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Abstract

Longfin eel and shortfin eel probability of capture models can be used to
build probability of capture maps. These maps can help identify eel en-
counter hotspots in New Zealand and are useful for managing and con-
serving the species. This research models longfin eel and shortfin eel pres-
ence/absence data using regularized random forest (RRF) models, vector-
autoregressive spatial-temporal (VAST) models and Bayesian Gaussian ran-
dom field (GRaF) models. Probability of capture maps built under VAST
and GRaF remain approximately consistent with the maps built under
RRF models. That is, longfin eels have high probabilities of capture around
the coast of New Zealand’s North Island and have low probabilities of
capture throughout the centre of New Zealand’s South Island. Shortfin
eels have high probabilities of capture in small isolated regions of New
Zealand’s North Island and have very low probabilities of capture through-
out most of New Zealand’s South Island. Cross validation and spatial
cross validation was used to compare the models. Cross validation results
show that, compared to RRF models, VAST models improve predictive ac-
curacy for the longfin eel and shortfin eel. Whereas, GRaF only improves
predictive performance for the longfin eel. However, spatial cross vali-
dation shows no significant difference between VAST and RRF models.
Hence, VAST models have higher predictive accuracy than RRF models
for the longfin eel and shortfin eel when the training set is spatially corre-
lated to the test set.
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Glossary

angaus The label used in the New Zealand Freshwater Fish Database (NZFFD)
for the shortfin eel.

angdie The label used in the New Zealand Freshwater Fish Database (NZFFD)
for the longfin eel.

areaswept The area over which the sample has taken place. Is a measure
of the amount of effort put into sampling.

card A unique identifier for each record of the New Zealand Freshwater
Fish Database (NZFFD).

catchability covariate A covariate which describes differences in catch rates
between sampling occasions.

density covariate A covariate which describes variability in the density
of a species in question.

nzsegment Identifies a segment of the River Environment Classification
(REC).

organisation A categorical variable within the New Zealand Freshwater
Fish Database (NZFFD) that identifies the organisation that has sam-
pled a particular card.
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2 Glossary

River Environment Classification A database containing GIS variables re-
lating to environmental classification at each of the nzsegments. The
database does not vary temporally.



Acronyms

AUC area under the receiver operator characteristic curve.

BRT boosted regression tree.

DOC Department of Conservation.

ESA Eel Statistical Area.

GIS geographic information systems.

GRaF Gaussian random field.

MPI Ministry of Primary Industries.

NIWA National Institute of Water and Atmospheric Research.

NZFFD New Zealand Freshwater Fish Database.

QMS quota management system.

REC River Environment Classification.

ROC receiver operator characteristic.

RRF regularized random forest.

SPDE stochastic partial differential equation.
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4 Acronyms

SSB spawning stock biomass.

TAC total allowable catch.

VAST vector-autoregressive spatio-temporal.



Chapter 1

Introduction

Species distribution models are used as a tool for estimating the distribu-
tion of a particular species of interest. These models can take spatial data
on a species distribution, such as the occurrence of a species (known as
presence/absence data) or the abundance of a species (i.e. species count
or catch weight) at given locations, and relate this to geographical informa-
tion of the locations (otherwise known as geographic information systems
(GIS)) (Elith & Leathwick, 2009). These models are known as probability
of capture models when dealing with freshwater fish such as Anguilla dief-
fenbachii (known as the longfin eel hereafter) and Anguilla australis (known
as the shortfin eel hereafter).

Species distribution models can be implemented on a wide variety of
species; including terrestrial, freshwater and marine species. These mod-
els can, among other things, identify species habitat and range, highlight
the risk of invasive species to native species, help environmental managers
design conservation areas (e.g. marine protected areas), and identify hot
spots for species richness and decline (Martı́nez-Minaya et al., 2018).

Anthropogenic activities have modified New Zealand’s landscape from
pristine conditions (Gluckman, 2017). This has had a negative effect on
freshwater quality and habitats that longfin and shortfin eels rely on (Mc-
Dowall, 1990; Jellyman, 2012; Gluckman, 2017). This is reflected through

5



6 CHAPTER 1. INTRODUCTION

freshwater quality measures described by Gluckman (2017). Hence, knowl-
edge on longfin and shortfin eel distributions are important for monitoring
the species relative to anthropogenic changes. Additionally, estimates of
the distributions of the species can aid conservation decisions by identify-
ing areas of high and low occurrence.

1.1 Research objectives

The overall objective of this thesis is to develop models which estimate
the probability of capture for New Zealand’s longfin and shortfin eels. In
order to achieve this, these general steps will be carried out:

1. A data set will be found and appropriate modelling techniques will
be decided on,

2. The data set will be processed according to the needs of the mod-
elling techniques,

3. Longfin and shortfin eel models will be constructed to estimate prob-
ability of capture,

4. Model comparisons and conclusions will be drawn.

The following section describes the longfin and shortfin eel modelling
literature. The section gives detail on probability of capture models used
for New Zealand freshwater fish and describes the modelling techniques
to be used in this thesis. Following this, a thesis outline section is given.
This section outlines the exact methods that will be used in this thesis for
model building and comparison. It also gives an outline of the thesis struc-
ture.
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1.2 Literature review

Probability of capture models describe the spatial distribution of a partic-
ular animal. Studies such as Leathwick et al. (2008b) and Crow et al. (2014)
use machine learning approaches to make probability of capture estimates
for many freshwater fish in New Zealand. Ecological studies tend to use
machine learning approaches less frequently than traditional statistical
methods (i.e. regression methods) (Elith et al., 2008). However, machine
learning techniques such as the boosted regression tree (BRT) approach
and the regularized random forest (RRF) approach offer advantages over
traditional analysis. Machine learning techniques do not assume what the
data-generating process is; instead they consider the process to be com-
plex and unknown (Elith et al., 2008). By observing the inputs and the
associated response, the machine learning algorithm tries to learn the re-
sponse by finding dominating patterns (Elith et al., 2008). The following
section discusses BRT and RRF probability of capture models.

1.2.1 Machine learning models

Boosted regression trees (BRT’s)

Leathwick et al. (2008b) used boosted regression trees to predict the prob-
ability of capture for 30 New Zealand freshwater fish. The New Zealand
Freshwater Fish Database (NZFFD) was used as the source of presence/ab-
sence data (see Chapter 2 for more detail) for each of the 30 fish species.
Leathwick et al. (2008b) predicted the probability of capture using environ-
mental predictors from the River Environment Classification (REC) GIS
database (see Chapter 2). Each of these GIS predictors are associated with
a segment of river (Leathwick et al., 2008b) which is known as a ’nzseg-
ment’.

BRT models draw upon two algorithms, namely regression trees and
boosting. Regression trees work by partitioning the possible values that
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the predictors can take into rectangles (Elith et al., 2008). This is achieved
by establishing a set of rules which determine rectangles of the predictors
which produce similar responses (Elith et al., 2008). Then, a simple model
is fit to each rectangle; this is usually a constant (Hastie et al., 2009) such
as the mean response in the rectangle (Elith et al., 2008). A node of a re-
gression tree represents a point at which a predictor may split a predictor
space. The initial node contains all observations then this node may be
split into two nodes by a predictor; these two nodes then contain a subset
of the observations (Hastie et al., 2009). See Hastie et al. (2009) for more
details on tree based methods and regression trees. Also see De’ath &
Fabricius (2000) for more details on classification and tree based methods
in the ecological context.

The theory behind boosting is that it is difficult to find one model that
has highly accurate predictions, instead one can more easily find many
models which, on average, produce accurate results (Elith et al., 2008). The
study by Leathwick et al. (2008b) iteratively fits regression trees where a
form of gradient descent is used to minimise a loss function (Elith et al.,
2008). This builds up a network of, possibly, hundreds or thousands of
trees. Elith et al. (2008) highlights how the procedure is stagewise because
existing trees are unchanged but the fitted values for each observation are
re-estimated at each step as a result of adding new regression trees. They
describe how a BRT can be thought of as a regression model consisting of
a linear combination of trees whereby each tree is a term in this regression
model. See Hastie et al. (2009) for more details on boosting.

The results of the Leathwick et al. (2008b) study show that shortfin eels
are more likely to be found in:

• Warm coastal, maritime environments with infrequent high intensity
rain;

• Small sandy streams with unstable flows;

• Streams containing low downstream gradients;
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• Streams containing low cover of native vegetation when in upstream
catchments;

• Streams containing low riparian shading; and

• Streams containing high levels of nitrogen concentrations.

Leathwick et al. (2008b) found that longfin eels are more likely to be found
in:

• Coastal and inland locations (especially of low gradient);

• Mild maritime climates having high intensity rain events of moder-
ate frequency;

• Small, gravelly streams with unstable flows;

• Streams and catchments containing moderate downstream gradients;

• Streams and catchments containing very steep gradients; and

• Upstream catchments containing a moderate level of vegetation cover
with a wide variety of riparian shading.

Leathwick et al. (2008b) used residual deviance and area under the re-
ceiver operator characteristic curve (AUC) to measure goodness of fit and
prediction accuracy. The models for both the longfin and shortfin eels re-
sulted in an AUC greater than 0.8 which indicate good prediction accu-
racy. Leathwick et al. (2008b) concluded that the estimates of probability
of capture are subject to bias inherent in the NZFFD (see Chapter 2). They
give particular reference to larger rivers and lakes which are difficult to
accurately measure compared to small rivers and streams.

Regularized Random forests (RRF’s)

Following the probability of capture estimates through BRT modelling,
updates were made to the NZFFD and the REC (Crow et al., 2014). Up-
dates to the geographical information formed an updated River Environ-
ment Classification known as REC2 (Crow et al., 2014). Additionally, the
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updates improved the assignment of data from the NZFFD to river seg-
ments of the REC (Crow et al., 2014). See Crow et al. (2014) for further
detail.

Crow et al. (2014) estimates the probability of capture under REC2 us-
ing regularized random forests. Crow et al. (2014) uses environmental,
spatial and hydrological predictor variables to predict the probability of
capture for 33 New Zealand freshwater fish. See Section 2.2.1 of this thesis
for details on the model predictors.

A random forest consists of multiple decision trees such as the regres-
sion trees described in Deng & Runger (2013). Each tree is built around a
bootstrap of the training data (Deng & Runger, 2013). Random forests use
a technique known as bagging which reduces the variance of the overall
model by taking an average of many complex but unbiased models (Hastie
et al., 2009). A set of regression trees are established and the random forest
takes a model average of these trees.

Deng & Runger (2012, 2013) describe RRF’s as follows. Regularized
Random Forests apply the tree regularization framework to the random
forest framework described by Deng & Runger (2013). The tree regulariza-
tion framework is a feature selection framework for decision trees (Deng
& Runger, 2012). As always, the goal is to select a parsimonious model.
In the case of decision trees, this is a tree consisting of the most compact
set of features F (where F ⊂ {x1, x2, ..., xM} of M features) while retaining
a strong predictive performance (Deng & Runger, 2012). Features of ma-
chine learning models are known as predictors in regression modelling.
A feature xε not currently belonging to F is selected to belong in F if
Λ × gain(xε) is greater than maxm gain(xm) (where there are m = 1, ...M

features in the model) (Deng & Runger, 2012). The function gain(·) is a
measure of information gain, Λ is a penalty taking a value between zero
and one, and xm ∈ F (Deng & Runger, 2012). A larger penalty is imple-
mented by setting Λ smaller (i.e. the feature is less likely to be selected).

At each node φ features are considered out ofN possible features (Deng
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& Runger, 2012), where the φ features are randomly selected and φ is given
by φ =

√
N (Deng & Runger, 2012). Overall,B trees are built using the tree

regularization framework. The features selected across all trees are given
in the set F .

Crow et al. (2014) produced separate models under each sampling method
(electric fishing, netting, trapping and visual) in order to minimise the in-
fluence of sampling methodology on catch rate. Similar to the approach of
Leathwick et al. (2008b), Crow et al. (2014) used the area under the receiver
operator characteristic curve (AUC) as a measure of model performance.
In some cases, models for the same species but under different fishing
methods produced very different results (Crow et al., 2014). Modelling by
fishing method should be considered in future analysis in order to reduce
sampling bias.

Crow et al. (2014) found that the predictions made were subject to the
sampling bias inherent to the NZFFD (see Chapter 2). However, unlike
Leathwick et al. (2008b), they attempted to account for biases associated
with fishing methods by producing separate models under each sampling
method. Additionally, they attempted to account for differences in sam-
pling patterns between regions by including spatial predictors.

Lastly, Crow et al. (2014) concludes that their study produced very sim-
ilar predictive performance compared to that of Leathwick et al. (2008b).
Therefore, the conclusions made for the longfin and shortfin eels (outlined
in the previous subsection) hold. Any differences between the two models
are likely to be due to differences in the statistical model used and differ-
ences in the data sets (Crow et al., 2014). The next section addresses how
we can improve on the probability of capture predictions for longfin and
shortfin eels.

Gaps in probability of capture models

The study by Joy & Death (2004) was an early machine learning approach
in predicting the probability of capture for New Zealand freshwater fish.
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The study used artificial neural networks (ANN) to make these predic-
tions. They confirmed that environmental variables and spatial variables
have a strong influence on freshwater fish community structure. The study
acknowledged the importance of GIS data in predicting fish assemblage
for future studies.

The RRF model constructed by Crow et al. (2014) offered similar proba-
bility of capture predictions for New Zealand freshwater fish compared to
that of Leathwick et al. (2008b). An issue addressed by Crow et al. (2014)
was that RRF models do poorly in extrapolating outside of the space that
was sampled. Hence, segments containing longfin and shortfin eels which
aren’t represented by the NZFFD will be poorly modelled. Additionally,
anthropogenic activities such as habitat loss and degradation, land devel-
opment (e.g. dam construction), and the drainage of wetlands (McDowall,
1990; Graynoth et al., 2008a) need to be accounted for. This can be done by
accounting for temporal effects in the modelling process. However, Crow
et al. (2014) did not consider these effects.

Crow et al. (2016) developed probability of capture models for New
Zealand freshwater fish based on temporal changes. They found that ac-
counting for temporal effects had a negligible impact on predicting short-
fin eel presence but had a larger (but still a small) impact on predict-
ing longfin eel presence. They used AUC values to measure this. When
spatial, environmental, hydrological and methodological (i.e. method of
sampling and organisation that sampled) variables were included in the
model, they found AUC measures to be significant.

Based on the results of the RRF and BRT machine learning models and
on Crow et al. (2016)’s temporal analysis, future modelling work should
attempt to account for spatial and temporal effects, and spatial and tempo-
ral autocorrelation. The inclusion of environmental and hydrological pre-
dictor variables in the machine learning approaches allowed for longfin
and shortfin eel habitat type and quality preferences to be accounted for.
Future modelling work should also account for these eel preferences.
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1.2.2 Stock assessment models

Longfin and shortfin eel stock assessment methods consist of two broad
classes: conventional stock assessment models and GIS based models (Hoyle,
2016). Conventional stock assessment models have been developed for the
longfin eel population in Southland, New Zealand by Dunn et al. (2009)
and Fu et al. (2012).

Dunn et al. (2009) developed a model based on the age structure of
longfin eels. They studied single-area and two-area spatial model struc-
tures and used these models to estimate virgin and current spawning stock
biomass (SSB). Whereas, Fu et al. (2012) estimated virgin and current SSB
through the development of a two-area spatial model based on the length
structure of the longfin eel. However, both the length and age structured
models made many assumptions on model input variables (Hoyle, 2016).
These assumptions involved longfin eel growth; recruitment to Eel Sta-
tistical Area (ESA); ageing; density dependence; protected area range; and
habitat (Hoyle, 2016). As a result, the Ministry of Primary Industries (MPI)
rejected these models as a method of determining the current status of
longfin eels (Hoyle, 2016).

GIS modelling methodologies have been developed for New Zealand
longfin eels by Graynoth et al. (2008b) (GJB) and Graynoth & Booker (2009).
Graynoth et al. (2008b) estimated eel biomass per km using the relation-
ship between eel biomass per km, river flow and gradient. Generalised
Additive Models were used but the estimates were inadequate for medium
to large rivers (Graynoth et al., 2008b). Graynoth & Booker (2009) builds
upon the GJB model by using ’weighted useable area’ as a predictor vari-
able in a Generalised Additive Model. Biomass estimates were then made
for all rivers in New Zealand (including large rivers) (Graynoth & Booker,
2009).

The longfin eel stock assessment review by Hoyle (2016) concludes that
GIS based methods are reasonable and offer an advantage over conven-
tional models. This advantage stems from the fact that longfin and short-
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fin eels are highly dependent on their habitat. GIS approaches account for
this dependence (Hoyle, 2016).

Gaps in stock assessment models

The 2016 review of longfin eel stock assessment research by Hoyle (2016)
addresses the gaps in knowledge with regards to longfin eel stock assess-
ment work. The review concluded that the GIS approaches by Graynoth
et al. (2008b) and Graynoth & Booker (2009) made invalid model assump-
tions due to gaps in knowledge that need additional work. Hoyle (2016)
noted that sex ratios, variation between catchments and temporal vari-
ability were not considered in the modelling. Major issues associated
with longfin and shortfin eel modelling are that eel populations tend to
be highly fragmented, unmixed, and vary spatially in population param-
eters (in particular between fished and unfished locations) (Hoyle, 2016).

Hoyle (2016) recommends the development of additional research such
as sex ratio models, and long term monitoring of spawning biomass of
fished and unfished populations (fishery independent data) is continued.
See Hoyle (2016) for additional details on stock assessment modelling.

1.2.3 Gaussian random fields

Gaussian random fields enable flexibility in the approach taken to fit the
statistical model (Rasmussen & Williams, 2006) and have been used to
model species’ distributions within a frequentist (e.g. Thorson & Barnett
(2017)) and Bayesian framework (e.g. Vanhatalo et al. (2012) and Golding
& Purse (2016)). Gaussian random fields within the Bayesian framework
often require Markov chain Monte Carlo (MCMC) methods for numerical
approximations. However, this tends to require a great deal of computing
power (Rue et al., 2009).

If we consider the spatial locations s within a spatial domain D (s ∈ D)
of real numbers Rd (D ∈ Rd). Lindgren et al. (2011) defines a Gaussian
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random field ι(s) as a joint distribution of all finite collections of {ι(si)},
where there are i = 1, ..., n spatial locations. This joint distribution follows
a multivariate Normal distribution with a specified expectation function
µ(·) and covariance function C(·, ·). The Gaussian random field has mean
µ = µ(si) and a covariance matrix between spatial locations si and sj of
Σ = C(si, sj) (Lindgren et al., 2011).

The system is said to be stationary if the covariance function only de-
pends on the positions of two spatial locations (Lindgren et al., 2011). Ad-
ditionally, the system is said to be isotropic if the covariance function is
only dependent on the euclidean distance between locations (Lindgren
et al., 2011). The covariance matrix of a Gaussian random field is often
defined using a Matérn function.

1.2.4 Laplace approximation

The Laplace approximation is a deterministic method which has been de-
veloped to overcome computational restrictions (Rasmussen & Williams,
2006). Computationally restrictive methods such as Markov chain Monte
Carlo (MCMC) are often used in Bayesian modelling because of its abil-
ity to handle complex models (Rue et al., 2009). Additionally, MCMC can
reduce approximation error by increasing the number of iterations (Gold-
ing & Purse, 2016). Whereas, the Laplace approximation has a fixed error
because of its deterministic approach (Golding & Purse, 2016).

A simulation approach such as MCMC is computationally expensive
when dealing with Gaussian random fields (Rue et al., 2009). Hence, the
deterministic Laplace approximation is often used for Gaussian random
fields to lessen computation time.

1.2.5 Vector-Autoregressive Spatio-Temporal (VAST)

Thorson & Barnett (2017) proposed a vector-autoregressive spatio-temporal
(VAST) model for modelling the population distribution of fisheries. The
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approach uses a spatial delta generalised linear mixed model to model
fisheries catch data bi, where i = 1, 2, ..., n observations. The approach
can work for single categories or multiple categories of fish species sam-
pled at different locations and time (Thorson & Barnett, 2017). The model
is implemented in R (R Core Team, 2017) through the VAST R package
(see https://github.com/James-Thorson/VAST) (Thorson & Bar-
nett, 2017).

Thorson & Barnett (2017) and Thorson (2018) describe the VAST model
as follows. Fisheries modellers aim to make measures of a fish species
of interest. These measures can help fisheries modellers make inferences
about the population. VAST can be a helpful tool to fisheries modellers be-
cause of the variety of functions it can perform. One potential outcome of
modelling catch data with VAST is estimating fish density ξ(s, c, t), where
c is the category (i.e. fish species, taxon group etc.) which is found at the
spatial location s at year t.

VAST decomposes the probability distribution of the catch data into
two components. These components are 1. the probability of capture η1(i)

and 2. the positive catch rates η2(i). These linear predictors are able to in-
corporate spatial, temporal and vessel effects; and density and catchability
covariates. A density covariate is a covariate which accounts for variabil-
ity in the density of the species in question and a catchability covariate is
a covariate which describes differences in catch rates between sampling
occasions. See Section 3.2 for details of the linear predictors with respect
to the NZFFD data. Also see Thorson (2018) for full details on these lin-
ear predictors. The spatial and spatial-temporal components of these lin-
ear predictors are specified as Gaussian random fields by VAST (Thorson,
2018).

The user can control the link function of η1(i) and the observation model
used for η2(i). An example of a link function used may be the logit-link:

ψ1(i) = logit−1(η1(i)), (1.1)

where the logistic function (i.e. inverse logit) is applied to η1(i) (Thorson,



1.2. LITERATURE REVIEW 17

2018) and ψ1(i) = Pr(bi > 0). The term ψ1(i) gives the probability of
capture for the ith observation and is what’s of interest when modelling
presence/absence data. In this case the model ignores η2(i) and ψ2(i) (de-
scribed below).

When the user of VAST is interested in modelling abundance data then
a potential model could be a delta lognormal model. If η2(i) was deemed
to have a continuous support, e.g. biomass modelled with the Gamma
distribution, then the probability distribution of the catch data is given by:

f(bi) =

1− ψ1(i) bi = 0

ψ1(i)× g(bi|ψ2(i), σ2
χ(c)) bi > 0

(1.2)

where g(·) is a probability density function for bi and is a Gamma distribu-
tion for this example. But g(·) can be any probability density function (sup-
ported by VAST) with a continuous support above zero (Thorson, 2018).
We define ψ2(i) as the mean of g(·) and σ2

χ(c) as the variability of g(·) for
category c. The term ψ2(i) is given by:

ψ2(i) = ai × exp(η2(i)), (1.3)

where the area swept for observation i is defined as ai (Thorson, 2018).
The terms ψ1(i) and ψ2(i) are parameterised so that E(bi) = ψ1(i) × ψ2(i).
If the observation model is deemed to have a discrete support (e.g. count
data) then the probability distribution of the catch data is given by:

Pr(bi = B) =

(1− ψ1(i)) + g(0|ψ2(i), ...) B = 0

ψ1(i)× g(B|ψ2(i), ...) B > 0
(1.4)

where the terms are similarly defined and ... is used to indicate that there
may be more terms depending on the probability mass function used (Thor-
son, 2018). Finally, quantities can be derived from these results. For exam-
ple, a species (c) density can be found by:

ξ(s, c, t) = ψ1(s, c, t)× ψ2(s, c, t) (1.5)
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where ψ1(s, c, t) and ψ1(s, c, t) are equivalent to ψ1(i) and ψ2(i) respectively
but they do not incorporate catchability covariates (Thorson, 2018).

When using presence/absence data (binary data), VAST reduces to a
logistic regression model which predicts probability of capture across a
specified domain (Thorson, 2018). This model reduces the delta model
to a single component η1(i), where the probability of capture is given by
ψ1(i).

Thorson & Barnett (2017) used VAST to model multiple US Pacific Coast
rockfishes. They then compared this multi-species model against relative
single species models. They wanted to investigate whether or not account-
ing for correlation amongst species would result in improved biomass and
fish distribution predictions. This is measured by the standard errors of
the predictions and by measures of the overall predictive performance
such as AIC.

Thorson & Barnett (2017) found the overall predictive performance im-
proved when using the multi-species VAST model but the confidence in-
tervals were estimated slightly wider (i.e. more uncertainty in the predic-
tions) in the multi-species VAST model. The advantage of using VAST is
its flexibility. The user can specify whether or not they would like a single
species or a multi-species model. In some cases it may not make sense to
use a multi-species model or it may over complicate the interpretation of
the model (Thorson & Barnett, 2017). Additionally, the user can specify
whether or not they would like to use certain modelling parameters. For
example, the user can ’switch off’ temporal variability. This means that the
model will only account for spatial effects. Likewise, the user can incor-
porate important catchability covariates and/or density covariates. With
respect to marine fisheries, the user is also able to account for ’vessel ef-
fects’, i.e. the effect that different survey vessels have on the results. See
Thorson (2018) for more details on the flexibility of VAST.
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1.2.6 VAST parameter estimation

VAST begins by defining a spatial domain which is represented by a mesh
(a set of knots which are connected by vertices). The user specifies the
number of knots and then VAST uses a K-means algorithm (see Hartigan
(1975)) to determine the location of these knots with respect to the sam-
pling locations (Thorson, 2018). The algorithm positions knots by min-
imising the total distance between the sampling locations and the knots
(Thorson, 2018).

The stochastic partial differential equation (SPDE) approach is used to
approximate a Gaussian random field as the solution to the SPDE:

(ζ2 −∆)ϕ
′/2ι(u) = W (u), s ∈ R, (1.6)

where ι(u) is the Gaussian field of interest, ζ is the spatial scale parame-
ter, ∆ is the Laplacian, ϕ′ is a smoothness parameter and W (u) is spatial
Gaussian white noise (Lindgren et al., 2011). The solution is found through
an approximation of the SPDE which involves generating a triangulated
mesh (spatial domain) with vertices (the corners of the meeting triangles)
at each knot (Thorson, 2018; Lindgren et al., 2011). VAST implements the
R software package R-INLA (www.r-inla.org) (Rue et al., 2009) to do
this. Next, the solution to the SPDE is found through the construction of a
basis representation:

ι(u) =
A∑
a=1

υa(u)Ξa, (1.7)

where υa(u) are basis functions and are equal to 1 at vertex a and 0 other-
wise (Lindgren et al., 2011). The term Ξa is a Gaussian distributed weight
which determine the values of the field at the vertices and the values not
on a vertex are determined by linear interpolation (Lindgren et al., 2011).

Model fixed effects are estimated using maximum likelihood estima-
tion, where maximum likelihood estimates are found by integrating the
joint likelihood of the fixed effects with respect to the random effects (Thor-
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son, 2018). The integral is defined as:

L(θ) =

∫
ε

P (D|θ, ε)P (ε|τ )dε, (1.8)

where L(θ) is the marginal likelihood which we seek to maximise to es-
timate the fixed effects θ (Skaug & Fournier, 2006). The term τ are the
parameters governing the distribution of random effects ε, P (D|θ, ε) is
the probability of the data D conditional on the fixed and random effects
and P (ε|τ ) is the probability of the random effects conditional on the pa-
rameters governing their distribution. The integral is approximated using
the Laplace approximation. Full details on this approximation is given in
Section 3.2.4.

The Laplace approximation is implemented through VAST which uses
Template Model Builder (Kristensen et al., 2015) to make the approxima-
tions (Thorson, 2018). Maximum likelihood estimates are made through
an R optimisation method and a generalisation of the delta method is used
to make standard error estimates (Kass & Steffey, 1989).

1.2.7 The Gaussian random field (GRaF) model

The Gaussian random field (GRaF) model was proposed by Golding &
Purse (2016) as a species distribution model. The GRaF model is built
under the assumption that similar covariate values will result in similar
response values (Golding et al., 2013). Hence, the model is built based
on the similarity or dissimilarity between the sampled locations (Golding
et al., 2013).

