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Abstract

Throughout the last century, models of human speech communication
have been proposed by linguists, psychologists, and engineers. Advance-
ments have been made, but a theory of human speech communication
that is both comprehensive and quantitative is yet to emerge. This the-
sis hypothesises that a branch of mathematics known as information theory
holds the answer to a more complete theory. Information theory has made
fundamental contributions to wireless communications, computer science,
statistical inference, cryptography, thermodynamics, and biology. There
is no reason that information theory cannot be applied to human speech
communication, but thus far, a relatively small effort has been made to do
so.

The goal of this research was to develop a quantitative model of speech
communication that is consistent with our knowledge of linguistics and
that is accurate enough to predict the intelligibility of speech signals.
Specifically, this thesis focuses on the following research questions: 1) how
does the acoustic information rate of speech compare to the lexical infor-
mation rate of speech? 2) How can information theory be used to predict
the intelligibility of speech-based communication systems? 3) How well
do competing models of speech communication predict intelligibility?

To answer the first research question, novel approaches for estimating
the information rate of speech communication are proposed. Unlike ex-
isting approaches, the methods proposed in this thesis rely on having a
chorus of speech signals where each signal in the chorus contains the same
linguistic message, but is spoken by a different talker. The advantage of
this approach is that variability inherent in the production of speech can



be accounted for. The approach gives an estimate of about 180 b/s. This
is three times larger than estimates based on lexical models, but it is an
order of magnitude smaller than previous estimates that rely on acoustic
signals.

To answer the second research question, a novel instrumental intelli-
gibility metric called speech intelligibility in bits (SIIB) and a variant called
SIIBGauss are proposed. SIIB is an estimate of the amount of information
shared between a talker and a listener in bits per second. Unlike existing
intelligibility metrics that are based on information theory, SIIB accounts
for talker variability and statistical dependencies between time-frequency
units.

Finally, to answer the third research question, a comprehensive eval-
uation of intrusive intelligibility metrics is provided. The results show
that SIIB and SIIBGauss have state-of-the-art performance, that intelligibil-
ity metrics tend to perform poorly on data sets that were not used during
their development, and show the advantage of reducing statistical depen-
dencies between input features.
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Chapter 1

Introduction

Over the past 150 years several speech-based technologies have emerged
that make possible what our ancestors believed impossible. Mobile
phones are used to communicate from one side of the planet to the other,
hearing-aids and cochlear implants restore hearing to the deaf, and auto-
matic speech recognition (ASR) is increasingly used to instruct machines.
Undoubtedly, speech-based technologies have contributed to the shaping
of modern society and will continue to do so in the foreseeable future.

Because speech-based technologies are well established, it is tempting
to think that there is little improvement to be made to their performance.
However, in reality a range of challenges continue to persist. Mobile
phone users have difficulty communicating in noisy environments such
as subways and windy locations. Hearing-aid and cochlear implant users
score worse at intelligibility listening tests than listeners with normal hear-
ing. And when ASR is compared to human speech recognition (HSR), the
performance of ASR is far worse in the presence of noise and reverbera-
tion.

This thesis takes the point of view that such limitations are the out-
come of a poor understanding of human speech communication. What
is missing is a model of speech communication that is derived from first-
principles. Information theory may hold an answer.

1



2 CHAPTER 1. INTRODUCTION

1.1 Problem Statement

Key to the success of speech-based technology is an understanding of hu-
man speech communication. Broadly speaking, there are two approaches
to understanding speech communication.

The first approach involves the analysis of acoustic speech signals and
is typically referred to as speech processing. In speech processing, math-
ematical models that describe the characteristics, production, and trans-
mission of acoustic speech signals are developed.

The second approach to understanding speech communication in-
volves the analysis of human language and is referred to as linguistics.
Linguistics focuses on how languages evolve and how humans assign per-
ceptual meaning to symbols; both written and verbal. Typically, linguists
break language into discrete lexical units such as sentences, words, let-
ters, and phonemes, and analyse the syntactic and grammatical structure
of sequences composed of such units.

Both perspectives of speech communication are valuable, but are of-
ten disjointed. The results and theories developed by speech processing
engineers are highly specialised and can be misunderstood or unknown
to linguists. Similarly, theories developed by linguists can be unknown
to engineers and not obviously applicable to the design of the engineers’
communication systems. Advancements have been made, but a unified
theory of human speech communication that is both comprehensive and
quantitative is yet to emerge.

Three problems can be identified when developing a model of speech
communication. The first problem is that the basic units of speech and
their relation to acoustic signals remain undiscovered. Speech is phys-
ically realised as a continuous acoustic signal but is perceived by a lis-
tener as a discrete sequence of lexical units. The traditional assumption
in speech processing has been that if the right way of viewing acoustic
speech signals was found, then a one-to-one relationship between acous-
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tic cues and phonemes would become apparent (Denes, 1963). Evidence
against this assumption was given by Liberman et al. (1957) who showed
that the same segment of an acoustic speech signal can be perceived in dif-
ferent ways depending on preceding and succeeding sounds. In light of
such experiments, there has been a wider acceptance of the view that a sin-
gle acoustic cue carries information about successive linguistic units (e.g.,
Liberman et al., 1967; Nygaard and Pisoni, 1995; Denes, 1963). This con-
cept is prevalent in ASR systems, which rely on sequential models such as
hidden Markov models and recurrent neural networks to map acoustic signals
to sentences (e.g., Rabiner, 1989; Graves et al., 2013).

The second problem to developing a model of speech communication
is that there is variability inherent in the production of speech. The two
main sources of talker variability are physiological differences (e.g., vocal
tract length) and learned speech habits (e.g., foreign accents) (Huang et al.,
2001). The consequence of talker variability is that two acoustic signals
that contain the same lexical information (e.g., a sentence) can be different
to one another. The problem of talker variability has received attention
from the linguistic and ASR research communities, but it is often ignored
by the speech enhancement and speech intelligibility research communi-
ties.

Finally, the third problem to consider is that speech communication is
incredibly robust to signal distortions. Examples of distortions include ad-
ditive environmental noise, interference from other talkers, and reverber-
ation. An extreme example of a non-linear distortion is shown in Figure
1.1, which displays a short segment of an acoustic speech signal xt as a
function of time, where t is the time index, and a distorted signal sign(xt),
which is equal to 1 when xt > 0 and equal to −1 otherwise. When sign(xt)

is played on a loudspeaker, the speech has poor quality, but surprisingly
it is still intelligible.

Many believe that the robustness of speech communication is due to
language context effects. While context certainly plays a significant role,
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Figure 1.1: A short segment of an acoustic speech signal xt and a distorted
signal sign(xt). Surprisingly, both signals are intelligible.

it cannot be the only source of robustness because language cannot be
utilised without first recognising a sufficient proportion of the sounds that
compose words and sentences (Allen, 2005a). Experiments performed by
Miller and Nicely (1955) showed that with a signal-to-noise ratio (SNR) of
-12 dB, humans can group individual phonemes into basic sound classes.
For comparison, state-of-the-art ASR systems require a SNR of at least 0
dB to recognise sentences, even with the use of language models. The fact
that humans can discriminate between individual phonemes in environ-
ments where ASR systems struggle highlights our present ignorance of
speech communication.

How can the linguist make use of mathematical models of acoustic
speech signals to better understand human speech perception? And how
can the engineer make use of the knowledge of language to improve
speech-based technologies? What is required is a unified understanding of
speech communication. While this thesis does not offer a complete theory,
the problem is approached in a new way. Specifically, this research at-
tempts to develop a model of speech communication that is based on the
mathematics of information theory (Shannon, 1948). The model attempts to
link lexical information with the information of acoustic speech signals,
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incorporate talker variability, and be accurate enough to predict the intel-
ligibility of speech in noisy environments.

1.2 Approaches to Modelling Speech

Communication

Shannon’s information theory (Shannon, 1948) provides a mathematical
framework for analysing communication systems, regardless of the sys-
tems implementation. Information theory has made fundamental contri-
butions to wireless communications, computer science, statistical infer-
ence, cryptography, thermodynamics, and biology (Cover and Thomas,
2012; MacKay, 2003). There is no reason that Shannon’s theory cannot be
applied to human speech communication. Surprisingly, a relatively small
effort has been made to do so. Instead, the majority of existing speech com-
munication models are based on articulation index theory and deep learning,
both of which are discussed in the following.

Classical models of speech communication are largely based on articu-
lation index theory (e.g., French and Steinberg, 1947; Fletcher and Galt, 1950;
Allen, 1994). Articulation index theory was the outcome of a series of lis-
tening experiments conducted by Harvey Fletcher in the 1920’s. Fletcher’s
experiments contributed to the understanding of speech communication
by: (i) demonstrating that the intelligibility of nonsense syllables/words
can be predicted from the intelligibility of their phonetic components, (ii)
showing that acoustic queues are distributed over a range of frequency
bands, and (iii) providing a basis for the development of hearing aids.
Fletcher’s results also gave rise to an algorithm called the articulation in-
dex (AI) (e.g., Kryter, 1962a; ANSI, 1969) that, given the SNR of various
frequency bands and the channel bandwidth, can predict the intelligibility
of a communication system.

Although articulation index theory has provided significant insight
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into the nature of speech communication, it is far from being an exhaus-
tive theory. For example, it does not explain the effect of signal distortions
other than band-pass filtering and additive noise, and it does not account
for the variability of speech between talkers.

More recently, a branch of machine learning known as deep learning (see
LeCun et al., 2015, for an overview) has delivered impressive results for
speech-based technologies. Examples include automatic speech recogni-
tion (e.g., Graves et al., 2013; Amodei et al., 2016), text-to-speech synthesis
(e.g., Van Den Oord et al., 2016), and speech coding (Kleijn et al., 2018).

Models based on deep learning rely on multi-layer neural networks that,
given a data set of inputs and outputs, can be trained to learn a function
that maps an input to an output. As an example, for ASR systems the in-
put is an acoustic speech signal, the output is a sequence of words, and
the mapping function is a conditional probability distribution of word se-
quences given acoustic signals. For text-to-speech synthesis the process is
reversed: the input is a sequence of words, and the output is an acoustic
signal.

Models based on deep learning have achieved impressive results in
terms of their predictive power and fidelity. However, such models cur-
rently require thousands of hours of training data and rely on an exuberant
amount of computational power. Moreover, such models typically consist
of millions of parameters and thus can be difficult to interpret. As an ex-
ample, Deep Speech 2 (Amodei et al., 2016) is an ASR system that achieved
human level performance for clean speech, but required about 12000 hours
of training data and has lower performance than humans in noisy environ-
ments.

In this thesis, tools from both articulation index theory and deep learn-
ing are relied on. However, the research in this thesis differs from the
mainstream by taking an information theoretical perspective. In this con-
text, the effectiveness of communication is quantified using mutual in-
formation, which is a statistical measure of dependence between random
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variables. Low mutual information corresponds to poor communication,
and high mutual information corresponds to good communication. Given
a model and an accurate method for estimating mutual information, al-
gorithms that explicitly maximise mutual information could be used to
improve speech-based communication systems such as telephone, voice-
over-IP, and hearing aids. Moreover, mutual information could be used to
predict how well a communication system will perform in certain listening
environments.

Some effort towards an information theoretic model of speech com-
munication has been made. For example, Fano (1950) used a speech pro-
duction model to estimate the information rate of speech communication.
Allen (2005a,b) pointed out that the articulation index is a straight-line ap-
proximation of the normalised information capacity of a Gaussian chan-
nel. Jensen and Taal (2014) and Taghia and Martin (2014) hypothesised
that the intelligibility of a degraded speech signal is related to the mutual
information between the clean and degraded speech signal. Kleijn and
Hendriks (2015) and Khademi et al. (2017) developed speech enhancement
algorithms based on information theory. The research in this thesis can be
viewed as an extension of those ideas.

1.3 Research Goals

The overall goal of this research is to approach the problem of speech com-
munication from an information theoretical perspective. This thesis aims
to develop a quantitative model that is consistent with our knowledge
of linguistics and that is accurate enough to predict the intelligibility of
speech signals. Naturally this could lead to algorithms that can be used
to enhance the intelligibility of speech, particularly in the context of mo-
bile telecommunications and hearing-aids. The research presented in this
thesis helps to answer the following questions:

(i) How does the acoustic information rate of speech compare to the lexical in-
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formation rate of speech?

The most basic question to ask in information theory is “how much
information is transferred from the information source to the destina-
tion per unit of time”? For speech communication there are two ways
to approach this problem: 1) from the linguistic perspective, and 2)
from the speech processing perspective. The linguistic approach is to
describe speech as a discrete sequence of lexical units. The informa-
tion rate can then be computed by estimating the probability mass
function of the lexical units. On the other hand, the speech process-
ing approach is to describe speech communication using a statistical
model of acoustic signals and to evaluate the information rate of the
model. In the literature, estimates based on lexical sequences tend to
be of the order of 50 b/s, whereas estimates based on acoustic signals
tend to be of the order of 1× 103 or 1× 104 b/s. This thesis attempts
to close the gap.

(ii) How can information theory be used to predict the intelligibility of speech-
based communication systems?

When designing a speech-based communication system, it is impor-
tant to understand how the system will affect intelligibility (i.e., the
proportion of correctly identifiable words). Although formal listen-
ing tests can provide valid data, such tests are laborious and expen-
sive to conduct. For this reason, algorithms that can predict intelli-
gibility are of interest. In this thesis a new algorithm for predicting
speech intelligibility that is based on information theory is proposed.

(iii) How well do competing models of speech communication predict intelligi-
bility?

Over the past decade many algorithms for predicting intelligibility
have been proposed, but have not been widely evaluated. For this
reason, this thesis presents a comprehensive evaluation of intelligi-
bility metrics. Additionally this thesis investigates why the top per-
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forming algorithms have high performance, and argues that some
of the intelligibility metrics can be interpreted as approximations of
mutual information.

1.4 Publications

As part of this research several papers have been peer-reviewed and pub-
lished. They are:

• Van Kuyk, S., Kleijn, W. B., and Hendriks, R. C. (2018). An evaluation
of intrusive instrumental intelligibility metrics. IEEE Transactions on
Audio, Speech, and Language Processing.

• Van Kuyk, S., Kleijn, W. B., and Hendriks, R. C. (2018). An instru-
mental intelligibility metric based on information theory. IEEE Signal
Processing Letters.

• Van Kuyk, S., Kleijn, W. B., and Hendriks, R. C. (2017). On the in-
formation rate of speech communication. In Proceedings of the IEEE
International Conference on Acoustics, Speech, and Signal Processing.

• Van Kuyk, S., Kleijn, W. B., and Hendriks, R. C. (2016). An intelligi-
bility metric based on a simple model of speech communication. In
Proceedings of the IEEE International Workshop on Acoustic Speech En-
hancement.

Material from the publications listed above form the basis of Chapters 3,
4 and 5 of this thesis. In addition, the following paper was peer-reviewed
and published:

• Kolchinsky, A., Tracey, B. D., Van Kuyk, S. (2019). Caveats for in-
formation bottleneck in deterministic scenarios. In Proceedings of the
International Conference on Learning Representations.
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1.5 Thesis Outline and Contributions

This thesis consist of seven chapters. Chapter 2 presents an overview
of the relevant literature, Chapter 3 develops a mathematical model of
speech communication, Chapter 4 proposes two new algorithms for pre-
dicting intelligibility, Chapter 5 evaluates competing algorithms for pre-
dicting intelligibility, Chapter 6 proposes a new method for estimating the
information rate of speech communication, and Chapter 7 concludes the
work. Additional details and the contributions of each chapter are as fol-
lows.

Chapter 2: Literature Review

This chapter presents an overview of the literature surrounding informa-
tion theory and speech communication. First, key ideas and quantities
such as entropy and mutual information are introduced. Once these quan-
tities have been defined, existing methods for estimating the information
rate of speech communication are summarised. Two approaches are con-
sidered: the linguistic perspective, which represents speech as a sequence
of lexical units, and the speech processing perspective, which represents
speech as an acoustic signal. Next, the chapter introduces an important
characteristic of speech communication: talker variability. Talker variabil-
ity is largely caused by physiological differences between the vocal-tracts
of different talkers, and may limit the maximum achievable information
rate between talkers. The chapter then discusses the concept of intelligibil-
ity, why it is important, how it can be measured, and finally, summarises
three existing information theoretic algorithms for predicting intelligibil-
ity.

Chapter 3: A Simple Model of Speech Communication

In this chapter, a simple mathematical model of speech communication is
proposed. The model considers the transmission of a hypothetical mes-
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sage from a talker to a listener and quantifies the effectiveness of com-
munication using the mutual information rate. In addition, this chapter
introduces an auditory model for processing speech signals. The auditory
model accounts for the frequency selectivity, dynamic range compression,
upwards frequency masking, and forward temporal masking properties
of the human auditory system. By combining the mathematical model of
speech communication with the auditory model, a novel approach for es-
timating the information rate of speech communication is proposed. The
method relies on having a chorus of speech signals, which consists of many
talkers saying the same utterance. The statistics of talker variability are es-
timated using real-world data and then substituted into expressions for
the mutual information rate.

Chapter 4: An Intelligibility Metric Based on Information Theory

This chapter proposes an intrusive intelligibility metric called speech in-
telligibility in bits (SIIB) and a variant called SIIBGauss. Intelligibility met-
rics are of importance as they can be used to predict the intelligibility of
speech signals. SIIB and SIIBGauss are based on the model of speech com-
munication proposed in Chapter 3. Unlike competing intelligibility met-
rics, SIIB incorporates the effect of talker variability and partially accounts
for statistical dependencies between time-frequency units of speech sig-
nals. The difference between SIIB and SIIBGauss is that SIIB uses a non-
parametric mutual information estimator based on k-nearest neighbours,
whereas SIIBGauss uses the capacity of a Gaussian communication channel.

Chapter 5: An Evaluation of Intelligibility Metrics

Chapter 5 evaluates the intelligibility metrics proposed in Chapter 4 and
compares their performance to competing intelligibility metrics. In addi-
tion, this chapter investigates the ability of intelligibility metrics to gener-
alise to new types of distortions and analyses why the top performing met-
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rics have high performance. The intelligibility data were obtained from 11
listening tests described in the literature. Dutch, Danish, and English stim-
uli are included. The results show that (i) SIIB and SIIBGauss have state-of-
the-art performance, (ii) that intelligibility metrics tend to perform poorly
on data sets that were not used during their development, and (iii) demon-
strates the advantage of reducing statistical dependencies between input
features.

Chapter 6: Estimating Mutual Information Using Siamese Networks

In this chapter, a novel approach for estimating the information rate of
speech communication is proposed. Similarly to Chapter 3, the approach
relies on having a chorus of speech signals. However, unlike Chapter 3,
the approach does not make assumptions about the joint probability dis-
tribution of the hypothetical message and the speech signal. Instead, data-
driven methods from machine learning are used: a Siamese neural network,
and Maximum Mean Discrepancy. The approach is demonstrated on artifi-
cial examples, but is yet to be applied to real-world speech signals.

Chapter 7: Conclusions

In this final chapter the main conclusions of the thesis are given. Moreover,
ideas for future research topics are discussed.



Chapter 2

Literature Review

This chapter reviews literature about speech communication and informa-
tion theory. First, methods for estimating the information rate of speech
communication are presented, second, the concept of talker variability is
introduced, and third, existing information theoretic algorithms for pre-
dicting speech intelligibility are summarised. These three concepts lay the
foundation for the research presented in this thesis.

2.1 Information Theory

Shannon’s information theory (Shannon, 1948) provides a mathematical
framework for analysing communication systems, regardless of the sys-
tems implementation. Information theory is fundamental to the design of
wireless communications, cryptography, and data compression systems.
There is no reason that information theory cannot be applied to models of
human speech communication. Surprisingly, a relatively small effort has
been made to do so.

There are two key concepts to information theory. The first concept
is that the ‘meaning’ of a message is irrelevant to the engineering prob-
lem. Rather, the significant aspect is that a transmitted message is one
selected from a set of possible messages. This view leads to a probabilistic

13
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Information
Source Transmitter Receiver Destination

Noise
Source

Signal Received
Signal

Message Message

Figure 2.1: Shannon’s general communication system.

approach.

The second concept of information theory is that a message of low
probability contains more information than a message of high probabil-
ity. This concept can be justified by noting that if there is no uncertainty at
a receiver about what will be transmitted, then there is no information to
be gained when the transmitted signal is received.

Figure 2.1 displays a diagram of Shannon’s general communication
system. The goal of the communication system is to reproduce at one
point a message selected at another point. In the context of speech com-
munication, the information source is the talker’s brain, the transmitter
includes the talker’s vocal cords and vocal tract that encode the message
into an acoustic signal, the channel is the physical medium that conducts
the acoustic signal, the noise source characterises distortions introduced
by the channel, the receiver is the listener’s auditory system, and the des-
tination is the listener’s brain.

2.1.1 Definitions and properties

In this section, important definitions and properties from information the-
ory are described. For more detail on information theory, see Cover and
Thomas (2012) or MacKay (2003).
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Definitions

Information theory quantifies information using a unit called a binary digit
(bit). One bit is defined as the amount of information gained upon receiv-
ing one of two equally likely transmitted messages. Given a discrete ran-
dom variable x with probability distribution P (x), the information content
of an outcome, x = x, is defined as

H(x) = log2

1

P (x)
. (2.1)

In this way, a message of low probability contains more information than
a message of high probability.

The information content only considers a single outcome. The entropy
of a random variable is defined as the average information content over
all possible outcomes X:

H(x) = Ex∼P [− log2 P (x)] (2.2)

= −
∑

x ∈ X

P (x) log2 P (x). (2.3)

The mutual information of two discrete random variables, x and y, quan-
tifies the amount of information shared between x and y. Mutual informa-
tion is defined as

I(x; y) =
∑

x,y ∈ X,Y

P (x, y) log2

P (x, y)

P (x)P (y)
, (2.4)

where Y is the set of all possible outcomes of y. Mutual information can
also be interpreted as the similarity between the joint distribution P (x, y)

and the product of the marginal distributions P (x)P (y).
The conditional entropy of x given y quantifies the average uncertainty

that remains about the outcome of x when the outcome of y is known. The
conditional entropy of x given y is defined as

H(x|y) = −
∑

y ∈ Y

P (y)
∑

x ∈ X

P (x|y) log2 P (x|y) (2.5)

= −
∑

x,y ∈ X,Y

P (x, y) log2 P (x|y). (2.6)
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Properties

It can be shown that

H(x) ≤ log2 |X| with equality iff x ∼ U , (2.7)

H(x|y) ≤ H(x) with equality iff P (x, y) = P (x)P (y), (2.8)

0 ≤ H(x|y), (2.9)

0 ≤ I(x; y) ≤ min(H(x), H(y)), (2.10)

and that

I(x; y) = H(x)−H(x|y) (2.11)

= H(y)−H(y|x) (2.12)

= H(x) +H(y)−H(x, y) (2.13)

Furthermore, if and only if x and y are statistically independent, then

I(x; y) = 0 (2.14)

H(x, y) = H(x) +H(y), (2.15)

and if and only if a deterministic function, f , exists such that x = f(y),
then

I(x; y) = H(x) = H(y). (2.16)

For two invertible functions f and g,

I(f(x); g(y)) = I(x; y). (2.17)

Continuous random variables

For continuous random variables, the entropy and conditional entropy are
referred to as differential entropy and conditional differential entropy. Differ-
ential entropy, conditional differential entropy, and mutual information
for continuous random variables, are defined analogously to the discrete
case by replacing the summations in the above definitions with integrals.
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However, some properties from the discrete case are lost. For example,
differential entropy can be negative. To distinguish between entropy and
differential entropy, H is used to denote entropy and h is used to denote
differential entropy.

Differential entropy of the Gaussian distribution

The multivariate Gaussian distribution is defined by

P (x) =
1√

(2π)d det(Σ)
e−

1
2

(x−µ)∗Σ−1(x−µ), (2.18)

where x ∈ Rd, µ is the expected value of x, Σ is the covariance matrix of
x, and ∗ denotes the transpose.

The differential entropy of the multivariate Gaussian distribution is

h(x) =
1

2
log2 det(2πeΣ). (2.19)

For the univariate case with with var(x) = σ2, (2.18) simplifies to

P (x) =
1√

2πσ2
e−

(x−µ)2

2σ2 (2.20)

and (2.19) simplifies to

h(x) =
1

2
log2 2πeσ2. (2.21)

2.2 The Lexical Information Rate of Speech

The most basic question to ask when applying information theory to
speech communication is:

”How many bits of information are transferred from the talker to the
listener each second”?

In this section the above question is approached from the perspective of
the linguist by providing a review of Shannon (1951), Fano (1950) and
Flanagan et al. (2008), with some adaptations.
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2.2.1 A word-based model of communication

Let X represent the set of all words in a given language, x be a random
variable that represents a word spoken by a talker, and y represent the
corresponding word received by a listener. Assuming a noiseless memo-
ryless channel, x = y and by (2.16) the mutual information between x and
y is

I(x; y) = H(x) (2.22)

= −
∑

x∈X

P (x) log2 P (x), (2.23)

where P (x) is the probability that x is transmitted.
Shannon (1951) estimated (2.23) by computing word probabilities ac-

cording to Zipf’s law (Zipf, 1949). Zipf’s law provides a reasonable ap-
proximation for word probabilities for a wide range of written and spo-
ken languages (Piantadosi, 2014). Zipf’s law states that if each word of
X is ranked according to it’s frequency of occurrence in speech, then the
probability of the word with rank n, is given by

P (xn) = 0.1/n, (2.24)

where xn denotes the n’th most frequent word in the language. Figure 2.2
plots (2.24) for n < 50 and compares the probabilities to the data tabulated
in Davies and Gardner (2013) for English words.

Zipf’s law cannot hold indefinitely since the sum of all probabilities
must equal 1, while limN→∞

∑N
n=1 0.1/n =∞. If we assume that Zipf’s law

is valid for n ≤ N such that |1−∑N
n=1 0.1/n| is minimised, thenN = 12367,

which is comparable to the number of words in the spoken vocabulary of
a child (Anglin et al., 1993). For n > N , we set P (xn) = 0. The entropy of
speech is then

H(x) = −
12367∑

n=1

0.1

n
log2

0.1

n

= 9.72 bits per word.

(2.25)
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Figure 2.2: Word probability against frequency rank for the fifty most fre-
quent English words. The red line shows data from Davies and Gardner
(2013) and the blue line shows Zipf’s law. The most frequent word is ”the”
with a probability of occurrence of 0.067. The second most frequent word
is ”be” with a probability of occurrence of 0.038.

Taking the average speaking rate of conversational speech to be 130 words
per minute (Siegler and Stern, 1995; Levelt, 1999), the information rate of
speech is 21 b/s. Note that this rate is for a noiseless memoryless chan-
nel. That is, the transmitted word is equal to the received word, and each
transmitted word is selected independently from the previously transmit-
ted words. If the dependencies between successive words were taken into
account and if communication took place in a noisy environment, then the
information rate would be reduced. Zipf’s law is only an approximation
of the word probabilities, thus a rate of 21 b/s is a crude estimate.

2.2.2 A phoneme-based model of communication

We now consider the case where x represents a phoneme rather than a
word. For English, there are approximately 44 phonemes. The exact num-
ber depends on the dialect of the talker and the classification procedure
used to distinguish between speech sounds. Assuming that each phoneme
is selected for transmission independently and with equal probability, by
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Table 2.1: Occurrence of English phonemes. Data from Denes (1963).

x P (x) x P (x)

@ 0.090445 t 0.084033
I 0.082537 n 0.070849

aI 0.028473 s 0.050893
e 0.028126 d 0.041767
i: 0.017878 l 0.036892
@U 0.017477 m 0.032890
2 0.016701 D 0.029927
6 0.015330 k 0.028985
æ 0.015261 r 0.027697
eI 0.014956 w 0.025661
u: 0.014222 z 0.024927
O: 0.012007 b 0.020842
A: 0.007755 v 0.018515
aU 0.007741 p 0.017698
U 0.007672 f 0.017283
3: 0.006661 h 0.016729
e@ 0.004335 j 0.015303
I@ 0.002867 N 0.012436
U@ 0.001426 g 0.011619
OI 0.000872 S 0.007021

T 0.005955
dZ 0.005138
tS 0.003684
Z 0.000512

(2.7) the entropy of English speech is log2 44 = 5.46 bits per phoneme. If
the phonemes are selected independently and with probabilities equal to
the observed frequencies tabulated in Denes (1963) and shown in Table
2.1, then the entropy reduces to H(x) = 4.91 bits per phoneme. Taking
the average speaking rate of conversational English to be 12 phonemes
per second (Levelt, 1999; Tiffany, 1980), the information rate is about 60
b/s. Again, this estimate is for a noiseless memoryless channel and could
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be reduced further by accounting for statistical dependencies between
phonemes.

