Evolving Dispatching Rules
for Dynamic Job Shop
Scheduling Problems using

Genetic Programming

John Park

A thesis
submitted to the Victoria University of Wellington
in fulfilment of the
requirements for the degree of
Doctor of Philosophy

in Computer Science.

Victoria University of Wellington
2019

Abstract

Job shop scheduling (JSS) problems are difficult combinatorial optimisa-
tion problems that have been studied over the past 60 years. The goal of
a JSS problem is to schedule the arriving jobs as effectively as possible on
the limited machine resources on the shop floor. Each job has a sequence
of operations that need to be processed on specific machines, but the ma-
chines can only process one job at a time. JSS and other types of scheduling
are important problems in manufacturing systems, such as semiconduc-
tor manufacturing. In particular, this thesis focuses on dynamic JSS (DJSS)
problems, where unforeseen events occur during processing that needs to
be handled by the manufacturer. Examples of dynamic events that occur
in DJSS problems are dynamic or unforeseen job arrivals, machine break-
downs, uncertain job processing times, and so on.

A prominent method of handling DJSS problems is to design effective
dispatching rules for the DJSS problem handled by the manufacturer. Dis-
patching rules are local decision makers that determine what job is pro-
cessed by a machine when the machine finishes processing the previous
job and becomes available. Dispatching rules have been investigated ex-
tensively by both academics and industry experts due to their simplicity,
interpretability, low computational cost and their ability to cope effectively
in dynamic environments. However, dispatching rules are designed for a
specific DJSS problem and have no guarantee that they retain their effec-
tiveness on other DJSS problems. In a real-world scenario, the properties
of a manufacturing system can change over time, meaning that previously
effective dispatching rule may longer be effective. Therefore, a manufac-

turer may need to redesign a dispatching rule to maintain a competitive

edge on the market. However, designing an effective dispatching rule for
a specific DJSS problem is expensive, and typically requires a human ex-
pert and extensive trial-and-error process to verify their effectiveness. To
circumvent the manual design of dispatching rules, researchers have pro-
posed hyper-heuristic approaches to automate the design of dispatching
rules. In particular, various genetic programming based hyper-heuristic
(GP-HH) approaches have been proposed in the literature to evolve effec-
tive dispatching rules for scheduling problems, including DJSS problems.
However, there are many potential directions that have not been fully in-

vestigated.

The overall goal of this thesis is to develop new and effective GP-HH
approaches to designing high-quality dispatching rules for DJSS problems
that aim to improve beyond the standard GP approach while maintain-
ing computational efficiency. The focus will be on developing approaches
which can decompose complex JSS problems down to simpler subcom-
ponents, evolving multiple heuristics to handle the subcomponents, and
developing GP-HH approaches that can handle complex DJSS problems
by exploiting the problem properties.

This thesis is the first to develop ensemble GP approaches that evolve
ensembles of dispatching rules using cooperative coevolution. In addition,
the thesis also investigates different combination schemes for one of the
ensemble GP approaches to combine the ensemble member outputs ef-
fectively. The results show that ensemble GP approach evolves rules that
perform significantly better than the rules evolved by the benchmark GP
approach.

This thesis provides the first investigation into applying GP-HH to a
DJSS problem with dynamic job arrivals and machine breakdowns. In ad-
dition, the thesis also develops machine breakdown GP approach to the
DJSS problem by incorporating machine breakdown GP terminals. The
results show that the standard GP do not generalise well over the DJSS
problem. The best rules from the machine breakdown GP approach do

perform better than the best rule from the standard GP approach, and the
analysis shows that the rules behaviour is similar to the shortest process-
ing time rule in certain decision situations.

This thesis is the first to develop a multitask GP approach to evolve a
portfolio of dispatching rules for a DJSS problem with dynamic job arrivals
and machine breakdowns. The multitask GP approach improve on the
standard GP approach either in terms of the effectiveness of the output
rules or the computation time required to evolve the rules. The analy-
sis shows that the difference between DJSS problem having no machine
breakdowns and having machine breakdowns is a more significant factor
than the difference between two DJSS problems with different frequencies

of machine breakdown investigated.

iv

Acknowledgements

I would like to thank my supervisors, Prof. Mengjie Zhang, Dr. Yi Mei, Dr.
Gang Chen and Dr. Su Nguyen for providing me with constant support
and encouragement before and over the duration of my PhD research. The
feedback they provided on my research has been invaluable for my learn-
ing experiences as a PhD student and helped me improve various skills
such as my analytical skills.

Thank you to the people in the Evolutionary Computation Research
Group (ECRG) for their support and for providing a vibrant community
at the university for the evolutionary computation (EC) technique.

I would also like to thank Victoria University of Wellington for finan-
cially supporting me through the Victoria Doctoral Scholarship and Prof.
Mengjie Zhang for supporting through the Marsden Grant.

Finally, I would like to thank my parents for their constant support and

encouragement through my studies.

vi

List of Publications

e John Park, Su Nguyen, Mengjie Zhang, Mark Johnston. “Evolving
Ensembles of Dispatching Rules using Genetic Programming for Job
Shop Scheduling”. Proceedings of the 18th European Conference on Ge-
netic Programming (EuroGP 2015). Lecture Notes in Computer Science.
Vol. 9025. Copenhagen, Denmark. 8-10 April 2015. pp. 92-104.

e John Park, Su Nguyen, Mark Johnston, Mengjie Zhang. “A Sin-
gle Population Genetic Programming based Ensemble Learning Ap-
proach to Job Shop Scheduling”. Proceedings of 2015 Genetic and Evo-
lutionary Computation Conference (GECCO Companion 2015). Madrid,
Spain. 11-15 July 2015. pp. 1451-1452.

e John Park, Yi Mei, Su Nguyen, Aaron Chen, Mark Johnston, Mengjie
Zhang. “Genetic Programming based Hyper-heuristics to Dynamic
Job Shop Scheduling: Cooperative Coevolutionary Approaches”. Pro-
ceedings of the 19th European Conference on Genetic Programming (Eu-
roGP 2016). Lecture Notes in Computer Science. Vol. 9594. Porto, Por-
tugal. 30 March-1 April 2016. pp. 115-132.

e John Park, Yi Mei, Su Nguyen, Aaron Chen, Mark Johnston, Mengjie
Zhang, “Niching Genetic Programming based Hyper-heuristic Ap-
proach to Dynamic Job Shop Scheduling: An Investigation into Dis-
tance Metrics”. Proceedings of the 2016 Genetic and Evolutionary Com-
putation Conference (GECCO Companion 2016). Denver, USA. 20-24
July 2016. pp. 109-110.

Vil

viii

e John Park, Yi Mei, Su Nguyen, Gang Chen and Mengjie Zhang. “In-

vestigating the Generality of Genetic Programming based Hyper-
heuristic Approach to Dynamic Job Shop Scheduling with Machine
Breakdown”. Proceedings of the Third Australasian Conference on Arti-
ficial Life and Computational Intelligence (ACALCI 2017). Lecture Notes
in Artificial Intelligence. Vol. 10142. Geelong, Australia. 30 Jan—2 Feb
2017. pp. 301-313.

John Park, Yi Mei, Su Nguyen, Gang Chen and Mengjie Zhang. “An
Investigation of Ensemble Combination Schemes for Genetic Pro-
gramming based Hyper-heuristic Approaches to Dynamic Job Shop
Scheduling”. Applied Soft Computing. Vol. 63. February 2018, pp.
72-86. DOI: 10.1016 /j.asoc.2017.11.020.

John Park, Yi Mei, Su Nguyen, Gang Chen and Mengjie Zhang. “In-
vestigating Machine Breakdown Genetic Programming Approach for
Dynamic Job Shop Scheduling”. Proceedings of the 21st European Con-
ference on Genetic Programming (EuroGP 2018). Lecture Notes in Com-
puter Science. Parma, Italy. 4-6 April 2018. pp. 253-270.

John Park, Yi Mei, Su Nguyen, Gang Chen and Mengjie Zhang. “Evo-
lutionary Multitask Optimisation for Dynamic Job Shop Schedul-
ing using Niched Genetic Programming”. Proceedings of the 31 Aus-
tralasian Joint Conference on Artificial Intelligence (Al 2018). Lecture
Notes in Computer Science. Wellington, New Zealand. 11-14 Decem-
ber 2018. pp. 739-751.

John Park, Yi Mei, Su Nguyen, Gang Chen and Mengjie Zhang. “Mul-
titask Genetic Programming for Dynamic Job Shop Scheduling Sub-
ject to Breakdowns”. (in progress).

Contents

1 Introduction 1
1.1 Problem Statement 1
1.2 Motivations e 6
1.3 ResearchGoals 10
14 Major Contributions 14
1.5 Organisationof Thesis 17

2 Literature Review 19
21 BasicConcepts. 19

211 Machine Learning 20
212 Sequencing and Scheduling 21
2.1.3 Heuristics and Meta-heuristics 22
2.1.4 Evolutionary Computation 24
2.1.5 Cooperative Coevolution 25
2.1.6 Ensemble Learning and Multi-agent Systems 26
2.1.7 Transfer Learning and Multitask Learning 27
2.2 Job Shop Scheduling Problems 28
221 Job Shop Scheduling Definitions 29
2.2.2 Active Schedules and Non-delay Schedules 31
223 Typesof DynamicEvents 34
2.3 Genetic Programming 37
2.3.1 Representation, 37
2.3.2 Initialisation 38

iX

CONTENTS

233 Evaluation
234 Selectionand Breeding
235 GeneticOperators
24 Hyper-heuristics. o oo Lo
2.5 Static and Dynamic JSS Techniques
2.5.1 Exact Optimisation Techniques
2.5.2 Heuristic Techniques
2.5.3 Meta-heuristic Techniques
2.6 GP-HH for Scheduling Problems
2.6.1 Scheduling Heuristic Definitions
2.6.2 GP Representation, Terminal Sets and Function Sets .
2.6.3 Estimating the Quality of Scheduling Heuristics . . .
2.64 GP Search Mechanism
2.6.5 GP-HH for Scheduling Problems Summary
2.7 Related Work for Research Goals
271 Ensemble Learning
2.7.2 Techniques to DJSS subject to Machine Breakdowns .
2.7.3 Multitask Learning for Optimisation

28 Summary

Ensemble-based GP Approaches to DJSS

3.1 Introduction,
311 ChapterGoals
3.1.2 Chapter Organisation

3.2 Ensemble GP Algorithms
3.2.1 EGP-JSSOverview
322 MLGP-JSSOverview
3.2.3 Evaluation Procedures

3.3 Ensemble GP Experimental Design
3.3.1 DJSS Simulation Model
332 GPBenchmark

CONTENTS

3.3.3 GP Representation, Terminals and Function Sets . . .
3.3.4 GP Parameter Settings
3.4 Ensemble GP ApproachResults
341 RuleSetComparison
3.42 BestRule Comparison
3.5 Ensemble Combination Schemes

3.5.1 Combination Schemes Investigated

X1

85

3.5.2 Incorporating Weighted Combination Schemes to EGP-

JSS
3.6 DiversityMeasures
3.6.1 Measuring Behaviours of Evolved Ensembles
3.6.2 New Measure 1 — Decision Conflict (DC)
3.6.3 New Measure 2 — High Contribution Members (HC)

3.64 New Measure 3 — Low Job Ranks Members (LJR)
3.7 Ensemble Combination Scheme Experimental Design
3.7.1 Adjustments to Ensemble GP Experimental Design
3.7.2 EGP-JSS Parameter Settings

3.8 Ensemble Combination Scheme Results and Discussions
3.8.1 Combination Scheme Training Fitness Convergence
Curves Lo
3.8.2 Combination Scheme Test Performance
3.8.3 Behavioural Analysis and Further Discussion

3.9 ChapterSummary.

GP to DJSS Problems Subject to Machine Breakdowns

41 Introduction L.
411 ChapterGoals
41.2 Chapter Organisation

4.2 Framework for Investigating the Generality of GP
421 DJSS Simulation subject to Machine Breakdowns .
422 GP-HH Training Procedure

. 101

102
103

. 104

105

. 106

106

. 106

107
109

. 110

115

119
119
120
121
121

. 122

xii

CONTENTS

4.2.3 GP Evaluation Procedure 126

43 GP Generality Investigation Experimental Design 127

43.1 GP Representation, Terminals and Function Sets . . . 127

432 GP Parameter Settings 127

4.4 GP Generality Investigation Results and Discussion 129

44.1 Evolved Rule Performance Evaluation 130

4.4.2 GP Terminal Distribution Analysis 132

4.5 Machine Breakdown GP terminals 133

4.5.1 Update to the Baseline GP Terminals 134

452 Augmented GP Terminals 135

453 Reactive GP Terminals 139

4.6 Designof Experiment. 140
4.6.1 Modified DJSS Dataset for Machine Breakdown GP

Terminals 140

4.6.2 GP Parameter Settings 142

4.7 Machine Breakdown GP Results and Discussion 143

4.7.1 Machine Breakdown GP Terminal Evaluation 143

472 RuleAnalysis 150

48 ChapterSummary. 155

Developing Multitask GP-HH Approaches 159

51 Introduction 159

511 ChapterGoals. 160

512 Chapter Organisation 162

5.2 Applying Multitasking to a DJSS Problem 162

5.2.1 DJSS Simulation Model 162

5.2.2 Multitasking on the DJSS Simulation Model 163

5.3 Niched GP Approach for Multitasking 165

5.3.1 Niched GPOverview. 166

5.3.2 GP Evaluation Procedure 167

53.3 GP Clearing Procedure 169

CONTENTS xiii

5.4 Neighbourhood-based GP Approach for Multitasking 172
54.1 NBGP Approach Overview 172
54.2 Neighbourhood Scenario Evaluation Procedure . . . 173
54.3 Selection and Breeding Procedures 176
55 Designof Experiment. 179
5.5.1 Benchmark GP Approach 179
5.5.2 GP Terminals and FunctionSet 180
553 GP Parameter Settings 180
554 GP Training Procedures 181
5.6 Resultsand Discussion 184
5.6.1 Simulation Usage and Computation Time Evaluation 185
5.6.2 PerformanceResults 189
5.6.3 AnalysisProcedure 193
57 ChapterSummary. 198
6 Conclusions 201
6.1 Achieved Objectives 202
6.2 MainConclusions 204
6.2.1 Investigation of Ensemble GP Approaches 205

6.2.2 Investigation of GP for a DJSS Problem subject to
Machine Breakdown 207

6.2.3 Developing Multitask GP Approaches to DJSS Prob-
lem subject to Machine Breakdown 209
6.3 Discussions L 211

6.3.1 Evolving Ensembles on DJSS Problems Subject to Ma-

chine Breakdowns 211

6.3.2 Incorporating Diversity to Ensemble GP Approaches
toDJSSProblems, 212
6.3.3 Incorporating Machine Breakdown Information into
GP .. 212

Xiv

6.4

CONTENTS

6.3.4 Identifying Machine Breakdown Scenarios Automat-

ically o 213
Future Work 214
6.4.1 Surrogate Modelling 214
6.4.2 Transfer Learning and Concept Drift 214

6.4.3 Multi-objective Optimisation and Multiple Types of
DynamicEvents 215

Bibliography oo o 216

Chapter 1

Introduction

1.1 Problem Statement

Job Shop Scheduling (JSS) problems are a group of optimisation problems
that have been studied extensively over the past 60 years [48, 128]. The
problems have garnered attention from both academics and leading in-
dustry experts. From an academic perspective, JSS problems are difficult
and computationally intensive to solve. Most JSS problems with fixed
properties are NP-hard [16]. In the worst case scenario, the scaling of the
computation times required to generate optimal solutions for JSS problem
instances relative to the sizes of the problem instances is super-polynomial
[125]. This results in an issue where large problem instances are too com-
putationally intensive to generate optimal solutions using an exact optimi-
sation technique. JSS problems are considered to be among the most diffi-
cult combinatorial optimisation problems [46]. On the other hand, JSS is a
good model of many manufacturing scenarios ranging from semiconduc-
tor manufacturing to automobile assembly lines [125] from a manufactur-
ing and production perspective. In the United States alone, manufacturers
contribute trillions of dollars to the US economy [144].

A mathematical model of a JSS problem instance is as follows. A JSS
problem instance usually has a fixed number of machines on the shop floor

1

2 CHAPTER 1. INTRODUCTION

that can be used to process arriving jobs [125]. A job has a predetermined
sequence of operations which need to be processed in order for it to be com-
pleted. Each operation can only be processed on a specific machine. This
means that a job is routed through a specific sequence of machines before
it leaves the shop. However, a machine can only process one operation at a
time. The goal of a JSS problem is to process all arriving jobs as effectively
as possible based on the objective of the JSS problem. For example, an ob-
jective of a JSS problem can be to process all jobs so that the time spent
by the jobs on the shop floor is minimised (i.e. minimise the flowtime
[72, 73]), or to minimise the time when the last job in a batch is completed
(i.e. minimisation the makespan [10, 141]). In addition, there are also JSS
problems where the jobs are assigned due dates and weights, and the goal is
to process the jobs based on their due date urgency [12, 72, 73, 146].

JSS problems are divided into two separate subsets of problems. The
tirst subset of JSS problems are the static]SS problems [125]. In a static
JSS problem instance, all properties of the jobs and the machines on the
shop floor are known in advance. Approaches to static JSS problems can
be broken down into two categories. In the first category, many papers
have proposed exact mathematical optimisation techniques [1, 20, 25, 48, 125].
These techniques generate optimal solutions for JSS problem instances.
An optimal solution for a JSS problem instance is feasible, i.e., satisfies all
constraints of the problem instance, and has an equal or better objective
function value than all other feasible solutions for the problem instance.
For example, a JSS problem instance may have the objective of minimis-
ing makespan. An optimal solution to a makespan minimisation prob-
lem will have a makespan value where the makespan of all other feasible
solutions will be equal to or higher than the makespan of that optimal
solution. In the worst case scenario, the computational cost to generate
an optimal solution for a JSS problem instance is superpolynomial [16],
i.e., the search spaces for the problem instances scales very poorly to the

size of the problem instances. Therefore, mathematical optimisation tech-

1.1. PROBLEM STATEMENT 3

niques have been limited to very small problem instances. In one study
in 2014, it took approximately 7.8 hours to find an optimal solution to a
problem instance with 9 jobs and 5 machines [7]. For larger JSS problems,
such as problem instances with up to 100 jobs and 20 machines [141], it
is generally too computationally difficult to find optimal solutions to the
problem instances using mathematical optimisation. In many real-world
scenarios, although optimal solutions are preferred, they are often not nec-
essary. Solutions that are “good enough” are sufficient to allow the man-
ufacturer to have a competitive edge in the market. Because of this, it
is sometimes more advantageous to trade-off computation time with the
quality of solutions for JSS problem instances. This leads to the second cat-
egory of approaches to static JSS problems, which are heuristic approaches.
Heuristic approaches are “rules-of-thumb” which can generate “good”,
but not necessarily optimal, solutions [64]. In addition, for some heuristic
approaches, there is also no guarantee that the solution will be feasible.
The state-of-the-art approaches for static JSS problems with large prob-
lem instances use meta-heuristics. Meta-heuristics are higher level heuris-
tics which provide a general framework to guide low-level heuristics that
make local decisions [114]. Examples of meta-heuristics approaches to JSS
include techniques such as Tabu Search [12] and Genetic Algorithm [158].
Specific meta-heuristic approaches [75] have been shown to handle large

JSS problem instances very effectively.

The second subset of JSS problems are dynamic JSS (DJSS) problems
[125]. Unlike static JSS problem instances, where the properties of jobs and
machines are known a priori, unforeseen events occur in DJSS problem in-
stances which affect the properties of the problem instance. In many DJSS
problems, the job and the job’s attributes are unknown before they arrive
on the shop floor. Other DJSS problems can focus on unforeseen machine
breakdowns [115], and changes in the job properties [115]. Developing
approaches to DJSS problems are ways to address the issues bridging the
gap between the theoretical approaches to JSS and the industrial applica-

4 CHAPTER 1. INTRODUCTION

tions of the various approaches [102]. In a real-world scenario, dynamic
changes to the shop floor are unavoidable, and the rules that are applied
in an industrial setting need to be robust to changes in the environment
[103].

Approaches to solving DJSS problems differ from static JSS problems.
Because DJSS problem instances have unforeseen events, it is not possi-
ble to determine whether a given schedule is optimal before processing
occurs. Therefore, approaches such as mathematical optimisation tech-
niques are not suitable for DJSS problem instances [140]. In addition,
if the DJSS problem also contains stochastic elements, then planning for
future events becomes even more difficult. Instead, many effective ap-
proaches to DJSS problems use heuristics that make local sequencing de-
cisions, such as dispatching rules [17]. This is because dispatching rules
have short reaction times and can cope with the unforeseen changes in the
manufacturing environment [105]. When a machine is available and has
jobs waiting at it to be processed, a dispatching rule determines which job
should be selected to be processed next by the machine. For example, the
SPT (shortest processing time) dispatching rule [125] selects the job with
the shortest processing time waiting at the available machine. Dispatch-
ing rules generally do not attempt to predict and optimise the schedule
in advance unlike exact optimisation and meta-heuristics, making them
relatively simple compared to those approaches. Other approaches use a
dispatching rule which combines multiple job attributes and machine at-
tributes together to select a job. For example, SPT/FIFO combines the SPT
heuristic with the FIFO (first-in-first-out) heuristic, which selects the job
which arrived at the machine first. SPT/FIFO will first rank the jobs by
the shortest processing time first, then by the arrival time at the machine,
and select the top-ranked job. Dispatching rules which combine multi-
ple attributes together are denoted as composite dispatching rules [72, 73].
A decision to select a specific job to be processed by the dispatching rule

is denoted as a dispatching decision. Although dispatching rules are not

1.1. PROBLEM STATEMENT 5

as effective as state-of-the-art meta-heuristics in static JSS problems [158],
they are very effective for dynamic environments [105].

Although dispatching rules can be effective for specific problem do-
mains, they are not guaranteed to be effective when applied to other prob-
lem domains. Heuristics are usually designed to be effective for a spe-
cific problem or class of problems [17], and no single heuristic is more
effective than other heuristics for all JSS problems [150]. In a real-world
scenario, the underlying properties of the problem are likely to change
over time, e.g., machines are added or removed from the shop floor, or
change in the objectives of the problems, and new technology allows cer-
tain machines to become more effective at processing jobs, etc. Therefore,
heuristics need to be updated frequently for the manufacturer to keep up
with other competitors. However, designing a new heuristic can be dif-
ficult, and requires human experts and extensive empirical testing to en-
sure that the new heuristic is effective. To circumvent the issue of manu-
ally designing dispatching rule heuristics, researchers have proposed the
use of hyper-heuristics [21]. Hyper-heuristics are heuristics which generate
heuristics that can generate solutions to DJSS problem instances instead
of outputting the solutions directly. The heuristics generated are often
dispatching rules [17], which can then be reused for further JSS problem
instances in the problem domain. In essence, a new and effective heuris-
tic can be developed autonomously for a specific problem domain using
hyper-heuristics without the need for a human expert and a lengthy trial
and error process. A significant number of hyper-heuristic approaches
to JSS problems use Genetic Programming (GP) [80]. They are denoted
as Genetic Programming based hyper-heuristic (GP-HH) approaches [17].
GP-HH approaches to JSS problems are popular compared to other hyper-
heuristic approaches due to the representation of individuals in the tree-
based GP populations intuitively being able to be interpreted as priority
dispatching rules. GP also has a powerful search ability that can combine

heuristic subcomponents together to form a cohesive rule effectively [103].

6 CHAPTER 1. INTRODUCTION

From the literature, GP-HH approaches generally outperform manually
designed dispatching rules for both static and DJSS problems [17, 102],
making it a very promising approach to investigate.

The overall goal of this thesis is to develop new GP-HH approaches
to evolve effective dispatching rules for complex dynamic job shop schedul-
ing environments with multiple types of dynamic events. The GP-HH ap-
proaches will aim to improve over the standard GP approach over the
DJSS problems both in terms of the effectiveness of the evolved rules and
the computation time required to evolve the rules. The focus will be on
developing GP-HH approaches that can evolve multiple heuristics simul-
taneously so that the different rules can be combined to handle a DJSS
problem more effectively, or so that the different rules can be applied to
different sub-problems in a DJSS problem effectively.

1.2 Motivations

Dispatching rules are relatively simple heuristics in comparison to some
meta-heuristics. However, dispatching rules can range widely in the com-
plexity of the job selection procedure [125]. The most basic dispatching
rules, such as FIFO, take a single attribute of the problem into account and
uses it during the job selection procedure. Researchers have expanded on
the idea of dispatching rules by combining multiple rules together to form
more complex dispatching rules. Good combinations of rules have been
shown to improve performance over individual dispatching rules for spe-
cific JSS problems [72, 73]. Because of this, most of the previous studies
[40, 47, 60, 71] which utilise GP-HH focus on evolving single priority dis-
patching rules. In a priority dispatching rule, the attributes of jobs and
machines are combined into an arithmetic function. The arithmetic func-
tion is then used to calculate the ‘priorities’ of jobs waiting at the machine.
The job with the highest priority is then selected by the dispatching rule.
Although many effective GP approaches have been proposed for DJSS

1.2. MOTIVATIONS 7

problems with large number of dynamic job arrivals [17, 102, 103], only
a limited number of GP approaches have been applied to DJSS problems
with different types of dynamic events. For example, DJSS problem with
machine breakdowns are an another type of dynamic event that are promi-
nently investigated in the literature [115]. In a machine breakdown event,
a specific machine becomes inactive for a period of time, and any job being
processed at the time the machine becomes inactive needs to be resumed
from the point where the operation was interrupted by the machine break-
down [61].

The most prominent approaches to DJSS problems with machine break-
downs are predictive-reactive or robust pro-active approaches [115]. Predictive-
reactive approaches predicts the final schedule beforehand. They then
reacts to machine breakdowns by updating the final schedule, while at-
tempting to minimise changes which need to be made due to the disrup-
tion caused by the breakdown [152]. Robust pro-active approaches at-
tempt to predict the machine breakdown and minimise the effect of the
machine breakdown on the predicted schedule [94]. The approaches to
DJSS problems with machine breakdowns focus on generating schedules
to problem instances that are robust to the dynamic event [115]. The goal
of many approaches that handle DJSS problems with machine breakdowns
is to minimise the difference between the predicted schedule and final
schedule after all jobs have been processed [8, 6]. However, the approaches
to DJSS problems with machine breakdowns focus on problems with small
problem instances (e.g. 20 total jobs on the shop floor [6]) compared to the
GP approaches that evolve rules for DJSS problem with dynamic job ar-
rivals (e.g. over 2500 job arrivals on the shop floor [66, 60]).

Limited number of approaches have been proposed handling large
DJSS problems with both dynamic job arrivals and machine breakdowns
simultaneously [61, 5, 4]. Handling DJSS problems with multiple types of
dynamic events are important direction in the field of dynamic schedul-

ing [102], as real-world manufacturing environments are likely to consist

8 CHAPTER 1. INTRODUCTION

of multiple unforeseeable events that the scheduling algorithm needs to
cope with. For these types of problems, existing machine breakdown ap-
proaches generally are not suitable due to the large number of dynamicjob
arrivals. After an initial schedule has been predicted, rescheduling needs
to occur frequently to accommodate for new job arrivals, which may likely
be computationally infeasible for DJSS problems that are handled by dis-
patching rules. Adibi et al. [5, 4] have proposed a variable neighbourhood
search (VNS) procedure to handle large DJSS problems with both dynamic
job arrivals and machine breakdowns, but the computation time of VNS
was not presented and VNS is compared to man-made dispatching rules
which are outperformed by GP evolved rules [109]. However, very few
GP approaches have been designed to handle machine breakdowns [155],
and no GP-HH approach has been specifically designed to cope with both
dynamic job arrivals and machine breakdowns in a DJSS problem.

A major limitation of single priority dispatching rules evolved by a
standard GP-HH is that they only consider local decisions and are my-
opic in nature [18, 66]. In a DJSS problem instance, a scheduling algorithm
needs to make multiple complex decisions to generate a schedule, and
decisions made early in the schedule can significantly impact the overall
quality of the schedule later down the line. It is likely having multiple dif-
ferent types of dynamic events add a significant challenge over the DJSS
problems with one type of dynamic events, and a standard GP approach
may not be general enough to handle the DJSS problem effectively. There-
fore, an investigation into the generality of GP on the DJSS problem is
required to determine whether a specialised GP approach is needed or, if
the standard GP is sufficient to handle the DJSS problem.

Given that the standard GP is not sufficient for DJSS problems with dy-
namic job arrivals and machine breakdowns, then it is likely that we need
to develop specialised approaches that improve on the existing GP-HH
approaches in the literature to handle the DJSS problem. It may be pos-
sible to do this by considering methods that evolve multiple rules together

1.2. MOTIVATIONS 9

simultaneously. In problems outside of]SS, researchers have proposed
effective ensemble approaches to better handle problems than single rules
[126]. In classification, ensemble approaches can better represent decision
boundaries than single classifiers [126]. The decision to label an instance
with a class label in classification can be considered to have parallels to
deciding which job is selected by the machine in scheduling, as the ma-
chine needs to be assigned a job to process. Therefore, a GP approach that
can evolve ensembles for DJSS problem may be able to better handle DJSS
problems than the standard GP approach that evolves single rules.

Another approach to handle the DJSS problem may be to incorporate
methods of sharing domain knowledge in DJSS to improve the overall
generalisation ability of GP. Multitask learning approaches have been ap-
plied effectively to classification problems in the literature [27, 116], and
have also been applied to optimisation problems [35, 52] to improve the
overall effective of evolutionary algorithms. In multitask learning, where
multiple problem domains are handled simultaneously by a learning al-
gorithm so that latent features learned from one problem domain can be
transferred to other problem domains to improve the overall effectiveness
of the learning algorithm on the domains [116]. A DJSS problem with
dynamic job arrivals and machine breakdown is likely to be a complex
problem, and handling the problem has multiple problem domains may
result in more effective set of rules than handling it as a single problem.
In other words, it may be more effective to evolve rules specific to the dif-
ferent problem domains in the DJSS problem, i.e., a porfolio of “specialist”
rules, than to handle the problem using single generalised rules. Incorpo-
rating multitask learning with GP is novel and interesting area of research
that have not yet been proposed in the literature. In addition, researchers
have proposed evolutionary multitasking to various optimisation prob-

lems, but not to DJSS problems.

10 CHAPTER 1. INTRODUCTION

1.3 Research Goals

The overall goal of this thesis is to carry out an extensive investigation of
GP-HH approaches to boost the effectiveness of GP on dynamic job shop
scheduling environments in terms of the effectiveness of the evolved rules
and the time required to evolve the rules. The focus of the thesis is to
develop GP-HH approaches that evolve multiple dispatching rules simul-
taneously that can handle complex DJSS problems with different types of
dynamic events. Evolving multiple dispatching rules to handle DJSS prob-
lems has an advantage over evolving single dispatching rules. Multiple
dispatching rules can be combined to have better performance over sin-
gle dispatching rules, or the multiple dispatching rules can be specialised
to DJSS problem domains better than a single rule that needs to be ef-
fective over a diverse range of DJSS problem domains. In other words,
the proposed GP-HH approaches have the potential to evolve diverse and
reusable rules that can generalise more effectively over a diverse range of
difficult DJSS problems compared to the existing state-of-the-art schedul-
ing heuristics. This research will be broken down into the following key

objectives.

1. Develop GP-HH approaches to DJSS problems that evolves high-quality
ensemble rules effective on both the current problem domain and unseen
problem domains. The GP evolved rules need to be able to generalise
effectively on the problem domain that the rule is evolved on, and any
further unseen problem domains that the rule may encounter in the fu-
ture. However, information about these unseen domains is not always
available in advance. Ensemble learning has been shown to improve
the generalisation ability of algorithms in the literature when used to
augment an existing approach [126]. Ensemble learning likely has the
potential to also improve the quality of rules evolved by GP for the DJSS
problems. The underlying principle behind ensemble learning is that

multiple and diverse heuristics are developed in such a way that each

1.3. RESEARCH GOALS 11

heuristic is covered by other heuristics in terms of their weaknesses, i.e.,
the heuristics cover for each other’s errors [126]. This objective is bro-
ken down into the following sub-objectives. First, we need to investi-
gate an ensemble algorithm that can be incorporated with GP to evolve
effective ensembles of dispatching rules for large-scale DJSS problems
with dynamic job arrivals handled by existing GP-HH approaches in
the literature [59, 60, 124]. This is because applying ensemble GP ap-
proaches for JSS problem is a very new field of research, and only a few
preliminary works have applied ensemble GP approaches to DJSS prob-
lems [42]. Many effective ensemble algorithms have been proposed in
the literature for problems outside of JSS to address different research
tields [126], but their effectiveness in JSS are relatively unknown. Sec-
ond, we investigate the ensemble combination scheme used to combine
the outputs of the ensemble members together, which is a key factor in
the overall effectiveness of the ensembles [126]. Based on the effective-
ness of the ensemble GP approaches over the DJSS problem, it may
be possible to apply components of the ensemble GP to more complex
DJSS problems, such as a DJSS problem with dynamic job arrivals and

machine breakdowns.

2. Investigate the effectiveness of GP-HH approaches to DJSS problems
subject to machine breakdowns. Note that GP-HH approaches to JSS with
machine breakdown have not been covered significantly in the litera-
ture, and no GP-HH approaches have been proposed for DJSS problems
with both dynamic job arrivals and machine breakdowns. In terms of
man-made dispatching rules, there most effectiveness dispatching rules
are based on the frequency of machine breakdowns [61]. Certain man-
made dispatching rules perform better than other dispatching rules on
problem instances with no machine breakdowns but perform worse on
problem instances with a high frequency of machine breakdowns. In
other words, there is a trade-off in the performances of the man-made

dispatching rules depending on the frequency of machine breakdown.

CHAPTER 1. INTRODUCTION

On the other hand, the effectiveness of GP evolved rules have not been
explored for DJSS problems with machine breakdowns. It is uncertain
whether rules that are evolved for a DJSS problem domain with no ma-
chine breakdowns perform well on DJSS problem domains with ma-
chine breakdown, and whether GP that are evolved for multiple DJSS
problem domains perform well on all domains. By investigating the
efficacy of GP, we can determine which areas we can make improve-
ments to the GP for the DJSS problem, or conclusively determine if GP
can evolve rules that can cover for the entire problem effectively. In ad-
dition, analysing the structures and the behaviours of the rules evolved
by the GP in the literature for different machine breakdown scenarios
can provide insight into the differences in the properties of the rules.
Afterwards, we will investigate which shop floor attributes are impor-
tant when dealing with machine breakdowns and how they affect the
quality of the rules evolved using GP-HH. It is likely that incorporating
attributes specific to machine breakdown scenarios into the informa-
tion for a GP-HH approach can improve the overall quality of the rules
evolved for the problem. For example, by incorporating attributes such
as the number of times a machine has failed, along with the average re-
pair time of the machine, the evolved dispatching rule can potentially
avoid processing jobs with long processing times just before a machine
failure is likely to happen. Various manually designed features will be
tested to improve the effectiveness of GP on the DJSS problem.

. Develop multitask GP-HH approaches to DJSS problems that are able
to evolve high-quality portfolio of rules for the DJSS problem with dy-
namic job arrivals and machine breakdowns. Multitask learning [27] is
a subset of transfer learning [116] where multiple problem domains are
solved simultaneously so that knowledge acquired from one problem
domain can be shared to improve the machine learning algorithms’s
effectiveness. Multitask learning may also be able to better handle a

complex DJSS problem by separating it out into smaller sub-problems

1.3. RESEARCH GOALS 13

representing the multiple domains, and then solving the multiple do-
mains as the tasks in a multitask learning algorithm simultaneously.
By doing this, useful features learned from one task can be shared and
used to boost the effectiveness of the GP approach over the overall DJSS
problem [116]. Therefore, it may be possible to separate out the DJSS
problems by the underlying properties of the problem domains, e.g.,
by their machine breakdown scenarios. In addition, it may be possible
to evolve multiple “specialist rules” effective for the different problem
domains as an alternative to evolving a single generalist rule over the
entire problem. To incorporate multitasking to GP for DJSS problems,
we will develop two different GP approaches. First, we will develop
a niched [95, 133] GP approach that evolves a portfolio of rules for the
DJSS problem. Niching techniques are used in the literature to promote
diversity between the GP individuals in a single GP run [95]. When
combined with GP as a multitask optimisation method for the DJSS
problem, niching has the potential to aid GP in searching for the effec-
tive rules specialised for each type of problem instance (i.e. tasks). If a
specific GP individual is effective for a particular task, then removing
other individuals that behave similarly but have subpar performances
may help improve the search for better individuals in the specific task.
Second, we will propose a novel multitask GP approach to the DJSS
problem with dynamic job arrivals and machine breakdowns which
uses the neighbourhood relations between the different tasks in the
DJSS problems to effectively allocate GP individuals to specific tasks in
the DJSS problem. By using neighbourhood relations and focusing in-
dividuals on specific tasks, we can potentially achieve better efficiency
over a standard GP approach without sacrificing the performance of the
rules evolved by the multitask GP approach.

14 CHAPTER 1. INTRODUCTION

1.4 Major Contributions

This thesis makes the following major contributions.

1. This thesis presents ensemble GP approaches for a DJSS problem
with dynamic job arrivals by incorporating two cooperative coevo-
lutionary techniques into GP. The first ensemble GP approach uses
Potter and De Jong’s cooperative coevolution [127], which partitions a
GP population into multiple subpopulations where the individuals
in each subpopulations interact with other subpopulations through
representatives. The second ensemble GP approach uses Wu and
Banzhat’s multilevel selection [153], where individuals in the GP pop-
ulation are combined to form groups. The experimental results show
that the cooperative coevolutionary GP and multilevel GP approaches
can evolve higher quality rules for the DJSS problem than the stan-
dard single tree GP approach that evolves a single priority dispatch-
ing rule [17]. In addition, this thesis investigated multiple different
types of ensemble combination schemes [126]. It showed that us-
ing linear combination is the most effective method of combining
ensemble outputs. Finally, the distance measures proposed in this
thesis compare the behaviours of the different ensembles to obtain
insight into the relative performances of the ensemble combination
schemes. The analysis shows that the linear combination also pro-
vides the best spread in the decisions made by the ensemble mem-
ber than the other combination schemes for the DJSS problem. These
distance measures are also useful not only in this studies but also for

future ensemble GP approaches to DJSS problems in the future.
Part of this contribution has been published in:

John Park, Yi Mei, Su Nguyen, Aaron Chen, Mark Johnston and
Mengjie Zhang. “Genetic Programming based Hyper-heuristics to
Dynamic Job Shop Scheduling: Cooperative Coevolutionary Approaches”.
Proceedings of the 19th European Conference on Genetic Programming

1.4. MAJOR CONTRIBUTIONS 15

(EuroGP 2016). Lecture Notes in Computer Science. Vol. 9594. Porto,
Portugal. 30 March-1 April 2016. pp. 115-132.

John Park, Yi Mei, Aaron Chen and Mengjie Zhang. “Niching Ge-
netic Programming based Hyper-heuristic Approach to Dynamic Job
Shop Scheduling: An Investigation into Distance Metrics”. Proceed-

ings of Genetic and Evolutionary Computation Conference Companion (GECCO
2016 Companion). Denver, Colorado, USA. 20-24 July 2016. pp. 109-

110.

John Park, Yi Mei, Su Nguyen, Gang Chen and Mengjie Zhang. “An
Investigation of Ensemble Combination Schemes for Genetic Pro-
gramming based Hyper-heuristic Approaches to Dynamic Job Shop
Scheduling”. Applied Soft Computing. Vol. 63. February 2018, pp.
72-86. DOI: 10.1016/j.asoc.2017.11.020.

2. This thesis provides the first study into investigating the efficacy of
GP-HH to DJSS problems with both dynamic job arrivals and ma-
chine breakdowns. This investigation showed that the standard GP
approach is insufficient to cover all machine breakdown scenarios,
and the machine breakdown GP terminals only improve the quality
of the GP approach by a small amount. The analysis shows that the
rules evolved by the standard GP approach and the GP approach
that incorporates machine breakdown specific information behave
very similarly to each other. In addition, the preferred choices made
by the best rules when machine breakdowns do occur in most de-
cision situations are to select the jobs with the shortest processing

times.
Part of this contribution has been published in:

John Park, Yi Mei, Su Nguyen, Gang Chen and Mengjie Zhang. “In-
vestigation the Generality of Genetic Programming based Hyper-
heuristic Approach to Dynamic Job Shop Scheduling with Machine
Breakdown”. Proceedings of the Third Australasian Conference on Arti-

16

CHAPTER 1. INTRODUCTION

ficial Life and Computational Intelligence (ACALCI 2017). Lecture Notes
in Artificial Intelligence. Geelong, Australia. 30 January — 2 February
201. pp. 301-313.

John Park, Yi Mei, Su Nguyen, Gang Chen and Mengjie Zhang. “In-
vestigating Machine Breakdown Genetic Programming Approach for
Dynamic Job Shop Scheduling”. Proceedings of the 21st European Con-
ference on Genetic Programming (EuroGP 20188). Lecture Notes in Com-
puter Science. Parma, Italy. 4-6 April 2018. pp. 253-270.

. This thesis develops two novel multitask GP approaches for the DJSS

problem with both dynamic job arrivals and machine breakdowns.
The first multitask GP approach use niching [95] to improve the over-
all effectiveness of the rules on the DJSS problem. The second mul-
titask GP approach uses a novel neighbourhood-based relation be-
tween the different tasks in a DJSS problem to allocate the GP indi-
viduals to specific tasks to improve both the efficiency of the eval-
uation procedure and the effectiveness of the evolved rules. The
multitask GP approaches evolve a portfolio of “specialist rules” that
can handle different machine breakdown scenarios individually. The
new approaches outperform the standard GP approach and provide
a promising alternative to handling the DJSS problem through evolv-

ing single rule that covers all machine breakdown scenarios.
Part of this contribution has been published in:

John Park, Yi Mei, Su Nguyen, Gang Chen and Mengjie Zhang. “Evo-
lutionary Multitask Optimisation for Dynamic Job Shop Schedul-
ing using Niched Genetic Programming”. Proceedings of the 31 Aus-
tralasian Joint Conference on Artificial Intelligence (Al 2018). Lecture
Notes in Computer Science. Wellington, New Zealand. 11-14 Decem-
ber 2018. pp. 739-751.

In addition, part of this contribution is currently being adapted to a

journal paper:

1.5. ORGANISATION OF THESIS 17

John Park, Yi Mei, Su Nguyen, Gang Chen and Mengjie Zhang. “Mul-
titask Genetic Programming for Dynamic Job Shop Scheduling Sub-
ject to Breakdowns”. (in progress).

1.5 Organisation of Thesis

The remainder of this thesis is organised as follows. Chapter 2 provides
the problem definition and literature review. Chapters 3, 4, and 5 covers
the research that has been carried out to fulfil the first, second and third
research objectives respectively. Chapter 6 concludes the thesis.

Chapter 2 provides a detailed description of JSS, which includes the de-
scriptions of the primary DJSS problems that are covered in the thesis. In
addition, the chapter covers the relevant research that has been carried out
for JSS. This ranges from simple heuristic approaches such as dispatching
rules to existing GP approaches that have been applied to JSS problems. In
addition, research relevant to the research goals but have mainly been fo-
cused on problems outside of JSS are also included in the chapter, such as
ensemble learning and multitask learning. Afterwards, the chapter gives
a review of the current research into evolutionary scheduling approaches
to the DJSS problems.

Chapter 3 covers the three proposed ensemble GP approaches that
have been investigated over the course of the research. The cooperative
coevolution, niching and multilevel GP approaches are evaluated and the
evolved rules behaviours are analysed to show how evolving ensembles
can be more effective than evolving single rules. In addition, new analysis
measures are proposed, which show the relations between the ensemble
members in the evolved rules.

Chapter 4 shows the investigation into DJSS problem with dynamic job
arrivals and machine breakdowns which is broken down into two parts.
The first part tests the efficacy of GP over the DJSS problem with dynamic
job arrivals and machine breakdowns over the different machine break-

18 CHAPTER 1. INTRODUCTION

down scenarios and shows that the attributes that make up the evolved
rules differ between the machine breakdown scenarios. The second part
proposes new GP terminals that incorporate machine breakdown informa-
tion, evaluates the GP rules evolved using the new GP terminals. Analysis
of the machine breakdown GP rules shows that the preferred choices made
by the GP rules are similar to a simple dispatching rule.

Chapter 5 details the two new GP approaches to DJSS problem that in-
corporates multitask optimisation. The two multitask approach evolve a
portfolio of rules that can handle multiple machine breakdown scenar-
ios simultaneously. The two multitask GP approaches outperform the
standard GP approach over the DJSS problem. Extensive analyses of the
evolved rules are carried out that identifies the relations between the spe-
cialised rules evolved for different machine breakdown scenarios. The
analyses also provide connections between the new findings made by the
multitask GP approaches to the existing findings made in the literature.

Chapter 6 is the concluding chapter of the thesis by summarising the
key findings made in the thesis. The major findings made by the thesis are
highlighted. In addition, the opportunities for future work to expand on

the research carried out in the thesis are also discussed in the chapter.

Chapter 2
Literature Review

This chapter provides a review of the background literature on the topics
related to the research carried out in the thesis. In addition, discussion of
the existing research is carried out to support the motivations of the the-
sis. First, this chapter covers the basic concepts that are relevant to the
research carried out in this thesis, job shop scheduling (JSS) problem def-
initions and an overview of genetic programming (GP). Afterwards, this
chapter covers the general related work to scheduling problems (which
includes JSS problems), GP based hyper-heuristic (GP-HH) approaches to
scheduling problems and auxiliary-related work that are relevant to the

specific research goals.

2.1 Basic Concepts

This section covers the basic concepts, which are important fundamentals
to the related work to scheduling problems that will be covered in this
chapter. First, we describe machine learning, sequencing and scheduling.
Afterwards, we cover the differences between heuristics, meta-heuristics
and hyper-heuristics. Finally, the definitions for the evolutionary compu-
tation (EC), ensemble learning, multi-agent systems, transfer learning and

multitask learning are provided.

19

20 CHAPTER 2. LITERATURE REVIEW

2.1.1 Machine Learning

Machine learning is an area of artificial intelligence [9], that is described as
a field of study that attempts to create a “good and useful approximation”
of an observed set of data[9]. Machine learning can also be described as a
tield of study that gives the computers the ability to learn without being
explicitly programmed [9] In other words, machine learning techniques
are non-domain specific techniques that attempts to capture the patterns
that are present within a set of data. For example, a neural network (NN) is
a machine learning technique that can be applied to a wide range of prob-
lems, including classification [157] and regression [45]. From the learned
model, the researcher can obtain useful insights into the observed data, or
use the learned model to make predictions on unseen data.

Machine learning techniques are categorised into three major categories
[132]:

1. Supervised learning: The observed data, that is handled by the ma-
chine learning technique, are labelled with explicit values. This means
that there are direct input-output pairs, and the goal of machine
learning in supervised learning environments is to create a mapping
between the inputs and the outputs which provide the best approx-
imation to the data as possible [132]. Examples of problems which
are handled by supervised machine learning algorithms are classifi-
cation and regression [132].

2. Unsupervised learning: The observed data handled by the machine
learning technique is unlabelled. This means that the machine learn-
ing algorithms construct a model from only the inputs [132]. An
example of problems which are handled by unsupervised machine
learning algorithms is clustering [132]. In addition, a machine learn-
ing algorithm that carries out both supervised and unsupervised

learning for a set of data is used called semi-supervised learning.

2.1. BASIC CONCEPTS 21

3. Reinforcementlearning: The machine learning algorithm learns from
a series of rewards and penalties that are provided by the training in-
stances [132]. Based on the series of reinforcements provided by the
problem, the reinforcement learning algorithm makes adjustments
to the decision-making process, so that it will maximise the rewards
and minimise the penalties. The types of problems that reinforce-
ment learning are often applied to are multi-step problems that have
an end goal state that needs to be reached by the reinforcement learn-
ing agent, e.g., playing a chess game [132].

2.1.2 Sequencing and Scheduling

In a scheduling problem, there are limited resources that carry out spe-
cific activities that need to be utilised as effectively as possible [86]. In
particular, production scheduling is a type of scheduling problem where
the activities that are involved with the scheduling are related to manu-
facturing (e.g. car or pharmaceutical manufacturing) [125]. JSS is a type
of production scheduling problem, where the machines are the limited re-
sources that are used to process arriving jobs. JSS will be discussed in
further detail below. Other types of scheduling problems include flow
shop scheduling problems, open shop scheduling problems and flexible
scheduling problems [125].

To handle a scheduling problem, the algorithm needs to carry out mul-
tiple scheduling decisions. A scheduling decision requires the algorithm to
determine what jobs are considered, what job is selected out of the consid-
ered jobs, and the time when the machine begins processing the selected
job’s operations. The decision for selecting the jobs out of the list of con-
sidered jobs is called a sequencing decision [125]. Often times the two terms
are used interchangeably, particularly when the time set by a scheduling
decision is predictable. This will be discussed further in the section be-

low that provides a more detailed description of JSS, along with further

22 CHAPTER 2. LITERATURE REVIEW

information on other types of decisions that are made in a JSS problem.

2.1.3 Heuristics and Meta-heuristics

There are a number of definitions for heuristics and meta-heuristics. For
this thesis, we provide the following definitions for the two terms as fol-
lows. On the other hand, the definition of hyper-heuristic is covered in

full detail below in Section 2.4.

e Heuristics are ‘rules-of-thumb’ algorithms which can be applied to
optimisation problems directly without adaptation [132]. For a par-
ticular problem, they often incorporate existing knowledge about the
problem to find good solutions for the problem instances [17]. This
is useful in cases where attempting to solve computational problems
exactly is impractical, such as exact methods taking too much time
[98]. This occurs frequently for a number of JSS problems that are
encountered in the literature, as the time required to find optimal
solutions for JSS problem instances scale poorly with the number of
jobs and machines [7, 141]. Dispatching rules are examples of heuris-
tics that are used to make scheduling decisions for JSS problems. Al-
though heuristics have no guarantees of optimality in most prob-
lems they are applied to, well-designed heuristic approaches can
often find “good-enough” or near-optimal solutions for the prob-
lem instances they are applied to. Effective dispatching rules ap-
proaches have been proposed in the literature for scheduling prob-
lems that can generate near-optimal schedules for the problem in-
stances within a fraction of the time required by optimisation tech-

niques that generate optimal solutions [125].

