
Population-based Ensemble
Learning with Tree Structures

for Classification

by

Benjamin Patrick Evans

A thesis
submitted to the Victoria University of Wellington

in fulfilment of the
requirements for the degree of

Master of Science
in Computer Science.

Victoria University of Wellington
2019

Abstract

Ensemble learning is one of the most powerful extensions for improving
upon individual machine learning models. Rather than a single model
being used, several models are trained and the predictions combined to
make a more informed decision. Such combinations will ideally overcome
the shortcomings of any individual member of the ensemble. Most ma-
chine learning competition winners feature an ensemble of some sort, and
there is also sound theoretical proof to the performance of certain ensem-
bling schemes. The benefits of ensembling are clear in both theory and
practice.

Despite the great performance, ensemble learning is not a trivial task.
One of the main difficulties is designing appropriate ensembles. For exam-
ple, how large should an ensemble be? What members should be included
in an ensemble? How should these members be weighted? Our first
contribution addresses these concerns using a strongly-typed population-
based search (genetic programming) to construct well-performing ensem-
bles, where the entire ensemble (members, hyperparameters, structure) is
automatically learnt. The proposed method was found, in general, to be
significantly better than all base members and commonly used compari-
son methods trialled.

With automatically designed ensembles, there is a range of applica-
tions, such as competition entries, forecasting and state-of-the-art predic-
tions. However, often these applications also require additional prepro-
cessing of the input data. Above the ensemble considers only the original
training data, however, in many machine learning scenarios a pipeline is
required (for example performing feature selection before classification).

For the second contribution, a novel automated machine learning method
is proposed based on ensemble learning. This method uses a random
population-based search of appropriate tree structures, and as such is em-
barrassingly parallel, an important consideration for automated machine
learning. The proposed method is able to achieve equivalent or improved
results over the current state-of-the-art methods and does so in a fraction
of the time (six times as fast).

Finally, while complex ensembles offer great performance, one large
limitation is the interpretability of such ensembles. For example, why
does a forest of 500 trees predict a particular class for a given instance?
In an effort to explain the behaviour of complex models (such as ensem-
bles), several methods have been proposed. However, these approaches
tend to suffer at least one of the following limitations: overly complex
in the representation, local in their application, limited to particular fea-
ture types (i.e. categorical only), or limited to particular algorithms. For
our third contribution, a novel model agnostic method for interpreting
complex black-box machine learning models is proposed. The method is
based on strongly-typed genetic programming and overcomes the afore-
mentioned limitations. Multi-objective optimisation is used to generate a
Pareto frontier of simple and explainable models which approximate the
behaviour of much more complex methods. We found the resulting rep-
resentations are far simpler than existing approaches (an important con-
sideration for interpretability) while providing equivalent reconstruction
performance.

Overall, this thesis addresses two of the major limitations of existing
ensemble learning, i.e. the complex construction process and the black-
box models that are often difficult to interpret. A novel application of
ensemble learning in the field of automated machine learning is also pro-
posed. All three methods have shown at least equivalent or improved
performance than existing methods.

Acknowledgments

This thesis is dedicated to my mother. Thank you for everything.
I would also like to thank my supervisors and the rest of my family for

their continued support.

iii

iv

Contents

1 Introduction 1
1.1 Ensemble Learning . 1
1.2 Motivations . 2
1.3 Goals . 4
1.4 Major Contributions . 5
1.5 Structure . 7

2 Literature Review 9
2.1 Machine Learning . 9

2.1.1 Supervised Learning 10
2.2 Evolutionary Computation 11

2.2.1 Genetic Programming 12
2.3 Ensemble Learning . 15

2.3.1 Combination Methods 18
2.3.2 Perturbation Methods 21
2.3.3 Related Work . 26

2.4 Automated Machine Learning 29
2.4.1 Grid Search . 29
2.4.2 Random Search . 29
2.4.3 Bayesian Approaches 31
2.4.4 Evolutionary Approaches 32
2.4.5 AutoML for Deep Learning 33

2.5 Interpretable Machine Learning 34

v

vi CONTENTS

2.5.1 Model Extraction . 37
2.6 Chapter Summary . 38

3 Automated Ensemble Learning and Parameter Selection with GP 39
3.1 Chapter Introduction . 39
3.2 The Proposed Method . 40

3.2.1 Overall Structure . 41
3.2.2 Representation . 42
3.2.3 Voting Strategy . 44
3.2.4 Fitness Function . 45
3.2.5 Tree Simplification . 46
3.2.6 Efficiency Improvements 47
3.2.7 Guided Crossover . 49

3.3 Experiment Design . 54
3.3.1 Experiment Details . 54
3.3.2 Datasets . 54
3.3.3 Significance Tests . 55
3.3.4 Comparison Methods 56
3.3.5 Parameter Settings . 57

3.4 Results and Discussion . 58
3.4.1 Overall Results . 58
3.4.2 Statistical Tests . 59

3.5 Further Analysis . 60
3.6 Chapter Conclusions . 62

4 Efficient Ensemble-based Automated Machine Learning 65
4.1 Chapter Introduction . 65
4.2 The Proposed Method . 66

4.2.1 Architecture . 67
4.2.2 Ensembling . 69
4.2.3 Search Algorithm . 71

4.3 Expirement Design . 72

CONTENTS vii

4.3.1 Expirement Details . 72
4.3.2 Datasets . 73
4.3.3 Significance Tests . 74
4.3.4 Comparison Methods 75

4.4 Results and Discussion . 76
4.4.1 Overall Results . 76
4.4.2 Statistical Tests . 76

4.5 Further Analysis and Recommendations 77
4.6 Chapter Conclusions . 79

5 Interpreting Complex Ensemble Structures with GP 81
5.1 Chapter Introduction . 81
5.2 The Proposed Method . 82

5.2.1 Overall Algorithm . 83
5.2.2 Multi-objective Optimisation 83
5.2.3 Objective Functions 85
5.2.4 Representation . 86

5.3 Experiment Design . 88
5.3.1 Experiment Details . 88
5.3.2 Datasets . 89
5.3.3 Comparison Methods 89
5.3.4 Parameter Settings . 90
5.3.5 Evaluation Measures 90
5.3.6 Significance Tests . 91

5.4 Results and Discussion . 91
5.4.1 Overall Results . 91
5.4.2 Statistical Tests . 95

5.5 Further Analysis . 96
5.6 Chapter Conclusions . 101

6 Conclusions 103
6.1 Major Conclusions . 103

viii CONTENTS

6.2 Additional Findings . 105
6.3 Future Work . 106

Chapter 1

Introduction

In this chapter, ensemble learning is introduced and the research objectives
and contributions are outlined.

1.1 Ensemble Learning

Ensemble learning is a key tool for improving the performance of machine
learning methods. For example, a collection of uncorrelated weak learners
which are only slightly better than random selection can be ensembled to
produce a strong learner which error approaches zero as the number of
learners increases [1]. Ensembling is a powerful tool and most challenge
winners, such as Kaggle [2, 3], Netflix competition [4], and ImageNet [5]
use ensembling in their final solution.

Ensembling can help overcome errors of individual learners, for exam-
ple, if one learner is incorrect but the other two are correct with majority
voting. The idea of ensembling is not isolated to machine learning. For ex-
ample, in boxing, scores are based on 3 judges. Taking the most common
result from the three judges helps overcome for example a malicious judge,
and the result can be considered fairer than if only a single judge was used.
A similar method is employed in the legal system with juries. Jurors must
agree to a verdict for the defendant. The more serious the crime, the larger

1

2 CHAPTER 1. INTRODUCTION

the jury tends to be. Having a jury helps ensure the correct decision is
made. The US Electoral College is another example, however, unlike the
previous two, this behaves like a weighted ensemble in that not all mem-
bers have uniform importance. Linking these examples back to machine
learning ensembles, we can see that utilising multiple learners (members)
can help to increase the belief in a prediction (a vote, verdict, score etc),
and should help overcome any of the individual member’s shortcomings
(i.e. biases). Furthermore, a weighting system can also be used (i.e. with
the electoral system) for the ensemble, if certain members are deemed less
important than others for whatever reason.

Like with selecting judges for sports, or selecting members of a jury,
the selection criteria for an ensemble is important. For example, selecting
impartial judges is essential for a fair result. Likewise, a jury should be im-
partial and representative (although this is not always the case). Consider
if a jury was composed of only one family, or all jurors were extremely
similar, the result may not be fair. Likewise in ensembles, if the learners
are not diverse, the ensemble will not see improved performance over the
base members.

There are a number of open issues with ensemble learning which we
aim to address in this thesis, and they are outlined in the following sec-
tion. In particular, we focus on ensemble learning for classification due
to the wide range of uses, although most methods would also work with
regression either directly or with minimal changes.

1.2 Motivations

While the benefits of ensembling are clear, there remain some limitations
which become the motivations for this thesis.

Well designed ensembles often outperform any of the individual mem-
bers, however, constructing such ensembles can be a complex task. The
complexity arises as it is necessary that the members are both accurate and

1.2. MOTIVATIONS 3

diverse [6, 7, 8], so care must be taken when constructing ensembles. Se-
lecting appropriate base members is not the only issue, as each of the base
members of the ensemble also tends to have a variety of hyperparameters
associated (such as k in k-NN, or c in SVM’s). Each of the hyperparame-
ters can affect the resulting ensembles in different ways, so simultaneous
optimisation of both the base members and hyperparameters is required
to learn optimal ensembles. The result is a huge search space, as every
combination of base members and all possible combinations of hyperpa-
rameters constitutes a potential solution. With N combinations of hyper-
parameters/members, there are 2N possible ensembles. Thus, the search
space of ensembles is far too large to consider an exhaustive search (the
problem is NP-hard), so efficient approximations are required to construct
well-performing ensembles.

Secondly, Automated Machine Learning (AutoML) is an emerging field
which essentially uses machine learning to learn machine learning pipelines
without requiring human input. Many of the current state-of-the-art ap-
proaches to AutoML are limited to learning a single pipeline, as the search
space is already very large. Above we only considered base members
to be learning algorithms, however, with AutoML these learning algo-
rithms can also be accompanied by various preprocessing steps such as
dimensionality reduction or feature scaling. However, ensemble learning
is known to improve results over a single member [9], so combinations of
such pipelines are required. This is a large limitation which potentially
limits the growth of AutoML, as many competition winning solutions fea-
ture an ensemble of some sort [4, 5, 2, 3]. Introducing ensemble learning
into the process of AutoML is difficult again due to the huge search space,
and existing approaches lack extensive ensembling support. Furthermore,
existing approaches to AutoML are already time-consuming to produce
good results, and the methods are sequential by nature so massively par-
allel searches cannot be executed.

Finally, the interpretability of state-of-the-art ensembles is another cur-

4 CHAPTER 1. INTRODUCTION

rent limitation. Without understanding how an ensemble works, this could
mean ensembles may go unchosen in favour of lower performing alterna-
tives such as decision trees. Simple methods such as decision trees or lin-
ear methods are generally interpretable, however, the results are far lower
than state-of-the-art methods [10]. In contrast, the results of ensembles are
great, however, interpreting the ensembles (and other complex methods)
can often be difficult [11]. For example, why did a 500-member ensemble
choose to reject a specific applicant yet accept another? As the complex-
ity of state-of-the-art methods increases, understanding why predictions
are made is an increasingly important concern [12]. The limitation of in-
terpreting the behaviour of complex ensembles must be addressed for en-
sembles to be considered a suitable approach in a range of areas (such as
healthcare) where explainability is important.

1.3 Goals

The overall goal of this thesis is to investigate population-based meth-
ods for ensemble learning and ensemble interpretation for a wide range
of classification tasks.

There are three main goals with this work.

1. The first is to utilise genetic programming for automatically con-
structing well-performing ensembles.

Genetic Programming [13] is an evolutionary computation technique
where solutions are typically represented as tree structures, and ap-
propriate solutions are discovered automatically using Darwinian
principles. Due to the automatic discovery of solutions, genetic pro-
gramming is an ideal candidate for ensemble learning without re-
quiring a priori knowledge. We would like to explore the use of
genetic programming for designing hierarchical tree-based ensem-
bles, where the base members and associated hyperparameters are

1.4. MAJOR CONTRIBUTIONS 5

selected automatically (i.e. without requiring human input). The ex-
pectation is a fully automatic procedure which constructs ensembles
which can outperform manually constructed ensembles.

2. Secondly, we would like to investigate the usefulness of ensembling
in automated machine learning (AutoML).

An AutoML method capable of searching ensembles of pipelines
would be ideal, and as the goal above, we would like to investigate
the use of tree-based ensembles for achieving this. Furthermore, we
would like to address the limitation of lack of parallelization of ex-
isting approaches. The expectation is the introduction of ensembling
into AutoML will improve upon the currently limited approaches to
AutoML, and a parallelizable method will allow for fast and large-
scale optimisation of pipelines.

3. The third goal is to overcome the limitation of the interpretability of
complex ensembles.

We would like to investigate the usefulness of genetic programming
as a surrogate model for interpreting complex ensembles and other
complex machine learning methods such as deep neural networks.
Multi-objective optimisation can be used to control the trade-off be-
tween the complexity and the performance of the model. Learning a
simpler representation of the complex models would allow the end
user to understand why particular reasons are being made, rather
than the classifier being treated as a black box. The expectation is
the resulting models will be much simpler than existing approaches,
while still providing good performance.

1.4 Major Contributions

There are three major contributions corresponding to the three goals in
Section 1.3, which are presented as follows.

6 CHAPTER 1. INTRODUCTION

1. This thesis has shown how automated ensemble learning based on
stacked generalisation (stacking) can be achieved using GP without
requiring human input. The proposed method alleviates users from
model selection, hyperparameter tuning, and ensembling. Appro-
priate base members and their key hyperparameter are selected au-
tomatically (i.e. without requiring human expertise), and the meta-
learner is evolved as a tree structure. Methods for caching and auto-
matic pruning are also demonstrated. The proposed method is eval-
uated on ten datasets, and on seven datasets the method achieved
significantly better results than all the comparison methods, and on
the remaining three, performed at least as good as the best compar-
ison method. Using the Friedman test paired with Holm post-hoc
analysis, the method is significantly better than all compared meth-
ods in general (i.e. over all datasets). This work sets the foundation
for a fully automated approach to ensemble learning utilising genetic
programming.

This work is currently under review for journal submission.

2. This thesis has shown the importance of ensembling in automated
machine learning. A novel ensemble-based automated machine learn-
ing method is proposed, which is able to achieve equivalent perfor-
mance to the current state-of-the-art approaches in a fraction of the
time. Furthermore, the proposed method is able to be run entirely in
parallel, which helps overcome the limitation of automated machine
learning taking too long to generate good pipelines. The usefulness
of ensembling for AutoML is demonstrated, and a comparison of
state-of-the-art approaches is also presented. The proposed method
achieves equivalent or improved results across all the 15 datasets tri-
alled and does so six times faster than the comparison methods.

This work is currently under review for journal submission.

3. This thesis has shown the usefulness of multiobjective optimisation

1.5. STRUCTURE 7

for interpreting complex state-of-the-art black-box machine learning
models. A novel method is proposed which is applicable to any
machine learning model (e.g. complex ensembles, deep neural net-
works), and gives a global approximation of the behaviour of the
model. Evolutionary multi-objective optimisation is used in conjunc-
tion with strongly-typed genetic programming to construct accurate,
simple and model-agnostic representations of complex black-box es-
timators. We found the resulting representations are far simpler than
existing approaches while providing comparable reconstructive per-
formance. This is demonstrated on a range of datasets, by approx-
imating the knowledge of complex black-box models such as 200
layer neural networks and ensembles of 500 trees, with a single tree.

This work has been published in:

Evans, B., Xue, B., Zhang, M. (2019). What’s inside the black box?
A genetic programming method for interpreting complex machine
learning models. In Proceedings of the Genetic and Evolutionary Com-
putation Conference (GECCO) 2019. ACM.

1.5 Structure

The remainder of the thesis is organised as follows. An overview of ma-
chine learning and a review of relevant literature in ensemble learning,
automated machine learning and interpretable machine learning is given
in Chapter 2. Chapter 3 introduces a novel method for ensemble learning.
Chapter 4 investigates the usefulness of ensemble learning for automated
machine learning and introduces a novel method for automated machine
learning. Chapter 5 introduces a novel method for interpreting complex
black-box machine learning models. Conclusions and future work are out-
lined in Chapter 6.

8 CHAPTER 1. INTRODUCTION

Chapter 2

Literature Review

2.1 Machine Learning

Machine learning can be defined as systems which automatically learn
programs from data [14]. Machine learning has a huge range of applica-
tions, such as fraud prevention [15], game playing [16], recommendations
[17], healthcare [18], credit scoring [19], forecasting [20], cybersecurity [21],
stock trading [22], and advertising [23] to name a few. Machines are able to
outperform humans in a range of these tasks [16, 24], and with traditional
software development, this would not have been possible as only human-
learnt rules would be encoded into the programs. Now, with machine
learning, a training set is given to the learning machine, from which it is
able to learn its own set of rules, which often outperform human-derived
rules.

Machine learning can be broadly split into three main categories: su-
pervised learning, unsupervised learning and reinforcement learning [25].
Other methods such as semi-supervised and transductive learning also ex-
ist [26]. The focus of this thesis is on supervised learning only, so this is
what is expanded here.

9

10 CHAPTER 2. LITERATURE REVIEW

Train Model

Learnt Model

Training
Data

Test
Data Predictions

Figure 2.1: Supervised Learning process.

2.1.1 Supervised Learning

Supervised Learning is a subfield of machine learning, where the goal is
to map an input to an output. This output can be discrete (classification),
or continuous (regression). Here we focus only on classification, but most
of the discussion also holds true for regression.

The overall process for supervised learning is summarised in Fig. 2.1.

It is common to split the available data into a training set and a test
set. The training set is used to learn a model, and the test set is used to
evaluate how well the learnt model performs on unseen data. Having
dedicated training/test splits or using cross-fold validation is important
to prevent bias when interpreting machine learning results, i.e., ensuring
we do not evaluate a learnt model on data which was used to train the
model. Overfitting can be categorised by high accuracy on the training
set, but low accuracy on the unseen (test) data.

The generalisation ability of a model (the performance on unseen data)
is an important characteristic, as such, overfitting to the training set must
be avoided [14].

In supervised learning, the result is a model which can be used to make
predictions for unseen data.

2.2. EVOLUTIONARY COMPUTATION 11

Classification

Classification is a sub-field of supervised learning, which attempts to as-
sign a class label (a finite categorical output) y to an input vector x, by
approximating a function f using labelled training data. More formally,
it aims to learn a mapping f , such that f(x) = y, where y is from a finite
set y ∈ {c1, c2.., cn}. The end goal is to be able to predict a class label for
some unseen data. Classification is perhaps the most widely used form of
data mining tasks with applications such as face recognition [27], medical
diagnosis [28] and sentiment analysis [29].

2.2 Evolutionary Computation

Evolutionary computation (EC) is a sub-field of methods in artificial intel-
ligence which take inspiration from patterns seen in nature, such as utilis-
ing genetic operators (i.e. with genetic algorithms, genetic programming)
or incorporating social behaviour (i.e. with particle swarm optimisation)
for a population of candidate solutions. In this work, we focus particularly
on the genetic side, so we will only introduce genetic-based methods.

Genetic methods can be seen as a search algorithm, where we are search-
ing for an ideal candidate. A population of candidates (individuals) is
used, and they are evolved over generations by utilising genetic opera-
tors. Each time operators are applied to the population, a new generation
(i.e. an updated population) is formed. Randomness is incorporated us-
ing mutation of individuals. However, rather than having a purely random
search, the search is guided using the idea of fitness, so we can favour
breeding fit individuals in an attempt to improve the population. This
breeding (combination) of two individuals is known as crossover. Elitism
is used to ensure individuals never get worse in subsequent generations.
The fitness for an individual is measured by a fitness function, which is
any function which is able to evaluate performance (i.e. accuracy for clas-

12 CHAPTER 2. LITERATURE REVIEW

sification, or error for regression). This function does not need to be differ-
entiable as gradients are not incorporated, although they can be if desired,
see memetic computing [30, 31].

EC techniques can be seen as an approximation to global search, in
which they do not focus on a single area of the search space (unlike lo-
cal search methods), instead, they are able to consider a large portion of
the search space. They are able to do so efficiently compared to exhaus-
tive/grid search, as they are only an approximation, meaning that they are
more feasible to compute (at the expense of not being able to guarantee
the obtained solution is the global optimum). Despite being an approxi-
mation, this tends to be strong enough in practice to effectively find high
performing candidate solutions.

2.2.1 Genetic Programming

Genetic programming (GP) is an EC technique where individuals are typ-
ically represented as tree-like structures [13]. There are several favourable
properties of GP over other methods, such as Genetic Algorithms (GAs).
These are flexibility in representation (GAs are typically fixed-length bit
strings, whereas trees are naturally more flexible), ability to enforce con-
straints (i.e. tiered structures using strongly-typed GP [32]), and also the
increased interpretability (tree-structures tend to be more human readable
than bit strings). An example of such a tree structure is given in Fig. 2.2,
which can also be represented as the equation 10 ∗ x2

Three key components of GP are the function set, the terminal set and
the fitness function.

The function set defines the operations of internal nodes (i.e. nodes
with children, shown as curved rectangles in Fig. 2.2). An example of a
function node could be a node which takes two children a and b, and re-
turns a + b. The terminal set defines the leaf nodes of the tree (i.e. nodes
without children, shown as circles in Fig. 2.2), typically terminals are the

2.2. EVOLUTIONARY COMPUTATION 13

10

X 2

×

^

Figure 2.2: Example tree showing how GP represents solutions.

input data (i.e. features), and random constants (e.g. if we are perform-
ing regression, a random constant can be important to evolve coefficients).
The primitive set refers to both the function and terminal set. The primi-
tive set should aim to satisfy two properties: sufficiency and closure [33].
Sufficiency means some combination of the function and terminal set can
solve the problem, however, this is only guaranteeable in problems with
sound theoretical understanding, so often a good approximation is accept-
able [34]. Closure means “any non-terminal should be able to handle as
an argument any data type and value returned from a terminal or non-
terminal” [32]. As an example, if divide is included in the function set, and
0 is a possible value, this should be protected to ensure dividing by zero
returns an acceptable value (such as 0) to allow the programs to continue
running as expected. Other examples are ensuring all inputs/outputs are
of a single type (i.e. all integers) or converting types within functions (i.e.
treating booleans as integers). Closure is important as both crossover and
mutation can affect any node in the tree, so ensuring consistency between
the primitives allows this to work.

The fitness function is problem specific and gives a way of evaluating
an individual in the population. For example, in classification, the fitness
function may be the percentage of correctly classified instances.

GP starts from a randomly generated initial population, and the popu-
lation is updated via selection, crossover, mutation and reproduction oper-
ators in a number of generations until a predefined stopping criterion has

14 CHAPTER 2. LITERATURE REVIEW

been met. Tournament selection is the most popular selection technique
[35]. Crossover is performed by selecting two individuals and choos-
ing a random point (node) from each individual. These nodes are then
swapped, producing two new offspring (children). The idea is that com-
bining two well-performing individuals could result in a new child which
outperforms either of the parents. Individuals are typically selected with
either roulette-wheel selection or tournament selection. Mutation selects
a random node in the tree and replaces this branch with a new randomly
generated branch. This operator is similar to random search and is used
to keep the diversity of the population [36].

Strongly-typed Genetic Programming

Strongly-typed genetic programming (STGP) is a special type of GP first
introduced by Montana in [32]. As stated above, with traditional GP, the
primitive set should aim to satisfy two properties: sufficiency and closure.
For STGP, the closure property is relaxed by enforcing type constraints
on both the input and the output of all function nodes, and the output
of terminal nodes. When performing crossover and mutation, rather than
considering all possible points in the tree and all primitives, this is nar-
rowed down only to those with the same type. For example, a node with
type A will never be crossed over with a node with type B. This helps re-
duce the search space drastically and allows the enforcement of particular
constraints within a tree.

