trade-offs can be studied within the probability discounting 

paradigm. A discounting perspective assumes that the subjective value of an outcome 

systematically decreases (i.e. is discounted) as the probability of that outcome occurring 

decreases. This approach to studying choice has been used to investigate risk-taking in 

gambling (e.g. Holt, Green, & Myerson, 2003), differences between smokers and non-

smokers (e.g. Lawyer, Schoepflin, Green, & Jenks, 2011) and willingness to risk medical 

treatment (e.g. Weatherly & Terrell, 2014; Asgarova, Macaskill, Robinson, & Hunt, 2017). 

Participants typically make a series of two-alternative choices and do not receive 

feedback about the outcomes of their choices (i.e. choice is made from description and is 

non-experiential). Table 2.1 presents possible alternatives within gains (top) and losses 

(bottom) tasks. Researchers often use the titrating amount procedure (Richards, Mitchell, de 

Wit, & Seiden, 1997). In this procedure, a participant makes a series of choices between a 

smaller, certain amount and a larger, uncertain amount. After each choice, the smaller, certain 

amount is either decreased or increased in response to what was chosen on the previous trial, 

and this adjustment is intended to make the previously selected alternative less appealing. 

Such adjustments are done over several trials in order to identify when the two alternatives 

are roughly equal in subjective value: this is termed the indifference point. For example, an 

individual might be indifferent between a 50% chance of gaining $100 and gaining $40 for 
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certain. In this example, when the gain of $100 only has a 50% chance of occurring, it lost 

$60 of its value with decreased probability. In a losses condition, an individual might be 

indifferent between losing $60 dollars for certain and a 50% probability of losing $100, 

indicating that $100 has lost $40 of its subjective value with decreased probability. Note that 

in this example, a probabilistic gain has lost more of its subjective value than a probabilistic 

loss of the same probability.  

Table 2.1 

Examples of probability-amount trade-offs in probability discounting tasks 

 Smaller certain Larger uncertain 

Gains 

E.g. of alternatives  Gain $50 for certain 50% chance of gaining $100 

Trade-off  Better on certainty 

(guaranteed gain) 

Better on amount (larger 

gain) 

Losses 

E.g. of alternatives Lose $50 for certain 50% chance of losing $100 

Trade-off  Better on amount (smaller 

loss) 

Better on certainty 

(uncertain loss) 

Quantifying probability discounting 

Using titrating amount procedures, researchers can derive indifference points for 

several probabilities of gaining or losing a given larger, uncertain amount in order to quantify 

how the subjective value of the larger outcome changes as a function of changes in its 

probability. The rate at which the subjective value of the larger outcome changes with 

decreasing probability can be described using one of several mathematical functions. Here we 

will focus on two methods, the hyperbolic model and calculating area under the curve. 

The hyperbolic model. The hyperbolic model (Equation 2.1) assumes the subjective 

value of an outcome will decrease more steeply with change at higher probabilities and more 

shallowly with change at lower probabilities (Mazur, 1987; Rachlin, Raineri, & Cross, 1991). 

𝑉 =
𝐴

(1+ℎƟ)
      (Equation 2.1) 

In this model, the subjective value of the larger, uncertain outcome (V) is derived 

from its undiscounted size (A), odds against its successful occurrence (Ɵ), and a free 

parameter h. The h parameter best describes change in value of the larger, uncertain outcome 

as a function of changes to its probability for a given individual. Odds against is computed as 
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(1-probability)/probability and indicates the expected mean number of non-occurrences of an 

event before it occurs. For example, a 30% chance of losing $100 is equivalent to an odds 

against losing $100 of 2.3, which is, on average, one loss for every 2.3 non-occurrences of a 

loss. This conversion of probabilities to odds against allows for a hyperbolic shape of the 

discounting function. The left panel of Figure 2.1 demonstrates how h describes different 

rates at which an outcome can lose its value. Two sets of hypothetical indifference points are 

plotted, where black triangles correspond to indifference points for losses and white triangles 

correspond to indifference points for gains. Fitting Equation 2.1 to the data will produce the 

solid and dashed curves, respectively. In this example, the losses curve has a larger h 

parameter than the gain curve. The larger the h parameter, the steeper the rate at which the 

larger, uncertain outcome loses its value with decreasing probability. Conversely, the smaller 

the h parameter the better the larger, uncertain outcome holds its value with decreasing 

probability of its occurrence.  

 

Figure 2.1. Left panel: Subjective value (indifference points as a proportion of the larger, 

uncertain amount) as a function of increasing odds against occurrence of a gain (white 

triangles) or loss (black triangles) using hypothetical data. Dashed (gains) and solid (losses) 

curves are the best-fitting hyperbolic functions. The dotted curve is a hyperbolic function 

from decisions made based on expected value (h = 1). Right panel: The h parameter for gains 

plotted against the h parameters for losses for the hypothetical data in the left panel. The 

diagonal dashed line represents symmetrical discounting of gains and losses. Dotted vertical 

and horizontal lines demarcate h value (1) when decisions are made based on expected value.  
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The relationship between the h parameters can also be shown on a modified Brinley 

plot (Blampied, 2017) to examine the consistency of the discounting of gains and losses 

across individuals, where loss h is plotted on the x axis and gain h on the y axis. The data in 

the left panel of Figure 2.1 is represented as a single data point in the right panel, describing h 

parameters for both gains and losses. The dashed diagonal reference line indicates identical 

discounting of gains and losses, where loss h = gain h. Points above the line indicate steeper 

discounting of gains than losses, whereas points below the line indicate steeper discounting of 

losses than gains. The steeper discounting of losses than gains in the left panel is represented 

by a data point below the diagonal line on the right panel.  

Discounting can also be compared to behaviour predicted solely by the expected value 

of options and corresponds to choices that would maximize gains or minimize losses. This is 

also of interest as it allows us to determine whether choice was overall risk seeking or risk 

averse, and thus subject to probability weighting predicted by the Prospect Theory. In a 

probability discounting task, choices based on the expected value would result in h = 1 and is 

indicated by the dotted line in the left panel of Figure 2.1. When h = 1, Equation 2.1 

determines subjective value (V) solely from odds against (Ɵ) and its undiscounted size (A). A 

decision based on expected value alone can be considered risk neutral, where the decrease in 

probability corresponds to a proportionate decrease in subjective value (see Shead & 

Hodgins, 2009 for a discussion). Responses that deviate from this would indicate change to 

subjective value that is higher or lower than the expected value alone would predict (thus 

requiring a scaling parameter, h, not equal to 1). When h < 1 and the discounting curve is 

showing a shallower decrease in value, this is indicative of risk seeking for gains and risk 

aversion for losses, where the larger outcome holds its value better than predicted by the 

expected value. When h > 1 and the discounting curve is showing a steeper decrease in value, 

this is indicative of risk aversion for gains and risk seeking for losses, where the larger 

outcome holds its value worse than predicted by the expected value.  

The relationship to expected value can also be represented in the right panel, where h 

= 1 is indicated by the dotted vertical and horizontal lines, allowing the data to be further split 

into four quadrants. Data points in quadrant B would indicate discounting of both gains and 

losses that is steeper than predicted by expected value (h > 1), whereas in quadrant C it is 

shallower (h < 1). Our sample data on the left graph shows discounting of losses that is 

steeper than predicted by expected value and discounting of gains that is shallower, hence the 

data point in the right panel is in the D quadrant. 
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The hyperbolic model generally describes data well, with the h parameter capturing 

differences across individuals in discounting of different commodities, such as real money 

(Lawyer et al., 2011) and hypothetical or real cigarettes (Green & Lawyer, 2014). However, 

the hyperbolic model is one of many mathematical functions that have been used in literature, 

with each using a different combination of parameters to predict the rate at which an outcome 

ought to lose its value. Determining the model with the best fit to the data allows for more 

accurate predictions on how an outcome will be impacted by changing its probability. The 

single parameter hyperbolic model generally describes data better than a single parameter 

exponential model, which assumes a constant rate at which an outcome loses its value (see 

Green & Myerson, 2004 for a review). However, the comparison of the hyperbolic one-

parameter to hyperboloid two-parameter models is more nuanced. Two such models have 

gained prominence in literature, the Green and Myerson (2004; Equation 2.2) and the Rachlin 

(2006; Equation 2.3) equations. 

𝑉 =
𝐴

(1+ℎƟ)𝑠     (Equation 2.2; Green & Myerson, 2004) 

𝑉 =
𝐴

(1+ℎƟ𝑠)
     (Equation 2.3; Rachlin, 2006) 

The hyperboloid models use two scaling parameters, h and s, where s is a non-linear 

scaling parameter proposed to indicate non-linear sensitivity of subjective value to odds 

against (Rachlin, 2006). This greater number of parameters improves the models’ flexibility 

in fitting to different data sets and generally produces higher indicators of goodness of fit, but 

also raises issues of coherence in interpreting variation in the two parameters (Green & 

Myerson, 2004). Both h and s impact the shape of the discounting curve, are not independent 

and are often correlated, more so in Equation 2.2 where h is directly raised to the power of s 

(see Mitchell, Wilson & Karalunas, 2015, and Young, 2017 for a discussion in a delay 

discounting context). This non-independence presents a challenge to the models as it 

introduces issues of multicollinearity between the predictors. Furthermore, a comparison 

based on the h parameter across the two groups of interest (e.g. different magnitude of the 

larger, uncertain option) would only be meaningful if s is equivalent across the two groups 

and independent of h, which has not been consistently demonstrated in probability 

discounting (e.g. Estle, Green, Myerson, & Holt, 2006). Furthermore, there is no current 

consensus on interpreting the difference between h and s parameters, and whether restrictions 

should be placed on any variation in them when fitting the models in order to permit 
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comparisons across groups (McKerchar, Green, & Myerson, 2010). We therefore opted to use 

the hyperbolic model in our subsequent analysis. 

Area under the curve. A method that avoids the model fitting issues described above 

is the area under the curve (AUC) measure of discounting (Myerson, Green, & 

Warusawitharana, 2001). Here, the rate of discounting is calculated by dividing the area 

under the plotted indifference points into trapezoids as shown by the dashed lines in the left 

panel of Figure 2.2, applying Equation 2.4 to each trapezoid and summing them to produce a 

single value. 

𝑇𝑟𝑎𝑝𝑒𝑧𝑜𝑖𝑑 𝑎𝑟𝑒𝑎 = (𝑥2 − 𝑥1) ∗ ((𝑦1 + 𝑦2)/2))  (Equation 2.4) 

x1 and x2 are successive odds against and y1 and y2 are successive subjective values, 

all expressed as a proportion of their maximum possible value (i.e. normalized to range from 

0 to 1). The resultant value ranges from 0 to 1 and is the area under the plotted data relative to 

the maximum possible area, which is indicated by the square ending at the maximum possible 

x and y axis values. The AUC for losses would be derived from the total grey area and for 

gains from the total dotted area. Higher AUC values correspond to a greater proportion of the 

shaded area relative to total area and indicates shallower discounting, while lower AUC 

values correspond to a lesser proportion of the shaded area relative to total area and indicates 

steeper discounting. Note that this is in the reverse direction to the h parameter, where a 

higher h corresponds to a lower AUC and vice versa. 

 

Figure 2.2. Left panel: Subjective value (indifference points as a proportion of the larger, 

uncertain amount) as a function of increasing odds against occurrence of a gain (white 
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triangles) or loss (black triangles) using hypothetical data. Dashed lines indicate the trapezoid 

areas used to calculate the area under the curve value. The shading corresponds to the total 

area used for gains (dotted) and losses (grey). Right panel: The AUC value for losses plotted 

against the AUC value for gains for the hypothetical data in the left panel. The diagonal 

dashed line represents symmetrical discounting of gains and losses.  

As with the h parameter, individual data can be plotted on a modified Brinley plot on 

the right panel of Figure 2.2. Note that for the AUC graph, we have chosen to swap the axis 

data relative to the h graph, such that gains are plotted on the x axis and losses on the y axis, 

to facilitate comparison relative to the dashed diagonal line. As with the modified Brinley 

plot of h values described above, points above the line would indicate steeper discounting of 

gains than losses and points below the line indicate steeper discounting of losses than gains. 

The steeper discounting of losses than gains in the left panel is represented by a data point 

below the diagonal line on the right panel. 

We opted to supplement our analysis using the h parameter with AUC because each 

approach has some advantages and some disadvantages. While AUC avoids model fitting 

issues, its values do not indicate whether systematic discounting has occurred (i.e. a 

monotonic decrease in value with increasing odds against). Furthermore, AUC values cannot 

be compared to an AUC value derived from choice based on expected value (for example, the 

dotted line in the left panel of Figure 2.1 produces an AUC of approximately 0.33), since the 

AUC value corresponding to discounting based on expected value can correspond to different 

distributions of indifference points on the graph. On the other hand, AUC values provide a 

more accurate description in instances where discounting data are poorly described by the 

hyperbolic model. Furthermore, some studies have found different patterns in the data when 

using AUC and h (e.g. Weatherly & Derenne, 2013). In all of our analysis, we used both 

AUC and h, and applied the following logic. Where examinations of any systematic patterns 

in residuals and/or low R2 values (proportion of the variance in the data explained by the 

fitted model) indicate that the hyperbolic model does not describe the data well, then any 

effect captured by AUC is more likely to be reliable. Any discrepancies between measures 

derived from a well-fitting model and AUC would most likely suggest that AUC is capturing 

noise in the distribution of indifference points around an otherwise monotonic trend, and the 

h results become more reliable.  

Discounting in a non-experiential, safe-risky context 
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In studies using non-experiential probability discounting tasks, a common finding is 

that gains are discounted more steeply than losses (Estle et al., 2006; Mitchell & Wilson, 

2010; Weatherly & Derenne, 2013; Shead & Hodgins, 2009). That is, the rate at which a 

probabilistic gain loses its subjective value in response to decreasing probability is steeper 

than that of a probabilistic loss, thus demonstrating an asymmetrical effect of probability on 

discounting of gains versus losses. The gain-loss asymmetry observed in probability 

discounting is thus consistent with the reflection effect described by Prospect Theory 

(Kahneman & Tversky, 1979), showing that people do not value equal sized losses and gains 

symmetrically.  

While this asymmetry is commonly reported, the extent of it appears to be dependent 

on the specific context. The rate of discounting is affected by the magnitude of the discounted 

outcome and this effect is not symmetrical for gains and losses. Research suggests that larger 

gains are discounted more steeply than smaller gains (e.g. Green, Myerson & Ostaszewski, 

1999; Myerson, Green, Hanson, Holt & Estle, 2003; see also Weatherly & Derenne, 2013 for 

non-significant results), but the magnitude of losses does not affect discounting rate to the 

same extent (Estle et al., 2006; Mitchell & Wilson, 2010; Green, Myerson, Oliveira & Chang, 

2014). 

This difference in the effect of magnitude results in a more pronounced gain-loss 

asymmetry at higher magnitudes, but the range of lower magnitude at which no gain-loss 

asymmetry is observed is inconsistent across studies. An additional complication is that 

statistical tests conducted on parameters derived from model fits versus AUC are not always 

consistent. Weatherly and Derenne (2013) reported no main effect of condition using log-

transformed h from the hyperbolic model (with generally poor fits ranging from R2 of 0.70-

0.72 for gains and 0.58-0.59 for losses), but a significant main effect using AUC, where gains 

were discounted more than losses when data were averaged across the $1000 and $100000 

magnitudes. The effect of magnitude itself was not significant using either measure of 

discounting. The average AUC reported by Mitchell and Wilson (2010) showed that gains 

were discounted more steeply than losses for both $10 and $100 magnitudes. Estle et al. 

(2006) reported analysis using AUC, with no significant main effect of condition when 

participants discounted $200 and $40000 (Experiment 2) and a significant main effect of 

condition when participants discounted $100, $20000 and $60000 (Experiment 4).  
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In non-experiential probability discounting tasks, gain-loss asymmetry has sometimes 

also been observed in studies that assessed whether choice is risk seeking or risk averse 

relative to the expected value of the outcomes. The four-fold pattern of risk preference 

described by Prospect Theory predicts that people are risk averse for gains and risk seeking 

for losses for most probabilities (Tversky & Kahneman, 1992). However, at lower 

probabilities individuals are expected to become more risk seeking for gains and risk averse 

for losses. In probability discounting, we are not able to use h values to examine responses to 

specific probabilities, as it quantifies rate of change across a range of probabilities. AUC is 

similarly a summary statistic about all of the data points, rather than individual probabilities. 

We can, however, determine whether overall the subjective value is lost at a steeper or 

shallower rate than expected value would predict. In probability discounting, the predicted 

pattern of risk aversion for gains and risk seeking for losses at most probabilities would 

correspond to generally steeper discounting of both gains and losses relative to the expected 

value rate.  

Studies comparing observed discounting curves for gains and losses to those based on 

the expected value have produced mixed results. Shead and Hodgins (2009) found that the 

rate at which an outcome lost its value was, in general, risk averse for gains and risk seeking 

for losses relative to the expected value. Estle et al. (2006) did not report an analysis 

comparing discounting to the expected value. My examination of their data showed that 

discounting of gains depended on the magnitude of the larger outcome. That is, discounting 

was closer to behaviour predicted by the expected value with lower amounts and more risk 

averse with higher amounts. Conversely, discounting of losses was unaffected by magnitude 

and was closer to discounting predicted by the expected value. Mitchell and Wilson (2010) 

similarly observed that discounting rate for gains depended on the magnitude of the larger 

outcome, showing a similar pattern to Estle et al. (2006), but the loss condition showed an 

overall pattern of risk aversion. Weatherly and Derenne (2013) did not report a comparison to 

the expected value, but my examination of the data suggested that choice was, in general, risk 

seeking for gains and risk averse for losses.  

The most consistent pattern across the studies we examined is that for both gains and 

losses, the indifference points were shallower than the expected value at probabilities lower 

than approximately 25% (higher odds against; e.g. Mitchell & Wilson, 2010), corresponding 

to Prospect Theory’s probability weighting function predictions. The variability observed 

above appears to be mostly due to data at higher probabilities, both across studies and 
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between gains and losses. At probabilities higher than approximately 75% (lower odds 

against), discounting tended to be steeper than the expected value and match Prospect Theory 

predictions, but more consistently for gains rather than losses (e.g. Shead & Hodgins, 2009). 

Discounting at the middle range of probabilities (25-75%) showed a less consistent pattern of 

responding for both gains and losses. This result may be due to encompassing the probability 

range at which Prospect Theory predicts a change from underweighting to overweighting of 

probabilities according to the probability weighting function. No clear cut-offs exist for 

where underweighting of low probabilities begins, with the most common observation is that 

it lies between 0.30 and 0.40 probabilities (Tversky & Kahneman, 1992; Wu & Gonzalez, 

1996; Gonzalez & Wu, 1999). 

Overall, if a gain-loss asymmetry was observed, it tended to be in the direction of 

steeper discounting of gains than losses, consistent with the reflection effect in Prospect 

Theory. It also does not appear to be a strong effect, which is consistent with some of the 

reflection effect literature that did not find a robust difference (e.g. Hershey & Schoemaker, 

1980). The distribution of indifference points relative to the expected value tended to match 

Prospect Theory predictions, more so for gains than losses.  

Discounting in experiential and risky-risky contexts 

According to the description-experience gap literature, choice from experience results 

in a different preference for the risky option compared to choice from description. 

Furthermore, the differences to choice from description are more pronounced when the 

participant is deciding between a safe and a risky option, rather than two risky options.  

Experience of outcomes. In probability discounting tasks combining experience and 

description, participants receive feedback about each choice before making subsequent 

choices. Participants on these tasks have shown systematic discounting of both hypothetical 

(Greenhow, Hunt, Macaskill & Harper, 2015) and real monetary gains (Scheres et al., 2006; 

Hinvest & Anderson, 2010). Greenhow et al. (2015) developed a mixed description-

experience game-style task where participants navigated a skier down a slope. Participants 

also regularly encountered a ski jump scenario with a choice between a smaller number of 

points to be gained for certain and a larger number of points to be gained at one of five 

probabilities. The key aspect was that participants were exposed to the outcomes of each trial 

based on their choices, with immediate feedback on their score. The procedure demonstrated 

systematic discounting of hypothetical game points, suggesting that experiential 
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computerized tasks are a viable procedure for comparing probability discounting of gains and 

losses when outcomes of choices are experienced. No studies have examined gain-loss 

asymmetry in such mixed description-experience tasks to our knowledge.  

We examined gain-loss asymmetry in the mixed description-experience ski task by 

contrasting it to a non-experiential money task as part of my honours thesis (unpublished). In 

a first experiment, we observed that the gain-loss asymmetry reversed as predicted by the 

description-experience gap, with steeper discounting of gains than losses in the money task 

and steeper discounting of losses than gains in the ski task (graphs reprinted in Appendix A). 

In a second experiment, we replicated this comparison of discounting of gains and losses 

from the first experiment, and introduced experiential features to the money task in order to 

test whether a similar reversal of the gain-loss asymmetry would be observed. However, we 

did not replicate this reversed pattern in either the mixed description-experience money or ski 

game contexts; group data showed similar discounting of gains and losses and individual data 

suggested this was due to a large range of variability in whether gains or losses were 

discounted steeper (graphs reprinted in Appendix A). While the data from the mixed 

description-experience tasks did not resemble that of discounting in a non-experiential 

context, neither did it show discounting consistent with the predictions of a reversed 

reflection effect. Therefore, Study 1 continued the examination of the effect of introducing 

experiential outcomes on the gain-loss asymmetry in discounting, as well as included an 

examination of discounting relative to choice predicted by the expected value.  

Notably, our probability discounting procedures combined both description and 

experience, which is unlike most of the procedures that have examined the description-

experience gap. In a probability discounting task, given the number of trials required for a 

titrating amount procedure, it is impractical to provide sufficient trials for participants to fully 

experience the probabilities examined. We adopted a combined description-experience 

condition, where the probabilities were described, but the participants also received 

experience with most of the outcomes. Research that has provided participants with both 

descriptions of and experience with the probabilities of choice outcomes suggests that 

experience predominates, and decisions resemble those made from experience alone (Jessup, 

Bishara, & Busemeyer, 2008; Lejarraga & Gonzalez, 2011). This combination of description 

and experience is also analogous to our example of taking daily medication in the general 

introduction. An individual might make repeated decisions about whether to take a daily 

medication that they have been told reduces their risk of a medical problem while also 



20 
 

describing a risk of side effects, experiencing the outcome of their choices and adjusting 

subsequent choices accordingly. For simplicity, we will refer to the mixed description-

experience task as experiential in subsequent discussions, but we will return to this distinction 

in the General Discussion.  

Based on the description-experience gap literature and the reversed reflection effect, 

we expected losses to be discounted more steeply than gains in an experiential task (Hertwig 

& Erev, 2009). Furthermore, as we noted in the general introduction, the probability 

weighting function for experiential choice tends to range from almost linear weighting to an 

S-shape. Wulff et al. (2018) observed that behaviour in the experiential context showed a 

higher proportion of choices maximizing the mean returns than in the descriptive context: 

experience was associated with more optimal choice. Therefore, when participants experience 

the outcomes of their choices, we would expect either shallower discounting of both gains 

and losses relative to choice based on the expected value of the outcomes, or at least choice 

patterns that are in general closer to the expected value.  

Risky-risky context. Typical discounting tasks establish the subjective value of the 

larger, uncertain alternative by contrasting it to a smaller amount to receive for certain. These 

form a useful analogue of the common premise of having to trade-off two valued dimensions, 

certainty and amount. Under such conditions, the predictions of Prospect Theory in terms of a 

reflection effect have largely been supported. We can modify a typical safe-risky task by 

changing the probability of the smaller, certain alternative to 0.99. Mathematically, this 

alternative is almost certain to happen and practically the participants are unlikely to 

experience the 0.01 rare outcome. The trade-off largely remains unchanged, with one option 

offering (more) certainty and the other a higher amount, but based on the behaviour economic 

literature we might expect a disproportionate change in behaviour. 

According to the probability weighting function of Prospect Theory, a numerical 

decrease in probability is not always accompanied by a proportionate decrease in preference 

(refer to Figure 1.2; Tversky & Kahneman, 1992). Rather, individuals treat the transition 

from certainty to near certainty as categorical rather than continuous, whereas a similar 

change among moderate probabilities (e.g. from 45% to 44%) is more linear in nature. 

However, under conditions where both outcomes are risky, behaviour more closely 

approximates that predicted by the expected value of the outcomes (see Andreoni & 

Sprenger, 2011 and Bleichrodt et al., 2007 for discussions). For example, Bleichrodt et al. 
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(2007) observed no overweighting of small probabilities between 0.1 and 0.2 in a risky-risky 

context using health outcomes. Additionally, McCord and Neufville (1987) observed that 

choice between two risky gains did not result in overvaluing of outcomes characterized by the 

concave shape of the Prospect Theory value function. Therefore, we might expect a risky-

risky non-experiential task to show discounting closer to expected value, consistent with 

some studies that have shown that Prospect Theory predictions do not hold well for choice 

between risky options, although reflection effects have also been documented in a risky-risky 

context (e.g. Budescu & Weiss, 1987). Probability discounting using two risky options has 

not been investigated to our knowledge. 

Risky-risky and experience combined. Wulff et al. (2018) concluded that the 

description-experience gap was reduced, but not eliminated, when both alternatives were 

risky. This difference appeared to be partially due to the experiential choice in the safe-risky 

contexts resulting in linear to S-shaped weighting of probability, different from that of 

descriptive choice, while risky-risky procedures resulted in an inverse S-shaped function akin 

to descriptive choice. Therefore, we also examined experiential discounting in a risky-risky 

context for patterns that might deviate from experiential choice in a safe-risky context.  

Correlations 

In addition to comparing absolute levels of discounting of gains and losses, we also 

compared whether the tendency to choose the risky option was maintained within individuals 

across the tested contexts. Studies that have correlated discounting of gains and losses have 

observed negative correlations (Shead, Callan, & Hodgins, 2008; Shead & Hodgins, 2009), 

although this was not consistently significant (Mitchell & Wilson, 2010). Studies that have 

compared discounting of gains across tasks have generally observed positive correlations 

when the conditions varied in magnitude of the larger outcome (Greenhow et al., 2015; but 

see Yi, de la Piedad, & Bickel, 2006 for non-significant results), when the rewards were real 

or hypothetical (Hinvest & Anderson 2010; Matusiewicz, Carter, Landes, & Yi, 2013) and 

when participants were tested after a delay between condition (Peters & Buchel, 2009; 

Ohmura, Takahashi, Kitamura, & Wehr, 2006; but see Matusiewicz et al., 2013 for non-

significant results). Similar positive correlations have been observed for losses when the 

conditions varied in magnitude of the larger outcome (Green et al., 2014). Overall, the 

correlations observed in the literature suggested that greater risk seeking in one condition was 
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associated with greater risk seeking in the other, and it is of interest whether such a 

relationship can also be observed in the atypical contexts described above. 

Table 2.2 summarizes our specific predictions based on Prospect Theory and 

description-experience gap literature. 

Table 2.2 

Predictions of gain-loss asymmetry for the four possible context combinations in a 

probability discounting task 

 Description Experience 

Safe-risky Discounting of gains steeper 

than of losses, both steeper 

than expected value-based 

curve 

 

Discounting of losses steeper than 

of gains, both shallower than/close 

to expected value-based curve 

Risky-risky Discounting of gains steeper 

than of losses, both steeper 

than/close to expected value-

based curve 

Discounting of losses steeper than 

of gains, both steeper than/close to 

expected value-based curve 

Experiment 1: Discounting in a risky-risky, non-experiential money task 

Study 1, Experiment 1 aimed to pilot an online risky-risky discounting procedure, 

where the probability of the smaller, certain option was changed from 1.00 to 0.99, and to 

contrast it to discounting on a safe-risky money task. Our first aim was to determine the 

feasibility of this contextual change to an online format in terms of the rate of unsystematic 

data and the fit of the hyperbolic model to the data. These indicators were compared to the 

literature and my honours thesis data set. We piloted online data collection because this 

approach would facilitate more efficient and convenient data collection from a more diverse 

participant group. If this experiment suggested that online data collection produced data of a 

quality comparable to in-lab data collection, then we planned to use this approach for 

subsequent studies in this thesis. We chose a non-experiential task to pilot online because 

more is known about typical rates of systematic data and hyperbolic model fits in such 

contexts.  

Our second aim was to examine gain-loss asymmetry in the safe-risky task; we 

expected steeper discounting of gains than losses (e.g. Estle et al., 2006) and discounting 

curves to be steeper than curves produced by expected value. Our third aim was to examine 
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any consistent patterns in discounting of gains relative to losses, as well discounting relative 

to the expected value, which might indicate a gain-loss asymmetry in the risky-risky context. 

Based on the literature, we expected to observe steeper discounting of gains than losses and 

choice patterns that were closer to decisions based on the expected value. Our analysis was 

also supplemented by examining correlations within and across tasks.  

Method 

Participants 

Forty-four participants attending Victoria University of Wellington were recruited 

through the School of Psychology Research Programme online tool and participated in partial 

fulfilment of a course requirement. The Victoria University School of Psychology Human 

Ethics committee reviewed and approved all aspects of all studies presented in this thesis 

(approval number: 0000024336). 

Materials 

 Non-experiential safe-risky money task. The task was coded using JavaScript in 

Qualtrics. Participants completed a total of 30 questions for each condition. The following 

instructions were shown with each set of questions: 

 In this task, you will see pairs of monetary outcomes. Please click on the outcome you 

would choose if you were given this choice in real life. Please read each pair 

carefully as each will be slightly different from the previous pair.  

 Below the instructions, participants were presented with five questions to a screen and 

had to scroll down to complete them. Each question presented them with two alternatives with 

the smaller amount at 1.00 probability on the left and the larger amount at one of five 

probabilities (0.90, 0.65, 0.45, 0.30, and 0.15) on the right. Each set of five questions contained 

one question for each probability of the larger amount. The order in which these questions were 

listed on the screen was the same in each set and was randomized once at the start of each 

condition for each participant. The smaller, certain amount in the first set of five questions in 

each condition was set to $50, half of the larger, uncertain amount ($100). For each subsequent 

choice at the same probability, the certain amount was adjusted by 10% of the larger amount 

($10) based on the participant’s previous choice at that probability. For gains, choosing the 

larger, uncertain gain resulted in an increase in the smaller amount for that probability in the 

next set while choosing the smaller gain resulted in a decrease. For losses, choosing the 
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uncertain loss resulted in a decrease in the size of the smaller loss in the next set, while choosing 

the smaller loss resulted in an increase. Thus the size of the smaller alternative was always 

adjusted in the direction that would make the participants’ previous choice at that probability 

less appealing. Participants clicked a button to advance to the next set of five questions and, 

once all 30 questions for the current condition were completed, to the next condition or task. 

Non-experiential risky-risky money task. The task was coded as described above, with 

the exception of the smaller amount set to 0.99 probability in each trial. The titrating procedure 

was as described above. 

Procedure 

The experiment was completed online via the survey engine Qualtrics. Participants 

were shown a screen with a brief summary of the experiment, indicating that they had the 

option to withdraw at any stage before completion of the survey, and an informed consent 

statement. Each participant completed both tasks and both conditions within each task. The 

order of the tasks and conditions was randomized. Upon completion, participants were shown 

a screen debriefing them on the purpose of the study.  

Data Analysis and Exclusions 

In the safe-risky task, we calculated the indifference point at each probability of the 

larger outcome, which indicated a smaller, certain outcome that was equal in subjective value 

to the larger, uncertain outcome. We took the mean of the smaller, certain amount at the last 

trial and the subsequent smaller, certain amount that would have been presented following 

one additional adjustment. For example, if the participant chose the smaller, certain option of 

$60 at the last gain trial, the subsequent smaller, certain amount would have been $50 and so 

the indifference point for this probability would be $55. The only exception was that the 

indifference points could not be below $0 or above $100. Indifference points for the risky-

risky task were calculated in the same manner, and indicated a smaller outcome to occur with 

0.99 probability that was equal in subjective value to the larger outcome to occur at a lower 

probability. Indifference points were expressed as a proportion of the larger, uncertain 

amount. 

 We examined participants’ indifference points for non-systematic discounting using 

the widely used criteria developed by Johnson and Bickel (2008; see Smith, Lawyer & Swift, 

2018 for a review on non-systematic data in discounting). According to the first criterion, 
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data were systematic if an indifference point was not larger than the indifference point at the 

previous odds against by more than 20% of the uncertain amount ($20). According to the 

second criterion, the indifference point for the largest odds against had to be smaller than the 

first indifference point by at least 10% ($10) of the uncertain amount. This was based on the 

assumption that an outcome should lose at least some of its value (quantified as 10%) with 

decreasing probability. Table 2.3 specifies the number of participants who failed the criteria 

within each condition. Non-systematic data were assumed to reflect inattention or lack of 

understanding of the options presented and we opted to present the analysis with 

unsystematic data sets removed. However, including all participants did not affect 

conclusions. When the analysis concerned only the money or only the ski task data, we used 

the fully systematic responses in each task (row 3 in Table 2.3). When the analysis concerned 

comparisons across tasks, we used the fully systematic responses across tasks (row 4 in Table 

2.3). 

Table 2.3 

Number of participants (n = 44) in Study 1, Experiment 1 who had unsystematic data by 

criterion, and total participants with systematic data. 

 Safe-risky Risky-risky 

 Gain Loss Gain Loss 

Criterion 1 1 2 1 4 

Criterion 2 4 5 1 6 

Total systematic in each task 36 (81.81) 35 (79.55) 

Total systematic across tasks 30 (68.18) 

Note. Percentages are in parentheses. 

The hyperbolic equation was fitted to each individual’s indifference points and to the 

group median indifference points using nonlinear, least squares regression. R2 values were 

calculated in order to estimate the goodness of fit for the hyperbolic equation. The h 

parameters were not normally distributed (Shapiro-Wilk’s test for normality all p < .001) and 

were log transformed to normalize the distribution for analysis. Log transforming the data 

resulted in Shapiro-Wilk’s test p values > .05 for all but the losses condition on the safe-risky 

task (W = 0.93, p = .027). Examination of histograms showed a slight positive skew for 

losses, but the shape of the distribution was otherwise normal. AUC values were normally 

distributed (Shapiro-Wilk’s test for normality all p > .05) with the exception of gain condition 

on risky-risky task (W = 0.92, p = .016). Examination of histograms showed a slight negative 

kurtosis for gains, but the shape of the distribution was otherwise normal. Thus, statistical 
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tests that require normality assumptions were deemed appropriate. Effect sizes for t tests 

(Cohen’s dz) were calculated using the spreadsheet provided by Lakens (2013) and for F tests 

(partial eta squared, 𝜂𝑝
2) were derived from SPSS output. 

Results and Discussion 

Did the online format produce reliable estimates of discounting? 

Application of Johnson and Bickel (2008) criteria produced a greater number of 

unsystematic data sets than expected, suggesting poor data quality. The percentage of data 

sets that were not fully systematic (31.82%) was higher than the overall frequency seen in 

probability discounting studies (19%; Smith, Lawyer, & Swift, 2018) and my honours thesis 

data. Notably, the percentage of unsystematic data sets for the safe-risky (18.18%) and risky-

risky (20.45%) tasks was comparable to literature, showing that the risky-risky manipulation 

itself resulted in largely sensible data. Examination of Table 2.3 showed that the majority of 

criteria violations were on criterion two, where the participants showed no sensitivity to 

changes in probability from highest to lowest odds against. The resultant systematic data sets 

produced reasonable R2 values for the group data and the majority of the individuals’ data 

(see Table 2.4). Although we observed a greater range of individual R2 values in the current 

sample, the median R2 were comparable to my honours thesis experiments and the literature 

(e.g. Lawyer et al., 2011). 