GRaF models have a hierarchical structure which involves inference
over latent variables and hyperparameters (Golding & Purse, 2016). These
models can be defined using a Bayesian framework or a classical statisti-
cal framework and posterior computation can be implemented using ei-
ther Laplace approximation or an expectation-propagation (EP) algorithm
(Golding & Purse, 2016).
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GRaF models are highly flexible in how they can be specified. When
using a Bayesian framework, prior knowledge can be incorporated into
the model which enables the user to incorporate any information they may
have about how the probability of capture q changes with model covari-
ates. As an example we may want to model a freshwater fish species which
is highly sensitive to pollution. If we have pollution measures (covariates)
in the waterways of interest then we could incorporate our knowledge
of pollution sensitivity into a GRaF model. Hence, the user could give a
prior which describes probability of capture for the freshwater fish species
of interest to be low in waterways with high levels of pollution.

GRaF models were first implemented for describing the spatial dis-
tribution of vector mosquitoes in the United Kingdom (Golding et al.,
2013). The models made use of a Bayesian framework to incorporate ex-
pert knowledge on mosquito assemblage. This enabled the first high res-
olution spatial maps of vector mosquitoes in the United Kingdom to be
constructed (Golding et al., 2013). The results of this study and that of
Golding & Purse (2016) showed that GRaF models outperform many of
the previously used species distribution models, including BRT machine
learning models. The success of these GRaF models has been attributed
with their ability to allow for a range of complex functions through speci-
fication of a covariance function (Golding & Purse, 2016).

Following the notation of Golding & Purse (2016), presence/absence
data that has been collected from sampling sites are represented by the
vector y, where there are i = 1, ..., n observations. Hence,

y ∼ Bern(q), (1.9)

where q is a vector for the probability of capture of each observation and

q = Probit(z). (1.10)

The vector q is given by the probit transformation of the latent variable z.
A latent variable is found for each observation and z is a Gaussian random
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field. The latent variables are defined by a user specified prior (when using
Bayesian estimation).

A squared exponential term is used to define the covariance of the
Gaussian random field because it produces smooth curves which are con-
sidered ecologically plausible (Golding & Purse, 2016). The covariance
is further defined by a hyperparameter lg known as a lengthscale where
g = 1, ..., ng. A lengthscale defines the correlation between probability of
capture and covariate values (Golding & Purse, 2016). One must be given
(or estimated) for each covariate. A small lengthscale indicates strong cor-
relation and a large lengthscale indicates weak correlation. The natural log
of the lengthscale ln(lg) = Φg is given by:

Φg ∼ N(µΦ, σ
2
Φ), (1.11)

where µΦ and σ2
Φ are user specified hyperparameters for the mean and

variance of the Normal distribution. The prior over the mean function
defines how the probability of capture changes with a covariate and the
lengthscale defines how rapidly this change occurs (Golding & Purse, 2016).
Hence, the priors work to describe the ecology of the species to the model
(Golding & Purse, 2016).

1.2.8 Methods for model validation

The purpose of model validation is to assess how well a model fits the
data and how well a model makes predictions. The former is usually
tested by examining the residuals of a model and assessing whether or
not there are underlying patterns in the residuals which the model has not
accounted for. However, when assessing model predictions, there are a
number of validation techniques which could be used. Additional consid-
erations must also be made when dealing with spatially and temporally
dependent data.

K-fold cross validation is a commonly used technique for assessing a
models predictive ability. The method works by dividing the data set into
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’K’ groups (known as folds hereafter) randomly. ’K’ is typically 10 but the
user can define this as any number. A model is built using a training set
of K-1 folds and then predictions are made to the fold which wasn’t used,
i.e. the test set. This is repeated until every fold is used as a test set and
K models are built. The predictions made for each test set can be assessed
against the observed values in each test set. The method for assessing
these predictions is dependent on the data. This thesis uses presence/ab-
sence data which is typically assessed using the area under the receiver
operator characteristic curve (AUC).

K-fold cross validation doesn’t account for spatial and/or temporal de-
pendence in a data set. For these data sets K-fold cross validation results
in overly optimistic evaluation estimates (Mosteller & Tukey, 1977; Picard
& Cook, 1984). When the data is spatially and/or temporally dependent,
K-fold cross validation assesses how well the model performs when the
training set contains spatial information about the test set. Spatial K-fold
cross validation can be used to account for this lack of independence.

Rather than dividing data into folds randomly, spatial K-fold cross val-
idation uses a K-means algorithm to spatially partition data into K clusters
that maximise spatial correlation within clusters, while minimising spatial
correlation between clusters. Each cluster is then used as a fold in the cross
validation. This is designed to ensure that the training data set and the test
data set have as little autocorrelation as possible (Ruß & Brenning, 2010).
This means that the test sets are approximately independent of the train-
ing set which is an underlying assumption of any cross validation method
(Pohjankukka et al., 2017). Hence, the results of a spatial K-fold cross vali-
dation indicate how well a model performs in a spatially distinct location
to the training data.

A potential shortcoming of K-fold cross validation and spatial K-fold
cross validation is that multiple models need to be run. This means that
models which are computationally intensive and take a long time to com-
pute would take a long time to cross validate. This is often a restriction
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when dealing with spatial or spatio-temporal models. Hence, K-fold cross
validation may need to be applied with a low number for K (less models).

1.2.9 Longfin and shortfin eel biology and importance

This thesis concentrates on the New Zealand native shortfin eel (Anguilla
australis) and the endemic longfin eel (Anguilla dieffenbachii). The two species
are catadromous, meaning that they predominately live in freshwater and
migrate to the ocean at the end of their lives to spawn and then die (semel-
parous) (Ministry of Primary Industries, 2014). They coexist but shortfin
eels tend to prefer lowland waterways whereas longfin eels may occupy
waterways that are at longer distances inland and high country (Jellyman,
2012). Both adult shortfin and longfin eels prefer slow flowing water (Jel-
lyman, 2012). Shortfin eels prefer finer sediment environments whereas
longfin eels prefer coarser environments such as gravels and boulders (Jel-
lyman, 2012; Jellyman et al., 2003). However, the species are known to co-
exist (Jellyman, 2012) hence there is potential for correlation in the spatial
distribution of the two species. Therefore a multi-species model (a model
which accounts for the correlation between multiple species) may have
better predictive performance then separate single species models.

The size and weight distribution of the two eel species are very differ-
ent; longfin eels can reach a maximum length of 2m and a weight of 25kg
or greater, whereas shortfin eels can only reach a maximum length of 1.1m
and a weight of 3kg (Jellyman, 2003; Graynoth & Taylor, 2005). However,
eel growth rate is highly dependent on environmental influence such as
eel density, water temperature and food availability (Graynoth & Taylor,
2005).

Both species are long lived where South Island shortfin eels take c. 12.8
years to reach the minimum legal fishing size and South Island longfin
eels take c. 17.5 years (Ministry of Primary Industries, 2014; McDowall,
1990). In comparison, the equivalent times for the North Island shortfin
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and longfin eels are c. 5.8 years and c. 8.7 years (Ministry of Primary
Industries, 2014; McDowall, 1990). However, the Ministry of Primary In-
dustries (2014) expresses that these measures are highly variable.

Augilla sex differentiation occurs during their ’yellow eel’ life cycle
phase where wild populations tend to have highly skewed sex ratios (Davey
& Jellyman, 2005). Sex differentiation is said to be influenced by environ-
mental conditions and eel density (Colombo & Grandidr, 1996; Beullens
et al., 1997). As a result, sex ratios vary significantly at all scales and there-
fore vary between islands and between habitat types within a waterway
(Hoyle & Jellyman, 2002).

Longfin and shortfin eels migrate to the sea at the end of their lives. The
age at which an eel migrates (known as age at migration) is dependent on
the growth rate of the eel (McDowall, 1990). This is because migration is
thought to be dependent on reaching a certain combination of length and
weight (McDowall, 1990). Male longfin and shortfin eels are known to
migrate at a smaller size than female longfin and shortfin eels (McDowall,
1990).

Longfin and shortfin eels serve important intrinsic, ecological, custom-
ary and commercial purposes (Jellyman, 2012). These eels are intrinsic
to New Zealand and are important to New Zealand’s heritage (Jellyman,
2012). Augilla serve an important ecological role in New Zealand water-
ways. Longfin eels prey on introduced and native freshwater fish (includ-
ing eels) and play an important role in controlling fish populations (Jel-
lyman, 2012). Chisnall et al. (2003) found that when larger longfins were
removed from a waterway, smaller longfin and shortfin eels moved into
the waterway in large numbers. Hence, the larger longfins were control-
ling the presence of smaller longfin and shortfin eels.

Longfin eels are described as ecological generalists (Glova et al., 1998;
Jellyman et al., 2003). One of the main reasons for this description is be-
cause of their highly variable diet which consists of whatever food is avail-
able (Jellyman, 2012). Smaller longfins feed on aquatic invertebrates and
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once they are large enough they will begin feeding on fish (Jellyman, 2012).

Longfin and shortfin eels are culturally significant to Māori. Māori eel
fisheries have been established in recognition of this (Jellyman, 2012). New
Zealand longfin and shortfin eels are managed commercially through a
quota management system (QMS). The QMS was introduced to South Is-
land eels in 2000 and North Island eels in 2004 (Jellyman, 2012). A to-
tal allowable catch (TAC) has been set for longfin and shortfin eels in the
North Island and for longfin and shortfin eels combined in the South Is-
land (Jellyman, 2012). Figure 1.1 shows the quota management areas in
New Zealand. These areas are further broken down into ESA’s used for
reporting eel commercial catch (Jellyman, 2012). See Jellyman (2012) for
further details on New Zealand’s eel fishing industry.

1.3 Thesis outline

The NZFFD will be used as the source of data for this thesis. The database
gives spatially and temporally extensive presence/absence data for longfin
and shortfin eels as well as model covariates. Probability of capture esti-
mates will be made on this data using RRF models, VAST models and
GRaF models. Covariates will be selected by the RRF model and then
VAST and GRaF models will be built on these covariates. This ensures that
all models are built on the same covariates and enables model compar-
isons. Models will be compared using K-fold cross validation techniques
which estimate AUC.

The following chapter details the data used for modelling and the pro-
cedure that was followed in the data processing stage. Chapter 3 describes
how each of the models cross validation techniques work. Chapter 4 gives
the results of the models, their probability of capture predictions and the
model comparisons results. Lastly, Chapter 5 gives the discussion and
conclusion. This chapter discusses the findings of the thesis, possible prob-
lems with the research, future research considerations and the conclusions
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that can be made from the research.

Figure 1.1: A map of the quota management areas in New Zealand. The
South Island areas ANG denotes the combined longfin and shortfin eel
stocks. The North Island areas and the Chatham Islands area LFE denotes
the longfin eel stocks and SFE donotes the shortfin eel stocks.

Source: Jellyman (2012)
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Chapter 2

Data

This section examines the longfin and shortfin eel data used. We begin by
discussing the New Zealand Freshwater Fish Database (NZFFD) and its
strengths and weaknesses.

2.1 The New Zealand Freshwater Fish Database

(NZFFD)

The NZFFD is a voluntary database containing the records of the occur-
rence of New Zealand freshwater fish (Richardson, 2005). Organisations
such as the National Institute of Water and Atmospheric Research (NIWA),
the Department of Conservation (DOC), New Zealand regional councils,
tertiary institutes, and other private and public organisations have con-
tributed data towards the NZFFD voluntarily. The database contains mainly
freshwater fish presence/absence data (Hoyle, 2016) along with other vari-
ables such as site location (Northing and Easting) (Richardson, 2005) and
a REC identifier (known as nzsegment). The fish sampling method is also
given, where the most common methods used are electric fishing, fish
trapping and visual inspections. See Richardson (2005) for a full account
on how to use the NZFFD and see Joy et al. (2013) for a guide on freshwa-

29
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ter fish sampling protocols.

Data is recorded on the NZFFD voluntarily; this introduces selection
bias. Sites which are ’harder’ to sample are likely to be sampled at a lower
rate than a site that is ’easier’ to sample. For example, sites which are
easily accessible from a road may be sampled at a higher rate than sites
further away from roads. As a result, model estimates will have a stronger
representation of the sites which were more easily accessed.

Lakes and large rivers are impossible to sample through electric fishing
methods. Therefore, estimates of probability of capture are not representa-
tive of longfin or shortfin eel occurrence in large rivers or lakes. Leathwick
et al. (2008b) notes that the NZFFD not only under represents large rivers
but also partially saline waters. This is due to the difficultly in electric
fishing large rivers and saline waterways (Leathwick et al., 2008b).

A disadvantage of the NZFFD is that the data has been collected by
different organisations, often for different purposes (Jowett & Richardson,
2003). As a result, an organisation may put more effort or less effort into
sampling a longfin or shortfin eel from a waterway, depending on the or-
ganisation’s objective.

Administrators for the NZFFD perform quality control checks for each
entry submitted to the NZFFD (Crow et al., 2016). This is designed to
reduce human error and to ensure that entries are complete (Crow et al.,
2016).

2.2 The longfin and shortfin eel data

The data being used for this research is provided by NIWA and was used
in the 2014 study by Crow et al. (2014). The data originates from the
NZFFD and contains presence/absence data for all known native fresh-
water fish. There are different data sets for each sampling method used.
This thesis focuses on the electric fishing data set.

The exact date of fishing was recorded in the data set along with spa-
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tial information (i.e. the REC identifier known as ’nzsegment’ and New
Zealand Transverse Mercator (NZTM) easting and northing coordinates).
This research incorporates temporal effects and therefore any records miss-
ing their exact date of sampling are excluded. Additionally, the records
taken before 1972 are excluded because data wasn’t recorded on a yearly
basis before 1972.

The years 1972 and 1973 are also excluded because 1973 contained no
encounters for shortfin eels, therefore 1972 is excluded to have data on
a yearly basis. This is done because each year of data must contain at
least one encounter and non-encounter in order for the VAST modelling
software to calculate probabilities of capture. Hence, the final data set
contains data spanning from 1974 to 2014. Figures 2.1 and 2.2 show the
sampling location for each year of the data set. Shortfin eels appear to
have a large number of absences whereas longfin eels appear to have a
large number of presences.

Figures 2.3 and 2.4 display the observed proportion of longfin and
shortfin eels respectively. The observed proportions were calculated within
each NZMS 260 map series grid square (30km by 40km northing by east-
ing) using NZFFD presence/absence data measured between 1974 and
2014. Each observation of the NZFFD corresponds to a grid square of the
NZMS 260 map. Therefore, the proportion of eels encountered in each
grid square was calculated and each point was then plotted with a colour
corresponding to the proportion calculated.

Figure 2.3 shows high observed proportions of presence of longfin eels
throughout the North Island of New Zealand. This is particularly true
on the North Island’s coast. The Auckland region of New Zealand shows
a low proportion of presence for New Zealand longfin eels. The central
areas of New Zealand’s South Island shows low proportions of longfin eel
presence whereas the central west coast of the South Island shows higher
proportions of longfin presence.

Figure 2.4 shows that shortfin eels are unlikely to be observed in the
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Figure 2.1: Presence/absence of longfin eels by sample locations from 1974
to 2014. The data is displayed on a latitude-longitude grid.
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Figure 2.2: Presence/absence of shortfin eels by sample locations from
1974 to 2014. The data is displayed on a latitude-longitude grid.
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Figure 2.3: Map of the observed proportion of longfin eels captured within
each NZMS 260 map series grid square. The data comes from the NZFFD
and was measured between 1974 to 2014. Blank areas are unsampled.
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Figure 2.4: Map of the observed proportion of shortfin eels captured
within each NZMS 260 map series grid square. The data comes from the
NZFFD and was measured between 1974 to 2014. Blank areas are unsam-
pled.
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central North Island of New Zealand. But the proportion of shortfin eels
observed increases slightly in the North Island’s coast, in particular, the
south-east coast of New Zealand’s North Island. Shortfin eels have a low
proportion of presence throughout New Zealand’s South Island. How-
ever, Christchurch and the surrounding area have higher proportions of
observed presence of approximately 0.5 to 0.7.

There are various cards (a unique identifier for each record of the NZFFD)
in the data set that were sampled on the same exact date and location
(nzsegment). This means that for any given location and date there may
be multiple records. This may be due to an organisation taking various
samples at the same location and date or multiple organisations taking
samples at the same location and date (or both). Only one card is kept if
the samples (occurring at the same location and date) were taken by the
same organisation. But if the samples (occurring at the same location and
date) were taken by different organisations then one card is selected from
each organisation. This is a result of the assumption that the same organ-
isations sample with the same catch rate whereas different organisations
sample with different catch rates. Hence, it is important to keep replicates
if the organisation were different and to include the organisation variable
in the model.

Only one card of the samples occurring at the same location and date,
and sampled by the same organisation was taken. This is because the co-
variates of each card are the same for each location. This occurred because
the established covariates of Leathwick et al. (2008b) and Crow et al. (2014)
were taken from a GIS database and were therefore not sampled indepen-
dently at each visit. Hence, using only one card from each replicate loca-
tion and date (given that they are sampled from the same organisation)
ensured that an organisation is not overrepresented.

The NZFFD contains many cards taken by an organisation on the same
day and location. This is because an organisation has decided to take
multiple-pass electric fishing samples. As an example, Jowett & Richard-
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son (1996) takes single-pass (otherwise known as first-pass) and multiple-
pass electric fishing samples to compare single-pass catches and multiple-
pass population estimates. The use of multiple-pass sampling is often
used as a measure of freshwater fish depletion. In the context of this the-
sis, we are interested in obtaining the results of the first-pass because the
first-pass is a sample of the location that is unfished for that day. Hence,
we would like to select the first sample of the day. The ’time’ variable (in
24 hours) is used to distinguish the earliest record of the day. Where pos-
sible, the earliest record of the day is selected and the others (for that day,
location and organisation) are removed from the data set.

It is not always possible to distinguish records by time as the ’time’
variable contains missing values or, in some cases, ’time’ was recorded as
a categorical variable such as ’day’ or ’night’. In these cases the card is de-
termined by selecting the card with the largest number of fish presence’s
across all freshwater fish. This assumes that the first sample of the day
had the greatest diversity of fish species found for that day. This, theoret-
ically, should be true because we expect that consecutive catches will be
less than the first pass (fish have been sampled in the first-pass without
replacement). Hence, the final data set contains records only for the same
location and date if the organisations taking the sample were different.

The final data set contains a unique identifier (known as ’card’ in the
NZFFD), spatial information (’nzsegment’, latitude and longitude, catch-
ment name, etc.), date of sample, sampling organisation, longfin and short-
fin eel presence/absence (known in the NZFFD as ’angdie’ for the longfin
eel and ’angaus’ for the shortfin eel), and the 87 covariates used in the
Crow et al. (2014) study (see Table A.1).

There are a wide variety of organisations who have contributed data to-
wards the NZFFD. Additionally, organisations such as DOC and Fish and
Game New Zealand have a number of departments around New Zealand
that have contributed. Departments within an organisation appear as dif-
ferent levels in the organisation variable of the NZFFD. In order to ensure
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that the model is not over saturated by organisation dummy variables,
departments within an organisation are collapsed into one level. Further-
more, organisations that contributed less than 100 data points are excluded
from the data set. Contributors to the NZFFD recorded as ’unknown’ or
as ’private individuals’ are removed because catch rates are likely to be in-
consistent and we cannot verify whether or not they would comply with
sampling protocols such as those of Joy et al. (2013).

These changes reduced the number of organisation levels from 109 to
14. As a result, all departments within the same organisation and indi-
vidual organisations as a whole are assumed to sample with equal catch
rates. These are strong but necessary assumptions because we do not have
information on how electric fishing catch rates differ by organisation.

A full list of all the organisations that were used and how many pres-
ences and absences of longfin and shortfin eels they found is shown in
Tables 2.1 and 2.2. Longfin eels have 45% absences and 55% presences,
whereas shortfin eels have 78% absences and 22% presences. This pattern
is shown in Figures 2.1 and 2.2. The variable for organisation was used
in the VAST model as a ’gear’ effect otherwise known as a catchability
covariate. Note that collapsing the organisation departments into single
organisations is done before removing time ’replicates’. This ensures the
final data set has no replicates in time/space by the same organisation. Re-
gardless, replicates are unlikely because departments tend to be separated
in space.

The VAST modelling software is able to account for the area swept. In
marine fisheries research, the area swept is the area over which a sample
is taken. Equivalently, in freshwater electric fishing, the area swept is the
area over which electric fishing occurred. However, this is often termed
as a measure of effort because when a sampler fishes in a larger area, the
sampler is more likely to encounter a fish. Additionally, when more effort
is put into sampling we are likely to observe a greater catch. The NZFFD
has an effort variable but this variable contains extensive missing values.



2.2. THE LONGFIN AND SHORTFIN EEL DATA 39

Organisation Absent Present Total % Present
Auckland Regional Council 51 83 134 61.9%

Fish and Game 687 1141 1828 62.4%
Bioresearchers 455 273 728 37.5%

Carter Holt Harvey Forests 96 182 278 65.5%
Cawthron Institute 50 66 116 55.9%

The Department of Conservation 1746 1062 2808 37.8%
Marlborough District Council 38 54 92 58.7%

NIWA 1001 2101 3102 67.7%
Taranaki Regional Council 54 174 228 76.3%

University of Canterbury 71 87 158 55.1%
Massey University 77 313 390 80.3%

University of Otago 266 82 348 23.6%
Victoria University of Wellington 48 45 93 48.4%

Wellington Regional Council 102 167 269 62.1%
Total 4711 5828 10539 55.3%

Table 2.1: A table of the presence and absence of longfin eels through-
out New Zealand by each organisation. The table also gives the percent
present by each organisation to 1dp.
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Organisation Absent Present Total % Present
Auckland Regional Council 81 53 134 39.6%

Fish and Game 1610 218 1828 11.9%
Bioresearchers 428 300 728 41.2%

Carter Holt Harvey Forests 268 10 278 3.6%
Cawthron Institute 96 20 116 17.2%

The Department of Conservation 2559 249 2808 8.9%
Marlborough District Council 62 30 92 32.6%

NIWA 1958 1144 3102 36.9%
Taranaki Regional Council 189 39 228 17.1%

University of Canterbury 149 9 158 5.7%
Massey University 328 62 390 15.9%

University of Otago 344 4 348 1.1%
Victoria University of Wellington 28 65 93 69.9%

Wellington Regional Council 139 130 269 48.3%
Total 8207 2332 10539 22.1%

Table 2.2: A table of the presence and absence of shortfin eels through-
out New Zealand by each organisation. The table also gives the percent
present by each organisation to 1dp.
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As a result, the effort variable is not suitable to use for modelling and there
are no other suitable variables. Therefore it was necessary to assume that
the area swept (i.e. effort put into sampling) was the same for each sample
taken.

The data set was modified by Crow et al. (2014) before it was received
for this analysis. Crow et al. (2014) removed cards from the data set that
poorly represented the natural environmental conditions of the fish species.
Cards that represented artificial waterways or canals, or were upstream of
a artificial physical barrier were removed by Crow et al. (2014). Addi-
tionally, cards that are within a lake, lake outlet, estuary, wetland or pond
were removed as these waterways cannot be sampled efficiently through
electric fishing.

2.2.1 Covariates

Crow et al. (2014) identified 87 environmental, hydrological and spatial co-
variates which related New Zealand freshwater fish to being encountered.
RRF models are used to determine a compact subset of covariates without
impeding predictive performance (Deng & Runger, 2013). The covariates
selected under the longfin eel RRF model are used in subsequent longfin
eel models. Likewise, the covariates selected under the shortfin eel RRF
model are used in subsequent shortfin eel models.

Covariates were measured at each nzsegment and were taken from the
REC2 GIS database. The covariates were also used in the freshwater fish
modelling studies by Leathwick et al. (2008b) and Crow et al. (2014).

Table A.2 indicates which covariates have been selected by the RRF
models and Table A.1 describes each of the covariates considered in the
RRF models. 69 covariates were selected for the longfin eel models and 55
covariates were selected for the shortfin eel models. Correlation plots of
the selected covariates (Table A.2) are given in Figures 2.5 and 2.6. Figure
2.5 shows the correlation amongst the longfin eel covariates and Figure 2.6
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shows the correlation amongst the shortfin eel covariates. Stronger corre-
lation is indicated by a darker and larger red square (negative correlation)
or blue square (positive correlation). Both plots indicate large positive or
negative correlation amongst many of the covariates.

Figure 2.5 shows very strong negative correlation between hydrolog-
ical variables. For example, the ’duration between flow’ variables (e.g.
FRE1.MaxDurBetween) and the ’pulse length’ variable (MeanPulseLength-
High) show strong positive correlations. Additionally, some environmen-
tal variables and hydrological variables show strong correlations between
one another. For example, the ’rainfall’ and ’runoff’ variables have strong
positive correlations against one another and the ’FRE5.Count’, ’l1’, ’l2’,
’nPulsesHigh’ and ’nPulsesLow’ variables. The spatial variables selected
for the longfin eel models (’y.1’, ’xy’, ’xy2’ and ’yx2’) have strong posi-
tive positive correlations against one another, and ’seg tmin’, ’us tmin’,
’seg june’ and ’us june’. See Figure 2.5 for all the longfin eel covariate cor-
relations.

Figure 2.6 shows that there are less strong positive and negative corre-
lations for the shortfin eel covariates compared to the longfin eel covari-
ates. The only spatial covariates selected for the shortfin eel models was
’x3’, hence we do not see strong correlations amongst spatial covariates
and against other covariates. However, the ’rainfall’ variable ’seg rain’
and the ’runoff’ variable ’seg ro mm’ show strong positive correlation against
one another and against the ’FRE1.Count’, ’FRE10.Count’, ’FRE5.Count’,
’l2’, and ’nPulsesLow’ variables. Additionally, ’seg rain’ and ’seg ro mm’
show strong negative correlation against ’FRE1.MaxDurBetween’, ’Mean-
PulseLengthHigh’, ’MeanPulseLengthLow’ and ’Predictability’. See Fig-
ure 2.6 for all the shortfin eel covariate correlations.

The correlation plots of Figures 2.5 and 2.6 show that multicollinear-
ity may be a problem. One of the main issues with multicollinearity is
that we can expect to see increases in the variability of estimated model
parameters (O’brien, 2007). As a result, any changes to the data set may
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Figure 2.5: Correlation plot of the covariates used in the longfin eel mod-
els.
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Figure 2.6: Correlation plot of the covariates used in the shortfin eel mod-
els.
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result in much different parameter estimates and may even result in model
non-convergence (O’brien, 2007). Variance inflation factors (VIFs) can be
used as a measure of multicollinearity in a given covariate. The variance
inflation factor for a covariate g is given by:

V IF =
1

1−R2
g

, (2.1)

where there are g = 1, ..., ng covariates and R2
g is the R2 value for covariate

g which is found regressing the covariate g against the remaining ng − 1

covariates. If the variability of covariate g cannot be explained well by the
remaining covariates (i.e. small R2 and little multicollinearity) then this
will result in a small VIF score. However, if the variability of covariate g
can be explained well by the remaining covariate (i.e. large R2 and large
multicollinearity) then this will result in a large VIF score. A VIF score of
10 or greater is considered to show large multicollinearity.

Given the large correlations between the selected covariates, variance
inflation factors (VIF) were examined for the covariates selected by the
RRF for longfin eels and for the covariates selected by the RRF for short-
fin eels. These are shown in Tables A.3 and A.4 of the appendix. The VIF
scores are ordered from smallest to largest in each of the tables. 23 co-
variates have VIF scores less than 10 for the longfin eel covariates and 25
covariates have VIF scores less than 10 for the shortfin eel covariates.