STGP has a range of applications, such as unit-testing for software [37,
38], generating robot behaviour for football gameplay [39], and designing
trees for image classification [40, 41]. Another example of a strongly-typed
architecture for car creation is given in Fig. 2.3. We can see from the figure
that a car requires an engine, wheels and a body. Each of these branches
could not be crossed over with one another, as this would breach the con-
straints. For example, a turbo could not be added to the wheels. Likewise,
when performing mutation we would only select from relevant types. For

2.3. ENSEMBLE LEARNING 15

MakeCar

Wheels Body Engine

V12

Turbo

Aluminum

20inch Gray

Figure 2.3: An example tree indicating how STGP can be used to enforce
constraints.

.

example, the wheels may be mutated to be 19inch, or the body to be made
of steel. However, an invalid tree would never be generated by, for exam-
ple, by mutating the body to be 19inch wheels. Enforcing strong typing
means hierarchies can also be implemented, such as a specific function
must be applied before another, or a particular terminal can only be input
for a given function.

2.3 Ensemble Learning

Ensemble learning refers to combining various base members (methods)
to solve a problem, in this case, classification. In fact, this is similar to
what is seen in business or politics, where crucial decisions are often made
by a group rather than an individual. Ensemble learning can be seen as
maximising the likelihood of generating correct results, by aggregating
the results from multiple methods. In [42], three reasons are outlined for
this:

1. There may not be enough training data to adequately search the hy-
potheses space for an individual learner, meaning we get several

16 CHAPTER 2. LITERATURE REVIEW

equally performing hypotheses. Averaging these hypotheses can re-
duce the risk of selecting the wrong one.

2. Individual learners may get stuck in a local optimum, e.g. when per-
forming gradient descent with neural networks. Combining several
methods (assuming they are non-deterministic) can help overcome
the local optimum, such as by starting the local search procedure in
several different locations.

3. The true function which we aim to approximate may not be in the hy-
potheses space we are searching with an individual model. Whereas
with combinations of these hypotheses, it is possible to generate a
new hypothesis outside of the individual search spaces.

Intuitively, we can understand why ensembles have the ability to out-
perform individual learners by considering Venn diagrams, which is shown
in Fig. 2.4.

Another way to think about the usefulness of ensembles is considering
the classic bias-variance trade-off [43]. An ideal model is to have low bias
and low variance, but with individual models, this is typically impossible.
High variance means noisy data points have been modelled (overfitting),
whereas high bias means relevant relations have been missed (underfit-
ting). For an individual model, finding the balance between the two (gen-
eralising well why still capturing all relevant relationships) can be tricky,
which is where ensemble methods can help.

There are various methods for generating ensembles, but the simplest
general definition could be represented as f(f1(x), f2(x), ..., fL(x)), where
f is a function, which combines its inputs, x is the input vector, fi is the ith
base member, and L is the number of base members. The function f could
be any range of functions, such as a simple vote, Bayesian averaging, or
another classification method (stacking). Of course, each fi could have
been learnt from different overlapping subsets of the data (bagging), or

2.3. ENSEMBLE LEARNING 17

A

C D

B

Figure 2.4: An example showing how ensembles have the ability to outper-
form base members. Each circle represents the errors for a particular base
member. If we use a simple majority voting rule to generate an ensemble,
we can see if the errors of the base members are completely uncorrelated
(A), our voting scheme will result in a perfect result. When the area of the
overlapping circle is less than the size of the smallest circle, the ensemble
will result in a smaller error than any of the individual members (B). How-
ever, if it is the case that the overlapping area is larger than the smallest
circle, the ensemble will do worse than the best individual (C). If errors
are completely correlated (D), i.e. combining three identical models, then
the ensemble will show no benefit over the individual model.

18 CHAPTER 2. LITERATURE REVIEW

sequentially with different weightings for each of the training instances
(boosting). More details can be seen as follows.

2.3.1 Combination Methods

Simple Voting

Perhaps the most basic method of constructing an ensemble for classifica-
tion is to let each member vote for class “belongingness” [44]. This means
if there are L base members, there will be L corresponding predictions,
which we can then summarise, and choose based on: the most common
vote, priority voting, the most confident vote, or other trivial metrics.

The main downfall with such an approach is that each base member
is used, even if they are poor. If a large number of base members are
poor, the ensemble will likely be poor, even if there are high performing
members present. To account for this, a selection process could be per-
formed before voting, or weighted voting used. However, trivial selection
(i.e. selecting best performers) does not necessarily take into account com-
plementary classifiers, so selection becomes difficult as a diverse range of
complementary base members is required (essentially becomes feature se-
lection which is NP-hard [45]).

Hansen and Salamon [44] showed for majority voting that if each base
member achieves an error better than a random decision, and these errors
are independent, then the ensemble error approaches zero as classifiers are
added. Conversely, if the errors are worse than a random choice, the error
grows as adding classifiers. This can be verified with Equation (2.1), for a
particular error rate ε, and number of classifiers L, which is the probability
that at least > L/2 classifiers are wrong (under the binomial distribution).
If we assume an ε of 0.3 (i.e. 70% accuracy) for all classifiers (εi for i ∈ 1..L),
and 3 classifiers (L=3), an ensemble error is εensemble of 0.22. If increasing

2.3. ENSEMBLE LEARNING 19

L to 10, εensemble = 0.048.

εensemble =
L∑

i=dL/2e

(
L

i

)
εi(1− ε)L−i (2.1)

Note that while this is true in theory, this is rarely true in practice since
the errors are not necessarily independent, so it is not reasonable to just
keep adding classifiers to decrease the error. An important takeaway here
is that the diversity (i.e. base members failing on separate parts of the
data), along with the accuracy, is beneficial for ensembles, a belief shared
by many researchers ([46, 7, 47]).

Bayesian Averaging

Another approach is based on Bayesian statistics, where Bayes theorem
can be used to achieve an ensemble which is optimal in the ensemble space
(i.e. no other method could outperform it on average using the same hy-
pothesis space and priors) [42].

Typically, one may model multiple hypotheses and choose the single
hypothesis which is most likely based on the overall training data (i.e.
maximum a posteriori estimation). However, what we are perhaps more
interested in is choosing the prediction with the most confidence for an
individual instance (not being limited to a single hypothesis). The dif-
ference is the former looks for the most probable individual hypothesis
given the entire training data (i.e. arg maxh P (h|D)), whereas the later
looks for the most probable label for an individual instance given the train-
ing data (where we can consider multiple hypotheses, shown in Equation
2.2). Mitchell et al. [48] showed it is possible to combine these hypotheses
to create a Bayes optimal classifier, where the predictions for each hypoth-
esis are weighted by its posterior probability. The formula for this is given
in Equation (2.2), where y is a class, hi is an individual hypothesis, H is the

20 CHAPTER 2. LITERATURE REVIEW

set of hypotheses, and D is the training data.

arg max
y

∑
hi∈H

P (y|hi)P (hi|D) (2.2)

The question now becomes, if we are able to generate the optimal com-
bination with Equation (2.2), why would we consider other combiners?
The problem is that computing the posterior probability is often unfeasi-
ble in practice due to the large search space of H , and the true priors being
unknown. These problems are solved with sampling, and estimating the
priors (i.e. using uniform priors). However, this means the solution is no
longer optimal. Therefore, this tends to only be used when the number of
hypotheses is small, or priors are explicitly known.

Stacked Generalisation

Stacked generalisation [49] (stacking) can be seen as an improvement to
the basic voting methods above. Rather than using simple votes, the pre-
dictions from the classifiers can be seen as new features for the data, and
then any classification algorithm used to make a prediction based on these
new features. The aim is to reduce both the bias and the variance of using
a single model, by first running the data through multiple uncorrelated
base learners. This process is shown in Fig. 2.5.

So if the original data was an N × M matrix, with N instances and
M features, this runs into L classification algorithms, and L predictions
are produced for each instance. These can be combined to form a new
N × L matrix, treating the predictions as feature values for each instance.
Now the new data is fed into the stacked learner (referred to as the meta-
learner), and this prediction used as the new ensemble choice. This could
also be stacked arbitrarily high by repeating the above process, which has
been investigated in [50].

2.3. ENSEMBLE LEARNING 21

Original Data Original Data Original Data

Classifier Classifier Classifier

Meta-
Classifier

Figure 2.5: Stacking Process.

2.3.2 Perturbation Methods

In the previous section, we discussed how to combine individual meth-
ods to create an ensemble. However, these individual learners are often
modified to promote the diversity of the methods. There are a number of
ways to achieve this, such as training on different subsets of data points,
training on different feature subsets, injecting randomness, or modifying
input data. The most common ways are discussed in this section.

Bagging

Bootstrap aggregating (bagging) is a method which aims to reduce the
variance of models by introducing sampling (with replacement) into the
training process. Rather than training a model on a single dataset, several
bagged subsets of the training data are made, and one model is trained
on each of these subsets, and finally, these models are averaged to make a
prediction (in the case of classification, by using plurality voting) [51].

To show how bagging helps reduce the variance of a model, consider

22 CHAPTER 2. LITERATURE REVIEW

Figure 2.6: An example showing the usefulness of bagging. Assume we
are trying to model the normal distribution. The various predictors are
shown with the thin lines, as we can see these are overly noisy, where each
predictor has high (but uncorrelated) variance from the true function. Av-
eraging these results would help smooth out the function, giving a better
approximation of the true function (shown with the thicker blue line).

Fig. 2.6, which shows the individual learners (thin lines) are potentially
over-fitting the data, whereas when these results are averaged, a much
simpler prediction line can be obtained, which in this case is closer to the
true function.

Ideal candidates for bagging are models with high variance and low
bias, such as unpruned decision trees. This is the basis for Random Forests
[52], which are discussed in more detail later. While the process of bagging
is simple (shown in Fig. 2.7), good results have been reported in practice,
and Random Forests are one of the most popular classification methods
today (despite being introduced over 15 years ago) due to their high accu-
racy.

2.3. ENSEMBLE LEARNING 23

Original Data

Bootstrap
Sample

Bootstrap
Sample

Bootstrap
Sample

Classifier Classifier Classifier

Voting

Figure 2.7: General Bagging process.

Random Subspace Method

With bagging, bootstrapped samples of instances can be created. The
random subspace method is similar except that rather than sampling in-
stances, features are sampled (sometimes referred to as feature bagging).
So for an N ×M matrix, where N is the number of instances and M the
number of features, bagging selects from the rows, whereas random sub-
space selects from the columns.

Again, the goal here is to reduce the variance by reducing the correla-
tion between learners, as each learner is using a different set of features.
This has been applied to decision trees in [53] to create a forest (ensemble
of trees) and the results significantly outperform an individual tree. Ran-
dom Forests can also be seen as performing the random subspace method
in a way, as when selecting splitting points, they consider only a random
subset of all the features.

24 CHAPTER 2. LITERATURE REVIEW

Classifier Classifier Classifier

Voting

Original Data Weighted
Data

Weighted
Data

Figure 2.8: General boosting process.

Boosting

While bagging aims to reduce the variance of a model, boosting aims to
reduce the bias of a model. This is achieved by iteratively training weak
models and assigning higher weights to instances which were misclas-
sified in previous steps to ultimately create a strong model by weighted
voting. The general process of this is shown in Fig. 2.8.

Boosting can be applied to any base learners, but a key consideration
with boosting is that the base learner is not too strong or the algorithm may
overfit (if run for too many iterations), and is not too weak (i.e. should be
better than a random vote) or the ensemble may still perform poorly. There
are many applications of boosting, but the most common methods are Ad-
aBoost [54], Gradient boosting [55], and more recently XGBoost [56].

Two of the main considerations are: how to weight the instances (i.e.
how to place more emphasis on the misclassified points), and how to
weight the base learners contribute to the final vote. As an example, we
show how AdaBoost solves these two considerations. Binary classifica-
tion is assumed for simplicity, although AdaBoost is not limited to binary
classification only.

For the classifier weights (contribution to the weighted vote), this is
based on the performance of the classifier as given in Equation (2.3), which
is 0 when the error is 0.5 (the same as a random choice). The error grows
exponentially as the error approaches 0, and shrinks exponentially when
the error is above 0.5 (i.e. worse than random). ε is the misclassification

2.3. ENSEMBLE LEARNING 25

rate. This gives good performers exponentially higher weights than poor
performers.

αt =
1

2
ln(

1− εt
εt

) (2.3)

For the instance weights, we start with uniform weights (i.e. 1/N) for
each instance i and increase the weight if i is misclassified, and decrease
the weight if i is correctly classified. This is done using Equation (2.4),
where wt(i) is the weight for instance i at the tth iteration. The denomi-
nator is a normalising constant to ensure the weights sum to 1. ft is the
prediction of the previous classifier for the input instance xi, and yi is the
real class label.

wt+1(i) =
wt exp(−αtyift(xi))∑

wt+1

(2.4)

Injecting Randomness

While noise can often be seen as problematic for learners, e.g. by increas-
ing the ease of overfitting, we can actually make use of intentionally inject-
ing noise for ensemble learning. Consider with a single method, if noise is
added to the input data, noise is more likely to be modelled directly, but if
we have several methods with varying amounts of noise, averaging these
results could help “smooth” out the function, giving a better approxima-
tion of the true function (assuming unstructured noise).

There are several parts of the learning process we could inject noise
to, such as the input data (feature values), the output data (i.e. swap-
ping classes for some data), or the model parameters (i.e. neural network
weights). However, the most common method of injecting noise is to add
the noise to the input data, as this has been shown to have the best gen-
eralisation ability when compared with adding noise to the outputs or to
model parameters [57] (at least in neural networks). We will refer to the
process of adding noise to the input data as additive noise, and this can be

26 CHAPTER 2. LITERATURE REVIEW

represented as x̄ = x+noise(x), where x̄ represents the new feature value,
x is the original value, and noise is a noise generating function.

When adding noise, typically Gaussian noise is used (referred to as ad-
ditive white Gaussian noise) as shown in Equation (2.5), as this is symmet-
ric around the mean, and extreme values are unlikely due to the inclusion
of e−x2 term. Furthermore, Gaussian noise turns out to be a good estima-
tor of real noise in many situations [58], although this is not the only noise
function which can be used.

noise(x) =
e−(x−µ)2/2σ2

√
2πσ2

(2.5)

Now by combining learners which have variable noise, we will ide-
ally get better generalisation ability, as the data we are using to learn our
function is more diverse and this diversity will hopefully encapsulate the
unseen data. Note that this is similar to data augmentation commonly
seen in deep learning ([59, 60]). However, with data augmentation, the
goal is just to enlarge the training set for a single model.

The methods outlined above are by no means an exhaustive list of
applicable methods for ensemble learning, just a collection of the most
common ones. These methods are often combined, so we are not limited
to selecting a single method either.

2.3.3 Related Work

In Chapter 3, we focus on utilising GP for evolving ensembles. There are
two main ways that GP can be used for ensemble learning. The first (as
done in [61, 62]) treats individuals/trees in the population as base mem-
bers of the ensemble, which is computationally effective as EC techniques
natively feature a population of solutions (even when we only care about
a single solution). The main issue with using the individual trees as base
members of the ensemble is that a large portion of the individuals in EC al-
gorithms are poor performers, which could impact the resulting accuracy

2.3. ENSEMBLE LEARNING 27

without performing additional selection. To select ensemble members, if
there are n individuals in the population, there are 2n possible ensembles,
a number which becomes intractable very quickly for typical population
sizes (i.e. 1024), meaning we must use heuristic or approximate search
methods (essentially feature selection). For this reason, this is not an ideal
approach as feature selection is NP-hard.

The second approach is based on stacking, which appears to be a very
promising method of ensemble learning as discussed in Section 2.3.1. Stack-
ing requires a meta-learner to combine the base learners, and GP appears
very promising as a meta-learner. The base learners become the termi-
nal set, and the function set is composed of nodes which can combine the
predictions, meaning that the evolved tree serves as the meta-learner. An-
other benefit of utilising GP for the meta-learner is individuals in the initial
population tend to be small and grow as the generations increase, which
means that the ensemble complexity will increase with the generations, so
simple problems will ideally result in a simple ensemble, and the ensem-
ble complexity increases with the problems complexity. We hypothesise
that utilising each individual in the population as an ensemble on its own
can result in improved performance (at the expense of increased compu-
tational time, which we aim to offset with caching), so in this section, we
focus on works which treat each individual as an ensemble, rather than
the entire population as an ensemble.

Langdon and Buxton [63] worked on fusing classifiers with GP to pro-
duce an ensemble which has a better ROC curve than the convex hull of
the base members ROC curve (a greater area under the curve). The area
under the ROC curve gives an idea of the performance of a classifier in
binary classification, the larger the area, the better a method can be con-
sidered. The terminals are the output of the classifiers, where the sign
(positive or negative) indicates the class, and the value/magnitude the
confidence of the prediction. This showed that a rather simple configura-
tion, which utilises arithmetic operators (+, -, *, /) along with some basic

28 CHAPTER 2. LITERATURE REVIEW

functions (min, max, absolute min, absolute max, if) can produce a power-
ful GP-based ensemble which outperforms its members for binary classifi-
cation. This was further extended by the authors in [64], where they used
GP to evolve a composite classifier (ensemble) of neural networks, and in
[65] where they used GP to combine decision trees and neural networks
for drug discovery. All three works showed the benefits of using GP to
combine classifiers.

Evolving ensembles of Support Vector Machines (SVMs) with differ-
ent kernel functions was looked at in [66]. Despite being limited to only
SVMs, which would seem to have limited diversity, it was found GP was
able to learn a combination of SVMs which outperformed the individual
SVM classifiers (even when these individual classifiers were optimised
with grid search) perhaps due to the variety of kernel functions.

Khan et al. [67] looked at evolving combinations of classifiers using GP,
however, this is limited to only 2 classifiers (Linear discriminant analysis
and Mahalanobis distance based classifier). Nevertheless, the results were
good and again showed the promise of using GP for combining classifiers.
There are two combination approaches trialled: homogeneous and hetero-
geneous. The heterogeneous approach combines different classifiers using
the same training data, whereas the homogeneous approach uses the same
classifier on different data and/or feature subsets. The authors found het-
erogeneous combinations (i.e. utilising different classifiers) outperformed
homogeneous combinations, likely due to the improved diversity.

While GP has shown the capability to outperform the base members
significantly, in all cases such works are limited to either: binary classes,
or limited base members. In Chapter 3, we propose a method which can
effectively deal with multi-class classification, and features a broad range
of potential base members, with the added benefit of selecting the various
hyperparameters of the base members.

2.4. AUTOMATED MACHINE LEARNING 29

2.4 Automated Machine Learning

AutoML aims to automate the data processing, feature processing and
model selection steps of a machine learning pipeline, freeing the data sci-
entist to focus on other aspects of the workflow. The goal is to be able to re-
place the difficult process of selecting components of the pipeline with an
automatic approach, where all the user needs to do is specify a dataset and
an amount of time to train for, and an appropriate pipeline is returned au-
tomatically. In the following section, we discuss several search techniques
and discuss their applications to both AutoML and related areas such as
hyperparameter optimisation.

2.4.1 Grid Search

A grid search is a global search technique which explores every possible
combination of values (i.e. an exhaustive search). For very small search
spaces, this is a good choice since the best possible solution is found.
However, this becomes unpractical for many real-world problems. For
AutoML, a grid search would entail searching over every possible com-
bination of preprocessors and estimators, as well as all of their hyper-
parameters, a search space which is far too large to consider in practice
(≈ 2.47 ∗ 1017 potential solutions in [68]).

2.4.2 Random Search

Rather than searching the entire search space as done in a grid search,
random search randomly samples from the search space. Bergstra and
Bengio [69] found random search to be competitive to grid search for hy-
perparameter optimisation while being far more computationally efficient.
Despite the stochastic nature, good results have also been reported in prac-
tice and random search is still a commonly used technique particular with
limited computational resources or large scale optimisation.

30 CHAPTER 2. LITERATURE REVIEW

While this may initially seem surprising, there is also sound probabilis-
tic backing. Often we do not require the single best solution, but a good
enough approximation. If we assume we only want to choose the AutoML
system which is in the top 5% of all possible AutoML systems for a prob-
lem, then it holds true that drawing a single random sample we have a 5%

chance of achieving this. However, if we draw n samples, then the proba-
bility that at least one of them is in the top 5% becomes 1− (1− 0.05)n [70].
The n is often surprisingly low, i.e. to be 90% confident our solution is in
the top 5%, we only require n = 40 samples.

For AutoML, the range of potential combinations of the components
can be arranged as a grid, and this grid sampled uniformly to perform
a random search. This has been compared to a Bayesian approach (Au-
toWEKA discussed below) in [71] and was outperformed in general. In
[72], the method based on random search was able to get competitive per-
formance to the genetic programming based method (TPOT, discussed be-
low), however, had a larger variation in the results, and resulted in larger
pipelines on average. So at this stage, random search has not been consid-
ered a suitable approach to AutoML.

A benefit both grid search and random search have over the methods
below is that they are considered “embarrassingly parallel”. The entire
search process can be parallelised, which is a great benefit with computa-
tional power being available, yet time being limited. For example, a search
which could take 365 days on a single machine, could take 1 day on 365
machines. With cloud computing, the costs would be equivalent, but the
waiting time drastically reduced. For AutoML, this is an important con-
sideration, as evaluation of pipelines can be costly/time consuming, and
results are usually required as soon as possible.

2.4. AUTOMATED MACHINE LEARNING 31

2.4.3 Bayesian Approaches

Bayesian optimisation can be seen as a guided improvement to random
search. Bayesian optimisation uses a statistical model to model the ob-
jective function, and an acquisition function to decide where to sample
from next [73]. By using this acquisition function, we are able to make
informed decisions, unlike random search. Relating Bayesian methods to
exploration and exploitation, exploration is achieved by sampling from
areas of high uncertainty, whereas exploitation is achieved by sampling
from promising areas (i.e. those given from the acquisition function) [74].

Auto-WEKA [71, 75] is a Bayesian approach to AutoML, and can be seen
as the pioneering AutoML system. This works on the WEKA software
[76]. Pipeline design is treated as an optimisation process, where even the
models selected are just treated as hyperparameters, and the process is
dubbed combined algorithm selection and hyperparameter optimisation
(CASH). CASH can be formally defined as in Equation 2.6.

A∗λ∗ ∈ argmin
A(j)∈A,λ∈Λ(j)

1

k

k∑
i=1

L(A(j)
λ , D

(i)
train, D

(i)
valid) (2.6)

which is minimising the loss of k-fold cross-validation, where D is the
original training data, A is a learning algorithm, λ the hyperparameters.
The goal is to choose the method and parameters with optimal generaliza-
tion performance. For optimisation, Sequential Model-based Algorithm
Configuration (SMAC) was found to perform the best. Auto-WEKA can
select a base classifier, a feature selector, and appropriate hyperparameters
automatically. Ensembling can occur if Auto-WEKA chooses a combina-
tion method as the base classifier, in which case up to 5 classifiers can
come under this (limited to a single layer of ensembling, i.e. combina-
tion methods cannot be stacked). No data preprocessing is included in the
pipeline, instead, if an algorithm does not apply, it is excluded from the
search space.

auto-sklearn [68] is similar Auto-WEKA, in that it uses Bayesian optimi-

32 CHAPTER 2. LITERATURE REVIEW

sation (SMAC) to minimise the CASH problem (Equation 2.6). However,
Auto-sklearn uses scikit-learn (sklearn) [77]. Pipelines are composed of up
to three data preprocessors, one feature preprocessor, and one classifier.
Data preprocessors can include re-scaling features, imputing missing val-
ues, one-hot encoding for categorical features and class balancing. Com-
bination ensembles are not directly included as classifiers in auto-sklearn,
instead, ensembles are constructed using a greedy ensemble construction
method (iteratively add the pipeline which maximises the ensemble per-
formance on a validation set). The size of the ensemble defaults to 50, but
can be specified by the user. Uniform weights are used, but the selection
method is with replacement, effectively introducing a weighted system.
Meta-learning can also be used, where rather than starting from a random
state, auto-sklearn can initialise the search with a solution for a similar
previous problem.

