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Abstract

In this thesis we study model equations that describe the propagation of

pulsatile flow in elastic vessels. Since dealing with the Navier-Stokes equa-

tions is a very difficult task, we derive new asymptotic weakly non-linear

and weakly-dispersive Boussinesq systems. Properties of the these sys-

tems, such as the well-posedness, and existence of travelling waves are

being explored. Finally, we discretize some of the new model equations

using finite difference methods and we demonstrate their applicability to

blood flow problems. First we introduce the basic equations that describe

fluid flow in elastic vessels and previously derived systems. We also re-

view previously derived model equations for fluid flow in elastic tubes.

We start with the description of the equations of motion of elastic vessel.

Then we derive asymptotically Boussinesq systems for fluid flow in elastic

vessels. Because these systems are weakly non-linear and weakly disper-

sive we expect then to have solitary waves as special solutions. We explore

some possibilities by construction analytical solutions. After that we con-

tinue the derivation of the previous chapter. We derive a general system

where the horizontal velocity is evaluated at any distance from the center

of the tube. Special emphasis is paid on the case of constant radius vessels.

We also derive unidirectional models and obtain the dissipative Boussi-

nesq system by taking the viscosity effects into account. There is also an

alternative derivation of the general system when considering the equa-

tions of potential flow. We show that the two different derivations lead to

the same system. The alternative derivation is based on asymptotic series

expansions. Then we develop finite difference methods for the numerical

solution of the BBM equation and for the classical Boussinesq system stud-

ied in the previous chapters. Finally, we demonstrate the application of

the new models to blood flow problems. By performing several numerical



simulations.
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Chapter 1

Introduction

The cardiovascular system consists of the heart, the arteries and the

veins. The arteries carry oxygenated blood to the organs. So the arteries

are very important for the physiological and pathological studies. Many

cardiovascular diseases are related to arteries. The large and medium ar-

teries can be approximated by elastic tubes with cylinderical symmetry.

In 1775, Euler derived a system of partical differnetial equations, which

is now used to describle flows without viscosity [10]. For this system of

equations it is almost impossible to find analytical solutions. Then Young

found that the motion of flood flow can be seen as ”wave”, [24]. The wave

nature of the blood flow makes it convenient to compute the ”Frenquency”

of the blood flow.

In physiological conditions, the Euler equations are essentially weakly

nonlinear thus it is very helpful to study the linearized system [22]. In

1877, the Moens-Korteweg equation for the wave speed has been derived,

[2] [15]. Witzig is the first author to publish the results on wave propagation

in elastic vessels [21].

In 1957, Womersley derived a two-dimensional system which analyse

the flow in the frequency domain [22]. However, the frequency domain

analysis assumes that the arterial system is in a state of oscillation, which

is not true in reality. In the duration of diastole and systole, the behaviour

of the blood flow is totally different, and the frenquency analysis cannot

distinguish the diffenrence.
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2 CHAPTER 1. INTRODUCTION

It is usually very difficult to study the motion of the blood flow in the

vessel [13] when considering viscotiy. The Navier-Stokes equations are sec-

ond order non-linear partial differentail equations, which makes the study

very difficult. For simplification, many reduced models have been derived

to study the blood flow in vessels. One-dimensional models have been

widely used, [11] [19]. One-dimensional model was first used by Euler [10].

The increasing computational ability of computers make numerical meth-

ods very convenient. It has been showed that one-dimensioanl models in

the time domain rather than the frenquency domain are good descriptions

of the non-linear flow [1] [14].

But most of these studies are based on the constant radius and aver-

age velocity along the radius. Additionally, some simplifications imposed

in the one dimensional models make the mmodel lose some other infor-

mations. In our study we consider a vessel with variables radius, which

expands our knowledge scope of the blood flow.

In this thesis, we derive asymptotic models for blood flow in elastic

vessels with cylinderical symmetry and variable radius. Our system is de-

rived from the Euler equations [5]. We will obtain a Boussinesq system

which couple the horizontal velocity of the fluid u and the displacement of

the the vessel wall η.

In the study of the shallow water waves, Boussinesq systems are widely

used, [4]. However, our system is not totally the same as that of the shallow

water waves. Some new properties and characteristics have been found.

We can obtain further unidirectional model equations, the result of which

can be compared with that of the Boussinesq systems.

The method of potential flow is also used in the study of water waves,

[8]. Now we apply it in our derivations too. Also, we can obtain higher

order systems by iteration with the potential flow method.

This thesis has the following structure: In Chapter 2, we present the ba-

sic equations we used and then a review of previously derived models. In

Chapter 3, we derived the new systems which are of Boussinesq type. In

Chapter 4, we extend the derivation of Chapter 3 and obtain general sys-

tems by introducing a parameter θ and evaluating the horizontal velocities
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at different radii. We also consider the viscous correction in this chapter. In

Chapter 5, we study some properties of the general systems such as disper-

sion relations and well-posedness of the systems. In Chapter 6, we apply

an alternative derivation, which is essentially based on perturbation series

expansions. We again obatin the same results as in the previous chapters.

In Chapter 7, we study numerically the effects of some radius variations to

blood flow. demonstrating the useful of the new models.

Since we have derived the new system of the blood flow, we believe

that it will be helpful to improve the study of physiology and pathology

related to arteries. We also extend the range of application of the Boussi-

nesq system and find some interesting results of the new system. Using

this study, further results can be induced and other system related to fluid

flow in visco-elastic pipes can be derived, while other models can also be

justified using asymptotic reasoning.

Most of the results of this study have been published.
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Chapter 2

Model equations for fluid flow
in elastic vessels

In this chapter we introduce the basic equations that describe fluid flow

in elastic vessels and previously derived systems. We also review previ-

ously derived model equations for fluid flow in elastic tubes. We start with

the description of the equations of motion of elastic vessel.

2.1 Equation of vessel wall

Denote an element of the vessel wall by V . Let its thickness be h = δr

and the arc length be r0δθ, where r0 is the radius of the tube. Let the axial

length of the tube be δx and denote the density of the tube wall by ρw. Thus

we have the volume δV of this element, and the mass δm of this element:

δV ≈ hr0δθδx, δm ≈ ρwδV.

Here we take the average density of the vessel.

δm ≈ ρwδV.

Then, there exist four mechanical stresses that exerted on the tube wall

and all of them with the dimensions of force per unit area.

5
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Figure 2.1: Coordinates for the vessel

(i) Denote the tension on the axial direction by Sxx, which leads to a force in

the positive x direction due to a change δSxx over the length of the element.