VIF scores were used to assess the selected covariates but no action
was taken based on these scores. These scores were included to inform the
reader on the shortcomings of the covariates being used and to highlight
covariate selection as an area for possible future research.

The following subsections discuss the environmental, hydrological and
spatial covariates.
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Environmental covariates

The environmental covariates were determined by Leathwick et al. (2008b)
based on how relevant they were to freshwater organisms. Fish access re-
lated covariates (e.g. distance to coast) were identified as important for
fish species with highly mobile behaviour (e.g. diadromous fish such as
the longfin and shortfin eels) (Leathwick et al., 2008a). Many of the en-
vironmental covariates were measured at multiple scales (upstream scale
and catchment scale) in an attempt to account for the hierarchical structure
that exists in the distribution of freshwater fish species and their environ-
ment (Elith & Leathwick, 2009).

From the Leathwick et al. (2008b) study, Crow et al. (2014) selected
covariates to use in the RRF study. The Crow et al. (2014) RRF model
selected covariates at the upstream scale and catchment scale as well as
all the non-hydrological covariates (Crow et al., 2014). Various segment
scale covariates and a number of other miscellaneous covariates were also
selected. Inappropriate covariates such as fishing method and presence of
dams were excluded because the analysis was only concerned with electric
fishing methods and NZFFD cards above dams were excluded from the
data (Crow et al., 2014). The environmental covariates make up a total
of 44 covariates out of 87 and these covariates at least reflect the same
information as the Leathwick et al. (2008b) non-hydrological covariates
(Crow et al., 2014).

Hydrological covariates

Crow et al. (2014) selected hydrological covariates which reflect the hy-
drology of the nzsegments. They predicted these variables using the hy-
drology modelling methods of Booker & Woods (2014) for the REC2 database.
Crow et al. (2013) has shown that the selected hydrological covariates ex-
plain unique and significant amounts of variability in the NZFFD. Hence,
it was important that Crow et al. (2014) included these variables in the
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RRF study. Multicollinearity would be a major issue if all the covariates
of Crow et al. (2013) were used. So Crow et al. (2014) only used a subset
of the covariates identified in Crow et al. (2013). This is broken down into
a further subset through the RRF algorithm in the modelling stage. See
Table A.2 for details on what hydrological covariates were used for this
research.

Spatial covariates

The spatial covariates were constructed from New Zealand Transverse
Mercator (NZTM) coordinates of the downstream end of each segment of
the REC2 (Leathwick et al., 2008b). The coordinates (easting and northing)
of the downstream end of each nzsegment were determined through the
REC2 by Crow et al. (2014). The cubic trend surface regression formula
(proposed by Legendre (1990)) was then used to determine x (easting) and
y (northing) geographical coordinates of a two dimensional matrix (Crow
et al., 2014). This matrix and subsequent x and y coordinates allow us to
account for the complex geographical patterns of freshwater fish (Crow
et al., 2014). These complex patterns include patches or gaps in the spatial
distribution of freshwater fish (Crow et al., 2014).
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Chapter 3

Methodology

This chapter outlines the methodology used to make estimates of the prob-
ability of capture for longfin and shortfin eels. RRF, VAST and GRaF
were used to model the NZFFD longfin and shortfin eel presence/absence
data. The models were then used to make probability of capture estimates.
The theoretical construct of the regularized random forest (RRF), vector-
autoregressive spatio-temporal (VAST) and Gaussian random field (GRaF)
models are described.

3.1 The RRF model

Firstly, boosted regression tree (BRT) models are described. These models
are then linked to RRF models. Hastie et al. (2009) describes BRT models
as follows. Regression trees partition the predictor space into a set of j =

1, ..., J rectangles Rj which represent tree nodes (Hastie et al., 2009). A
constant Γj is fit to the rectangle and the predictive rule for each rectangle
is described as:

x ∈ Rj =⇒ f(x) = Γj,

49
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where x is a predictor variable. Therefore, we can express a single regres-
sion tree as:

T (x; Θ) =
J∑
j=1

Γj1x∈Rj , (3.1)

where 1x∈Rj is an indicator variable (1 when x ∈ Rj and 0 otherwise) and
Θ = {(R1,Γ1), (R2,Γ2)..., (RJ ,ΓJ)}. The parameters of Θ are found by
empirical risk minimisation:

Θ̂ = arg min
Θ

J∑
j=1

∑
xi∈Rj

L̃(yi,Γj), (3.2)

where L̃(yi,Γj) is the loss function of yi (the response variable) and Γj .
Additionally, i indexes the data set, where i = 1, ..., n. The BRT takes the
form of:

fB(x) =
B∑
d=1

T (x; Θd), (3.3)

for d = 1, ..., B tree models. The BRT takes on a stagewise procedure which
must solve Θ at each stage, based on the previous model i.e.

Θ̂d = arg min
Θd

n∑
i=1

L̃(yi, fd−1(xi) + T (xi; Θd)), (3.4)

where fd−1(xi) is the previous model (Hastie et al., 2009). See Hastie et al.
(2009) for further details on parameter estimation.

A RRF model is a machine learning model which applies a regular-
ization framework to a random forest model (Deng & Runger, 2012). See
Section 1.2.1 for details on how RRF models work in general. A RRF model
was used by Crow et al. (2014) to estimate the probability of capture for
New Zealand freshwater fish. The NZFFD longfin and shortfin eel data
was modelled using a RRF to compare it directly against the VAST and
GRaF methods. The theoretical construct of the longfin and shortfin eel
RRF models are discussed below. The model was implemented in R using
the ’RRF’ package (Deng, 2013; Deng & Runger, 2013, 2012).
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3.1.1 The RRF model structure

A total of N = 87 features were considered for feature selection in the RRF
model. These features are denoted by x1, ..., x87 and are given in Table
A.1 of the appendix. Table A.2 indicates which variables were selected by
the longfin eel RRF model and by the shortfin eel RRF model. The target
variable contained two classes: ”True” or ”False”, where ”True” indicates
that an eel was observed and ”False” indicates that an eel wasn’t observed.
Each data point came from a certain spatial location (i.e. a nzsegment)
which was sampled at a certain time.

Unlike the Crow et al. (2014) RRF models, each nzsegment was not
equally weighted in the model. An equal weighting would mean replicat-
ing nzsegments that were rarely sampled and removing data from nzseg-
ments that were frequently sampled. This may cause a bias in the re-
sults. As the desired outcome of this research is to compare modelling
approaches, weighting was not examined in detail. Each model did not
incorporate weights in order to remain consistent with one another.

The model takes the form of:

fRRF (x) =
1

B

B∑
d=1

T (x; Θd), (3.5)

where there are d = 1, ..., B trees and B is set to 1000. Additionally, the
number of trees considered at each node is set to φ =

√
87 = 9 (1 sf) and

the minimum node size is set as 1. These settings reflect the findings of
Dı́az-Uriarte & De Andres (2006) who showed that the performance of a
random forest does not significantly improve when the number of trees is
between 1000 and 40000. Dı́az-Uriarte & De Andres (2006) also showed
that
√
N is a good measure of φ.

The individual tree T (x; Θd) is given by Equation 3.1 and the parameter
Θ is given by empirical risk minimisation of Equation 3.2.

The features x in the dth random forest model are determined by mea-
suring the information gain. A feature is selected for the random forest
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model if its information gain (gain(xε)) is substantially greater than the
maximum information gain of the features contained in the model. A
penalty of Λ = 0.8 is applied. Hence, for a feature to be selected for the
model the information gain of 0.8× gain(xε) would need to be larger than
maxmgain(xm).

Each particular tree consists of features 1, ...,m. The features of all the
models are stored in a set known as F . Hence, the overall RRF model is
said to contain the features F .

3.1.2 Feature importance

A RRF model is able to evaluate how important a feature is to predicting
the outcome variable (Deng & Runger, 2013). This is achieved through an
importance score. Deng & Runger (2013) describe the process as follows.
A Gini index score is calculated at each node ν,

Gini(ν) =
2∑
I=1

%̂νI (1− %̂νI ), (3.6)

where %̂νI is the proportion of observations in class I at node ν. There are
I = {1, 2} classes (either presence or absence) in the NZFFD longfin and
shortfin eel data set. The information gain made by a particular feature xm
is then measured by

Gain(xm, ν) = Gini(xm, ν)− (α(1)Gini(xm, ν
(1))+α(2)Gini(xm, ν

(2))). (3.7)

Weights, α(1) and α(2), are applied to the proposed left and right child
nodes ν(1) and ν(2), respectively. The difference between the Gini index
score of the parent node and the sum of the weighted Gini index score of
the child nodes gives the Gini information gain. At each node, 9 (φ) fea-
tures are randomly selected to be evaluated. A ’seed’ is set before running
each of the RRF models so that differences between the models are not due
to differences in the φ randomly selected features at each node. Addition-
ally, this ensures replicability of the models. The feature which increases
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gain with a penalty (Λ) applied is selected for splitting node ν. That is,

Gainnode(xm, ν) =

0.8×Gain(xm, ν) m /∈ F

Gain(xm, ν) m ∈ F
(3.8)

hence, Gainnode(xm, ν) is measured at each node. The importance score for
a particular variable can be found by,

Impm =
1

1000

∑
ν∈Vxm

Gainnode(xm, ν) (3.9)

where there are 1000 regression trees and Vxm are all the nodes (across all
trees) which have split by xm.

Additionally, each of the covariates selected by the longfin eel and the
shortfin eel RRF models were assessed using variance inflation scores. The
scores for each covariate are given in Tables A.3 and A.4 of the appendix.
However, no action was taken based on these scores. These scores are
included to highlight the shortcomings on the features selected by the RRF
models.

3.2 The VAST model

The VAST model was proposed by Thorson & Barnett (2017) as a way of
modelling fisheries data using a spatial-temporal approach. Fisheries data
embodies data types such as presence/absence data, count data (i.e. abun-
dance data), and biomass data. The tool can be used for single species or
for multi-species modelling, where a multi-species approach can account
for correlations among species (Thorson & Barnett, 2017). Models can be
built in R statistical software (R Core Team, 2017) using the VAST R mod-
elling package (Thorson & Barnett, 2017; Thorson, 2019).

VAST incorporates a delta model in order to separately model encounter
probability and positive catch rates. This research is only interested in
the encounter probability component. The VAST modelling methodology
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makes use of Gaussian random fields and SPDE approximations to ac-
count for spatial and spatio-temporal effects. Additionally, VAST uses a
maximum likelihood estimation approach where maximum likelihood es-
timates are made through the Laplace approximation.

Three VAST models were built: a longfin eel single species model, a
shortfin eel single species model, and a longfin and shortfin eel multi-
species model.

3.2.1 The VAST model structure

As described in Section 1.2.5, the VAST model consists of the linear predic-
tors η1(i) and η2(i), where η1(i) is associated with the encounter probabil-
ity and η2(i) is associated with the positive catch rate within a delta model
structure (Thorson, 2018). VAST probability of capture models were con-
structed using the NZFFD presence/absence data for longfin and shortfin
eels. In this case we are only interested in the encounter probability (oth-
erwise known as probability of capture) component of the delta model.
Therefore, we ’switch off’ the components of the positive catch rate in the
delta model. See Appendix D for details on how this was done in R.

Estimates for the probability of capture incorporated spatial effects,
spatio-temporal effects, density covariates and catchability covariates. There-
fore, η1(i) is given by:

η1(i) =β1(ci, ti) +

nΩ1∑
f=1

LΩ1(ci, f)Ω1(si, f) +

nε1∑
f=1

Lε1(ci, f)ε1(si, f, ti)

(3.10)

+

ng∑
g=1

γ1(ci, ti, g)$(xi, ti, g) +

nk∑
k=1

λ1(k)Q(i, k),

where η1(i) is the linear predictor for encounter probability in a delta model
for observation i (Thorson, 2018). We define ti as the year for observation i,
si as the spatial location for observation i and ci as the category (i.e species)
for observation i. When constructing the single species models, Equation
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3.10 ignores the term for category. Model variables have been indexed
with 1 to distinguish them from the model variables of η2(i). Although
this model purposely excludes η2(i), the index of 1 has been included in
Equation 3.10 to remain consistent with Thorson (2018).

The term β1(ci, ti) is the intercept for category ci and year ti, Ω1(si, f) is
the spatial variation at location si for factor f and ε1(si, f, ti) is the spatio-
temporal variation at location si and year ti for factor f (Thorson, 2018).
Factors f are built into the model to enable new terms to be constructed for
each category. Hence, f is made equal to the number of categories (nΩ1 = 2

and nε1 = 2 for the multi-species VAST model, and nΩ1 = 1 and nε1 = 1 for
both the longfin eel VAST model and the shortfin eel VAST model). The
terms LΩ1(ci, f) and Lε1(ci, f) are loadings matrices that generate spatial
and spatial-temporal covariation respectively for each factor f (Thorson,
2018). These matrices collapse to a single scalar value in a VAST single
species model. A summation is taken over the factors f .

The summation
∑ng

g=1 γ1(ci, ti, g)$(xi, ti, g) occurs across g = 1, 2, ...ng

covariates, where $(xi, ti, g) are the density covariates for covariate value
xi at observation i, year ti and covariate g. Density covariates are defined
as covariates which account for the density of a species. This research uses
GIS information (data with a defined spatial location) of New Zealand
river segments as density covariates. The term γ1(ci, ti, g) is the estimated
impact of the density covariates for category ci, year ti and covariate g

(Thorson, 2018). The term Q(i, k) is an element in the design matrix Q

which is one for catchability covariate k observed on observation i. Catch-
ability covariates are covariates which describe differences in catch rates
between sampling occasions. The term λ1(k) is the estimated impact of
the kth catchability covariate. The sampling organisation is included as a
catchability covariate. The matrix Q will therefore be an n × k − 1 matrix
of dummy variables with:

Q(i, k) =

1 if sampling organisation k sampled observation i

0 otherwise.
(3.11)
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The term λ1(k) is equal to zero for the most common sampling organi-
sation to sample (NIWA). This is set by the user and therefore does not
need to be the most common sampling organisation. Lastly, the summa-
tion

∑nk
k=1 λ1(k)Q(i, k) occurs over k = 1 to nk, where nk = 14 (the number

of sampling organisations).
The predicted probability of capture ψ1(i) is given by:

ψ1(i) = logit−1(η1(i)) =
exp(η1(i))

1 + exp(η1(i))
, (3.12)

where the link function logit−1 is the logistic transformation function (in-
verse logit function) applied to η1(i) (Thorson, 2018).

Model fit is assessed using Pearson’s residuals. This is given by:

rPearson =
yi − ψ̂1(i)√

ψ̂1(i)(1− ψ̂1(i))
, (3.13)

where yi is a binary variable (1 if the species is captured, 0 otherwise),
yi − ψ̂1(i) is the raw residual, ψ̂1(i) is the fitted value for yi and ψ̂1(i)(1 −
ψ̂1(i)) = var(yi). Hence, the Pearson residual accounts for the variance
function of the GLM.

3.2.2 Establishing the spatial domain

Section 1.2.6 begins by describing the spatial construct of the VAST mod-
els. The section outlines how the user constructs a spatial ’mesh’ by spec-
ifying the number of knots used. A total of 400 knots were used to con-
struct the mesh for each VAST model. This offered a fine mesh triangula-
tion while simultaneously not burdening computation speed. It was also
the finest resolution capable of running with bias corrections (see Thor-
son & Kristensen (2016)) under a NIWA server with 245GB of RAM. The
mesh is constructed as a part of the SPDE approximation. A solution to the
SPDE is found through a basis representation which estimates a Gaussian
random field.
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Gaussian random fields are estimated for the spatial and spatio-temporal
components of Equation 3.10.

3.2.3 Model parameters

The spatial term Ω1(si, f) and spatio-temporal term ε1(si, f, ti) of Equa-
tion 3.10 are specified in VAST as random effects (Thorson, 2018). These
random effects are defined through Gaussian random fields (Thorson &
Barnett, 2017). Hence,

Ω1(s, f) ∼MVN(0, σ2
Ω1

Ψ1(s, s+ h′)),

ε1(s, f, t) ∼MVN(0, σ2
ε1

Ψ1(s, s+ h′)),

where the spatial term Ω1(s, f) is a vector indexed by s for a given factor
f and has a Multivariate Normal distribution with mean 0 and covariance
matrix σ2

Ω1
× Ψ1(s, s + h′). This spatial autocorrelation (σ2

Ω1
× Ψ1(s, s +

h′)) is constant over time. The term σ2
Ω1

is the variance of Ω1(s, f) and
Ψ1(s, s + h′) is the correlation matrix between locations s and s + h′. The
spatio-temporal term ε1(s, f, t) is a vector indexed by s for a given t and f .
It has a Multivariate Normal distribution with mean zero and covariance
matrix σ2

ε1
× Ψ1(s, s + h′). This means that the spatial-temporal effect is

independent from year-to-year. The term σ2
ε1

is the variance of ε1(s, f, t)

and Ψ1(s, s+h′) is defined the same as before. The variance terms σ2
Ω1

and
σ2
ε1

are both set to one by default.
The correlation matrix Ψ1(s, s + h′) is defined as following a Matérn

function:

Ψ1(s, s+ h′) =
1

2ϕ−1Γ(ϕ)
× (κ1|h′H|)ϕ ×Kϕ(κ1|h′H|), (3.14)

where H is a 2× 2 matrix for geometric anisotropy and is defined as:

H =

[
exp(h1) h2

h2 exp(−h1)(1 + h2
2)

]
, (3.15)
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where h1 is Northing anisotropy and h2 is anisotropic correlation in H

(Thorson et al., 2015).

Additionally, ϕ is the Matérn smoothness parameter which is fixed at
1, h′ is the distance between locations s and s+ h′, κ1 governs the distance
of decorrelation (i.e. the distance at which two locations are considered to
be uncorrelated) and Kϕ is the Bessel function (Thorson, 2018; Thorson &
Barnett, 2017). The two components of geometric anisotropy H and κ1 are
estimated as fixed effects. The spatial correlation Ψ1(s, s+ h′) between the
locations s and s + h′ is expected to decline as |h′| increases (Thorson &
Barnett, 2017), as defined by Tobler’s first law of geography (Tobler, 1970).

The model components β1(t+ 1), γ1(t, g) and λ1(k) are specified as ran-
dom effects. Hence, they are governed by a distribution. These are:

β1(t+ 1) ∼ N(ρβ1β1(t), σ2
β1

),

γ1(t, g) ∼ unif(−20, 20),

λ1(k) ∼ unif(−20, 20),

where β1(t+1) is the intercept term for year t+1 and is defined as a random
effect. The term takes on a Normal distribution with mean ρβ1 × β1(t)

and variance σ2
β1

. This approach allows dependence between years to be
incorporated in the model structure. The term ρβ1 represents weight of the
previous year and β1(t) is the value of the intercept for year t. The term
ρβ1 is set equal to one. Hence, β1(t+ 1) is specified as a random walk. The
variance term σ2

β1
is a fixed effect and is therefore estimated. The initial

intercept term β1(1) is defined as β1(1) ∼ N(0, σ2
β1

).

The density covariate effects γ1(t, g) follow a uniform distribution for
covariate g and for all years t. The bounds are set between -20 and 20.
The catchability covariate effects λ1(k) follow a uniform distribution for
each catchability term k. Likewise, the bounds of its distribution are set
between -20 and 20.
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3.2.4 Parameter estimation

The VAST model has the form of Equation 3.10, and incorporates a number
of fixed effects and random effects. VAST takes a maximum likelihood
estimation approach to parameter estimation. The goal is to find a solution
of the joint likelihood L(θ) with respect to the random effects ε:

L(θ) =

∫
ε

P (D|θ, ε)P (ε|τ )dε =

∫
ε

exp(`(ε,θ))dε. (3.16)

The terms θ, D and τ give the fixed effects, data and parameters governing
the distribution of the random effects respectively. Additionally, `(ε,θ) is
the log-likelihood of the mixed effects model i.e.

`(ε,θ) = log(P (D|θ, ε)P (ε|τ )).

To denote the maximiser of `(ε,θ) with respect to εwe use ε̂(θ). Hence,

ε̂(θ) = arg max
ε

`(ε,θ).

The Hessian of `(ε,θ) with respect to ε is denoted by ω(θ). The Hessian is
given by:

ω(θ) = −

[
∂2

∂ε2
`(ε,θ)

∣∣∣∣
ε=ε̂(θ)

]
. (3.17)

Therefore,
∂2

∂ε2
`(ε,θ)

∣∣∣∣
ε=ε̂(θ)

= −ω(θ).

We are interested in finding a solution to the integral
∫
ε

exp(`(ε,θ))dε.
Hence, we apply Laplace’s approximation. Firstly, a Taylor series expan-
sion is applied to `(ε,θ) evaluated at ε = ε̂(θ):

`(ε,θ) ≈ `(ε̂(θ),θ) + (ε− ε̂(θ))
∂`(ε,θ)

∂ε

∣∣∣∣
ε=ε̂(θ)

+
1

2
(ε− ε̂(θ))>

∂2`(ε,θ)

∂ε2

∣∣∣∣
ε=ε̂(θ)

(ε− ε̂(θ)),
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where we ignore higher order terms and we know that ε̂(θ) = arg maxε `(ε, θ).
Therefore,

`(ε,θ) ≈ `(ε̂(θ),θ)− 1

2
(ε − ε̂(θ))>H(θ)(ε− ε̂(θ)),

where ω(θ) is given in Equation 3.17. Using this Taylor series expansion,
we can apply the Laplace approximation to the integral of interest. Hence,∫
ε

exp(`(ε,θ))dε ≈
∫
ε

exp

(
`(ε̂(θ),θ)) − 1

2
(ε− ε̂(θ))>ω(θ)(ε− ε̂(θ))

)
dε

= exp(`(ε̂(θ),θ))

∫
ε

exp

(
−1

2
(ε− ε̂(θ))>ω(θ)(ε− ε̂(θ))

)
dε,

where exp
(
−1

2
(ε− ε̂(θ))>ω(θ)(ε− ε̂(θ))

)
is the kernel of the multivariate

Normal distribution so that,∫
ε

exp

(
−1

2
(ε− ε̂(θ))>ω(θ)(ε− ε̂(θ))

)
dε = 2πϑ/2 det(ω(θ))−1/2,

where ϑ is the number of dimensions, i.e. the number of random effects.
Therefore, the Laplace approximation of the integral of interest is:

L∗(θ) =

∫
ε

exp(`(ε,θ))dε

≈ exp(`(ε̂(θ),θ))2πϑ/2 det(ω(θ))−1/2,

where estimates of θ minimise the negative log of the Laplace approxima-
tion (Kristensen et al., 2015):

− logL∗(θ) = −ϑ
2

log 2π +
1

2
log det(ω(θ)) + `(ε̂(θ),θ). (3.18)

VAST uses Template Model Builder (Kristensen et al., 2015) to implement
the Laplace approximation given in Equation 3.18 (Thorson & Barnett,
2017). Maximum likelihood estimates for the fixed effects are found by
using a gradient based non-linear minimiser (Thorson & Barnett, 2017).
At each iteration ε̂(θ) is re-evaluated through this optimiser (Skaug &
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Fournier, 2006). Automatic differentiation is used to evaluate ω(θ). See
Skaug & Fournier (2006) for details on automatic differentiation. Standard
errors of the fixed effects are then calculated using a generalisation of the
delta method (Kass & Steffey, 1989). Estimates for the probability of cap-
ture ψ1(i) are then derived by:

ψ̂1(i) = logit−1(η̂1(i)). (3.19)

Whenever a random effect is transformed then the mean and vari-
ance which define the random effect will be transformed (Thorson & Kris-
tensen, 2016). If this transformation is non-linear, such as the logistic
transformation function in Equation 3.19, then the estimator will be biased
(Thorson & Kristensen, 2016). In order to account for this, a bias correction
algorithm can be implemented. VAST is able to implement a bias correc-
tion algorithm through Template Model Builder (TMB) (Kristensen et al.,
2015) using the epsilon method (Thorson & Kristensen, 2016).

The bias correction algorithm proposed by Thorson & Kristensen (2016)
is given as follows. If we have a model containing fixed effects θ, ran-
dom effects ε and data D then we seek to derive an unbiased estimate of
Υ = f(θ̂, ε|D). Here θ̂ is the estimated fixed effect and is given by:

θ̂ = arg max
θ

(
log

(∫
exp(`(θ, ε; D))dε

))
,

where `(θ, ε; D) is the joint log-likelihood of the fixed and random effects.
The minimum variance unbiased estimator of Υ is given by:

E[Υ|D] =

∫
exp(`(θ, ε; D))f(θ̂, ε)dε∫

exp(`(θ, ε; D))dε
. (3.20)

A nuisance parameter ς is introduced into the calculation of the expected
value of Equation 3.20. Then the gradient of the marginal likelihood is
calculated with respect to ς . Firstly, the function g is defined as:

g(θ, ε, ς; D) = log

(∫
exp(`(θ, ε; D)− ςf(θ, ε))dε

)
, (3.21)
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and the first derivative with respect to ε of this function is given by:

∂

∂ς
(g(θ, ε, ς; D)) =

∫
exp(`(θ, ε; D)− ςf(θ, ε))f(θ, ε)dε∫

exp(`(θ, ε; D)− ςf(θ, ε))dε
. (3.22)

If we evaluate this derivative at ς = 0 given the estimated fixed effects
then Equation 3.22 becomes:

∂

∂ς
(g(θ̂, ε, ς; D)) =

∫
exp(`(θ̂, ε; D))f(θ̂, ε)dε∫

exp(`(θ̂, ε; D))dε
= E[Υ|D]. (3.23)

Equation 3.23 is the minimum variance unbiased estimator for Υ = f(θ̂, ε|D),
where the numerator and denominator of Equation 3.23 are estimated by
the Laplace approximation (see above). See Thorson & Kristensen (2016)
for more details on the bias correction method used.

3.3 The GRaF model

The GRaF model was proposed by Golding & Purse (2016) as a method
for modelling species distributions within a relatively fast and flexible
framework. The method enables parameter estimation through a Bayesian
framework or a maximum likelihood estimation framework. Additionally,
the method allows the user to make approximations through either the
Laplace approximation or the expectation-propagation algorithm. This
research makes use of the model’s Bayesian framework and makes rela-
tively fast approximations through the Laplace approximation. Golding
& Purse (2016) uses Gaussian random fields (see Section 1.2.3) to model
species distributions.

GRaF is used to model the NZFFD longfin and shortfin eel presence/ab-
sence data, and to predict the probability of capture for the longfin and
shortfin eels. The approach can be implemented in the statistical software
R (R Core Team, 2017) using the R package ’GRaF’ (Golding, 2017; Golding
et al., 2013; Golding & Purse, 2016).
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3.3.1 The GRaF model structure

The Bayesian network directed acyclic graph (DAG) for the GRaF model
is shown in Figure 3.1. The DAG shows how the different variables of a
GRaF model are related to each other. There are two GRaF models: the
longfin eel GRaF model and the shortfin eel GRaF model. The results of
each are shown in Chapter 4. From Figure 3.1, yi is the ith NZFFD longfin
or shortfin eel presence/absence, where i = 1, ..., n. Each yi follows a
Bernoulli distribution with a probability of success of qi, where qi is the
probability of capture for the ith data point. The probability of capture qi is
given by a probit transformation of the latent variable zi, where z is given
by:

z ∼MVN(δ,Σ), (3.24)

and z is defined as a Gaussian random field with mean δ and covariance Σ.
The mean of the Gaussian random field is given by a user defined function

yi qi zi

δi Σig

xig

rg lg

Φg

µΦ

σ2
Φ

i = 1, ..., n
g = 1, ..., ng

Figure 3.1: A Bayesian network directed acyclic graph of the GRaF model
constructed for the NZFFD longfin and shortfin eel presence/absence
data. The shaded circle represents observations, circles represent latent
variables, diamonds represent deterministic variables, variables by them-
selves represent constants and the square plates show the construct of the
variables within the plates.
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of the covariates x. This function describes how the probability of capture
changes with each covariate (Golding & Purse, 2016). All covariates are
defined in Table A.1 and the covariates that were used for each of the eel
species are given in Table A.2. In addition, each of the models used year
as a covariate to account for temporal variability in the data.