2.4.4 Evolutionary Approaches

Evolutionary Computation (EC) is an area of nature-inspired techniques
that approximate global search. The search space is effectively (but not
exhaustively) explored using mutation and exploited using crossover op-
erations. Mutation operators behave like random search, while crossover
operations aim to place more emphasis on good regions of the search space
by combining well-performing solutions.

TPOT [78] is a genetic programming (GP) based AutoML system for
sklearn. Both the Bayesian methods had fixed shape pipelines. However,
in TPOT, pipelines can be variable shaped. For example, two separate fea-
ture processors could be performed on the raw data, and then the results
combined to create a new dataset. Much of the search space is therefore
dedicated to exploring various pipeline structures. To balance the com-
plexity of the pipeline, multi-objective optimisation (NSGA-II) is used.
While TPOT does not evolve ensembles of pipelines, a form of stacking

2.4. AUTOMATED MACHINE LEARNING 33

can appear in the automatically constructed pipelines. The way this is
achieved is if an estimator appears anywhere besides the final step of the
pipeline, the prediction of this estimator is appending as a synthetic fea-
ture to the original data which can be used in later steps of the pipeline.

RECIPE [79] is a grammatical-based GP framework for AutoML, again
using the sklearn library. The key limitations RECIPE hoped to resolve
were to remove the generation of invalid individuals in the evolutionary
pipeline, by enforcing a grammatical structure. Enforcing a pipeline struc-
ture was a key development, and doing so allowed the expansion of the
search space (by including more possible preprocessors and classifiers),
as resources were not wasted evaluating invalid individuals. No explicit
ensembling is done in RECIPE. It is also worth mentioning, since the pub-
lishing of the paper, TPOT has overcome these limitations in their newer
versions (and the version used later for comparison).

One downfall of both evolutionary and Bayesian methods is that they
are sequential by design. Meaning, while parallelisation can speed up the
process (i.e. evaluating individuals in parallel or evaluating each fold in
parallel), the overall process is still sequential and thus not embarrassingly
parallel, so we are limited in the speedup achievable.

2.4.5 AutoML for Deep Learning

All of the above methods focus on more “traditional” approaches to Ma-
chine Learning. However, there are also other methods, such as Auto-
Keras (Bayesian) [80] and AdaNet (evolutionary) [81], which focus on Au-
toML for deep learning based methods only. In this thesis, we do not focus
on deep learning approaches (or aim to compare “traditional” vs deep ap-
proaches) due to the high computational cost associated with both deep
learning and AutoML. For this reason, we do not extend upon this dis-
cussion further. However, if ample computational power was available,
this work could be extended to incorporate deep learning methods as the

34 CHAPTER 2. LITERATURE REVIEW

principles are not dependant on particular learning methods.

2.5 Interpretable Machine Learning

Interpreting Machine Learning models is becoming an increasingly impor-
tant concern as the state-of-the-art approaches increase in complexity.

There is no short history of bias in machine learning techniques. As
examples, Sweeney [82] exposed potentially racial bias in the suggestion
algorithm used in Google AdSense, and Bolukbasi et al. [83] showed the
popular word2vec algorithm can be heavily susceptible to gender bias.
This has started the push towards Explainable AI (XAI).

XAI, more specifically, interpretable machine learning (IML), can help
observe these biases, to then ideally remedy the biases. The bias can oc-
cur from a number of sources, such as the sampling of the training data,
uncovering correlative but not causal relationships, or poor selection of
feature sets. To uncover these biases, it’s important to understand how the
model is making particular decisions.

With XAI, the goal is to have the simplest rules possible without sacri-
ficing the performance. Simplicity and performance are often conflicting
objectives (motivating the need for XAI, since top performing methods
are often complex). With traditional tree-based methods for XAI, such
as decision tree construction, complexity is controlled by early stopping
or post-pruning. These approaches suffer from limitations, such as, with
early stopping (or pre-pruning), a branch is terminated when no reduc-
tion in cross-validation error is noted. However, this may be premature
since additional splits further down may have reduced the error drasti-
cally (i.e. if the feature becomes more informative with the addition of an-
other because of feature interaction). With post pruning, leaves are shrunk
by replacing parent nodes with the majority class of the leaf. If no increase
in error is seen, this process continues until the error increases for each
branch. Alternatively, trees are shrunk in a top-down manner, i.e. with

2.5. INTERPRETABLE MACHINE LEARNING 35

cost-complexity pruning. Of course a major drawback to both approaches
is since the tree was greedily constructed, a poor split in hindsight cannot
be undone, so the pruning is limited in its ability, i.e. pruning is not going
to find the optimal tree which balances complexity and accuracy, since it
first greedily maximises the accuracy, then attempts to greedily reduce the
complexity afterwards.

There are several main approaches to IML/XAI, which are briefly in-
troduced along with the limitations here. For a more in-depth discussion,
please see [84].

Firstly is exploratory data analysis [85] (EDA). While EDA can help
analyse features and attributes of the data, it does not tell us anything
about the model being used. For this reason, we do not consider EDA as
part of IML/XAI. Rather, a preprocessing step for data explanation (and
not model explanation). Likewise, feature selection can also be considered
as IML [86]. However, again here we consider this a potential preprocess-
ing step only.

Next is to use explainable models directly, with methods such as de-
cision trees, linear models, or simple classification rules. While it is true
that these models can offer high interpretability, the performance is dras-
tically lower than the current state-of-the-art methods in ML (e.g. neural
networks, random forests and boosting). Often, this drop in predictive
ability practical is too large to consider for the increased interpretability.
For this reason, simple models on their own are not an ideal approach to
IML.

Sparse models are another approach. However, while sparsity does
simplify models, they are still not necessarily interpretable. For example
consider applying an L1 penalty to a deep neural network, despite hav-
ing zeroed out some weights. This resulting model is still far from inter-
pretable.

For deep learning methods, there are various explanation methods which
can be used, such as sensitivity analysis with partial derivatives, heat

36 CHAPTER 2. LITERATURE REVIEW

X
Blackbox

Y
Predictions

Interpretable Model

Figure 2.9: Model extraction process. The black-box model uses the orig-
inal y labels for training, whereas the interpretable model uses the predic-
tions from the black-box model.

maps of activation’s, layer-wise methods [87], or deconvolutional networks
[88]. The limitation with such methods is that they are only relevant to
deep learning models (not arbitrary black-box models), and also are often
local (applicable to a single prediction only) in their application.

There are other local model agnostic approaches to IML, such as LIME
[89], which give information about particular predictions, but not on the
global behaviour of a system. Local explanations can be useful but should
be paired with a global approach to provide a fuller understanding.

A global model agnostic approach to IML is model extraction [90] (also
called mimic models [91] or global surrogate models [92]). One of the trade-
offs of using interpretable models was a drop in predictive performance,
so one solution is to utilise two models - one black-box (complex) models
for predictions, and a secondary simple model for describing the black-box
model. This is referred to as model extraction [90]. Rather than the sec-
ondary model being trained on the original outputs, the secondary model
is trained on the predictions from the black-box model. This process is
shown in Fig. 2.9. This is the approach we take in this work, due to the
fact that the method is applicable to any black-box method and makes no
further assumptions (such as gradient-based, or ability to apply sparsity).

It should also be mentioned that it is not always the case that inter-
pretability is important, i.e. to prevent “gaming the system” [91], or in
well-studied problems [93]. A model extraction approach means the stan-

2.5. INTERPRETABLE MACHINE LEARNING 37

dard models used and work-flows can remain the same, however, in cases
where interpretability is required, a secondary model can be utilised to
gather additional insights to the complex model.

2.5.1 Model Extraction

One of the early works in the area was [94] which used decision trees to ap-
proximate complex black-box models. Similar work was done in [90]. Both
utilise decision trees as a simple method for approximating more complex
models. However, an issue is ensuring these decision trees remain sim-
ple themselves, so operations such as early stopping or pruning become
essential. Furthermore, due to the greedy construction of the trees, they
may not be the best approximator of the more complex black-box meth-
ods. Other methods such as logistic regression can also be used, and these
are compared in Section 5.3.

Bayesian Rule lists [95, 96] are an approach to IML which aim to achieve
a good balance between complexity and accuracy, by using Bayesian op-
timisation to generate a set of “if...then...” statements which can be used
for prediction. The idea is that these resulting rules are simple and easily
interpretable.

Model compression was proposed in [97] (and expanded in [98]), where
the authors use a neural network to compress large complex ensembles
(often with thousands of base members) by training the smaller neural net-
works on the predictions of the ensemble. While these are not directly re-
lated to interpretable machine learning (as the neural network learnt is not
necessarily interpretable), the concept is similar, and these works showed
the simpler model can often achieve similar error rates to the larger, more
complex ensembles, so this is promising for model extraction methods.

38 CHAPTER 2. LITERATURE REVIEW

2.6 Chapter Summary

An overview of machine learning and relevant sub-areas such as ensemble
learning and evolutionary computation was given. Related work was also
reviewed for the three main contributions.

Ensemble learning is a powerful concept with a wealth of benefits,
however, construction of effective ensembles can be a complex task. GP
has been shown to be successful for constructing ensembles, however, cur-
rent approaches were all limited to either binary classification, a limited
number of base members, or had the inability to perform simultaneous
classifier selection and hyperparameter selection.

For Automated Machine Learning, there has been little focus on en-
sembling despite the range of success reported in classification tasks. In-
troducing advanced ensembling schemes such as stacking could signifi-
cantly improve upon individual pipelines. Current methods for AutoML
are also sequential by nature, and as AutoML can be seen as a costly pro-
cedure, this severely limits the potential applications.

Finally, interpreting state-of-the-art machine learning models (such as
complex ensembles) still remains a complex task. Existing approaches
tend to suffer from at least one of the following limitations: applicable
only to specific models, inability to deal with a mixture of feature types,
local explanations only, or overly complex in their global representation.

Chapter 3

Automated Ensemble Learning
and Parameter Selection with GP

Classification is an important task in a vast variety of areas, but in many ar-
eas, there is no adequate knowledge available to select a suitable method(s).
It can be daunting for users (particularly those with limited machine learn-
ing experience) to develop appropriate models. The task is complex as
there are often assumptions which need to be carefully considered before
selecting an algorithm (such as whether the function we are trying to ap-
proximate is plagued with local optima, whether models are scale invari-
ant, whether the data is linearly separable etc.), and even once an “ideal”
algorithm is selected, this then needs to be tuned by selecting appropri-
ate hyperparameters. In addition, the method could still likely be further
improved by combining this with others (known as ensembling) [42]. Al-
leviating users from these tasks is the main motivation for the work.

3.1 Chapter Introduction

In this chapter, a novel method for automated ensemble learning based on
stacked generalisation is proposed. The method is capable of automati-
cally selecting appropriate base members (classifiers) without needing to

39

40 CHAPTER 3. AUTOMATED ENSEMBLE LEARNING WITH GP

specify any prior information about the model or the data by utilising ge-
netic programming. Key parameters for classifiers in the ensemble are
also automatically determined, i.e. removing the need to manually specify
these parameters. The work is a step towards “automated machine learn-
ing” (AutoML) for ensembles, and aims to solve the following problems:
removing the need for model selection, selecting key parameters for the
models, and finding combinations (ensembles) of models which perform
well automatically.

Particularly, the focus is on ensembles for classification (predicting cat-
egorical outputs), as this is one of the most common tasks in machine
learning (although the method is general and could be extended to regres-
sion problems as well). The specific goals of this chapter are to develop a
novel algorithm which can:

• Automatically select appropriate base members of an ensemble (or
even a single member if this performs well),

• Minimise the generalisation error of these members by utilising the
stacked generalisation,

• Select key hyperparameter values of the base members, and

• Allow a user to interpret the rules of the ensemble.

3.2 The Proposed Method

A genetic programming based method is proposed which automatically
evolves heterogeneous ensembles of classification algorithms. A heteroge-
neous approach is chosen for two reasons, firstly, improved performance
[67], and secondly, removing the need to choose an appropriate classifier
with the homogeneous approach. The method not only evolves suitable
base members of the ensemble (removing the need for model selection)

3.2. THE PROPOSED METHOD 41

Voting

Voting LR SVM
C=0.01, Kernel=RBF, Gamma=0.1

DT NB RF GB RF
Trees=50

LR Voting

Figure 3.1: An example tree showing the proposed structure. Seven
base members are used by combining two voting functions. Parameters
evolved are shown as text below the classification node, such as “Trees”
for the number of trees in the random forest, or “C” indicating the penalty
term for the SVM. In cases with no parameters shown (i.e. no text under
the node), the default parameters were used.

but also selects key hyperparameters of the methods (removing the need
for model tuning).

3.2.1 Overall Structure

Ensembles are represented as tree structures, where the leaves (terminal
nodes) represent base members and tunable parameters, and the internal
nodes compose the meta-learner. Each tree serves as a stacked ensemble,
where the output of the tree is the prediction of the ensemble as a whole,
and the output of any non-root node can be considered as an intermediary
prediction (i.e. a sub-ensemble). This representation means that we can
utilise GP to explore the search space of potential trees since the number
of potential trees makes it unfeasible to perform an exhaustive search. An
example tree structure is given in Fig. 3.1.

42 CHAPTER 3. AUTOMATED ENSEMBLE LEARNING WITH GP

3.2.2 Representation

To evolve individuals (trees), what constitutes a valid tree needs to be de-
fined. In this chapter, Strongly-typed GP [32] is used, which allows plac-
ing of additional restrictions on the trees. For example, this can ensure we
do not try and set a parameter value which does not exist for a particular
classifier.

Terminal Set

The terminal set is composed of various classification algorithms which
serve as the potential ensemble members (i.e. base learners). It is worth
noting these classification algorithms can also serve as the root node, so a
tree can be composed of only a single member. Doing so ensures that if a
single method achieves the highest achievable fitness, then we do not need
to bother evolving an overly complex ensemble. As terminals, these algo-
rithms take their default values (as specified in the scikit-learn library). To
allow parameter tuning, algorithms with parameters are also specified in
the function set (discussed below), as technically, in this case, the param-
eters would be the leaf nodes and the classification algorithm a function
node.

The classification algorithms used are shown in Table 3.1, where en-
semble methods are also used as terminals here (so we can have an en-
semble of ensembles). This is why Random Forests, Gradient Boosting
and AdaBoost were used in conjunction with the “basic” methods. There
are two benefits of including ensembles as terminals. Firstly, this allows
the automated selection of an existing ensemble method and appropri-
ate hyperparameters. This removes the need for a user to determine an
appropriate ensemble technique as this requires machine learning knowl-
edge, which is not always present. Secondly, in some complex situations,
a combination of these ensemble methods is often better than using only
a single one. This method will allow for the automatic generation of an

3.2. THE PROPOSED METHOD 43

Table 3.1: The various classification algorithms used, and the hyperparam-
eters which we evolve.

Model Parameter Range Description

SVM
C [0.01, 0.1, 1.0, 10.0, 100.0] Penalty term
Kernel [“rbf”, “linear”, “poly”] The type of kernel to use
Gamma [0.01, 0.1, 1.0, 10.0, 100.0] Kernel coefficient

Logistic Regression Penalty [“l1”, “l2”] The norm of penalty function
K-Nearest Neighbour K [1,2,...,50] Number of neighbours
Naive Bayes N/A
Decision Tree Split [“best”, “random”] Split at best, or at best of a random subset
Random Forest

Trees [10,11,..,100] The number of base estimators to useAdaboost
Gradient Boosted Trees

ensemble with appropriate complexity. A description of each algorithm is
given in Section 3.3.

The various parameter values given in Table 3.1 are also used as ter-
minals, with strongly typed genetic programming [32] used to ensure the
algorithms only use the appropriate parameters (i.e. for K-Nearest Neigh-
bour we are not going to pass in a kernel function).

The training data is also considered as a terminal, so various copies of
the training data are passed to the evaluation nodes. This configuration al-
lows for easy expansion to include data sampling techniques or operating
on specific feature subsets if desired in future developments.

Function Set

The main component of the function set is plurality voting. Plurality vot-
ing differs from majority voting in that the most common (mode) vote is
used, even if this does not achieve a majority. This is best shown with
multi-class classification. For example, if there are 5 predictors, and the
class predictions are (1, 4, 2, 1, 3), 1 forms a plurality, but does not achieve
a majority. So, in this case, 1 is used as the prediction. In cases when there
is a tie, the first class to achieve the plurality is chosen (from the left).

44 CHAPTER 3. AUTOMATED ENSEMBLE LEARNING WITH GP

Voting functions can be stacked arbitrarily high, creating a non-linear
combination of the predictors. Of course, the classification algorithms can
also be used as inputs to the voting functions. The number of inputs can
be either 3, or 5. Any fewer inputs would be unnecessary, as a single input
could be composed of only that node instead, and two inputs would likely
disagree and offer little benefit (compared to having three members, where
the chances of any 2 agreeing are much higher). Any larger number of
inputs could instead be composed of various stacked voting functions (i.e.
7 inputs made with a 5 and 3 stacked, as shown in Figure 3.1).

The classification algorithms with tunable parameters (as shown in Ta-
ble 3.1) are all included as function nodes in the tree, where the inputs are
the hyperparameters. Both voting nodes and classification nodes output
predictions for the input data, which means they are able to be crossed
over and still result in valid trees.

3.2.3 Voting Strategy

As discussed in the previous section, plurality voters can be stacked. This
is much more powerful than simply flattening all the predictors and per-
forming a plurality vote, as this effectively introduces a weighted scheme
for the predictors. Rather than voters having a weight as specified by a co-
efficient, the relative position of a predictor in the tree reflects the weight-
ing. A predictor which occurs higher in the tree (closer to the root) has a
higher implicit weighting than one which is lower in the tree. The reason
for this is simple, for the vote of a predictor to count, it must be the most
common vote at every node on the the path to the root - the longer this
path (the more steps to the root), the lower the weight. An example of this
is given in Fig. 3.2.

3.2. THE PROPOSED METHOD 45

Voting

Voting RF SVM

DT k-NN LR

Voting AB NB

Tier 1

Tier 2

Tier 3

Class 1Class 2Class 1

Class 3 Class 3

Class 1 Class 1Class 1

Class 1

Class 3

(a) Weighted (tree) plurality voting

Voting

RF SVMDT k-NN LR AB NB
Class 1Class 2Class 1 Class 3 Class 3Class 1 Class 1

Class 1

(b) Flattened plurality voting

Figure 3.2: A comparison showing the weighting strategy. We can see
when flattened (b), Class 1 achieves the majority. However, with the tree
structure (a.), Class 3 is chosen. The tiered system used in the voting
scheme introduces an implicit weighting scheme, where Tier 1 (in this case
the Random Forest and Support Vector Machine) have a higher weight
than any of the other predictors.

3.2.4 Fitness Function

The fitness function defines how to evaluate individuals. In this work, the
larger the fitness value, the better the individual (ensemble).

The evaluation measure is designed to adequately deal with both bi-
nary and multi-class classification tasks. The datasets are also not guar-
anteed to be evenly distributed between the two classes, so the measure
should be relatively robust to uneven class distributions. Because of these
considerations, the weighted F-measure (F1 score) is chosen as the fitness
function. This is briefly outlined in the following section.

46 CHAPTER 3. AUTOMATED ENSEMBLE LEARNING WITH GP

Weighted F-Measure

The formula for computing the weighted F-measure is given in Equation
(3.1), where C represents the classes, and |c| the number of instances in
class c.

F1 = (
∑
c∈C

|c| × 2× precision× recall
precision+ recall

)/
∑
c∈C

|c| (3.1)

In the multiclass case, the computation for precision and recall are com-
puted independently for each class. While in certain situations it can be
more important to predict one class correctly (e.g. when predicting fatali-
ties), in this thesis we assume equal importance’s between classes and thus
use the weighted F-measure. This metric could also be trivially substituted
to any other sensible performance metric (such as balanced accuracy).

3.2.5 Tree Simplification

GP can often produce bloated trees. Here, since plurality voting is used,
the most logical method of reducing bloat is to introduce pruning where
an internal voting node is reduced to a leaf node if a majority of the chil-
dren are made up by the same classifier (with the same parameters). For
example, if there are five children, and three of them are logistic regression,
the other two children will never be used regardless of their predictions.
An example of a tree before and after pruning is given in Figure 3.3. Of
course, there are many possible cases in which this can happen, i.e. when
we must solve this for multiple stacked layers as shown in Figure 3.3, the
pseudo-code for this is given in Algorithm 1. Pruning happens every 5
generations on the entire population (running too frequently would in-
crease the training time, and could also oversimplify the trees for breed-
ing), and then on the best resulting individual of the final generation.

3.2. THE PROPOSED METHOD 47

Voting

Voting LR KNN

LR RF LR LR DT

LR

a. Initial tree (without pruning) c. Resulting tree, single node only (after
pruning)

Voting

LR LR KNN

b. Intemediary tree, after first step of pruning

Figure 3.3: An example showing the effect of pruning on tree sizes. Red
nodes show irrelevant nodes, as the green nodes form a majority, meaning
the red nodes can be removed as they are having no effect on the predic-
tions. The intermediary step is visualised in b, which shows that pruning
can function through multiple redundant layers and that the result of step
(a) can be further pruned.

3.2.6 Efficiency Improvements

GP can be a costly procedure, especially when trees are expensive to eval-
uate. In this case, to evaluate a tree, the various models in the tree must
be trained, and predictions made for each instance, then finally the fitness
must be computed for every tree in the population by comparing the pre-
dictions to the real class labels. To offset some of this cost, we introduce
surrogate models, caching, concurrency and automatic disabling of slow
learners.

Surrogate Models On large datasets (defined as those with a volume
greater than 50,000), e.g. musk and hill-valley, only 20% of the training
data is used for the evolutionary process. However, in the final generation,
the entire training dataset is used. This allows us to compute approxima-
tions of good ensembles throughout the evolution, and only use the entire
training dataset on the final population to speed up the overall procedure.

Caching To improve the training time and prevent needing to retrain
the models a caching scheme was implemented. The model and model’s

48 CHAPTER 3. AUTOMATED ENSEMBLE LEARNING WITH GP

Algorithm 1: Pruning pseudo code

Function prune(tree) is
if leaf node then

return leaf
end
children = prune(subtree) for each subtree in tree
if children has majority then

return majority
end
return tree with updated children

end

inputs are hashed as a key, and the learnt model stored as a value. This
means for a given input, the classification algorithms only need to be run
at most once in the evolutionary process. As only the learnt model needs
to be saved, we assume sufficient computational memory as the amount
of memory required should not scale with the size of the datasets, with the
exception of k-NN in which case caching may need to be disabled for “big
data” tasks if memory is an issue. We use a least recently used cache, so
we remove models which only appear in earlier generations.

Concurrency When evaluating trees, there is no need to do so sequen-
tially as there is no interaction between trees. For further performance
improvements, we evaluate trees in parallel using multiprocessing when
possible. This may have the effect of missing certain nodes in the cache (if
two of the same nodes are being executed in parallel) but we found this to
be worth the trade-off compared to maintaining a perfectly shared cache,
which has extra overhead such as locking.

Disabling Slow Learners Training classification methods can often be
slow, and when this needs to be done repeatedly for various parameter

3.2. THE PROPOSED METHOD 49

settings, mixed with the time taken for evolution, this can become unfea-
sible. For example, with SVMs with non-linear kernels, the complexity is
approximately O(N2 ×M) where N is the training size, and M the num-
ber of features. When dealing with multiple classes, SVMs become even
slower. For this reason, on large datasets (German, hill-valley, musk, and
glass due to a large number of classes) SVMs are disabled for efficiency.

3.2.7 Guided Crossover

It is commonly believed that constructing ensembles which focus on diver-
sity as well as the accuracy of base members can create better ensembles
than focusing on accuracy alone ([46, 99, 7]). When using GP, selection of
base members is performed automatically through crossover and muta-
tion operations, however, we would like to see if this can be improved by
explicitly focusing on crossing over diverse points in the trees.