For the word-based model of communication in Section 2.2.1, a speak-
ing rate of 130 words per minute was used. When this rate is compared to
the speaking rate of 12 phonemes per second that was used in the above
calculation it implies that on average there are 5.5 phonemes per word,
which is reasonable.

The information rate estimated using phonemes is larger than the in-
formation rate estimated using words by a factor of three, but this is rea-
sonable considering the precision of Zipf’s law. Additionally, because
words are composed of multiple phonemes, the word probabilities implic-
itly account for some dependencies between successive phonemes. Thus,
given that both models are memoryless, it is plausible that the information
rate estimated using words is lower than the information rate estimated
using phonemes. If more realistic models of communication were consid-
ered, i.e., if the phoneme-based model was not memoryless and instead
considered the probability distribution of a sequence of phonemes, and
likewise for the word-based model, then the information rate for words
and phonemes would be equal.

In light of the above analysis, as a first approximation, we take 60 b/s
as the lexical information rate of speech. This is similar to existing results
in the literature such as Flanagan et al. (2008) and Fano (1950) that estimate
the lexical information rate to be 50 b/s. The 10 b/s discrepancy with the
former exists because Flanagan et al. (2008) used a different data set for
calculating phoneme probabilities and a lower speech rate of 10 phonemes
per second. The discrepancy with the latter exists because the analysis
of Fano (1950) was based on the entropy of alphabetic letters rather than
words or phonemes.

The lexical information rate does not include information about talker
identification, emotional state, and prosody. However, these variables
vary relatively slowly in time and contribute little to the overall informa-
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tion rate. As an example, Fano (1950) estimated that the total amount of
talker-specific information (e.g., age, accent, sex) was of the order of 30
bits. This information only has to be transmitted once. Thus, if speech
with a duration of one minute is considered, then accounting for talker-
specific information increases the information rate by only 0.5 b/s.

2.2.3 The effect of noise and filtering

The phoneme-based model of communication from the previous section
is now extended to include the effect of channel distortion. Specifically,
the effect of additive stationary noise and linear filtering is considered.
Additive stationary noise is a type of distortion commonly encountered
in everyday life, and linear filtering is often used in telephony to reduce
bandwidth. The analysis in this section follows that presented in Flana-
gan et al. (2008); however, we give our own interpretation of the results.
In Chapter 5 the effect of other types of distortion such as reverberation,
modulated noise, and enhancement algorithms is considered.

Noise could be introduced to the communication channel during the
production of a phoneme by the talker, the transmission of the phoneme
through the channel, or the decoding of the received phoneme by the lis-
tener. Because of noise, the phoneme selected by the talker may be dif-
ferent to the phoneme decoded by the listener. This means that the as-
sumption from Section 2.2.1 that x = y is not necessarily valid. For a noisy
memoryless communication channel, the mutual information between x

and y is

I(x, y) = H(y)−H(y|x) (2.26)

= −
∑

y∈X

P (y) log2 P (y) +
∑

x∈X

P (x)
∑

y∈X

P (y|x) log2 P (y|x), (2.27)

where P (y|x) is the conditional probability of perceiving phoneme y given
that phoneme x was transmitted, and X is the set of all possible phonemes
for the chosen dialect.
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Miller and Nicely (1955) measured the conditional probabilities of 16
English consonants for a range of channel conditions. The experiment
was performed by transmitting consonants one at a time over a telephone
channel. Five normal-hearing female listeners were then asked to identify
which consonant was transmitted.

Three types of channel distortions were tested: a channel with additive
white noise1, a low-pass filtered channel, and a high-pass filtered channel.
For the additive white noise channel, the signal-to-noise ratio (SNR) was
set to -18, -12, -6, 0, 6, and 12 dB and the bandwidth was set to 200-6500
Hz. For the low-pass filtered channel, the high-pass cut-off frequency was
fixed at 200 Hz and the low-pass cut-off frequency was set to 300, 400, 600,
1200, 2500, and 5000 Hz. For the high-pass filtered channel, the low-pass
cut-off frequency was fixed at 5000 Hz and the high-pass cut-off frequency
was set to 200, 1000, 2000, 2500, 3000, and 4500 Hz. For both the low-
pass filtered channel and the high-pass filtered channel, a fixed SNR that
corresponded to 12 dB for unfiltered speech was used.

The results of the experiment were recorded for each channel condi-
tion in a 16×16 confusion matrix where a row corresponds to a transmitted
phoneme and a column corresponds to a phoneme guessed by a listener.
Table 2.2 shows a confusion matrix for a communication channel with a
bandwidth of 200-6500 Hz and a SNR of 0 dB. The first row indicates the
number of times each phoneme was guessed by a listener given that /p/
was spoken by the talker. For this communication channel we see that /p/
was most commonly confused with /t/ and /k/.

Using the confusion matrices tabulated in Miller and Nicely (1955),
P (x), P (y), and P (y|x) can be estimated for each channel condition. Con-
sequently, the mutual information in (2.27) can be computed as a function
of the SNR and channel bandwidth. Because the transmitted message was
selected from sixteen possible phonemes, by (2.10) the mutual information
cannot exceed H(x) = log2 16 = 4 bits per phoneme. When this occurs we

1That is, a Gaussian signal with uniform power across the frequency band.
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Table 2.2: A confusion matrix showing the perceptual confusions of con-
sonants transmitted over a channel with a bandwidth of 200-6500 Hz and
a SNR of 0 dB. Data from Miller and Nicely (1955).

p t k f T s S b d g v D z Z m n

p 150 38 88 7 13
t 30 193 28 1
k 86 45 138 4 1 1 1
f 4 3 5 199 46 4 1 1 1
T 11 6 4 85 114 10 2
s 2 1 5 38 170 10 2
S 3 3 3 267
b 7 4 235 4 34 27 1
d 189 48 4 8 11
g 74 161 4 8 25
v 3 1 19 2 177 29 4 1
D 7 10 64 105 18
z 17 23 4 22 132 26
Z 2 3 1 1 9 191 1
m 1 201 6
n 3 1 8 240

say that the channel is saturated. Channel saturation is only achieved when
all transmitted phonemes are correctly identified.

Figure 2.3 plots the mutual information in bits per phoneme against
the SNR in dB. The mutual information is 0 bits per phoneme at -18 dB
and increases approximately linearly with the SNR until 0 dB. From 0 dB
to 12 dB the communication channel gradually approaches saturation.

Similarly, Figure 2.4 shows the effect of filtering on the mutual infor-
mation. The blue curve indicates the mutual information for a channel
with a bandwidth from 200 Hz to cut-off frequency fc, and the red curve
indicates the mutual information for a channel with a bandwidth from fc

to 5000 Hz. The curves intercept at 1250 Hz indicating that a channel from
200-1250 Hz transfers the same amount of information as a channel from
1250-5000 Hz. The amount of information at this cross-over point is 2.4
bits per phoneme. If the low-pass channel and high-pass channel were
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Figure 2.3: Mutual information against signal-to-noise ratio for phonemes
transmitted over a noisy channel with a bandwidth of 200-6500 Hz. The
black line shows the maximum achievable transfer of information corre-
sponding to perfect phoneme recognition. Figure reproduced from Flana-
gan et al. (2008).

statistically independent, then the information for the wide-band channel
from 200-5000 Hz would be 2.4 + 2.4 = 4.8 bits per phoneme. However,
this is not what we observe. The last data point of the blue curve indicates
that the amount of information from the wide-band channel is 3.2 bits per
phoneme. It follows that the low-pass and high-pass frequency channels
are not independent; rather, some of the same information is transmitted
in parallel over the separate frequency channels. This means that if the
spectral content of a speech signal within a particular frequency band is
distorted, then the information transferred through that frequency band
is not completely lost. This ‘frequency redundancy’ is one reason for the
robustness of human speech communication.

Limitations of Miller’s experiment

Due to the design of the experiment in Miller and Nicely (1955), there are
several limitations to the preceding analysis. One limitation is that a small
subset of the 44 English phonemes was used. This subset makes up about
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Figure 2.4: Mutual information against cut-off frequency for phonemes
transmitted over a band-limited channel with a wide-band SNR of 12 dB.
The black line shows the maximum achievable transfer of information
corresponding to perfect phoneme recognition. Figure reproduced from
Flanagan et al. (2008).

40% of English speech communication. Most importantly, the subset does
not contain vowels, which tend to have more energy located below 3 kHz
than consonants. This means that the effect of filtering consonants will
differ to the effect of filtering vowels, so the results cannot be extrapolated
to all human speech communication.

A second limitation is that the phonemes were transmitted with equal
probability. If the true phoneme probabilities of conversational speech
were used, then some spectral shapes would be more common than others
and thus the effect of the filters would be different.

A third limitation is that the phonemes were presented in isolation.
The acoustic realisation of a phoneme depends on preceding and succeed-
ing sounds, thus the affect of noise and filtering on an isolated phoneme
could differ to the affect of noise and filtering on a continuous stream of
phonemes.

A fourth limitation is that a small selection of five listeners was used.
In addition, all of the listeners were female, and the same five subjects that
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were used as listeners were also used as talkers. However, in Phatak et al.
(2008) the SNR experiment was repeated using 10 males and 8 females
and, in general, the consonant confusions were consistent with the original
experiment.

2.3 The Acoustic Information Rate of Speech

Unlike the lexical information rate of speech that was discussed in Section
2.2, the acoustic information rate of speech is obtained without knowledge
of language. Instead, observations of acoustic speech signals are relied
upon. In this section, a review of the acoustic information rate of speech
is presented. First a simple time-domain model of speech communica-
tion that is often included in textbooks (e.g., Flanagan et al. (2008)), is de-
scribed, and then the analysis from Fano (1950) is described.

2.3.1 A simple time-domain model of speech

communication

As a first approach to measuring the acoustic information rate of speech,
consider the case where speech is represented by the samples of a time-
domain acoustic speech signal. Let {xt} be a stochastic process that repre-
sents the signal produced by the talker. Figure 2.5 shows the samples of
an acoustic speech signal produced by an English speaking female.

The time-domain samples of an acoustic speech signal can be modelled
as a stationary univariate Gaussian process (Jensen et al., 2005). Ideally a
time-domain model would consider the joint distribution of a sequence of
samples, rather than considering the marginal distribution only, but such
an approach is not tractable. Figure 2.6 shows a histogram of xt for the sig-
nal shown in Figure 2.5 and also includes a Gaussian probability density
obtained using maximum likelihood estimation. We see that the Gaussian
model provides a rough approximation. Replacing the Gaussian density
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Figure 2.5: An acoustic speech signal sampled at 16 kHz.

Figure 2.6: A histogram of an acoustic speech signal and the correspond-
ing maximum-likelihood Gaussian probability density function.

with a Laplace density or a Generalised Gaussian density provides a bet-
ter fit (Jensen et al., 2005), however, the Gaussian model is mathematically
tractable and provides a useful starting point for further analysis.

Consider the transmission of {xt} through a band-limited channel cor-
rupted by additive Gaussian noise {nt} that has been filtered to have the
same power spectral density (PSD) as the PSD of {xt}. The mutual in-
formation rate between the transmitted Gaussian signal and the received
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Figure 2.7: Mutual information for a Gaussian signal transmitted over a
Gaussian channel.

signal {yt} is given by (Shannon, 1948)

I({xt}; {yt}) = B log2(1 + SNR) bits per second, (2.28)

where B is the bandwidth of the channel and SNR is the signal-to-noise
ratio given by var(xt)/var(nt).

The bandwidth required for speech communication can be taken as
anywhere from 3 kHz to 20 kHz. The former corresponds to the band-
width of telephone communication, which degrades speech signals but
for the most part preserves intelligibility, and the later corresponds to the
frequency range of the human ear.

The SNR required for speech communication varies depending on the
complexity of the listening task. For example, the SNR required for dis-
tinguishing between a small set of words or syllables is lower than the
SNR required for distinguishing between a large set of words or syllables.
Similarly, due to the redundancy of language, the SNR required for con-
versational speech is lower than the SNR required for nonsense syllables
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Figure 2.8: Time-domain speech signals for two talkers speaking in syn-
chrony.

(Miller et al., 1951). Though the exact requirement depends on the listen-
ing task, intelligibility has not been known to improve beyond a SNR of
20 dB, and in most cases, intelligibility is at chance levels for a SNR below
-20 dB.

Figure 2.7 plots (2.28) for the values discussed above. For ideal listen-
ing conditions we takeB = 8 kHz and SNR = 20 dB giving an information
rate of 53266 bits per second.

Now consider the mutual information between two acoustic signals
carrying the same lexical message but spoken by two different talkers. Let
{x[1]

t } denote the first signal and let {x[2]
t } denote the second signal. If the

signals are modelled as jointly Gaussian stationary processes, then the mu-
tual information rate of the two signals is given by (Cover and Thomas,
2012)

I({x[1]
t }, {x[2]

t }) = −B log2(1− ρ2) bits per second, (2.29)

where ρ is the correlation coefficient between {x[1]
t } and {x[2]

t }. Note that
because of the stationary assumption, ρ is constant for all t. Figure 2.8
shows sample sequences of {x[1]

t } and {x[2]
t }. The sample sequences were

obtained by recording two female talkers speaking the same utterance in
synchronous. Because the sampling rate is 16 kHz, the bandwidth isB = 8
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kHz. The sample correlation coefficient for the data is ρ̂ = 0.0215, which
results in I({x[1]

t }, {x[2]
t }) = 5.35 bits per second.

From the above results we can identify three problems with the simple
time-domain Gaussian model of speech communication. First, the acous-
tic information rate is three orders of magnitude larger than the lexical
information rate from Section 2.2.2. This suggests that there is redundant
information in the samples of acoustic speech signals that has not been
accounted for. Second, the acoustic information rate given in (2.28) in-
creases without bound with the SNR, whereas the lexical information rate
in Figure 2.3 saturates at a particular value. This suggests that there is a
physical limitation or internal noise source that has not been considered.
Third, for two speech signals that contain the same lexical information we
find that out of the 53266 bits per second encoded in each signal, only 5
bits of information per second are common to both signals. The fact that
the time-domain model predicts that two signals carrying the same lexical
information only share 5 bits of information per second, while the lexical
information rate is 60 b/s, is an obvious flaw.

Clearly, the time-domain Gaussian model is a poor model of human
speech communication. The reason the model fails is because the model
is too simple: the samples of an acoustic speech signal do not accurately
reflect the encoded lexical information. In order to get consistent results
for the lexical information rate of speech and the acoustic information rate
of speech, an appropriate representation of speech needs to be combined
with a more powerful statistical model.

2.3.2 Fano’s method for measuring the acoustic

information rate

Fano (1950) proposed a method for measuring the acoustic information
rate of speech that is based on source-filter theory (e.g., Stevens, 2000). Fig-
ure 2.9 shows a diagram of the source-filter model of speech production
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Figure 2.9: The source-filter model of speech production. The source pro-
duces an excitation signal and the vocal-tract filter spectrally shapes the
excitation signal into a series of peaks and valleys. A voiced excitation sig-
nal is generated by forcing air through the vocal folds and an unvoiced exci-
tation signal is generated by creating a turbulent flow of air in the airways.
The time-domain waveform of a voiced excitation signal is roughly trian-
gular and periodic, so in the time-frequency domain it is a harmonic line
spectra with power that decreases as the frequency increases. The time-
domain waveform of an unvoiced excitation signal is modelled by white
Gaussian noise. The vocal-tract filter has a time-dependent transfer func-
tion that is modified throughout speech communication by moving the
vocal articulators, e.g., the tongue, lips, and jaw. This model has gained
wide use in speech enhancement (Loizou, 2013), speech coding (Kleijn and
Paliwal, 1995), speech recognition (Rabiner and Juang, 1993), and evolu-
tionary theories for the origin of speech (Fitch, 2000).

and gives a brief description of it’s operation.
Fano’s method models voiced speech signals in the time-frequency do-

main as a number of modulated carrier signals with harmonically related



2.3. THE ACOUSTIC INFORMATION RATE OF SPEECH 33

carrier frequencies. From the perspective of source-filter theory, the car-
rier signals are the frequency components of the excitation signal and the
modulator is the time-varying vocal-tract filter. The information rate for
voiced speech is governed by the bandwidth of the modulations, the num-
ber of carrier signals, and the SNR of the communication channel. Fano
then advocates that the information rate of unvoiced speech should be
comparable to the information rate of voiced speech.

Physical constraints limit the speed at which the tongue, mouth, and
jaw can move, which has the effect that amplitude modulations are band-
limited to about 10 Hz2. The exact number of carrier signals depends on
the fundamental frequency of the excitation signal. A representative value
for the fundamental frequency of a female talker is 250 Hz, resulting in 32
evenly spaced carriers over a 8000 Hz bandwidth. The SNR required for
ideal listening conditions is 20 dB3. If the modulated carriers are modelled
as Gaussian signals transmitted over independent frequency channels,
then the information rate is given by I({xt}, {yt}) = 32×10×log2(1+102) =

2130 bits per second. Fano’s analysis brings the acoustic information rate
considerably closer to the lexical information rate, but the acoustic infor-
mation rate is still 35 times larger.

There are two aspects of speech communication that Fano’s method
does not account for: 1) statistical dependencies in acoustic signals, and
2) talker variability. Fano’s method estimates the information rate by
summing the information over multiple frequency channels, however, as
pointed out in Section 2.2.3, speech signals have ’frequency redundancy’,
meaning that some of the same information is transmitted in parallel over

2A modulation bandwidth of 10 Hz is an approximate value that is valid for vowels,
but not for other speech sounds. For example, stop consonants have sharp transitions
with a voice-onset time of 20 ms, which loosely corresponds to a bandwidth requirement
of 50 Hz.

3The original analysis by Fano assumed that a bandwidth of 7000 Hz and a SNR of
24 dB was required for ideal listening conditions. For consistency with Section 2.3.1, we
instead use a bandwidth of 8000 Hz and a SNR of 20 dB.



34 CHAPTER 2. LITERATURE REVIEW

separate frequency channels. Because statistical dependencies between
the modulator signals are not accounted for, Fano’s method overestimates
the information rate. The second reason that Fano’s method over estimates
the information rate is related to talker variability, which is discussed in
the following section.

2.4 Talker Variability

Speech communication can be viewed as the transmission of lexical code
words that are physically realised as acoustic signals. One aspect of speech
communication that has been overlooked in this chapter thus far is that
there is variability inherent in the production of speech signals. In other
words, different acoustic signals can carry the same lexical message.

2.4.1 Example of talker variability

An example of talker variability is shown in Figure 2.10 which includes
two spectrograms of the sentence “a fifth wheel caught speeding”. The
top utterance was produced by a female American talker and the bottom
utterance was produced by a male Irish talker.

It can be seen that the male Irish talker tends to use more low frequency
energy than the female American talker. For example, consider the speech
segment from 0.25 s to 0.4 s. The male Irish talker concentrates energy be-
tween 0-3500 Hz, whereas the female American talker concentrates energy
between 0-4500 Hz. Similarly, for the speech segment from 0.9 s to 1.0 s
the male Irish talker concentrates energy upwards of 3000 Hz, whereas the
female American talker concentrates energy upwards of 4000 Hz.

Another difference between the spectrograms is apparent at 0.45 s to
0.7 s where the phoneme /i:/ from “wheel” is pronounced. The spectro-
gram of the male Irish talker has a narrow band of concentrated energy
that slowly fluctuates between 1000-2000 Hz, but the spectrogram of the
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Figure 2.10: Spectrograms of an utterance produced by a female American
talker (top) and a male Irish talker (bottom). The acoustic signals carry the
same lexical information, but are different due to talker variability.

female American talker is missing this acoustic feature.
The two speech signals contain the same lexical message, but both talk-

ers encode the lexical message in a unique way. This variability between
talkers is a fundamental aspect of speech communication that should not
be ignored.

2.4.2 Sources of talker variability

The two main sources of talker variability are physiological differences
and learned speech habits (Huang et al., 2001). Physiological differences
between talkers include differences in the length and shape of their vocal-
tracts. The average vocal-tract length is 16.9 cm for adult males, 14.1 cm
for adult females, and 7.9 cm for newborns (Goldstein, 1980). Talkers with
longer vocal-tracts tend to have voices that sound ‘deeper’ than those with
shorter vocal tracts. Other anatomical differences such as mouth shape,
tongue length, and missing teeth also have an impact on the characteristics
of the talker’s vocal-tract filter and consequently affect the production of
acoustic speech signals.

The second main source of talker variability is learned speech habits.
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Learned speech habits are related to a talker’s native-language, region of
origin, and socio-economic status. Pronunciation, stress, and prosody are
all affected. One consequence of learned speech habits is that non-native
talkers sometimes replace unfamiliar phonemes of a target language with
phonemes familiar to their native language (Flege et al., 2003). For exam-
ple, native English talkers frequently replace the alveolar trill /r/ (i.e., a
‘rolled r’) that is common in Spanish and Arabic with the alveolar approx-
imant /ô/ because it requires the talker less articulatory effort. Learned
speech habits are also seen in young children that have not learned how to
properly formulate the sounds of their native language (Stoel-Gammon,
1989).

Besides physiological differences and learned speech habits, other fac-
tors that contribute to talker variability include emotional state, speech im-
pairments, speaking styles (e.g. whispering and shouting), and long-term
habits (e.g. smoking and singing). For a more comprehensive discussion
of factors that contribute to talker variability, see Benzeghiba et al. (2007).

2.4.3 An information theoretical perspective of

talker variability

Fano (1950) identified that talker variability posed a problem to his com-
munication model. He hypothesised that the differences between the
acoustic signals of different talkers could be modelled as a type of noise
that is inherent to the production of speech. This noise would bound the
information rate of speech communication and lower his estimate of the
acoustic information rate. Although Fano (1950) identified the problem,
no attempt was made to address it.

The idea that talker variability could be modelled as noise was taken
up again over 50 years later in Kleijn and Hendriks (2015), which coined
the term production noise. It was shown, theoretically, that production noise
would cause the effectiveness of communication to saturate at a particular
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Figure 2.11: A channel coding interpretation of speech communication.
The black box represents the set of all acoustic speech signals, the red dots
represent linguistic code words, and the blue circles represent a subset of
acoustic signals that are associated with a given code word.

bit rate. Thus, unlike (2.28), even if the SNR of the environmental channel
is infinite, the information rate of speech communication is finite. Kleijn
and Hendriks (2015) and Khademi et al. (2017) used this concept to design
a state-of-the art speech enhancement algorithm. The enhancement al-
gorithm redistributes power across frequency bands using a variant of the
water-filling algorithm (Cover and Thomas, 2012). When production noise
is accounted for, allocating power to frequency bands with high SNR has
diminishing returns because the communication channel begins to satu-
rate. Thus, compared to traditional water-filling, the speech enhancement
algorithm allocates less power to high SNR frequency bands.

To make the notion of production noise more concrete, Figure 2.11
shows a channel-coding interpretation of production noise. The black box
represents the set of all acoustic speech signals that can be articulated by
humans; the red dots represent code words, which could be phonemes,
words, sentences, or any other perceptual linguistic unit; and the blue cir-
cles represent a subset of acoustic signals that correspond to a particular
code word. A change in language corresponds to a new set of red dots,
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a change in dialect or speaking habit corresponds to a slight perturbation
of the red dots, and an increase in production noise corresponds to larger
blue circles. In this model, production noise is thought of as the natural
consequence of having many talkers with different vocal tracts and speech
habits. Note that some of the acoustic subsets in Figure 2.11 overlap. This
allows the same acoustic signal to be perceived differently depending on
preceding and succeeding sounds, as was found in Liberman et al. (1957).

The production noise point-of-view is consistent with the observation
that the ability to understand speech depends on the listener’s familiarity
with the talker’s voice. When a listener encounters a talker with an unfa-
miliar speech habit or accent, it can take time for the listener to learn the
talker’s speech code.

The information rate of a language with a set of code words, X, satu-
rates at log2 |X| bits per code word. This means that increasing the num-
ber of code words increases the maximum achievable information rate.
However, when production noise is considered, increasing the number
of code words also increases the conditional probability of confusing one
code word with another code word. Consequently there is a trade off be-
tween efficiency and robustness.

The only way to increase the robustness of speech communication
without affecting it’s efficiency is to decrease the production noise. That is,
talkers must speak more similarly to one another. Note that this behaviour
is observed when considering talkers that belong to a particular socio-
economic class or geographical region. Talkers belonging to such groups
typically develop similar speaking habits to one another, which makes
communication more robust. Other factors that contribute to the forma-
tion of similar speaking habits include social bonding and self-identity, as
advocated by speech accommodation theory (Gallois et al., 2005).

Talker variability plays a key role in this thesis. In Chapter 3, a method
for estimating the statistics of production noise is developed, and in Chap-
ter 4, an algorithm for predicting the intelligibility of speech signals that
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incorporates production noise is proposed.

2.5 Speech Intelligibility

A viable model of speech communication must be able to make quan-
tifiable predictions that can be verified by experiment. The utility of the
model developed in this thesis is evaluated by its ability to make predic-
tions about the intelligibility of speech. For this reason, this section focuses
on algorithms for predicting intelligibility. Such algorithms are called in-
strumental intelligibility metrics. The intelligibility metrics described in this
section include: the articulation index (AI) (French and Steinberg, 1947),
the speech intelligibility predictor based on mutual information (SIMI)
(Jensen and Taal, 2014), and the k-nearest neighbour mutual information
intelligibility measure (MIKNN) (Taghia and Martin, 2014). The AI, SIMI,
and MIKNN are all based on information theory. Intelligibility metrics
that are not based on information theory are described in Chapter 5.

2.5.1 What is speech intelligibility?

When designing a speech-based communication system (e.g., telephone,
voice-over-IP, and public address systems), it is important to understand
how the system will affect the intelligibility and quality of speech. Intelli-
gibility is often defined as the proportion of words correctly identified by
a listener (Allen, 2005a), whereas speech quality refers to the ’pleasantness’
or ’naturalness’ of the speech signal (Loizou, 2013).

Intelligibility and speech quality are not synonymous. As an exam-
ple, telephone speech often has high intelligibility but is of poorer quality
than clean speech due to bandwidth constraints. An increase in intelligi-
bility does not always coincide with an increase in speech quality, and vice
versa. This thesis focuses on intelligibility.

There are many factors that affect intelligibility. Examples include the



40 CHAPTER 2. LITERATURE REVIEW

complexity of the speech material, the talker’s choice of words, the talker’s
speaking style (e.g., loud, conversational, whispered, clear, and fast), char-
acteristics of the communication channel (e.g., quantisation, noise, and re-
verberation), the way that the communication system modifies user be-
haviour, the Lombard effect (Lombard, 1911), visual cues, the listener’s
familiarity with the talker, the listener’s proficiency, and the listener’s at-
tentiveness. For a detailed discussion of these factors see French and Stein-
berg (1947), Miller et al. (1951), and Krause and Braida (2002).

2.5.2 Measuring speech intelligibility

In order to measure intelligibility, a variety of standardised listening
tests have been developed. Examples include the Diagnostic Rhyme Test
(ANSI, 1989), the Hagerman Test (Hagerman, 1982), and the Hearing in
Noise Test (Nilsson et al., 1994). These tests have been carefully crafted to
control for context effects and ensure that the test material is representative
of everyday language.

A famous example (Bridle et al., 1983) that demonstrates the effect of
context can be seen by comparing the sentence ”how do humans recognise
speech?” with the sentence ”how do humans wreck a nice beach?”. These
sentences can be spoken such that the corresponding acoustic signals are
effectively indistinguishable. In such a scenario only context can be relied
on to correctly decode the lexical message. When left unaccounted for, this
phenomenon complicates intelligibility testing, decreases the efficiency of
the testing, and increases the variability of the results (Allen, 1994).

2.5.3 Instrumental intelligibility metrics

Although formal listening tests are capable of providing valid data, such
tests are time-consuming, laborious, and expensive. This makes it unfea-
sible to continuously evaluate a communication system throughout the
design process. For this reason, quantities that are fast to compute and
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correlated with intelligibility are of interest. Such quantities are referred
to as instrumental intelligibility metrics.

Rather than using human subjects, instrumental intelligibility metrics
may rely on knowledge of the clean speech, degraded speech, and the
communication channel. There are two types of intelligibility metrics: in-
trusive and non-intrusive. Intrusive intelligibility metrics require knowl-
edge of the clean speech and either the channel or the degraded speech,
whereas non-intrusive intelligibility metrics require only the degraded
speech. Although non-intrusive metrics are more widely applicable, they
tend to be less correlated with intelligibility than intrusive metrics (Falk
et al., 2015; Andersen et al., 2017). This thesis focuses on intrusive metrics.

Intelligibility metrics typically compute a number on a closed interval
from 0 to 1, where 0 corresponds to low intelligibility and 1 corresponds
to high intelligibility. Given the intelligibility results of a listening test and
the corresponding values computed by an intelligibility metric, a transfer
function that relates intelligibility to the intelligibility metric can be deter-
mined by fitting a curve to the data. In this way, the intelligibility of a
signal that was not included in the listening test can be predicted. Figure
2.12 demonstrates this procedure.