Table 2.4 

Study 1, Experiment 1 money task h, R2 and AUC values 

 

Group median 

indifference points Individual participants 

 h R2 AUC 

h median (Q1, 

Q3) 

R2 median (Q1, 

Q3) 

AUC mean 

(SE) 

Safe-risky gain 2.79 0.98 0.21 2.61 (1.46, 4.97) 0.88 (0.69, 0.95) 0.23 (0.02) 

Safe-risky loss 1.56 0.96 0.30 1.59 (0.87, 4.22) 0.80 (0.36, 0.90) 0.30 (0.03) 

Risky-risky gain 2.84 0.97 0.19 2.39 (1.29, 4.19) 0.87 (0.80, 0.93) 0.22 (0.02) 

Risky-risky loss 2.38 0.97 0.23 1.87 (1.01, 5.47) 0.79 (0.48, 0.89) 0.27 (0.03) 

Note. Q1 = first quartile, Q3 = third quartile. 

In order to check whether task progression resulted in poorer data quality due to 

fatigue or boredom, we calculated the percentage of unsystematic responses and median R2 

values from 1st to 4th condition completed by the participants. The percentage of unsystematic 

responses was lowest in the 1st condition (2.27%) and highest in the second (18.18%), 
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subsequently decreasing for the 3rd (15.91%) and 4th (9.09%) conditions, suggesting that the 

relatively high percentage of unsystematic data observed did not reflect participants 

becoming fatigued as a result of the relatively large number of choices they were presented 

with. This also showed that the majority of unsystematic data were not from the early 

conditions, suggesting that participants understood the instructions. Median R2 values for 

systematic data were stable across conditions: 1st 0.86, 2nd 0.78, 3rd 0.89, and 4th 0.86.  

 

Figure 2.3. Mean residuals calculated from individual data on the safe-risky (left) and risky-

risky (right) money tasks as a function of odds against in the gain (white circles) and loss 

(black circles) conditions. Error bars are standard error of the mean.  

Lastly, examination of residuals showed systematic effects of odds against on 

residuals in both tasks, with a linear increase in mean residuals from lowest to highest odds 

against that seemed more pronounced for losses. Figure 2.3 shows that at lower odds against, 

mean residuals were generally negative and at higher odds against they are generally positive. 

This suggested that the hyperbolic model underestimated discounting rate at lower odds 

against (i.e. indifference points were steeper) and overestimated discounting rate at higher 

odds against (i.e. indifference points were shallower) for most of the participants. However, a 

repeated-measures ANOVA confirmed a significant linear trend for the effect of odds against 

on residuals for losses on the safe-risky task only (see Table 2.5 for sphericity and ANOVA 

statistics). Mauchly’s test indicated that the assumption of sphericity had been violated for all 

four of the conditions, therefore degrees of freedom were corrected using the Greenhouse-

Geisser and Huynh-Feldt estimates of sphericity where appropriate. For the safe-risky task, 

there was a significant effect of odds against on residuals in both conditions, but subsequent 

tests for whether the trends were linear showed a non-significant result for gains (F(1, 35) = 

3.58, p = .067) and a significant linear trend for losses (F(1, 35) = 11.53, p = .002). For the 

risky-risky task, there were no significant effects of odds against in either condition.  
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These analyses suggested that the online format resulted in systematic discounting for 

most participants within the majority of the conditions, but data quality was overall poorer 

than in our in-lab data collections. The residual analysis showed a systematic linear pattern 

for the losses condition on the safe-risky task, suggesting a poor fit of the hyperbolic model 

to the data in one of the four conditions.  

Table 2.5 

Study 1, Experiment 1 money task sphericity and ANOVA statistics 

 Sphericity  ANOVA 

 χ2 df p ε  F df p 𝜂𝑝
2 

Safe-risky          

Gains 27.02 9 .001 .70a  2.80 2.82, 98.53 .047 .074 

Losses 27.60 .001 .85b  5.04 3.38, 118.26 .002 .126 

Risky-risky          

Gains 55.43 9 <.001 .63a  1.70 2.52, 85.53 .181 .048 

Losses 27.25 .001 .84b  2.51 3.35, 113.84 .056 .069 

Note. a = Greenhouse-Geisser correction; b = Huynh-Feldt correction. 

Did the participants display a gain-loss asymmetry on the safe-risky money task? 

The top panel of Figure 2.4 shows the individual and group data for the safe-risky 

task. No order effects on discounting rate were observed. The group median indifference 

points and their discounting curves for gains (dashed line) and losses (solid line) for the two 

tasks (h and AUC values are reported in Table 2.5) are shown on the right. Discounting on 

the safe-risky money task was steeper for gains than losses, and discounting of both gains and 

losses was steeper than the expected value (dotted line).  

Individual participants’ data are presented in the modified Brinley plots on the left for 

log(h) and on the right for AUC (means represented by a data point with error bars). For the 

safe-risky money task, 24 of the 36 data points (66.67%) on the log(h) graph indicated 

individuals with steeper discounting of gains than losses, as seen in the median data curves. 

However, this difference was not significant (t(35) = -0.98, p = .334, dz = 0.16). Repeating 

the same analysis with AUC showed a gain-loss asymmetry where AUC for losses was 

significantly higher than for gains (t(35) = 2.10, p = .043, dz = 0.35). The dotted reference 

lines on all graphs indicate choice based on the expected value (h = 1, log(h) = 0). Most 

individuals discounted gains and losses more steeply than predicted by the expected value 

(points mostly in quadrant B), and the group mean log(h) value was significantly above zero 

for gains (t(35) = 6.96, p < .001, dz = 1.16) and for losses (t(35) = 3.28, p = .002, dz = 0.55). 
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Figure 2.4. Left panel: Logged h parameters for gains plotted against logged h parameters for 

losses for each individual in the safe-risky (top half) and risky-risky (bottom half) money 
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tasks. The black diamond represents the mean and the error bars are standard error of the 

mean. The diagonal dashed line represents symmetrical discounting of gains and losses. 

Dotted vertical and horizontal lines demarcate logged h value (0) when decisions are made 

based on expected value. Right panel: Subjective value (indifference points as a proportion of 

the larger, uncertain amount) as a function of increasing odds against occurrence of a gain 

(white triangles) or loss (black triangles) for safe-risky (top half) and risky-risky (bottom 

half) money tasks. Dashed (gains) and solid (losses) curves are the best-fitting hyperbolic 

functions. The dotted curve is a hyperbolic function from decisions made based on expected 

value (h = 1). Below the curves, AUC for losses is plotted against AUC for gains for each 

individual in the safe-risky (top half) and risky-risky (bottom half) money tasks. Group 

means and symmetrical discounting are as described for the left panel graph. 

We expected discounting on the non-experiential safe-risky money task to be 

consistent with the gain-loss asymmetry seen in my honours thesis first experiment and the 

predictions of Prospect Theory. Discounting for both gains and losses was steeper than choice 

based on the expected value, consistent with our predictions. Furthermore, both measures of 

discounting showed a difference in median discounting rates consistent with literature (e.g. 

Estle et al., 2006). However, analysis of individual parameters using different discounting 

measures showed some inconsistencies. For one measure, log(h), this difference was not 

significant, but given the varied R2 and some systematic deviations in residuals, the validity 

of using this parameter is questionable. For the AUC measure, the steeper discounting of 

gains than losses was significant and consistent with the median data. On balance, there was 

evidence for a gain-loss asymmetry consistent with the reflection effect in choice from 

description.  

Did the participants display a gain-loss asymmetry on the risky-risky money task? 

The bottom panel of Figure 2.4 shows the individual and group data for the risky-

risky task. The hyperbolic model fitted to the median indifference points on the right showed 

that discounting on the risky-risky money task was similar for gains and losses, where both 

were steeper than expected value. For the individual data, 20 of the 35 data points (57.14%) 

on the log(h) graph were above the diagonal reference line and the discounting of gains and 

losses was not significantly different (t(34) = -0.74, p = .467, dz = 0.12). As with log(h), AUC 

analysis did not show a gain-loss asymmetry (t(35) = 1.69, p = .101, dz = 0.29). Discounting 
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of gains (t(34) = 6.94, p < .001, dz = 1.17) and losses (t(34) = 4.01, p < .001, dz = 0.68) was 

steeper than predicted by the expected value.  

We observed no consistent gain-loss asymmetry in the risky-risky condition, with 

both the median data and individual log(h) and AUC parameters showing no consistent 

difference between the gain and loss conditions. However, discounting for both gains and 

losses was steeper than choice based on expected value, similar to the safe-risky condition, 

suggesting that the risky-risky context affects the consistency of discounting of gains relative 

to losses, but not relative to the expected value.  

Correlations between tasks and conditions 

Correlations are presented in Table 2.6. Discounting based on log(h) across the two 

tasks was significantly, positively correlated for gains and for losses, suggesting that there 

was consistency in how the participants’ discounting varied across the safe-risky and risky-

risky contexts. The same pattern was observed across the two tasks based on AUC. Within 

each task, gains and losses were negatively, but not significantly, correlated based on both 

log(h) and AUC data. 

Table 2.6 

Study 1, Experiment 1 money task correlations for log(h) and AUC parameters 

 Log(h) AUC 

E2.1   

Gains safe-risky - Losses safe-risky -0.10 -0.14 

Gains risky-risky - Losses risky-risky -0.19 -0.10 

Gains safe-risky - Gains risky-risky 0.58* 0.57* 

Losses safe-risky - Losses risky-risky  0.76* 0.72* 

Note. *p < .01   

Experiment 2: Discounting with no safe option and in experiential tasks  

Study 1, Experiment 1 showed that the online format produced fewer systematic data 

sets than we expected, and therefore, for subsequent experiments we changed to in-lab data 

collections. Study 1, Experiment 1 also established that when participants discounted in a 

risky-risky context, they did not show the typical pattern of discounting gains steeper than 

losses seen in choice from description. In Study 1, Experiment 2, we combined a series of 

three data collections (sub-samples) that were aimed at examining the effects of choosing 
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between two risky options, experience of outcomes and a combination of the two on the gain-

loss asymmetry in ski and money task contexts.  

Across all three sub-samples, we compared the discounting of gains and losses using 

two tasks: an experiential computer ski game adapted from Greenhow et al. (2015) and a 

money task. The money task was either non-experiential, or it resembled hypothetical tasks 

typically used but with experienced outcomes (i.e. combined description and experience). 

Including two distinct discounting tasks using different commodities and contexts allowed us 

to systematically replicate our measurement of gain-loss asymmetry. Any consistencies in 

gain-loss asymmetry across the tasks would speak to the consistency of the effects of 

experience and the risky-risky context on choice.  

Table 2.7 

Summary of the three sub-samples in Study 1, Experiment 2 

Sub-

sample 

Money task Ski task n 

E2.1 Experiential safe-risky Experiential safe-

risky 

41 (21 recruited combined 

with 20 from honours thesis) 

E2.2 Non-experiential risky-

risky 

Experiential risky-

risky 

52 

E2.3 Experiential risky-risky Experiential risky-

risky 

53 

Table 2.7 summarizes the tasks and sample sizes in the three sub-samples. In E2.1, we 

expanded on the experiential data derived from my honours thesis to investigate the effects of 

experience on discounting in ski and money tasks, and combined our data sets for analysis. 

We expected steeper discounting of losses than gains in both tasks, in line with the reversed 

reflection effect in the description-experience gap literature (Hertwig & Erev, 2009). We also 

expected discounting to be either shallower than or close to choice based on the expected 

value of the outcomes. In E2.2 and E2.3, we combined the experiential component and the 

risky-risky context in money and ski game tasks. In E2.2, we compared discounting in a non-

experiential money and an experiential ski tasks. In E2.3, we compared discounting in 

experiential money and experiential ski tasks. We also examined whether choice was risk 

seeking or risk averse in each condition and task, and determined whether there were any 

correlations within the sub-samples. We expected steeper discounting of losses than gains 

with inclusion of the experiential component. We also expected the combination of 

experiential component with risky-risky context to show generally steeper discounting than 
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choice based on the expected value, unlike that in experiential safe-risky tasks (Wulff et al., 

2018). 

Method 

Participants 

We recruited a total of 126 participants attending Victoria University of Wellington 

through the School of Psychology Research Programme online tool over several trimesters. 

The analyses below included data from 20 additional participants from the honours thesis 

data set for a total of 146 participants. First-year psychology students participated in partial 

fulfilment of a course requirement. The three parts of Study 1, Experiment 2 were run as 

three separate experiments, but are combined here for simplicity of explanation. Participants 

were first recruited for E2.1, and participants for E2.2 and E2.3 were recruited 

simultaneously.  

Materials 

All tasks were coded using Visual Basic. The titrating procedure was unchanged from 

Study 1, Experiment 1. 

Ski Task. In the ski game the participants navigated a skier through a ski slope. The 

goal was to avoid certain features which deducted points and target certain features that 

added points. The ski task began with the following instructions: 

You are a 'ski boarder' competing for points. The object of the task is to gain as 

many points as possible.  You gain points for each jump you make over 

'moguls' which look like: [image of a mogul]. You lose points for running into 

trees or rocks. Every so often you have to make a 'free run' at a jump platform. 

Before making such a jump you must choose ONE of TWO possible jump 

scenarios. Read the jump scenarios carefully as they will change from trial to 

trial. Use the mouse to click on the option you wish to choose. You move the 

player around using the DOWN, LEFT and RIGHT arrows. You can only move 

left or right, straight down, or at an angle downwards (make sure you spend 

some time at the start trying out the keys in order to become familiar with 

movement). Please wear the headphones attached to the computer during this 

task. 



34 
 

Participants were given three minutes to familiarize themselves with the game rules 

and earn points before the experimental trials began (Figure 2.5, A). It was important for the 

participants to accumulate points so that points could subsequently be lost in the loss 

condition. Ten points were gained by navigating the player character over moguls (small ski 

jumps made from packed snow) and three points were lost for running into trees or rocks. 

The accumulated total score was presented on the top right of the screen. If the participant 

had fewer than fifty points after the first sixty seconds of the game, a prompt was generated 

by the program that read “Don’t forget to ski over moguls and get points!”. On average, 

participants accumulated 91 points before the experimental trials. After three minutes, the 

experimental trials began. Participants skied for 15 seconds between discounting choices.  

 

Figure 2.5. Screen capture of the ski task, consisting of the layout of the game in-between 

discounting options (A), the instructions and discounting options (B), and the outcome after 

clicking one of the options (C). 

The instructions for the gains condition read: Use the mouse to click on 1 of the 2 

jump options below. Each option carries a different chance of success and number of points 

gained IF successful. 

The instructions for the losses condition read: Use the mouse to click on 1 of the 2 

jump options below. Each option carries a different chance of failure and number of points 

lost IF failed. 
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 The options were presented below the instructions (Figure 2.5, B). Once a choice was 

made, a simulation of the skier attempting the jump was played, and the outcome appeared at 

the bottom of the screen (Figure 2.5, C). If the jump resulted in points gained or no points lost 

(both being successful jumps), the outcome message box was coloured green and the skier 

remained upright. If the jump resulted in no points gained or points lost (both being failed 

jumps), the message box was coloured red and the skier was shown to have fallen into the 

snow. The accumulated total score was updated with the result of the jump attempt. The 

larger, uncertain amount was set at 50 points, while the smaller, uncertain amount started at 

half of the larger, uncertain amount (25 points), and was adjusted by 10% (5 points) of the 

larger, uncertain in the same manner as in Study 1, Experiment 1. 

Non-Experiential Money Task. Instructions were as described in Study 1, 

Experiment 1. The alternatives were presented below the instructions, with the certain, 

smaller alternative on the left and the larger, uncertain on the right. The questions were 

arranged in six sets as described in Study 1, Experiment 1, but the questions in this in-lab 

version were shown on the screen one at a time (Figure 2.6). Choosing an option advanced 

the participants to the next question after a 500 millisecond delay until all the questions for a 

given condition were completed. 

Figure 2.6. Screen capture of the money task instructions and options. Participants selected 

one of the options by clicking on them 

Experiential Money Task. The instructions were as in Study 1, Experiment 1. Once 

the participants indicated their choice, an animation of a turning hourglass was played for two 

seconds above the options (Figure 2.7, B). The outcome appeared below the hourglass for 

two seconds after the animation ended (Figure 2.7, C). A counter indicating accumulated 

balance was added below the instructions and updated with each outcome (Figure 2.7, A). 
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The initial balance was set to $3000 in order to be comparable to the points gained from the 

non-discounting portion of the ski game. In the ski game, the first experiment of my honours 

thesis indicated that participants gained, on average, 1438 points during the non-discounting 

portion of the task, which is approximately 30 times the amount of the larger, uncertain. 

Hence, in the second experiment of my thesis the proportional balance in the money task was 

set to $3000 (30 times $100). This accumulated balance was subsequently deducted from or 

added to once the discounting portion commenced and avoided the possibility of a negative 

balance if the first condition scheduled was losses. Given the thirty trials (six sets of five 

probabilities), the starting value of $3000 ensured that if the first scheduled condition was 

losses, the participant chose to risk a loss of $100 in each trial and by chance failed at each 

trial (i.e. outcome was loss), then the total balance would not decrease below $0. This balance 

was also implemented in this set of experiments. 

 

Figure 2.7. Screen capture of the experiential money task, consisting of the layout of the 

discounting options balance and instructions (A), the animation after choosing one of the 

options (B), and the outcome (C). 

The Risky-Risky Manipulation. The risky-risky versions of the ski and money tasks 

were as described above, with the only exception that the probability of the smaller, certain 

option was displayed as 99%. For tasks that were also experiential, the probability of 

experiencing the event remained at 100% despite the displayed 99%. 
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Procedure 

The participants were assigned to a cubicle with a computer terminal and headphones 

and tested in groups of four or fewer. Participants completed an informed consent procedure 

before starting the tasks. Within each sub-sample, each participant completed both tasks and 

both conditions within each task. The order of the money and ski tasks was counterbalanced. 

The order of the gain and loss conditions was also counterbalanced within the tasks.  

Data Analysis and Exclusions 

Data were analysed as described in Study 1, Experiment 1. Table 2.8 specifies the 

number of participants who failed the Johnson and Bickel (2008) criteria within each 

condition. We opted to present the analysis with unsystematic data sets removed. However, 

including all participants did not affect conclusions.  

Table 2.8 

Number of participants (n = 146) in Study 1, Experiment 2 who had unsystematic data by 

criterion, and total participants with systematic data. 

 Money Ski 

E2.1 (n = 41) Experiential safe-risky Experiential safe-risky 

 Gain Loss Gain Loss 

Criterion 1 3 1 1 1 

Criterion 2 0 1 0 2 

Total systematic in each task 36 (87.80) 37 (90.24) 

Total systematic across tasks 33 (80.49) 

E2.2 (n = 52) Non-experiential risky-risky Experiential risky-risky 

 Gain Loss Gain Loss 

Criterion 1 1 3 4 0 

Criterion 2 1 5 1 2 

Total systematic in each task 46 (88.46) 48 (92.31) 

Total systematic across tasks 43 (82.69) 

E2.3 (n = 53) Experiential risky-risky Experiential risky-risky 

 Gain Loss Gain Loss 

Criterion 1 1 1 0 2 

Criterion 2 0 1 0 1 

Total systematic in each task 51 (96.23) 51 (96.23) 

Total systematic across tasks 50 (94.34) 

Note. Percentages are in parentheses. 
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Individual h parameters were not normally distributed (Shapiro-Wilk’s test for 

normality all p < .001). Log transforming the data resulted in p values > .05 for all conditions, 

except ski loss in E2.3 (W = 0.95, p = .021). The distribution in the ski loss condition showed 

slight positive kurtosis, but the shape of the distribution was otherwise normal. Therefore, 

log(h) values were used for analysis for all conditions. For AUC, Shapiro-Wilk’s test for 

normality showed significant results for ski gains in 2.1 (W = 0.91, p = .006), money losses in 

2.2 (W = 0.92, p = .003) and ski losses in 2.3 (W = 0.91, p = .001), all of which were showing 

slight positive skew and kurtosis, but the shape of the distributions was otherwise normal.  

Results and Discussion 

The hyperbolic model provided good fits to the individual and group median data (see 

Table 2.9 for R2 values). Notably, the three sub-samples provided a narrower range of R2 

values and a lower percentage of overall unsystematic data sets than in Study 1, Experiment 

1. Furthermore, no systematic trends were observed in mean residuals (see Appendix B), 

suggesting that the poorer quality of data in Study 1, Experiment 1 was most likely due to the 

features of the online format.  

Table 2.9 

Study 1, Experiment 2 ski and money task h, R2 and AUC values 

 

Group median 

indifference points Individual participants 

E2.1 h R2 

 

AUC 

h median (Q1, 

Q3) 

R2 median (Q1, 

Q3) 

AUC mean 

(SE) 

Money gain  1.74 0.97 0.27 1.68 (1.32, 3.05) 0.83 (0.77, 0.90) 0.27 (0.02) 

Money loss 1.83 0.96 0.23 1.87 (1.06, 2.90) 0.85 (0.73, 0.91) 0.26 (0.02) 

Ski gain 1.25 0.98 0.31 1.25 (0.79, 2.27) 0.91 (0.86, 0.95) 0.32 (0.02) 

Ski loss 1.09 0.99 0.33 1.22 (0.73, 1.60) 0.87 (0.77, 0.93) 0.33 (0.02) 

E2.2       

Money gain 2.06 0.99 0.21 1.83 (1.15, 3.34) 0.86 (0.78, 0.92) 0.24 (0.02) 

Money loss 1.60 0.98 0.26 1.81 (0.75, 2.85) 0.86 (0.73, 0.92) 0.30 (0.02) 

Ski gain 1.30 0.96 0.28 1.30 (0.79, 2.15) 0.89 (0.82, 0.93) 0.30 (0.01) 

Ski loss 1.60 0.98 0.26 1.50 (0.90, 2.25) 0.90 (0.82, 0.94) 0.30 (0.02) 

E2.3       

Money gain 1.66 0.94 0.23 1.60 (1.00, 2.87) 0.85 (0.79, 0.89) 0.25 (0.02) 

Money loss 1.79 0.91 0.22 1.65 (1.12, 2.85) 0.87 (0.79, 0.92) 0.24 (0.01) 

Ski gain 1.02 0.93 0.30 1.02 (0.69, 1.60) 0.86 (0.81, 0.92) 0.32 (0.02) 

Ski loss 1.33 0.92 0.31 1.32 (0.91, 2.00) 0.86 (0.72, 0.92) 0.30 (0.02) 

Note. Q1 = first quartile, Q3 = third quartile. 
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Examination of the group median and individual data indicated an order effect in 

some sub-samples, where discounting depended on the order in which participants completed 

the tasks and conditions. Therefore the data in each sub-sample were examined for both 

condition- (gain-loss vs. loss-gain) and task- (money first vs. money second) order effects. 

The right panels of Figures 2.8-2.10 show the hyperbolic equation fitted to the group median 

indifference points as described in Study 1, Experiment 1 and are split by order of condition. 

The individual log(h) and AUC data are shown in the left and right panels respectively, where 

black data points denote participants who experienced gains first and white data points denote 

participants who experienced losses first. Means are represented by data points with errors 

bars, with the circles denoting data split by order and the square data point denoting the 

overall mean not split by order.  

E2.1 Gain-loss asymmetry in experiential money and ski tasks 

The experiential money task showed that the participants did not discount losses more 

steeply than gains. Rather, participants who completed the gains condition first discounted 

gains more steeply than losses and participants who completed the losses condition first 

discounted losses more steeply than gains. Group median curves show a distinct reversal in 

which condition is discounted more steeply based on order. Both the individual log(h) (left 

panel of Figure 2.8) and AUC parameters (right panel) show more black circles above the 

diagonal line, indicating steeper discounting of gains in the gains first order, and more white 

circles below the line, indicating steeper discounting of losses in the losses first order. A 

mixed measures ANOVA, with condition (gains vs. losses) as a within-subjects factor, 

condition order (gain-loss vs. loss-gain) as a between-subjects factor, and task order (money 

first vs. money second) as a between-subjects factor confirmed that log(h) values were 

determined by a significant interaction between condition and condition order (see Table 

2.10). Simple main effects analysis using a Bonferroni correction showed that the difference 

between gains (M = 0.39, SE = 0.08) and losses (M = 0.17, SE = 0.07) when gains were first 

was significant (p = .027), but the difference between gains and losses when losses were first 

was not significant (p = .126). 

Notably, while the same analysis using AUCs confirmed the log(h) ANOVA results 

(see Appendix C), the follow-up tests indicated that the difference between gains and losses 

when gains were first was not significant (p = .057), while the difference between gains (M = 

0.31, SE = 0.03) and losses (M = 0.22, SE = 0.03) when losses were first was significant (p = 
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.016). The group and individual data showed that the log(h) parameters for both gains (t(35) 

= 5.18, p < .001, dz = 0.78) and losses (t(35) = 4.71, p < .001, dz = 0.86) were greater than 

choice based on the expected value (h = 1, log(h) = 0). 

 

Figure 2.8. Left panel: Logged h parameters for gains plotted against logged h parameters for 

losses for each individual in the money (top half) and ski (bottom half) tasks, split by order; 
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black circles are gain-loss and white circles are loss-gain order. The larger black and white 

circles represent the means split by order, the white square the overall mean and the error 

bars are standard error of the mean. The diagonal dashed line represents symmetrical 

discounting of gains and losses. Dotted vertical and horizontal lines demarcate logged h value 

(0) when decisions are made based on expected value. Right panel: Subjective value 

(indifference points as a proportion of the larger, uncertain amount) as a function of 

increasing odds against occurrence of a gain (white triangles) or loss (black triangles) for 

money (top half) and ski (bottom half) tasks. For each task, data are split by order as 

indicated by the graph titles. Dashed (gains) and solid (losses) curves are the best-fitting 

hyperbolic functions. The dotted curve is a hyperbolic function from decisions made based on 

expected value (h = 1). Below the curves, AUC for losses is plotted against AUC for gains 

for each individual in the money (top half) and ski (bottom half) tasks. Group means and 

symmetrical discounting are as described for the left panel graph. 

Data for the experiential ski task showed a similar effect of order on the difference 

between gains and losses. A mixed measures ANOVA showed no significant main effects 

and the only significant interaction was between condition order and condition. Simple main 

effects analysis using a Bonferroni correction showed no significant effect of condition on 

log(h) values either when gains were presented first (p = .051), or when losses were presented 

first (p = .073). For AUC, while the ANOVA results were consistent with log(h), simple main 

effects analysis showed a significant difference between gains (M = 0.29, SE = 0.03) and 

losses (M = 0.38, SE = 0.03) for the gains first order (p = .047) and no significant difference 

between gains and losses for the losses first order (p = .060). Contrary to the money task, 

discounting in both conditions approximated discounting based on the expected value. 

Neither log(h) for gains (t(36) = 1.35, p = .187, dz = 0.22) nor losses (t(36) = 1.21, p = .235, 

dz = 0.20) were significantly different from choice based on the expected value. 

E2.2 Gain-loss asymmetry in risky-risky non-experiential money and experiential ski 

tasks 

Discounting in the non-experiential risky-risky money task showed the same pattern 

as in Study 1, Experiment 1: discounting of gains and losses were not significantly different, 

and both were discounted more steeply than choice based on the expected value (Figure 2.9). 

A mixed measures ANOVA showed no significant main-effects of order or condition, and 

non-significant interactions with the exception of task order and condition order (Table 2.10). 
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Table 2.10 

Study 1, Experiment 2 ANOVA results using log(h) 

 F df p 𝜂𝑝
2 F df p 𝜂𝑝

2 

 Money Ski 

E2.1 Safe-risky experiential Safe-risky experiential 

Condition 0.06 1, 32 .814 .002 <0.001 1, 33 .999 <.001 

Condition order 0.03 .877 .001 0.01  .924 <.001 

Task order 0.14 .709 .004 1.20  .281 .035 

Condition by 

Condition order 

6.99 .013 .179 7.10  .012 .177 

Condition by Task 

order 

0.87 .359 .026 0.16  .694 .005 

Condition order by 

Task order 

0.21 .653 .006 2.52  .122 .071 

Condition by Condition 

order by Task order 

1.75 .195 .052 0.33  .569 .010 

E2.2 Risky-risky non-experiential Risky-risky experiential 

Condition 1.68 1, 42 .202 .038 0.21 1, 44 .648 .005 

Condition order 2.44 .125^ .055 0.93  .339 .021 

Task order 0.04 .834 .001 0.91  .346 .020 

Condition by Condition 

order 

0.01 .930 <.001 0.39  .534 .009 

Condition by Task 

order 

0.01 .906 <.001 0.65  .424 .015 

Condition order by 

Task order 

4.12 .049^ .089 0.01  .916 <.001 

Condition by Condition 

order by Task order 

0.01 .914 <.001 0.03  .865 .001 

E2.3 Risky-risky experiential Risky-risky experiential 

Condition 0.13 1, 47 .723 .003 4.00 1, 47 .051 .078 

Condition order 0.73 .396 .015 1.15  .289 .024 

Task order 12.88 .001 .215 1.96  .168 .040 

Condition by 

Condition order 

23.60 <.001 .334 0.37  .546 .008 

Condition by Task 

order 

0.49 .488 .010 2.01  .163 .041 

Condition order by 

Task order 

0.23 .637 .005 0.02  .891 <.001 

Condition by Condition 

order by Task order 

0.86 .358 .018 0.11  .746 .002 

Note. Bold emphasis added to significant results. ^ indicates results that differed when using 

AUC (table in Appendix C). 
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Figure 2.9. Left panel: Logged h parameters for gains plotted against logged h parameters for 

losses for each individual in the money (top half) and ski (bottom half) tasks, split by order; 

black circles are gain-loss and white circles are loss-gain order. The larger black and white 
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circles represent the means split by order, the white square the overall mean and the error 

bars are standard error of the mean. The diagonal dashed line represents symmetrical 

discounting of gains and losses. Dotted vertical and horizontal lines demarcate logged h value 

(0) when decisions are made based on expected value. Right panel: Subjective value 

(indifference points as a proportion of the larger, uncertain amount) as a function of 

increasing odds against occurrence of a gain (white triangles) or loss (black triangles) for 

money (top half) and ski (bottom half) tasks. For each task, data are split by order as 

indicated by the graph titles. Dashed (gains) and solid (losses) curves are the best-fitting 

hyperbolic functions. The dotted curve is a hyperbolic function from decisions made based on 

expected value (h = 1). Below the curves, AUC for losses is plotted against AUC for gains 

for each individual in the money (top half) and ski (bottom half) tasks. Group means and 

symmetrical discounting are as described for the left panel graph. 

Simple main effects analysis using a Bonferroni correction showed that when the 

money task was first, the average log(h) across gains and losses in the loss first order (M = 

0.37, SD = 0.07) was steeper than in the gains first order (M = 0.14, SD = 0.06; p = .015). 

When the money task was second, there was no significant difference in the average log(h) 

between the two condition orders (p = .743). These significant effects of order were in 

contrast to the AUC results, which found no significant interaction of condition order and 

task order, but a significant main effect of condition order. Mean AUC parameter for gains 

and losses was significantly lower when losses were first (M = 0.24, SD = 0.02) compared to 

when gains were first (M = 0.30, SD = 0.02). Logged h was significantly higher than zero for 

both gains (t(45) = 6.80, p < .001, dz = 1.00) and losses (t(45) = 2.93, p = .005, dz = 0.43). 

Discounting in the ski task was similar to that of E2.1, in that discounting on one 

condition was not consistently steeper than in the other. However, a mixed measures 

ANOVA showed no significant main effects or interaction when using log(h) and when using 

AUC, suggesting that discounting was unaffected by condition or task order. Unlike the ski 

task in E2.1, both gains and losses conditions were discounted more steeply than expected 

value; log(h) values were significantly higher than zero for gains (t(47) = 3.30, p = .002, dz = 

0.48) and losses (t(47) = 3.41, p = .001, dz = 0.49). 

E2.3 Gain-loss asymmetry in risky-risky experiential money and ski tasks 

A combination of experiential and risky-risky features in the money task produced 

order effects akin to E2.1 (see Figure 2.10). A mixed measures ANOVA showed no 
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significant main effects of condition or condition order, a significant main effect of task order 

and one significant interaction between condition and condition order (see Table 2.10). The 

main effect of task order indicated that the average log(h) for gains and losses was higher 

when the money task was first (M = 0.37, SE = 0.04) compared to when the money task was 

second (M = 0.15, SE = 0.05; p = .001). Simple main effects analysis using a Bonferroni 

correction showed that the differences between gains (M = 0.40, SE = 0.06) and losses (M = 

0.18, SE = 0.06) when gains were first (p = .002) and between gains (M = 0.10, SE = 0.06) 

and losses (M = 0.36, SE = 0.06) when losses were first (p = .001) were both significant. 

Analysis of AUC parameters confirmed the ANOVA results and the follow-up tests. Log(h) 

values were significantly higher than zero in the gain (t(50) = 5.50, p < .001, dz = 0.77) and 

loss (t(50) = 5.94, p < .001, dz = 0.83) conditions. 

Discounting in the ski task largely replicated the patterns in E2.2. A mixed measures 

ANOVA showed no significant main effects or interactions, showing no consistent gain-loss 

asymmetry or effect of order on discounting. Analysis using AUC confirmed these results. 

Log(h) values were significantly higher than zero in the loss condition (t(50) = 3.35, p = .002, 

dz = 0.47), but not in the gain condition (t(50) = 0.89, p = .377, dz = 0.12).  

Correlations between conditions and tasks 

In addition to examining gain-loss asymmetry within tasks, we also considered if 

there was consistency in how discounting rates varied across the tasks. In all three 

subsamples, and for both log(h) and AUC, gains and losses were significantly positively 

correlated across tasks, while gains and losses were not significantly correlated within the 

tasks (see Table 2.11). A positive correlation suggested that even while discounting rates 

were sometimes affected by order of presentation, there was also consistency in how the 

participants’ discounting varied across the two tasks. 

Table 2.11 

Study 1, Experiment 2 correlations for log(h) and AUC values. 

 Log(h) AUC 

E2.1   

Gains money - Losses money -0.22 0.06 

Gains ski - Losses ski -0.25 -0.22 

Gains money - Gains ski 0.69* 0.61* 

Losses money - Losses ski  0.58* 0.55* 
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Table 2.11 (continued) 

 Log(h) AUC 

E2.2   

Gains money - Losses money -0.26 -0.16 

Gains ski - Losses ski -0.17 -0.10 

Gains money - Gains ski 0.44* 0.48* 

Losses money - Losses ski  0.59* 0.62* 

E2.3   

Gains money - Losses money 0.15 0.16 

Gains ski - Losses ski 0.09 0.08 

Gains money - Gains ski 0.67* 0.59* 

Losses money - Losses ski  0.47* 0.37* 

Note. *p < .01   

Do the risky-risky and experience contexts produce a consistent gain-loss asymmetry? 

Study 1, Experiment 2 aimed to further investigate the gain-loss asymmetry in risky-

risky and experiential contexts. E2.1 resolved the discrepancy in the two data sets from my 

honours thesis: experience of outcomes resulted in an order effect consistent across the 

money and ski contexts, where participants discounted outcomes more steeply in the first 

condition they completed. This effect of order was also apparent in the experiential risky-

risky money task in E2.3 and absent in the non-experiential risky-risky money task in E2.2, 

suggesting that this order effect depends primarily on the experiential component. The effect 

of order also appears to be more likely in the money rather than ski tasks. Unlike the ski task 

in E2.1, neither of the ski tasks in sub-samples E2.2 and E2.3 showed an effect of order on 

discounting, despite the inclusion of the experiential component. The addition of the risky-

risky manipulation to the existing experiential features in these ski tasks does not seem to 

sufficiently explain this, as such a combination in the money task still produced order effects 

in E2.3. Additionally, the money tasks in E2.2 and E2.3 both showed further influences of 

task order, which was not observed in any of the ski tasks. The task order effect in E2.3, in 

particular, indicated that discounting became shallower with task progression, which is in the 

same direction as the condition order effects.  
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Figure 2.10. Left panel: Logged h parameters for gains plotted against logged h parameters 

for losses for each individual in the money (top half) and ski (bottom half) tasks, split by 

order; black circles are gain-loss and white circles are loss-gain order. The larger black and 
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white circles represent the means split by order, the white square the overall mean and the 

error bars are standard error of the mean. The diagonal dashed line represents symmetrical 

discounting of gains and losses. Dotted vertical and horizontal lines demarcate logged h value 

(0) when decisions are made based on expected value. Right panel: Subjective value 

(indifference points as a proportion of the larger, uncertain amount) as a function of 

increasing odds against occurrence of a gain (white triangles) or loss (black triangles) for 

money (top half) and ski (bottom half) tasks. For each task, data are split by order as 

indicated by the graph titles. Dashed (gains) and solid (losses) curves are the best-fitting 

hyperbolic functions. The dotted curve is a hyperbolic function from decisions made based on 

expected value (h = 1). Below the curves, AUC for losses is plotted against AUC for gains 

for each individual in the money (top half) and ski (bottom half) tasks. Group means and 

symmetrical discounting are as described for the left panel graph. 