The function over x is considered a prior. An uninformative prior was
used on δ for the longfin eel GRaF model and shortfin eel GRaF model.
The prior has a flat distribution across each of the covariates in the models.
The flat prior gives the probability of capture as the probability of being
observed at any given site, p0. This is defined as:

p0 =

∑n
i=1 yi
n

.

For the longfin eel GRaF model p0 is 0.55 (2dp) and for the shortfin eel
GRaF model p0 is 0.22 (2dp).

The covariance of the Gaussian random field is given by a squared
exponential term:

Σ = exp(
−r2

2
), (3.25)

where r is given by:

r =

√√√√ ng∑
g=1

(
xg − xg

′

l2g

)2

. (3.26)

The covariance is dependent on each covariate xg, where g = 1, ...ng, and
the hyperparameter lg. The hyperparameter lg is known as a lengthscale
parameter which defines how rapidly the probability of capture changes
with a covariate (Golding & Purse, 2016). A smaller lengthscale indicates
that the probability of capture changes much more rapidly with a covariate
and a larger lengthscale indicates that the probability of capture changes
slower with a covariate. The natural log of the lengthscale ln(lg) is given
by Φg and is defined by:

Φg ∼ N(µΦ, σ
2
Φ), (3.27)
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which is a prior distribution with mean µΦ = log(10) and variance σ2
Φ = 1.

This places an informative prior on the lengthscales which indicates that
the covariates will have a smooth effect on species’ niches (Golding et al.,
2013). We allow the models to estimate the lengthscales as oppose to pro-
viding each lengthscale. A large lengthscale gives a function of low com-
plexity (flatter distribution) whereas a small lengthscale gives a function
of high complexity (Golding & Purse, 2016).

3.3.2 Parameter estimation

There are two steps to inference with the GRaF model. There is inference
over the Gaussian random field z and inference over the hyperparameters
defining z (Golding & Purse, 2016).

The variable of interest is the probability of capture variable qi which
is given by a probit transformation of z. The full posterior distribution for
the GRaF model is:

π(z, δ,Σ,Φ|y) =
f(y|z)π(z|δ,Σ)π(δ)π(Σ|Φ)π(Φ)

f(y)
, (3.28)

where
f(y) =

∫
f(y|z)π(z)dz. (3.29)

The term π(z, δ,Σ,Φ|y) is the full posterior distribution. Where f(y|z) is
given by a Bernoulli distribution, π(z|δ,Σ) is given by a multivariate Nor-
mal distribution, π(δ) is the prior function across δ, π(Σ|Φ) is defined by
a squared exponential term (given in Equation 3.25), and π(Φ) is defined
by a Normal distribution. The evidence f(y) is found through a Laplace
approximation.

To demonstrate the Laplace approximation we use the derivation which
comes from Blangiardo & Cameletti (2015, p. 105). The Laplace approxi-
mation can be used to approximate an integral of interest. As an example,
we may be interested in approximating the following integral:∫

f(y)dy =

∫
exp(log(f(y)))dy, (3.30)
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where f(y) is a function of the random variable Y . The term log(f(y)) can
be expanded through the Taylor series expansion evaluated at y = y0:

log f(y) ≈ log f(y0) + (y − y0)
∂ log f(y)

∂y

∣∣∣∣
y=y0

+
(y − y0)2

2

∂2 log f(y)

∂y2

∣∣∣∣
y=y0

.

The mode is given by y∗ = arg maxy log f(y). Therefore, if we set y0 = y∗

then ∂ log f(y)
∂y

∣∣∣
y=y∗

= 0. Hence,

log f(y) ≈ log f(y∗) +
(y − y∗)2

2

∂2 log f(y)

∂y2

∣∣∣∣
y=y∗

.

We can then find the integral of interest (Equation 3.30) by:∫
f(y)dy ≈

∫
exp

(
log f(y∗) +

(y − y∗)2

2

∂2 log f(y)

∂y2

∣∣∣∣
y=y∗

)
dy

= exp(log f(y∗))

∫
exp

(
(y − y∗)2

2

∂2 log f(y)

∂y2

∣∣∣∣
y=y∗

)
dy,

where we set σ2∗ = −1/∂
2 log f(y)
∂y2 |y=y∗ so that the integral forms the kernel

of the Normal distribution. Hence, the result of the approximated integral
is given by: ∫

f(y)dy ≈ f(y∗)

∫
exp

(
−(y − y∗)2

2σ2∗

)
dy, (3.31)

where we obtain the Normal distribution kernel with mean y∗ and vari-
ance σ2∗.

3.3.3 Bayesian inference

Bayesian statistics differs from classical statistics (otherwise known as fre-
quentist statistics) in that it takes the unknown parameter(s) as a random
quantity as opposed to a fixed quantity (Carlin & Louis, 2008). A like-
lihood function f(y|θ) is specified for the data y = (y1, ..., yn) given an
unknown parameter θ. In Bayesian statistics a prior distribution π(θ) is
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specified for the unknown parameter θ. The prior distribution expresses
prior knowledge that we may (or may not) have on θ. Hence, the extent
to which we have knowledge on θ can be defined through an informative
or non-informative prior (or somewhere between). A disadvantage to the
Bayesian inference approach is that the prior is often subjective and there-
fore leaves the model open to criticism by objecting parties.

The target distribution in Bayesian inference is the posterior distribu-
tion. The posterior distribution π(θ|y) describes the probability of θ given
the observed data y. This is given by Bayes theorem:

π(θ|y) =
f(y|θ)π(θ)

f(y)
, (3.32)

where f(y) is the marginal density of y (otherwise known as the evidence)
and is given by:

f(y) =

∫
f(y|θ)π(θ)dθ. (3.33)

The integral of Equation 3.33 is often difficult to evaluate. Markov Chain
Monte Carlo (MCMC) have been developed as a simulation method of ap-
proximating the integral. However, MCMC can often be computationally
expensive (i.e. long computing time and high computing power is needed)
(Golding & Purse, 2016). In these cases deterministic methods such as the
Laplace approximation are less computationally restrictive and are there-
fore preferred.

3.4 Model validation

This section describes the model validation methods implemented. See
Section 1.2.8 for details on cross validation techniques in general. Two
methods of model validation were considered: spatial K-fold cross valida-
tion and K-fold cross validation. Spatial K-fold cross validation accounts
for spatial correlation in the data. Even though the training sets and test
sets are not independent, K-fold cross validation was performed.



68 CHAPTER 3. METHODOLOGY

The RRF models and VAST models could be assessed using spatial K-
fold cross validation and K-fold cross validation. The results under each
validation tell us different things about the model. The GRaF models were
assessed using K-fold cross validation but with K = 5. This was imple-
mented so that validations could run within a practical time. Therefore,
5-fold cross validation was used to assess the GRaF models, and the RRF
models and VAST models. This meant that only the RRF models and VAST
models could be compared with spatial K-fold cross validation and K-fold
cross validation, and the RRF models, VAST models, and GRaF models
could be compared with 5-fold cross validation. Spatial 5-fold cross vali-
dation was not attempted due to convergence issues with the VAST model.

The RRF models and VAST models were validated using a 50-fold spa-
tial cross validation. A K of 50 was selected because the VAST models
struggled to converge when less folds were used. The likely reason for
this is that when K was smaller, test sets were larger and the training sets
were missing data points at spatial locations which enabled model conver-
gence.

100 ’balancing steps’ were implemented in the K-means clustering. This
means that the K-means clustering was performed 100 times and the clus-
tering which kept each of the 50 folds as even as possible was selected. The
spatial clustering was implemented with the ’sperrorest’ R package pro-
posed by Brenning (2005). The same 50-fold spatial partitioning was used
to validate each model. One main difference between the model cross val-
idations is that RRF models are a feature selection model. Hence, each of
the 50 models may have selected a different subset of the variables given
in Table A.1 to the variables that were used in the full models.

Receiver operator characteristic (ROC) curves are constructed at each
fold of the spatial K-fold cross validation and the K-fold cross validation.
The area under the receiver operator characteristic (ROC) curve (AUC) is
then estimated and used as a measure of model performance. Estimates
of AUC are made using the ’ROCR’ R package (Sing et al., 2005).
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A wrapper to the ’ROCR’ package, known as the ’cvAUC’ R package
(LeDell et al., 2015), is used to make standard error and 95% confidence
intervals of AUC. The variability estimates follow the methodology pro-
posed by LeDell et al. (2015) who used an influence curve based approach
to make variance estimates. An influence based approach was demon-
strated to be much more computationally efficient than a bootstrap ap-
proach which is computationally expensive when using complex models
(LeDell et al., 2015). These measures of variability are essential for com-
paring classifier models (Fawcett, 2006).
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Chapter 4

Results

This chapter presents the longfin and shortfin eel probability of capture
modelling results. A section is given for each modelling method. Under
each section, the model results are given for the longfin eel and shortfin eel
separately. Cross validation results are given for each modelling method
and a final section is given for the model comparison results.

The observed proportion of longfin eel and shortfin eel capture (Fig-
ures 4.1 and 4.2) are repeated here from Chapter 2. This is to aid com-
parisons between the observed proportion of longfin eel and shortfin eel
capture, and the predicted longfin eel and shortfin eel probability of cap-
ture.

71
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Figure 4.1: Map of the observed proportion of longfin eels captured within
each NZMS 260 map series grid square. This map is repeated from Figure
2.3.
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Figure 4.2: Map of the observed proportion of shortfin eels captured
within each NZMS 260 map series grid square. This map is repeated from
Figure 2.4.
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4.1 RRF modelling results

This section presents the results of the longfin eel RRF model and shortfin
eel RRF model. The data used for each model is detailed in Chapter 2 and
the RRF methodology is detailed in Section 3.1.

The RRF models perform feature selection, where the selected features
were used as covariates in subsequent models. The features that were se-
lected by the longfin eel RRF model and shortfin eel RRF model are shown
in Table A.2 (determined by obtaining a score greater than 0 from Equa-
tion 3.9). The full set of features supplied to the RRF models are described
in Table A.1.

Longfin and shortfin eel probability of capture estimates are made un-
der each of their respective models. Estimates are made at particular spa-
tial points of New Zealand. These spatial points come from the centre of
each nzsegment (river segment) in the REC2 database. Each nzsegment
has a value for each of the model covariates. Hence, predictions are made
to each nzsegment of the REC2 database.

50-fold cross validation, spatial 50-fold cross validation and 5-fold cross
validation were used to validate the RRF models. Mean AUC estimates
and 95% confidence intervals were obtained under each cross validation
method.

4.1.1 Longfin eel results

Model results

The longfin eel RRF model selected 69 features in its feature selection pro-
cess. The importance score for each of the features is shown in Figure
4.3. The features of Figure 4.3 which have an importance score of zero
were not selected by the longfin eel RRF model. Any feature which had
an importance score greater than zero was selected by the model. Many
of the spatial parameters were excluded by the model. The features scor-
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ing the highest importance scores tended to be environmental variables.
This indicates that environmental variables are important in predicting
longfin eel presence or absence. The variable ’seg tmin’ (the mean mini-
mum wintertime air temperature for a segment) achieved an importance
score much larger than any others of c.560. This is inconsistent with the
findings of Crow et al. (2014) where ’seg tmin’ was not selected by the RRF
algorithm.

The probability of capture estimates made across the entire REC2 database
using the longfin eel RRF model are shown in Figure 4.4. This can be com-
pared directly to the observed proportions of longfin eel capture as shown
in Figure 4.1. The North Island of New Zealand has high probability of
capture estimates (≥ 0.6) in the central east and west coast, the Welling-
ton region, and northern areas on the island. This same pattern is seen in
Figure 4.1. The central North Island has probability of capture estimates
ranging from 0 to 0.5. Very low probabilities of capture are seen in the
nzsegments surrounding Mount Ruapehu (located in New Zealand’s cen-
tral North Island). However, Figure 4.1 shows that the observed propor-
tion of longfin eel capture ranged from 0.5 to 0.6 (although there are a few
nzsegments with very low probabilities of capture). Various small areas
of the central North Island do not have any observed data or were above
dams and waterfalls (as shown in Figure 2.1), hence direct comparisons
cannot be made.

The South Island of New Zealand mainly consists of very low prob-
ability of capture estimates (0 to 0.3) throughout the centre of the island.
This same pattern was observed in Figure 4.1. However, some parts of
the central South Island do not have any observations (as shown in Fig-
ure 2.1). Therefore, it is difficult to assess the probability of capture esti-
mates for this area. Probabilities of capture exceeding 0.6 are seen in the
south coast, north coast, central west coast, and in the region surrounding
Christchurch. Stewart Island has longfin eel probability of capture esti-
mated around 0 to 0.4. We see this same approximate pattern in Figure
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Figure 4.3: Importance scores for the features of the longfin eel RRF
model. Features with importance scores greater than 0 were included in
the model. For the features included in the model, the features are ordered
from largest importance score to smallest importance score.
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4.1. However, the north-west corner of the South Island makes low esti-
mates (0 to 0.4) of probability of capture (as shown in Figure 4.4). But the
observed proportions of longfin eel capture in this area appear to be 0.5 or
greater (as shown in Figure 4.1).
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Figure 4.4: Probability of capture estimates for the longfin eel using the
REC2 database. These estimates were made using the longfin eel RRF
model. Larger points have a larger stream order.



4.1. RRF MODELLING RESULTS 79

Cross validation results

The spatial 50-fold cross validation for the longfin eel RRF model resulted
in a mean AUC of 0.6550 (4dp) with a 95% confidence interval based on an
influence curve of 0.6444 and 0.6656 (standard error of 0.0054 (4dp)). The
ROC curves for each fold of the 50 spatial folds and the mean ROC curve
are shown in Figure 4.5. The boxplots of Figure 4.5 show the spread of the
ROC curves.

There appears to be a significant amount of variation in the ROC curves.
This indicates that some of the spatial areas are estimated much better
than others. A number of curves are producing AUC estimates less than

Figure 4.5: ROC curves under each of the 50-folds in the longfin eel RRF
model spatial cross validation. These are shown in grey and the mean
ROC curve is shown in black. Boxplots show the spread of the curves.
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or close to 0.5. This is because predicting longfin eels is highly dependent
on their spatial location. Hence, the model is lacking crucial longfin eel
data and therefore the model makes poor predictions on these locations.
For these spatial folds, estimates for longfin eel presence or absence un-
der the longfin eel RRF model are no better than simply guessing or are
estimating effects in the opposite direction as to what’s occurring in the
area. A spatial fold in the Auckland region results in an AUC of 0.4336.
Here, probability of capture is being predicted in the opposite direction to
what’s occurring.

Overall, when using a RRF for the longfin eel NZFFD data, areas which
are spatially distinct to the model data are, on average, estimated poorly.
However, there is significant variation, hence, some areas are predicted
much better than others.

The 50-fold cross validation for the longfin eel RRF model resulted in
a mean AUC of 0.7798 (4dp) with a 95% confidence interval based on an
influence curve of 0.7709 and 0.7887 (standard error of 0.0045 (4dp)). The
ROC curves for the 50 randomly selected folds and the mean ROC curve
are shown in Figure 4.6.

The curves show little variation from one another, especially if com-
pared to the ROC curves of the spatial 50-fold cross validation (Figure
4.5). Each fold results in a AUC greater than 0.5, with the lowest AUC be-
ing 0.6964 (4dp) and the highest AUC being 0.8405 (4dp). When the mod-
els have some knowledge of the spatial location being estimated (through
data which is close spatially) the longfin eel RRF model returns relatively
accurate estimates of the probability of capture for longfin eels. This is
shown by the relatively high AUC values and the little variation that ap-
pears between the ROC curves for each fold.

5-fold cross validation was performed for the longfin eel RRF model.
The ROC curve for the cross validation is given in Figure 4.7. The 5-fold
cross validation returned almost identical results to the 50-fold cross vali-
dation. The mean AUC is 0.7799 (4dp) with 95% confidence interval 0.7710
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and 0.7890 (with a standard error of 0.0045).

Figure 4.6: ROC curves under each of the 50-folds in the longfin eel RRF
model cross validation. These are shown in grey and the mean ROC curve
is shown in black. Boxplots show the spread of the curves.
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Figure 4.7: ROC curves under each of the 5-folds in the longfin eel RRF
model cross validation. These are shown in grey and the mean ROC curve
is shown in black. Boxplots show the spread of the curves.
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4.1.2 Shortfin eel results

Model results

The shortfin eel RRF model selected 55 features in the model feature selec-
tion process. There are some differences between the features selected by
the shortfin eel RRF model and by the longfin eel RRF model. Figure 4.8
shows the importance score of each of the features. Each of the features are
grouped into ’excluded’ or ’included’. The features in the ’excluded’ group
have an importance score of zero and were excluded from the model, and
the features in the ’included’ group had an importance score greater than
zero and were included in the model.

The feature ’seg twar’ (the average January temperature within a seg-
ment of river in deg. C × 10) achieved the highest importance score of
c.660 in the shortfin eel RRF model. This was the third highest importance
score in the longfin eel RRF model. Similar to the longfin eel RRF model,
many of the spatial features were excluded from the model (only ’x3’ was
included). However, the shortfin eel RRF model also excluded many of the
hydrological and environmental features. Many of the same features such
as ’StreamOrder’ (the stream order) were excluded from both the longfin
and shortfin eel RRF models.

The probability of capture estimates made across the entire REC2 database
using the shortfin eel RRF model are shown in Figure 4.9. The North Is-
land of New Zealand contains probability of capture estimates around 0
to 0.3 throughout the central North Island which spreads to the east, west
and southern coast. Observed proportions of shortfin eel capture values
(shown in Figure 4.2) were found to be of similar size, in similar locations.

Large rivers in the northern Waikato region estimated probabilities of
capture close to 1. Observed proportions of shortfin eel capture did not
show such high values for the same Waikato rivers. The northern North
Island contains probabilities of capture mainly around 0.2 to 0.7. The
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Figure 4.8: Importance scores for the features of the shortfin eel RRF
model. Features with importance scores greater than 0 were included in
the model. For the features included in the model, the features are ordered
from largest importance score to smallest importance score.
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Figure 4.9: Probability of capture estimates for the shortfin eel using the
REC2 database. These estimates were made using the shortfin eel RRF
model. Larger points have a larger stream order.
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observed proportions for this area were very similar but included some
lower estimates of 0 to 0.1 and 0.1 to 0.2.

The west coast of New Zealand’s Manawatu region has high proba-
bilities of capture (around 0.7 to 0.9). The observed proportions for this
region was lower than this (0.3 to 0.6). As noted with the longfin eels,
various small areas of the central North Island do not have any data (as
shown in Figure 2.1) and therefore direct comparisons between what was
observed and what was predicted cannot be made.

The majority of the South Island of New Zealand estimated low prob-
abilities of capture (0 to 0.3) for the shortfin eel. Similarly, the observed
proportions of shortfin eel capture mostly consisted of estimates ranging
between 0 to 0.3 (as shown in Figure 4.2). Very small areas of Invercargill,
Nelson, Blenheim, and a large area surrounding Christchurch have proba-
bilities of capture exceeding 0.6. This is unsurprising given that these same
areas have high observed proportions (as shown in Figure 4.2). Stewart Is-
land has very low probabilities of capture (approximately 0 to 0.1) which
is consistent with Figure 4.2.
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Cross validation results

The spatial 50-fold cross validation for the shortfin eel RRF model resulted
in a mean AUC of 0.7443 (4dp) with a 95% confidence interval of 0.7329
and 0.7557 (standard error of 0.0058). The ROC curves for each fold of the
50 spatial folds and the mean ROC curve are shown in Figure 4.10. The
boxplots in Figure 4.10 show the spread of the ROC curves.

Similar to the spatial 50-fold cross validation for the longfin eel RRF
model (Figure 4.5), the ROC curves of Figure 4.10 have very larger vari-
ability. The variability appears to be greater than that of the spatial cross
validation for the longfin eels. The smallest AUC was 0.5193 (4dp) and

Figure 4.10: ROC curves under each of the 50-folds in the shortfin eel RRF
model spatial cross validation. These are shown in grey and the mean
ROC curve is shown in black. Boxplots show the spread of the curves.
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the largest was 0.8372 (4dp). When the AUC was 0.5193, the model was
only just performing better than guessing shortfin eel presence or absence.
This occurred in a spatial fold close to Dunedin and is due to the model
being data poor in this area. The large variability in ROC curves shows
that some spatial areas were predicted much better than others. But, on
average, a RRF model for the shortfin eel do reasonably well in predicting
to areas which are spatially distinct to the training data.

The 50-fold cross validation for the shortfin eel RRF model resulted in
a mean AUC of 0.8692 (4dp) with a 95% confidence interval of 0.8613 and
0.8771 (standard error of 0.0040). The ROC curves for the 50 randomly
selected folds are shown in Figure 4.11. The boxplots at fixed intervals
of the ROC curves show little variability. The minimum AUC value was
0.8046 (4dp) and the maximum was 0.9152 (4dp).

In comparison to the shortfin eel spatial 50-fold cross validation re-
sults (Figure 4.10), the AUC values are larger and have less variability.
Hence, when the shortfin eel RRF model contains training data which is in
close proximity to where the model is predicting then the predictions are
more accurate to when the model doesn’t have this knowledge. Overall
the shortfin eel RRF model does very well in predicting to locations which
are spatially dependent.

5-fold cross validation was performed for the shortfin eel RRF model.
The ROC curves for the cross validation is given in Figure 4.12. The 5-
fold cross validation returned almost identical results to the 50-fold cross
validation. The mean AUC is 0.8674 (4dp) with 95% confidence interval
0.8595 and 0.8754 (with a standard error of 0.0041).
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Figure 4.11: ROC curves under each of the 50-folds in the shortfin eel RRF
model cross validation. These are shown in grey and the mean ROC curve
is shown in black. Boxplots show the spread of the curves.
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Figure 4.12: ROC curves under each of the 5-folds in the shortfin eel RRF
model cross validation. These are shown in grey and the mean ROC curve
is shown in black. Boxplots show the spread of the curves.
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4.2 VAST modelling results

This section describes the results of the VAST models. The data used for
the models are detailed in Chapter 2 and the VAST method is detailed in
Section 3.2.

A probability of capture model for longfin eels, shortfin eels and for
both species (known as a multi-species model) were constructed. The
models were run using a NIWA server with 245GB of RAM. This enabled
bias correction (Thorson & Kristensen, 2016) to be used at a finer resolution
(i.e. more knots) than a standard computer would allow for. VAST esti-
mates spatial and spatio-temporal variation at each of 400 knots which are
distributed across the domain. Probability of capture maps are then built
by interpolating within the domain specified. In this case the domain is
the whole of New Zealand.

Figure 4.13 shows a map of the knots (on a northing-easting coordi-
nate grid) and of the interpolation areas (on a latitudinal-longitudinal and
northing-easting coordinate grid) for all the VAST models. The interpola-
tion areas were within a maximum distance of 15km from any knot. This
was deemed an acceptable distance for interpolation given that the fur-
ther away one interpolates, the less correlated the sampling point is to the
interpolated point.

50-fold spatial cross validation, 50-fold cross validation and 5-fold cross
validation was performed on each of the models. Validation was per-
formed on models with 1000 knots and without bias correction. Bias cor-
rection would significantly increase computation time and 1000 knots was
used to increase the resolution of the results.
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Figure 4.13: The upper maps show interpolation areas in a latitude-
longitude coordinate grid and a northing-easting coordinate grid. The
bottom map shows the locations of the knots used by VAST on a northing-
easting coordinate grid.
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4.2.1 Longfin eel results

Model results

Estimates of the fixed effects for the longfin eel VAST model are given in
Table 4.1. The terms of the matrix H and the parameter κ1 which define
the correlation function Ψ1(s, s+h′) are given. The natural log of the terms
defining the H matrix are -0.5627 (lnh1) and 0.2550 (lnh2) with standard
errors 0.2017 and 0.2238 respectively. These are large standard errors rela-
tive to their estimated value and indicates uncertainty in these estimates.
The term log κ1 is estimated as -3.5958 with standard error 0.1338. This
is used to find the distance at which spatial correlation was 10% of the
original correlation.

Parameter Estimate Standard error C.V. (%)
lnh1 -0.5627 0.2017 35.8%
lnh2 0.2550 0.2238 87.8%

log κ1 -3.5958 0.1338 3.7%
LΩ1 0.8979 0.1222 13.6%
Lε1 1.2434 0.0721 5.8%

log σβ1 -2.9477 0.7043 23.9%

Table 4.1: The estimated fixed effects (4dp), associated standard errors
(4dp) and coeffient of variation (C.V.) (1dp) of the longfin eel VAST model.

Table 4.1 gives the coefficient of variation (C.V.) for each of the esti-
mated model parameters. The C.V. for lnh1 and lnh2 are very large and
indicate large uncertainty in these parameters. Hence, we lack certainty in
how longfin eel data is correlated in space and direction. Caution should
be taken when interpreting model predictions. The C.V. for the other
model parameters shown in Table 4.1 are all less than 25%. These param-
eters show reasonable level of precision.

Figure 4.14 displays the direction in which geometric anisotropy oc-
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Figure 4.14: Plot representing geometric anisotropy for encounter proba-
bility from the longfin eel VAST model on a easting-northing coordinate
grid.

curs for encounter probability. The plot shows that spatial decorrelation
occurred slower in a slightly north-east and south-west direction. 10%
correlation occurred at a distance of approximately 6km in this direction.

The terms LΩ1 and Lε1 which define spatial covariation and the spatio-
temporal covariation respectively are also given in Table 4.1. The term
LΩ1 was estimated as 0.8979 with standard error 0.1222, and Lε1 was esti-
mated as 1.2434 with standard error 0.0721. Lastly, the terms defining the
intercept parameter of Equation 3.10 is defined by the fixed effect term σ2

β1
.

From Table 4.1 we can see that log σβ1 was estimated as -2.9477 with stan-
dard error 0.7043. Hence, σβ1 was estimated as 0.0011 (4dp) and indicates
small variability in the distribution of the autoregressive term β1(t + 1).
Hence, the ’baseline’ effect of probability of capture for the longfin eel
VAST model changes very little with time. The final gradients for each of
the fixed effects of Table 4.1 were all approximately zero which indicates
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that the model converged successfully.

Longfin eel probability of capture estimates from 1974 to 2014 are shown
in Figure 4.15. The estimates are mapped on a northing-easting coordinate
grid. Areas in dark red indicate that longfin eels had a high probability of
being observed whereas areas in dark blue indicate that longfin eels had
a low probability of being observed. Areas in a green or yellow colour in-
dicate that longfin eels had a probability of being observed which ranges
from approximately 0.4 to 0.6.

The 2014 probability of capture estimates for the longfin eel are shown
in Figure 4.16. From Figure 4.16 we can see that the east and west coast
of the North Island of New Zealand had high probabilities of capturing a
longfin eel. These regions often exceeded probabilities of capture of 0.7.
This is consistent with the observed proportions of longfin eel capture in
Figure 4.1. The tip of the North Island had probabilities of capture around
0.7 to 0.8 and the central North Island showed very low probabilities of
capture for longfin eels. A small area within the central North Island of
New Zealand was outside of coverage due to the construction of knots.
The observed proportions of longfin eel capture showed values ranging
from 0.4 to 0.8 in the tip of New Zealand’s North Island. However, the
observed proportions of Figure 4.1 were mostly between 0.5 to 0.6 in the
central North Island.