It is given as below:

δSxx · hr0δθ =
∂Sxx
∂x

δxhr0δθ. (2.1)

(ii) Denote the radial stress by Srr, which is related to the angular tension

within the vessel wall. Then there exist a force that is parallel to the radius

of the tube and it is toward the center of the section:

−Srr · r0δθδx. (2.2)

(iii) The net difference between the pressures that are inside and outside

the vessel, pw, produces a force that is outward in the radius direction. The

force is given as:

pw · r0δθδx. (2.3)

(iv) Shear stress τw that acting by the blood inside the vessel lead to a force
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Figure 2.2: Element of the vessel wall

in the blood fluid direction, which is given as:

τw · r0δθδx. (2.4)

Denote the displacement in the x, r and θ direction by ξ, η and φ. Con-

sider the Newton’s second law of motion, we write the equations in the

axial direction as:

ρw · hr0δθ
d2ξ

dt2
= hr0δθ ·

∂Sxx
∂x

δx+ r0δθδx · τw. (2.5)

Dividing both sides of this equation by r0δθδx, we have

ρwh
d2ξ

dt2
= h

∂Sxx
∂x

+ τw. (2.6)

In the radial direction we have

ρw · hr0δθδx ·
d2η

dt2
= r0δθδx · pw − r0δθδx · Srr. (2.7)

Similarly, we can simplify it to

ρwh ·
d2η

dt2
= pw − Srr. (2.8)

Since the external forces in the angular direction is zero, considering
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the axial symmetry we have that the angular direction acceleration is zero.

However, there is a relation between the angular and the radical strain, [25].

Srr =
h

r0
Sθθ. (2.9)

By the stress-strain relations, we can express Srr, Sxx and Sθθ in terms

of η and ξ. Denote the strains in the axial radial and angular directions by

exx, err and eθθ, and let E be Young’s modulus and σ be Poisson’s ratio,

then the strain-stress relations for an elastic body are given by:

exx =
1

E
[Sxx − σ(Srr + Sθθ)], (2.10)

err =
1

E
[Srr − σ(Sθθ + Sxx)], (2.11)

eθθ =
1

E
[Sθθ − σ(Srr + Sxx)]. (2.12)

Assuming that r0/h is much larger than σ, and with Eq.(2.9), we have that

exx =
1

E
[Sxx −

σr0
h
Srr], (2.13)

and

eθθ =
1

E
[
r0
h
Srr − σSxx]. (2.14)

Let Eσ = E
1−σ2 , then solving for Sxx and Srr, we have

Sxx = Eσ(exx + σeθθ), (2.15)

and

Srr =
hEσ
r0

(eθθ + σexx). (2.16)

Considering ξ as a function of x, then for a small element of the wall of

length δx, we have

δx+ δξ = δx+
∂ξ

∂x
δx. (2.17)

Thus

exx =
∂ξ

∂x
. (2.18)
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Then we know that axial stain can be defined as the ratio of the change

in length over the original length.

The angular strain is mainly from the radial displacement η, so for the

angular strain we have that

eθθ =
1

r0δθ
[(r0 + η)δθ − r0δθ] =

η

r0
. (2.19)

Combining Eq.(2.6), Eq.(2.8), Eq.(2.15) and Eq.(2.16), we have the equations

of motion of the tube wall

∂2ξ

∂t2
=
Eσ
ρw

(
∂2ξ

∂x2
+
σ

r0

∂η

∂x
)− τw

ρwh
, (2.20)

∂2η

∂t2
=

pw
ρwh

− Eσ
ρwr0

(
η

r0
+ σ

∂ξ

∂x
). (2.21)

The second derivative on the left side of Eq.(2.21) is very small. Since the el-

ement we studied seldom moves in direction of x, ∂ξ∂x can also be neglected.

Then we obtain the simplified relation:

pw
ρwh

=
Eσ
ρwr0

η

r0
. (2.22)

We continue with the description of the equation of fluid motion in an elas-

tic vessel.

2.2 The Euler equations

We first assume that the fluid in the vessel is incompressible and invis-

cid. For convenience, we also assume that the flood flow is axisymmetric,

which means that the velocity in the direction that is perpendicular to the

radius is 0, and this direction is usually denoted by θ in cylinderical co-

ordinates system, as well as the acceleration in this direction. So we only

consider the axial velocity v, which is along the radius and the horizontal

velocity u, which is along the axis of the vessel. Then the Eular equations

of the fluid motion can be written in cylinderical coordinates are:
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ut + uux + vur +
1

ρ
px = 0, (2.23)

vt + uvx + vvr +
1

ρ
pr = 0, (2.24)

ux + vr +
1

r
v = 0. (2.25)

Denoting the radius of the vessel wall by rw, then obviously we have

rw = r0 + η, where η̄ is the displacement of the vessel wall and r̄0 is the

radius of the vessel in resting position. Here we only consider the displace-

ment in the radius direction. It is noted that, r0 is only a function of x. By

the no-slip condition [5], we know that

v|r=rw =
d

dt
rw = ηt + (r0 + η)xu|r=rw .

We thereby have that for r = rw,

v = ηt + (r0x + ηx)u, (2.26)

which is the first boundary condition. We also have that [25]:

ρwhηtt = pw − Eσ(x)h

r20
η. (2.27)

This equation is from Eq.(2.21) after droping the term for ξ. In the above

equation, ρw is the density of the vessel wall and h is the thickness of the

vessel wall. pw denotes the pressure at the vessel wall for the fluid. Let E

be the Young modulus and σ be the Poisson ratio, then Eσ = E
1−σ2 . Now

we have the second boundary condition. Additionally, we have v|r=0 =

0 because the motion is axisymmetric. Now we can do a scaling for the

variables. We can make the following changes of variables:

x = Λx, r = Rr, η = Aη, t =
Λ

c
t.

In the above equations, Λ is a typical wave length of the waves, R is a

typical radius, and A is a typical amplitude of the wall displacement. The c̄
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is the Moens-Korteweg velocity of a wave propagating without nonlinear

terms. c̄ has the form:

c =

√
Eh

2Rρ
.

where ρ is the density of the fluid. Then we take

ε =
A

R
, δ =

R

Λ
.

We thereby use the long-wave and small amplitude :

ε� 1, δ2 = kε, k = O(1).

The velocities can then be scaled as:

u = εcu, v = εcδv. (2.28)

We also take p = ερc2p.