In all of the money tasks, participants discounted gains and losses more steeply than 

choice based on expected value. While this was consistent with our predictions for the risky-

risky contexts, both experiential and non-experiential, it was inconsistent with the predictions 

for the experiential safe-risky context, where we expected shallower discounting. The 

predicted pattern was not altogether absent, as the safe-risky experiential ski task in E2.1 

showed discounting that was not significantly different from expected value, echoing the 

differences between the money and ski tasks in relation to the consistency of order effects. 

Was the observed order effect due to experience of outcomes? 

Overall, discounting in atypical contexts, (i.e. risky-risky and experience), does not 

produce the consistent gain-loss asymmetry that is seen in choice from description in either 

the ski or the money task contexts. Rather, discounting depends on the recent experience of 

the participants, more so for the money context rather than the ski context. Similar order 

effects have been noted in studies where the participants experienced two different 

probability discounting conditions. Matusiewicz et al. (2013) conducted a study where 

participants completed a real-rewards lottery-style task and a hypothetical money task over 

two sessions held one week apart. The real-rewards task did not show outcomes for each 

option, but at the end of each session the participants experienced one of their previously 

chosen options randomly selected by the experimenter. Participants assigned to the real-

rewards condition in the first session showed shallower discounting in the real-rewards 

condition in the second session if they experienced one of their probabilistic choices at the 
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end of the first session. This effect was strongest in the participants that won as opposed to 

lost on their probabilistic choice in the first session. A similar order effect has been noted by 

Hinvest and Anderson (2010) who compared two experiential tasks, but only one condition 

had real lottery-style rewards at the end of the session. They found an effect of order of task 

presentation, where completing the experiential task with no real rewards in session one 

resulted in shallower discounting in session two where the participants played for potentially 

real lottery-style rewards. Hinvest and Anderson proposed that the experience of probabilistic 

outcomes resulted in subsequent greater risk taking for the task offering potentially real 

rewards. No difference in discounting was observed for the reverse order, which seems to be 

inconsistent with Matusiewicz and colleagues (see Yi, Stuppy-Sullivan, Pickover, & Landes, 

2017 for a discussion on the effect of switching between control and experimental conditions 

on discounting).  

Experiment 3: Experiential money test-retest task 

In Study 1, Experiment 2, discounting of gains relative to losses was largely 

inconsistent across participants in both experiential and risky-risky contexts. The most 

consistently observed pattern was the effect of order on discounting. In some of the tasks, 

whether gains or losses were discounted more steeply depended on the order they were 

experienced in. That is, participants discounted outcomes more steeply in the first condition 

than in the second condition regardless of whether those outcomes were gains or losses. This 

effect of order was consistently seen in experiential money tasks, but less so in experiential 

ski tasks. Furthermore, discounting in the money task in E2.3 also showed susceptibility to 

task order, with participants discounting more shallowly after the ski task. 

However, follow-up tests that subdivided each condition by order did not consistently 

show a significant difference in discounting rate. In E2.1, there was only a significant 

difference in discounting rate between gains and losses in one of four groups: the gains first 

order in the money task, which showed higher mean h values for gains than losses. In E2.3, 

the experiential money task showed a significant difference in discounting rate for both 

groups: the gains first order showed steeper discounting of gains than losses, and the loss first 

order showed steeper discounting of losses than gains. Notably, in both of the sub-samples, 

this was a post-hoc exploratory analysis as we did not expect to find order effects and Study 

1, Experiment 2 was underpowered to detect this effect. The interaction effect sizes for the 

money task in E2.1 (𝜂𝑝
2 = .18) and E2.3 (𝜂𝑝

2 = .33) are considered large (Cohen, 1988). A 
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power analysis with alpha at .05 and power at .80, recommends at least 54 participants to 

detect a large effect size and up to 128 to detect a moderate effect size in the follow-up tests 

to the interaction (calculation done in GPower 3.1.9.2). A larger sample would also allow us 

to determine whether the significantly steeper discounting of both losses and gains relative to 

expected value in the money tasks was driven by the first condition alone, or whether h 

remained below 1 in the second condition completed. 

Therefore, Study 1, Experiment 3 replicated the safe-risky experiential money task 

from E2.1 with a larger sample in order to determine whether gain-loss asymmetry occurs in 

probability discounting of experienced outcomes after taking order into account. We expected 

that discounting of gains and losses would depend on condition order. We also administered a 

second experiential money task in order to determine whether discounting rates stabilized 

following initial exposure to the task or whether discounting rates became shallower with 

continued exposure to experienced outcomes. The latter result could explain the task order 

effect in the money task found in E2.3. We also examined whether discounting rates were 

correlated across the two repetitions of the gain condition and the two repetitions of the loss 

condition. Finally, we examined whether the relationship between gains and losses at the 

individual level was correlated across the two tasks. 

Method 

Participants 

One hundred and twenty-seven undergraduates participated in partial fulfilment of 

course requirements. Informed consent was collected. 

Apparatus 

The safe-risky experiential money task was as described in Study 1, Experiment 2. 

Procedure 

The participants were tested as described in Study 1, Experiment 2. Each participant 

completed two experiential money discounting tasks with a gain and a loss condition within 

each. The two tasks were separated by a 30 second interval stating the following on a full-

screen blue background: 

You have completed Part 1. Please take a break before proceeding to Part 2. Part 2 

will start automatically in 30 seconds. 
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 The order of presentation of the two conditions (gains and losses) was 

counterbalanced in the first task. In the second task, half of the participants experienced the 

same order as in Task 1 and half the reverse order. 

Data Analysis and Participant Exclusions 

Data were analysed as described in Study 1, Experiment 1. Individual h parameters 

were not normally distributed (Shapiro-Wilk’s test for normality all p < .001). Log 

transforming the data resulted in p values > .05 for gains in both tasks, but not losses in Task 

1 (W = 0.97, p = .008) or Task 2 (W = 0.98, p = .032). Examination of histograms showed 

slight positive skew for losses in both tasks and some outliers at the higher end of the 

distribution, but the shape of the distribution was otherwise normal. We also determined the 

degree and direction of each participants’ gain-loss asymmetry across the two task repetitions 

by calculating a gain-loss asymmetry score: log (loss h/gain h). Positive logged ratios indicate 

higher h parameter for losses than gains and negative logged ratios indicate the reverse. The 

gain-loss asymmetry scores for Task 1 and Task 2 were normally distributed (Shapiro-Wilk’s 

test for normality all p > .05). 

Table 2.12 specifies the number of participants excluded based on Johnson and 

Bickel’s (2008) criteria. The analysis below uses participants who had fully systematic data 

across tasks, with 59 experiencing the two tasks in the same order (31 with gains first) and 57 

in the swapped order (27 with gains first in the first task).  

Table 2.12 

Number of participants (n = 127) in Study 1, Experiment 3 who had unsystematic data by 

criterion, and total participants with systematic data. 

E2.1 (n = 41) Task 1 Task 2 

 Gain Loss Gain Loss 

Criterion 1 4 3 2 1 

Criterion 2 1 3 1 1 

Total systematic in each task 118 (92.91) 123 (96.85) 

Total systematic across tasks 116 (91.34) 

Note. Percentages in parenthesis.   

Results  
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The hyperbolic model provided good fits to the individual and group median 

indifference points (see Table 2.13). No systematic trends were observed in the mean 

residuals (see Appendix B). 

Table 2.13 

Study 1, Experiment 3 money task h, R2 and AUC values in Task 1 and 2 

 

Group median 

indifference points Individual participants 

 h R2 AUC 

h median (Q1, 

Q3) 

R2 median (Q1, 

Q3) 

AUC mean 

(SE) 

Task 1 Gain 1.38 0.96 0.27 1.55 (0.91, 2.70) 0.88 (0.80, 0.92) 0.28 (0.01) 

Task 1 Loss 1.83 0.96 0.23 1.80 (1.03, 2.84) 0.89 (0.78, 0.94) 0.26 (0.01) 

Task 2 Gain 1.30 0.96 0.28 1.32 (0.83, 2.23) 0.87 (0.79, 0.93) 0.30 (0.01) 

Task 2 Loss  1.46 0.96 0.24 1.49 (0.91, 2.73) 0.86 (0.79, 0.93) 0.27 (0.01) 

Note. Q1 = first quartile, Q3 = third quartile. 

Was discounting in Task 1 affected by condition order in Task 1? 

In Task 1, we replicated the steeper discounting in the first condition seen in Study 1, 

Experiment 2 and showed that discounting was steeper than that based on expected value in 

both the first and second conditions (individual and group median data are presented in 

Figure 2.11). A mixed measures ANOVA showed no significant main effects of order or 

condition, but a significant interaction between order and condition (see Table 2.14). The 

inset in the left panel of Figure 2.11 shows this interaction; when losses were presented first, 

gains (M = 0.14, SE = 0.05) were discounted significantly less steeply than losses (M = 0.32, 

SE = 0.05; p = 0.014), but when gains were presented first, there was no significant 

difference between discounting of gains and discounting of losses (p = .177; Bonferroni 

correction applied). The log(h) parameters were significantly higher than those describing 

choice based on expected value for losses in the loss-first order (t(57) = 7.31, p < .001, dz = 

0.96), gains in the loss-first order (t(57) = 2.82, p = .007, dz = 0.37), losses in the gain-first 

order (t(57) = 4.10, p < .001, dz = 0.54) and gains in the gain-first order (t(57) = 6.53, p < 

.001, dz = 0.86; Bonferroni adjusted alpha of .0125). 

The same analysis conducted with AUC confirmed the above ANOVA results, with 

the exception that the follow-up tests detected a significant difference between gains (M = 

0.33, SE = 0.02) and losses (M = 0.22, SE = 0.01) when losses were first (p < .001), as well as 
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between gains (M = 0.24, SE = 0.02) and losses (M = 0.29, SE = 0.01) when gains were first 

(p = .049; see Appendix D for AUC ANOVA results). 

Table 2.14 

Study 1, Experiment 3 ANOVA results using log(h) 

 F df p 𝜂𝑝
2 F df p 𝜂𝑝

2 

 Task 1 Task 2 (Task 2 order) 

Condition 0.63 1, 114 .428 .006 2.14 1, 114 .147 .018 

Condition order 0.10 .754 .001 0.72  .400 .006 

Condition by Condition 

order 

7.39 .008 .061 0.28  .599 .002 

  Task 2 (Task 1 order) 

Condition     2.11 1, 114 .149 .018 

Condition order    0.001  .980 <.001 

Condition by Condition 

order 

   3.05  .084 .026 

Note. Bold emphasis added to significant results.  

Was discounting in Task 2 affected by condition order in Task 2? 

Discounting in Task 2 did not demonstrate the effect of order observed in Study 1, 

Experiment 2 and Task 1, but did show the same pattern of steeper discounting than that 

based on expected value (bottom panel, Figure 2.11). A mixed-measures ANOVA showed no 

significant main effects of order or condition, and no significant interaction when using 

log(h) or AUC. The inset in the bottom left panel and the overlapping curves in the right 

panel of Figure 2.11 demonstrate the non-significant interaction of order and condition. 

Log(h) parameters were significantly higher than those describing choice based on expected 

value for losses in the loss-first order (t(54) = 4.31, p < .001, dz = 0.58), losses in the gain-

first order (t(60) = 4.69, p < .001, dz = 0.60) and gains in the gain-first order (t(60) = 3.93, p < 

.001, dz = 0.50), but not gains in the loss-first order (t(54) = 2.38, p = .021, dz = 0.32; 

Bonferroni adjusted alpha of .0125). 

Was discounting in Task 2 affected by condition order in Task 1? 

We examined whether discounting in Task 2 was related to condition order in Task 1 

by running a mixed measures ANOVA, with condition in Task 2 as the within-subjects factor 

and order in Task 1 as the between-subjects factor. There was no significant main effect of 

condition, order, or interaction when using log(h) or AUC. 
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Figure 2.11. Left panel: Logged h parameters for gains plotted against logged h parameters 

for losses for each individual in the money (top half) and ski (bottom half) tasks, split by 

order; black circles are gain-loss and white circles are loss-gain order. The larger black and 
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white circles represent the means split by order, the white square the overall mean and the 

error bars are standard error of the mean. This is also shown in the inset. The diagonal dashed 

line represents symmetrical discounting of gains and losses. Dotted vertical and horizontal 

lines demarcate logged h value (0) when decisions are made based on expected value. Right 

panel: Subjective value (indifference points as a proportion of the larger, uncertain amount) 

as a function of increasing odds against occurrence of a gain (white triangles) or loss (black 

triangles) for money (top half) and ski (bottom half) tasks. For each task, data are split by 

order as indicated by the graph titles. Dashed (gains) and solid (losses) curves are the best-

fitting hyperbolic functions. The dotted curve is a hyperbolic function from decisions made 

based on expected value (h = 1). Below the curves, AUC for losses is plotted against AUC 

for gains for each individual in the money (top half) and ski (bottom half) tasks. Group means 

and symmetrical discounting are as described for the left panel graph. 

Did discounting of gains and losses change from Task 1 to Task 2? 

Discounting of gains was more affected by order in the first task and task repetition, 

while discounting of losses was less affected by these factors. Examination of the top panel of 

Figure 2.12 showed that the majority of gains data points were below the diagonal line for 

log(h) on the left and above the diagonal line for AUC on the right, showing that participants 

generally had shallower discounting in the second gains condition they completed. A mixed 

measures ANOVA, with log(h) for gains as the dependent variable, task (first vs. second) as 

the within-subjects factor and order at Task 1 (gain-loss vs. loss-gain) as the between subjects 

factor, showed significant main effects of task (F(1, 114) = 9.47, p = .003, 𝜂𝑝
2 = .077) and 

order (F(1, 114) = 4.15, p = .044, 𝜂𝑝
2 = .035), and a non-significant interaction (F(1, 114) = 

1.65, p = .202, 𝜂𝑝
2 = .014). Participants had higher logged h values for gains on the first task 

(M = 0.21, SE = 0.03) than on the second task (M = 0.14, SE = 0.03), regardless of the order 

of condition presentation on the first task. Participants also had higher logged h values for 

gains averaged across Task 1 and Task 2 when they completed the gains conditions first (M = 

0.24, SE = 0.04) as compared to second (M = 0.12, SE = 0.04) in Task 1. The same analysis 

conducted based on AUC values showed a significant main effect of order (F(1, 114) = 5.28, 

p = .023, 𝜂𝑝
2 = .044) as above, but also a non-significant main effect of task (F(1, 114) = 3.50, 

p = .064, 𝜂𝑝
2 = .030) and a significant interaction (F(1, 114) = 14.31, p < .001, 𝜂𝑝

2 = .112). 

When gains were discounted first in Task 1, the mean gain AUC in Task 1 (M = 0.24, SE = 

0.02) was significantly lower than in Task 2 (M = 0.29, SE = 0.02; p < .001). When losses 
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were discounted first in Task 1, the mean gain AUC in Task 1 (M = 0.33, SE = 0.02) was not 

significantly different from Task 2 (M = 0.31, SE = 0.02; p = .179). 

 

Figure 2.12. Top two rows: Log(h) (left) and AUC (right) parameters in Task 1 plotted 

against Task 2 for gains (top row) and losses (second row). The diagonal dashed line 
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represents identical h or AUC parameters across tasks. Third row: Gain-loss asymmetry score 

using log(h) on the left (log(loss h/gain h)) and AUC on the right (log(gain AUC/loss AUC) 

in Task 1 plotted against gain-loss asymmetry score in Task 2. The diagonal dashed line 

represents identical scores across tasks. 

Examination of the middle panel of Figure 2.12 did not show any apparent trends in 

the discounting of losses based on log(h). There were no significant main effects of task (F(1, 

114) = 2.71, p = .103, 𝜂𝑝
2 = .023), order (F(1, 114) = 3.14, p = .079, 𝜂𝑝

2 = .027) or interaction 

(F(1, 114) = 0.63, p = .428, 𝜂𝑝
2 = .006) for losses using log(h). The same analysis conducted 

on AUC values showed a non-significant main effect of task (F(1, 114) = 2.14, p = .146, 𝜂𝑝
2 = 

.018) and a non-significant interaction (F(1, 114) = 3.89, p = .051, 𝜂𝑝
2 = .033). There was, 

however, a significant effect of order (F(1, 114) = 7.67, p = .007, 𝜂𝑝
2 = .063); participants had 

lower AUCs for losses averaged across Task 1 and Task 2 when they completed losses first 

(M = 0.24, SE = 0.01) as compared to second (M = 0.29, SE = 0.01), in Task 1. 

Correlations between tasks and conditions 

Gain-loss asymmetry scores were strongly significantly correlated across the two 

repetitions of the task for log(h) (r(114) = .79, p < .001) and AUC (r(114) = .77, p < .001). 

The bottom panel of Figure 2.12 shows each participant’s gain-loss asymmetry score for Task 

1 plotted against their gain-loss asymmetry score for Task 2. Most participants’ data points 

fall along the diagonal line, indicating that they demonstrated similar gain-loss asymmetry in 

Task 1 and Task 2. Log(h) values were significantly, positively correlated across tasks for 

losses and gains (see Table 2.15). Notably, discounting of gains and losses was significantly, 

negatively correlated in Task 1 and in Task 2. The same significant correlations were 

observed with AUC values. 

Table 2.15 

Study 1, Experiment 3 correlations for log(h) and AUC  

 Log(h) AUC 

E2.1   

Gains Task 1 - Losses Task 1 -0.28* -0.26* 

Gains Task 2 - Losses Task 2 -0.27* -0.23* 

Gains Task 1 - Gains Task 2 0.73* 0.78* 

Losses Task 1 - Losses Task 2 0.74* 0.68* 

Note. *p < .01   

 



58 
 

Study 1, Experiment 3 aimed to establish whether the order effect observed in 

experiential discounting in Study 1, Experiment 2 was replicable in a larger sample. 

Discounting of gains and losses in Task 1 was determined by an interaction of condition 

order and type of outcome discounted as in Study 1, Experiment 2, with steeper discounting 

in the first condition of Task 1. However, discounting patterns in Task 2 were less clear. 

Discounting in Task 1 was associated with discounting in Task 2, yet condition order for 

either Task 1 or Task 2 did not significantly affect discounting rates in Task 2. Notably, the 

negative correlation between gains and losses within each task suggested that the degree to 

which individuals were risk averse or risk seeking (i.e. tendency to choose the risky option) 

was largely maintained across gains and losses. Lastly, group mean discounting of losses was 

more consistent across tasks, whereas discounting of gains was more affected by task context. 

Discounting of gains became shallower as the task progressed, while discounting of losses 

was not similarly affected. 

Discussion 

We examined gain-loss asymmetry in probability discounting across several contexts 

by contrasting safe-risky with risky-risky, as well as descriptive with experiential 

components. We have summarized the findings below in Table 2.16 by updating Table 2.2 

with whether the predicted pattern was observed or not.  

We expected a gain-loss asymmetry in probability discounting rate and that the 

direction of this asymmetry would be reversed in choice from description versus choice from 

experience. While we replicated the gain-loss asymmetry in choice from description in the 

safe-risky context (e.g. Estle et al., 2006), discounting of gains and losses was not 

significantly different in the risky-risky context, inconsistent with our predictions (see 

Budescu & Weiss, 1987 for similar results). In almost every experiential money task and one 

of the experiential ski tasks, discounting of experienced gains differed significantly from 

discounting of experienced losses. However, the direction of the difference between 

discounting curves was primarily determined by whether discounting was measured earlier or 

later in the session and not by whether choices were about gains or losses (see Hinvest & 

Anderson, 2010 and Matusiewicz et al., 2013 for other examples of order effects in 

probability discounting). Hence, although choice based on a combination of experience and 

description largely did not resemble choice based on description alone, it was also not 
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consistent with our predictions based on the reversed reflection reported in the description-

experience gap literature. 

Table 2.16 

Predictions and observed results of gain-loss asymmetry for the four possible context 

combinations in a probability discounting task 

  

Description 

Tested in Supported?  

Experience  

Tested in 

 

Supported? 

Safe-

risky 

Discounting 

of gains 

steeper than 

of losses  

 

E1 money Yes Discounting 

of losses 

steeper than 

of gains  

 

E2.1 ski  

E2.1 money 

E3 T1 money 

E3 T2 money  

No, order  

No, order 

No, order 

No, null 

 Both steeper 

than 

expected 

value-based 

curve 

 

E1 money Yes Both 

shallower 

than/close to 

expected 

value-based 

curve 

E2.1 ski 

E2.1 money 

E3 T1 money 

E3 T2 money 

Yes 

No, steeper 

No, steeper 

No, mostly 

steeper  

Risky-

risky 

Discounting 

of gains 

steeper than 

of losses  

 

E1 money  

E2.2 money 

No, null 

No, null 

Discounting 

of losses 

steeper than 

of gains 

 

E2.2 ski 

E2.3 ski  

E2.3 money 

 

No, null 

No, null 

No, order 

 

 Both steeper 

than/close to 

expected 

value-based 

curve 

E1 money  

E2.2 money 

Yes 

Yes 

Both steeper 

than/close to 

expected 

value-based 

curve 

E2.2 ski 

E2.3 ski  

E2.3 money  

 

 

Yes 

Yes 

Yes 

Note. Order = interaction between order and condition significant; Null = no significant 

results observed, null hypothesis not rejected. Steeper = discounting significantly steeper than 

choice based on expected value. 

We expected discounting of gains and losses to be generally steeper than discounting 

based on expected value in contexts, except the safe-risky choice from experience context, 

where we expected generally shallower discounting. Our predictions based on the inverse S-

shaped probability weighting function were supported in the safe-risky choice from 

description (Tversky & Kahneman, 1992), as well as in all of the risky-risky conditions 

(Wulff et al., 2018). Choice from experience in the safe-risky context largely did not support 

our predictions based on an S-shaped probability weighting function. Rather, we found the 

same patterns seen in other contexts of generally steeper discounting than choice based on the 

expected value, with the exception of data from one ski task.  
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Order effect as transition from description to experience  

Studies comparing decisions from description with decisions from experience have 

found that decisions from experience are more risk averse for losses and more risk seeking 

for gains than decisions from description (Hertwig & Erev, 2009). In our experiential choice 

tasks, participants received information about the probabilities of different outcomes through 

both description and experience, accruing experience as the session progressed. It is possible 

that the shallower discounting we observed later in the session reflected a transition from 

choice controlled primarily by the descriptions of the probabilities of each outcome to choice 

controlled primarily by experience. 

Research that has provided participants with both descriptions of and experience with 

the probabilities of chosen outcomes suggested that experience predominates, and decisions 

resemble those made from experience alone (Jessup et al., 2008; Lejarraga & Gonzalez, 

2011). These findings suggested that including descriptions of the outcomes in our 

experiential task should not have significantly impacted participants’ decisions. In our 

experiments we observed that participants’ behaviour changed after they experienced some 

number of probabilistic outcomes, consistent with the research showing dominating effect of 

experience. However, the observed order effects also meant that our participants have not had 

sufficient trials to experience probability and the impact of the initial description likely 

remained. Therefore, the inconsistent direction of gain-loss asymmetry indicated that we 

captured their preferences while they were transitioning from decision from description to 

decision from experience. 

Jessup and colleagues (2008) observed similar behaviour in description-only and 

description with experience conditions in the first block of ten trials, but by the second block 

participants started showing a relatively consistent description-experience-gap. Their 

participants also had several practice trials before the actual experiment. Although our 

participants experienced thirty trials in each condition, these trials were divided among the 

five probabilities and the experience of each probability for each condition would at most 

reach six by completion. Study 1, Experiment 3 repeated the conditions, so that by the end of 

Task 2 the participants would have experienced sixty trials of gains and losses each. 

Repeating the task twice also did not guarantee sufficient exposure to probabilistic outcomes, 

as the participants had, at most twelve trials for each probability within these conditions. 

Consequently, we may have measured discounting rate earlier in the transition while 
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comparable research has sampled later (Jessup et al., 2008; Lejarraga & Gonzalez, 2011). 

Consistent with this idea, Wulff et al. (2018) found that the number of probabilistic outcomes 

participants sampled when able to try out the chance option was predictive of the size of the 

description-experience gap. 

Discounting of gains more susceptible to context than discounting of losses  

Discounting of gains was less stable across the sessions than discounting of losses. 

When comparing discounting across task administrations in Study 1, Experiment 3 and 

controlling for order of task presentation, there was no significant difference between 

discounting of losses in Task 1 and Task 2 based on log(h) values. However, a similar 

comparison showed that discounting of gains in the first task was steeper than discounting of 

gains on the second task, regardless of task order in the first task. Analysis using AUC 

showed some inconsistencies with the log(h) results. However, given the good fits of the 

hyperbolic model in Study 1, Experiment 3, the validity of the log(h) results appears to be 

high and AUC results were likely capturing noise in the data. Furthermore, this bears 

similarities to the differential effect of magnitude in literature, where discounting of gains 

was more susceptible to changes in magnitude than discounting of losses (e.g. Estle et al., 

2006; Green et al., 2014). Our findings suggested that certain features of the experiential 

context, which were more salient in the money than the ski tasks, affected the discounting of 

gains to a greater extent than discounting of losses. 

Consistency across task administration 

While the order effect resulted in an inconsistent direction of discounting, we can 

comment on some properties of experiential discounting that appeared to be consistent across 

repetitions and task contexts. We observed significant, negative correlations between gains 

and losses in Study 1, Experiment 3 based on both log(h) and AUC values. This negative 

relationship supported the work of Shead and Hodgins (2009), who also observed that an 

individual’s tendency to choose the larger, uncertain option was relatively consistent across 

gains and losses. A positive correlation between the logged ratios of losses over gains in Task 

1 and Task 2 of Experiment 3 suggested a degree of consistency in each individual’s level of 

gain-loss asymmetry. For most individuals, if gains were discounted more steeply than losses 

in Task 1, they were also discounted more steeply than losses in Task 2 and vice versa. 

Furthermore, across all of the three experiments, gains and losses on one task were positively 

correlated with gains and losses respectively on the other task, affirming a cross-context 
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similarity in discounting rate as seen in the literature (e.g. Green et al., 2014; Greenhow et al., 

2015). This within-individual stability may reflect the impact of each participant’s 

idiosyncratic pre-experimental history with probabilistic outcomes. 

Discounting relative to choice based on the expected value  

We also compared participants’ discounting rates to those based on the expected 

value. Prospect Theory predicts risk aversion for gains and risk seeking for losses in most 

participants for descriptive choice, which corresponded to the pattern we observed despite the 

inclusion of experience. The generally steeper discounting relative to choice based on the 

expected value in the risky-risky conditions also supported the findings of a generally inverse 

S-shaped probability weighting function in risky-risky contexts (Wulff et al. 2018). Wulff et 

al. also observed that experience was associated with more optimal choice, that is, a higher 

proportion of choices maximizing the mean returns. Although participants demonstrated 

shallower discounting in the second condition they experienced, bringing discounting closer 

to that based on the expected value, discounting remained significantly steeper than that 

predicted by expected value in most tasks.  

Notably, in selecting a range of probabilities to observe the rate of change in 

subjective value, the studies of gain-loss asymmetry in probability discounting have generally 

chosen more probabilities in the lower and higher range, rather than the middle 

(approximately 25-75%). While this constituted a distribution that was a roughly equal 

sampling of lower and higher probabilities within each study, the conversion of probabilities 

to odds against does not result in an equal distribution of points along the x axis. Figure 2.1 

shows that probabilities at 0.50 and above correspond to a smaller portion of the curve, while 

probabilities below 0.50 correspond to a larger portion of the curve. Hence, lower probability 

events were likely to have a higher influence on the parameter estimates. We chose our 

probabilities based on the range we have piloted in my honours thesis, but in retrospect this 

resulted in a heavier sampling of the middle range relative to the tail-ends of the probabilities, 

opposite to that in the literature (Shead & Hodgins, 2009; Estle et al., 2006; Weatherly & 

Derenne, 2013; Mitchell & Wilson, 2010). Based on the probability weighting functions we 

have plotted in Figures 1.2 and 1.3, the middle range of probabilities remains roughly 

unchanged with the reversal of the S-shaped function, with underweighting in both choice 

from description and choice from experience. We speculate that the relative consistency of 

steeper curves, corresponding to more risk seeking for losses and risk averse behaviour for 
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gains than expected value would predict, was due to the heavier sampling of the middle range 

of probabilities. This is speculative because there is no definitive probability weighting 

function in either the descriptive or the experiential literature (see Wulff et al. 2018 for a 

review), but does suggest further refinements to discounting tasks that should include careful 

mapping of a broader range of probabilities.  

The effect of magnitude on the gain-loss asymmetry  

We considered whether our choice of magnitude of the larger outcome diminished a 

possible gain-loss asymmetry. Studies that have manipulated the magnitude of the 

probabilistic option observed that smaller probabilistic gains were discounted less steeply 

than larger probabilistic gains, while discounting of losses was largely unaffected by change 

in magnitude of the probabilistic option (Estle et al., 2006; Mitchell & Wilson, 2010; but see 

also Weatherly & Derenne, 2013). Therefore, a more pronounced gain-loss asymmetry is 

expected at higher magnitudes, but the magnitude at which no gain-loss asymmetry is 

observed was inconsistent across studies (e.g. Mitchell & Wilson, 2010). However, our 

choice of $100 was within the range in which no gain-loss asymmetry has been observed in 

some previous studies (e.g. Estle et al., 2006).   

We also considered the magnitude of the on-screen balance as an additional aspect of 

our procedure that could have affected discounting. The balance varied from the first to the 

second condition as participants lost or gained money. Using Task 1 in Study 1, Experiment 3 

as an example, the first condition had a starting balance of $3000. In the losses-gains order 

the balance had decreased to $1739, on average, by the start of the second condition but in 

the gains-losses order it the balance had increased to $4477, on average, by the start of the 

second condition. The balance might affect the subjective, undiscounted value of the larger, 

uncertain alternative, and therefore affect discounting via the magnitude effect. Research 

suggests that larger gains are discounted more steeply but the magnitude of losses does not 

affect discounting rate (e.g. Estle et al., 2006), and that a similar effect occurs when the 

relative value of gains is manipulated by altering other rewards in the context (Dai, Grace & 

Kemp, 2009).  

The possible effect of the on-screen balance on the subjective magnitude of the 

outcomes likely does not account for the order effect observed, for several reasons. Firstly, 

the balance changed in the opposite direction for each order, yet the direction of change in 

discounting was the same for each. Secondly, the magnitude effect would predict steeper 
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discounting of gains in the second condition in the loss-gain order, and no effect of order on 

losses, which is inconsistent with the patterns we observed. Thirdly, we did not observe an 

order effect in the second task in Study 1, Experiment 3, even while the balance fluctuated in 

the same manner as in conditions with consistent order effects, and Hinvest and Anderson 

(2010) observed an order effect in the absence of an on-screen balance. These aspects of our 

results suggest that balance is an unlikely cause of order effects, although worthy of further 

investigation.  

To conclude, we would like to return to the trade-off between amount and probability 

when considering medical insurance. The context for such decisions is usually descriptive 

rather than experiential; the individual may not have feedback on their initial decision for 

many years. Previous research suggested that, in this type of decision context, the subjective 

value of gains and losses for an individual are likely to be asymmetric. However, decisions 

made from a combination of description and experience - such as about whether to take a 

daily medication producing side effects - are more likely to change across time as the 

individual accumulates experience with the outcome of their choices. Specifically, the current 

study suggests that with more experience, the probabilistic option would become subjectively 

more valuable to the decision maker while, and at the same time, the direction of asymmetry 

between gains and losses is preserved for each individual. This effect was also more likely in 

the safe-risky, rather than risky-risky contexts. Lastly, decisions involving losses might be 

less susceptible to contextual changes than decisions involving gains. The set of experiments 

in Study 1 point to the importance of methodological diversity to develop a full picture of the 

drivers of choice.  
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Study 2: Gain-loss asymmetry in a concurrent schedules task 

Study 1 explored the extent to which a gain-loss asymmetry was observed in 

probability discounting when the choice scenario was experiential, risky-risky and a 

combination of the two. Contrary to our initial predictions of a reverse gain-loss asymmetry 

when choice was made experiential, we did not observe a consistent difference in discounting 

of gains versus losses in safe-risky or risky-risky tasks. Instead, order of the conditions 

interacted with the type of outcome being discounted. This significant interaction was 

consistent across most of the experiential money tasks, as seen in Experiments 2.1, 2.3 and 3 

Task 1, and less consistent in the ski tasks, only seen in Experiment 2.1. In Experiment 3, 

Task 1, when the participants discounted losses first, losses were discounted significantly 

more steeply than gains, a finding consistent across both log(h) and AUC analysis. When the 

participants discounted gains first, the difference between gains and losses did not appear to 

be large, with a significant difference when using AUC but not log(h). This pattern suggested 

that both discounting of losses and discounting earlier in the task produced steeper curves; the 

weaker effect in the gains first order was likely due to these factors working in opposition. 

The gain-loss asymmetry appeared to be task order dependent. However, it is not 

clear which features of the task being experienced by the participants contributed to this 

change in discounting. First, progression through each condition involved not only increasing 

experience of probabilistic events, but also the magnitude and probability of each option 

varied, the separate contributions of which is not clear in a titrating-amount discounting 

procedure. Second, Experiment 3, Task 2 further demonstrated that discounting of gains was 

more susceptible to task repetition, generally becoming shallower, but the discounting of 

losses was not affected to the same extent. This suggested different rates of learning about 

probabilistic choices involving gains as opposed to losses. 

In Study 2, we used a theoretically and procedurally related concurrent-schedules task 

to continue our examination of gain-loss asymmetry in experiential choice and to further 

build upon the above findings. In a concurrent schedules task participants choose between 

two alternatives. One alternative could be associated with lower and the other with higher 

frequency of reinforcement, but participants typically do not know the exact schedules (i.e. 

no description is provided) and are encouraged to sample the alternatives and experience the 

outcomes. For example, in a concurrent schedules task using variable-intervals, the left 

alternative could be scheduled to provide a reinforcer on average every seven seconds (VI7s) 
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and the right on average every fourteen seconds (VI14s). After sampling each option and in 

order to maximize the number of reinforcers, most participants would be expected to respond 

more on the left relative to the right. The participants experience a range of such schedules to 

track how their response changes when we change some aspect of reinforcer delivery. 

Fundamentally, discounting and concurrent schedules tasks quantify similar decision-making 

behaviour (Rachlin, 2006). Both demonstrate that discounting of the subjective value of an 

outcome occurs as a function of changes to its probability. In probability discounting, the 

value of an outcome is discounted by its probability. In concurrent schedules tasks using 

variable intervals, the value of reinforcers is discounted due to the lower probability of 

receiving them, with greater loss in value on the leaner (e.g. VI14s) than the richer (e.g. VI7s) 

side. This difference in value is demonstrated by the fact that participants typically allocate 

more responses to the richer side.  