In strongly typed GP, the typical crossover operator used (which we
refer to as uniform crossover) is a single point crossover which takes two
individuals and produces two new offspring by combining these individ-
uals. How this works is a random type which is shared between the two
individuals is selected, and from there a random node with this type is
selected from each individual. As this is single point crossover, the indi-
viduals directly swap the subtrees (from the selected nodes), to produce
two new children and since these two are of the same type (from step 1),
no structure has been broken. An example is given in Figure 3.4 for typical
GP.

This works well in the general case of GP, however, this does not di-
rectly consider diversity. For example, we may cross over two points from
two separate trees, however, the two points may be functionally very sim-
ilar (i.e. make the same predictions), resulting in no improvement. Ideally,
we would explore diverse crossover points, as this could place additional
pressure on the evolutionary process to select points which perform dif-

50 CHAPTER 3. AUTOMATED ENSEMBLE LEARNING WITH GP

+

/ *

1 10 10 5

/

* +

5 8 6 1

+

/ +

1 10 6 1

/

* *

5 8 10 5

Subtrees Swapped

Parents

Children

Figure 3.4: An example of singlepoint crossover.

ferently to the current node. With this in mind, a new “guided crossover”
operation is tested, which does just this (which we refer to as diversity
preserving crossover).

To achieve this, we use the diversity measure Pairwise Failure Credit-
ing (PFC) proposed in [100]. In [100] PFC was used to compute a second
objective for the evolutionary process, as the entire population was be-
ing used as the ensemble. However, here we propose to instead integrate
this into the crossover operation, as individual trees are used as an en-
semble instead. PFC gives a diversity measure between two points. To
compute the PFC for two points a and b, a failure pattern (represented as a
bit string of 1s for success and 0s for failures) is constructed for each possi-
ble crossover point, and the hamming distance is used for computing the
distance between two points. This distance is then divided by the total
sum of failures between the two individuals, as to prefer solutions which
achieve higher accuracy. This is shown in Equation 3.2, where ai means
the predicted class from point a for instance i, and yi means the real class

3.2. THE PROPOSED METHOD 51

label for instance i.

pfc(a, b) =

∑N
i=1

1 ai 6= bi

0 else

∑N
i=1

∑
p∈a,b

1 pi 6= yi

0 else

(3.2)

So the worst case is a PFC of 0, which means the two individuals fail
on the exact same points (shown in Table 3.3), and the best case is a 1
which means they fail on completely separate points (shown in Table 3.2).
All other cases fall between [0, 1]. In [100] when there were no errors
(i.e. the summation used as the denominator was 0), a PFC of 0 was used,
however, here we instead treat this as 1, as we do not want to penalise
classifiers which achieve the highest accuracy (by giving them no chance
of being crossed over).

Table 3.2: An example of the ideal case for PFC, when PFC=1. The black
indicates a failure (misclassification), and we can see the two individuals
fail on seperate parts of the data (diverse).

Failure String
Individual 1:
Individual 2:

Table 3.3: An example of the worst case for PFC, when PFC=0. The two
individuals fail on the same data points (not diverse).

Failure String
Individual 1:
Individual 2:

For implementation, the selection criteria remain the same (in this case
tournament selection). However, now when choosing crossover points

52 CHAPTER 3. AUTOMATED ENSEMBLE LEARNING WITH GP

Figure 3.5: An example showing the weighted crossover probabilities.
Here we have five potential crossover points, with PFC values of 1, 1, 0.5,
0 and 0.2. Note: since Point 4 has a PFC of 0, this does not appear on the
chart.

from the two selected trees, if the type chosen is either an evaluation node
or a voting node, the probability of selecting a crossover point (a, b) is
weighted by the diversity of the point (i.e. the PFC value achieved) in re-
lation all potential crossover points P . That is, the probability of choosing
a crossover point (a, b) from a set of possible points P is given in Equation
3.3.

p(a, b) = pfc(a, b)/
∑
j∈P

pfc(j) (3.3)

So the larger the diversity (the higher the PFC), the higher probability
of being selected, as shown in Figure 3.5. We can see if a particular point
has a diversity of 0 (i.e. no diversity), this will have zero chance of being
selected for crossover (although this can still be affected by mutation).

Other nodes in the tree (i.e. parameter nodes) are crossed over as usual.
It’s important to reemphasise here that a relatively large mutation rate of
0.2 was used, which means even though we favour the nodes/crossover
points that perform well, random permutations can still happen to the tree
to try and prevent getting stuck in local optima.

3.2. THE PROPOSED METHOD 53

Testing Accuracy Training Time (m)

Dataset Uniform DPC Uniform DPC

Iris 0.975± 0.033 0.975± 0.033 0.61± 0.28 6.35± 3.49

Balance 0.991± 0.009 0.990± 0.009 4.2± 1.49 4.13± 2.34

Glass 0.922± 0.071 0.926± 0.067 7.59± 7.61 65.08± 54.79

Wine 0.989± 0.012 0.989± 0.012 3.63± 6.48 15.05± 12.11

German 0.954± 0.050 0.950± 0.057 54.65± 38.21 233.77± 74.23

Wdbc 0.989± 0.013 0.989± 0.014 9.31± 3.06 12.05± 3.34

Sonar 0.937± 0.090 0.940± 0.090 18.79± 23.64 24.99± 35.29

Ionopshere 0.981± 0.027 0.979± 0.026 11.99± 10.28 10.67± 11.85

To evaluate the crossover, we test on several datasets from Section 3.4
and compare uniform and diversity preserving crossover. We exclude Hill
Valley, Musk, and German due to the high computational cost associated
with the custom crossover. The results are shown in Section 3.2.7. Some-
what interestingly, we find there was no statistical difference in the aver-
age testing accuracy between the proposed method with uniform crossover,
and the proposed method with the new diversity preserving crossover.

On simple datasets (such as Iris or Wine), achieving equivalent results
make sense as few errors will be made, meaning the weightings will fol-
low a uniform (or near uniform) distribution (i.e. p(i) = 1

|P | , ∀i ∈ P), re-
sulting in equal chances for each potential crossover point, just as done
with uniform crossover.

However, on harder datasets (i.e. Sonar, Balance, German), this should
not happen as many points will have p(i) � 1. This shows that when
utilising GP with standard crossover, the resulting ensembles will neces-
sarily be diverse since we compute fitness using the entire ensemble. For
example, if we require diverse classifiers to achieve an accurate ensemble,
if we have similar classifiers, this ensemble will be given a low fitness and
thus lower chance of survival throughout the generations (survival of the
fittest).

54 CHAPTER 3. AUTOMATED ENSEMBLE LEARNING WITH GP

For these reasons, and since standard crossover achieves drastically
lower training time, we believe standard crossover with uniform weight-
ings to be enough to generate diverse ensembles when paired with an ap-
propriate fitness function. Therefore, in the following sections, we use the
standard crossover only.

3.3 Experiment Design

3.3.1 Experiment Details

To evaluate the effectiveness of the proposed method, 10-fold cross-validation
was used to compute the test accuracy on a range of datasets from the UCI
repository. This was then tested against various comparison methods, us-
ing the same folds to allow for a fair comparison. Stochastic methods, such
as the proposed method and neural networks, were run 30 times and the
results averaged for each fold to minimise the effect of the random seed.

In this section, experiment configurations are presented, including com-
parison methods, datasets and parameter settings.

All of the GP code was implemented in Python3 using the DEAP li-
brary [101] as a base for the evolutionary process, scikit-learn [102] (sklearn)
was used for the various base classification and comparison methods. The
code was run on the Oracle Grid Engine.

3.3.2 Datasets

Ten datasets were chosen to offer a broad range of difficulty, with a varying
number of instances, features and classes, and from a variety of domains.
These datasets were chosen to ensure the proposed method is applicable
to a wide range of applications. The datasets are summarised in Table 3.4.

3.3. EXPERIMENT DESIGN 55

Table 3.4: Summary of the Datasets used, all datasets were retrieved from
the UCI repository. Datasets are ordered based on the number of features.

Dataset # Features # Instances # Classes Domain

Iris 4 150 3 Life
Balance 4 625 3 Social
Glass 10 214 7 Physical
Wine 13 178 3 Physical
German 20 1000 2 Financial
Wisconsin Breast
Cancer (WDBC) 32 569 2 Life
Ionosphere 34 351 2 Physical
Sonar 60 208 2 Physical
Hill Valley 101 606 2 Physical
Musk1 168 476 2 Physical

3.3.3 Significance Tests

To test whether there was a significant difference in the results, firstly
an unpaired Welch t-test [103] was used with a significance level of 5%

(α = 0.05). This was chosen as we can not assume equal variance between
methods.

To achieve more general claims, and reduce the impact of Type-I er-
rors on the results, we also perform Friedman testing from [104] to com-
pare differences across the classifiers. That is, h0=All classifiers perform
the same and the differences are only from randomness. Next conclusions
about the differences are drawn by following up with Holm post-hoc anal-
ysis. This follows the suggestions in [105] for comparing multiple classi-
fiers. The average rankings used in the computation are given in Table 3.7.

56 CHAPTER 3. AUTOMATED ENSEMBLE LEARNING WITH GP

3.3.4 Comparison Methods

Base members

For comparison, all base members were tested. It is expected that the
method would perform at least as good as the best base member, and
ideally better than this. The base members are: Support vector machines
(SVMs) [106], Logistic Regression, K-Nearest Neighbours (k-NN), Naive
Bayes, Decision Trees (DTs), Random Forests [52] , AdaBoost [54] and Gra-
dient Boosted Machines [55].

Other Ensemble Methods

While Random Forests, AdaBoost and Gradient Boosted Machines are all
ensemble methods, since they were used as base-learners, it is not fair
to only compare to these three ensembles. Instead, three new ensemble
methods were added for comparison.

Voting Classifier. To verify the proposed method is better than simply
selecting a plurality vote from the base members, this was included as
a comparison method. Achieving better results than the voting classifier
shows the proposed method is able to find more useful combinations than
performing no selection and utilising all members.

Bagged Neural Network. Neural Networks are perhaps one of the most
widely used techniques in machine learning, due to their high reported
performance across many domains [107]. The key idea is to try and ap-
proximate a mapping x 7→ y, by learning a set of weights for a pre-specified
architecture which minimises a loss function. One problem with neural
networks is they can be sensitive to the initial weights used, which can be
solved by starting at several different points. This is done here with bag-
ging, where several networks are trained each starting with a different set

3.3. EXPERIMENT DESIGN 57

Table 3.5: Summary of parameter settings used for proposed method.

Parameter Value

Generations 50

Population Size 100

Selection Tournament (Size=7)

Creation Ramped half-and-half

Max Height 17

Crossover Rate 0.7

Reproduction Rate 0.1

Mutation Rate 0.2

of weights, on different bagged subsets of the data, and the networks then
vote for a class.

Extremely Randomised Trees. Extremely randomised trees are an ex-
tension of random forests, with additional randomness introduced in the
splitting criteria. This method was proposed in [108] and was shown to
outperform random forest on a range of tasks trialled.

3.3.5 Parameter Settings

For all base members, the default values as specified by sklearn were
utilised. For the proposed method, common parameter settings as used
in literature were chosen. These are summarised in Table 3.5. A low popu-
lation size of 100 was used to save computational cost, a larger population
size is likely to result in improved performance at the expense of increased
training time.

58 CHAPTER 3. AUTOMATED ENSEMBLE LEARNING WITH GP

3.4 Results and Discussion

3.4.1 Overall Results

Table 3.6: Comparison results on the UCI datasets. Results are presented
as mean ± standard deviation. (=) indicates no statistical difference be-
tween the row and the proposed method, (-) indicates the row did signif-
icantly worse, and (+) indicates the row did significantly better than the
proposed method (however this did not happen on any datasets trialled).

Iris Ionosphere Sonar Balance Glass
Proposed Method 0.975±0.032 0.981±0.027 0.937±0.089 0.991±0.009 0.922±0.071

SVM 0.973±0.044 (=) 0.923±0.051(-) 0.557±0.100(-) 0.864±0.057(-) 0.625±0.104(-)
Logistic Regression 0.961±0.032 (=) 0.855±0.056(-) 0.757±0.055(-) 0.834±0.047(-) 0.568±0.111(-)
k-NN 0.967±0.045 (=) 0.831±0.071(-) 0.815±0.086(-) 0.818±0.069(-) 0.661±0.105(-)
Naive Bayes 0.952±0.068 (=) 0.888±0.061(-) 0.650±0.132(-) 0.873±0.056(-) 0.435±0.150(-)
Decision Tree 0.945±0.048 (=) 0.891±0.038(-) 0.716±0.096(-) 0.793±0.077(-) 0.677±0.047(-)
Random Forest 0.947±0.046 (=) 0.927±0.037(-) 0.771±0.064(-) 0.818±0.068(-) 0.738±0.038(-)
Adaboost 0.947±0.051 (=) 0.922±0.051(-) 0.805±0.100(-) 0.927±0.026(-) 0.350±0.107(-)
Gradient Boosting 0.953±0.043 (=) 0.933±0.042(-) 0.814±0.077(-) 0.860±0.068(-) 0.743±0.045(-)

Bagged NN 0.975±0.030 (=) 0.915±0.044(-) 0.796±0.072(-) 0.931±0.040(-) 0.193±0.033(-)
Extra Trees 0.950±0.044 (=) 0.934±0.027(-) 0.813±0.047(-) 0.817±0.066(-) 0.740±0.054(-)
Voting Classifier 0.948±0.049 (=) 0.937±0.040(-) 0.807±0.084(-) 0.854±0.062(-) 0.700±0.076(-)

Wdbc Wine German Hill-Valley Musk

Proposed Method 0.989±0.013 0.989±0.012 0.954±0.050 0.974±0.014 0.972±0.031

SVM 0.487±0.067(-) 0.326±0.123(-) 0.649±0.069(-) 0.444±0.059(-) 0.412±0.074(-)
Logistic Regression 0.956±0.024(-) 0.955±0.048(=) 0.743±0.053(-) 0.968±0.013(=) 0.857±0.037(-)
k-NN 0.934±0.041(-) 0.690±0.120(-) 0.669±0.041(-) 0.542±0.041(-) 0.878±0.041(-)
Naive Bayes 0.941±0.024(-) 0.972±0.028(=) 0.730±0.060(-) 0.449±0.039(-) 0.720±0.058(-)
Decision Tree 0.920±0.034(-) 0.929±0.055(-) 0.708±0.034(-) 0.554±0.026(-) 0.781±0.056(-)
Random Forest 0.955±0.022(-) 0.973±0.030(=) 0.712±0.042(-) 0.559±0.023(-) 0.859±0.031(-)
Adaboost 0.958±0.022(-) 0.916±0.053(-) 0.744±0.039(-) 0.504±0.031(-) 0.886±0.032(-)
Gradient Boosting 0.963±0.025(-) 0.954±0.042(-) 0.754±0.046(-) 0.548±0.029(-) 0.896±0.036(-)

Bagged NN 0.888±0.043(-) 0.279±0.024(-) 0.758±0.044(-) 0.559±0.015(-) 0.873±0.034(-)
Extra Trees 0.960±0.019(-) 0.970±0.035(-) 0.715±0.040(-) 0.571±0.027(-) 0.897±0.025(-)
Voting Classifier 0.967±0.019(-) 0.970±0.023(=) 0.755±0.048(-) 0.631±0.033(-) 0.901±0.036(-)

Table 3.6 gives a summary of the results across all datasets trialled, on

3.4. RESULTS AND DISCUSSION 59

every dataset, the proposed method performs much better than (or equiv-
alent to) all comparison methods. The proposed method is shown in bold
as the first row, the base members are shown below this (separated by a
line), and the comparison ensemble methods (i.e. those not used as base
members) are in the final segment.

On very simple datasets such as Iris, we see equivalent performance to
the basic methods. This is because all methods do extremely well on this
task, due to the simple nature, and there is little room for improvement.
Analysing some of the evolved programs from the Iris task, we can see
often we just select a single base member, as shown in Figure 3.6a.

On more complex datasets, such as Glass, German, and Musk, we see
extreme improvement (p-values of essentially 0) over all other methods
trialled. For example with the German dataset, the comparison ensemble
methods (Extremely randomised trees and the voting classifier) achieve
f1-scores < 0.75, whereas the proposed method is able to achieve 0.92.
One interesting point here is the bagged neural network performs very
poorly (achieving only 0.19 f1-score), which could be due to the problem
which we aim to solve, that hyperparameters can be difficult to choose,
and the default settings often perform poorly. Similar results were seen
with the Wine data set and bagged neural networks, but on all other tasks,
the neural network performed relatively well.

3.4.2 Statistical Tests

The proposed method is compared with several comparison methods for
each dataset. To draw conclusions about the effectiveness of the proposed
method in general, we perform the Friedman test [104] to compare differ-
ences across the classifiers. The average rankings used in the computation
are given in Table 3.7.

At α = 0.05, p << α, which means h0 is rejected and one can conclude
there is a significant difference in the classifiers that is not attributed to ran-

60 CHAPTER 3. AUTOMATED ENSEMBLE LEARNING WITH GP

Table 3.7: Results from the Friedman test and Holm post-hoc analysis. The
higher the ranking, the better.

Method Friedman Rank Adjusted P (3dp)

Proposed 7.41 (Control)
Voting Classifer 5.43 0.047
Gradient Boosting 5.15 0.047
Extremely Randomised Tree 4.81 0.027
Bagged Neural Network 3.85 0.002
Random Forest 3.81 0.002
Logistic Regression 3.66 0.001
AdaBoost 3.63 0.001
k Nearest Neighbours 3.13 <0.001
Naive Bayes 2.98 <0.001
Support Vector Machines 2.29 <0.001
Decision Trees 2.23 <0.001

domness alone. To compare this difference between the classifiers, we per-
form the Holms step-down procedure [109] using the proposed method as
the control group. For all classifiers, the resulting p < α, so one can con-
clude the proposed method outperforms all other methods trialled. The
resulting p values are given in Table 3.7.

3.5 Further Analysis

To see how the proposed method achieves such good results, an example
program is analysed from each of these difficult tasks. We choose rela-
tively simple ensembles for clarity and discussion, however, some other
evolved ensembles are much more complex (i.e. deeper) than those shown.

A top performing Musk ensemble is shown in Figure 3.6b. Interest-

3.5. FURTHER ANALYSIS 61

DT

(a) Iris (1.0)

Voting

LR KNN Voting

NB LR DT

(b) Musk (1.0)

Voting

DT RF KNN
K=1Trees=74

(c) German (0.99)

Voting

RF Voting GB
Trees=86

NB DT GB AB KNN
Trees=18

(d) Glass (1.0)

Figure 3.6: Examples of evolved ensembles, validation f1-score (fitness)
presented in brackets.

ingly, Logistic Regression appears twice in the tree despite only being
ranked 4th on this dataset. However, when combined with other classi-
fiers, the results are far better than the more accurate classifiers alone. This
shows that only choosing the most accurate classifiers as base members is
not always an ideal choice.

An evolved German ensemble is shown in Figure 3.6c, which shows
three methods were chosen here, Random Forests, Decision Trees, and k-
NN. Both Random Forests and k-NN had parameter selection performed
automatically, whereas the decision tree used the default values. For k-
NN, a k value of 1 was selected, meaning we just use the class of the clos-
est neighbour for classification. In the usual case, using this predicted class
would be negatively affected by outliers in the data, however, for the en-
semble to predict this class, at least one of the other two methods must
also predict this class. For the random forest, a relatively large number of
trees (74) is used. It is interesting to see that even though k-NN performed
the worst out of all the methods on its own, it was able to combine with
the two tree-based methods to achieve results far higher than any of the
individual methods.

62 CHAPTER 3. AUTOMATED ENSEMBLE LEARNING WITH GP

Figure 3.6d shows an evolved Glass ensemble. This features two layers
of voting, and a wide variety of base learners used. Looking at the results
for this dataset (Table 3.6), the tree-based methods (particularly gradient
boosting) tend to achieve the highest score, and these are used throughout
the evolved ensemble. They are also supplemented with other methods
which perform poorly in isolation (such as Naive Bayes, and AdaBoost
even though AdaBoost is tree based), however, when combined with other
methods make for a diverse and accurate ensemble.

It is noticed interesting results with Hill-Valley, logistic regression did
remarkably well, achieving an f1-score of 0.968, which is significantly higher
than even the other ensemble methods such as Random Forests or Gradi-
ent Boosting. The proposed method still performs equivalently (or slightly
better), and in all cases uses Logistic Regression in the best performing en-
semble, either as a standalone node, or part of a more complex ensemble.
In [110], they determined logistic regression was likely to outperform tree
induction in cases with “smaller training-set sizes and where the classes
cannot be separated well”, which is especially true when it is “too difficult
to distinguish from the noise to allow identification of the correct relation-
ship”. Although this particular dataset was not used in [110], we do note
that this dataset has had noise added to make the task more complex, so
this follows the conclusions drawn in that work and could help explain
why logistic regression outperforms the other methods by such a large
margin.

3.6 Chapter Conclusions

In this chapter, a novel GP-based method was proposed for automated
ensemble learning which utilises GP as the meta-learner in stacked gen-
eralisation. The proposed method was able to outperform a range of en-
semble methods and base learners, on a range of tasks ranging from sim-
ple to complex. The method was shown to generalise well to a variety

3.6. CHAPTER CONCLUSIONS 63

of tasks from different domains and outperform all comparison methods
using Friedman statistical significance tests with Holms post-hoc analysis.
Not only was the method able to achieve the best results, but it also re-
moves the burden of manual model selection and parameter tuning. This
work set the foundation for many future developments, such as a fully
automated ensemble learning pipeline, and shows the promise of GP for
automated machine learning.

Here, all classification algorithms used the raw/original training data
as input. Often, in real-world situations, a pipeline is needed. We would
like to incorporate a pipeline into the method, so preprocessing steps such
as imputing missing data, scaling data, and feature selection could be in-
corporated below the classification nodes in the tree. This has been looked
at with GP in [111], however, the focus was not explicitly on ensemble
learning. In the next chapter, we will further develop this idea.

64 CHAPTER 3. AUTOMATED ENSEMBLE LEARNING WITH GP

Chapter 4

Efficient Ensemble-based
Automated Machine Learning

With the huge rise in demand for machine learning applications, the sup-
ply of machine learning talent is unable to keep up. Like in many sectors
seen before, this motivated the push towards automation, and the field of
automated machine learning (AutoML) has emerged. AutoML can be seen
as using machine learning to learn machine learning tasks, without requir-
ing the end user to have extensive (or any) ML knowledge. It is important
to mention the goal of AutoML is not to replace ML engineers/data scien-
tists, but rather to assist them in their jobs. For example, irrigation sprin-
klers did not replace farmers, it merely freed them from the burden of
watering crops. Likewise, AutoML automates the process of preprocess-
ing, parameter tuning and model selection. However, other tasks such as
analysis, presentation, and decision making are left to the ML expert(s).

4.1 Chapter Introduction

In this chapter, we propose a novel ensemble-based approach to AutoML,
which can help overcome some limitations of current state-of-the-art auto-
mated classification algorithms. The importance of AutoML is apparent,

65

66 CHAPTER 4. EFFICIENT ENSEMBLE-BASED AUTOML

and in recent years, several AutoML systems have been proposed from a
variety of optimisation backgrounds [71, 68, 79]. However, a major limita-
tion of all existing methods is the large computational cost associated with
them, and the inability to parallelise the entire process. One of the main
factors affecting the adoption of AutoML is the prohibitive cost/time of
running an AutoML system. Therefore, the specific objectives of this work
are to:

• Develop a novel, efficient, and parallelisable method of AutoML,

• Investigate the usefulness of ensembling for improving results in
AutoML, and

• Provide a comparison and analysis of the current state of AutoML.

We focus particularly on classification tasks in this thesis but note that
most methods can work with regression tasks either directly or with min-
imal changes.