Let α = ρwh
ρR and β(x) = 2E(x)

r20(x)
, we have the following six equations in

non-dimensional and scaled form:

ut + εuux + εvur + px = 0, (2.29)

δ2[vt + εuvx + εvvr] + pr = 0, (2.30)

rux + (rv)r = 0, (2.31)

v(rw) = ηt + rwx u, (2.32)

αδ2ηtt = pw − 2β(x)η, (2.33)

v(rw) = ηt + r0xu(rw) + εηxu(rw). (2.34)

E(x) = Eσ(x)

E
here is a non-dimensional quantity:
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2.3 Approximate models for fluid flow in vessels

In this section we review the derivation of a unidirectional model due

to Cascaval [5]. We define two new variables independent to each other:

ξ = εx, τ = G(x; ε)− t. (2.35)

If we take g = dG
dx , we can transform the partial derivatives as below

∂t =
∂

∂τ

∂τ

∂t
= −∂τ , (2.36)

∂x =
∂ξ

∂x

∂

∂ξ
+
∂τ

∂x

∂

∂τ
= ε∂ξ + g(ξ)∂τ (2.37)

Substituting δ2 = kε into the equations, then from Eq.(2.29), Eq.(2.30) and

Eq.(2.31), we have that

−uτ = εu(εuξ + g(ξ)uτ ) + εvur + εpξ + g(ξ)pξ = 0, (2.38)

kε[ε− vτ + εu(εvξ + g(ξ)vτ )εvvr] + pr = 0, (2.39)

εuξ + g(ξ)uτ + vr +
1

r
v = 0. (2.40)

And from Eq.(2.33)-Eq.(2.34), we have

v = −ητ + εr0ξu+ ε(εηξ + g(ξ)ητ )u, (2.41)

αkεηττ = pw − 2
E(ξ)

r20
η, (2.42)

when r = rw. To solve the equations for η, we express the η, u, v, and p in

the following form

η = η0 + εη1 +O(ε2), v = v0 + εv1 +O(ε2),

u = u0 + εu1 +O(ε2, ), p = p0 + εp1 +O(ε2).
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We collect the terms of zero-order from Eq.(2.29), Eq.(2.30), Eq.(2.31),Eq.(2.33)

and Eq.(2.34), and we obtain:

−u0τ + g(ξ)p0τ = 0, (2.43)

p0r = 0, (2.44)

g(ξ)u0τ + v0r +
1

r
v0 = 0, (2.45)

when 0 ≤ r ≤ rw. We also have that for r = rw = r0 + εη

v0 = −ητ , (2.46)

0 = p0 − 2
E(ξ)

r20
η0. (2.47)

From Eq.(2.44), we observe that

p0 = p0(r
w) = 2

E(ξ)

r20
η0. (2.48)

Substituting Eq.(2.48) into Eq.(2.43), one obtains

u0τ = 2g(ξ)
E(ξ)

r20
η0τ . (2.49)

Combining Eq.(2.49) and Eq.(2.45), we have

v0 = −rg(ξ)
E(ξ)

r20
η0τ . (2.50)

Comparing the Eq.(2.50) with Eq.(2.46), we have that

g(ξ) =
r
1/2
0

E(ξ)1/2
. (2.51)

Thus the g has been determined here. Additionally, we also have the fol-

lowing relations

v0 = − r

r0
η0τ , (2.52)
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p0 = 2
E(ξ)

r20
η0, (2.53)

u0τ = 2
E(ξ)1/2

r
3/2
0

η0τ . (2.54)

We observe that u0τ is independent of r.

By collecting the first-order terms of Eq.(2.29), Eq.(2.30), Eq.(2.31),Eq.(2.33)

and Eq.(2.34), one obtains

−u1τ + g(τ)u0u0τ + v0v0r + p0ξ + g(ξ)p1τ = 0, (2.55)

−kv0ξ + p1r = 0, (2.56)

u0ξ + g(ξ)u1τ + v1r +
1

r
v1 = 0. (2.57)

And for r = rw, we have

v1 = −η1τ + r0ξu0 + gτu0η0τ , (2.58)

αkη0ττ = pw1 − 2
E(ξ)

r20
η1. (2.59)

By comparing Eq.(2.52) and Eq.(2.56), we have

p1r = −k r
r0
η0ττ . (2.60)

We integrate both sides of Eq.(2.60), and obtain:

p1(r) = −k r
2

2r0
η0ττ + p1(0). (2.61)

If we take r = r0, we will have

pw1 (ξ, τ) = −kr0
2
η0ττ + p1(ξ, τ, 0). (2.62)

Combining Eq.(2.62) and Eq.(2.59), one obtains

−η1 =
r20

2E(ξ)
[α+

r0
2

]kη0ττ −
r20

2E(ξ)
p1|r=0. (2.63)
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Then we combine Eq.(2.60) and Eq.(2.58) to:

vw0 =
r20

2E(ξ)
[α+

r0
2

]kη0τττ −
r20

2E(ξ)
p1τ |r=0 + r0ξu

w
0 +

r
1/2
0

E(ξ)1/2
uw0 η0τ . (2.64)

By combining Eq.(2.55) and Eq.(2.56), we can eliminate u1τ as follows:

1

r
(rv1)r = −u0ξ −

r0
E(ξ)

u0u0τ +
r

r
1/2
0 E(ξ)1/2

u0rη0τ

−2
r
1/2
0

E(ξ)1/2

[
E(ξ)

r20
η0

]
τ

− r0
E(ξ)

p1τ .

(2.65)

For convenience, we take

Q0 =

∫ r0(ξ)

0
ru0dr.

Then for r = r0, we can integrate Eq.(2.65) and apply the Leibniz rule. We

obtain that

vw1 =
1

r0
Q0ξ + r0ξu

w
0 −

2

r
3/2
0 E(ξ)1/2

Q0ηoτ +
r
1/2
0

E(ξ)1/2
uw0 η0τ

− r
3/2
0

E(ξ)1/2

[
E(ξ)

r20
η0

]
τ

+ k
r30

8E(ξ)
η0τττ −

r20
2E(ξ)

p1τ |r=0.

(2.66)

Comparing the equation above with Eq.(2.64), we have

E(ξ)1/2

r
1/2
0

η0ξ +
r
3/2
0

E(ξ)1/2

[
E(ξ)

r20

]
ξ

η0 + k
r20
E(ξ)

[α+
r0
4
η0τττ

1

r0
Q0ξ +

2

r
3/2
0 E(ξ)1/2

Q0η0τ = 0.

(2.67)

By Eq.(2.54), we have

Qoτ = E(ξ)1/2r
1/2
0 η0τ . (2.68)

Thus, Q0 can be expressed as a linear function of η0

Q0(ξ, τ) = E(ξ)1/2r
1/2
0 η0(ξ, τ) + f(ξ). (2.69)
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Then, we can determine f by the initial condition for the blood vessel by

setting t=0. Then we have the equation

ηoξ +
3

4

(
Eξ(ξ)

E(ξ)
−
r0ξ(ξ)

r0(ξ)

)
η0 +−3

2

1

r
1/2
0 E(ξ)1/2

η0η0τ

+
k

2

r
5/2
0

E(ξ)3/2
(α+

r0
4

)η0τττ +
1

r
1/2
0 E(ξ)1/2

f
′
(ξ) +

2

r0E(ξ)
f(ξ)η0τ = 0.