In our experiential discounting task, we observed an effect of condition order, 

presumably due to a transition in behaviour informed by description to behaviour that is also 

informed by experience, but the nature of the titrating procedure meant we could not isolate 

choice on later trials from choice on earlier trials. Concurrent schedule tasks allow the 

participant to learn the associated contingencies through repeated sampling and preferences 

are usually estimated from the final few trials; unlike in a discounting procedure 

learning/early trials do not directly contribute to this final estimate. Concurrent schedule tasks 

also allow for gain-loss asymmetry to be examined at both an extended and a local level of 

analysis (Baum, 2002, 2003). An extended level of analysis describes aggregated patterns of 

behaviour over extended exposure to changes in reinforcers, while a local level of analysis 

describes behaviour immediately after reinforcer delivery, which tends to be transient. While 

the former is possible in both tasks, the latter is not possible in our discounting task 

procedure. 

The probability discounting procedure we used in Study 1 and concurrent schedule 

tasks both allow for an extended level of analysis. The titrating amount procedure used thirty 

trials to calculate indifference points and subsequently the rate at which the outcome lost its 

subjective value with changes in its probability. We could not derive a measure of 

discounting rate from fewer than thirty trials as it took at least six trials for the participant to 

have the option to reach either the lowest ($0) or the highest ($100) possible smaller certain 

value. Furthermore, taking their choices on any given trial in isolation would not provide us 

with a measure of rate: change in subjective value as a function of increasing odds against. In 
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a concurrent schedules task, participant’s choices are aggregated across blocks of choices and 

can also be expressed as a rate of change in behaviour allocation in response to changes in 

reinforcement rate. Both procedures can thus provide a measure of gain-loss asymmetry in 

the form of an extended analysis of the rate at which an outcome loses its subjective value 

with change in some dimension, such as probability or magnitude. This also lends itself to the 

possibility of testing for shared variance between these extended level measures across the 

two types of tasks.  

While both procedures allow for an extended level of analysis, our titrating amount 

procedure does not permit local level of analysis of the effect of experiencing an outcome on 

the next choice. In our discounting task, we were unable to isolate the effect of choosing the 

risky option and the experience of its outcome at a given probability in one trial on the 

chances of choosing the risky option again on the next trial for the same probability. The 

titrating amount procedure systematically varied both amount of the smaller certain and the 

probability of the larger uncertain from trial to trial. This meant that changes to the amounts 

of the smaller, certain option, the probability of the larger, uncertain option, the number of 

choices an individual has made, and how often the probabilistic outcome, if selected, 

produced a gain or a loss could not be effectively separated. The generally shallower 

discounting with task progression, especially with gains as compared to losses, suggested that 

some of the above changes from trial to trial had varying local effects on the subsequent 

likelihood of choosing the larger, risky option. While we were unable to separate these effects 

out, concurrent schedule tasks could be used to vary each factor systematically to isolate the 

effect of accruing experience with probabilistic gains and losses, thus allowing for such local 

effects to be studied separately from the extended effect of reinforcers on behaviour.  

Finally, in applying the literature from the description-experience gap to our 

discounting procedure, we noted that the options in our experiential task necessitated 

descriptions, unlike most of the experiential non-discounting tasks in choice literature. 

Existing literature suggested that including descriptions along with experience would show 

patterns similar to experience alone (e.g. Jessup et al., 2008), but we may have 

underestimated how many trials were required to reach this point. A concurrent schedule task 

avoids this issue, as participants can only rely on experience from start to finish. 

In Study 2, we examined the gain-loss asymmetry in experiential choice by using a 

concurrent schedules task. Gain-loss asymmetry based on the predictions of Prospect Theory 
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has received limited attention in concurrent schedules tasks, and to our knowledge the 

description-experience gap literature has not been applied directly to concurrent-schedule 

tasks. We conducted both an extended and local analysis, a distinction that the data from the 

discounting procedure suggested might be an important part of the observed gain-loss 

asymmetry. Participants completed the Auckland Card Task, a rapid-acquisition concurrent 

schedules task. In addition, we also continued our examination of the interaction of condition 

order and type of outcome being discounted in experiential probability discounting by 

including an experiential discounting task in which balance was held constant across 

conditions. Finally, since each participant completed both the concurrent schedules task and 

the probability discounting task, we examined for any cross-task similarities at the extended 

level of analysis.  

Gain-loss asymmetry at extended level of analysis 

The behaviour on concurrent schedule tasks described above has been formalized as a 

quantitative principle in human choice literature. The strict matching law maintains that the 

distribution of responses in a given environment depends on all of the accessible 

contingencies (Herrnstein, 1961; 1970). If, at one source, reinforcers are available at a higher 

rate or magnitude, we would expect the individual to allocate more of their responses to this 

alternative relative to other. The number of responses on each alternative is recorded and is 

expected to follow (approximately match) the share of reinforcers the participants 

experienced, so that a VI7s alternative would result in roughly twice as many responses 

allocated to it than a VI14s one. Therefore, the strict matching law describes a pattern of 

responding wholly reflecting the objective probabilities of the outcomes. 

The generalized matching law (GML) was built on this assumption, but also 

incorporated deviations from strict matching observed in subjects: bias to either alternative 

for reasons other than reinforcement rate, and a tendency towards behaviour allocation other 

than strict matching (Baum, 1974). It is described by the generalized matching equation: 

Log (
𝐵1

𝐵2
) = 𝑎 Log (

𝑅1

𝑅2
) + Log 𝑐                                                 (Equation 3.1) 

B1 and B2 are the number of responses on each alternative. In procedures where the 

frequency of reinforcers that can be obtained in a given time period differs between the two 

alternatives, R1 and R2 are the number of reinforcers obtained by responding on each 

alternative. In procedures where the size or magnitude of the reinforcers is manipulated 
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instead, R1 and R2 correspond to amount obtained by responding on each alternative. The 

response and reinforcement rate are each expressed as a logged ratio and plotted on the y and 

x axis respectively (see the black data points in Figure 3.1 sample data). If the participants 

behave in accordance with the strict matching law, where distribution of responses closely 

follows the distribution of reinforcers, the data would be along the dashed line. Equation 3.1 

can then be fitted to those data using least-squares linear regression, producing a line of best 

fit to the reinforcer and response ratios (the solid line).  

Figure 3.1. Logged ratio of responses on the y axis plotted against the logged ratio of 

reinforcers on the x axis. Dashed line corresponds to the predictions of the strict matching 

law. The solid line is the Generalized Matching Law fitted to hypothetical data points. The 

equations of the regression line of best fit and the R2 are shown in the top right of the graph.  

Our sample solid line data shows the common deviations from strict matching 

captured by the sensitivity (𝑎) and bias (log c) parameters in the GML. 𝑎 is a measure of 

sensitivity of the allocation of responses to the given reinforcer ratio and is the slope of the 

fitted GML to the data (Lobb & Davison, 1975; Davison & McCarthy, 1988), where a value 

of 1 indicates that the relative rate of responding matches the relative rate of reinforcement. 𝑎 

less than 1 indicates undermatching, where the distribution of responses across the two 

alternatives is less extreme than matching would predict and the organism is less sensitive to 

the difference between the two alternatives. Our sample data shows undermatching, with an 𝑎 

of 0.65. 𝑎 greater than 1 is overmatching, where the distribution of responses across the two 
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alternatives is more extreme than matching would predict. Here, the organism is more 

sensitive to the difference between the two alternatives. Log c (y-intercept) is a measure of 

bias that the participant may show for one alternative independent of the reinforcer ratios 

(McDowell, 1989). A bias in responding is indicative of more responding on one alternative 

than predicted across all of the reinforcer ratios. If log c is less than 0, then the participant is 

showing bias towards the R2 side, and if it’s more than 0, then the bias is towards the R1 side. 

Our sample data are showing a slight bias towards the R1 side, with a log c of 0.04. Note than 

when 𝑎 = 1 and log c = 0, the relative rate of responses equals the relative rate of reinforcers 

and the individual is showing no systematic deviations; behaviour instead conforms to the 

strict matching law as shown by the dashed line. 

In concurrent schedules task using variable intervals, Prospect Theory and the 

description-experience gap literature would predict that changes in some aspect of a loss 

outcome (e.g. its frequency or magnitude, or even its presence or absence) between the two 

alternatives would produce an allocation of behaviour that is not symmetrical to an equivalent 

change in some aspect of a gain outcome. The description-experience gap further predicts a 

reversal of the reflection effect, with greater risk seeking for gains than losses at most 

probabilities. The GML-based method of quantifying behaviour relative to reinforcement 

focuses on the rate at which behaviour changes after some measure of stability in responding 

has been achieved. In other words, the GML derives a measure of sensitivity to changes in 

the environment and bias based on a steady-state pattern of responding achieved over several 

sessions.  

Although sensitivity is not a direct measure of risk taking, we can draw a link between 

the probability weighting function and GML, in that they both can capture a deviation in 

responses from the expected pattern based on the objective probability of an outcome. To our 

knowledge, these ways of measuring responses have not been synthesized together, however 

we suggest that both approaches describe similar patterns of behaviour. Figure 3.1 can be 

understood in the same manner as Figures 1.2 and 1.3. The x axis corresponds to expected or 

predicted behaviour, based on objective probability in Figures 1.2-3 and on the ratio of the 

chances of attaining a reinforcer in Figure 3.1, and the y axis plots the observed responses 

which may or may not correspond to the predicted values. Our sample data on Figure 3.1 

shows the typically observed deviation (undermatching) from a linear response to the 

probability of an outcome in the format typically used to present data in studies using the 

generalized matching law.  
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Plotting the same data in an alternate format makes the similarities to the Prospect 

Theory probability weighting function more apparent. The change in ratios that results in 

undermatching is demonstrated in the top left graph of Figure 3.2, which plots the proportion 

of reinforcers on the x axis and the proportion of responses on the y axis according to 

Herrnstein’s original strict matching law formulation without the log transformation of the 

GML4. The probability weighting function from Prospect Theory is reproduced in the top 

right graph to facilitate comparison. The left panel is an example of undermatching, that is, 

the participant is underestimating the likelihood of a reinforcer on R1 when R1 has a higher 

probability of reinforcement (right side of the graph) and on R2 when R2 has the higher 

probability of reinforcement (left side of the graph). Our participant also overestimates the 

likelihood of a reinforcer on R2 when R2 has a lower probability of reinforcement (right side 

of the graph) and on R1 when R1 has the lower probability of reinforcement (left side of the 

graph). The reflection effect based on descriptive choice predicts a very similar pattern for 

gains, with risk aversion at moderate to high probabilities and risk seeking at low 

probabilities (i.e. the inverse S-shaped probability weighting function on the right graph). We 

can interpret this as Prospect theory predicting undermatching for gains, where a high 

probability gain elicits fewer and a low probability gain elicits more responses than perfect 

matching would predict.  

We can apply the same logic to losses, with the reflection effect predicting risk 

seeking at moderate to high probabilities and risk aversion at low probabilities. If we were to 

plot the left graph of Figure 3.2 such that the reinforcer ratio would instead contrast 

likelihood of no-loss on each alternative, then we would expect more responses on the side 

with the higher likelihood of no-loss, thus producing a positive slope. For example, the 

rightmost data point on the x axis of the left graph would correspond to a greater proportion 

of no-losses (75 at R1) at the R1 side. Since the reflection effect predicts risk seeking at 

moderate to high probabilities of a loss (lower likelihood of no-loss) and risk aversion at low 

probabilities of a loss (higher likelihood of no-loss), this corresponds to more responses on 

the side with lower likelihood of no-loss and fewer responses on the side with a higher 

likelihood of no-loss than perfect matching would predict. Thus, if we followed Prospect 

Theory’s predictions based on choice from description, we would expect undermatching for 

both gains and losses. Our Figure 1.2 (reproduced in Figure 3.2) also includes greater 

                                                           
4  Herrnstein’s matching law (1961): (

𝐵1

𝐵1+ 𝐵2
) =  (

𝑅1

𝑅1+ 𝑅2
) 
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deviation from linear weighting for gains rather than losses, which has sometimes been 

observed in literature (e.g. Abdellaoui et al., 2011; Hau et al., 2008), corresponding to a 

greater degree of undermatching for gains rather than losses. Thus the final predictions based 

solely on Prospect Theory are shown in the left graph of Figure 3.3 using hypothetical data 

based on the GML. 

 

 

Figure 3.2. Left panel: Proportion of responses at B1 relative to total responses plotted 

against proportion of reinforcers at R1 relative to total reinforcers. In each graph, the black 

data points and the curves are hypothetical data showing undermatching (top) and 

overmatching (bottom) relative to the diagonal dashed line indicating perfect matching. Right 

panel: Figure 1.2 (top) and 1.3 (bottom) reproduced from the general introduction.  
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Prospect Theory describes choice from description, therefore, these predictions of 

undermatching derived from it also apply only to choice from description. The description-

experience gap suggests that choice from experience might show a reversal of the pattern of 

responses seen in choice from description. Since our concurrent schedules task is to be fully 

experiential to avoid any complexities with including description, our predictions need to be 

based on choice from experience as modelled by the bottom right graph of Figure 3.2 

(reproduced from Figure 1.3). Here, research into the description-experience gap has 

observed risk seeking for gains at moderate to high probabilities and risk aversion at small 

probabilities. This pattern would correspond to overmatching (see the bottom left graph of 

Figure 3.2), where participants allocate more responses to the side with a high chance of gain 

and fewer to the side with the lower chance of gain than perfect matching.  

 

Figure 3.3. Logged ratio of responses on the y axis plotted against the logged ratio of 

reinforcers on the x axis. Dashed line corresponds to the predictions of the strict matching 

law. The solid line is the Generalized Matching Law fitted to hypothetical data points for the 

gain (white) and loss (black) conditions. The equations of the regression line of best fit and 

the R2 are shown in the top right of the graph. The left graph corresponds to Prospect 

Theory’s predictions for choice from description. The right graph corresponds to description-

experience gap literature’s predictions for choice from experience. 

For losses, the reversed reflection effect would similarly predict overmatching, with 

more responses to the side with a high chance of no-loss and fewer responses to the side with 

a low chance of no-loss than perfect matching would predict. Furthermore, if we were to 

apply the greater deviation from linear probability in losses modelled in Figure 1.3 
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(reproduced in the bottom right graph of Figure 3.2), then we would expect a greater degree 

of overmatching with gains than losses. Thus the final prediction based on the reversed 

reflection that has previously been observed in choice from experience is shown in the right 

panel of Figure 3.3. Ideally, the extent of deviation from perfect matching in our hypothetical 

data would be plotted such that it corresponds closely to the parameters of the probability 

weighting function, but since there is little agreement in literature on the exact value of these 

parameters, we arbitrarily chose the extent of undermatching or overmatching.  

Our application of the description-experience gap literature was so far limited to 

manipulation of frequency. If we were to consider behaviour in response to change in 

magnitude, where the frequency of a reinforcer is kept constant between the two alternatives, 

we would rely solely on the value function of Prospect Theory in making our predictions (see 

in Figure 1.1). Any probability weighting would now be held constant between the two 

alternatives. Given the steeper change in the value of a loss as compared to a gain with 

equivalent changes in magnitude, the value function of Prospect Theory would predict greater 

sensitivity to changes in loss magnitude rather than gain magnitude. Whether response 

allocation would be expected to undermatch or overmatch overall is unclear. 

Thus, based on Prospect Theory and description-experience gap literature, we would 

expect overmatching to rate of gains and losses. However, the majority of literature does not 

correspond to the theoretical predictions we have outlined above and undermatching is 

virtually universal. In non-human animal subjects, the typical behaviour in response to varied 

gain frequency is slight undermatching and to gain magnitude is greater undermatching (e.g. 

Landon, Davison & Elliffe, 2003; see Davison & McCarthy, 1988 for a review and Elliffe et 

al., 2008 for a discussion). Human performance on such tasks has generally shown less 

sensitivity to differences in reinforcement than animal subjects, with undermatching in 

response to changes in gain frequency and magnitude (Kollins, Newland, & Critchfield, 

1997; Schmitt, 1974; Wurster & Griffiths, 1979), although the extent of deviation from strict 

matching varies with procedural differences, such as whether rates of reinforcement are 

signalled by a discriminative stimuli (e.g. Bradshaw, Szabadi & Bevan, 1976; see Horne & 

Lowe, 1993 for a discussion). 

The effect of introducing losses or punishers to concurrent VI schedules compared to 

gains has been less studied in human participants. In non-human animal subjects, reinforcers 

and punishers have been traditionally operationalized as delivery of food versus shock 
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(Deluty, 1976; de Villiers, 1980; Farley, 1980). Note that when studying the effects of 

punishers it is necessary to also reinforce some responses so that responding does not stop 

altogether. Researchers who have investigated the effects of introducing losses or punishers 

have examined whether effects are best understood as subtracting from the alternative on 

which punishes occur or adding to the other, non-punished alternative. That is, subtractive 

model states that punishers subtract from the reinforcing properties of the reinforcers (de 

Villiers, 1980), in contrast to the predictions of the additive model which assumed that 

punishers would increase responding on the opposite alternative (Deluty, 1976). 

Results support the subtractive model of punishment. When equal frequency shock 

was introduced to two response keys with varying reinforcement rates, de Villiers (1980) 

observed that punishment had a subtractive effect on reinforcer-maintained responding. 

Pigeons overmatched in their distribution of responses to the distribution of reinforcers 

relative to responding for reinforcement only, showing an extreme preference for the 

alternative with higher relative reinforcement rate. This was based on a matching law 

formulation that did not include the systematic deviations captured by the GML that are 

known to be common. Critchfield, Paletz, MacAleese and Newland (2003) addressed this 

concern and measured performance of human subjects in response to monetary gains and 

losses using the GML. Across their experiments, participants responded on a two-alternative 

variable interval reinforcement schedule. Some of the conditions also delivered punishment 

on a less frequent schedule than the reinforcement. They too found support for the subtractive 

effect of punishment (termed the direct-suppression model), with participants showing 

increased preference for the alternative that delivered more frequent reinforcers when both 

alternatives were punished at an equal rate (see Experiment 2A and 2C).  

Critchfield et al. (2003) further expressed the subtractive effect of punishers by 

creating a direct-suppression version of the GML (Equation 3.2): 

 Log (
𝐵1

𝐵2
) = 𝑎 Log (

𝑅1−𝑃1

𝑅2− 𝑃2
) + Log 𝑐                                                 (Equation 3.2) 

P1 and P2 are the number of punishers (or amount, in case of changes in magnitude) 

obtained by responding on each alternative and are directly subtracted from the number of 

reinforcers obtained on the corresponding alternatives. The predictions of this model are 

demonstrated in Table 3.1 using a set of schedules in one of the conditions used for our 

experiment (details in the Method section), where the R and P values indicate the amounts of 

reinforcers and punishers delivered within the condition. In both of the examples, equal 
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punishment is introduced to two alternatives with varying rate of reinforcement. If punishers 

are not incorporated into the model and we expect behaviour change in response to change in 

reinforcement rate only, then we would expect the response ratio to correspond to the 

reinforcer ratio in column 3. If punishers are incorporated into the reinforcer ratio (termed net 

ratio) and if they have a subtractive effect according to the direct-suppression model, then we 

would expect the response ratio to correspond to the net ratio in column 4. This would predict 

overmatching relative to the reinforcer only ratio. Notably, this model cannot accommodate 

instances where more punishers than reinforcers were delivered. 

Table 3.1 

Predictions of the direct suppression GML using a set of schedules 

 
(

𝑅1 − 𝑃1

𝑅2 −  𝑃2
) 

Reinforcer ratio 

𝑅1: 𝑅2 

Net ratio 

(𝑅1 − 𝑃1) ∶  (𝑅2 − 𝑃2) 

Example 1 
(

250 − 150

750 −  150
)  =

100

600
 1:3 1:6 

Example 2 
(

350 − 150

650 −  150
) =

200

500
 1:1.86 1:2.5 

Using the parameters generated by the GML as well as the direct-suppression GML, a 

few studies have directly investigated a gain-loss asymmetry in concurrent schedules tasks. A 

gain-loss asymmetry was quantified as either a bias towards one alternative with the 

introduction of losses to the other (Magoon & Critchfield, 2008; Rasmussen & Newland, 

2008) or a difference in sensitivity with the introduction of losses (Rasmussen & Newland, 

2008). Notably, if Prospect Theory was mentioned by these studies, it was exclusively as the 

application of loss aversion observed in choice from description, and not the reversed 

reflection effect of the description-experience literature we have described above.  

Magoon and Critchfield (2008) conceptualized a gain-loss asymmetry as a differential 

effect of positive and negative reinforcement on the bias parameter in the GML. Participants’ 

choices were compared between a homogeneous condition where responses on both 

alternatives resulted in gains, and a heterogeneous condition where responses on one 

alternative produced a gain and responses on the other alternative cancelled a loss. The 

homogenous and heterogeneous conditions had identical reinforcement ratios and in the 

heterogeneous condition each participant experienced negative reinforcement at least once as 

the richer or leaner alternative. In the heterogeneous condition, response ratios were 

compared to both reinforcer ratios (Equation 3.1) and net ratios (Equation 3.2), where R were 
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money gained and money losses cancelled and P were money losses that were not avoided 

via cancellation. A gain-loss asymmetry was defined as displaying a bias in the 

heterogeneous condition as compared to no bias in the homogeneous condition, while 

controlling for any inherent side bias (i.e. tendency to prefer responding on the left or right). 

Bias towards the positive reinforcement side in the heterogeneous condition would suggest 

that the functional value of responding for a gain is not equivalent to the functional value of 

responding to avoid a loss. Magoon and Critchfield (2008) observed some bias towards the 

negative reinforcement side, but ultimately no consistent change that would support the 

notion that responding for gains and to cancel losses had a different functional impact on 

behaviour. This was the case when using either reinforcer ratio (Equation 3.1) or net ratio 

(Equation 3.2).  

Rasmussen and Newland (2008) similarly operationalized a gain-loss asymmetry as 

primarily a difference in bias. The effects of gains and losses were compared as the effect of 

positive reinforcement and negative punishment (losses). Individual bias parameters were 

compared between a reinforcement-only condition, where both sides scheduled gains at 

variable intervals, and a punishment condition, where one side scheduled gains and the other 

had a loss schedule superimposed on the existing gain schedule. In the reinforcement-only 

condition the response ratios were compared to the reinforcer ratios, and the punishment 

condition the response ratios were compared to both reinforcer and net ratios. Punishment 

was always scheduled to be leaner than the reinforcement schedule it was superimposed on, 

but it could be superimposed on either the richer or the leaner alternative in the existing 

reinforcement ratio. Thus in the punishment condition, responses on one side could result in 

either a gain or a loss, and responses on the other side that could only result in a gain.  

Rasmussen and Newland (2008) hypothesized that if money gained and money lost 

have symmetrical functional impact on behaviour, then the participants should allocate their 

responses in a way that displays no bias towards the reinforcement-only alternative. Their 

behaviour should display a decrease in responding on the punishment side and an increase in 

responding on the reinforcement-only side, a distribution of responses that is only dependent 

on the net reinforcer ratio. If they display a bias towards the reinforcement-only alternative 

when punishment is introduced to the other alternative, then the functional value of 

experiencing a loss is not equivalent to the functional value of experiencing a gain. They also 

predicted that presence of punishment should reduce the participants’ sensitivity to the 

reinforcement schedule as compared to the reinforcement-only condition. 
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Rasmussen and Newland (2008) observed unbiased matching in the reinforcement-

only condition and a three-fold shift in bias towards the reinforcement side in the punishment 

condition. Additionally, for both the reinforcer and net ratio analyses, they observed 

generally lower sensitivity parameters for the punishment condition than the reinforcement-

only condition, although this was not consistent across participants. Rasmussen and Newland 

concluded that experiencing punishment reduced sensitivity to existing reinforcement 

contingencies and biased the individual away from the punished alternative, demonstrating an 

asymmetry in the impact that gains and losses have on behaviour.  

The lack of consensus in literature on the expected change in GML parameters in 

response to scheduled gains and losses makes prediction difficult. Firstly, Magoon and 

Critchfield (2008) and Rasmussen and Newland (2008) observed opposite findings for both 

bias and sensitivity in procedures were losses were associated with one of the alternatives. 

Although both negative reinforcement and negative punishment schedules served to deliver 

losses to the participant, the former encouraged and the latter discouraged responding in order 

to avoid a loss. Conceptually, the negative punishment is closer to our discounting task and 

Prospect Theory’s description of negative events, as responding resulted in losses rather than 

avoidance of a loss. Therefore, we might expect results similar to Rasmussen and Newland. 

However, they scheduled punishment to only one alternative and we have been discussing a 

gain-loss asymmetry as choice between gains or between losses, so a concurrent schedules 

task like used by Critchfield et al. (2003) that schedules losses on both sides would be more 

relevant. Both Rasmussen and Newland and Critchfield et al. observed an increase in 

responses on the side that was either less punished (in Critchfield et al., when punishment 

rates were equal, demonstrated by the higher sensitivity parameter) or unpunished (in 

Rasmussen and Newland, when one side was punished, demonstrated by the higher bias 

parameter). Absence of consistent bias in the data collected by Critchfield et al. was 

presumably because losses were present on both sides, thus any bias would be cancelled out. 

Thus if we were to arrange losses on both alternatives, the work of Critchfield et al. and the 

direct-suppression model both predict greater sensitivity (i.e. a higher a parameter in the 

direct suppression model), and possibly, overmatching, to reinforcement. 

Gain-loss asymmetry at local level of analysis 

Concurrent schedule procedures allow for a distinction to be made between extended 

and local level of analysis. In local level of analysis, the immediate distribution of responses 
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after outcomes is aggregated across other such instances and examined as a function of 

increasing time or number of responses since the last outcome. This approach does not rely 

on model fitting, and while it can be used to test for the individual’s ability to distinguish the 

overall schedule in operation, it also offers additional insights into local processes that may 

not be observable at the extended level of analysis. 

A common observation in local level analysis is that of preference pulses, where 

choice tends to favour the alternative that has just produced a reinforcer (the just-productive 

side) and gradually changes to preference for the side with the overall higher rate of 

reinforcement (e.g. Davison & Baum, 2000; Davison & Baum, 2002; Landon et al., 2003). 

Preference pulses suggest unique, transient effects of reinforcers on behaviour that are not 

necessarily dependent on the schedule in operation. Recent work by McLean, Grace, Pitts and 

Hughes (2014) has demonstrated that before drawing conclusions about the nature of unique 

effects of reinforcers, such preference pulses need to be corrected for the general pattern of 

responding, or visit structure, inherent to responding on a concurrent schedule task. The visit 

structure refers to the typical amount of time that an individual spends responding on one 

alternative before a switch. Concurrent schedule tasks arrange delivery of reinforcers that 

favours responding on the same alternative for a period of time as opposed to rapid switching. 

This is primarily due to a commonly used changeover delay (COD; Herrnstein, 1961; Shull & 

Pliskoff, 1967). A COD is a period of time immediately after switching when no reinforcers 

can be delivered and is used to ensure that frequently changing sides is not reinforced. In 

tasks that arranged CODs, preference pulses tended to be stronger than in no-COD tasks (e.g. 

Krageloh & Davison, 2003; see Gomes-Ng, Landon, Elliffe, Bensemann, & Cowie, 2018 for 

a recent discussion). However this observed preference for the same side as the last delivered 

reinforcer is conflated with a general visit structure that favours the same side as the last 

response.  

Gomes-Ng, Elliffe and Cowie (2017) applied McLean and colleagues’ proposed 

correction and further demonstrated that local effects of reinforcers across conditions can be 

effectively compared from the difference between responses after real reinforcers and 

responses at any other equivalent time in the task (i.e. the general visit structure). Responses 

at other equivalent times in the task were quantified as responses after hypothetical 

reinforcers, which were inserted into the acquired data sets following responses that could 

have produced a reinforcer, given a different sampling of the variable or random schedule, 

but didn’t. These hypothetical reinforcers were also arranged such that they did not 
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temporally overlap with real reinforcers. Gomes-Ng et al.’s re-analysis of several data sets 

from animal subjects demonstrated that preference pulses still occurred following reinforcers 

after correcting for the general visit structure. While this correction has not been applied to 

human preference pulse data, the simulations done by McLean et al. (2014) suggest that the 

effect of general visit structure should be controlled for in any concurrent schedule task. 

Thus examining local effects, while controlling for the general tendency to respond on 

a concurrent schedule task, offers another level of analysis for comparing the effects of gains 

and losses. In Study 1, we noted that discounting rates depended on task progression, where 

some aspect of the repeated trials resulted in shallower discounting of both gains and losses. 

We could not examine the local effect of experiencing outcomes on subsequent behaviour in 

our titrating amount procedure, particularly, we could not determine whether there was a 

difference in responses after a successful probabilistic gain or loss. In concurrent schedules, 

we are able to examine the effect of experiencing a probabilistic gain or loss on subsequent 

responses for any asymmetry, such as a difference in the strength or duration of the 

preference pulses.  

It is unclear how the description-experience gap predictions of risk seeking for gains 

and risk aversion for losses at most probabilities can be applied here, but we can expect 

differences in the strength or duration of the tendency to stay versus switch after gains as 

compared to losses. Given that the inverse S-shaped function proposed for experiential choice 

in the description-experience gap literature indicates greater deviation from linear weighting 

of probabilities for gains rather than losses, we might similarly expect greater deviation from 

the general visit-structure after the occurrence of a gain rather than a loss. If the two 

alternatives differ in magnitude, the application of the value function would predict that 

changes in the magnitude of a loss would have greater impact on subsequent responses than 

equivalent changes in the magnitude of a gain. 

To our knowledge, local effects of gains vs. losses have not been compared in 

concurrent schedule tasks with humans, but we can draw some insight from local effects 

analysis in a related procedure that has also been used with human participants: a signal 

detection task (e.g. Johnstone & Alsop, 2000). Typically, the participant is presented with one 

of two stimuli at a time and responds by choosing one of two available response alternatives. 

One of the alternatives is the correct response to the given stimulus and the participant can be 

reinforced for giving the correct response. The rate of reinforcement for the two stimuli can 
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be varied, such that correct responses for one stimulus can be reinforced more frequently than 

for the other. The difficulty of distinguishing the two stimuli can be adjusted to create the 

desired frequency of correct vs. incorrect responses. Lie and Alsop (2009) introduced 

punishment to a signal detection procedure in the form of point-loss for incorrect responses 

for given stimuli. This rate of punishment was varied between the two stimuli while the rate 

of reinforcement for correct responses was held constant. A re-analysis of these data for local 

effects showed that responses after receiving a punisher on one alternative tended to favour 

the other alternative, independent of whether the other alternative had overall a more or less 

frequent rate of punishment (Lie, 2010). This was in contrast to a different group of 

participants, who experienced varying reinforcement rate and were not punished for errors; 

their responses were to favour the alternative associated with higher rate of reinforcement. 

Notably, this analysis was done without correcting for the general pattern of responding on 

such tasks, so the true extent of these local effects is not known. 

Kubanek, Snyder and Abrams (2015) examined asymmetry in local effects of 

reinforcers and punishers in a task similar to a signal detection procedure. Participants 

responded to auditory or visual stimuli and received hypothetical monetary gains and losses 

based on the accuracy of their response. Task difficulty was set to result in a 60% accuracy. 

The amount gained or lost was varied so that responses could also be analysed for the effect 

of magnitude, ranging from 5 to 25 cents. Local effects of experiencing a gain or loss 

outcome were compared by examining subsequent tendency to repeat the same choice 

relative to the expected baseline of a 50% chance, since the task was set-up such that the 

outcome on the previous trials did not predict the outcome on the next trial. 

Kubanek et al. (2015) observed an asymmetry in participants’ response repetition 

tendencies after equal magnitude rewards and punishers. Losses occasioned avoidance and 

gains occasioned repetition of the just-productive alternative, but the extent of avoidance was 

approximately 2-3 times greater than the extent of repetition. This effect was transient, akin 

to preference pulses, as outcomes two trials prior to the test trial did not significantly affect 

current choice. The authors noted that this echoes the findings of Rasmussen and Newland 

(2008), who observed greater bias shown to the reinforcement-only side. Kubanek et al. also 

observed an effect of magnitude with gains, but not with losses, which was contrary to our 

predictions based on the value function of Prospect Theory. Losses elicited a similar 

avoidance tendency of the last choice regardless of its magnitude, while repetition tendency 

increased as magnitude of the gain increased. Notably, this effect of magnitude bears 
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similarities to the effect of changing magnitude in probability discounting, where discounting 

of gains was affected by their magnitude, but discounting of losses was not affected by their 

magnitude (e.g. Estle et al., 2006). Larger gains were discounted more steeply than smaller 

gains and in Kubanek et al. larger gains elicited a greater chance of repetition. The link 

between choice repetition and discounting is not clear, but both suggest that we are more 

likely to see a gain-loss asymmetry with larger amounts.  

Auckland Card Task: Rapid-acquisition choice procedure 

In most of the concurrent schedule tasks we have discussed so far (e.g. Rasmussen et 

al., 2008), the participants’ responses to change in reinforcement schedules were measured 

over several sessions until a defined stability criterion in their responding was reached. This 

approach limits the number of conditions as well as the total sample size that is practical and 

cost-efficient to collect with human participants. Behaviour under concurrent-schedules has 

also been examined in rapid-acquisition choice procedures using animal subjects, where 

changes in reinforcer contingencies were not signalled and occurred rapidly during the 

sessions (Davison & Baum, 2000). This procedure demonstrated a rapid increase in 

sensitivity with each experienced reinforcer while keeping the task duration much shorter 

than typical. Subsequent work by Lie, Harper and Hunt (2009) and Krageloh, Zapanta, 

Shepherd, and Landon (2010) has demonstrated that this method generates reasonable GML 

fits for human participants responding for reinforcers. Their average sensitivity and R2 values 

are summarized in Table 3.2 and were in the reasonable range for human participants 

(Kollins et al., 1997). Lie et al. and Krageloh et al. also included an analysis of local effects 

of reinforcers, showing preference pulse patterns largely consistent with literature. Upon 

receiving a reinforcer, participants responded more on the just-productive side and this 

preference gradually decreased with time or number of responses since reinforcer. Notably, 

these were not corrected for the general pattern of responding proposed by McLean et al. 

(2014). 

Table 3.2 

Summary of average sensitivity and R2 in Lie et al. (2009) and Krageloh et al. (2010) 

 𝑎 median (Q1, Q3) R2 median (Q1, Q3) 

Lie et al. (last block of 5 reinforcers) 0.35 (0.17, 0.66) 0.62 (0.23, 0.85) 

Krageloh et al. (2nd half of the sessions) 0.39 (0.16, 0.83) 0.61 (0.42, 0.70) 

Note. Q1 = first quartile, Q3 = third quartile. 
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Based on the rapid-acquisition tasks above, Bull, Tippett and Addis (2015) created a 

novel task which measured participants’ behaviour in response to changes in both frequency 

and magnitude of gains, as well as losses. The Auckland Card Task consisted of four 

concurrent variable-interval schedule conditions, all of which were designed to be completed 

within a few hours by each participant. Within each condition, one dimension of a gain or 

loss was varied between the two alternatives while the rest were kept constant. The four 

conditions varied gain frequency, loss frequency, gain magnitude and loss magnitude. For 

example, in the gain frequency condition, gains were scheduled on a more frequent 

concurrent VI schedule, were of fixed magnitude, but varied in probability on each 

alternative (e.g. 75% vs. 25% chance of a gain). In the same condition, losses were scheduled 

on a less frequent concurrent VI schedule, and were of fixed magnitude and probability on 

each alternative. For clarity, we will subsequently refer to the scheduled outcome that varied 

between the two alternatives in each condition as the primary outcome (e.g. gains in the gain 

frequency condition) and the other scheduled outcome that did not vary between the two 

alternatives as the secondary outcome (e.g. losses in the gain frequency condition). 