The South Island of New Zealand showed high probabilities of capture
in the north of the South Island, the centre of the west coast, and around
the cities of Invercargill and Christchurch. The central South Island ex-
tending towards the east coast were estimated as very low for probability
of capture of longfin eel (0 to 0.3). Likewise, a small area in the south-west
of the South Island and all of Stewart Island showed low probabilities
of capture. The remaining areas tended to show probabilities of capture
ranging from 0.3 to 0.7. These patterns are consistent with the observed
proportions of longfin eel capture in Figure 4.1. A large area within the
South Island does not have any estimates for the probability of capture
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Figure 4.15: Longfin eel probability of capture estimates for 1974 to 2014
from the longfin eel VAST model. The estimates are shown on a northing-
easting coordinate grid.
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Figure 4.16: Map of the 2014 longfin eel probability of capture estimates
made from the longfin eel VAST model. The estimates are shown on a
northing-easting coordinate grid.
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because of the way knots were placed within the domain.

These approximate patterns for longfin eel probability of capture ap-
peared from 1974 to 2014 (as shown by Figure 4.15). However, there were
some strong differences such as in 1980 and 1987 where the North Island
of New Zealand had very high probabilities of capture (apart from the
central North Island).

The Pearson residuals vs. fitted values for the longfin eel VAST model
are shown in Figures 4.17 and 4.18. Pearson’s residuals are given by Equa-
tion 3.13.

Figure 4.17 shows the Pearson residuals against the fitted values for
each year and Figure 4.18 shows all the Pearson residuals against the fitted
values on one plot. Some of the years from Figure 4.17 show unequal
variability in the residuals, while others show constant variance but non-
random scatter. Each plot of Figure 4.17 (except plots with very little data)
tend to have residuals clustering at higher fitted values and/or at lower
fitted values. This is most obvious in Figure 4.18 which gives an overall
picture of the residuals. Clustering patterns indicate that there may still be
an underlying correlation in the data which hasn’t been fully accounted
for in the model.

It is clear from Figure 4.18 that residuals do not vary around zero evenly.
Residuals appear to be larger at small fitted values and smaller at higher
fitted values with larger groupings at both ends. Additionally, Figure 4.18
shows a decreasing trend in the residuals. This indicates that there may be
an underlying pattern in the data which hasn’t been fully accounted for.

Figure 4.19 gives the Pearson’s residuals on maps. When accounting
for year, the residuals appear to be evenly scattered above and below zero,
and are not very large. This is because each map has light blue and red
residuals and none of the maps show one colour more prominently.

Figure 4.20 is a QQ-plot for the longfin eel VAST model. The plot in-
dicates that the residuals follow a Normal distribution as the residuals
follow the line very closely.
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Figure 4.17: Plots of the Pearson residuals vs. fitted values for the longfin
eel VAST model. These are given across every year of sampling from 1974
to 2014.
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Figure 4.18: Plot of all the Pearson residuals vs. fitted values for the longfin
eel VAST model.

Figure 4.21 shows observed encounter frequency against the predicted
encounter probability (i.e. predicted probability of capture). The red area
shows the 95% confidence interval band for the predicted probability of
capture. The points at the upper and lower ends of the plot do not fall
within the 95% predictive interval.

Observed points fall below the 95% predictive interval when the pre-
dicted encounter is low and observed points are above this band at high
predicted encounter probability. But points tend to fall within this band
when the observed encounter frequency is between 0.2 to 0.7. This in-
dicates that the model is over-estimating small observed encounter fre-
quency and under-estimating large observed encounter frequencies. This
is not surprising given what was observed in the residuals. However,
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Figure 4.19: Heat maps of the longfin eel VAST model’s Pearson residuals.
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Figure 4.20: QQ-plot for the longfin eel VAST model.
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Figure 4.21: A diagnostic plot for observed encounter frequency against
the predicted encounter probability for the longfin eel VAST model.

the observed encounter frequencies only just fall outside of this band and
therefore is not a major concern. Nevertheless, this must still be taken into
consideration when examining the probability of capture estimates.
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Cross validation results

A spatial 50-fold cross validation was performed on the longfin eel VAST
model. The area under the ROC curve (AUC) was calculated for each fold.
The ROC curves are shown in Figure 4.22 where the mean ROC curve is
shown by the dark line and the variability of the curves are shown by the
boxplots. The mean AUC was 0.6646 (4dp) with 95% confidence interval
0.6542 and 0.6751 (standard error of 0.0053).

The ROC curves are highly variable with the lowest AUC being 0.4339
(4dp) and the largest being 0.8471 (4dp). The lowest estimate was found
to be in a spatial fold in west Waikato. Hence, predictions made to this

Figure 4.22: ROC curves under each of the 50 folds in the longfin eel VAST
model spatial cross validation. These are shown in grey and the mean
ROC curve is shown in black. Boxplots show the spread of the curves.
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area are very poor when the model lacks these spatial data points. When
the AUC is less than 0.5, the model is estimating effects in the opposite
direction to the true effect. On average, the model is performing fairly
poorly when making predictions in areas outside of the spatial domain of
the training data.

The 50-fold cross validation for the longfin eel VAST model resulted
in a mean AUC of 0.8321 (4dp) with 95% confidence interval 0.8243 and
0.8399 (standard error 0.0040). The ROC curves for each of the 50 folds are
shown in Figure 4.23. There is little variability in the receiver operating
curves. The smallest AUC was 0.7727 (4dp) and the largest was 0.8798
(4dp). This shows that all 50 folds were predicted very well and that, on
average, the longfin eel VAST model performs well when the test data set
is spatially correlated to the training data set.

5-fold cross validation for the longfin eel VAST model found very sim-
ilar results to the 50-fold cross validation. The ROC curves and mean ROC
curve is shown in Figure 4.24. The mean AUC is 0.8269 (4dp) with a 95%
confidence of 0.8190 and 0.8348 (with a standard error of 0.0040).
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Figure 4.23: ROC curves under each of the 50 folds in the longfin eel VAST
model cross validation. These are shown in grey and the mean ROC curve
is shown in black. Boxplots show the spread of the curves.
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Figure 4.24: ROC curves under each of the 5 folds in the longfin eel VAST
model cross validation. These are shown in grey and the mean ROC curve
is shown in black. Boxplots show the spread of the curves.
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4.2.2 Shortfin eel results

Model results

Table 4.2 gives the estimates of the fixed effects for the shortfin eel VAST
model. The natural log of the parameters defining H were given as -
0.7503 (lnh1) and -0.2756 (lnh2) with respective standard errors of 0.3355
and 0.3746. The standard errors were large relative to their estimated val-
ues. The model set log κ1 as -3.2739 with standard error 0.2635. Figure
4.25 shows the distance at which spatial data points had a 10% correla-
tion for encounter probability. Spatial decorrelation occurs slower in a
slightly north-west and south-east direction. 10% correlation occurs at ap-
proximately 7km in those directions. This was the opposite direction of
the longfin eel VAST model. The matrix H and κ1 define the correlation
function Ψ1(s, s+ h′) defined in Section 3.2.3.

Parameter Estimate Standard error C.V.
lnh1 -0.7503 0.3355 44.7%
lnh2 -0.2756 0.3746 135.9%

log κ1 -3.2739 0.2635 8.0%
LΩ1 1.0878 0.1504 13.8%
Lε1 1.2363 0.1247 10.1%

log σβ1 -1.3666 0.3097 22.7%

Table 4.2: The estimated fixed effects (4dp), associated standard errors
(4dp) and coefficient of variation (C.V.) (1dp) of the shortfin eel VAST
model.

Table 4.2 give coefficient of variation (C.V) estimates for each of the
model parameters. The anisotropy parameters lnh1 and lnh2 show very
large C.V values where lnh2 is extremely large at 135.9%. This indicates
very large imprecision in these parameters. Hence, caution should be
taken in interpreting these parameters and model predictions. The C.V.
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Figure 4.25: Plot representing geometric anisotropy for encounter proba-
bility from the shortfin eel VAST model on a easting-northing coordinate
grid.

for the other model parameters shown in Table 4.2 are all less than 25%.
These parameters show reasonable levels of precision.

The term which defines spatial covariation LΩ1 was estimated as 1.0878
with standard error 0.1504 and the term which defines spatio-temporal
covariation Lε1 was estimated as 1.2363 with standard error 0.1247. The
term defining the variability of the intercept parameter (see Equation 3.10)
is termed σ2

β1
. Where log σβ1 was estimated as -1.3666 with standard error

0.3097. Hence, σβ1 was estimated as 0.0430 (4dp). This gives the variability
in the model autoregressive intercept term β1(t + 1). There is very little
variability in the distribution of this term which means that the ’baseline’
probability of capture for shortfin eels stayed approximately the same with
time. The final gradients for each of the fixed effects of Table 4.1 were all
approximately zero.

Probability of capture estimates were made for shortfin eels from 1974
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to 2014. These estimates are shown on heatmaps in Figure 4.26. The same
colour scheme of the longfin eel heatmaps was used. Figure 4.27 is a
heatmap of the probability of capture estimates for 2014 and were made
using the shortfin eel VAST model.

In reference to Figure 4.27: in the North Island of New Zealand shortfin
eels are unlikely to be encountered in the centre of the island (probability
of capture is c.0.2). Similar estimates are made in a small area to the east of
the central North Island and a larger area to the west of the central North
Island. This is seen in the observed proportions of shortfin eel capture of
Figure 4.2. There are gaps in shortfin eel probability of capture estimates
in the central North Island of New Zealand and we therefore cannot make
direct comparisons.

The northern areas of the North Island tend to have high probability of
capture estimates of 0.7 or greater. The observed proportions of shortfin
eel capture in this area are highly variable (between 0 and 1). The southern
North Island, and east and west coast of the North Island tend to have
probability of capture estimates between 0.6 to 1. This is inconsistent with
the observed proportions of shortfin eel capture in Figure 4.2 which were
less than 0.6.

In reference to Figure 4.27: in the South Island of New Zealand, short-
fin eels are unlikely to be encountered throughout the central South Island,
west coast, south coast and the southern east coast of the South Island.
These areas tended to have probabilities of capture of 0.1 or less. This
is approximately consistent with the observed proportions of shortfin eel
capture in Figure 4.2. However, the majority of the east coast of the South
Island (with the exception of the southern east coast) showed probability
of capture estimates between 0.4 to 0.6. This is inconsistent with the ob-
served proportions of shortfin eel capture in the east coast of the South
Island. With the exception of the Christchurch region (where observed
proportions of shortfin eel capture was between 0.4 to 0.7), the observed
proportions of shortfin eel capture in the east coast of the South Island
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Figure 4.26: Shortfin eel probability of capture estimates for 1974 to 2014
from the shortfin eel VAST model. The estimates are shown on a northing-
easting coordinate grid.
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Figure 4.27: Map of the 2014 shortfin eel probability of capture estimates
made from the shortfin eel VAST model. The estimates are shown on a
northing-easting coordinate grid.
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tended to range between 0 and 0.3.

The South Island of New Zealand has very few areas where the prob-
ability of capturing a shortfin eel was greater than 0.7. There is a large
gap in probability of capture estimates in the South Island of Figure 4.27
because of the way knots were constructed

Similar to the longfin eel probability of capture patterns, the shortfin
eel showed these approximate patterns throughout the years of 1974 to
2014. However, Figure 4.26 did show some changes. The North Island
of New Zealand tends to show higher probabilities of capture as time in-
creases. This is most obvious along the North Island’s coasts and from
2001 to 2014. The coasts of the South Island appear to also increase in prob-
ability of capture as time increases. But this occurs only in smaller areas
and continues to remain at low probabilities. However, the Christchurch
region increases to probabilities exceeding 0.8.

Pearson’s residuals of the shortfin eel VAST model were examined.
Figure 4.28 shows the Pearson residuals vs. fitted values for each year and
Figure 4.29 shows Pearson’s residuals vs. fitted values for all the residuals.
We can see from Figure 4.28 that the residuals, for some years, tend to be
further from zero at larger fitted values. Hence, we observe a ’funnelling
out’ effect. This is most obvious in 1981, 2000, 2001 and 2009. But this
doesn’t appear to be a significant feature in the majority of the plots.

Equivalent to the residuals of the longfin eel VAST model, Pearson’s
residuals of the shortfin eel VAST model appear to show an underlying
structure. This is most obvious in Figure 4.29, where the residuals with
a fitted value close to zero are not randomly scattered. Instead they are
clustered together.

Figure 4.29 also shows some outliers at lower fitted values. Most no-
table, there is one large outlier with a Pearson residual value close to 9 and
a fitted value around 0.1. There were four outliers with a residual value
greater than 4. These came from the years 1993, 1994, 1997 and 1999.

A residual of 8.96 (2dp) came from the year 1997. We can see this most
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Figure 4.28: Plots of the Pearson residuals vs. fitted values for the shortfin
eel VAST model. These are given across every year of sampling from 1974
to 2014.
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Figure 4.29: Plot of all the Pearson residuals vs. fitted values for the short-
fin eel VAST model.

obviously in residual 24 (1997) of Figure 4.30. There is a bright red residual
on the west coast of the South Island. This indicates that for 1997, that lo-
cation in the South Island of New Zealand was over estimated. However,
Figure 4.30 indicates that the residuals are small and scattered approxi-
mately around zero (equal number of red and blue points).

Figure 4.29 shows that the residuals have approximately homogenous
variability around 0 when not accounting for the outliers. In general, these
residuals do not appear to show any strong cause for concern.

Figure 4.31 is a QQ plot for the shortfin eel VAST model. The plot
indicates that Pearson’s residuals follow a Normal distribution. This is
because the residuals follow the QQ line very well.

An observed encounter frequency vs. predicted encounter probabil-
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Figure 4.30: Heat maps of the shortfin eel VAST model’s Pearson residuals.
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Figure 4.31: QQ-plot for the shortfin eel VAST model.

ity plot is shown in Figure 4.32. The observed encounter probability ap-
proximately falls within the 95% confidence interval for the predicted en-
counter probability when the predicted encounter probability is less than
0.7. However, observed encounter probabilities with a predicted encounter
probability greater than 0.7 do not fall within this interval. In these cases
the model is under predicting the true probability of encounter. However,
these points fall just outside the 95% confidence interval range and there-
fore isn’t a major cause for concern.

The majority of the observed encounter frequencies fall within the pre-
dicted encounter probability range so we can be relatively satisfied with
the performance of the model.
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Figure 4.32: A diagnostic plot for observed encounter frequency against
the predicted encounter probability for the shortfin eel VAST model.
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Cross validation results

A spatial 50-fold cross validation was performed on the shortfin eel VAST
model. The ROC curves for each of the 50 folds are shown in Figure 4.33.
The mean AUC was 0.7864 (4dp) with 95% confidence interval 0.7754 and
0.7974 (standard error 0.0056). Figure 4.33 shows significant variability in
the ROC curves with the smallest AUC being 0.5979 (4dp) and the largest
being 0.9982 (4dp).

All curves return AUC values greater than 0.5 and therefore all do rea-
sonably well. However, the lowest AUC nevertheless shows poor per-
formance in model estimation. On average the shortfin eel VAST model

Figure 4.33: ROC curves under each of the 50 folds in the shortfin eel VAST
model spatial cross validation. These are shown in grey and the mean
ROC curve is shown in black. Boxplots show the spread of the curves.
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does well in predicting the probability of capture for areas which are spa-
tially distinct to the spatial locations of the training data. In some cases the
model predicts the probability of capture very well.

50-fold cross validation was performed on the shortfin eel VAST model
which resulted in the ROC curves shown in Figure 4.34. The mean AUC
(shown by the black line in Figure 4.34) was 0.9046 (4dp) with 95% confi-
dence interval 0.8981 and 0.9111 (standard error 0.0033).

Figure 4.34 shows very little variability in AUC; the smallest AUC was
0.8415 (4dp) and the largest AUC was 0.9454 (4dp). Hence, the shortfin
eel VAST model performs very well when predicting to areas that are not

Figure 4.34: ROC curves under each of the 50 folds in the shortfin eel VAST
model cross validation. These are shown in grey and the mean ROC curve
is shown in black. Boxplots show the spread of the curves.
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spatially distinct to the training data set. This is shown by the large mean
AUC value and the fairly small variability in AUC from this mean.

5-fold cross validation was implemented on the shortfin eel VAST model.
The ROC curves for the cross validation and mean ROC curve are shown
in Figure 4.35. The mean AUC is 0.9006 (4dp) with a 95% confidence inter-
val of 0.8940 and 0.9073 (standard error of 0.0034). These results are very
similar to the 50-fold cross validation results.

Figure 4.35: ROC curves under each of the 5 folds in the shortfin eel VAST
model cross validation. These are shown in grey and the mean ROC curve
is shown in black. Boxplots show the spread of the curves.
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4.2.3 Multi-species results

Model results

A multi-species probability of capture VAST model was run using the
NZFFD longfin and shortfin eel presence/absence data. The model’s es-
timated fixed effects are given in Table 4.3. The natural log of the values
of the matrix H are -0.4162 (lnh1) and 0.0106 (lnh2) with standard errors
0.1555 and 0.1471 respectively. Both have high standard errors relative
to the size of the effects. The fixed effect log κ1 was estimated as -3.4002
with standard error 0.1056. The term H and κ1 define the Matérn function
(given in Equation 3.14) and κ1 defines decorrelation in the multi-species
VAST model.

Parameter Estimate Standard error C.V. (%)
lnh1 -0.4162 0.1555 37.4%
lnh2 0.0106 0.1471 1387.7%

log κ1 -3.4002 0.1056 3.1%
L

(1)
Ω1

0.9185 0.1067 11.6%
L

(2)
Ω1

0.1168 0.1550 132.7%
L

(3)
Ω1

0.8601 0.1250 14.5%
L

(1)
ε1 1.2420 0.0676 5.4%

L
(2)
ε1 0.1918 0.0948 49.4%

L
(3)
ε1 1.1156 0.0894 8.0%

log σβ1 -1.6424 0.2990 18.2%

Table 4.3: The estimated fixed effects (4dp), associated standard errors
(4dp) and coefficient of variation (C.V.) (1dp) of the multi-species VAST
model (to 4dp).

Table 4.3 gives the coefficient of variation (C.V.) for each of the model
parameters. The C.V. estimates for lnh1, lnh2 , L(2)

Ω1
and L

(2)
ε1 are all very

large and therefore indicate large imprecision in these parameters. In par-
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Figure 4.36: Encounter probability geometric anisotropy for the multi-
species VAST model on a easting-northing coordinate grid.

ticular lnh2 results in a C.V. of 1387.7% which indicates that we have very
little certainty in anisotropy correlation. Extreme caution should be taken
in reviewing predictions made by the multi-species VAST model as it has
much greater uncertainty in many of its parameters in comparison to the
single species VAST models. However, the rest of the parameters C.V. es-
timates shown in Table 4.3 are less than 20%. This indicates that these
estimates have reasonable precision.

Figure 4.36 shows the distance at which correlation is at 10% of the
original correlation. This plot shows that decorrelation occurs slower in a
northwards and southwards direction and that 10% decorrelation occurs
at just over 4km in these directions.

There are three fixed effects of the loadings matrix LΩ1 , these are es-
timated as 0.9185 (L(1)

Ω1
), 0.1168 (L(2)

Ω1
) and 0.8601 (L(3)

Ω1
) with standard er-

rors 0.1067, 0.1550 and 0.1250 respectively. This generates spatial variation
within each eel species and covariation amongst the longfin and shortfin
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eel.

There are three fixed effects of the loadings matrix Lε1 , these are es-
timated as 1.2420 (L(1)

ε1 ), 0.1918 (L(2)
ε1 ) and 1.1156 (L(3)

ε1 ) with standard er-
rors 0.0676, 0.0948 and 0.0894 respectively. This generates spatial-temporal
variation within each eel species and covariation amongst the longfin and
shortfin eel.

The intercept term (β1(ci, ti)) of Equation 3.10 was defined as a random
effect which follows a Normal distribution with a random walk variance
structure. The variance term log σβ1 is estimated as -1.6424 with standard
error 0.2990. Hence, σβ1 is estimated as 0.0228 (4dp). This indicates that the
β1(ci, ti) will change very little with time due to its very small estimated
variability. We can expect the ’baseline’ probability of capture effect to
change very little from one year to the next.

Probability of capture estimates were made across New Zealand from
1974 to 2014 using the multi-species VAST model. Figure B.1 of the ap-
pendix shows the longfin eel estimates from 1974 to 2014 and Figure B.2 of
the appendix shows the longfin eel estimates in 2014. Figure B.3 of the ap-
pendix shows the shortfin eel estimates from 1974 to 2014 and Figure B.4 of
the appendix shows the shortfin eel estimates in 2014. The estimates under
the multi-species model for both species shows subtle differences between
the probability of capture estimates made by the longfin eel VAST model
and the shortfin eel VAST model.

The following describes the diagnostic plots used to assess the multi-
species VAST model. Figure 4.37 shows the multi-species VAST model
Pearson residuals by knot. The maps of Figure 4.37 appear to show an
even amount of blue and red colouring and do not have any brightly
coloured points (large residuals). Hence, we can be satisfied that the multi-
species model does not have any particularly unusual residuals or unusual
spread of residuals.

Figures 4.38a and 4.38b are QQ plots for the longfin eel results and
shortfin eel results based on the multi-species VAST model. Residuals for
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Figure 4.37: Heat maps of the multi-species VAST model’s Pearson resid-
uals.
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both species follow the QQ line very well. Therefore we can conclude
that the longfin eel and shortfin eel Pearson’s residuals follow a Normal
distribution.

(a) QQ-plot of the longfin eel results. (b) QQ-plot of the shortfin eel re-

sults.

Figure 4.38: QQ-plots for the multi-species VAST model.

An observed encounter frequency vs. predicted encounter probability
plot is given in Figure 4.39. The plot shows that the model tends to under-
estimate encounter probability when the observed encounter frequency is
greater than c.0.7, and the model tends to overestimate encounter proba-
bility when the observed encounter frequency is less than c.0.3. Similar
biases are seen in the single species models. Once again, one must take
this into consideration when using the multi-species VAST model.

The estimated spatial and spatio-temporal correlation is displayed in
Figure 4.40 for the multi-species VAST model. The estimated spatial cor-
relation between the longfin eels and the shortfin eels is 0.1. The estimated
spatio-temporal correlation between the longfin eels and shortfin eels is
0.2. The spatial and spatio-temporal correlation between the longfin eels
and shortfin eels are both very small positive correlations. This indicates
that the probability of catching a longfin eel slightly increases when a
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Figure 4.39: A diagnostic plot for observed encounter frequency against
the predicted encounter probability for the multi-species VAST model.
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Figure 4.40: The estimated spatial and spatio-temporal correlation for
longfin eels and shortfin eels from the multi-species VAST model. The
columns numbered 1 corresponds to the longfin eel and the columns num-
bered 2 correspond to the shortfin eel.

shortfin eel is present (and vice-versa). But this increase is likely to be
minimal.
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Cross validation results

Spatial cross validation, 50-fold cross validation and 5-fold cross valida-
tion was performed on the VAST multi-species model. AUC was calcu-
lated using 1) all the probability of capture estimates, 2) only the longfin
eel estimates, and 3) only the shortfin eel estimates. Examining the results
separately allows us to see how the model performs for each of the species
individually and allows us to compare these results to the single species
results.

The ROC curves for the 50 folds of the spatial cross validation are
shown in Figures 4.41, 4.42 and 4.43. The figures give the spatial cross val-
idation ROC curves for the multi-species VAST model. Figure 4.41 gives
the curves using both the longfin eel and shortfin eel probability of capture
results. Figure 4.42 gives the curves using only the longfin eel probability
of capture results. Figure 4.43 gives the curves using only the shortfin eel
probability of capture results.

Figures 4.41, 4.42 and 4.43 show ROC curves which are highly variable.
In particular, Figure 4.41 contains an outlier ROC curve with a correspond-
ing AUC of 0.4738. This means that the probability of capture for one of
the folds (which is spatially distinct to the training data) is being estimated
very poorly. As the AUC is less than 0.5, probability of capture is being es-
timated in the wrong direction, i.e. high probabilities of capture assigned
to sites where eels have not been found.

The highly variable nature of the ROC curves from the spatial cross
validation is consistent with other spatial cross validation results. Hence,
the multi-species model performs very well in some folds and very poorly
in other folds.

The ROC curves for the 50 folds of the cross validation are shown in
Figures 4.44, 4.45 and 4.46. Figure 4.44 shows the ROC curves for the
multi-species model results with both the species combined whereas Fig-
ure 4.45 and 4.46 show the ROC curves with the results only of the longfin
eel and shortfin eel respectively.
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The mean AUC for the multi-species model of both species is 0.8890
(4dp) with a 95% confidence interval of 0.8846 and 0.8933 (standard error
0.0022). As shown in the boxplots, the variability in Figure 4.44 is very
small. These results indicate that areas which are not spatially distinct to
the training data can predict either longfin or shortfin eel presence/ab-
sence very well when using a multi-species model.

The mean AUC for the multi-species model of longfin eels is 0.8310
(4dp) with a 95% confidence interval of 0.8232 and 0.8387 (standard error

Figure 4.41: ROC curves under each of the 50 folds in the multi-species
VAST model spatial cross validation. The ROC curves are built under the
results for both the longfin eel and shortfin eel. These are shown in grey
and the mean ROC curve is shown in black. Boxplots show the spread of
the curves.
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Figure 4.42: ROC curves under each of the 50 folds in the multi-species
VAST model spatial cross validation. The ROC curves are built under the
results for the longfin eel only. These are shown in grey and the mean ROC
curve is shown in black. Boxplots show the spread of the curves.
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Figure 4.43: ROC curves under each of the 50 folds in the multi-species
VAST model spatial cross validation. The ROC curves are built under the
results for the shortfin eel only. These are shown in grey and the mean
ROC curve is shown in black. Boxplots show the spread of the curves.

of 0.0040). The boxplots of Figure 4.45 show the variability in the ROC
curves to be small. However, these curves have more variability than the
curves of the multi-species model with both species results and approx-
imately the same as the curves of the multi-species model with shortfin
eel results only. The multi-species model performs very well in predicting
presence/absence for longfin eels.

The mean AUC for the multi-species model of the shortfin eels is 0.9025
(4dp) with a 95% confidence interval of 0.8960 and 0.9091 (standard error
of 0.0034). The boxplots of Figure 4.46 show similar variability in ROC
curves as the ROC curves of the multi-species model results for the longfin
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Figure 4.44: ROC curves under each of the 50 folds in the multi-species
VAST model cross validation. The ROC curves are built under the results
for both the longfin eel and shortfin eel. These are shown in grey and
the mean ROC curve is shown in black. Boxplots show the spread of the
curves.
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Figure 4.45: ROC curves under each of the 50 folds in the multi-species
VAST model cross validation. The ROC curves are built under the results
for the longfin eel only. These are shown in grey and the mean ROC curve
is shown in black. Boxplots show the spread of the curves.
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Figure 4.46: ROC curves under each of the 50 folds in the multi-species
VAST model cross validation. The ROC curves are built under the results
for the shortfin eel only. These are shown in grey and the mean ROC curve
is shown in black. Boxplots show the spread of the curves.

eels (Figure 4.45). This variability is fairly small but is reduced when using
the results of the species combined (Figure 4.44). This is shown by the stan-
dard errors which is much smaller when using both species results. The
mean AUC and 95% confidence interval indicates that the multi-species
model performs well in predicting shortfin eel presence/absence.