(2.70)

Consider the initial condition of quiescent state, which implied that f(ξ) =

0. If E(ξ) ≡ 0, then we can simplify the equation to

η0ξ −
3

4
η0 +

3

2
r
−1/2
0 η0η0τ +

k

2
r
5/2
0

(
α+

r0
4

)
η0τττ = 0. (2.71)

If the radius of the unstressed vessel is constant, we have

η0ξ +
3

2
r
−1/2
0 η0η0τ +

k

2
r
5/2
0

(
α+

r0
4

)
η0τττ = 0. (2.72)

2.4 A 1-D Boussinesq system

In this section we review the derivation of a bidirectional Boussinesq

system for fluid flow in elastic vessel, [6]. From the conservation of mass

and momentum, we obtain:

ηt + ηxu+
1

2
(η + r0)ux = 0, (2.73)

ut + uux +
1

ρ
px = 0. (2.74)

And we also have Eq.(2.26). Then we obtain by substituting Eq.(2.27) into

Eq.(2.74):

ηt + ηxu+
1

2
(η + r0)ux = 0, (2.75)

ut + uux +
Eh

ρr02
ηx +

ρwh

ρ
ηxtt = 0. (2.76)

Next we take the following non-dimensional quantities:
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η∗ =
η

a
, x∗ =

x

λ
,

u∗ =
u

C0
, t∗ =

t

τ
,

C0 =
a

r0

√
2Eσh

ρr0
, τ =

2aλ

r0C0
.

ε =
2a

r0
, δ2 =

ρ2hr0
2λ2ρ

.

(2.77)

By substituting Eq.(2.77) into Eq.(2.75) and Eq.(2.76), we obtain the new

system with non-dimensional variables:

ηt + εηxu+
1

2
εηux + ux = 0, (2.78)

ut + ηx + εuux − δ2uxxt = 0, (2.79)

This is a Boussinesq type system but as we shall see later is not asymptotic.

One can derive further unidirectional models from these equations, such

as the BBM and KdV equations. The details of this derivation is postponed

for later, to be exposed in the correct setting. The KdV equation is:

ηt +
1

2

√
2Eh

ρr0
η +

5

4r0

√
2Eh

ρr0
ηηx +

ρwhr0
4ρ

√
Eh

2ρr0
ηxxx = 0. (2.80)

while the BBM equation is:

ηt +
1

2

√
2Eh

ρr0
η +

5

4r0

√
2Eh

ρr0
ηηx −

ρwhr0
4ρ

ηxxt = 0, (2.81)
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Chapter 3

Asymptotic derivation of
Boussinesq systems

In this chapter we derive asymptotically Boussinesq systems for fluid

flow in elastic vessels. Because these systems are weakly non-linear and

weakly dispersive we expect then to have solitary waves as special solu-

tions. We explore some possibilities by construction analytical solutions.

3.1 Boussnesq model

Now we go back to the Euler equations with scaled variables.

ut + εuux + εvur + px = 0, (3.1)

δ2[vt + εuvx + εvvr] + pr = 0, (3.2)

rux + (rv)r = 0, (3.3)

v(rw) = ηt + rwx u, (3.4)

αδ2ηtt = pw − β(x)η. (3.5)

In this chapter we will denote β̄(x) and ᾱ the dimensional quatities defined

by relations:

β(x) =
2R2ρ

h
β̄(x), α = ᾱ/R

19
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In order to simplify the model and derive Bousinesq systems, we assume

that the fluid flow is irrotational. After scaling, the irrotationality condition

becomes [17]:

δ2vx = ur. (3.6)

Integrating both sides of Eq.(3.6) from r to rw, we have

∫ rw

r
ur′dr

′ = δ2
∫ rw

r
vxdr

′.

Then

u(r) = u(rw)− δ2
∫ rw

r
vxdr

′, (3.7)

which also implies that

u(r) = u(rw) +O(δ2), (3.8)

and

ur(r) = O(δ2). (3.9)

By applying the Leibniz rule, we have∫ rw

r
vxdr

′ =

(∫ rw

r
vdr′

)
x

− rwx v(rw). (3.10)

Similarly, by the Lebniz rule, we have

∂

∂x

∫ rw

r
r
′
udr

′
= rwx r

wu(rw) +

∫ rw

r
r
′
uxdr

′
, (3.11)

For convenience, we define that

Q(x, r, t) =
1

r

∫ r

0
su(x, s, t)ds. (3.12)

Comparing the above relation with Eq.(3.7), we observe

Q =
r

2
u(rw) +O(δ2). (3.13)
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By Eq.(3.3), we obtain

∂

∂r
(rv) = −rux,

rv = −
∫ r

0
suxds,

v = −1

r

∫ r

0
suxds.

(3.14)

We then have:

v = −Qx(x, r, t). (3.15)

Additionally, because of Eq.(3.13), we obtain

v = −r
2
u(rw) +O(δ2). (3.16)

Then differentiating both sides of Eq.(3.16) with respect to x, and substitut-

ing the result into Eq.(3.7), one obtains

u(r) =u(rw) + δ2
∫ rw

r

r

2
uxx(rw) +O(δ4)

=u(rw) + δ2uxx
(rw)2 − r2

4
+O(δ4).

(3.17)

By Eq.(3.16), we also have that

vt = −r
2
uxt +O(δ2). (3.18)

Combing Eq.(3.2) and the relation we derived above, we obtain

pr =δ2
r

2
uxt(r

w) +O(εδ2, δ4), (3.19)

which leads to:

p(rw)− p(r) =δ2uxt(r
w)

∫ rw

r

s

2
ds+O(εδ2, δ4),

=δ2uxt(r
w)

(rw)2 − r2

4
+O(εδ2, δ4).

(3.20)
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Then we have the following equation

p(r) = p(rw)− δ2uxt(rw)
(rw)2 − r2

4
+O(εδ2, δ4) (3.21)

If we differentiate both sides of the equation above, we obtain that

px(r) = pwx − δ2uxxt(rw)
(rw)2 − r2

4
− δ2uxt

rwrwx
2

+O(εδ2, δ4). (3.22)

Combining Eq.(3.9) and Eq.(3.1), we have that

ut + εuux + px = O(εδ2). (3.23)

We substitute Eq.(3.17) and Eq.(3.22) into the relation above, to obtain

ut(r
w) + δ2uxxt

(rw)2 − r2

4
+ εu(rw)ux(rw) + px(rw)

−δ2uxxt
(rw)2 − r2

4
− δ2uxt

rwrwx
2

= O(εδ2, δ4).