Re-analysis of Bull et al. (2015) for gain-loss asymmetry. Bull et al. piloted their 

task on thirty participants and while they did not investigate a gain-loss asymmetry, we can 

use the available sensitivity parameters to determine whether there were any differences 

between the conditions. We accessed supplementary data from Bull (2013) thesis dissertation 

listing each participants’ sensitivity values in each condition of the same study reported in 

Bull’s 2015 paper. Bull reported estimates of sensitivity parameters using two methods. First, 

the GML was fitted to all of the responses and primary outcomes received in each condition, 

producing an overall measure of sensitivity (mean sensitivity and median R2 are summarized 

in the first two columns of Table 3.3). Second, the data were split into five blocks of primary 

outcomes and the GML was fitted to each block (we conducted the same analysis, and detail 

on this is provided in the methods section below). The sensitivities derived from the last few 

blocks were then averaged to produce an asymptotic measure of sensitivity that excluded 

changes in the response ratios in the early/learning trials (mean sensitivities are summarized 

in the third column of Table 3.3; R2 were not reported). All of the sensitivity estimates were 

derived from fitting the GML to the primary outcomes only and no net analysis (e.g. using 

the direct-suppression version of the GML) was conducted.  

Comparison of overall and asymptotic sensitivity estimates in Table 3.3 suggested 

that sensitivity to gains changed to a greater degree over the course of the session than 
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sensitivity to losses. Furthermore, all of the conditions showed overmatching in their 

asymptotic sensitivity, which corresponds to our predictions of overmatching based on the 

description-experience gap, but not to the typical pattern of undermatching in human 

literature.  

Table 3.3 

Summary of average sensitivity and R2 reported in Bull (2013)  

 Overall 𝑎 

mean (SEM) 

Overall R2 median 

(Q1, Q3) 

Asymptotic 𝑎 mean 

(SEM) 

Gain frequency 0.54 (0.07) 0.74 (0.53, 0.81) 1.31 (0.19) 

Loss frequency 1.15 (0.12) 0.90 (0.84, 0.93) 1.30 (0.15) 

Gain magnitude 0.90 (0.13) 0.80 (0.46, 0.96) 1.12 (0.21) 

Loss magnitude 1.16 (0.13) 0.90 (0.72, 0.95) 1.32 (0.20) 

Note. Q1 = first quartile, Q3 = third quartile 

We conducted additional analyses on these data for any gain-loss asymmetry in the 

overall and asymptotic estimates of sensitivity. Analysis of overall sensitivity parameters 

showed a gain-loss asymmetry for frequency, but not magnitude conditions. The mean 

sensitivity parameter for loss frequency was significantly higher than for gain frequency 

(t(29) = -5.29, p < .001) but the mean sensitivity parameter for loss magnitude was not 

significantly different from gain magnitude (t(28) = -1.90, p = .067). To be certain of the 

asymmetry we also assessed gain-loss asymmetry in a sample limited to participants with R2 

of at least 0.50; data were not normally distributed and the Wilcoxon Signed Rank Test 

showed a significant difference between the loss and gain frequency conditions (Z = -3.73, p 

< .001; N = 22) and no significant difference between the magnitude conditions (Z = -0.60, p 

= .546; N = 21). In contrast to overall sensitivity, asymptotic sensitivity showed no gain-loss 

asymmetry for frequency (t(27) = -0.08, p = .935) and magnitude (t(21) = -0.43, p = .673) 

conditions. Thus, a gain-loss asymmetry was present only if preferences in the earlier blocks 

were included and did not correspond to our predictions of greater sensitivity to gains than 

losses based on the description-experience gap. 

The current study 

In Study 2, we examined gain-loss asymmetry in a rapid-acquisition choice procedure 

that arranged gains and losses via concurrent schedules. We decided to use a rapid-

acquisition concurrent schedule task to examine gain-loss asymmetry. The rapidly changing 

schedule in such tasks is suitable for collecting large quantities of data over short periods of 
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time, especially with human participants where costs of prolonged data collection are 

prohibitive of acquiring sample sizes sufficiently powered for parametric analysis. We have 

selected the ACT as one such procedure as it has successfully trialled delivery of scheduled 

gains and losses, as well as distinguished between frequency and magnitude, thus separating 

the four decision-making dimensions also present in our probability discounting procedure. 

While Bull (2013) data did not show our predicted pattern of gain-loss asymmetry, the 

available data does not allow for both an extended and a local level of analysis, as well as an 

evaluation of goodness of fit of the asymptotic estimates of sensitivity. Therefore, our 

specific goals were to: 

1. Examine the reliability of ACT by replicating Bull et al. (2015) procedure and determine 

sensitivity parameters for gain-loss asymmetry analysis.  

We examined goodness of fit of GML to ACT data in our replication by comparing 

R2, percentage of missing data and whether sensitivity increased linearly as a function of 

Block compared to Bull et al.’s data. Bull et al. observed average R2 values that were higher 

than other rapid-acquisition choice procedures for the overall sensitivity measure while 

goodness of fit of the GML to each block of data, and by extension the asymptotic sensitivity, 

is not known. We expected average R2 values and proportion of missing data comparable to 

Bull et al., as well as a linear increase in sensitivity as a function of block. 

Prior to extended level analysis for gain-loss asymmetry, we considered the method of 

deriving final GML fits Bull et al. used, as well as alternative estimates of both the response 

and reinforcer ratios in order to derive reliable GML parameters. We considered adjustments 

to the response ratio based on responses in the last four blocks and based on responses to the 

last five primary outcomes experienced, akin to the overall and asymptotic estimates used by 

Bull et al. We also considered whether model fit can be improved with inclusion of secondary 

outcomes according to the direct-suppression GML (Equation 3.2). In each condition of the 

ACT, the primary outcome ratio differed from the net outcome ratio (see Table 3.4), which 

produced a different range of predictor values while the measured behaviour remained 

unchanged. Since the number of parameters does not change between Equations 3.1 and 3.2, 

and thus does not necessitate adjustments for such changes (e.g. AIC; Akaike, 1998), we 

directly compared R2 values in order to determine whether participants’ behaviour was better 

described by the net rather than primary outcome ratios. Based on the acquired data, we 

determined a final estimate of sensitivity to arranged outcomes for each individual and each 

condition in order to conduct a gain-loss asymmetry analysis. 
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2. Examine gain-loss asymmetry at extended level of analysis. 

At the extended level of analysis, we quantified gain-loss asymmetry as a difference 

in sensitivity parameters between the gain and loss condition within the frequency and 

magnitude tasks. ACT arranges gains and losses on both alternatives, but only one property 

(frequency or magnitude) of one of these outcomes varied between the two alternatives. The 

four reinforcer and net ratios were also equated across conditions, thus the total number of 

points that can be acquired by the end of the task did not differ. Due to the presence of gains 

and losses on both alternatives, we would not expect a gain-loss asymmetry to manifest itself 

as a difference in bias (Critchfield et al., 2003). Based on our application of Prospect Theory 

and the description-experience gap literature, as well as the more consistently observed 

difference in sensitivity (Critchfield et al., 2003; Magoon & Critchfield, 2008; Rasmussen & 

Newland, 2008; Bull, 2013), we expected a gain-loss asymmetry as a difference in sensitivity 

to changes in gain as opposed to loss delivery. We expected greater sensitivity to changes in 

gain as opposed to loss frequency to emerge with increasing experience of the scheduled 

outcomes. In the magnitude task, we expected greater sensitivity to changes in loss as 

opposed to gain magnitude. Lastly, we also examined whether participants would show the 

same pattern of overmatching observed by Bull (2013), or whether data would resemble the 

more commonly seen undermatching in human participants. 

3. Examine gain-loss asymmetry at local level of analysis. 

At the local level of analysis, we quantified a gain-loss asymmetry as a difference in 

the pattern of responses after primary outcomes that has been corrected for visit structure. To 

our knowledge, the McLean et al. (2014) correction has not been applied to the study of 

preference pulses generated by humans. We expected an immediate response to losses to be 

opposite to that of gains and the extent of deviation from the general visit-structure to be 

greater after gains than after losses. In the magnitude task, we examined whether magnitude 

had a greater impact on responses after a loss in accordance with the value function, or 

whether data were consistent with Kubanek et al. (2015), where the opposite was observed.  

4. Examine whether an order effect would remain after resetting the balance and separating 

the conditions. 

In addition to completing the ACT, participants also discounted gains and losses in a 

safe-risky experiential probability discounting task. Our observation of order effects in the 

experiments in Study 1 was also confounded with change in balance. In Study 2, we 
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removed this confound by starting each condition with $3000. Due to time constraints of 

including four ACT conditions and two conditions of the discounting task, the gain and loss 

conditions were split across the two sessions. Hence, the differences to Study 1 included 

balance reset and a day separation between the conditions. We examined gain-loss 

asymmetry under these modified conditions for any changes in the effect of order observed 

in Study 1. 

5. Examine if sensitivity to gains and losses can predict discounting after controlling for 

expected order effects. 

Given the theoretical relevance of the probability discounting and concurrent schedule 

procedures, we also considered whether performance on one task was predictive of 

performance on the other. We conducted a linear regression with condition order and 

sensitivity to frequency and magnitude as predictors of discounting in order to determine 

whether sensitivity predicted significant change in discounting after controlling for the effect 

of order.  

Method 

Participants 

We recruited a total of 123 participants attending Victoria University of Wellington 

through the School of Psychology Research Programme online tool. Participants who 

dropped out of the study after completing the first session were removed from analysis, 

resulting in the final sample of 103 participants. Participants received course credit and 

completed an informed consent procedure. 

Materials 

Auckland Card Task. We programmed the ACT using Microsoft Visual Basic based 

on Bull et al. (2015). It began with a series of instruction screens with content tailored to each 

condition (see Appendix E for exact wording). After the instructions, participants were 

presented with images of two decks of cards, with only the back of the cards visible (see 

Figure 3.4, A). Below the decks was a bar titled “Winnings” and its length was indicative of 

the current total money won. The actual number was not displayed to the participant. 
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Figure 3.4. Screen capture of the ACT. The participants were presented with images of two 

decks of cards, with only the back of the cards visible (A). Choosing a deck via key press 

resulted in either the scheduled reward/penalty animation sequence or the no reward/penalty 

animation sequence. Panel B is demonstrating a scheduled reward probabilistically allocated 

to the left deck. Panel C is demonstrating a scheduled penalty probabilistically allocated to 

the right deck. The winnings bar is updated after each outcome, and is coloured green if the 

balance is above zero and red if below zero. 

Once the trials began, deck selection was made with their dominant hand by pressing 

caps lock for the left deck and enter key for the right deck5. Choosing a deck via key press 

resulted in a card flipping sound being played and either the scheduled gain/loss animation 

sequence, or the no gain/loss animation sequence. If a gain/loss was due, a card with the 

amount won or lost was shown for 1000ms accompanied by a “ding” sound for gains and a 

                                                           
5 Bull et al. (2015) used the left and right control keys to record responses, which were the same distance apart 

on the keyboard as caps lock and enter keys. 
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“buzz” sound for loss (see Figure 3.4, B and C for examples of cards). The “Winnings” bar 

was updated accordingly, with gains shifting the net amount to the right and loss to the left. If 

the current net amount was above 0, it was coloured green, if below, it was coloured red. If 

no gain/loss was due, a random playing card was shown for 200ms. During these sequences, 

no responses were recorded. After the sequences ended, the participant was able to choose a 

deck of cards again. A two second changeover delay was used to ensure that frequently 

changing decks was not reinforced. 

Each of the four conditions had concurrent gains and losses scheduled independently 

of one another. Table 3.4 (adapted from Bull et al., 2015) lists the schedules arranged within 

each condition. In the frequency conditions, the independent variable of interest was either 

gain or loss frequency and was the primary outcome. The primary outcome was set to one 

magnitude on both decks, but varied in frequency. Each condition also had a secondary 

outcome, either a loss (for gain frequency condition) or a gain (for loss frequency condition), 

which was of the same magnitude and frequency on both decks. The primary outcomes were 

scheduled according to a richer concurrent variable-interval schedule and were more 

numerous, while the secondary outcomes were scheduled according to a leaner concurrent 

variable-interval schedule and were less numerous. Practically, both the primary and 

secondary outcomes were arranged using dependent scheduling (see Stubbs & Pliskoff, 1969 

for a related procedure). The primary outcome was coded according to a single base VI 4s 

schedule and the secondary outcome according to a single base VI 10s schedule. Once a 

primary or secondary outcome was due, it was probabilistically allocated to either the left or 

right deck using the arranged probabilities for each component. The outcome then needed to 

be collected by the participant before a new outcome was scheduled. If a primary or 

secondary outcome were both scheduled to the same deck, their order of appearance was 

randomly determined. For example, in the 1st component of the gain frequency task, the gains 

($50) would be allocated to the left deck with a 25% (with a maximum of 5 gains) chance or 

to the right deck with a 75% chance (with a maximum of 15 gains). Concurrently, losses 

($30) would be allocated to the left or right deck with a 50% probability (maximum of 5 on 

each side).  
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Table 3.4 

Summary table of the four conditions in the Auckland Card Task adapted from Bull et al. 

(2015) 

Cond

ition 

Co

mp

one

nt 

Gains 

(Probability/Amount/Num

ber of outcomes 

available) 

Losses 

(Probability/Amount/Num

ber of outcomes 

available) Net reward 
Primary 

outcome 

ratio 

Net 

ratio Deck 1 Deck 2 Deck 1 Deck 2 

Deck 

1 

Deck 

2 

Gain 

frequ

ency 

1 .25/$50/5 .75/$50/15 .50/$30/5 .50/$30/5 $100 $600 1:3 1:6 

2 .35/$50/7 .65/$50/13 .50/$30/5 .50/$30/5 $200 $500 1:1.86 1:2.5 

3 .65/$50/13 .35/$50/7 .50/$30/5 .50/$30/5 $500 $200 1.86:1 2.5:1 

4 .75/$50/15 .25/$50/5 .50/$30/5 .50/$30/5 $600 $100 3:1 6:1 

Loss 

frequ

ency 

1 .50/$170/5 .50/$170/5 .75/$50/15 .25/$50/5 $100 $600 1:3 1:6 

2 .50/$170/5 .50/$170/5 .65/$50/13 .35/$50/7 $200 $500 1:1.86 1:2.5 

3 .50/$170/5 .50/$170/5 .35/$50/7 .65/$50/13 $500 $200 1.86:1 2.5:1 

4 .50/$170/5 .50/$170/5 .25/$50/5 .75/$50/15 $600 $100 3:1 6:1 

Gain 

magn

itude 

1 .50/$25v/10 .50/$75v/10 .50/$30/5 .50/$30/5 $100 $600 1:3 1:6 

2 .50/$35v/10 .50/$65v/10 .50/$30/5 .50/$30/5 $200 $500 1:1.86 1:2.5 

3 .50/$65v/10 .50/$35v/10 .50/$30/5 .50/$30/5 $500 $200 1.86:1 2.5:1 

4 .50/$75v/10 .50/$25v/10 .50/$30/5 .50/$30/5 $600 $100 3:1 6:1 

Loss 

magn

itude 

1 .50/$170/5 .50/$170/5 .50/$75v/10 .50/$25v/10 $100 $600 1:3 1:6 

2 .50/$170/5 .50/$170/5 .50/$65v/10 .50/$35v/10 $200 $500 1:1.86 1:2.5 

3 .50/$170/5 .50/$170/5 .50/$35v/10 .50/$65v/10 $500 $200 1.86:1 2.5:1 

4 .50/$170/5 .50/$170/5 .50/$25v/10 .50/$75v/10 $600 $100 3:1 6:1 

Note. Primary outcome ratios for the loss conditions are reversed, such that the side with 

more losses predicts fewer responses. 

The logic for arranging outcomes in the magnitude conditions was similar but the 

primary outcome and independent variable of interest was either gain or loss magnitude. 

Here, the primary outcome was set to one frequency for both decks, but varied in magnitude. 

The secondary outcome was either a gain (for loss magnitude condition) or a loss (for gain 

magnitude condition), set to the same magnitude and frequency on both decks. Hence, while 
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the primary outcome was scheduled based on the same richer VI schedule, the probability of 

allocating an outcome to either side was identical (50%) but varied in magnitude. For 

example, in the 1st component of the loss magnitude task, the mean magnitude of losses 

allocated to the left was $25 (ranging from $3-48) and to the right was $75 (ranging from $8-

143), with a maximum of ten loss outcomes on each side. Concurrently, gains were the 

secondary outcome and were set to a single magnitude ($170) and allocated with equal 

probability to each side (maximum of five on each side). 

After experiencing the scheduled outcome, the participant continued choosing decks 

and experiencing gains/losses until all 30 outcomes were experienced or six minutes had 

passed since the start of the component. Notably, this was a shorter duration than used by 

Bull et al. (2015), who terminated the components after eight minutes and was done to 

constrain the total experiment time to two hours. Once the component terminated, the 

participants were given a rest break with a screen that repeated the condition hint (see 

Appendix E) and their total winnings were displayed. The total winnings did not reflect the 

actual winnings as these were identical from component to component (assuming all 30 

outcomes were experienced). Instead, the actual winnings had a random amount added to or 

subtracted from it before being displayed in order to mask from the participant that each 

component resulted in the same net total of $700. The four components per task were 

presented in random order.  

Experiential Money Task. This task was programmed as described in Study 1, 

Experiment 2.1, with a few exceptions. The gain and loss conditions were split across the two 

data collection sessions which were a day apart. Each condition began with the same initial 

balance: $3000.  

Procedure 

Data collection was spread over two one-hour sessions that were a day apart. 

Participants had to sign up for both sessions, but were instructed that they can terminate their 

participation at any time. During each session, the participants were assigned to a cubicle 

with a computer terminal and headphones and tested in groups of four to fifteen. Each session 

consisted of two ACT conditions and one discounting condition, so that by the end of the two 

sessions each participant completed all of the tasks and conditions. The order of the 

conditions was counterbalanced across the two sessions, but always occurred such that the 
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ACT conditions preceded the discounting condition. Upon completion of the second session, 

they were debriefed on the purpose of the study. 

Results  

Does the ACT produce reliable parameters following Bull et al. analysis? 

Our first aim was to test the goodness of fit of the GML to responding in the ACT and 

its reliability for examining subsequent gain-loss asymmetry analysis. We compared average 

R2, percentage of missing data and whether sensitivity increased linearly as a function of 

block relative to Bull et al. (2015).  

Fitting GML to data. Following Lie et al. (2009) and Bull et al. (2015), participants’ 

responses in each component were split into five blocks of data according to the number of 

successive primary outcomes they had experienced: from the start of the component until the 

receipt of the 4th outcome (block 1), from the 4th outcome to receipt of the 8th outcome (block 

2), from the 8th outcome until the receipt of the 12th outcome (block 3), from the 12th outcome 

until the receipt of the 16th outcome (block 4), and lastly from the 16th outcome until the 

receipt of the 20th outcome (block 5). For each of these blocks, a response ratio and a primary 

outcome ratio were calculated. The response ratio consisted of logged ratio of left to right 

responses made within that block. The primary ratio consisted of logged ratio of left to right 

primary outcomes from the start of the component to the end of that block (e.g. reinforcer 

ratio for block 2 consisted of primary outcomes experienced during blocks 1 and 2). If, in 

some blocks, no responses or primary outcomes occurred at either the left or right side, 

resulting in a zero value and an error for the logged ratio calculations, we added 0.25 to both 

the right and left alternatives (Hautus, 1995; Brown & White, 2005). This adjustment was 

exclusive to either the response or the primary outcome ratios that had a zero value; if the 

participant had a zero value in their primary outcome but not their response ratio, their 

primary outcome ratio’s numerator and denominator were adjusted by 0.25 and their response 

ratio was not. Additionally, each primary outcome ratio in the loss conditions was multiplied 

by -1 in order to produce a ratio that predicted more responses on the side with fewer/lower 

losses. This adjustment resulted in positive slopes, facilitating comparison to the gain 

conditions. 

The GML was fitted to response and primary outcome ratios such that for each 

participant, five GML fits were derived for five blocks of data across the four components 

using least squares linear regression. For example, GML fitted to block 1 would consist of 
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four response and their respective primary outcome ratios from the first block across each of 

the four components. This method of fitting the GML to each block produced parameters that 

describe behaviour at a comparable number of primary outcomes experienced across each 

component within a given condition. At each block, for each condition and participant we 

derived five measures of sensitivity (𝑎) and bias (log c). Sensitivity and bias were normally 

distributed (see the means and standard error of the mean in Table 3.5).  

Table 3.5 

Summary of Study 2 GML-derived parameters for each block of primary outcomes. 

   Participants who have reached that block of primary 

outcomes in all 4 components 

Condi

tion 

Block % of participants 

that did not reach 

block in at least 

one component 

(count) 

N Mean 𝑎 

(SEM) 

Mean log c 

(SEM) 

Median R2 (Q1, 

Q3) 

Gain 

Frequ

ency 

1 0 (0) 103 0.12 (0.05) -0.08 (0.03)* 0.33 (0.11, 0.70) 

2 2.91 (3) 100 0.84 (0.09) -0.05 (0.04) 0.63 (0.23, 0.84) 

3 12.62 (13) 90 1.07 (0.10) -0.13 (0.05)* 0.61 (0.23, 0.80) 

4 24.27 (25) 78 1.12 (0.13) -0.05 (0.04) 0.64 (0.20, 0.85) 

5 39.81 (41) 62 1.34 (0.19) -0.11 (0.05)* 0.61 (0.35, 0.84) 

Loss 

Frequ

ency 

1 0 (0) 103 0.47 (0.08) -0.11 (0.03)* 0.66 (0.30, 0.87) 

2 11.65 (12) 91 0.74 (0.09) 0.02 (0.04) 0.69 (0.38, 0.85) 

3 37.86 (39) 64 0.50 (0.11) -0.10 (0.04)* 0.54 (0.26, 0.79) 

4 57.28 (59) 44 0.65 (0.15) -0.06 (0.05) 0.63 (0.35, 0.87) 

5 73.79 (76) 27 0.33 (0.14) 0.02 (0.07) 0.37 (0.19, 0.76) 

Gain 

Magni

tude 

1 0 (0) 103 0.12 (0.05) -0.08 (0.03)* 0.33 (0.09, 0.68) 

2 6.80 (7) 96 0.56 (0.08) -0.02 (0.04) 0.43 (0.11, 0.78) 

3 19.42 (20) 83 0.61 (0.10) -0.07 (0.04) 0.51 (0.21, 0.78) 

4 36.89 (38) 65 0.76 (0.13) 0.02 (0.04) 0.55 (0.31, 0.82) 

5 51.46 (53) 50 0.88 (0.15) -0.10 (0.04)* 0.51 (0.30, 0.68) 

Loss 

Magni

tude 

1 0 (0) 103 0.19 (0.04) -0.11 (0.03)* 0.47 (0.13, 0.77) 

2 14.56 (15) 88 0.63 (0.11) -0.05 (0.04) 0.42 (0.15, 0.69) 

3 37.86 (39) 64 0.53 (0.13) -0.03 (0.05) 0.36 (0.13, 0.63) 

4 51.46 (53) 50 0.46 (0.15) -0.12 (0.04)* 0.37 (0.11, 0.78) 

5 66.99 (69) 34 0.56 (0.19) -0.01 (0.07) 0.53 (0.19, 0.63) 

Note. * one sample t-test p < .05. Q1 = first quartile. Q3 = third quartile. 

The fit of the model to data was determined by calculating the R2, which were not 

normally distributed, with negative kurtosis across the blocks (see the medians and quartiles 
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in Table 3.5). The values were overall lower than the median R2 reported by Bull (2013). 

However, we are not able to compare directly to Bull’s block by block R2 as the reported R2 

were for the overall sensitivity measures, which fits the GML to responses across blocks. In 

our data, by the 5th block only the gain frequency condition achieved median R2 values close 

to medians reported by Lie et al. (2009) and Krageloh et al. (2010), with the other median R2 

values generally lower. 

Missing data. Fitting the GML to successive blocks of primary outcomes replicated 

Bull et al.’s (2015) observation of missing data: participants did not always complete five 

blocks of primary outcomes for some of the components. The dependent schedule relies on 

the delivery of the arranged outcomes before a new one can be arranged. If the participant 

develops exclusive preference for one side or repeatedly switches while remaining on each 

side for a shorter duration than the COD, then the arranged outcome will not be delivered and 

the session will terminate at the time limit. The third column of Table 3.5 lists the percentage 

of participants that did not reach the specified block of reinforcers for at least one of their 

components in each condition, resulting in at least one of the four log response ratios that 

could not be calculated (zero responses on both sides).  

Our rate of missing data was higher than Bull (2013). Missing data at each block was 

not reported, but this can be approximated from the number of participants without final 

estimates of sensitivity measures. Bull’s method of averaging the last 2-3 blocks of 

sensitivities resulted in one uncalculated sensitivity in each of the gain frequency, gain 

magnitude and loss frequency conditions, and seven in the loss magnitude condition. 

Uncalculated sensitivities imply that at least one of the final 2-3 blocks could not be 

calculated, as in our data set, but their rate of 3-23% missing data was generally lower than 

our rate of 12.62-39.81% of participants who did not reach block 3 in at least one of their 

components (see Table 3.5 for exact percentages). 

Trends in bias. Examination of Table 3.5 showed a slight, but, if present, consistently 

negative bias among the means, indicative of bias towards the R2 side and more responses on 

the right side across the components. Means were significantly different from zero 

consistently for all of the first blocks, and only some of the subsequent blocks (indicated by 

an asterisk in Table 3.5). This was likely due to being instructed to use their dominant hand 

only to respond on either the Caps Lock key for the left or Enter key for the right, making a 

right-hand side bias more likely given that most of the participants would have been right-
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handed. This was more likely to happen when the participant had little information on the 

distribution of the primary outcomes at the start of each component, and less likely at 

subsequent blocks. 

Trends in sensitivity. We examined whether sensitivity increased linearly as a 

function of block for participants that have reached the 5th block of primary outcomes in all 

four of their components for each condition (see the fourth column of Table 3.5). Figure 3.5 

plots the average sensitivities and their standard errors of the means listed in Table 3.5 as a 

function of blocks for each condition. Similar to Bull et al. (2015), we observed larger error 

bars at later blocks in all conditions due to decreasing sample size of available data. Bull et 

al.’s analysis identified linear trends in sensitivities across blocks for all four conditions, with 

participants showing increasing sensitivity to reinforcement as they progressed through the 

blocks of reinforcers in each component. The patterns and range of sensitivities for the two 

gain conditions in our sample were comparable to Bull et al., showing linear increase in 

sensitivity, unlike the two loss conditions. Our participants showed lower average 

sensitivities to losses relative to Bull et al., and the loss frequency condition in particular did 

not show a pattern of increasing sensitivity across blocks.  

Repeated-measures ANOVAs showed a significant difference between blocks for the 

two gain conditions and loss frequency, but not for loss magnitude (see Table 3.6). Contrasts 

showed a significant linear trend for the two gain conditions only, with increasing sensitivity 

from 1st to 5th block. Examination of contrasts showed significant linear trends for gain 

frequency (F(1, 61) = 45.82, p < .001, 𝜂𝑝
2 = .429) and gain magnitude (F(1, 49) = 21.67, p < 

.001, 𝜂𝑝
2 = .307), indicating that sensitivity increased for participants that successfully 

progressed until the 5th block of reinforcers.  

Table 3.6 

Study 2 sphericity and ANOVA statistics for a by-block analysis of sensitivities 

 Sphericity  ANOVA 

 χ2 df p ε  F df p 𝜂𝑝
2 

Frequency          

Gains 32.34 9 <.001 .81b  17.26 3.22, 196.48 <.001 .221 

Losses 12.49 .188   2.62 4, 104 .039 .091 

Magnitude          

Gains 36.49 9 <.001 .87b  6.53 3.49, 171.05 <.001 .118 

Losses 28.09 .001 .70a  1.61 2.81, 92.76 .194 .047 

Note. a = Greenhouse-Geisser correction; b = Huynh-Feldt correction. 
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Figure 3.5. Mean sensitivity derived from Generalized Matching Law plotted as a function of 

successive blocks of primary outcomes. Error bars are the standard error of the mean.  

In contrast to Bull et al. (2015), the two loss conditions in our sample did not show 

significant linear trends. For loss frequency, we observed a significant effect of block, but 

examination of contrasts showed no significant linear trend across the blocks. For loss 

magnitude, we observed no significant effect of block.  

Following Bull (2013), we derived a group measure of sensitivity by averaging 

individual data and re-fitting the GML to these data. Bull totalled the number of responses 

and primary outcomes received on each alternative across the components and participants, 

logged these group ratios and fitted the GML to generate four estimates of sensitivity, bias 

and R2. In our version of this analysis, we averaged individual response and reinforcer ratios 

and fitted the GML to this group data in order to preserve the individual ratios rather than the 

absolute number of responses/reinforcers. Figure 3.6 plots the gain and loss frequency data 
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on the left, and gain and loss magnitude data on the right. Aggregate data were well described 

by the GML, similar to Bull, but did not correspond to our gain-loss asymmetry predictions. 

However, it did correspond to the patterns in group data observed by Bull, with higher 

sensitivity to losses than gains and about equivalent sensitivity between gain and loss 

magnitude.  

 

Figure 3.6. Logged ratio of responses on the y axis plotted against the logged ratio of 

reinforcers on the x axis, derived from average response and reinforcer ratios across 

components and participants. Dashed line corresponds to perfect matching. The solid lines 

are the Generalized Matching Law fitted to gain (white) and loss (black) data points. The 

equations of the regression line of best fit and the R2 are shown for gains (top left of each 

graph) and for losses (bottom right of each graph). Left graph plots group data sensitivity to 

gain and loss frequency. Right graph plots group data sensitivity to gain and loss magnitude. 

Following Bull et al. (2015), we attempted to derive a single estimate of each 

individuals’ sensitivity to arranged outcomes that we could subsequently analyse for a gain-

loss asymmetry. We considered whether averaging sensitivities across the last few blocks 

was suitable for our sample. All four conditions in Bull et al. showed a significant linear 

trend, with increasing sensitivities as the participants progressed through the blocks of 

reinforcers. In comparison, we observed significant linear trends for only two of the four 

conditions, suggesting that, in the loss conditions, the participants who progressed until the 

5th block of outcomes did not necessarily increase in their sensitivity to changes in primary 

outcomes. Our rate of missing data was also higher than Bull et al., so averaging sensitivity 
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estimates across the last few blocks would not only exclude a large proportion of participants, 

but it also wouldn’t correspond to a point in the task where participants reached their highest 

sensitivity to obtained outcomes. Lastly, our R2 were on average lower than Bull et al., and 

generally lower than average R2 reported by Lie et al. (2009) and Krageloh et al. (2010), 

suggesting poor fit of GML to the reinforcer and response ratios split by block. Overall, our 

replication of Bull et al.’s analysis did not generate reliable sensitivity parameters for most 

blocks of responses. 

Is there a gain-loss asymmetry in global sensitivity to reinforcement vs. punishment? 

Due to the generally poor fit and a large proportion of missing data, we did not adapt 

Bull et al.’s (2015) approach of visually inspecting the graphs for final few blocks at which 

sensitivity reached stability. Below are several methods of deriving sensitivity that were 

aimed to include most of the participants’ data and to produce better model fit based on 

higher R2 values. We considered changes to both response and reinforcer ratios and ran a 

gain-loss asymmetry analysis where appropriate.  

Sensitivity based on responses across last four blocks. We attempted an approach 

similar to Bull (2013) overall sensitivity estimate by adding up the responses at the final few 

blocks and re-fitting the GML to this range of data. Block 1 was excluded as a learning block, 

and the range of 2 to 5 was taken to account for a large number of participants not completing 

later blocks. This increased the number of participants with some measure of sensitivity after 

an initial exposure to primary outcomes, as we could now include participants who have at 

least reached their second block.  

Table 3.7 

Summary of GML-derived parameters using the last four blocks method. 

 N Mean 𝑎 

(SEM) 

Median R2 (Q1, 

Q3) 

Mean log c 

(SEM) 

% of incomplete 

2nd blocks across 

components 

Gain frequency 100 0.69 (0.07) 0.71 (0.30, 0.86) -0.05 (0.03) 2.00 - 5.00 

Loss frequency 91 0.85 (0.07) 0.83 (0.61, 0.95) -0.08 (0.03) 6.59 - 13.19 

Gain magnitude 96 0.67 (0.08) 0.69 (0.35, 0.88) -0.05 (0.02) 3.13 - 7.29 

Loss magnitude 88 0.64 (0.10) 0.57 (0.21, 0.84) -0.08 (0.03) 6.82 - 10.23 

Note. Q1 = first quartile, Q3 = third quartile. 

Sensitivity, bias and R2 are presented in Table 3.7. For the two loss conditions, mean 

sensitivity was higher than that derived from the 5th block of reinforcers in Table 3.5, but 
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mean sensitivity for gains was lower. This most likely reflected the significant linear trend 

observed for the two gain but not the two loss conditions. For the two gain conditions, 

deriving a sensitivity measure across the increasing trend shown in Figure 3.5 resulted in 

decreased sensitivity parameters. Furthermore, examination of the means matched the pattern 

seen in Figure 3.6, with greater sensitivity to losses than gains and similar sensitivity to gain 

and loss magnitude. 

Using responses from blocks 2-5 did not show a gain-loss asymmetry in either the 

frequency or the magnitude conditions (see top graph of Figure 3.7). A mixed measures 

ANOVA, with two within-subjects factors (task: frequency vs. magnitude and condition: gain 

vs. loss) showed no significant main effects of condition (F(1, 77) = 2.45, p = .122, , 𝜂𝑝
2 = 

.031), task (F(1, 77) = 1.87, p = .176, 𝜂𝑝
2 = .027) or interaction (F(1, 77) = 1.55, p = .217, 𝜂𝑝

2 

= .020). This is demonstrated by the inset in the top left corner of the graph. This inset shows 

overlapping means for both tasks that are situated over the diagonal line indicating 

symmetrical sensitivities. Limiting the sample to GML fits with at least 0.50 R2 similarly 

showed no significant difference between frequency gains (M = 0.93, SE = 0.11) and losses 

(M = 1.00, SE = 0.08; t(49) = -0.63, p = .531), and magnitude gains (M = 0.86, SE = 0.11) 

and losses (M = 1.19, SE = 0.16; t(34) = -1.99, p = .055). 

Sensitivity based on responses at the last experienced block. We have established 

that most participants did not complete five blocks of primary outcomes. Furthermore, most 

of the components would have been terminated with incomplete blocks, where the participant 

experienced less than four of the scheduled primary outcomes for that block. Failing to 

complete the block due to time-out could result in relatively fewer responses than on other 

blocks. Alternatively, it could be an indication of developing exclusive preferences for one 

alternative based on the experience of outcomes in the previous blocks and relatively more 

responses after the last experienced outcome than on other blocks. Basing the response ratio 

on responses from the last four blocks avoids the former (with the exception of participants 

who did not complete their second block in at least one of the components; see the last 

column of Table 3.7), but not the latter issue. Lastly, while the last four blocks method does 

provide a measure of sensitivity for participants who did not complete five blocks, it results 

in less accurate final estimates for participants that did complete them. This is evident in the 

gain conditions in particular, with decreased sensitivity due to averaging across an increasing 

trend. 
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Figure 3.7. Sensitivity to gains plotted against sensitivity to losses for each individual. Black 

circles correspond to sensitivity to magnitude and white circles to sensitivity to frequency. 