For a given stimuli and degradation, an intelligibility metric always
computes the same number, whereas the intelligibility of the degraded
stimuli may vary depending on the experimental procedures of the listen-
ing test. For example, if the stimuli and listening environment are held
constant and listeners are given a list of possible words to select from,
then intelligibility will be higher than if no list is provided, however, the
score computed by the intelligibility metric will be constant because the
acoustic signals have not changed. Consequently, the transfer function
also depends on the experimental procedures. This means that an intelli-
gibility metric cannot be used to predict intelligibility without having at
least some data from an intelligibility listening test.

In many cases, intelligibility metrics are useful even when a transfer
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Figure 2.12: A transfer function relating scores from an instrumental intel-
ligibility metric to intelligibility results from a listening test. The ten red
crosses could be obtained by playing a stimuli on a loudspeaker in ten
different listening environments and measuring the intelligibility using a
standardised listening test. For each listening condition, an intelligibility
metric could also compute a score. Given the ten measurements of in-
telligibility and the corresponding scores from an intelligibility metric, a
transfer function can be fit to the data. The transfer function and intelli-
gibility metric can then be used to predict the intelligibility of stimuli that
were not included in the listening test.

function is not provided. If a communication system is modified and
scores from an intelligibility metric increase, then an increase in intelli-
gibility can also be expected. However, without any listening test data, it
is not possible to predict exactly how much the intelligibility will increase
by.

2.5.4 Articulation index

The development of one of the first intelligibility metrics begun in the
1920’s and is called the articulation index (AI). The AI is the outcome of
a series of experiments conducted by Harvey Fletcher. The aim of the
experiments was to investigate the effect of additive noise and filtering
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on speech intelligibility. To do so, the SNR and bandwidth of a commu-
nication channel were varied. Nonsense consonant vowel consonant sylla-
bles (CVC) were transmitted through the channel and the intelligibility in
terms of the percentage of correctly identified CVC’s was recorded.

One of the experiments (Fletcher and Galt, 1950) involved filtering
speech with complimentary low-pass and high-pass filters, which split
the acoustic speech signals into a low-band signal and a high-band sig-
nal. Fletcher set out to find a relationship between the wide-band and
narrow-band intelligibility. Let s, sL, and sH denote the intelligibility of
the wide-band signal, the low-band signal, and high-band signal, respec-
tively. It was found that the data could be modelled by

log(1− s) = log(1− sL) + log(1− sH), (2.30)

or in terms of error probabilities

e = eLeH , (2.31)

where e = 1− s, eL = 1− sL and eH = 1− sH . Eventually the analysis was
extended from two frequency bands to F frequency bands resulting in the
equation

e = e1e2 . . . eF , (2.32)

where ef denotes the intelligibility error for speech in the f ’th frequency
band. ef is referred to as the band articulation error.

Using the above model, an intelligibility metric known as the articula-
tion index (AI) was developed (French and Steinberg, 1947). The AI can
be described by the function (Allen, 1994)

AI(s) =
log(1− s)
log(emin)

, (2.33)

where emin is the minimum intelligibility error under ideal listening condi-
tions, (i.e., when there is no filtering or noise). The function is normalised
by log(emin) so that AI(s) is confined to the closed interval 0 ≤ AI(s) ≤ 1.
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Intelligibility is at its minimum when AI(s) = 0 and at its maximum when
AI(s) = 1. Substituting (2.30) into (2.33), gives

AI(s) =
F∑

f=1

AI(sf ), (2.34)

where sf denotes the intelligibility of speech in the f ’th frequency band.
Thus, the AI is a transformation of intelligibility such that each frequency
band provides an independent contribution to the overall score.

French and Steinberg (1947) used AI theory to relate intelligibility to
the SNR of each frequency band. Let p be a vector where each element pf
corresponds to the variance of the clean speech in a particular frequency
band and similarly let n be a vector where each element nf corresponds
to the noise variance in a particular frequency band. The relationship be-
tween the band articulation error and SNR for frequency band f can be
written as (Allen, 1994)

ef = e
SNRf/F
min (2.35)

where,

SNRf =





0, if 10 log10(pf/nf ) < 0

10 log10(pf/nf )/30, if 0 ≤ 10 log10(pf/nf ) ≤ 30

1, if 10 log10(pf/nf ) > 30,

(2.36)

is the normalised SNR for band f . From here on SNRf is referred to as an
audibility function.

The audibility function clips and normalises the SNR so that 0 ≤
SNRf ≤ 1. The motivation for the audibility function is as follows. Experi-
ments showed that the average listener possessed a 30 dB speech detection
threshold. If the SNR of a speech signal was below 0 dB, then the signal
would not be detected and would not contribute to the total intelligibility.
On the other hand, when the SNR exceeded 30 dB, there was no noticeable
increase in intelligibility.
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Combining (2.32) with (2.35), we have that

e = e1e2 . . . eF (2.37)

= e
SNR1/F
min e

SNR2/F
min . . . e

SNRF /F
min (2.38)

= e
1
F

∑F
f=1 SNRf

min . (2.39)

Taking the logarithm of (2.39) and rearranging, we have that:

log(e) = log
(
e

1
F

∑F
f=1 SNRf

min

)
, (2.40)

log(1− s) =
( 1

F

F∑

f=1

SNRf

)
log(emin), (2.41)

log(1− s)
log(emin)

=
1

F

F∑

f=1

SNRf . (2.42)

Finally, applying (2.33) to (2.42), we have that

AI(s) =
1

F

F∑

f=1

SNRf . (2.43)

Thus, the AI can be computed as a normalised SNR averaged over F non-
overlapping frequency bands.

Originally, 20 frequency bands were selected such that under ideal lis-
tening conditions each band contributed equally to the total intelligibility.
Since then, for practical reasons, sets of frequency bands that do not con-
tribute equally to intelligibility have been proposed. Consequently, band-
importance functions (BIF) that describe the relative importance of each fre-
quency band have been developed (Pavlovic, 1987). In this case, the AI
becomes a weighted-average of the audibility functions. That is,

AI(s) =
F∑

f=1

wf · SNRf , (2.44)

where 0 ≤ wf ≤ 1 is the relative importance of frequency band f and
satisfies

∑F
f=1wf = 1. The most commonly used formulation of the AI is

(2.44).
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In practical applications, p and n are computed by estimating the
power spectral density (PSD) of the speech signal and the PSD of the noise
signal. A popular algorithm for estimating the PSD is the Welch method
(Welch, 1967). The variance of the speech signal in the f th frequency band,
pf , is found by integrating the speech PSD over the frequency values corre-
sponding to the f th band. Likewise, nf , is calculated from the noise PSD.
(2.36) is then used to calculate the band audibility function and the AI is
computed according to (2.44). The percentage of identifiable CVC’s can
then be predicted according to (2.39). Specifically,

s = 1− eAI(s)
min . (2.45)

This procedure for calculating the AI and predicting intelligibility was
standardised in ANSI (1969).

The AI has been shown to be successful at predicting intelligibility for
noisy band-limited channels (Kryter, 1962b); however, the AI has a num-
ber of limitations. First, AI theory was developed using experiments based
on nonsense CVC speech material. As discussed in Section 2.5.1 and Sec-
tion 2.5.2, context effects and the complexity of the speech material can
affect intelligibility. For a given SNR and bandwidth, the intelligibility of
meaningful sentences is higher than the intelligibility of nonsense CVC’s.
The AI, as formulated in (2.44), has no functionality for adapting to dif-
ferent speech materials. Second, the AI is based on long-term statistics.
Consequently, the AI cannot accurately account for distortions caused by
noise sources that fluctuate over time such as competing talkers and wind
(Rhebergen and Versfeld, 2005). Lastly, the AI cannot account for non-
linear distortions commonly introduced by enhancement algorithms and
hearing-aids. This is because the SNR is not clearly defined in such sce-
narios (Loizou and Ma, 2011).
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The articulation index and mutual information

As Allen (2005b) pointed out, it is interesting that the average in (2.43)
is applied to a logarithmic measure of SNR rather than a linear measure.
This suggests that the AI is closely related to the information capacity of a
Gaussian communication channel.

Recall that the information capacity of a univariate Gaussian channel
with signal variance pf and noise variance nf is (Shannon, 1948)

C(pf , nf ) =
1

2
log2

(
1 +

pf
nf

)
. (2.46)

For a single frequency band with 0 < 10 log10(
pf
nf

) < 30, the AI is given by

AI(sf ) = SNRf (2.47)

= 10 log10(pf/nf )/30 (2.48)

=

(
2 log10 2

3

)(
1

2
log2

pf
nf

)
. (2.49)

Notice the similarity between (2.46) and (2.49). This leads to the approxi-
mation,

AI(sf ) ≈
2 log10 2

3
C(pf , nf ), (2.50)

thus, the AI can be interpreted as a scaled channel capacity. Figure 2.13
plots AI(sf ) and the scaled C(pf , nf ) against the SNR. We see that the
approximation is reasonable for 10 log10(pf/nf ) < 30. However, the AI
saturates at 1, whereas the information capacity increases without bound
almost linearly with the SNR in dB.

Note that AI theory is analogous to the simple-time domain model of
speech communication discussed in Section 2.3.1. Specifically, if the noise
PSD is a scalar multiple of the speech PSD, then the AI in (2.43) is a scaled
approximation of (2.28).

Finally, note that development of the AI began at Bell Labs in the
1920’s, whereas information theory was not developed until about 1950,
also at Bell Labs. Shannon’s information theory can thus be viewed as
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Figure 2.13: Comparison of the articulation index, AI(sf ), and the scaled
capacity of a Gaussian channel, C(pf , nf ), for a single frequency band.

a more general and theoretical model of communication that is consistent
with Fletcher’s early empirical research on speech communication and the
articulation index.

Speech intelligibility index

In the years following the initial standardisation of the AI (ANSI, 1969),
new experiments were conducted that resulted in a revised version of the
ANSI standard (ANSI, 1997a). Additionally a new name was given to the
revised intelligibility metric: the speech intelligibility index (SII).

The SII extended the AI by modifying the audibility function (2.36) to
account for self-masking, reverberation, and vocal effort. Additionally,
new band-importance functions and transfer functions4 were included so
that intelligibility predictions could be made for speech materials other
than nonsense CVC’s. Overall the SII provides a more general framework
than the AI.

4(2.45) is an example of a transfer function. See also Figure 2.12.
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2.5.5 Speech intelligibility predictor based on

mutual information

Jensen and Taal (2014) hypothesised that intelligibility is related to the mu-
tual information between the clean and distorted temporal envelopes of
narrow-band time-domain signals. This idea is subtly different to the AI,
which effectively computes the mutual information between narrow-band
time-domain signals, as opposed to their temporal envelopes. The moti-
vation for using the temporal envelopes is that representing signals in this
way approximates the signal processing of human auditory system. The
resulting intelligibility metric was named SIMI and is described below.

SIMI approximates the signal processing of the human auditory sys-
tem by splitting the acoustic signals into non-overlapping 1/3 octave fre-
quency bands and extracting the temporal envelope for each frequency
band. Let {x̃i} be a real-valued stochastic process that represents the sam-
ples of a clean acoustic speech signal where i is the sample index. Similarly
let {ỹi} represent the samples of a distorted signal received by a listener.
The short-time single-sided discrete Fourier Transform of {x̃i} is a com-
plex vector-valued random process denoted {x̂t} where x̂t ∈ CN

2
−1 has

elements given by

x̂ω,t =
N−1∑

n=0

wnx̃∆t+ne
−j2πnω/N . (2.51)

Each vector element indexed by ω ∈ {0, 1, . . . , N
2
− 1} corresponds to a

frequency bin, t is the frame index, N ∈ E++ is the frame length and also
the discrete Fourier transform size, ∆ is the step size, and wn is an analysis
window.

The temporal envelope for the f ’th frequency band is computed ac-
cording to

xf,t =

√∑

ω∈Ff

|x̂ω,t|2 (2.52)

where Ff is a set of frequency bin indices representing the f ’th one-third
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octave band and f ∈ {1, 2, . . . , F} is the frequency band index. The clean
temporal envelopes form a real vector-valued random processes denoted
{xt}. The distorted temporal envelopes, {yt}, are defined similarly.

SIMI is based on the hypothesis that intelligibility is related to the mu-
tual information rate of {xt} and {yt}. Assuming that the elements in {xt}
are statistically independent, and likewise for {yt}, the mutual informa-
tion rate decomposes into a summation of mutual information terms:

I({xt}; {yt}) =
1

FT

∑

f

∑

t

I(xf,t; yf,t), (2.53)

where T is the sequence length.
SIMI combines a parametric model with a lower bound to estimate

I(xf,t; yf,t). Specifically, if xf,t is modelled as a Chi-distributed random
variable with k′ degrees of freedom, then it can be shown that

I(xf,t; yf,t) ≥ lnΓ(k′/2) +
1

2

(
k′ − ln 2− (k′ − 1)ψ(k′/2)

)

− 1

2
ln 2πe(k′ − 2

Γ2((k′ + 1)/2)

Γ2(k′/2)
)

− 1

2
ln(1− ρ2

f,t),

(2.54)

where Γ and ψ denote the gamma and digamma function, respectively,
and ρf,t is the correlation coefficient between xf,t and yf,t given by

ρf,t =
E[xf,tyf,t]− E[xf,t]E[yf,t]√

(E[x2
f,t]− E[xf,t]2)(E[y2

f,t]− E[yf,t]2)
. (2.55)

In practice, SIMI uses a sampling rate of 10 kHz, a 256-point Hann anal-
ysis window, ∆ = 128, and F = 15 1/3 octave-bands with centre frequen-
cies between 150 Hz and 4.3 kHz. Additionally, silent frames (i.e., frames
with energy less than 30 dB below the frame with maximum energy) are
not included in the summation of (2.53). The time-varying moments in
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(2.55) are computed using a single pole IIR filter. For example, E[xf,tyf,t] is
estimated as

µ̂xf,tyf,t = αµ̂xf,t−1yf,t−1
+ (1− α)xf,tyf,t, (2.56)

where α = 0.95 corresponds to a time-constant of 250 ms. In Chapter 5 the
performance of SIMI is evaluated for a wide range of real-world listening
conditions.

2.5.6 K-nearest neighbour mutual information intelligibil-

ity measure

Taghia and Martin (2014) proposed the k-nearest neighbour mutual in-
formation intelligibility measure (MIKNN). Similarly to SIMI, MIKNN is
based on the hypothesis that intelligibility is related to the mutual infor-
mation between the clean and distorted temporal envelopes of narrow-
band time-domain signals. MIKNN uses the same representation of
speech as SIMI. Concretely, (2.51) and (2.52) are used to extract the clean
and distorted temporal envelopes, {xt} and {yt}.

The key difference between MIKNN and SIMI is that instead of us-
ing the parametric lower bound in (2.54), MIKNN uses a non-parametric
mutual information estimator based on k-nearest neighbours (KNN)
(Kraskov et al., 2004). One advantage of the KNN mutual information
estimator is that it can account for non-linear dependencies between the
clean and distorted temporal envelopes. This contrasts with (2.54), which
is a function of Pearson’s correlation coefficient only. Pearson’s correlation
coefficient cannot quantify non-linear dependencies.

A second advantage of the KNN mutual information estimator is that
it directly estimates mutual information, as opposed to estimating a lower
bound that may not be tight for every listening environment. However,
the advantages of the KNN mutual information estimator come at the cost
of additional computational complexity.

Similarly to SIMI, MIKNN assumes that the 1/3-octave bands are sta-
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tistically independent and sums the mutual information of each frequency
band. However, unlike SIMI, mutual information is not estimated on a
short-time scale of 250 ms like in (2.56). Instead, mutual information is
estimated using the entire utterance. In Chapter 5 the performance of
MIKNN is evaluated for a wide range of real-world listening conditions.

2.6 Summary of Literature Review

This chapter reviewed the relevant literature regarding speech communi-
cation and information theory. First, the key ideas of Shannon’s informa-
tion theory were discussed: 1) all communication is probabilistic, and 2) a
message of low probability contains more information than a message of
high probability. Based on these concepts, the effectiveness of communica-
tion can be quantified using mutual information, which is a function of the
joint probability distribution of the transmitted message and the received
message.

The chapter then reviewed methods that use simple language models
to estimate the information rate of speech communication. When Zipf’s
law is used to model the probability distribution of words, the lexical in-
formation rate of speech is 21 b/s. When modelling speech as a sequence
of phonemes, the lexical information rate is 60 b/s. Both of these esti-
mates assume that each lexical unit is selected for transmission indepen-
dently from the previously transmitted lexical units. If the dependencies
between successive words or phonemes were accounted for, then the rate
would decrease.

Using the listening test results from Miller and Nicely (1955), this chap-
ter estimated the information rate of phonemes as a function of signal-to-
noise ratio and bandwidth. The mutual information increases with SNR
almost linearly over a 12 dB range, but then begins to saturate. For band-
limited speech, the sum of the information in the low-pass band and the
high-pass band is greater than the information in the wide-band. This
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means that some information is shared between the frequency bands, i.e.,
there is ’frequency redundancy’.

Next, the chapter considered measuring the information rate of speech
communication without knowledge of language. Instead of using lan-
guage models, observations of acoustics signals were relied on. It was
shown that modelling the time samples of an acoustic speech signal as
a Gaussian process gives results that are not consistent with our under-
standing of linguistics. The Gaussian time-domain model predicts that the
acoustic information rate of speech in ideal listening conditions is approx-
imately 53000 b/s, and that two acoustic signals carrying the same lexical
message only have 5 bits of information in common each second. More-
over, the acoustic information rate increases without bound with the envi-
ronmental SNR. The reason these errors occur is because the time-domain
samples of an acoustic signal do not accurately reflect the encoded lexical
information. What is required is an appropriate representation of speech
and a more powerful statistical model.

The chapter then presented Fano’s method for measuring the informa-
tion rate of speech communication. Fano’s method is based on the source-
filter theory of speech production. In this case, the information rate is
determined by the number of carrier signals, the modulation bandwidth,
and the SNR of the communication channel. Fano’s analysis results in an
estimate of 2130 b/s, which is still 35 times larger than the lexical informa-
tion rate. Fano hypothesised that the difference might be caused by talker
variability.

Talker variability is the natural consequence of having many talkers
with physiologically different vocal tracts and differing speech habits.
This variability can be thought of as a type of production noise that is in-
herent in all speech communication. Production noise places a constraint
on the maximum number of lexical code words that can be used without
causing some acoustic sounds to be confused with others, and thus could
limit the information rate.
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Next, the chapter focused on intelligibility. Intelligibility is defined as
the proportion of correctly identified words, and is an important char-
acteristic of speech-based communication systems. Intelligibility can be
measured using formal listening tests, but such tests are time-consuming
to conduct. For this reason, algorithms that can predict intelligibility are
of interest. Such algorithms are referred to as instrumental intelligibility
metrics. One of the first intelligibility metrics was developed by Harvey
Fletcher and is called the articulation index. It turns out that Shannon’s
information theory can be viewed as a generalisation of Fletcher’s early
empirical work.

Lastly, the chapter summarised two modern intelligibility metrics that
are based on information theory: SIMI and MIKNN. Both of these intelli-
gibility metrics use an auditory model to extract the temporal envelopes of
acoustic speech signals and then estimate the mutual information between
clean and degraded temporal envelopes. SIMI estimates mutual informa-
tion using a parametric model, whereas MIKNN uses a non-parametric
mutual information estimator. Neither of these intelligibility metrics ac-
count for talker variability or frequency redundancy, and thus are likely
to overestimate the amount of information shared between a talker and a
listener.



Chapter 3

A Simple Model of Speech
Communication

Information theory provides mathematical tools for quantifying the effec-
tiveness of communication. In this chapter, a simple model of speech
communication that is based on information theory is developed. The
model considers the transmission of a message from a talker to a listener.
Speech signals are processed by an auditory model that accounts for the
frequency and temporal masking of the cochlea and applies non-linear
dynamic range compression. It is hypothesised that talker variability lim-
its the maximum transfer of information between the talker and listener.
Therefore, using real-world data, the variability between talkers is mea-
sured and used in combination with the proposed speech communication
model to estimate the information rate of speech communication.

3.1 Model of Speech Communication

A message, {mt}, speech signal, {xt}, and degraded speech signal,
{yt}, are represented by ergodic, stationary, discrete-time vector-valued
stochastic processes where t ∈ Z is the time index. It is assumed that the
outcomes of mt, xt, and yt can be represented within RD. While this is not

55
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part of our formalism, which is not based on linguistics, the message may
be thought of as a sequence of latent variables that represent, for example,
a sequence of sentences, phonemes, or neural states1. The clean speech sig-
nal and the degraded speech signal could be represented by spectrograms,
discrete-time acoustic waveforms, or the output of an auditory model.

The talker encodes the message into a speech signal according to a con-
ditional probability distribution P (xt|mt). In this way the variability of
different talkers encoding the same message into different speech signals
is incorporated into the model.

The speech signal is transmitted to a listener through a communica-
tion channel that may degrade the signal. Examples of degradation may
include noise, reverberation, speech coding algorithms, and speech en-
hancement algorithms. Overall, the communication process at each t is
described by a Markov chain:

mt → xt → yt. (3.1)

mt → xt is called the speech production channel and xt → yt is called the
environmental channel.

The Markov condition means that mt and yt are conditionally inde-
pendent given xt. That is,

P (mt,yt|xt) = P (mt|xt)P (yt|xt). (3.2)

Equivalently,

P (mt|yt,xt) =
P (mt,yt|xt)
P (yt|xt)

=
P (mt|xt)P (yt|xt)

P (yt|xt)
= P (mt|xt).

(3.3)

This means that all the information that {yt} contains about {mt} is ob-
tained from {xt}.

1More details regarding the message are given in Section 3.1.3.
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3.1.1 Information rate of the communication channel

The effectiveness of the communication channel is described by the mu-
tual information rate between {mt} and {yt}. Let

mK = [m∗1,m
∗
2, · · · ,m∗K ]∗ (3.4)

be a vector obtained by stacking K consecutive message vectors and sim-
ilarly for xK and yK . The mutual information rate between {mt} and {yt}
is defined by

I({mt}; {yt}) = lim
K→∞

1

K
I(mK ; yK), (3.5)

where I(mK ; yK) is the mutual information between mK and yK . The
mutual information is defined by

I(mK ; yK) =

∫
P (mK ,yK) log2

P (mK ,yK)

P (mK)P (yK)
dmKdyK , (3.6)

where P (mK ,yK) is the joint probability distribution of mK and yK ,
P (mK) is the marginal probability distribution of mK , and P (yK) is the
marginal probability distribution of yK .

Note that the mutual information rate in (3.5) is defined using infinite
length vectors. In practice, such vectors do not exist. Thus, a finite ap-
proximation must be made when estimating the mutual information rate
given two sample sequences. Section 4.2.1 takes such an approach and
Figure 4.5 demonstrates the effect of K.

An upper bound on the information rate

In some situations the integral in (3.6) could be intractable. This is mainly
due to the difficulty of modelling P (mK ,yK), which varies depending on
the environment of the talker and the listener. In this case, it can be easier
to evaluate a bound. An upper bound for the mutual information rate
can be obtained by applying the data processing inequality (Cover and
Thomas, 2012) twice:

I({mt}; {yt}) ≤ I({mt}; {xt}) (3.7)
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and
I({mt}; {yt}) ≤ I({xt}; {yt}), (3.8)

which leads to the upper bound

I({mt}; {yt}) ≤ min(I({mt}; {xt}), I({xt}; {yt})). (3.9)

The data processing inequality can be applied due to the Markov condi-
tion of (3.1). The advantage of (3.9) is that the speech production channel
and the environmental channel are ’decoupled’. Thus, the effectiveness of
each channel can be analysed separately and then combined together.

3.1.2 The univariate Gaussian channel

For illustrative purposes, consider the specific case where all processes are
jointly Gaussian, univariate, memoryless, and stationary. In this case, the
speech vector, xt, and the message vector, mt, are scalar random variables
and thus are written as xt and mt, respectively.

Let pt be production noise and nt be environmental noise. For each time-
step, t, let the following equations hold:

xt = mt + pt (3.10)

yt = xt + nt. (3.11)

Given (3.10) we have that var(x) = var(m) + var(p). Note that due to the
stationary assumption, it is reasonable to remove the time subscripts. Fur-
thermore, note that (3.10) and (3.11) satisfy the Markov condition in (3.1).
This additive Gaussian model was first proposed as a model of speech
communication in Kleijn and Hendriks (2015), where it was used to de-
velop an algorithm to increase the intelligibility of speech degraded by
additive environmental noise.

For the above communication model it can be shown that (Appendix
A.1)

I({mt}; {xt}) = −1

2
log2(1− ρ2

mx), (3.12)
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Figure 3.1: Mutual information for a univariate Gaussian channel with a
production SNR of 5 dB.

I({xt}; {yt}) = −1

2
log2(1− ρ2

xy), (3.13)

and (Appendix A.2)

I({mt}; {yt}) = −1

2
log2(1− ρ2

mxρ
2
xy), (3.14)

where ρmx and ρxy are the correlation coefficients between m and x, and x

and y, respectively, and are given by (Appendix A.3)

ρmx =

√
var(m)/var(p)

1 + var(m)/var(p)
(3.15)

and

ρxy =

√
var(x)/var(n)

1 + var(x)/var(n)
. (3.16)

The production SNR, var(m)/var(p), can be thought of as a fixed value in-
herent to the nature of speech production. On the other hand, the envi-
ronmental SNR, var(x)/var(n), can vary with the environment of the talker
and the listener.

It is informative to plot I({mt}; {yt}) against the environmental SNR
for a fixed value of the production SNR. Figure 3.1 plots I({mt}; {yt}),
I({xt}; {yt}), I({mt}; {xt}), and (3.9) against the environmental SNR for
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a production SNR of 10 log10(var(m)/var(p)) = 5 dB. We see that the use-
fulness of the communication channel saturates at the information rate of
the speech production channel and that increasing the environmental SNR
offers diminishing returns. Recall that this behavior is consistent with the
lexical model of speech communication discussed in Section 2.2.3. The
upper bound is tight for very low and very high values of environmental
SNR. In Chapter 4, (3.9) is used to develop an intelligibility metric.

Interpretation noise

When Kleijn and Hendriks (2015) proposed (3.10) and (3.11) as a model of
speech communication, a third equation was included:

vt = yt + it, (3.17)

where vt is the received message perceived by the listener’s brain and it

is interpretation noise. This third equation is motivated by the observation
that the same acoustic signal can be perceived differently by different lis-
teners. Interpretation noise is particularly important when a listener has
little experience with the talkers accent or when hearing-impaired listen-
ers are considered. This thesis focuses only on improving the modelling
of the production channel and the environmental channel. The inclusion
of an interpretation channel is left as a direction for future work.

3.1.3 Defining the message using the information bottle-

neck principle

In the previous sections the message {mt} was presented as an abstract
stochastic process. In the present section, the concept of a message is fur-
ther developed.

As advocated in Van Kuyk et al. (2017), a natural way to define the mes-
sage of a speech signal without prior knowledge of human language or
neural science is to apply the information bottleneck principle (Tishby et al.,
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1999) to a chorus of speech signals. The basic concept of the approach is
to extract the information that is consistent between talkers who speak the
same utterance.

Let {x[1]
t }, {x[2]

t }, . . ., {x[B]
t } denote B speech signals where each speech

signal contains the same lexical information but is spoken by a different
talker. The superscript [b] denotes the talker. A chorus, {χt}, is a vector-
valued random process created by concatenating the vectors of all B talk-
ers at each time-step. That is,

{χt} = {(
[
(x[1])∗, (x[2])∗, . . . , (x[B])∗

]∗
)t}, (3.18)

where we recall that ∗ denotes the transpose.
The message can be defined as a stochastic function of the chorus,

{mt} = ψ({χt}) + {ut}, (3.19)

where ut is independently identically distributed multivariate Gaussian
noise and ψ is a deterministic function that minimises the information bot-
tleneck:

argmin
ψ

I({mt}; {χt})− βI({xt}; {mt}). (3.20)

The speech {xt} in (3.20) is independently drawn from the same distribu-
tion that was used to generate speech signals for the chorus. That is, {xt}
is spoken by another talker that is not in the chorus. The noise, {ut}, en-
sures that the mutual information between the message and the chorus is
bounded from above.

On the one hand, optimising the information bottleneck leads to a func-
tion ψ that creates a compressed description of the chorus as it minimises
I({mt}; {χt}). Minimising this term gives ψ a disincentive to simply accu-
mulate in the message all speech signals in the chorus, or even to select a
single speech signal as the message. On the other hand, optimising the in-
formation bottleneck maximises the information shared between the mes-
sage and speech carrying the message, i.e., I({xt}; {mt}), which ensures
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that the message encoded by a talker can be predicted from a speech sig-
nal. β is a positive Lagrange multiplier that controls the trade-off between
compression and prediction.