Although dispatching rules can be effective for various scheduling
problems, a major limitation of dispatching rules and other heuristic
approaches is that they are problem or domain specific [149]. This

means that a dispatching rule designed for one scheduling problem

2.1. BASIC CONCEPTS 23

have no guarantee that they are effective for other scheduling prob-
lems. This means that there is often a trade-off in the performances
of dispatching rules based on the properties of the scheduling prob-
lem. One dispatching rule may be significantly more effective on a
specific JSS problem domain but is significantly worse on another
JSS problem domain [61, 125].

e Meta-heuristics are more complex algorithms than heuristics that
are designed to handle difficult optimisation problems. Like heuris-
tic approaches, meta-heuristics have no guarantee they can find opti-
mal solutions. However, meta-heuristics are problem independent ap-
proaches, unlike heuristic approaches. Meta-heuristics usually make
very few assumptions, if any, about the problems they are applied to
[114]. In a broad sense, meta-heuristic approaches explore the so-
lution space of the problem instance to iteratively improve on the
solution. On the other hand, most heuristic approaches generate so-
lutions for the problem instance based on a fixed assumption and
usually do not include mechanisms that can iteratively search for

better solutions.

A meta-heuristic can explore the solution space in two main meth-
ods. First, a local search based meta-heuristic moves a single solu-
tion point around in the solution space. Examples of a local search
based meta-heuristics are tabu search [49] and simulated annealing
[79]. Second, a population-based meta-heuristic moves multiple so-
lution points around in the solution space, where the multiple solu-
tion points eventually converge towards the best solution found. Ex-
amples of population-based meta-heuristics are particle swarm op-
timisation (PSO) [77] and genetic algorithm (GA) [37, 81]. In addi-
tion, a meta-heuristic approach can combine both local search and
population-based search together to form hybrids approaches, e.g.,
combining GA and tabu search together to handle a JSS problem [93].

24 CHAPTER 2. LITERATURE REVIEW

They can also incorporate low-level heuristics with domain knowl-
edge for the specific problem to improve the overall effectiveness of
a meta-heuristic approach [114]. Specific meta-heuristic approaches
are discussed further in the related works in regards to JSS problems

specifically in Section 2.5.

2.1.4 Evolutionary Computation

Evolutionary computation (EC) is a sub-field of artificial intelligence which
focuses on algorithms inspired by various aspects of biology. This includes
nature-inspired algorithms or population-based systems to deal with vari-
ous problems. The two main categories of EC are evolutionary algorithms
[37] and swarm intelligence [78].

Evolutionary Algorithms

Evolutionary algorithms (EAs) are a subset of EC that are influenced by
the idea of Darwinian evolution and the science of genetics [37]. An EA
consists of a population of individuals representing a biological species in
nature. The individuals are first evaluated on a set of problem instances
to determine their fitness, which is a measure of the effectiveness of the
individuals. The fitness values of the individuals affect their chances of
passing on the genetic material to the individuals that are bred for the
next generation. In other words, the population undergoes evolutionary
pressure to handle the problem more effectively. The procedure of breed-
ing differs between the evolutionary algorithms. For example, GA [37, 81]
and GP [80] are two EAs which use genetic operators such as crossover
and mutation to breed the individual for the next generation. Crossover
and mutation operators for GP, along with the overview of GP, are dis-
cussed in further detail in Section 2.3 below. On the other hand, estima-
tion of distribution algorithms (EDAs) [84] generates a probabilistic model

from the individuals that have the best fitness values. Afterwards, the

2.1. BASIC CONCEPTS 25

new individuals for the next generation are generated by sampling from
the probabilistic model. Effective EA approaches have been proposed for
scheduling problems in the literature as both meta-heuristics [29, 115] and
hyper-heuristics [17, 102, 103].

Swarm Intelligence

Swarm intelligence (SI) focuses on the idea of competition and cooperation
between the individual members of a swarm. A swarm is an abstract rep-
resentation of a group of biological organisms that interact with each other
to reach a certain goal, e.g., finding food. For example, particle swarm op-
timisation (PSO) [77] is a swarm intelligence technique where the particles
represent a group of organisms such as a flock of bird. The movement
of an individual in a PSO algorithm in the search space is influenced in
the direction of the best solution found by the individual (called the local
optimum) and the direction of the best solution found by the population
(called the global optimum). The feedback between the individuals in PSO
allows them to better work towards solving the problem. Other examples
of SI techniques are ant colony optimisation [41], and artificial bee colony
optimisation [76].

2.1.5 Cooperative Coevolution

Coevolutionary algorithms (CEA) are techniques where multi-agent be-
haviours are incorporated with evolutionary computation techniques [117].
One of the aims of developing CEA approaches is to be able to handle
a complex problem more effectively by breaking it down to constituent
sub-problems. This allows different individuals of the population to fill
in different ‘ecological niches’ [127], i.e., specifically handle the different
sub-problems. The evolved individuals are then combined together to a
cohesive solver.

A popular CEA approach is cooperative coevolution [127], where a

26 CHAPTER 2. LITERATURE REVIEW

population of individuals is partitioned into subpopulations, and individ-
uals from each subpopulation “collaborate” with the representatives of
other subpopulations. However, the collaboration between an individual
from a subpopulations is limited to the representatives from the other sub-
populations. A representative is selected randomly when the EA process
is initialised but is generally the individual which has the best fitness out
of the other individuals in the subpopulation after the first evaluation pro-
cedure [127]. One example which uses cooperative coevolution is a GP ap-
proach by Nguyen et al. [104], where it is used to evolve multiple schedul-
ing policies to handle dynamic JSS problem with three objectives. Another
CEA approach is orthogonal evolution of teams (OET) [131, 136], where
the individuals are grouped into separate ‘teams’, but compete with mem-
bers of other teams for the selection procedure. In addition, the teams are
evaluated, and compete with each other, where unfit teams are removed,
and new teams are generated using crossover and mutation between the

leftover teams.

2.1.6 Ensemble Learning and Multi-agent Systems

Ensemble learning and multi-agent systems consist of a group of machine
learning techniques where a group of diverse learners are trained and then
combined together to form a system. Ensemble learning is often more as-
sociated with problems where a single task needs to be completed for a
problem instance, e.g., classification problems [126], whereas multi-agent
systems are associated with both single and multi-task problems [117].
The common phrase that “two heads are better than one” is one of the
main motivations for studying ensemble learning and multi-agent sys-
tems. If there is a method of solving a problem perfectly using a single
system, then ensemble learning and multi-agent systems would not be
required. However, most problems are often too difficult to be solved per-

fectly by a single system. By separating out the multiple components to a

2.1. BASIC CONCEPTS 27

system, the risk of making a particularly poor decision is mitigated [126].
The idea of multiple experts that work in tandem to solve a problem has
been shown to be very effective in classification [19, 45].

A key component of ensemble learning is diversity between the con-
stituent subcomponents [126]. Without diversity, the subcomponents can-
not sufficiently cover for each other’s errors, and can potentially result in
a bad decision. Therefore, a number of different approaches have been
proposed for diversifying the subcomponents of an ensemble [15, 19, 28,
45, 89]. One notable approach of constructing a diverse set of classifiers
for classification problems simultaneously is negative correlation learning
(NCL) [15, 28, 89]. In NCL, an individual is penalised for misclassifying an
instance if the ensemble has also misclassified the instance as well. This
means that constituent classifiers do not need to classify all instances as
correctly as possible, but only the instances which the other classifiers have
also misclassified, allowing the subcomponent to specialise in a particular

domain of instances.

2.1.7 Transfer Learning and Multitask Learning

Transfer learning [116] is a field of machine learning where knowledge ac-
quired from one problem domain (called the source domain) is applied
to another problem domain (called the target domain). In most standard
applications of machine learning, the source domain is representative and
the target domain, i.e., they are the same as each other. However, there are
often cases where the source domain is not the same as the target domain.
Models trained on the source domain do not have any guarantees that they
are effective on the target domain, and may need to be rebuilt to be effec-
tive for the target domain [116]. However, in many real-world scenarios,
rebuilding the model from scratch for the target domain may be imprac-
tical due to the lack of training data and the computation time required

to rebuild the model [116]. Therefore, a major motivation behind trans-

28 CHAPTER 2. LITERATURE REVIEW

fer learning is to develop machine learning approaches that are effective
on the source domains that they are trained on but can also be effectively
reused for target domains that are different from the source domains [116].

Multitask learning [27, 116] is a type of transfer learning that have been
incorporated with machine learning and applied to different problem do-
mains effectively in the literature. In multitask learning, the machine learn-
ing technique is applied to multiple different tasks simultaneously for a
specific problem using multiple agents. A task can be subsets of prob-
lem domains or a separate problem altogether [27]. As an agent learns
knowledge from a particular task, it confers inductive bias from the ex-
tracted knowledge from the task to agents that are being applied to other
tasks. Multitask learning is motivated by the assumption that the different
related tasks likely share latent features that are useful to each other [116].
Because of this, transferring knowledge from one task to another can likely
improve the overall effectiveness of the machine learning algorithm for the
problem, i.e., improve the generalisation ability of the machine learning al-
gorithm. However, it is also possible that multitask learning can decrease
the generalisation ability of the learning algorithm, as different tasks that
are solved simultaneously using multitask learning may not share latent
features and the inductive bias from Multitask learning has been applied
to a various classification problems [11, 27, 44], but only a limited number
of multitask learning approaches use EC to handle optimisation problems.
They will be discussed further below in Section 2.7.

2.2 Job Shop Scheduling Problems

This section covers the definitions and mathematical notations for JSS prob-
lems and JSS objective functions. Afterwards, active and non-delay schedul-
ing is defined. In addition, various techniques from the literature for JSS,
ranging from exact mathematical optimisation to meta-heuristics, are de-

tailed. Finally, we cover the different types of dynamic events that occur

2.2. JOB SHOP SCHEDULING PROBLEMS 29

in dynamic JSS (DJSS) problems, which includes dynamic job arrivals and
machine breakdowns.

2.21 Job Shop Scheduling Definitions

The notation used for JSS problem instances is as follows. In a problem
instance, there are M machines on the shop floor, and N jobs arrive on
the shop floor. Each job j that arrives at the shop floor has a sequence of
N; operations oy, . .., on,; which needs to be processed in order for the
job to be completed. Each operation o;; for a job j has a processing time
p(0;;) (shortened to p;;) for the duration it needs to be processed for at the
machine without interruption. On the other hand, if a job can be inter-
rupted, then we denote the problem as allowing job preemption. Operation
0;; cannot be processed until operations (01, ..., 04-1);) have been pro-
cessed. Each operation o;; needs to be processed on a specific machine
m(o;;). However, if all jobs follow exactly the same sequence of machines,
then the problem is called a flow shop scheduling problem instead of a JSS
problem. In addition, in a flexible JSS problem, an operation can have
a subset of machines which can process it. If a problem has no re-entry,
then no two operations for a job enter the same machine. Therefore, such
problems have a maximum number of operations for a job j at N; = M.
The time when an operation o;; for a job j is ready to be processed on
a machine is denoted as operation ready time or job arrival time r(o;;),
where the ready time of the first operation o,;, r(01,), is called the release
time of job j, and is often abbreviated to r;. In addition, the time when
all operations oy, ..., 0y,; for a job j finish processing is denoted as the
completion time of job j, C;. With these attributes, we can define makespan

as Cnax = max;—g1 .y} C; [125], and define the makespan minimisation

objective, which is given by Equation (2.1).

min Clax (2.1)

30 CHAPTER 2. LITERATURE REVIEW

Other objectives that are studied extensively in the literature are related
to flowtimes of jobs. The flowtime of a job j is defined as the time spent by
J on the shop floor, i.e., the difference between the completion time C; and
release time r; [125]. From this, we get the mean flowtime minimisation

objective as shown in Equation (2.2).

1 N

An additional attribute which may be present in JSS problems is the due
date d; of a job j. From the due date of a job j, tardiness 7} is given by the
positive difference between the completion time C; and the due date d;,
i.e., Tj = max{C; — d;,0}. From the due date of a job j, we can also define
slack as the difference between the due date d; and the remaining process-
ing time vazjk p(0;;), where operation oy; denotes the operation that job
J is currently up to, and operations oy, ..., 0,_1; have been processed by
machines. Tardiness related objectives in JSS problems are a representa-
tion of just-in-time manufacturing environments [128], where the individ-
ual orders need to be completed by their scheduled deadline to minimise
customer dissatisfaction. Tardiness related objectives that have been in-
mean tardiness (5 Zjvzl T;) and percentage of tardy jobs (%1’), where %T'
denotes the number of tardy jobs out of the N jobs that arrive on the shop
floor) [125].

Weighted tardiness related objectives have also been investigated in the
literature. In weighted tardiness related objective, a job j has a weight/penalty
factor w; that needs to be taken into account when minimising the tar-
diness related objective. Examples of weighted tardiness related objec-
tives that have been investigated significantly in the literature are total
weighted tardiness (TWT) and mean weighted tardiness (MWT), which
are given by Equations (2.3) and (2.4) respectively [125].

2.2. JOB SHOP SCHEDULING PROBLEMS 31

N

min Z w;T; (2.3)
j=1
XN

min N JZI w; T (2.4)

JSS problems are a subset of scheduling problems, where general schedul-
ing problems involve the processing of jobs at machines. A standard for
classifying scheduling problem was initially proposed by Conway et al.
[33] and then refined by Lawler et al. [85], which is to use the triplet 5|v|d.
In this notation, 5 denotes the machine environments, such as whether
it is job shop scheduling (Jm), flow shop scheduling (#'m), flexible job
shop scheduling (£'.Jm), etc., and m denotes the number of machines on
the shop floor. 7 denotes specific job properties. For example, specific job
properties can be that all jobs have the same processing time (p; = p), all
jobs have same due dates (d; = d), or preemptive jobs are allowed. ¢ de-
notes the objective function for the problem, e.g., minimising makespan
(Cmax), minimising TWT (3 i w;T;). Using this notation, a JSS problem
with TWT minimisation is denoted as Jm|| >, w;T}.

2.2.2 Active Schedules and Non-delay Schedules

When describing scheduling algorithms for JSS problems, key definitions
which need to be covered are decision situation, active and non-delay schedul-
ing [125]. A decision situation is a situation where a scheduling algorithm
needs to make a scheduling decision on what job will be processed by a
machine m* after it finishes processing a job and is available [59]. After
machine m* finishes processing a job at time R, it waits for the minimum
amount of time possible in a non-delay schedule before it starts processing
the next job [125, 137]. In other words, if there are jobs waiting at ma-
chine m*, then it will begin processing one of the waiting jobs according
to the scheduling algorithm. Otherwise, if there are no jobs waiting at the

32 CHAPTER 2. LITERATURE REVIEW

machine, it will wait until at least one job arrives at the machine, and se-
lect out of the jobs which arrived the earliest to process. This means that
as long as there are jobs which have arrived at a machine m* when it be-
comes available, any additional jobs which will arrive in the future are
not considered for selection by the non-delay scheduling algorithm to be
processed next by machine m* at that decision point.

On the other hand, when a machine m* finishes processing a job in an
active schedule, a job which arrives in the future can be processed next
by machine m* instead of a job which is already waiting at the machine
[125]. Suppose that a set of jobs A = {ji,...,jn, .} needs to be pro-
cessed at machine m* for the operations oj,, ..., 0, ., where we know the
arrival times at machine m* as 7(0;,),..., (0, .). Jobs with uncertain ar-
rival times are not considered by the active scheduling algorithm. Then
an active scheduling algorithm first calculates the expected completion
times C’;,,...,C’; . for the operations if they were to be processed by
the machine, and finds the earliest expected completion time C[_ ... =
min{C’;,,...,C’; .}, along with the arrival time reamiest Of the job with the
earliest expected completion time. Then depending on the non-delay fac-
tor a € [0, 1], the set of jobs which are considered by the active scheduling
algorithm, A’, is shown in Equation (2.5) [105].

A/ = {j € A | T(Oj) S O./(éarliest - rearliest) + rearliest} (25)

The non-delay factor oo determines how many future jobs to take into
account. If a scheduling algorithm has a = 0, then the machine will im-
mediately begin processing some operation as soon as there are jobs at the
machine, i.e., the schedule will be non-delay and A’ will only consist of
the jobs waiting at the machine when a machine becomes available. On
the other hand, if o = 1, then the scheduling algorithm generates an active
schedule, and considers jobs arriving up to the earliest completion time of
the jobs which arrive at the machine. If the non-delay factor is strictly be-
tween 0 and 1, then the scheduling algorithm is considered a hybrid of both

2.2. JOB SHOP SCHEDULING PROBLEMS 33

active and non-delay schedules. The non-delay factor does not go beyond
1, as the optimal solution to a JSS problem instance belongs to the set of
solutions which are active schedules [48]. The reason why the non-delay
factor does not go beyond 1 is that selecting any job that is not considered
when o = 1 but is considered when « > 1 results in a sub-optimal sched-
ule. If a job j is only considered when o > 1, then job j arrives on the

shop floor after the time C This means that if the machine waits for

earliest*
job j, then the job with the earliest completion time could have been pro-
cessed before job j’s arrival. This would mean that there is a schedule that
is at least as good, if not better, than the solution generated by selecting
job j to be processed. Finally, non-delay scheduling algorithms have no
guarantees that they will be able to generate the optimal solution for a JSS

problem instance [17].

An example of non-delay and active scheduling for a JSS problem in-
stance with the makespan minimisation objective shown in Figure 2.1 re-
spectively. The properties of jobs in the JSS problem instance are given in
Table 2.1. In this problem, there are N = 3 jobs and M = 2 machines,
denoted as m; and my. The SPT dispatching rule will generate different
solutions depending on whether it is active or non-delay. The non-delay
schedule (i.e. SPT algorithm with o = 0) that is generated is given by Fig-
ure 2.1a, and the active schedule with o = 1 that is generated is given by
Figure 2.1b. In the non-delay schedule, we can see that machine m, begins
processing j; as soon as j; has been completed. On the other hand, in the
active schedule, machine m; processes js before j;. This is because j's sec-
ond operation has a shorter processing time than j3’s first operation and j,
arrives at machine m, before the expected completion time of j;. Although
non-delay SPT has no guarantee of optimality, for this specific problem in-
stance we can see that the non-delay SPT generates a better solution than
active SPT.

34 CHAPTER 2. LITERATURE REVIEW

Table 2.1: A static JSS problem instance with N = 3 jobs and M = 2 ma-

chines and makespan minimisation objective.

job processing order processing time

Wil my, Mo 1,2
jQ mo, My 2/ 1
J3 My, Mo 3,1

2.2.3 Types of Dynamic Events

As summarised by Ouelhadj and Petrovic [115], the types of dynamic
events that can occur in dynamic JSS (DJSS) problems can be categorised
into two major parts. The first type of dynamic events is resource-related.
This means that the dynamic event affects the resources that are present
in the dynamic scheduling problems. For DJSS, the resources are the ma-
chines that process the jobs. Therefore, examples of resource-related dy-
namic events are machine breakdowns, machine degradation and main-
tenance, change in the setup times to prepare for a specific job, and such.
In this thesis, we focus on the resource-related dynamic event where ma-
chines break down during processing. Machine breakdown events are im-
portant dynamic events that can occur in real-world manufacturing sce-
narios [92]. McKay describes that in real-world scenarios, machines in
manufacturing systems are sensitive to various factors, such as tempera-
ture and humidity. This affects the productivity of machines and adds in
the possibility of machine failure due to extreme conditions. This complex
scenario is often simplified in the literature, ranging from machine failures
at some fixed point in time [152] to failures occurring stochastically [94].
For this thesis, the machine breakdown events follow Holthaus’s [61]
model of machine breakdown events used to evaluate man-made dispatch-
ing rules. A machine breakdown event immediately results in the machine
being unavailable when the breakdown occurs, and the machine under-

goes repair to fix the machine. In addition, the DJSS problem handled in

2.2. JOB SHOP SCHEDULING PROBLEMS 35

machines

time

(@) The schedule generated by non-
delay SPT

machines

r T T T |
0 2 4 3 8
time

(b) The schedule generated by active
SPT (v = 1)

Figure 2.1: The schedule generated when SPT is applied to JSS problem

instance in Table 2.1

this thesis does not allow preemption [125]. Preemption means that a job
cannot leave a machine once the machine started processing the job’s op-
erations until the operation has been completed [125]. If a job’s operation
was being processed at the machine when the machine breakdown oc-
curred in a DJSS problem without preemption, then the job is interrupted
and resumed after the machine breakdown [61]. Any work already done

for the job’s operation is retained after the breakdown, meaning that the

36 CHAPTER 2. LITERATURE REVIEW

work remaining on the job is the same before and after the machine break-
down. Therefore, the “actual” processing time of the job’s operation o;;
that is interrupted by the machine breakdown is the expected processing
time of the operation p;; plus the time required to repair the machine.

The second type of dynamic events described by Ouelhadj and Petrovic
[115] are job-related. Examples of dynamic events that affect jobs are either
related to the change in the jobs’ properties (e.g. the processing times of
an operation is uncertain until the operation has been processed or due
date of jobs suddenly change), or the number jobs expected on the shop
floor change during processing (i.e. new jobs arrive or jobs are cancelled
unexpectedly). This thesis focus on dynamic job arrivals [115], where new
jobs arrive on the shop floor during processing that needs to be scheduled
appropriately. The properties of an arriving job j, such as the processing
times of operations, due dates, etc., are unknown until the job arrives on
the shop floor at the release time ;. In addition, the total number of jobs N
that arrive on the shop floor is also unknown for DJSS problems with dy-
namic job arrivals, whereas they are known in advance for static JSS prob-
lems. Because of this, certain objectives are not suitable for these type of
DJSS problems. For example, makespan minimisation objective requires
all operations of all jobs to be completed as soon as possible (Equation
(2.1). However, in a DJSS problem instance, there is always the possibility
that a new job arrives sometime in the near future after the jobs have been
completed. There is no indication whether all jobs have been completed
or not in a DJSS problem with dynamic job arrivals. Therefore, many ap-
proaches in the literature that handle DJSS problems with dynamic job ar-
rivals minimise flowtime related objectives or tardiness related objectives
[59, 60, 67, 105, 124]. Given that the problem is stable [125], i.e., the num-
ber of waiting jobs do not increase monotonically with the number of job
arrivals in the problem instance, there are tardiness and flowtime related
objectives that are independent of the number of job arrivals. Examples

include mean tardiness, maximum tardiness and percentage tardy, which

2.3. GENETIC PROGRAMMING 37

are discussed above in the problem definition. For this thesis, we handle
tardiness related objectives, and the specific objective will be discussed in
each contribution chapter.

2.3 Genetic Programming

Genetic programming (GP) [80] is an evolutionary computation technique
which has been applied to numerous problems, including JSS. In a GP sys-
tem, there is a population of individuals which compete with each other
for survival. The most ‘fit" individuals have a chance of surviving to the
next generation and have a chance to breed with other individuals to ex-
change genetic properties. The genetic operations that can be applied to
surviving individuals are crossover and mutation, which will be covered

in more detail below.

2.3.1 Representation

Individuals in a GP population are automatically generated programs of
variable length which can be applied to a problem instance. Individuals
are automatically generated using a set of pre-defined base components.
The base components are categorised into either the terminal set or the
non-terminal set. The terminal set consists of symbols which take no argu-
ments, whereas the non-terminal set consists of symbols which take one or
more arguments [80]. In JSS, the most prominent representation is to use
a tree-based GP, where the individuals represent priority function trees
which can be used as priority dispatching rules [17]. This GP system has
the terminal set consisting of attributes from the JSS problem (e.g. job and
machine attributes), whereas the non-terminals consist of functions and
operators. For example, Figure 2.2 shows three possible individuals which
could be generated. The terminals are 0, PT (processing time), W (weight)

and RT (arrival time), which are the attributes of jobs that arrive on the

38 CHAPTER 2. LITERATURE REVIEW

shop floor plus the constant 0. The non-terminals are +, —, x and /, which
are basic arithmetic operators. In most cases [17], the division operator /
is protected. A protected division operator returns 1 if the denominator
is zero. In Figure 2.2a, the individual is interpreted as —PT, which is the
SPT rule. In Figure 2.2b, the individual is interpreted as —RT, which is the
FIFO rule. In Figure 2.2¢, the individual is interpreted as —W/PT, which is
the weighted shortest processing time (WSPT) rule. In addition, the three
trees have a depth, i.e., the maximum distance of any node in the tree from
the root node, of 2, 2 and 3 respectively.

(a) SPT rule (b) FIFO rule (c) WSPT rule

Figure 2.2: Dispatching rule heuristics represented by tree-based GP indi-
viduals.

2.3.2 Initialisation

In the beginning phase of the GP process, an initialisation procedure is
used to randomly generate the individuals in the GP population using the
sets of terminals and non-terminals. The two most popular procedures to
initialising GP individuals are full and grow [80]. For both procedures, a
maximum depth is determined for each GP individual to restrict the pro-
gram size. For the full initialisation procedure, all the terminals are located
at the bottom of the tree, whereas for the grow method the terminals can
be located at any depth of the tree. On the other hand, ramped half-and-half
[80] is a hybrid of the full and the grow procedures, where the half of the
subtrees at the second depth, i.e., from the child nodes of the root node,

are generated using full and the other half of the subtrees are generated

2.3. GENETIC PROGRAMMING 39

using grow. Koza argued that ramped half-and-half is the best generative
method that works best over a broad range of problems, and generates a

wide variety of tree sizes and shapes.

2.3.3 Evaluation

A key pre-defined component of GP is the fitness function. A fitness func-
tion assigns fitness values to the individuals so that they can be compared
against each other. For example, when dealing with a static]SS problem
with makespan minimisation objective (Jm||Cyax), the fitness function for
an individual in the arithmetic tree-based GP population can be defined
as follows. First, the individual is applied to training instances as a pri-
ority dispatching rule and generates feasible solutions for the training in-
stances as part of the training procedure. Afterwards, the fitness function
calculates the mean of the makespans of the solutions. In the case of a
dynamic JSS problem, a discrete-event stochastic simulation is often used
as a ‘training instance’ for which the individuals can be applied to [17].
The individual’s performance over the simulation, based on the objective
of the problem, is used for the individual’s fitness. If an individual w has a
fitness value lower than an individual ¢, then individual w is considered
better than individual 7. Researchers have proposed various methods of
evaluating individuals effectively. Surrogate modelling [59, 108] is one
such approach, which will be discussed in more detail in Section 2.1.5.

2.3.4 Selection and Breeding

After the fitness values have been assigned to the individuals in the GP
population, the next generation of individuals are generated by carrying
out the breeding procedure [80]. This thesis uses the breeding procedure
that was recommended by Koza [80], which is a very commonly used
breeding procedure. After duplicating the individuals with the best fit-

nesses through elitism, the remainder of the population are filled by gen-

40 CHAPTER 2. LITERATURE REVIEW

erating offsprings via genetic operators that are applied to select parent
individuals. The two most common selection procedures to select parent
individuals from the population are roulette wheel selection (or fitness-
proportionate selection) [13] and tournament selection [13]. Roulette wheel
selection normalises the fitnesses of the individuals into probabilities, and
then randomly selects individuals based on the associated probability val-
ues. In tournament selection, a small group of individuals are randomly
sampled from the population. The individual with the best fitness out of
the group is used as a parent for a genetic operator, whereas all other indi-
viduals that partook in the tournament are placed back into the population
for further selection. Tournament selection is a very commonly used selec-
tion procedure in the literature [80] and will be used for this research. The
process of generating offspring individuals by applying genetic oeprators
to parent individuals continues until enough individuals have been gen-
erated for the population.

2.3.5 Genetic Operators

After the individuals have been selected, an individual can either undergo
crossover with another individual, undergo mutation, or remain the same.
Crossover exchanges subcomponents between two individuals. For exam-
ple, suppose that we have a tree-based GP system with the terminal set
{PT,RT,DD} and non-terminal set {+, —, x, /}. Figure 2.3 shows an ex-
ample of the crossover operator being applied to two GP individuals. In
the figure, individuals representing functions PT x RT + (DD — PT)/RT
(parent A) and PT(DD/PT + DD) (parent B) are crossed with each other
by exchanging the components DD — PT and DD respectively, which are
randomly selected. This results in two offsprings: individuals which rep-
resent functions PT x RT+DD/RT (offspring A) and PT(DD/PT—-DD+PT)
(offspring B).

On the other hand, using the same set of terminals and non-terminals,

2.4. HYPER-HEURISTICS 41

(a) Parent A (b) Parent B (c) Offspring A (d) Offspring B

Figure 2.3: Example of the crossover operator being applied to GP indi-

viduals.

Figure 2.4 shows an example of the mutation operator being applied to a
GP individual. In the figure, the DD leaf node of the individual represent-
ing a function PT x RT + (DD — PT)/RT is removed, and is replaced by
the randomly generated replacement shown in Figure 2.4b, resulting in an
offspring representing a function DD x RT” + (DD — PT)/RT.

(a) Parent (b) Replacement (c) Offspring

Figure 2.4: Example of mutation operator being applied to a GP individ-

ual.

24 Hyper-heuristics

Described by Cowling et al. [34] as “heuristics to choose heuristics”, hyper-
heuristics have gained the attention of researchers whose goals were to
design generic but effective methods to problems [21]. Burke et al. [21]

42 CHAPTER 2. LITERATURE REVIEW

describe one of the main motivations for developing hyper-heuristic ap-
proaches is to handle the “challenge of automating the design and tun-
ing of heuristic methods to solve hard computational search problems”.
Therefore, a hyper-heuristic is a high-level approach that is independent
of the problem domains that it is applied to.

As proposed by Burke et al. [22], hyper-heuristics can be categorised
into two major categories: heuristic selection and heuristic generation. The
tirst category of hyper-heuristics is heuristic selection based approaches
[22], where the hyper-heuristic approach selects from existing low-level
heuristics to determine the best heuristic to apply to a specific problem
instance. Heuristic selection methods build a solution to a problem in-
stance incrementally. Starting from an empty solution, the hyper-heuristic
approach applies a low-level heuristic to the problem instance that is the
most suitable based on the current problem state [22]. GA approaches
have been applied to various problems as a hyper-heuristic approach that
uses heuristic selection, where the indices in the vectors correspond to the
low-level heuristic that can be applied to a problem instance [22]. For a
JSS problem, GA can be combined with man-made dispatching rules to

determine which job is selected during a decision situation [124].

The second category is heuristic generation based approaches that gen-
erate new heuristics from low-level heuristic components [22]. GP based
hyper-heuristics (GP-HHs) are examples of heuristic generation approaches
where base heuristics are combined to form new heuristics. A high-level
example of a GP-HH being applied to a JSS problem this is shown in Fig-
ure 2.5. In the figure, a tree-based GP takes in the base heuristics {PT, RT, DD}
and the operators {+, —, x} to initialise the individuals in the popula-
tion. Individuals in the GP population represent dispatching rules which
can solve problem instances in the problem domain the GP-HH system
is designed for. The GP system then passes the dispatching rule onto
the JSS problem domain, and get a goodness measure back in the form

of the individual’s fitness. The final output is a priority dispatching rule

2.4. HYPER-HEURISTICS 43

RT+PT x DD, which can be reapplied the JSS problem. GP-HH approaches
are popular hyper-heuristic approaches in the literature [21] and are also
popular for JSS problems [17, 102, 103].

DD
PT
Base heuristics GP-HH Output
RT _l
Heuristic %s B
WF o T
X 0 /
Operators
_ . JSS Problem Domain —
W PT

Figure 2.5: Overview of a tree-based GP-HH applied to JSS

Both heuristic selection and heuristic generation approaches have their
advantages and disadvantages. In a situation where there are a number of
effective low-level heuristics that have already been designed for a prob-
lem, then heuristic selection technique can reuse the low-level heuristic
and can boost their performances further [124]. On the other hand, in an
unseen problem where effective low-level heuristics have not yet been de-
signed yet, heuristic generation techniques can effectively generate new
low-level heuristics from the base heuristic component. Designing a new
heuristic can be difficult and requires an extensive trial-and-error process
and base heuristic components are intuitive for a human expert to design
in comparison [21]. Certain approaches also combine both heuristic se-
lection and heuristic generation to form a hybrid approach that is more
effective than either approach applied to the problem separately [124].

In comparison to heuristics and meta-heuristics described above, hyper-

heuristics are techniques that are independent of the problem like meta-

44 CHAPTER 2. LITERATURE REVIEW

heuristics. However, hyper-heuristics do not solve the problem directly
like heuristics or meta-heuristics but generate a generated heuristic that
can be used to solve the problem. The main advantage of hyper-heuristic
is that the generated heuristic is reusable and can be applied to differ-
ent problem instances in the problem without having to rerun the hyper-
heuristic approach. Specific GP-HH approaches to JSS will be discussed in
turther detail below.

2.5 Static and Dynamic JSS Techniques

This section covers the exact optimisation, heuristic and meta-heuristic ap-
proaches to JSS techniques which have been proposed in the literature.

2.5.1 Exact Optimisation Techniques

In general, the initial techniques for scheduling problems were to build
models for specific scheduling problems. This resulted in the algorithms
which could solve specific problems directly, such as Jackson’s algorithm
[69], which could solve the two-machine JSS problem with makespan min-
imisation optimally. Jackson’s algorithm is an extension of Johnson’s algo-
rithm [74] for two-machine flow shop problems with makespan minimi-
sation. However, Garey et al. [46] showed that static makespan minimi-
sation JSS problems with the number of machines M > 2 machines are
NP-hard. This means that, unless P = NP, there is no algorithm that runs
in polynomial time in the worst case scenario for JSS problems with more
than two-machines and makespan minimisation objective. In addition,
other objectives for JSS problems, such as TWT, are NP-hard [125]. Re-
searchers have suggested using search techniques to handle more difficult
JSS problems.

Branch-and-bound [83] is one of the search techniques which have been
used significantly in the literature for static JSS problems [7, 10, 20, 24, 25].

2.5. STATIC AND DYNAMIC JSS TECHNIQUES 45

In a branch-and-bound, the algorithm carries out a depth-first search to
find feasible solutions to a JSS problem instance [125]. After a feasible so-
lution is found, the algorithm eliminates any branches where the lower
bound on the problem is worse than the best solution found so far. The
algorithm then exhaustively searches for new solutions until all branches
have been explored to ignored, and the best solution found is returned.
A branch-and-bound algorithm’s search is augmented by using a heuris-
tic to guide the search direction of the algorithm, and researchers have
proposed various effective heuristics to guide the branch-and-bound al-
gorithm [7, 10, 20, 24, 25]. A notable branch-and-bound approach has
been proposed by Carlier and Pinson [25] in 1989, where they were able to
find an optimal solution for a]SS problem instance proposed by Muth and
Thompson [100] with N = 10 jobs, M = 10 machines and 10 operations
per job. Branch-and-bound techniques are covered in detail in a survey
paper by Potts and Strusevich [128].

Dynamic programming is an exact optimisation technique which has
been applied to static JSS problems [50, 87, 125]. Dynamic programming
approaches divide a JSS problem instance into constituent sub-problems
and attempt to solve over the sub-problems to solve the problem instance.
Lawler and Moore [87] proposed a method of applying dynamic program-
ming to a single-machine scheduling problem with TWT minimisation
and suggested methods of extending it to parallel and 2 machine flow
shop problems. A more recent dynamic programming approach to JSS
with makespan minimisation has been proposed by Gromicho et al. [50]
in 2012, where they adapt an approach proposed by Held and Karp [58]
for the travelling salesman problem (TSP). In their empirical analysis, they
show that the dynamic programming approach can generate optimal so-
lutions for moderate benchmark instances, where problem instances have

up to N = 10 jobs and M = 5 machines.

Although exact mathematical optimisation techniques guarantee an

optimal solution for a JSS problem instance, they generally take too long

46 CHAPTER 2. LITERATURE REVIEW

to generate optimal solutions for problem instances that have more than
10 — 15 jobs [7, 50]. In addition, they are not suitable for DJSS problems as
the dynamic events that occur during processing can results in predicted
schedule no longer being optimal.

2.5.2 Heuristic Techniques

As heuristic approaches often rely on a static assumption about the prob-
lem, in most cases they do not generate optimal solutions to a JSS problem
instance, unlike an exact optimisation technique. However, exact optimi-
sation techniques do not scale well with the size of the problem instances,
i.e., the number of arriving jobs and the number of operations per job.
Because of this, heuristic approaches can be applied to large static JSS
problem instances which are would be too computationally intensive to
generate optimal solutions using exact optimisation techniques. For ex-
ample, effective heuristic approaches have been applied to problem in-
stances with up to 8700 jobs and 9 machines [118]. In addition, heuristic
approaches can be applied to DJSS problems, whereas it is impractical to
apply exact optimisation techniques to DJSS problem. An exact optimi-
sation technique generates a schedule to a JSS problem instance before
processing and needs an accurate prediction of the quality of the schedule
in advance. However, it is not possible to get an accurate prediction of
the quality of the schedule in a DJSS problem instance as the properties
of the problem instance changes during processing, which means that the
predicted schedule may not be optimal after the jobs have been processed
[140].

Dispatching rules are one of the most prominent heuristic approaches
for JSS problems. Examples of small dispatching rules are SPT, FIFO and
earliest due date (EDD) [125]. The EDD rule prioritises jobs with the ear-
liest due date time. More complex examples of dispatching rules, called
composite dispatching rules (CDRs) [72], combines multiple shop floor at-

2.5. STATIC AND DYNAMIC JSS TECHNIQUES 47

tributes together. Examples of CDRs are the “cover over time” (COVERT)
[26] and the “apparent tardiness cost” (ATC) rules [148]. In COVERT, the
priority of a job is calculated from the expected waiting times of the jobs
for the remaining operations, and the job’s slack. The expected waiting
times of the operations are calculated based on the previous waiting times
on the respective machines for the jobs. COVERT is a look-ahead rule
designed to be effective for tardiness related objectives [148]. COVERT
was extended further by Vepsalainen and Morton [148] to be effective for
weighted tardiness related objectives as well. On the other hand, ATC ex-
tends a previously proposed look-ahead rule for the weighted tardiness
problem [99] by using the average processing time of waiting jobs and an
adjustable factor value k. Vepsalainen and Morton [148] showed that the
extended COVERT and the ATC rule can obtain better performance than
the prior rules to the JSS problem.

Jayamohan and Rajendran [72] compare various dispatching rules which
have been proposed in the literature, such as rules proposed by Holthaus
and Rajendran [62], and also present new dispatching rules. The new dis-
patching rules incorporate flow due date, expected waiting time of op-
eration, and operation due date (denoted as FDD, PW and ODD respec-
tively) as part of existing dispatching rules. Operational due date is the
time when an operation is expected to complete based on the job’s arrival
times and the processing times from the first operation to the specific op-
eration [14]. Flow due date is an expected time when the job is expected
to complete based on its arrival time and total processing times of op-
erations, i.e., the operational due date of the final operation of the job.
Jayamohan and Rajendran [72] compared the rules are compared on both
flowtime and tardiness minimisation objectives for the DJSS problem. The
results showed that the new rules generally show the best performance on
the DJSS problem instances, but there is a trade-off in the performances
of the rules based on the properties of the problem instances. Jayamohan

and Rajendran extended the comparative study further [73] to incorporate

48 CHAPTER 2. LITERATURE REVIEW

weighted COVERT and weighted ATC rules [148] and to propose new dis-
patching rules.

Holthaus and Rajendran [63] proposed the 2PT+WINQ+ NPT priority
rule and variations of the rule for the dynamic JSS problems with flowtime
and tardiness minimisation objectives. PT denotes the processing time for
the job’s operation. WINQ denotes the work-in-next-queue, which is the
sum of processing times of operations of other jobs waiting at the next
machine that the job will be processed on, which is 0 if the job will be com-
pleted after being processed at the machine it is currently arrived at. NPT
denotes the processing time of the job’s operation on the next machine it
needs to be processed and is equal to 0 if the job is completed after being
processed at the current machine. They show that 2PT+WINQ-+NPT con-
sistently outperformed benchmark dispatching rules such as the RR rule
(Raghu and Rajendran’s rule) [129], which was previously the best rule for

minimising mean tardiness for dynamic JSS problem instances.

Outside of dispatching rules, a more complex example of a heuris-
tic approach is the shifting bottleneck heuristic, which was proposed by
Adams et al. [3] in 1988 for static]SS problem with makespan minimisa-
tion objective. The shifting bottleneck heuristic defines how “critical” an
unscheduled machine is by solving “to optimality a one-machine schedul-
ing problem that is a relaxation of the original problem”, then by calculat-
ing the differences in the expected completion times to the actual comple-
tion times of a jobs” operation on the machine. It then finds the bottleneck
machine, i.e., the machine with the greatest difference in the expected and
actual operation completion times, and sequences it optimally to generate
a new schedule. It then finds the next bottleneck machine, sequences it op-
timally, and then looks back at the machines it has previously sequenced
and re-optimise each machine using an algorithm developed by Carlier
[24], which is a branch-and-bound method designed for optimising single-
machine problem instances. All other sequences are kept fixed while a

machine is being re-optimised. Adams et al. showed that the shifting bot-

2.5. STATIC AND DYNAMIC JSS TECHNIQUES 49

tleneck procedure can find high-quality, sometimes optimal, solutions for
problem instances with up to NV = 15 jobs and M = 15 machines quickly
(in 1988).

2.5.3 Meta-heuristic Techniques

Meta-heuristics for JSS problems have also been extensively studied in the
literature, where both local search based techniques and population-based
techniques have been effectively applied to different JSS problems. In ad-
dition, hybrid approaches that combine both local search with a popula-
tion have also been applied to JSS problems. Both local search and popu-
lation based techniques have mainly been applied to DJSS problems with
small number of dynamic events, e.g., problem instances with up to 100
jobs, and very few meta-heuristic approaches have been applied to DJSS
problems with large number of dynamic job arrivals [5, 4].

Local Search based Techniques

Taillard [142] proposed a Tabu Search (TS) [49] approach to a static JSS
problems. Taillard showed that the proposed TS algorithm provided bet-
ter solutions than the previously found best solutions for the benchmark
JSS problems [10, 141]. Additional TS approaches include an approach
by Dell’Amico and Trubian that apply the TS algorithm to various bench-
mark JSS problems [3, 10, 100]. Dell’Amico and Trubian showed that their
TS approach outperforms various benchmark approaches from the litera-
ture [147], and also found optimal solutions to the static JSS problem in-
stances. In addition, De Bontridder [36] proposed a TS approach that uses
a disjunctive graph representation for the neighbourhoods. De Bontridder
showed that the proposed TS approach is effective against other bench-
mark algorithms in the literature both in terms of computation time and
solution quality over a static JSS problem.

Simulated annealing (SA) [79] approaches have also been applied ef-

50 CHAPTER 2. LITERATURE REVIEW

fectively to JSS problems in the literature. A notable SA approach is the
large step random walk (LSRW) method proposed by Kreipl [82]. LSRW
is considered to be one of the best local search methods for handling static
JSS problems with TWT minimisation objectives according to Nguyen et
al. [105], outperforming other highly effective algorithms such as the hy-
brid GA approach proposed by Zhou et al. [158]. Other local search based
techniques also include variable neighbourhood search (VNS) [54]. Adibi
et al. [5] proposed a VNS approach for a multi-objective DJSS problem
with dynamic job arrivals and machine breakdowns. In their approach,
VNS is hybridised with an artificial NN (ANN), where ANN is used to
optimise the parameters of the VNS approach. They showed that VNS
can outperform common man-made dispatching rules such as SPT and
FIFO. Adibi and Shahrabi [4] extended the VNS approach to cluster the
neighbourhood solutions and showed that the modified VNS approach
produced better results than the benchmark VNS approach without clus-
tering. However, they do not provide a comparison to GP-HH approach,
which have shown evolve more effective rules than the man-made dis-

patching rules in the literature [17].

Population-based Techniques

Cheng et al. [29] provide a survey of genetic algorithm (GA) approaches to
JSS problems. GA is an evolutionary computation (EC) technique, which
consists of a population of individuals represented by a fixed length chro-
mosome. Genetic operators such as crossover and mutation are applied
to the individuals to generate the next generation of individuals, and in-
dividuals which perform poorly are eliminated from the population. A
notable example of a GA approach to JSS problems with TWT minimisa-
tion objective was proposed by Zhou et al. [158]. The individuals in the
GA approach are encodings representing a permutation of the jobs on the
machines on the shop floor. The GA algorithm is hybridised with exist-
ing heuristics for JSS, such as the weighted COVERT rule [148]. The GA

2.6. GP-HH FOR SCHEDULING PROBLEMS 51

individual determines the first job that is scheduled by the jobs on the
shop floor, and the embedded heuristic schedules the remaining jobs af-
ter the first jobs have been completed. Zhou et al. [158] showed that the
hybrid GA outperforms pure GA approaches and significantly reduce the
computation time required to generate a solution. Other meta-heuristic
approaches which use EC techniques include artificial bee colony (ABC)
optimisation [31], ant colony optimisation (ACO) [32] and particle swarm
optimisation (PSO) [135, 151].

2.6 GP-HH for Scheduling Problems

GP-HH approaches for production scheduling problems have grown ex-
ponentially over the past 20 years [103]. To cover the various GP-HH ap-
proaches that have been applied to scheduling problems in the literature,
this section categorises the relevant GP-HH approaches according to the
framework proposed by Nguyen et al. [103]. In the framework, the GP
procedure to evolve scheduling heuristics for the problem is broken down
into four major steps. The first step is the definition of the scheduling
heuristic determines how the scheduling decisions are made using the GP
individuals. The second step is determining the GP representation, func-
tion sets and terminal sets. The third step is determining the qualities of
the scheduling heuristics from the GP evaluation procedure and the fit-
ness functions. The fourth step is the GP search mechanism, which is the
underlying GP process that is independent of the scheduling problem. Af-
terwards, we provide a summary of the GP approaches that are discussed

in this section.

2.6.1 Scheduling Heuristic Definitions

Nguyen et al. [103] provide a generalised schedule construction algorithm

that carries out job sequencing decision and show that there are two com-

52 CHAPTER 2. LITERATURE REVIEW

ponents to job sequencing decisions that can be modified. The first com-
ponent is the non-delay factor that determines which jobs are considered
for selection. In most GP-HH approaches, the sequencing decision only
considers the jobs already waiting at the machine during a decision sit-
uation (i.e. the non-delay factor is zero) [17, 102]. Nguyen et al. [105]
investigated evolving dispatching rules where the non-delay factor could
be automatically tuned by the GP approach during the evolutionary pro-
cess for two out of the three representations they investigated. They found
that best rules evolved by GP had non-zero non-delay factors for the static
JSS problem handled by the GP approach.

The second component to a scheduling heuristic described by Nguyen
et al. [103] is the decision-making process for determining which job is se-
lected to be processed. Prominently, GP-HH approaches that evolve prior-
ity dispatching rules that carry out the job selection [17, 102]. Other job se-
lection methods include a GP approach by Nguyen et al. [106] that evolve
iterative dispatching rules (IDRs). IDRs are rules that are applied multiple
times to a JSS problem instance. After an IDR is applied to a JSS problem
instance and a schedule is generated, it uses the information from the pre-
viously generated schedule, e.g., the recorded finish time. On the next run,
the IDR uses the information from the previous schedule to adjust how
the priorities of the individuals are calculated, and can potentially obtain
generate better schedules. Nguyen et al. showed that the IDRs evolved by
GP significantly outperformed the standard GP approach. Park et al. [119]
proposed a GP-HH approach that evolves stochastic dispatching rules that
are also applied multiple times over a scheduling problem instance to po-
tentially obtain better solutions. They showed that the stochastic dispatch-
ing rules evolved by the GP approach can outperform dispatching rules
evolved by a standard GP approach. However, dispatching rules that are
applied multiple times over a JSS problem instance can only optimise to
a certain point in DJSS problem instances due to the constrained informa-

tion horizon [61].

2.6. GP-HH FOR SCHEDULING PROBLEMS 53

Other job selection methods include GP-HH approaches that use mul-
tiple rules to help with the decision-making process. GP approaches that
use multiple rules include Jakobovi¢ and Budin’s [70] GP-3 approach. They
first develop a benchmark GP approach that evolves single dispatching
rules for a single-machine problem with the TWT minimisation objective.
Afterwards, GP-3 is applied to a JSS problem with TWT minimisation ob-
jective. GP-3 approach evolves a decision tree and two dispatching rules.
The decision tree determines which dispatching rule is applied to a de-
cision situation during processing. They showed that the GP-3 performs
better than the benchmark GP approach on the JSS problem. Jakobovi¢
et al. [71] then use the same GP system for a parallel machine problem,
where jobs can be processed on any of the machines on the shop floor. In
addition, Yin et al. [155] were the first to use GP for a single-machine DJSS
problem with machine breakdowns. In their approach, a GP individual is
represented by two trees. The first tree is used to calculate the priorities
of jobs waiting at the machine. The second tree is used to calculate the
amount of idle time to add in between the processing of jobs to avoid hav-
ing jobs be disrupted by the breakdowns. The two tree approach outper-
formed other heuristic approaches in the literature for handling machine
breakdowns.