The dashed diagonal line corresponds to symmetrical gain and loss sensitivity. Top graph 

plots sensitivity parameters derived from the last four block method and the bottom graph 

from the last experienced block method. 
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To get a measure that better accounts for final sensitivity to primary outcomes, we 

extracted the participants’ allocation of responses that lead to experiencing their last five 

primary outcomes for each component, regardless of which block they were in, and combined 

them into one range of data (last experienced block). For example, the last experienced block 

for one component could comprise of responses after 15th-19th primary outcomes, while for 

another component it could comprise of responses after 4th-8th primary outcomes. In this 

example, the participant experienced 20 primary outcomes in their first component and it 

terminated upon collecting the 20th primary outcome, and in the second component they 

experienced 9 primary outcomes, which terminated via time-out. Note that this method 

calculates responses after a maximum of five primary outcomes, but excludes responses after 

the last primary outcome experienced. In the case of experiencing all the 20 primary 

outcomes, assuming all secondary outcomes have also been collected, the procedure would 

terminate and no responses were possible after the last outcome. In the case of experiencing 

fewer than 20 primary outcomes, the session would have terminated via timeout and the 

participant would have had a varying number of responses after the last outcome (relatively 

fewer or more than after other primary outcomes, as described above). Extracting their 

responses that lead to the last five primary outcomes standardizes the range of data by 

excluding the variation that would have been introduced by including responses after the last 

primary outcome experienced. 

The GML was fitted to responses from the last experienced block of primary 

outcomes for each condition and each participant and the primary outcome ratio which 

consisted of all the primary outcomes experienced. Sensitivity, bias and R2 for the last 

experienced block are presented in Table 3.8. We were able to calculative sensitivity for 

almost all the participants, with the exception of two in the loss magnitude condition, which 

was an improvement over the last four blocks method. The last column of Table 3.8 specifies 

the percentage of sensitivity estimates that relied on less than five primary outcomes 

experienced. As shown in Table 3.5 above, participants were generally less likely to complete 

the loss rather than the gain conditions. Notably, although most individuals now had a 

sensitivity estimate, the median R2 were significantly lower than in the last four blocks 

method for the loss frequency (Bonferroni adjusted alpha of .0125; z = -3.59, p < .001) and 

the gain magnitude (z = -4.13, p < .001) conditions, but not for the gain frequency (z = -0.89, 

p = .371) and loss magnitude (z = -1.46, p = .145) conditions.  
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Table 3.8 

Summary of GML-derived parameters using the last experienced block method. 

Last experienced block  

 N Mean 𝑎 

(SEM) 

Median R2 (Q1, 

Q3) 

Mean log c 

(SEM) 

% of less than 5 

primary outcomes 

experienced across 

components 

Gain 

frequency 
103 1.31 (0.12) 0.55 (0.32, 0.83) -0.05 (0.04) 0 - 1.94 

Loss 

frequency 
103 0.80 (0.07) 0.66 (0.34, 0.88) -0.05 (0.03) 3.88 - 9.71 

Gain 

magnitude 
103 0.66 (0.10) 0.51 (0.14, 0.79) -0.05 (0.04) 1.94 - 3.88 

Loss 

magnitude 
101 0.67 (0.08) 0.46 (0.14, 0.77) -0.08 (0.03) 6.80 - 10.68 

Note. Q1 = first quartile, Q3 = third quartile. 

Using the last experienced block method showed a gain-loss asymmetry in sensitivity 

when responding to frequency changes, but not magnitude. The bottom graph of Figure 3.6 

plots loss against gain sensitivity parameters for frequency and magnitude tasks. A mixed 

measures ANOVA showed a significant main effect of condition (F(1, 100) = 11.28, p = 

.001, 𝜂𝑝
2 = .101), task (F(1, 100) = 16.66, p < .001, 𝜂𝑝

2 = .143) and a significant interaction 

between condition and task (F(1, 100) = 8.81, p = .004, 𝜂𝑝
2 = .081). This significant 

interaction is demonstrated by the inset in the top left corner. Simple main effect analysis 

showed that in the frequency conditions, participants had higher sensitivity to gains (M = 

1.30, SE = 0.13) than losses (M = 0.78, SE = 0.07; p < .001), and in the magnitude conditions 

there was no significant difference between the sensitivity to gains (M = 0.67, SE = 0.10) and 

losses (M = 0.67, SE = 0.08; p = .961). Limiting the sample to GML fits with at least 0.50 R2 

confirmed these relationships: sensitivity to gain frequency (M = 1.75, SE = 0.22) was higher 

than loss frequency (M = 1.15, SE = 0.08; t(42) = 2.58, p = .013), and no significant 

difference between gain (M = 1.16, SE = 0.16) and loss (M = 1.31, SE = 0.16) magnitude 

sensitivities was observed (t(28) = -0.79, p = .438). 

Sensitivity to net outcomes. We considered whether model fit can be improved by 

adjusting our reinforcer ratios with inclusion of both primary and secondary outcomes 

according to the direct-suppression GML (Equation 3.2).  
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We fitted the direct-suppression version of the GML to the responses using both the 

last four blocks and the last experienced block methods. As noted by Critchfield et al. (2003) 

and Klapes, Riley and McDowell (2018), combining gains and losses presents additional 

challenges as it introduces the possibility of negative net outcomes and a log reinforcer ratio 

that cannot be calculated. For most participants, net outcomes were generally positive for 

both left and right alternatives (that is, they gained more points than they lost on each 

alternative). In cases where either left or right alternatives resulted in a zero (either no 

outcomes experienced or participants gained as many point as they lost) or negative (gained 

fewer points than they lost) value and the log reinforcer ratio could not be calculated, it was 

adjusted such that the resultant ratio would correspond to expecting more responses on the 

side with higher net. If one of the net outcomes was zero, both alternatives were adjusted by 

0.25 in the direction of the valence of the other non-zero alternative: if it was negative, then 

both sides had 0.25 subtracted, and if it was positive, then both sides had 0.25 added. If the 

net for one alternative was positive and for the other negative, the negative alternative was set 

to 0.25. If the net for both alternatives was negative, the final ratio was multiplied by -1 

because this produced a ratio that predicted more responses on the side with fewer/lower 

negative outcomes. Notably, this approach is unlike that of Critchfield et al. and Klapes et al., 

who chose to exclude such cases from analysis. 

Comparison of primary outcome to net ratios showed a wider range of ratios obtained 

in the loss as compared to gain conditions. Figure 3.8 plots the primary outcome ratios on the 

x axis against the net ratios on the y axis for each of the conditions, with the black solid line 

corresponding to the ratios where all of the scheduled outcomes were obtained. Since 

frequency and magnitude graphs showed similar patterns, we will focus on the comparison of 

gains and losses in the frequency graphs. In the gain condition, most of the data were along 

the black line, corresponding to most individuals collecting both the primary and secondary 

outcomes. In the loss condition, there was greater variability in outcome ratios, corresponding 

to most individuals not experiencing all of the outcomes and producing acquired reinforcer 

ratios different from the scheduled. In both gain and loss conditions, there was a greater 

variability in ratios in the more extreme component (25:75), which most likely corresponded 

to a higher chance of developing exclusive preference, therefore suspending further outcome 

delivery, in the condition where it was easier to determine which side had more gains or 

fewer losses.  
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Figure 3.8. Net outcome ratios plotted against primary outcome ratios. Each data point 

corresponds to one individual’s net and primary outcome ratios at one of the four components 

experienced in a given condition. Each individual has four data points representing their 

ratios in four components in each graph. The solid line corresponds to ratios where all of 

scheduled outcomes were obtained. 

Using net as compared to primary outcome ratio did not improve model fit when 

using the last four blocks or the last experienced block methods. Median R2 in Table 3.9 show 

that for both estimates of response allocation, using net ratio did increase R2 relative to Tables 

3.7 and 3.8. For the last four blocks method, using net instead of primary outcome ratio 

resulted in significantly lower R2 for the loss frequency (Bonferroni adjusted alpha of .0125; z 

= -2.71, p = .007), but not the gain frequency (z = -2.17, p = .030), gain magnitude (z = -.29, 

p = .773) and loss magnitude (z = -2.47, p = .014) conditions. For the last experienced block, 

using net reinforcers produced significantly lower R2 than using the primary outcome ratio for 
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the loss frequency (Bonferroni adjusted alpha of .0125; z = -2.83, p = .005), but not the gain 

frequency (z = -1.21, p = .227), gain magnitude (z = -0.94, p = .348) and loss magnitude (z = -

2.08, p = .038) conditions. Given the generally lower R2 in the net as compared to the primary 

outcome analysis for both methods of measuring response allocation, we did not calculate 

gain-loss asymmetry using this method. 

Table 3.9 

Summary of GML-derived parameters for the last four blocks and the last experience block 

methods using net outcome ratio. 

 N Mean 𝑎 (SEM) Median R2 (Q1, 

Q3) 

Mean log c 

(SEM) 

Last four blocks relative to net outcome ratio  

Gain frequency 100 0.35 (0.04) 0.65 (0.24, 0.86) -0.06 (0.02) 

Loss frequency 91 0.88 (0.10) 0.74 (0.46, 0.89) -0.10 (0.03) 

Gain magnitude 96 0.30 (0.04) 0.70 (0.34, 0.88) -0.05 (0.03) 

Loss magnitude 88 0.56 (0.10) 0.47 (0.16, 0.74) -0.09 (0.04) 

Last experienced block relative to net outcome ratio 

Gain frequency 103 0.74 (0.08) 0.52 (0.32, 0.80) -0.07 (0.03) 

Loss frequency 103 0.69 (0.11) 0.52 (0.23, 0.80) -0.05 (0.03) 

Gain magnitude 103 0.34 (0.05) 0.44 (0.16, 0.77) -0.04 (0.04) 

Loss magnitude 103 0.58 (0.09) 0.43 (0.12, 0.70) -0.05 (0.03) 

Note. Q1 = first quartile, Q3 = third quartile. 

Is there a gain-loss asymmetry in the local effects of gains vs. losses? 

We conducted an analysis focusing on behaviour after any response that produced a 

primary outcome (real outcomes) and after responses that could have produced a primary 

outcome, but didn’t (hypothetical outcomes), for patterns that suggested a gain-loss 

asymmetry in the immediate response to gains and losses. 

Responses after real outcomes. Responses after each primary outcome were 

numbered in ascending order starting from one for the immediate response after outcome 

delivery and resetting upon delivery of the next outcome. For our analysis, we chose to focus 

on up to thirty responses after each primary outcome. Within each condition, the number of 

left and right responses at each response count (1-30) was counted separately for the 

outcomes occurring on the left and on the right across the four components. The number of 

responses at higher counts were expected to be fewer than at lower counts since the count 

restarted each time the participant received another primary outcome. Therefore, the response 

counts were binned in order to ensure that sufficient and roughly equivalent number of 
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responses occurred at each bin relative to the average total responses made. Examination of 

approximately 20 data sets showed that grouping responses into the following response bins 

would satisfy these criteria: 1, 2-4, 5-7, 8-10, 11-13, 14-17, 18-21, 22-25 and 26-30. As 

above, we added 0.25 to responses on both alternatives if either had zero responses. Two 

logged response ratios of left to right responses were calculated for each condition at each 

response bin, one after a left outcome and the other after a right outcome. 

Responses after hypothetical outcomes. We wrote an Excel VBA Macro to program 

hypothetical primary outcomes (HPOs) and arranged them after responses that did not 

produce a primary outcome in each participants’ acquired data, but could have occurred if the 

participant experienced a different sampling of the VI schedule. For each participant, HPOs 

were simulated a 100 times, producing a 100 instances of possible sequences of arranged 

HPOs. The procedure for each simulation was identical. 

The HPOs were arranged largely as the primary outcomes6 in the ACT. A single base 

VI4 schedule (randomly generating a number between 1 and 7) determined the interval after 

which the HPO was available and it was probabilistically allocated to either the left or right 

deck using the arranged contingency in each component (e.g. 25% chance on the left and 

75% on the right; see Table 3.4 for exact contingencies). The macro then read each line of the 

participant’s responses until the specific schedule conditions were met. If the scheduled time 

has passed and a response was made on the deck the HPO was scheduled to, then a HPO 

could be assigned within certain additional constraints. As in the ACT, a two-second COD 

was implemented and a HPO could not be allocated within two seconds of switching decks. 

A HPO also had to be more than eight seconds after a primary outcome. This constraint was 

based on the work of McLean et al. (2014) and Gomes-Ng et al. (2017) and was aimed to 

minimize the effect of primary outcomes on the HPOs. Gomes-Ng et al. employed a 30-

second constraint on data derived from non-human animal subjects with multiple sessions. 

Our rapid-acquisition procedure had fewer sessions and primary outcomes were arranged on 

a generally richer schedule. Therefore, a shorter duration of constraint was more appropriate 

in order to balance minimizing the impact of primary reinforcers with ensuring sufficient 

opportunities for a HPO to be arranged. We also carried out the same procedure, but without 

                                                           
6 Only the primary outcome that was manipulated in each condition was arranged and no secondary outcomes 

were scheduled. We chose not to schedule secondary outcomes as our local effects analysis was concerned with 

the effects of the manipulated gains/losses on responding in each condition. In this data analysis, we also did not 

schedule different magnitudes of gains and losses for the magnitude conditions (see below for the magnitude 

specific analysis). 
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an 8-second constraint. The patterns discussed below were largely maintained, but the 

difference between responses after real and hypothetical outcomes was reduced due to the 

introduced possibility of overlap. Since the patterns were maintained with and without the 

constraint, we chose to present data with the constraint for consistency with literature.  

If the conditions for assigning a HPO at a given response were not met, the macro 

checked the next response for the same criteria until the specific conditions were met. If the 

necessary conditions were met and a HPO was recorded, the time and side for the next HPO 

was recomputed. This continued until the end of the participant’s responses or if the 

maximum number of HPOs was obtained. Response distributions for HPOs were calculated 

as for primary outcomes.  

Frequency conditions. The top panel of Figure 3.9 plots the mean log response ratios 

of left to right responses after a primary outcome as a function of successive response bins. 

Considering responses after a primary outcome, for both gains and losses there was an 

apparent preference for the just productive alternative. This preference was greater following 

gains than losses. As noted in the introduction, whether this is an effect unique to primary 

outcomes needs to be established by comparing to responses after HPOs. The middle panel of 

Figure 3.9 plots the mean log response ratios after HPOs. The patterns of responding after 

HPOs were similar in shape across gain and loss conditions, with a preference for the just-

productive side that gradually decreases. Responding on the loss condition also showed a 

slightly lower overall tendency to respond on the just-productive side as compared to the gain 

condition. This pattern in the responses after HPOs shows that participants tended to switch 

more in the losses rather than gains condition, with overall shorter visits to each side. 

Importantly, both of these patterns differed from responding after primary outcomes, 

indicating that the primary outcome did have unique effects on behaviour. The difference 

between responses after primary outcomes and after HPOs are plotted in the bottom panel of 

Figure 3.9. The further the data points were from a mean difference of zero (indicated by the 

dotted line) the greater the difference between responses after primary and hypothetical 

outcomes.  
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Figure 3.9. Top two rows: Mean logged ratio of left to right responses after an outcome on 

the left (solid line) and on the right (dashed line) as a function of successive response bins. 

The dotted line at y axis value of zero demarcates a ratio where number of left responses 

equals to number of right responses. Error bars are standard error of the mean. Bottom row: 
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Mean difference between response after hypothetical primary outcomes and primary 

outcomes after an outcome on the left (solid line) and right (dashed line) as a function of 

successive response bins. The dotted line at y axis value of 0 demarcates a mean difference of 

zero. Error bars are standard error of the mean. For all rows, data on the left are from the gain 

frequency task and data on the right are from the loss frequency task. 

Comparison of the mean difference graphs showed similar initial response to primary 

outcomes followed by a gain-loss asymmetry in the pattern of subsequent responses. 

Immediate responses after both gains and losses showed a decreased tendency to respond on 

the just-productive side. That is, encountering any primary outcome resulted in a higher 

likelihood of switching to the other side, while the overall ratio of responses still favoured the 

just-productive side. Subsequent responding for gains showed an increasing tendency to 

respond on the just-productive side, while for losses the decreased tendency to respond on the 

just-productive side maintained across the 30 responses. Notably, the effect of gains on 

behaviour seemed to increase as a function of responses (in that the mean difference was 

increasing further away from the dotted line), but the effect of losses on behaviour seemed to 

decrease as a function of responses (in that the mean difference was decreasing closer to the 

dotted line). 

 

Figure 3.10. Mean differences between the ratio of responses on the just-productive side over 

responses on the alternative side after hypothetical primary outcomes and primary outcomes 

as a function of successive response bins. Note that unlike previous graphs, left and right 

outcomes are collapsed together. Dashed lines correspond to gain frequency (left) and 

magnitude (right) data, and sold lines correspond to loss frequency (left) and magnitude 
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(right) data. The dotted line at y axis value of zero demarcates a mean difference of zero. 

Error bars are standard error of the mean. 

The observed asymmetry was examined using a repeated measures ANOVA. For each 

condition, the mean difference after an outcome on the right was reversed in sign and did not 

significantly differ from mean difference after outcomes on the left. We therefore averaged 

the mean difference after right (sign reversed) and left outcomes (see left panel of Figure 

3.10) and ran a repeated measures ANOVA, with block (9 levels) and condition (gain vs. 

loss; see Table 3.10). Mauchly’s test indicated that the assumption of sphericity had been 

violated for the main effect of block and the interaction, therefore degrees of freedom were 

corrected using the Greenhouse-Geisser estimate of sphericity. There were significant main 

effects of block, condition and a significant interaction. Pairwise comparisons using the 

Sequential Bonferroni correction showed no difference between gains and losses at the first 

response (p = .967) and a significantly higher mean difference for gains than losses at all of 

the other response bins (p < .001 at subsequent bins). Figure 3.10 demonstrates this with a 

steeper decline in mean difference for gains as opposed to losses after the first response bin. 

Table 3.10 

Study 2 sphericity and ANOVA statistics for the gain-loss asymmetry analysis of the mean 

differences in the frequency conditions. 

 Sphericity  ANOVA 

 χ2 df p ε  F df p 𝜂𝑝
2 

Block 690.21 35 <.001 0.32a  93.00 2.60, 254.28 <.001 .487 

Condition - - - -  50.23 1, 98 <.001 .339 

Block by 

Condition 

654.70 35 <.001 0.34a  13.12 2.74, 267.99 <.001 .118 

Note. a = Greenhouse-Geisser correction. 

Magnitude conditions. Figure 3.11 shows the mean log response ratios after primary 

outcomes (top panel), HPOs (second panel) and the mean difference (third panel) for the two 

magnitude conditions. The differences between the gain and loss conditions were less distinct 

in both the primary outcomes and HPO graphs as compared to the frequency conditions. 

However, both of the primary outcomes response patterns differed from HPOs response 

patterns.  
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Figure 3.11. Top two rows: Mean logged ratio of left to right responses after an outcome on 

the left (solid line) and on the right (dashed line) as a function of successive response bins. 

The dotted line at y axis value of zero demarcates a ratio where number of left responses 

equals to number of right responses. Error bars are standard error of the mean. Bottom row: 
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Mean difference between response after hypothetical primary outcomes and primary 

outcomes after an outcome on the left (solid line) and right (dashed line) as a function of 

successive response bins. The dotted line at y axis value of 0 demarcates a mean difference of 

zero. Error bars are standard error of the mean. For all rows, data on the left are from the gain 

magnitude task and data on the right are from the loss magnitude task. 

Comparison of the mean difference graphs indicated an initial lower preference for 

the just-productive side after both gains and losses and asymmetry in subsequent responses. 

As with the frequency conditions, immediate responses after both gains and losses showed a 

lower tendency to respond on the just-productive side, but this seemed to last across more 

responses than in the frequency conditions. Subsequent responding for gains showed an 

increasing tendency to respond on the just-productive side, which was more gradual than 

observed in the gain frequency condition. Subsequent responding for losses showed a 

decreased tendency to respond on the just-productive side, as with frequency losses. The 

effect of gains and losses not differentiated by magnitude followed the patterns observed in 

the frequency conditions, but were overall less extreme relative to the general visit structure. 

Table 3.11 

Study 2 sphericity and ANOVA statistics for the gain-loss asymmetry analysis of the mean 

differences in the magnitude conditions. 

 Sphericity  ANOVA 

 χ2 df p ε  F df p 𝜂𝑝
2 

Block 868.34 35 <.001 0.27a  119.74 2.16, 207.71 <.001 .555 

Condition - - - -  7.45 1, 96 .008 .072 

Block by 

Condition 

761.24 35 <.001 0.31a  2.45 2.48, 238.39 .076 .025 

Note. a = Greenhouse-Geisser correction. 

The delayed start to the asymmetry and its general lesser extent was confirmed with a 

repeated measures ANOVA with block (9 levels) and condition (gain vs. loss) comparing 

mean difference averaged across right (sign reversed) and left outcomes as described above 

(see the right panel of Figure 3.10). Mauchly’s test indicated that the assumption of sphericity 

had been violated for the main effect of block and the interaction, therefore degrees of 

freedom were corrected using the Greenhouse-Geisser estimate of sphericity. There were 

significant main effects of block, condition and a non-significant interaction. Examination of 

mean differences for the nine blocks collapsed across the conditions showed a decrease from 
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1st to 9th, with a steeper decline in the first few blocks and shallower in the last few blocks, 

the pattern of which did not differ between gains and losses (right panel of Figure 3.10). 

Overall, mean differences for the gain blocks (M = 0.07, SE = 0.04) were lower than for the 

loss blocks (M = 0.26, SE = 0.05). 

Is there a gain-loss asymmetry in the local effects of small vs. large magnitudes?  

Our local analysis of responses after gains and losses on the magnitude conditions 

above did not differentiate by magnitude of the outcomes, hence we conducted a separate 

examination of a gain-loss asymmetry split by magnitude. 

Data analysis. In Kubanek et al. (2015), participants experienced all of the possible 

magnitudes in each condition. This was not true of the distribution of magnitudes in the ACT, 

where each component had a different range of magnitudes, although the participants would 

have experienced all of the possible magnitudes by the end of the condition. Table 3.12 lists 

the scheduled magnitudes in each component; for example, component 1 (25v:75v) of the 

gain magnitude condition arranged the ten magnitudes in the first column on one of the 

alternatives and in the fourth column on the other alternative. Upon examination of 

approximately twenty data sets, we chose to create two magnitude bins (indicated by the 

bolded black line in the table) and five response bins in order to ensure that we have a 

number of responses in the response bins that is consistent with the local analysis done above. 

The two magnitude bins were created by splitting the magnitude range at its median (41) and 

the following response bins were used: 1, 2-6, 7-12, 13-18, and 19-30. Logged left over right 

responses at each response bin for each magnitude were generated for each participant. The 

HPOs were generated for the two magnitude conditions as described above, which this time 

also included varying magnitudes of primary outcomes as in the ACT.  

 Figure 3.12 plots the mean logged response ratios of left to right responses after 

primary outcomes (top row), HPOs (middle row) and the mean differences (bottom row) for 

the two magnitude bins (black circles for smaller magnitude and white squares for larger 

magnitude). Responses after HPOs showed a parallel decrease in responding on the just-

productive side between the two magnitudes that differed in the extent of preference for the 

just-productive choice. This greater tendency to respond on the just-productive side after a 

larger than a smaller gain, and a smaller than a larger loss, was indicative of global patterns in 

behaviour that corresponded to how the magnitude bins were created. Majority of the larger 

magnitudes occurred on the side scheduling primary outcomes in the higher magnitude range 
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(i.e. 65 and 75), resulting in a general tendency to switch less in the gain (white squares 

further from zero than black circles) and more in the loss condition (white squares closer to 

zero than black circles). Conversely, majority of the smaller magnitudes occurred on the side 

scheduling primary outcomes in the lower magnitude range (i.e. 25 and 35), thus resulting in 

more switching behaviour after a gain and less after a loss. Overall, responses after HPOs for 

the two magnitudes differed in the overall chances of switching, but not in the rate at which 

preference for the just-productive side decreased.  

Table 3.12 

Range of primary outcomes in each VI schedule of the magnitude conditions 

VI Schedule 25 35 65 75 

Magnitude 1 3 4 7 8 

Magnitude 2 8 11 20 23 

Magnitude 3 13 18 33 38 

Magnitude 4 18 25 46 53 

Magnitude 5 23 32 59 68 

Magnitude 6 28 39 72 83 

Magnitude 7 33 46 85 98 

Magnitude 8 38 53 98 113 

Magnitude 9 43 60 111 128 

Magnitude 10 48 67 124 143 

Examination of the mean difference graphs suggested an asymmetry in the effect of 

magnitude on responses after gains and losses. Responses after both gains and losses showed 

an immediate decreased tendency to respond on the just-productive side, with subsequent 

responses showing an increasing tendency to respond on the just-productive side. For gains, 

the difference between two magnitude bins was small across responses: no difference in 

immediate response, and subsequently some indication of a greater tendency to respond on 

the just-productive side after a larger magnitude outcome. For losses, immediate and 

subsequent responses after a larger magnitude loss showed lesser tendency to respond on the 

just-productive side as compared to smaller magnitudes. Furthermore, the difference between 

magnitudes across the response bins appeared to be consistent for losses, a parallel pattern 

that was also observed in the responses after HPOs.  
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Figure 3.12. Top two rows: Mean logged ratio of left to right responses after an outcome on 

the left (solid line) and on the right (dashed line) as a function of successive response bins. 

Black circles correspond to primary outcomes in the small magnitude range and white 

squares correspond to primary outcome in the large magnitude range. The dotted line at y 

axis value of zero demarcates a ratio where number of left responses equals to number of 

right responses. Error bars are standard error of the mean. Bottom row: Mean difference 
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between response after hypothetical primary outcomes and primary outcomes after an 

outcome on the left (solid line) and right (dashed line) as a function of successive response 

bins. The dotted line at y axis value of zero demarcates a mean difference of zero. Error bars 

are standard error of the mean. For all rows, data on the left are from the gain magnitude task 

and data on the right are from the loss magnitude task. 

We averaged the mean difference after right (sign reversed) and left outcomes and 

tested the relationship between magnitude, condition and block in a repeated measures 

ANOVA (see Table 3.13). Mauchly’s test indicated that the assumption of sphericity had 

been violated for the main effect of block and all of the interactions that included block, 

therefore degrees of freedom were corrected using the Greenhouse-Geisser estimate of 

sphericity. There were significant main effects of condition, magnitude and block, as well as 

significant interactions between condition and magnitude, and condition and block7. We 

focused on the interaction between condition and magnitude.  

Table 3.13 

Study 2 sphericity and ANOVA statistics for the gain-loss asymmetry analysis of the mean 

differences split by magnitude of the primary outcome.  

 Sphericity  ANOVA 

 χ2 df p ε  F df p 𝜂𝑝
2 

Condition - - - -  3.98 1, 90 .049 .042 

Magnitude - - - -  7.53 1, 90 .007 .077 

Block 288.55 9 <.001 0.41a  158.44 1.64, 147.88 <.001 .638 

Condition by 

Magnitude 

- - - -  44.41 1, 90 <.001 .330 

Condition by 

Block 

272.76 9 <.001 0.44a  5.84 1.75, 157.55 .005 .061 

Magnitude by 

Block 

107.03 9 <.001 0.64a  1.28 2.58, 231.73 .281 .014 

Condition by 

Magnitude by 

Block 

93.30 9 <.001 0.66a  1.49 2.62, 235.95 .223 .016 

Note. a = Greenhouse-Geisser correction. 

A pairwise comparison showed that a gain-loss asymmetry in the mean difference 

data, averaged across five blocks, emerged only at higher magnitudes. The top panel of 

                                                           
7 Simple main effect analysis showed the same patterns already discussed in the local effects not 

differentiated by magnitude, where the difference between gain and loss conditions emerged at later blocks. 
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Figure 3.13 demonstrates a comparison between gains and losses at smaller magnitude (left) 

and larger magnitude (right). When magnitude of both gains and losses was small, there was 

no significant difference between gains (M = 0.18, SE = 0.05) and losses (M = 0.13, SE = 

0.05; p = .512). This is demonstrated by the overlapping gain and loss data points in the top 

left graph. When the magnitude of both gains and losses was large, there was a significant 

difference between gains (M = 0.04, SE = 0.06) and losses (M = 0.42, SE = 0.06; p < .001). 

The top right graph illustrates this difference with the loss magnitude points generally higher 

than the gain magnitude points.  

 

Figure 3.13. Mean differences between the ratio of responses on the just-productive side over 

responses on the alternative side after hypothetical primary outcomes and primary outcomes 

as a function of successive response bins. Note that left and right outcomes are collapsed 

together. Black circles correspond to primary outcomes in the small magnitude range and 

white squares correspond to primary outcome in the large magnitude range. The dotted line at 
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y axis value of zero demarcates a mean difference of zero. Error bars are standard error of the 

mean. Note that the bottom graphs re-plot the same data given on the top graphs to facilitate 

comparisons of magnitudes within gain and loss conditions. 

Within each condition, responses after smaller magnitudes were significantly different 

from responses after larger magnitudes. The bottom panel of Figure 3.13 demonstrates a 

comparison between smaller and larger magnitudes for gains (left) and losses (right). In the 

gain condition, participants had significantly higher data points in the smaller than larger 

magnitude (p = .001). In the loss condition, participants had significantly lower data points in 

the smaller than larger magnitude (p < .001). Comparing across the four graphs, the 

difference between gains and losses emerged at higher magnitudes, which was largely due to 

a greater effect of magnitude on losses as opposed to gains.  

Does order effect in discounting persist after balance reset and condition separation? 

Data were analysed as described in Study 1, Experiment 1. Table 3.14 specifies the 

number of participants excluded based on the Johnson and Bickel (2008) criteria. Analysis 

below uses participants who had fully systematic data across conditions. Individual h 

parameters were not normally distributed (Shapiro-Wilk’s test for normality all p < .001), 

with high positive skew and kurtosis for both gains and losses. Data were log transformed, 

with Shapiro-Wilk’s test for normality remaining significant for gains (W = 0.96, p = .005) 

and losses (W = 0.95, p = .001). Examination of histograms showed no skew and slight 

positive kurtosis, but the shape of the distribution was otherwise normal.  

Table 3.14 

Number of participants (n = 103) in Study 2 who had unsystematic data by criterion, and 

total participants with systematic data. 

 Gain Loss 

Criterion 1 3 3 

Criterion 2 5 4 

Total systematic  94 (91.26) 

Note. Percentages in parenthesis.  

The hyperbolic model provided good fits to individual and group median indifference 

points (see Table 3.15), with medians for both group indifference points and individual h 

parameters showing steeper discounting of losses than gains as with the experiential money 
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tasks in Study 1. Examination of mean residuals showed no systematic trends (see Appendix 

H). 

Table 3.15 

Study 2 money task h, R2 and AUC values 

 

Group median 

indifference points Individual participants 

Condition h R2 AUC 

h median (Q1, 

Q3) 

R2 median (Q1, 

Q3) 

AUC mean 

(SE) 

Gain 1.38 0.96 0.27 1.54 (0.99, 2.54) 0.85 (0.75, 0.92) 0.28 (0.01) 

Loss 2.10 0.96 0.21 1.96 (1.34, 3.64) 0.87 (0.79, 0.93) 0.22 (0.01) 

Note. Q1 = first quartile, Q3 = third quartile. 

 As in Study 1, we observed significant interaction between order and condition, and 

unlike Study 1, we also observed a significant main effect of condition (see top right section 

of Figure 3.14). Mixed measures ANOVA with order as the between-subjects factor and 

condition as the within-subjects factor showed a significant main effect of condition (F(1, 92) 

= 9.23, p = .003, 𝜂𝑝
2 = .091), non-significant main effect of order (F(1, 92) = 1.65, p = .202, 

𝜂𝑝
2 = .018), and a significant interaction (F(1, 92) = 4.72, p = .032, 𝜂𝑝

2 = .049). The inset in 

the left panel of Figure 3.14 shows this interaction of order and condition; when losses were 

presented first, gains (M = 0.24, SE = 0.05) were discounted significantly less steeply than 

losses (M = 0.28, SE = 0.05; p = .001), but when gains were presented first, there was no 

significant difference between discounting of gains and discounting of losses (p = .524; 

Bonferroni correction applied). The log(h) parameters were significantly higher than zero for 

gains in the gains first order (t(50) = 5.49, p < .001, dz = 0.77), losses in the gains first order 

(t(50) = 5.24, p < .001, dz = 0.73), gains in the losses first order (t(42) = 3.35, p = .002, dz = 

0.51), and losses in the losses first order (t(42) = 8.63, p < .001, dz = 1.32).  

 Contrary to Study 1 and the analysis using log(h) above, the same analysis conducted 

with AUC showed that losses were discounted more steeply than gains regardless of order. 

Mixed measures ANOVA showed a significant main effect of condition (F(1, 92) = 13.95, p 

< .001, 𝜂𝑝
2 = .132), non-significant main effect of order (F(1, 92) = 1.48, p = .227, 𝜂𝑝

2 = .016) 

and a non-significant interaction (F(1, 92) = 3.23, p = .076, 𝜂𝑝
2 = .034).   

Gains and losses were not significantly correlated using log(h) (r(92) = .02, p = .863) 

or AUC (r(92) = -.02, p = .817), unlike the negative correlation in Study 1. 
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Figure 3.14. Left panel: Logged h parameters for gains plotted against logged h parameters 

for losses for each individual, split by order; black circles are gain-loss and white circles are 

loss-gain order. The larger black and white circles represent the means for each order, which 

are also shown in the inset. The error bars are standard error of the mean. The diagonal 

dashed line represents symmetrical discounting of gains and losses. Dotted vertical and 

horizontal lines demarcate logged h value (0) when decisions are made based on expected 

value. Top right panel: Subjective value (indifference points as a proportion of the larger, 

uncertain amount) as a function of increasing odds against occurrence of a gain (white 

triangles) or loss (black triangles). For each task, data are split by order as indicated by the 

graph titles. Dashed (gains) and solid (losses) curves are the best-fitting hyperbolic functions. 

The dotted curve is a hyperbolic function from decisions made based on expected value (h = 

1). Bottom right panel: AUC for losses plotted against AUC for gains for each individual. 

Order split and group means are plotted as described for the left panel graph. 

Does sensitivity predict discounting after controlling for condition order? 

 For gains and losses separately, we tested whether a model with order and sensitivity 

to last experienced block for both frequency and magnitude was a better predictor of 
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discounting than order alone. We also conducted this analysis for both log(h) and AUC 

discounting measures, but since they supported the same conclusions, AUC results are 

reported in the Appendix F.  

Losses. We conducted a two-stage hierarchical regression with log(h) for losses as the 

dependent variable and condition order entered into the first block (Model 1) and the 

sensitivities to loss magnitude and loss frequency derived from the last experienced block 

entered into the second block (Model 2).  

We observed no high correlations between independent variables (see Table 3.16), 

with the only significant correlation between order and log(h), suggesting no multicollinearity 

between the predictors. Two cases were identified as outliers based on their standardized 

residuals being outside the -2 to 2 range (Field, 2009), but they were retained in the sample as 

the Cook’s distance was less than 1 (Cook & Weisberg, 1982), Mahalanobis distance were 

less than 15 (Barnett & Lewis, 1978; Field, 2009) and the centred leverage values were less 

than twice the size of the average leverage (Hoaglin & Welsch, 1978), indicating that the 

identified cases were not undue influence on the model parameters. One additional case was 

identified by manual examination that exceeded both the Mahalanobis distance and leverage 

cut-offs, but with Cook’s distance less than 1; we excluded this participant, re-ran the 

regression and it produced no change in the results. We chose to retain this case. Analysis of 

residual and scatter plots showed that the data were normally distributed and met the 

assumptions of linearity and homoscedasticity.  

Table 3.16 

Correlations between log(h) for losses, condition order, and sensitivities to loss frequency 

and magnitude 

 Log(losses h) Order Loss frequency Loss magnitude 

Log(losses h) - -0.27* -0.12 0.06 

Order - - -0.07 0.02 

Loss frequency - - - -0.02 

Loss magnitude - - - - 

Note. *p < .01. 