The mutual information rate I({xt}; {mt}) cannot exceed the true in-
formation rate of speech communication as the speech {xt} in (3.20) and
the speech signals {x[1]

t }, {x[2]
t }, . . ., {x[B]

t } in the chorus {χt} are indepen-
dently drawn from the same conditional probability distribution. Thus,
over-weighting I({xt}; {mt}) (i.e., β >> 1) does not result in an increase
in its value. Such over-weighting of the second term also prevents ψ from
being the trivial function that always maps to zero.

Due to the invariance of mutual information to reparameterisation,
i.e., (2.17), the optima of (3.20) for a fixed β is not unique. Any one-to-
one transformation of a message sequence would result in another valid
message sequence. This is not unreasonable as a given utterance can be
represented in many forms. For example, a particular utterance could be
equally well described as a sequence of phonemes, a sequence of words,
or a sequence of letters. Moreover, a given utterance can be represented in
many different languages.

In summary, the message is a stochastic process that contains features
that are consistent between talkers who speak the same utterance and does
not contain features that are not shared between talkers who speak the
same utterance (e.g., phase, timbre, loudness, and pitch). Unfortunately,
(3.20) is difficult to solve due to the high number of dimensions of {χt}
along with the complicated statistical dependencies between the speech
signals. For this reason, in this thesis, rather than explicitly solving (3.20),
knowledge of the speech production process, the auditory periphery, and
several simplifying assumptions are relied on to estimate the information
rate of speech communication without relying on observations of mt. In
particular, the remainder of Chapter 3 and Chapter 4 develop a method-
ology that assumes that mt and xt are jointly Gaussian, and Chapter 6
develops a methodology that uses a Siamese neural network (Bromley et al.,
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1994; Chopra et al., 2005).

3.2 An Auditory Representation of Speech

In the previous sections the clean speech {xt} and the degraded speech
{yt}were presented as abstract stochastic processes. In the present section,
{xt} and {yt} are made more concrete. To do so, acoustic speech signals
are processed by a simple auditory model that approximates the frequency
resolution, temporal resolution, and dynamic range compression of the
human auditory system. The output of the auditory model is a sequence
of auditory log-spectra. {xt} represents a sequence of auditory log-spectra
for a clean speech signal and {yt} represents a sequence of auditory log-
spectra for a degraded speech signal.

It is well known that the human auditory system is a lossy system; that
is, it discards information from acoustic signals (Dau et al., 1996). This fact
can be easily verified by an experiment where listeners are asked to dis-
tinguish between two tones, one at frequency f and another at frequency
f + δ. If δ is small enough, then the two tones are not perceptually differ-
ent from one another. This is one reason why it is important to consider
the effect of the auditory system when developing a model of speech com-
munication. In the following, equations for computing {xt} and {yt} are
described. More sophisticated auditory models exist (e.g., Dau et al., 1996;
Kates and Arehart, 2014; Lyon, 2017), but the additional accuracy comes at
the expense of additional computation.

Computing the short-time Fourier transform

Let {x̃i} be a real-valued random process that represents the samples of
an acoustic speech signal where i is the sample index and let {x̂t} be the
short-time single-sided discrete Fourier transform (STFT) of {x̃i} where
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x̂t ∈ CN
2
−1 has elements given by

x̂ω,t =
N−1∑

n=0

wnx̃∆t+ne
−j2πnω/N . (3.21)

Each vector element indexed by ω ∈ {0, 1, . . . , N
2
− 1} corresponds to a

frequency bin, t is the frame index, N ∈ E++ is the frame length and also
the discrete Fourier transform size, ∆ is the step size, wn is an analysis
window, and j is the imaginary unit. In this thesis, N = 400, ∆ = 200,
and a sampling rate of fs = 16 kHz is used. These values correspond to a
frame length of 25 ms and a frame rate of R = 80 frames/s. The periodic
Hann window defined by wn = 1

2
(1−cos 2πn

N
) is used. The rationale for the

above STFT parameter values is given in Appendix B.
The spectrogram, denoted {|x̂|2t}, is obtained from the STFT by comput-

ing the squared magnitude of each element in {x̂t}. That is,

|x̂|2t =
[
|x̂0,t|2, . . . , |x̂ω,t|2, . . . , |x̂N/2−1,t|2

]∗
. (3.22)

Applying an auditory filterbank

Let {x′t} represent an auditory spectrogram of {x̃i}, where x′t ∈ RF is given
by

x′t = lnG|x̂|2t . (3.23)

Here, the logarithm is applied element-wise and G ∈ RF×N
2
−1 represents

an auditory filterbank where each row corresponds to the squared mag-
nitude frequency response of an auditory filter. The logarithm roughly
approximates the non-linear dynamic range compression of the human
cochlea (Lyon, 2017). In this thesis, gammatone filters evenly spaced on
the equivalent rectangular bandwidth (ERB) rate scale are used (Slaney,
1993). The ERB gammatone filterbank roughly models the frequency re-
sponse of the human cochlea. The squared magnitude frequency response
of the f ’th filter is well approximated by (Holdsworth et al., 1988)

Gf,ω =
1

(
1 +

(Fω−cf )2

a2b2f

)η (3.24)
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Figure 3.2: Gammatone filters evenly spaced on the ERB-rate scale.

where η = 4 is the filter order, Fω is the frequency in Hz that corresponds
to the frequency index ω, cf is the centre frequency of the f ’th filter in
Hz, bf = 24.7(0.00437cf + 1) is the bandwidth of the f ’th filter in Hz, and
a = (η−1)!2

π(2η−2)!2−(2η−2) is a normalisation factor. Given minimum and maxi-
mum centre frequencies, c1 and cF , the centre frequencies for the remain-
ing filters are computed according to

log10 cf =
cERBS
f /21.4− 1

0.00437
(3.25)

where the values for cERBS
f are evenly spaced between

21.4 log10(0.00437c1 + 1) and 21.4 log10(0.00437cF + 1). In this thesis
F = 28, c1 = 100 Hz, and cF = 6500 Hz. F was selected using the ERB-rate
scale (Slaney, 1993) and c1 and cF were selected such that the filters’
squared magnitude responses span frequencies from 0-8 kHz, without
causing the response of the first filter or the F ’th filter to be severely
truncated.

The resulting filterbank is shown in Figure 3.2. The asymmetric over-
lapping nature of the filterbank means that a signal located at a low fre-
quency may mask a signal at a higher frequency. This phenomena of hu-
man hearing is referred to as upwards frequency masking (Wegel and Lane,
1924).
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Figure 3.3: Forward temporal masking functions generated by a sequence
of impulses. The third impulse, which is relatively quiet, is masked by the
second impulse.

Applying a forward temporal masking function

Finally, to compute the auditory representation of speech used in this the-
sis, i.e., {xt}, a forward temporal masking function is applied to {x′t}. A for-
ward temporal masking function (Oxenham, 2001) describes how a sound
at time t can mask another sound at time t + τ where τ ≥ 1. This effect is
important for degraded speech signals. For example, immediately after a
gunshot, a listener will be unable to hear quiet speech sounds. Rhebergen
et al. (2006) proposed the following forward masking function:

fFMF(x′t, τ) = x′t −
ln τ

ln τmax

(x′t − φ), (3.26)

where φ ∈ RF is the threshold of hearing for each frequency band and
τmax = b0.2Rc is the maximum duration that one sound can mask sub-
sequent sounds. Figure 3.3 displays the forward masking functions that
result from several successive observations of x′t for a single frequency
band f . The forward masking functions decay logarithmically with time,
but the rate of decay depends on the masking functions initial value. After
τmax time steps, the function falls below the threshold of hearing and has
no further effect.
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To take forward temporal masking into account for all t, the maximum
between x′t and the forward masking functions produced by all previous
inputs is computed:

xt = max
τ=1,2,...,τmax

(
fFMF(x′t−τ , τ),x′t

)
. (3.27)

In this way, unlike traditional exponential smoothing (i.e., a single pole in-
finite impulse-response filter), sharp onsets are followed instantaneously,
but decay gradually. Note that for τ > τmax, all previous forward masking
functions are below the threshold of hearing and thus have no effect. An
’overlap-max’ algorithm can be used to efficiently compute (3.27) for all t
by considering a sliding window of size τmax.

For a degraded speech signal, {ỹi}, {|ŷ|2t}, {y′t}, and {yt}, are defined
analogously to their clean speech counterparts. Figure 3.4 displays exam-
ples of outcomes {ỹi}, {|ŷ|2t}, {y′t}, and {yt}. For Figure 3.4, a clean speech
signal was degraded by additive white noise for t corresponding to 0 s to
2/3 s, a sinusoid for t corresponding to 2/3 s to 4/3 s, and a delta train for
t corresponding to 4/3 s to 2 s. The upwards frequency masking property
of the auditory model can be seen by examining {y′t} from 2/3 s to 4/3 s,
and the effect of the forward temporal masking function can be seen by ex-
amining {yt} from 4/3 s to 2 s. {xt} and {yt} are referred to as sequences
of auditory log-spectra.

3.3 Estimating the Information Rate of the

Speech Production Channel

In this section, the information rate of the speech production channel
I({mt}, {xt}) is estimated by combining the speech communication model
described in Section 3.1 with the auditory model described in Section
3.2. Recall that xt is represented as temporally smoothed auditory log-
spectra defined in (3.27) and {mt} represents the underlying message of
the speech signal.
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Figure 3.4: Comparison of speech representations for a speech signal de-
graded by additive white noise, a sinusoid, and a delta train, consecu-
tively. From top to bottom: samples of a degraded time-domain acoustic
signal {ỹi}, the spectrogram {|ŷ|2t}, the signal after applying an ERB gam-
matone filterbank {y′t}, and lastly the output of the auditory model {yt},
which includes a forward temporal masking function.

To estimate the information rate of the speech production channel,
it is necessary to make further assumptions about the joint distribution
P (mK ,xK). In this section the assumptions are described. In Section 3.3.3
and Section 3.3.4 the validity and limitations of the assumptions are dis-
cussed.

First, it is assumed that all processes are memoryless. That is, xt and
xt+τ are statistically independent for all τ 6= 0, and likewise for mt and
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mt+τ . Equivalently,

P (xt,xt+τ ) = P (xt)P (xt+τ ) (3.28)

and
P (mt,mt+τ ) = P (mt)P (mt+τ ), (3.29)

for all t. In this case, the mutual information rate simplifies to the mutual
information:

I({mt}; {xt}) = lim
K→∞

1

K
I(mK ; xK) (3.30)

= lim
K→∞

1

K

K∑

t=1

I(mt; xt) (3.31)

= lim
K→∞

1

K
KI(mt; xt) (3.32)

= I(mt; xt). (3.33)

(3.31) follows from the memoryless assumption and (3.32) follows from
the stationary assumption made in Section 3.1.

Second, it is assumed that the vector elements of xt (i.e., the ERB fre-
quency bands) are statistically independent, and likewise for mt. In this
case, the mutual information decomposes into a summation over the vec-
tor elements:

I(mt; xt) =
F∑

f=1

I(mf,t, xf,t). (3.34)

Third, let us consider the nature of speech production. As discussed
in Section 2.3.2, the production of an acoustic speech signal can be mod-
elled by the convolution of a vocal-tract filter impulse response and an
excitation signal. Furthermore, recall from Section 2.4.2 that one of the
main causes of talker variability is physiological differences between vocal
tracts. Under such a speech production model it is natural to model pro-
duction noise as convolutional noise in the time-domain, which implies
that production noise is multiplicative in the frequency-domain. Further-
more, because (3.23) applies a logarithm, for the representation of speech
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considered in this thesis, it is natural to model production noise, pt, as
additive zero-mean noise. That is,

xt = mt + pt, (3.35)

where mt and pt are statistically independent. This is a major divergence
from the preliminary model proposed by Kleijn and Hendriks (2015),
which modelled production noise as additive in the time-domain and ad-
ditive in the frequency-domain.

The final assumption is that xt, mt, and pt are multivariate Gaussian
random variables. Specifically, xt ∼ N (µx,Rx), mt ∼ N (µm,Rm), and
pt ∼ N (0,Rp). Because of the assumption that the vector elements are
statistically independent, the covariance matrices must be diagonal matri-
ces. That is,Rx = diag(var(xt)) and likewise forRm andRp.

Given the above set of assumptions, the mutual information rate of the
speech production channel is

I({mt}; {xt}) = I(mt; xt)

=
F∑

f=1

I(mf,t, xf,t)

= −
F∑

f=1

1

2
log2(1− r2

f ).

(3.36)

We call rf the speech production correlation coefficient for frequency band f .
The speech production correlation coefficient describes the efficiency of
encoding a message into a speech signal as determined by the natural
variation between the vocal tracts of different talkers. Using the model
of speech communication developed thus far, it can be shown that the
speech production correlation coefficient for frequency band f is given by
(Appendix A.3):

r2
f =

var(xf,t)− var(pf,t)

var(xf,t)
. (3.37)



3.3. ESTIMATING THE INFORMATION RATE OF SPEECH 71

Note that due to the stationary assumption, r2
f , var(xf,t), and var(pf,t) are

constant for all t. Consequently, in the following section var(xf,t) and
var(pf,t) are replaced by var(xf ) and var(pf ), respectively.

3.3.1 Estimating the statistics of speech and

production noise

In order to estimate the information rate of the speech production chan-
nel, var(xf ) and var(pf ) need to be estimated for each frequency band. To
do so we rely on a chorus, {χt}, which was defined in Section 3.1.3. A
chorus is a collection of B speech signals, {x[1]

t }, {x[2]
t }, . . ., {x[B]

t }, where
each signal contains the same lexical information, but is spoken by a dif-
ferent talker. The superscript [b] denotes the talker. At each time step x

[b]
t

is independently sampled from P (xt|mt = mt) for some message {mt}.
Note that because production noise is modelled as zero-mean, at each

time-step the expected value of the chorus over the talkers ismt. Thus, an
estimate of the message can be easily obtained and then subtracted from
each speech signal in the chorus to obtain an estimate of the production
noise. In practice, the sample mean is used instead of the expected value
operator. Concretely, the production noise of talker b at time t can be esti-
mated as

p̂
[b]
t = x

[b]
t −

1

B − 1

B∑

β=1, β 6=b

x
[β]
t . (3.38)

Removing the b’th observation from the sample mean results in an unbi-
ased estimator.

Given a chorus, var(pf ) can be estimated as

σ̂2
pf

=
B − 1

B

1

TB

B∑

b=1

T∑

t=1

(
p̂

[b]
f,t

)2

, (3.39)

where T is the sequence length of the speech signals in the chorus and B−1
B

is a bias reduction factor. The bias exists because p̂[b]
f,t is used instead of the

true production noise p[b]
f,t.
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Similarly var(xf ) can be estimated as

σ̂2
xf

=
1

TB − 1

B∑

b=1

T∑

t=1

(
x

[b]
f,t −

1

TB

B∑

b=1

T∑

t=1

x
[b]
f,t

)2

. (3.40)

For both (3.39) and (3.40) it is reasonable to estimate the variance by sum-
ming over t due to the ergodic assumption from Section 3.1.

3.3.2 Implementation

In this section, an experiment for estimating the information rate of the
speech communication channel is described. To do so, the estimators from
the previous section are applied to real-world data.

Speech corpus

To estimate production noise, data from the CHAINS speech corpus was
used. The CHAINS corpus includes easy reading material spoken by
B = 36 talkers consisting of 16 females, and 20 males. 28 of the talk-
ers were from Eastern Ireland, 3 were from the UK, and 5 were from the
USA. The corpus contains recordings for six different speaking styles. We
used the SOLO speaking style, where each talker read a prepared text at a
comfortable rate. The speech material consisted of nine phonetically rich
phrases and 24 TIMIT sentences. See Cummins et al. (2006) for more de-
tails.

Dynamic time-warping

For the production noise estimate of (3.38) to be valid, the speech signals
in the chorus need to be time-aligned. Aligning the signals ensures that
mt is the same for each talker at each time-step. To align the utterances, a
dynamic time-warping algorithm (Müller, 2007) was applied.

Given two sequences, {x[1]
t } and {x[2]

t }, the goal of dynamic time-
warping is to find a monotonic function, fdtw, that compresses and
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Figure 3.5: Left: sequences of auditory log-spectra for a sentence spoken
by three different talkers. Each utterance contains the same sequence of
phonemes, but the duration of each phoneme differs across the talkers.
Right: the same sequences after using dynamic time-warping to align the
phonemes.

stretches time such that the average Euclidean distance is minimised. That
is,

arg min
fdtw

1

T

∑

t

‖x[1]
t − x[2]

τ ‖2, (3.41)

where τ = fdtw(t) is the time-warped time index and T is the sequence
length. (3.41) can be efficiently solved using a linear programming algo-
rithm (Müller, 2007).

For each sentence in the CHAINS corpus, the utterances spoken by
different talkers were time-warped onto the utterance with the median
duration. Doing so reduces the overall amount of time-warping required
to align the utterances. After time-warping, for each talker, all utterances
were concatenated together. This resulted in a sequence length of T = 6690

for each talker, which corresponds to 84 seconds of material for each talker.
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Figure 3.6: Histograms and maximum likelihood Gaussian density func-
tions for the log-energy of clean speech xf for each ERB frequency band.
The centre frequency of each frequency band is indicated.

Figure 3.5 shows several utterances from the CHAINS corpus before and
after applying dynamic time-warping.

3.3.3 Results

In order to check the validity of the Gaussian assumption from Section 3.3,
Figure 3.6 plots histograms of xt for each frequency band using data from
the CHAINS corpus. Gaussian probability density functions that were
obtained using maximum likelihood estimation are also shown. We see
that xf,t is approximately Gaussian, however, there are some differences,
particularly for low frequency bands.

In the literature, (e.g., Gerkmann and Martin, 2009; Jensen and Taal,
2014), the temporal envelopes of speech signals are often modelled using
right-skewed distributions such as chi and gamma distributions. How-
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Figure 3.7: Histograms and maximum likelihood Gaussian density func-
tions for production noise p̂f for each frequency band. The centre fre-
quency of each frequency band is indicated.

ever, the logarithm in (3.23) transforms the right-skewed distribution into
a distribution closer to a Gaussian distribution, which makes a Gaussian
model for xf,t a reasonable approximation.

Similarly, Figure 3.7 plots histograms of p̂t for each frequency band.
Note that in (3.38), p̂t is calculated as a summation of xt terms. The central
limit theorem states that a sum of independent identically distributed ran-
dom variables tends towards a Gaussian random variable (Navidi, 2008).
This partially explains why the model of production noise developed in
this chapter is well approximated by a Gaussian random variable.

Although it is reasonable to approximate xf,t and pf,t as Gaussian, in
practice neither variable is truly Gaussian. All of the histograms shown in
Figure 3.6 and Figure 3.7 fail the Kolmogorov-Smirnov test for normality
(Massey, 1951) at the 5% significance level. For low frequency bands, the
clean speech histograms are bimodal, and for the high frequency bands,
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Figure 3.8: Top: the production noise correlation coefficient for each fre-
quency band. Bottom: the mutual information rate for each frequency
band.

the clean speech histograms have a small, but statistically significant, pos-
itive skew. Furthermore, the kurtosis of the production noise histograms
is too large to be Gaussian. The observation that xf,t and pf,t are not truly
Gaussian is worth keeping in mind, however, as shown in Chapter 5, the
Gaussian model is sufficient for predicting the intelligibility of speech.

Figure 3.8 plots the speech production correlation coefficient and the
mutual information rate of the speech production channel for the CHAINS
corpus. Note that the speech production correlation coefficient is slightly
higher than what we reported in Van Kuyk et al. (2016). This is because
the experiment in Van Kuyk et al. (2016) used a simpler auditory model.

Summing over the frequency bands and multiplying by the frame rate
(recall that R = 80), the data from Figure 3.8 gives an information rate of
I({mt}; {xt}) = 2070 b/s. This is much lower than the acoustic informa-
tion rate computed in Section 2.3.1, but an order of magnitude larger than
the lexical information rate of 60 b/s from Section 2.2.2.
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Note that our estimate is similar to that obtained by Fano’s method
in Section 2.3.2, even though our estimate considers production noise,
whereas Fano’s method does not. The reason for this is due to a discrep-
ancy between the assumed bandwidth of the vocal-tract modulations. For
the calculation in Section 2.3.2, a modulation bandwidth of 10 Hz was as-
sumed. According to the Nyquist theorem, the minimum frame rate re-
quired for capturing such modulations is 20 Hz. However, the auditory
model in this chapter uses a frame rate of 80 Hz. If the frame rate for the
auditory model was reduced to 20 Hz, then our estimate of the informa-
tion rate would also reduce by about a factor of four to approximately 500
b/s. Thus, accounting for production noise further closes the gap between
the acoustic information rate of speech and the lexical information rate.

One may ask whether a modulation bandwidth of 10 Hz is reasonable.
In Elliott and Theunissen (2009) log-spectrograms of speech signals were
temporally filtered to artificially restrict the modulation bandwidth of the
signals. Acoustic signals were then resynthesised and a listening test was
conducted. It was found that intelligibility was significantly impaired only
when modulations were restricted below 12 Hz, thus a 10 Hz modulation
bandwidth is not unreasonable. Further evidence can be found in Kates
and Arehart (2015), which used mutual information to determine the rela-
tive importance of different modulation frequencies for intelligibility, and
found that modulation frequencies below 12.5 Hz were the most impor-
tant.

The experiments of Elliott and Theunissen (2009) and Kates and Are-
hart (2015) imply that the auditory model in the present chapter may over-
sample the signal. In Chapter 4 the statistical dependencies between suc-
cessive speech frames are partially accounted for, in which case estimates
of the information rate are insensitive to over-sampling.
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3.3.4 Limitations of the communication model

The set of assumptions made in this chapter leads to a simple model of
speech communication that is mathematically tractable and theoretically
motivated. Unlike the models in Section 2.3, the information rate of the
speech production channel saturates due to the inclusion of production
noise. Additionally, the model further closes the gap between the lexical
and acoustic information rate of speech.

In practice, however, some of the assumptions made in this chapter do
not hold. Consider the fact that, on occasion, it is possible to predict the
next word uttered by a talker before they say it. This implies that the mes-
sage is not memoryless. Furthermore, due to the overlapping nature of the
filterbank used in (3.23) and shown in Figure 3.2, the elements of xt cannot
be statistically independent. The main reason that the model developed
thus far overestimates the information rate of speech is because statistical
dependencies between the time-frequency units are not accounted for. In
later sections of this thesis these issues are addressed and it is shown that
despite the simplicity of the communication model, with a few improve-
ments the model can accurately predict the intelligibility of speech signals
for a wide range of distortions.

3.4 Summary of Chapter

This chapter developed a simple model of speech communication. The
model considers the transmission of a message from a talker to a listener.
There is a speech production channel, which describes the encoding of a
message into a speech signal, and an environmental channel, which de-
scribes the transmission of a speech signal to a listener. All signals are
modelled by ergodic stationary multivariate stochastic processes that rep-
resent sequences of auditory log-spectra.

To compute auditory log-spectra, acoustic speech signals are processed
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by an auditory model that accounts for the upwards frequency masking
and forward temporal masking of the human auditory system. To account
for upwards frequency masking, an ERB gammatone filterbank is used. To
account for forward temporal masking, a function that responds to sud-
den changes instantaneously but decays gradually is used. In addition,
logarithmic dynamic range compression is applied.

The communication model assumes that, for each frequency band, au-
ditory log-spectra are distributed according to a Gaussian distribution. By
inspecting the histograms of auditory log-spectra for each ERB frequency
band, it was found that the Gaussian model provides a reasonable ap-
proximation, but in reality is not true. All of the histograms failed the
Kolmogorov-Smirnov test for normality at the 5% significance level.

The speech production channel incorporates the effect of talker vari-
ability by modelling production noise as additive Gaussian noise. This is
reasonable when considering a source-filter model of speech production.

Using real-word data, the information rate of the speech communica-
tion model was estimated. To do so, the variance of production noise was
estimated using a chorus of speech signals that consisted of many talkers
saying the same utterance. The experiment resulted in an estimate of the
information rate of speech of the order of 500 b/s. This is not as low as
the lexical information rate of speech, which is about 60 b/s, but is signif-
icantly closer to the lexical information rate than other methods that are
based on acoustic speech signals. The remaining difference between the
lexical information rate and the acoustic information rate is likely due to
an assumption that the ERB frequency bands are statistically independent.
In the following chapter this issue is addressed.
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Chapter 4

An Intelligibility Metric Based on
Information Theory

The previous chapter proposed a model of speech communication that
consists of a speech production channel and an environmental channel.
In the present chapter, methods for estimating the information rate of the
environmental channel are discussed and the communication model is ex-
tended to partially account for time-frequency dependencies. This leads
to a new intelligibility metric called speech intelligibility in bits (SIIB), and
a variation called SIIBGauss. Both algorithms estimate the amount of infor-
mation shared between a talker and a listener in bits per second.

Recall from Chapter 3 that {mt} is the message, {xt} is a clean speech
signal produced by a talker and {yt} is a degraded speech signal received
by a listener. The present chapter uses the same representation of speech
as that described in Section 3.2 (i.e., auditory log-spectra). In addition, the
present chapter maintains the assumption that mt and xt are multivari-
ate Gaussian random variables. However, unlike Chapter 3, the present
chapter does not assume that {mt}, {xt}, or {yt} are memoryless. Fur-
thermore, the present chapter does not assume that the elements of mt are
statistically independent, and likewise for xt and yt. Finally, recall from
Section 3.1.1 that mK , xK , and yK denote vectors obtained by stacking K
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consecutive vectors of mt, xt, and yt, respectively.

4.1 Information Rate of the Communication

Channel

The intelligibility metrics proposed in the present chapter are based on the
hypothesis that intelligibility is a function of the mutual information rate
between the message, {mt}, and the degraded speech, {yt}. Recall from
Section 3.1.1 that the mutual information rate between the message and
the degraded speech is given by

I({mt}; {yt}) = lim
K→∞

1

K
I(mK ; yK), (4.1)

where I(mK ; yK) is the mutual information between mK and yK defined
in (3.6).

In the previous chapter the information rate of the production chan-
nel I({mt}; {xt}) was estimated. Note that for the production channel, the
joint distribution P (mK ,xK) is fixed. That is, given a language, the human
physiology, and the physics of our reality, P (mK ,xK) does not change.
The same cannot be said about P (mK ,yK). For example, the marginal dis-
tribution P (yK) for speech degraded by reverberation is different to the
marginal distribution P (yK) for noisy speech processed by an enhance-
ment algorithm. Likewise, P (mK ,yK) also varies depending on the com-
munication system and the environment of the talker and the listener. This
makes the task of estimating I({mt}; {yt}) difficult. Instead of relying on
a parametric model, bounds and non-parametric methods may be able to
better handle the wide variety of possible degradation.

To estimate (4.1), realisations of {mt} and {yt} are required. In Section
3.3.1 it was shown that estimating a realisation of {mt} requires a chorus
of speech signals spoken by different talkers. In typical applications of in-
telligibility prediction, such a chorus is not available, so instead the upper
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bound from (3.9) is relied on:

I({mt}; {yt}) ≤ min(I({mt}; {xt}), I({xt}; {yt})). (4.2)

This upper bound effectively applies hard-clipping to I({xt}; {yt}) as de-
termined by the natural variability between talkers.

Given a clean speech signal and a distorted speech signal, I({xt}; {yt})
can be estimated using a non-parametric mutual information estima-
tor and I({mt}; {xt}) can be computed using a parametric model of
P (mK ,xK). The following sections describe this approach more con-
cretely.

4.1.1 Information rate of the environmental channel

The mutual information rate of the environmental channel is given by

I({xt}; {yt}) = lim
K→∞

1

K
I(xK ; yK). (4.3)

Estimating the mutual information between vectors of high dimensional-
ity is a challenging task (Doquire and Verleysen, 2012) particularly when
the vector elements have strong statistical dependencies (Gao et al., 2015).
For this reason, an invertible transform q that aims to remove the depen-
dencies between the vector elements is introduced.

Let x̃K = q(xK) and ỹK = q(yK). In the following it is assumed that
the elements of x̃K can be approximated as statistically independent, and
likewise for ỹK . Then (4.3) can be decomposed into a summation:

I({xt}; {yt}) = lim
K→∞

1

K
I(xK ; yK) (4.4)

= lim
K→∞

1

K
I(x̃K ; ỹK) (4.5)

= lim
K→∞

1

K

∑

λ

I(x̃Kλ ; ỹKλ ), (4.6)
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where λ denotes the element index of the transformed vectors. (4.5) fol-
lows because q is invertible and (4.6) follows because q removes the statis-
tical dependencies between the stacked-vector elements.