Along with dispatching rules that handle job sequencing decisions, re-
searchers have also proposed GP approaches to handle scheduling prob-
lems with routing decisions for flexible job shop scheduling problems [125],
and due date assignment decisions for scheduling problems where the due
dates of the jobs have to be assigned endogenously [30, 130]. Nguyen et
al. [107] proposed a cooperative coevolutionary GP approach to evolv-
ing both a sequencing rule (i.e. a dispatching rule) and a due date as-
signment (DDA) rule simultaneously for a multi-objective DJSS problem.
The scheduling policies, which are the sequencing and DDA rule pairs,
evolved by the cooperative coevolutionary GP outperforms existing GP
approaches to evolving scheduling policies in the literature, and signifi-

54 CHAPTER 2. LITERATURE REVIEW

cantly outperform man-made scheduling policies used in the literature. In
addition, Yska et al. [156] proposed a cooperative coevolutionary GP ap-
proach for a dynamic flexible JSS problem to evolve both a sequencing rule
and a routing rule simultaneously. They showed that evolving the routing
rule simultaneously with the sequencing rule can significantly boost the
performance of the GP than using a fixed man-made routing rule with the

sequencing rule.

2.6.2 GP Representation, Terminal Sets and Function Sets

A number of GP representation have been investigated in the literature.
The most prominent representation is a tree-based GP where the individ-
uals represent arithmetic function trees [17, 102, 103]. The individuals that
represent arithmetic function trees are usually applied to the scheduling
problem instances as priority dispatching rules. One of the earliest exam-
ples of a GP approach that uses arithmetic representation is Dimopoulos
and Zalzala [40], where they use GP to evolve priority dispatching rules
for a static single-machine problem with total tardiness minimisation. The
rules evolved by Dimopoulos and Zalzala’s GP approach performs bet-
ter than the man-made benchmark dispatching rules. On the other hand,
Nguyen et al. [105] investigated three different tree-based GP representa-
tion. The first GP representation evolves decision trees, the second GP rep-
resentation evolves priority functions which can be used in a priority dis-
patching rule, and the third GP representation combines the first two GP
representations together. They show that the third GP representation out-
performs the first two, and is competitive with effective meta-heuristics
such as GA [158] for static JSS problems.

The selection of terminal sets and function sets are also an important
factor in the effectiveness of the evolved rules. For example, Hildebrandt
et al. [60] incorporate terminals such as ODD [14] to evolve dispatch-
ing rules for a DJSS problem with flowtime minimisation objective. They

2.6. GP-HH FOR SCHEDULING PROBLEMS 55

show that the pseudo due date information, even on the DJSS problem that
has no tardiness related objectives, can result in effective rules. In addition,
Hunt et al. [66] incorporated “look-ahead” terminals into an existing GP
terminal set. The look-ahead terminals incorporate information from the
decisions that have been made earlier in the schedule such as waiting jobs
at machines. They show that the effectiveness of the rules evolved by GP
improves with “look-ahead” terminals.

Mei et al. [95] carried out feature selection of the GP terminals on the
DJSS problem with MWT minimisation objective. First, the individuals in
the GP population are diversified using the clearing procedure [133], which
is a niching techniqgue commonly used in the literature [122, 133]. After-
wards, the best diverse set of individuals are analysed based on their struc-
tures. They identified a list of features that were included in the best rules,
which includes terminals such as PT, W and WINQ. Furthermore, Mei
et al. [96] also investigated the effectiveness of GP terminals, depending
on whether the GP terminals are time-variant or time-invariant, for a DJSS
problem with tardiness related objectives. Time-variant terminals are ter-
minals that are dependent on the duration of processing. An example of
a time-variant terminal is the jobs” due dates. The jobs that arrived early
during processing are likely to have lower due dates than the jobs that ar-
rived late during processing. This affects how the priorities are calculated
by the GP evolved dispatching rules, as the relative values of terminals
such as due date become a bigger factor compared to other terminals such
as the job’s processing times, which is a time-invariant terminal. A time-
invariant counterpart to a job’s due date is the relative due date, which is
the difference between a job j’s due date d; and the current time ¢ (d; —).
They showed that the GP that uses only time-invariant terminals, where
the time-variant terminals are replaced with time-invariant counterparts,
generally perform better than the benchmark GP approach that uses both
time-variant and time-invariant terminals.

56 CHAPTER 2. LITERATURE REVIEW

2.6.3 Estimating the Quality of Scheduling Heuristics

Researchers have investigated various evaluation procedures and devel-
oped fitness functions to improve the effectiveness of GP-HH for schedul-
ing problems. The standard procedure is to apply the GP individual to a
set of scheduling problem instances, and use the average objective of the
generated schedules as the fitness of the individual [17, 102, 103]. Exam-
ple of this is shown by Geiger et al. [47], where GP is applied to various
static JSS problems that are polynomial time solvable and static JSS prob-
lems that are NP-hard. They show that GP can evolve optimal rules for
P problems and perform better than man-made dispatching rule bench-
marks for the NP-hard problems. However, the average objective can be
biased towards specific scheduling problem instances, as certain schedul-
ing problem instances may have higher lower bound values than others.
Therefore, normalising the objectives can reduce the bias towards schedul-
ing problem instances. Hildebrandt et al. [60] and Mei et al. [97] both
incorporate objective normalisation to the fitness calculation. Mei et al.
[97] discuss three different procedures to normalise the objectives and a
practical method of using a reference rule to normalise the objectives of
the schedules.

Surrogate modelling has also been incorporated into GP-HH approaches
to improve the computation cost required to evolve the rules, reduce the
number of evaluations and to improve the training convergence of GP
[103]. Hildebrandt and Branke [59] investigated two different surrogate
models that are incorporated to a GP-HH approach for a DJSS problem
with flowtime minimisation objective. The first surrogate GP approach
compares the structure of the best rule found to the other GP individu-
als to calculate the surrogate fitness of the GP individuals. The surrogate
fitness is then used to determine whether the individual show enough
promise to warrant full evaluation on the training set. The second sur-
rogate GP approach compares the phenotypic behaviour of the best rule
against the GP individuals to calculate the surrogate fitness of the GP indi-

2.6. GP-HH FOR SCHEDULING PROBLEMS 57

viduals. To calculate the phenotypic characteristics of a GP individual, the
Holthaus’s rule (2PT + WINQ + NPT) [63] is used as a reference rule after
the GP individual makes decisions on sample decision situations. Hilde-
brandt and Branke showed that the phenotypic surrogate GP approach
performed better than the genotypic surrogate GP approach. They also
showed that the surrogate model results in a significantly improved com-
putation time required to evolve the rules over the benchmark standard
GP approach. In addition, their analysis showed that the phenotypic sur-
rogate GP performed very close to a “perfect” surrogate.

In addition to Hildebrandt and Branke’s [59]’s surrogate GP, Nguyen
et al. [110] also proposed surrogate GP approach for a DJSS problem. In
Nguyen et al.’s surrogate GP approach, simplified simulation models are
used to calculate the surrogate fitness of the GP individuals. The sim-
plified simulation models are significantly smaller in size to the standard
DJSS simulation models used as training instances, but provide a reason-
able estimation for the fitness of the GP individuals. They investigate
two different simplified simulation models to be used as surrogates and
showed that one of the proposed surrogate GP approaches was tied for
the fastest evolution time with Hildebrandt and Branke’s [59] phenotypic
surrogate GP approach. In addition, the Nguyen et al.’s two surrogate
GP approaches also performed the best on the test set out of the GP ap-
proaches evaluated.

Local search procedures have also been used for a GP’s evaluation pro-
cedure to improve the effectiveness of the output dispatching rules. Hunt
et al. [68] proposed two methods to assist in the decision-making pro-
cess of the GP individual using local search. First, they first calculate an
expected completion time of a job waiting at a machine and calculate an
estimate TWT from the expected completion times. This is used to com-
pare the decisions made by a GP individual and the decision that would
be made by a local search algorithm, and the GP individual is penalised

if its decision is suboptimal compared to local search. Local search is also

58 CHAPTER 2. LITERATURE REVIEW

used as a tie-breaker if the GP individual assigns the highest priority to at
least two jobs. They showed that incorporating local search improves the
quality of the output rules, but certain parameters had to be adjusted due
to the incorporation of the local search (e.g. GP population size is set to
50).

2.6.4 GP Search Mechanism

Although the standard GP process is effective at evolving rules, more
complex and specialised GP approaches are required for more complex
scheduling problems. For example, various GP-HH approaches have been
proposed for multi-objective scheduling problems. An early example of
a multi-objective GP-HH approach was proposed by Tay and Ho [143],
where they combine the three objectives in a flexible JSS problem into
a single objective and solve the problem using a standard GP approach.
However, Hildebrandt et al. [60] showed that Tay and Ho’s approach per-
forms poorly on dynamic environments.

Other approaches have incorporated multi-objective evolutionary al-
gorithms to GP to handle multi-objective scheduling problems. Nguyen et
al. [107] proposed several multi-objective GP-HH approaches for a DJSS
problem with both sequencing and DDA decision. Four multi-objective
GP-HH approaches incorporate NSGA-II [39], SPEA2 [159], HaD-MOEA
[65], and a proposed cooperative coevolution modified from Potter and
De Jong’s [127] cooperative coevolution. In the proposed cooperative co-
evolution, the GP population is partitioned into two subpopulations. The
tirst subpopulation consists of GP individuals that are applied to the DJSS
problem instances as sequencing rules, and the second subpopulation con-
sists of GP individuals that are applied to the DJSS problem instances as
DDA rules. Nguyen et al. showed that the proposed cooperative coevo-
lutionary GP approach generally performed better than the other multi-

objective GP approaches investigated.

2.6. GP-HH FOR SCHEDULING PROBLEMS 59

Masood et al. [90] proposed a many-objective GP approach to handle
a DJSS problem with up to four objectives. A many-objective optimisation
problem is a subset of multi-objective optimisation problems that have
more than three objectives [38]. Masood et al. first identify four conflicting
objectives in the DJSS problem handled by the GP approach. Afterwards,
they incorporate NSGA-III [38], a modified NSGA-II designed to handle
many-objective optimisation problems, to the GP approach, and show that
GP with NSGA-III show significant improvement over GP with NSGA-IL

2.6.5 GP-HH for Scheduling Problems Summary

GP-HH approaches have been extensively applied to scheduling prob-
lems in the literature to automatically evolve effective dispatching rules.
In general, the dispatching rules evolved by the GP approaches gener-
ally outperform the man-made dispatching rules and are quite suited to
DJSS problem with dynamic job arrivals due to the short reaction times
of the dispatching rules and their ability to cope with the dynamic envi-
ronment [105]. However, the existing GP approaches to DJSS problems
focus on dynamic job arrivals. Only a limited number of research has han-
dled other types of dynamic events [155], and no GP-HH approach has
been proposed for a DJSS problem with both dynamic job arrivals and
machine breakdowns. Having multiple types of dynamic events adds an
additional layer of complexity to the problem, and the effectiveness of the
rules evolved by GP is unknown for these DJSS problems.

For further reading, there are multiple survey papers on evolution-
ary scheduling approaches, which includes GP-HH approaches. Hart et
al. [55] provide a survey of evolutionary scheduling approaches to both
various scheduling problems, including JSS problems. They discuss both
meta-heuristic and hyper-heuristic approaches to scheduling problems in
detail. They also cover GP-HH approaches that have been proposed in
the literature, although only a few GP-HH approaches have been devel-

60 CHAPTER 2. LITERATURE REVIEW

oped at the time of writing. Branke et al. [17] provide a more modern
survey of hyper-heuristics and automated heuristic design for schedul-
ing problems. Although they focus primarily on GP and GP specific de-
sign considerations, they also discuss other hyper-heuristic approaches to
scheduling problems such as gene expression programming approaches
by Nie et al. [111, 112, 113]. Nguyen et al. [102], in addition to pro-
viding a comprehensive survey of evolutionary scheduling approaches,
discuss challenges and future directions to EC approaches to scheduling
problems. One of the challenges discussed by Nguyen et al. are schedul-
ing problems that have different sources of disturbances, as most existing
approaches handle scheduling problem with one source of disturbance,
e.g., dynamic job arrivals or machine breakdowns. They also explain that
scheduling problems with multiple decisions and multiple objectives are
key research directions. Finally, Nguyen et al. [103] provide the unified
framework for evolving scheduling heuristics using GP and categorises
the existing GP-HH approaches under the framework.

2.7 Related Work for Research Goals

This section covers the related work that has been carried out in various
tields of research that are relevant to the research goals. First, we cover the
ensemble learning outside of scheduling and the limited number of en-
semble GP-HH approaches that have been proposed in scheduling prob-
lems during the period of the research that contributed towards the thesis.
Afterwards, we cover the machine breakdown specific approaches to dy-
namic scheduling problems. Finally, we specifically cover multitask learn-
ing related to optimisation, where multitask learning have been applied to

various discrete and continuous optimisation problems.

2.7. RELATED WORK FOR RESEARCH GOALS 61

2.7.1 Ensemble Learning

Examples of a few key ensemble approaches that have been applied to
problems outside of classification are as follows. Early examples of ensem-
ble learning approaches are bagging by Breiman [19] and boosting by Fre-
und and Schapire [45]. In bagging, subsets of problem instances are sam-
pled from the training set uniformly, and the training subsets are used to
train the individual ensemble members. In boosting, the ensemble mem-
bers are usually trained sequentially, where the weights of the training
instances are adjusted based on the performance of the trained ensemble
members. This provides a pressure during the training of the next ensem-
ble member to perform more effectively on the training instances that the
trained ensemble members performed poorly on. Another example of an
ensemble approach applied to binary classification with unbalanced data
was proposed by Bhowan et al. [15]. Bhowan et al. decomposed the bi-
nary classification problem to a multi-objective problem and applied GP
based NSGA-II to build a diverse range of individuals that are combined
to form an ensemble. After testing various diversity measures for the en-
sembles, they showed that the ensemble evolved by GP produce signifi-
cantly less false positives than other popular machine learning techniques
such as support vector machines [57]. Polikar [126] provides a comprehen-
sive survey of ensemble learning approaches and in-depth discussions on
applying ensemble of rules over single constituent rule.

A limited number of ensemble GP-HH approaches have also been pro-
posed in the literature. Hart and Sim [56] proposed the NELLI-GP ap-
proach, which is a hybrid of GP and artificial immune system (AIS). The
GP component evolves the dispatching rules that are combined into en-
sembles by the AIS, where the GP individuals are assigned to specific JSS
problem instances as specialists. They showed that NELLI-GP can signif-
icantly outperform previously proposed ensemble GP approaches for the
static JSS problem. In addition, Durasevic and Jakobovic [42] compared

various ensemble GP approaches that evolve ensembles of dispatching

62 CHAPTER 2. LITERATURE REVIEW

rules for a DJSS problem with up to 100 jobs in the problem instances. The
ensemble algorithms incorporated into the GP approach are bagging [19],
boosting [45], a simple method of combining the best evolved dispatching
rules called simple ensemble combination (SEC), and cooperative coevo-
lution. They showed that SEC performed the best after evolving 20, 000
dispatching rules over the training instances. This is followed by the GP
approaches that use bagging and boosting.

2.7.2 Techniques to DJSS subject to Machine Breakdowns

As described by Ouelhadj and Petrovic [115], scheduling techniques that
handle dynamic scheduling problems can be categorised into three major
groups. Examples of specific approaches to DJSS problems with machine
breakdowns in the three major groups are discussed in detail below.

Completely Reactive Scheduling

The first category of approaches that handle DJSS problems with machine
breakdowns is completely reactive scheduling approaches [115]. In com-
pletely reactive scheduling, the scheduling algorithm makes the schedul-
ing decision during processing. This means that the scheduling decisions
are made at each decision situation as soon as the machine becomes avail-
able. The solution to the DJSS problem instance is available after all jobs
have been processed on the shop floor. Because the decisions are made in
real-time, completely reactive scheduling approaches need to have short
reaction times and be able to cope with dynamic environments effectively
[105, 115]. Therefore, dispatching rules are completely reactive scheduling
algorithms [115].

To handle large DJSS problem instances with stochastic machine break-
down events, Holthaus [61] compares the application of various dispatch-
ing rules in dynamic JSS problems under various flowtime and tardiness

minimisation objectives with machine breakdowns. Holthaus shows that

2.7. RELATED WORK FOR RESEARCH GOALS 63

for minimising the mean flowtime the PT + WINQ rule performs the best
out of the selected rules. However, when it comes to handling objectives
dealing with due dates, such as mean tardiness, the performances of the
rules depend on the properties of machine breakdowns, such as the failure
rate of a machine. Subramaniam et al. [138] covers machine breakdowns
in a flexible JSS problem, and uses a two selection procedure for selecting
both a machine and a job to process. As jobs can be processed at different
machines for a single operation in a flexible job shop, they compare several
different methods of selecting machines for the dispatching decision and
dispatching rules to each other and show that incorporating machine se-
lection significantly improves the performance over using the dispatching

rules individually.

Predictive-reactive Scheduling

The second category of approaches that handle DJSS problems with ma-
chine breakdowns is predictive-reactive scheduling approaches [115]. A
predictive-reactive scheduling algorithm generates a schedule before pro-
cessing. When a machine breakdown event occurs during processing, the
generated schedule is adjusted to accommodate for the machine break-
down event. The goal of many predictive-reactive scheduling algorithms
is to minimise the impact of machine breakdown on the original sched-
ule [115]. Adjusting the initial schedule to accommodate for the unknown
breakdown event is called rescheduling. In the literature [2, 152, 155], an ad-
ditional criterion of minimising disruption is added with machine break-
down, where the goal is to minimise the difference between the initial
schedule before processing and the final schedule after all jobs have been
processed.

There are several examples of predictive-reactive scheduling algorithms
in the scheduling literature. Wu et al. [152] apply predictive-reactive
scheduling to a single-machine scheduling problem with makespan min-

imisation. They define the disruption criterion as the difference in the

64 CHAPTER 2. LITERATURE REVIEW

start times of jobs between the initial and final schedules, which is de-
noted as starting time deviation. They propose two local search heuristics,
along with a GA approach to the problem, and compare the approaches
to an optimal schedule generated using Carlier’s branch-and-bound al-
gorithm [24]. They show that the schedules generated by GA are more
‘stable” than the benchmark optimal schedule. Abumaizar and Svestka
[2] proposed the Affected Operation (AO) algorithm to handle reschedul-
ing for a JSS problem with machine breakdown. The problem has the ob-
jectives of minimising makespan, minimising starting time deviation and
minimising sequence deviation. For every job j, sequence deviation is the
number of jobs which were expected to be processed before job j in the
initial schedule that ended up being processed after job j. They compare
the algorithm to two common benchmark rescheduling techniques, which
are right-shift rescheduling and total rescheduling [115], and show that
the AO algorithm provides a final schedule which has significantly lower
deviation. In addition, the VNS approaches proposed by Adibi et al. [5]
and Adibi and Shahrabi [4] are considered as predictive-reactive schedul-
ing, as they carry out scheduling decisions once a “planning horizon” is

reached to schedule newly arrived jobs onto the machines.

Robust Pro-active Scheduling

The third category of approaches that handle DJSS problems with machine
breakdowns is robust pro-active scheduling approaches [115]. Robust pro-
active scheduling algorithm predicts when the machine breakdowns occur
and generates the schedule so that the impact of machine breakdown is
minimised. This is done by inserting idle times between the job processing
so that jobs are less likely to be interrupted by machine breakdowns.
Mehta and Uzsoy [94] proposed a robust pro-active scheduling ap-
proach where they calculate the amount of idle time to allocate before a
machine processes the next job given the probability of a machine break-

ing down and the time required to repair the machine. They show that

2.7. RELATED WORK FOR RESEARCH GOALS 65

predictive scheduling can significantly improve the predictability, while
only suffering very slightly in terms of the primary objective, which is
to minimise the maximum difference in the completion times of jobs and
their due dates, i.e., the maximum lateness of jobs. Predictability is de-
fined as the sum of deviations of the completion times of jobs in the initial
schedule from the completion times of jobs in the final schedule.

Al-Hinai and EIMekkawy [8] proposed a two-stage GA approach that
first optimises the primary objective, then optimises both the primary ob-
jective and a stability measure. Three stability measures are proposed,
and the statistical tests showed that the stability measure that minimises
the difference between the expected and the actual completion times for
the operations produced the best results. Ahmadi et al. [6] combines
one of the stability measures proposed by Al-Hinai and EIMekkawy [8] in
conjunction with two multi-objective evolutionary algorithms (MOEAs),
NSGA-II and non-dominated ranking genetic algorithm (NRGA), to han-
dle a flexible JSS problem with machine breakdowns. The two MOEAs are
used to generate Pareto fronts that tradeoff the stability of the schedule
with the makespan minimisation objective. Due to the lack of benchmarks,
the two MOEAs are compared against each other in terms of a number
of different criterion, e.g., diversity, spacing, number of solutions on the
Pareto front, computation time. They showed that there neither of the
two MOEAs perform better on all criterion than the other, where NRGA
showed better diversity than NSGA-II, but NSGA-II had better spacing
than NRGA.

Machine Breakdown Summary

The three different types of dynamic scheduling approaches to schedul-
ing problems with machine breakdowns have their merits and limitations.
Completely reactive scheduling approaches such as dispatching rules have
low computation cost, are usually intuitive and interpretable, and easy to

implement [115]. However, completely reactive scheduling approaches do

66 CHAPTER 2. LITERATURE REVIEW

not generate a global schedule in advance, which means that they often
tend to be quite myopic [66, 115].

On the other hand, predictive-reactive scheduling approaches do gen-
erate a global schedule, which means that they often perform very well
on DJSS problems with a small number of dynamic events. This often in-
cludes DJSS problems where the jobs are presented in a batch [125], i.e.,
a bulk arrival of jobs occur on the shop floor. However, depending on
the rescheduling strategies used by the predictive-reactive scheduling ap-
proaches, handling large DJSS problem instances may be prohibitively ex-
pensive in terms of computation time [115]. This is often circumvented
by making local adjustments instead of generating a new schedule from
scratch whenever a dynamic event occurs [115].

Finally, robust pro-active scheduling approaches show significant promise,
but predicting machine breakdown events in advance require significant
knowledge of the problem domain in advance. In addition, a robust pro-
active scheduling approach is specific to the properties of the DJSS prob-
lem, meaning changes in the properties of the problem will require the
approach to be redesigned.

For further reading, Ouelhadj and Petrovic [115] provide a compre-
hensive survey of JSS problems with machine breakdowns. In addition,
Suresh and Chaudhuri [140] cover machine breakdown in brief detail along

with JSS problems where unknown events occur.

2.7.3 Multitask Learning for Optimisation

Although the concept of multitask learning has been applied to various
machine learning problems earlier in the literature [139], the term “mul-
titask learning” was first defined by Caruana [27]. Caruana incorporated
multitask learning to an ANN to improve their performances on a set of
classification problems. Caruana also carried out an extensive analysis of

how multitask learning improved the performance of ANN. They found

2.7. RELATED WORK FOR RESEARCH GOALS 67

that the benefits of multitask learning “are due to the extra information
contained in the training signals for the extra tasks”, i.e., the extra tasks
provide inductive biases that generally improve the effectiveness of ANN.
For further reading on multitask learning, Pan and Yang [116] carry out
a comprehensive survey of transfer learning approaches, including multi-
task learning.

On the other hand, multitask learning approaches to optimisation prob-
lems that use evolutionary computation techniques (called evolutionary
multitasking [35]) have been limited. Gupta et al. [51] proposed a frame-
work for incorporating multitask learning into optimisation problems called
multifactorial optimisation (MFO). Afterwards, they use a multifactorial evo-
lutionary algorithm (MFEA) to handle up to three optimisation problems
simultaneously. Optimisation problems handled by the MFEA include
continuous optimisation problems and combinatorial optimisation prob-
lems. Gupta et al. also provide a decoding scheme so that an individual
in the population can be decoded as a solution to the problem instances
in three optimisation problems handled simultaneously. They showed
that the MFEA show promise in improving the convergence of the EA
approach in complex optimisation problem and show better performance
over solving the optimisation problems independently.

Gupta et al. [53] proposed a MFEA approach that handles both MFO
and multi-objective optimisation problem. The proposed multi-objective
MFEA (MO-MFEA) is modified from the NSGA-II [39] approach to handle
up to two multi-objective continuous optimisation problems simultane-
ously. They showed that the MO-MFEA approach applied to two optimi-
sation problems simultaneously show a better convergence than NSGA-II
applied independently to the two optimisation problems.

Da et al. [35] apply MFEA to additional continuous single objective
optimisation problems in the literature. They investigate seven different
problems and the MFEA is designed so that they can solve two problems
simultaneously. Da et al. showed that the MFEA generally outperforms

68 CHAPTER 2. LITERATURE REVIEW

the single task EA counterpart. However, there is one case where the sin-
gle task EA performs better than the MFEA, where the convergence curves
show that the inductive bias introduced from the two tasks actually nega-
tively contributes towards the performance of MFEA.

The existing evolutionary multitasking approaches show that there are
significant promises to applying multitask learning to optimisation prob-
lems. On the other hand, evolutionary multitasking based on GP for auto-
matic design of dispatching rules for a JSS problem has not yet been pro-
posed, and warrant further investigation. For further reading, Gupta et
al. [52] provide a comprehensive survey of transfer learning that includes

evolutionary multitasking.

2.8 Summary

There are a number of different approaches which have been proposed in
the literature for a number of JSS problems. In particular, papers which
have proposed dispatching rules heuristics have been very prominent in
dynamic JSS due to their simplicity and their ability to cope with dynamic
environments. Because the manual design of effective dispatching rule is
a difficult task, the idea of automatically designing new dispatching rules
to different scheduling problems have been proposed in the literature. GP
is one of the more popular methods of automatically generating dispatch-
ing rules, as a GP individual can intuitively be interpreted as a simple
heuristic, e.g., as a priority dispatching rule. However, the idea of using
GP-HH for scheduling problems is still a relatively new concept, and there
are many more investigations that can be carried out to enhance GP-HH
approaches. The following are a few remarks on the existing GP-HH ap-

proaches to scheduling problems.

e Most of the existing GP methods to JSS problems evolve single prior-

ity dispatching rules, which need to make complex decisions when

2.8. SUMMARY 69

scheduling the jobs onto the machines. Some of these complex deci-
sions made early in the process can drastically impact the final out-
come, meaning that they will need to be handled carefully. However,
due to the fact that dispatching rules are myopic in nature [18], a sin-
gle rule is more likely to make a particularly poor decision than a
group of rules working together [126].

o Although there are many meta-heuristic approaches to dynamic schedul-
ing problems with breakdowns, there are only a very limited num-
ber of hyper-heuristic approaches to handling dynamic scheduling
problems with machine breakdowns. In addition, the meta-heuristic
approaches primarily focus on dynamic scheduling problems with
tixed job arrivals and usually do not consider problems with multi-
ple types of dynamic events. Yin et al. [155] have proposed a GP-HH
approach to a single-machine JSS problem with machine breakdown,
but the problem instances solved by the GP approach are relatively
small and do not include dynamic job arrivals. Holthaus [61] has
studied multiple man-made dispatching rules for dynamic JSS prob-
lems with machine breakdowns, but no work has proposed a GP-HH
approach for dynamic JSS problems with machine breakdowns.

e Finally, although GP-HH approaches that handle multiple schedul-
ing decisions have been proposed in the literature [107, 156], they
have not considered separating out problems into explicit tasks to
handle simultaneously. In addition, evolutionary multitasking ap-
proaches have been effectively applied to various continuous and
combinatorial optimisation problems, but they have been applied to
the problems as meta-heuristics and have not been applied to DJSS
problems. In other words, a hyper-heuristic approach to DJSS prob-
lem that can incorporate multitask learning has not yet been pro-
posed in the literature.

This thesis will propose new approaches that mainly aim to address

70 CHAPTER 2. LITERATURE REVIEW

these limitations.

Chapter 3

Ensemble-based GP Approaches
to DJSS

3.1 Introduction

GP-HH approaches can evolve effective dispatching rules for the DJSS
problem with dynamic job arrivals. However, a GP evolved dispatch-
ing rule needs to be able to handle complex decisions when it handles a
DJSS problem instance, and it is possible that such decisions can be better
handled using multiple rules. Ensemble learning has been shown to im-
prove the generalisation ability of algorithms in problems outside of JSS
[45, 126, 157], and is likely to improve the effectiveness of rules evolved
by GP in terms of the performance and may likely make the evolved rules
less sensitive to the changes in the properties of the DJSS problem.

3.1.1 Chapter Goals

The goal of this chapter is to develop GP approaches that evolve effective
ensemble of dispatching rules for a DJSS problem for the purposes of min-
imising mean tardiness. The ensemble of dispatching rule is expected to
be more effective on the DJSS problem than the standard GP approach.

71

72 CHAPTER 3. ENSEMBLE-BASED GP APPROACHES TO DJSS

In other words, the ensemble GP approach must be more effective than
the standard GP approach on the problem domain that the rule is evolved
on, and on the unseen problem domains. To achieve this goal, we de-
velop novel ensemble GP approaches that can evolve diverse ensembles
of dispatching rules. This objective is broken down into three major sub-
objectives:

e First, this chapter develops ensemble GP approaches for the DJSS
problem by incorporating an ensemble algorithm from the litera-
ture. Various ensemble algorithms have been proposed in the litera-
ture for problems outside of DJSS (e.g. such as difficult classification
[126]), but no ensemble GP have been proposed in the literature for
DJSS problems with dynamic job arrivals.

A major design consideration that needs to be made when devel-
oping an ensemble GP approach is that applying a GP individual
to each training instance is very expensive in a DJSS problem with
dynamic job arrivals. The DJSS problem often requires simulations
with thousands of jobs [105] compared to static problems which typ-
ically have at most 100 jobs [141]). This means that the number of
training instances tends to be limited for DJSS problems. There-
fore, this thesis will focus on ensemble approaches that can evolve
the ensemble components simultaneously instead of using ensemble
frameworks that train ensemble components separately on different
training sets (e.g. bagging [19] and boosting [134]).

e Second, this chapter investigates several combination schemes used
by the ensemble GP approaches to improve the effectiveness of en-
semble rules evolved by the GP approaches. The method for com-
bining the outputs of the ensemble components is an important con-
tributing factor to the overall effectiveness of the ensemble when
they are applied to classification problems [126]. Because of this,

its likely that the ensemble combination scheme is also a key com-

3.1. INTRODUCTION 73

ponent for the ensemble GP process when evolving ensemble rules
for DJSS problems, and can likely further improve the overall quality
of the ensembles evolved by the GP approach. We can likely obtain
more insight into the properties of the DJSS problem from the rela-
tive performances of the combination schemes and the behaviours of
the ensembles evolved by the different combination schemes.

e Finally, this chapter proposes new analysis measures to compare spe-
cific behaviours between the evolved ensembles from the different
combination schemes. Analysis of evolved rule behaviours is impor-
tant, as this helps provide insight into how GP evolves the ensem-
ble of dispatching rules and the DJSS problem itself. Identifying the
strengths and weaknesses of the different ensemble GP approaches
and the combination schemes used can help develop more effective
ensemble GP approaches in the future.

3.1.2 Chapter Organisation

This chapter is divided into two major parts. First, we provide an overview
of the two ensemble GP approaches investigated, followed by the exper-
imental design and the results that compare the two ensemble GP ap-
proaches. Afterwards, the remaining sections cover the ensemble com-
bination schemes incorporated into the ensemble GP approach that per-
forms the better out of the two approaches, followed by the diversity mea-
sures used to analyse the behaviours of the ensembles evolved by GP. This
is followed by experimental design, the results and the discussion for the
ensemble combination schemes. Finally, a chapter summary that wraps

up this chapter is provided.

74 CHAPTER 3. ENSEMBLE-BASED GP APPROACHES TO DJSS

3.2 Ensemble GP Algorithms

This section describes the two ensemble GP algorithms that have been de-
veloped for the DJSS problem in this thesis. The first ensemble GP algo-
rithm is called “ensemble genetic programming for job shop scheduling”
(EGP-]JSS), which incorporates Potter and De Jong'’s cooperative coevolution
algorithm [127] into the GP process to evolve ensembles of dispatching
rules for the DJSS problem. The second ensemble GP algorithm is called
“multilevel genetic programming for job shop scheduling” (MLGP-]SS),
which incorporates Wu and Banzhaf’s multilevel genetic programming to
the GP process to evolve ensembles for the DJSS problem [153]. First, we
will cover the overall GP process for the two ensemble GP approaches,
describe the evaluation procedure for the GP individuals and detail the
selection and breeding procedures.

3.2.1 EGP-JSS Overview

EGP-]JSS approach evolves ensembles of dispatching rules by partitioning
the GP population into S evenly sized subpopulations of size K that in-
teract via representatives of each subpopulation. A representative of a sub-
population is the individual with the best fitness out of the subpopulation
found so far. If the individuals have not been evaluated yet, i.e., straight
after the GP population has been initialised, then the representative of
a subpopulation is a random individual out of the subpopulation. The
interactions between the subpopulations are limited to these representa-
tives, and selection and breeding are carried out independently for each
subpopulation. The advantage of Potter and De Jong’s cooperative coevo-
lution [127] is that it does not require the ensemble members to be trained
on different problem instances (unlike other ensemble approaches such
as bagging [19] or boosting [134]). This is ideal for DJSS problems with
dynamic job arrivals due to the relatively expensive computation cost re-

quired to apply a GP individual to a single training instance. For example,

3.2. ENSEMBLE GP ALGORITHMS 75

in Hildebrandt and Branke’s [59] DJSS simulation model, a GP individual
needs to complete 2500 jobs in a training instance before the simulation is
completed, and only 10 training simulations are carried out to evaluate a
GP individual. On the other hand, Taillard’s dataset [141], a popular static
JSS dataset, has at most 100 jobs in a problem instance.

A key concept in EGP-JSS and Potter and De Jong’s cooperative coevo-
lution [127] is the “collaboration” between the individuals in a GP subpop-
ulation with the representatives of the other subpopulations to solve the
DJSS problem. To evaluate an individual z in a subpopulation s; in EGP-
JSS, the individual is paired up with the representatives ry,...,rg from
subpopulations sy, ..., sg minus the representative r; from subpopulation
s;. The individual and the representatives form an ensemble E that is then
applied to the DJSS problem instances I, ..., I|7| in the training set 7. Ap-
plying the ensemble to a training instance as described in Section 3.2.3 to
generate a schedule for the DJSS problem. Potter and De Jong’s cooper-
ative coevolutionary approach allows for individuals to collaborate with
the members of the other subpopulation by forming the ensemble dur-
ing the evaluation procedure. For example, in an island models [88, 145],
the individuals are transferred between the different subpopulations (i.e.
“islands”) during the selection and breeding procedure, but evaluation of
an individual is carried out independent of individuals in other subpop-
ulations. The individual being evaluated need to collaborate effectively
with the representatives and contribute towards ensuring that the ensem-
ble makes good decisions so that the ensemble has a good performance on
the training set.

After the schedule is generated for all DJSS problem instances in the
training set using the ensemble, the fitness f(x) of individual z is calcu-
lated from the ensemble’s performance over the training set 7 as given in
Equation (3.2) in Section 3.2.3. This is done for all individuals in the sub-
populations, and for all subpopulations of the GP population. Afterwards,

the representatives of the subpopulations are updated to the best individ-

76 CHAPTER 3. ENSEMBLE-BASED GP APPROACHES TO DJSS

uals in the subpopulations, and the selection and breeding procedure is
carried out. The output of EGP-JSS process is the ensemble Ej.,; with the
best performance over the training set 7 out of the ensembles evaluated
in the last generation. The EGP-JSS process described above is given in
Algorithm 1.

Unlike Potter and De Jong’s cooperative coevolutionary approach, a
subpopulation is not destroyed if they are unproductive (i.e. the fitness of
the representative do not improve after a certain number of generations).
This is because destroying and regenerating a new subpopulation of in-
dividuals will require a large number of generations for it to be effective,
which would make the EGP-JSS process either prohibitively expensive in
terms of computation cost, or evolve ineffective rules when the time bud-

get is limited.

3.2.2 MLGP-JSS Overview

Compared to the EGP-JSS approach that partitions the GP population into
multiple subpopulations, the MLGP-JSS approach has a single GP popu-
lation and combines the individual into groups that cooperate with each
other. In other words, the subpopulations are predefined in EGP-JSS,
whereas the groups are generated during the evolutionary process for
MLGP-JSS. The MLGP-JSS process is broken down into three major steps,
which consists of two “levels” of evolution. After the population of GP
individuals have been initialised and evaluated, the first major step of
MLGP-JSS carries out evolution on the group level, where groups are bred,
evaluated and added to the GP population. The second step is to carry out
evolution on the individual level, where GP individuals are bred, evaluated
and added to the population. The final step is the selection procedure,
where only the elite groups and individuals are retained in the population
for the next generation. After the termination criterion is reached, i.e., the

maximum number of generations, the final output is the best group of in-

3.2. ENSEMBLE GP ALGORITHMS 77

Algorithm 1: The pseudocode for the EGP-JSS approach.
Input : Training set 7

Output: Best ensemble Ey.;

1 initialise GP subpopulations Py, ..., Pg of sizes K;

2 fori < 1toSdo

3 choose random individual from subpopulation P; as representative r;;
4 end

5 for gen < 1to G do

6 fori <« 1to .S do

7 for each individual x in P; do

8 form ensemble E = {z,r1,...,7s} — {r:};

9 evaluate ensemble I on training set 7 and calculate individual

fitness f(z) (Equation (3.2)) ;

10 end

11 end

12 update representatives rq, ..., rg;

13 update best ensemble Ej.:;

14 fori <« 1to S do

15 carry out selection and breeding for subpopulation P;;
16 end

17 end

dividuals found so far (gies:). The overall MLGP-JSS process is shown in
Algorithm 2, where My,..q is the number of groups bred at each genera-
tion, and Ny, is the number of individuals bred at each generation.

Evolution on the Group Level:

There are three evolutionary operators which breed new groups from ex-
isting individuals and groups in the population. The first operator is coop-
eration. Cooperation combines two entities together to form a new group
containing all individuals from both entities without duplicates. An entity
can be either an individual or a group. This means that two individuals,

an individual and a group, or two groups can be merged to form another

78 CHAPTER 3. ENSEMBLE-BASED GP APPROACHES TO DJSS

Algorithm 2: The pseudocode for the MLGP-JSS approach.
Input : Training set 7°

Output: Best group gpest
1 initialise population P with Ny¢tgineq individuals;
2 for each individual x € P do

3 evaluate individual z on training set 7 and calculate fitness f(x);
4 end
5 for gen < 1to G do
6 fori < 1to Mpyreeq do
7 breed group ¢ from population P;
8 evaluate group g on training set 7 and calculate fitness f(g);
9 add group g to population P;
10 end
11 fori < 1to Npreeq do
12 breed individual = from population P;
13 evaluate individual = on training set 7 and calculate fitness f(x);
14 add individual z to population P;
15 end
16 update the best group gpest;
17 retain M, .ctqined best groups in population P;
18 retain Nyetqineq best individuals from population P;
19 end

group. The entities for cooperation are selected using roulette wheel se-
lection over all entities [153]. An example is shown in Figure 3.1a, where
group G1 is combined with group G2 to form the new group G4, which
contains individuals I1, I2 and I4.

The second evolutionary operator on the group level is the group crossover
operator. In group crossover, roulette wheel selection selects two groups
from the GP population as parents [153]. The two parents randomly ex-
change one individual to produce the child groups. Individuals in a par-
ent group have equal probabilities of being exchanged. In Figure 3.1b,
crossover occurs between parents G1 and G3, exchanging individuals 12
and I3 respectively. This generates groups G4 and G5.

3.2. ENSEMBLE GP ALGORITHMS 79

The final evolutionary operator on the group level is the group muta-
tion operator. In the group mutation, a group is selected through roulette
wheel selection, and either an individual is added to or removed from the
group [153]. If an individual is being added, then an individual is selected
through roulette wheel selection over the individuals in the GP popula-
tion. If an individual is being removed, then an individual in the group
is randomly selected with uniform probability. An example of a mutation
operator adding an individual is shown in Figure 3.1c, where individual
I5 is added to G2 to produce offspring G4.

@ @ @ @ @ @ @ @ @
@
@@g@ @@@@@ 9900
FE e e

(a) Cooperation Operator (b) Crossover Operator (c) Mutation Operator

Figure 3.1: Examples of group operators used to breed new groups.

Evolution on the Individual Level:

Crossover and mutation operators used to breed the individuals are the
standard operators for tree-based GP [80]. To select the parent individuals
to breed new offspring, a group g is selected based on a probability pro-
portional to the group’s fitness. It is expected that individuals in a group
contribute to achieving cooperation despite their fithesses [153]. There-
fore, an appropriate number of parent individuals are selected from group
g with a uniform probability. After crossover or mutation is carried out,
the newly bred children do not automatically become part of the group
from which the parent individuals were selected from, but are inserted
back into the pool of individuals after evaluating the children’s fitness.

80 CHAPTER 3. ENSEMBLE-BASED GP APPROACHES TO DJSS

3.2.3 Evaluation Procedures

The evaluation procedure for GP individuals differs between the EGP-]SS
and the MLGP-]JSS approaches. In an EGP-JSS approach, an ensemble gen-
erated from a GP individual collaborating the representatives is not as-
signed a fitness value, whereas a group in the MLGP-JSS approach has a
separate fitness value from the GP individuals that make up the group. To
evaluate a GP individual z for the EGP-JSS approach, the ensemble E that
combines individual z with the representatives from the other subpopula-
tions is applied to the training set 7 as a non-delay ensemble of dispatching
rules. To apply an ensemble E of dispatching rule to a DJSS problem in-
stance /, the decision situation that occurs during processing is handled
by ensemble E by calculating the priorities of the jobs using the ensemble
members and then the priority results are combined using a combination
scheme. For the EGP-JSS and the MLGP-JSS approaches, we use the ma-
jority voting combination scheme. Figure 3.2 shows majority voting with
three ensemble members being applied jointly to a decision situation with
five jobs. In ensembles with majority voting, the job with the highest num-
ber of votes is selected to be processed. In the figure, rule 1 votes on job 4
as job 4 is assigned the highest priority by rule 1 out of the five jobs. On the
other hand, rules 2 and 3 vote on job 1. This results in job 1 being selected
by the ensemble to be processed by the machine at the decision situation.
In the decision situations where two jobs are tied in the number of votes,
then we use the apparent tardiness cost (ATC) [148] rule as a tie-breaker.
ATC is a man-made dispatching rule effective for tardiness related objec-
tives. This process continues until all arriving jobs have been processed by
the machines and a schedule is generated.

After the ensemble F is applied to the DJSS problem instance / and
a schedule is generated, the mean tardiness Obj(E, I) of the schedule is
normalised using a reference rule R. This procedure adopts Hildebrandt et
al. [60] and Mei et al.’s [97] GP approaches to reduce bias towards spe-
cific DJSS problem instances. If a particular DJSS problem instance has a

3.2. ENSEMBLE GP ALGORITHMS 81

Job Job Job Job Job

Rule ’_J_'_LI_S_I_ZLI_S_‘
jzz; . [01]0a]o2]08]01] mmm)
Job 3 ‘R;'e [08]o1]o1]07]06] mmm) | Job 1 | Job1
Job 4
Job 5 \ Rl;"e|0.9|0.2|o.4|0.6|0.1|) [b1 |

" . L Dispatching rule Ensemble selects
Jobs waiting at Assign priorities to . .
. . members vote on job with the most
machine jobs A
job votes

Figure 3.2: Example of majority voting for ensembles being applied to a

decision situation.

greater optimal mean tardiness value than another DJSS problem instance,
we can expect many dispatching rules to obtain higher mean tardiness val-
ues on this problem instance. This results in the first problem instance hav-
ing a greater effect on the fitness of an individual than the second problem
instance if the mean tardiness values are not normalised. The reference
rule R is applied to the same problem instance I as the ensemble F, and the
mean tardiness Obj(R, I) of the schedule generated by the reference rule
is used to normalise the objective value of ensemble’s schedule as shown
in Equation (3.1). The reference rule used for the ensemble GP approaches
is the ATC rule [148]. This normalisation procedure also normalises the
mean tardiness values of the schedules generated by the GP individuals
in MLGP-JSS approach that are applied to the training instances as single
priority dispatching rules.

, Obj(E, 1)
bj'(E, 1) = ———— 3.1
For the EGP-JSS approach, the individual x being evaluated is com-
bined into an ensemble E and the ensemble is aplied to all problem in-
stances. Afterwards, the fitness f(z) of the individual z is calculated by
averaging out the normalised mean tardiness values over the training in-

stances as shown in Equation (3.2).

82 CHAPTER 3. ENSEMBLE-BASED GP APPROACHES TO DJSS

Obj'(E, I) 32
f(x) m}z 7' ((3.2)
eT

On the other hand, the fitness of a group g is separate from the fitness
of GP individuals in the MLGP-JSS approach. The fitness of a group g
is calculated by applying the group to the training set 7 as a non-delay
ensemble of dispatching rules. The performance of the group g on the
training set 7 is the average of normalised mean tardiness values, and
the fitness f(g) is calculated as shown in Equation (3.3). The equation
is modified from Wu and Banzhaf’s [153]’s group fitness calculation. In
Wu and Banzhaf’s group fitness calculation, the performance of group g is
multiplied by a penalty factor that incorporates the group size GS,. This
prevents the group from increasing in size with minimal improvement.
After some preliminary testing, the penalty factor was adjusted for the
MLGP-JSS approach as shown in the equation.

(GSg - 3)2]
f(9) Obj'(g,1 { = T ar (3.3)
7 Z; (GS, x 3)

On the other hand, the fitness of an individual = for MLGP-JSS is cal-
culated by applying the individual to the training set 7 as a single non-
delay priority dispatching rule (described in Section 2.3.1 (Page 37)). The
normalised mean tardiness values from individual z’s schedules are used

directly as the fitness of the individual, i.e., f(z) = |—% > 1o Oby'(,1).

3.3 [Ensemble GP Experimental Design

This section covers the design of the experiments carried out to evaluate
the EGP-JSS and the MLGP-JSS approaches. First, we discuss the DJSS
model used to evaluate the GP approaches. This is then followed by the
GP benchmark used for comparison. We use GP as the benchmark for
the two ensemble GP approaches, as they are the state-of-the-art for the

3.3. ENSEMBLE GP EXPERIMENTAL DESIGN 83

DJSS problem with dynamic job arrivals [17]. Other methods of handling
DJSS problems with a large number of dynamic job arrivals includes dis-
patching rules [63, 72, 73] and variable neighbourhood search [5, 4], both
of which are outperformed by GP in the literature [109]. Afterwards, we
cover the GP representation, terminal and function sets used by all GP ap-
proaches evaluated in the experiments and the parameter settings for the
GP approaches.

3.3.1 DJSS Simulation Model

Discrete-event simulations are used in the literature to simulate DJSS prob-
lem instances with large number of dynamic job arrivals [66, 67, 60, 104,
105, 124]. In a discrete-event simulation, the job arrivals and the jobs’ prop-
erties (e.g. the job’s operations and their processing times) are generated
stochastically from probability distributions with a given seed. For this
thesis, we denote the configuration of distribution models used to simu-
late the DJSS problem instance as a simulation configuration.

To evaluate the EGP-JSS and the MLGP-JSS approaches, we use an ex-
isting simulation model proposed by Hunt et al. [66]. Hunt et al.’s model
has a diverse range of simulations with different properties and provides
a reliable starting point to evaluate the ensemble GP approaches. In Hunt
et al.’s simulation model [66], two training sets 40p and 8op are used to
evolve the rules. The job arrival times follow a Poisson process with a
mean of \, which is called the arrival rate. The arrival rate is calculated
from the utilisation rate p, the mean processing time of operations of the
arriving jobs 1, and the mean proportion of the machines required by the
job to process all operations p,,. The arrival rate given the three param-
eters is shown in Equation (3.4). The utilisation rate is the proportion of
time machine spends processing job operations on the shop floor. The pro-
cessing times of job operations follow a discrete uniform distribution that

has a lower bound of 1 and an upper bound of 2/ — 1, i.e., has an interval

84 CHAPTER 3. ENSEMBLE-BASED GP APPROACHES TO DJSS

1, 21— 1]. The number of operations per job N; depends on the simulation
configuration, and there are 10 machines on the shop floor, which means

A= X pXpy (3.4)

After a job j’s arrival time 7; and processing times pi, ..., py,; of the
operations have been stochastically generated, the due date d; of job j is
calculated as shown in Equation (3.5). In the equation, / denotes the tight-
ness of the due date and controls the urgency of the arriving jobs. In Hunt
et al.’s simulation model, the tightness used to calculate the due date of
the job is random from 3, 5, and 7 with equal probabilities for the training

sets, and random from 2, 4, and 6 with equal probabilities for the test set.

N;
dj=rj+hx> py (3.5)
=1

The remainder of the parameter values for Hunt et al’s simulation model
[66] are given in Table 3.1. In the table, the parameter with multiple values
(excluding the tightness parameter) indicates that the specific dataset has
different simulation configurations that use different values of the param-
eter. For example, 40p and 8op have two different configurations with util-
isation rates of 85% and 95%, meaning that each GP individual is applied
two simulation runs during evaluation. On the other hand, the test set con-
sists of 2 x 2 x 5 = 20 different configurations with different combinations
of mean processing time, utilisation rate and the number of operations per
job parameter values. Unif [2,10] value in the number of operations per
job parameter for the test set denotes that the number of operations per

job follows a discrete uniform distribution with the interval [2, 10].

3.3. ENSEMBLE GP EXPERIMENTAL DESIGN 85

Table 3.1: Simulation configurations used for the generating arriving jobs
in DJSS problem instances.