 The hierarchical regression showed that adding loss frequency and magnitude 

sensitivity did not account for significantly more variance in discounting than condition order 

alone (Table 3.17). Both Models 1 (F(1, 90) = 7.02, p = .010) and 2 (F(3, 88) = 3.14, p = 

.029) were significantly better at predicting discounting than the mean. Model 1 showed that 

condition order was a significant predictor, accounting for 6.20% of the variation in log(h) 
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parameter for losses. In Model 2, adding loss frequency and loss magnitude sensitivities did 

not explain significantly more variance in log(h) than Model 1. 

Table 3.17 

Results of a two-stage hierarchical regression analysis using log(h) for losses 

     Change statistics  

 B (SE) β t p F  df p adj. R2 

Model 1: Order alone 7.02 1, 90 .010 .06 

Order -0.20 (0.08) -0.27 -2.65 .010     

Model 2: Order and sensitivity 1.18 2, 88 .311 .07 

Order -0.21 (0.08) -0.28 -2.75 .007     

LF -0.07 (0.05) -0.14 -1.38 .170     

LM 0.03 (0.05) 0.07 0.65 .520     

Gains. As above, we conducted a two-stage hierarchical regression with log(h) for 

gains as the dependent variable and condition order entered into in the first block (Model 1) 

and the sensitivities to gain magnitude and gain frequency derived from the last experienced 

block entered into the second block (Model 2).  

Table 3.18 

Correlations between log(h) for gains, condition order, and sensitivities to gain frequency 

and magnitude 

 Log(gains h) Order Gain frequency Gain magnitude 

Log(gains h) - 0.06 -0.02 -0.04 

Order - - 0.09 -0.19 

Gain frequency - - - 0.22* 

Gain magnitude - - - - 

Note. *p < .05 

We observed no high correlations between independent variables (see Table 3.18), 

with the only significant correlation between gain frequency and magnitude, but the VIF and 

tolerance statistics showed no multicollinearity. Four cases were identified as outliers based 

on their standardized residuals being outside the -2 to 2 range (Field, 2009), but they were 

retained in the sample as the Cook’s distance was less than 1 (Cook & Weisberg, 1982), 

Mahalanobis distance were less than 15 (Barnett & Lewis, 1978; Field, 2009) and the centred 

leverage values were less than twice the size of the average leverage (Hoaglin & Welsch, 

1978). One additional case was identified by manual examination that exceeded both the 
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Mahalanobis distance and leverage cut-offs, but with Cook’s distance less than 1; we 

excluded this participant, re-ran the regression and it produced no change in the results. We 

chose to retain this case. Analysis of residual and scatter plots showed that the data were 

normally distributed and met the assumptions of linearity and homoscedasticity.  

The hierarchical regression showed that neither order alone (F(1, 92) = 0.37, p = .544) 

nor the inclusion of sensitivities (F(3, 90) = 0.16, p = .923) were significantly better at 

predicting discounting than the mean. Table 3.19 shows that none of the predictors 

significantly explained variance in the discounting of gains. 

Table 3.19 

Results of a two-stage hierarchical regression analysis using log(h) for gains 

     Change statistics  

 B (SE) β t p F  df p adj. R2 

Model 1: Order alone 0.37 1, 92 .544 -0.01 

Order 0.04 (0.07) 0.06 0.61 .544     

Model 2: Order and sensitivity 0.06 2, 90 .942 -0.03 

Order 0.04 (0.07) 0.06 0.56 .577     

LF -0.01 (0.03) -0.02 -0.19 .849     

LM -0.01 (0.04) -0.03 -0.23 .817     

Discussion 

 We examined gain-loss asymmetry in a rapid-acquisition concurrent schedules task at 

both extended and local level of analysis. Our replication of Bull et al.’s (2015) Auckland 

Card Task procedure produced reasonable data quality relative to other such tasks with 

humans, but overall of poorer quality than the original study. According to Prospect Theory 

and the description-experience gap literature (e.g. Hertwig & Erev, 2009), we expected an 

asymmetry at both extended and local level of analysis in both frequency and magnitude 

tasks. We identified a consistent asymmetry when the participants responded to changes in 

frequency at the extended level, as well as in the immediate, local response to occurrence of 

gains and losses. We found less consistent results in the magnitude task, where participants 

were not sensitive to changes in magnitude at the extended level, but did show differences in 

local level of analysis. The specific nature of this asymmetry and its relation to our 

predictions will be discussed below.  
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ACT as a rapid-acquisition task  

The behaviour of most participants showed control by the changes in primary 

outcome delivery, with data that was moderately well described by the GML. Our 

participants responded at a high rate and no participant was observed to stop responding prior 

to component completion. Furthermore, the high rate of exclusive preference for the more 

reinforcing or less punishing sides suggested control by the hypothetical money in that task 

(Horne & Lowe, 1993). However, while the average R2 from the last four blocks and the last 

experienced block methods were comparable to other rapid-acquisition tasks with human 

participants which have reported moderately good fits (Lie et al., 2009; Krageloh et al., 

2010), they were generally lower than reported by Bull (2013) for their overall sensitivity 

measure (no R2 were provided for the asymptotic sensitivities). Furthermore, a sub-sample 

(approximately 40% with R2 below 0.50 using the last experienced block method) of 

participants showed little control by the differential reinforcement rates, with an inconsistent 

distribution of response relative to the distribution of reinforcers. Since our adaptation of the 

ACT had several procedural changes from the original, we considered whether these could 

explain the reduced data quality. 

Firstly, we considered differences that could have affected motivation to engage with 

the task. In our data collection, our participants were given course credit. In contrast, Bull et 

al. (2015) paid their participants a total of $30 for two 1-2 hour sessions, which the 

participants were told was dependent on their performance in the task. We also tested them in 

groups of four to fifteen, while Bull et al.’s participants completed the task alone. While our 

testing conditions were identical to Study 1, the more repetitive and longer ACT may have 

decreased engagement in the absence of perceived rewards for accurate performance and 

increased distraction due to the presence of other participants. Bowen and Kensinger (2017) 

observed that in tasks where participants were rewarded for correct recall of high vs. low 

reward stimuli, behaviour differed in the group responding for course credit as compared to 

the group responding for money. While the rate of correct recall of low and high reward 

stimuli did not differ for the credit group, the cash group showed higher rate for the high as 

compared to low reward stimuli. When data was collapsed across high and low reward 

stimuli, the performance of the credit group was not significantly different from the 

performance of the money group. This suggests that while overall engagement with the task 

goals did not depend on compensation type, the monetary rewards that the participants 
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understood to be contingent on performance in Bull et al. may have encouraged increased 

discrimination of differential reinforcement rates.  

Second, the changes we made to shorten the ACT for inclusion into two one-hour 

sessions could have contributed to the higher number of incomplete components and 

therefore limited information on the true likelihood of outcomes. Bull et al. (2015) provided 

their participants with a practice gain magnitude task that lasted for two components, with ten 

gains and no losses each, prior to data collection sessions. They also coded each component 

of the ACT to terminate after a maximum of eight minutes, while we shortened ours to six. 

On average, our participants who did not experience all of their primary outcomes, had their 

task terminated by timeout after 10-15 primary outcomes. The loss conditions were at the 

lower end of this range, which corresponds to the third and fourth block. This was somewhat 

earlier than Bull et al., who observed that the participants started to develop exclusive 

preference for one alternative by the fourth (13-16) and fifth (17-20) block, thus suspending 

the delivery of further primary outcomes until component time-out. The tendency of our 

participants to develop exclusive preference earlier in the task suggested that providing them 

with more time may not have resulted in a significant increase in component completion 

rates.  

Overall, despite the features of a rapid-acquisition task that make it more suitable to 

human participants and therefore likely to increase engagement with the task goals, we did 

not obtain model fits in the high range reported by Bull et al. (2015). Our range of R2 was 

comparable to Lie et al. (2009), whose participants were not paid and participated for course 

credit in a relatively short task, and to Krageloh et al. (2010), who paid their participants 

based on the accuracy of their performance and tested them over approximately 5 hours each. 

The similarity in our moderate R2 values suggested that the differences discussed above, such 

increasing task duration and paying the participants, may not suffice in improving data 

quality, although we will return to the issue of ways to increase discrimination of 

reinforcement rates in the general discussion.  

Gain-loss asymmetry in response to changes in frequency  

When responding to changes in gain frequency, participants allocated their responses 

to the more frequently rewarding side at an increasing rate relative to the less frequently 

rewarding side as they received more reinforcers. Consistent with performance on other rapid 

acquisition tasks, participants became more sensitive to the differences between the two sides 
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with more gains received in each component (Davison & Baum, 2000; Lie et al., 2009; 

Krageloh et al., 2010; Bull et al., 2015). Unlike Bull et al., experiencing more losses in each 

component did not result in increasing allocation of responses to the side with higher chance 

of no-loss as compared to the side with the lower chance of no-loss. Participants’ sensitivity 

to changes in loss frequency remained low, on average, and did not improve with more losses 

experienced.  

Increasing sensitivity for gain frequency and relatively unchanging sensitivity for loss 

frequency resulted in a gain-loss asymmetry that emerged with increasing experience of each 

component. Using responses at the last experienced block of primary outcomes, participants 

had higher sensitivity to changes in gain frequency than loss frequency. This was in contrast 

to using responses across the last four blocks of primary outcomes, which showed no 

significant differences in sensitivity. Thus an asymmetry emerged at later as opposed to 

earlier blocks, which was opposite to Bull (2013), where participants’ sensitivity to gains and 

losses differed when using responses across all of the blocks (overall) and not when using 

averaged sensitivity to the last few blocks (asymptotic). In Bull, this was largely due to a 

greater change in sensitivity to gains across blocks, while sensitivity to losses was high at the 

first few blocks and did not greatly change across blocks. This change in gain sensitivity and 

relatively unchanging loss sensitivity corresponds to our data, although our sensitivity to 

losses began and ended low for most participants.  

Participants showed greater sensitivity to changes in the frequency of gains rather 

than losses, consistent with the predictions of a reversed reflection effect in experiential 

choice (e.g. Hertwig & Erev, 2009), but overmatching was only observed in the gain 

frequency task. Using the last experienced block method, participants, on average, 

overmatched in the allocation of behaviour in response to changes in gain frequency and 

undermatched in response to changes in loss frequency. Overmatching for gains indicated 

that across the four components, the side with high probability of a gain elicited more 

responses and the side with low probability of a gain elicited fewer responses than perfect 

matching would predict. For losses, since we reversed our primary outcome ratio such that 

the side with fewer losses (higher chance of no-loss) ought to have more responses, 

undermatching indicated that the side with a low chance of no-loss elicited more responses 

and the side with a high chance of no-loss elicited fewer responses than perfect matching 

would predict. Participants were sensitive to which side was less punished, since the average 

sensitivity was above zero, but not to the same extent as determining which side was more 
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reinforced on the gain task. Notably, when we limited our sample to participants with higher 

R2 and better fit of the GML to data, we replicated overmatching for both gain and loss 

frequency tasks observed in Bull (2013), consistent with the predictions of the probability 

weighting function in experiential choice. Participants whose rate of response allocation 

showed a more consistent linear pattern were also showing a rate of allocation that was more 

extreme than the rate of change in primary outcomes. 

Analysis of local effects showed consistency with the gain-loss asymmetry at the 

extended level. Our data supported McLean et al. (2014), showing that the increased 

preference for the just-productive side was partially a product of the general visit structure to 

each alternative. After any response and regardless of its outcome, participants were more 

likely to respond on the just-productive side than the alternative. Examining the difference 

between responses after real and hypothetical outcomes showed unique effects of real 

outcomes, supporting Gomes-Ng et al.’s (2017) re-analysis of existing data for corrected 

preference pulses. The occurrence of both gains and losses disrupted the general visit 

structure, with the initial response showing a decreased tendency to respond on the just-

productive side (more on that below) and subsequently the likelihood of responding on the 

just-productive side increased linearly. However, the steeper rate of increasing preference for 

the just-productive side after gains meant that gains had a more lasting effect on responding, 

while for losses behaviour shifted sooner to the general visit structure.  

Analysis of local effects showed additional properties; participants were more likely 

to switch sides and had shorter stays on each side in the context of frequently received losses 

as compared to gains. The generally less extreme preferences for the just-productive side in 

their general visit structure on the loss frequency task corresponded to lower sensitivity at the 

extended level. This reduced sensitivity and the general propensity to switch sides was 

consistent with the local analysis in Lie (2010), which identified that participants tended to 

favour the not just-productive alternative after receiving a loss, regardless whether this 

alternative was overall more or less punished, while for gains they were less likely to switch 

if the just-productive alternative had overall a higher reinforcement rate. Overall, our data 

suggested that a context with frequently delivered losses reduces the effect of a COD on the 

rate of switching. 

Gain-loss asymmetry in response to changes in magnitude  
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Analysis of responses to changes in magnitude at the extended and local level 

replicated several patterns from the frequency analysis above. Participants’ sensitivity 

increased across blocks with more gains experienced within each component and did not 

significantly change with more losses experienced. On average, participants undermatched in 

their allocation of responses, while limiting the sample to participants with better GML fits 

showed overmatching in both the gain and loss conditions. Local effects not differentiated by 

magnitude also replicated the overall pattern of disrupted general visit structure, with the 

initial response showing a decreased tendency to respond on the just-productive and 

subsequent responses showing an increasing tendency to respond on the just-productive side. 

However, the differences in both extended and local effects between gains and losses 

were of a lesser extent than seen with frequency tasks. The average sensitivity to changes in 

magnitude was, in most estimates, lower than the corresponding sensitivity to frequency, 

consistent with the observation that human participants tend to be better at detecting 

differences in frequency rather than magnitude (e.g. Schmitt, 1974). No significant 

differences were detected between the gain and loss magnitude sensitivities when using 

responses to the last few outcomes or responses to the last four blocks. Limiting the data to a 

sub-sample with better GML fit similarly did not show a gain-loss asymmetry. This was 

consistent with our analysis of gain-loss asymmetry in Bull (2013), which also did not show 

an asymmetry using either of the estimates of sensitivity. Furthermore, in local effects 

analysis that did not differentiate by magnitude, the rate at which preference for the just-

productive side increased after an outcome did not differ for gains and losses. Responses after 

a gain showing an overall greater likelihood to respond on the just-productive side across the 

thirty responses, than after a loss. General visit structure on the two tasks also did not differ, 

with a similar rate of switching, unlike the greater rate of switching on the loss as compared 

to gain frequency tasks.  

Local analysis that differentiated responses by magnitude of the outcome that 

preceded them showed an asymmetry inconsistent with Kubanek et al. (2015), but consistent 

with our predictions based on the value function of Prospect Theory. Consistent with the low 

sensitivity to magnitude at the extended level, responses after smaller and larger gains 

showed a small effect of magnitude and a similar rate at which preference for the just-

productive side increased for both magnitudes. The pattern here resembled the pattern seen in 

the local effects analysis not differentiated by magnitude, confirming that participants did not 

respond strongly to differences in gain magnitude. In contrast, responses after smaller and 
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larger losses showed a larger effect of magnitude on the tendency to respond on the just-

productive side. Participants were more likely to switch after a larger loss than a smaller loss. 

However, this did not translate to higher sensitivity to changes in loss magnitude at the 

extended level, where the sensitivities between gains and losses were not significantly 

different. Furthermore, after small magnitude gains and losses, responses were virtually 

identical, while after larger gains participants showed a steeper rate of increasing preference 

for the just productive side than after larger losses.  

Corrected preference pulses 

In our analysis of local effects of gains and losses, we noted that the immediate 

response to any primary outcome was to respond less on the just-productive side relative to 

the general visit structure. In the case of gains, preference for the just-productive side was 

lowest right after a gain and increased gradually. This appears to be contrary to the typical 

pattern of preference pulses in the literature, which was described as immediate heightened 

responses on the just-productive side which gradually decreases in intensity (Davison & 

Baum, 2002). Importantly, this pattern was not absent in our data when we consider the 

general visit structure and uncorrected responses after a primary outcome separately. After 

any given response, productive or not, we observed preference pulses as described in 

literature, which corresponds to McLean et al.’s (2014) observation that the general visit 

structures on concurrent schedule tasks tend to resemble preference pulses with or without 

occurrence of reinforcers. Our analysis showed that the unique effect of primary outcomes, 

when separated from the general visit structure, was to immediately reduce preference for the 

just-productive side (but not reverse it to the not just-productive side), which subsequently 

gradually increased. 

Gomes-Ng et al. (2017) re-analysed select data derived from animal subjects by 

applying McLean et al.’s (2014) preference pulse correction and found the typical pattern of 

heightened preference for the just-productive side that gradually decreased. However, a 

similar pattern to ours was observed in conditions 2 and 4 of Phase 1 in Gomes-Ng et al. 

(2018), where the immediate response of animal subjects to a scheduled outcome showed 

reduced preference for the just-productive side compared to general visit structure (S. 

Gomes-Ng, personal communication, September 17, 2018). We have printed the relevant data 

below in Figure 3.15. Gomez-Ng et al. (2018) plotted the distribution of responses as a 

function of time since reinforcer, while we plotted the distribution of responses as function of 
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ordinal response count since last outcome. Given the high rate of responding on our task and 

our focus on the first thirty responses, our data would roughly correspond to the distribution 

of responses in the first few seconds of Figure 3.15. It appears that in both our data, the 

occurrence of an outcome disrupted the participants’ ongoing pattern of responding, 

prompting a brief increase in responses on the not just-productive side. The more non-

productive time or responses that passed after the last productive response, the more likely 

the participants were to allocate more of their responses to the just-productive side. In 

Gomez-Ng et al., given the leaner schedule of reinforcement and longer sessions, they were 

able to observe behaviour returning to the general visit structure, which is likely what 

occurred in our data as well.  

Figure 3.15. Logged ratio of responses on the just-productive side (P) over the not just-

productive side (N) as a function of increasing time since last reinforcer. Responses are 

plotted after real outcomes (left), hypothetical outcomes (middle) and the difference between 

the two (right). Data from conditions 2 and 4 of Phase 1 in Gomes-Ng et al. (2018; S. Gomes-

Ng, personal communication, September 17, 2018). 

Our findings are preliminary given the limited literature that has applied McLean et 

al.’s (2014) correction to preference pulses (Hachiga, Sakagami, & Silberberg, 2015; Gomes-

Ng et al., 2017; Gomes-Ng et al., 2018) and no application to human data to our knowledge. 

It does suggest that unique effects of outcomes might be to disrupt responding relative to the 

general visit-structure that is opposite to the pattern shown by uncorrected preference pulses. 

The occurrence of an outcome appeared to signal that an immediate occurrence of another 

was less likely, which was true given our dependent scheduling procedure. Upon receiving 
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the outcome, the punishing effects on switching imposed by the COD appeared to lessen 

since another outcome on the just-productive side was also unlikely. Hence, at this point in 

the task, switching became slightly more preferable than in the general visit structure, but the 

participants overall allocated more of their responses to the just-productive side. 

Direct-suppression GML 

Using a net ratio of primary and secondary outcomes did not predict distribution of 

responses better than using the ratio of primary outcomes only. The better fit using primary 

outcome ratio suggested that the participants attended more to the difference in primary 

outcomes rather than tracked overall how much they won/lost on each side. Furthermore, in 

the case of loss frequency, the fit using net ratios was significantly worse. Comparison of 

primary outcome ratios vs. net ratios showed that on loss tasks, there was a wider range of 

obtained ratios than on the gain tasks, most likely due to the higher rate of incomplete 

components. On both of the loss conditions participants developed exclusive preference for 

one of the alternatives earlier in each component as compared to the gain conditions, thus 

suspending the delivery of further losses and resulting in incomplete blocks. In cases where 

participants did not receive all of the scheduled outcomes, the inclusion of a few secondary 

outcomes (loss of $30) in the gain conditions would not skew the ratio as much as the 

inclusion of a few secondary outcomes (gain of $170) in the loss conditions. The large 

difference in the magnitude of the secondary outcomes served to standardize the primary 

outcome and net ratios across conditions, but resulted in a greater range of outcome ratios for 

participants in the loss condition who did not experience all of the scheduled outcomes.  

Discounting, sensitivity and gain-loss asymmetry  

Contrary to Study 1, participants’ discounting showed a reduced interaction between 

order and outcome type and a stronger effect of condition. Although analysis from fitting the 

hyperbolic model showed a significant interaction as in Study 1, the effect size was lower, 

while analysis using AUC showed a non-significant interaction. In contrast, participants 

discounted losses significantly more steeply than gains using both the h parameter and AUC, 

consistent with the predictions of the description-experience gap literature on the reversed 

reflection effect (e.g. Hertwig & Erev, 2009). Given that the fit of the hyperbolic model was 

good, it is likely that the AUC discrepancies were capturing noise in the distribution of 

indifference points and the results based on log(h) are more reliable. Nevertheless, the 
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reduced effect size of the interaction and increased effect size of the main effect of condition 

both indicated a novel effect in the data.  

The task differences in Study 2 that could have contributed to this stronger effect of 

condition included resetting the balance at the start of each condition, separating conditions 

by a day and the experience of the ACT prior to the discounting task. The possible effect of 

resetting the balance was discussed in Study 1 where we noted that magnitude effects in 

literature do not appear to be consistent with the direction of the order effects we observed. 

While we observed an order effect in Study 2, it was not to the same extent as in Study 1, 

which could have been caused removing the variation in the starting balance that altered the 

subjective value of the options. A similar effect could have been caused by separating the 

conditions by a day, which was made in order to accommodate both ACT and discounting 

task into two one-hour sessions. Any carry-over effects of discounting gains or losses, or 

variation in balance, on the subjective value would be reduced by separating the conditions 

by a long delay. This also corresponds to a lack of a significant correlation in Study 2 sample, 

where an individual’s tendency to choose the larger, uncertain option did not vary to the same 

extent across the gain and loss conditions. Literature that has assessed discounting of real 

rewards has shown some carry-over effects over sessions up to one week apart (Matusiewicz 

et al., 2013), so while the day separation is also a possible cause of reduced carry over 

effects, it was not likely to be sufficient. 

Lastly, sensitivity to frequency or magnitude in the ACT was not predictive of 

discounting after accounting for the effects of order. The greater sensitivity to gains than 

losses and the steeper discounting of losses than gains both supported the reversed reflection 

effect predictions of the description-experience gap, but variation in the former did not 

predict variation in the latter. Although no significant relationship was observed at the 

extended level, experience of chance outcomes on the ACT, regardless of eventual sensitivity 

to them, could have contributed to an increased experience with probabilistic events that was 

lacking in our Study 1, Experiment 3. The prolonged experience where each response had a 

chance of producing an outcome, and did not do so after most responses, could have 

comprised sufficient experience of chance outcomes to transition  behaviour on the 

discounting task to that of decision from experience sooner than was observed in Study 1. 

To summarize, we noted that the theoretical predictions of the description experience 

gap literature appeared to be at odds with some of the observed human behaviour on the 
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concurrent schedules tasks. Given the lack of direct synthesis between the two fields of 

research, our data offers novel findings on the properties of a gain-loss asymmetry in human 

operant choice. Overmatching that was predicted by the probability weighting function was 

observed only in a minority of participants, and the majority showed undermatching typical 

in human subjects. While we did observe the predicted greater sensitivity to gain than loss 

frequency, sensitivity to magnitude at the extended level did not show a gain-loss asymmetry. 

Local level of analysis revealed additional properties of behaviour in the task, confirming the 

asymmetry at the extended level in the frequency tasks, but also showing an asymmetry in the 

magnitude tasks. Participants behaved according to the predictions of the value function, with 

a greater effect of changes in loss magnitude rather than gain magnitude on behaviour. 

Furthermore, all of our local level of analysis showed a novel pattern in corrected preference 

pulses, supporting the importance of applying a general visit structure correction to any future 

study of preference pulses. Lastly, we also observed a possible effect of ACT on subsequent 

probability discounting, which will be examined in Study 3.  
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Study 3: Investigation into the novel discounting pattern of Study 2 

 In Study 3, we addressed follow-up questions raised in Studies 1 and 2. Our procedure 

in Study 2 produced a novel pattern of results in the discounting task. Participants showed a 

weaker effect of order and a stronger effect of condition that was consistent with the reversed 

reflection effect described in the description-experience gap literature (Hertwig & Erev, 

2009). In Study 3, we examined several procedural changes in Experiments 1 and 2 that 

could have contributed to the gain-loss asymmetry observed in Study 2. One possible 

contributor was that participants experienced chance outcomes in the ACT that preceded the 

discounting conditions. Another was that we set the balance to $3000 at the start of each 

condition, and a third was that we split the conditions over two test days. We considered that 

the most likely contributing factor for the increased gain-loss asymmetry in Study 2 was that 

participants had recently completed the ACT, but the impact of the other two factors on the 

more consistent steeper discounting of losses could not be separated out in Study 2.  

In Study 3, Experiment 1 we ran an experiential safe-risky probability discounting 

task with reset balance and no delay between tasks. This was aimed to test whether resetting 

the balance was sufficient to show the significant effect of condition seen in Study 2. In 

Study 3, Experiment 2 we reset the balance in the same way as we did in Study 3, Experiment 

1, but participants completed a short version of the ACT (consisting of gain and loss 

frequency tasks) before the discounting tasks, and there was no delay between the 

discounting conditions. This was to determine whether the experience of the ACT was 

necessary to show a significant effect of condition.  

Experiment 1: Effect of balance reset on experiential discounting 

Study 3, Experiment 1 aimed to determine whether resetting the balance before each 

condition was sufficient to produce the steeper discounting of losses than gains seen in Study 

2. Participants made choices about gains and losses with a starting balance of $3000 for both 

conditions. If data resemble the patterns in the discounting tasks in Study 2, with a weaker 

interaction effect and a stronger main effect of condition, then resetting the balance was 

sufficient to produce the novel pattern. If data resemble discounting patterns in Study 1, with 

a significant interaction effect and a non-significant main effect of condition, then resetting 

the balance was not sufficient to produce the novel pattern. Furthermore, if the order effect 

persists with resetting of the balance, we can also rule out the effect of changing balance 

magnitude as a cause of order effects discussed in Study 1.  
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Method 

Participants 

Ninety-nine participants attending Victoria University of Wellington were recruited 

through the School of Psychology Research Programme online tool and participated in partial 

fulfilment of a course requirement.  

Materials 

The experiential safe-risky money task was as described in Study 1, Experiment 2 and 

included the reset balance as implemented in Study 2. 

Procedure 

The participants were tested as described in Study 1, Experiment 2. 

Results 

Data were analysed as described in Study 1, Experiment 1. Table 4.1 specifies the 

number of participants excluded based on the Johnson and Bickel (2008) criteria. The 

analysis below uses participants with fully systematic data. Individual h parameters were not 

normally distributed (Shapiro-Wilk’s test for normality all p < .001), with high positive skew 

and kurtosis for both gains and losses. Data were log transformed, with Shapiro-Wilk’s test 

for normality remaining significant for gains (W = 0.92, p < .001) only. Examination of 

histograms showed no skew and slight positive kurtosis and the shape of the distribution was 

otherwise normal. Individual AUC parameters showed significant Shapiro-Wilk’s tests for 

gains (W = 0.97, p = .034) and losses (W = 0.95, p = .001), but the examination of histograms 

showed slight positive kurtosis for gains and slight positive skew for losses, but the shape 

was otherwise normal. 

Table 4.1 

Number of participants (n = 99) in Study 3, Experiment 1 who had unsystematic data by 

criterion, and total participants with systematic data 

 Gain Loss 

Criterion 1 3 3 

Criterion 2 0 2 

Total systematic  93 (93.94) 

Note. Percentages in parenthesis.  
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The hyperbolic model provided good fits to group median indifference points and 

somewhat lower median R2 derived from individual participants compared to Study 1, 

Experiment 3 and Study 2 (see Table 4.2). Furthermore, the direction of steeper discounting 

was inconsistent between h derived from group median indifference points and from 

individual participants, most likely due to somewhat poorer fit. Examination of residuals 

showed no systematic trends (see Appendix G). Although there was not a systematic trend in 

the residuals, the poorer fits reduce our confidence in the h-based analysis and we examined 

AUC. AUC from group median indifference points and individual participants were 

consistent in their direction of slightly steeper discounting of losses than gains, but overall 

were roughly equivalent between gains and losses. 

Table 4.2 

Study 3, Experiment 1 money task h, R2 and AUC values 

 

Group median 

indifference points Individual participants 

Condition h R2 AUC 

h median (Q1, 

Q3) 

R2 median (Q1, 

Q3) 

AUC mean 

(SE) 

Gain 1.82 0.97 0.25 1.46 (1.07, 2.66) 0.79 (0.82, 0.94) 0.27 (0.01) 

Loss 1.46 0.96 0.24 1.73 (1.02, 2.83) 0.77 (0.77, 0.94) 0.25 (0.01) 

Note. Q1 = first quartile, Q3 = third quartile. 

 As in Study 1, discounting was affected by an interaction of condition and order, and 

did not show a main effect of condition seen in Study 2 (see top right section of Figure 4.1). 

A mixed measures ANOVA with order as the between-subjects factor and condition as the 

within-subjects factor showed no significant main effect of condition (F(1, 91) < 0.001, p = 

.992, 𝜂𝑝
2 < .001), order (F(1, 91) = 0.02, p = .889, 𝜂𝑝

2 < .001), and a significant interaction 

(F(1, 91) = 23.80, p < .001, 𝜂𝑝
2 = .207). The inset in the left panel of Figure 4.1 shows this 

interaction of order and condition; when losses were presented first, gains (M = 0.12, SE = 

0.05) were discounted significantly less steeply than losses (M = 0.36, SE = 0.05; p = .001), 

and when gains were presented first, gains (M = 0.36, SE = 0.05) were discounted 

significantly more steeply than losses (M = 0.12, SE = 0.05, p = .001; Bonferroni correction 

applied). The log(h) parameters were significantly higher than zero for gains in the gains first 

order (t(46) = 6.67, p < .001, dz = 0.97), losses in the gains first order (t(46) = 3.10, p = .003, 

dz = 0.45), gains in the losses first order (t(45) = 2.86, p = .006, dz = 0.42), and losses in the 

losses first order (t(45) = 7.12, p < .001, dz = 1.24). Again, given the poorer fits to the 

hyperbolic model, the AUCs were further analysed. 
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Figure 4.1. Left panel: Logged h parameters for gains plotted against logged h parameters for 

losses for each individual, split by order; black circles are gain-loss and white circles are loss-

gain order. The larger black and white circles represent the means for each order, which are 

also shown in the inset. The error bars are standard error of the mean. The diagonal dashed 

line represents symmetrical discounting of gains and losses. Dotted vertical and horizontal 

lines demarcate logged h value (0) when decisions are made based on expected value. Top 

right panel: Subjective value (indifference points as a proportion of the larger, uncertain 

amount) as a function of increasing odds against occurrence of a gain (white triangles) or loss 

(black triangles). For each task, data are split by order as indicated by the graph titles. Dashed 

(gains) and solid (losses) curves are the best-fitting hyperbolic functions. The dotted curve is 

a hyperbolic function from decisions made based on expected value (h = 1). Bottom right 

panel: AUC for losses plotted against AUC for gains for each individual. Order split and 

group means are plotted as described for the left panel graph. 

 Analysis using AUC confirmed the log(h) findings, with discounting affected by the 

interaction of order and condition only. Mixed measures ANOVA showed a non-significant 

main effect of condition (F(1, 91) = 0.55, p = .462, 𝜂𝑝
2 = .006), order (F(1, 91) = 0.14, p = 

.710, 𝜂𝑝
2 = .002) and a significant interaction (F(1, 91) = 16.03, p < .001, 𝜂𝑝

2 = .150). When 
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losses were presented first, gains (M = 0.30, SE = 0.02) were discounted significantly less 

steeply than losses (M = 0.22, SE = 0.02; p = .001), and when gains were presented first, 

gains (M = 0.24, SE = 0.02) were discounted significantly more steeply than losses (M = 0.29, 

SE = 0.02, p = .022; Bonferroni correction applied). 

As in Study 1 and unlike Study 2, gains and losses were significantly negatively 

correlated when using log(h) (r(91) = -.25, p = .016) and AUC (r(91) = -.21, p = .041). 

Overall, data supported the conclusion that resetting balance was not sufficient to produce the 

reduced effect of order observed in Study 2, making the influence of the ACT and/or 

separating the conditions the more probable causes.   

Experiment 2: Effect of recent experience of probabilistic outcomes on experiential 

discounting  

Given that resetting the balance alone did not replicate the novel pattern from Study 2, 

in Study 3, Experiment 2 we aimed to determine whether experience of probabilistic 

outcomes in the ACT was a necessary component. Participants completed a short version of 

the ACT which included gain and loss frequency conditions only, after which they discounted 

gains and losses with a starting balance of $3000 for both conditions. If data resemble 

discounting patterns in Study 2, with a weaker interaction effect and a stronger main effect of 

condition, then experience with the ACT was a necessary component. If data resemble 

discounting patterns in Study 1, with a significant interaction effect and a non-significant 

main effect of condition, then neither the ACT nor the reset balance are necessary and the 

novel result in Study 2 was likely due to a day separation.  

Method 

Participants 

Ninety participants attending Victoria University of Wellington were recruited 

through the School of Psychology Research Programme online tool and participated in partial 

fulfilment of a course requirement. 

Materials 

Shortened Auckland Card Task. We programmed the shortened version of ACT 

using Microsoft Visual Basic largely as described in Study 2. Participants completed gain and 

loss frequency conditions only and the arranged schedules are described in Table 4.3. Each 

condition was shortened to include 3 components and the component length was further 
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shortened to last a maximum of five minutes. The 25:65 component was replaced with a 

50:50 condition. The three components per task were presented in random order.  

Table 4.3 

Summary table of the two conditions in the shortened Auckland Card Task adapted from Bull 

et al. (2015) 

Cond

ition 

Co

mp

one

nt 

Gains 

(Probability/Amount/Num

ber of outcomes 

available) 

Losses 

(Probability/Amount/Num

ber of outcomes 

available) Net reward 
Primary 

outcome 

ratio 

Net 

ratio Deck 1 Deck 2 Deck 1 Deck 2 

Deck 

1 

Deck 

2 

Gain 

frequ

ency 

1 .25/$50/5 .75/$50/15 .50/$30/5 .50/$30/5 $100 $600 1:3 1:6 

2 .50/$50/10 .50/$50/10 .50/$30/5 .50/$30/5 $350 $350 1:1 1:1 

3 .75/$50/15 .25/$50/5 .50/$30/5 .50/$30/5 $600 $100 3:1 6:1 

Loss 

frequ

ency 

1 .50/$170/5 .50/$170/5 .75/$50/15 .25/$50/5 $100 $600 1:3 1:6 

2 .50/$170/5 .50/$170/5 .50/$50/10 .50/$50/10 $350 $350 1:1 1:1 

3 .50/$170/5 .50/$170/5 .25/$50/5 .75/$50/15 $600 $100 3:1 6:1 

Note. Primary outcome ratios for the loss condition are reversed, such that the side with more 

losses predicts fewer responses. 

Experiential Money Task. Experiential safe-risky money task was as described in 

Study 1, Experiment 2 and included reset balance implemented in Study 2. 

Procedure 

The participants were tested as described in Study 1, Experiment 2. The order of the 

ACT conditions was counterbalanced, but always occurred such that the ACT conditions 

preceded the discounting condition. The order of discounting conditions was also 

counterbalanced.  

Results 

Discounting data were analysed as described in Study 1, Experiment 1. Table 4.4 

specifies the number of participants excluded based on the Johnson and Bickel criteria 

(2008). Analysis below uses participants who had fully systematic data across conditions. 

Individual h parameters were not normally distributed (Shapiro-Wilk’s test for normality all p 

< .001), with high positive skew and kurtosis for both gains and losses. Data were log 
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transformed, with Shapiro-Wilk’s test for normality remaining significant for gains (W = 

0.97, p = .048) and losses (W = 0.97, p = .029). Examination of histograms showed slight 

positive kurtosis for losses, but the shape of the distribution was otherwise normal. Individual 

AUC parameters showed significant Shapiro-Wilk’s test for losses (W = 0.94, p = .001) with 

slight positive kurtosis but otherwise normal distribution, and a non-significant result for 

gains (W = 0.99, p = .492). As the focus of Study 3 was on isolating the source of the novel 

effect on discounting rates, we did not include an analysis of the shortened ACT here. 