Finding an invertible q that simultaneously removes the dependencies
in both xK and yK is difficult. Early speech recognition systems used
the discrete cosine transform (DCT), which results in Mel-frequency cep-
stral coefficients (Davis and Mermelstein, 1980). It can be shown that the
DCT approximates the Karhunen-Loève Transform (KLT) for stationary
signals (Rao and Yip, 1990). The KLT is the transformation used for q in
the present chapter and is given by:

x̃K = U(xK − E[xK ]) (4.7)

and
ỹK = U(yK − E[yK ]), (4.8)

where U ∈ RKF×KF is a matrix with rows equal to the unit-magnitude
eigenvectors of the covariance matrix of xK . In this context, the vector
elements indexed by λ are referred to as eigenchannels. The KLT ensures
that the elements of x̃K are statistically uncorrelated, and if xt is Gaussian,
which is a reasonable approximation, then the elements are also statisti-
cally independent.

The KLT does not guarantee the same properties for ỹK unless yK

is also Gaussian and has a covariance matrix with the same eigenvec-
tors as the covariance matrix of xK . In practice, the environmental chan-
nel can result in non-Gaussian yK or can introduce statistical dependen-
cies in yK that are not present in xK . An example of the latter is a re-
verberant channel, which increases the statistical time dependencies be-
tween successive auditory log-spectra. In this case, the statistical de-
pendencies in the transmitted signal are accounted for by the KLT, but
the statistical dependencies in the received signal are not accounted for.
The consequence is that (4.6) underestimates the mutual information rate.
To see this note that because the conditional differential entropy obeys
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h(x̃K |ỹK) =
∑

λ h(x̃Kλ |ỹK) ≤∑λ h(x̃Kλ |ỹKλ ), we have that

I(x̃K ; ỹK) = h(x̃K)− h(x̃K |ỹK) (4.9)

=

(∑

λ

h(x̃Kλ )

)
− h(x̃K |ỹK) (4.10)

≥
∑

λ

h(x̃Kλ )− h(x̃Kλ |ỹKλ ) (4.11)

=
∑

λ

I(x̃Kλ ; ỹKλ ). (4.12)

Although the KLT does not meet all of the requirements for q, we have
found that it is effective at reducing the dependencies and significantly im-
proves the performance of SIIB and SIIBGauss. In fact, in Chapter 5 we show
that the KLT can also improve the accuracy of other intelligibility metrics
in the literature.

Recall that for some applications of the KLT it is common not to use
all of the eigenchannels. Instead, only the eigenchannels with the largest
eigenvalues are used. The rationale for doing so is that, for many real-
world signals, a large proportion of the variance can be captured using a
small number of basis vectors. This approach was taken when estimating
the information rate of speech communication in Van Kuyk et al. (2017).
That is, some of the eigenchannels were excluded from the summation in
(4.6). However, during the development of SIIB it was found that retaining
all of the eigenchannels led to more accurate predictions of intelligibility.
Thus, SIIB does not attempt to reduce the number of dimensions by dis-
carding eigenchannels.

Estimating mutual information

Equation (4.6) shows that the mutual information rate of the environmen-
tal channel can be decomposed into a summation of mutual information
terms; one for each eigenchannel. The implementation of SIIB proposed
in this thesis estimates each mutual information term in (4.6) using a pop-
ular mutual information estimator that was proposed by Kraskov et al.
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(2004) and is based on k-nearest neighbours (KNN). However, combining
the KLT with the KNN mutual information estimator is not the only way
to estimate the mutual information rate of the environmental channel. In
the following, several other mutual information estimators are discussed.

When developing the MIKNN intelligibility metric described in Sec-
tion 2.5.6, Taghia and Martin (2014) considered fitting a Gaussian Mixture
Model (GMM) to their representation of speech and then substituted the
resulting joint probability distribution into the definition of mutual infor-
mation. However, they report little benefit to this approach when com-
pared with the KNN mutual information estimator.

Another approach for estimating mutual information is to use kernel-
based estimators such as that proposed by Kolchinsky and Tracey (2017)
and used in Kolchinsky et al. (2017). This type of mutual information es-
timator is differentiable, which would be advantageous for applications
such as speech enhancement where mutual information could be opti-
mised using gradient-based methods.

Another mutual information estimator was recently proposed by Belg-
hazi et al. (2018) and is called mutual information neural estimation (MINE).
MINE estimates mutual information by training a neural network via
stochastic gradient ascent to maximise a lower bound of the mutual in-
formation. The lower bound is based on dual representations of Kullback-
Leibler divergence. They report good results for high-dimensional data
such as images, which may make MINE suitable for estimating the mutual
information between clean and distorted auditory log-spectra. Methods
for estimating mutual information other than the KNN mutual informa-
tion estimator could result in a better algorithm for predicting intelligibil-
ity and is left as a direction for future work.

One final consideration when estimating mutual information is the se-
quence length. If the number of observations is too few, then the mutual
information estimator may have significant bias or variance that could
lead to a poor intelligibility prediction. For this reason it is worth point-
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ing out that all of the stimuli used in the evaluation of SIIB in Chapter
5 have a duration of at least 20 s. The performance results in Chapter 5
suggest that SIIB is reliable for stimuli of such duration. For stimuli with
much shorter duration, it could be that SIIB is unreliable, however, in most
scenarios this outcome can be avoided simply by concatenating multiple
short utterances into a single utterance of a longer duration.

4.1.2 Information rate of the speech production channel

Approximating {mt} and {xt} as jointly Gaussian multivariate processes,
the information rate of the speech production channel is

I({mt}; {xt}) = lim
K→∞

1

K
I(mK ; xK) (4.13)

= lim
K→∞

1

K
I(m̃K ; x̃K) (4.14)

= lim
K→∞

1

K

KF∑

λ=1

I(m̃K
λ ; x̃Kλ ) (4.15)

= lim
K→∞

− 1

K

KF∑

λ=1

1

2
log2(1− r2

λ), (4.16)

where m̃K is defined similarly to x̃K and rλ is the production noise corre-
lation coefficient from Chapter 3. The production noise correlation coef-
ficient describes the efficiency of encoding a message into a speech signal
according to P (xK |mK).

In Chapter 3, rf , described the correlation coefficient for each ERB fre-
quency band, whereas in the present chapter rλ is the correlation coeffi-
cient for each eigenchannel. Similarly to Chapter 3, rλ could be estimated
using a chorus of speech signals, however, for simplicity, in the present
chapter we set rλ = 0.75 for all λ. This value for rλ was selected according
to a line search from rλ = 0 to rλ = 1 in steps of 0.05. For each value of rλ,
the performance of SIIB was measured using the criteria and listening test
data sets described in Chapter 5.



88 CHAPTER 4. INTELL. METRIC BASED ON INFO. THEORY

{xi}

{yi}

{xt}

{yt}

StackK = 15 consecutive spectra

xKt = [(xt−K+1)
∗, · · · , (xt)∗]∗

yKt = [(yt−K+1)
∗, · · · , (yt)∗]∗

KLT

KLT

KNN mutual
information estimator

SIIB =
R

K

∑KF
λ=1 min

(
− 1

2
log2(1− r

2
λ), Î(x̃
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Figure 4.1: Speech intelligibility in bits (SIIB)

4.2 Proposed Algorithms

4.2.1 SIIB

SIIB combines (4.3), (4.16), and (4.2) to give an estimate of the amount of
information shared between {mt} and {yt} in bits per second. It is given
by

SIIB =
R

K

KF∑

λ=1

min

(
− 1

2
log2(1− r2

λ), I(x̃Kλ ; ỹKλ )

)
. (4.17)

Recall thatR is the frame rate in Hz, F is the number of ERB bands used by
the auditory model, K is the number of stacked auditory log-spectra, and
rλ is the production noise correlation coefficient for the λth eigenchannel.

The implementation of SIIB used in this thesis is now described. An
estimate of I(x̃Kλ ; ỹKλ ) for each eigenchannel is computed by applying a k-
nearest neighbour mutual information estimator (Kraskov et al., 2004) to
observed sample sequences {x̃Kλ,t} and {ỹKλ,t}. To obtain {x̃Kλ,t} and {ỹKλ,t}, a
clean acoustic speech signal and a distorted acoustic signal are resampled
to a sampling rate of fs = 16 kHz. An energy-based voice activity detector
with a 40 dB threshold is applied to remove silent segments. Subsequently,
the acoustic signals are converted into sequences of auditory log-spectra,



4.2. PROPOSED ALGORITHMS 89

{xt} and {yt}, using the auditory model from Chapter 3. Specifically, (i)
the acoustic signals are transformed to the STFT domain using a 400-point
Hann window with 50% overlap, (ii) a gammatone filterbank that includes
F = 28 filters linearly spaced on the ERB-rate scale between c1 = 100 Hz
and cF = 6.5 kHz is used, and (iii) the forward masking temporal function
from (3.26) is applied. This gives a frame rate of R = 80 Hz.

A sequence of stacked auditory log-spectra for the clean speech is
formed by stacking K = 15 consecutive vectors:

xKt = [(xt−K+1)∗, (xt−K+2)∗, · · · , (xt)∗]∗. (4.18)

yKt is defined similarly. Setting K = 15 means that time dependencies
spanning 187.5 ms are considered. For comparison, the mean duration of
a phoneme is 80 ms (Crystal and House, 1988). The sample covariance
matrix of {xKt } is computed and the KLT in (4.7) and (4.8) is applied to
obtain the sequences {x̃Kt } and {ỹKt }, which consist of the elements x̃Kλ,t
and ỹKλ,t, respectively. A diagram of the above implementation of SIIB is
shown in Figure 4.1.

4.2.2 SIIBGauss

SIIBGauss is a variant of SIIB based on a fully parametric model. Rather than
using a non-parametric mutual information estimator to estimate the mu-
tual information of the environmental channel, it is assumed that {xt} and
{yt} are jointly Gaussian multivariate processes. As pointed out in Sec-
tion 4.1.1, this may not be a realistic assumption because the environment
of the talker and listener can vary dramatically. For this reason SIIBGauss

can be viewed as a simplification of SIIB.
Given the above assumption, the upper bound in (4.2) is not required.

Instead, (4.17) can be replaced by the capacity of a Gaussian channel:

SIIBGauss = − R

2K

KF∑

λ=1

log2(1− r2
λρ

2
λ), (4.19)
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where rλ is the production noise correlation coefficient for each eigen-
channel and ρλ is the correlation coefficient between x̃Kλ,t and ỹKλ,t for each
eigenchannel. SIIBGauss computes {x̃Kt } and {ỹKt } using the same auditory
model and stacking procedure as SIIB, uses the same values for the pa-
rameters as SIIB, and also uses the KLT to reduce statistical dependencies.

Note that if the environmental channel were truly Gaussian and had
independent eigenchannels, then I({xt}; {yt}) = − R

2K

∑
λ log2(1 − ρ2

λ). In
this case, SIIB in (4.17) can be written as

R

2K

∑

λ=1

min
(
− log2(1− r2

λ),− log2(1− ρ2
λ)
)
.

Comparing this expression to (4.19), we see that for a Gaussian environ-
mental channel SIIB applies hard-clipping, whereas SIIBGauss essentially
applies soft-clipping.

One advantage of SIIBGauss is that it is based on the correlation coeffi-
cient and thus is fast to compute. Moreover, SIIBGauss does not rely on an
upper bound like SIIB. However, these advantages come at the cost of an
additional assumption: that {xt} and {yt} are jointly Gaussian, which may
not be valid in general. In Chapter 5 the performance of SIIB and SIIBGauss

are compared.

4.3 Comparison with Existing Algorithms

Recall that Section 2.5 outlined two pre-existing intelligibility metrics
called SIMI and MIKNN, which are both based on information theory.
SIIB most closely resembles MIKNN because both of these metrics rely on
a KNN mutual information estimator, whereas SIIBGauss most closely re-
sembles SIMI because SIIBGauss is dependent on the correlation coefficient
and SIMI is dependent on the ’short-time’ correlation coefficient. There
are several important differences between these pre-existing intelligibility
metrics and those proposed in the present chapter. In this section, the key
differences between the intelligibility metrics are highlighted.
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First, SIIB and SIIBGauss represent speech signals using a more realis-
tic auditory model than SIMI and MIKNN. To account for the frequency
masking of the auditory system, SIIB and SIIBGauss use a gammatone fil-
terbank with centre frequencies linearly spaced on the ERB-rate scale up
to a maximum centre frequency of 6.5 kHz. To account for the temporal
masking of the auditory system, SIIB and SIIBGauss use the forward tem-
poral masking function in (3.26). This contrasts with the auditory model
used by SIMI and MIKNN, which uses a rectangular non-overlapping fil-
terbank consisting of F = 15 1/3 octave-bands between 0.15-4.3 kHz, and
does not use a forward temporal masking function. In addition, the audi-
tory model used by SIIB and SIIBGauss applies logarithmic dynamic range
compression, whereas the auditory model used by SIMI and MIKNN does
not. Figure 4.2 compares the output of the auditory model used by SIIB
and SIIBGauss with the output of the auditory model used by SIMI and
MIKNN. In Chapter 5 the impact that the auditory model has on intelligi-
bility prediction is investigated.

In theory, mutual information is invariant under the reparameterisa-
tion of the marginal variables (Kraskov et al., 2004) (e.g., see (2.17)). Be-
cause ln is a deterministic invertible function, for two random variables a

and b, we have that I(a; b) = I(ln a; ln b). With this result in mind, it may
seem that applying logarithmic dynamic range compression to sequences
of auditory spectra would have little effect on estimating the mutual in-
formation rate between the sequences. However, recall from Section 3.3.3
that the logarithm makes xt more like a Gaussian random variable. Fur-
thermore, recall from Section 4.1.1 that the KLT is only effective at remov-
ing statistical dependencies when the random variables are Gaussian. For
this reason the logarithmic dynamic range compression used by SIIB and
SIIBGauss plays an important role.

In addition to the above reason for including logarithmic dynamic
range compression, Kraskov et al. (2004) provide further motivation. Re-
garding the KNN mutual information estimator, which is used by SIIB,
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Figure 4.2: Comparison of auditory models. Top: a sequence of audi-
tory log-spectra computed using the auditory model used by SIIB and
SIIBGauss. Bottom: a sequence of auditory spectra computed using the au-
ditory model used by SIMI and MIKNN. For both cases, the stimuli was
created by degrading a clean speech signal with additive white noise, a
sinusoid, and a delta train, consecutively. For SIIB, the energy of the sinu-
soid and delta-train leaks into nearby time-frequency units due to SIIB’s
auditory model. For SIMI and MIKNN, the energy from the sinusoid and
delta-train is more localised, which effectively decreases the degradation
and could lead to an overestimate of intelligibility.

Kraskov et al. (2004) state that ”if the marginal distributions are skewed, it
might be a good idea to transform them such as to be more uniform (or at
least single-humped and more or less symmetric)” as this often improves
the accuracy of the KNN mutual information estimator.

A second difference between the pre-existing intelligibility metrics and
those proposed in the present chapter is that SIMI and MIKNN assume
that the 1/3 octave bands are statistically independent, whereas SIIB and
SIIBGauss use the KLT to reduce the statistical dependencies between the
time-frequency units. To show the importance of reducing statistical de-
pendencies, Figure 4.3 displays a sample correlation matrix (i.e., the nor-
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Figure 4.3: Correlation matrices for auditory log-spectra computed by SIIB
and SIIBGauss. Left: the correlation between each ERB frequency band with
every other ERB frequency band. Right: the correlation matrix after ap-
plying the KLT to the auditory log-spectra.

malised covariance matrix) for {xKt } and {x̃Kt } for K = 1 using speech
signals from the CHAINS corpus described in Chapter 3.

Given a sequence of stacked auditory log-spectra {xKt } that consists of
elements xKi,t, the sample correlation between the i’th and j’th element is
given by:

Ci,j =

∑
t(x

K
i,t − 1

T

∑
t x

K
i,t)(x

K
j,t − 1

T

∑
t x

K
j,t)√∑

t(x
K
i,t −

∑
t x

K
i,t)

2
√∑

t(x
K
j,t −

∑
t x

K
j,t)

2
. (4.20)

The sample correlation matrix C ∈ RFK×FK is formed by computing the
correlation for all pairs of i and j. The sample correlation matrix for {x̃Kt }
is computed in the same way, except that the KLT is first applied. For Fig-
ure 4.3, K = 1 (i.e., the vectors are not stacked), thus Figure 4.3 shows
the correlation between the ERB frequency bands only (i.e., correlations
between successive auditory log-spectra are not shown). It is clear that
the ERB frequency bands display strong correlation, and thus cannot be
statistically independent. In addition we see that the KLT is effective at re-
ducing the correlation, and if {xt} is Gaussian, it follows that the statistical
dependencies are removed.
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Figure 4.4: A correlation matrix for auditory spectra computed using SIMI
and MIKNN. The correlation between each 1/3 octave band with every
other 1/3 octave band is displayed.

One reason that there are statistical dependencies between the ERB
bands is because the gammatone filters used by SIIB and SIIBGauss overlap
(e.g., see Figure 3.2). However, this is not the only source of the statistical
dependencies. It is not unreasonable to believe that due to imperfect mus-
cular control of the vocal-tract and the physics that govern acoustics, the
energy of a speech signal in one frequency band may be constrained to be
similar to the energy in a neighbouring frequency band. To demonstrate
this, we also compute the sample correlation matrix for {xt} using the au-
ditory model used by SIMI and MIKNN, which do not use an overlapping
filter bank or apply dynamic range compression. Figure 4.4 shows that
for the auditory model used by SIMI and MIKNN, the resulting represen-
tation of speech also displays correlations between the frequency bands.
Note that because the 1/3 octave bands sample the frequency spectrum
more coarsely and do not overlap, the correlation between the 1/3 fre-
quency bands is less than correlation between the ERB frequency bands.
However, the correlation is still not negligible.

The use of the KLT is an important point of difference between the in-
telligibility metrics proposed in the present chapter and pre-existing met-
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rics found in the literature. In Chapter 5 the impact that the KLT has on
intelligibility prediction is investigated.

Lastly, SIIB and SIIBGauss incorporate the effect of talker variability,
whereas SIMI and MIKNN do not. Importantly, this means that SIIB and
SIIBGauss saturate at − R

2K

∑
λ log2(1− r2

λ) bits per second.

4.4 Revisiting the Information Rate of Speech

Recall that Section 3.3 proposed a method for estimating the information
rate of the speech production channel. The method relies on having a
chorus of speech signals. When the method is applied to the CHAINS
corpus, an information rate of I({mt}; {xt}) = 2070 b/s is obtained. After
accounting for over-sampling, the rate reduces to about 500 b/s.

One limitation of the method in Section 3.3 is that it assumes that the
elements of mt are statistically independent, and likewise for xt. More-
over, Section 3.3 assumed that mt and mt+τ are statistically independent
for all τ 6= 0, and likewise for xt and xt+τ . The consequence of these as-
sumptions is that the method overestimates the information rate. How-
ever, the present chapter argued that if xt is Gaussian, then by stacking K
successive auditory log-spectra and applying the KLT, the statistical de-
pendencies can be removed.

In this section, the experiment from Section 3.3 is repeated, however,
for the estimates of the production noise, production noise variance, and
speech variance in (3.38), (3.39), and (3.40), respectively, estimators are ap-
plied to stacked auditory log-spectra that have been processed by the KLT,
that is, x̃K , as defined in (4.7). This contrasts with Section 3.3, where esti-
mators were applied to auditory log-spectra xt, not x̃K .

Figure 4.5 plots the estimate of I({mt}; {xt}) against K for data from
the CHAINS corpus after using the KLT to remove statistical dependen-
cies. As K increases, time dependencies spanning greater durations are
accounted for and so the information rate decreases. The lowest observed



96 CHAPTER 4. INTELL. METRIC BASED ON INFO. THEORY

0 5 10 15

number of stacked spectra, K

0

100

200

300

400

500

I
({
m

t
}
;{
x
t
}
),

b
it
s/
s

Figure 4.5: Estimate of the mutual information rate of the speech produc-
tion channel against the number of stacked auditory log-spectra. K = 15

corresponds to 187.5 ms of speech for each stacked spectra.

information rate is about 180 b/s. This is significantly closer to the lexi-
cal information rate of speech of 60 b/s from Section 2.2. The remaining
difference is likely due to the assumption that the auditory log-spectra are
Gaussian. Because the auditory log-spectra are only approximately Gaus-
sian, the KLT does not remove all the statistical dependencies.

4.5 Summary of Chapter

This chapter developed two new intelligibility metrics called SIIB and
SIIBGauss. The intelligibility metrics are based on the hypothesis that intel-
ligibility is a function of the mutual information rate of a message selected
by a talker and a signal received by a listener. Both intelligibility metrics
rely on an auditory model and use the KLT to reduce statistical depen-
dencies between time-frequency units. The difference between SIIB and
SIIBGauss is that SIIB estimates mutual information using a non-parametric
estimator based on k-nearest neighbours, whereas SIIBGauss uses the ca-
pacity of a Gaussian communication channel. It was hypothesised that
because the non-parametric mutual information estimator used by SIIB is
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valid for a wide range of degradation, SIIB will have higher performance
than SIIBGauss.

SIIB and SIIBGauss show similarities to existing intelligibility metrics in
the literature such as SIMI and MIKNN. The three main differences are 1)
SIIB and SIIBGauss use a more accurate auditory model that accounts for the
upwards frequency masking, forward temporal masking, and dynamic
range compression of the human auditory system, 2) SIIB and SIIBGauss use
the KLT to reduce statistical dependencies between time-frequency units,
and 3) SIIB and SIIBGauss account for talker variability. Importantly, talker
variability causes the information rate of the communication channel to
saturate.

Lastly, the information rate of speech communication was revisited.
Chapter 3 proposed a method for estimating the information rate of speech
communication that is based on a chorus of speech signals. In Chapter 3
the experiment assumed that the time-frequency units were statistically
independent. In the present chapter, the experiment from Chapter 3 was
repeated, however, the KLT was used to reduce the statistical dependen-
cies. Doing so reduced our estimate of the information rate of speech
to about 180 b/s. This is still larger than the lexical information rate of
speech, which is 60 b/s. The remaining discrepancy could be the result
of assuming that the signals are Gaussian. If the signals are not Gaus-
sian, then the KLT does not remove all statistical dependencies. If a more
powerful transform for removing statistical dependencies were used, the
information rate may decrease further.
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Chapter 5

An Evaluation of Intelligibility
Metrics

As discussed in Section 2.5, a key component to the design of speech-based
communication systems is an understanding of how they affect intelligi-
bility. Although formal listening tests can provide valid data, such tests are
time-consuming, laborious, and expensive. For this reason, quantities that
are fast to compute and correlated with intelligibility are of interest. Such
quantities are referred to as instrumental intelligibility metrics. In Chapter
4, two new intelligibility metrics called SIIB and SIIBGauss were proposed.
In the present chapter, the accuracy of SIIB and SIIBGauss is evaluated and
compared to existing intelligibility metrics from the literature.

The present chapter is largely reproduced from Van Kuyk et al. (2018a).
For consistency with the original publication, SIIB is considered to be a
’pre-existing’ intelligibility metric, whereas SIIBGauss is considered to be a
’modified’ intelligibility metric, even though both metrics were developed
as a part of this thesis.

99
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5.1 Motivation

Over the past decade many intrusive intelligibility metrics have been pro-
posed. Examples include the coherence SII (CSII) (Kates and Arehart,
2005), the extended SII (ESII) (Rhebergen and Versfeld, 2005), the quasi-
stationary STI (QSTI) (Schwerin and Paliwal, 2014), the normalised co-
variance measure (NCM) (Koch, 1992; Goldsworthy and Greenberg, 2004),
the temporal fine-structure spectrum based index (TFSS) (Chen et al.,
2013), the hearing-aid speech perception index (HASPI) (Kates and Are-
hart, 2014), the Christiansen-Pedersen-Dau metric (CPD) (Christiansen
et al., 2010), those based on the short-time objective intelligibility measure
(STOI) (e.g., Taal et al., 2011a; Jensen and Taal, 2016), those based on the
speech-based envelope power spectrum model (sEPSM) (e.g., Jørgensen
and Dau, 2011; Jørgensen et al., 2013; Relaño-Iborra et al., 2016)), and those
based on the glimpse proportion metric (GP) (e.g., Cooke, 2006; Barker and
Cooke, 2007; Tang and Cooke, 2016). Many of these metrics have not been
extensively tested on data sets other than those used during their devel-
opment. Additionally, the above metrics are often heuristically motivated,
which suggests that they may not generalise well to new environments
and speech enhancement strategies.

Motivated by the fact that many intrusive intelligibility metrics have
been recently proposed but have not been widely evaluated, this chapter
presents a study on the accuracy of 12 existing monaural intrusive intel-
ligibility metrics. To assess the accuracy of each metric, the strength of
the relationship between intelligibility and the metric is measured. The
intelligibility data were obtained from 11 experiments described in the lit-
erature. The data include Dutch, Danish, and English speech that was de-
graded by additive noise, reverberation, and competing talkers, and sub-
jected to speech enhancement.

The majority of the intelligibility metrics in this chapter were devel-
oped with Germanic languages in mind, however, the studies of Jin (2014);
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Wong et al. (2007); Xia et al. (2012); Chen and Loizou (2011) have sug-
gested that many intelligibility metrics can obtain good performance for
Mandarin, Cantonese, and Korean.

In addition to evaluating the accuracy of pre-existing intelligibility
metrics, this chapter analyses why the top performing metrics have high
performance. Specifically, the effect of decorrelating input features, the
effect of the auditory model, and the effect of using different distortion
measures is investigated.

Previous evaluations of intrusive intelligibility metrics exist. For exam-
ple, Ma et al. (2009) and Taal et al. (2010) evaluated the accuracy of intelli-
gibility metrics for noise-reduced speech, and Taal et al. (2011b) evaluated
the accuracy of intelligibility metrics for speech processed by ideal time-
frequency segregation (ITFS). Those evaluations each considered a single
type of degradation, whereas the evaluation in this chapter considers data
from many real-word scenarios.

Evaluations can also be found in publications that propose new intel-
ligibility metrics, but in terms of the number of intelligibility metrics and
the number of data sets, the scope of such evaluations is smaller than the
present study. Two advantages of considering a broader scope are 1) it is
easier to determine why some intelligibility metrics perform better than
others, and 2) it is possible to investigate the ability of intelligibility met-
rics to generalise to new types of distortion. To our knowledge, in terms of
the number of listening tests and intelligibility metrics, the evaluation in
this chapter is the most comprehensive evaluation of intelligibility metrics
for speech in noise to date.

The remainder of this chapter is organised as followed. Section 5.2 de-
scribes the listening test data and Section 5.3 describes intelligibility met-
rics from the literature. Modified intelligibility metrics are proposed in
Section 5.4. Performance criteria are described in Section 5.5 and results
are presented in Section 5.6. Finally, Section 5.7 concludes the chapter.
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5.2 Listening Test Data

The evaluation in the present chapter considers the results of 11 intelligi-
bility studies. From these studies, 13 data sets were created. In this sec-
tion, each data set is described. Table 5.1 summarises the data sets, while
the accompanying references provide additional details. The naming con-
vention for the data sets includes the first author of the publication that
describes the data set in full, and an abbreviation that indicates the type of
degradation or processing. The order that the data sets are presented in is
such that similar data sets are grouped together.

Many of the data sets in this section include stimuli processed by
speech enhancement algorithms. There are two main approaches to
speech enhancement: 1) the speech signal can be modified prior to degra-
dation (e.g., optimal energy redistribution (Taal et al., 2014) and dynamic
range compression (Zorila et al., 2012)), or 2) the speech signal can be mod-
ified after degradation has been introduced (e.g., spectral subtraction (Boll,
1979) and Wiener filters (Wiener, 1949)). In this chapter, the former type
of algorithm is referred to as a pre-processing algorithm and the latter as a
post-processing algorithm.

JensenMOD

The first data set consists of speech degraded by noise with strong tem-
poral modulations. In Jensen and Taal (2016) phrases from the Dantale II
corpus (Wagener et al., 2003) were degraded by ten types of noise. Four
of the noise types included Track 1, 4, 6, and 7 from the ICRA noise cor-
pus (Dreschler et al., 2001). The ICRA signals are synthetic signals with
spectral and temporal properties similar to speech. Four of the noise types
were constructed by multiplying speech-shaped noise (SSN) (i.e., Gaus-
sian noise with a long-term power-spectrum that is similar to the power
spectrum of clean speech) with 1 + sin(2πft+φ) where φ is uniformly dis-
tributed between ±π, t is the sample index, and f = 2, 4, 8, or 16 Hz. The



5.2. LISTENING TEST DATA 103

Table 5.1: Summary of listening test data sets. B, is the bandwidth, m is
the number of listeners and n is the number of listening conditions.