4.2 The Proposed Method

In this section, a novel ensemble method based on random search is pro-
posed (named AutoVoter). Despite the sound work on the usefulness of
random search for hyperparameter optimisation in [69], little has been
done in this area for AutoML. Perhaps because in [71], the Bayesian ap-
proach was found to outperform a basic random search, and [72] found
the variation in the random pipelines was higher, and the pipelines grew
too large. In this chapter, we look to re-emphasise that random search
can and should be considered as a suitable alternative to both Bayesian
and evolutionary approaches for AutoML due to the ability to horizon-
tally scale. Placing constraints on the architecture prevent the pipelines
from growing too large (addressing the concerns in [72]), and ensembling

4.2. THE PROPOSED METHOD 67

improves the performance and can help reduce the variation in the results
(addressing both [71] and [72]).

4.2.1 Architecture

With AutoML, one key consideration is the large size of the search space.
Using ensembles exponentially inflates this search space, as now we must
consider all combinations of possible pipelines (if there are n individual
pipelines, there are 2n combinations of these pipelines). In order to combat
the growth of this search space, the pipelines are limited to be composed
of at most three components, a data processor, a feature processor and an
estimator. This is, of course, a simplification of potential machine learning
pipelines, however, we show this to work well on a range of tasks in Sec-
tion 4.3. To avoid confusion, we call these “pipeline stumps” (shown in
Fig. 4.1), these pipeline stumps can then be combined in a tree structure to
form a final pipeline (i.e. a pipeline can be composed of several stumps).

Data Processor Feature Processor Estimator

Figure 4.1: The structure of a pipeline stump. A stump is composed of
at most three items. Dotted rectangles indicate an optional component.
For example, a stump could be only an estimator, a data processor and an
estimator, a feature processor and an estimator, or all three components.

In order to ensemble/combine pipeline stumps, we proposed a novel
stacked voting approach for AutoML, where pipelines are presented as
tree structures, where stumps and voting nodes are searched simultane-
ously. A pipeline must be composed of at least one pipeline stump but
can be composed of many by combining pipeline stumps with plurality
voting. Voting nodes can also be stacked, allowing for more sophisticated
ensembles than a standard 1-layer majority voting scheme (as well as au-
tomatically selecting the appropriate base members). An example of a

68 CHAPTER 4. EFFICIENT ENSEMBLE-BASED AUTOML

Pipeline is given in Fig. 4.2. For each of the nodes, hyperparameters are
also selected.

Feature Processor

Estimator

Voting

Estimator Estimator

Feature Processor

Data Processor

Voting

Estimator Estimator

Data Processor

Figure 4.2: An example pipeline. Voting combines three pipeline stumps.
The input to a voting node can also be another voting node (as shown),
so we can stack voters. Each of the nodes can also have a set of optional
hyperparameters (not pictured).

Components

There are four main components which build up the structure of AutoVoter.
The estimators, the feature processors, the data processors and the vot-
ers. In this case, an estimator is a classification algorithm. The classifica-
tion algorithm can also take a range of custom hyperparameters, or use
the default values as specified by sklearn. Table 4.1 summarises the esti-
mators included. Feature processors are limited to dimensionality reduc-
tion methods, such as feature selection and principal components analy-
sis. Feature processors could also be trivially extended to include feature
construction methods. The methods included are summarised in Table 4.1.
Again, each feature processor has a set of hyperparameters associated with
it. Data processing operates on the raw data, and here this involves vari-

4.2. THE PROPOSED METHOD 69

ous methods for scaling the data. A voting node can take 3 or 5 estimators
(or other voting nodes) as inputs and returns the plurality (mode) vote
from the inputs. If no plurality is found (or a tie), the first class predicted
is returned.

In cases where there is missing data, an imputation step is forced prior
to the running the search which replaces any missing values with the most
common value for that feature.

Table 4.1: Summary of the components included in AutoVoter

Algorithm Parameters

Classifiers

Naive Bayes, Decision Tree
NA

Linear SVM, Logistic Regression C: np.logspace(-3, 2, 6)
Penalty: L1, L2

K-Nearest Neighbour K: 1 - 50
Random Forest, Adaboost Num Estimators: 10 - 150

XGBoost

Num Estimators: 10 - 150
Booster: gbtree, gblinear, dart
Depth: 2-8
LR: [0.0001, 0.001, 0.01, 0.1, 0.2, 0.3, 0.5]

Feature
Processors

PCA Percentage of components: 5-100%
Mutual Info, Chi-Squared, ANOVA F-value Percentage of features: 5-100%
Decision Tree, Extra Trees, Random Forest Threshold: 0.5, 0.75, 1.0, 1.25, 2, 2.5
LinearSVC, Logistic Regression (with L1) C: np.logspace(-3, 2, 6)

Data
Processors

Standard Scaler, Robust Scaler, 0..1 Scaler NA

Voting Voting Classifier 3 or 5 Classifiers/Voters

4.2.2 Ensembling

While it has already been shown that guided approaches to pipeline search
can outperform random searches in certain cases, this does not necessar-
ily hold true with ensembling. For the guided search spaces, considering

70 CHAPTER 4. EFFICIENT ENSEMBLE-BASED AUTOML

ensembles enlarges the search space too drastically to find good solutions
(as the exploitation becomes somewhat ineffective). In contrast, we show
a random search can sample effectively from this solution space to provide
equivalent results in a fraction of the time. It is surprising how little em-
phasis has been placed on emsembling in AutoML systems, considering
the wealth of support in both theory and practice for ensembles [42, 112].

The support for ensembles is limited in the current state-of-the-art meth-
ods to AutoML, falling much behind the advancements in ensemble learn-
ing for classification. Without placing a focus on ensembling pipelines, it
will be difficult to construct any state-of-the-art performing models (such
as those that win Kaggle competitions). In TPOT, ensembling can only ap-
pear as cascading, where a synthetic feature is appending to the feature
set if a classifier appears anywhere besides the final step in the pipeline.
In auto-sklearn, pipelines are greedily constructed through a separate op-
timisation process, where the Bayesian optimisation does not optimise the
ensembles. In AutoWEKA, ensembles are limited to having at most 5 clas-
sifiers (a number far smaller than typical classification ensemble sizes).
Here we place an explicit focus on stacked generalisation [49] for con-
structing ensembles, which we find to outperform the simpler cascading
approach of TPOT, the greedy approach of auto-sklearn, and the restricted
approach in AutoWEKA. The proposed approach overcomes these weak-
nesses as it is not limited to any fixed/predefined number of base mem-
bers, and allows search over the base members and potential ensembles
simultaneously.

Evaluation

The tree construction process is run for the specified amount of time, re-
sulting in a set of treesX . In order to select the best resulting tree x fromX ,
an internal 10-fold cross-fold validation is used on the training set, where
we are trying to maximise the weighted f1-measure (although any metric
can be specified). The individual x which achieves the highest f1 score is

4.2. THE PROPOSED METHOD 71

selected.

4.2.3 Search Algorithm

In this chapter, we utilised random search for sampling tree-based pipelines.
One obvious question is why did we not use GP for this as was done in
the previous chapter? There are two main reasons for this.

Firstly, we wanted to show that with the introduction of ensembles
a randomised approach can be competitive to the current state-of-the-art
guided searches (including those already based on GP). The reason for
this is the parallel nature of the random search, which becomes an impor-
tant concern for automated machine learning due to the costly procedure
(constructing and evaluating thousands of machine learning pipelines).

Secondly, the huge search space of the ensembled pipelines may limit
the effectiveness of the exploitation of GP, meaning the ability to paral-
lelise the entire search is lost for little extra gain. This comes down to
the classical discussion of exploration vs exploitation in search, and how
evolutionary methods should achieve these traits [113, 114]. Achieving an
ideal balance is difficult [115], and with a huge search space, exploration is
particularly important to prevent premature convergence in a local optima
[116].

To achieve this exploration, mutation is required. However, a muta-
tion rate which is high begins to behave like a random search, yet has the
downside that it is still sequential by nature. Contrarily, a mutation rate
which is too low will not effectively explore the search space and may
result in poor local optima. It should also be noted TPOT has a high mu-
tation rate of 0.9 by default, which is remarkably high compared to some
other common suggestions for GP (more in line with 0.1).

It can be argued that crossover also explores the search space [117], but
with GP since the children are the result of combining two parent trees,
the children are unlikely to be drastically different (a lack of diversity

72 CHAPTER 4. EFFICIENT ENSEMBLE-BASED AUTOML

from crossover in GP showed in [118]). Instead, crossover performs more
like exploitation (this is in contrast to GAs or fixed length representations
where the crossover is more like exploration [119]), particularly when the
space of possible trees is huge. Eshelman [120] state “increased exploita-
tion by selection leads to decreased exploration by crossover” [114], as
such GP placing this additional stress on crossover will have a negative
effect on the exploration ability. With such a large search space, this may
negatively impact the resulting accuracy (or at the very least not improve
the result) due to focusing on locally optimal trees, i.e., in 90% of the GP
runs in [121] a single tree was a root ancestor of every tree in the final
population.

An in-depth comparison of exploration/exploitation in GP vs random
search could entail an entire thesis on its own, so, for now, we leave this
as hypothetical only, and show that random search with ensemble learn-
ing is competitive to the existing guided approaches. Utilising GP as the
search mechanism is unlikely to perform worse than random search, but
has the downside that the entire process cannot be parallelised (only each
generation). We will leave this further investigation for future research.

4.3 Expirement Design

4.3.1 Expirement Details

We notice in many of the existing AutoML works, the comparison is done
on a per dataset basis, and conclusions drawn based on this. This is not an
ideal way of comparing AutoML systems, as we are much more interested
in the general performance of the method, not the results on individual
datasets (not to mention the inflated type-1 errors if significance tests are
performed per dataset). Instead, it would be ideal to compare the meth-
ods generally over a range of tasks. Therefore, an in-depth comparison
is performed using the Friedman test on AutoVoter and the 4 comparison

4.3. EXPIREMENT DESIGN 73

methods introduced in Chapter 2.

10-fold cross-validation was used to produce an average test accuracy
for each of the datasets. For each fold k, the AutoML methods were fed the
remaining k−1 folds as training data, and the left out fold as test data. No
systems saw the leave out fold until after a final pipeline was learnt. When
datasets had a dedicated train: test split, these were combined to facilitate
cross-fold validation. 10-fold validation was used for two reasons: to give
a large enough number of runs that the stochastic nature of the methods
does not affect the results, and to get an average result across disjoint sets
of test data. It would have been preferable to run say 10x10-fold cross-
validation to get a larger sample, however, generally speaking, AutoML
is a costly procedure, so this was not a viable option (this would require
1,000 days of CPU time in total).

4.3.2 Datasets

17 datasets from the UCI repository [122] were chosen, these were the
datasets identified as “hard” (i.e. an AUC and F-measure ≤ 0.8) in [123]
after an extensive trial of 54 different classifier and feature selection com-
binations, on 129 total datasets. Pittsburgh Bridges was excluded as this
is not strictly speaking a classification dataset. Primary Tutor was also ex-
cluded as this was problematic for one comparison method, generating
invalid results. These datasets were chosen since simple datasets, such
as Iris, do not show the benefits of AutoML as many methods are able to
achieve high performance somewhat trivially. The datasets feature a mix-
ture of complete and missing data, continuous and categorical features,
and a varying number of features, classes and instances. The datasets are
summarised in Table 4.2.

The only preprocessing done to these datasets is to remove any unique
ID columns, and replace missing values with NaNs. If a particular method
could not deal with categorical features, these were treated as suggested

74 CHAPTER 4. EFFICIENT ENSEMBLE-BASED AUTOML

Table 4.2: Summary table of all 15 datasets used for comparison. Ordered
in terms of descending difficulty (from [123]).

Name Missing Feature Types Instances Features Classes

Post-Operative Yes Categorical, Numeric 90 8 3

Planning No Numeric 182 13 2

Dresses Sales Yes Categorical 501 13 2

Statlog Australia Yes Categorical, Numeric 690 14 2

Heart Disease Switzerland Yes Numeric 123 13 5

Heart Disease VA Yes Numeric 200 13 5

Congressional Voting Yes Categorical 435 16 2

Thoracic Surgery No Categorical, Numeric 470 17 2

Haberman Survival No Numeric 306 3 2

Contraceptive Method No Categorical, Numeric 1473 9 3

Breast Cancer Yes Categorical 286 9 2

Titanic No Categorical, Numeric 1309 9 2

SPECT No Categorical 267 22 2

Breast Cancer Wisc (Prog) Yes Numeric 198 34 2

Statlog German No Categorical 1000 20 2

by the original developers (for TPOT that is one-hot-encoding, and for
auto-sklearn converting to integers and specifying the categorical columns
as a parameter). We note that in one case oversampling was required, this
was to ensure RECIPE worked as expected on post-operative.

4.3.3 Significance Tests

To compare AutoML methods, the average result for each dataset for each
classifier was used to perform the Friedman test, with Nemenyi post-hoc
analysis to provide an in-depth comparison between the methods in gen-
eral, as suggested in [105].

4.3. EXPIREMENT DESIGN 75

4.3.4 Comparison Methods

All methods outlined in Chapter 2 were compared, along with AutoVoter.
All methods were allowed to run for 3 hours, with the exception of Au-
toVoter, which was only run for 30 minutes (< 1/5th of the time). For
RECIPE, this was run for approximately 3 hours as the current release did
not have support for overall runtime. All methods were set to optimise
the weighted f1-measure. The goal was to determine whether AutoVoter
could achieve competitive results in a fraction of the time. One consider-
ation is if the extra time could cause overfitting. However, with AutoML,
generally speaking, the longer the time allocated, the better the results will
be. This is due to the fact all methods have internal measures in place to
prevent overfitting (such as complexity control and cross-fold validation),
as well as 3 hours being a relatively low amount of time for AutoML meth-
ods, so the risk of overfitting by running the methods for longer is low.

The methods were the most recent stable releases at the time of con-
ducting this research, which were: TPOT (0.9.3), auto-sklearn (0.4), Auto-
WEKA (2.6) and RECIPE (unversioned, but most recent commit: #44af4d1).
To minimise the effect of parallelism from the different systems (for ex-
ample Java vs Python based), we only run on one core. We note that all
methods can benefit from parallelism, but ours particularly, since the GP
and Bayesian methods are sequential by nature.

It should also be pointed out that AutoVoter, TPOT, RECIPE and Auto-
Sklearn all optimise over similar base members (feature selectors, esti-
mators etc) (those available in scikit-learn), whereas AutoWEKA uses the
base members available in WEKA (WEKA essentially offers a superset of
the methods in sklearn). AutoVoter includes no additional methods to
any of the comparisons, to allow for a fairer comparison rather than op-
timising over different/improved base members. Methods such as Auto-
Keras were not compared, as these offer completely different base mem-
bers (deep learning methods).

76 CHAPTER 4. EFFICIENT ENSEMBLE-BASED AUTOML

4.4 Results and Discussion

4.4.1 Overall Results

The results on all 15 datasets are summarised in Table 4.3. The proposed
method is the column “AutoVoter”. We can see in 8/15 cases, AutoVoter
achieved the highest accuracy, despite only being allocated ≈ 16.6% of
the running time when compared to the other methods (30 minutes vs 3
hours). It is also interesting to note that based on the reported results here,
4 of the datasets (congress, titanic, spect, and statlog) would no longer
be considered hard by the definition (an AUC and F-measure ≤ 0.8) in
[123]. Each method achieved the top result on at least one dataset, with
TPOT achieving the highest result on 6/15, auto-sklearn the best on 2/16

and RECIPE and AutoWEKA both the best on 1/15 datasets. We also note
this addresses the concerns in [72], that random search had too large of a
variation in the results. Here we can see the standard deviation is on par
with the comparison methods, and in fact smaller in some cases, due to
the ensembling providing more robust predictions.

4.4.2 Statistical Tests

The resulting p-values from the Nemenyi significance testing are given in
Table 4.5, the corresponding rankings (the higher the better) were: Au-
toVoter: 7.39, TPOT: 5.89, auto-sklearn: 5.20, AutoWEKA: 4.62, RECIPE:
2.89 (also presented in Table 4.4).

We can see in general, there is no drastic difference in the methods
in terms of resulting f1-scores (indicated by the majority of the squares
being red). The exception being the proposed method outperforms both
RECIPE and AutoWEKA in general, and TPOT outperforming RECIPE
in general. This further supports our claim that random search can be
considered as a contender for AutoML, especially when an emphasis is
placed on constructing good ensembles.

4.5. FURTHER ANALYSIS AND RECOMMENDATIONS 77

Table 4.3: Average testing results from all 15 datasets. Results presented
as mean ± standard deviation.

AutoVoter TPOT RECIPE AutoWEKA AutoSklearn
Post-Operative 0.582 ± 0.193 0.482 ± 0.169 0.540 ± 0.253 0.568 ± 0.207 0.535 ± 0.194
Planning 0.651 ± 0.114 0.651 ± 0.162 0.531 ± 0.276 0.613 ± 0.161 0.602 ± 0.185
Dresses Sales 0.573 ± 0.094 0.614 ± 0.082 0.376 ± 0.127 0.627 ± 0.078 0.572 ± 0.117
Statlog Australia 0.868 ± 0.037 0.850 ± 0.038 0.848 ± 0.045 0.860 ± 0.038 0.870 ± 0.054
Heart Disease Switzerland 0.342 ± 0.136 0.252 ± 0.146 0.182 ± 0.082 0.239 ± 0.200 0.258 ± 0.098
Heart Disease VA 0.341 ± 0.129 0.351 ± 0.135 0.199 ± 0.094 0.243 ± 0.100 0.232 ± 0.126
Congressional Voting 0.961 ± 0.027 0.961 ± 0.024 0.314 ± 0.151 0.958 ± 0.030 0.954 ± 0.027
Thoracic Surgery 0.776 ± 0.086 0.802 ± 0.077 0.719 ± 0.104 0.759 ± 0.084 0.762 ± 0.068
Haberman Survival 0.697 ± 0.104 0.638 ± 0.186 0.741 ± 0.129 0.691 ± 0.084 0.719 ± 0.107
Contraceptive Method 0.562 ± 0.030 0.564 ± 0.027 0.542 ± 0.027 0.538 ± 0.041 0.537 ± 0.022
Breast Cancer 0.684 ± 0.074 0.676 ± 0.067 0.422 ± 0.271 0.699 ± 0.061 0.725 ± 0.062
Titanic 0.823 ± 0.032 0.822 ± 0.040 0.756 ± 0.061 0.803 ± 0.031 0.819 ± 0.035
SPECT 0.819 ± 0.052 0.802 ± 0.045 0.778 ± 0.045 0.801 ± 0.070 0.816 ± 0.048
Breast Cancer Wisc (Prog) 0.788 ± 0.130 0.729 ± 0.166 0.711 ± 0.234 0.723 ± 0.171 0.730 ± 0.123
Statlog German 0.760 ± 0.041 0.736 ± 0.056 0.733 ± 0.029 0.697 ± 0.040 0.724 ± 0.046

Table 4.4: Resulting rank from the Friedman test. The higher the better.

Method Friedman Rank

AutoVoter 7.39
TPOT 5.89
AutoSklearn 5.20
AutoWEKA 4.62
RECIPE 2.89

4.5 Further Analysis and Recommendations

By looking at the results, we are able to draw some general conclusions.
There are no major differences in terms of resulting accuracy, so we at-
tempt to make the selection of an appropriate AutoML method easier by

78 CHAPTER 4. EFFICIENT ENSEMBLE-BASED AUTOML

Table 4.5: Resulting p-values from Nemenyi post-hoc analysis. Grey indi-
cates a comparison to self, so no value is present. Red indicates no statisti-
cally significant difference. Light green indicates statistical significance at
α = 0.05, and dark green significance at α = 0.01.

AutoVoter TPOT RECIPE AutoWEKA AutoSklearn
AutoVoter 0.553 0.001 0.044 0.182

TPOT 0.553 0.023 0.684 0.900
RECIPE 0.001 0.023 0.416 0.142

AutoWEKA 0.044 0.684 0.416 0.900
AutoSklearn 0.182 0.900 0.142 0.900

highlighting the benefits of each method in this section.

AutoVoter is fast and can be trivially extended to be massively paral-
lelisable, as random search is “embarrassingly parallel”. With the rise in
cheap cloud compute power, we foresee this becoming an important as-
pect for AutoML. Despite being fast, the results are still equivalent to or
better than the comparison methods in general.

TPOT and AutoWEKA are the easiest for an end user to install and
begin using, due to the support for a range of systems natively (i.e. Ma-
cOs, Windows, and Linux), and easy access (TPOT fully installable via
pip, and AutoWEKA prepackaged as a .jar). Auto-Sklearn only supports
Linux systems. RECIPE is runnable assuming Python2 and a C compiler.
Once installed, all methods are relatively trivial to use.

TPOT, AutoWEKA and RECIPE can all export the generated pipelines
directly to code. We foresee this being an important ability in AutoML
systems, as the resulting model should be able to be further adjusted by an
expert if desired. Both auto-sklearn and AutoVoter do not currently offer
this option, as the ensembling functionality makes these less interpretable
(although AutoVoter can be extended to do this, and resulting trees can be
visualised already).

AutoWEKA is the only method which features a Graphical User Inter-

4.6. CHAPTER CONCLUSIONS 79

face (GUI). As one of the goals of AutoML is to make ML more accessible,
having a GUI could be very beneficial, particularly for users without pro-
gramming knowledge.

RECIPE allows for a user to customise the search space by specifying a
grammar file. This is powerful for advanced users and gives a good deal
of control over the search space.

Auto-Sklearn is the only method which features a sophisticated initial-
isation procedure, which takes into account past datasets to initialise in a
sensible manner (meta-learning). While this was disabled here to prevent
information leak (as the meta-learning likely involved datasets used here),
this could show benefit for novel datasets. This has also been explored
with TPOT [124] but is not yet included in the stable release.

From our results, we have shown all methods to perform well on a
variety of domains. The search function of choice had little impact on the
resulting accuracies. To continue progress in the area, we suggest a focus
shift to highly parallelisable/scalable tools, and to expand the AutoML
userbase we suggest a specific focus on both the usability and availability
of the tools. Placing more focus on ensembling should also be considered
if the goal is to achieve high accuracy.

4.6 Chapter Conclusions

A novel method for AutoML was proposed, which was able to achieve
competitive (and in some cases improved) results when compared to the
current state-of-the-art approaches in a fraction of the time (trained 6×
faster). While the comparisons were all run on a single core for a fair com-
parison, the speedup becomes even more drastic when considering mul-
tiple cores (as the method is embarrassingly parallel). We showed these
results on 15 datasets and used the Friedman test for checking statistical
significance. We can conclude that ensembling provides a key future direc-
tion for AutoML, as do massively parallel methods. Random grid search

80 CHAPTER 4. EFFICIENT ENSEMBLE-BASED AUTOML

has been previously dismissed in [71], as auto-sklearn outperformed this
in the trials, however, we have shown here this changes when placing
restrictions on the search space and focusing on ensembling the pipeline
stumps. Likewise, ensembling addressed the concerns of a large variance
of random search in [72], as shown by the results in Table 4.3.

A limitation which still persists is the interpretation of the results of
the ensembles. For example, why does the ensemble in Chapter 3 or the
pipelines in this chapter predict a particular class? In the next chapter, we
address the concern of interpreting complex ensembles.

Chapter 5

Interpreting Complex Ensemble
Structures with GP

A common criticism of modern machine learning techniques (such as com-
plex ensembles) is the lack of interpretability/explainability. This could
serve as a barrier to the wide-scale adoption of ensembles, as users are
more likely to deploy a model if they can understand why particular de-
cisions are being made. This is discussed for business in [125], for health
care in [126], and more broadly in the recently deployed general data pro-
tection regulation [127] (GDPR) in the European Union, which prohibits
“solely automated decisions, including profiling, which have a legal or
similarly significant effect on them”.