(3.24)

Combining Eq.(3.4) and Eq.(3.16), we have

−r
w

2
ux(rw) = ηt + rwx u+O(δ2),

thus

ηt = −r
w

2
ux − rwx u+O(δ2). (3.25)

Substituting Eq.(3.5) and Eq.(3.25) into Eq.(3.24), we have

ut + εuux + (β(x)η)x − αδ
2(
rw

2
ux)

xt
− αδ2(rwx u)xt

−δ2uxt
rwrwx

2
= O(εδ2, δ4),

(3.26)

where α = ρwh
ρR and β(x) = 2E(x)

r20(x)
. We can substitute rw = r0 + εη into
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Eq.(3.26), then we obtain

ut + εuux + (β(x)η)x − αδ
2(
r0
2
ux)

xt
− αδ2(r0xu)xt

−δ2uxt
r0r0x

2
= O(εδ2, δ4),

(3.27)

For Eq.(3.27), we can also discard the high-order terms and go back to the

dimensional form, which is

ut + uux + (
Eσ(x)h

r20ρ
η)
x

− ρwh

ρ
(
r0
2
ux)

xt
− ρwh

ρ
(r0xu)xt

−uxt
r0r0x

2
= 0,

(3.28)

where the tildes in the dimensional variables have been omitted for conve-

nience.

Integrating both sides of Eq.(3.3), gives

rwv(rw) = −
∫ rw

0
suxds.

Then we substitute Eq.(3.4) into the left-hand side of the relation above,

and we have

rw(ηt + rwx u) = −
∫ rw

0
suxds

Then we substitute Eq.(3.17) into the Equation above, and we have

rw(ηt + rwx u) = −
∫ rw

0
r

[
ux(rw) + δ2

(
uxx(rw)

(rw)2 − r2

4

)
x

]
+O(δ4)

= −
∫ rw

0
sux(rw)ds− δ2

∫ rw

0
suxxx(rw)

(rw)2 − r2

4

−δ2
∫ rw

0
suxx(rw)

rwrwx
2

+O(delta4)

= −(rw)2

2
ux + δ2uxxx

(rw)3

16
− δ2uxx

(rw)3rwx
4

+O(δ4)

(3.29)
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Thereby we obtain the second system equation

ηt + rwx u+
rw

2
ux + δ2uxx

(rw)2rwx
4

+ δ2uxxx
(rw)3

16
= O(δ4), (3.30)

we can then discard the high order terms and go back to the dimensional

form. For convenience, the tilde above the dimensional variables are dis-

carded

ηt + rwx u+
rw

2
ux +

rw2rwx
4

uxx +
rw3

16
uxxx = 0. (3.31)

For Eq.(3.30), we make the substitution rw = r0 + εη and discard the high-

order terms, then we have

ηt + r0xu+ εηxu+
r0
2
ux +

εη

2
ux + δ2uxx

(r0)
2r0x
4

+ δ2uxxx
(r0)

3

16
= 0. (3.32)

The equation above can also be transformed to dimensional form

ηt + r0xu+ ηxu+
r0
2
ux +

η

2
ux + uxx

(r0)
2r0x
4

+ uxxx
(r0)

3

16
= 0. (3.33)

Now we obtain the system of variable radius system, which is

ut + εuux + (β(x)η)x − αδ
2(
r0

2
ux)

xt
− αδ2(r0xu)xt

−δ2uxt
r0r0x

2
= O(εδ2, δ4),

(3.34)

ηt + r0xu+ εηxu+
r0
2
ux +

εη

2
ux + δ2uxx

(r0)
2r0x
4

+ δ2uxxx
(r0)

3

16
= O(εδ2, δ4).

(3.35)

The system above also have the dimensional form:

ut + uux + (
Eσ(x)h

r20ρ
η)
x

− ρwh

ρ
(
r0
2
ux)

xt
− ρwh

ρ
(r0xu)xt

−uxt
r0r0x

2
= 0,

(3.36)
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ηt + r0xu+ ηxu+
r0
2
ux +

η

2
ux + uxx

(r0)
2r0x
4

+ uxxx
(r0)

3

16
= 0. (3.37)

3.2 The equations at the center of the vessel

For convenience to do the comparison with the result in Chapter 6, we

rewrite Eq.(3.30) in the following form:

ηt+r0xu
w+εηxu

w+
r0
2
uwx +

εη

2
uwx +δ2uwxx

(r0)
2r0x
4

+δ2uwxxx
(r0)

3

16
= 0, (3.38)

which is from last section of this chapter. The upper label w is used to

indicate put to notice that the velocity is essentially the horizontal velocity

at the vessel wall. If we denote the horizontal velocity in the center of the

vessel wall by u0, and combine with Eq.(3.16), one obtains that:

uw = u0 − δ2uwxx
(rw)2

4
+O(δ4).

u0 is the horizontal velocity ar the center of the vessel. Since we already

have

uw = u(r) +O(ε, δ2), rw = r0 + εη

we can rewrite the above equation as

uw = u0 − δ2u0xx
(r0)

2

4
+O(εδ2, δ4). (3.39)

Now we have

r0xu
w = r0xu0 −

1

4
δ2r0xr

2
0u0xx,

r0
2
uwx =

r0
2
u0x −

δ2

8
r30u0xxx −

1

4
δ2r0xr

2
0u0xx.

Then for Eq.(3.38), we have
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ηt+r0xu0+εηxu0+
r0
2
u0x+

εη

2
u0x−δ2u0xx

(r0)
2r0x
4

−δ2u0xxx
(r0)

3

16
= O(εδ2).

(3.40)

Now we study the equation of Eq.(3.23):

ut + εuux + px = O(εδ2). (3.41)

consider when r = 0:

u0t + εu0xu0 + p0x = O(εδ2), (3.42)

where p0x = px|r=0. For the pressure, we consider Eq.(3.22):

px(r) = pwx − δ2uxxt(rw)
(rw)2 − r2

4
− δ2uxt

rwrwx
2

+O(εδ2, δ4). (3.43)

Taking r = 0 for Eq.(3.43), we have:

px(r = 0) = px(rw)− δ2uxxt(rw)
(rw)2

4
− δ2uxt

rwrwx
2

+O(εδ2, δ4). (3.44)

Since we have By Eq.(3.8), we know that:

uxxt(r
w) = u0xxt +O(δ2),

uxt(r
w) = u0xt +O(δ2),

where u0xxt denotes uxxt|r=0) and u0xt denotes uxt|r=0). Then for Eq.(3.44),

we have

px(r = 0) = pwx − δ2u0xxt
(rw)2

4
− δ2u0xt

rwrwx
2

+O(εδ2, δ4). (3.45)

Since rw = r0 + εη, for Eq.(3.45) we have

px(r = 0) = pwx − δ2u0xxt
(r0)

2

4
− δ2u0xt

r0r0x
2

+O(εδ2, δ4). (3.46)

Now we have the following equation after combing Eq.(3.42) and Eq.(3.46)
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after discarding the high-order terms:

u0t + εu0u0x + pwx − δ2u0xxt
(r0)

2

4
− δ2u0xt

r0r0x
2

= 0. (3.47)

Eq.(3.47) is very useful to make comparison with the models.