Name Degradation Enhancement strategy B, kHz m n

JensenMOD
(Jensen and Taal,
2016)

Modulated noise None 10.0 12 60

SantosREV
(Santos et al.,
2014)

Noise & reverb None 8.0 10 17

KjemsAN (Kjems
et al., 2009)

Noise None 7.7 15 40

KjemsITFS
(Kjems et al.,
2009)

Noise Ideal time-frequency segregation. 7.7 15 168

TaalPOST (Taal
et al., 2011a)

Noise Minimum mean-squared error
estimate of the short-time spectral
amplitude.

8.7 15 15

JensenPOST
(Jensen and
Hendriks, 2012)

Noise Minimum mean-squared error
estimate of the short-time spectral
amplitude.

4.0 13 20

HuPOST (Hu
and Loizou,
2007)

Noise Spectral subtractive, sub-space,
statistical model based, and
Wiener-type algorithms.

3.5 40 72

HendriksPRE
(Hendriks et al.,
2015)

Noise & reverb Optimal energy redistribution. 8.0 8 20

KleijnPRE (Kleijn
and Hendriks,
2015)

Noise Optimal energy redistribution. 8.0 9 32

CookePRE
(Cooke et al.,
2013)

Noise &
competing talker

Nine pre-processing enhancement
algorithms.

8.0 175 60

KhademiJOINT
(Khademi et al.,
2017)

Noise MVDR beamformer, Wiener filter, &
optimal energy redistribution.

8.0 7 24

DutchMRG - JensenPOST, HendriksPRE,
KleijnPRE, and KhademiJOINT
merged into a single data set.

- - -

DantaleMRG - KjemsAN, KjemsITFS, and TaalPOST
merged into a single data set.

- - -
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final two noise sources were machine-gun noise and destroyers-operation-
room noise from the NOISEX corpus (Varga and Steeneken, 1993). Six
SNRs were chosen for each noise source so that some stimuli were unin-
telligible and others were perfectly intelligible. In total there are 10 noise
sources × 6 SNRs = 60 conditions. Stimuli were presented to 12 normal-
hearing listeners. For each word in a given sentence, the listeners were
instructed to identify the correct word from a list of ten possibilities. See
Jensen and Taal (2016) for more details.

SantosREV

The second data set consists of speech corrupted by noise and reverbera-
tion. In Santos et al. (2014), IEEE sentences (Rothauser et al., 1969) were
degraded by three types of distortion: 1) additive noise, 2) reverberation,
and 3) additive noise and reverberation. For the additive noise distortion,
SSN and babble noise at SNRs of−5, 0, 5, and 10 dB were used. For the re-
verberant distortion, IEEE sentences were convolved with a room impulse
response with T60 = 0.3, 0.6, 0.8, 1, and 1.4 s. For the additive noise and
reverberant distortion the sentences were convolved with room impulse
responses with T60 = 0.3 and 0.6 s and mixed with SSN at SNRs of 5 dB
and 10 dB. In total there are 8 noise + 5 reverberant + 4 noise and rever-
berant = 17 conditions. Stimuli were presented to ten normal-hearing lis-
teners. The listeners were instructed to transcribe sentences without any
additional information and the proportion of correctly identified words
was recorded. See Santos et al. (2014) for more details.

Originally, the distorted stimuli in SantosREV were offset in time
from the clean stimuli. However, time-alignment is a requirement for
many intrusive intelligibility metrics. For this chapter, the signals in San-
tosREV were aligned by finding the time-offset that maximised the cross-
correlation of the clean and distorted stimuli. This resulted in significantly
higher performance scores than those reported in (Santos et al., 2014).
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KjemsAN

The third data set consists of speech degraded by additive noise. In Kjems
et al. (2009) phrases from the Dantale II corpus (Wagener et al., 2003) were
degraded by four types of noise: SSN, cafeteria noise, noise from a bot-
tling factory hall, and car interior noise. The stimuli were presented to 15
normal-hearing listeners. The listeners were instructed to transcribe sen-
tences without any additional information and the proportion of correctly
identified words was recorded. Based on the listening test results, Kjems
et al. derived psychometric curves that relate intelligibility to SNR for each
noise type.

For this chapter, KjemsAN was created by adding the noise signals to
the clean Dantale II sentences at ten SNRs. The SNRs were selected by
sampling the psychometric curves at intervals of 10% intelligibility from
10% to 100%. In total there are 4 noise types × 10 SNRs = 40 conditions.

KjemsITFS

The fourth data set consists of speech subjected to ideal time-frequency
segregation processing (ITFS) (Brungart et al., 2006). ITFS processing aims
to eliminate the energy of a speech signal at particular time-frequency lo-
cations by multiplying the short-time Fourier transform of the speech sig-
nal with a binary gain function. Similarly to KjemsAN, the listening exper-
iment was conducted by Kjems et al. (2009), used phrases from the Dantale
II corpus (Wagener et al., 2003), involved 15 normal-hearing listeners, and
used the same four types of noise. For each noise type, the noisy phrases
were processed by two types of ITFS called an ideal binary mask and a tar-
get binary mask. Three SNRs were used (−60 dB, and SNRs corresponding
to 20% and 50% intelligibility) and eight variants of each ITFS algorithm
were considered. In total there are 168 conditions. See Kjems et al. (2009)
for more details.



106 CHAPTER 5. AN EVALUATION OF INTELLIGIBILITY METRICS

TaalPOST

The fifth data set consists of speech subjected to post-processing enhance-
ment. In Taal et al. (2011a) phrases from the Dantale II corpus were de-
graded by SSN at SNRs of 8.9, 7.7, 6.5, 5.2, and 3.1 dB. The MMSE-STSA
enhancement algorithm (Ephraim and Malah, 1984) and an improved ver-
sion (Erkelens et al., 2007) were applied to the noisy phrases. In total there
are 5 SNRs× (2 algorithms + 1 unprocessed) = 15 conditions. Stimuli were
presented to 15 normal-hearing listeners. The listeners were instructed to
transcribe sentences without any additional information, and the propor-
tion of correctly identified words was recorded.

JensenPOST

The sixth data set consists of speech subjected to post-processing enhance-
ment. In Jensen and Hendriks (2012) phrases from the Dutch version of
the Hagerman test (Houben et al., 2014) were degraded by SSN at SNRs
of −8, −6, −4, −2, and 0 dB and processed by three enhancement algo-
rithms. The three algorithms compute a minimum mean-squared error
estimate of the clean speech by multiplying the short-time spectral ampli-
tude of the noisy speech with a gain function. In total there are 5 SNRs ×
(3 algorithms + 1 unprocessed) = 20 conditions. Stimuli were presented to
13 normal-hearing listeners. For each word in a given sentence, the listen-
ers were shown ten candidate words from which they were instructed to
select from.

HuPOST

The seventh data set consists of speech subjected to post-processing en-
hancement. In Hu and Loizou (2007) IEEE sentences (Rothauser et al.,
1969) were filtered by a simulated telephone channel, degraded by four
noise types: babble, car, street, and train, at SNRs of 0 and 5 dB, and pro-
cessed by eight enhancement algorithms encompassing spectral subtrac-
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tive, sub-space, statistical model based and Wiener-type algorithms. In to-
tal there are 4 noise types × 2 SNRs × (8 algorithms + 1 unprocessed)= 72
conditions. Stimuli were presented to 40 normal-hearing listeners where
ten listeners were used for each of the four noise types. The listeners were
instructed to transcribe sentences without any additional information and
the proportion of correctly identified words was recorded. See Hu and
Loizou (2007) for more details.

HendriksPRE

The eighth data set consists of speech subjected to pre-processing enhance-
ment and degraded by reverberation and noise. In Hendriks et al. (2015)
phrases from the Dutch version of the Hagerman test (Houben et al., 2014)
were processed by four enhancement algorithms, convolved with a room
impulse response with a T60 time of 1 s, and then degraded by SSN at
SNRs of −2, 0, 2, and 4 dB. Three of the enhancement algorithms opti-
mally redistribute the energy of the clean speech according to a distortion
criterion. The fourth algorithm uses steady-state suppression to reduce
degradation caused by reverberation. In total there are 4 SNRs × (4 algo-
rithms + 1 unprocessed) = 20 conditions. Stimuli were presented to eight
normal-hearing listeners. For each word in a given sentence, the listeners
were instructed to identify the correct word from a list of ten possibilities.
See Hendriks et al. (2015) for more details.

KleijnPRE

The ninth data set consists of speech subjected to pre-processing enhance-
ment and degraded by noise. In Kleijn and Hendriks (2015) phrases from
the Dutch version of the Hagerman test (Houben et al., 2014) were sub-
jected to three pre-processing enhancement algorithms and then degraded
either by SSN at SNRs of −15,−12,−9, and −6 dB, or car noise at SNRs of
−23,−20,−17, and −14 dB. The three enhancement algorithms optimally
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redistribute the energy of the clean speech according to a distortion crite-
rion. In total there are 2 noise types × 4 SNRs × (3 algorithms + 1 unpro-
cessed) = 32 conditions. Stimuli were presented to nine normal-hearing
listeners. For each word in a given sentence, the listeners were instructed
to identify the correct word from a list of ten possibilities. See Kleijn and
Hendriks (2015) for more details.

CookePRE

The tenth data set consists of speech subjected to pre-processing enhance-
ment and degraded by noise. In Cooke et al. (2013) IEEE sentences
(Rothauser et al., 1969) were processed by 19 pre-processing enhancement
algorithms and degraded either by SSN at SNRs of 1, −4, and −9 dB, or
by speech from a competing talker at SNRs of −7, −14, and −21 dB. Stim-
uli were presented to 175 normal-hearing listeners. The listeners were in-
structed to transcribe sentences without any additional information and
the proportion of correctly identified words was recorded. Short words
(e.g., a, the, in, to) were not scored.

For this chapter, a subset of the data in Cooke et al. (2013) was consid-
ered because the entire data set was not available. Ten of the IEEE sen-
tences for each condition and nine of the enhancement algorithms were
used. The algorithms are referred to in Cooke et al. (2013) as AdaptDRC,
F0-shift, IWFEMD, on/offset, OptimalSII, RESSYSMOD, SBM, SEO, and
SSS. In total there are 2 noise sources × 3 SNRs × (9 algorithms + 1 unpro-
cessed) = 60 conditions.

KhademiJOINT

The eleventh data set consists of speech that has been jointly processed by
far-end and near-end enhancement algorithms. In Khademi et al. (2017),
four enhancement strategies were considered, all of which used a mini-
mum variance distortionless response (MVDR) beamformer at the far-end.
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The first strategy used no near-end enhancement, the second used blind
optimal energy redistribution at the near-end, the third used blind opti-
mal energy redistribution at the near-end and an additional Wiener filter
at the far-end, and the fourth used jointly optimal energy redistribution
at the near-end. Three near-end SNRs (−7.5, 0, and 5 dB) and two far-
end SNRs (−10 and 2.5 dB) were used. In total there are 4 enhancement
strategies × 3 near-end SNRs × 2 far-end SNRs = 24 conditions. For each
condition phrases from the Dutch version of the Hagerman test (Houben
et al., 2014) were presented to seven normal-hearing listeners. For each
word in a given sentence, the listeners were instructed to identify the cor-
rect word from a list of ten possibilities. See Khademi et al. (2017) for more
details.

DutchMRG

The twelfth data set was created by merging JensenPOST, HendriksPRE,
KleijnPRE, and KhademiJOINT. It is reasonable to merge these data sets
because the associated listening tests all used phrases from the Dutch ver-
sion of the Hagerman test (Houben et al., 2014) and were conducted using
the same procedures by the Circuits and Systems Group at Delft Univer-
sity of Technology. Note, that the number of subjects differed for the four
experiments. DutchMRG was included in the evaluation to test if the intel-
ligibility metrics give consistent measurements for different enhancement
strategies.

DantaleMRG

The thirteenth data set was created by merging KjemsAN, KjemsITFS, and
TaalPOST. It is reasonable to merge these data sets because the associated
listening tests all used phrases from the Dantale II corpus. To prevent
KjemsITFS from dominating the other data sets, 60 out of the 168 condi-
tions from KjemsITFS were randomly selected, and all of the conditions
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for KjemsAN and TaalPOST were selected. Note that the listening tests
were conducted by different laboratory groups. Similarly to DutchMRG,
this data set was included to test if the intelligibility metrics give consis-
tent measurements for different enhancement strategies. JensenMOD also
used the Dantale II corpus, but was not included in DantaleMRG because
the listening test for JensenMOD presented listeners with ten candidate
words to select from, whereas the listening tests for KjemsAN, KjemsITFS,
and TaalPOST did not.

5.3 Pre-Existing Intelligibility Metrics

Over the past decade a large number of intrusive intelligibility metrics
have been proposed. In this section, 12 metrics from the literature, which
are considered in this evaluation, are summarised. An overview of the
metrics can be found in Table 5.2. See the accompanying references for
more detailed descriptions. Additionally, detailed descriptions of SIIB and
SIIBGauss can be found in Chapter 4, and detailed descriptions of SIMI and
MIKNN can be found in Chapter 2. Unless stated otherwise, all parame-
ters were selected according to those recommended in the original publi-
cations.

Speech Intelligibility Index

The speech intelligibility index (SII) (ANSI, 1997b) is based on the idea that
intelligibility is related to audibility. To compute the SII, a bandpass filter-
bank is applied to the clean speech and the noise signal, and a weighted
average of the long-term SNR of each frequency band is calculated. The
weights define a band-importance function (BIF) that characterises the rel-
ative importance of each frequency band. Prior to averaging, the SNR is
clipped to be between ± 15 dB and normalised to be between 0 and 1.
This reflects the idea that below −15 dB the speech signal is inaudible and
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Table 5.2: Pre-existing intelligibility metrics considered in this study.

Abbreviation Description

SII The speech intelligibility index (ANSI, 1997b).

HEGP The high-energy glimpse proportion metric (Tang and Cooke, 2016).

CSII-MID The mid-level coherence SII (Kates and Arehart, 2005).

HASPI The hearing-aid speech perception index (Kates and Arehart, 2014).

NCM-BIF The normalised covariance measure with signal-dependent
band-importance functions (Ma et al., 2009).

QSTI The quasi-stationary speech transmission index (Schwerin and
Paliwal, 2014).

STOI The short-time objective intelligibility measure (Taal et al., 2011a).

ESTOI The extended STOI measure (Jensen and Taal, 2016).

MIKNN The k-nearest neighbour mutual information intelligibility measure
(Taghia and Martin, 2014).

SIMI Speech intelligibility prediction based on a mutual information lower
bound (Jensen and Taal, 2014).

SIIB Speech intelligibility in bits (Van Kuyk et al., 2018b).

sEPSMcorr The speech-based envelope power spectrum model with short-time
correlation (Relaño-Iborra et al., 2016).

above 15 dB the intelligibility is at its maximum. The SII is known to per-
form well for speech degraded by stationary additive noise, but poorly for
speech degraded by modulated noise sources (Rhebergen and Versfeld,
2005).

In this chapter, the SII was only evaluated using JensenMOD, Kjem-
sAN, and CookePRE. For the remaining data sets, either the noise signal
was not available, or noise was not the main cause of distortion. The im-
plementation of the SII was obtained from the Acoustical Society of Amer-
ica (http://sii.to) and used the 1/3 octave band procedure with the
BIF tabulated in Table 3 of (ANSI, 1997b).
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High-Energy Glimpse Proportion Metric

The glimpse proportion metric (GP) is the initial stage of the glimpsing
model of speech perception (Cooke, 2006) and has been used as an intelli-
gibility metric in various studies (e.g., (Barker and Cooke, 2007; Tang and
Cooke, 2016)). The GP is defined as the proportion of spectro-temporal re-
gions where the clean speech has energy greater than the noise signal by a
pre-defined threshold. The GP shares similarities with the SII in that both
metrics assume that audibility is the determining factor of intelligibility.
The difference is that the SII averages the long-term SNR of each frequency
band, whereas the GP is the proportion of short-time frequency-local SNRs
above a threshold.

In Tang and Cooke (2016) a variation of the GP called the high-energy
GP (HEGP) was shown to be more highly correlated with intelligibility
than the original GP. The main difference between the metrics is that
HEGP only uses spectro-temporal regions where the noisy speech has
above average energy. Similarly to the SII, HEGP can only quantify dis-
tortion caused by additive noise signals. For this reason, HEGP was eval-
uated using KjemsAN, JensenMOD, and CookePRE only.

The implementation of HEGP used in this chapter was obtained from
its developers. Note that CookePRE is a subset of a data set that was used
during the development of HEGP.

Coherence Speech Intelligibility Index

The coherence speech intelligibility index (CSII) (Kates and Arehart, 2005)
is based on the SII, but replaces the SNR of each frequency band with a
signal-to-distortion ratio (SDR). The SDR is estimated from the coherence
function (Carter et al., 1973) of the clean and distorted speech signal. For
the case of speech degraded by additive noise, the SDR and SNR are equiv-
alent, making the CSII a generalisation of the SII that can be applied to a
wider range of distortions. In Kates and Arehart (2005) it was found that
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the performance of the CSII could be improved by calculating the CSII
separately for low, mid, and high-energy speech segments.

The implementation of the CSII used in this chapter was obtained from
(Loizou, 2013) and is described in (Ma et al., 2009), where it is referred
to as CSIImid. Note that the implementation in (Loizou, 2013) differs to
that originally proposed in (Kates and Arehart, 2005) in that (Loizou, 2013)
averages the CSII over short-time segments. For this chapter, the imple-
mentation in (Loizou, 2013) was modified to make it more similar to that
originally proposed (i.e., it does not use short-time segments) because we
found that the original method had higher overall performance. In this
chapter the algorithm is referred to as CSII-MID.

Hearing-Aid Speech Perception Index

The hearing-aid speech perception index (HASPI) (Kates and Arehart,
2014) is based on an elaborate auditory model where the shape and band-
width of the cochlear filters depend on the speech signal intensity and
the outer hair-cell damage of the listener. Dynamic range compression is
applied to the output of each cochlear filter in accordance with physiolog-
ical measurements of compression in the cochlea and psychophysical es-
timates of compression in the human ear. Additionally, a time-alignment
stage is included. The auditory model has two outputs: a sequence of
short-time log-spectra, and a basilar membrane vibration signal for each
frequency band.

From the outputs of the auditory model the cepstral correlation and
auditory coherence are computed. To compute cepstral correlation, the
log-spectra are converted to an approximation of Mel-frequency cepstral
coefficients (Davis and Mermelstein, 1980) by taking the inner product be-
tween the log-spectra and a set of cosine functions. Pearson’s correlation
coefficient between the cepstra of the clean and distorted speech is then
computed for each cepstral dimension and the resulting coefficients are
averaged.



114 CHAPTER 5. AN EVALUATION OF INTELLIGIBILITY METRICS

The auditory coherence is computed by splitting the basilar membrane
vibration signals into three sets that contain low, mid, and high-energy
segments. For each set and each frequency band, short-time correlation
coefficients between the clean vibration signals and the distorted vibra-
tion signals are computed and then averaged over the time dimension and
the frequency dimension. This results in three auditory coherence terms
corresponding to low, mid, and high energy segments.

HASPI is computed as a linear combination of the cepstral correlation
and the three auditory coherence terms. The relative importance of each
term depends on the type of distortion and thus is fitted to the intelligibil-
ity data. In this chapter the weights of the cepstral correlation and audi-
tory coherence terms were computed for each data set such that the mean
squared error between the predicted and measured intelligibility scores
was minimised. However, it was found that similar performance could be
obtained simply by summing the cepstral correlation and high-energy au-
ditory coherence. The implementation of HASPI used in this chapter was
obtained from its developers.

Normalised Covariance Measure

The normalised covariance measure (NCM) (Koch, 1992; Goldsworthy
and Greenberg, 2004) is a variant of the STI that uses clean speech as the
probe signal. To compute the NCM, a band-pass filterbank is applied to
the clean and distorted speech signals, and the temporal envelope of the
output of each filter is extracted. Subsequently, the normalised covariance
(i.e., Pearson’s correlation coefficient) between the clean and distorted en-
velopes is calculated and converted to an apparent SNR for each frequency
band. Similarly to the SII, the apparent SNR is clipped before a weighted
average over the frequency bands is computed.

In Ma et al. (2009) it was found that the NCM is strongly correlated
with intelligibility for speech subjected to post-processing enhancement.
The correlation was particularly strong when new signal dependent BIFs
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were used. The implementation of the NCM used in this chapter was ob-
tained from (Loizou, 2013) and is described in (Ma et al., 2009) where it is
referred to as NCM W

(1)
i , p = 1.5. In this chapter the algorithm is referred

to as NCM-BIF. Note that HuPOST was used during the development of
NCM-BIF.

Quasi-Stationary Speech Transmission Index

The quasi-stationary speech transmission index (QSTI) was proposed in
(Schwerin and Paliwal, 2014). The QSTI is a variation of the STI that uses
clean speech as the probe signal and averages the score over short-time
segments. In Schwerin and Paliwal (2014) the QSTI was reported to be
more strongly correlated with intelligibility than the traditional STI.

The implementation of the QSTI used in this chapter was obtained
from its developers webpage. Note that HuPOST, TaalPOST, and Kjem-
sITFS were used during the development of QSTI.

Short-Time Objective Intelligibility Measure

The short-time objective intelligibility measure (STOI) was proposed in
(Taal et al., 2011a) as an algorithm for predicting the intelligibility of time-
frequency weighted noisy speech. To compute STOI, a simple model of
the human auditory system is used to extract temporal envelopes of the
clean speech and the distorted speech for various frequency bands. The
temporal envelopes are segmented into short-time frames with a duration
of 386 ms and a clipping procedure is used to ensure that the SDR of each
frame is greater than −15 dB. STOI is calculated by computing Pearson’s
correlation coefficient between the clean and distorted envelopes for each
short-time frame and each frequency band and then taking the mean.

The implementation of STOI used in this chapter was obtained from
its developer’s webpage. Note that TaalPOST and KjemsITFS were used
during the development of STOI.
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Extended Short-Time Objective Intelligibility Measure

The extended short-time objective intelligibility measure (ESTOI) was pro-
posed in (Jensen and Taal, 2016) to address the finding that STOI performs
poorly for modulated noise sources (e.g., Gaussian noise that is ampli-
tude modulated by a sinusoid). Rather than computing the correlation
of the clean and distorted envelopes for short-time segments, ESTOI com-
putes the correlation between clean and distorted spectra so that ‘glimpses
of clean speech’ can be detected. Additionally, the clipping procedure in
STOI was removed to make the new model more mathematically tractable.

The implementation of ESTOI used in this chapter was obtained from
its developer’s webpage. Note that JensenPOST, JensenMOD, KjemsITFS,
and a data set similar to KjemsAN were used during the development of
ESTOI.

K-Nearest Neighbour Mutual Information Intelligibility Measure

The k-nearest neighbour (KNN) mutual information intelligibility mea-
sure (MIKNN) was proposed in (Taghia and Martin, 2014) while investi-
gating the use of information theoretical techniques for intelligibility pre-
diction. MIKNN uses the same representation of speech as STOI, how-
ever, rather than using the short-time correlation coefficient to quantify
distortion, MIKNN estimates the mutual information between the clean
and distorted temporal envelopes using a non-parametric estimator based
on k-nearest neighbours (Kraskov et al., 2004). One advantage of mutual
information is that unlike Pearson’s correlation coefficient, mutual infor-
mation can account for non-linear dependencies.

The implementation of MIKNN used in this chapter was obtained from
its developer’s webpage. Note that TaalPOST and KjemsITFS were used
during the development of MIKNN.
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Speech Intelligibility Prediction Based on Mutual Information

Similarly to MIKNN, the speech intelligibility prediction based on mutual
information measure (SIMI) (Jensen and Taal, 2014) is based on the hy-
pothesis that intelligibility is related to the mutual information between
the clean and distorted temporal envelopes. In contrast to MIKNN, SIMI
estimates a lower bound on the mutual information by assuming a para-
metric statistical model. Another important difference between SIMI and
MIKNN is that SIMI operates on short-time segments of 250 ms, whereas
MIKNN uses whole utterances. In Jensen and Taal (2014) SIMI was used
to justify some of the heuristic design decisions of STOI.

The implementation of SIMI used in this chapter was obtained from its
developer’s webpage. Note that JensenPOST, KjemsITFS, and a data set
similar to KjemsAN were used during the development of SIMI.

Speech Intelligibility in Bits

Speech intelligibility in bits (SIIB) is an information theoretic intelligibility
metric that was recently proposed in (Van Kuyk et al., 2018b). Similar to
MIKNN, a non-parametric mutual information estimator (Kraskov et al.,
2004) is used to estimate the information shared between a clean and dis-
torted speech signal.

There are three main differences between SIIB and MIKNN. First, SIIB
uses the Karhunen-Loève transform (KLT) (Karhunen, 1947) to reduce sta-
tistical dependencies between spectro-temporal regions, and thus reduces
overestimation of the information rate.

Second, SIIB accounts for ‘production noise’, which incorporates dif-
ferences in pronunciation between talkers. Importantly, production noise
causes the information rate of the communication channel to saturate
(Kleijn and Hendriks, 2015).

Third, SIIB uses an auditory model that more accurately accounts for
the frequency masking (Wegel and Lane, 1924) and temporal masking (Ox-
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enham, 2001) of the human auditory system. To account for frequency
masking, the temporal envelopes are extracted using an equivalent rectan-
gular bandwidth (ERB) gammatone filterbank (Slaney, 1993). To account
for temporal masking, the forward masking function suggested in (Rhe-
bergen et al., 2006) is used. Additionally, logarithmic compression is ap-
plied to the envelopes.

The end result of SIIB is an estimate of the information shared between
a talker and a listener in bits per second. Note that all of the data sets
considered in this chapter were used during the development of SIIB.

Speech-Based Envelope Power Spectrum Model with Short-Time Cor-
relation

The speech-based envelope power spectrum model forms the basis of
three intelligibility metrics: sEPSM (Jørgensen and Dau, 2011), mr-sEPSM
(Jørgensen et al., 2013), and sEPSMcorr (Relaño-Iborra et al., 2016). All of
the sEPSM metrics use the Hilbert transform and a gammatone filterbank
to extract temporal envelopes for different frequency bands. A second
bandpass filterbank called a modulation filterbank is then applied to each
envelope signal. This results in a multi-dimensional representation that
includes a time, frequency, and modulation dimension. Within this multi-
dimensional domain, sEPSM and mr-sEPSM quantify distortion using a
SNR metric, whereas sEPSMcorr quantifies distortion using short-time cor-
relation coefficients similarly to STOI. In this chapter only the most recent
metric is considered: sEPSMcorr.

Note that the output of sEPSMcorr increases as the duration of the stim-
ulus increases. This is a consequence of the ‘multiple looks’ strategy that
sEPSMcorr uses to integrate information over the time dimension. For
this reason, when comparing results from multiple data sets (i.e., for the
merged data sets), it is important that the duration of the stimuli is held
constant. In this chapter, when evaluating sEPSMcorr, all stimuli were trun-
cated to have a duration of 20 seconds.
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The implementation of sEPSMcorr used in this chapter was obtained
from its developers. Note that KjemsITFS was used during the develop-
ment of sEPSMcorr.

5.4 Modified Intelligibility Metrics

One of the goals of this chapter is to investigate why some intelligibility
metrics have higher performance than others. In this section we modify
existing intelligibility metrics so that effective strategies can be identified.

5.4.1 Investigating the effect of decorrelating input fea-

tures

The majority of the intelligibility metrics in the previous section quan-
tify distortion by comparing time and/or frequency local features. SIIB
and HASPI are exceptions to this. SIIB decorrelates log-spectra over the
time and frequency dimension using the KLT, and HASPI decorrelates log-
spectra over the frequency dimension using a cosine expansion similar to
the type-1 discrete cosine transform (DCT) (Rao and Yip, 1990). Recall that
for stationary signals the DCT asymptotically approximates the KLT.

To investigate the effect of decorrelating input features, SIIB and STOI
were modified to produce two intelligibility metrics denoted SIIBnoKLT and
STOIKLT. To compute SIIBnoKLT, the implementation of SIIB described in
(Van Kuyk et al., 2018b) was used, but the KLT was not applied. To com-
pute STOIKLT three changes are made to the original STOI implementation
(Taal et al., 2011a):

1. Instead of using temporal envelopes to represent speech signals,
log-temporal envelopes are used. To prevent singularities, a small
amount of uniformly distributed noise is added to the envelopes be-
fore applying the logarithm.
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2. The KLT is used to decorrelate the log-temporal envelopes over the
frequency dimension. To do so, the eigenvectors of the covariance
matrix of the clean log-temporal envelopes are computed.

3. Short-time correlation coefficients for the eigenchannels are com-
puted and then averaged to produce a final value. The short-time
segmentation approach in (Taal et al., 2011a) is used, but the clip-
ping procedure is not.