Table 4.4 

Number of participants (n = 90) in Study 3, Experiment 2 who had unsystematic data by 

criterion, and total participants with systematic data. 

 Gain Loss 

Criterion 1 0 1 

Criterion 2 1 2 

Total systematic  87 (96.67) 

Note. Percentages in parenthesis.  

The hyperbolic model provided good fits to group median indifference points and 

individual data (see Table 4.5), with steeper discounting of losses than gains as with the 

experiential money tasks in Study 2. Examination of residuals showed no systematic trends 

(see Appendix H). 

Table 4.5 

Study 3, Experiment 2 money task h, R2 and AUC values  

 

Group median 

indifference points Individual participants 

Condition h R2 

 

AUC 

h median (Q1, 

Q3) 

R2 median (Q1, 

Q3) 

AUC mean 

(SE) 

Gain 1.24 0.98 0.31 1.35 (0.88, 2.11) 0.88 (0.72, 0.93) 0.31 (0.01) 

Loss 1.83 0.96 0.23 1.70 (1.08, 2.62) 0.87 (0.75, 0.93) 0.26 (0.01) 

Note. Q1 = first quartile, Q3 = third quartile. 

 Discounting was affected by condition order and did not show a significant main 

effect of condition as seen in Study 2 (see top right section of Figure 4.2). Mixed measures 

ANOVA with order as the between-subjects factor and condition as the within-subjects factor 

showed a non-significant main effect of condition (F(1, 85) = 3.25, p = .075, 𝜂𝑝
2 = .037), non-

significant main effect of order (F(1, 85) = 0.56, p = .456, 𝜂𝑝
2 = .007), and a significant 
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interaction (F(1, 85) = 7.58, p = .007, 𝜂𝑝
2 = .082). The inset in the left panel of Figure 4.2 

shows this interaction of order and condition; when losses were presented first, gains (M = 

0.10, SE = 0.05) were discounted significantly less steeply than losses (M = 0.34, SE = 0.05; 

p = .002), but when gains were presented first, there was no significant difference between 

discounting of gains and discounting of losses (p = .501; Bonferroni correction applied). The 

log(h) parameters were significantly higher than zero for gains in the gains first order (t(43) = 

5.36, p < .001, dz = 0.81), losses in the gains first order (t(43) = 3.84, p < .001, dz = 0.58), 

losses in the losses first order (t(42) = 6.54, p < .001, dz = 1.00), but not for gains in the losses 

first order (t(42) = 1.66, p = .104, dz = 0.25). 

 

Figure 4.2. Left panel: Logged h parameters for gains plotted against logged h parameters for 

losses for each individual, split by order; black circles are gain-loss and white circles are loss-

gain order. The larger black and white circles represent the means for each order, which are 

also shown in the inset. The error bars are standard error of the mean. The diagonal dashed 

line represents symmetrical discounting of gains and losses. Dotted vertical and horizontal 

lines demarcate logged h value (0) when decisions are made based on expected value. Top 

right panel: Subjective value (indifference points as a proportion of the larger, uncertain 

amount) as a function of increasing odds against occurrence of a gain (white triangles) or loss 
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(black triangles). For each task, data are split by order as indicated by the graph titles. Dashed 

(gains) and solid (losses) curves are the best-fitting hyperbolic functions. The dotted curve is 

a hyperbolic function from decisions made based on expected value (h = 1). Bottom right 

panel: AUC for losses plotted against AUC for gains for each individual. Order split and 

group means are plotted as described for the left panel graph. 

For consistency with the analysis of Studies 1 and 2, the analyses were repeated with 

AUC as the dependent measure despite the good fits of the hyperbolic model. While analysis 

using AUC confirmed the presence of a significant interaction, it also showed a significant 

effect of condition contrary to the log(h) results. A mixed measures ANOVA showed a 

significant main effect of condition (F(1, 85) = 8.91, p = .004, 𝜂𝑝
2 = .095), non-significant 

main effect of order (F(1, 85) = 0.06, p = .805, 𝜂𝑝
2 = .001) and a significant interaction (F(1, 

85) = 5.72, p = .019, 𝜂𝑝
2 = .063). When losses were presented first, gains (M = 0.33, SE = 

0.02) were discounted significantly less steeply than losses (M = 0.24, SE = 0.02; p < .001), 

and when gains were presented first, gains (M = 0.29, SE = 0.02) were discounted 

significantly more steeply than losses (M = 0.28, SE = 0.02, p = .674; Bonferroni correction 

applied). 

Gains and losses were significantly negatively correlated when using log(h) (r(85) = -

.22, p = .040) but not when using AUC (r(85) = -.05, p = .641). Overall, experience of ACT 

appears to contribute to the stronger effect of condition in Study 2.  

Discussion 

Participants’ choices on the probability discounting task in Study 2 showed a stronger 

effect of condition consistent with the predictions of the reversed reflection effect and a 

weaker interaction between condition and order. We conducted two follow-up experiments in 

order to determine the likely contributing factors to this novel pattern. The combination of 

Study 3, Experiments 1 and 2 was to determine if experience of the ACT produced the gain-

loss asymmetry via providing participants with more experience of probabilistic outcomes 

and moving behaviour closer towards decision from experience.  

We observed no significant effect of condition and replicated the order effect of Study 

1 when participants discounted with a reset balance in Study 3, Experiment 1. Controlling for 

the variation in balance at the start of each condition did not affect the direction or presence 

of the order effect, suggesting that this was not a contributing factor to the observed order 

effects in Study 1. Furthermore, the absence of a significant effect of condition indicated that 
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this was not the likely cause of novel results in Study 2. Overall, Study 3, Experiment 1 

replicated Study 1, Experiment 3 and showed that resetting the balance was not the likely 

cause of the gain-loss asymmetry as seen in Study 2. 

Study 3, Experiment 2 showed that the inclusion of the experience of probabilistic 

outcomes, in the form of a shortened ACT, was sufficient to show an effect of condition, but 

not alone sufficient to produce a difference between discounting of gains and losses of the 

size and consistency observed in Study 2. Results based on log(h) showed a significant 

interaction between order and condition and no significant effect of condition, while analysis 

using AUC showed an additional significant effect of condition consistent with the reversed 

reflection effect (Hertwig & Erev, 2009). The hyperbolic model showed a good fit to the data, 

so unreliability of the derived h parameter as the source of this discrepancy seems unlikely. 

Comparison of effect sizes in Study 3 showed a reduced strength of the interaction effect in 

Experiment 2 relative to Experiment 1, while the effect size for the main effect of condition 

showed an increase from Experiment 1 to 2. Furthermore, the presence of significant negative 

correlation in the log(h), but not AUC data also suggested reduced carry-over effects of 

discounting in one condition on discounting in the other. On balance, the experience of ACT 

appeared to reduce the interaction effect and increase the effect of condition in a manner 

comparable to, but not of the same extent as seen in Study 2. Having the two conditions a day 

apart appears to have been an important additional feature that further reduced, but not 

eliminated the carry-over effects (see Matusiewicz et al., 2013 and Ohmura et al., 2006 for 

similar effects). 
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General Discussion  

We assessed whether gain-loss asymmetry occurred in a series of experiential 

contexts and examined whether choice patterns accorded with the predictions of the reversed 

reflection effect in choice from experience. We synthesised the predictions of the reflection 

effect and the reversed reflection effect. We then tested the resulting predictions in two 

experiential choice procedures: probability discounting and concurrent schedules tasks. It was 

not previously known whether gain-loss asymmetry occurred in either experiential context. 

Specifically, in each experiential task we aimed to determine 1) whether there was a gain-loss 

asymmetry, and 2) whether this asymmetry was consistent with a reversed reflection effect. 

In both probability discounting and concurrent schedules tasks, we observed several 

consistencies with the predictions of the reversed reflection effect. We also observed several 

inconsistencies with these predictions, the probable causes of which were discussed in the 

relevant studies above. Here, we wish to focus on the features of a gain-loss asymmetry in 

choice from experience that have emerged across the two procedures, and, in the context of 

these findings, to end with a discussion of the challenges in human experiential research. 

Gain-loss asymmetry in experiential choice 

Throughout the experiential tasks used, participants showed an asymmetry in how 

they responded to changes in the probability of a gain or a loss. In the probability discounting 

tasks, when the participants chose between pairs of certain and risky outcomes that were 

described, experienced, and preceded by a recent exposure to other probabilistic outcomes, 

the rate at which a loss outcome lost its value with decreasing probability was steeper than 

that of a gain outcome for most participants. In the ACT, when the participants chose 

between probabilistic outcomes that were not described, but were experienced and choices 

were made after sampling the options, they were more sensitive to changes in the frequency 

of gains than the frequency of losses. Both of these asymmetries were consistent with 

predictions of Prospect Theory (Kahneman & Tversky, 1979), in that gains and losses were 

not valued symmetrically. Furthermore, the direction of this asymmetry was consistent with 

the reversed reflection effect of the description-experience gap literature (Hertwig & Erev, 

2009).  

However, despite the general consistency in the direction of a gain-loss asymmetry, 

when we compared participants’ choice patterns to choice patterns that would allow 

maximization, what we found was not consistent with our predictions. In probability 
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discounting, choice according to the expected value of the outcomes would maximize gains 

and minimize losses with repeated choice. In concurrent schedules tasks fitted with the GML, 

response allocations that strictly match the distribution of gains and losses between the two 

alternatives maximize net profit by the end of the session. The S-shaped probability 

weighting function (Figure 1.3), that we used to model our predictions for choice from 

experience, predicted that participants would not strictly follow a pattern of responses that 

would maximize net profit. We expected underweighting of low probability and 

overweighing of high probability events, which was more extreme for decisions involving 

gains than losses. In probability discounting, we reasoned that according to this S-shaped 

function, discounting rates ought to be shallower than choice based on expected value (given 

that most of our chosen probabilities were in the high range), and in concurrent schedules, for 

response distributions to overmatch relative to perfect matching (given that participants ought 

to overweight high probabilities and underweight low probabilities). 

In the discounting task, despite making the task experiential and adding exposure to 

probabilistic outcomes (via the ACT), discounting remained steeper than choice based on 

expected value and did not show the predicted pattern of shallower discounting. In the ACT, 

a similar pattern was observed with losses, where the majority of participants undermatched 

relative to ideal matching. Our prediction of overmatching was supported in only the gain 

frequency condition of the ACT. 

One explanation for the lack of shallower discounting on the probability discounting 

task and of overmatching in the loss frequency condition of the ACT is that behaviour was 

not fully informed by experience of the outcomes. We return here to the issue of capturing 

behaviour in transition discussed in Study 1. We attributed the consistent effect of condition 

order on discounting to the task capturing choice in transition between being informed by 

description only to being informed by both experience and description. Experience on a task 

that delivered chance outcomes, the ACT, did not fully transition probability discounting 

rates to those expected when choice is informed by both experience and description in 

Studies 2 and 3 (evidenced by significant order effects). It might have partially produced this 

transition, however, as more participants showed steeper discounting of losses than gains 

after completing the ACT than in Study 1 when they had not completed the ACT. 

Furthermore, across all of our discounting experiments that were sufficiently powered to 

examine the effect of order, discounting shifted closer to choice based on expected value with 

each condition experienced. Average rates of discounting in the experiential tasks were never 
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significantly shallower than choice based on expected value, but as Table 5.1 shows, when 

we compare mean log(h) to zero, the effect size reliably decreased from first to second 

condition across all of the experiments. The magnitude of the difference between a log(h) of 

zero, corresponding to choice based on expected value, and the average log(h) for each 

condition generally decreased with more experience of the task. 

Table 5.1 

Summary of effect sizes from one sample t tests in Studies 1-3 comparing discounting to that 

predicted by the expected value. 

 Effect size (Cohen’s dz) 

 Study 1 

E3 

Study 2  Study 3 

E1 

 

Study 3 

E2  

1st condition experienced     

Gains  0.86* 0.77* 0.97* 0.81* 

Losses  0.96* 1.32* 1.24* 1.00* 

2nd condition experienced      

Gains  0.37* 0.51* 0.42* 0.25 

Losses  0.54* 0.73* 0.45* 0.58* 

1st condition experienced after 1 task 

repetition 

    

Gains  0.50*    

Losses  0.58*    

2nd condition experienced after 1 task 

repetition 

    

Gains  0.32    

Losses  0.60*    

Notes. * = significantly steeper than choice based on expected value. 

We noted in our discussion of the order effects in probability discounting that more 

experience of probabilistic outcomes might shift behaviour closer to our predictions. 

Examining a gain-loss asymmetry on a concurrent schedules task was proposed to ameliorate 

this issue. Our data on sensitivity to changes in gain frequency supported this, as the more 

gains were experienced by the participant, the higher their sensitivity was to differences 

between the two alternatives. Most participants reached overmatching by the completion of 

each component. While Bull et al. (2015) observed the same effect with losses, where 

increasing experience of the outcomes resulted in overmatching by the end of each 

component, we did not, with average sensitivity showing undermatching. In our Study 2 
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introduction, we suggested that undermatching is consistent with the predictions of the 

Prospect Theory for choice from description, and we can further parallel this to generally 

steeper discounting than predicted by expected value. Consistent with the notion that the 

difference between our patterns and Bull et al.’s data was that our participants had less 

experience with the scheduled probabilistic outcomes, we observed that the rate of 

incomplete components in the ACT, where our participants did not experience all of the 

scheduled outcomes, was higher in the loss as opposed to the gain conditions. Thus, it is 

possible that participants did not have sufficient experience of probabilistic outcomes on the 

loss frequency task to result in the predicted overmatching. However, even among 

participants who reached the final block and had thus experienced most or all scheduled 

losses, sensitivity remained at undermatching, suggesting that differing experience of 

probabilistic outcomes was not the sole explanation.  

This brings us to another consistency across the tasks: data from both the discounting 

tasks and the ACT demonstrated that more experience with probabilistic outcomes did not 

have an equivalent effect on choices about gains and losses. In the discounting tasks, the rate 

at which gains were discounted varied more with contextual changes, such as condition order 

and task repetition, while discounting of losses did not vary to the same extent. Furthermore, 

comparison of effect sizes in Table 5.1 for Study 1, Experiment 3 showed that repeating the 

discounting task twice did not result in any further shift in the group means towards choice 

based on the expected value, but the discounting of gains showed more variability. Those 

participants that completed their second gain condition as the final condition in the task 

showed the shallowest average rate of discounting. As we noted above, a similar pattern was 

observed in the ACT, where experience of more losses within each component did not result 

in increasing sensitivity to the underlying contingencies, unlike experience of more gains.  

However, changes in sensitivity across blocks and changes in discounting with 

condition order and task repetition are related, but not necessarily equivalent measures of the 

effect of experience. In the extended level of analysis, sensitivity at each block is derived 

across the four components, and these components could have occurred in any order within 

the condition. That is, data at block 2 does not correspond to choice based on little experience 

of outcomes in the task, but rather to choice based on little experience of each component. A 

more relevant test might be to examine local effects of gains and losses early versus late in 

the task. We did not conduct such an analysis partially due to the relatively short task in 

which further subdivisions in data would lose reliability and partially due to the fact that we 
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counterbalanced the order of the four conditions, as well as the four components within each 

condition. Future experiments could, for example, administer a single gain frequency task 

with a longer component duration that would allow for a comparison between corrected 

preference pulses at the start versus by the end of the task for the differential pattern seen at 

the extended level of analysis. This would also speak to whether the local effects that we 

observed constituted transient and unlearnt responses to gains and losses that did not change 

with task experience or whether they too, like sensitivity and discounting, were affected by 

task experience (Davison & Baum, 2000; 2002). 

This relatively unchanging sensitivity to losses and the greater shift in behaviour in 

response to gains was not only consistent with our discounting data, but also with discounting 

literature that observed an effect of magnitude with discounting of gains, but not of losses 

(e.g. Estle et al., 2006; Green et al., 2014). However, our analysis of the effect of magnitude 

in the ACT was inconsistent with the effect of magnitude in the discounting literature. That 

is, a pattern in local effects consistent with the magnitude effect in discounting literature 

would be a greater impact of changing gain magnitude than loss magnitude on subsequent 

responses, which was not what we observed. Aggregate data showed no difference in 

sensitivity to gain and loss magnitude, and local analysis showed transient effects where 

changes in loss magnitude had a greater impact than changes in gain magnitude. More 

importantly, the pattern in local effects was consistent with the predictions of the value 

function of the Prospect Theory (Kahneman & Tversky, 1979), which predicted that a change 

in loss magnitude ought to have a greater impact on subjective value than an equivalent 

change in gain magnitude. Notably, this comparison of local effects and discounting remains 

speculative as discounting includes variation in both probability and amount, hence subject to 

the joint predictions of the value and probability weighting functions. A more direct test of 

whether the effect of magnitude on local effects directly parallels the effect of magnitude on 

discounting would be to conduct gain and loss frequency conditions which measure 

sensitivity at one magnitude (e.g. $50 as in ACT) and compare this to a second set of gain 

and loss frequency conditions which measure sensitivity at a larger magnitude (e.g. $5000). If 

there is a greater difference between the $50 and $5000 conditions for gains than losses then 

this would indicate a consistency of effect across the two task contexts. 

Challenges in human experiential tasks 
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 We have observed a gain-loss asymmetry in both of the tasks used, and while this 

asymmetry was present in the majority of the participants in each sample, a substantial 

minority remained that did not show the predicted pattern of behaviour. On the one hand, it 

echoes research that has observed sub-samples that do not conform to the predictions of the 

differences in the functional value of gains and losses (e.g. Hershey & Schoemaker, 1980; 

Schneider & Lopes, 1986; Experiment 2 of Critchfield et al., 2003). On the other hand, the 

extent to which gain-loss asymmetry deviates in choice from experience is highly dependent 

on procedure used to measure it (Wulff et al., 2018), and we have encountered several 

challenges in our experiential tasks that may have contributed to the inconsistencies in the 

observed gain-loss asymmetry. We focus on two such procedural challenges: determining 

sufficient experience of probabilistic outcomes and ensuring delivery of scheduled outcomes. 

We noted that the changes in the rate of discounting with task repetition and after 

exposure to recent probabilistic outcomes suggested that we captured choice in transition 

from decision from description to decision from experience (Jessup et al., (2008); Lejarraga 

& Gonzalez, 2011; Wulff et al., 2018). Behaviour in this transition state is informative in 

itself, as it predicts how individuals would behave when starting with a full description of the 

outcomes and, subsequently, how increasing experience of the frequency of the described 

events would change their behaviour (Shafran, 2011). To return back to the example of taking 

daily medication, we might expect an individual’s initial choice to conform to models that 

predict behaviour based on description only. Subsequently, with enough experience, choice 

would transition to being better described by models based on experience. During this 

transition, our data suggested that behaviour might shift more rapidly in response to 

increasing experience of gains, rather than losses. Furthermore, changes in the magnitude of a 

gain would not be expected to affect subsequent choice as much as changes in the magnitude 

of a loss. Note that we are not referring to the effects of framing the same health outcome as a 

gain or loss (e.g. Akl et al., 2011); here we are referring to how much we expect choices 

between gains or choices between losses to shift in response to context or extent of 

experience of these events. 

An alternative is to view the pattern of behaviour we observed in the discounting task 

combining description and experience not as a transition from one to the other, but as 

behaviour that is expected in this context. In other words, a combination of description and 

experience ought to be treated as a separate paradigm. For one, such contexts are certainly 

analogous to many everyday situations that are not purely descriptive or purely experiential 
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(e.g. taking daily medicine example; living in an earthquake-prone city where descriptions of 

earthquake risks are widely available). This combination has also received limited attention 

in literature, where the majority of research focuses on either choice purely from description 

or purely from experience (although see Shlomi, 2014; Fantino & Navarro, 2012; Lejarraga 

& Muller-Trede, 2016 for recent examples of investigations of choice from a combination of 

description and experience).  

Barron, Leider and Stack (2008) presented two groups of participants with a choice 

between a smaller gain for certain ($0.10) and a risky prospect that had a high chance of a 

larger gain (0.999 probability of gaining $0.13) and small chance of a large loss (0.001 

probability of losing $15). The “early” group made a 100 choices between these options that 

were both described and experienced from the start, akin to our discounting procedure. The 

“late” group made the first 50 choices without the description and with experience only, and 

the options were described at the start of the second 50 trials. Participants in the “early” 

group who relied on both description and experience had a lower proportion of risky choices 

than participants who relied on experience alone. The introduction of description to the 

experience only group resulted in a decrease in the proportion of risky choices, but this 

decrease was not sufficient for risk preference to converge with levels in the description and 

experience group. The “late” group remained more risk seeking than the “early” group even 

when both had complete and identical information from both description and experience. 

Barron et al. concluded that the experience of generally positive outcomes from choosing the 

risky option could not be fully overridden by a description of the possible negative outcomes 

after a period of exposure. Hence, and perhaps in contrast to Jessup et al. (2009) and 

Lejarraga and Gonzalez (2011), another factor that could explain why behaviour in our task 

did not quite resemble some of our predictions is that the combination of description and 

experience itself produces a novel pattern that would not necessarily converge with choices 

purely from experience. In this regard, determining sufficient exposure to probabilistic 

outcomes is more a matter of deciding what specific decision-making context the laboratory 

task is an analogue of. Furthermore, our data suggested that decisions about losses informed 

by both description and experience were particularly resistant to the overriding effects of 

experience. It would be of interest to repeat Barron et al.’s procedure when the choice is 

between losses; based on our data, we would predict that the “late” group would show even 

less convergence with the “early” group. 
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This brings us to the second issue, in that having determined what is sufficient 

exposure to probabilistic outcomes, the next challenge is to ensure that this is delivered as 

intended to the participant. In the ACT, we assumed that a concurrent schedules task would 

provide sufficient experience with probabilistic outcomes that might have been lacking in our 

discounting procedure. Indeed, this largely proved to be the case in conditions that delivered 

frequent gains, but less so in tasks that delivered frequent losses. Although we observed a 

gain-loss asymmetry in sensitivity in the last experienced block of outcomes, most of these 

participants did not experience the full set of scheduled outcomes. In the Study 2 discussion, 

we explored some differences between the procedure Bull et al. (2015) used and the 

procedure we used that might explain their higher rate of component completion. These were 

the fact that their participants were paid contingent on performance and completed longer 

task sessions. However, when considered in the context of other studies using rapid-

acquisition tasks (Lie et al., 2009; Krageloh et al., 2010), these features did not provide 

plausible explanations for the low rate of component completion in our data.  

We observed rapid development of exclusive preference in the ACT conditions, more 

so in the gain rather than loss conditions. Finding a balance between exclusive preference and 

indifference (50-50 distribution of responses) is not a unique challenge to our task, and has 

been an issue of debate in both human and animal research using concurrent schedules. On 

the one hand, a COD was implemented to avoid reinforcing frequent switching behaviour that 

could lead to indifference (Shull & Pliskoff, 1967). On the other hand, we used dependent 

scheduling in our procedure, with the aim of decreasing the rate of exclusive responding on 

one alternative and increasing the rate of switching (Stubbs & Pliskoff, 1969). Dependent 

scheduling suspends further delivery of reinforcers until the scheduled one is picked up by 

the participant. While dependent scheduling does not eliminate instances of exclusive 

preference, with animal subjects that are able to run long sessions an eventual switch usually 

occurs, the reinforcer scheduling resumes, and the animal begins to experience something 

closer to the programmed distribution of outcomes. With humans, whose participation 

duration is often constrained by cost and fatigue, an eventual switch may not occur within a 

given session and the scheduled outcomes are not delivered by session completion. This was 

the case in our data, and to a lesser extent in Bull et al. (2015).  

Our participants’ responses in the ACT showed an additional complication: when the 

two sides delivered frequent losses, the rate of exclusive preference was higher than in the 

context of frequent gains. While exclusive preference for the less frequently punishing side is 
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suboptimal, in the sense that this would also suspend the delivery of both gains and losses 

and thus minimize net profit, it is optimal from the perspective of preventing experience of 

any further losses. Participants who developed this exclusive preference failed to maximize 

gains across the component, but they did succeed in minimizing losses. As Klapes et al. 

(2018) noted, since gains and losses are delivered based on the same behaviour, which is 

being reinforced by occurrence of a gain and punished by occurrence of a loss, ensuring that 

all scheduled outcomes are delivered would require changes to the experimental design.  

One option for increasing the likelihood that participants experience all programmed 

outcomes is introducing a stimulus to signal overall success in the task, i.e. whether the 

participant is close to maximizing net reinforcement rate. The ACT included hints at the end 

of each component that prompted sampling of both sides and had a bar tracking overall net 

total of the points gained and lost. However, this did not indicate what the possible outcomes 

were should the participant change the pattern of their behaviour during the component. The 

advantages of a stimulus  signalling this information seems particularly salient in tasks 

delivering frequent losses, as the benefits of switching do not seem to be apparent to the 

participants. Warry, Remington and Sonuga-Barke (1999) showed that information indicating 

what the favourable strategy was in a given task acted as a reinforcer for choosing, at times, 

what was the locally sub-optimal choice, but that resulted in an overall more optimal net 

profit by the session completion. While such stimuli may not be necessary with animal 

subjects, the study of experiential choice with humans may necessitate such procedural 

changes to increase the discriminability of the schedules in operation and reduce exclusive 

preference (Kollins et al., 1997; Horne & Lowe, 1993; Bradshaw et al., 1976; Madden & 

Perone, 1999; Warry et al., 1999). 

Conclusion 

We applied the predictions of the reversed reflection effect of the description-

experience gap literature to probability discounting, and conducted a novel synthesis to the 

same effect with behaviour on concurrent schedules tasks. Our examination of gain-loss 

asymmetry included an analysis of discounting rates, sensitivity to frequency and magnitude, 

and local effects of gains and losses on behaviour. We add to a growing body of literature 

that uses experiential probability discounting tasks (e.g. Scheres et al., 2006; Greenhow et al., 

2015; Hinvest & Anderson, 2010) and rapid-acquisition concurrent schedules tasks with 

humans (e.g. Lie et al., 2009; Krageloh et al., 2010; Bull et al., 2015). In both procedures, we 
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found support for the predictions of a reversed reflection effect in that patterns in choice 

between gains was not symmetrical to patterns in choice between losses. In both cases, a gain 

held its value better with decreased probability than a loss. In the case of magnitude, we 

found support for the predictions of the value function of Prospect Theory, where responses 

were affected by magnitude of losses more than by magnitude of gains. We found less 

support for our predictions in the patterns of discounting and matching relative to expected 

value and ideal sensitivity respectively, although whether this was indicative of a difference 

in behavioural processes or procedural challenges was inconclusive. We interpret this as a 

matter of refining procedure in experiential tasks with humans before a more consistent gain-

loss asymmetry may be observed, which requires careful consideration of the extent of 

exposure to chance outcomes and ensuring delivery of scheduled events.  
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Appendix A: Group median discounting curves reproduced from Experiment 1 and 2 of my 

honours thesis   

Subjective value (indifference points as a proportion of the larger, uncertain amount) 

as a function of increasing odds against occurrence of a gain (black triangles) or loss (black 

squares). Dashed (gains) and solid (losses) curves are the best-fitting hyperbolic functions. 

The dotted curve is a hyperbolic function from decisions made based on expected value (h = 

1). Top row are data from Experiment 1 money (left) and ski (right) tasks. Bottom row are 

data from Experiment 2 money (left) and ski (right) tasks. 
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Appendix B: Analysis of mean residuals for Study 1, Experiments 2-3 

Mean residuals calculated from individual data for each task as a function of odds 

against in the gain (white circles) and loss (black circles) conditions. Error bars are standard 

error of the mean. 



169 
 

Appendix C: ANOVA results for Study 1, Experiment 2 using AUCs 

     

 F df p 𝜂𝑝
2 F df p 𝜂𝑝

2 

 Money Ski 

E2.1 Safe-risky experiential Safe-risky experiential 

Condition 0.33 1, 32 .567 .010 0.003 1, 33 .957 <.001 

Condition order <0.001 .985 <.001 0.02  .892 .001 

Task order 0.47 .500 .014 1.13  .295 .033 

Condition by 

Condition order 

10.25 .003 .243 8.03  .008 .196 

Condition by Task 

order 

0.04 .846 .001 0.62  .437 .018 

Condition order by 

Task order 

0.55 .466 .017 3.16  .085 .087 

Condition by Condition 

order by Task order 

1.92 .175 .057 0.55  .463 .016 

E2.2 Risky-risky non-experiential Risky-risky experiential 

Condition 3.48 1, 42 .069 .076 0.03 1, 44 .855 .001 

Condition order 5.37 .025^ .113 1.19  .282 .026 

Task order 0.01 .944 <.001 0.16  .693 .004 

Condition by Condition 

order 

0.06 .803 .001 0.03  .855 .001 

Condition by Task 

order 

0.06 .801 .002 0.83  .369 .018 

Condition order by 

Task order 

3.09 .086^ .069 0.01  .920 <.001 

Condition by Condition 

order by Task order 

<0.001 1.00 <.001 0.10  .751 .002 

E2.3 Risky-risky experiential Risky-risky experiential 

Condition 0.64 1, 47 .428 .013 0.81 1, 47 .372 .017 

Condition order 0.58 .450 .012 0.43  .517 .009 

Task order 6.54 .014 .122 2.27  .139 .046 

Condition by 

Condition order 

27.76 <.001 .371 0.79  .379 .017 

Condition by Task 

order 

0.03 .862 .001 1.66  .204 .034 

Condition order by 

Task order 

0.20 .660 .004 0.002  .962 <.001 

Condition by Condition 

order by Task order 

0.39 .534 .008 0.38  .539 .008 

Note. Bold emphasis added to significant results. ^ indicates results that differed when using 

log(h) (Table 2.8). 
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Appendix D: ANOVA results for Study 1, Experiment 3 using AUCs 

     

 F df p 𝜂𝑝
2 F df p 𝜂𝑝

2 

 Task 1 Task 2 (Task 2 order) 

Condition 2.88 1, 114 .093 .025 2.92 1, 114 .090 .025 

Condition order 0.27 .602 .002 0.14  .707 .001 

Condition by 

Condition order 

20.33 <.001 .151 0.25  .617 .002 

  Task 2 (Task 1 order) 

Condition     2.90 1, 114 .092 .025 

Condition order    0.16  .690 .001 

Condition by 

Condition order 

   2.63  .108 .023 

Note. Bold emphasis added to significant results 
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Appendix E: Instructions used in Auckland Card Task 

Starting instruction screen: 

You will be presented with two virtual decks of playing cards. Each deck contains hundreds 

of cards. Shuffled into each deck are some WINNING cards, which will add money to your 

overall score, and some LOSING cards, which will subtract money from your score. One 

deck will always be better than the other, and your goal is to maximize your winnings by 

learning which deck is better.  

Each game has four rounds, and you'll be given a chance to rest between each round. The 

good deck may change from round to round, so always attend closely to the winning and 

losing cards you receive. These cards will vary a lot, so at the start of each round you'll need 

to sample the cards from each deck until you can figure out which deck is better. 

In each game you will be given a hint (which is repeated during rest breaks). It's important 

that you read and understand the hint, as it will provide you with a strategy to maximize your 

winnings.  Please press spacebar to continue. 

Instructions/hint for gain frequency condition: 

Winning cards can be found in both decks, but one deck has MORE winning cards than the 

other. Both decks also contain an equal number of losing cards. In each round, to maximize 

your score in the time given, you'll first need to figure out which deck has more winning 

cards in it, then choose more often from that deck. 

Instructions/hint for loss frequency condition: 

High winning cards can be found in both decks, but there are also many losing cards. One 

deck has MORE losing cards than the other. In each round, to maximize your score in the 

time given, you'll first need to figure out which deck has more losing cards in it, then choose 

less often from that deck, only occasionally checking it for winning cards. 

Instructions/hint for gain magnitude condition: 

Winning cards can be found in both decks, but one deck has HIGHER winning dollar 

amounts (on average) than the other. Both decks also contain an equal number of losing 

cards. In each round, to maximize your score in the time given, you'll first need to figure out 

which deck has the higher winning cards (but note the amounts vary a lot), then choose more 

often from that deck. 
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Instructions/hint for loss magnitude condition: 

High winning cards can be found in both decks, but there are also many losing cards. One 

deck has HIGHER losing dollar amounts (on average) than the other. In each round, to 

maximize your score in the time given, you'll first need to figure out which deck has the 

higher losing cards (but note the amounts vary a lot), then choose less often from that deck, 

only occasionally checking it for winning cards. 

Instructions for how to respond: 

During the game, press the 'Caps Lock' key on the keyboard to choose a card from the left 

deck, or the 'Enter' key to choose from the right deck. You are free to switch from one deck to 

the other at any time. Please use only your dominant hand to respond - do NOT use both 

hands. If you have any questions, feel free to ask the researcher now. Please press spacebar to 

start the game. 
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Appendix F: Two-stage hierarchical regression analysis using AUC for losses in Study 2 

The hierarchical regression showed that adding loss frequency and magnitude 

sensitivity did not account for significantly more variance in discounting than condition order 

alone. Both Models 1 (F(1, 90) = 6.95, p = .010) and 2 (F(3, 88) = 2.78, p = .046) were 

significantly better at predicting discounting than the mean. Model 1 showed that condition 

order was a significant predictor, accounting for 6.10% of the variation in AUC for losses. In 

Model 2, adding loss frequency and loss magnitude sensitivities did not explain significantly 

more variance in AUC than Model 1. 

Correlations between AUC for losses, condition order, and sensitivities to 

loss frequency and magnitude 

 AUC loss Order LF LM 

AUC loss - -0.27* -0.02 -0.12 

Order - - -0.07 0.02 

LF - - - -0.02 

LM - - - - 

Note. *p < .01. 

 

Results of a two-stage hierarchical regression analysis using AUC for losses 

     Change statistics  

 B (SE) β t p F  df p adj. R2 

Model 1: Order alone 6.95 1, 90 .010 .06 

Order 0.05 (0.02) 0.27 2.64 .010     

Model 2: Order and sensitivity  0.71 2, 88 .494 .06 

Order 0.06 (0.02) 0.27 2.65 .010     

LF 0 (0.01) 0.001 0.01 .994     

LM -0.02 (0.01) -0.12 -1.19 .237     
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Appendix G: Two-stage hierarchical regression analysis using AUC for gains in Study 2 

The hierarchical regression showed that neither order alone (F(1, 92) = 0.16, p = .690) 

nor the inclusion of sensitivities (F(3, 90) = 0.17, p = .918) were significantly better at 

predicting discounting than the mean. Table X shows that none of the predictors significantly 

explained variance in the discounting of gains. 

Correlations between AUC for gains, condition order, and sensitivities to 

gain frequency and magnitude 

 AUC gain Order LF LM 

AUC gain - -0.04 -0.03 0.06 

Order - - 0.09 -0.19 

LF - - - 0.22* 

LM - - - - 

Note. *p < .05. 

Results of a two-stage hierarchical regression analysis using AUC for gains 

     Change statistics  

 B (SE) β t p F  df p adj. R2 

Model 1: Order alone 0.16 1, 92 .690 -.01 

Order -0.01 (0.02) -0.04 -0.40 .690     

Model 2: Order and sensitivity 0.17 2, 90 .842 -.03 

Order -0.01 (0.02) -0.03 -0.25 .801     

LF -0.003 (0.01) -0.04 -0.33 .739     

LM 0.01 (0.01) 0.06 0.55 .583     
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Appendix H: Analysis of mean residuals for Studies 2-3 

Mean residuals calculated from individual data for each task as a function of odds 

against in the gain (white circles) and loss (black circles) conditions. Error bars are standard 

error of the mean. 

 