Parameter 4dop ‘ 8op ‘ Test

Warm-up period 500

Max jobs completed 2500

Mean processing time () 25 25,50

Utilisation rate (p) 85%,95% | 90%,97%

of operations per job (V) 4 8 4,6,8,10, Unif [2, 10]
of configurations 2 2 20

3.3.2 GP Benchmark

As GP has been the most popular automatic heuristic design approach
in the recent years [103], we use the “standard” GP-HH approach as the
benchmark to evaluate the ensemble GP approaches investigated [17]. In
this case, a standard GP-HH approach evolves a single priority dispatch-
ing rule via the GP process shown in Section 2.3 (Page 37), which is one
of the most prominent methods of evolving dispatching rules using GP
[103]. To ensure consistency between the ensemble GP approaches and
the benchmark GP, we use the same normalisation procedure (Equation
(3.1)) and the same fitness function for the GP individual (Equation (3.2))
for the benchmark GP process. In addition, the GP representation, termi-
nal set, function set and parameter settings that are described in Sections

3.3.3 and 3.3.4 below are kept consistent between all the GP approaches.

3.3.3 GP Representation, Terminals and Function Sets

The terminal set used by GP approaches consist of a mixture of termi-
nal sets used by existing GP-HH approaches in the literature [60, 66, 105].
These terminals range from common attributes (e.g. operation process-
ing time PT) to more complex terminals that utilise multiple common at-

tributes (e.g. remaining processing time of job RT) and the previous states

86 CHAPTER 3. ENSEMBLE-BASED GP APPROACHES TO DJSS

of the shop floor (e.g. average wait time at next machine NQW). These
terminals have been shown to evolve high-quality dispatching rules in the
literature [66]. The function set consists of the arithmetic operators +, —,
X, protected /, if, max and min. The protected / works as a division
operator if the denominator is non-zero, but returns a value of 1 if the de-
nominator is zero. After carrying out some manual sensitivity analysis,
we determined that an error margin of e = 10~% was sufficient to account
for rounding errors that occurred for the protected division operator, and
is used as the error margin for the protected division operator used in this
thesis. if is a ternary operator which returns the value of the second ar-
gument if the first argument is greater than or equal to zero, and the value
of the third argument otherwise. The full list of terminal and function sets

is given in Table 3.2.

Table 3.2: The terminal set and the function set used for the GP ap-
proaches, where job j is one of the jobs waiting at the machine m to process

operation o;;.

Terminal Description

RJ The operation ready time of job j

RO Remaining number of operations of job j

RT Remaining total processing times of job j

PT The operation processing time of job j

RM Machine m ready time

NJ Non-delay jobs waiting at machine m

DD Due date of job j

NPT Next operation processing time

NNQ Number of idle jobs waiting at the next machine
NQW Average waiting time of last 5 jobs at the next machine
AQW Average waiting time of last 5 jobs at all machines
Constant real-value in the interval [0, 1]

Function +, —, %, /, 1, max, min

3.3. ENSEMBLE GP EXPERIMENTAL DESIGN 87

3.3.4 GP Parameter Settings

The GP parameters required for the EGP-JSS, the MLGP-JSS and the bench-
mark GP approaches are shown in Table 3.3. In the table, the “Common
Parameters” category are parameter values shared by all GP approaches,
the “EGP-JSS Parameters” and “MLGP-JSS Parameters” are the parame-
ters required by the EGP-JSS and the MLGP-JSS approaches respectively.

Table 3.3: GP parameters used by the EGP-JSS, the MLGP-JSS and the
benchmark GP approaches for evolving rules.

Approach Parameters Value

Total population size 1024

No. of generations 51
Common GP crossover / mutation / reproduction | 80% / 10% / 10%
Parameters rate

GP maximum initial depth 8

GP maximum depth 17

Selection method Tournament selec-

tion of size 7

No. of elites per subpop 1
EGP-JSS No. of GP subpopulations 4
Parameters Subpopulation size 256
MLGP-JSS No. of groups bree.d 200

No. of groups retained 100
Parameters

Group cooperation / crossover / muta- | 31.25% / 50% /
tion rate 18.75%

The common parameters listed in Table 3.3 are modified from param-
eter settings used by Hunt et al. [66] for their GP approach to a DJSS
problem with dynamic job arrivals. The major differences of the common
parameter settings from Hunt et al.’s setting are the crossover, mutation,
reproduction rates and the maximum depth of the trees. The crossover,
mutation and reproduction rates are set to 80%, 10% and 10% respectively,
where we increased the reproduction rate slightly so that more individu-

als from the current generation could be retained in the next generation

88 CHAPTER 3. ENSEMBLE-BASED GP APPROACHES TO DJSS

without their behaviour being significantly modified from the crossover
and the mutation operators. In addition, the maximum depth of the trees
is adapted from Koza’s GP parameters [80]. This may be beneficial for
the EGP-JSS and MLGP-]SS approaches to evolve good individuals as rep-
resentatives. In addition, total population sizes across different GP ap-
proaches are set to be identical. The EGP-JSS approach has four subpopu-
lations of size 256 that equals 4 x 256 = 1024 in total. Four subpopulation
size was arbitrary selected after we found that the number of subpopula-
tions ranging from three to ten did not significantly affect the performance
in a preliminary test. On the other hand, MLGP-JSS approach breeds the
same number of GP individuals as the benchmark GP during the breeding
procedure and retains 1024 individuals. The number of groups bred and
retained was chosen after carrying out preliminary parameter tuning. The
group cooperation, crossover, and mutation rates are adapted from Wu
and Banzhaf’s original parameter settings [153].

3.4 Ensemble GP Approach Results

This section covers the evaluation of EGP-JSS and MLGP-JSS approaches
and the combination schemes integrated with one of the ensemble GP ap-
proaches. To compare the benchmark GP, the EGP-JSS and the MLGP-]SS
approaches, each GP approach is applied to the training set to evolve a
dispatching rule. This is repeated until a set of thirty rules are evolved
by each GP approach on the training set, which is equivalent to the num-
ber of runs carried out by existing GP-HH approaches in the literature
[105, 43, 42]. 30 independent runs allows us to have enough random sam-
ple to carry out the Wilcoxon’s signed rank test to compare two different
GP approaches against each other [105, 43, 42]. Afterwards, the rules are
evaluated on the test set as described below to determine which ensem-
ble GP approach is more promising so that it can be investigated further
in terms of the combination schemes. In addition, the best rules from the

3.4. ENSEMBLE GP APPROACH RESULTS 89

GP approaches are sampled from the GP rule sets based on their average
performance over the entire test set.

3.4.1 Rule Set Comparison

After the 30 rules are evolved by the GP approaches, the evolved rules are
applied to the simulations in the test set. The test set consists of 20 dif-
ferent simulation configurations, each with different processing times (1),
utilisation rates (p) and the number of operations per job (N;). A rule is
applied to a simulation with a specific simulation configuration 30 times
with different seeds to obtain 30 independent results. Obtaining 30 results
for each simulation configuration for a rule allows us to get a good repre-
sentatation of the rule’s performance on the simulation configuration and
allows us to carry out statistical testing between the two GP rules using
Wilcoxon's signed-rank test. This procedure is repeated for all subsequent
GP comparisons that are carried out in this thesis.

After we obtain 30 mean tardiness results for a GP rule from the DJSS
simulations for a simulation configuration, the “performance” of the GP
rule on the simulation configuration is the average mean tardiness value of
the 30 results. The performances of the GP rules are then used to compare
the GP approaches themselves, i.e., we compare the performances of the
rules evolved by EGP-JSS and the benchmark GP to carry out an overall
comparison of EGP-JSS and the benchmark GP (and likewise for MLGP-
JSS and the benchmark GP). A set of rule performs significantly better on
the simulation configuration if the difference in the performances between
the two rule sets satisfies the two-sided statistical test at p = 0.05. The per-
formances of the GP rules are shown in Table 3.4. The test set simulation
configurations shown in the table is partitioned into four subsets based
on expected processing time (1) and the utilisation rate (p). (z,v, z) cat-
egory denote that the configuration has 4 = z, p = yand N; = z. In

addition, = + y denotes that the rule set has x mean and y standard devi-

90 CHAPTER 3. ENSEMBLE-BASED GP APPROACHES TO DJSS

ation performance on the particular simulation configuration. The corre-
sponding EGP-JSS or MLGP-JSS result is highlighted blue if the EGP-JSS
or the MLGP-JSS rules significantly outperforms the benchmark GP rules
for the simulation configuration. In addition, the evolution times in the
table denotes the mean times taken to evolve the thirty rules for the three
GP approaches.

As we can see from the results in Table 3.4, both EGP-JSS and MLGP-
JSS generally perform better than the benchmark GP approach. For the
rules evolved on 4op, EGP-JSS and MLGP-JSS perform significantly bet-
ter than the benchmark GP rules in certain simulation configurations (e.g.
(50, 90%, [2,10]) and (25, 97%, 8) for both EGP-JSS and MLGP-]JSS).
They also do not have worse performance in simulation configurations
where they do not perform significantly better than the benchmark GP.
For the rules evolved on 8op, EGP-JSS performs significantly better than
the benchmark GP for all configurations and MLGP-JSS performs signifi-
cantly better on the simulation configurations (25, 97%, 6) and (50, 97%,
4). In general, EGP-JSS performs better against the benchmark GP than
MLGP-JSS over a greater number of simulation configurations.

A possible reason why the EGP-JSS approach performs better than the
MLGP-JSS approach is that MLGP-JSS uses roulette wheel selection for
choosing different the parents for the group cooperation, crossover and
mutation operator like the MLGP approach by Wu and Banzhaf [153].
During the training procedure, the groups generally have similar fitness to
each other. This means that the roulette wheel may not be biased enough
towards a potentially good group, resulting in a lack of exploitation. There-
fore, as EGP-JSS generally show better performance than MLGP-JSS, we

will investigate the combination schemes for the EGP-JSS approach.

91

3.4. ENSEMBLE GP APPROACH RESULTS

C6'TFECETTCS FIR8CI LET F ILTI
860 F8¢'L €EEF6TL ¥L0F099
¢90F80€ GGTF€E8C V6 0+ 99¢
6¢0F 6L T SV TF89T ¥I'0F 69T
8CCF IV LISV L F €EIT 60 F VGGl

90°¢ F €9°0T ¢6°¢€ + 6¢°0T 99°0 F 98°6
60'T+06'¢ ¥9¢C+ L8G GE€0F 9GS
€V'0+ 08¢ 6T+ L9¢ ST°0+8F¢C
1¢0F 99T 8CTFVIT LOOF6V'T
09°CF LE'GT GL'9 F 9GVT €L°0 F 66°€T

([o1 2] "%L6 ‘0¢)
(0T “%L6 ‘05)
(87%L60S)
(9°%L60S)
(V'%L60S)

VETFOSTICTGS F+CETT0L0F LL0T
180 F9%'¢c 79T Fcc'c 0€0F L0C
GEOFO0ST L8OFOVT LTOFIET
¢C'CF06'LT96°L + ¢O'LT 9€°T + €8°GI
V&'T+€6°0T TGV +89°0T ¥8°0 + ¢6°6

VT F+ V0T 497 +61°0T 740 + €9°6
09°'0F99'¢ LV'I+.Lce v¢'0F8I¢C
T€E0F 09T I80FOVT ¢I'0+FSET
€9CTFI6TVITI9F EVTI9L°0 F CL'ET
G9'T+2CI'6 ¢6€FL06 T90F€ESS

([01 2] %26 ‘ST)
(0T ‘%26 ‘ST)
(87%L6 ‘ST)
(97%L6 ‘ST)
(P '%L6°62) | orx)

G8°0F €8¢ GRTFT14¢¢ 0€0FcE€
LEOF6LT PLOFGIT GT'0OF8GT
ERTF PV IT8CY F 9601 LT F ¥00I
00T+ 07’2 €8¢+ Tc’L €L0F 099
LLOFI99°€ 99T+ G¢€ 760+ c0€

96°0F LG°€ LGTF6C€ 61°0F61T€
LGOFILT 990+ 99T OT'0+F €91
WTI+7L8 0CEF2C98 T90F8CS
10T F28'6¢ S¢'¢cF€8G 0€0F9¢
€0+ 00€ ¥¢'T+€8¢C SGI'0F VLT

(l01°2] %0609)| 11y
(0T “%06 ‘0S)
(879%06 0S)
(99%06 ‘0)
(¥ "%06 ‘05)

T1€0F8GT 69°0F8F'T ¢l'0F IV'T
99T+ L€6 CEE€EFIT6 LI'TFIT8
760+ 606G ¢OT+¥cS €EL0OF LT
8V'0F LLC GCTTF+19C 160+ SG¥e
¢E0F 6T GLOFERT 9T°0F €LT

0c0Fcr'T 050F¥ET L00F 0€°'T
66'T+¢C69 8E'CF+ €89 €V0F €SI
080+ G8€ TCT+06€ ¥¢'0F+7V9€
L0+ 0€C 66'0+Fccc OT'0F8IC
8T'0F GG'T 8G'0FES'T 900 F 671

(ot ‘g “%06 ‘st)
(0T “%06 ‘ST)
(8°%06 ‘Sz)
(99%06 ‘ST)
(V%06 ‘ST)

ST¥C 2029 ARKd 1029 6L0L GGeoT1 (8) auury, uonnjoay
o SS-ADTN - SS[-dDH) SS[-IDTN - SSI-dDH
dog do, josqng ejyeq

"dog pue doj WOoIJ PIA[OA

aIe Sa[NY "[OPOW UOTIe[NUIS }S3) 9} 1940 saypeordde Jo) ay3 Jo seoueuriojrad ayj jo uostredwo)) 3¢ ajqer.

92 CHAPTER 3. ENSEMBLE-BASED GP APPROACHES TO DJSS

3.4.2 Best Rule Comparison

After comparing the rule sets, the best rules from the GP approaches are
compared against each other and benchmark man-made dispatching rules.
The benchmark man-made dispatching rules are earliest due date (EDD),
tirst-in-first-out (FIFO), shortest processing time (SPT), ATC and cost over
time (COVERT) [125, 148]. EDD, FIFO and SPT are simple but frequently
used rules in the literature [125]. On the other hand, ATC and COVERT are
effective rules for tardiness related objectives [148]. Comparing the best
GP rules allows us to determine whether it is possible for an evolved sin-
gle GP rule to handle the sequencing decisions as effectively as an evolved
ensemble. If best single rules can perform competitively as the best en-
sembles, this implies that single rules can exhibit the similar behaviours
as ensembles. The results for the best GP rules evolved on training set 4op
are shown in Figure 3.3, and the best GP rules evolved on training set 8op

are shown in Figure 3.4.

From the results shown in the figures, the best GP rules evolved by
EGP-JSS, MLGP-JSS and the benchmark GP show comparable performances
to each other. The best rules evolved on training set 4op outperform the
benchmark man-made rules in all simulation configurations, whereas the
best rules evolved on training set 8op outperform the man-made rules on
simulations with a utilisation rate 90%, and do not have worse perfor-
mance than the man-made rules on simulations with utilisation rate 97%.

The GP rules having comparable performance shows that GP can evolve
single rules that can handle the complex sequencing decisions as effec-
tively as ensemble rules. However, EGP-JSS and MLGP-JSS being better
overall than the benchmark GP approach show that the GP can more con-
sistently evolve good rules by handling the sequencing decisions using
ensembles.

3.4. ENSEMBLE GP APPROACH RESULTS

93

<25,90%,4> 1500 <50,90%,4> <25,97%,4> <50,97%,4>
600 40001
1000 20001]
400 - 3000
. 20001
200 500 1000/ -
10001
I 0 ! I I
<25,90%,6> <50,90%,6> <25,97%,6> <50,97%,6>
1000 5000/ :
750 1500 40001 10001
500 1000 30001 ' s
: H 20001 H 5001 . *
250 500 1
H #* 10001 #
. | | 0+ .
<25,90%,8> <50,90%,8> <25,97%,8> 1500 <50,97%,8>
21000 .
= 750 2000 000 - 1000
e . 400{ ... o
S 500 . 5001 -
g “ H 1000 H 200
> 250 &
. . 0 . 0 :
<25,90%,10> <50,90%,10> <25,97%,10> <50,97%,10>
2000 15001 20001
600
1500 10001 .. 1500;
— 400
10007 * : 00l i1 10001
SR AL A,
O.
<25,90%,[2,10]> <50,90%,[2,10]> <25,97%,[2,10]> <50,97%,[2,10]>
. 30001
600
1500 30001
20001
400 1000 20001
; 10001
" WY oy BB

DJSS Scenarios

EBEGP-JSS EMLGP-JSS &GP EEDD EFIFO EBSPT EATC EBCOVERT

Figure 3.3: Comparison of the performances of the best GP rules and
benchmark man-made rules over the test simulation model. Rules are

evolved from 4op.

94 CHAPTER 3. ENSEMBLE-BASED GP APPROACHES TO DJSS
<25,90%,4> 15001 <50,90%,4> <25,97%,4> <50,97%,4>
600- 4000
1000+ 2000
400 ' . 3000
<o 2000
| 500 1000
S LI
| 0- | | |
<25,90%,6> <50,90%,6> <25,97%,6> <50,97%,6>
1000+ 5000 :
750+ 1500 4000 1000
500- 1000- 3000 RN
H H o . o iy e
250- 500+
1000
| | | o W o
<25,90%,8> <50,90%,8> <25,97%,8> 1500 <50,97%,8>
%1250- 30001 800 "G T
[J] 1 J .
5 000 2000- 600 " |1000
g 750 . 400{ .-. Wl
c] . : 500{ .-
é 500 H* * 1000 H 200 H *
250- l . 0 . 0 |
<25,90%,10> <50,90%,10> <25,97%,10> <50,97%,10>
1500
| 2000
2000 5001
1500- 1000 1500
| A : 1000
1000- | s00l
500+ 200 H 500
0
<25,90%,[2,10]> <50,90%,[2,10]> <25,97%,[2,10]> <50,97%,[2,10]>
| 8 3000
600
1500- 3000
| 2000
400 1000+ 2000
200+] i 1000
wY)
| 0 : |

DJSS Scenarios
EBEGP-JSS ®BMLGP-JSS ®EGP ®sEDD ®sFIFO ®8sSPT EBATC BECOVERT

Figure 3.4: Comparison of the performances of the best GP rules and
benchmark man-made rules over the test simulation model. Rules are

evolved from 8op.

3.5. ENSEMBLE COMBINATION SCHEMES 95

3.5 Ensemble Combination Schemes

This section describes the combination schemes investigated for the EGP-
JSS approach and the modifications to the EGP-JSS approach required to
incorporate some of the combination schemes. The combination schemes
investigated are majority voting, linear combination, weighted majority
voting and weighted linear combination [126]. To evolve ensembles that
use weighted majority voting and weighted linear combination scheme
EGP-JSS, a genetic algorithm (GA) [81] subpopulation is added to the EGP-
JSS approach where the GA individuals represent the weights of the en-
semble members from the GP subpopulations.

3.5.1 Combination Schemes Investigated

To combine the ensemble member outputs during the job sequencing de-
cisions at decision situations, the priority values J;, assigned to a job j
by an ensemble member z is converted to a score value Score(j, z). Af-
ter summing up the score values assigned to each job, the job with the
highest sum score is selected by the ensemble to be processed by the ma-
chine at the decision situation. In addition, the ATC rule [148] is used as a
tiebreaker in situations where two jobs with the highest scores have equal
scores as each other. The priority to score conversion for each combination

scheme is given in detail below.

Majority Voting:

As described above in Section 3.2.3, majority voting selects the job with the
most number of votes given by the ensemble members. In other words, an
ensemble member z contributes a score Score(j,z) = 1if job j is assigned
the highest priority by the ensemble member. Otherwise, ensemble mem-

ber z contributes a score of zero to job j.

96 CHAPTER 3. ENSEMBLE-BASED GP APPROACHES TO DJSS

Linear Combination:

The score of a job assigned by a member is normalised from the assigned
priorities using min-max normalisation. Given that a member x assigns
priorities 01 ,,...,0x, to the K jobs waiting at the machine, the priority
assigned to job j is converted into a score Score(j, z) as shown in Equa-
tion (3.6). In the Equation, i, and dyax are the minimum priority and
maximum priority assigned to all jobs waiting at the machine by member
.

Score(j,x) = g = Omin (3.6)

6max - 6min
Weighted Majority Voting:

Each member x has a weight IV, in weighted majority voting. The ensem-
ble member x contributes score Score(j, z) = W, to a single job j with the
highest assigned priority by ensemble member z, and zero scores to other

jobs waiting at the machine at the decision situation.

Weighted Linear Combination:

Each member x has a weight IV, in weighted linear combination. An in-
termediate value is first calculated for a job j by ensemble member = by
normalising the priorities (Equation (3.6)). Afterwards, the intermediate
value is multiplied by the member’s weight W, to get the final score con-
tributed towards job j by ensemble member .

Combination Scheme Example:

When applied to a decision situation, different combination schemes can
potentially select different jobs for processing. For example, Figure 3.5
shows ensembles with combination schemes being applied to a decision

situation with five jobs. In the tables, the six ensemble members have

3.5. ENSEMBLE COMBINATION SCHEMES 97

the weights 3.5,1.0,2.0,1.2,2.5,6.5. For the majority voting scheme, job 1
is selected as rules 2, 3 and 4 vote on job 1. For the linear combination
scheme, job 4 is selected because rules 1 and 5 heavily favour job 4 and
job 4 has the second highest priorities for rules 2 and 3, resulting in job 4
having a higher score than job 1 overall. For the weighted majority vot-
ing scheme, job 3 is selected because rule 6 has a high weight compared
to the other rules, resulting in a higher score. Likewise, job 3 is selected
for the weighted linear combination because of the high weight of rule 6
contributing towards the total score towards the job. The different out-
comes for the decision situations encountered by the ensembles using the
different combination schemes may lead to the ensembles generating sig-
nificantly different schedules and performances overall. It may also lead
to significantly different rule structures and behaviours being evolved by
EGP-JSS.

3.5.2 Incorporating Weighted Combination Schemes to EGP-
JSS

To evolve ensembles that use weighted combination schemes, EGP-JSS’s
GP process is modified to evolve weights for the ensemble members si-
multaneously in a single evolutionary run. This allows us to evolve weighted
ensembles with similar computation times as the computation times re-
quired to evolve unweighted ensembles, as other approaches (such as a
two-step procedure) would require extra computation after the GP pro-
cess is completed. Given that there are S GP subpopulations of size K,
an additional (S + 1)th GA subpopulation of size Ky are also initialised
along with the GP population. The GA individuals are real-valued vec-
tors of length S, where the gene value at index i corresponds to the weight
W; of an individual from subpopulation i. The gene values have a lower
bound of zero, which prevents the member weights from being negative.

On the other hand, from pilot experiments, we found that the choice in the

98 CHAPTER 3. ENSEMBLE-BASED GP APPROACHES TO DJSS

Job 1 Job 2 Job 3 Job4 Job5

/0.100.100.200.800.10
Rule 1 0.80‘0.10‘0.10‘0.70‘0,60 \
Weight 3,

/

Rule 2
Weight 1.0
Rule 3
Job |/ Weight 2.0
5 Rule 4
eight 1'2‘{ o.eo‘ o.so‘ 0.10‘ 0.20‘ 0.30
Rule 5 N
Wajght 2.5
Rule 6

Weight G-S\ﬁ 0.20‘ 0.10‘ 0.30‘ 0‘90‘0.70 /

Job1Job2 Job3Job4 Job5

3.0 ‘ 0.0 | 1.0 ‘ 2.0 ‘ 0.0 H Job 1 ‘
Majority Voting
186’—»{ Job 4 ‘

Linear Combination

0.0 H Job3 ‘

Weighted Majority Voting

3.07H Job3 ‘

0.90‘0.20‘0.40‘0.60‘0.10 (313

0.93‘ 1.77‘ 3.68

Job
4

Job
1

Job
2

Job
3

a 42 ‘ 0.0 ‘ 6.5

6.0

4.51‘ 1.21 8.38‘8.35

Weighted Linear
Combination

0.10‘0,10‘0.90‘0.10‘0.10 /

Job Priorities Job Scores Job Selected

Figure 3.5: Examples of the combination schemes for an ensemble with
six members being applied to a decision situation with five jobs waiting at
the machine. The weights of the members are W = 3.5,1.0,2.0,1.2,2.5,6.5

respectively.

upper bound did not make a significant difference in the performance of
the weighted ensembles during the preliminary experiments. Therefore,
the upper bound of ten is selected as a rule of thumb.

Similar to how a GP individual in EGP-JSS is evaluated, a GA indi-
vidual is evaluated by grouping it up with the representatives from the
GP subpopulations to form a weighted ensemble. An example of this is
shown in Figure 3.6, where the ensemble consists of GP individuals I1, I2
and I3 from the three GP subpopulations. Afterwards, I1, 12 and I3 are
weighted using the values from GA 1. The weighted ensemble is then
applied to the training instances, and the fitness of the GA individual is
calculated as described in Section 3.2.3. After all GP and GA individuals
have been evaluated, the GA representative is updated to the individual

with the best performance. Afterwards, standard one point crossover op-

3.6. DIVERSITY MEASURES 99

12 GA1l
1 11 12 13
Group GP and
GAindividuals GA1 W1 w2 W3
into an
13 ensemble Ensemble

GA Apply ensemble

Subpop 1 Subpop 2 Subpop 3 Population to training set
and update
GP fitnesses of
Population individuals

Figure 3.6: Example of modified EGP-JSS generating an ensemble with
weighted members.

erator and a Gaussian mutation operator [81] are used for breeding the
next generation of individuals. The output of the GP process is the repre-
sentatives from the GP subpopulations that form an ensemble, along with
the representative from the GA subpopulation that assigns the weights to
the members of the ensemble.

3.6 Diversity Measures

Based on the EGP-JSS algorithm, we carry out several behavioural analy-
ses of the evolved ensembles that are evolved with different combination
schemes. Many researchers that have proposed GP-HH approaches in the
literature to DJSS have also analysed the structures of the rules evolved
by GP-HH (i.e. genotype [80]) and the behaviours (i.e. phenotype [80])
of evolved rules [17]. However, due to the limited ensemble evolution-
ary scheduling approaches to DJSS in the literature [42, 56], the amount

of analysis on the behaviours of evolved ensembles is limited. For exam-

100 CHAPTER 3. ENSEMBLE-BASED GP APPROACHES TO DJSS

ple, Hart and Sim [56] have carried out both structural and behavioural
analysis of ensembles evolved by their hyper-heuristic approach. They
performed an extensive analysis of ensembles” performances and analyse
the relation between the structural make-up of the ensembles (using the
terminal distributions) and how well it solves specific problem instances.

Analysing and observing the behaviours of the evolved ensembles is
important for understanding exactly how ensemble GP-HH can outper-
form standard GP-HH approaches, allowing us to exploit the advantages
of ensemble-based approaches while avoiding the disadvantages. In an
ensemble, the dispatching rule members that collaborate with each other
need to make diverse but effective decisions for the ensemble to be effec-
tive [126]. For example, one ensemble member may prioritise jobs with
short processing times, and another ensemble member may prioritise jobs
with urgent due dates. Both processing times and due dates are important
attributes in a scheduling decision-making process [97], and each deci-
sion situation will likely require rules that are comprised of complex com-
binations of the shop floor attributes to make an effective decision. In
classification, complex decisions occur at the class boundaries, where it is
ambiguous whether an instance belongs to one class or another [126]. Re-
search in classification has shown that classifiers with single constituent
components often cannot cope with complex decisions and is unable to
map the class boundaries effectively [126]. If an ensemble in JSS is not di-
verse enough, it would perform no better than a single dispatching rule,
and make potentially bad decisions that single constituent rules are likely
to make [126].

It is unlikely that analysing the ensembles through structural analy-
sis will give clear results on the interactions between the different mem-
bers of the ensembles. The arithmetic trees in the GP evolved dispatching
rules often have redundancies in the tree [17], and multiple different tree
structures can potentially lead to rules with similar behaviour. Multiple

sources in the literature have shown that comparing the behaviours of the

3.6. DIVERSITY MEASURES 101

trees is more effective than comparing the structures of the tree when used
to calculate the fitnesses of the individual in the GP population for surro-
gate modelling [59] and diversity measures [101]. Therefore, we introduce
and justify the following analysis measures to quantify the interactions
between the members of an ensemble: the level of “conflicts” between the
decisions made by the individuals, the highest level of “contribution” that
a member of an ensemble makes towards the overall ensemble decisions
(i.e. an ensemble’s “bias” towards a specific member), and the spread of

JoAL3

the members” “importance” on the scale of the ensemble as a whole.

3.6.1 Measuring Behaviours of Evolved Ensembles

For calculating the different analysis measures for an evolved ensemble,
the ensemble is first applied to decision situations directly sampled from
the DJSS problem instances. These decision situations are generated by ap-
plying a sampling dispatching rule over a number of problem instances. The
selected decision situations encountered by the sampling rule have at least
€ jobs waiting at the machines. Afterwards, out of the decision situations
with at least ¢ jobs, €2 decisions are uniformly selected with equal proba-
bilities to be the sample decision situations that the evolved ensembles are
applied to when calculating the analysis measures. € parameter allows us
to tune the complexity of the decision situations (due to the greater num-
ber of jobs the ensemble needs to account for) and its potential impact on
the quality of the schedule.

It is possible that a decision situation with a greater number of jobs
has a greater impact on the quality of the final schedule than a decision
situation with a smaller number of jobs due to the greater number of wait-
ing jobs that may potentially lead to “bad” decisions if they are selected.
Directly sampling decision situations is advantageous because generating
decision situations manually is difficult, and using a sampling rule allows

us to sample decision situations directly from the problem instances that

102 CHAPTER 3. ENSEMBLE-BASED GP APPROACHES TO DJSS

the evolved rules will be evaluated on. In addition, as they are sampled
directly from the simulations, it is likely that the sampling method gives a
better representation of the decision situations encountered by the evolved
rules than manually generating decision situations. Given a set of decision
situations, we design the following three new measures to analyse the be-
haviours of the ensemb]e.

3.6.2 New Measure 1 - Decision Conflict (DC)

Decision conflict (DC) measure calculates the proportion of sampled deci-
sion situations where the members of the ensembles have assigned highest
priorities equally between two or more jobs in decision situations, i.e., how
often the top decisions “conflict” with each other. For a decision situation
J out of (2 sampled decisions, suppose there are K; jobs waiting at the ma-
chine and the member z of ensemble £ assigns the highest priority to a
job jj.. Then the number V; ;- of members that assign the highest priority
to job j* at decision j is given by Equation (3.7). From this, we get DC(E)
in Equation (3.8), where it is the proportion of decisions out of €2 decisions
where there are at least two jobs are tied for the highest number of top

priority assignment.

Vi~ =z € E|j* = jju}| (3.7)
1. o
DC(E) = {7 e [L,--. 9, 30, j[i # j Amax{Viu} = Vig = Vi [} (3.8)

For the majority voting combination scheme, DC calculates the pro-
portion of times when a tie in the number of votes occurs between the
members of the ensemble. This results in the tiebreaker (the ATC rule)
being used to resolve the tie between the top voted jobs for the majority
voting scheme. For the other combination schemes, the tiebreaker is un-
likely to be used, as the jobs are selected based on the total scores that
are real-number values. However, DC measures how often members” “bi-

ases” towards specific jobs at the decision situations conflict with the other

3.6. DIVERSITY MEASURES 103

members of the ensembles. If the members of the ensemble are diverse,
then it is likely that the different members of the ensembles are biased

towards different jobs for a high number of complex decision situations.

3.6.3 New Measure 2 — High Contribution Members (HC)

High contribution member (HC) measure calculates the proportion of sam-
pled decision situations where the decisions of the highest contributing
member match-up with the decisions made by the ensemble £, i.e., mem-
ber whose decisions most align with the decisions made by the ensemble.
For a decision situation j out of) decisions, suppose that a member x of
an ensemble E assigns the highest priority to job j;,. If a job is selected
by ensemble E, then the decision between member x and ensemble £ it-
self can be considered to be “overlapping” for decision j. In other words,
given that ensemble E selects job j; z at decision j, the overlap ¢}'G be-
tween member = and ensemble £ over (2 decisions is given by Equation
(3.9). Afterwards, we get HC(E) in Equation (3.10), where it is equal to the
member with the most overlap with the ensemble over (2 decisions.

1, .. : ;
HS — §|{] el,....Qjjz = Jjr} (3.9)

C
z, B
HC(E) = max{¢}'g (3.10)

This measure is useful for determining the effectiveness of evolved en-
sembles which have strong biases towards specific members in the en-
sembles. For example, having ensembles with high HC values but with
poor test performances indicates that ensembles are biased towards single
members and hence lose effectiveness. This would support the idea that
the ensembles that behave similar to single rules and are not able to han-
dle different types of complex decisions which may arise during a DJSS
problem instance by itself. On the other hand, the converse (i.e. high HC
and good test performance) will show that having a single highly biased

member in the evolved ensembles may be more effective for scheduling.

104 CHAPTER 3. ENSEMBLE-BASED GP APPROACHES TO DJSS

3.6.4 New Measure 3 — Low Job Ranks Members (LJR)

Low job ranks (LJR) measure calculates the worst average ranks of the en-
semble members using a rule ranking system adopted from Hildebrandt
and Branke [59], i.e., the “spread” of the decisions made by the ensemble
members. First, at decision j the jobs are ranked based on the scores as-
signed to them by an ensemble E. In other words, the top job, i.e., the job
selected by the ensemble to be processed, is ranked 1, the second highest
scored job ranked 2, and such. Afterwards, for a member x of ensemble
E, it is assigned a “decision-rank”, denoted as r;, based on the rank of
the job that it assigned the highest priority to. Member rank r;, is then
normalised based on the number of jobs waiting at the machine (X)) at
decision j, i.e., . = r;,/K;. An example of how a member’s normalised

ranks for the decision situations are calculated is shown in Table 3.5.

Table 3.5: Normalised rank calculation for a member z of an ensemble F

over () decision situations.

Decision | Jobs | Priorities by Member 2 | Rank by ensemble £ | 7%

) 1 0.9 1 i
2 0.2 2 2
1 0.1 4
2 0.1 5

2 3 0.2 3 3
4 0.8 1
) 0.1 2
1 0.2 1

Q 2 0.7 2 2

0.1

After the normalised member ranks are calculated, LJR is given by the
member of the ensemble which has the worst average normalised member
rank values, i.e., the member whose biases towards specific jobs in deci-

sion situations are ranked poorly by the ensemble. This is given in the

3.7. ENSEMBLE COMBINATION SCHEME EXPERIMENTAL DESIGN105

equation as follows.

Q
LIR(E) = mgx{% > i) (3.11)
j=1

LJR is proposed to measure the diversity in decisions made by the en-
semble members. High LJR value for an ensemble implies a high distri-
bution in the ranks, which may show that ensemble members are highly
diversified. Combined with the results from the ensembles’ performances,
this may allow us to observe whether the diversity of the ensembles’ de-
cisions through combination schemes either positively or negatively cor-
related with the performances of the ensembles over the DJSS problem

instances.

3.7 Ensemble Combination Scheme Experimen-

tal Design

This section covers the experimental design to evaluate and analyse the
ensemble combination schemes incorporated into the EGP-JSS approach.
The experimental setup and parameter settings are mostly kept consistent
as the ones used to evaluate the EGP-JSS and the MLGP-JSS approaches
that use majority voting (Section 3.4). Therefore, this section discusses the
parameters that have been modified to further improve the benchmark
GP and the EGP-JSS approaches. First, we describe the adjustments to the
experimental designs discussed in above (Section 3.4) and then describe
the GP parameters used by the unweighted EGP-JSS (majority voting and
linear combination) and the weighted EGP-JSS (weighted majority voting

and weighted linear combination) approaches.

106 CHAPTER 3. ENSEMBLE-BASED GP APPROACHES TO DJSS

3.7.1 Adjustments to Ensemble GP Experimental Design

The DJSS dataset used to evaluate the EGP-JSS approach with the different
combination schemes is the simulation model used by Hunt et al. [66] as
described in Section 3.4.1. However, during training for the benchmark GP
and the EGP-JSS, a different seed is used in conjunction with the training
set’s simulation configuration at every generation. This results in different
DJSS training instances being used to evaluate the GP individuals. This
has been shown to improve the generalisation ability of the rule output
from the GP process compared to fixing the seed [60].

3.7.2 EGP-JSS Parameter Settings

The GP parameters required for the EGP-JSS approaches are shown in Ta-
ble 3.6. In the table, the “Common Parameters” category are the parameter
values shared by all EGP-JSS approaches with the different combination
schemes. “Unweighted EGP-JSS Parameters” category are the parame-
ters specific to the EGP-JSS approach that uses majority voting and lin-
ear combination schemes. “Weighted EGP-JSS Parameters” category are
the parameters specific to EGP-JSS approach that use weighted majority
voting and weighted linear combination schemes. The EGP-]JSS with the
weighted combination schemes has a reduced GP subpopulation size to
account for the GA subpopulation. The parameters used by the bench-
mark GP approach used for comparison against the EGP-JSS approaches
are kept consistent as the GP parameters described in Table 3.3.

3.8 Ensemble Combination Scheme Results and

Discussions

This section covers the evaluation and the analysis of the EGP-JSS ap-

proach with the different combination schemes. First, we provide the plot

3.8. ENSEMBLE COMBINATION SCHEME RESULTS AND DISCUSSIONS107

Table 3.6: GP parameters used by the EGP-JSS for the different combina-

tion schemes.

Approach Parameters Value
Unweighted No. of GP subpopulations 4
EGP-JSS Subpopulation size 256
Parameters No. of GP subpopulations 4
GP subpopulation size 231
Weighted GA subpopulation size 100
EGP-JSS GA crossover /mutation /reproduction | 90% / 10% / 0%
Parameters rate
GA genome value range [0,10]
Crossover type One-point
Mutation distribution Gaussian dist. with
std. of 0.5

of the fitnesses of the individuals in the ensemble GP approach with the
different combination schemes as they are applied to the two training sets
4op and 8op to evolve the dispatching rules. This is done thirty times to
evolve a set of dispatching rules that are compared based on their perfor-
mance over the simulation model described above (Section 3.3.1). After-
wards, the analysis procedure described above (Section 3.6) is carried out
on the ensemble GP approach with the different combination schemes to
measure the values of DC, HC and LJR from the evolved rules. The dis-
cussion of the results will be provided after all results have been provided,
i.e., after the results from the analysis procedure applied to the ensemble
GP approach with the different combination schemes.

3.8.1 Combination Scheme Training Fitness Convergence
Curves
The training performances of the EGP-JSS evolved using the different com-

bination schemes are evaluated against the training performance of the

benchmark GP as follows. For a GP run, the training performance at a

108 CHAPTER 3. ENSEMBLE-BASED GP APPROACHES TO DJSS

4op 8op
2.0-
3
_ 157
2
= 2
£
o
Z10-
1
0.5-
0 10 20 30 40 50 0 10 20 30 40 50

Generation

GP-JSS—EGP-MV—EGP-LC—EGP-wMV—EGP-wLC

Figure 3.7: The average fitnesses of the GP approaches over the training
sets.

specific generation is the individual with the best fitness in the popula-
tion. For an EGP-JSS run, the training performance at a specific genera-
tion is the average performance of the individuals with the best fitness in
each subpopulation. The average performance best individuals are used
instead of the ensembles, as the best individuals will be updated as the
representative and directly affect how the ensembles are generated in the
next generation. The training performances over the generations are then
averaged out over the multiple independent runs. The average training
performances of the GP approaches are shown in Figure 3.7. EGP-JSS
evolved using majority voting is called EGP-MV, EGP-JSS evolved using
linear combination is called EGP-LC, weighted majority voting is called
EGP-wMYV, and weighted linear combination is called EGP-wLC.

For the rules evolved over 4op, we can see that the different GP ap-
proaches except EGP-wMYV roughly converge to the same output, whereas
EGP-wMYV consistently has worse training performance over the genera-
tions than the other approaches. On the other hand, for the rules evolved

over 8op, EGP-LC rules have significantly worse training performance than

3.8. ENSEMBLE COMBINATION SCHEME RESULTS AND DISCUSSIONS109

the other rules over generations between 10 and 30. However, EGP-LC
rules converge to similar training performances as the other GP rules after

generation 30.

3.8.2 Combination Scheme Test Performance

The rules evolved by EGP-JSS on the different combination schemes and
the benchmark GP rules are applied to the training and test sets to com-
pare the performances. As described in the comparison of EGP-JSS and
MLGP-JSS above, a rule is applied to each simulation configuration 30
times to calculate the rule’s performance from the mean tardiness objec-
tive values of the generated schedules. In addition, the EGP-JSS rules and
the benchmark GP rules are compared in terms of their performance using
two-sided Wilcoxon’s signed-rank test at p = 0.05. The performances of
the rules over the entire simulation model are shown in Table 3.7 for the
rules evolved from 4op and in Table 3.8 for the rules evolved from 8op. In
the tables, “Training Set” shows the average mean tardiness over the four
simulation configurations from both 40p and 8op. The sections highlighted
with red mean that the EGP-JSS with the particular combination scheme is
significantly worse than the benchmark GP approach for the simulation
configuration, and the sections highlighted with blue mean that EGP-]JSS
rules performed significantly better than the GP rules.

From the results of the test set, EGP-LC rules evolved on both 40p and
8op outperform the benchmark GP approach, where they perform signif-
icantly better than the benchmark GP rules for many simulation config-
urations. For the 4op rules, EGP-MV has comparable performance to the
benchmark GP. On the other hand, for the 8op rules, EGP-MV is generally
better than the benchmark GP and EGP-wLC is generally worse than the
benchmark GP. Finally, EGP-wMYV performs the worst out of the EGP-JSS
approaches, with poor performance in comparison to than the benchmark
GP approaches.

110 CHAPTER 3. ENSEMBLE-BASED GP APPROACHES TO DJSS

Table 3.7: Comparison of the performances of EGP-JSS (with the different
combination schemes) and the benchmark GP over the simulation model.

Rules are evolved from 4op.

EGP-JSS
Data Subset GP
EGP-MV EGP-LC EGP-wMV EGP-wLC

Training Set 1.78+1.86 1.63+£1.70 1.89+1.97 1.71+£1.79| 1.73 £ 1.86
(25,90%, 4) 1.49+0.06 1.39£0.09 1.60=+0.11 1.44 +£0.10] 1.49 £0.20
(25,90%, 6) 2.22+0.11 2.06£0.12 2.45+0.23 2.15+0.19| 2.38 £0.74
(25,90%, 8) 3.30 £ 0.22 2.96 +0.38 3.24 +0.61 3.08 4+ 0.46| 2.99 + 0.56
(25,90%, 10) 6.03 + 0.37 5.56 +0.66 6.17 +0.91 5.73 +0.65| 5.99 + 2.14
(25,90%, [2,10])| 1.324+0.07 1.23+0.09 1.46 +0.15 1.30+0.11| 1.37 +0.29
(50,90%, 4) 2.86 +0.19 2.64 +0.20 3.31 £0.39 2.87 +£0.29| 3.25 +1.27
(50,90%, 6) 5.11£0.31 4.69+0.62 5.12+0.72 4.84 +£0.60| 4.82 £0.84
(50,90%, 8) 7.95+ 0.50 7.30 +0.84 8.274+0.90 7.61 +0.65| 8.11 &+ 3.01

MT (50,90%, 10) 1.60 £0.11 1.49+0.14 1.85+0.24 1.62+0.20 1.75 £ 0.47
(x102)|(50,90%, [2,10])| 3.30 £0.23 3.0540.29 3.79 +0.43 3.32+0.42| 3.84+ 1.72
7 (25,97%, 4) 796 £0.55 7.354+1.10 7.88+1.22 7.52+1.01| 7.47 £ 1.50
(25,97%,6) |13.18 +0.80 12.54 + 1.66 13.90 + 1.55 12.92 £ 1.20|13.90 + 4.82

< 25,97%, 8 > 1.40£0.12 1.33£0.18 1.66 =0.26 1.45+0.21| 1.58 £0.49
(25,97%, 10) 227+0.23 2.114£0.28 2.73+0.46 2.38 £0.45| 2.89 £ 1.82
(25,97%, [2,10])| 9.10 £0.67 8.64+1.41 9.19+1.25 876+ 1.11| 891+ 1.77
(50,97%,4) (13.95 4+ 1.00 13.19 + 1.80 14.96 + 1.35 13.75 + 1.36/15.16 + 5.48
(50,97%, 6) 1.52+0.09 1.44+£0.12 1.71 £0.17 1.54 £0.16| 1.64 £ 0.33
(50,97%, 8) 2.54 +£0.17 238 4+0.22 2.95+0.35 2.59 £0.28| 2.95+1.16
(50,97%, 10) 5.07 £ 0.37 4.69 +0.67 4.97 +0.85 4.79 + 0.68| 4.72 + 0.91
(50,97%, [2,10])| 9.20 £0.65 8.63+1.12 9.40 +1.32 8.83 £0.99| 9.28 + 3.37

3.8.3 Behavioural Analysis and Further Discussion

For each test simulation configuration in the simulation model, a prob-
lem instance is generated and DC, HC and LJR are calculated for EGP-]JSS
approaches using the procedure described in Section 3.6. The parameters
that need to be set are the minimum number of jobs waiting at a decision

situation (¢) and the number of decision situations (2). After the param-

3.8. ENSEMBLE COMBINATION SCHEME RESULTS AND DISCUSSIONSI111

Table 3.8: Comparison of the performances of EGP-JSS (with the different
combination schemes) and the benchmark GP over the simulation model.

Rules are evolved from 8op.

EGP-JSS
Data Subset GP
EGP-MV EGP-LC EGP-wMV EGP-wLC

Training Set 1.91 £2.01 1.81+£1.93 2.224+2.36 1.98+2.09| 1.86 £+ 1.97
(25,90%, 4) 1.57+0.07 1.50+0.16 1.80+0.27 1.63 +0.18| 1.56 +£0.17
(25,90%, 6) 2.27+£0.10 2.16 £0.18 2.61 +£0.33 2.33 £0.20| 2.37 £0.22
(25,90%, 8) 3.834+0.36 3.76 = 0.90 4.77 +1.30 4.33 £ 1.04| 3.67 + 1.07

< 25,90%, 10 > 6.83£0.54 6.67+1.31 8.41+2.01 7.66 £ 1.46| 6.82 £ 1.60
(25,90%, [2,10])| 1.31 +£0.06 1.25+0.12 1.48 +£0.17 1.33+0.11| 1.29+0.10
(50,90%, 4) 2.81 +0.12 2.70 £ 0.25 3.27 +£0.39 2.89 £+ 0.22| 2.99 4+ 0.33
(50,90%, 6) 5.66 +0.40 5.53 +1.03 6.70+1.34 6.11 £1.13| 5.47 + 1.18
(50,90%, 8) 8.69 + 0.55 8.29 +1.3710.30 £ 1.92 9.28 £+ 1.45| 8.60 4+ 1.61

MT (50, 90%, 10) 1.50 £0.07 1.44 £0.13 1.66 +0.16 1.51 +0.11| 1.52 £ 0.15
(x10?) (50,90%, [2,10])| 3.15+0.14 3.024+0.30 3.55 +0.37 3.21 +0.22| 3.25 +0.36
7 (25,97%, 4) 8.73+£0.62 8414+1.42 9.92+1.60 9.13 £ 1.51| 8.21 £1.63
(25,97%,6) |14.12 +0.84 13.63 + 1.92 16.45 + 2.21 14.95 + 1.79|14.25 + 2.00
(25,97%, 8) 1.274+0.08 1.22 +£0.13 1.41£0.15 1.30+£0.11] 1.30+0.14
(25,97%, 10) 1.994+0.15 1.94+0.26 2.294+0.28 2.10 +£0.22| 2.11 +£0.34
(25,97%, [2,10])| 9.79 +£0.62 9.28 +£1.3310.70 & 1.34 9.93 £ 1.43| 9.29 + 1.42
(50,97%,4) [14.39 £+ 0.81 13.64 & 1.56 16.00 £ 1.52 14.59 + 1.36{14.42 4+ 1.52
(50,97%, 6) 1.48+0.06 1.44 £0.12 1.68£0.18 1.54 +0.12| 1.54+0.14
(50,97%, 8) 2.48 +0.11 2.40 £ 0.22 2.85 4+ 0.32 2.59 4 0.23| 2.65 + 0.29
(50,97%, 10) 5.67+0.42 5.53+1.05 6.68+1.45 6.19 £1.19| 5.42 +1.21
(50,97%, [2,10])|10.16 £ 0.67 9.76 + 1.68 12.09 + 2.26 10.98 £ 1.77|10.11 £ 2.00

eter tuning, ¢ = 10 and 2 = 50, i.e., 50 decision situations sampled from
a problem instance are used to calculate DC, HC and LJR and the deci-
sion situations have at least 10 jobs. The results of applying the analysis
measures are shown in Figure 3.8.

From the figure, the DC values, which is used to measure the level of
conflict between the different ensemble members, do not significantly dif-
fer from each other. In addition, with the exception of the EGP-MV rules

112 CHAPTER 3. ENSEMBLE-BASED GP APPROACHES TO DJSS

e

0.2

Lo 4op 8op
0.4-
4op 8op
0.8- . f '
0.6-
e o =m

BEGP-MV EEGP-LC EBEGP-wMV EBEGP-wLC

Figure 3.8: The analysis measures for the EGP-JSS approaches plotted
against the performance over the problem instances. 4op and 8op denote
that the GP rules are evolved from the respective training sets.

evolved over 40p and the EGP-wMV rules evolved over 8op, the GP rules
evolved over both training sets have DC values over 0.39 on average. This
means that for all decision situations, the average proportions of conflict-
ing decisions made by members of the ensembles are above 39%. For ex-
ample, EGP-MV rules evolved from 4op have an average DC value of 0.39
and EGP-MV evolved from 8op have an average DC value of 0.43. This

3.8. ENSEMBLE COMBINATION SCHEME RESULTS AND DISCUSSIONS113

means that out of decision situations sampled for the 8op rules, the major-
ity voting scheme resulted in a tie for approximately 43% of the decision
situations, where this results in the ATC tiebreaker rule being used. The
relatively high DC value is significant for the EGP-MV rules compared
to the other EGP-JSS rules. EGP-LC, EGP-wMV and EGP-wLC rules use
numeric score values instead of discrete votes to determine which jobs are
selected during decision situations. This means that the ties among the top
scoring jobs are unlikely to happen in EGP-LC, EGP-wMYV and EGP-wLC
even if there are conflicts between the decisions made by the ensemble
members. Therefore, a decision situation with conflicting decisions made
by the ensemble members would affect the decision-making process of
EGP-MYV rules more than the other EGP-JSS rules. This may explain why
the linear combination schemes generally perform better than the respec-

tive majority voting schemes for the DJSS problem instances.