By comparing the performance of STOI with STOIKLT, and SIIB with
SIIBnoKLT the effect of decorrelating input features can be investigated.

5.4.2 Investigating the effect of the auditory model

The auditory model that is used to extract features could have a signifi-
cant impact on performance. To investigate this effect, the auditory model
used for STOIKLT (i.e., STOIs auditory model) was replaced with the au-
ditory model used by SIIB. The differences between the auditory models
are: 1) SIIB uses an ERB gammatone filterbank, whereas STOI uses a 1/3
octave band rectangular filterbank, 2) SIIB considers frequencies up to 8
kHz, whereas STOI considers frequencies up to 5 kHz, and 3) SIIB includes
a forward temporal masking function, whereas STOI does not. The result-
ing intelligibility metric is denoted STOIKLT

gamma.

5.4.3 Investigating the effect of mutual information esti-

mation

The majority of the intelligibility metrics in the previous section rely on
the correlation coefficient to quantify distortion. On the other hand, SIIB
and MIKNN use a non-parametric mutual information estimator. Recall
that if the clean and degraded signals are jointly Gaussian, then the mu-
tual information is a function of the correlation coefficient only. In Jensen
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and Taal (2014) this observation was used to justify the use of the correla-
tion coefficient. However, a direct comparison between the performance
obtained using a non-parametric mutual information estimator and the
performance obtained using the capacity of a Gaussian channel has not
been made.

To investigate the effect of mutual information estimation, SIIB was
modified to produce a simpler metric called SIIBGauss. The original SIIB al-
gorithm (Van Kuyk et al., 2018b) quantifies distortion using a KNN mutual
information estimator, whereas SIIBGauss uses the information capacity of
a Gaussian channel. Concretely,

SIIBGauss = − R

2K

∑

λ

log2(1− r2ρ2
λ), (5.1)

where R is the frame rate, K = 15 is the number of stacked log-spectra,
r = 0.75 is the production noise correlation coefficient, λ is the eigenchan-
nel index, and ρλ is the correlation coefficient between the λth clean eigen-
channel and the λth distorted eigenchannel. The values for R, K and r are
the same as those in (Van Kuyk et al., 2018b).

5.5 Performance Criteria

The key requirement of an intelligibility metric is that it has a strong mono-
tonic increasing relationship with intelligibility. This chapter uses two per-
formance criteria to quantify the strength of the relationship: Kendall’s tau
coefficient, τ , and Pearson’s correlation coefficient, ρ. Both performance
criteria are discussed below.

In the following, pc is the intelligibility in terms of percentage of words
correctly identified for condition c in a particular data set and d(xc, yc) is
the corresponding score computed by an intelligibility metric. The clean
signal xc is formed by concatenating all available clean sentences for con-
dition c and likewise for the distorted signal yc.
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5.5.1 Kendall’s tau coefficient

Kendall’s tau coefficient (Kendall, 1938), τ , measures the ordinal associ-
ation between two quantities. Let i and j be two conditions in a data
set where i 6= j. The pair formed by (wi, d(xi, yi)) and (wj, d(xj, yj)) is
concordant if both wi > wj and d(xi, yi) > d(xj, yj), or if both wi < wj

and d(xi, yi) < d(xj, yj). The pair is disconcordant if wi > wj and
d(xi, yi) < d(xj, yj) or if wi < wj and d(xi, yi) > d(xj, yj). Kendall’s tau
coefficient is given by

τ =
nC − nD
n(n− 1)/2

, (5.2)

where nC is the number of concordant pairs, nD is the number of discon-
cordant pairs, and n is the number of conditions in the data set. Kendall’s
tau coefficient ranges between −1 and 1. If τ = −1 then pc and d(xc, yc)

have a monotonic decreasing relationship, if τ = 1 they have a mono-
tonic increasing relationship, and if they are statistically independent then
τ = 0.

5.5.2 Pearson’s correlation coefficient

Pearson’s correlation coefficient, ρ, is defined as the normalised covari-
ance between two quantities. To use ρ effectively, the relationship between
the quantities must be linear. For this reason, a monotonic function f is
applied to d(xc, yc) to linearise the relationship before computing ρ. The
function f can be thought of as a mapping from the metric to predicted
intelligibility scores, but more generally it is simply a tool for quantifying
the strength of the relationship between d(xc, yc) and pc.

In the literature f is commonly assumed to be a logistic function, e.g.,
(Gordon-Salant and Fitzgibbons, 1995; Kates and Arehart, 2005; Taal et al.,
2011a):

f(d(xc, yc)) =
100

1 + ea(d(xc,yc)−b)
, (5.3)
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where b is the midpoint and a is the slope at the midpoint. These param-
eters are fitted to the data to minimise the mean squared error between pc
and f(d(xc, yc)).

In the literature ρ is sometimes also computed without applying a map-
ping function. However, we believe that such a measure is misleading be-
cause without f , a metric with a strong non-linear relationship between pc
and d(xc, yc) will have a small value for ρ, but could also have a monotonic
increasing relationship with intelligibility.

Note that pc depends on the experimental procedures used to measure
intelligibility, but that d(xc, yc) does not. For example, the intelligibility of
a given stimulus can be increased by changing an open listening test to
a closed listening test1. It follows that the relationships between intelligi-
bility and intelligibility metrics also depend on experimental procedures.
For this reason, f is fit individually to each data set. Pearson’s correlation
coefficient is calculated according to

ρ =

∑
c(pc − w̄c)(f(d(xc, yc))− f̄(d(xc, yc)))√∑

c(pc − w̄c)2
∑

c(f(d(xc, yc))− f̄(d(xc, yc)))2

, (5.4)

where the overbar is used to denote the mean over all conditions in the
data set. Finally, because the relationship between an intelligibility metric
and intelligibility should be monotonically increasing, negative values of
ρ and τ are set to zero.

5.6 Results

Scatter plots for all data sets described in Section II and all pre-existing
intelligibility metrics described in Section III are displayed in Figure 5.1.

1In a closed listening test, subjects are given a list of possible speech sounds, e.g.,
phones or words, and are asked to identify the sounds that they heard. In an open listen-
ing test, no list is provided, which makes the test more difficult.



124 CHAPTER 5. AN EVALUATION OF INTELLIGIBILITY METRICS
Je
ns
en
M
O
D

0

50

100
icra

sin

noisex

Sa
nt
os
R
E
V

0

50

100
noise

reverb

both

K
je
m
sA
N

0

50

100 ssn

cafe

car

bottles

K
je
m
sI
T
F
S

0

50

100

T
aa
lP
O
ST

0

50

100

pro

un

Je
ns
en
P
O
ST

0

50

100

pro

un

H
en
dr
ik
sP
R
E

0

50

100

K
le
ijn
P
R
E

0

50

100

pro

un

C
oo
ke
P
R
E

0

50

100

talk

ssn

K
ha
de
m
iJ
O
IN
T

0

50

100

D
ut
ch
M
R
G

0

50

100 jensen

hend

kleijn

khad

SII

D
an
ta
le
M
R
G

0

50

100

HEGP NCM-BIF QSTI CSII-MID MIKNN sEPSMcorr STOI ESTOI HASPI SIIB

itfs

an

post

H
uP
O
ST

0

50

100

in
te
ll
ig
ib
il
it
y,

%

SIMI

normalized score

Figure 5.1: Scatter plots for all data sets and pre-existing intelligibility
metrics. The vertical axis is the ’ground-truth’ intelligibility in terms of
the percentage of words correctly identified during listening tests, and the
horizontal axis is the score computed by an intelligibility metric. The hor-
izontal axis of each plot has been normalised to be between 0 and 1. Each
data point corresponds to a processing condition. The mapping function
in (5.3) is also shown.

Each row of plots corresponds to a data set and each column of plots cor-
responds to an intelligibility metric. The vertical axis of each scatter plot
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is the ’ground-truth’ intelligibility in terms of the percentage of words cor-
rectly identified during listening tests, and the horizontal axis is the score
computed by an intelligibility metric. To facilitate an easy visual compar-
ison, the horizontal axis of each scatter plot is normalised to be between
0 and 1. Each point on a scatter plot corresponds to a condition in the
respective data set. The function in (5.3) that was used to linearise the re-
lationship between the intelligibility scores and the metric for each data
set is also shown. For an ideal intelligibility metric, all points would fall
exactly on top of the fitted curve.

The labels ‘icra’, ‘sin’, ‘noisex’, ‘noise’, ’reverb’, ‘both’, ‘ssn’, ‘cafe’, ‘car’,
‘bottles’, ‘talk’, and ‘ssn’ in Figure 5.1 indicate the type of environmental
degradation in the data set. The labels ‘pro’ and ‘un’ indicate whether
a stimulus was processed by an enhancement algorithm or was unpro-
cessed. The labels ‘jensen’, ‘hend’, ‘kleijn’, ‘khad’, ‘itfs’, ‘an’, and ‘post’
refer to individual data sets within the merged data sets.

Table 5.3 displays Kendall’s tau coefficient for all data sets and intelli-
gibility metrics and, similarly, Table 5.4 displays Pearson’s correlation co-
efficient. In both tables, an asterisk is used to indicate when a data set was
used during the development of an intelligibility metric. For the remain-
der of the chapter, ’unseen’ refers to a data set that was not used during
development, and ’seen’ refers to a data set that was used during devel-
opment. The mean performance of each intelligibility metric and a confi-
dence interval, [CIlow, CIhigh], with 95% coverage of the mean performance
is also included. The confidence intervals were calculated using the non-
parametric BCa bootstrap approach (Efron, 1987). To do so, 5000 bootstrap
sample sequences of pc and d(xc, yc) were generated for each data set and
intelligibility metric. The sample distribution of the mean performance of
each intelligibility metric was then estimated from the bootstrap sample
sequences.

From here on, subscripts are used to indicate performance criteria for
particular intelligibility metrics. For example, ρSIIB, refers to the correla-
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Table 5.3: Performance in terms of Kendall’s tau coefficient, τ , for all data
sets and intelligibility metrics. The intelligibility metrics are listed in order
of mean performance and are grouped by pre-existing metrics (left) and
modified metrics (right).
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Table 5.4: Performance in terms of Pearson’s correlation coefficient, ρ, for
all data sets and intelligibility metrics. The intelligibility metrics are listed
in order of mean performance and are grouped by pre-existing metrics
(left) and modified metrics (right).
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tion coefficient that SIIB achieved on some data set.

5.6.1 Remarks for the pre-existing metrics

It is clear that out of the pre-existing metrics SIIB and HASPI have the
highest performance overall, on average achieving τSIIB = 0.79 and ρSIIB

= 0.92, and τHASPI = 0.76 and ρHASPI = 0.89. This performance is followed
closely by ESTOI, which has an average score of τESTOI = 0.72 and ρESTOI

= 0.86. HEGP has high performance for data sets distorted by additive
noise achieving an average score of τHEGP = 0.73 and ρHEGP = 0.89, but
its usefulness is limited to situations where noise is the main source of
degradation and where the noise signal is available.

The top performance rating of SIIB may be criticized on the grounds
that SIIB has been ‘over-designed’ for the data sets in this evaluation. Al-
though the parameters of SIIB were not intentionally optimised for the
data sets in this chapter, the developers of SIIB were the only researchers
with access to all the data sets and thus had greater opportunity to re-
design their algorithm when weaknesses were exposed during SIIBs de-
velopment.

Many of the intelligibility metrics performed poorly on HendriksPRE.
This is likely due to the large T60 time of the room impulse response that
causes severe reverberant distortion. As shown in Figure 5.2, the large T60
time somewhat ‘blurs’ the time-alignment of clean and degraded temporal
envelopes. Many intrusive intelligibility metrics require that the clean and
degraded signals are strictly time-aligned, and thus are over-sensitive to
temporal blurring. Out of all the intelligibility metrics in this evaluation,
HASPI achieved the highest performance for HendriksPRE (τHASPI = 0.78,
ρHASPI = 0.92) and is also the only intelligibility metric that included time-
alignment processing.

Recall that HASPI is computed as a linear combination of four terms:
the cepstral correlation, and three auditory coherence terms. The weights
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Figure 5.2: An example of a clean and degraded stimulus from Hen-
driksPRE. The severe reverberant distortion ’blurs’ the time-alignment be-
tween the stimuli.

in the linear combination were optimised for each data set to maximise
performance. None of the other intelligibility metrics modify their param-
eters based on the data, suggesting that the high performance of HASPI
may be attributed to overfitting. To test this hypothesis, HASPI was com-
puted simply by summing the cepstral correlation term and the high-
energy auditory coherence term with equal weight. Doing so reduced the
mean performance of HASPI to τHASPI = 0.73 and ρHASPI = 0.88, which is
still very high. Thus, the high performance of HASPI is unlikely the result
of overfitting.

Another criteria that can be used to evaluate performance is whether a
metric gives consistent predictions across classes of distortions. For exam-
ple, CookePRE has two distinct classes: stimuli degraded by a competing
talker, and stimuli degraded by SSN. Metrics may give consistent intelli-
gibility predictions within a class, but could give inconsistent predictions
between classes. An example of this can be seen in the scatter plot corre-
sponding to STOI and DutchMRG. STOI gives consistent predictions for
JensenPOST, KleijnPRE, and KhademiJOINT, but when the data sets are
merged together we see distinct clusters corresponding to each data set.
This means that for a given clean stimulus, a STOI score of 0.5 for noise-
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Table 5.5: Mean performance of pre-existing intelligibility metrics for
’seen’ and ’unseen’ data sets.

SI
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M

IK
N

N
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M

I

sE
PSM

co
rr

ST
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H
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I
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IB

mean τ seen − 0.72 0.67 0.69 − 0.77 0.84 0.70 0.87 0.78 − 0.79

mean τunseen 0.57 0.73 0.46 0.45 0.63 0.63 0.60 0.66 0.66 0.69 0.76 −

mean ρseen − 0.90 0.89 0.86 − 0.92 0.95 0.84 0.97 0.93 − 0.92

mean ρunseen 0.72 0.88 0.56 0.60 0.78 0.78 0.78 0.82 0.80 0.84 0.89 −

reduced speech and a STOI score of 0.5 for pre-processed speech could
correspond to different intelligibility scores.

5.6.2 Investigating the performance in terms of

generalisation

Considering only entries in Table 5.3 and Table 5.4 that have an asterisk,
the mean performance of all such entries for all pre-existing metrics and
data sets is τ = 0.78 and ρ = 0.92. Considering only entries that do not
have an asterisk, the mean performance for all pre-existing metrics and
data sets is τ = 0.62 and ρ = 0.76. This result demonstrates that, in general,
intelligibility metrics have high performance for seen data sets, and poor
performance for unseen data sets.

To further investigate the performance of intelligibility metrics in terms
of their ability to generalise, Table 5.5 displays the mean performance for
unseen data sets and seen data sets for each pre-existing intelligibility met-
ric. HASPI has the highest performance for unseen data sets achieving
τunseen

HASPI = 0.76 and ρunseen
HASPI = 0.89. HEGP also has high performance for un-

seen data sets, however, recall that HEGP was evaluated exclusively on
data sets with additive noise degradation.

STOI and SIMI both have outstanding performance for seen data sets
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(τ seen
STOI = 0.87, ρseen

STOI = 0.97, and τ seen
SIMI = 0.84, ρseen

SIMI = 0.95), but poor perfor-
mance for unseen data sets (τunseen

STOI = 0.66, ρunseen
STOI = 0.80, and τunseen

SIMI = 0.60,
ρunseen

SIMI = 0.78). This is because STOI and SIMI were specifically designed
for speech processed by ITFS and noise-reduction algorithms, whereas the
data sets in this evaluation include degradation caused by reverberation
and modulated noise sources. Similarly, NCM-BIF was designed specifi-
cally for speech processed by noise-reduction algorithms. Observe that in
Figure 5.1 NCM-BIF has good performance for the data sets with noise-
reduction: HuPOST, JensenPOST, and TaalPOST, but poor performance
for the remaining data sets. These results show the danger of using intel-
ligibility metrics outside of their intended domain.

In light of the above paragraphs, to ensure that future intelligibility
metrics generalise to new data sets and give consistent predictions be-
tween classes, it may be more beneficial to gather data points with dif-
ferent types of degradation than to collect many data points for a sin-
gle type of degradation. This notion is consistent with the high perfor-
mance of HASPI, which considered six types of degradation during devel-
opment: additive noise, envelope-clipping, ITFS processing, frequency-
compression, noise reduction, and vocoded-speech.

5.6.3 Remarks for the modified intelligibility metrics

In general, removing the KLT from SIIB significantly reduced perfor-
mance (on average τSIIBno KLT = 0.69 and ρSIIBno KLT = 0.85). Further-
more, introducing the KLT to STOI improved performance (on average
τSTOIKLT = 0.73 and ρSTOIKLT = 0.88). The increase in overall performance
for STOIKLT is mainly due to large increases in performance for Jensen-
MOD, HendriksPRE, and CookePRE. Note that STOIKLT performs worse
than STOI for KjemsITFS and TaalPOST, however, these are the same data
sets that were used to tune the parameters of STOI during STOIs develop-
ment.
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The five intelligibility metrics with the highest performance: SIIB,
SIIBGauss, STOIKLT

gamma, HASPI, and STOIKLT are also the only metrics that
decorrelate log-spectra. This outcome clearly demonstrates the advantage
that can be obtained by reducing the statistical dependencies between in-
put features.

Recall that ESTOI was proposed as an extension to STOI that can ’lis-
ten to glimpses of clean speech’. Interestingly, for the data sets that contain
modulated noise, STOIKLT has similar performance to ESTOI (for Jensen-
MOD, τSTOIKLT = 0.72, ρSTOIKLT = 0.90, and for CookePRE, τSTOIKLT = 0.87,
ρSTOIKLT = 0.96). SIIB and SIIBGauss, which are based on long-term statis-
tics, also have good performance for JensenMOD and CookePRE. Such
results contest the idea that short-time segmentation is necessary for pre-
dicting the intelligibility of modulated noise sources.

On average STOIKLT
gamma achieved τSTOIKLT

gamma
= 0.76 and ρSTOIKLT

gamma
= 0.91.

Thus, by introducing the KLT to STOI and using a more realistic audi-
tory model, performance competitive with SIIB could be obtained. This
means that for some representations of speech signals, the correlation co-
efficient and the KNN mutual information estimator can quantify dis-
tortion equally well. A partial explanation for this result can be found
by considering the high performance of SIIBGauss (ρSIIBGauss = 0.92 and
τSIIBGauss = 0.79), which suggests that the Gaussian communication chan-
nel is a reasonable approximation of the true communication channel for
many real-word distortions.

Finally, recall that SIIBGauss = − F
2K

∑
j log2(1− r2ρ2

j). Since r and ρj are
between -1 and 1, the product of their squares is likely to be small, partic-
ularly for challenging listening environments. Using the approximation
log2(1 + a) ≈ a/ ln(2) for small a, we have that SIIBGauss ≈ F

2K ln(2)
r2
∑

j ρ
2
j .

This approximation strongly resembles the distortion measure used by
STOIKLT and STOIKLT

gamma, which can be written as
∑

j

∑
t ρj,t, where t is the

short-time segment index.
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5.7 Summary of Chapter

In this chapter, the accuracy of 12 intelligibility metrics from the literature
was evaluated using the results of 11 listening tests. The stimuli included
pre-processing enhancement, post-processing enhancement, and environ-
mental distortions such as noise and reverberation. In order to analyse
why the top performing metrics have high performance, four new intelli-
gibility metrics were proposed. The main conclusions are as follows.

1. Out of the pre-existing metrics, SIIB and HASPI had the highest over-
all performance.

2. Many intrusive metrics struggle with severe reverberant distortion.
This may be because they are over-sensitive to the time-alignment of
clean and distorted temporal envelopes.

3. In general, intelligibility metrics perform more poorly on unseen
data sets than on seen data sets. For this reason, caution should be
taken when using intelligibility metrics outside of their intended do-
main.

4. For unseen data sets, HASPI had the highest performance. This sug-
gests that HASPI is appropriate for situations where many types of
potentially new speech material and distortions are likely. Addition-
ally, unlike the other metrics, HASPI has built-in time-alignment pro-
cessing and can account for hearing impairments.

5. The five intelligibility metrics with the highest overall performance
are also the only metrics that decorrelate log-spectra. On average,
introducing the KLT to STOI improved performance and removing
the KLT from SIIB reduced performance. These results demonstrate
the advantage of removing statistical dependencies between input
features.
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6. The high performance of SIIBGauss suggests that the Gaussian com-
munication channel is a reasonable approximation of the true com-
munication channel for many real-world distortions. Additionally,
SIIBGauss has performance similar to SIIB, but takes less time to com-
pute by two orders of magnitude.2

7. It was shown that STOIKLT and STOIKLT
gamma can be interpreted as ap-

proximations of SIIBGauss.

2MATLAB implementations of SIIBGauss and SIIB are available at
www.stevenvankuyk.com/MATLAB code



Chapter 6

Estimating Mutual Information
Using Siamese Networks

In Chapter 3 and Chapter 4 the information rate of the speech production
channel I({mt}; {xt}) was estimated, where {mt} is a hypothetical mes-
sage and {xt} is speech produced by a talker that has been processed by
an auditory model. For the proposed communication model, the mutual
information rate depends only on the mutual information between mK

and xK , which are obtained by stacking K consecutive vectors of {mt}
and {xt}, respectively. To estimate the mutual information I(mK ; xK),
several assumptions about the probability distribution P (mK ,xK) were
made. Specifically, mK and xK were assumed to be jointly Gaussian, in
which case the production noise is modelled as additive Gaussian noise.
To account for statistical dependencies between time-frequency units, an
invertible transform q was introduced. For Gaussian random variables,
the KLT is a reasonable function for q.

The proposed communication model led to a state-of-the-art intelligi-
bility metric that can accurately predict intelligibility for a wide range of
real-world distortions. However, the resulting estimate of the informa-
tion rate of speech communication remains larger than the lexical infor-
mation rate described in Section 2.2. This suggests that some of the as-

135
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sumptions made during the development of the model may over-simplify
speech communication.

The approach proposed in the present chapter extends the work of the
previous chapters by removing the assumption that mK and xK are jointly
Gaussian. Instead, this chapter considers a family of functions for the
transform q and finds a q such that q(xK) ∼ N (0, I). Doing so facilities
estimation of the information rate of speech communication. To find an
appropriate function for q, techniques from deep learning are relied on.
Specifically, a Siamese neural network (Bromley et al., 1994; Chopra et al.,
2005) and Maximum Mean Discrepancy (MMD) (Gretton et al., 2007) are
used.

Unlike the previous chapters, the work in this chapter has not been
published or peer-reviewed. In addition, this chapter does not use real-
world data. Instead, theory is developed and the approach is demon-
strated on artificial examples. The work in this chapter should thus be
viewed as a preliminary study that could be refined and then applied to
real-world data as a future research topic.

Finally, this chapter uses simplified notation. First, all time indices are
removed, which is reasonable because the stochastic processes are station-
ary. Second, this chapter does not consider the mutual information rate.
Instead, this chapter focuses on mutual information. As shown in the pre-
vious chapters, it is easy to extend the analysis from mutual information
to mutual information rate by stacking consecutive vectors. Thus, in this
chapter, the message vector is denoted by m, the speech vector is denoted
by x, and the mutual information of the speech production channel is de-
noted I(m; x).
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6.1 Mutual Information Estimation as an

Optimisation Problem

It is well known that given some target probability distribution Ptarget and
a continuous random variable x, a deterministic function q exists such that
q(x) ∼ Ptarget (Kallenberg, 2006). In other words a random variable can
be transformed such that the transformed random variable is distributed
according to some target distribution.

The fundamental principle of the method proposed in this chapter is
to convert the speech vector, x, into a zero-mean multivariate Gaussian
random variable with statistically independent vector elements. We call
the converted speech the latent variable and it is given by z = q(x) for
some deterministic function q. Given that z is Gaussian, the estimation of
mutual information can be considerably simplified.

Because q is deterministic, m→ x→ z forms a Markov chain. Further-
more, due to the data processing inequality (Cover and Thomas, 2012), we
have that I(m; x) ≥ I(m; z), with equality if q is invertible. Thus, estimat-
ing the mutual information of the message and the latent variable provides
a way to estimate the mutual information of the message and the speech
without placing assumptions on the joint distribution P (x,m).

Concretely, our goal is to solve the following optimisation problem:

maximise
q

I(m; z)

subject to z ∼ N (0, I),
(6.1)

where z = q(x). In practice, q is selected from a family of functions param-
etised by a vector θ. To this end, q is implemented by a feedforward neural
network with weights and biases denoted by θ. From here on, qθ denotes
the neural network.

In the following, the above optimisation problem is reformulated and
a differentiable Lagrangian function is derived. The Lagrangian is used to
find local optima by using stochastic gradient descent and back-propagation to
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learn the values for θ.

6.1.1 Maximum Mean Discrepancy

One way to enforce the constraint in (6.1) that z ∼ N (0, I) is to use Max-
imum Mean Discrepancy (MMD) (Gretton et al., 2007). MMD is distance
measure for probability distributions that was originally proposed as a
non-parametric test statistic for the two-sample problem. Given two sets
of observations from two probability distributions, the two-sample prob-
lem is a statistical test of the null hypothesis that the two distributions are
equal against the alternative hypothesis that the distributions are different.

More recently, MMD has been used in deep learning to constrain a la-
tent variable to have a desired target distribution (e.g., Dziugaite et al.,
2015; Zhao et al., 2018; Braithwaite and Kleijn, 2018). Let P (z) be the prob-
ability distribution of the latent variable z and let Ptarget be the target dis-
tribution. For the optimisation problem in (6.1) the target distribution is
N (0, I). It can be shown that MMD is zero if and only if z ∼ Ptarget. Thus,
the constraint in (6.1) can be replaced with the constraint that MMD = 0.
In practice, it is not possible to make MMD exactly zero using neural net-
works because there is always some statistical noise, but this is unlikely to
cause major problems.

MMD is based on functions in the unit ball of a reproducing kernel
Hilbert space. Let {z(1), z(2), . . . ,z(N)} denote a set of N independent sam-
ples from P (z) and let {v(1),v(2), . . . ,v(N)} denote a set of N independent
samples from Ptarget. An unbiased empirical estimate of MMD2 is given by
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(Dziugaite et al., 2015)

MMD2 =
1

N(N − 1)

∑

n6=n′
k(z(n), z(n′))

+
1

N(N − 1)

∑

m 6=m′
k(v(m),v(m′))

− 2

N2

N∑

m=1

N∑

n=1

k(z(n),v(m)),

(6.2)

where k is a kernel function. As is conventional, in this chapter a Gaussian
kernel is used:

k(zn, zn′) = exp

(−||zn − zn′ ||22
σ2

)
, (6.3)

where σ2 is the kernel bandwidth. For more information on the theoretical
properties and motivation of MMD see Gretton et al. (2007), and for more
details on training neural networks using MMD see Dziugaite et al. (2015).

6.1.2 Mutual Information

We are interested in maximising I(m; z) because, due to the data process-
ing inequality, I(m; z) is a lower bound for I(m; x). In this section, a
lower bound for I(m; z) is developed. By maximising the lower bound
of I(m; z), I(m; x) can be estimated.

The mutual information between m and z is given by

I(m; z) = h(z)− h(z|m), (6.4)

where h(z) is the differential entropy of the latent variable and h(z|m) is
conditional differential entropy of the latent variable given the message.

Because z is constrained to be Gaussian with statistically independent
vector elements, the differential entropy h(z) is given by

h(z) =
∑

λ

1

2
log2 2πevar(zλ), (6.5)
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where zλ is the λ’th vector element of z. Note that when the constraint in
(6.1) is satisfied, var(zλ) = 1 for all λ.

Because the elements of z are constrained to be statistically indepen-
dent, the conditional differential entropy h(z|m) is given by

h(z|m) =
∑

λ

h(zλ|m). (6.6)

From the definition of conditional differential entropy, we have that:

h(zλ|m) =

∫

m

P (m)h(zλ|m)dm (6.7)

= −
∫

m

P (m)

∫

zλ

P (zλ|m) log2 P (zλ|m)dtλdm. (6.8)

Recall that, for a fixed variance, −
∫
zλ
P (zλ|m) log2 P (zλ|m)dtλ is max-

imised when P (zλ|m) is Gaussian; in which case it is equal to
1
2

log2

(
2πe var(zλ|m)

)
(Cover and Thomas, 2012). Moreover, because log2

is a concave function, Jensen’s inequality (Cover and Thomas, 2012) can
be used to move the expectation over m inside the logarithm. Concretely,
an upper bound for h(z|m) is given by

h(z|m) =
∑

λ

h(zλ|m) (6.9)

≤
∑

λ

∫

m

P (m)
1

2
log2

(
2πe var(zλ|m)

)
dm (6.10)

≤
∑

λ

1

2
log2

(
2πe

∫

m

P (m)var(zλ|m)dm

)
. (6.11)

Combining (6.4), (6.5), and (6.11) gives the following lower bound for
the mutual information:

I(m; x) ≥ I(m; z) (6.12)

≥
∑

λ

1

2
log2

var(zλ)∫
m
P (m)var(zλ|m)dm

, (6.13)

, Iqθ (6.14)
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where we recall that the first inequality follows from the data process-
ing inequality. In Section 6.2 it is shown that, given an appropriate data
set, a Siamese neural network architecture can be used to easily estimate
the expected conditional variance

∫
m
P (m)var(zλ|m)dm, which makes the

lower bound Iqθ convenient for optimisation.