5-fold cross validation was performed on the multi-species VAST model.
This was implemented to compare directly against the GRaF longfin and
shortfin eel models. Therefore we are interested in the AUC results based
on only the longfin eel probability of capture estimates and based on only
the shortfin eel probability of capture estimates. The ROC curves based on
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Figure 4.47: ROC curves under each of the 5 folds in the multi-species
VAST model cross validation. The ROC curves are built under the results
for the longfin eel only. These are shown in grey and the mean ROC curve
is shown in black. Boxplots show the spread of the curves.

the longfin eel estimates and the shortfin eel estimates are given in Figures
4.47 and 4.48 respectively. The mean AUCs and 95% confidence intervals
are almost identical to that of the 50-fold cross validation using the longfin
eel results only and the shortfin eel results only.
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Figure 4.48: ROC curves under each of the 5 folds in the multi-species
VAST model cross validation. The ROC curves are built under the results
for the shortfin eel only. These are shown in grey and the mean ROC curve
is shown in black. Boxplots show the spread of the curves.
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4.3 GRaF modelling results

This section outlines the findings of the longfin eel GRaF model and the
shortfin eel GRaF model. See Chapter 2 for details on the data used and
Section 3.3.1 for details on the GRaF methodology.

The probability of capture models were built using an uninformative
prior on the probability of capture for each model covariate. However,
an informative prior was placed on the model length scales to allow for a
smooth function in how probability of capture changes with a covariate.

4.3.1 Longfin eel results

Model results

A total of 70 covariates were used for the longfin eel GRaF model. Of these,
69 were determined by the longfin eel RRF model (see Table A.2) and an
additional covariate was used to account for temporal variability in the
data set (known as ’year’). Table C.1 of the appendix gives the estimated
lengthscales ordered from smallest to largest. Year was estimated to have
the most complex function.

The plots of the posterior distribution of seg tmin, us tmin, seg twar
and year are given in Figures 4.49a, 4.49b, 4.49c and 4.49d. The variables
seg tmin, us tmin and seg twar achieved the highest importance scores
in the longfin eel RRF model (see Figure 4.3). The function for seg twar
has the largest lengthscale (50.64) of the figures and as a result achieves a
posterior distribution which is very flat (Figure 4.49a).

The posterior modes for seg tmin and us tmin are also quite flat due
to their fairly large lengthscales (13.84 and 6.39 respectively). The 95%
credible intervals for seg tmin, us tmin and seg twar are very wide. The
modes and credible intervals for each of these variables peak at a certain
value of the covariate and tend to be indicative of high probability of pres-
ence across all values of the covariate. However, the 95% credible intervals
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(a) Probability of presence vs.

seg tmin (mean minimum wintertime

air temperature for a river segment

(deg. C × 10)) for the longfin eel GRaF

model. Lengthscale was estimated as

13.83.

(b) Probability of presence vs. us tmin

(mean minimum wintertime air tem-

perature upstream of a river segment

(deg. C × 10)) for the longfin eel GRaF

model. Lengthscale was estimated as

6.39.

(c) Probability of presence vs. seg twar

(mean January air temperature for a

river segment ((deg. C × 10))) for the

longfin eel GRaF model. Lengthscale

was estimated as 50.64.

(d) Probability of presence vs. year for

the longfin eel GRaF model. Length-

scale was estimated as 0.35.

Figure 4.49: Plots of probability of presence (i.e. capture) vs. covariate
for seg tmin, us tmin, seg twar and year. Dotted lines show the mean (δ),
solid lines show the predicted probability of capture (posterior mode) and
shaded areas show the 95% credible interval.
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for Figures 4.49a, 4.49b and 4.49c tends to include probability of presence
values less than 0.5 across all values of the covariate. This shows that the
model wouldn’t predict probability of capture with strong certainty.

Figure 4.49d shows the posterior mode and 95% credible interval for
the probability of presence against year. The function has a very small
length scale of 0.35 and therefore changes probability of presence rapidly
in comparison to functions with a large lengthscale. The posterior mode
has high probability of presence in the first 10-15 years and then rapidly
increases in the late 1980s and peaks in the early 1990s. Probability of
presence then drops rapidly. The 95% credible intervals show that there is
little certainty in the estimates over the first 10-15 years and the last c.15
years. However, from c.1987 to c.1995 the high probability of presence is
estimated with small 95% credible intervals.

The probability of capture estimates (posterior mode) made at each
segment of river in the REC database is shown in Figure 4.50b. Figures
4.50a and 4.50c show the posterior 95% lower confidence interval and the
posterior 95% upper confidence interval respectively. Figure 4.51 repeats
Figure 4.50b on a full page to ease probability of capture comparisons.

From Figure 4.50b one can see that the North Island of New Zealand
has very high probability of capture estimates (in red) of 0.8 to 1 in larger
coastal rivers of the Waikato region. The Waikato shows lower observed
proportions of longfin eel capture, as shown in Figure 4.1. The central east
and west coast, and parts of the northern North Island have high probabil-
ities of capture estimates (yellow/red) of 0.6 to 0.9. This is approximately
consistent with the observed proportions of longfin eel capture in Figure
4.1. The rest of the North Island tends to show probabilities of capture
around 0.4 to 0.7 (green/yellow). This is also consistent with the observed
proportions of capture in Figure 4.1.

From Figure 4.50b one can see that longfin eels are unlikely to be found
throughout the centre of the South Island (probability of capture of 0.1 to
0.3). This is seen in the observed proportions of capture for longfin eels
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(a) Posterior lower 95%

confidence interval prob-

ability of capture esti-

mates for the longfin eel.

(b) Posterior mode prob-

ability of capture esti-

mates for the longfin eel.

(c) Posterior upper 95%

confidence interval prob-

ability of capture esti-

mates for the longfin eel.

Figure 4.50: Probability of capture estimates using the REC2 database.
These estimates were made using the longfin eel GRaF model. Larger
points have a larger stream order.

(Figure 4.1). High probabilities of capture can be seen in larger rivers at
the south of the South Island (0.7 to 0.9) and the west coast of the South
Island (0.6 to 0.8). Parts of the west coast of the observed proportions of
longfin eel capture are consistent with this result but the south of the South
Island tends to have low observed proportions of longfin eel capture (c.0.3
to c.0.6). The remaining parts of the Island and Stewart Island tend to
have probabilities of capture for the longfin eel around 0.4 to 0.6. Figure
4.1 shows observed proportions to be lower than this in Stewart Island
and more variable throughout the South Island.

Figures 4.50a and 4.50c confirm the large uncertainty in probability of
capture estimates from the longfin eel GRaF model. The lower 95% confi-
dence interval (Figure 4.50a) shows very low probabilities of capture (0
to 0.3) throughout New Zealand. The bottom of the South Island and
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Figure 4.51: Posterior mode probability of capture estimates for the longfin
eel using the REC2 database. These estimates were made using the longfin
eel GRaF model. Larger points have a larger stream order. This is repeated
from Figure 4.50b.
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Waikato’s east and west coast show slightly higher probabilities of 0.3 to
0.6.

The upper 95% confidence interval (Figure 4.50c) shows very high prob-
abilities of capture (0.8 to 1) throughout New Zealand. The central South
Island and some large streams in the the North Island’s Waikato region
have slightly lower probabilities of capture. The central South Island has
rivers with upper 95% credible interval probabilities of 0.5 to 0.7. Whereas
the Waikato region has a small number of rivers with upper 95% credible
interval probabilities of 0.6 to 0.7.
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Cross validation results

5-fold cross validation was performed on the longfin eel GRaF model. The
ROC curves for this validation are shown in Figure 4.52. The cross vali-
dation found a mean AUC of 0.8272 (4dp) with a 95% confidence interval
of 0.8194 and 0.8350 (standard error of 0.0040). Since the mean AUC is
quite large and the 95% confidence interval is small, then we can conclude
that the model is performing very well in predicting longfin eel probabil-
ity of capture with strong certainty (small standard error and confidence
interval).

There is very little variability in the ROC curves of Figure 4.52. How-

Figure 4.52: ROC curves under each of the 5 folds in the longfin eel GRaF
model cross validation. These are shown in grey and the mean ROC curve
is shown in black. Boxplots show the spread of the curves.
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ever, one of the folds does show smaller true positive rates at false positive
rates of 0.1 and 0.2. This fold resulted in an AUC of 0.8025 (4dp) which is
still quite large. Hence, probability of capture is being predicted fairly well
in this fold, regardless of the outliers. Overall, the ROC curves in Figure
4.52 show very little variability and high certainty in the results. Therefore,
we can conclude that the longfin eel GRaF model predicts probability of
capture very well in spatial locations which are spatially dependent to the
training data.
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4.3.2 Shortfin eel results

Model results

The shortfin eel GRaF model used 56 covariates. 55 of these were the co-
variates selected by the shortfin eel RRF model (see Table A.2). The final
covariate is year which enables temporal variability to be accounted for.
Table C.2 of the appendix gives the estimated lengthscales for each of the
covariates in the model.

Plots of the posterior distribution of the covariates scoring the three
highest importance scores in the shortfin eel RRF model (see Figure 4.8)
are given in Figures 4.53a, 4.53b and 4.53c. These covariates are seg twar,
seg elev and segshade. Additionally, Figure 4.53d gives a plot of the pos-
terior distribution of the year covariate.

The posterior distributions for seg twar and seg elev (Figures 4.53a
and 4.53b) show very low probabilities of capture regardless of covariate
value (flat distributions). The probability of capture for seg twar slightly
increases as seg twar increases and the probability of capture for seg elev
is slightly curved (largest at low segment elevation). Figure 4.53c shows
that the posterior distribution for segshade has a decreasing trend and that
shortfins are most likely to be found at low segment shade.

The 95% credible intervals for seg twar, seg elev and segshade all con-
tain probabilities that do not exceed c.0.5. This indicates that shortfin eel
capture has a 95% chance of being less than c.0.5 across all values of these
covariates.

The posterior distribution for year (Figure 4.53d) is quite variable. This
is determined by the very low lengthscale of 0.27. Probability of capture
remains very low across time but peaks in 2014. The 95% credible intervals
are fairly wide but we obtain fairly accurate (small credible intervals) in
the late 1980s and late 1990s.

Figure 4.54b shows the posterior mode probability of capture estimates
for the shortfin eel. Figures 4.54a and 4.54c show the lower and upper 95%
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(a) Probability of presence vs.

seg twar (mean January air temper-

ature for a river segment ((deg. C ×
10))) for the shortfin eel GRaF model.

Lengthscale was estimated as 62.62.

(b) Probability of presence vs. seg elev

(elevation of a river segment above sea

level (m)) for the shortfin eel GRaF

model. Lengthscale was estimated as

17.47.

(c) Probability of presence vs.

segshade (proportion of riparian

shade area in a segment of river

(%)) for the shortfin eel GRaF model.

Lengthscale was estimated as 13.59.

(d) Probability of presence vs. year for

the shortfin eel GRaF model. Length-

scale was estimated as 0.27.

Figure 4.53: Plots of probability of presence (i.e. capture) vs. covariate
for seg twar, seg elev, segshade and year. Dotted lines show the mean (δ),
solid lines show the predicted probability of capture (posterior mode) and
shaded areas show the 95% credible interval.
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(a) Posterior lower 95%

confidence interval prob-

ability of capture esti-

mates for the shortfin eel.

(b) Posterior mode prob-

ability of capture esti-

mates for the shortfin eel.

(c) Posterior upper 95%

confidence interval prob-

ability of capture esti-

mates for the shortfin eel.

Figure 4.54: Probability of capture estimates using the REC2 database.
These estimates were made using the shortfin eel GRaF model. Larger
points have a larger stream order.

credible intervals for the probability of capture of shortfin eels. Figure 4.55
repeats Figure 4.54b on a full page to ease probability of capture compar-
isons.

We can see from Figure 4.54b that the North Island of New Zealand
has high probabilities of capture (0.7 to 1) around the Waikato and Auck-
land region. This is particularly true for large rivers in these regions. The
observed proportion of shortfin eel capture (Figure 4.2) is less than 0.8 for
these same regions. The central North Island and small parts of the central
east North Island, central west North Island and south of the North Island
show very low probabilities of capture (0 to 0.3). This is approximately
consistent with the observed proportions of shortfin eel capture in Figure
4.2. The rest of the North Island tend to show probabilities around 0.4 to
0.7. The observed proportions for the rest of the North Island tend to be
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Figure 4.55: Posterior mode probability of capture estimates for the short-
fin eel using the REC2 database. These estimates were made using the
shortfin eel GRaF model. Larger points have a larger stream order. This is
repeated from Figure 4.54b.
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quite low (0.3 to 0.5).
The probabilities of capture in Figure 4.54b for shortfin eels are very

low throughout the majority of the South Island and Stewart Island (0 to
0.3). However, parts of the central-east coast and north coast of the South
Island show slightly higher probabilities ranging from 0.3 to 0.7. This same
approximate pattern is shown in the observed proportions of shortfin eel
capture (Figure 4.2).

The lower 95% credible interval for shortfin eel probability of capture
(Figure 4.54a) shows very low probabilities throughout the majority of the
country (0 to 0.2). The Auckland and Waikato region show probabilities
ranging from 0.4 to 0.7.

The upper 95% credible interval for shortfin eel probability of capture
(Figure 4.54c) shows very high probabilities throughout the majority of the
North Island (0.8 to 1). Whereas the central North Island and small parts
of the central east North Island, central west North Island and south of the
North Island show upper credible interval values of 0.6 to 0.7. The South
Island shows upper credible interval values of 0.4 to 0.7 throughout the
centre of the island and probabilities around 0.7 to 0.8 across areas of the
east and west coast. Some parts of the coast show high probabilities (0.8
to 1) for upper credible interval values.

The large 95% credible intervals show that the model is very uncertain
about shortfin eel probabilities of capture. However, we are more certain
about areas in the central South Island having low probabilities of capture
as these areas range from 0 to 0.4.
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Cross validation results

5-fold cross validation was performed on the shortfin eel GRaF model. The
ROC curves are shown in Figure 4.56. The cross validation found a mean
AUC of 0.8861 (4dp) with a 95% confidence interval of 0.8790 and 0.8933
(with a standard error of 0.0036). The mean AUC is large and the 95%
confidence interval shows certainty in the estimate. Hence, the shortfin
eel GRaF model performs well in predicting the probability of capture in
areas spatially dependent to the training set.

There is very little variability in the 5 ROC curves of Figure 4.56. This
indicates that the model is consistently performing well.

Figure 4.56: ROC curves under each of the 5 folds in the shortfin eel GRaF
model cross validation. These are shown in grey and the mean ROC curve
is shown in black. Boxplots show the spread of the curves.
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4.4 Model comparison results

Tables 4.4 and 4.5 give AUC estimates, 95% confidence intervals and stan-
dard errors under various modelling techniques and validation techniques
for the longfin and shortfin eel respectively. The tables are split into three
groups: 50-SCV (50-fold spatial cross validation), 50-CV (50-fold cross
validation) and 5-CV (5-fold cross validation). Models can be compared
amongst the same cross validation technique.

By looking at Tables 4.4 and 4.5 it’s clear that 50-fold cross validation
and 5-fold cross validation achieve very similar results for the models
evaluated in both cases, under the longfin eel and shortfin eel. Using an
influence curve based approach to calculating AUC confidence intervals
and standard errors (Hampel, 1974; LeDell et al., 2015), the estimates un-
der 50-fold cross validation and 5-fold cross validation are very similar.
Hence, we can conclude that the models are fairly stable. This means that
using a larger number of folds does not change the results significantly.

Model Validation AUC 95% CI SE
RRF 50-SCV 0.6550 0.6444, 0.6656 0.0054
VAST 50-SCV 0.6646 0.6542, 0.6751 0.0053
VAST-MS 50-SCV 0.6619 0.6515, 0.6722 0.0053
RRF 50-CV 0.7798 0.7709, 0.7887 0.0045
VAST 50-CV 0.8321 0.8243, 0.8399 0.0040
VAST-MS 50-CV 0.8310 0.8232, 0.8387 0.0040
RRF 5-CV 0.7799 0.7710, 0.7890 0.0045
VAST 5-CV 0.8269 0.8190, 0.8348 0.0040
VAST-MS 5-CV 0.8262 0.8183, 0.8341 0.0040
GRaF 5-CV 0.8272 0.8194, 0.8350 0.0040

Table 4.4: AUC estimates (4dp) for longfin eel models under 50-fold spatial
cross validation (50-SCV), 50-fold cross validation (50-CV) and 5-fold cross
validation (5-CV).



4.4. MODEL COMPARISON RESULTS 153

Model Validation AUC 95% CI SE
RRF 50-SCV 0.7443 0.7329, 0.7557 0.0058
VAST 50-SCV 0.7864 0.7754, 0.7974 0.0056
VAST-MS 50-SCV 0.8053 0.7950, 0.8156 0.0053
RRF 50-CV 0.8692 0.8613, 0.8771 0.0040
VAST 50-CV 0.9046 0.8981, 0.9111 0.0033
VAST-MS 50-CV 0.9025 0.8960, 0.9091 0.0034
RRF 5-CV 0.8674 0.8595, 0.8754 0.0041
VAST 5-CV 0.9006 0.8940, 0.9073 0.0034
VAST-MS 5-CV 0.8998 0.8931, 0.9065 0.0034
GRaF 5-CV 0.8861 0.8790, 0.8933 0.0036

Table 4.5: AUC estimates (4dp) for shortfin eel models under 50-fold spa-
tial cross validation (50-SCV), 50-fold cross validation (50-CV) and 5-fold
cross validation (5-CV).

The findings from Tables 4.4 and 4.5 are displayed by boxplots in Fig-
ures 4.57a and 4.57b, 4.58a and 4.58b, and 4.59a and 4.59b. Figures 4.57a
and 4.57b display the AUC estimates of each of the 50-folds of the spatial
cross validation for the longfin eel and shortfin eel respectively. Figures
4.57a and 4.57b display the AUC estimates of each of the 50-folds of the
cross validation for the longfin eel and shortfin eel respectively. Figures
4.59a and 4.59b display the AUC estimates for 5-fold cross validation. 5-
fold cross validation was used to compare the GRaF models.

From Table 4.4 and Figure 4.57a we can see that the AUC estimates un-
der the longfin eel RRF model, longfin eel VAST model and multi-species
VAST model are not significantly different from one another. The boxplots
have significant overlap between one another and the 95% confidence in-
tervals have large overlap. Therefore, we cannot distinguish between the
models through 50-fold spatial cross validation. These results indicate that
these models perform approximately the same at estimating the probabil-
ity of capture for longfin eels in spatial areas outside of the training data.
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(a) Longfin eel AUC estimates for

RRF, VAST single species and VAST

multi-species modelling techniques.

(b) Shortfin eel AUC estimates for

RRF, VAST single species and VAST

multi-species modelling techniques.

Figure 4.57: 50-fold spatial cross validation AUC estimates.

Additionally, these estimates will not be very accurate (low AUC).

The boxplots in Figure 4.57b shows fairly large variability in the short-
fin eel 50-fold spatial cross validation AUC estimates. However, the 95%
confidence interval (see Table 4.5) based on influence curves did not over-
lap for the RRF model and VAST single species model, and the RRF model
and the VAST multi-species model. This indicates that we can say with
95% confidence that the VAST model (either single species or multi-species)
will perform slightly better than the RRF in predicting probability of cap-
ture for shortfin eels in spatial areas outside of the training data. The
multi-species VAST model performs, on average, much better than the
RRF model in making these estimates. This is shown by a great difference
in confidence intervals.

Figure 4.59a and Table 4.4 show that there is very little variability in the
5 folds of the cross validation, regardless of the model used. The VAST sin-
gle species, VAST multi-species and GRaF longfin eel models all perform
better than the RRF longfin eel model. This is because the 95% confidence
intervals do not overlap. However, the 5-fold cross validation shows no
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(a) Longfin eel AUC estimates for

RRF, VAST single species and VAST

multi-species modelling techniques.

(b) Shortfin eel AUC estimates for

RRF, VAST single species and VAST

multi-species modelling techniques.

Figure 4.58: 50-fold cross validation AUC estimates.

difference in 95% confidence intervals between the VAST single species,
VAST multi-species and GRaF models.

Figures 4.59b and 4.5 show that the VAST single species and VAST
multi-species shortfin eel models perform better than the RRF model. This
is because the 95% confidence intervals do not overlap. The 95% confi-
dence interval for the GRaF shortfin eel model (0.8790, 0.8933) only just
falls outside of the 95% confidence interval for the RRF shortfin eel model
(0.8595, 0.8754). This occurs at the third decimal place. Since this differ-
ence is so small, we cannot be certain that the GRaF shortfin eel model
truely improves on probability of capture predictions, compared to the
RRF shortfin eel model, or if this difference is because of the small number
of folds used. Hence, we cannot justify concluding a difference between
these models.

The 95% confidence intervals for the GRaF shortfin eel model (0.8790,
0.8933), VAST single species model (0.8940, 0.9073), and VAST multi-species
model (0.8931, 0.9065) all overlap or only just fall outside of each others
confidence band (to the third decimal place). Hence, we cannot justify
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(a) Longfin eel AUC estimates for

RRF, VAST single species, VAST

multi-species and GRaF modelling

techniques.

(b) Shortfin eel AUC estimates for

RRF, VAST single species, VAST

multi-species and GRaF modelling

techniques.

Figure 4.59: 5-fold cross validation AUC estimates.

concluding that these models are statistically different from one another.
In all the evaluated cross validations, the VAST multi-species model

does not perform significantly better than the VAST single species model
when predicting probability of capture for longfin eels or shortfin eels (see
Tables 4.4 and 4.5). This is not surprising given the lack of correlation
between the two species (see Figure 4.40). However, when comparing the
VAST models against the RRF model for the shortfin eel and under spatial
cross validation, the multi-species VAST model estimates probability of
capture significantly better than the shortfin eel RRF model. The overlap
between the VAST single species model and multi-species model is very
small. This indicates that it may be worth using the multi-species VAST
modelling approach when attempting to estimate probability of capture
for shortfin eels in spatial areas outside of the models domain.

Patterns of longfin eel and shortfin eel probability of capture appear ap-
proximately the same in the maps made by the RRF models, VAST models
and GRaF.



Chapter 5

Discussion and conclusion

This research aimed to model longfin eel and shortfin eel probability of
capture and to compare the modelling techniques. The RRF modelling
technique has been used by Crow et al. (2014) as a method for predicting
the probability of capture for New Zealand freshwater fish (including the
longfin eel and shortfin eel). Hence, the research aimed to assess whether
or not the VAST and GRaF modelling approaches improved upon the RRF
approach.

This research found that the VAST single species approach, the VAST
multi-species approach and the GRaF approach all significantly improved
probability of capture estimation for the longfin eel, compared to the RRF
approach. This improvement was measured using AUC and the improve-
ments were only shown when making probability of capture predictions
in spatial areas which are spatially dependent to the training data.

Only the VAST multi-species approach and the VAST single species
approach showed an improvement (in AUC) over the RRF approach for
the shortfin eel. These improvements were shown in spatial areas which
were spatially dependent and spatially independent of the training data.

In the case where predictions would like to be made to areas of New
Zealand where researchers contain no information of longfin eel presence
or absence. The RRF performs just as well as the VAST approaches (com-
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parisons of GRaF were not possible). Whereas the VAST approaches per-
form better (as measured by AUC) on average, compared to the RRF ap-
proach, when researchers have no information of shortfin eel presence or
absence for an area of New Zealand. Hence, the VAST modelling ap-
proaches do no worse than a RRF modelling approach in these situations.

These results show that the VAST approach offers significant improve-
ments over the RRF approach in modelling the probability of capture for
both longfin eels and shortfin eels. This means that further longfin eel
and shortfin eel conservation management should rely upon the results of
the VAST models presented in this research. In particular, the VAST prob-
ability of capture maps shown in Figures 4.15, 4.16, 4.26, and 4.27 or in
Figures B.1, B.2, B.3 and B.4 can be used as a tool for the management of
these species.

The VAST probability of capture estimates can be used in an eel abun-
dance model. This can be done within the VAST modelling software as a
component of the delta model (Thorson & Barnett, 2017; Thorson, 2019) or
as part of a separate stock assessment model (e.g. used as a model predic-
tor).

The GRaF modelling approach significantly improves upon the regu-
larized random forest (RRF) approach for predicting longfin eel probabil-
ity of capture but performs just as well as the RRF in predicting shortfin eel
probability of capture. Hence, the GRaF approach could be used over the
RRF approach for conservation management of longfin eels. In particular,
the map in Figure 4.50b could be used.

The VAST modelling approaches and the GRaF modelling approach
perform approximately the same (as measured by AUC). This is shown
in Tables 4.4 and 4.5. However, the GRaF models were computationally
expensive to run in comparison to the VAST models. Using a powerful
NIWA server (245GB of RAM), the GRaF models took c.4.3 days to con-
verge for the longfin eel and c.4.4 days for the shortfin eel. In comparison,
on this same server, the longfin eel VAST model took c.1.3 hours, the short-
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fin eel VAST model took c.0.5 hours and the multi-species VAST model
took c.6.0 hours. Hence, the VAST models are faster to run and perform
just as well. Additionally, the VAST models can be run on an everyday
computer (8GB of RAM) on lower model settings. Whereas, the GRaF
models could not be (without removing data or covariates).

One should note that the cross validation results tell us how well prob-
ability of capture is estimated, given the approach the model takes to mak-
ing these estimates. This is because the RRF models, VAST models and
GRaF models can incorporate different information which the other mod-
els can’t. The RRF models performs feature selection and therefore select
different covariates at each fold of the cross validation. Whereas, the other
models use the same covariates at each fold. The VAST models incor-
porate spatial and temporal effects in a way that the other models can’t.
VAST also incorporates catchability covariates which aren’t included in
the other models. Finally, the GRaF models incorporate prior knowledge
and use year as a covariate in the model. Again, the other models do not
do this.

This research used spatial K-fold cross validation and (non-spatial) K-
fold cross validation to compare models. The advantage of using both
validation approaches is that one can measure how well a model performs
when training data is spatially correlated to the test data (K-fold cross val-
idation) and when it is not (spatial K-fold cross validation). Hence, spatial
K-fold cross validation will give the user a measure of how well a model
can make predictions in locations which are un-sampled (distinct to the
data set). However, what is often more useful is getting a measure of how
well the model makes predictions to areas which are spatially correlated
to the training data (K-fold cross validation). This is because we cannot
be certain about whether or not our model applies to locations distinct to
our sampled data. Hence, it’s more useful to see how the model estimates
spatially correlated areas. Therefore, it’s recommended that K-fold cross
validation is always used to validate models and that spatial K-fold cross
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validation is used when the user wants to measure how well the model
performs outside of the models spatial domain.

The study by Crow et al. (2014) built probability of capture maps for
the longfin eel and shortfin eel. These maps show the same approximate
pattern as the longfin eel and shortfin eel RRF, VAST and GRaF maps con-
structed in this study. One would expect the RRF to be identical to the
maps by Crow et al. (2014). For the most part this is true, any differences
between the maps are due to differences in the data set which was altered
to be used in the VAST models (see Chapter 3) and in the number of trees
used in the RRF. This research used 1000 trees compared to the study by
Crow et al. (2014) which used 500. Comparisons between the maps of the
VAST models and the maps of Crow et al. (2014) are difficult to make given
the differences in spatial scale between them. However, the patterns can
still be distinguished and are seen to be approximately the same.

The AUC estimates made from the RRF, VAST and GRaF models of this
research cannot be compared against the estimates made in Crow et al.
(2014) and Leathwick et al. (2008b). This is because of differences in the
data sets used and in the model evaluation methods used. Hence, future
comparisons in models should use the same data set and model evaluation
techniques.

Studies such as that of Grüss et al. (2017) use the VAST modelling ap-
proach to produce probability of capture maps for a variety of species in
the Gulf of Mexico. Grüss et al. (2017) produced maps across different
life stages of fish whereas this research focused on how the distribution of
eels change with time. This research and the study by Grüss et al. (2017)
highlight the flexibility in the VAST approach. Given its flexibility, one can
account for various aspects of eel biology and sampling procedure. This
allows us to best model longfin and shortfin eel probability of capture.