On the other hand, EGP-wMYV rules have high HC compared to other
GP rules evolved over the training sets, whereas the other GP rules have
similar HC values. HC is used to measure the bias of an ensemble to-
wards a specific ensemble member. Therefore, for EGP-wMYV rules there
is a single member that participates highly actively in the majority of the
decision-making process. Further considering the performance results from
earlier EGP-JSS results (Tables 3.7 and 3.8), where the EGP-wMYV rules
generally perform worse than other EGP-JSS combination schemes, it is
clear that having high HC value negatively affects the quality of the GP
evolved ensembles. As expected, we found that the EGP-wMV rules be-
have similarly to single rules given their high HC values. It increases
the difficulty for other members of an EGP-wMV ensemble to cover for
the “high-contribution” rules’ errors. This is reflected in the performance
results, where EGP-wMV generally performs worse than the other GP
evolved rules. In addition, it is likely that the unweighted combination
schemes perform better than the weighted combination schemes because

our combination of GP and GA is unable to explore the search space ef-

114 CHAPTER 3. ENSEMBLE-BASED GP APPROACHES TO DJSS

fectively and find a good configuration of weights and ensemble mem-
bers simultaneously from the search space. This may potentially cause an
underfitting problem, which is evidenced by the convergence curves for
EGP-wMYV and the test performance of EGP-wMYV rules. In the results for
the training performances of the GP individuals, EGP-wMYV shows gener-
ally worse training performances when trained over 4op, and has slightly
worse training performances near the end of the generation when trained
over 8op. In other words, the current results show that evolving individ-
uals that contribute equally towards job selection may be more beneficial

than having the individuals be weighted during the evolutionary process.

Finally, EGP-LC and EGP-wLC rules have high L]JR values, i.e., likely
have high “spread” in the decisions made by the ensemble members. In
addition, the rules that use the weighted combination schemes (EGP-wMV
and EGP-wLC) have higher LJR values than the unweighted counterpart
(EGP-MV and EGP-LC respectively). The differences in the L]JR values for
the GP rules that use the linear combination and weighted linear combi-
nation schemes against the majority voting and weighted majority voting
schemes is likely because of the information loss from converting priori-
ties to scores in the decision-making process. At a decision situation for
EGP-MV and EGP-wMYV rules, the number of jobs that are assigned votes
is at most the number of members in the ensemble, i.e., at most four with
the current GP parameter settings. Therefore, the rest of the waiting jobs
that do not have a vote will have zero scores. This means that the worst
rank for any given voted job (a job with non-zero score) will still be near
one. On the other hand, at a decision situation for EGP-LC and EGP-wLC,
the waiting jobs are likely to have been assigned non-zero score values by
the members of the ensemble, meaning that a job assigned the highest pri-
ority by a member can still have a worse rank than a job which has not
been assigned the highest priority by any members of the ensemble. This
may then lead to more ensembles that can accommodate for more diverse

ensemble members. From the results, EGP-LC rules perform well against

3.9. CHAPTER SUMMARY 115

EGP-MV rules for 40p and comparably for 8op. In addition, EGP-wLC

rules perform well against EGP-wMYV rules.

3.9 Chapter Summary

The goal of this chapter was to develop an effective ensemble GP approach
for the DJSS problem with dynamic job arrival with a focus on improving
the generality over standard GP approach. To achieve this goal, we first
investigated the ensemble algorithm that can be incorporated into the GP
approach. The two ensemble algorithms investigated are Potter and De
Jong’s cooperative coevolution [127] and Wu and Banzhaf’s multilevel ge-
netic programming [153], where these algorithms are modified to form
the ensemble genetic programming for job shop scheduling (EGP-JSS) ap-
proach and the multilevel genetic programming for job shop scheduling
(MLGP-]JSS) approaches. After investigating the ensemble algorithms that
are incorporated into the GP approach, we investigate the combination
schemes that are effective for the ensemble GP approach. The combination
schemes investigated are majority voting, linear combination, weighted
majority voting and weighted linear combination.

Out of the ensemble algorithm investigated, the EGP-JSS approach per-
forms significantly better than the MLGP-JSS approach over the DJSS dataset
used in this chapter. Because of this, we incorporated the combination
scheme to the EGP-JSS approach to compare against the benchmark GP
approach, which is a standard GP that evolves a single priority dispatch-
ing rule [103]. The results from the combination scheme show that the
EGP-LC rules generally perform better than EGP-MV, EGP-wMV and EGP-
wLC rules, and also outperform the benchmark GP approach for most of
the DJSS problem. The analysis of the rules shows that the average DC
values for all EGP-JSS approaches are quite high, which means that mem-
bers assign high priorities to different jobs. This means that combination

schemes that effectively exploit decision diversity among ensemble mem-

116 CHAPTER 3. ENSEMBLE-BASED GP APPROACHES TO DJSS

bers by reducing information loss are more desirable. This may be likely
the reason why EGP-LC performs better at handling complex decision sit-
uations than other combination schemes.

The rules that use weighted combination schemes (EGP-wMYV and EGP
wLC) generally perform worse than the unweighted counterpart (EGP-
MYV and EGP-LC respectively). For example, the performance of EGP-
wMV is generally worse than the other EGP-JSS rules and the benchmark
GP rules. From the HC analysis, it is likely that decisions made by EGP-
WMV rule ensembles are significantly biased by individual ensemble mem-
bers. In other words, EGP-wMYV rules that are evolved by the EGP-JSS ap-
proach may be behaving similarly to single dispatching rules, and that en-
sembles evolved by EGP-JSS to handle DJSS that use combination schemes
with equal weights are more effective than ensembles evolved by EGP-]JSS
to handle DJSS that use weighted combination schemes.

Finally, the analysis results show that EGP-LC and EGP-wLC have
higher L]JR values than EGP-MV and EGP-wMV. Therefore, it is possible
that EGP-LC and EGP-wLC can produce more diverse ensemble mem-
bers because less information is lost when the priority values for jobs are
converted to scores. It may also be the case that higher LJR can also be
partially correlated to better performances, as EGP-LC rules have better
performance than EGP-MV rules for 40p and EGP-wLC rules have better
performance than EGP-wMYV rules.

The DJSS problem handled by the ensemble GP approach has dynamic
job arrivals, but do not consider other types of dynamic events. In a real-
world event, it is likely that multiple types of unforeseen events occur
during processing. A popular type of dynamic events that are investigated
in the literature is machine breakdown events [115]. Therefore, the next
chapter wil carry out an investigation into the DJSS problem with dynamic
job arrivals and random machine breakdowns. The chapter afterwards
will then develop multitask GP approaches for the DJSS problem that, like
the ensemble GP approaches investigated in this chapter, evolve multiple

3.9. CHAPTER SUMMARY 117

rules simultaneously (i.e. a rule portfolio).

118 CHAPTER 3. ENSEMBLE-BASED GP APPROACHES TO DJSS

Chapter 4

GP to DJSS Problems Subject to

Machine Breakdowns

41 Introduction

Dynamic job arrivals and machine breakdowns have been extensively re-
searched in the literature [115], but there has been very little research in
the literature that has investigated large DJSS problems with both dynamic
job arrivals and machine breakdowns (i.e. DJSS problems with job arrivals
that range in the thousands [61]). In particular, no research has applied GP
to evolving dispatching rules to handle dynamic job arrivals and machine
breakdowns. Real-world scenarios are likely to have a number of unfore-
seen events that need to be accounted for and are unlikely to only have
single types of dynamic events that occur during processing. DJSS prob-
lems with a large number of dynamic job arrivals require an approach that
has short reaction times, and machine breakdowns add a significant tem-
porary bottleneck due to the relatively long duration required to repair
the machines compared to the processing times of the jobs. DJSS prob-
lems with multiple types of dynamic events is an important direction of
research that needs to be considered [102]. Therefore, combining dynamic

job arrivals with machine breakdowns provide a realistic representation of

119

120CHAPTER 4. GP TO DJSS PROBLEMS SUBJECT TO MACHINE BREAKDOWNS

practical DJSS problems.

4.1.1 Chapter Goals

The goal of this chapter is to develop an effective GP approach that can
evolve machine breakdown specific dispatching rules for the DJSS prob-
lem with dynamic job arrivals and machine breakdowns. Afterwards, we
can obtain insight into the properties of the rules effective for specific DJSS
problem domains for future GP approaches. The DJSS problem will use
mean weighted tardiness (MWT) minimisation objective, which is a pop-
ular objective used in the literature [125]. MWT minimisation objective is
a significant objective in the field of DJSS research [102], and incorporat-
ing weights into the mean tardiness objective used in the previous chapter
adds further complexity to the job sequencing decision that needs to be
handled by the GP evolved rules. To achieve this goal, we carry out the
following two sub-objectives:

e First, this chapter carries out an investigation into the efficacy of
GP for the DJSS problem. The efficacy investigation will evolve GP
rules for different machine breakdown scenarios and evaluate them
over the all machine breakdown scenarios while also coping with dy-
namic job arrivals. If the rules evolved by the standard GP approach
is effective for multiple machine breakdown scenarios outside of the
scenario that they are evolved on, then we can verify the generality
of GP over the DJSS problem. The efficacy investigation will carry
out a structural analysis of the GP evolved rules to obtain insights
into the differences in the properties of the rules evolved by GP for
different machine breakdown scenarios.

e Second, after the efficacy investigation, this chapter further studies
the usefulness of machine breakdown GP terminals in the GP ap-

proach by designing machine breakdown specific GP terminals. By

4.2. FRAMEWORK FOR INVESTIGATING THE GENERALITY OF GP121

doing this, GP can evolve rules that explicitly utilise machine break-
down information in the job dispatching decision-making process.
This may result in the evolved rules being able to make better deci-
sions for both machine breakdown and non-machine breakdown JSS
problem instances than rules evolved without machine breakdown
information. Afterwards, by analysing specific machine breakdown
GP evolved rules, we are expecting to understand further how the
rules behave in DJSS with dynamic job arrivals and machine break-
downs, allowing us to potentially develop more effective machine

breakdown GP approaches in the future.

4.1.2 Chapter Organisation

The remainder of this chapter is organised as follows. First, we provide
a description of the DJSS simulation model used to investigate the effi-
cacy of GP, a brief overview of the baseline GP. After the GP overview, the
experimental design, the results, the analysis and the discussion for the
efficacy investigation are covered. Second, we provide the description of
the machine breakdown GP terminals incorporated into the GP approach,
the design of the experiments, the results and the discussion. Finally, we
provide a chapter summary that summarises the findings of this chapter.

4.2 Framework for Investigating the Generality
of GP

This section describes the framework that is used to investigate the efficacy
of the baseline GP described above to DJSS problems with dynamic job
arrivals and machine breakdowns. This covers the DJSS simulation model
with different levels of machine breakdowns. We will also explain how
the GP is applied to the DJSS simulation models to evolve specialist rules

and generalist rules for the different machine breakdown scenarios.

122CHAPTER 4. GP TO DJSS PROBLEMS SUBJECT TO MACHINE BREAKDOWNS

4.2.1 DJSS Simulation subject to Machine Breakdowns

The DJSS simulation model A used to evaluate the efficacy of GP is mod-
ified from the simulation model proposed by Holthaus [61]. Holthaus’s
simulation model consists of discrete-event simulations that are commonly
used to evaluate GP approaches as they are applied to DJSS problems with
dynamic job arrivals [59, 60, 61, 66]. Various man-made dispatching rules
have been applied to Holthaus’s [61] simulation model to show the trade-
off in the effectiveness of the rules for the different machine breakdown
scenarios. Holthaus’s simulation model provides a reliable starting point
to begin our investigation. After adapting the simulation model, we can
tune the parameters used by the simulations to refine the experiments and
to better evaluate the GP approach.

In Holthaus’s [61] simulation model, the parameters related to gener-
ating job processing times and job arrival times are the same as Hunt et
al.’s [66] simulation model described in Section 3.5.1 (page 3.5.1). The sim-
ulations have M = 10 machines on the shop floor. For each simulation,
there is a “warm-up” period of 500 jobs which do not contribute towards
the objective value, and the simulation is terminated once the 2500th job
has been completed. The parameters for generating job arrivals are con-
sistent with Holthaus’s simulation model. The mean processing time of
the operations is 1« = 25, i.e., the processing times of the jobs are uniformly
distributed between [1,49]. The arrival times of the jobs follow a Poisson
process, with utilisation rate p = 90%, which is consistent with the util-
isation rate used by Holthaus [61]. In Holthaus’s simulation model, the
number of operations is uniformly distributed between 2 to 14 operations.
The weight of a job is either 1, 2, or 4 with probabilities 0.2, 0.6 and 0.2
respectively, which is a standard method of generating weights for jobs in
due-date related DJSS problems [66, 105].

The following parameters for generating job arrivals are modified from
Holthaus’s [61] simulation model. This thesis focuses on DJSS problems

with no re-entry, i.e., no two operations of a job are processed on the same

4.2. FRAMEWORK FOR INVESTIGATING THE GENERALITY OF GP123

machine. In other words, a job can have at most 10 operations as there
are 10 machines on the shop floor. Therefore, the number of operations
per job is modified to be uniformly distributed between 2 to 10 operations.
In other words, the expected proportion of machines required by a job to
complete the operations is py; = (2 + 10)/2 = 6. Arrival rate of jobs is
calculated from the utilisation rate, the mean processing times of opera-
tions and the expected proportion of machines required by a job as given
in Equation (3.4) on page 3.4. In addition, the parameter tightness is
different. A job j’s due date d; is calculated from the job’s arrival time 7,
tightness h, and the total processing time of operations as given in Equa-
tion (3.5) on page 3.5. Tightness of h = 3 and h = 5 are used, where h = 3
represents tight due dates and h = 5 loose due dates. This is adjusted from
the original tightness values of h = 4, 8 used by Holthaus [61]. During our
preliminary experiments, we found that due date tightness h = 8 was too
“loose” and resulted in GP evolved rules generating schedules for simula-
tions where the MWT values are zero, i.e., all jobs were being completed
before their due date.

The method for generating the machine breakdown events are consis-
tent with Holthaus’s [61] simulation model. The machine repair times and
the times between machine breakdowns (excluding the repair times) are
exponentially distributed. The mean repair time (r) and the mean time to
breakdowns (7)) are the same for all machines on the floor. In addition, for
the configuration used for the simulation, depends on the mean process-
ing times of the operations ;1 and the machine breakdown level parameter
(r). The machine breakdown level can be considered as the proportion
of time the machine is being repaired during the duration of the simu-
lation. For example, if the breakdown level 7 = 2.5% and all jobs took
2500 time units to process, then the total repair time for all machines is
approximately 2.5% x 2500 = 62.5 time units. In other words, the machine
breakdown level is given by © = /(1 + r), which means thatn = r/7 — r

[61]. The simulation model has variable configurations for the following

124CHAPTER 4. GP TO DJSS PROBLEMS SUBJECT TO MACHINE BREAKDOWNS

parameters: due date tightness (h), mean repair times of machines (r) and
breakdown level (7). The optional configurations are r € {yu, 5x, 10p} and
7 € {0,2.5%,5%}. As the simulation configurations with zero breakdown
level do not have machine breakdown, simulations with # = 0 do not
use the mean repair time parameter. Therefore, there are seven different
machine breakdown scenarios considering the different combinations of
breakdown level and mean repair times. The two due date tightness con-
tigurations and the configurations for the machine breakdowns result in a

total of 14 different simulation configurations.

4.2.2 GP-HH Training Procedure

To evolve and evaluate the GP rules, different subsets of DJSS simula-
tions in the simulation model are used to evolve different sets of GP rules.
Figure 4.1 shows an overview of how the simulation mode 1A is used to
evolve different sets of GP rules that are either “generalists” or “specialist”
over the machine breakdown level (7). The generalist rules are designed
to be effective for the different machine breakdown scenarios, whereas
the specialist rules [23] are designed to be effective for specific machine
breakdown scenarios. The specialist rules are GP rules evolved on a spe-
cific machine breakdown level, whereas the generalist rules are GP rules

evolved on all machine breakdown level.

First, the simulation model A in Figure 4.1 is partitioned into three
subsets based on the machine breakdown level. In the subsets, the simu-
lations with machine breakdown level 7 = 0 do not have machine break-
downs, and the simulations with 7 = 2.5% and © = 5% have “medium”
and “high” levels of machine breakdowns respectively. The subsets are
denoted as Ay, Ay and Ay respectively. Overall, the three subsets Ay,
Aj and Ay contain six configurations after considering the different pos-
sible combinations of due date tightness values. The specialist rules are

evolved from Ay, Ay and Ay and are designed to cope with the specific

4.2. FRAMEWORK FOR INVESTIGATING THE GENERALITY OF GP125

Machine Breakdown

n=0 n=2.5% n=5%
Level (m)
v
Generalist Rule Set A
I A Dy
Specialist Rule Set Ay Ay Ay

Figure 4.1: Overview of how the simulation model used for the DJSS prob-
lem is partitioned to train GP rules specialised for different machine break-

down configurations.

level of machine breakdown. Additionally, Ay, and Ay g combine two
smaller subsets together (e.g. Ay and Ay, for Ay/ar, and are used to evolve
“intermediate” sets of rules. If the intermediate rules are competitive by
the specialist rules, e.g., rule evolved from Ay does not perform signifi-
cantly worse than A,/ for simulations with 7 = 5%, then it is likely that
GP can generalise well over different machine breakdown scenarios even
without incorporating information about machine breakdowns. Finally,
all possible configurations in the simulation model A, i.e., configurations
from Ay, Ay and Ay combined, are used to evolve the final set of general
rules. Overall, this results in a total of 6 sets of GP rules that range from
generalists to specialist over the DJSS problem. This procedure was first
covered by Burke et al. [23] for improving the generality of the GP-HH
approach for a bin packing problem.

The set of rules evolved from a specific training set is denoted as ‘DR-
x” with the suffix as the training set. For example, DR-N denotes the set
of GP evolved rules which have been evolved from subset Ay, i.e., simu-
lations with no machine breakdowns. In addition, at each generation, the

seeds used to stochastically generate the jobs and the machine breakdowns

126CHAPTER 4. GP TO DJSS PROBLEMS SUBJECT TO MACHINE BREAKDOWNS

are rotated during the training procedure of the GP-HH. This means that
the simulations used in one generation will be different to the simulations
used for the next generation. This has consistently shown to improve the
generalisation ability of the evolved rules to DJSS problems [60].

4.2.3 GP Evaluation Procedure

The evaluation procedure for the baseline GP is modified from the evalu-
ation procedure used by the benchmark GP approach in Section 3.5.2 (97).
First, a GP individual is evaluated over a set of DJSS simulations to cal-
culate its fitness as follows. GP individual z is applied to a simulation /
as a non-delay priority dispatching rule [125]. After a schedule is gener-
ated for the simulation I and the MWT objective value Obj(z, I) is calcu-
lated, the objective value is normalised using a reference rule (as shown in
Equation (3.1) in the previous chapter). The reference rule used for the
DJSS problem with dynamic job arrivals and machine breakdowns is the
weighted apparent tardiness rule (wATC) [148], which is a modified version
of the man-made ATC rule that accounts for weighted tardiness related
objectives. The wATC is an effective man-made dispatching rule for han-
dling DJSS problems with weighted tardiness related objectives, and are
likely to be able to cope with the machine breakdowns effectively. The fit-
ness calculation for GP individual z is the average of the normalised MWT
objective values as shown in Equation (4.1), where Obj'(z, I) denotes the
normalised objective calculated by the individual « for simulation I.

1 y
Jo = 7 2 O (@, 1) (4.1)

1eT

4.3. GP GENERALITY INVESTIGATION EXPERIMENTAL DESIGN 127

4.3 GP Generality Investigation Experimental De-
sign

This section covers the experimental setups required to carry out the inves-
tigation of the efficacy of GP and the analysis of the baseline GP approach.
First, we cover the GP representation, the terminal set and the function set
for the baseline GP, followed by the GP parameter settings.

4.3.1 GP Representation, Terminals and Function Sets

For the baseline GP approach that is used to investigate the efficacy of GP
for the DJSS problem, we use a tree-based GP representation [80]. The GP
individuals represent arithmetic function trees that calculate the priorities
of jobs during decision situations. The GP terminals used by the baseline
GP approach is given in Table 4.1. The GP terminals shown in the table
consist of the GP terminals used in the earlier chapter to evolve dispatch-
ing rules for the DJSS problem with dynamic job arrival (Table 3.2). This
makes the baseline GP approach more consistent with the existing GP ap-
proaches. However, as the objective of the DJSS problem in this chapter
is MWT (whereas the DJSS problem in the previous chapter did not have
job weights), an additional GP terminal W is added to the list of existing
GP terminals. In addition, the function set used by the GP approaches to
evolve the rules in the earlier chapter is used, i.e., the function set consists

of the operators +, —, x, protected /, max, min, and if.

4.3.2 GP Parameter Settings

The GP parameter used for the efficacy investigation are given in Table
4.2. The GP parameters described in the table are modified from the GP
parameters used for the benchmark GP approach that evolves single dis-
patching rule in Table 3.3 in Section 3.3.4 (Page 87). The parameters modi-

fied are the population size and the maximum depth of the GP trees. The

128 CHAPTER 4. GP TO DJSS PROBLEMS SUBJECT TO MACHINE BREAKDOWNS

Table 4.1: Terminal set for the baseline GP used for efficacy investigation,
where job j is one of the jobs waiting at the machine m* to process opera-

tion Ojj-

Terminal Description

RJ The operation ready time of job j

RO Remaining number of operations of job j

RT Remaining total processing times of job j

PT The operation processing time of job j

RM Machine m* ready time

NJ Number of non-delay jobs waiting at machine m*
DD Due date of job j

4 Job’s weight w;

NPT Next operation processing time

NNQ Number of idle jobs waiting at the next machine
NQW Average waiting time of last 5 jobs at the next machine
AQW Average waiting time of last 5 jobs at all machines
Constant real-value in the interval [0, 1]

Function +, —, X, /, if, max, min

population size of 256 is used for the efficacy investigation compared to
the population size of 1024 used in the previous chapter. This is done to
save on the computation cost, as the baseline GP is applied to multiple
different training sets to evolve rule sets ranging from generalist rules to
specialist rules. The maximum initial depth of the GP trees and the maxi-
mum possible depth of the GP trees, which are set to 4 and 8 respectively.
This allows us to observe specific evolved rule’s structures during analysis

compared to the previous maximum tree depth of 17.

4.4. GPGENERALITY INVESTIGATION RESULTS AND DISCUSSION129

Table 4.2: GP parameters used to evolve rules for the GP efficacy investi-

gation.
Parameters Value
Population size 256
No. of generations 51
GP crossover rate 80%
GP mutation rate 10%
GP reproduction rate 10%
GP maximum initial depth | 4
GP maximum depth 8
Selection method Tournament selec-

tion of size 7
No. of elites 1
wATC k value 3.0

4.4 GP Generality Investigation Results and Dis-

cussion

This section covers the results for the GP efficacy investigation for the DJSS
problem with dynamic job arrivals and machine breakdowns. To carry out
the efficacy investigation, 30 independent runs of the baseline GP process
is applied to the various subsets of the simulation model A as described in
Section 4.2.2, evolving a set of 30 dispatching rules. The rule sets are de-
noted as DR-N, DR-M, DR-H, DR-N/M, DR-M/H and DR-AIll based on
the training subset that the GP process is applied to. For example, DR-N
denotes the set of dispatching rules evolved by GP on the subset (0%, 0,
5), i.e., the subset of the simulation model A that consists of simulations
with no machine breakdowns. Afterwards, the rule sets are applied to the
entire simulation model A, and the performances of the rules are com-
pared against each other. Finally, the evolved rule sets are analysed based
on their frequencies of the GP terminals.

130CHAPTER 4. GP TO DJSS PROBLEMS SUBJECT TO MACHINE BREAKDOWNS

441 Evolved Rule Performance Evaluation

Each configuration in the DJSS simulation model A is used to generate 30
different simulations as part of the test set. In total, this results in a total
of 18 x 30 = 540 test instances using the 18 different configurations. The
sets of GP evolved rules are then applied to the test instances to generate
schedules for the simulations, and the MWT of the schedules are com-
pared against each other as part of the general evaluation procedure. A
set of GP evolved rules is significantly better than another rule set if the
difference in the MWT values satisfies the two-sided Wilcoxon’s signed-
rank test at p = 0.05. The performances of the rule sets over the different
simulations are shown in Figure 4.2. Each box plot shows the results over
simulations in a configuration, and the configurations are categorised by
the due date tightness and breakdown level, where the first value above
the box plot is the due date tightness and the second value above the box
plot is the machine breakdown level. For example, 3 then 0% shown in
the top left box plot indicates that due date tightness » = 3 and machine
breakdown level 7 = 0%.

From the results, we can see that for the simulations with = = 0 and
7 = 5% DR-N and DR-H generally perform well over the respective prob-
lem domain they are trained on but perform poorly on simulations with
high levels of machine breakdowns (for DR-N) and simulations with no
machine breakdowns (for DR-H). Under the statistical test, the difference
in the performance is significant between DR-N and DR-H. When the best-
tit rules DR-N and DR-H are compared to the intermediate rules DR-N/M
and DR-M/H, the two best-fit rules perform slightly better than the in-
termediate rules over their respective machine breakdown levels the spe-
cialise rules are evolved on. The difference in the performances are signif-
icant between DR-H and DR-M/H, but not between DR-N and DR-N /M.
However, on machine breakdown level © = 0.025, it is observed that most
sets of rules with the exception of DR-H have a similar performance to

each other, where the slight differences in the performances are not sig-

4.4. GPGENERALITY INVESTIGATION RESULTS AND DISCUSSION131

0% 0%
3 5
) 200- + i
250- . : ml m|-
: ' 150- : + - *
200- * * * 100- @ cre | .
1 1 1 50- 1 1 1
25 125 250 25 125 250
2.5% 2.5%
3 5
7
@ 700-
£ 400-
IS
S 600-
©
g 300-
© 500- ’
: s
= I
S 400- 200- .
Q ;
S :
300- , , , | , ,
25 125 250 25 125 250
5% 5%
3 5
3000-
2000-
2000 . 1500- -
. 1000- .
1000- 1 i F
hﬁ-ﬁ* . ‘ 200 m*
25 125 250 25 125 250

Mean Time to Repair
EDR-N &DR-N/M EDR-M EDR-M/H &DR-H EDR-AIl

Figure 4.2: The comparisons of the MWT performances of the GP rules

evolved over different training sets over the simulations in the test set.

132CHAPTER 4. GP TO DJSS PROBLEMS SUBJECT TO MACHINE BREAKDOWNS

nificant. Finally, the generalist rule DR-AIl perform well over simulations
with no machine breakdowns and simulations with machine breakdown
level m = 0.025, but performs significantly worse than DR-H and DR-M/H
for simulations with 7 = 0.05. Overall, it may be likely that standard GP-
HH approach may not be able to generalise well when it comes to DJSS
problems with dynamic job arrivals with machine breakdowns, and the
quality of the rules evolved by a standard GP-HH approach is likely too
sensitive to the proportion of time that the machine is broken down during

the simulation.

4.4.2 GP Terminal Distribution Analysis

After evaluating the performances of the GP evolved rules, the terminals
that are used by the GP rules are compared against each other to analyse
the internal structures of the rules. For the sets of GP rules, the proportion

of various terminals utilised in these rules are shown in Figure 4.3.

@O e @06 66 6
i @ B OED e @G e e e e
Y XX Y T RY YN NN N
DR—M/H-.“‘. .‘.‘. ® ®
XY I T XXX N
B @H@B@EG e@e @6 e e

RI RM RO RT W

AQW DD NNQ NPT NQW PT
Terminal

Rule

DR-

T

Figure 4.3: The proportion of terminals used by the sets of rules evolved
by the GP-HH approaches.

From Figure 4.3, the most prominent terminals that are used by all sets

4.5. MACHINE BREAKDOWN GP TERMINALS 133

of rules is the processing time of current operation (PT), followed by the
due date of the job (DD) and the number of jobs waiting at the next ma-
chine (NNQ). On the other hand, DR-H rules have a higher proportion
of due date terminal compared to the other sets of evolved rules (e.g. the
proportion of due dates terminals in DR-H is 15% compared to 9% in DR-
N). This is likely due to the fact that in simulations with high machine
breakdown level (e.g. m = 0.05) processing time becomes unreliable in
determining the expected duration of time that a job requires on any ma-
chine for the corresponding operation to complete. Compared to simula-
tions with lower machine breakdown levels (e.g. 7 = 0 and 7 = 0.025),
it is more likely in the simulations with high machine breakdown levels
that the machine breaks down during processing of a job. This results in
the job getting stuck on the machine while it is being repaired and taking
longer than expected to finish processing. Instead, processing urgent jobs
can be a more reliable method of generating good schedules for simula-
tions with high levels of machine breakdowns. In other words, it is likely
that the rules that prioritise shorter jobs than urgent jobs generate infe-
rior solutions in high machine breakdown scenarios. More frequent ma-
chine breakdowns that occur in high machine breakdown scenarios likely
make the processing times used by the dispatching rules less reliable when
compared to low machine breakdown scenarios. In addition, DR-H has
a lower proportion of terminals that take the attributes for when the job
reaches the next machine (NNQ, NPT and NQW), as the additional uncer-
tainty introduced by the high level of machine breakdown may make the
terminals less effective at reducing the myopic nature of dispatching rules
[66].

4,5 Machine Breakdown GP terminals

This section describes the machine breakdown terminals which are in-

corporated to the baseline GP approach’s terminal set. This allows GP

134CHAPTER 4. GP TO DJSS PROBLEMS SUBJECT TO MACHINE BREAKDOWNS

to evolve dispatching rules that may make better decisions during deci-
sion situations, potentially leading to better performance than GP evolved
rules which do not incorporate machine breakdowns. First, we describe
the update made to the baseline GP terminal set that is shown earlier (Ta-
ble 4.1) and provide a classification tree showing the updated terminal set
and the machine breakdown GP terminals. This is followed by the descrip-
tions and justifications for the machine breakdown GP terminals. The first
approach replaces existing terminals related to operation processing times
and add repair time of machines if necessary. This approach is denoted
as “augmented” approach, as it attempts to improve certain benchmark
terminals by incorporating machine breakdown information. The second
approach adds new machine breakdown terminals, which “captures” the
machine breakdowns happening on the shop floor, to the existing set of
GP terminals.

4.5.1 Update to the Baseline GP Terminals

In addition to the set of terminals described in Section 4.3.1, two GP ter-
minals frequently used in the literature [60, 95, 107] are added to the set of
terminals used by the baseline GP when being compared against GP ap-
proach that incorporates the machine breakdown GP terminals. The two
GP terminals added to the baseline GP are slack (SL) sl; of a job j and
work in next queue (WINQ) wing; for a job j [125]. Slack is the amount
of time remaining between job j’s due date d; and the minimum com-
pletion time of the job, ie., sl; = d; — vazjk pij — t [125]. In the equa-
tion, k£ denotes the kth operation that job j is up to at the current time ¢
of processing. On the other hand, WINQ is the total processing time re-
quired by all jobs currently waiting at the next machine m’; that job j visits
plus the remaining time for the machine to complete the operation being
processed, if there is any (denoted as wr,,, ;). Given that the processing

times of the jobs waiting at the next machine m’; are py,...,pn , , then
m .7'

4.5. MACHINE BREAKDOWN GP TERMINALS 135

WiNg; = Wrpy; j + Zj\j{lj pi. Slack will likely result in rules that will pri-
oritise jobs that are urgent and also still has large amount of processing
remaining so that the jobs can be completed before their due date. WINQ
provides information about the workload on the next machine that the job
visits, and likely will result in the rules assigning lower priorities to jobs
that will be visiting potentially bottlenecked machines.

The updated GP terminals and the proposed machine breakdown ter-
minals are shown in Figure 4.4. In the figure, we group the different
terminals (shown in red boxes) based on what shop floor attribute they
are classified. The GP terminals shown in the red boxes and not under
the “machine breakdown” category are the updated list of GP terminals
for the baseline GP approach. This consists of terminals described in Ta-
ble 4.1, slack and WINQ. The GP terminals shown in the highlighted red
boxes that are under the “machine breakdown” category are the new ma-
chine breakdown terminals that will be incorporated into the GP termi-
nals. They are discussed in further detail below (Chapters 4.5.2 and 4.5.3).

4.5.2 Augmented GP Terminals

The following terminals in the original GP terminal set (as described in
Figure 4.4) are replaced by terminals that add repair times of the machines:
job’s operation processing time (PT), job’s next operation processing time (NPT)
and work in next queue (WINQ). We start by assuming that the machine
breakdown that occurs after the decision situation is known in advance
and that we know the repair time of the machine breakdown, and use that
information for the augmented GP terminals. This is done to simplify the
problem and to explore whether adding the explicit knowledge furhter im-
proves the effectiveness of GP. The replaced GP terminals return the origi-
nal value if the job’s operation is not interrupted by a machine breakdown,
and adds the repair time of the machine otherwise. The terminals that in-

corporate the machine breakdown information is denoted with the prefix

136CHAPTER 4. GP TO DJSS PROBLEMS SUBJECT TO MACHINE BREAKDOWNS

Machine
Terminals
NJ, RM, NNQ,
Work Related NQW, AQW

Job Terminals
Due Date
Related

Processing
Time Related

R, W
Machine Machine
oL R o e
¥ ¥ *
MBPT, MBNPT MBAET Wi Fe

Figure 4.4: The classification of the updated list of GP terminals used by
the baseline GP and the machine breakdown terminals that are incorpo-

rated into the machine breakdown GP approaches.

‘MB-’ (e.g. MBPT for machine breakdown adjusted processing time). The
machine breakdown GP approach that incorporates the MBPT, MBNPT
and MBWINQ terminals is denoted as GP-Aug.

Machine breakdown adjusted processing time (MBPT):

The machine breakdown adjusted processing time terminal (MBPT) re-
places the processing time terminal (PT). Given that the current time dur-
ing the decision situation is ¢ and the processing time of job’s current op-
eration j is p;;, MBPT terminal returns the actual duration of time required
to process the job’s operation after counting the additional time for repair-
ing the machine breakdown interruption into account. In other words, if
the job is not interrupted by a machine breakdown, i.e., if the operation

completes earlier than the breakdown time 0" of the current machine m,

4.5. MACHINE BREAKDOWN GP TERMINALS 137

then the job’s actual processing time p;; is equal to the expected processing
time p;;. Otherwise, the actual processing time is the sum of the process-
ing time and the machine repair time ;" required to get the machine back
up and running before the operation is resumed. The value returned by
MBPT(j) = p;;, where the calculation for p;; is shown in Equation (4.2).

(4.2)

bij = m .
pij + 1y otherwise

Machine breakdown adjusted next processing time (MBNPT):

The machine breakdown adjusted next processing time terminal (MBNPT)
replaces the next processing time terminal (NPT). MBNPT terminal re-
turns zero if the job j’s current operation o;; is the last operation before
job j’s completion. Otherwise, given that the next operation o(; 1), is pro-
cessed on machine m/;, the repair time of m’; is added to the next pro-
cessing time p(;1); if it will be interrupted by a breakdown at machine
m/; at operation o(;1); earliest possible completion at machine m/;. The
earliest possible time that job j can be completed is determined with the
assumption that operation o;; is selected immediately by machine m, and
the successive operation o 1; is then processed by machine m/'; as soon as
operation o;; is completed. The time when operation o,; completes is given
by the current time ¢ and the actual processing time p;;, which depends
on whether the operation is interrupted by machine breakdown (Equation
(4.2)). In other words, the earliest time operation o(;11); can be processed at
machine m'; is at t + p;; immediately after the completion of operation o;;.
Therefore, if machine m’; breaks down before time ¢ + p;; + p(;41);, then re-
pair time r;" ' of machine m'; is added to the operation o(;;1);’s processing

time p(;11); as shown in Equation (4.3).

Z' y .ft / Z y bml]
MBNPT(]) — { p(+1)] 1 +pz] +p(+1)] < t (4.3)

Pty + T E otherwise

138CHAPTER 4. GP TO DJSS PROBLEMS SUBJECT TO MACHINE BREAKDOWNS

Machine breakdown adjusted work in next queue (MBWINQ):

The machine breakdown adjusted work in next queue terminal (MBWINQ)
replaces the work in next queue terminal (WINQ). Both WINQ and MBWINQ
terminals return zero if the job j’s current operation o;; is the last operation
before job j’s completion. Otherwise, given that machine m’; is required
by operation o(;;1);, the standard WINQ terminal returns the total pro-
cessing times of the jobs that are currently waiting at machine m’; plus
the remaining time required to process the operation currently being pro-
cessed by machine m/';, i.e., the work remaining. MBWINQ modifies the
work remaining time calculated by WINQ by adding the machine m/;’s
repair time if the work is interrupted by machine breakdown at time b;”lj.
In other words, MBWINQ(j) = wr/,. » + ZZ’{," p;,, where pj,, ..., Pix,,.
are the processing times of jobs waiting at machine m';, wr;,, ; is the ac-
tual work remaining required on j’ being processed on machine m'; before
it becomes available. The calculation for actual work remaining wry,, is
given in Equation (4.4), where s; denotes the time when j’ started, p; is

the processing time required by ;' at machine m/'; and ¢ is the current time.

(4.4)

/
Wy 51 =

{ Sjr + pjr — t if St +pjr < b;n,j
iJ

sp+py—t+r" E otherwise

In summary, the augmented GP approach replaces three existing ter-
minals (PT, NPT and WINQ) with equivalent terminals that incorporate
information about machine breakdowns that interrupt job processing. The
existing terminals are related to the processing times of the jobs waiting on
the shop floor, where repair times need to be added onto the processing
times if we expect the jobs to be interrupted by machine breakdowns. By
doing this, we expect the GP rule to be able to use the “actual” processing
times of the jobs to make better decisions on what job should be processed

next by the machines during decision situations.

4.5. MACHINE BREAKDOWN GP TERMINALS 139

4.5.3 Reactive GP Terminals

Reactive machine breakdown terminals are added to the GP terminal set
described in Figure 4.1 and incorporate information about current ma-
chine status. As the two terminals incorporate information about the po-
tential wait time of a job waiting at a machine for the next machine it visits,
they are investigated separately. The two terminals being investigated are
the repair time remaining next machine terminal (RTR) and the minimum wait
time next machine terminal (WT). The two reactive GP terminals may allow
rules to make better decisions by prioritising jobs with low expected wait
times compared to jobs with high expected wait times. This may lead to
jobs spending less time waiting at busy machines, and the evolved rules
may generate higher quality schedules. The machine breakdown GP ap-
proach that incorporates the RTR terminal is denoted as GP-RTR, and the
machine breakdown GP approach that incorporates the WT terminal is
denoted as GP-WT.

Repair Time Remaining Next Machine (RTR):

The repair time remaining next machine RTR returns zero if a job j waiting
at a machine at time ¢ is currently on its last operation or the next machine
m/; visited by j is currently not broken down. Otherwise, given that ma-
chine m’; broke down at time 57 and the repair time is r}"?, the value
given by RTR = b]"7 + "7 — 1.

Minimum Wait Time Next Machine (WT):

The minimum wait time next machine WT returns the earliest time that the
machine to be visited by job j next becomes available. If the current oper-
ation of j is the last operation before completion, then WT returns zero. In
addition, if the next machine m/; that job j visits is currently not busy and
is not broken down, i.e., is completely available, then WT returns zero.

Otherwise, the WT returns the duration of time required for machine m/;

140CHAPTER 4. GP TO DJSS PROBLEMS SUBJECT TO MACHINE BREAKDOWNS

to be available. If machine m/; is currently processing a job j or is broken
down with an interrupted job, then it returns the actual work remaining
wry, » which is given in Equation (4.4). Otherwise, if the m’; is broken
down and a job was not interrupted by the machine breakdown, WT re-
turns the remaining repair time of machine m’; as given by the terminal
RTR.

4.6 Design of Experiment

This section covers the experimental setups required to evaluate the ma-
chine breakdown GP terminals. First, we carry out further tuning of the
parameters used for the DJSS simulation model (described in Section 4.2.1)
to investigate a wider range of machine breakdown scenarios. Afterwards,
we provide the GP parameter settings and how they are modified from Ta-
ble 4.2.

4.6.1 Modified DJSS Dataset for Machine Breakdown GP

Terminals

To evaluate the GP that incorporates the machine breakdown GP termi-
nals, we modify the DJSS simulation model A described in Section 4.2.1.
The modified simulation model is denoted as A’ and use the simulation
parameter settings described in Table 4.3. The DJSS simulation model A’
adjusts the machine breakdown events by modifying the machine break-
down levels and the repair times of the machine breakdowns. The ma-
chine breakdown levels include more “severe” cases of machine break-
down scenarios. From the investigation into the efficacy of GP, we ob-
served that there are significant differences in the effectiveness of the spe-
cialist rules on the different machine breakdown scenarios. Therefore, it
may be possible that the machine breakdown GP terminals effectiveness
may be more pronounced for high machine breakdowns levels than low

4.6. DESIGN OF EXPERIMENT 141

machine breakdown levels, and provides an extreme case of the problem
to be handled by the GP approaches that use machine breakdown GP ter-
minals. The simulation parameters used to evaluate the baseline GP ap-
proach and the GP approaches with the machine breakdown GP terminals
are shown in Table 4.3. In the table, the high machine breakdown levels
m = 10% and m = 15% are added to the list of possible machine break-
down levels for the simulation configurations in DJSS simulation model
described in Section 4.2.1. In addition, to accommodate for the new ma-
chine breakdown levels, the utilisation rate is lowered from p = 90% to
p = 80% for all simulation configurations. Otherwise, the joint effect of
job utilisation rate at p = 90% with the highest machine breakdown level
at m = 15% will exceed 100% total utilisation rate. This will likely result
in an unstable simulation, where the duration of the simulation affects
the overall number of jobs waiting at the machines. By lowering the job
utilisation rate to 80%, the total utilisation rate will be below 100% when
combined with the machine breakdown level. The preliminary tests using
man-made dispatching rules showed that this resulted in a stable simula-
tion.

On the other hand, the machine repair times for the breakdowns are
fixed to the values r, = 37.5, 137.5, 262.5. The machine repair times are
set to values that are not multiplicative of the mean processing time of job
operations so that processing time terminal cannot be used as a substitute
for the machine repair time. This investigation into the machine break-
down GP terminals incorporate repair time information to the evolved
rule’s decision-making process. Because of this, fixing the repair times
simplifies the DJSS problem to concretely determine whether adding ex-
plicit knowledge further improves the effectiveness of GP. In addition, the
repair time values were selected after running the baseline GP approach
on different breakdown levels and durations of repair times. The prelimi-
nary experiments showed that the baseline GP rules could effectively han-

dle the fixed repair time durations by using processing time terminals.

142CHAPTER 4. GP TO DJSS PROBLEMS SUBJECT TO MACHINE BREAKDOWNS

Finally, the simulation configuration that is used to evolve the rules from
the baseline GP, GP-Aug, GP-WT and GP-RTR has 15% breakdown level,
repair time of 262.5 and due date tightness of 3. In addition, the different
seeds are used to stochastically generate the job arrivals and the machine
breakdowns at every generation.

Table 4.3: Updated simulation configurations used for the generating ar-

riving jobs and machine breakdowns in DJSS simulation model A’.

Simulation Model Parameter Value

Number of machines (M) 10

Utilisation rate (p) 80%

Mean processing time (1) 25

Weight/probability ((w, p)) {(1,20%), (2,60%), (4,20%)}
Due date tightness (k) 3orb

Machine breakdown level () 0%, 2.5%, 5%, 10% or 15%
Repair time () 37.5,137.5 or 262.5

No. of configurations 30

Training configuration ({, , h)) (15%, 262.5, 3)

4.6.2 GP Parameter Settings

The GP parameter is modified from the GP parameters used in the effi-
cacy investigation above (Table 4.2). The population size is increased from
256 to 1024 as we apply the GP approach to a single subset ({ 15%, 262.5,
3)) of the simulation model A’. The subset (15%, 262.5, 3) allows us to
determine if the machine breakdown terminals negatively contribute to-
wards the performance of the rules for zero or low machine breakdown
scenarios. In other words, there may be a potential trade-off where the
machine breakdown GP approaches perform better than the baseline GP
on the high machine breakdown scenarios but perform worse on the low
machine breakdown scenarios. The larger population size is consistent

with the population size used in the previous chapter and in the literature

4.7. MACHINE BREAKDOWN GP RESULTS AND DISCUSSION 143

[66]. On the other hand, the remaining GP parameters are kept consistent.
The number of generations for the GP process is 51. The GP crossover,
mutation and reproduction rates are 80%, 10% and 10% respectively. The
GP’s maximum depth during initialisation is 4 and the maximum depth
for all generations is 8. Tournament selection of size 7 is used during the
selection and breeding procedure.

4,7 Machine Breakdown GP Results and Discus-
sion

This section covers the evaluation of machine breakdown GP approach
against the DJSS problem. To compare the GP approaches in their abili-
ties to consistently evolve effective rules, the baseline GP and the machine
breakdown GP approaches evolve 30 rules on the simulation configura-
tion (15%, 262.5, 3) of the simulation model A’. The 30 rules are then
applied to the rest of the simulation model, and the overall performances
of the rule sets and the best rules from the GP approaches are compared.
Afterwards, we carry out structural and behavioural analysis of the rules
evolved by the GP approaches.

4,71 Machine Breakdown GP Terminal Evaluation

The performance evaluation of the evolved rules for the machine break-
down GP approaches is broken down into two steps. First, we compare
the performances of all rules evolved by the GP approaches against each
other. An evolved rule is applied to each simulation configuration in DJSS
simulation model A’ 30 times with different seeds to obtain 30 MWT ob-
jective values. The 30 objective value are averaged out to get the perfor-
mance of the evolved rules, and the performances of the rule evolved by
the machine breakdown GP approaches are compared against the base-
line GP approach. Second, the best rules for all simulation configurations

144CHAPTER 4. GP TO DJSS PROBLEMS SUBJECT TO MACHINE BREAKDOWNS

used for testing are also compared against each other. For the best rules,
the 30 MWT objective values obtained after the best rule is applied to each
simulation configuration are compared against each other. In the perfor-
mance evaluation, the rules evolved by the baseline GP approach is de-
noted as “GP”, the rules evolved by the machine breakdown GP that use
Augmented GP Terminals (Section 4.5.2) is denoted as “GP-Aug”, rules
evolved using WT and RTR (Section 4.5.3) are denoted “GP-WT” and "GP-
RTR” respectively.

Rule Set Results

The results of the performance evaluation are shown in Table 4.4. In the
table, (m, 1, h) denotes that the simulation configuration has the respec-
tive breakdown level 7, repair time r,, and due date tightness h. In addi-
tion, each entry = + y is the mean (x) and standard deviation (y) of the
performance Perf of the rules for the simulation configuration respec-
tively. A set of GP rule is significantly better than another set of rules if
they satisfy the two-sided Wilcoxon’s signed-rank test at p = 0.05. If a
set of GP evolved rules that use the machine breakdown GP terminals is
significantly better than the set of benchmark GP rules in terms of their
performance, then the particular entry is highlighted blue.

Although the differences are not significant, the results show that the
three machine breakdown approaches (GP-Aug, GP-WT and GP-RTR) have
observable improvement in the performances than the benchmark GP with
respect to some simulation configurations. In particular, the GP-WT rules
have slightly better performances for all simulation configurations than
the benchmark GP rules. In addition, the GP-RTR rules have slightly bet-
ter performance than the benchmark GP rules for most simulation config-
urations except configurations (0%, 37.5, 5) and (15%, 37.5, 5). Finally,
the results of the comparison between the GP-Aug rules and the bench-
mark GP rules are mostly mixed, where GP-Aug rules are slightly better

or worse than the benchmark rules on roughly an equal number of simula-

4.7. MACHINE BREAKDOWN GP RESULTS AND DISCUSSION 145

Table 4.4: Comparison of the performances of the baseline GP approach
and the machine breakdown GP approaches over the simulation configu-

rations. Rules are evolved from (15%, 262.5, 3).