5.1 Chapter Introduction

In this chapter, a new multi-objective GP-based method for interpretable
machine learning (IML) is proposed to overcome the limitations outlined
in Chapter 2. The specific objectives are to:

• Propose a simple, human-readable tree structure which can be used
for reconstructing complex predictions and overcome the limitations

81

82 CHAPTER 5. INTERPRETING COMPLEX ENSEMBLES WITH GP

of existing tree-based methods, such as greedy construction or need
for pruning,

• Simultaneously maximise the reconstruction ability while minimis-
ing the complexity of the trees,

• Generate a frontier of trade-off solutions for user selection, and

• Finally, to evaluate the method against current state-of-the-art ap-
proaches on various datasets.

Specifically, the goal of this method is to reconstruct how a complex
black-box method performs classification, rather than directly maximising
classification accuracy. The proposed method is applicable to any black-
box (arbitrarily complex) classifier, such as state-of-the-art ensembles, and
makes no further assumptions about these models (such as gradient-based,
or ability to apply sparsity).

5.2 The Proposed Method

In this section, a novel tree-based method is proposed for IML. Rather
than the greedy construction seen with typical tree-based methods (such
as CART), the proposed method uses GP to approximate an optimal tree.
The tree construction process aims to maximise the reconstruction abil-
ity (mimic the predictions of a complex black-box) while minimising the
complexity of the trees. The resulting trees are often far simpler while
providing equivalent reconstruction ability to current approaches.

To overcome the limitations outlined in Section 5.1, we use NSGA-II
[128], paired with strongly-typed GP (STGP) [32], to evolve decision tree-
like structures, which simultaneously balance the complexity and the ac-
curacy of the trees, by approximating a global search of the potential trees.
An approximation is required as a global search would not be possible for
any real datasets as the tree construction process is NP-complete. Hence,

5.2. THE PROPOSED METHOD 83

the goal is to outperform greedy methods, while still being computation-
ally feasible (at the expense of accepting near-optimal trees). Another ben-
efit of such an approach is that rather than producing a single tree, a Pareto
front of non-dominated trees is produced, which is particularly important
for XAI since the user can select a tree by visualising the trade-off between
the complexity and accuracy (examples of such visualisations are given in
Section 5.5).

5.2.1 Overall Algorithm

The overall training algorithm is shown in Fig. 5.1. The black-box clas-
sifier is trained once only on the original data (x and y values), then the
evolutionary process is performed based on the resulting predictions (ŷ)
from this black-box model (for a total 50 generations). The evolutionary
algorithm never sees the original labels (y), as this is instead attempting
to recreate the predicted labels ŷ. At the end of the evolutionary run, the
result is a set of Pareto optimal models/trees which approximate the com-
plex black-box model. Only the model with the highest reconstructive
ability is used here (i.e. the largest f1).

5.2.2 Multi-objective Optimisation

Evolutionary Multi-objective Optimisation (EMO) is used for generating a
Pareto front of models, as shown in Fig. 5.1. When selecting individuals,
the non-dominated sorting from NSGA-II [128] is first used to rank the
individuals.

With a single objective, ranking for selection in GP is relatively straight-
forward. The rank is based only on this single objective/fitness value,
i.e. the better the fitness the better the rank. However, when consider-
ing two (or more) objectives, this becomes less trivial as now the various
objectives must be considered. The traditional approach to dealing with
multiple objectives is scalarization, i.e., converting the problem to a single-

84 CHAPTER 5. INTERPRETING COMPLEX ENSEMBLES WITH GP

Evolution

Train Data

Black-box
Classifier Predicted Train Y

Original Train X

Pareto Front of Interpretable Models

Random Initiallisation

Evaluate objectives

Selection

Apply Genetic Operators

50 generations
reached?

Yes

No

x = Original Train X y = Predicted Train

XY

Non-dominated Sorting

Figure 5.1: Evolutionary Training Process.

objective one (e.g. with a weighted sum or penalty term). However, such
approaches require a priori information which is not always available, and
often result in sub-optimal solutions (i.e. those which do not lie on the true
Pareto front) due to conflicting objectives, and furthermore, do not give a
good insight into the optimisation problem [129].

Instead, the preferred approach is Pareto-based optimisation. Pareto-
based optimisation can simultaneously optimise conflicting objectives, by
using the idea of Pareto dominance to generate a frontier of non-dominated
solutions. Non-dominated means there is no other solution in the popu-
lation which improves upon any of the objectives of the solution with-

5.2. THE PROPOSED METHOD 85

out sacrificing another. There are various ways for ranking individuals
in Pareto-based multi-objective optimisation, depending on the algorithm
used. NSGA-II [128] and SPEA2 [130] are two of the most popular al-
gorithms for EMO. Here NSGA-II was chosen due to the proven track
record, however, additional algorithms could be explored in the future.
With NSGA-II, the rank is based on the non-dominated rank in the popu-
lation, and then if solutions are of the same rank, the solution which is in
a less populous region is preferred [128].

Once the solutions have been ranked, the rest of the evolutionary pro-
cess remains the same as with standard optimisation, however, an approx-
imation of the true Pareto-front can be acquired from the final generation
(rather than just a single best solution).

5.2.3 Objective Functions

The two objectives optimised are the reconstruction ability (maximisation)
and the complexity (minimisation). In this case, the complexity is mea-
sured as the number of splitting points in a tree. The reconstruction ability
is measured as an internal (i.e. on the training set only) 3-fold (K = 3)
cross-validation. Meaning the two objectives are:

Objective 1:

maximise
1

K

K∑
i=1

f1(predict(fold(i)), black − box predict(fold(i)) (5.1)

where f1 is the weighted f1-score (i.e. weighted by the number of instances
per class c)

f1(predicted, real) = (
∑
c∈C

|c| × 2× precision× recall
precision+ recall

)/
∑
c∈C

|c| (5.2)

Objective 2:

minimise
∑

split points (5.3)

86 CHAPTER 5. INTERPRETING COMPLEX ENSEMBLES WITH GP

Utilising the average reconstruction ability of multiple folds helps cre-
ate more robust trees, in that a small change to the dataset will not result
in a drastic change in the resulting tree. This is in contrast to decision-tree
learners which can change drastically with small changes in input. Ro-
bustness is an important concept in XAI, as if the learnt rules change dras-
tically with the training data, this can diminish faith in the learnt rules as
it implies the rules were very specific to the training data (overfit) rather
than generalising well to the new/unseen cases.

5.2.4 Representation

The evolved trees are decision tree-like, meaning the internal (function)
nodes are splitting points (binary for numeric data, and a branch for each
category in categorical data), and the output of such nodes are probability
vectors for each class. An example of such a tree is shown in Fig. 5.2. Nu-
meric splitting points are treated as typed terminals (so values will only be
crossed over between trees for a given feature, and not between features),
and these values are sampled uniformly from feature ranges.

As the output of all nodes is a probability vector, multiclass classifica-
tion is supported directly. There are several other ways GP has been used
for multi-class classification in the literature, but the output of probability
vectors makes fewer assumptions (e.g. numeric outputs with class bound-
aries [131] assumes an ordering of classes), has better run time than others
(e.g. a tree for each class [132], the run time scales with the number of
classes), and also is the most interpretable due to the avoidance of com-
plex numerical expressions or multiple trees, while also following closer
to that of decision trees.

With decision trees, the input is at the root and the output at a leaf.
Traditionally with GP, the input is at the leaves (terminals), and the output
is at the root. To get around this, data is passed in at the leaves but only
functions are returned until the root node (only one branch will end up re-

5.2. THE PROPOSED METHOD 87

Colour

Radius >= 4

Cherry Apple

>=<

Red

Seeds > 1

Avocado Berry

<= >

Green

Kiwifruit Grape

TrueFalse

Figure 5.2: An example tree for fruit classification demonstrating the struc-
ture. Each node has a probability vector associated with it, but this is ex-
cluded for readability. The grey nodes indicate the predicted class (i.e. the
class which had the highest probability).

turning values for a given input), and then the functions are executed once
we are at the root. For visualisation and use-cases, the two can be treated
uniformly, but the details are given for clarity (i.e. in the visualisations in
Section 5.5 class values are leaf nodes, but they are merely the majority
class predicted for this branch, rather than being an evolvable node).

The trees are also designed to have the ability to construct features
implicitly, from the observation that some simple patterns are not easily
approximable in decision trees due to the axis-parallel splits of decision
trees. Consider the simple (artificial) dataset with two features f1, f2, and
two classes 0, 1, where the condition is if f1 ≥ f2 then class 1 else class
0. With decision trees, the resulting trees would be needlessly complex,
as shown in Fig. 5.3. We use subtrees to construct features, then check if
these constructed features are greater than or equal to zero, in addition
to the standard binary splitting nodes discussed above. This encapsulates
many checks for mathematical relations, i.e. f1 − f2 ≥ 0 is equivalent

88 CHAPTER 5. INTERPRETING COMPLEX ENSEMBLES WITH GP

(a) Decision Tree splitting criteria.
(b) GP Splitting criteria using con-

structed features

Figure 5.3: A comparison of the splitting points when using axis-parralel
methods (decision trees) and oblique methods (GP with constructed fea-
tures). Oblique methods can result in simpler splits as shown here.

to f1 ≥ f2 from above. Constructed features can be combined using the
standard mathematical operations (+, -, *, protected /). Again, this can be
important for XAI due to the dramatically simpler rules learnt and utilis-
ing the complexity as the secondary objective prevents these constructed
features from becoming overly complex.

5.3 Experiment Design

5.3.1 Experiment Details

The aim is to reconstruct the predictions of complex black-box models,
and evaluate how well the proposed method is able to achieve this. In
order to ensure the method is agnostic to the black-box, we chose to use
three of the most common and high performing black-box models, which
are random forests, gradient boosting, and a deep neural network (with
200 hidden layers with 200 neurons in each layer) all implemented in h2o
[133]. 500 trees are used for random forests and gradient boosting, and the
remaining hyperparameters are kept as default.

The aim is to see how well a single tree (or in the case of comparisons, a

5.3. EXPERIMENT DESIGN 89

simple model) is able to reconstruct the predictions of 500 ensembles trees
or a deep network with 200 hidden layers. It is important to note these
black-box methods were not finely tuned and the relative performance of
each is not of importance in this paper, as we are not trying to compare
black-box methods (rather the ability to reconstruct their predictions).

5.3.2 Datasets

30 datasets comprising some of the most run datasets from the OpenML
repository [134] were used for comparison. These datasets are from a va-
riety of domains and have a varying number of features (with both cat-
egorical and numeric), classes, and instances. The datasets offer a broad
range to ensure generalisability of the proposed method. These datasets
are summarised in Table 5.1.

5.3.3 Comparison Methods

Current state-of-the-art approaches to model extraction were trialled. These
were Bayesian rule lists from [96] (as pysbrl on pip), an h2o decision tree
([133]), a simplified scikit-learn [102] decision tree [135], and logistic re-
gression with `1-regularization (from scikit-learn). For the scikit-learn meth-
ods, unfortunately, these do not natively support categorical features, so
a one-hot-encoding is needed to be applied prior. For Bayesian rule lists,
they currently only support discrete features, so as is commonly done,
multi-interval discretization as proposed in [136] was first applied. No
preprocessing was required for the h2o trees. Unfortunately, to our knowl-
edge there are no current approaches in literature to multi-objective XAI,
so we only compare the best resulting solutions rather than comparing
Pareto frontiers/hypervolumes as is more commonly done with multi-
objective optimisation algorithms.

90 CHAPTER 5. INTERPRETING COMPLEX ENSEMBLES WITH GP

5.3.4 Parameter Settings

The evolutionary search was run for 50 generations, with 100 trees in each
generation. A larger population size could be utilised, and the results
would likely improve at the expense of an increased runtime. Trees were
limited to a maximum height of 17. A crossover rate of 0.8 was used, and
a mutation rate of 0.2. Top performing individuals are never lost, as the
µ + λ algorithm [137] is used, with both values set to the population size
(i.e. keep the 100 best).

5.3.5 Evaluation Measures

Classification Performance For measuring performance, we use a weighted
f1-measure where the inputs are the predicted labels and the black-box
labels (rather than the real class labels). This was chosen as we assume
each class is equally important, and wish to have a valid measure for both
binary and multi-class classification. This measure can be roughly inter-
preted as “how well are we able to reconstruct the predictions of the black-
box classifier for each class”. For presentation, we scale this to the range
0 . . . 100, rather than 0 . . . 1.

Complexity Measuring complexity across classifiers can be a complex
task, however, here thankfully since each of the comparison methods is
somewhat similar in representation, there is a natural definition of com-
plexity. We define complexity as the number of splitting points in a tree. If
a constructed feature is used as a splitting point in the proposed method,
this counts as multiple splits, i.e. f1 + f1 ≤ 0, would be a complexity
of 2, rather than 1, to provide a fair comparison. For Bayesian rule lists,
the complexity is the number of rules + the number of conjunctions (∧’s)
in these rules, i.e. if f1 = 2 ∧ f2 = 0 then ... counts as 2. The number
of rules in logistic regression is measured as the number of non-zero co-
efficients. Therefore, for all methods, the minimum complexity is 0 (i.e.

5.4. RESULTS AND DISCUSSION 91

predict majority class, no rules learnt), and the maximum is∞.

5.3.6 Significance Tests

To compute whether the difference in reconstruction ability across datasets
for each method was statistically significant, we used Friedman tests paired
with Nemenyi post-hoc analysis as suggested in [105] as general perfor-
mance is the main focus. Significance tests on each dataset were not used
for the reasons described in [138], i.e. violations in the conclusions due
to the increased probability of type-I errors, as well as the Friedman test
making fewer assumptions.

To show the average reconstruction ability for each method, for each
dataset, we present the average testing accuracy of a 10-fold cross-validation
procedure, where each method gets the same train: test sets. The aver-
ages are also across the 3 black-box methods (so for each method, 30 runs
are executed for each dataset, with the same random samples used across
methods). The goal is for the extraction methods to be invariant to the
black-box model used, hence the averaging.

5.4 Results and Discussion

5.4.1 Overall Results

The results are shown in Table 5.2, on the two measures of concern: recon-
struction ability and complexity.

As we are interested in achieving the best reconstruction ability, while
also achieving the simplest representation, we compute the number of
times a method was dominated across datasets. Here, the definition of
non-dominated is no other method achieves either a simpler representa-
tion with the same (or improved) reconstruction ability, i.e., fewer domi-
nations is a good sign.

92 CHAPTER 5. INTERPRETING COMPLEX ENSEMBLES WITH GP

Table 5.1: Summary of dataset characteristics

Numeric
Features

Categorical
Features

Classes Instances

Dataset
analcatdata 70 0 4 841
autoUniv-au7-500 8 4 5 500
balance-scale 4 0 3 625
blood-transfusion 4 0 2 748
climate-model 20 0 2 540
cmc 2 7 3 1473
credit-g 7 13 2 1000
diabetes 8 0 2 768
eeg-eye-state 14 0 2 14980
GesturePhase 32 0 5 9873
hill-valley 100 0 2 1212
ilpd 9 1 2 583
iris 4 0 3 150
kc1 21 0 2 2109
kc2 21 0 2 522
kr-vs-kp 0 36 2 3196
monks-problems-1 0 6 2 556
monks-problems-2 0 6 2 601
ozone-level-8hr 72 0 2 2534
pc1 21 0 2 1109
phoneme 5 0 2 5404
qsar-biodeg 41 0 2 1055
spambase 57 0 2 4601
splice 0 60 3 3190
steel-plates-fault 33 0 2 1941
tic-tac-toe 0 9 2 958
vehicle 18 0 4 846
wall-robot-navigation 24 0 4 5456
waveform-5000 40 0 3 5000
wdbc 30 0 2 569

5.4. RESULTS AND DISCUSSION 93

Table 5.2: Summary of the results. The average testing performance is
presented.

Black-box Test Accuracy Test Reconstruction Ability Model Complexity
RF GB DL GP BRL SDT DT LR GP BRL SDT DT LR

Analcatdata Authorship 99.40 98.70 99.80 83.21 92.33 92.3 91.71 98.81 5 17 6 59 122
Autouniv-Au7-500 47.50 44.52 38.30 55.69 36.83 49.49 50.64 46.57 7 1 18 163 250
Balance-Scale 82.70 86.40 96.90 72.9 73.06 77.6 81.44 80.68 6 9 13 127 12
Blood-Transfusion 66.70 73.70 70.50 81.65 79.24 86.34 87.71 78.73 4 5 8 35 4
Climate-Model 86.90 85.30 88.20 88.44 92.47 90.66 89.72 91.09 3 3 6 22 13
Cmc 54.30 54.20 45.90 60.58 51.84 58.6 68.62 67.81 6 7 11 123 150
Credit-G 73.60 75.70 72.40 76.61 57.3 76.92 77.12 80.19 7 2 8 46 76
Diabetes 74.20 73.40 71.00 77.5 79.56 78.72 78.15 79.26 4 9 9 39 8
Eeg-Eye-State 93.10 87.50 78.90 54.26 77.65 71.86 74.3 49.28 4 120 8 50 14
GesturePhase 67.00 62.80 60.00 47.51 53.16 55.94 61.35 47.14 5 81 10 270 23
Hill-Valley 35.70 52.70 64.10 80.57 76.68 84.96 82.26 81.4 4 3 18 27 100
Ilpd 65.40 66.60 70.00 67.2 51.29 63.98 70.13 67.19 4 1 8 32 118
Iris 93.30 94.64 98.30 98.93 97.37 98.46 96.89 95.4 3 3 3 15 10
Kc1 82.30 84.30 82.70 85.19 83.98 85.8 86.14 85.34 4 10 5 39 21
Kc2 77.80 80.06 86.10 86.79 86.38 87.33 85.96 85.7 3 5 6 27 18
Kr-Vs-Kp 98.80 99.40 99.00 94.22 92.25 96.62 94.48 96.8 6 15 8 16 57
Monks-Problems-1 99.80 98.90 99.10 86.63 72.44 92.9 86.34 72.44 7 2 15 14 10
Monks-Problems-2 92.30 97.10 99.80 55.11 52.85 86.3 89.93 52.42 10 0 28 43 10
Ozone-Level-8Hr 93.70 93.20 93.60 93.44 93.76 94.82 94.52 95.55 3 11 5 36 61
Pc1 91.90 92.80 91.50 92.95 93.26 93.45 94.6 92.46 4 5 6 26 20
Phoneme 91.10 88.50 90.71 81.77 85.02 82.17 88.36 76.96 6 35 6 47 5
Qsar-Biodeg 87.00 86.60 84.70 81.14 86.52 85.81 87.1 89.59 4 18 8 38 31
Spambase 95.20 95.40 93.90 81.59 94.27 89.27 92.42 94.65 4 45 5 33 54
Splice 97.30 96.20 95.10 82.09 89.66 93.62 95.47 96.99 6 24 10 100 449
Steel-Plates-Fault 99.70 94.50 99.80 88.21 99.67 99.78 99.8 99.74 5 7 6 7 20
Tic-Tac-Toe 98.80 97.40 97.60 73.07 61.3 91.1 92.25 97.83 6 3 18 33 27
Vehicle 75.20 77.30 84.30 61.14 66.36 72.65 77.9 80.59 6 17 15 112 72
Wall-Robot-Navigation 99.20 99.69 92.50 78.63 96.23 95.33 97.4 68.53 5 58 8 79 96
Waveform-5000 85.30 83.80 83.20 72.64 79.48 76.91 83.51 92.5 6 71 8 168 117
Wdbc 95.40 94.40 98.70 95.21 95.13 94.14 94.2 95.48 4 8 4 17 11

94 CHAPTER 5. INTERPRETING COMPLEX ENSEMBLES WITH GP

GP SDT BRL DT LR
Method

0

2

4

6

8

10

12

14
Nu

m
be

r o
f d

at
as

et
s

Figure 5.4: Number of datasets on which a method was dominated by
other methods (lower the better).

The number of times dominated was chosen as the comparison meth-
ods present only a single solution, therefore we can not compare hyper-
volumes of resulting frontiers (despite the proposed method returning a
frontier), yet we still wish to compare the two objectives without mak-
ing assumptions about the importance of either (i.e. without computing a
scalar value). As the proposed method returns a frontier of solutions, only
the resulting solution with the highest reconstruction ability (as measured
by the fitness function on the training data, not on the unseen data), was
used to represent the performance. This result is shown in Fig. 5.4.

GP (the proposed method) was not dominated on any of the datasets.
One caveat is that analysing the dominated counts alone is not a compre-
hensive indicator of performance, since if the simplest possible model was
used (i.e. just use the majority class, which would give a complexity of 0 as
no rules were learnt), then this would never be dominated. Likewise, us-
ing the black-box model itself would achieve maximal reconstruction abil-
ity, and even though the complexity would be far greater this would still
never be dominated. Another argument could be that since GP was the

5.4. RESULTS AND DISCUSSION 95

only method which simultaneously balanced these objectives, this mea-
sure can be seen as biased towards the proposed. This is true, but also
shows the ability/usefulness of population-based techniques such as GP
as they can effectively optimise multiple objectives simultaneously. This
shows that multi-objective optimisation is a good choice for IML, as the
objectives were optimised better than the existing approaches (in terms of
dominance).

5.4.2 Statistical Tests

In addition to the dominated counts, the relative performance of the meth-
ods must also be considered. Friedman testing paired with Nemenyi post-
hoc analysis is performed to compare whether the difference in the result-
ing accuracies was statistically significant across datasets. The resulting
p-values are visualised in Fig. 5.5, where the only statistically significant
differences in reconstruction ability are between the proposed method and
the standard decision tree, and Bayesian rule lists and the decision tree.
For complexity, the proposed method was significantly simpler than all
comparisons methods.

To analyse the results on specific results, a per dataset breakdown of
the reconstruction ability vs complexity is given in Fig. 5.6, where the ideal
position is the top left of the chart (i.e. minimal complexity, maximal re-
construction ability).

From this, we are able to conclude the proposed GP-based method con-
sistently produces compact rules, while achieving statistically equivalent
accuracy to the more complex approaches. The one exception to this was
the decision tree, which was, however, on average 15×more complex than
the proposed approach.

96 CHAPTER 5. INTERPRETING COMPLEX ENSEMBLES WITH GP

(a) Complexity (b) Reconstruction Ability

Figure 5.5: Statistical significance testing. Resulting p-values from Fried-
man test w/ Nemenyi post-hoc correction. Red indicates no significant
difference. Green indicates a difference (darker=more significant).

5.5 Further Analysis

To give further insights into the resulting extracted models, a compari-
son is given on the hill-valley dataset across the methods. The hill-valley
dataset was chosen as this is the most complex (i.e. lowest resulting test
accuracy on the black-box models), and the deep learning reconstructions
are used. While we would like to present all results for all methods, this
would compromise 900 diagrams per method. Logistic regression is not
presented, as this only a list of up-to 100 coefficients for the features, and
1 value for the intercept. These comparisons are shown in Fig. 5.7.

From the examples (Fig. 5.7), we can see that the resulting tree from the
proposed method and the Bayesian rule list are by far the simplest of the
compared methods, condensing the approximate knowledge from a 200
layer neural network into small human readable form. A similar trend is
seen across the datasets when comparing the complexities. In this case,
the Bayesian rule-list actually just predicts 1 class, so is overly simplistic
(shown by the differences in the f -measures). To get an idea of what GP

5.5. FURTHER ANALYSIS 97

0 50 100
0

20

40

60

80

100

Ana
lca

tda
ta_

Auth
ors

hip

0 100 200

Auto
un

iv-
Au7

-50
0

0 50 100

Bala
nce

-Sc
ale

10 20 30

Bloo
d-T

ran
sfu

sio
n-S

erv
ice

-Cen
ter

5 10 15 20

Clim
ate

-M
od

el-
Sim

ula
tio

n-C
ras

he
s

0 50 100 150

Cmc

0 20 40 60 80
0

20

40

60

80

100

Cred
it-G

10 20 30 40

Diab
ete

s

0 50 100

Ee
g-E

ye
-St

ate

0 100 200

Gest
ure

ph
ase

seg
men

tat
ion

pro
ces

sed

0 25 50 75 100

Hill-V
alle

y

0 50 100

Ilp
d

5 10 15
0

20

40

60

80

100

Iris

10 20 30 40

Kc
1

10 20

Kc
2

20 40

Kr-
Vs-K

p

5 10 15

Mon
ks-

Pro
ble

ms-1

0 10 20 30 40

Mon
ks-

Pro
ble

ms-2

0 20 40 60
0

20

40

60

80

100

Ozon
e-L

ev
el-

8H
r

10 20

Pc1

10 20 30 40 50

Ph
on

em
e

10 20 30

Qsar
-Biod

eg

20 40

Sp
am

ba
se

0 100 200 300 400

Sp
lice

5 10 15 20
0

20

40

60

80

100

Ste
el-

Pla
tes

-Fa
ult

10 20 30

Tic
-Ta

c-T
oe

0 25 50 75 100

Veh
icle

0 25 50 75 100

Wall-
Rob

ot-
Nav

iga
tio

n

0 50 100 150

Wav
efo

rm
-50

00

5 10 15

Wdb
c

gp
brl
sdt
dt
lr

Figure 5.6: Testing reconstruction ability (y) vs Complexity (x). The ideal
position is the top left corner of the graph.