It is surprising that the shortfin eel GRaF model did not outperform the
shortfin eel RRF model. The study by Golding & Purse (2016) compared
the proposed GRaF approach against a variety of other approaches, in-
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cluding a boosted regression tree (BRT) machine learning approach. Gold-
ing & Purse (2016) found that the GRaF modelling approach outperformed
BRT models. Given that BRT have been shown to perform very well in
modelling species distributions (Elith et al., 2008), one would suspect ma-
chine learning approaches such as BRT and RRF to perform similarly. Hence,
according to the results of Golding & Purse (2016), we would expect GRaF
models to outperform RRF models. This is only the case for longfin eels
and not shortfin eels.

A strong advantage that the GRaF approach has over the VAST ap-
proach is its ability to incorporate prior knowledge. However, in order to
do so, suitable prior information must be found. Hence, the GRaF mod-
els may outperform the VAST model if independent information on how
each of the covariates change with probability of capture is found. Stud-
ies of longfin eel and shortfin eel probability of capture modelling have
made use of the NZFFD. Hence, this information would not be indepen-
dent of the data used in this study and would therefore not be a suitable
prior. We are in danger of over-fitting the model when prior knowledge is
dependent on the model data.

In this research, the models constructed with VAST used a resolution
of 400 knots. The higher the number of knots, the finer the spatial resolu-
tion will be. This means that more knots will produce maps with greater
detail. This research was restricted to 400 knots as this was the highest
number of knots that could be used (due to memory restrictions) while
using the bias correction feature of the VAST model. Hence, the longfin
eel and shortfin eel maps produced by VAST did not estimate probabil-
ity of capture for some areas of New Zealand. This is because knots are
placed at positions which reduce the distance between the sampling lo-
cations and knots. Since estimates are only interpolated at a maximum
distance of 15km away from a knot, some areas of New Zealand are not
estimated. This is a limitation to using the VAST modelling approach.

Many of the parameter estimates made through the VAST models showed
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very large uncertainty in their estimates. In particular the natural log of
the parameters h1 and h2 (Northing anisotropy and anisotropic correla-
tion) showed very large coefficient of variation (C.V.) percentages for all
the VAST models. This indicates that there is a lack of precision in es-
timating how longfin eel and shortfin eels are correlated amongst them-
selves and each other across New Zealand. Large C.V. values indicate that
the predictions made through the VAST models should be treated with
caution.

A limitation to using a spatial-temporal approach with data existing
within a stream network is that the approach should take into account the
dendritic stream network. As of writing this, neither the VAST approach
nor the GRaF approach take into account stream networks. This means
that two waterways which are close to one another will be correlated but
they may not actually meet at any point. This gives an unrealistic repre-
sentation of the true correlation occurring in the waterways. Additionally,
probability of capture predictions have been made in locations outside of
waterways or above impassable natural structures and man-made struc-
tures.

The GRaF models for this research used uninformative priors. These
uninformative priors gave a flat distribution at p0 (the probability of being
observed at any given site) for each of the model covariates. In real fresh-
water systems, we know that longfin eels and shortfin eels have habitat
preferences (see Booker & Graynoth (2013)). Hence, we are limiting the
potential of the GRaF model by not introducing this information. For ex-
ample, Leathwick et al. (2008b) found that shortfin eels have a preference
to waterways with low riparian shading. Hence, the ’segshade’ covariate
could express this prior knowledge by expressing lower probabilities of
capture at higher ’segshade’ values. However, it should be noted that the
findings of Leathwick et al. (2008b) come from the NZFFD and therefore
would not be an independent source of prior knowledge.

Given the large computation time of the GRaF models, the models
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could only be cross validated with 5 folds as opposed to 50 folds. This also
meant we couldn’t use spatial cross validation to compare all the models
as VAST could not converge on such a low number of folds (spatial infor-
mation missing in the models). However, the results of the 50-fold cross
validation and the 5-fold cross validation were very similar. Therefore,
we are not concerned about using a lower number of folds to validate the
models.

This research made use of the extensive voluntary data of the NZFFD.
However, since contributions to the database are purely voluntary, the
data hasn’t been collected through a random sampling scheme. Hence,
we introduce bias (which cannot be measured) by using this data. This
is a major limitation to the results and should be considered when eval-
uating the predictions made through any of the methods assessed in this
research. However, this data was deemed the most suitable for this study
because of it’s extensive spatial and temporal range.

The covariates used for this study (see Table A.2) were selected by the
longfin eel RRF model and the shortfin eel RRF model. This meant that
every longfin eel model used the same covariates and every shortfin eel
model used the same covariates. However, this does not necessarily mean
that the most parsimonious set of covariates were selected for the models.
Hence, this has the potential to over-fit the models and therefore poorly
represent the probability of capture throughout New Zealand.

The full set of covariates (see Table A.1) contained covariates at vari-
ous different scales. For example, spatial covariates were given at multi-
ple scales and environmental covariates were given at the segment scale
and the upstream scale. This has the potential to introduce multicollinear-
ity. As an example, the longfin eel RRF model and the shortfin eel RRF
model selected stream elevation at the segment scale and at the upstream
scale. Elevation at the segment scale and at the upstream scale have a large
positive correlation (see Figures 2.5 and 2.6). Hence, it is unnecessary to
include both covariates in the models. This introduces multicollinearity
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which has the potential to increase the variability in estimated model pa-
rameters (O’brien, 2007) and therefore, poorly predict probability of cap-
ture throughout New Zealand.

The NZFFD consists of covariates which have been drawn from the
REC2. This means that the probability of capture predictions made at each
segment of river by the RRF models and the GRaF models were made on
a data set which contained entries in the training data set. It should be
noted that there isn’t a fully independent data set of covariates across each
segment of river in New Zealand. Hence, the predictions made in Figure
4.4, 4.9, 4.50b and 4.54b are biased. This was a strong limitation to the
predictions being made across the REC. An advantage with using VAST
is that predictions are interpolated by the training data rather than being
made to a separate data set.

As with the VAST models, probability of capture predictions made by
the RRF and GRaF models have been made in locations above impassable
natural structures and man-made structures. Additionally, the predictions
reflect the electric fishing data (not fishing through other methods) and
therefore poorly predict large waterways.

This research has identified three key areas where further research could
be made to improve probability of capture predictions for the longfin eel
and shortfin eel. These are:

1. VAST models could be improved by using a stream network. The
approach accounts for spatial-temporal correlation within a stream
as opposed to across all space (Hocking et al., 2018). This will give
a more realistic correlation structure. As of writing this, the stream
network proximity approach (outlined by Hocking et al. (2018)) is in
development for use with VAST software.

2. Further research should be done in identifying sources of possible
prior knowledge for each of the covariates in the NZFFD. This knowl-
edge should arise from information outside of the NZFFD and could
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be incorporated in GRaF models.

3. Models could be improved by using a more parsimonious set of co-
variates. Further research should be implemented into identifying a
set of covariates which have low multicollinearity. A good starting
point would be to look at variance inflation scores (VIF) (see Tables
A.3 and A.4) for the longfin eel covariates and the shortfin eel covari-
ates.

This research has found VAST modelling software (Thorson & Barnett,
2017; Thorson, 2019) to be an improvement over RRF models for mod-
elling the probability of capture for longfin eels and shortfin eels. The
VAST probability of capture models have the potential to be developed
further through a stream network proximity approach and careful selec-
tion of model covariates.
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Appendix A

Modelling covariates

A.1 Model covariates

Covariate type Label Description
Environmental Dist2Coast Donwstream distance to the ocean

StreamOrder A number describing the Strahler
order a reach in a network of
reaches.

sinuosity Actual distance divided by the
straight line distance giving the de-
gree of curvature of the stream

headw dist Distance of the furthermost source
or headwater reach from any reach
(m).

Segslpmax Maximum segment slope along
length of reach.

Segslpmean Mean segment slope along length
of reach.
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seg rain Mean annual segment rain (mm)

us rain Mean annual upstream rain (mm)

seg ro mm Annual segment runoff (mm)

seg hard Segment induration or hardness
value. Ordinal scale

us hard Upstream induration or hardness
value. Ordinal scale

seg elev Segment mean elevation above sea
level of the watershed or basin (m)

us elev Upstream mean elevaltion above
sea level of the watershed or basin
(m)

seg slope Segment mean slope of the water-
shed or basin in degrees.

us slope Upstream mean slope of the water-
shed or basin in degrees.

seg tmin Segment mean minimum winter-
time air temperature (deg C x 10)

us tmin Upstream mean minimum winter-
time air temperature (deg C x 10)

seg june Segment June solar radiation.
W/m2

us june Upstream June solar radiation.
W/m2

seg penpet Segment penman potential evapo-
ration measurement. mm
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us penpet Upstream penman potential evapo-
ration measurement. mm

seg rnvar Segment coefficient of variation of
annual catchment rainfall. mm

us rnvar Upstream coefficient of variation of
annual catchment rainfall. mm

seg rd25 Segment catchment rain days
(greater than 25mm/month). mean
# days/mo

us rd25 Upstream Catchment rain days
(greater than 25mm/month). mean
# days/mo

seg rd100 Upstream Catchment rain days
(greater than 100mm/month).
mean # days/mo

seg phos Segment catchment average of
phosphorous. ordinal scale.

us phos Upstream catchment average of
phosphorous. ordinal scale.

seg psize Segment catchment average of par-
ticle size. ordinal scale.

us psize Upstream catchment average of
particle size. ordinal scale.

seg pet Segment annual potential evapo-
transpiration of catchment. mm

us pet Upstream annual potential evapo-
transpiration of catchment. mm
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seg twar Segment average within section
mean January air temperature. deg
C x10

us twarm Upstream average within section
mean January air temperature. deg
C x10

DSDist2Lake Downstream Distance to lake (m).
Set to 500 km if no lake present
downstream

DSmax slope Maximum downstream slope
(degrees)

DSav slope Average slope (degrees)

us ind forest Upstream area with indigenous
vegetation (m2)

US RockPhos Average phosphorous concentra-
tion of underlying rocks 1= very
low to 5 = very high

USCalcium Average calcium concentration of
underlying rocks 1= very low to 5
= very high

us LakeArea Upstream area of the catchment
covered by lakes (m2)

us lakePerc Upstream area of the catchment
covered by lakes (%)

segshade NZSegment area with riparian
shade (proportion)
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Spatial x Easting co-ordinates of the NZSeg-
ment center

y Northing co-ordinates of the
NZSegment center

xy Multiple of XY from the cubic trend
surface regression formula

y2 Square of Y from the cubic trend
surface regression formula

x2 Square of X from the cubic trend
surface regression formula

x3 Cube of X from the cubic trend sur-
face regression formula

yx2 Multiple of X2Y from the cubic
trend surface regression formula

xy2 Multiple of XY2 from the cubic
trend surface regression formula

y3 Cube of Y from the cubic trend sur-
face regression formula

Hydrological Constancy Constancy of mean-monthly flows
(see Colwell (1974))

Contingency Consistancy mean-monthly flows
among years (see Colwell (1974))

FRE1.Count Number of flows greater than the
median. Expressed as ratio of mean
flow.
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FRE1.MaxDurBetween Maximum duration between flows
greater than the median/mean
flow

FRE1.MeanDurBetween Mean duration between flows
greater than the median/mean
flow.

FRE10.Count Number of flows greater than ten
times the median/mean flow

FRE10.MaxDurBetween Maximum duration between flows
greater than ten times the medi-
an/mean flow.

FRE10.MeanDurBetween Mean duration between flows
greater than ten times the medi-
an/mean flow.

FRE5.Count Number of flows greater than five
times the median/mean flow.

FRE5.MaxDurBetween Maximum duration between flows
greater than five times the medi-
an/mean flow.

FRE5.MeanDurBetween Mean duration between flows
greater than five times the medi-
an/mean flow.

JulianMax Annual maximum flow/mean flow

JulianMin Annual minimum flow/mean flow

l1 First linear moment of daily
flows/catchment area
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l2 Second linear moment of daily
flows/catchment area

lca Ratio of the first and second linear
moment of daily flows/catchment
area

lcv Linear moments coefficient of vari-
ation/catchment area

lkur Third linear moment of daily
flows/catchment area

Mean1DayFlowMaxs Mean annual maximum 1 day flow
/ mean flow

Mean1DayFlowMins Mean annual minimum 1 day flow
/ mean flow

Mean7DayFlowMaxs Mean annual maximum 7 day flow
/ mean flow

Mean7DayFlowMins Mean annual minimum 7 day flow
/ mean flow

Mean90DayFlowMaxs Mean annual maximum 90 day
flow / mean flow

Mean90DayFlowMins Mean annual minimum 90 day flow
/ mean flow

meanNeg.StandardisedBy
MeanFlow

Mean number of all negative differ-
ences between days/mean flow

meanPos.StandardisedBy
MeanFlow

Mean number of all positive differ-
ences between days/mean flow

MeanPulseLengthHigh Mean duration of high puls-
es/mean flow
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MeanPulseLengthLow Mean duration of low pulses/mean
flow

nNeg.StandardisedByMean
Flow

Number of all negative differences
between days/mean flow

nPos.StandardisedByMean
Flow

Number of all positive differences
between days/mean flow

nPulsesHigh Number of high pulses within each
water year/mean flow

nPulsesLow Number of low pulses within each
water year/mean flow

Predictability Predictability of mean-monthly
flows (Colwell 1974)

Reversals Number of hydrologic reversal-
s/mean flow

WidthHUC.MALF Mean annual low flow in cumecs

Table A.1: The table is replicated from Crow et al. (2014) and describes
the covariates considered for the RRF model and it’s associated label. The
table also details the type of covariate that it is.
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A.2 Covariates selected by RRF

Covariate label Species
Longfin eel Shortfin eel

Constancy 1 1
Contingency 1 1
Dist2Coast 1 1
DSav slope 1 1
DSDist2Lake 0 0
DSmax slope 1 1
FRE1.Count 0 1
FRE10.Count 0 1
FRE5.Count 1 1
headw dist 1 1
JulianMax 1 1
JulianMin 1 1
lca 1 1
lcv 1 0
lkur 1 0
FRE1.MaxDurBetween 1 1
FRE1.MeanDurBetween 1 0
FRE10.MaxDurBetween 1 0
FRE10.MeanDurBetween 1 0
FRE5.MaxDurBetween 1 0
FRE5.MeanDurBetween 0 0
l1 1 0
l2 1 1
Mean1DayFlowMaxs 1 0
Mean7DayFlowMaxs 1 1
Mean90DayFlowMaxs 1 1
MeanPulseLengthHigh 1 1
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nPulsesHigh 1 0
Mean1DayFlowMins 1 1
Mean7DayFlowMins 1 1
Mean90DayFlowMins 1 1
meanNeg.StandardisedByMeanFlow 1 0
meanPos.StandardisedByMeanFlow 1 1
MeanPulseLengthLow 1 1
nNeg.StandardisedByMeanFlow 1 0
nPos.StandardisedByMeanFlow 1 1
nPulsesLow 1 1
Predictability 1 1
WidthHUC.MALF 1 1
Reversals 1 1
seg elev 1 1
seg hard 1 1
seg june 1 0
seg penpet 0 0
seg pet 1 0
seg phos 1 1
seg psize 1 1
seg rain 1 1
seg rd100 0 0
seg rd25 0 1
seg rnvar 1 1
seg ro mm 1 1
seg slope 1 1
seg tmin 1 1
seg twar 1 1
segshade 1 1
Segslpmax 1 1
Segslpmean 1 1
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sinuosity 1 1
StreamOrder 0 0
us elev 1 1
us hard 1 0
us ind forest 1 1
us june 1 1
us LakeArea 0 0
us lakePerc 0 0
us penpet 0 1
us pet 1 0
us phos 1 1
us psize 1 1
us rain 1 0
us rd25 0 0
us rnvar 0 1
US RockPhos 1 1
us slope 1 1
us tmin 1 1
us twarm 1 1
USCalcium 1 1
x 0 0
x2 0 0
x3 0 1
xy 1 0
xy2 1 0
y.1 1 0
y2 0 0
y3 0 0
yx2 1 0
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Table A.2: The covariates selected by the longfin eel RRF model (longfin
eel column above) and the shortfin eel RRF model (shortfin eel column
above). A 1 indicates that the covariate was used and a 0 indicates it wasn’t
used. The selected longfin eel covariates were used in the longfin eel VAST
model, multi-species VAST model and the longfin eel GRaF model. The
selected shortfin eel covariates were used in the shortfin eel VAST model
and the shortfin eel GRaF model.

A.3 Variance Inflation factors

Covariates VIF
score

sinuosity 1.18
DSav slope 1.80
USCalcium 1.81
REC1 WidthHUC.MALF cumecs 2.10
us ind forest 2.31
segshade 2.57
JulianMax.StandardisedByMeanFlow 2.77
seg twar 3.08
DSmax slope 3.09
Dist2Coast 4.51
headw dist 5.71
seg rnvar 6.39
seg phos 6.74
us phos 6.90
JulianMin.StandardisedByMeanFlow 7.01
seg hard 7.06
Reversals.StandardisedByMeanFlow 7.06
Contingency 7.57
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seg psize 7.90
us slope 8.26
us hard 8.54
Segslpmax 8.65
seg ro mm 9.65
us psize 10.32
MeanPulseLengthLow.StandardisedByMeanFlow 10.43
seg slope 11.07
Segslpmean 11.44
US RockPhos 11.82
meanNeg.StandardisedByMeanFlow 18.58
seg rain 22.36
us tmin 23.71
us rain 24.27
Log10 Mean90DayFlowMaxs.StandardisedByMeanFlow 29.24
seg elev 31.87
seg tmin 32.96
nPulsesLow.StandardisedByMeanFlow 37.62
meanPos.StandardisedByMeanFlow 40.56
Mean90DayFlowMins.StandardisedByMeanFlow 44.05
Log10 FRE10.MaxDurBetween.StandardisedByMeanFlow 45.14
lca.StandardisedByCatchArea 45.83
Log10 FRE10.MeanDurBetween.StandardisedByMeanFlow 48.96
lkur.StandardisedByCatchArea 50.08
lcv.StandardisedByCatchArea 51.67
Predictability 52.90
Constancy 55.27
seg pet 59.53
Log10 Mean1DayFlowMaxs.StandardisedByMeanFlow 62.03
nNeg.StandardisedByMeanFlow 63.31
Log10 FRE5.MaxDurBetween.StandardisedByMeanFlow 64.71
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nPos.StandardisedByMeanFlow 65.73
us pet 66.30
Log10 Mean7DayFlowMaxs.StandardisedByMeanFlow 69.62
Mean1DayFlowMins.StandardisedByMeanFlow 71.66
Mean7DayFlowMins.StandardisedByMeanFlow 74.23
FRE5.Count.StandardisedByMeanFlow 74.88
us elev 79.19
Log10 FRE1.MaxDurBetween.StandardisedByMeanFlow 82.56
us twarm 84.76
Log10 FRE1.MeanDurBetween.StandardisedByMeanFlow 91.93
Log10 l1.StandardisedByCatchArea 155.18
Log10 l2.StandardisedByCatchArea 158.54
Log10 MeanPulseLengthHigh.StandardisedByMeanFlow 206.91
Log10 nPulsesHigh.StandardisedByMeanFlow 212.98
seg june 463.72
us june 506.24
xy 1230.39
y.1 1789.26
yx2 2922.77
xy2 9227.69

Table A.3: Variance inflation factors (VIF) for each of the longfin eel co-
variates, ordered by size.
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Covariates VIF
score

sinuosity 1.17
USCalcium 1.69
DSav slope 1.76
REC1 WidthHUC.MALF cumecs 2.09
us ind forest 2.11
JulianMax.StandardisedByMeanFlow 2.15
segshade 2.41
DSmax slope 3.01
seg twar 3.07
Dist2Coast 4.00
seg hard 4.22
headw dist 4.57
us psize 4.71
Reversals.StandardisedByMeanFlow 5.72
JulianMin.StandardisedByMeanFlow 6.03
seg psize 6.21
us penpet 6.38
seg phos 6.61
us phos 6.74
Contingency 6.95
nPos.StandardisedByMeanFlow 7.00
us slope 7.46
x3 7.48
Segslpmax 8.55
MeanPulseLengthLow.StandardisedByMeanFlow 9.33
seg rd25 10.17
seg ro mm 10.26
seg slope 10.89
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Segslpmean 11.31
US RockPhos 11.64
seg rain 12.74
FRE10.Count.StandardisedByMeanFlow 15.32
seg elev 15.64
lca.StandardisedByCatchArea 16.98
us tmin 18.92
meanPos.StandardisedByMeanFlow 23.08
seg tmin 24.23
Log10 Mean90DayFlowMaxs.StandardisedByMeanFlow 26.89
Log10 l2.StandardisedByCatchArea 28.31
us june 28.58
Mean90DayFlowMins.StandardisedByMeanFlow 36.00
FRE5.Count.StandardisedByMeanFlow 36.69
Log10 Mean7DayFlowMaxs.StandardisedByMeanFlow 38.31
nPulsesLow.StandardisedByMeanFlow 41.66
Log10 MeanPulseLengthHigh.StandardisedByMeanFlow 45.07
us elev 45.56
Predictability 50.17
Constancy 52.36
seg rnvar 54.03
us rnvar 54.72
us twarm 60.99
Log10 FRE1.MaxDurBetween.StandardisedByMeanFlow 65.37
Mean1DayFlowMins.StandardisedByMeanFlow 65.71
Mean7DayFlowMins.StandardisedByMeanFlow 71.08
FRE1.Count.StandardisedByMeanFlow 98.49

Table A.4: Variance inflation factors (VIF) for each of the shortfin eel co-
variates, ordered by size.
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Figure B.1: Longfin eel probability of capture estimates for 1974 to 2014
from the multi-species VAST model. The estimates are shown on a
northing-easting coordinate grid.
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Figure B.2: Map of the 2014 longfin eel probability of capture estimates
made from the multi-species VAST model. The estimates are shown on a
northing-easting coordinate grid.
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Figure B.3: Shortfin eel probability of capture estimates for 1974 to 2014
from the multi-species VAST model. The estimates are shown on a
northing-easting coordinate grid.
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Figure B.4: Map of the 2014 shortfin eel probability of capture estimates
made from the multi-species VAST model. The estimates are shown on a
northing-easting coordinate grid.
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Appendix C

GRaF lengthscale tables

Model Covariates Length-
scales

year 0.35
us june 2.29
seg rnvar 2.98
us twarm 4.61
seg june 5.95
xy 5.99
seg elev 6.14
us tmin 6.39
yx2 7.18
xy2 7.65
us pet 8.14
y.1 8.35
Dist2Coast 9.49
nNeg.StandardisedByMeanFlow 11.88
Log10 Mean90DayFlowMaxs.StandardisedByMeanFlow 11.93
seg tmin 13.83
us elev 16.02

191
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nPos.StandardisedByMeanFlow 16.87
segshade 17.46
MeanPulseLengthLow.StandardisedByMeanFlow 18.60
headw dist 19.92
seg pet 19.98
Contingency 20.41
us phos 20.73
nPulsesLow.StandardisedByMeanFlow 20.81
JulianMax.StandardisedByMeanFlow 20.83
DSav slope 21.25
us slope 21.76
Log10 FRE5.MaxDurBetween.StandardisedByMeanFlow 22.01
Predictability 22.39
Log10 l2.StandardisedByCatchArea 22.86
Log10 l1.StandardisedByCatchArea 23.81
Constancy 24.19
meanNeg.StandardisedByMeanFlow 24.35
FRE5.Count.StandardisedByMeanFlow 24.69
US RockPhos 24.92
lkur.StandardisedByCatchArea 25.03
Log10 nPulsesHigh.StandardisedByMeanFlow 26.36
Log10 FRE1.MaxDurBetween.StandardisedByMeanFlow 27.32
Log10 MeanPulseLengthHigh.StandardisedByMeanFlow 27.69
Log10 Mean7DayFlowMaxs.StandardisedByMeanFlow 27.76
seg slope 28.53
JulianMin.StandardisedByMeanFlow 28.67
Log10 FRE1.MeanDurBetween.StandardisedByMeanFlow 28.68
Mean90DayFlowMins.StandardisedByMeanFlow 29.03
us ind forest 30.46
USCalcium 30.76
Mean7DayFlowMins.StandardisedByMeanFlow 31.48
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Log10 Mean1DayFlowMaxs.StandardisedByMeanFlow 31.49
Log10 FRE10.MaxDurBetween.StandardisedByMeanFlow 33.22
meanPos.StandardisedByMeanFlow 33.80
Segslpmean 34.41
us hard 34.46
Log10 FRE10.MeanDurBetween.StandardisedByMeanFlow 34.56
us psize 35.06
Mean1DayFlowMins.StandardisedByMeanFlow 35.84
us rain 36.09
seg rain 36.44
seg phos 37.93
lca.StandardisedByCatchArea 40.45
Reversals.StandardisedByMeanFlow 40.78
lcv.StandardisedByCatchArea 42.68
seg ro mm 44.58
DSmax slope 48.16
seg twar 50.64
Segslpmax 57.10
seg hard 58.26
REC1 WidthHUC.MALF cumecs 70.06
seg psize 80.70
sinuosity 152.66

Table C.1: The lengthscales (2dp) for each of the covariates of the longfin
eel GRaF model ordered from smallest (most complex function) to largest
(least complex function). See Table A.1 for a description of the covariates.
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Model.Covariates Length-
scales

year 0.27
x3 2.24
us june 2.36
us tmin 3.17
us twarm 5.23
us elev 8.94
seg tmin 8.99
Dist2Coast 12.13
seg rnvar 12.37
segshade 13.59
us penpet 14.52
DSav slope 16.10
Log10 l2.StandardisedByCatchArea 16.93
us slope 16.94
seg elev 17.47
seg rd25 18.20
us rnvar 18.28
JulianMin.StandardisedByMeanFlow 18.40
DSmax slope 18.43
seg rain 21.38
meanPos.StandardisedByMeanFlow 22.93
FRE5.Count.StandardisedByMeanFlow 24.02
nPulsesLow.StandardisedByMeanFlow 24.47
JulianMax.StandardisedByMeanFlow 24.91
FRE10.Count.StandardisedByMeanFlow 25.00
seg ro mm 25.45
FRE1.Count.StandardisedByMeanFlow 26.25
lca.StandardisedByCatchArea 26.47
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Log10 MeanPulseLengthHigh.StandardisedByMeanFlow 26.56
headw dist 27.31
us phos 27.66
Log10 Mean90DayFlowMaxs.StandardisedByMeanFlow 28.55
Predictability 28.70
Log10 FRE1.MaxDurBetween.StandardisedByMeanFlow 29.02
Constancy 29.57
MeanPulseLengthLow.StandardisedByMeanFlow 31.52
nPos.StandardisedByMeanFlow 31.59
us ind forest 31.95
Log10 Mean7DayFlowMaxs.StandardisedByMeanFlow 34.47
Contingency 36.42
Mean90DayFlowMins.StandardisedByMeanFlow 37.46
Reversals.StandardisedByMeanFlow 40.92
us psize 40.92
US RockPhos 41.49
Segslpmean 46.90
Mean7DayFlowMins.StandardisedByMeanFlow 47.78
Mean1DayFlowMins.StandardisedByMeanFlow 48.68
USCalcium 49.59
seg phos 51.35
seg slope 53.34
seg twar 62.62
seg psize 64.75
Segslpmax 68.10
seg hard 69.42
REC1 WidthHUC.MALF cumecs 71.53
sinuosity 162.47

Table C.2: The lengthscales (2dp) for each of the covariates of the shortfin
eel GRaF model ordered from smallest (most complex function) to largest
(least complex function). See Table A.1 for a description of the covariates.
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Appendix D

R modelling code

The following gives the R code for building the RRF longfin eel and short-
fin eel models.