3.3 Solitary waves of the Boussnesq system

Solitary wave solutions can propagate without change in shape and

speed in a uniform medium. For this reason we consider the case where

r0 and E(x) are constant. Then Eq.(3.34) and Eq.(3.35) become

ηt + εηxu+
r0
2
ux +

ε

2
ηux + δ2

r30
16
uxxx = O(ε2, δ4), (3.48)

ut + εuux + (βη)x − α
δ2

2
r0uxxt = O(ε2, δ4). (3.49)

In order to find the solitary wave solution for Eq.(3.48) and Eq.(3.48),

we take

η = η(x− ct),

u = u(x− ct),

where c is a constant [7]. Let y = x − ct, and consider the derivatives with

respect to y of η and u. Thereby for Eq.(3.48) and Eq.(3.49) we obtain

−cη′ + εη
′
u+

r0
2
u
′
+
ε

2
ηu
′
+ δ2

r30
16
u
′′′

= 0,

−cu′ + εuu
′
+ βη

′
+ cα

δ2

2
r0u

′′′
= 0.

To solve the previous equations, we assume that u = bη, thus

−cη′ + εη
′
bη +

r0
2
bη
′
+
ε

2
ηbη

′
+ δ2

r30
16
bη
′′′

= 0,

−cbη′ + εb2ηη
′
+ βη

′
+ cα

δ2

2
r0bη

′′′
= 0.
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Since the solution for the equations are solitary wave, as y → ∞, η, u → 0.

Then we can integrate the equations above and rearrange the terms,

(
r0b

2
− c)η +

3εb

4
η2 +

δ2r30
16

bη
′′

= 0,

(β − cb)η +
εb2

2
η2 +

cαδ2r0b

2
η
′′

= 0.

(3.50)

Now we consider the two equations above are the same, or we will have

trivial solution. So we must have that

(
r0b

2
− c)εb

2

2
=

3εb

4
(β − cb)

δ2r30
16

b
εb2

2
=

3εb

4

cαδ2r0b

2

(3.51)

Solving for the Eq.(3.51), we have that

b = 6

√
αβ

r20 + 12r0α
, c =

r20
2

√
β

αr20 + 12r0α2
, (3.52)

Then we have solitary wave solution

η(x, t) =
2
√
β(6α− r0)

√
r20 + 12r0α

ε
√
α

sech2 (X1) , (3.53)

X1 =

√
32(6α− r0

3δ2r30
(x+ x0 −

r20
2

√
β

αr20 + 12r0α2
t).

where r0 is constant.



Chapter 4

A general system

In this chapter we continue the derivation of the previous chapter. We

derive a general system where the horizontal velocity is evaluated at any

distance from the center of the tube. Special emphasis is paid on the case

of constant radius vessels. We also derive unidirectional models and ob-

tain the dissipative Boussinesq system by taking the viscosity effects into

account.

4.1 Further developments

In the previous chapter, the velocity u is evaluated on the wall, and is

denotedby uw. In order to derive the general system, we consider that

uw(x, t) = u(x, r, t)− δ2uwxx(x, r, t)
(rw)2 − r2

4
+O(δ4),

which is from Eq.(3.17). Here we can take

r = θrw,

with 0 ≤ θ ≤ 1. Then we have the velocity for any r. Additionally, we

denote u(x, θr2, t) by uθ(x, t) for convenience. Then we have that

uw = uθ − δ2uθxx
(1− θ2)(rw)2

4
+O(δ4). (4.1)

29
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Following the derivation of the previous chapter, we have

ηt +
1

2
(r0 + εη)uθx + (r0 + εηx)uθ − δ2 r

2
0r0x(1− 2θ2)

4
uθxx

+δ2
r30(2θ2 − 1)

16
uθxxx = O(εδ2, δ4),

(4.2)

(1− αδ2r0xx)uθt + [β(x)η]x + εuθuθx − δ2r0x
3α+ r0

2
uθxt

−δ2 [3α− (1− θ2)r0]r0
6

uθxxt = O(εδ2, δ4).

(4.3)

By Eq.(4.2) and Eq.(4.3), we also have the relations between the low-order

terms:

ηt =
1

2
r0u

θ
x + r0xu

θ +O(ε, δ2), (4.4)

uθt = −[β(x)η]x +O(ε, δ2). (4.5)

From Eq.(4.4) we know that

r0u
θ
xxx = −2ηxxt − 5r0xxu

θ
x − 4r0xuθxx − 2r0xxxu

θ +O(ε, δ2), (4.6)

and by Eq.(4.5), we have

uθxxt = −[β(x)η]xxx +O(ε, δ2). (4.7)

To derive the general system, we make the following substitution:

uθxxx = νuθxxx + (1− ν)uθxxx,

uθxxt = µuθxxt + (1− µ)uθxxt,

where µ, ν,∈ R. By Eq.(4.4), Eq.(4.5) and the above relations, we have the

general system

ηt +
1

2
(r0 + εη)uθx + (r0x + εηx)uθ − δ2A(x)uθxx + δ2B(x)uθxxx−

δ2C(x)(5r0xxu
θ
x + 4r0xu

θ
xx + 2r0xxxu

θ + 2ηxxt) = O(ε, δ2),
(4.8)
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(1− αδ2r0xxt)uθt + [β(x)η]x + εuθuθx − δ2D(x)uθxt

+δ2G(x)[β(x)η]xxx − δ
2F (x)uθxxt = O(ε, δ2),

(4.9)

where

A(x) =
r20r0x(1− 2θ2)

4
, B(x) =

r30(2θ2 − 1)ν

16
,

C(x) =
r20(2θ2 − 1)(1− ν)

16
, D(x) =

r0x(3α+ r0)

2
,

G(x) =
[2α+ (1− θ2)r0]r0µ

4
, F (x) =

[2α+ (1− θ2)r0]r0(1− µ)

4
.