Model Subset MB GP
GP-Aug GP-WT GP-RTR
(0%,37.5,5) | 0.74£0.17 0.66 +0.07 0.67+£0.13 | 0.67 +0.16
(0%,37.5,3) | 1.12+0.16 1.05+0.07 1.064+0.12 | 1.07 +£0.15
(0%, 137.5,5) | 0.60£0.16 0.53+0.06 0.53+0.11 | 0.53 £0.14
(0%,137.5,3) | 1.31+£0.18 1.24+0.07 1.24+0.12 | 1.26 +£0.16
(0%,262.5,5) | 0.74+0.17 0.66 +0.07 0.66+0.13 | 0.66 £+ 0.16
(0%,262.5,3) | 1.36 £0.19 1.284+-0.08 1.29+£0.13 | 1.30 £0.16
(2.5%,37.5,5)| 1.60+0.89 1.54+0.52 1.55+0.75 | 1.59 4+ 0.69
(2.5%,37.5,3)| 292+0.98 2.78+0.52 2.86+0.76 | 2.95+ 0.88
(2.5%,137.5,5)|38.39 + 11.90 36.07 4 11.10 38.91 + 10.38|39.20 + 12.65
(2.5%,137.5,3)|42.53 + 12.23 40.49 + 11.10 42.96 + 10.87|43.23 + 12.89
< 2.5%, 262.5, 5 > 88.51 £ 25.15 89.94 £ 23.00 92.91 £ 23.63|94.43 £+ 27.18
(2.5%, 262.5,3)|92.11 + 24.34 93.81 4+ 21.81 96.36 + 22.91(98.17 + 26.54
(5%,37.5,5) | 1.64+£044 1.53+0.20 1.57+0.35 | 1.58 +0.36
(5%,37.5,3) | 276 £0.57 2.68+0.30 2.74+0.52 | 2.78 +0.50
x‘;\g‘) (5%,137.5,5) | 9.04 +£2.17 8294+2.03 8.91+1.89 | 9.05+ 242
(5%, 137.5,3) |11.14 £ 2.18 10.65 + 1.87 11.04 £1.97 [11.28 £ 2.29
(5%, 262.5,5) 36.43 + 11.35 34.32 £ 10.75 37.00 & 10.13|37.38 & 12.40
< 5%, 262.5, 3 > 36.56 £ 11.29 34.33 £ 10.20 36.74 4+ 9.61 |37.27 £ 12.09
(10%, 37.5,5) | 3.69+£0.61 3.53+0.27 3.60=£0.50 | 3.63 £ 0.60
< 10%, 37.5, 3 > 4.604+0.54 4.51+0.26 4.57+0.44 | 4.63 +0.51
(10%, 137.5,5)| 6.11+1.21 5.79+0.35 5.894+0.81 | 6.07 4+ 1.26
(10%, 137.5,3)| 8.15+1.28 7.91+044 8.024+0.86 | 8.29 4+ 1.39
(10%, 262.5,5)|11.72 £1.95 11.07 +1.56 11.43 +£1.56 |11.74 + 2.22
(10%, 262.5, 3) 13.14 +1.50 12.61 +£1.52 13.08 £1.21 [13.29 + 1.76
(15%,37.5,5) | 6.20£0.67 5.894+0.21 6.07£0.50 | 6.06 £0.80
(15%,37.5,3) | 7.73+0.63 7.52+0.18 7.66+0.50 | 7.74 +0.82
(15%,137.5,5)| 9.02+0.94 853+0.59 8.69+0.64 | 8.81+1.17
(15%, 137.5,3)|11.73 £ 0.81 11.38 £0.42 11.55 4+ 0.58 {11.71 4+ 1.10
(15%, 262.5,5) [12.55 +1.23 12.01 £1.29 12.31 +0.95 |12.48 +-1.44
(15%, 262.5,3) |16.60 = 1.27 16.08 + 1.33 16.37 £ 0.97 |16.59 &+ 1.50

146CHAPTER 4. GP TO DJSS PROBLEMS SUBJECT TO MACHINE BREAKDOWNS

tion configurations. However, the observed differences are not statistically
significant. Nonetheless, by analysing the rules further, we have obtained
an important understanding of how GP can be applied effectively to the

machine breakdown problem.

Best Rule Results

After comparing the rule sets, the best rules from the GP approaches are
compared against each other. The best rules are the rules that have the best
average MWT performances over all simulations out of the rule sets. The
results of the best rules being applied to each simulation configuration are
shown in Table 4.5, where each entry x + y is the mean (r) and standard
deviation (y) of the MWT values generated by the best rule after being ap-
plied to 30 independent runs over the simulation configuration. Student’s
t-test at p = 0.05 is used to determine if the MWT values of the schedules
generated by the best rule are significantly better than another best rule.
If a machine breakdown GP best rule is significantly better than the best
baseline GP rule, then it is highlighted blue.

The best rules from the machine breakdown GP approaches show a
greater difference in the performance to the best rule from the benchmark
GP approach. The best machine breakdown GP rules are significantly bet-
ter than the best benchmark GP rule for certain simulation configurations,
e.g., all three machine breakdown GP rules perform better than the GP
rule for the (15%, 262.5, 3) simulation configuration. Therefore, although
the overall differences in the GP approaches are not significant, machine
breakdown GP approaches show promise in that they have the potential
to evolve higher quality individual rules than the baseline GP approach.

After comparing the best machine breakdown GP rules against the best
baseline GP rule, we compared the best rule evolved by the baseline GP
approach against the following man-made dispatching rules: weighted
SPT (wSPT), wATC and weighted COVERT (wWCOVERT). The comparison
in the previous Chapter (Figures 3.3 and 3.4 on pages 93 and 94 respec-

4.7. MACHINE BREAKDOWN GP RESULTS AND DISCUSSION

147

Table 4.5: Comparison of the best rules over the simulation configurations.

MB

Data Subset GP
GP-Aug GP-WT GP-RTR
(0%,37.5,5) | 0.69+0.31 0.63+0.36 0.63+0.31 | 0.63+0.29
(0%, 37.5, 3 > 1.06 £0.27 1.01 £0.28 1.01 £0.27 | 1.01 £0.25
(0%, 137.5,5) | 0.55+0.17 0.474+0.16 0.49+0.14 | 0.50 £0.15
(0%, 137.5,3) | 1.24+0.34 1.214+0.39 1.23+£0.37 | 1.18 £0.33
(0%, 262.5,5) | 0.67+0.32 0.60+0.30 0.61+0.27 | 0.63 £+ 0.29
< 0%, 262.5, 3 > 1.30+0.46 1.25+0.46 1.27+0.43 | 1.244+0.41
(2.5%,37.5,5)| 1.424+0.96 1.72+149 1.134+0.70 | 1.19 4+ 0.56
(2.5%,37.5,3)| 247+217 254+214 2.15+2.04 | 2.33+2.48
< 2.5%, 137.5,5)|15.84 +£9.08 16.73 +10.11 15.46 + 8.12 |17.85 + 7.83
(2.5%,137.5,3)|19.36 + 11.74 21.39 4+ 12.86 18.30 + 12.22(21.28 + 11.67
(2.5%,262.5, 5)|44.44 + 24.05 51.07 £ 23.93 48.60 + 26.00|46.87 + 24.62
(2.5%, 262.5, 3)/50.49 + 35.66 56.92 + 37.17 54.08 & 37.06|52.61 + 35.43
(5%,37.5,5) | 1.594+0.63 1.63+0.79 1.414+0.53 | 1.4240.49
(5%,37.5,3) | 292+1.16 2.89+1.25 2.54+0.94 | 2.55+0.88
1\1‘;\83) (5%,137.5,5) | 4.59+2.45 4.44+291 4.61+2.41 | 5.62+2.84
(5%, 137.5,3) | 7.00£3.67 7.06+4.24 7.01 +£347 | 8.03+3.90
(5%,262.5,5) |14.29 £ 7.32 15.76 +8.02 14.78 £7.12 [16.50 £ 6.88
(5%, 262.5,3) |14.30 £ 5.66 14.56 & 6.10 14.97 +4.69 |16.87 +4.78
(10%, 37.5,5) | 3.83+£1.34 3.83+1.26 3.29+1.10 | 3.40+1.24
(10%,37.5,3) | 496 £1.64 4.84+1.42 445+1.23 | 4.38£1.18
(10%,137.5,5)| 5.65 +1.13 541+1.45 5.23+1.12 | 558 +1.28
(10%,137.5,3)| 7.71+£1.41 7.62+1.60 7.164 1.50 | 7.64 &+ 1.69
(10%, 262.5,5)| 8.39+2.58 7.56+£3.37 8.184+2.77 | 9.28 +2.95
(10%, 262.5,3) 10.12 & 1.38 9.27 £ 1.59 10.44 4+ 1.52 {11.12 4 1.48
< 15%,37.5,5) | 5.890+1.48 5.52+1.59 5.60+1.31 | 5.56+ 1.16
(15%,37.5,3) | 7.70£1.33 7.524+1.27 7.37+£1.26 | 7.07 £0.99
(15%,137.5,5)| 7.66 +£1.27 6.79+1.30 7.55+1.15 | 7.90 +1.16
(15%, 137.5, 3) 10.97 £ 1.56 10.62 +1.88 10.51 £1.34 |10.74 = 1.11
(15%, 262.5,5)(10.27 £ 1.25 885+1.04 9.89+1.11 {10.91 4+ 1.03
(15%, 262.5,3) [13.76 & 1.99 13.10 £ 2.15 13.90 &+ 1.75 |14.81 4+ 1.67

148CHAPTER 4. GP TO DJSS PROBLEMS SUBJECT TO MACHINE BREAKDOWNS

tively) showed that EDD and FIFO rules perform poorly in comparison
to the best GP rules for the DJSS problem, and therefore are omitted for
this comparison. The man-made dispatching rules are applied to the DJSS
simulation model in the same way that the best GP rules are applied to
the simulation model as described above. Comparing the baseline GP rule
against the man-made rules us to verify whether GP rules maintain effec-
tiveness over man-made dispatching rules to DJSS problems with both dy-
namic job arrivals and machine breakdowns. These results are presented
in Table 4.6. If a man-made rule that performs significantly better than
the best baseline GP rule for a simulation configuration, then the result is
highlighted blue. Otherwise, if a man-made rule performs significantly
worse than the best baseline GP rule, then the result is highlighted red.

As we can see from the results, the baseline GP approach generally
outperforms the man-made dispatching rules in almost all scenarios with
non zero machine breakdowns except for the configurations (5%, 37.5, 5),
(10%, 37.5,5) and (10%, 37.5, 3) for the wATC and the wCOVERT rules.
On the other hand, the baseline GP rule generally performs worse than
the man-made rules for zero machine breakdown scenarios, where the
WATC and the wCOVERT rules perform significantly better on all zero
machine breakdown simulation configurations except for (0%, 137.5, 3
) and (0%, 262.5, 5). This is likely attributed to the fact that the base-
line GP rule is evolved from the simulations from the configuration (15%,
262.5, 3) which has the highest breakdown level. It is likely that the train-
ing simulations have significantly different properties to simulations in
zero machine breakdown scenarios. Therefore, the GP rule evolved on
(15%, 262.5, 3) likely do not have the necessary behaviour required to
handle zero machine breakdown scenarios as effectively as the man-made
dispatching rules but handle the non zero machine breakdown scenarios

more effectively.

4.7. MACHINE BREAKDOWN GP RESULTS AND DISCUSSION

149

Table 4.6: Comparison of the best GP rule against man-made dispatching

rules.
Man-made
Data Subset GP
wSPT wATC wCOVERT
(0%, 37.5,5) | 0.63 4 0.29 0.58 +0.26 0.10 +0.14 0.26 + 0.18
(0%,37.5,3) | 1.01+£0.25 0.99 4+ 0.23 0.61 +0.19 0.73 = 0.21
(0%, 137.5,5) | 0.50+0.15 0.47 £0.16 0.05 £ 0.04 0.18 + 0.08
(0%, 137.5,3) | 1.18 £0.33 1.16 £ 0.32 0.75 4+ 0.30 0.89 + 0.28
(0%,262.5,5) | 0.63+0.29 | 059+0.26 0.104+0.09 0.26 £0.16
(0%,262.5,3) | 1.24 £0.41 1.21+0.38 0.79+0.33 0.93+0.35
(2.5%,37.5,5) | 1.19 4+ 0.56 3.64 + 2.80 2.81 + 2.66 3.12 £ 2.68
(2.5%,37.5,3) | 2.33 +2.48 5.44 +4.49 5.04 £+ 4.48 5.16 £ 4.47
(2.5%,137.5,5)|17.85 + 7.83 | 82.04 +42.73 81.74 + 42.99 81.59 + 42.87
(2.5%,137.5,3)|21.28 + 11.67| 85.11 +40.12 85.16 + 40.37 85.15 + 40.33
(2.5%, 262.5, 5)|46.87 + 24.62|231.06 £ 96.06 231.60 + 96.25 231.35 £ 96.35
(2.5%, 262.5, 3)|52.61 + 35.43|230.64 + 89.45 230.79 + 89.65 230.66 £ 89.50
(5%,37.5,5) | 1.424+0.49 1.55 £+ 0.58 0.66 + 0.47 1.02 £ 0.52
(5%,37.5,3) | 2.5540.88 2.95+1.15 249 £+ 1.15 2.66 £ 1.15
1(\1‘;\;1;) (5%,137.5,5) | 5.62+£2.84 | 20.18 £ 12.75 19.42 4+ 12.82 19.54 &+ 12.77
(5%,137.5,3) | 8.03+£3.90 | 23.07 +12.06 22.78 £12.11 22.80 £+ 12.03
(5%,262.5,5) [16.50 £ 6.88 | 85.01 +43.42 84.95 + 43.81 84.62 £ 43.72
(5%,262.5,3) |16.87 £4.78 | 78.52 £ 34.70 78.40 &+ 34.78 78.36 & 34.73
(10%, 37.5,5) | 3.40 £1.24 3.47 + 1.28 2.35 £ 1.31 2.67 + 1.20
(10%, 37.5,3) | 4.38+1.18 4.39 4+ 1.32 4.02 £ 1.29 4.11 +£1.27
(10%, 137.5,5)| 5.58 £1.28 | 9.624+3.63 8.70£3.74 878+ 3.61
(10%, 137.5,3)| 7.64+1.69 | 12.78 £5.01 12.62+4.95 12.59 +4.96
(10%, 262.5,5)| 9.28 +2.95 | 24.72 4+ 15.23 24.25 +15.49 24.05 + 15.41
(10%,262.5,3) (11.12 +1.48 | 24.88 +9.21 24.71 £9.19 24.75+9.15
(15%,37.5,5) | 5.56 £ 1.16 6.82 +1.93 5.89 £ 2.20 5.92 +£1.92
(15%, 37.5,3) | 7.07 £0.99 8.58 + 2.14 8.30 £ 2.15 8.41 £ 2.22
(15%,137.5,5)| 7.90 £ 1.16 | 11.81 £2.27 11.30+£2.35 11.23 4+2.29
(15%,137.5,3)(10.74 £ 1.11 | 14.24 £2.59 14.15+2.69 14.03 &+ 2.64
(15%, 262.5,5)|10.91 +1.03 | 20.00 £4.89 20.08 £4.97 19.60 +4.95
(15%, 262.5,3) |14.81 &+ 1.67 | 24.58 +5.51 24.60 £ 5.47 24.53 &+ 5.50

150CHAPTER 4. GP TO DJSS PROBLEMS SUBJECT TO MACHINE BREAKDOWNS

4.7.2 Rule Analysis

Rule analyses for the machine breakdown GP approaches are separated
into structural analysis and behavioural analysis. The structural analysis
calculates the distribution of the GP terminals in the evolved rules, and
analyse the layout of the best GP rules to observe how the GP terminals
are utilised. The behavioural analysis applies the best rules to a sample
simulation to investigate decisions that are made by the rules during the
decision situations collected from simulation runs over A’. Details on de-

cision situations are sampled is given below.

Structural Analysis

The GP terminal distribution of the rules evolved by the GP approaches
are shown in Figure 4.5. The terminal distributions are calculated using
the procedure described in Section 4.4.2, where the proportion of GP ter-
minals for each individual rules are first calculated before being plotted as
shown in the figure. We used the box plot for visualisation in this analy-
sis since certain certain terminal proportions were not clearly visible in a
bubble plot (which is used for Figure 4.3 in Section 4.4.2). In addition, we
show the proportion of the WT and RTR in each of the rule in the 30 rules
evolved by GP-WT and GP-RTR approaches in Figure 4.6.

In addition to calculating the terminal proportions, we analyse the best
rules from the GP approaches. The best rules are simplified to remove any
redundant branches (e.g. if an if will only return the “if” sub-branch,
then the if operator is replaced with the “if” branch) before analysing the
structures of the rules. The simplified best rules for GP-Aug, GP-WT, and
GP-RTR are shown in Figure 4.7a, 4.7b, and 4.7c respectively.

From the Figure 4.5, the most frequent terminal that occurs for the GP
approaches are due date (DD), then weight (W) and then processing time
(PT). The high frequency of due date terminal is consistent with the trend

shown in the GP terminal analysis carried out in Section 4.4.2 above (in

4.7. MACHINE BREAKDOWN GP RESULTS AND DISCUSSION 151

0.51

© I
w EN
! \

Rule Proportion
o
N

o
i

ui kg Nuﬂj i

AQW DD NNQ NPT NQW PT RM RO RT RTR SL W WINQ WT
Termlnals

o
o
v

RuleFile B3 GP EJ GP-Aug B3 GP-WT EJ GP-RTR

Figure 4.5: The proportion of terminals used by the sets of rules evolved

by the GP-HH approaches.

0.51

o
~

o
w

Rule Proportion
o
R

Nir sk i a1 1.1k

Terminal [] RTR [] wT

Figure 4.6: The proportion of the machine breakdown terminals for the
individual rules in the GP-RTR and GP-WT approaches.

Figure 4.3), where the proportion of due date terminals used by GP in-
creased as the machine breakdown level of the DJSS simulations used

during training increased. As the rules are trained on (15%, 262.5, 3),

152CHAPTER 4. GP TO DJSS PROBLEMS SUBJECT TO MACHINE BREAKDOWNS

(b) Best GP-WT rule

[Q@ERDOEDEDMD () T W (1
@) D)L D@D RIGHEDH [QO EDED D@D
0 Qo ™ (D) (] (PD) () (PT) (k) (Ra) (RTR)
(DY N (W) (P) (RN(SL)(DD) (AN (PD) (R

(c) Best GP-RTR rule

Figure 4.7: The structures of the best rules found by the GP approaches.

i.e., on 15% breakdown level, it is expected that the evolved rules have

a high proportion of due date terminals. In addition, the proportion of

4.7. MACHINE BREAKDOWN GP RESULTS AND DISCUSSION 153

processing time terminal in Figure 4.5 is also consistent with the results
shown in Figure 4.3. These results reinforce the hypothesis from Section
4.4.2 that processing urgent jobs based on their due dates may be a more
reliable method of generating good schedules for the high machine break-
down scenarios than prioritising shorter jobs, as the rules have a higher

proportion of due date terminal than processing time terminal.

An important observation from the best rules evolved by GP-WT and
GP-RTR is the lack of machine breakdown terminals that make up the best
rules. The best rule from GP-WT has no occurrence of the WT terminal that
is incorporated into the terminal set, and the best rule from GP-RTR has
one occurrence of the RTR terminal. Further analysis of the proportion of
WT and RTR that make up the other rules that are evolved by GP-WT and
GP-RTR as shown in Figure 4.6 shows that the two terminals are used quite
infrequently. Therefore, it may be possible that the standard GP approach
is not strong enough to search the heurstic space to generate an effective
combination of the machine breakdown GP terminals with the standard

GP terminals to evolve machine breakdown specific rules.

For the best rules from the GP approaches, the method in which the
non-machine breakdown related terminals are combined may also be a
factor in the effectiveness of the rules. These include the frequent occur-
rence of important terminals such as the job’s weights and processing time
in the best GP rules. Intuitively, important jobs with short processing time
should be prioritised. However, in all three machine breakdown GP rules
(and the best benchmark GP rule), there are many segments of the tree
that form DD/PT, which indicates that the best rules prioritise jobs with
high due date and low processing time. This is contrary to the expecta-
tion that jobs with low due dates (i.e. jobs that are more urgent) should
be prioritised first. A possible explanation is that the due date terminal is
time-variant, i.e., expected due dates of jobs steadily increases with the du-
ration of the simulation. On the other hand, the processing time terminal

is time-invariant, i.e., the expected processing times of jobs do not increase

154CHAPTER 4. GP TO DJSS PROBLEMS SUBJECT TO MACHINE BREAKDOWNS

with the length of the simulation for the DJSS problem. Therefore, the
relative differences in the due dates of jobs waiting at a machine become
smaller compared to the absolute values of the due dates during the dura-
tion of the simulation, whereas the relative differences of processing times
of jobs stay the same compared to the absolute values of the processing
times. This may result in the due date of a job for long simulations being
used by the best rules as an arbitrarily large value that can be combined
with the processing time terminal using the protected / operator to form a
composite that prioritises short processing times.

Behavioural Analysis

To analyse the behaviours of the best rules when machine breakdowns oc-
cur, decision situations are sampled from the simulations with machine
breakdowns in the DJSS simulation model A’ and the best rules are ap-
plied to the decision situations. The wATC rule is used as the sampling
rule (as described in Section 3.4.1 (Page 89)), which is applied to a simula-
tion to sample decision situations as follows. The decision situations that
are considered for selection are decision situations where at least one job
will be interrupted by a future machine breakdown if it was selected to
be processed (i.e. the machine’s breakdown time is less than the current
time plus the job’s processing time), and the breakdown time is less than
the mean processing time of operations (¢ in Table 4.3). Afterwards, 50 de-
cision situations are selected randomly among all decision situations and
the best rules from the baseline GP approach and the machine breakdown
GP approaches are applied to the 50 decision situations sampled from the
simulation.

After the best rules are applied to the decision situations, we compare
the processing time of the job selected by the best rules against the shortest
processing times of the jobs waiting at the machine, i.e., jobs that would be
selected by the SPT dispatching rule. Processing time related terminals are

a significant component of the rules evolved by GP according to the results

4.8. CHAPTER SUMMARY 155

from Figure 4.3, and likely has a significant impact on the decisions made
by the evolved rules. By comparing the jobs selected by the best rules
against the jobs selected with the shortest processing times, we can gauge
the complexity of the decision made by the best rules. The results for each
simulation configuration is shown in Figure 4.8, where the “Similarity”
denotes the similarity of the best rule’s decision to the SPT rule for the
particular simulation configuration.

As we can see from the figure, the best rules have a very high similarity
to the SPT dispatching rule in the decision situations where the machine
breakdowns occur shortly after the decision situation. The similarities are
prominent for configurations with low repair times (r; = 37.5), which in-
dicates that the best rules in those scenarios will likely make “simple” de-
cisions. On the other hand, the best rules show greater differences in the
behaviours to the SPT rules for higher levels of machine breakdowns, even
though the decision situations in the different simulations are sampled so
that they are interrupted by machine breakdowns. This indicates that the
properties of the simulations before the machine breakdown are signifi-
cantly different from each other for the different machine breakdown sce-
narios. In addition, this result supports the earlier finding in Figure 4.3
that the urgencies of the jobs based on the due dates are utilised more of-

ten in simulations with high levels of machine breakdowns.

4.8 Chapter Summary

The goal of this chapter was to develop an effective machine breakdown
GP approach for the DJSS problem with dynamic job arrivals and machine
breakdowns that evolves machine breakdown GP rules. To achieve this
goal, we first carried out an investigation into the efficacy of a standard
GP approach. This chapter first develops a DJSS simulation model for
evaluating the standard GP-HH approach by modifying an existing DJSS

simulation model proposed in the literature [61] and modify the training

156 CHAPTER 4. GP TO DJSS PROBLEMS SUBJECT TO MACHINE BREAKDOWNS

<2.5%,37.5,3>
<2.5%,37.5,5>
<2.5%,137.5,3>+
<2.5%,137.5,5>+
<2.5%,262.5,3>
<2.5%,262.5,5> 1
<5%,37.5,3> 1
<5%,37.5,5> 1
<5%,137.5,3> 1
<5%,137.5,5>
<5%,262.5,3> -
<5%,262.5,5> -
<10%,37.5,3>1

DJSS Scenario

<10%,37.5,5>
<10%,137.5,3>1
<10%,137.5,5> 1
<10%,262.5,3>
<10%,262.5,5>

<15%,37.5,3>

<15%,37.5,5> 1
<15%,137.5,3>
<15%,137.5,5>
<15%,262.5,3>

<15%,262.5,5>

0.00 0.25 0.50 0.75
Similarity

[ler [OeP-aug [EeP-wt [[]eP-RTR

Figure 4.8: Similarity of the behaviours of the best rules against the SPT

rule.

4.8. CHAPTER SUMMARY 157

procedure proposed by Burke et al. [23] to evaluate the GP over the sim-
ulation model. In addition, GP evolved rules are analysed by comparing
the distribution of the GP terminals between the rules evolved on different
machine breakdown scenarios. Afterwards, the chapter develops a series
of machine breakdown GP terminals that are incorporated into the GP ap-
proaches. The first set of GP terminals (called “augmented terminals”)
replace existing processing time related terminals (PT, NPT and WINQ)
with equivalent terminals that take potential machine breakdown into ac-
count. The second set of GP approaches (called “reactive terminals”) add
new terminals (RTR and WT) that give information on the current state of

the shop floor.

The efficacy investigation shows that GP evolved rules performances
are specific to the machine breakdown scenario they are evolved on. In
other words, the rules evolved on zero machine breakdown scenarios per-
form significantly worse than the rules evolved on high machine break-
down scenarios on the high machine breakdown simulations, and vice
versa. This is contrary to the results in the literature when GP is evolved
on simulations with different levels of utilisation rate [105], where rules
evolved on DJSS simulations with high utilisation rate also generally per-
form well on DJSS simulations with low utilisation rate. In addition, the
generalist rules are heavily biased towards the simulations with no ma-
chine breakdowns and perform poorly on high machine breakdown level.

The analysis of the terminal distribution shows that the evolved rules
are mostly made up of processing time terminal (PT), followed by the due
date terminal (DD). The rules evolved on a high machine breakdown level
have a lower proportion of processing time terminal compared to the rules
evolved on a lower machine breakdown level, but have a higher propor-
tion of due date terminals. This is potentially due to the added uncertainty
associated with the duration of time required to process a job in the high
machine breakdown level.

Finally, although the machine breakdown GP terminals do not signifi-

158CHAPTER 4. GP TO DJSS PROBLEMS SUBJECT TO MACHINE BREAKDOWNS

cantly improve on the baseline GP approach overall, the best rules evolved
by the machine breakdown GP approaches show promise and outperform
the baseline GP’s best rule in certain simulation configurations. The anal-
ysis of the evolved rules shows that the rules in evolved using the reac-
tive machine breakdown GP terminals (GP-WT and GP-RTR) have very
few reactive machine breakdown GP terminals in the structures of the
evolved best rules. Therefore, it is possible that the standard GP’s heuristic
search ability is not strong enough to utilise the machine breakdown GP
terminals to form structures more effective for the DJSS problem over non-
machine breakdown GP terminals. In addition, the behavioural analysis
shows that in the decisions that are shortly followed by machine break-
downs, the best rules share significant similarities to the SPT rule for sim-
ulations with low machine breakdown level. More investigation will need
to be made in the future.

Although this chapter investigates GP for the DJSS problem with dy-
namic job arrivals and machine breakdowns, it does not consider a GP
approach that evolves multiple rules. The previous chapter showed that
the ensemble GP approach can outperform the standard GP approach for
the DJSS problem with dynamic job arrivals, but with no machine break-
downs. It may be possible that handling the DJSS problem with dynamic
job arrivals and machine breakdowns using multiple rules may be more
effective than evolving a single rule that handles the different machine
breakdown scenarios simultaneously. Therefore, the next chapter will de-
velop GP approaches that are an alternative method of handling the DJSS
problem with dynamic job arrivals and machine breakdowns by evolving
a portfolio of rules that can handle different machine breakdown scenarios.

Chapter 5

Developing Multitask GP-HH
Approaches

5.1 Introduction

As shown in Chapter 4, the standard GP approach for the DJSS problem
with dynamic job arrivals and machine breakdowns is sensitive to the dif-
ferent machine breakdown levels. In the DJSS problem with a wide range
of machine breakdown scenarios, a single “generalist” rule has a difficult
time covering for the different machine breakdown scenarios effectively.
An alternate approach is to evolve “specialist” rules separately for each
machine breakdown scenario, but this procedure is time-consuming. In-
stead, it may be possible to handle the DJSS problem by decomposing the
problem into multiple tasks based on the machine breakdown scenarios
to be handled by a multitask GP approach. Multitask learning has the
advantage over learning rules separately as the transfer of knowledge be-
tween problem domains has been shown to boost the effectiveness of rules
[27]. Therefore, treating the different machine breakdown scenarios as the
multiple tasks and applying a multitask GP approach to the problem may
improve the efficiency of solving the DJSS problem. In addition, multi-

tasking may also reduce the number of evaluations required by the GP

159

160 CHAPTER 5. DEVELOPING MULTITASK GP-HH APPROACHES

individuals to save on computation cost while being competitive in terms
of the performance to the standard GP approach.

5.1.1 Chapter Goals

The goal of this chapter is to develop multitask GP approaches that evolve
an effective portfolio of rules over the DJSS problem. Each rule in the port-
folio aims to be effective on a specific machine breakdown scenario. This
is contrary to the ensemble approaches proposed in Chapter 3, where the
ensemble aims to be effective over the entire DJSS problem that they are
applied to. Multitask learning ideas and approaches have been effectively
and successfully applied to problems outside of DJSS [27, 116]. How-
ever, multitask learning has not yet been incorporated into GP to evolve
rules for the DJSS problem. This objective develops two multitask GP ap-

proaches for the DJSS problem with different focuses as follows.

e First, this chapter develops a novel multitask GP approach by incor-
porating a niching technique [133, 95]. Niching techniques are used
in the literature to promote diversity between the GP individuals in a
single GP run [95]. When combined with GP as a multitask optimisa-
tion method for the DJSS problem, niching can effectively aid GP in
searching for the effective rules specialised for each type of problem
instance (i.e. tasks). If a specific GP individual is effective for a par-
ticular task, then filtering out other individuals that behave similarly
but have poor performances may help improve the search for better
individuals in the specific task. The aim of the niched GP (NGP)
approach is to improve on the standard GP approach over the DJSS
problem by incorporating multitasking while being competitive in
terms of the computation cost. In other words, the niched GP ap-
proach aims to evolve effective rules that can perform well over the
entire problem domain (called the “generalist” rule) and evolve rules

that are effective for specific machine breakdown scenarios (called

5.1. INTRODUCTION 161

the “specialist” rules) simultaneously. The generalist rules are likely
to be effective on the DJSS problem instances where the properties
of the problem instances are unknown. The specialist rules can be
applied to DJSS problem instances where the properties of the prob-
lem instances are known in advance, as the specialist rule will likely
have a better performance over the problem instances with the spe-

cific machine breakdown scenario than the generalist rules.

e Second, this chapter develops a novel multitask GP approach to the
DJSS problem which uses the neighbourhood relations between the
different tasks in the DJSS problems to best determine the tasks that
the GP individuals in the population should be assigned to. For sim-
plicity, this multitask GP approach is called neighbourhood-based
GP (NBGP). The neighbourhood relations between the different tasks
are formed based on the properties of the problem instances. After-
wards, the individuals are assigned to specific tasks, and can poten-
tially branch out to other tasks if they perform well on the assigned
task. By using neighbourhood relations and focusing individuals to
specific tasks, GP can minimise wasting computation time evaluat-
ing the GP individuals in tasks where they perform poorly on, and
prioritise the evaluation of good individuals. In other words, the
aim of the NBGP approach is to improve the computation cost re-
quired for GP to evolve the rules over the standard GP approach

while maintaining competitive performance.

e In summary, the goal of NGP is to use niching to evolve more ef-
fective rules than the standard GP approach. On the other hand,
the goal of NBGP is to use neighbourhood relations to minimise re-
dundant evaluations and to improve the both the effectiveness of the
evolved rules and the efficiency of evolving rules over the standard
GP approach. For both multitask GP approaches, we carry out be-

havioural analysis to obtain further insight into the properties of the

162 CHAPTER 5. DEVELOPING MULTITASK GP-HH APPROACHES

evolved rules on the different machine breakdown scenarios.

5.1.2 Chapter Organisation

The remainder of this chapter is organised as follows. First, we provide a
general description of how the multitask GP is applied to the DJSS prob-
lem and the representation of tasks. The subsequent section describes the
niched GP approach, which is then followed by the section that describes
the NBGP approach. Afterwards, the design of the experiments is dis-
cussed in the third subsequent section, followed by the results, discussion

and analysis section and the chapter summary section.

5.2 Applying Multitasking to a DJSS Problem

This section provides a description of how the DJSS problem is separated
into a multitasking problem. First, we provide a description of the DJSS
simulation model, followed by a detail of how the DJSS simulation model
is handled by the multitask GP approach.

5.2.1 DJSS Simulation Model

The DJSS simulation model is the modified Holthaus’s simulation model
described in Section 4.3.1 (Page 127) that generates the job arrivals and
machine breakdowns stochastically. For reference, the parameters used
for the simulation model is given in Table 5.1.

The DJSS simulation model results in a total of seven different machine
breakdown scenarios, where each machine breakdown scenario consists of
two different configurations with the due date tightness values. This re-
sults in a total of 14 different simulation configurations. A simulation con-
figuration is abbreviated as (r,y, z), where = denotes the machine break-

down level, y is the mean repair time, and z denotes the due date tightness.

5.2. APPLYING MULTITASKING TO A DJSS PROBLEM

Table 5.1: The parameters used for simulating a DJSS problem instance.

Parameters Value
Number of machines 10
Warm up jobs 500
completed jobs before | 2500
simulation termination

Shop floor parameters Utilisation rate 90%

Job arrival rate ()
Operation processing
times (o)

operations per job (V;)
Job weight

Due date tightness

A ~ Poisson(13.5)

N; ~ Unif[2,10]
Random from 1, 2, 4 with
probabilities 20%, 60%,
20%

3.00r 5.0

Machine breakdown

Breakdown level

0%, 2.5% or 5%

163

25, 125 or 250

parameters Mean repair time

In addition, a machine breakdown scenario is abbreviated as (x, y), where

x denotes the machine breakdown level and y the mean repair time.

5.2.2 Multitasking on the DJSS Simulation Model

To evolve rules for each machine breakdown scenario of the DJSS simula-
tion model, a standard GP approach would need to apply seven indepen-
dent runs of the GP process. This process is shown in Figure 5.1, where
each GP process that is applied to a machine breakdown scenario evolves a
specialist rule specific to the scenario. In other words, applying a standard
GP approach to scenario (2.5%, 25, 5) evolves a dispatching rule spe-
cialised for the machine breakdown scenario with breakdown level 2.5%
and mean repair time 25. On the other hand, a generalist rule takes the en-
tire DJSS simulation model and outputs a single rule for all seven machine
breakdown scenarios.

In this thesis, a multitask GP approach is applied to all machine break-

164 CHAPTER 5. DEVELOPING MULTITASK GP-HH APPROACHES

DJSS Problem Standard GP Output Rule

<0%> GP Process @
<2.5%,25> GP Process SpecialistRE
<2.5%,125> GP Process Speciali@
<2.5%,250> GP Process Speciali@
<5%,25> GP Process Specialis@
<5%,125> GP Process Specialis@
<5%,250> GP Process @

Figure 5.1: Evolving specialist rules from the DJSS simulation model using
a standard GP approach.

down scenarios simultaneously. Each machine breakdown scenarios is
treated as a “task” in the multitask optimisation procedure. An example
of this process is shown in Figure 5.2, where the entire DJSS simulation
model is used by the multitask GP process. The multitask GP approach
then outputs multiple specialist rules simultaneously that are specific to
the machine breakdown scenarios. The NBGP approach follows the pro-
cess provided in the figure and outputs specialist rules. On the other hand,
the NGP approach outputs both the specialist rules and a generalist rule
when it is applied to the DJSS simulation model. The differences are due to
the design of the NGP and NBGP algorithms, which are discussed further
below.

5.3. NICHED GP APPROACH FOR MULTITASKING

DJSS Problem

<0%>

<2.5%,25>

<2.5%,125>

<2.5%,250>

<5%,25>

<5%,125>

<5%,250>

N\

165

Multitask GP

Output Rule

Specialist Rule
Specialist Rule

Specialist Rule

GP Process <

Speciali@

Specialist Rule

Specialist Rule
Specialist Rule

Figure 5.2: Evolving specialist rules from the DJSS simulation model using

a multitask GP approach.

5.3 Niched GP Approach for Multitasking

This section covers the NGP approach that is used to evolve a general-

ist rule and specialist rules for the different machine breakdown scenarios

simultaneously. This allows us to share the latent features discovered for

the different machine breakdown scenarios during the NGP process to im-

prove the effectiveness of the generalist and the specialist rules. First, we

give a general overview of the niched GP process. This is then followed

by further discussion on specific details on the GP selection and evaluation

procedure, which includes a description of the niching technique used to
adjust the fitness of the GP individuals.

166 CHAPTER 5. DEVELOPING MULTITASK GP-HH APPROACHES

5.3.1 Niched GP Overview

The NGP approach in this paper is extended from a niched GP approach
proposed by Mei et al. [95] used to evolve a diverse set of rules. For
the NGP approach, each machine breakdown scenario in the DJSS prob-
lem represent a “niche” that can be occupied by a GP individual that has
good performance for the particular scenario. In other words, the NGP
keeps track of the GP individuals that are the best for the different machine
breakdown scenarios during training. By doing this, GP is demonstrated
to retain useful features from rules which may not have the best overall
performance which can then be shared with other GP individuals.

For the NGP process, a single population of the GP individuals are
tirst randomly initialised and the set of specialist rule S is empty. For
each generation when a GP individual z is being evaluated, the individ-
ual is first evaluated on the “general” training set 7 that contains machine
breakdown scenarios Sy, ..., Sy to calculate its fitness f(x). The individ-
ual z’s performance over the different machine breakdown scenario in
training set 7 is also used to update the current generation niched indi-
viduals ¢4, ..., ty. After all individuals have been evaluated, the current
generation niched individuals ¢;, ..., ty are further evaluated on niched
training sets with problem instances specific to single-machine breakdown
scenarios. If the current generation niched individuals perform better on
the specific niched training sets than the overall niched individuals R;;,

.., Rsn, then the overall niched individuals are updated to the current
generation niched individuals. The evaluation procedure for calculating
GP individuals’ fitness and for updating the overall niched individuals is
described in full in the subsection below (Section 5.3.2). Afterwards, the
clearing algorithm is used to adjust the GP individuals’ fitness before the
selection procedure, which is described in further detail below (Section
5.3.3). This process continues until the maximum number of generations
has been reached, at which point the algorithm reports the best overall
rule as the generalist rule R, and the set of specialist rules Ry, ..., Ryy.

5.3. NICHED GP APPROACH FOR MULTITASKING 167

The pseudocode that summarises the niched GP process is shown in Al-
gorithm 3.

Algorithm 3: The pseudocode for the NGP approach that evolves a

generalist rule and specialist rules.
Input : Training set 7 consisting of machine breakdown scenarios S1,..., Sy

and niched training sets V;, ..., Vn.
Output: The set of specialist rules R, ..., Rsy and the generalist rule R,.
1 initialise GP population P;
2 for gen < 1to G do

3 setty,...,ty < @and fi,..., fip| < 0;
4 for each individual = in GP population P do
5 evaluate individual z on training set 7 and calculate performances
Perf(x,T1),...,Perf(x, Tn) over the different scenarios;
6 update f(z) from the performances over Perf(z,T1),..., Perf(z, Tn)
the different niches;
7 end
8 update current generation niche individuals ¢4, ..., tn;
9 update generalist rule R;
10 fort, inty,...,ty do
1 evaluate ¢,, on niched training set V,, and calculate the performance
Perf(tn, Vn);
12 update R, + tp;
13 end

14 apply the Clearing(P,S, o, k) procedure and adjust GP individual fitness
values;

15 carry out selection and breeding for population P;
16 end
17 output the set of specialist GP rules S and the best overall GP rule R;

5.3.2 GP Evaluation Procedure

A GP individual z is applied to DJSS problem instances as a non-delay
priority dispatching rule. After generating the schedule for a problem in-
stance [using individual =, the MWT objective value is normalised using

168 CHAPTER 5. DEVELOPING MULTITASK GP-HH APPROACHES

the wATC reference rule [148]. The performance Per f(z,7,) for a subset
of the training set 7 that belongs to niche n is calculated as the average
normalised objective values of the schedules generated as shown in Equa-
tion (5.1).

Perf(x,T,) = ITLI > Obj'(x,1) (5.1)

" reT,

The performance is then compared against the current generation niched
individual ¢,,’s performance Per f(t,,7,) over 7,, and the current genera-
tion niched individual is updated to individual z if individual z’s perfor-
mance is better than current generation niched individual’s performance.

The fitness f(x) of the individual is calculated as the average of the
performances over the subsets of the training set 7" as shown in Equation
(5.2). The fitness of the individual is adjusted further based on its proxim-
ity to the overall niched individual as described below in Section 5.3.3. If
individual z is the best fitness found so far, then the best overall individual
R, is updated to individual .

1 N
f(@) = > Perf(e.Ty) (52)

After all GP individuals in the current population have been evalu-
ated, the current generation niched individuals ¢;, ..., ty are then com-
pared against the overall niched individuals R, ..., Rsy. To compare
the current generation niched individuals ¢,, to overall niched individual
R;,, the individuals are evaluated on a niched training set V,, separate
from the general training set 7, that only consists of problem instances
with the specific machine breakdown scenario (i.e. the niched training sets
are validation sets specifically for the niched individuals). The calculation
for the performance Per f(x,V),) of a GP individual = on the niched train-
ing set V, is the same as calculation of niche specific performance on the
generalist training set 7 (as shown in Equation (5.1)). If the performance
Perf(t,,V,) of the current generation niched individual ¢, is better than

5.3. NICHED GP APPROACH FOR MULTITASKING 169

the performance Per f(Rs,,V,) of the overall niched individual R,, over
the niched training set V,, then R;,, is updated to the current generation’s
niche individual ¢,,. Otherwise, the individual R;, is kept the same.

Given that the same training set 7 is used, the NGP approach will
likely have a greater computation time than a standard GP approach with
the aim of evolving one rule from a single population because it further
evaluates the current generation niched individuals on the niched training
sets Vi, ..., Vy on top of the standard evaluation procedure. When evolv-
ing dispatching rules to DJSS problems using GP, the evaluation procedure
and the application of the individuals on the training instances is the most
computationally intensive step of the GP process [103]. As the NGP ap-
proach will have additional # of niches x niched training sets sizes simulation
runs, the NGP approach requires a total of |P| x |T |+ |Vi|+ - -+ |Vy| simu-
lation runs. If the niched training sets have the same number of DJSS prob-
lem instances, then the total number of simulation runs is |P|x |7 |+ N x|V,
where |V| the size of the niched training sets. However, the NGP approach
will still have significantly shorter computation time compared to evolv-
ing generalist and specialist rules using a standard GP separately, which
requires 2 x |P| x |T| simulation runs to evaluate all the GP individuals

per generation.

5.3.3 GP Clearing Procedure

After the overall niche individuals R, ..., Rsy are updated and the best
individual for the current generation has been found, the clearing algo-
rithm Clearing(P, Rsi, ..., Rsy, Ry, 0, k) is applied as the selection pro-
cedure before the individuals undergo the standard tournament selection
procedure. Clearing is a niching technique that has been used by a num-
ber of existing multimodal approaches in the literature [123, 121, 95] and is
generally used to find multiple solutions in the solution space. The clear-
ing algorithm used by NGP is modified from the algorithm used by Mei

170 CHAPTER 5. DEVELOPING MULTITASK GP-HH APPROACHES

et al. [95], and is the NGP approach’s method of sharing the behaviours
of the niched individuals to the rest of the GP population for multitask-
ing. Mei et al.’s [95] approach defines the niches automatically based on
the distances of the individuals and does not distinguish between the dif-
ferent machine breakdown scenarios in the DJSS problem. For the NGP
approach, the niched individuals R,, ..., R,y are set before the clearing
procedure (as described in the overview in Section 5.3.1) and then are used
to adjust the fitness of the other GP individuals in the population. This is
done by removing individuals with poor performances that behave too
similar to the niched individuals from the population. Therefore, we use a
distance measure A(z, z’) that calculates the differences in the behaviours
of individuals z and 2’ in the clearing algorithm in Algorithm 4. In the
algorithm, the individuals with poor performances within the distance o
from either the specialist rules R,y, ..., R,y or the generalist rule R, are
removed from the GP population if the niche has reached its capacity «.

The distance A(x,2’) between two individuals « and 2’ are calculated
based on how the two individuals rank the jobs at sample decision situa-
tions. The distance measure is adapted from the phenotypic measure used
by Hildebrandt and Branke [59] and has been used effectively by Mei et
al. [95] to evolve a diverse set of dispatching rules. Individuals z and 2’
assigns priorities to the jobs waiting at the machine for a decision situa-
tion. The priorities are then used to determine the ranks of the jobs. The
job j with the highest priority has a rank r; = 1, the job ;" with the second
highest priority has a rank ;; = 2, and so on. Afterwards, the wATC refer-
ence rule applied to the same decision situation and ranks r;(z) and r;(2’)
assigned by individuals z and 2’ respectively to the job j that is assigned
the highest priority by the reference rule are compared. This is done over
(2 decision situations, which gives us the distance A(z,z’) as shown in
Equation (5.3).

5.3. NICHED GP APPROACH FOR MULTITASKING

171

Algorithm 4: The pseudocode for the niched clearing procedure
Clearing(P, Rsy,..., Rsn, Ry, 0, K).

10

11

12

13

14

15 end

generalist rule R, a niche radius o, and a niche capacity .

Input : A GP population P, overall niched GP individuals R,, ...

Output: Updated population P with adjusted fitness values.
1 sort fitness of GP population P from best to worst;
2 for each individual R from R,q,...,Rsn, Ry do

set current niche size size < 1;

for each individual = in GP population P do

end

if x is not a niched individual or the best individual then
if fitness f(x) < oo and A(R,z) < o then

end

end

if size < k then

‘ size < size + 1;
else

| fay) o
end

7R8N/a

Afa,a’) = | D (r(a) —r5(2")?

i=1

(5.3)

The Q2 decision situations are obtained by applying the weighted shortest-

processing-time (WSPT) rule to the problem instances in the first DJSS

problem instance I in the training set 7. During processing as the WSPT

rule is applied to a problem instance /, any decision situation with at least

€ jobs is considered. Therefore, the range of values for the ranks of jobs,

which depends on the number of waiting jobs at the machine, is at least

€ at the minimum. Out of the remaining decision situations, (2 is selected

randomly sampled from the problem instance.

172 CHAPTER 5. DEVELOPING MULTITASK GP-HH APPROACHES

5.4 Neighbourhood-based GP Approach for Mul-
titasking

The aim of NBGP is to improve on the efficiency of evolving rules to DJSS
problems with different machine breakdown scenarios while maintaining
competitive performance to a standard GP approach. To do this, NBGP
tirst defines the neighbourhood relations between the different types of
DJSS problem instances based on the machine breakdown properties of
the problem instances. The neighbourhood relation is then used to de-
termine which individual should be evaluated on which machine break-
down scenario so that the GP only needs to evaluate the individuals on the
training instances they are likely to perform well on. In terms of compu-
tation time, NBGP will likely have a significantly lower computation cost
compared to a standard GP approach that applies the individuals to all
machine breakdown scenarios during training. Below, we provide a gen-
eral overview of NBGP, describe how the individuals are evaluated on the
training instances, and how the selection procedure is carried out when
the individuals have not been evaluated on all problem instances in the

training set.

5.4.1 NBGP Approach Overview

The general overview of the NBGP approach is shown in Algorithm 5.
After carrying out the standard initialisation procedure where the GP in-
dividuals are randomly generated, the individuals undergo evaluation on
the training set 7 that consists of DJSS problem instances with different
machine breakdown scenarios. The subsets of the training set 7 that con-
sists of the DJSS problem instances under a specific machine breakdown
scenario S are denoted 7.

For the first generation, the individuals are applied to the entire train-

ing set 7 as a non-delay dispatching rule. After the first generation, the in-

5.4. NEIGHBOURHOOD-BASED GP APPROACH FOR MULTITASKING173

dividuals will have a specific task (which corresponds to a machine break-
down scenario) they are assigned to, and will first be applied to the DJSS
problem instances corresponding to the specific machine breakdown sce-
nario before further evaluation is potentially performed on neighbour ma-
chine breakdown scenarios (described in Section 5.4.2). If the individual
performed well in a specific machine breakdown scenario S, then they are
assigned as the “specialist” rule R, s for machine breakdown scenario S.

To generate the next generation of individuals after all current genera-
tion GP individuals have been evaluated, the breeding procedure Breed(P)
is carried out for the GP population P. The breeding procedure is a modi-
fication of the standard GP breeding procedure, and breeds specific num-
bers of individuals assigned to each machine breakdown scenario. Further
details on the breeding procedures are given below in Section 5.4.3. The
individuals bred for a specific machine breakdown scenario are generated
by selecting the parents from the GP individuals that have high perfor-
mances on the machine breakdown scenario or its neighbours. The best
specialist individuals for every machine breakdown scenarios are also car-
ried over via elitism. This procedure is described in full in Section 5.4.3.
The final output of the NBGP approach is the last generation’s best in-
dividuals for each scenario, which are outputted as the set of specialist
rules Ry, ..., Rsy. As GP individuals in the NBGP process are not always
evaluated over the entire training set 7 except for the first generation, the
NBGP approach does not generate a generalist rule R, like the NGP ap-
proach.

5.4.2 Neighbourhood Scenario Evaluation Procedure

A key component of the NBGP is that the GP individuals are assigned to
specific machine breakdown scenario S that they are specialised for. The
individual is assigned to a specific machine breakdown scenario S after

they are generated from the GP selection and breeding procedure, which

174 CHAPTER 5. DEVELOPING MULTITASK GP-HH APPROACHES

Algorithm 5: The pseudocode for the NBGP approach that evolves

specialist rules.
Input : Training set 7 with neighbourhood relations between the machine

breakdown scenarios Sy, ..., Sn.
Output: The specialist rules Ry, ..., Rsy.
1 Initialise GP population P of GP individuals that do not have assigned
scenarios;
2 for gen + 1to G do

3 for each individual x in GP population P do
4 if « has an assigned scenario S then
5 evaluate individual « to training subset 75 and calculate fitness
f(z,5);
6 else
7 evaluate individual z to training set 7 and calculate scenario fitness
f(x,S) for all scenarios S = 1,..., N;
8 end
9 end
10 for each individual x with an assigned scenario S in GP population P do
11 evaluate x on the neighbour scenarios (Algorithm 6).
12 end
13 update the specialist rules Ry, ..., Rsy;
14 retain I best individuals for each scenario for the next generation;
15 breed next generation of individuals from P with assigned scenarios
(Section 5.4.3);
16 end

is described below (in Section 5.4.3). The GP individuals are applied to
the problem instances in the training set that belongs to the specific ma-
chine breakdown scenarios, and their performances are calculated for the
problem instances. The evaluation procedure on the neighbour scenarios
is shown in Algorithm 6. First, the immediate neighbouring scenarios 5,
..., Sn to the scenario S; assigned to GP individual z are always utilised
for evaluation. In other words, individual x are applied to DJSS problem
instances in scenarios Sy, ..., Sy to calculate the scenario fitness f(z,5;),

..., f(z, Sy). The neighbour machine breakdown scenarios are the scenar-

5.4. NEIGHBOURHOOD-BASED GP APPROACH FOR MULTITASKING175

ios that are adjacent to scenario S in terms of the machine breakdown level
and mean repair time. In general, two scenarios are neighbours to each
other if they share the same machine breakdown level and have different
mean repair time, or vice versa. The neighbourhood relations between the
machine breakdown scenarios is discussed further below in Section 5.5.4
as we discuss the DJSS simulation model used to evaluate the NBGP ap-
proach. The machine breakdown level, mean repair times and the neigh-
bourhood relations between the different machine breakdown scenarios
are given in the experimental design section below (Section 5.5).