6.1.3 The Lagrangian

Using the derivations from the preceding sections, the optimisation prob-
lem in (6.1) can be reformulated as:

minimise
θ

−
∑

λ

1

2
log2

var(zλ)∫
m
P (m)var(zλ|m)dm

subject to MMD2 = 0,

(6.15)

where we recall that z = qθ(x), and zλ is λ’th element of z.
The Lagrangian function for (6.15) is given by

L(θ, β) = βMMD2 −
∑

λ

1

2
log2

var(zλ)∫
m
P (m)var(zλ|m)dm

, (6.16)

where β > 0 is a Lagrange multiplier. If (6.15) were a convex optimisation
problem, then the Lagrangian dual problem supβ infθ L(θ, β) would give a
global optima for (6.15) (Boyd and Vandenberghe, 2004). However, (6.15)
is not a convex problem because the equality constraint is not affine. Even
so, infθ L(θ, β) can be used to find local optima for some value of β. In this
case, β can be interpreted as a hyper-parameter that controls the penalty
of using a solution where the probability distribution of z is not N (0, I)

(e.g., Fletcher, 1975; Smith and Coit, 1997).

6.2 Implementation

This section describes our implementation of the proposed approach for
estimating mutual information. In order to compute an empirical estimate
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of the mutual information lower bound in (6.15), an empirical estimate of∫
m
P (m)var(zλ|m)dm is computed.

To estimate the conditional variance, var(tλ|m), a Siamese neural net-
work architecture (Bromley et al., 1994; Chopra et al., 2005) is relied on. A
Siamese neural network consists of two-identical sub-networks, i.e., two
exact copies of qθ with the same weights and biases. During training,
two samples are independently drawn from P (x|m) for some message
m = m. Let x[1] and x[2] denote the two samples. One of the sub-networks
is applied to x[1] and the other sub-network is applied to x[2]. The output
of the two sub-networks are denoted z[1] and z[2]. Specifically,

z[1] = qθ(x
[1]) (6.17)

and

z[2] = qθ(x
[2]). (6.18)

By definition, the conditional variance var(zλ|m) is

var(zλ|m) = Ezλ [(tλ − Ezλ [zλ|m])2 |m]. (6.19)

Using z[1] and z[2], an empirical estimate of var(zλ|m) is

σ̂2
zλ|m =

1

2

(
t
[1]
λ −

z
[1]
λ + z

[2]
λ

2

)2

+
1

2

(
z

[2]
λ −

z
[1]
λ + z

[2]
λ

2

)2

(6.20)

=
1

2

(
z

[1]
λ − z

[2]
λ

)2

, (6.21)

where z[1]
λ and z

[2]
λ are the λ’th elements of z[1] and z[2], respectively. This

shows that the conditional variance of the latent variable given a particu-
lar message can be computed as half the squared error of the two outputs
of the Siamese network, where the two inputs to the Siamese network are
generated using the same message. If more than two copies of qθ were
used, then a more accurate estimate of var(zλ|m) could be obtained, how-
ever, this would place a larger burden on collecting training data.
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Let {x[1](1),x[2](1), . . . ,x[1](n),x[2](n), . . . ,x[1](N),x[2](N)} denote a
mini-batch of N training examples where the superscript (n) de-
notes the n’th pair of training examples in the mini-batch. Similarly, let
{z[1](1), z[2](1), . . . ,z[1](n), z[2](n), . . . ,z[1](N), z[2](N)} denote the output of the
neural network for each training example in the mini-batch. Using (6.2),
and (6.21), a differentiable empirical estimate of the Lagrangian in (6.16)
is given by

L̂(θ, β) =
β

N(N − 1)

∑

n6=n′
k(z[1](n), z[1](n′))

+
β

N(N − 1)

∑

n 6=n′
k(v(n),v(n′))

− 2β

N2

N∑

n=1

N∑

n′=1

k(z[1](n),v(n′))

−
∑

λ

1

2
log2

(
1

N

∑

n

(
z

[1](n)
λ − 1

N

∑

n′

z
[1](n′)
λ

)2
)

+
∑

λ

1

2
log2

(
1

N

∑

n

1

2

(
z

[1](n)
λ − z[2](n)

λ

)2
)
,

(6.22)

where we recall that θ denotes the parameters of the neural network, β
is a Lagrange multiplier, k is a Gaussian kernel, each v(n) is indepen-
dently sampled from Ptarget, λ is the latent vector index, 1

N

∑
n(z

[1](n)
λ −

1
N

∑
n′ z

[1](n′)
λ )2 is an empirical estimate of var(zλ), and 1

N

∑
n

1
2
(z

[1](n)
λ −

z
[2](n)
λ )2 is an empirical estimate of

∫
m
P (m)var(zλ|m)dm. In the following

section, several experiments that demonstrate our approach are provided.

6.3 Experiments

This section describes three artificial experiments that demonstrate the
proposed approach for estimating mutual information. For all experi-
ments, training data sets were created by sampling 40000 message vectors
m from P (m). For each message vector, 20 speech vectors were sampled
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from P (x|m). This simulates having 20 talkers uttering each of the 40000
messages. The conditional distribution P (x|m) that was used to gener-
ate the data set was different for each experiment and is described in the
following sections.

For all the experiments, the Adam variant (Kingma and Ba, 2014) of
stochastic gradient descent was applied to the empirical estimate of the La-
grangian in (6.22). At the start of each training epoch, the training data was
randomly split into b40000/Ncmini-batches, where for each of the N mes-
sages in a mini-batch two of the 20 speech vectors were randomly selected
as inputs to the Siamese network. The mini-batch size was N = 1024, the
learning rate was 0.0005, and the number of epochs was 2000, except for
Experiment 3, where the number of epochs was increased to 10000. The
neural network qθ consisted of two fully connected feed-forward layers
each with 200 ReLU, and a third fully connected linear layer with D out-
put units. The Lagrange multiplier was set to β = 5000. Using a large
value for β is necessary to enforce the constraint that the latent vector is
Gaussian. The kernel bandwidth for MMD was σ2 = 2D.

6.3.1 Experiment 1

For the first experiment, the message vectors m ∈ R4 were sampled from
N (0, I). The speech vectors x ∈ R10 were created by linearly embedding
the message vectors into R10 and then adding Gaussian production noise
p ∈ R10. Specifically, the following model was used:

x = Em + p (6.23)

where the embedding matrixE ∈ R10×4 was randomly selected at the start
of the experiment and p ∼ N (0, I). At the start of the experiment, each
element of E, denoted Ei,j , was selected by sampling N (0, η2

i ) where the
variance for each row i is given by the i’th element of the vector

η2 =
1

4
[0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.25, 2.5]∗.
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Figure 6.1: Comparison of approaches for estimating mutual information
for Experiment 1. The proposed approach, Iqθ , gives a reasonable estimate
provided that the number of latent dimensions is large enough.

It can be shown that the mutual information for this statistical model is
given by (Appendix A.4)

I(m; x) =
1

2
log2 det(EE∗ + I). (6.24)

In Experiment 1, six neural networks were trained where the size of
the latent vector z was D = 2, 3, 4, 5, 6 and 8. Figure 6.1 plots the mu-
tual information against the size of the latent vector D for each network
after training. I(m; x) is the true mutual information, Iqθ is an estimate
of the lower bound in (6.13) that qθ is trained to maximise, InoTransform is
an estimate of the mutual information obtained by applying the method
from Chapter 3 to the training data, and IKLT is an estimate of the mutual
information obtained using the KLT for q, like in Chapter 4.

We see that if the size of the latent vector is smaller than the number of
message features, i.e., D < 4, then the approach proposed in the present
chapter underestimates I(m; x). This behaviour is to be expected. If the
number of independent features in the latent space is less than the number
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Figure 6.2: Expected value of the conditional variance for each latent di-
mension for a trained neural network. Latent dimensions where the ex-
pected value of the conditional variance is 1 provide no information about
the message.

of independent message features, then qθ does not have enough capacity to
retain all the information about m. For D ≥ 4, qθ is effective at removing
the statistical dependencies in x, which leads to an accurate estimate of
I(m; x).

Note that InoTransform overestimates I(m; x). That is because no trans-
form is used to account for the statistical dependencies in x.

Also note that IKLT provides an accurate estimate of I(m; x). That is
because for this experiment, x and m are jointly Gaussian, in which case
the KLT provides the optimal solution.

Further insight can be gained by plotting the expected value of the
conditional variance for each dimension of the latent variable. Figure 6.2
shows such a plot for the neural network with D = 8. For four of the la-
tent dimensions, the expected value of the conditional variance is close to
it’s maximum value of 1. That means that these dimensions of the latent
variable provide almost no information about the message. Specifically,
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they do not contribute to the sum in (6.13). The remaining four latent di-
mensions have low expected conditional variance, which means they do
provide information about the four message features.

6.3.2 Experiment 2

For the second experiment, the same statistical model that was used to
generate the training data for Experiment 1 was used. However, for Ex-
periment 2, the size of the latent variable was D = 6 and p ∼ N (0, φ2I),
where the production noise variance was φ2 = 0.5, 1.0, 2.0, 4.0, 8.0, and
16.0. For each value of φ2, a new training data set was generated and a
new neural network was trained. The same embedding matrix E ∈ R10×4

was used for all of the data sets. It can be shown that the mutual informa-
tion for this statistical model is (Appendix A.4)

I(m; x) =
1

2
log2

det(EE∗ + φ2I)

(φ2)10
. (6.25)

Figure 6.3 plots I(m; x), Iqθ , InoTransform, and IKLT against the produc-
tion noise variance φ2. We see that the approach proposed in the present
chapter, Iqθ , provides an accurate estimate of I(m; x) for all the values of
φ2.

6.3.3 Experiment 3

For the third experiment, the message vectors m ∈ R4 were sampled
from N (0, I). However, unlike Experiment 1 and Experiment 2, the mes-
sage vectors were embedded into x ∈ R10 using a non-linear embedding.
Specifically, the following model was used:

a = Em + p (6.26)

b = [a2
1, a

2
2, a

2
3, a

2
4, a

2
5]∗ (6.27)

x = [a∗,b∗]∗, (6.28)
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Figure 6.3: Comparison of approaches for estimating mutual information
for Experiment 2. The proposed approach, Iqθ , gives a reasonable estimate
of mutual information for all values of production noise that were consid-
ered.

where E ∈ R5×4 is an embedding matrix, b is obtained by squaring each
element in a, x is obtained by concatenating a and b, and ∗ denotes the
transpose. For this model, some of the elements of x are non-linearly de-
pendent with the other elements and are non-Gaussian.

Similarly to the previous experiments, at the start of the Experiment 3,
each element of E, denoted Ei,j , was selected by sampling N (0, η2

i ) where
the variance for each row i is given by the i’th element of the vector

η2 =
1

4
[1, 2, 3, 4, 5]∗.

The size of the latent variable was D = 6 and p ∼ N (0, φ2I), where the
production noise variance was φ2 = 0.5, 1.0, 2.0, and 4.0. It can be shown
that the mutual information for this statistical model is (Appendix A.4)

I(m; x) =
1

2
log2

det(EE∗ + φ2I)

(φ2)5
. (6.29)

Figure 6.4 plots I(m; x), Iqθ , InoTransform, and IKLT against the production
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Figure 6.4: Comparison of approaches for estimating mutual information
for Experiment 3. InoTransform and IKLT overestimate the mutual informa-
tion because they cannot account for non-linear dependencies.

noise variance φ2. We see that the approach proposed in the present chap-
ter, Iqθ , provides a reasonable estimate of I(m; x), whereas InoTransform, and
IKLT overestimate the mutual information because they do not account for
the non-linear dependencies in the speech vector and are based on the
false assumption that P (m; x) is Gaussian.

6.4 Summary of Chapter

This chapter proposed a new method for estimating the mutual informa-
tion of the speech production channel I(m; x) that does not make assump-
tions about the joint distribution P (m; x) and does not require realisations
of m. Instead, the proposed approach considers mutual information esti-
mation as an optimisation problem. Maximum mean discrepancy is used
to apply a Gaussian constraint to the latent variable, and a lower bound
of mutual information is estimated using a Siamese neural network. The
lower bound is maximised using stochastic gradient ascent.
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In this chapter good results were obtained for artificial examples. In
situations where the KLT provides the optimal estimate of mutual infor-
mation, the proposed approach also performs well. When non-linear mes-
sage embeddings are used, the KLT fails, whereas the proposed approach
maintains reasonable performance.

One limitation of the evaluation in this chapter is that relatively simple
statistical models for m and x were considered. For more sophisticated
statistical models, such as messages generated from Gaussian mixture
models, a more complicated neural network architecture may be required.
Additionally, the evaluation in this chapter only considered inputs with 10
dimensions. It is not immediately clear that the proposed approach will
scale well to higher dimensions. For the auditory representation of speech
in this thesis, stacking K = 15 consecutive spectra that each consist of 28
ERB frequency bands would result in input vectors with 420 dimensions.
A recurrent neural network (Goodfellow et al., 2016) is a natural network ar-
chitecture for speech signals and may provide better results for real-world
data.



Chapter 7

Summary, Future Work, and
Conclusion

7.1 Summary

Shannon’s information theory provides mathematical tools for quantify-
ing the effectiveness of communication systems, regardless of the systems
implementation. The goal of this thesis was to develop a mathemati-
cal model of speech communication that is based on information theory.
Specifically, the research in this thesis focused on the following three re-
search questions:

1. How does the acoustic information rate of speech compare to the
lexical information rate of speech?

2. How can information theory be used to predict the intelligibility of
speech-based communication systems?

3. How well do competing models of speech communication predict
intelligibility?

In this section, the work in this thesis is summarised with respect to each
research question.

151
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How does the acoustic information rate of speech compare to the lexical
information rate of speech?

Chapter 2 presented an overview of existing methodologies for estimating
the information rate of speech communication. There are two approaches
to estimating the information rate of speech: 1) the linguistic perspective,
where models of language are used, and 2) the speech processing perspec-
tive, where models of acoustic speech signals are used.

When speech is modelled as a sequence of phonemes, the lexical in-
formation rate of speech is 60 b/s. When the time-domain samples of an
acoustic speech signal are modelled as a Gaussian process, the acoustic
information rate of speech is approximately 53000 b/s. When models of
speech production are considered (i.e., Fano’s method), the acoustic in-
formation rate of speech is 2130 b/s. This thesis hypothesised that the
discrepancies between estimates based on language models and the much
larger estimates based on acoustic models are caused by two factors: 1)
talker variability, and 2) statistical dependencies in acoustic signals.

In Chapter 3, a simple model of speech communication that is based on
information theory was developed. The communication model includes a
speech production channel that accounts for talker variability, and an en-
vironmental channel that accounts for environmental disturbances. The
effectiveness of communication saturates either at the mutual information
rate of the speech production channel, or the mutual information rate of
the environmental channel, whichever is lowest. By modelling auditory
log-spectra as Gaussian, modelling talker variability as additive produc-
tion noise, and using a chorus of talkers, a novel method for estimating
the acoustic information rate of speech was developed. When the pro-
posed method is applied to real-world data, an estimate of 2070 b/s is ob-
tained. After accounting for oversampling, the rate reduces to about 500
b/s. Thus, it is concluded that accounting for talker variability reduces the
gap between estimates of the information rate that are based on language
models, and estimates of the information rate that are based on acoustic
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models.
One limitation of the experiment in Chapter 3 is that the proposed

method assumes that auditory log-spectra are memoryless, and that the
signals in different ERB frequency bands are statistically independent. The
consequence of these assumptions is that the method overestimates the
information rate. For this reason, in Chapter 4 the communication model
was extended to account for statistical dependencies. To do so, the KLT is
used. The KLT is effective at removing statistical dependencies between
time-frequency units of auditory log-spectra, provided the auditory log-
spectra are Gaussian. When the KLT is applied, the acoustic information
rate of speech reduces to about 180 b/s.

The remaining discrepancy between the lexical information rate of
speech communication and the acoustic information rate of speech com-
munication is likely due to an assumption that the joint probability distri-
bution of the message and the auditory log-spectra is Gaussian. In prac-
tice, auditory log-spectra are only approximately Gaussian, in which case
the KLT cannot remove all statistical dependencies. For this reason, Chap-
ter 6 proposed a method for estimating the information rate of speech com-
munication that does not make assumptions about the joint distribution
of the message and the speech. Instead, of making assumptions about the
joint distribution, the proposed method relies on techniques from deep
learning. In particular, a Siamese neural network and maximum mean
discrepancy are used. Although the proposed approach has not been ap-
plied to real-word data, good results are achieved for synthetic data sets,
making the proposed approach a promising direction for future research.

How can information theory be used to predict the intelligibility of
speech-based communication systems?

Chapter 2 explained that intelligibility is an important characteristic
of speech-based communication systems and that intelligibility can be
measured using formal listening tests. However, such tests are time-
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consuming, laborious, and expensive. For this reason, instrumental in-
telligibility metrics that can predict the intelligibility of a communication
system are of importance.

Chapter 2 summarised three existing intelligibility metrics that are
based on information theory: AI, SIMI, and MIKNN. None of these intel-
ligibility metrics account for talker variability or statistical dependencies
between time-frequency units of acoustic speech signals. For this reason,
Chapter 4 proposed a novel intelligibility metric called speech intelligibil-
ity in bits (SIIB) and a variant called SIIBGauss, which are both based on the
speech communication model developed in Chapter 3.

SIIB and SIIBGauss both rely on a parametric model for the speech pro-
duction channel, however, SIIB and SIIBGauss differ in how they estimate
the mutual information rate of the environmental channel. SIIB uses a
non-parametric mutual information estimator that is based on k-nearest
neighbours, whereas SIIBGauss uses the information capacity of a Gaussian
communication channel. The main differences between pre-existing intel-
ligibility metrics based on information theory, and SIIB and SIIBGauss is that
SIIB and SIIBGauss 1) use a more realistic auditory model, 2) use the KLT,
and 3) account for talker variability. In Chapter 5, it was found that both
SIIB and SIIBGauss have state-of-the-art performance.

How well do competing models of speech communication predict intel-
ligibility?

To answer the third research question, Chapter 5 presented a comprehen-
sive evaluation of 12 monaural instrumental intelligibility metrics from the
literature. To assess the accuracy of each metric, intelligibility data from 11
listening tests were obtained. The data include Dutch, Danish and English
speech that was degraded by additive noise, reverberation, and competing
talkers, and subjected to speech enhancement. To our knowledge, in terms
of the number of intelligibility metrics and number of listening tests, the
evaluation in Chapter 5 is the most comprehensive evaluation of monaural
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intrusive intelligibility metrics for speech in noise to date.

In addition to evaluating the accuracy of intelligibility metrics, Chap-
ter 5 investigated why the top performing metrics have high performance.
Specifically, the effect of decorrelating input features, the effect of the au-
ditory model, and the effect of using different distortion measures was in-
vestigated. Furthermore, the ability of intelligibility metrics to generalise
to new types of distortion was considered.

It was concluded that SIIB and SIIBGauss have state-of-the-art perfor-
mance, that many intelligibility metrics struggle with severe reverberant
distortion, that many intelligibility metrics do not generalise well to new
types of distortion, that the intelligibility metrics with the highest perfor-
mance are also the only metrics that attempt to decorrelate input features,
and that information theory provides an explanation for the success of the
correlation coefficient as a distortion measure for intelligibility metrics.

7.2 Directions for Future Work

Based on the results in this thesis, there are several research topics that
would be interesting to explore. The most obvious direction to take would
be to refine the mutual information estimator proposed in Chapter 6 and
then apply it to real-world data. Finding a suitable data set for training
the neural network may prove to be an obstacle. At this stage, it is not
clear how much training data is required for an accurate estimate of the
information rate, but the TIMIT speech corpus (Garofolo et al., 1993) may
provide a good starting point because it contains 450 sentences where each
sentence is spoken by 7 out of 630 talkers.

Another research topic could be to improve and extend SIIB. One way
that SIIB may be improved would be to consider non-parametric mutual
information estimators other than the KNN mutual information estimator
that is used in this thesis. SIIB could also be extended to consider bin-
aural signals or hearing impairments. As discussed in Section 3.1.2, one



156 CHAPTER 7. SUMMARY, FUTURE WORK, AND CONCLUSION

approach to account for hearing impairments is to reintroduce the concept
of interpretation noise (Kleijn and Hendriks, 2015).

Recall that one of the conclusions from the evaluation in Chapter 5 was
that intelligibility metrics tend to perform poorly on data sets that were not
considered during their development. SIIB and SIIBGauss are theoretically
motivated and were not tuned specifically for the data sets considered in
Chapter 5. Even so, an independent evaluation of the accuracy of SIIB and
SIIBGauss would be worth considering.

7.3 Conclusion

This thesis approached speech communication from an information the-
oretical perspective. New methods for estimating the information rate
of speech communication that rely on a chorus of talkers were proposed.
When applied to real-world data, an estimate for the acoustic information
rate of speech of about 180 b/s is obtained. This is not as low as estimates
obtained using language models, which are around 60 b/s, but is consider-
ably lower than previous attempts that use acoustic models. It can thus be
concluded that accounting for talker variability reduces the gap between
estimates that rely on language models and estimates that rely on acous-
tic models. An even lower information rate may be obtained by using a
more powerful transform than the KLT to reduce statistical dependencies
between the time-frequency units of speech signals.

Using the communication model developed in this thesis, a novel intel-
ligibility metric called SIIB, and a variant called SIIBGauss, were proposed.
An evaluation of SIIB and SIIBGauss showed that both intelligibility metrics
have state-of-the performance. This suggests that other speech-based tech-
nologies may also benefit from a more information theoretical approach to
modelling speech communication.

Finally, this thesis showed that many intelligibility metrics do not gen-
eralise well to new data sets and listening environments. For this reason,
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when collecting listening test data for the purpose of developing new in-
telligibility metrics, it may be more beneficial to gather data from a wide
range of listening environments, than to gather a lot of data for a single
listening environment. Furthermore, this thesis showed that the accuracy
of intelligibility metrics can often be improved by accounting for the sta-
tistical dependencies between the time-frequency units of acoustic speech
signals.
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Appendix A

Mathematical Derivations

A.1 Mutual Information of Two Univariate

Gaussians

Suppose that x and y are jointly Gaussian univariate random variables
with a covariance matrix given by

Σ =

[
σ2

x σxσyρxy

σxσyρxy σ2
y

]
,

where var(x) = σ2
x, var(y) = σ2

y , and ρxy is the correlation coefficient.

Substituting (2.19) and (2.21) into (2.13), the mutual information of x

and y is

I(x; y) = H(x) +H(y)−H(x, y) (A.1)

=
1

2
log 2πeσ2

x +
1

2
log 2πeσ2

y −
1

2
log det(2πeΣ) (A.2)

=
1

2
log 2πeσ2

x +
1

2
log 2πeσ2

y −
1

2
log(2πe)2(σ2

xσ
2
y − σ2

xσ
2
yρ

2
xy) (A.3)

= −1

2
log(1− ρ2

xy) (A.4)
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A.2 Mutual Information for a Gaussian Markov

Chain

Let x, y, and z be jointly Gaussian, univariate random variables that satisfy
the Markov condition x → y → z. Let var(x) = σ2

x, var(y) = σ2
y, and

var(z) = σ2
z . Without loss of generality, let E[x] = E[y] = E[z] = 0.

The correlation coefficient between x and z can be written as

ρxz =
E[xz]

σxσz

(A.5)

=
E[E[xz|y]]

σxσz

(A.6)

=
E[E[x|y]E[z|y]]

σxσz

(A.7)

=

E[
σx

σy

ρxyy
σz

σy

ρyzy]

σxσz

(A.8)

=
σxσzρxyρyzE[yy]

σxσzσ2
y

(A.9)

= ρxyρyz, (A.10)

where (A.6) follows from the law of total expectation, (A.7) follows from
the conditional independence of x and z given y, and (A.8) uses the ex-
pression for the conditional expectation of two jointly Gaussian random
variables (Bertsekas and Tsitsiklis, 2002):

E[x|y] = E[x] + ρxy
σx

σy

(y − E[y]). (A.11)

The mutual information between x and z is then obtained by substitut-
ing (A.10) into (A.4):

I(x; z) = −1

2
log(1− ρ2

xyρ
2
yz). (A.12)
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A.3 Correlation Coefficient for an Additive

Communication Channel

Suppose that

y = x + n, (A.13)

where x and n are statistically independent univariate random variables.
Without loss of generality, let E[y] = E[x] = E[n] = 0. The correlation
coefficient of x and y can be written as

ρxy =
E[xy]√

E[x2]E[y2]
(A.14)

=
E[x(x + n)]√

E[x2]E[(x + n)2]
(A.15)

=
E[x2]√

E[x2]E[x2 + n2]
(A.16)

=

√
E[x2]

E[x2] + E[n2]
(A.17)

=

√
E[x2]/E[n2]

1 + E[x2]/E[n2]
(A.18)

=

√
var(x)/var(n)

1 + var(x)/var(n)
, (A.19)

where var(x)/var(n) is interpreted as the signal-to-noise ratio, and (A.16)
follows because x and n are statistically independent.

By manipulating (A.17), the correlation coefficient of x and y can also
be written as

ρxy =

√
E[x2]

E[x2] + E[n2]
(A.20)

=

√
E[y2]− E[n2]

E[y2]
, (A.21)
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therefore,

ρ2
xy =

E[y2]− E[n2]

E[y2]
(A.22)

=
var(y)− var(n)

var(y)
. (A.23)

A.4 Mutual Information for an Additive Gaus-

sian Vector Channel

Suppose that

x = Em + p, (A.24)

where m ∼ N (0, I) is a vector-valued random variable with c dimensions,
p ∼ N (0,Rp) is a vector-valued random variable with d dimensions, and
E ∈ Rd×c is a full rank matrix. Furthermore, let m and p be statistically
independent.

For the above model, the covariance matrix of x is

Rx = E[xx∗] (A.25)

= E[(Em + p)(Em + p)∗] (A.26)

= E[Emm∗E∗ + pp∗] (A.27)

= EE[mm∗]E∗ + E[pp∗] (A.28)

= EE∗ +Rp. (A.29)

(A.27) follows because m and p are statistically independent.
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The mutual information between m and x is

I(m; x) = H(x)−H(x|m) (A.30)

= H(x)−H(p) (A.31)

=
1

2
log det(2πeRx)− 1

2
log det(2πeRp) (A.32)

=
1

2
log

det(Rx)

det(Rp)
(A.33)

=
1

2
log

det(EE∗ +Rp)

det(Rp)
, (A.34)

where (A.31) follows because m and p are statistically independent, (A.32)
uses (2.19), and (A.34) follows from (A.29).

For the case whereRp = I , (A.34) reduces to

I(m; x) =
1

2
log det(EE∗ + I). (A.35)

For the case where Rp = φ2I , where φ is a positive real-valued scalar,
(A.34) reduces to

I(m; x) =
1

2
log

det(EE∗ + φ2I)

(φ2)d
. (A.36)

Lastly, suppose that
x = g(Em + p), (A.37)

where g is a deterministic invertible function. Using (2.17), the introduc-
tion of g does not effect mutual information, thus (A.34) is also valid when
the communication model in (A.24) is replaced by (A.37).



182 APPENDIX A. MATHEMATICAL DERIVATIONS



Appendix B

Rationale for STFT parameters

The STFT analysis parameters in Section 3.2 were selected for the follow-
ing reasons:

• A sampling rate of fs = 16 kHz was selected because it corresponds
to a Nyquist frequency of 8 kHz, and frequencies above 8 kHz have
a negligible effect on intelligibility.

• A frame length of 25 ms and a frame rate of R = 80 frames/s were
selected because the human vocal tract tends to change shape at a
rate less than 40 Hz. Thus, the frequency content of each speech
sound produced by the vocal tract can be observed.

• Using N = 400 with fs = 16 kHz corresponds to a frequency bin
resolution of 40 Hz, which is less than the frequency resolution of
the human ear (apart from at very low frequencies, however, these
low frequencies do not contribute to speech intelligibility).

Thus, the values for the STFT analysis parameters in Section 3.2 are such
that the transformation does not discard relevant information and allows
the spectral content of each speech sound to be analysed.
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