The dimensional form of Eq.(4.8) and Eq.(4.9) is:

ηt +
1

2
(r0 + η)uθx + (r0x + ηx)uθ − Ā(x)uθxx + B̄(x)uθxxx−

C̄(x)(5r0xxu
θ
x + 4r0xu

θ
xx + 2r0xxxu

θ + 2ηxxt) = 0,
(4.10)

(1− ᾱr0xxt)uθt + [β̄(x)η]x + uθuθx − D̄(x)uθxt

+Ḡ(x)[β̄(x)η]xxx − δ
2F̄ (x)uθxxt = O(ε, δ2),

(4.11)

where

Ā(x) =
r20r0x(3− 2θ2)

4
, B̄(x) =

r30(2θ2 − 1)ν

16
,

C̄(x) =
r20(2θ2 − 1)(1− ν)

16
,

D̄(x) =
r0x(3ᾱ+ r0)

2
,

Ḡ(x) =
[2ᾱ+ (1− θ2)r0]r0µ

4
,

F̄ (x) =
[2ᾱ+ (1− θ2)r0]r0(1− µ)

4
.

Observe that if we take θ2 = 1
2 , µ = ν = 0 for Eq.(4.8) and Eq.(4.9), we

will obtain the simplest system:

ηt +
1

2
(r0 + εη)uθx + (r0x + εηx)uθ = O(εδ2, δ4), (4.12)
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(1− αδ2r0xxt)uθt + [β(x)η]x + εuθuθx − δ2
(3α+ r0)r0x

2
uθxt

−δ2 (4α+ r0)r0
8

uθxxt = O(εδ2, δ4).

(4.13)

We can also go back to the dimensional form for Eq.(4.12) and Eq.(4.13):

ηt +
1

2
(r0 + η)uθx + (r0x + ηx)uθ = 0, (4.14)

(1− ᾱr0xxt)uθt + [ ¯β(x)η]x + uθuθx −
(3α+ r0)r0x

2
uθxt

−(4ᾱ+ r0)r0
8

uθxxt = 0.

(4.15)

where

ᾱ =
ρwh

ρ
, β̄ =

E(x)h

r20ρ
.

Notice that the E(x) here is the dimensional variable before scaling.

4.2 The system with constant radius

In this section we study the model with constant radius and Young’s

module. Then Eq.(4.8) and Eq.(4.9), we take the following form:

ηt +
1

2
(r0 + εη)uθx + εηxu

θ + δ2r30au
θ
xxx − δ2r20bηxxt = 0, (4.16)

uθt + βηx + εuθuθx + δ2r20βcηxxx − δ2r20duθxxt = 0, (4.17)

where

a =
(2θ2 − 1)ν

16
, b =

(2θ2 − 1)(1− ν)

8
,

c =
(2α+ (1− θ2))µ

4
, d =

(2α+ (1− θ2))(1− µ)

4
.

In the previous parts, we saw that the form of α is

α =
ρwh

ρR
,
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where R is the characteristic radius used in scaling. Now we can make

some simplification since now the radius r0 is a constant. Then we can take

R =
r0
2
,

therefore the system of Eq.(4.16) and Eq.(4.17) can be written in the follow-

ing form:

ηt + uθ +
1

2
εηuθx + εηxu

θ + 8δ2auθxxx − 4δ2bηxxt = 0, (4.18)

uθt + βηx + εuθuθx + 4δ2βcηxxx − 4δ2duθxxt = 0, (4.19)

and the α is now of the form:

α =
2ρwh

ρr0
,

which is a constant that has no relation with scaling variables. Since that

the Young ModuleE is scaled in for the non-dimensional form of β, we can

take β = 1 for convenience. In fact, we will have the form of:

ηx + ut = O(ε, δ2),

ux + ηx = O(ε, δ2),

which occurs very often in the scaled Boussinesq system. Of course we also

can take R = r0. Then the system will be:

ηt +
1

2
uθ +

1

2
εηuθx + εηxu

θ + δ2auθxxx − δ2bηxxt = 0, (4.20)

uθt + βηx + εuθuθx + δ2βcηxxx − δ2duθxxt = 0, (4.21)

The dimensional form of the previous system with constant radius is:

ηt +
1

2
uθx + ηxu

θ + r30au
θ
xxx − r20bηxxt = 0, (4.22)

uθt +
Eh

ρr20
ηx + uθuθx +

Eh

ρr20
r20cηxxx − r20duθxxt = 0. (4.23)
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The linearisation of the system around the trivial solution is:

ηt +
1

2
r0u

θ
x + r30au

θ
xxx − r20bηxxt = 0, (4.24)

uθt +
Eh

ρr20
ηx +

Eh

ρr20
r20cηxxx − r20duθxxt = 0. (4.25)

The linearized system will be used in the following chapters.

4.3 One way propagation models

In order to derive one-way propagation models, we consider the system

of Eq.(4.14) and Eq.(4.15)

ηt +
1

2
(r0 + η)uθx + (r0x + ηx)uθ = 0, (4.26)

(1− ᾱr0xxt)uθt + [ ¯β(x)η]x + uθuθx −
(3α+ r0)r0x

2
uθxt

−(4ᾱ+ r0)r0
8

uθxxt = 0.

(4.27)

Now we take the Young modulus E and the radius r0 to be constant. In

order to carry out the calculation, we use the scaling which was used in

Eq.(2.77) in Chapter 2. Let a be the characteristic displacement and λ be the

length of the vessel. Then we take the non-dimensional quantities

η∗ =
η

a
, x∗ =

x

λ
, u∗ =

u

C0
,

t∗ =
t

τ
, C0 =

a

r0

√
2Eσh

ρr0
, τ =

2aλ

r0C0
.

(4.28)

Thus for the derivatives of the variables, we have

ηt =
∂

∂t
η(x, t) =

∂

∂t
aη∗(x∗, t∗) =

∂η∗

∂t∗
∂t∗

∂t
=
a

τ
η∗t∗ ,
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ηx =
a

λ
η∗x∗ , ux =

C0

λ
u∗x∗ ,

ut =
C0

τ
u∗t∗ , ηxtt =

a

λ

1

τ2
η∗x∗x∗t∗ .

Set ε = a
r0

, δ2 =
r20
λ2

, where ε characterises the nonlinearity and δ2 the

dispersion. We also assume Stokes number of the fluid ε
δ2

= O(1), and this

assumption means that the dispersion and nonlinearity are equally impor-

tant. Then the system of Eq.(4.26) and Eq.(4.27) take the form:

η∗t∗ + 2εη∗x∗u
∗ + εη∗u∗x∗ + u∗x∗ = 0, (4.29)

u∗t∗ + η∗x∗ + 2εu∗u∗x∗ − δ2du∗x∗x∗t∗ = 0, (4.30)

where d = 4α+1
8 . We rewrite the model omitting the * in the form:

ηt + 2εηxu+ εηux + ux = 0, (4.31)

ut + ηx + 2εuux − δ2duxxt = 0, (4.32)

To solve the system, we make the assumption:

u = η + εA+ δ2B,

where A and B are functions of x and t. Therefore we have

ux = ηx + εAx + δ2Bx,

ut = ηt + εAt + δ2Bt,

uxxt = ηxxt + εAxxt + δ2Bxxt.