98 CHAPTER 5. INTERPRETING COMPLEX ENSEMBLES WITH GP

C0 <= 40212.53

C70 <= 117465.8

True

C31 <= 4606.54

False

class1 class0 C57 <= 24167.94 class1

class1 class0

(a) Proposed (f1 = 0.757)

C92 <= 4108.26

C94 <= 77.48

True

class0

False

class1 C78 <= 198.08

C59 <= 85.72 class1

class0 C93 <= 186.65

C30 <= 150.61 class0

C94 <= 115.33 class1

class1 class0

(b) Simplified Decision Tree (f1 = 0.759)

C75 < 4153.5

C75 < 73.7

True

C67 < 21309.14

False

C47 < 79.48 C78 < 185.68 C89 < 18559.89 C95 < 30798.8

C33 < 60.37 class0 C91 < 177.33 C3 < 2714.14 C27 < 5409.96 class0 C38 < 27261.15 C36 < 32342.63

class1 C7 < 46.33 C21 < 149.88 class0 C80 < 304.84 C15 < 2828.83 C86 < 4489.73 C95 < 5517.66 C4 < 26396.66 class1 class0 C1 < 74714.59

class0 class1 C95 < 116.48 class1 C68 < 327.99 C60 < 272.78 class0 C71 < 2800.03 C13 < 4039.04 C37 < 5896.63 class1 C81 < 6848.7 C48 < 23788.37 class0 C50 < 66181.8 C73 < 108039.89

class1 class0 class1 class0 class1 class1 class0 class1 class0 class1 class0 class0 class0 class1 class1 class1 class1 class1 class1 class1

(c) Decision Tree (f1 = 0.790)

IF (X43 = 3) AND (X78 = 3) THEN: Class1
ELSE IF (X62 = 0) THEN: Class1
ELSE DEFAULT: Class1

(d) Bayesian Rule List (f1 = 0.704)

Figure 5.7: A comparison of the resulting models on the hill-valley dataset,
attempting to recreate the 200 layer deep neural network predictions. The
testing reconstruction ability is given in brackets next to the method name.

5.5. FURTHER ANALYSIS 99

has found, the evolved tree can be consulted (Fig. 5.7a). The evolved tree
is attempting to split the data based on four features (or points) in the
dataset.

This makes sense when we consider the hill-valley dataset, which “when
plotted in order (from 1 through 100) as the Y coordinate, the points will
create either a Hill (a ’bump’ in the terrain) or a Valley (a ’dip’ in the ter-
rain)” [122]. We can see the tree is checking the first point, and comparing
to the point at 30% (i.e. the 30th feature), or the point at 70%, where the
tree is trying to distinguish between classes by finding the common points
for the hills/valleys and checking if these are high or low relative to the
training data (e.g. a high point at the start, a low point at 30%, then a high
a high point at 57% indicates a valley based on this tree).

Across the board, the datasets which were most difficult to reconstruct
the predictions on were: Autouniv-Au7-500, Eeg-Eye-State, Gesturephas-
esegmentationprocessed (GesturePhase), and Monks-Problems-2.

Two of these datasets (Autouniv-Au7-500, GesturePhase) have 5 classes.
One explanation here is that as the number of classes in a dataset increases,
as does the complexity necessarily with tree-based methods. For example,
if we have 100 classes, we therefore require 100 leaf nodes to have a predic-
tive branch for each class. This presents a potential area of future research,
as the size of the trees could negate the explainability as the number of
classes grows. Here the pressure for small trees was perhaps too strong,
and this requirement would need to be relaxed in the case of a high num-
ber of classes.

Monks-Problems-2 is entirely categorical features. In the proposed method,
a categorical node has a branch for each feature - this potentially over-
fits to the training data, and combining categorical features into a single
branch should be considered in future work (for reference, this is done
in the decision tree method, where we can see a significant improvement
in reconstructive ability, and this is consistent across the datasets with all
categorical features).

100 CHAPTER 5. INTERPRETING COMPLEX ENSEMBLES WITH GP

For eeg-eye-state, the data is sequential/time-series. The proposed
method is not optimised/designed for such datasets, so this explains the
lower performance.

(a) Analcatdata Authorship (b) Kr-Vs-Kp

(c) Monks-Problems-1 (d) Vehicle

Figure 5.8: Resulting Pareto Frontiers.

To highlight another benefit the proposed method has over the exist-
ing IML approaches, a Pareto front is given in Fig. 5.8. This shows a re-
sulting front for four of the datasets, but similar fronts are available for
all datasets. In all cases, the model with the highest reconstruction ability
was chosen, however, even simpler models could be used from the front
if desired. Likewise, if models were overly simple, any restrictions on the

5.6. CHAPTER CONCLUSIONS 101

height of evolved trees could be relaxed.

5.6 Chapter Conclusions

In this chapter, a novel model agnostic method for XAI was proposed
which utilises model extraction. Multi-objective GP is used to learn a sim-
ple and interpretable representation of a complex black-box model, which
is often able to effectively reproduce the black-box’s predictions. This new
method was compared to existing approaches to model extraction and was
found to offer drastically simpler models, with statistically equivalent test
accuracy. The method is also able to handle categorical and continuous
features natively, unlike some existing approaches such as Bayesian rule
lists. To our best knowledge, this is the first utilisation of multi-objective
optimisation in XAI, and follows the suggestions in [139] that “a multi-
objective approach based on Pareto dominance would be more suitable
to sufficiently address this trade-off” (between accuracy and interpretabil-
ity). We also believe this is the first application of GP for model extraction
(i.e. training on the predictions of a black-box model rather than the orig-
inal labels) and shows a promising direction for future developments.

102 CHAPTER 5. INTERPRETING COMPLEX ENSEMBLES WITH GP

Chapter 6

Conclusions

The overall goal of this thesis was to investigate population-based meth-
ods for ensemble learning and ensemble interpretation on a range of clas-
sification tasks. The goal has been achieved by developing novel methods
capable of performing fully automated ensemble learning (and pipeline
design), and also for generating simple structures which can be used to
help understand complex ensembles.

6.1 Major Conclusions

Relating to the three initial goals, the contributions are split into three sec-
tions here.

Conclusion 1: Genetic programming can be utilised for automati-
cally constructing well-performing ensembles.

In Chapter 3, a novel GP-based method was proposed for automated
ensemble learning, where GP was utilised as the meta-learner for stacked
generalisation. The method alleviates the user from model selection, hy-
perparameter tuning, and ensembling for classification tasks. Appropri-
ate base members and their key hyperparameters are tuned automati-
cally, as well as the hierarchical structure of the ensemble. The proposed
method outperformed a range of methods (and the individual base mem-

103

104 CHAPTER 6. CONCLUSIONS

bers) across a broad range of datasets.

We discovered GP was an ideal approach to such a task, as the tree-
based structures very naturally lend themselves to a hierarchical ensem-
ble. Furthermore, utilising strongly-typed GP allowed us to perform hy-
perparameter selection automatically.

The result is a method capable of constructing a fully automatic en-
semble, which selects from a range of base members and hyperparameters
automatically, without requiring human expertise or prior knowledge on
the problems or learning algorithms.

Conclusion 2: Random population-based ensemble search can achieve
performance similar to the state-of-the-art AutoML methods in a frac-
tion of the time.

In Chapter 4 a novel method for AutoML was proposed, which was
able to achieve competitive (and in some cases improved) results when
compared to the current state-of-the-art approaches in a fraction of the
time (trained 6× as fast). Furthermore, the proposed method is able to
be run entirely in parallel, which helps to overcome the limitation of auto-
mated machine learning taking too long to generate good pipelines. While
the comparisons were all run on a single core for a fair comparison, the
speedup becomes even more drastic when considering multiple cores.

In this case, the proposed method was based on a strongly-typed ran-
dom search but utilised a tree-based structure extremely similar to Genetic
Programming. From the results, we are able to conclude that ensembling
provides a key future direction for AutoML. Ensembling is useful for en-
suring the robustness of the resulting pipelines, which had been a problem
with previous randomised approaches. Furthermore, ensembling meant
well-performing individuals were able to be found in a fraction of the time.
While this may seem counter-intuitive as the search space is larger, the in-
crease in performance of even an average ensemble was worth the growth
of the search space.

Conclusion 3: Multi-objective GP can be used for generating simple

6.2. ADDITIONAL FINDINGS 105

and interpretable representations for complex black-box methods by si-
multaneously optimising the reconstruction ability and complexity.

In Chapter 5, a novel method for interpreting state-of-the-art complex
black-box machine learning models was proposed. The method is agnos-
tic to the model used, meaning any black-box models can be interpreted
(such as complex ensembles or deep neural networks). Evolutionary mul-
tiobjective optimisation is used in conjunction with strongly-typed genetic
programming to learn a simple and interpretable approximation of a com-
plex black-box models behaviour, which is often able to effectively recon-
struct the black-box’s predictions.

This new method was compared to existing approaches for model ex-
traction and was found to offer drastically simpler models while provid-
ing comparable reconstructive performance. This was demonstrated on a
range of datasets, by approximating the knowledge of complex black-box
models such as 200 layer neural networks and ensembles of 500 trees, with
a single tree. The method is also able to handle categorical and continuous
features natively, unlike some existing approaches such as Bayesian rule
lists. To the best of our knowledge, this was the first application of multi-
objective GP for global model interpretation for black-box explainability.

Both GP and multiobjective optimisation are ideal candidates for dis-
covering/interpreting the inner-workings of complex black-box methods
such as state-of-the-art ensembles.

6.2 Additional Findings

As well as the initial goals we set out, there was also some additional
knowledge we gained in the process.

Firstly, the diversity achieved in ensembles constructed automatically
with genetic programming was strong enough on its own when using a
suitable fitness function (such as a weighted f1-measure). Diverse ensem-
bles were generated without requiring extra evolutionary pressure. We

106 CHAPTER 6. CONCLUSIONS

evaluated the use of a special crossover which weighted crossover points
based on the diversity/information gained and found the results to be
equivalent to standard (uniform weighted) crossover. This shows the ran-
domness involved in the selection procedure may be enough of a pressure
to construct diverse ensembles assuming sensible parameter settings (i.e.
a relatively high mutation rate).

Secondly, we found caching to be a simple solution which results in
a drastic speedup when function nodes are costly to evaluate. In this
case, nodes were running classification algorithms. Hashing the model
and storing the results resulted in a drastic speedup over recomputing the
models each time.

Thirdly, we found for AutoML the difference in search algorithms used
was not drastic. For example, there were no significant differences be-
tween the existing Bayesian and Genetic Programming methods in terms
of performance.

Finally, we found multi-objective optimisation to be a very natural
and important application for interpretable machine learning. Population-
based methods such as GP which are able to simultaneously optimise mul-
tiple objectives are an important future direction for explainability and in-
terpretability of resulting models. While the initial goal was just to utilise
GP for interpreting a black-box model, introducing multiobjective optimi-
sation and having a Pareto-front of such explanations was very powerful,
and XAI should be considered a key application of multiobjective optimi-
sation.

6.3 Future Work

In this section, we outline future work/recommendations for further av-
enues of research.

Ensemble Construction
In Chapter 3 we used the predicted class as the output for the various

6.3. FUTURE WORK 107

classification nodes. However, many algorithms can also give the prob-
ability of the class, which could also be incorporated. For example, if a
tie occurs (a disagreement in classifiers about the real class), the classifier
which was more certain in its prediction could be preferred, i.e. if we were
doing binary classification, and one classifier was 56% certain an instance
belonged to class A, however, another classifier was 98% sure the instance
belonged to class B, then we should prefer the latter classifier. There are
two reasons this was not included here, firstly, not all algorithms give
probabilities (or if they do it can be costly to compute, i.e. with SVMs),
secondly, for algorithms which do output probabilities, these would need
to be well calibrated. As an example, with Boosted trees, probabilities
close to the extremes (i.e. 0 and 1) are rare, whereas, with methods such as
Naive Bayes, the probabilities are pushed towards 0 or 1 [140]. This cali-
bration is non-trivial and would be required to be performed consistently
throughout the evolutionary process to avoid penalising more conserva-
tive models. Further work could examine if this additional computation
would be worth the cost. Another approach would be to limit the en-
semble to classification ensembles which optimise in similar fashions, i.e.
by minimising the log loss, for example by having an ensemble of neural
networks each with different architectures, however, this reduces the di-
versity of the ensemble as there is an additional assumption that all base
members must be optimising a similar loss function.

In Chapter 3 we used GP for parameter selection as the number of pa-
rameters we were trying to tune was relatively small (i.e. each classifier
only had a couple of parameters, and the range of these was not huge),
however, GP is not an ideal candidate for large-scale parameter selection.
The main limitation GP suffers from here is that neighbouring parameters
of well-performing values are not necessarily explored, for example, if we
find 10 neighbours performs well for k-NN, we do not necessarily try 9 or
11 neighbours which may also perform well, and potentially better. Other
methods such as particle swarm optimisation, or Bayesian inference could

108 CHAPTER 6. CONCLUSIONS

be incorporated with GP to further improve this, where GP evolves the
structure of the ensemble, and PSO or Bayesian inference is then used to
tune the parameters in the trees either throughout the evolutionary pro-
cess or on the final resulting ensemble. This integration deserves further
exploration.

AutoML

In Chapter 4 a novel randomised ensemble-based approach to AutoML
was proposed (AutoVoter). While we showed equivalent performance
in a fraction of the time to existing approaches, the next stage would be
to expand the other approaches (such as TPOT) to feature an ensemble
learning process natively, to see if an additional performance gain could
be achieved. Alternatively, rather than the random search used, we could
expand our own method into a Bayesian and a GP based method, and per-
form in-depth comparisons between the three approaches when utilising
the exact same search space. Currently, we did not notice any significant
difference between the search algorithm used, so this comparison would
help to gain a deeper understanding of how the methods differ in their
exploration and exploitation of the AutoML search space.

Similar to the above, we could also expand the method to have more
expressive pipelines. In the proposed method we limited pipeline stumps
to be composed of at most 3 components. This was done in order to com-
bat the exponential growth of the search space when introducing ensem-
bles, however, experiments could be performed to see about increasing
this size to allow for a broader range of pipelines.

We would also have liked to provide a comprehensive comparison be-
tween the randomised approach and GP. Future work could look to un-
derstand in what cases random search becomes competitive, and when
GP should be preferred.

Finally, we showed that AutoVoter was competitive in a fraction of the
time to the current state-of-the-art approaches. We tested this with 30 min-
utes for the proposed method, and 3 hours for the comparison methods.

6.3. FUTURE WORK 109

However, a large scale in-depth comparison would be ideal to see how the
various methods improve over time, for example running all methods for
upwards of 24 hours, with continuous comparisons throughout the learn-
ing phase. This was not attempted here due to the large computational
cost associated, but as computational power becomes more affordable, this
may be a possibility for future analysis.

Interpreting Complex Models

In Chapter 5 a novel method for interpreting black-box models was
presented. There are several areas of potential improvement.

Firstly, can the recreation ability of the proposed method be improved
without sacrificing simplicity by considering local search techniques for
splitting points? Currently, the splitting points are sampled uniformly
from the feature ranges and evolution used to select good points. Once
the structure has been found with GP, these points could be adjusted dy-
namically with a local search method. Similar to the suggestions for Con-
tribution 1, GP is not necessarily ideal for exploring parameter values, and
the same holds true for the splitting points. Exploring regions of well-
performing splitting points could further improve the results.

Next, currently for categorical features, a new branch is constructed for
each category. This potentially results in overfitting to the training data,
and at the very least results in overly complex trees when the number of
categories is high. Pruning the trees by grouping nodes with similar sub-
trees could be investigated, as this may result in improved performance
for datasets with a large number of categorical features.

With the proposed method, only the original training data is used for
learning the interpretable model. However, since the real labels are never
seen by the evolutionary process, this dataset could be heavily augmented
to produce an essentially infinite amount of training data as the black-box
serves as the labeller. Once the black-box has learnt a model, we could
use the black-box’s predictions as labels for the new augmented data. This
has been explored in [94], where they refer to the black-box as an “or-

110 CHAPTER 6. CONCLUSIONS

acle”. Likewise, semi-supervised learning tasks could benefit from this
approach. All of the labelled training data could be used to learn the
black-box, then the unlabelled training instances used the same as the aug-
mented data above. This could be particularly useful for branches which
only have a few instances, to increase the likelihood of predicting the cor-
rect class.

In Chapter 5 a basic complexity measure is used for evaluating the
simplicity of the models. However, if the goal is human interpretation,
it would be ideal to conduct a blind large scale user study on the resulting
models. Finally, related to the previous point, it is possible to guide the
evolution of the models based on the human feedback, we foresee these
human-in-the-loop/people-centric AI type systems being important for
XAI, and this is something that could be incorporated into the evolution-
ary process here by modifying the complexity measure to instead be user
determined.

BIBLIOGRAPHY 111

Bibliography

[1] Y. Freund, R. E. Schapire et al., “Experiments with a new boosting
algorithm,” in Icml, vol. 96. Citeseer, 1996, pp. 148–156.

[2] T. Hoch, “An ensemble learning approach for the kaggle taxi travel
time prediction challenge.” in DC@ PKDD/ECML, 2015.

[3] A. Puurula, J. Read, and A. Bifet, “Kaggle lshtc4 winning solution,”
arXiv preprint arXiv:1405.0546, 2014.

[4] R. M. Bell and Y. Koren, “Lessons from the netflix prize challenge,”
Acm Sigkdd Explorations Newsletter, vol. 9, no. 2, pp. 75–79, 2007.

[5] X. Zeng, W. Ouyang, J. Yan, H. Li, T. Xiao, K. Wang, Y. Liu, Y. Zhou,
B. Yang, Z. Wang et al., “Crafting gbd-net for object detection,” IEEE
transactions on pattern analysis and machine intelligence, vol. 40, no. 9,
pp. 2109–2123, 2018.

[6] G. Brown, J. Wyatt, R. Harris, and X. Yao, “Diversity creation meth-
ods: a survey and categorisation,” Information Fusion, vol. 6, no. 1,
pp. 5–20, 2005.

[7] A. Chandra and X. Yao, “Divace: Diverse and accurate ensemble
learning algorithm,” in International Conference on Intelligent Data En-
gineering and Automated Learning. Springer, 2004, pp. 619–625.

[8] L. I. Kuncheva, “That elusive diversity in classifier ensembles,” in
Iberian conference on pattern recognition and image analysis. Springer,
2003, pp. 1126–1138.

[9] S. Džeroski and B. Ženko, “Is combining classifiers with stacking
better than selecting the best one?” Machine learning, vol. 54, no. 3,
pp. 255–273, 2004.

112 CHAPTER 6. CONCLUSIONS

[10] M. Fernández-Delgado, E. Cernadas, S. Barro, and D. Amorim, “Do
we need hundreds of classifiers to solve real world classification
problems?” The Journal of Machine Learning Research, vol. 15, no. 1,
pp. 3133–3181, 2014.

[11] Y. Lou, R. Caruana, and J. Gehrke, “Intelligible models for classifica-
tion and regression,” in Proceedings of the 18th ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining. ACM, 2012,
pp. 150–158.

[12] J. Burrell, “How the machine thinks: Understanding opacity in ma-
chine learning algorithms,” Big Data & Society, vol. 3, no. 1, 2016.

[13] J. R. Koza, “Genetic programming as a means for programming
computers by natural selection,” Statistics and computing, vol. 4,
no. 2, pp. 87–112, 1994.

[14] P. Domingos, “A few useful things to know about machine learn-
ing,” Communications of the ACM, vol. 55, no. 10, pp. 78–87, 2012.

[15] S. B. E. Raj and A. A. Portia, “Analysis on credit card fraud detection
methods,” in 2011 International Conference on Computer, Communica-
tion and Electrical Technology (ICCCET). IEEE, 2011, pp. 152–156.

[16] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the game of go with deep neural net-
works and tree search,” nature, vol. 529, no. 7587, pp. 484–489, 2016.

[17] H.-T. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Arad-
hye, G. Anderson, G. Corrado, W. Chai, M. Ispir et al., “Wide & deep
learning for recommender systems,” in Proceedings of the 1st Work-
shop on Deep Learning for Recommender Systems. ACM, 2016, pp.
7–10.

BIBLIOGRAPHY 113

[18] M. Chen, Y. Hao, K. Hwang, L. Wang, and L. Wang, “Disease pre-
diction by machine learning over big data from healthcare commu-
nities,” Ieee Access, vol. 5, pp. 8869–8879, 2017.

[19] T. Harris, “Credit scoring using the clustered support vector ma-
chine,” Expert Systems with Applications, vol. 42, no. 2, pp. 741–750,
2015.

[20] S. Xingjian, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, and W.-c.
Woo, “Convolutional lstm network: A machine learning approach
for precipitation nowcasting,” in Advances in neural information pro-
cessing systems, 2015, pp. 802–810.

[21] S. Dua and X. Du, Data mining and machine learning in cybersecurity.
Auerbach Publications, 2016.

[22] J. Patel, S. Shah, P. Thakkar, and K. Kotecha, “Predicting stock and
stock price index movement using trend deterministic data prepa-
ration and machine learning techniques,” Expert Systems with Appli-
cations, vol. 42, no. 1, pp. 259–268, 2015.

[23] S. Zhai, K.-h. Chang, R. Zhang, and Z. M. Zhang, “Deepintent:
Learning attentions for online advertising with recurrent neural net-
works,” in Proceedings of the 22nd ACM SIGKDD international confer-
ence on knowledge discovery and data mining. ACM, 2016, pp. 1295–
1304.

[24] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 770–778.

[25] S. Marsland, Machine learning: an algorithmic perspective. Chapman
and Hall/CRC, 2011.

[26] T. O. Ayodele, “Types of machine learning algorithms,” in New ad-
vances in machine learning. InTech, 2010.

114 CHAPTER 6. CONCLUSIONS

[27] J. Wang, C. Lu, M. Wang, P. Li, S. Yan, and X. Hu, “Robust face
recognition via adaptive sparse representation,” IEEE transactions on
cybernetics, vol. 44, no. 12, pp. 2368–2378, 2014.

[28] G. Deshpande, P. Wang, D. Rangaprakash, and B. Wilamowski,
“Fully connected cascade artificial neural network architecture for
attention deficit hyperactivity disorder classification from functional
magnetic resonance imaging data,” IEEE transactions on cybernetics,
vol. 45, no. 12, pp. 2668–2679, 2015.

[29] K. Schouten, O. van der Weijde, F. Frasincar, and R. Dekker, “Su-
pervised and unsupervised aspect category detection for sentiment
analysis with co-occurrence data,” IEEE transactions on cybernetics,
vol. 48, no. 4, pp. 1263–1275, 2018.

[30] Y.-S. Ong, M. H. Lim, and X. Chen, “Memetic computationpast,
present & future [research frontier],” IEEE Computational Intelligence
Magazine, vol. 5, no. 2, pp. 24–31, 2010.

[31] F. Neri and C. Cotta, “Memetic algorithms and memetic computing
optimization: A literature review,” Swarm and Evolutionary Compu-
tation, vol. 2, pp. 1–14, 2012.