1 setwd("D:/Masters/RRF Model") #set working directory

2
3 #### PACKAGES

4 library(RRF) #RRF pacakage

5 library(ROCR) #auc function

6 library(cvAUC) #auc CI’s

7 library(sperrorest) #K-means spatial partitioning function

8
9 ############################# Load and edit data ###############################################

10 load(file = "D:/Masters/Data/My_NZFFD.REC2.Diad.EF.Rdata") #load data

11
12 diad.preds <- read.csv("D:/Masters/RF R stuff/Fish predictor list to use for RandForest models.csv") #all

the predictor variables

13 Xvars <- diad.preds$predictors[which(diad.preds$diadromous == "T")] #use these predictors

14 rm(diad.preds) #remove as we no longer need this

15 Xvars <- as.character(Xvars) #set as a character

16
17 Xvars<-Xvars[-1] #fishmeth isn’t needed as a covariate as we are only using EF data

18
19 ############################# Run model ###############################################

20
21 #RRF functions

22 GetRRFModel <- function(y, myExplanatoryFrame, x, Classification = F, ...) {

23 if(Classification) { #when using RRF as a classifier

24 myExplanatoryFrame[[y]] <- factor(myExplanatoryFrame[[y]]) #set y as factor

25 levels(myExplanatoryFrame[[y]]) <- c("F", "T") #set levels

26 }

27 myOut <- RRF(y = myExplanatoryFrame[, y], x = myExplanatoryFrame[ , x], ...) #run RRF model

28 return(myOut) #return RRF model

29 }

30
31 ################################################################################################

32 #Longfin eel Model

33 set.seed(22)

34 ModelListMMQ.RRF.angdie <- lapply("angdie", GetRRFModel, myExplanatoryFrame = NZFFD.REC2.Diad.EF, x = Xvars,

35 Classification = T, ntree=1000) #run rrf model with 1000 Regression trees

36
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37 angdie_vars_RRF = Xvars[ModelListMMQ.RRF.angdie[[1]]$feaSet] #Variables selected by the RRF feature

selection

38
39 ################################################################################################

40 #Shortfin eel Model

41 set.seed(22)

42 ModelListMMQ.RRF.angaus <- lapply("angaus", GetRRFModel, myExplanatoryFrame = NZFFD.REC2.Diad.EF, x = Xvars,

43 Classification = T, ntree=1000) #run rrf model with 1000 Regression trees

44
45 angaus_vars_RRF = Xvars[ModelListMMQ.RRF.angaus[[1]]$feaSet] #Variables selected by the RRF feature

selection

46
47
48 Gini_df <- data.frame(importance(ModelListMMQ.RRF.angdie[[1]]), importance(ModelListMMQ.RRF.angaus[[1]])) #

obtain importance scores for lf/sf

49 colnames(Gini_df) <- c("angdie", "angaus") #rename columns

50 write.csv(Gini_df, file = "Gini_scores.csv") #save importance scores to csv

51
52 ################################################################################################

53 ################################################################################################
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The following gives the R code for building the VAST longfin eel and
shortfin eel single species models.

1 start1=Sys.time() #measure how long it takes

2 setwd("D:/Masters/VAST R stuff") #Set working directory

3
4 library("devtools")

5 library("Matrix")

6 library(TMB,lib.loc = .libPaths()[1]) #needed for VAST

7 library(INLA) #needed for VAST

8 library(SpatialDeltaGLMM) #needed for VAST

9 library(VAST,lib.loc = .libPaths()[1]) #VAST package

10 library(maps) #to visualise

11 library(ROCR) #auc function

12 library(cvAUC) #auc CI’s

13 library(sperrorest) #K-means spatial partitioning function

14
15
16 ## PART 1 - Load data and edit settings

17 ## -------------------------------

18 ##

19 ## Load the data and select the species to model - angdie or angaus.

20
21 ############################# Load and edit data ###############################################

22 load("D:/Masters/Data/My_NZFFD.REC2.Diad.EF.Rdata") #load data

23 species = c("angdie","angaus")[1] #Species to model

24 covariates = c("RRF_sel_angdie", "RRF_sel_angaus")[1] #covariates to use

25
26 #CSV of covariates to use

27 diad.preds <- read.csv("D:/Masters/RF R stuff/Fish predictor list to use for RandForest models.csv")

28 Xvars <- diad.preds$predictors[which(diad.preds$diadromous == "T")] #predictors considered

29 rm(diad.preds) #remove as we no longer need this

30 Xvars <- as.character(Xvars) #set as a character

31
32 Xvars<-Xvars[-1] #fishmeth isn’t needed as a covariate as we are only using EF data

33
34 table(NZFFD.REC2.Diad.EF$year, NZFFD.REC2.Diad.EF[,species])

35
36 ############################# Settings ###############################################

37 Data_set=paste("NZFFD.REC2.Diad.EF - ", species) #set the data set

38 Version=get_latest_version( package="VAST" ) #version of VAST to use

39
40 #Spatial Settings - Need to find optimum settings

41 Method = "Mesh"

42 grid_size_km=25 #the distance between grid cells for the 2D AR1 grid

43 n_x=400 #number of knots with bias correction

44 #Kmeans object for determining the location for a set of knots for approximating spatial variation

45 Kmeans_Config=list("randomseed"=1, "nstart"=100, "iter.max"=1000)

46
47 #controls number of spatial and spatio-temporal factors used for each component

48 FieldConfig=c(Omega1=1, Epsilon1=1, Omega2=0, Epsilon2=0)

49 # Turn off annual variation in the intercept for positive-catch rates (which we’ll ignore anyway)

50 RhoConfig=c(Beta1=2, Beta2=3, Epsilon1=0, Epsilon2=0) #Beta2 is a constant intercept and Beta1 is a random

walk

51 OverdispersionConfig=c(Delta1=0, Delta2=0) #Controls the number of spatial and spatio-temporal factors for

the vessel effects

52 # Logit-link for encounter probability (positive catch rate distribution doesn’t matter)

53 ObsModel=c(2,0)

54 #Control Output

55 Options = c("SD_site_density"=0, "SD_site_logdensity"=0, "Calculate_Range"=1, "Calculate_evenness"=0,

56 "Calculate_effective_area"=1, "Calculate_Cov_SE"=0, ’Calculate_Synchrony’=0, ’Calculate_Coherence’=0)

57
58 Use_REML = TRUE #use restricted maximum likelihood
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59
60 strata.limits<-data.frame(STRATA = "All_areas") #Perhaps this can be changed to ESA’s later?? -

stratification settings

61
62 #Region

63 Region="Other"

64
65 bias.cor <- "TRUE"

66
67 ##Save settings

68 #Location for saving files

69 if(species == "angdie"){

70 DateFile=paste0(getwd(), ’/VAST_EF_Eels_output_angdie/’)

71 }

72 if(species == "angaus"){

73 DateFile=paste0(getwd(), ’/VAST_EF_Eels_output_angaus/’)

74 }

75
76 dir.create(DateFile)

77 #save settings for later reference

78 Record = ThorsonUtilities::bundlelist(c("Data_set", "Version", "species", "covariates", "Method", "grid_size

_km", "n_x",

79 "FieldConfig", "RhoConfig","OverdispersionConfig", "ObsModel", "Kmeans_Config",

80 "bias.cor"))

81 save(Record, file = file.path(DateFile, "Record.RData"))

82 capture.output(Record, file = paste0(DateFile, "Record.txt"))

83
84
85 ############################# Editing data ###############################################

86 #Data for longfin eel catch

87 Data_Geostat=data.frame(Lon=NZFFD.REC2.Diad.EF[,"long"],Lat=NZFFD.REC2.Diad.EF[,"lat"], Year=NZFFD.REC2.Diad

.EF[,’year’],

88 Vessel="missing",Catch_KG=as.numeric(NZFFD.REC2.Diad.EF[,species]), Gear=NZFFD.REC2.Diad.EF$org)

89 set.seed(22)

90 Data_Geostat[,’Catch_KG’] = Data_Geostat[,’Catch_KG’] * exp(1e-3*rnorm(nrow(Data_Geostat)))

91 # Add ’empty’ area_swept measure

92 Data_Geostat = cbind( Data_Geostat, "AreaSwept_km2"=1)

93 Data_Geostat = cbind(Data_Geostat, "PredTF_i"=0) #use this data in the likelihood

94
95 Cov_ep = as.matrix(NZFFD.REC2.Diad.EF[,Xvars]) #matrix of the covariates

96
97 if(covariates=="RRF_sel_angdie" & species=="angdie"){ #covariates for angdie

98 diad.gini = read.csv("D:/Masters/RRF Model/Gini_scores.csv") #covariates selected by the RRF to use

99 dontinclude_covs = diad.gini[diad.gini[,species] == 0 , 1] #the variables not to include

100 }

101 if(covariates=="RRF_sel_angaus" & species=="angaus"){

102 diad.gini = read.csv("D:/Masters/RRF Model/Gini_scores.csv") #covariates selected by the RRF to use

103 dontinclude_covs = diad.gini[diad.gini[,species] == 0 , 1] #the variables not to include

104 }

105
106 dontinclude_covs = match(dontinclude_covs, colnames(Cov_ep)) #match with Cov_ep

107 Cov_ep = Cov_ep[,-dontinclude_covs] #Disregard

108
109 ##Final data set

110 pander::pandoc.table( Data_Geostat[1:6,], digits=6 ) #table of the first 6 observations

111
112
113 ## PART 2 - Establish VAST objects

114 ## -------------------------------

115 ##

116 ## Build Extrapolation information, spatial information, density covariates, catchability covariates

117 ## and bundle all together.

118
119 #We generate a grid for extrapolation for a given region
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120 Extrapolation_List = SpatialDeltaGLMM::Prepare_Extrapolation_Data_Fn(Region=Region,

121 strata.limits=strata.limits,

122 observations_LL =

123 Data_Geostat[,c("Lat","Lon")],

124 grid_in_UTM=TRUE,

125 maximum_distance_from_sample=15)

126
127 #bundle together the spatial information into a list

128 Spatial_List = SpatialDeltaGLMM::Spatial_Information_Fn(grid_size_km=grid_size_km, n_x=n_x,

129 Method=Method, Lon=Data_Geostat[,’Lon’],

130 Lat=Data_Geostat[,’Lat’],

131 Extrapolation_List=Extrapolation_List,

132 randomseed=Kmeans_Config[["randomseed"]],

133 nstart=Kmeans_Config[["nstart"]],

134 iter.max=Kmeans_Config[["iter.max"]],

135 DirPath=DateFile, Save_Results=FALSE )

136
137 # Add knots to Data_Geostat - used for spatial prediction

138 Data_Geostat=cbind(Data_Geostat, knot_i=Spatial_List$knot_i)

139
140 #Build covariate matrix and Gear design matrix

141 X_xtp = format_covariates(Lat_e = Data_Geostat$Lat , t_e = Data_Geostat$Year ,

142 Lon_e = Data_Geostat$Lon ,Cov_ep = Cov_ep, Extrapolation_List = Extrapolation_List,

143 Spatial_List = Spatial_List, na.omit = "time-average")

144
145 #Design matrix for the gear effects (organisation sampling) offset from NIWA (the most common sampler)

146 Q_ik = ThorsonUtilities::vector_to_design_matrix( Data_Geostat[,’Gear’] )

147 Q_ik = Q_ik[, -which(colnames(Q_ik) %in% "niwa")]

148
149
150 #Firstly, we build a list of data inputs used for parameter estimation, Data_Fn does this

151 #in built "dummy observations", excluding Q_ik (org) at this point

152 TmbData = VAST::Data_Fn("Version"=Version, "FieldConfig"=FieldConfig,

153 "OverdispersionConfig"=OverdispersionConfig, "RhoConfig"=RhoConfig,

154 "ObsModel"=ObsModel, "c_i"=rep(0,nrow(Data_Geostat)),

155 "b_i"=Data_Geostat[,’Catch_KG’], "a_i"=Data_Geostat[,’AreaSwept_km2’],

156 "v_i"=as.numeric(Data_Geostat[,’Vessel’])-1,

157 "s_i"=Data_Geostat[,’knot_i’]-1, "t_i"=Data_Geostat[,’Year’],

158 "a_xl"=Spatial_List$a_xl, "MeshList"=Spatial_List$MeshList,

159 "GridList"=Spatial_List$GridList, "Method"=Spatial_List$Method,

160 "Options"=Options, "X_xtp"=X_xtp$Cov_xtp, "Q_ik"=Q_ik,

161 Aniso = 1, PredTF_i=Data_Geostat$PredTF_i)

162
163
164 #Builds the TMB object

165 TmbList = VAST::Build_TMB_Fn("TmbData"=TmbData, "RunDir"=DateFile, "Version"=Version,

166 "RhoConfig"=RhoConfig, "loc_x"=Spatial_List$loc_x,

167 "Method"=Method, "Use_REML"=Use_REML )

168
169 Obj = TmbList[["Obj"]] #Extract TMB object

170
171
172 ## PART 3 - Run model

173 ## -------------------------------

174 ##

175
176 ##Estimate fixed effects and predict random effects

177 Opt = TMBhelper::Optimize( obj=Obj, lower=TmbList[["Lower"]], upper=TmbList[["Upper"]], getsd=TRUE,

178 savedir=DateFile, bias.correct=bias.cor, newtonsteps=3,

179 control = list(eval.max = 100000, iter.max = 100000 ,trace = TRUE))

180
181 #Save the results

182 Report = Obj$report()

183 Save = list("Opt"=Opt, "Report"=Report, "ParHat"=Obj$env$parList(Opt$par), "TmbData"=TmbData)
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184 save(Save, file=paste0(DateFile,"Save.RData"))

185
186 #Parameter results

187 Save$Opt$diagnostics[,c(1,4,6)]

188
189 end1=Sys.time()

190 time<-end1-start1 ; time
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The following gives the R code for building the VAST multi-species
model.

1 start1=Sys.time() #measure how long it takes

2 setwd("/am/courtenay/home1/charslanth/Masters/VAST R stuff")

3 library("devtools")

4 library("Matrix")

5 library(TMB,lib.loc = .libPaths()[2])

6 library(INLA)

7 library(SpatialDeltaGLMM)

8 library(VAST,lib.loc = .libPaths()[2])

9 library(maps) #to visualise

10 library(ROCR) #auc function

11 library(cvAUC) #auc CI’s

12 library(sperrorest) #K-means spatial partitioning function

13
14
15 ## PART 1 - Load data and edit settings

16
17 ############################# Load and edit data ###############################################

18 load("/am/courtenay/home1/charslanth/Masters/Data/My_NZFFD.REC2.Diad.EF.Rdata")

19 covariates = c("RRF_sel_angdie", "RRF_sel_angaus")[1] #covariates to use

20 diad.preds <- read.csv("/am/courtenay/home1/charslanth/Masters/RF R stuff/Fish predictor list to use for

RandForest models.csv")

21 Xvars <- diad.preds$predictors[which(diad.preds$diadromous == "T")] #use these predictors

22 rm(diad.preds) #remove as we no longer need this

23 Xvars <- as.character(Xvars) #set as a character

24 Xvars<-Xvars[-1] #fishmeth isn’t needed as a covariate as we are only using EF data

25
26 ############################# Settings ###############################################

27 Data_set="NZFFD.REC2.Diad.EF" #set the data set

28 Version="VAST_v4_4_0" #version of VAST to use

29
30 #Spatial Settings - Need to find optimum settings

31 Method = "Mesh"

32 grid_size_km=25 #the distance between grid cells for the 2D AR1 grid

33 n_x=400 #number of knots to use

34
35 #controls number of spatial and spatio-temporal factors used for each component

36 FieldConfig=c(Omega1=2, Epsilon1=2, Omega2=0, Epsilon2=0)

37 # Turn off annual variation in the intercept for positive-catch rates (which we’ll ignore anyway)

38 RhoConfig=c(Beta1=2, Beta2=3, Epsilon1=0, Epsilon2=0) #Beta2 is a constant intercept and Beta1 is a random

walk

39 OverdispersionConfig=c(Delta1=0, Delta2=0) #Controls the number of spatial and spatio-temporal factors for

the vessel effects

40 # Logit-link for encounter probability (positive catch rate distribution doesn’t matter)

41 ObsModel=c(2,0)

42 #Control Output

43 Options = c("SD_site_density"=0, "SD_site_logdensity"=0, "Calculate_Range"=1, "Calculate_evenness"=0,

44 "Calculate_effective_area"=1, "Calculate_Cov_SE"=0, ’Calculate_Synchrony’=0, ’Calculate_Coherence’=0)

45
46 Use_REML = TRUE #use restricted maximum likelihood

47
48 strata.limits<-data.frame(STRATA = "All_areas") #Perhaps this can be changed to ESA’s later?? -

stratification settings

49
50 #Region

51 Region="Other"

52
53 bias.cor <- "TRUE"

54
55 ##Save settings

56 #Location for saving files
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57 DateFile=paste0(getwd(), ’/VAST_EF_Eels_output_MS/’)

58 dir.create(DateFile)

59 #save settings for later reference

60 Record = ThorsonUtilities::bundlelist(c("Data_set", "Version", "covariates" ,"Method", "grid_size_km", "n_x"

, "FieldConfig", "RhoConfig",

61 "OverdispersionConfig", "ObsModel", "bias.cor"))

62 save(Record, file = file.path(DateFile, "Record.RData"))

63 capture.output(Record, file = paste0(DateFile, "Record.txt"))

64
65
66 ############################# Editing data ###############################################

67 #Data for longfin eel catch

68 Data_angdie=data.frame(spp = "angdie", Lon=NZFFD.REC2.Diad.EF[,"long"],Lat=NZFFD.REC2.Diad.EF[,"lat"],

69 Year=NZFFD.REC2.Diad.EF[,’year’], Vessel="missing",Catch_KG=as.numeric(NZFFD.REC2.Diad.EF[,"angdie"]),

70 Gear=NZFFD.REC2.Diad.EF$org)

71 set.seed(22)

72 Data_angdie[,’Catch_KG’] = Data_angdie[,’Catch_KG’] * exp(1e-3*rnorm(nrow(Data_angdie)))

73
74 #Data for shortfin eel catch

75 Data_angaus=data.frame(spp = "angaus", Lon=NZFFD.REC2.Diad.EF[,"long"],Lat=NZFFD.REC2.Diad.EF[,"lat"],

76 Year=NZFFD.REC2.Diad.EF[,’year’], Vessel="missing",Catch_KG=as.numeric(NZFFD.REC2.Diad.EF[,"angaus"]),

77 Gear=NZFFD.REC2.Diad.EF$org)

78 set.seed(22)

79 Data_angaus[,’Catch_KG’] = Data_angaus[,’Catch_KG’] * exp(1e-3*rnorm(nrow(Data_angaus)))

80
81 Data_Geostat <- rbind(Data_angdie, Data_angaus) #bind longfin and shortfin data

82 rm(Data_angdie) ; rm(Data_angaus) #remove

83
84 # Add ’empty’ area_swept measure

85 Data_Geostat = cbind( Data_Geostat, "AreaSwept_km2"=1)

86 Data_Geostat = cbind(Data_Geostat, "PredTF_i"=0) #use this data in the likelihood

87
88 Cov_ep = as.matrix(NZFFD.REC2.Diad.EF[,Xvars]) #matrix of the covariates

89 diad.gini = read.csv("/am/courtenay/home1/charslanth/Masters/RRF Model/Gini_scores.csv")

90
91 #I will use the variables of the LONGFIN eel RRF for the MS model

92 if(covariates=="RRF_sel_angdie"){ #covariates for angdie

93 dontinclude_covs = diad.gini[diad.gini[,"angdie"] == 0 , 1] #the variables not to include

94 }

95 if(covariates=="RRF_sel_angaus"){

96 dontinclude_covs = diad.gini[diad.gini[,"angaus"] == 0 , 1] #the variables not to include

97 }

98
99 dontinclude_covs = match(dontinclude_covs, colnames(Cov_ep)) #match with Cov_ep

100 Cov_ep = Cov_ep[,-dontinclude_covs] #Disregard

101
102 ##Final data set

103 pander::pandoc.table( Data_Geostat[1:6,], digits=6 ) #table of the first 6 observations

104
105
106 ## PART 2 - Establish VAST objects

107
108 #We generate a grid for extrapolation for a given region

109 Extrapolation_List = make_extrapolation_info(Region=Region, strata.limits=strata.limits,

110 observations_LL = Data_Geostat[,c("Lat","Lon")],

111 grid_in_UTM=TRUE, maximum_distance_from_sample=15)

112
113 #Kmeans object for determining the location for a set of knots for approximating spatial variation

114 Kmeans_Config=list("randomseed"=1, "nstart"=100, "iter.max"=1000)

115 #bundle together the spatial information into a list

116 Spatial_List = make_spatial_info(n_x = n_x, Lon=Data_Geostat[,’Lon’], Lat=Data_Geostat[,’Lat’],

117 Extrapolation_List=Extrapolation_List, Method=Method, grid_size_km=grid_size_km,

118 randomseed=Kmeans_Config[["randomseed"]], nstart=Kmeans_Config[["nstart"]],

119 iter.max=Kmeans_Config[["iter.max"]], DirPath=DateFile, Save_Results=FALSE )
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120
121 # Add knots to Data_Geostat - used for spatial prediction

122 Data_Geostat=cbind(Data_Geostat, knot_i=Spatial_List$knot_i)

123
124 Whichcovs=c(1:nrow(NZFFD.REC2.Diad.EF)) #Covariates are identical for each species so no need to repeat for

each

125 #Build covariate matrix and Gear design matrix

126 X_xtp = format_covariates(Lat_e = Data_Geostat$Lat[Whichcovs] , t_e = Data_Geostat$Year[Whichcovs] ,

127 Lon_e = Data_Geostat$Lon[Whichcovs] ,Cov_ep = Cov_ep, Extrapolation_List = Extrapolation_List,

128 Spatial_List = Spatial_List, na.omit = "time-average")

129
130 #Design matrix for the gear effects (organisation sampling) offset from NIWA (the most common sampler)

131 Q_ik = ThorsonUtilities::vector_to_design_matrix( Data_Geostat[,’Gear’] )

132 Q_ik = Q_ik[, -which(colnames(Q_ik) %in% "niwa")]

133
134 #Firstly, we build a list of data inputs used for parameter estimation, Data_Fn does this

135 #in built "dummy observations", excluding Q_ik (org) at this point

136 TmbData = VAST::Data_Fn("Version"=Version, "FieldConfig"=FieldConfig,

137 "OverdispersionConfig"=OverdispersionConfig, "RhoConfig"=RhoConfig,

138 "ObsModel"=ObsModel, "c_i"=as.numeric(Data_Geostat[,’spp’])-1,

139 "b_i"=Data_Geostat[,’Catch_KG’], "a_i"=Data_Geostat[,’AreaSwept_km2’],

140 "v_i"=as.numeric(Data_Geostat[,’Vessel’])-1,

141 "s_i"=Data_Geostat[,’knot_i’]-1, "t_i"=Data_Geostat[,’Year’],

142 "a_xl"=Spatial_List$a_xl, "MeshList"=Spatial_List$MeshList,

143 "GridList"=Spatial_List$GridList, "Method"=Spatial_List$Method,

144 "Options"=Options, "X_xtp"=X_xtp$Cov_xtp, "Q_ik"=Q_ik,

145 Aniso = 1, PredTF_i=Data_Geostat$PredTF_i)

146
147
148 #Builds the TMB object

149 TmbList = VAST::Build_TMB_Fn("TmbData"=TmbData, "RunDir"=DateFile, "Version"=Version,

150 "RhoConfig"=RhoConfig, "loc_x"=Spatial_List$loc_x,

151 "Method"=Method, "Use_REML"=Use_REML )

152
153 Obj = TmbList[["Obj"]] #; beep(5)#Extract TMB object

154
155
156 ## PART 3 - Run model

157 ## -------------------------------

158 ##

159 ## Run and optimise the model

160
161 ##Estimate fixed effects and predict random effects

162 Opt = TMBhelper::Optimize(obj=Obj, lower=TmbList[["Lower"]], upper=TmbList[["Upper"]], getsd=TRUE,

163 savedir=DateFile, bias.correct=bias.cor, newtonsteps=3,

164 control = list(eval.max = 100000, iter.max = 100000 ,trace = TRUE),

165 bias.correct.control=list(sd=FALSE, split=NULL, nsplit=1, vars_to_correct="Index_cyl"))

166
167 #Save the results

168 Report = Obj$report()

169 Save = list("Opt"=Opt, "Report"=Report, "ParHat"=Obj$env$parList(Opt$par), "TmbData"=TmbData)

170 save(Save, file=paste0(DateFile,"Save.RData"))

171
172 #Parameter results

173 Save$Opt$diagnostics[,c(1,4,6)]

174
175 end=Sys.time()

176 time<-end-start1 ; time
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The following gives the R code for building the GRaF longfin eel and
shortfin eel models.

1 setwd("D:/Masters/GRaF Model")

2 #### PACKAGES

3 library(devtools)

4 library(GRaF) #install GRaF from github (the version from goldingn’s repo at least)

5 library(sperrorest) #K-means spatial partitioning function

6 library(ROCR) #auc function

7 library(cvAUC) #auc CI’s

8
9 ################################################################################################

10 ############################# Load and edit data ###############################################

11 ################################################################################################

12
13 load(file = "D:/Masters/Data/My_NZFFD.REC2.Diad.EF.Rdata") #load data

14 species <- "angdie"

15 covariates = c("RRF_sel_angdie", "RRF_sel_angaus")[1] #covariates to use

16
17 diad.preds <- read.csv("D:/Masters/RF R stuff/Fish predictor list to use for RandForest models.csv") #all

the predictor variables

18 Xvars <- diad.preds$predictors[which(diad.preds$diadromous == "T")] #use these predictors

19 rm(diad.preds) #remove as we no longer need this

20 Xvars <- as.character(Xvars) #set as a character

21
22 Xvars<-Xvars[-1] #fishmeth isn’t needed as a covariate as we are only using EF data

23
24 #covariates to use

25 diad.preds <- read.csv("D:/Masters/RF R stuff/Fish predictor list to use for RandForest models.csv")

26 diad.gini = read.csv("D:/Masters/RRF Model/Gini_scores.csv") #covariates selected by the RRF to use

27 Model_covs = as.vector(diad.gini[diad.gini[,species] > 0 , 1]) #the variables to include

28 Model_covs <- c(Model_covs, "year") #use year as a covariate

29
30 NZFFD.REC2.Diad.EF[[species]] <- as.factor(NZFFD.REC2.Diad.EF[[species]]) #specify the species as a factor

31 levels(NZFFD.REC2.Diad.EF[[species]]) <- c("FALSE", "TRUE") #ensure the levels arestr F/T

32 pa <- as.numeric(as.logical(NZFFD.REC2.Diad.EF[,species])) #pa data

33
34
35 ################################################################################################

36 ####################################### Prior ##################################################

37 myprior <- c("Informative_RRF", "Uninformative")[2]

38
39 ################################################################################################

40 ##################################### Record setting ###########################################

41 Record_list <- list() #empty list to record settings

42 Record_list$species <- species

43 Record_list$covariates <- covariates

44 Record_list$prior <- myprior

45 capture.output(Record_list, file = paste0("Record_GPSDM_",species,".txt"))

46
47 ################################################################################################

48 ############################# Build longfin GRaF model #########################################

49 ################################################################################################

50 graf_model <- graf(y=pa, x=NZFFD.REC2.Diad.EF[,Model_covs], opt.l = TRUE, prior = RRF_pred,

51 verbose = TRUE) #with uninformative prior
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