Algorithm 6: The pseudocode for the evaluation procedure for a

GP individual on the neighbour scenarios.
Input : A GP individual z, a training set 7, and an assigned starting machine

breakdown scenario S.
Output: Updated GP individual x that has been evaluated on the neighbour

scenarios.

1 evaluate individual z on the starting scenario S;

2 initialise a scenario queue g¢;

3 for each scenario S; that neighbours scenario S do

4 queue up neighbour scenario S; on the queue ¢ for evaluation;

5 end

6 while scenario queue q is not empty do

7 poll scenario S’ from queue g;
8 if individual = has not been applied to scenario S’ then
9 evaluate individuals on training subset 7g/;
10 for each scenario S] that neighbours scenario S’ do
11 calculate probability Prob(z, S!) (Equation (5.4));
12 randomly offer scenario S} based on the probability Prob(z, S;);
13 end
14 end
15 end

After the GP individual = has been evaluated on the immediate neigh-
bour scenarios, individual x has the additional opportunity to be evalu-

ated on indirect neighbour scenarios. For example, if an individual has

176 CHAPTER 5. DEVELOPING MULTITASK GP-HH APPROACHES

been evaluated on scenario S’ and there a scenario S that neighbours sce-
nario ', then given that the individual has not already been evaluated on
scenario 5] the probability of the individual being evaluated on scenario S
is given by Equation (5.4), which is a min-max normalisation that converts
the individual’s scenario fitness to a probability value. In the equation,
frest(S) is the fitness of the best individual for scenario S, and fio5:(5) is
the fitness of the worst individual for scenario S. The checks to jump to
a neighbour scenario occur after the individual has been evaluated on the
machine breakdown scenarios and continues until either the individual
fails the checks (which is random but based on the probability calculated
in Equation (5.4)), or the individual has been evaluated on all machine

breakdown scenarios.

f(2,8") = frest(S')

Prob(z, §) =1 - |+ —=="res

(5.4)

5.4.3 Selection and Breeding Procedures

The next generation GP individuals for the population are generated as
follows. First, the top E individuals from each scenario are transferred
from the current generation’s GP population to the next generation’s GP
population. Afterwards, the NBGP approach cycles through the machine
breakdown scenarios one-by-one and generates equal numbers of individ-
uals for each machine breakdown scenario. Starting from machine break-
down scenario S; out of the scenarios 5, ..., Sy, the parent GP individ-
uals to be used in crossover, mutation and reproduction is selected as fol-
lows. The order of machine breakdown scenarios is not significant for the
selection and the breeding procedures.

Tournament Selection

The parents are selected for breeding the next generation individual for
machine breakdown scenario S; using tournament selection. To select

5.4. NEIGHBOURHOOD-BASED GP APPROACH FOR MULTITASKING177

members for the tournament selection, the individuals that have been ap-
plied to problem instances in machine breakdown scenario S; are consid-
ered. Individuals that have not been evaluated on the scenario S; will be
ignored during the selection process. Our assumption is that individuals
which were not evaluated on scenario S; are unlikely to have a good fitness
in scenario S;. If an individual was not evaluated on scenario S;, then it
indicates that it did not manage to jump from one of the scenarios that are
neighbours to scenario S;. In other words, the probability of the individual
jumping to the scenario is likely to have been quite low, and it is likely that
the individual’s fitness on the neighbour scenario is quite poor. Therefore,
although it is possible that the individual could have good fitness for sce-
nario S; (if it was evaluated on scenario S;) but have poor fitness on the
neighbour scenarios, it is more likely that the individual has poor fitness
on both scenario S; and the neighbour scenarios.

Member Ranking in Tournament Selection

After the members are selected for the tournament selection, the fitness of
the GP individuals on the machine breakdown scenario S; and the other
machine breakdown scenarios are aggregated to form a score value that
can be compared against each other. First, a GP individual x is ranked
based on individual z’s relative scenario fitness f(z, S;) compared to other
individuals evaluated on the same scenario S}. This is done for all ma-
chine breakdown scenarios in the DJSS training set, and the rank of indi-
vidual = on scenario S, is denoted as r(x, S;). If an individual has not been
evaluated on a particular scenario and therefore do not have a rank for the
scenario, then the rank is imputed from the other individuals that are part
of the tournament selection. The imputation methods investigated gives
the individual with the average rank over all individuals involved in the
tournament selection with respect to a specific scenario. The imputation
methods allow individuals that may have not have the chance to be evalu-

ated on the machine breakdown scenarios to participate in the tournament

178 CHAPTER 5. DEVELOPING MULTITASK GP-HH APPROACHES

selection.

After the rank values have either been calculated or filled out for the in-
dividuals in the tournament, we calculate the score of an individual x (de-
noted as Score(z, S;)) as shown in Equation (5.5). In the equation, S}, ...,
SN are the neighbour machine breakdown scenarios of scenario S;, and w
is the weight of the neighbourhood scenarios. S}, ..., SN are the neigh-
bours of the scenarios S}, ..., SV, and so forth. In other words, further
away from the scenario S; under consideration, less the rank of the indi-
vidual on a different scenario contributes towards the individual’s score.
The weight w can be used to tune the exploration and exploitation of GP,
as we can potentially have good individuals in the neighbour machine
breakdown scenarios that can also perform well (or poorly) on the current
scenario. In addition, the weight can also tune the rules outputted by the
NBGP approach to be more general to every machine breakdown scenar-
ios or specific to the machine breakdown scenarios. The r,,,.:(S) value is
the worst rank out of all the GP individuals that have been applied to the
problem instances in scenario S. Finally, the individual with the highest

score in the tournament selection is selected to be the parent individual.

N N’
Score(z, S;) = ¢(x,S;) + chp(x, S + w? Z o(z,S¥)+... (5.5
n=1 n'=1

rworst(*g) - T‘(SL’, S)
Tworst(S)

An example of the member ranking for the tournament selection is

o(r,S) = (5.6)

shown in Table 5.2. The example in the table use tournament selection
of size 7, the machine breakdown scenario S; that the offspring individ-
ual is being generated for has neighbours S} and 57, and w = 0.25. In
addition, the examples have 100 GP individuals that have been applied to
problem instances in each machine breakdown scenarios, which results in

the average rank of 50 for each scenario. After calculating the scores for

5.5. DESIGN OF EXPERIMENT 179

the individuals in Equation (5.5), individual z5 has the highest score and

is the winner of the tournament selection.

Table 5.2: Member ranking for tournament selection using the average
rank for missing rank values. Ranks in brackets indicate missing ranks
that have been filled out. Each scenario has 100 individuals evaluated on
the scenario.

o Ranks
Individual Score
S} S; S?
T 2 20 30 | 1.22
To 40 4 34 1.28
T3 (50) (50) 40 | 0.78
x4 35 (50) (50) | 0.79
x5 20 10 5 1.34
T (50) 30 (50) | 0.95
X7 1 35 (50) | 1.03
Average 50 50 50 -

5.5 Design of Experiment

This section covers the design of the experiments carried out to evaluate
the NGP and the NBGP approaches. First, we discuss the GP benchmark
used for comparison. Afterwards, we cover the GP terminal and func-
tion sets used by all GP approaches evaluated in the experiments and the
parameter settings for the GP approaches.

5.5.1 Benchmark GP Approach

To evaluate the NGP and NBGP evolved rules, we use a standard single-
tree GP representation [17, 103] with the same terminal and function set
(Table 5.3). This standard GP approach used as the benchmark follows the

180 CHAPTER 5. DEVELOPING MULTITASK GP-HH APPROACHES

same major steps as the benchmark GP approaches described in the previ-
ous chapters. For the evaluation procedure, a GP individual is applied to
the training set as a non-delay priority dispatching rule, and the individ-
ual’s fitness is calculated from the mean normalised objectives generated
by the individual over the DJSS training instances (as shown in Equation
(3.1)). The best individual obtained in the last generation is the output
dispatching rule for the benchmark GP process.

5.5.2 GP Terminals and Function Set

The GP terminals and function sets are kept consistent as the represen-
tation, terminals and function sets used in Section 4.2.1 (Page 122). The
terminals used for the benchmark GP approach, the NGP and the NBGP
approaches are given in Table 5.3. The function set consists of the opera-
tors 4+, —, x, protected /, binary operators max, min and a ternary operator
if.

5.5.3 GP Parameter Settings

The GP parameters for the benchmark GP, the NGP and the NBGP ap-
proaches are kept consistent as the parameters used in the previous chap-
ters and are shown in Table 5.4 for reference. The additional parameters
required for the NGP approach are the niche radius ¢ and the niche capac-
ity k. These parameters are kept consistent as the niching parameters used
by Mei et al. [95]. They used niche capacity of x = 1, i.e., any individual
too close to the overall niched individuals are removed. They tested three
different parameter values for the niche radius (¢ = 0, 0 = 1 and o = 5),
and found that niche radius ¢ = 1 produced the best results for evolv-
ing effective rules while niche radius ¢ = 5 had the worst results overall.
In addition, the NBGP approach has the additional parameters neighbour
weight w and the number of elites E kept per generation for the selection

procedure. After carrying out preliminary tests for w = 0.25 and w = 0.5,

5.5. DESIGN OF EXPERIMENT 181

Table 5.3: Terminal set for GP, where a job j is waiting at the available

machine m at a decision situation.

Terminal Description

RJ The operation ready time of job j

PT The operation processing time of job j

RO Remaining number of operations of job j

RT Remaining total processing times of job j

RM Machine m’s ready time

WINQ Work in next queue for job j

DD Job’s due date d;

\ Job’s weight w;,

NPT Next operation processing time of job j

NNQ Number of idle jobs waiting at the next machine

NQW Average waiting time of last 5 jobs at the next machine
AQW Average waiting time of last 5 jobs at all machines

we found that w = 0.5 frequently results in situations where the individ-
ual with the best fitness for the specific machine breakdown scenario S
not being selected. Therefore, the lower neighbour weight of w = 0.25 is
used to evolve the GP rules for the NBGP approach. In addition, we tested
three different values for the GP elitism for the NBGP approach, where we
retain the top £ individuals for each of the different machine breakdown
scenarios plus the top E individuals with the best overall fitness. The three

values tested during the evaluation procedure are £/ = 1, 5, 10.

5.5.4 GP Training Procedures

To evaluate the NGP and the NBGP approaches, the GP approaches are
applied to the DJSS simulation model described in Section 5.2.1 as fol-
lows to evolve the portfolio of rules for the DJSS problem. For the DJSS

simulations, the seeds used to stochastically generate the job arrivals and

182 CHAPTER 5. DEVELOPING MULTITASK GP-HH APPROACHES

Table 5.4: Parameters for the benchmark GP, the NGP and the NBGP ap-
proaches.

Approach

Parameters

GP NGP NBGP
Population size 1024
No. of generations 51
GP mutation rate 10%
GP reproduction rate 10%
GP maximum initial depth 4
GP maximum depth 8
Selection method Tournament selection of size 7
wATC £ value 3.0
Niche radius o - 1 -
Niche capacity & - 1 -
Neighbour scenario weight w | - - 0.25
No. of elites £/ - - 1,5,10

machine breakdowns are rotated every generation, similar to the training

procedure used in the previous chapters.

Benchmark GP Training Procedure

To evolve the generalist rules from the benchmark GP approach, all simu-
lation configurations described in the DJSS simulation model are used as
the training set 7 to evaluate the GP individuals during the GP evaluation
procedure. This means that each GP individual in the GP that evolves the
generalist rules will be applied to 14 different DJSS simulations. To evolve
the specialist rules, the simulation configurations that correspond to the
different machine breakdown scenarios are used during the GP evalua-
tion procedure, e.g., the specialist rules for machine breakdown scenario

breakdown level 2.5% and mean repair time 25 are applied to the simu-

5.5. DESIGN OF EXPERIMENT 183

lation configurations (2.5%, 25, 5) and (2.5%, 25, 3). This means that
while evolving the specialist rules, the GP individuals are applied to two
different DJSS simulations during the evaluation procedure.

NGP Training Procedure

To evolve the portfolio of rules simultaneously from the NGP approach,
all simulation configurations described in the DJSS simulation model are
used as the “general” training set 7. The niches for the NGP are repre-
sented by the seven different machine breakdown scenarios in the DJSS
simulation model. The current generation niched individual are the in-
dividuals that performed the best on the simulations under the different
machine breakdown scenarios in training set 7. To evaluate the current
generation niched individuals further, the niched training sets V;, ..., Vz
correspond to the simulation configurations in the DJSS simulation model
under the different machine breakdown scenarios. For example, V; con-
sists of DJSS simulations with the configurations (0%, 0, 5) and (0%, 0, 3
). However, unlike the general training set 7, the seeds used to generate
the job arrivals and machine breakdowns are not rotated for the niched
training set, i.e., the simulations are fixed for the duration of the GP pro-

cess.

NBGP Training Procedure

To evolve the portfolio of rules simultaneously from the NBGP approach,
we first define the neighbourhood relations for the DJSS simulation model
that is used as the training set 7. For the NBGP approach, two scenarios
are neighbours to each other if they have the same 7 and different repair
time distribution r, or if they have the same repair time distribution r and
different machine breakdown level 7. It is likely that scenarios that have
both different machine breakdown level 7 and repair time distribution r

have too much difference in their properties to be neighbours to each other,

184 CHAPTER 5. DEVELOPING MULTITASK GP-HH APPROACHES

(2.5%,25) (5%,25)
! !

(0%) (2.5%,125) (5%,125)
! l

(2.5%,250) (5%,250)

Figure 5.3: The neighbourhood relation between the different machine

breakdown scenarios for the DJSS dataset.

and are not considered to be neighbours in the NBGP approach. However,
since the repair time distribution is not defined for the scenario with ma-
chine breakdown level 7 = 0 (i.e. scenarios with no machine breakdowns),
we considered zero machine breakdown scenarios to be neighbours to the
three scenarios with machine breakdown level 7 = 2.5% (machine break-
down scenarios { 2.5%, 25,5), { 2.5%, 125, 5), and (2.5%, 250, 5)).

On the other hand, to evolve the rules for the benchmark GP approach
to compare against the NBGP approach, different training sets are used to
evaluate the GP individuals based on whether the benchmark GP is used
to evolve generalist rules or specialist rules. This means that at each evalu-
ation procedure, the GP individuals are applied to all 14 different problem
instances. To evolve the specialist rules, the specific machine breakdown
scenarios in the DJSS dataset is used to evaluate the GP individuals, i.e.,
the GP individuals are applied to two different problem instances every

generation.

5.6 Results and Discussion

This section covers the evaluation of the NGP and the NBGP approach.
First, we compare the number of simulation runs carried out by the dif-

5.6. RESULTS AND DISCUSSION 185

ferent GP approaches per generation, and compare the computation times
required to evolve the GP rules. Afterwards, the evolved rules are com-
pared by their test performance. Finally, we carry out the analysis proce-
dure on the structure and the behaviours of the rules. The behaviours of
the rules evolved by the NGP and the NBGP approaches are first analysed,
and then any particular good rules evolved by the GP approaches are also

analysed further.

5.6.1 Simulation Usage and Computation Time Evaluation

Figure 5.4 shows the number of simulation runs to evaluate the GP in-
dividuals in each generation for the NBGP approach. In the figure, the
hard cutoffs lines show the number of simulation runs required to evalu-
ate the GP individuals in the benchmark GP, and the number of simulation
runs required by the NGP approach. As each individual in each bench-
mark GP approach is applied to two simulations in the specific machine
breakdown scenario and there are seven machine breakdown scenarios,
the total number of simulation runs for the benchmark GP approach is
1024 x 2 x 7 = 14336. On the other hand, the NGP approach requires addi-
tional 7 x 2 = 14 simulation runs to evaluate the current generation niched
individuals to compare against the overall niched individuals, resulting in
a total of 14336 + 14 = 14350 simulation runs per generation. In addition,
“NBGP Elite-z” in the figure denotes that the NBGP approach that retains
E = z elite GP individuals for each machine breakdown scenario. Mea-
suring the average number of simulation runs per generation allows us
to calculate the probability of a GP individual transitioning from one ma-
chine breakdown scenario to another. The number of simulation runs is
expected to directly correlate with the overall computation time required
to evolve the dispatching rules from the GP approaches, i.e., lower number

of simulation runs is expected to result in lower computation time.

From the results, after the first round of selection and breeding have

186 CHAPTER 5. DEVELOPING MULTITASK GP-HH APPROACHES

14000

13000

Number of Simulation Runs

12000

0 10 20 30 40 50
Generation

RuleFile -~ NBGP Elite-1 — NBGP Elite-5 —~ NBGP Elite-10 cutoff — GP ---- NGP

Figure 5.4: Number of simulation runs required by the NBGP approach
per generation. The error bars show the standard deviation for the number
of simulations over the 30 runs of the NBGP approach.

been carried out, the number of simulation runs at generation 1 is around
12400 for the NBGP approaches with the different number of elites. How-
ever, the number of simulation runs per generation increases with the
later generations. On generation 50, the number of simulation runs for
the NBGP Elite-1/Elite-5/Elite-10 approaches are 13940/13600/13580 re-
spectively when averaged over the 30 independent runs. In other words,
this indicates that the individuals are jumping to more neighbours in the
later generations than the earlier generations. This is likely when there are
multiple individuals with the same relatively high scenario fitnesses. In
other words, this result indicates that the GP individuals in the machine
breakdown scenarios are converging to specific rule behaviours. In addi-
tion, the number of simulation runs over the generations is the highest for
the NBGP Elite-1 approach out of the NBGP approaches, and NBGP Elite-
5 and Elite-10 approaches have relatively a similar number of simulation
runs over the generations. In other words, the individuals in NBGP Elite-
1 are more likely to transition from the neighbour scenarios to the neigh-

5.6. RESULTS AND DISCUSSION 187

bour’s neighbour scenario than the individuals in NBGP Elite-5 or Elite-10,
i.e., NBGP Elite-1 individuals likely have good fitnesses in the neighbour
scenarios. Finally, the average number of simulation runs per generation
for the NBGP Elite-1/Elite-5/Elite-10 approaches are 13848 /13547/13522
respectively. In comparison to the number of simulation runs per gen-
eration for the benchmark GP approach (14336), the NBGP approaches
requires (14336 — 13848)/14336 = 3.4%/5.5%/5.6% less simulation runs.
Therefore, it is expected that NBGP Elite-10 will take the shortest amount
of time to evolve the specialist rules, followed by NBGP Elite-5 then NBGP
Elite-1.

After comparing the number of simulation runs per generation, the
computation times required by the different GP approaches to evolve the
rules are measured and shown in Table 5.5. In the table, = + y denotes that
the mean computation time is x and the standard deviation of the com-
putation times is y. The benchmark and the benchmark GP, the NGP and
the NBGP approaches are implemented in a Java program ran on Intel(R)
Core(TM) i7 CPU 3.60GHz. In the table, the independent computation
times required by the benchmark GP approaches to evolve rules for the
different machine breakdown scenarios are summed up before the com-
parison is carried out. As the NGP approach evolves the generalist and the
specialist rules simultaneously over single runs, the computation times on
the individual machine breakdown scenarios are omitted and only shown
in the “Total” category. On the other hand, the NBGP approach’s compu-
tation time is shown in the “Specialist Combined” category, as it evolves
the specialist rules simultaneously. The “Generalist” category is left blank
for the NBGP approach as it does not evolve generalist rules. To compare
the computation times, we use a two-sided Wilcoxon’s signed-rank test
at 95% confidence, i.e.,, p = 0.05. The computation time of the NGP or
the NBGP approach is highlighted blue runs significantly faster than the
benchmark GP approach for the corresponding category.

From the tables, compared to the combined amount of time required

188 CHAPTER 5. DEVELOPING MULTITASK GP-HH APPROACHES

Table 5.5: Comparison of the computation time required to evolve the

rules for the GP approaches (in 10* seconds).

Computation Time (x10% s)
Approach NBGP
GP NGP .]]
Elite-1 Elite-5 Elite-10
Generalist 2.17+0.35 - — — -
(0%, 0) 0.20+£0.02] — — _ B
(2.5%, 25) 0254003 — - - -
(2.5%,125) [0.30£0.05] — - - -
L (2.5%, 250) 0.26 4+ 0.04 — . _ _
Specialist

(5%, 25) 0.31 £0.05 — - — —
(5%, 125) 0.42 £0.07 — — — —
(5%, 250) 0.37 £ 0.07 — — — _

Specialist Combined|2.10 &= 0.15 — 2.10 4+ 0.30|2.05 4 0.26{1.99 + 0.25
Total 4.27 £0.39]2.32 4+ 0.34 — — —

to evolve the specialist rules or the generalist rules individually using the
benchmark GP approach, the NGP approach takes a significantly longer
amount of time. This is due to the additional evaluation required to further
evaluate the niched individuals in the NGP approach after the individu-
als have been evaluated over the training set. However, for evolving all
rules, i.e., both the generalist and the specialist rules, the NGP approach
is significantly faster than the benchmark GP approach. In addition, out
of the computation times for the NBGP approach, NBGP Elite-1 has the
highest computation time, followed by NBGP Elite-5 then NBGP Elite-10.
However, the NBGP approaches do not have a significantly different com-
putation time to the benchmark GP.

The difference in the number of simulation runs required per gener-
ation to evaluate the GP individuals in the benchmark GP and the NGP
approaches do not exactly match the differences in the computation times.
For the NGP approach, the additional simulation runs should approxi-
mately add 14/14336 x 100% = 0.1% overhead to the niched GP approach

compared to evolving the specialist rules separately. However, the experi-

5.6. RESULTS AND DISCUSSION 189

ments show that the niched GP approach takes ~ 10% longer computation
time to evolve the rules compared to the combined time required by the
benchmark GP approach for evolving the specialist rules. Instead, the ad-
ditional computation time is likely due to the fitness adjustments made to
GP individuals that are close to the niched individuals in the clearing algo-
rithm (Algorithm 4). It may also be likely that the evolved GP rules for the
niched GP approach are also bigger, which results in longer computation
time required to calculate the priorities of jobs during the simulation.

The difference in the computation times also do not exactly match the
differences in the number of simulation runs for the benchmark GP and
the NBGP approaches as well. For example, the relative differences in the
number of simulation runs are smaller between NBGP Elite-5 and Elite-
10 than between NBGP Elite-1 and Elite-5, but the relative differences in
the computation times are smaller between NBGP Elite-1 and Elite-5 than
between NBGP Elite-5 and Elite-10. In addition, compared to the rela-
tive differences in the number of simulation runs between NBGP and the
benchmark GP discussed above, the computation times for NBGP Elite-1
on average are very similar to those of the benchmark GP approach. This
is likely because of the modified breeding procedure, selection procedure
and the individual fitness calculation in the NBGP approach increases the
computation cost of NBGP.

5.6.2 Performance Results

After the rules are evolved by the benchmark GP, the NGP and the NBGP
approaches, the rules are applied to the DJSS simulation model to obtain
their performances. For the specialist rules, the evolved rules are applied
to the corresponding DJSS simulation configurations with the same ma-
chine breakdown scenario the rules are specialised for. In other words,
the specialist rules evolved for machine breakdown scenario (2.5%, 25, 5)

are applied to DJSS simulations with machine breakdown scenario (2.5%,

190 CHAPTER 5. DEVELOPING MULTITASK GP-HH APPROACHES

25, 5) that use different seeds to generate the dynamic job arrivals and
machine breakdowns. On the other hand, the generalist rules are applied
to all 14 DJSS simulation configurations. The rules are applied to simula-
tions with specific DJSS simulation configuration 30 independent times to
get 30 MWT values. Afterwards, the averages of the MWT values are used
as the overall MWT performance measures of the rules. The overall MWT
performances of the specialist rules evolved by the NGP and the NBGP ap-
proaches with the different levels of elitism are then compared against the
overall MWT performances of the specialist rules evolved by the bench-
mark GP approach to evaluate the effectiveness of the NBGP approach for
each machine breakdown scenarios. As the NBGP do not evolve gener-
alist rules, a pairwise comparison is carried out between the benchmark
GP and the NGP generalist rules using the overall MWT performances. To
compare the performances, we use a two-sided Wilcoxon’s signed-rank
test at p = 0.05. The performance results for the GP approaches are shown
in Table 5.6 for the specialist rules, and Table 5.7 for the generalist rules.
In the tables, if the rules evolved by the NGP or the NBGP approaches
perform significantly better than the benchmark GP approach for a ma-
chine breakdown scenario, then the corresponding entry in the table that
provides the performance of the NBGP rules for the machine breakdown
scenario is highlighted blue. Otherwise, if the NGP or the NBGP rules
performs significantly worse than the GP rules for a machine breakdown
scenario, then the corresponding entry is highlighted red.

From the tables, we can see that the NGP approach generally outper-
forms the benchmark GP approach in terms of both the specialist rules per-
formances and the generalist rules performances. In addition, the NGBP
Elite-1 and Elite-5 rules significantly outperform the benchmark special-
ist rules for three different simulation configurations, and NGBP Elite-10
rules outperform the benchmark rules for two simulation configuration.
This is negatively correlated to the computation time required to evolve

the rules, as the computation times from the fastest to the slowest went

5.6. RESULTS AND DISCUSSION 191

Table 5.6: Comparison showing the mean and the standard deviation of
the MWT performances for the specialist rules evolved by the benchmark
GP, the NGP and the NBGP approaches over the test simulation runs.

NBGP
Elite-1 Elite-5 Elite-10
(0%,0,5) 1.94 £0.22| 2.26 £ 0.44| 2.22 £0.16 2.22 +0.16 2.30 +0.23
(0%,0,3) | 3.43+£0.17| 4.68 £1.35| 3.64 +0.54 3.64+0.54 3.84+0.78
(2.5%,25,5) | 3.55+0.23| 3.43 +£0.21| 3.61 £0.22 3.61 +0.22 3.66 + 0.30
(2.5%,25,3)| 4.724+0.22| 4.60 £ 0.21| 4.76 +£0.40 4.76 + 0.40 4.80 +0.35
(2.5%,125,5)| 4.69+0.17| 4.50 &+ 0.10| 4.56 4+ 0.20 4.56 £ 0.20 4.61 4 0.21
(2.5%,125,3)| 6.10 £0.16| 5.81 £0.08 5.95+ 0.15 5.95£0.15 6.00 £ 0.19
(2.5%,250,5)| 6.28 +£0.15| 6.12+0.17| 6.20 +0.16 6.20+0.16 6.21 +£0.18
(2.5%,250,3)| 7.71 £0.15| 7.55+0.11| 7.66 + 0.15 7.66 +0.15 7.70 +£0.14
(5%,25,5) | 4.58+£0.19| 4.50 & 0.13| 4.47 £+ 0.18 4.47 £0.18 4.52 £+ 0.17
(5%,25,3) | 6.42+0.18] 6.50 + 0.26| 6.36 £ 0.15 6.36 +0.15 6.42 +0.16

Approach GP NGP

MWT
(x10%)

(5%,125,5) | 6.51 £0.20| 6.40 + 0.15| 6.44 +0.19 6.44 +£0.19 6.49 4 0.22
(5%,125,3) | 8.45+0.26| 8.42+0.19| 8.49+0.12 849 +£0.12 8.54+0.19
(5%,250,5) | 8.74+£0.35| 8.77£0.33] 8.82+0.29 8.82+0.29 8.85+0.32
(5%, 250,3) |11.15 + 0.30{11.20 + 0.29(11.23 4+ 0.27 11.23 + 0.27 11.27 £ 0.30

from NGBP Elite-10, NGBP Elite-5 to NGBP Elite-1. Therefore, the NGP
approach is effective in terms of raw performance in comparison to the
benchmark GP approach and the NBGP approach is effectiveness com-
pared to the benchmark GP approach either in terms of computation time
or in terms of performance. NBGP Elite-1 and Elite-5 have comparative
computation times to the benchmark GP approach but outperform the
benchmark GP in multiple simulation configurations. We can also infer
from the results that the inductive biases [27] that are introduced to the
individuals specialised for different machine breakdown scenarios posi-
tively contribute towards the overall effectiveness of the rules evolved for

the machine breakdown scenarios.

The only configuration scenarios where the benchmark specialist rules
significantly outperform the NGP and the NGBP specialist rules are on the

192 CHAPTER 5. DEVELOPING MULTITASK GP-HH APPROACHES

Table 5.7: Comparison showing the mean and the standard deviation of
the MWT performances for the generalist rules evolved by benchmark GP

and the NGP approaches over the test simulation runs.

Approach GP NGP
(0%,0,5) 221 +£0.10 2.164+0.13
(0%,0,3 > 3.29 £0.11 3.25 £ 0.06

(2.5%,25,5)| 3.46 £0.13 3.37+£0.12
(2.5%,25,3) | 4.52+0.12 4.45 £ 0.06
(2.5%,125,5) 4.54+0.14 4.45+0.13
(2.5%,125,3)| 5.93+0.16 5.82 £ 0.08

MWT ((2.5%, 250,5)| 6.18 +0.20 6.06 = 0.14
(x102)|(2.5%, 250, 3)| 7.62 £ 0.18 7.51 & 0.11
(5%,25,5) | 4.524+0.21 4.40 +0.15
(5%,25,3) | 6.47+0.27 6.33 £0.17
(5%,125,5) | 6.56 +£0.26 6.42 £+ 0.16
(5%,125,3) | 8.74 £0.35 8.55+ 0.21
(5%,250,5) | 9.20£0.46 8.95 £ 0.27

(5%, 250,3) [11.65 £ 0.46 11.43 4+ 0.32

simulations with zero machine breakdowns, where the benchmark spe-
cialist rules perform significantly better than NGP and the NGBP Elite-10
specialist rules for (0%, 0, 5) and (0%, 0, 3), and better than NGBP
Elite-1 and NBGP Elite-5 specialist rules for (0%, 0, 5). To determine
why the benchmark GP is particularly good at scenarios with no machine
breakdowns, we carry out an analysis of the benchmark specialist rules in
further detail below.

The table also shows that the generalist rules for the benchmark GP ap-
proach perform better than the specialist rules for a number of simulation
configurations (from the simulation configuration (0%, 0, 3) to the simula-
tion configuration (2.5%, 250, 3)). This is likely attributed to the number
of simulation runs each GP individual undergoes during the evaluation
procedure. The generalist rules are applied to 14 different simulation runs

with different machine breakdown scenarios, whereas a specialist rule is

5.6. RESULTS AND DISCUSSION 193

only applied to two simulation runs over the specific machine breakdown
scenario. In other words, the GP individuals in the benchmark GP process
may not have had enough training instances to effectively evaluate the
qualities of the individuals, resulting in underperforming specialist rules.
To verify this, we ran additional experiments for the benchmark GP pro-
cess where the GP individuals are applied to simulations under a specific
machine breakdown scenario runs 14 times instead of two times, using
different seeds for each simulation. The specialist rules evolved using the
additional simulation runs for the GP individuals performs significantly

better than the generalist rules.

5.6.3 Analysis Procedure

This section carries out the analysis of the evolved rules. First, we analyse
the behaviours of the rules evolved by the NGP and the NBGP approaches
in terms of their behaviours. Afterwards, we investigate why the perfor-
mances of the benchmark GP specialist rules are significantly better than
the NGP and the NBGP approaches for the machine breakdown scenario
(0%, 0, 5) by analysing the benchmark GP approach’s evolved rules.

NGP and NBGP Rule Behavioural Analyses

For the analysis procedure, the goal is to find differences in terms of the
rules” behaviours that have been evolved using different machine break-
down scenarios. To do this, we calculate the phenotypic distances between
the rules evolved by the NGP and the NBGP approaches using the job
rank distance measure proposed by Hildebrandt and Branke [59] and used
by the clearing algorithm Clearing(P,S, o, k) (Equation (5.3)). The dis-
tances between a single rule in a rule set are compared against the 30 rules
of another rule set to obtain an average distance of the single rule to the
rule set. The means and the standard deviations of the distances in be-

tween the generalist rule and the specialist rule sets evolved by the NGP

194 CHAPTER 5. DEVELOPING MULTITASK GP-HH APPROACHES

approach are shown in Figure 5.5. On the other hand, the mean and the
standard deviations of the distances of the specialist rule sets evolved by
NBGP Elite-1, NBGP Elite-5, and NBGP Elite-10 are shown in Figures 5.6,
5.7, and 5.8 respectively. In the figures, we provide a heat map of the av-

erage distances of two sets of rules as visual aids.

<5%,250>4 0.11+0.4 0.11+0.32 0.06+0.24 0.06+0.24 0.09+0.28 0.03+0.17 00

<5%,125> 0.14+0.43 0.14+0.36 0.09+0.28 0.09+0.28 0.11+0.32 0+0 0.03%0.17

Mean
<5%,25>1 0.09+0.37 0.09+0.28 0.09+0.28 0.03+0.17 0+0 0.11+0.32 0.09+0.28 1.00
g <2.5%,250>4 0.06+0.34 0.06+£0.24 0.06+0.24 0+0 0.03+0.17 0.09+0.28 0.06+0.24 I 0.75
@
Z <2.5%,125>110.11+0.4 0.11+0.32 0+0 0.06+0.24 0.09+0.28 0.09+0.28 0.06+0.24 050

0.25
0.11+0.4

<2.5%,25> 0+0 0.11+0.32 0.06+0.24 0.09+0.28 0.14+0.36 0.11+0.32
0.00

<0%> 1

Generalist
& 4 1 1 4 4 4 4
o2} S J N O K N
§ %) o F %) N N
3 v &8 v 8
v % v
U A
Rule Set

Figure 5.5: Heat map showing the pairwise mean and standard deviations

of the average distances between the rules evolved by the NGP approach.

Compared to the other scenarios, the specialist rules that specialise in
the scenario with zero machine breakdown have a higher average distance
from the specialist rules evolved on other machine breakdown scenarios
and the generalist rules for the NGP and the NBGP approaches. This im-
plies that the rules that are effective on DJSS problems with only dynamic
job arrivals are very different from the rules that are effective on DJSS
problems with both dynamic job arrivals and machine breakdowns. On
the other hand, the mean distances of the (0%, 0, 5) specialist rules for
the NBGP approach gets smaller with the number of elites parameters.
This could potentially be due to the elite individuals discouraging further
exploration of the specific machine breakdown scenarios, as new individ-

uals may not be generated for the specific machine breakdown scenario

5.6. RESULTS AND DISCUSSION 195

<5%,250>+

<5%,125>+
Mean

<5%,25> 1.00
0.75

<2.5%,250>+
0.50

Rule Set

<2.5%,125> A 0.25

<2.5%,25> 1 0.00

<0%> -

"5 A

4 qa
¥y ¢
® ‘3\° N N
: 8 Y
Y Y

Rule Set

4 1 1 q
e)) S
A

Figure 5.6: Heat map showing the pairwise mean and standard deviations
of the average distances between the NBGP Elite-1 rules.

<5%,250>

<5%,125>+
Mean

<5%,25> 1.00
0.75

<2.59%,250> -
0.50

Rule Set

<2.5%,125> 1 0.25

<2.5%,25> 0.00

<0%> -

"5 A

1 q
& S
o 43\0 e\:! 0\3/
; 8 N A
Y Y

Rule Set

4 4 a 4
F) %) QS
v N &

Figure 5.7: Heat map showing the pairwise mean and standard deviations
of the average distances between the NBGP Elite-5 rules.

when the best individuals from the previous generation are copied over.
This may result in a loss of diversity and knowledge sharing between the
GP individuals for the machine breakdown scenarios. This may explain

196 CHAPTER 5. DEVELOPING MULTITASK GP-HH APPROACHES

<5%,250>- 0.37£0.55 0.2+0.41 0.14+0.36 0.17+0.38 0.09+0.28 0.09+0.28 0+0

<5%,125>1 0294052 0.17:0.33 006024 0.09:0.28 006:024 ~ 0:0 009028
ean
<5%,25>4 | 0.34t0.54 0.17+0.38 0.06+0.24 0.09:+0.28 0+0 0.0620.24 0.09+0.28 I 1.00

0.75

<2.5%,250>1 [0.8374#0.55 0.2+0.41 0.03+0.17 0+0 0.09+0.28 0.09+0.28 0.17+0.38 0.50

Rule Set

<2.5%,125>1 10.34+0.54 0.17+0.38 0+0 0.03+0.17 0.06+0.24 0.06+0.24 0.14+0.36 0.25

<2.5%,25>1 0.29+0.52 0:0 0.17+0.38 0.2+0.41 0.17+0.38 0.17+0.38 0.2+0.41 0.00

<0%> 0+0 0.29+0.52 0.34+0.54 0.37+0.55 0.34+0.54 0.29+0.52 0.37+0.55

4 1 1 4 1 1 4
g & 0§ 5 & § 8
v & o o N o o

o “ “ g 2 52
v v v
Rule Set

Figure 5.8: Heat map showing the pairwise mean and standard deviations
of the average distances between the NBGP Elite-10 rules.

why NBGP Elite-1 has the best performance out of the three E parameters
tested.

Benchmark GP Rule Structural Analysis

To determine why the benchmark GP specialist rules performed much bet-
ter than the NGP and the NBGP specialist rules on the machine break-
down scenario (0%, 0, 5), we first analysed the performance of the spe-
cialist rules evolved by the benchmark GP approach. We found that one
specialist rule had a particularly good overall MWT performance value
compared to the other benchmark GP rules as shown in Figure 5.9. The
structure of best benchmark GP specialist rule for scenario (0%, 0, 5) is
shown in Figure 5.10 after carrying out basic trimming to remove redun-
dant branches.

One significant observation that can be made from the best benchmark
GP rule for scenario (0%, 0) is that the rule has almost no due date termi-
nals (represented as DD in the tree). Due date is an important terminal

5.6. RESULTS AND DISCUSSION 197

— .O-

N

S 1.5

=

= 1.0

g 0.5- I

Benchmark GP Rules

Figure 5.9: The overall MWT performance values of the individual bench-
mark GP rules evolved for scenario (0%, 0, 5) on simulation configuration
(0%, 0, 5). The rule with the best MWT is highlighted red.

Figure 5.10: The best benchmark GP rule evolved for the machine break-
down scenario (0%, 0, 5).

that occurs frequently in a tardiness related objective [97], and also occurs
frequently in the other rules that are evolved by both the benchmark GP
approach and the NBGP approach. The effectiveness of the rule in Figure

198 CHAPTER 5. DEVELOPING MULTITASK GP-HH APPROACHES

5.10 without using due date terminal may be because due date is one of
the few time-variant terminals [96] that generally increases along the dura-
tion of the simulation. The only other time-variant terminal is the machine
ready time terminal RM. Mei et al. [96] showed that using time-invariant
terminals (i.e. terminals that are unaffected by the times when the deci-
sion situations are carried) generally results in improved performance of
the GP rules compared to a GP rule that uses equivalent time-variant ter-
minals. For example, they replaced the due date with a time-invariant
counterpart called “relative due date”, which is the due date minus the
time of the decision situation [96]. This means the range of values for rela-
tive due dates will not increase with the duration of the simulation. In the
multitask approach, the duration of the simulation may significantly dif-
fer between simulations that have no machine breakdown and the simu-
lations which have machine breakdown. This means that the time-variant
due date works on a different scale to the other GP terminals for the dif-
ferent machine breakdown scenarios. This can then result in rules evolved
on certain machine breakdown scenario on that use due dates performing
poorly on other machine breakdown scenarios. On the other hand, since
the rules are evolved separately for the benchmark GP approach, the time-
variant terminals like due date are less likely to affect the effectiveness of

the rules evolved for the no machine breakdown scenario.

5.7 Chapter Summary

The goal of this chapter is to develop multitask GP approaches that evolve
an effective portfolio of rules over the DJSS problem with dynamic job ar-
rivals and machine breakdowns. To achieve this goal, we developed two
new multitask GP approaches. The first is called the niched GP (NGP)
approach that incorporates the clearing procedure to discourage poor GP
individuals with similar behaviours to the good individual for specific ma-

chine breakdown scenarios from being kept for the next generation. The

5.7. CHAPTER SUMMARY 199

second is called the neighbourhood-based GP (NBGP) approach that de-
fines a neighbourhood relation between the machine breakdown scenar-
ios and evaluates individuals only on the relevant machine breakdown
scenarios to improve the efficiency and the effectiveness of the output GP
rules. This chapter also carried out an extensive analysis of the multitask
GP approaches both in terms of the behaviour and the structure.

The NGP and the NBGP approaches show that multitask GP shows
improved effectiveness over the benchmark GP for the DJSS problem. The
multitask GP approaches also gave much more promising results than the
method of directly incorporating the machine breakdown information di-
rectly into the GP’s evolutionary process described in the previous chap-
ter. GP has a difficult time exploring the search space to evolve rules that
can effectively utilise the machine breakdown information. In addition,
the analysis of specific rules during the evaluation procedure showed that
machine breakdown scenario (0%, 0, 5) where the NGP and the NBGP
specialist rules performed significantly worse than the benchmark special-
ist rules shows that a specific benchmark rule contributed heavily towards
the overall effectiveness of the rule set. The specific rule has a very infre-
quent number of due date terminals, which is important in due date re-
lated DJSS problems. A hypothesis is that the terminals do not occur in
the specialist rule as it is time-variant.

The analysis of the behaviours of the NGP and the NBGP rules show
that there is a large difference between the rules evolved on zero machine
breakdown scenarios to the rules evolved on machine breakdown scenar-
ios. For example, the difference between the (0%, 0, 5) and the (2.5%,
25, 5) rules are greater than the difference between the (2.5%, 25, 5) and
the (5%, 25, 5) rules. In addition, the analysis also shows that NBGP with
a greater number of elite individuals results in fewer distances between
the rule sets for the different machine breakdown scenarios. Combined
with the worse performance of the NBGP Elite-10 rules compared to the
NBGP Elite-1 rules, we hypotheses that having a greater number of elites

200 CHAPTER 5. DEVELOPING MULTITASK GP-HH APPROACHES

result in less exploration in the specific machine breakdown scenarios as
less new GP individuals are being generated from crossover and mutation.
This then results in less discovery of useful knowledge from the machine
breakdown scenarios that can later be shared with other scenarios, result-

ing in worse performance overall.

Chapter 6
Conclusions

This thesis focuses on genetic programming based hyper-heuristic (GP-
HH) to automatically evolve effective dispatching rules for dynamic job
shop scheduling (DJSS) problems. The overall goal of this thesis was to
carry out an extensive investigation of GP-HH approaches to improve
the overall effectiveness of evolved dispatching rules for complex DJSS
problems which have not been investigated in the literature. This goal
was successfully achieved by developing new types of GP approaches
that can evolve multiple dispatching rules simultaneously. The effective
GP approaches developed are the ensemble GP approaches that evolve
ensembles of dispatching rules, and the multitask GP approaches that
evolve portfolio of rules to handle different subsets of a DJSS problem.
The proposed GP approaches that evolve multiple rules were examined
and compared with a standard GP representation on various DJSS prob-
lems with multiple dynamic events including dynamic job arrivals. GP-
HH is state-of-the-art for the DJSS problems with a large number of dy-
namic job arrivals and generally produces the rules that outperform ex-
isting man-made dispatching rules [109]. The results show that the new
GP approaches proposed in this thesis can clearly outperform the bench-
mark GP approaches, and show that new GP approaches better handle
DJSS problems with multiple types of dynamic events than the standard

201

202

CHAPTER 6. CONCLUSIONS

GP approaches.

The rest of this chapter provides the research goals that are achieved,

followed by the main conclusions found from the major contributions made

by this thesis. Afterwards, we provide a discussion of potential research

areas that could be carried out in the future related to the research carried

out in this thesis. Finally, we provide a discussion of more general future

works that are not within the scope of the thesis but are important fields
of research in DJSS.

6.1 Achieved Objectives

This thesis has achieved the following research objectives:

e This thesis proposes the first ensemble GP approach that can evolve

effective ensembles of dispatching rules for the DJSS problem with
dynamic job arrivals. No hyper-heuristic approach that evolves en-
sembles of rules has been proposed for a JSS problem. The first ap-
proach, “ensemble genetic programming for job shop scheduling”
(EGP-JSS) [120], which incorporates Potter and DeJong’s cooperative
coevolution [127], showed that ensembles can generally outperform
the single rules evolved by a standard GP approach. This thesis also
showed that another major cooperative coevolutionary techniques
such as multilevel genetic programming (MLGP) can also be incor-
porated with GP to produce an ensemble GP approach (called MLGP
for JSS, or MLGP-JSS) which can outperform the standard GP ap-
proach for a DJSS problem. In addition, when an appropriate com-
bination scheme is used with the ensemble GP approach, the ensem-
ble GP approach’s performance can be improved further on the DJSS
problem. We investigated four combination schemes with the EGP-
JSS approach: majority voting, linear combination, weighted major-

ity voting and weighted linear combination. Out of the combina-

6.1. ACHIEVED OBJECTIVES 203

tion schemes investigated, the results show that the linear combina-
tion scheme produces the best GP rules when incorporated into the
EGP-]JSS approach. Finally, three diversity measures are proposed to
analyse the behaviours of the rules evolved on the four combination
schemes. The diversity measures provide useful insights into rules
evolved by the EGP-JSS and can be used for future ensemble GP ap-
proaches to DJSS problems.

e This thesis provides the first investigation of the DJSS problem with
both dynamic job arrival and machine breakdown using GP. Although
GP has been applied to DJSS problems with dynamic job arrivals
and to DJSS problems with machine breakdowns, it has not been
applied to a DJSS problem that has both types of dynamic events si-
multaneously. The results showed that the standard GP approach
that evolves a single rule is not general enough to cover for a DJSS
problem over a range of machine breakdown scenarios. The inves-
tigation also carries out an evaluation of preliminary GP terminals
that are specific to machine breakdown scenarios. The results show
that a GP approach that evolves single dispatching rules have a dif-
ficult time incorporating the machine breakdown information from
the machine breakdown GP terminals to evolve rules that can sig-
nificantly outperform the standard GP approach. The analysis of
the evolved rules in this investigation shows that processing time
related terminals are more effective on scenarios with no machine
breakdowns or with a low machine breakdown level than on sce-
narios with a high machine breakdown level. On the other hand,
terminals that return the values that are not affected due to machine
breakdowns (e.g. due date terminal) are more effective on scenar-
ios with a high breakdown level than on scenarios with low or zero
breakdown level.

e This thesis proposes the first multitask GP approach for the DJSS

204

CHAPTER 6. CONCLUSIONS

problem with dynamic job arrivals and machine breakdowns. Mul-
titask optimisation has been applied to other combinatorial optimi-
sation problems, but have not yet been applied to DJSS. The two
multitask GP approaches, niched GP (NGP) and neighbourhood-
based GP (NBGP), evolve portfolio of rules specialised for the dif-
terent machine breakdown scenarios in the DJSS problem. The NGP
approach also evolves generalist rule over the entire DJSS problem.
The rules evolved by NGP show significant improvement over the
standard GP approach in terms of performance. On the other hand,
the rules evolved by NBGP either are generally better than the stan-
dard GP approach or can be evolved at a significantly lower com-
putation time. The multitask GP approaches indicate that using the
behaviours of the rules specialised on different machine breakdown
scenarios improves the generalisation ability of evolved rules. Fi-
nally, the analysis of the multitask GP approach show that there are
greater differences in the behaviours between the rules evolved for
the scenario with no machine breakdowns and the rules evolved
for the scenarios with machine breakdowns than the differences be-
tween any two rule sets evolved on scenarios with machine break-

downs.

6.2 Main Conclusions

This thesis develops new GP approaches that evolve multiple dispatching

rules simultaneously for the DJSS problems that improve upon existing

GP approaches and are better able to cope with the unforeseeable events

in the DJSS problems that can significantly affect the effectiveness of the

evolved dispatching rules. This section discusses the main conclusions for

the three research objectives drawn from the three contribution chapters
(Chapter 3 to Chapter 5).

6.2. MAIN CONCLUSIONS 205

6.2.1 Investigation of Ensemble GP Approaches

Chapter 3 proposes new ensemble GP approaches that evolve ensemble of
dispatching rules for the DJSS problem with dynamic job arrivals. The en-
semble GP approaches incorporate cooperative coevolutionary algorithm
from the literature. We also investigated different schemes for combining

the outputs of the ensemble members together.

Incorporated Ensemble Algorithms

From the two cooperative coevolutionary algorithms investigated to evolve
ensembles of dispatching rules, we found that incorporating Potter and De
Jong’s [127] to develop the EGP-JSS approach gave the best results and sig-
nificantly outperformed the benchmark GP approach that evolves single
priority dispatching rules.

An ensemble of dispatching rules evolved by the proposed ensem-
ble GP approaches have significantly better performances than single dis-
patching rules evolved by the benchmark GP approach, indicating that
complex decisions can be better handled by multiple rules than a single
constituent rule [126]. Out of the two ensemble GP approaches devel-
oped that incorporate cooperative coevolutionary algorithms [127, 153],
the EGP-JSS approach evolves more effective ensembles than the MLGP-
JSS approach when both approaches use the majority voting combination
scheme. Therefore, the combination schemes are incorporated into the
EGP-JSS approach instead of the MLGP-JSS approach for their investiga-

tion.