[32] D. J. Montana, “Strongly typed genetic programming,” Evolutionary
computation, vol. 3, no. 2, pp. 199–230, 1995.

[33] J. R. Koza, Genetic programming II, automatic discovery of reusable sub-
programs. MIT Press, Cambridge, MA, 1992.

[34] R. Poli, W. B. Langdon, N. F. McPhee, and J. R. Koza, A field guide to
genetic programming. Lulu. com, 2008.

[35] A. Shukla, H. M. Pandey, and D. Mehrotra, “Comparative review of
selection techniques in genetic algorithm,” in 2015 International Con-
ference on Futuristic Trends on Computational Analysis and Knowledge
Management (ABLAZE). IEEE, 2015, pp. 515–519.

BIBLIOGRAPHY 115

[36] T. Bäck, D. B. Fogel, and Z. Michalewicz, Evolutionary computation 1:
Basic algorithms and operators. CRC press, 2000, vol. 1.

[37] S. Wappler and J. Wegener, “Evolutionary unit testing of object-
oriented software using strongly-typed genetic programming,” in
Proceedings of the 8th annual conference on Genetic and evolutionary com-
putation. ACM, 2006, pp. 1925–1932.

[38] J. C. B. Ribeiro, “Search-based test case generation for object-
oriented java software using strongly-typed genetic programming,”
in Proceedings of the 10th annual conference companion on Genetic and
evolutionary computation. ACM, 2008, pp. 1819–1822.

[39] S. Luke, C. Hohn, J. Farris, G. Jackson, and J. Hendler, “Co-evolving
soccer softbot team coordination with genetic programming,” in
Robot Soccer World Cup. Springer, 1997, pp. 398–411.

[40] H. Al-Sahaf, A. Song, K. Neshatian, and M. Zhang, “Two-tier ge-
netic programming: Towards raw pixel-based image classification,”
Expert Systems with Applications, vol. 39, no. 16, pp. 12 291–12 301,
2012.

[41] B. Evans, H. Al-Sahaf, B. Xue, and M. Zhang, “Evolutionary deep
learning: A genetic programming approach to image classification,”
in 2018 IEEE Congress on Evolutionary Computation (CEC). IEEE,
2018, pp. 1–6.

[42] T. G. Dietterich, “Ensemble methods in machine learning,” in Inter-
national workshop on multiple classifier systems. Springer, 2000, pp.
1–15.

[43] L. Breiman, “Bias, variance, and arcing classifiers,” 1996.

[44] L. K. Hansen and P. Salamon, “Neural network ensembles,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 12,
no. 10, pp. 993–1001, 1990.

116 CHAPTER 6. CONCLUSIONS

[45] I. Guyon and A. Elisseeff, “An introduction to variable and feature
selection,” Journal of machine learning research, vol. 3, no. Mar, pp.
1157–1182, 2003.

[46] P. Melville and R. J. Mooney, “Diverse ensembles for active learn-
ing,” in Proceedings of the twenty-first international conference on Ma-
chine learning. ACM, 2004, pp. 584–591.

[47] U. Bhowan, M. Johnston, M. Zhang, and X. Yao, “Evolving diverse
ensembles using genetic programming for classification with unbal-
anced data,” IEEE Transactions on Evolutionary Computation, vol. 17,
no. 3, pp. 368–386, 2013.

[48] T. M. Mitchell et al., “Machine learning. wcb,” 1997.

[49] D. H. Wolpert, “Stacked generalization,” Neural networks, vol. 5,
no. 2, pp. 241–259, 1992.

[50] M. Michailidis, “Investigating machine learning methods in recom-
mender systems,” Ph.D. dissertation, UCL (University College Lon-
don), 2017.

[51] L. Breiman, “Bagging predictors,” Machine learning, vol. 24, no. 2,
pp. 123–140, 1996.

[52] ——, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5–32,
2001.

[53] I. Barandiaran, “The random subspace method for constructing de-
cision forests,” IEEE transactions on pattern analysis and machine intel-
ligence, vol. 20, no. 8, pp. 832–844, 1998.

[54] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of
on-line learning and an application to boosting,” Journal of computer
and system sciences, vol. 55, no. 1, pp. 119–139, 1997.

BIBLIOGRAPHY 117

[55] J. H. Friedman, “Greedy function approximation: a gradient boost-
ing machine,” Annals of statistics, pp. 1189–1232, 2001.

[56] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting sys-
tem,” in Proceedings of the 22nd acm sigkdd international conference on
knowledge discovery and data mining. ACM, 2016, pp. 785–794.

[57] G. An, “The effects of adding noise during backpropagation training
on a generalization performance,” Neural computation, vol. 8, no. 3,
pp. 643–674, 1996.

[58] “Lecture 4: Noise notes,” http://web.mit.edu/6.02/www/f2010/
handouts/lectures/L4-notes.pdf, September 2010.

[59] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifica-
tion with deep convolutional neural networks,” in Advances in neural
information processing systems, 2012, pp. 1097–1105.

[60] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, “Under-
standing deep learning requires rethinking generalization,” arXiv
preprint arXiv:1611.03530, 2016.

[61] M. Zhang and W. Smart, “Using gaussian distribution to construct
fitness functions in genetic programming for multiclass object clas-
sification,” Pattern Recognition Letters, vol. 27, no. 11, pp. 1266–1274,
2006.

[62] C. Downey, M. Zhang, and J. Liu, “Parallel linear genetic program-
ming for multi-class classification,” Genetic Programming and Evolv-
able Machines, vol. 13, no. 3, pp. 275–304, 2012.

[63] W. B. Langdon and B. F. Buxton, “Genetic programming for combin-
ing classifiers,” in Proceedings of the 3rd Annual Conference on Genetic
and Evolutionary Computation. Morgan Kaufmann Publishers Inc.,
2001, pp. 66–73.

http://web.mit.edu/6.02/www/f2010/handouts/lectures/L4-notes.pdf
http://web.mit.edu/6.02/www/f2010/handouts/lectures/L4-notes.pdf

118 CHAPTER 6. CONCLUSIONS

[64] W. B. Langdon, S. J. Barrett, and B. F. Buxton, “Genetic programming
for combining neural networks for drug discovery,” in Soft Comput-
ing and Industry. Springer, 2002, pp. 597–608.

[65] ——, “Combining decision trees and neural networks for drug dis-
covery,” in Genetic Programming, J. A. Foster, E. Lutton, J. Miller,
C. Ryan, and A. Tettamanzi, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2002, pp. 60–70.

[66] A. Majid, A. Khan, and A. M. Mirza, “Combination of support vec-
tor machines using genetic programming,” International Journal of
Hybrid Intelligent Systems, vol. 3, no. 2, pp. 109–125, 2006.

[67] A. Khan, A. Majid, and A. M. Mirza, “Combination and optimiza-
tion of classifiers in gender classification using genetic program-
ming,” International Journal of Knowledge-based and Intelligent Engi-
neering Systems, vol. 9, no. 1, pp. 1–11, 2005.

[68] M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum, and
F. Hutter, “Efficient and robust automated machine learning,” in Ad-
vances in Neural Information Processing Systems, 2015, pp. 2962–2970.

[69] J. Bergstra and Y. Bengio, “Random search for hyper-parameter op-
timization,” Journal of Machine Learning Research, vol. 13, no. Feb, pp.
281–305, 2012.

[70] A. Zheng, “Evaluating machine learning models,” Dosegljivo:
https://www. oreilly. com/ideas/evaluating-machinelearning-
models/page/5/hyperparameter-tuning.[Dostopano: 20. 8. 2017], vol. 40,
2015.

[71] C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Auto-
weka: Combined selection and hyperparameter optimization of

BIBLIOGRAPHY 119

classification algorithms,” in Proceedings of the 19th ACM SIGKDD in-
ternational conference on Knowledge discovery and data mining. ACM,
2013, pp. 847–855.

[72] R. S. Olson, N. Bartley, R. J. Urbanowicz, and J. H. Moore, “Evalu-
ation of a tree-based pipeline optimization tool for automating data
science,” in Proceedings of the Genetic and Evolutionary Computation
Conference 2016. ACM, 2016, pp. 485–492.

[73] P. I. Frazier, “A tutorial on bayesian optimization,” arXiv preprint
arXiv:1807.02811, 2018.

[74] E. Brochu, V. M. Cora, and N. De Freitas, “A tutorial on bayesian
optimization of expensive cost functions, with application to ac-
tive user modeling and hierarchical reinforcement learning,” arXiv
preprint arXiv:1012.2599, 2010.

[75] L. Kotthoff, C. Thornton, H. H. Hoos, F. Hutter, and K. Leyton-
Brown, “Auto-weka 2.0: Automatic model selection and hyperpa-
rameter optimization in weka,” The Journal of Machine Learning Re-
search, vol. 18, no. 1, pp. 826–830, 2017.

[76] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and
I. H. Witten, “The weka data mining software: an update,” ACM
SIGKDD explorations newsletter, vol. 11, no. 1, pp. 10–18, 2009.

[77] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,
“Scikit-learn: Machine learning in python,” Journal of machine learn-
ing research, vol. 12, no. Oct, pp. 2825–2830, 2011.

[78] R. S. Olson, R. J. Urbanowicz, P. C. Andrews, N. A. Lavender, J. H.
Moore et al., “Automating biomedical data science through tree-
based pipeline optimization,” in European Conference on the Applica-
tions of Evolutionary Computation. Springer, 2016, pp. 123–137.

120 CHAPTER 6. CONCLUSIONS

[79] A. G. de Sá, W. J. G. Pinto, L. O. V. Oliveira, and G. L. Pappa,
“Recipe: a grammar-based framework for automatically evolving
classification pipelines,” in European Conference on Genetic Program-
ming. Springer, 2017, pp. 246–261.

[80] H. Jin, Q. Song, and X. Hu, “Efficient neural architecture search with
network morphism,” arXiv preprint arXiv:1806.10282, 2018.

[81] C. Weill, J. Gonzalvo, V. Kuznetsov, S. Yang, S. Yak, H. Mazzawi,
E. Hotaj, G. Jerfel, V. Macko, M. Mohri, and C. Cortes, “Adanet:
Fast and flexible automl with learning guarantees,” https://github.
com/tensorflow/adanet, 2018.

[82] L. Sweeney, “Discrimination in online ad delivery,” Commun. ACM,
vol. 56, no. 5, pp. 44–54, May 2013.

[83] T. Bolukbasi, K.-W. Chang, J. Y. Zou, V. Saligrama, and A. T. Kalai,
“Man is to computer programmer as woman is to homemaker? de-
biasing word embeddings,” in Advances in Neural Information Pro-
cessing Systems, 2016, pp. 4349–4357.

[84] F. K. Došilović, M. Brčić, and N. Hlupić, “Explainable artificial in-
telligence: A survey,” in 2018 41st International Convention on Infor-
mation and Communication Technology, Electronics and Microelectronics
(MIPRO). IEEE, 2018, pp. 0210–0215.

[85] J. W. Tukey, Exploratory data analysis. Reading, Mass., 1977, vol. 2.

[86] A. Vellido, J. D. Martı́n-Guerrero, and P. J. Lisboa, “Making machine
learning models interpretable.” in ESANN, vol. 12. Citeseer, 2012,
pp. 163–172.

[87] W. Samek, T. Wiegand, and K.-R. Müller, “Explainable artificial in-
telligence: Understanding, visualizing and interpreting deep learn-
ing models,” arXiv preprint arXiv:1708.08296, 2017.

https://github.com/tensorflow/adanet
https://github.com/tensorflow/adanet

BIBLIOGRAPHY 121

[88] M. D. Zeiler, D. Krishnan, G. W. Taylor, and R. Fergus, “Deconvolu-
tional networks,” in 2010 IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition. IEEE, June 2010, pp. 2528–2535.

[89] M. T. Ribeiro, S. Singh, and C. Guestrin, ““why should I trust you?”:
Explaining the predictions of any classifier,” in Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, San Francisco, CA, USA, August 13-17, 2016, 2016,
pp. 1135–1144.

[90] O. Bastani, C. Kim, and H. Bastani, “Interpretability via model ex-
traction,” arXiv preprint arXiv:1706.09773, 2017.

[91] B. Kim and F. Doshi-Velez, “Icml 2017 tutorial on interpretable
machine learning.” [Online]. Available: http://people.csail.mit.
edu/beenkim/icml tutorial.html

[92] C. Molnar, “Interpretable machine learning,” A Guide for Making
Black Box Models Explainable, 2018.

[93] F. Doshi-Velez and B. Kim, “Towards a rigorous science of inter-
pretable machine learning,” arXiv preprint arXiv:1702.08608, 2017.

[94] M. Craven and J. W. Shavlik, “Extracting tree-structured representa-
tions of trained networks,” in Advances in neural information process-
ing systems, 1996, pp. 24–30.

[95] B. Letham, C. Rudin, T. H. McCormick, D. Madigan et al., “Inter-
pretable classifiers using rules and bayesian analysis: Building a bet-
ter stroke prediction model,” The Annals of Applied Statistics, vol. 9,
no. 3, pp. 1350–1371, 2015.

[96] H. Yang, C. Rudin, and M. Seltzer, “Scalable bayesian rule lists,”
arXiv preprint arXiv:1602.08610, 2016.

http://people.csail.mit.edu/beenkim/icml_tutorial.html
http://people.csail.mit.edu/beenkim/icml_tutorial.html

122 CHAPTER 6. CONCLUSIONS

[97] C. Bucilu, R. Caruana, and A. Niculescu-Mizil, “Model compres-
sion,” in Proceedings of the 12th ACM SIGKDD international conference
on Knowledge discovery and data mining. ACM, 2006, pp. 535–541.

[98] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a
neural network,” arXiv preprint arXiv:1503.02531, 2015.

[99] L. I. Kuncheva and C. J. Whitaker, “Measures of diversity in classi-
fier ensembles and their relationship with the ensemble accuracy,”
Machine learning, vol. 51, no. 2, pp. 181–207, 2003.

[100] A. Chandra and X. Yao, “Ensemble learning using multi-objective
evolutionary algorithms,” Journal of Mathematical Modelling and Al-
gorithms, vol. 5, no. 4, pp. 417–445, 2006.

[101] F.-A. Fortin, F.-M. De Rainville, M.-A. Gardner, M. Parizeau, and
C. Gagné, “DEAP: Evolutionary algorithms made easy,” Journal of
Machine Learning Research, vol. 13, pp. 2171–2175, 2012.

[102] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal
of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[103] G. D. Ruxton, “The unequal variance t-test is an underused alter-
native to student’s t-test and the mann–whitney u test,” Behavioral
Ecology, vol. 17, no. 4, pp. 688–690, 2006.

[104] M. Friedman, “The use of ranks to avoid the assumption of nor-
mality implicit in the analysis of variance,” Journal of the american
statistical association, vol. 32, no. 200, pp. 675–701, 1937.

[105] J. Demšar, “Statistical comparisons of classifiers over multiple data
sets,” Journal of Machine learning research, vol. 7, no. Jan, pp. 1–30,
2006.

BIBLIOGRAPHY 123

[106] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learn-
ing, vol. 20, no. 3, pp. 273–297, 1995.

[107] B. Widrow, D. E. Rumelhart, and M. A. Lehr, “Neural networks: ap-
plications in industry, business and science,” Communications of the
ACM, vol. 37, no. 3, pp. 93–106, 1994.

[108] P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized trees,”
Machine learning, vol. 63, no. 1, pp. 3–42, 2006.

[109] S. Holm, “A simple sequentially rejective multiple test procedure,”
Scandinavian journal of statistics, pp. 65–70, 1979.

[110] C. Perlich, F. Provost, and J. S. Simonoff, “Tree induction vs. logistic
regression: A learning-curve analysis,” Journal of Machine Learning
Research, vol. 4, no. Jun, pp. 211–255, 2003.

[111] R. S. Olson, N. Bartley, R. J. Urbanowicz, and J. H. Moore, “Evalu-
ation of a tree-based pipeline optimization tool for automating data
science,” in Proceedings of the Genetic and Evolutionary Computation
Conference 2016. ACM, 2016, pp. 485–492.

[112] R. M. Bell, Y. Koren, and C. Volinsky, “All together now: A perspec-
tive on the netflix prize,” Chance, vol. 23, no. 1, pp. 24–29, 2010.

[113] M. Črepinšek, S.-H. Liu, and M. Mernik, “Exploration and exploita-
tion in evolutionary algorithms: A survey,” ACM Computing Surveys
(CSUR), vol. 45, no. 3, pp. 35:1–35:33, 2013.

[114] A. E. Eiben and C. A. Schippers, “On evolutionary exploration and
exploitation,” Fundamenta Informaticae, vol. 35, no. 1-4, pp. 35–50,
1998.

[115] L. Hansheng and K. Lishan, “Balance between exploration and ex-
ploitation in genetic search,” Wuhan University Journal of Natural Sci-
ences, vol. 4, no. 1, pp. 28–32, 1999.

124 CHAPTER 6. CONCLUSIONS

[116] D. Karaboga and B. Basturk, “On the performance of artificial bee
colony (abc) algorithm,” Applied soft computing, vol. 8, no. 1, pp. 687–
697, 2008.

[117] W. M. Spears, “Crossover or mutation?” in Foundations of genetic
algorithms. Elsevier, 1993, vol. 2, pp. 221–237.

[118] W. B. Langdon, Genetic programming and data structures: genetic pro-
gramming+ data structures= automatic programming! Springer Science
& Business Media, 2012, vol. 1.

[119] K. A. De Jong and W. M. Spears, “A formal analysis of the role of
multi-point crossover in genetic algorithms,” Annals of mathematics
and Artificial intelligence, vol. 5, no. 1, pp. 1–26, 1992.

[120] L. J. Eshelman, “Biases in the crossover landscape,” ICGA’89, pp.
10–19, 1989.

[121] N. F. McPhee and N. J. Hopper, “Analysis of genetic diversity
through population history,” in Proceedings of the 1st Annual Con-
ference on Genetic and Evolutionary Computation-Volume 2. Morgan
Kaufmann Publishers Inc., 1999, pp. 1112–1120.

[122] D. Dheeru and E. Karra Taniskidou, “UCI machine learning
repository,” 2017. [Online]. Available: http://archive.ics.uci.edu/
ml

[123] C. Luan and G. Dong, “Experimental identification of hard data
sets for classification and feature selection methods with insights on
method selection,” arXiv preprint arXiv:1703.08283, 2017.

[124] R. S. Olson and J. H. Moore, “Identifying and harnessing the build-
ing blocks of machine learning pipelines for sensible initialization
of a data science automation tool,” arXiv preprint arXiv:1607.08878,
2016.

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

BIBLIOGRAPHY 125

[125] I. Bose and R. K. Mahapatra, “Business data mininga machine learn-
ing perspective,” Information & management, vol. 39, no. 3, pp. 211–
225, 2001.

[126] R. Caruana, Y. Lou, J. Gehrke, P. Koch, M. Sturm, and N. El-
hadad, “Intelligible models for healthcare: Predicting pneumonia
risk and hospital 30-day readmission,” in Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining. ACM, 2015, pp. 1721–1730.

[127] G. D. P. Regulation, “Regulation (eu) 2016/679 of the european par-
liament and of the council of 27 april 2016 on the protection of natu-
ral persons with regard to the processing of personal data and on the
free movement of such data, and repealing directive 95/46,” Official
Journal of the European Union (OJ), vol. 59, no. 1-88, p. 294, 2016.

[128] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and eli-
tist multiobjective genetic algorithm: Nsga-ii,” IEEE transactions on
evolutionary computation, vol. 6, no. 2, pp. 182–197, 2002.

[129] Y. Jin and B. Sendhoff, “Pareto-based multiobjective machine learn-
ing: An overview and case studies,” IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Reviews), vol. 38, no. 3,
pp. 397–415, 2008.

[130] E. Zitzler, M. Laumanns, and L. Thiele, “Spea2: Improving the
strength pareto evolutionary algorithm,” TIK-report, vol. 103, 2001.

[131] M. Zhang and W. Smart, “Multiclass object classification using ge-
netic programming,” in Workshops on Applications of Evolutionary
Computation. Springer, 2004, pp. 369–378.

[132] T. Loveard and V. Ciesielski, “Representing classification problems
in genetic programming,” in Evolutionary Computation, 2001. Proceed-
ings of the 2001 Congress on, vol. 2. IEEE, 2001, pp. 1070–1077.

126 CHAPTER 6. CONCLUSIONS

[133] T. H. team, h2o: Python Interface for H2O, 2015, python package
version 3.1.0.99999. [Online]. Available: http://www.h2o.ai

[134] J. Vanschoren, J. N. van Rijn, B. Bischl, and L. Torgo, “Openml:
Networked science in machine learning,” SIGKDD Explorations,
vol. 15, no. 2, pp. 49–60, 2013. [Online]. Available: http:
//doi.acm.org/10.1145/2641190.2641198

[135] T. Madl, “Sklearn interpretable tree,” Feb 2018. [Online]. Available:
https://github.com/tmadl/sklearn-interpretable-tree

[136] U. Fayyad and K. Irani, “Multi-interval discretization of continuous-
valued attributes for classification learning,” in IJCAI, 1993, pp.
1022–1029.

[137] H.-G. Beyer and H.-P. Schwefel, “Evolution strategies–a comprehen-
sive introduction,” Natural computing, vol. 1, no. 1, pp. 3–52, 2002.

[138] J. P. Shaffer, “Multiple hypothesis testing,” Annual review of psychol-
ogy, vol. 46, no. 1, pp. 561–584, 1995.

[139] H. K. Dam, T. Tran, and A. Ghose, “Explainable software analytics,”
in Proceedings of the 40th International Conference on Software Engineer-
ing: New Ideas and Emerging Results. ACM, 2018, pp. 53–56.

[140] A. Niculescu-Mizil and R. Caruana, “Predicting good probabilities
with supervised learning,” in Proceedings of the 22nd International
Conference on Machine Learning. ACM, 2005, pp. 625–632.

http://www.h2o.ai
http://doi.acm.org/10.1145/2641190.2641198
http://doi.acm.org/10.1145/2641190.2641198
https://github.com/tmadl/sklearn-interpretable-tree

	Introduction
	Ensemble Learning
	Motivations
	Goals
	Major Contributions
	Structure

	Literature Review
	Machine Learning
	Supervised Learning

	Evolutionary Computation
	Genetic Programming

	Ensemble Learning
	Combination Methods
	Perturbation Methods
	Related Work

	Automated Machine Learning
	Grid Search
	Random Search
	Bayesian Approaches
	Evolutionary Approaches
	AutoML for Deep Learning

	Interpretable Machine Learning
	Model Extraction

	Chapter Summary

	Automated Ensemble Learning and Parameter Selection with GP
	Chapter Introduction
	The Proposed Method
	Overall Structure
	Representation
	Voting Strategy
	Fitness Function
	Tree Simplification
	Efficiency Improvements
	Guided Crossover

	Experiment Design
	Experiment Details
	Datasets
	Significance Tests
	Comparison Methods
	Parameter Settings

	Results and Discussion
	Overall Results
	Statistical Tests

	Further Analysis
	Chapter Conclusions

	Efficient Ensemble-based Automated Machine Learning
	Chapter Introduction
	The Proposed Method
	Architecture
	Ensembling
	Search Algorithm

	Expirement Design
	Expirement Details
	Datasets
	Significance Tests
	Comparison Methods

	Results and Discussion
	Overall Results
	Statistical Tests

	Further Analysis and Recommendations
	Chapter Conclusions

	Interpreting Complex Ensemble Structures with GP
	Chapter Introduction
	The Proposed Method
	Overall Algorithm
	Multi-objective Optimisation
	Objective Functions
	Representation

	Experiment Design
	Experiment Details
	Datasets
	Comparison Methods
	Parameter Settings
	Evaluation Measures
	Significance Tests

	Results and Discussion
	Overall Results
	Statistical Tests

	Further Analysis
	Chapter Conclusions

	Conclusions
	Major Conclusions
	Additional Findings
	Future Work