Combination Schemes

The results showed found that the linear combination scheme gave the
best performance out of the four combination schemes that are investi-
gated and incorporated into the EGP-JSS approach. In addition, the results
also showed that the proposed method of incorporating weighted combi-

206 CHAPTER 6. CONCLUSIONS

nation schemes (weighted majority voting and weighted linear combina-
tion) did not work as effectively as the incorporated non-weighted combi-

nation schemes (majority voting and linear combination).

The analysis of the evolved ensembles in Section 3.8.3 (Page 110) us-
ing the three diversity measures showed that rules evolved by the linear
combination scheme assign the highest priorities to different jobs more of-
ten than the other rules (based on analysis measure DC from Section 3.6.2
(Page 3.6.2)). This indicates that the linear combination scheme allows en-
semble members to make more diverse decisions, but is also able to exploit
the diversity in the decisions made by the ensemble members due to how

the ensemble member outputs are converted to scores.

The analysis in Section 3.8.3 (Page 110) also showed that the rules evolved
using the weighted majority voting showed that one ensemble member
was dominant in the decision-making process based on the analysis mea-
sure HC in Section 3.6.3 (Page 103), i.e., the job that they assign the high-
est priority to have the highest chance of being selected by the ensem-
ble as a whole. In conjunction with the result that the weighted majority
voting ensembles had the worst performance overall, it is possible that
weighted majority voting ensembles are behaving similarly to single dis-
patching rules. An ensemble that behaves too similar to a single dispatch-
ing rule will likely have ensemble members that are unable to cover for
each other’s errors, which will result in ensembles that perform no better
than single dispatching rules.

Finally, the analysis in Section 3.8.3 (Page 110) shows that the linear
combination ensembles and the weighted linear combination ensembles
have high proportions of individuals that have assigned the highest prior-
ity to a job that is assigned a low rank by the ensemble as a whole (analysis
measure LJR in Section 3.6.4 (Page 104)). This further supports the obser-
vation that the GP with linear combination can produce more diverse en-
semble members because less information is lost when the priority values

are converted to scores. Furthermore, it may also be the case that higher

6.2. MAIN CONCLUSIONS 207

LJRs can also be partially correlated to better performances, as the evolved
linear combination rules have better performance than the evolved major-
ity voting rules, and the weighted linear combination rules have better
performance than the weighted majority voting rules.

6.2.2 Investigation of GP for a DJSS Problem subject to

Machine Breakdown

Chapter 4 carried out an investigation of the effectiveness of GP approach
into the DJSS problem with both dynamic job arrivals and machine break-
downs. Although effectively GP approaches have been proposed to DJSS
problems with dynamic job arrivals or machine breakdowns independently,
GP has not been applied to a DJSS problem with both types of dynamic

events.

The Generality of GP for the DJSS Problem

The results in the chapter showed that rules evolved by the standard GP
approach are not general enough to cover for the entire DJSS problem.

The performances of the rules are specific to the machine breakdown
scenarios they are evolved on. For example, rules evolved on no ma-
chine breakdown scenario perform well on DJSS simulations, but perform
poorly on simulations with high levels of machine breakdown, and vice
versa. The trade-off means that applying GP to machine breakdown sce-
narios with high breakdown level does not result in rules that can cover for
DJSS simulations with lower machine breakdown levels. This is contrary
to the results in the literature where rules evolved on simulations with a
specific utilisation rate can handle simulations with lower utilisation rate
values [105], but not the other way around. Finally, the generalist rules are
heavily biased towards the no machine breakdown scenarios and perform
poorly on the scenarios with high breakdown level.

The analysis in Section 4.2.3 (Page 126) of the terminal distribution

208 CHAPTER 6. CONCLUSIONS

shows that rules evolved on different machine breakdown scenarios have
differences in the proportions of GP terminals that make up the rules.
The rules evolved on higher machine breakdown levels have lower pro-
portions of processing time terminal (PT) compared to the rules evolved
on lower machine breakdown levels, and have a higher proportion of
due date terminals (DD). This is likely due to the DJSS simulations with
high machine breakdown level have a greater frequency of machine break-
downs than the simulations with low machine breakdown level (given
that the mean repair times are the same). This results in more jobs being
interrupted and may result in greater uncertainty associated with the job’s

actual processing times.

Machine Breakdown GP Terminals

Adding the machine breakdown GP terminals to the standard GP ap-
proach that evolves single priority dispatching rules showed slight im-
provements over the standard GP approach without the machine break-
down GP terminals. Although the differences in the overall performances
of the evolved rules are not significant, the best rules evolved by the ma-
chine breakdown GP are significantly better than the best rule evolved by
the benchmark GP on certain simulation configurations.

The analysis in Section 4.7.2 (Page 150) of the best rules evolved by the
machine breakdown GP approach shows that the machine breakdown GP
terminals occur very infrequently in the structures of the evolved rules.
It may be possible that the machine breakdown GP terminals may be fa-
cilitating the evolution of good GP rules but appear infrequently in the
tinal structures of the evolved rules. In addition, the behavioural analy-
sis shows that the decisions that are made by the best rules in decision
situations that are “close” to machine breakdowns share significant be-
havioural similarities to the SPT dispatching rule. The similarities to the
SPT rule is the highest for decision situations in scenarios with low ma-

chine breakdown level and decreases as machine breakdown level increases.

6.2. MAIN CONCLUSIONS 209

This correlates with the GP terminal distributions from the efficacy inves-
tigation, as the proportion of PT terminal decreases as the breakdown level

that the rules are evolved on increases.

6.2.3 Developing Multitask GP Approaches to DJSS Prob-

lem subject to Machine Breakdown

Chapter 5 proposes new multitask GP approaches that evolve portfolios of
dispatching rules specialised for each machine breakdown scenario in a
DJSS problem with dynamic job arrivals and machine breakdowns. The
two new multitask GP approaches developed in the chapter are the NGP
approach and the NBGP approach.

Evolving Rule Portfolios using Multitask GP

The results show that the proposed NGP approach generally performs
better than the benchmark GP approach for the DJSS problem. In other
words, except for the rules specialised for simulations with zero machine
breakdowns, the specialist rule sets evolved by the NGP approach are gen-
erally better than the specialist rule sets evolved by the benchmark GP ap-
proach. In addition, the generalist rules evolved by the NGP approach
outperforms the generalist rules evolved by the benchmark GP approach
in all but one simulation configuration. This shows that the discovery of
latent features that are shared to other “tasks”, that occurs in multitask
learning and optimisation, also improves the generalisation ability of GP
evolved rules for the DJSS problem.

The results also show that the proposed NBGP approach can have a
better computation time required to evolve the rules than the benchmark
GP approach or generally have a better performance than the benchmark
GP approach with comparable evolution times. The trade-off is based on
the number of elite individuals in each machine breakdown scenarios in

the current generation that are retained for the next generation of GP indi-

210 CHAPTER 6. CONCLUSIONS

viduals. The NBGP specialist rules only perform significantly worse than
the benchmark GP specialist rules on the simulation configurations that
are under zero machine breakdown scenarios. The overall results from
the NBGP also support the results from NGP, which shows that incorpo-
rating multitasking is an effective method of handling DJSS problems with
dynamic job arrivals and machine breakdowns.

The simulation configurations that the NGP and the NBGP specialist
rules performed worse than the benchmark GP specialist rules are con-
tigurations with no machine breakdowns. The analysis of the benchmark
GP specialist rules to determine why they outperformed the NGP and the
NBGP specialist rules showed that the best specialist rule evolved for the
no machine breakdown scenario mostly consisted of time-invariant ter-
minals, which have been shown to be more effective than time variant
terminal counterparts [96]. Even though terminals such as due date (DD)
are important in tardiness related objective, it is likely that the benchmark,
the NGP and the NBGP approaches could not explore the heuristic space
effectively during the evolution of the rules to evolve a rule that can effec-
tively incorporate the time-variant DD terminal with the time-invariant
terminals (e.g. PT terminal). This likely resulted in the DD terminal occur-
ring very infrequently in the best specialist rule evolved by the benchmark
GP approach.

Rule Portfolio Diversity

The analysis of the rules evolved by the NGP and the NBGP approach in
Section 5.6.3 (Page 193) shows that the behaviours of the evolved rules
differ significantly between the rules evolved on the scenario with no ma-
chine breakdowns than the rules evolved on scenarios with any level of
machine breakdowns. In other words, the differences between the rules
evolved on breakdown level 0% and the rules evolved on breakdown level
2.5% are greater than the differences between the rules evolved on break-

down level 2.5% and the rules evolved on breakdown level 5.0%. As the

6.3. DISCUSSIONS 211

difference in the behaviours of the evolved rules is different from the in-
cremental difference in the machine breakdown level, the rules that are
effective on DJSS problem with dynamic job arrivals are likely to be very
different from the rules that are effective on DJSS problem with dynamic
job arrivals and machine breakdowns.

The behavioural analysis in Section 5.6.3 (Page 193) also shows that the
difference in the NBGP rules evolved on breakdown level 0% to the other
rules decreases as the number of elites increases. This could potentially be
due to the lack of exploration being carried out. As more elites are retained
from the previous generation, less new individuals are generated by the
NBGP from crossover and mutation. This then may result in less discov-
ery of useful knowledge from the specific machine breakdown scenarios,
resulting in more similarity in the behaviours of the rules. In addition,
the reduced discovery of useful knowledge is supported by NBGP with
10 elite individuals retained having worse overall performance than the
NBGP with one elite individual retained, as the discovered knowledge
from one machine breakdown scenario could be used to boost the effec-

tiveness of GP individuals in other machine breakdown scenarios.

6.3 Discussions

This section highlights key areas of future work related to the research that
has been carried out in this thesis.

6.3.1 Evolving Ensembles on DJSS Problems Subject to Ma-

chine Breakdowns

This thesis develops ensemble GP approaches that can evolve effective
ensembles of dispatching rules that can outperform the standard GP ap-
proach over the DJSS problem. Other effective ensemble GP approaches
have also been proposed by researchers [42] after EGP-JSS, which shows

212 CHAPTER 6. CONCLUSIONS

that ensemble learning is a promising field that warrants further investi-
gation in the future. In particular, ensemble GP approach that can evolve
ensembles from a limited number of simulation runs would be promising,
as DJSS problems handled in this thesis have a large number of job ar-
rivals, which results in each simulation run being very expensive in terms
of the computation time. Furthermore, this thesis does not apply ensem-
ble GP approach to DJSS problems with both dynamic job arrivals and
machine breakdowns. It is likely that an ensemble GP approach can per-
form better than the standard GP approach for the DJSS problem, as it may
be able to better cope with the added uncertainty introduced by machine

breakdown.

6.3.2 Incorporating Diversity to Ensemble GP Approaches
to DJSS Problems

Diversity between the ensemble members is an important component for
the effectiveness of an ensemble. The results showed that ensembles evolved
with the linear combination schemes show greater diversity between the
ensemble members compared to the other combination schemes investi-
gated in Chapter 3, which also is correlated with better performances by
the evolved rules. However, although we carried out some preliminary
investigation into incorporating some diversity measures into the ensem-
ble GP approach, they did significantly improve the effectiveness of the
evolved rules. Further investigation into directly incorporating an effec-

tive diversity measure may be promising.

6.3.3 Incorporating Machine Breakdown Information into
GP

Although this thesis investigated using machine breakdown GP termi-

nals, the results show that the machine breakdown GP approach does not

6.3. DISCUSSIONS 213

significantly improve over the standard GP approach overall. In addi-
tion, the multitask GP approaches proposed in this thesis do not evolve
rules that directly incorporate machine breakdown information into the
decision-making process. Although GP has difficulties evolving rules that
can incorporate the machine breakdown terminals effectively, there may
be other feasible methods of incorporating machine breakdown informa-
tion that results in more effective evolved rules. For example, a GP ap-
proach that evolves a rule for regular decision situations and a rule specifi-
cally for decision situations that occur shortly before machine breakdowns
may be more effective than the standard GP approach for the DJSS prob-

lem.

6.3.4 Identifying Machine Breakdown Scenarios Automat-

ically

The thesis proposes an effective multitask GP approach for the DJSS prob-
lem with dynamic job arrivals and machine breakdowns that can outper-
form the standard GP approach. However, the multitask GP approaches
require domain knowledge about the DJSS problem to evolve the rules.
The NGP approach uses niched training sets that only consist of simula-
tions that belong to machine breakdown scenarios to further evaluate the
niched GP individuals, and the NBGP approach uses neighbourhood rela-
tion between the different machine breakdown scenarios. In addition, the
evolved specialist rules are evaluated on the specific machine breakdown
scenarios. In a real-world scenario, it is likely that the machine breakdown
scenarios are not known in advance for both the training and the test-
ing procedure. In addition, the differences between the different machine
breakdown scenarios may not be as distinct as the machine breakdown
scenarios investigated in this thesis. Therefore, a multitask GP approach
that can distinguish between the different machine breakdown scenarios

without directly incorporating the domain knowledge into the training

214 CHAPTER 6. CONCLUSIONS

process may be required. In addition, a mechanism that automatically
determines the appropriate specialist rule to be used for the decision sit-
uations for a specific DJSS problem instance that belongs to an unknown

machine breakdown scenario would be promising.

6.4 Future Work

This section provides a brief discussion of general research areas that are
outside the scope of this thesis but are relevant to the topics covered in this

thesis and are important fields of research.

6.4.1 Surrogate Modelling

Hildebrandt and Branke [59] and Nguyen et al. [108] have proposed sur-
rogate GP approach to DJSS to improve the training convergence of GP
and to improve the efficiency of evolving rules. Surrogate modelling is
an important field of research to DJSS [102], as it alleviates the expensive
computation cost required to run a DJSS simulation by carrying out a par-
tial evaluation of the GP population. Surrogate GP approaches proposed
in the literature share a similar goal with the proposed neighbourhood
based genetic programming (NBGP) approach in this thesis (Page 172). In
both surrogate GP and the NBGD, the goal is to improve the efficiency of
evolving rules over the standard GP approach while maintaining compet-
itive performance. Therefore, a multitask GP approach that can incorpo-
rate concepts from surrogate modelling may be able to further improve

the efficiency of evolving rules, and vice versa.

6.4.2 Transfer Learning and Concept Drift

Transfer learning is a prominent field of research in the literature [116]
outside of JSS, but have not been significantly investigated for GP-HH in

6.4. FUTURE WORK 215

DJSS problems. In particular, concept drift [116] may be a promising di-
rection of research to DJSS with dynamic job arrivals. In a real-world sce-
nario, it is possible that the properties of the manufacturing environment
change over time, i.e., there is a “drift” in the properties of the problem. In
a real-world scenario, the properties of the manufacturing environments
can change over time. For example, a change of season from summer to
winter may mean that certain machines on the shop floor take longer to
heat up, i.e., take longer to process operations. A GP evolved rule needs
to be able to cope with the drift effectively or need to be able to detect
quickly when a drift occurs. An approach that can effectively detect when
a drift occurs may allow the manufacturer to make an informed decision
on whether to evolve a new rule if the old rule can no longer maintain

competitive performance.

6.4.3 Multi-objective Optimisation and Multiple Types of

Dynamic Events

Multi-objective optimisation is an important field of research to DJSS prob-
lems and has been investigated extensively in the literature [91, 107, 143].
Real-world manufacturing environments often have multiple conflicting
objectives that need to be optimised simultaneously [154]. However, many
multi-objective DJSS problems handled by the GP-HH approaches in the
literature often have only one type of dynamic event that occurs during
processing, e.g., dynamic job arrivals [91, 107]. Therefore, research into
multi-objective DJSS problems with multiple types of dynamic events (e.g.
dynamic job arrivals and machine breakdowns) is a potentially important

research direction that will require new and specialised GP approaches to
handle.

216 CHAPTER 6. CONCLUSIONS

Bibliography

[1]

[5]

ABDUL-RAZAQ, T. S., POTTS, C. N., AND VAN WASSENHOVE,
L. N. A survey of algorithms for the single machine total weighted
tardiness scheduling problem. Discrete Applied Mathematics 26, 2-3
(1990), 235-253.

ABUMAIZAR, R. J., AND SVESTKA, J. A. Rescheduling job shops un-
der random disruptions. International Journal of Production Research
35,7 (1997), 2065-2082.

ADAMS, J., BALAS, E., AND ZAWACK, D. The shifting bottleneck
procedure for job shop scheduling. Management Science 34, 3 (1988),
391-401.

ADIBI, M. A., AND SHAHRABI, J. A clustering-based modified
variable neighborhood search algorithm for a dynamic job shop
scheduling problem. The International Journal of Advanced Manufac-
turing Technology 70, 9-12 (2014), 1955-1961.

ADIBI, M. A., ZANDIEH, M., AND AMIRI, M. Multi-objective
scheduling of dynamic job shop using variable neighborhood
search. Expert Systems with Applications 37, 1 (2010), 282-287.

AHMADI, E., ZANDIEH, M., FARROKH, M., AND EMAMI, S. M. A
multi objective optimization approach for flexible job shop schedul-
ing problem under random machine breakdown by evolutionary al-
gorithms. Computers & Operations Research 73 (2016), 56—66.

217

218

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

BIBLIOGRAPHY

AITZAI, A., BENMEDJDOUB, B., AND BOUDHAR, M. Branch-and-
bound and PSO algorithms for no-wait job shop scheduling. http:
//dx.doi.org/10.1007/s10845-014-0906-7,2014.

AL-HINAI, N., AND ELMEKKAWY, T. Robust and stable flexible job
shop scheduling with random machine breakdowns using a hybrid
genetic algorithm. International Journal of Production Economics 132, 2
(2011), 279-291.

ALPAYDIN, E. Introduction to Machine Learning, 2 ed. MIT press,
2010.

APPLEGATE, D., AND COOK, W. A computational study of the job-
shop scheduling problem. ORSA Journal on Computing 3, 2 (1991),
149-156.

ARGYRIOU, A., EVGENIOU, T., AND PONTIL, M. Multi-task feature
learning. In Proceedings of the 19th International Conference on Neural
Information Processing Systems (NIPS 2006) (Cambridge, MA, USA,
2006), MIT Press, pp. 41-48.

ARMENTANO, V. A., AND SCRICH, C. R. Tabu search for minimiz-
ing total tardiness in a job shop. International Journal of Production
Economics 63, 2 (2000), 131-140.

BAcK, T. Ewvolutionary Algorithms in Theory and Practice: Evolution
Strategies, Evolutionary Programming, Genetic Algorithms. Oxtord Uni-
versity Press, 1996.

BAKER, K. R., AND BERTRAND, J. A dynamic priority rule for

scheduling against due-dates. Journal of Operations Management 3,
1(1982), 37-42.

BHOWAN, U., JOHNSTON, M., ZHANG, M., AND YAO, X. Evolv-

ing diverse ensembles using genetic programming for classification

BIBLIOGRAPHY 219

[16]

[17]

[18]

[19]

[20]

[21]

[23]

with unbalanced data. IEEE Transactions on Evolutionary Computation
17,3 (2013), 368-386.

BLAZEWICZ, J., DOMSCHKE, W., AND PESCH, E. The job shop
scheduling problem: Conventional and new solution techniques.
European Journal of Operational Research 93,1 (1996), 1-33.

BRANKE, J., NGUYEN, S., PICKARDT, C. W., AND ZHANG, M. Au-
tomated design of production scheduling heuristics: A review. I[EEE
Transactions on Evolutionary Computation 20, 1 (2016), 110-124.

BRANKE, J., AND PICKARDT, C. W. Evolutionary search for diffi-

cult problem instances to support the design of job shop dispatching
rules. European Journal of Operational Research 212, 1 (2011), 22-32.

BREIMAN, L. Bagging predictors. Machine Learning 24, 2 (1996),
123-140.

BRUCKER, P., JURISCH, B., AND SIEVERS, B. A branch and bound al-
gorithm for the job-shop scheduling problem. Discrete Applied Math-
ematics 49, 1-3 (1994), 107-127.

BURKE, E. K., GENDREAU, M., HYDE, M., KENDALL, G., OCHOA,
G., OzcaN, E., AND QU, R. Hyper-heuristics: a survey of the state
of the art. Journal of the Operational Research Society 64, 12 (2013),
1695-1724.

BURKE, E. K., HYDE, M., KENDALL, G., OCHOA, G., OZCAN,
E., AND WOODWARD, J. R. A classification of hyper-heuristic ap-
proaches. In Handbook of metaheuristics, Lecture Notes in Computer
Science. Springer, 2010, pp. 449—468.

BURKE, E. K., HYDE, M., KENDALL, G., AND WOODWARD, J. A ge-

netic programming hyper-heuristic approach for evolving 2-d strip

220

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

BIBLIOGRAPHY

packing heuristics. IEEE Transactions on Evolutionary Computation 14,
6 (2010), 942-958.

CARLIER, J. The one-machine sequencing problem. European Journal
of Operational Research 11, 1 (1982), 42—47.

CARLIER, J., AND PINSON, E. An algorithm for solving the job-shop
problem. Management Science 35, 2 (1989), 164-176.

CARROLL, D. Heuristic sequencing of jobs with single and multiple com-
ponents. PhD thesis, Massachusetts Institute of Technology, 1965.

CARUANA, R. Multitask learning. Machine Learning 28, 1 (Jul 1997),
41-75.

CHEN, H., AND YAO, X. Multiobjective neural network ensembles

based on regularized negative correlation learning. IEEE Transac-
tions on Knowledge and Data Engineering 22, 12 (2010), 1738-1751.

CHENG, R., GEN, M., AND TSUJIMURA, Y. A tutorial survey of job-
shop scheduling problems using genetic algorithms, part 1I: hybrid
genetic search strategies. Computers & Industrial Engineering 36, 2
(1999), 343-364.

CHENG, T. C. E., AND GUPTA, M. C. Survey of scheduling research

involving due date determination decisions. European Journal of Op-
erational Research 38, 2 (1989), 156-166.

CHONG, C. S., SIVAKUMAR, A. 1., Low, M. Y. H., AND GAY, K. L.
A bee colony optimization algorithm to job shop scheduling. In
WSC ’06: Proceedings of the 38th Winter Simulation Conference (2006),
pp. 1954-1961.

COLORNI, A., DORIGO, M., MANIEZZO, V., AND TRUBIAN, M.
Ant system for job-shop scheduling. Belgian Journal of Operations
Research, Statistics and Computer Science 34, 1 (1994), 39-53.

BIBLIOGRAPHY 221

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

ConwaAy, R. W.,, MAXWELL, W. L., AND MILLER, L. W. Theory of
Scheduling. Addison-Wesley, 1967.

COWLING, P., KENDALL, G., AND SOUBEIGA, E. A hyperheuristic
approach to scheduling a sales summit. In Practice and Theory of Au-
tomated Timetabling 111, vol. 2079 of Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2001, pp. 176-190.

DA, B.,, ONG, Y., FENG, L., QIN, A. K., GUPTA, A., ZHU, Z., TING,
C., TANG, K., AND YAO, X. Evolutionary multitasking for single-
objective continuous optimization: Benchmark problems, perfor-

mance metric, and baseline results. CoRR (2017).

DE BONTRIDDER, K. Minimizing total weighted tardiness in a gen-
eralized job shop. Journal of Scheduling 8, 6 (2005), 479-496.

DE JONG, K. A. Evolutionary Computation: A Unified Approach. MIT
press, 2006.

DEB, K., AND JAIN, H. An evolutionary many-objective optimiza-
tion algorithm using reference-point-based nondominated sorting
approach, part i: Solving problems with box constraints. IEEE Trans-
actions on Evolutionary Computation 18, 4 (2014), 577-601.

DEB, K., PRATAP, A., AGARWAL, S., AND MEYARIVAN, T. A fast
and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transac-
tions on Evolutionary Computation 6,2 (2002), 182-197.

DIMOPOULOS, C., AND ZALZALA, A. M. S. Investigating the use of
genetic programming for a classic one-machine scheduling problem.
Advances in Engineering Software 32, 6 (2001), 489-498.

DORIGO, M., MANIEZZO, V., AND COLORNI, A. Ant system: op-
timization by a colony of cooperating agents. IEEE Transactions on
Systems, Man, and Cybernetics 26,1 (1996), 29-41.

222

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

BIBLIOGRAPHY

DURASEVIC, M., AND JAKOBOVIC, D. Comparison of ensemble
learning methods for creating ensembles of dispatching rules for the
unrelated machines environment. Genetic Programming and Evolvable
Machines 19,1 (2018), 53-92.

DURASEVIC, M., JAKOBOVIC, D., AND KNEZEVIC, K. Adaptive

scheduling on unrelated machines with genetic programming. Ap-
plied Soft Computing 48 (2016), 419-430.

EVGENIOU, T., AND PONTIL, M. Regularized multi-task learning.
In Proceedings of the Tenth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD 2004) (New York, NY,
USA, 2004), ACM, pp. 109-117.

FREUND, Y., AND SCHAPIRE, R. E. A decision-theoretic generaliza-
tion of on-line learning and an application to boosting. In Compu-
tational Learning Theory, vol. 904 of Lecture Notes in Computer Science.
1995, pp. 23-37.

GAREY, M. R., JOHNSON, D. S., AND SETHI, R. The complexity of

flowshop and jobshop scheduling. Mathematics of Operations Research
1,2 (1976), 117-129.

GEIGER, C. D., Uzsoy, R., AND AYTU, H. Rapid modeling and dis-
covery of priority dispatching rules: An autonomous learning ap-
proach. Journal of Scheduling 9, 1 (2006), 7-34.

GIFFLER, B., AND THOMPSON, G. L. Algorithms for solving
production-scheduling problems. Operations Research 8, 4 (1960),
487-503.

GLOVER, F., AND LAGUNA, M. Tabu Search. Springer, 1999.

GROMICHO, J. A., VAN HOORN, J. J., DA GAMA, F. S., AND TiM-
MER, G. T. Solving the job-shop scheduling problem optimally

BIBLIOGRAPHY 223

[51]

[52]

[53]

[54]

[55]

[56]

[58]

by dynamic programming. Computers & Operations Research 39, 12
(2012), 2968-2977.

GurTA, A., ONG, Y. S., AND FENG, L. Multifactorial evolution:

Toward evolutionary multitasking. IEEE Transactions on Evolutionary
Computation 20, 3 (2016), 343-357.

GUPTA, A., ONG, Y. S., AND FENG, L. Insights on transfer opti-
mization: Because experience is the best teacher. IEEE Transactions
on Emerging Topics in Computational Intelligence 2,1 (2018), 51-64.

GurTA, A., ONG, Y. S., FENG, L., AND TAN, K. C. Multiobjec-
tive multifactorial optimization in evolutionary multitasking. IEEE
Transactions on Cybernetics 47,7 (2017), 1652-1665.

HANSEN, P., MLADENOVIC, N., AND PEREZ, J. A. M. Variable
neighbourhood search: methods and applications. Annals of Oper-
ations Research 175, 1 (2010), 367-407.

HART, E., Ross, P., AND CORNE, D. Evolutionary scheduling: A
review. Genetic Programming and Evolvable Machines 6, 2 (2005), 191-
220.

HART, E., AND SIM, K. A hyper-heuristic ensemble method for
static job-shop scheduling. Evolutionary Computation 24, 4 (2016),
609-635.

HEARST, M. A., DuMAIS, S. T., OsuNA, E., PLATT, J., AND
SCHOLKOPF, B. Support vector machines. IEEE Intelligent Systems
and their Applications 13, 4 (1998), 18-28.

HELD, M., AND KARP, R. M. A dynamic programming approach to
sequencing problems. In Proceedings of the 16th ACM National Meet-
ing (ACM 1961) (1961), pp. 71.201-71.204.

224

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

BIBLIOGRAPHY

HILDEBRANDT, T., AND BRANKE, J. On using surrogates with ge-
netic programming. Evolutionary Computation 23, 3 (2015), 343-367.

HILDEBRANDT, T., HEGER, J., AND SCHOLZ-REITER, B. Towards
improved dispatching rules for complex shop floor scenarios: A ge-
netic programming approach. In Proceedings of Genetic and Evolution-
ary Computation Conference (GECCO 2010) (New York, NY, USA, July
2010), ACM, pp. 257-264.

HOLTHAUS, O. Scheduling in job shops with machine breakdowns:
an experimental study. Computers & Industrial Engineering 36, 1
(1999), 137-162.

HOLTHAUS, O., AND RAJENDRAN, C. Efficient dispatching rules for
scheduling in a job shop. International Journal of Production Economics
48,1 (1997), 87-105.

HOLTHAUS, O., AND RAJENDRAN, C. Efficient jobshop dispatching
rules: Further developments. Production Planning & Control 11, 2
(2000), 171-178.

HORST, R., AND ROMEIN, H. E. Handbook of Global Optimization,
vol. 2. Springer Science & Business Media, 2002.

HUANG, V. L., SUGANTHAN, P. N., QIN, A. K., AND BASKAR, S.
Multiobjective differential evolution with external archive and har-
monic distance-based diversity measure. Tech. rep., Nanyang Tech-
nological University, 2005.

HUNT, R., JOHNSTON, M., AND ZHANG, M. Evolving “less-
myopic” scheduling rules for dynamic job shop scheduling with ge-
netic programming. In Proceedings of Genetic and Evolutionary Com-
putation Conference (GECCO 2014) (New York, NY, USA, July 2014),
ACM, pp. 927-934.

BIBLIOGRAPHY 225

[67] HUNT, R., JOHNSTON, M., AND ZHANG, M. Evolving machine-
specific dispatching rules for a two-machine job shop using genetic
programming. In Proceedings of the IEEE Congress on Evolutionary
Computation (CEC 2014) (July 2014), pp. 618-625.

[68] HUNT, R., JOHNSTON, M., AND ZHANG, M. Using local search
to evaluate dispatching rules in dynamic job shop scheduling. In
Proceedings of Evolutionary Computation in Combinatorial Optimization
(EvoCOP 2015) (Cham, April 2015), vol. 9026 of Lecture Notes in Com-
puter Science, Springer International Publishing, pp. 222-233.

[69] JACKSON, J. An extension of Johnson’s result on job-lot scheduling.
Naval Research Logistics Quarterly 3, 3 (1956), 201-204.

[70] JAKOBOVIC, D., AND BUDIN, L. Dynamic scheduling with genetic
programming. In EuroGP "06: Proceedings of the 9th European Con-
ference on Genetic Programming (2006), vol. 3905 of Lecture Notes in
Computer Science, Springer Berlin Heidelberg, pp. 73-84.

[71] JAKOBOVIC, D., JELENKOVIC, L., AND BUDIN, L. Genetic program-
ming heuristics for multiple machine scheduling. In EuroGP "07:
Proceedings of the 10th European Conference on Genetic Programming
(2007), vol. 4445 of Lecture Notes in Computer Science, Springer Berlin
Heidelburg, pp. 321-330.

[72] JAYAMOHAN, M. S., AND RAJENDRAN, C. New dispatching rules
for shop scheduling: A step forward. International Journal of Produc-
tion Research 38, 3 (2000), 563-586.

[73] JAYAMOHAN, M. S., AND RAJENDRAN, C. Development and analy-
sis of cost-based dispatching rules for job shop scheduling. European
Journal of Operational Research 157, 2 (2004), 307-321.

226 BIBLIOGRAPHY

[74] JOHNSON, S. M. Optimal two- and three-stage production sched-
ules with setup times included. Nawval Research Logistics 3 (1954),
61-68.

[75] JONES, A., AND RABELO, L. C. Survey of job shop scheduling
techniques. Wiley Encyclopedia of Electrical and Electronics Engineer-
ing (1999), 1-14.

[76] KARABOGA, D. An idea based on honey bee swarm for numerical
optimization. Tech. rep., Technical Report-TR06, Erciyes University,
Engineering Faculty, Computer Engineering Department, 2005.

[77] KENNEDY, J., AND EBERHART, R. Particle swarm optimization. In
Proceedings of IEEE International Conference on Neural Networks (1995),
vol. 4, pp. 1942-1948.

[78] KENNEDY, J. F., EBERHART, R. C., AND SHI, Y. Swarm Intelligence.
Morgan Kaufmann, 2001.

[79] KIRKPATRICK, S., GELATT, C. D., AND VECCHI, M. P. Optimization
by simulated annealing. Science 220, 4598 (1983), 671-680.

[80] KozA, J. R. Genetic Programming: On the Programming of Computers
by Means of Natural Selection. MIT Press, 1992.

[81] KRAMER, O. Genetic Algorithm Essentials, vol. 679. Springer, 2017.

[82] KREIPL, S. A large step random walk for minimizing total weighted
tardiness in a job shop. Journal of Scheduling 3, 3 (2000), 125-138.

[83] LAND, A. H., AND DOIG, A. G. An automatic method for solving
discrete programming problems. Econometrica (1960), 497-520.

[84] LARRANAGA, P. A Review on Estimation Distribution Algorithms.
Springer, 2002.

BIBLIOGRAPHY 227

[85]

[86]

[87]

[88]

[89]

[90]

[91]

LAWLER, E. L., LENSTRA, J. K., AND RINNOOY KAN, A. H. G. Re-
cent developments in deterministic sequencing and scheduling: A
survey. In Deterministic and Stochastic Scheduling, vol. 84 of NATO
Advanced Study Institutes Series. Springer Netherlands, 1982, pp. 35—
73.

LAWLER, E. L., LENSTRA4, J. K., RINNOOY KAN, A. H. G., AND
SHMOYS, D. B. Sequencing and scheduling: Algorithms and com-
plexity. In Logistics of Production and Inventory, vol. 4 of Handbooks in
Operations Research and Management Science. Elsevier, 1993, pp. 445
522.

LAWLER, E. L., AND MOORE, J. M. A functional equation and its

application to resource allocation and sequencing problems. Man-
agement Science 16, 1 (1969), 77-84.

LIN, S.-C., GOODMAN, E. D., AND PUNCH, W. F. Investigating par-
allel genetic algorithms on job shop scheduling problems. In Interna-
tional Conference on Evolutionary Programming (1997), Lecture Notes
in Computer Science, Springer Berlin Heidelberg, pp. 383-393.

L1U, Y., AND YAO, X. Ensemble learning via negative correlation.
Neural Networks 12,10 (1999), 1399-1404.

MASOOD, A., MEL, Y., CHEN, G., AND ZHANG, M. Many-objective
genetic programming for job-shop scheduling. In Proceedings of the
2016 IEEE Congress on Evolutionary Computation (CEC 2016) (July
2016), pp. 209-216.

MAsSOOD, A., ME], Y., CHEN, G., AND ZHANG, M. A pso-based
reference point adaption method for genetic programming hyper-
heuristic in many-objective job shop scheduling. In Proceedings of the
2017 Australasian Conference on Artificial Life and Computational Intel-

228

[92]

[93]

[94]

[95]

[96]

[97]

[98]

BIBLIOGRAPHY

ligence (2017), Lecture Notes in Artificial Intelligence, Springer Inter-
national Publishing, pp. 326-338.

McKay, K. N., SAFAYENI, F. R., AND BUZACOTT, J. A. Job-shop
scheduling theory: What is relevant? Interfaces 18, 4 (August 1988),
84-90.

MEERAN, S., AND MORSHED, M. S. A hybrid genetic tabu search
algorithm for solving job shop scheduling problems: a case study.
Journal of Intelligent Manufacturing 23, 4 (2012), 1063-1078.

MEHTA, S. V., AND Uzs0OY, R. M. Predictable scheduling of a job

shop subject to breakdowns. IEEE Transactions on Robotics and Au-
tomation 14, 3 (1998), 365-378.

MEI, Y., NGUYEN, S., XUE, B., AND ZHANG, M. An efficient fea-
ture selection algorithm for evolving job shop scheduling rules with
genetic programming. IEEE Transactions on Emerging Topics in Com-
putational Intelligence 1, 5 (2017), 339-353.

ME], Y., NGUYEN, S., AND ZHANG, M. Evolving time-invariant dis-
patching rules in job shop scheduling with genetic programming”.
proceedings of the 20th european conference on genetic program-
ming (eurogp 2017). Lecture Notes in Computer Science, pp. 147-
163.

ME], Y., ZHANG, M., AND NGUYEN, S. Feature selection in evolv-
ing job shop dispatching rules with genetic programming. In Pro-
ceedings of the 2016 Conference on Genetic and Evolutionary Computation
(2016), pp. 365-372.

MICHALEWICZ, Z., AND FOGEL, D. B. How to Solve It: Modern
Heuristics, 2 ed. Springer Science & Business Media, 2013.

BIBLIOGRAPHY 229

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

MORTON, T. E., AND RACHAMADUGU, R. M. V. Myopic heuris-
tics for the single machine weighted tardiness problem. Tech. rep.,
Carnegie-Mellon University, 1982.

MUTH, J. F., AND THOMPSON, G. L. Industrial Scheduling. Prentice-
Hall, 1963.

NGUYEN, Q. U., NGUYEN, X. H., O'NEILL, M., AND AGAPITOS, A.
An investigation of fitness sharing with semantic and syntactic dis-

tance metrics. In Genetic Programming, Lecture Notes in Computer
Science. 2012, pp. 109-120.

NGUYEN, S., ME], Y., MA, H., CHEN, A., AND ZHANG, M. Evo-
lutionary scheduling and combinatorial optimisation: Applications,
challenges, and future directions. In Proceedings of IEEE Congress on
Evolutionary Computation (CEC 2016) (July 2016), pp. 3053-3060.

NGUYEN, S., MEL, Y., AND ZHANG, M. Genetic programming for

production scheduling: a survey with a unified framework. Complex
& Intelligent Systems 3,1 (2017), 41-66.

NGUYEN, S., ZHANG, M., JOHNSTON, M., AND TAN, K. C. A co-
evolution genetic programming method to evolve scheduling poli-
cies for dynamic multi-objective job shop scheduling problems. In
Proceedings of IEEE Congress on Evolutionary Computation (CEC 2012)
(June 2012), pp. 1-8.

NGUYEN, S., ZHANG, M., JOHNSTON, M., AND TAN, K. C. A
computational study of representations in genetic programming to
evolve dispatching rules for the job shop scheduling problem. IEEE
Transactions on Evolutionary Computation 17,5 (2013), 621-639.

NGUYEN, S., ZHANG, M., JOHNSTON, M., AND TAN, K. C. Learn-

ing iterative dispatching rules for job shop scheduling with genetic

230

[107]

[108]

[109]

[110]

[111]

[112]

BIBLIOGRAPHY

programming. The International Journal of Advanced Manufacturing
Technology 67, 1-4 (2013), 85-100.

NGUYEN, S., ZHANG, M., JOHNSTON, M., AND TAN, K. C. Auto-
matic design of scheduling policies for dynamic multi-objective job
shop scheduling via cooperative coevolution genetic programming.
IEEE Transactions on Evolutionary Computation 18, 2 (2014), 193-208.

NGUYEN, S., ZHANG, M., JOHNSTON, M., AND TAN, K. C. Se-
lection schemes in surrogate-assisted genetic programming for job
shop scheduling. In Proceedings of the 10th International Conference on
Simulated Evolution and Learning (2014), vol. 8886 of Lecture Notes in
Computer Science, Springer, pp. 656-667.

NGUYEN, S., ZHANG, M., JOHNSTON, M., AND TAN, K. C. Auto-
matic programming via iterated local search for dynamic job shop
scheduling. IEEE Transactions on Cybernetics 45, 1 (2015), 1-14.

NGUYEN, S., ZHANG, M., AND TAN, K. C. Surrogate-assisted ge-
netic programming with simplified models for automated design of
dispatching rules. IEEE Transactions on Cybernetics 47,9 (2017), 2951—
2965.

NIE, L., BAIL Y., WANG, X., AND L1U, K. Discover scheduling
strategies with gene expression programming for dynamic flexible
job shop scheduling problem. In Proceedings of the Third Interna-
tional Conference on Advances in Swarm Intelligence, Part 1 (ICSI 2012)
(Berlin, Heidelberg, June 2012), Lecture Notes in Computer Science,
Springer Berlin Heidelberg, pp. 383-390.

NIE, L., GAO, L., L1, P, AND LI, X. A gep-based reactive schedul-
ing policies constructing approach for dynamic flexible job shop
scheduling problem with job release dates. Journal of Intelligent Man-
ufacturing 24, 4 (2013), 763-774.

BIBLIOGRAPHY 231

[113] NIE, L., SHAO, X., GAO, L., AND L1, W. Evolving scheduling rules
with gene expression programming for dynamic single-machine
scheduling problems. The International Journal of Advanced Manu-
facturing Technology 50, 5-8 (2010), 729-747.

[114] OsmAN, I. H., AND KELLY, J. P. Meta-heuristics: An QOuverview.
Springer, 1996.

[115] OUELHADJ, D., AND PETROVIC, S. A survey of dynamic scheduling

in manufacturing systems. Journal of Scheduling 12, 4 (August 2009),
417-431.

[116] PAN, S.]J., AND YANG, Q. A survey on transfer learning. IEEE
Transactions on Knowledge and Data Engineering 22, 10 (2010), 1345
1359.

[117] PANAIT, L., AND LUKE, S. Cooperative multi-agent learning: The

state of the art. Autonomous Agents and Multi-Agent Systems 11, 3
(2005), 387-434.

[118] PANWALKAR, S. S., AND ISKANDER, W. A survey of scheduling
rules. Operations Research 25,1 (1977), 45-61.

[119] PARK, J., NGUYEN, S., JOHNSTON, M., AND ZHANG, M. Evolving
stochastic dispatching rules for order acceptance and scheduling via
genetic programming. In Proceedings of 26th Australasian Joint Confer-
ence on Artificial Intelligence (Al 2013) (2013), Lecture Notes in Com-
puter Science, pp. 478-489.

[120] PARK, J., NGUYEN, S., ZHANG, M., AND JOHNSTON, M. Evolving
ensembles of dispatching rules using genetic programming for job
shop scheduling. In Proceedings of 18th European Conference on Genetic
Programming (EuroGP 2015) (April 2015), vol. 9025 of Lecture Notes in
Computer Science, Springer International Publishing, pp. 92-104.

232 BIBLIOGRAPHY

[121] PEREZ, E., HERRERA, F., AND HERNNDEZ, C. Finding multiple so-
lutions in job shop scheduling by niching genetic algorithms. Journal
of Intelligent Manufacturing 14, 3-4 (2003), 323-339.

[122] PEREZ, E., POSADA, M., AND HERRERA, F. Analysis of new nich-
ing genetic algorithms for finding multiple solutions in the job shop
scheduling. Journal of Intelligent Manufacturing 23, 3 (2012), 341-356.

[123] PETROWSKI, A. A clearing procedure as a niching method for ge-
netic algorithms. In Proceedings of IEEE International Conference on
Evolutionary Computation (1996), pp. 798-803.

[124] PICKARDT, C. W., HILDEBRANDT, T., BRANKE, J., HEGER, J., AND
SCHOLZ-REITER, B. Evolutionary generation of dispatching rule

sets for complex dynamic scheduling problems. International Journal
of Production Economics 145, 1 (2013), 67-77.

[125] PINEDO, M. L. Scheduling: Theory, Algorithms, and Systems, 4 ed.
SpringerUS, 2012.

[126] POLIKAR, R. Ensemble based systems in decision making. IEEE
Circuits and Systems Magazine 6, 3 (2006), 21-45.

[127] POTTER, M. A., AND DE JONG, K. A. Cooperative coevolution: An
architecture for evolving coadapted subcomponents. Evolutionary
Computation 8,1 (2000), 1-29.

[128] PoTTS, C. N., AND STRUSEVICH, V. A. Fifty years of scheduling: a

survey of milestones. Journal of the Operational Research Society 60, 1
(May 2009), 541-568.

[129] RAGHU, T., AND RAJENDRAN, C. An efficient dynamic dispatching
rule for scheduling in a job shop. International Journal of Production
Economics 32, 3 (1993), 301-313.

BIBLIOGRAPHY 233

[130] RAMASESH, R. Dynamic job shop scheduling: A survey of simula-
tion research. International Journal of Management Science 18, 1 (1990),
43-57.

[131] RUBINI, J., HECKENDORN, R. B., AND SOULE, T. Evolution of team
composition in multi-agent systems. In Proceedings of the 11th An-
nual Conference on Genetic and Evolutionary Computation (2009), ACM,
pp- 1067-1074.

[132] RUSSELL, S. J., AND NORVIG, P. Artificial Intelligence: A Modern
Approach, 2 ed. Pearson Education, 2003.

[133] SARENI, B., AND KRAHENBUHL, L. Fitness sharing and niching

methods revisited. IEEE Transactions on Evolutionary Computation 2,
3 (1998), 97-106.

[134] SCHAPIRE, R. E. The strength of weak learnability. Machine Learning
5,2 (Jun 1990), 197-227.

[135] SHA, D., AND Hsu, C.-Y. A hybrid particle swarm optimization for
job shop scheduling problem. Computers & Industrial Engineering 51,
4 (2006), 791-808.

[136] SOULE, T., AND KOMIREDDY, P. Orthogonal evolution of teams:
A class of algorithms for evolving teams with inversely correlated
errors. In Genetic Programming Theory and Practice IV, vol. 5 of Genetic
and Evolutionary Computation. Springer, 2007, pp. 79-95.

[137] SPRECHER, A., KOLISCH, R., AND DREXL, A. Semi-active, ac-
tive, and non-delay schedules for the resource-constrained project
scheduling problem. European Journal of Operational Research 80, 1
(1995), 94-102.

[138] SUBRAMANIAM, V., LEE, G. K., RAMESH, T., HONG, G. S., AND
WONG, Y. S. Machine selection rules in a dynamic job shop. The In-

234 BIBLIOGRAPHY

ternational Journal of Advanced Manufacturing Technology 16, 12 (2000),
902-908.

[139] SUDDARTH, S. C., AND KERGOSIEN, Y. Rule-injection hints as a

means of improving network performance and learning time. In
Neural Networks. Springer, 1990, pp. 120-129.

[140] SURESH, V., AND CHAUDHURI, D. Dynamic scheduling — a survey
of research. International Journal of Production Economics 32, 1 (1993),
53-63.

[141] TAILLARD, E. Benchmarks for basic scheduling problems. European
Journal of Operational Research 64,2 (1993), 278-285.

[142] TAILLARD, E. Parallel taboo search techniques for the job shop
scheduling problem. ORSA journal on Computing 6, 2 (1994), 108—
117.

[143] TAY, J. C.,, AND HO, N. B. Evolving dispatching rules using
genetic programming for solving multi-objective flexible job-shop
problems. Computers & Industrial Engineering 54, 3 (2008), 453—473.

[144] THE WORLD BANK. Manufacturing, value added (current
US$). https://data.worldbank.org/indicator/NV.IND.
MANF .CD?locations=US&year_high_desc=true. Accessed:
25 June 2015. Available.

[145] TOMASSINI, M. Spatially structured evolutionary algorithms: Artificial
evolution in space and time. Springer, 2006.

[146] VALLADA, E., AND RUIZ, R. Genetic algorithms with path relinking

for the minimum tardiness permutation flowshop problem. Omega
38,1-2(2010), 57-67.

BIBLIOGRAPHY 235

[147] VAN LAARHOVEN, P. J. M., AARTS, E. H. L., AND LENSTRA, J. K.
Job shop scheduling by simulated annealing. Operations Research 40,
1(1992), 113-125.

[148] VEPSALAINEN, A. P. J.,, AND MORTON, T. E. Priority rules for

job shops with weighted tardiness costs. Management Science 33, 8
(1987), 1035-1047.

[149] WIDMER, G., AND KUBAT, M. Learning in the presence of concept
drift and hidden contexts. Machine Learning 23,1 (1996), 69-101.

[150] WOLPERT, D. H., AND MACREADY, W. G. No free lunch theorems

for optimization. IEEE Transactions on Evolutionary Computation 1, 1
(1997), 67-82.

[151] WONG, T. C., AND NGAN, S. C. A comparison of hybrid ge-
netic algorithm and hybrid particle swarm optimization to minimize
makespan for assembly job shop. Applied Soft Computing 13, 3 (2013),
1391-1399.

[152] WU, S., STORER, R. H., AND PEI-CHANN, C. One-machine
rescheduling heuristics with efficiency and stability as criteria. Com-
puters & Operations Research 20,1 (1993), 1-14.

[153] WU, S. X., AND BANZHAF, W. Rethinking multilevel selection in
genetic programming. In Proceedings of the 13th Annual Conference on
Genetic and Evolutionary Computation (2011), pp. 1403-1410.

[154] YENISEY, M. M., AND YAGMAHAN, B. Multi-objective permutation
flow shop scheduling problem: Literature review, classification and
current trends. Omega 45 (2014), 119-135.

[155] YIN, W.]., L1U, M., AND WU, C. Learning single-machine schedul-
ing heuristics subject to machine breakdowns with genetic program-

ming. In Proceedings of IEEE Congress on Evolutionary Computation
(CEC 2003) (2003), pp- 1050-1055.

236

[156]

[157]

[158]

[159]

BIBLIOGRAPHY

YskA, D., ME]L, Y., AND ZHANG, M. Genetic programming hyper-
heuristic with cooperative coevolution for dynamic flexible job shop
scheduling. In Proceedings of the 21st European Conference on Genetic
Programming (EuroGP 2018) (April 2018), Lecture Notes in Computer
Science, Springer International Publishing, pp. 306-321.

ZHANG, G. Neural networks for classification: a survey. IEEE Trans-
actions on Systems, Man, and Cybernetics, Part C: Applications and Re-
views 30, 4 (2000), 451-462.

ZHOU, H., CHEUNG, W., AND LEUNG, L. C. Minimizing weighted
tardiness of job-shop scheduling using a hybrid genetic algorithm.
European Journal of Operational Research 194, 3 (2009), 637-649.

ZITZLER, E., LAUMANNS, M., AND THIELE, L. SPEA2: Improving
the strength pareto evolutionary algorithm. In Proceedings of Evolu-
tionary Methods for Design, Optimization and Control with Applications
to Industrial Problems (EUROGEN 2001) (September 2001), pp. 1-21.