(4.33)

Substitute the relations above into Eq.(4.31) and Eq.(4.32), we have

ηt + 2εηxη + ηx + εAx + δ2Bx + 2ηηx = O(ε2, δ4), (4.34)

ηt + εAt + δ2Bt + 2εηηx + ηx − δ2dηxxt = O(ε2δ4). (4.35)

In order to find nontrivial solutions for Eq.(4.34) and Eq.(4.35), we compare
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the coefficients of the equations, immediately we observe the relation :

Ax + 3ηηx = At + 2ηηx, (4.36)

Bx = Bt − dηxxt (4.37)

By Eq.(4.34) and Eq.(4.35), we know that

ut + ux = O(ε),

thereby

ηt + ηx = O(ε, δ2).

Then we combine Eq.(4.33), one obtains

ε(At +Ax) + δ2(Bt +Bx) = O(ε, δ2).

So we have that

At +Ax = O(ε, δ2),

Bt +Bx = O(ε, δ2).

Then we solve for Eq.(4.36) and Eq.(4.37), we have the following relation

At =
1

2
ηηx,

Bt =
d

2
ηxxt.

Now we can subsitute At and Bt into Eq.(4.35). Hence we obtain the BBM

equation for the system:

ηt + ηx +
5ε

2
ηηx −

d

2
δ2ηxxt = 0, (4.38)

and the KdV equation.

ηt + ηx +
5ε

2
ηηx +

d

2
δ2ηxxx = 0, (4.39)
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Then we have the dimensional form of Eq.(4.38),

ηt +
1

2

√
2Eh

ρr0
η +

5

4r0

√
2Eh

ρr0
ηηx −

r20d

2

1

2

√
2Eh

ρr0
ηxxt = 0, (4.40)

and the dimensional form of Eq.(4.39),

ηt +
1

2

√
2Eh

ρr0
η +

5

4r0

√
2Eh

ρr0
ηηx +

r20d

2

1

2

√
2Eh

ρr0
ηxxx = 0. (4.41)

4.4 Dissipative Boussinesq systems

In order to obtain a more accurate system, now we can take the viscosity

into account. Recall the Euler equations in the previous chapters:

ut + εuux + εvur + px = 0, (4.42)

δ2[vt + εuvx + εvvr] + pr = 0, (4.43)

rux + (rv)r = 0. (4.44)

Since we are going to take the viscosity into account, we need to use the

Navier-Stokes equation, which can be written in cylinderical coordinates

in the non-dimensional and scaled form:

ut + εuux + εvur + px =
1

δ2
1

Re
[
1

r
(rur)r + δ2uxx], (4.45)

δ2[vt + εuvx + εvvr] + pr =
1

Re
[
1

r
(rvr)r −

v

r2
+ δ2vxx], (4.46)

rux + (rv)r = 0, (4.47)

where Re is the Reynolds number and defined as:

Re =
λc̃

κ
.

In the relation above, κ denotes the kinematic viscosity and c̃ is a constant.

We assume that the viscosity is very small, specifically we take:
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1

Re
= O(εδ2).

After discarding the terms of O(ε, δ2), we have the following system:

ut + εuux + εvur + px =
1

δ2
1

Re

1

r
(rur)r, (4.48)

δ2[vt + εuvx + εvvr] + pr = 0, (4.49)

rux + (rv)r = 0, (4.50)

Following some heuristic arguments [12], [20]. We apply a further sub-

stitution, taking

u(x, r, t) = uw(x, t)φ(x, r, t) +O(δ2),

and assume that

φ(x, r, t) = 2
rw2 − r2

r20
.

Thereby we can see that the viscous terms has the form as below:

1

r
(rur)r = −8

uw

r20
.

Hence we rewrite the system:

ut + εuux + εvur + px = − 1

δ2
8

Re

uw

r20
, (4.51)

δ2[vt + εuvx + εvvr] + pr = 0, (4.52)

rux + (rv)r = 0. (4.53)

Following the same derivation as in Chapter 3, we obtain the Boussi-
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nesq system:

ut + εuux + (β(x)η)x − αδ
2(
r0

2
ux)

xt
− αδ2(r0xu)xt

−δ2uxt
r0r0x

2
− 1

δ2
8

Re

uw

r20
= 0,

(4.54)

ηt + r0xu+ εηxu+
r0
2
ux +

εη

2
ux + δ2uxx

(r0)
2r0x
4

+ δ2uxxx
(r0)

3

16
= 0. (4.55)

The system of Eq.(4.54) and Eq.(4.55) can be written in the dimensional

form:

ut + uux + (
Eσ(x)h

r20ρ
η)
x

− ρwh

ρ
(
r0
2
ux)

xt
− ρwh

ρ
(r0xu)xt

−uxt
r0r0x

2
+ 8κ

uw

r20
= 0,

(4.56)

ηt + r0xu+ ηxu+
r0
2
ux +

η

2
ux + uxx

(r0)
2r0x
4

+ uxxx
(r0)

3

16
= 0. (4.57)

Recall that Eq.(4.14) and Eq.(4.15) form the simplest system among all the

systems in this chapter, we can also take dissipative terms for them:

ηt +
1

2
(r0 + η)uθx + (r0x + ηx)uθ = 0, (4.58)

(1− ᾱr0xxt)uθt + [ ¯β(x)η]x + uθuθx −
(3α+ r0)r0x

2
uθxt

−(4ᾱ+ r0)r0
8

uθxxt + 8κ
uθ

r20
= 0,

(4.59)

which will be convenient for some numerical computation to test the model.
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Chapter 5

Properties of the general
system

Some important properties of the general system are being studied here.

We study the dispersion relation of the general system and that of the Eu-

ler equations. We study the well-posedness of the linearized systems and

weakly non-linear systems. Then we invesigate the existence of solitary

wave solutions.

5.1 Dispersion relation for the Euler equations

Now we consider the dispersion relation of the Euler system in this

study. First we linearise the non-dimensional Euler system as below

ut +
px
ρ

= 0, (5.1)

vt +
pr
ρ

= 0, (5.2)

ux + vr +
v

r
= 0. (5.3)

And for r = rw, we have

u = ηt, (5.4)

41
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ρwhηtt = p− Eh

r20
η. (5.5)

Additionally, we have that v = 0 when r = 0. Suppose the variables has

the following relations

u =u0(r)e
i(kx−ωt),

v =v0(r)e
i(kx−ωt),

p =p0(r)e
i(kx−ωt),

η =η0e
i(kx−ωt),

(5.6)

where u0(r), v0(r) and p0(r) are function or r and η0 is constant.

From Eq.(5.1), we have

utr +
pxr

ρ
= 0. (5.7)

For Eq.(5.2), we have

vtx+
prx

ρ
= 0, (5.8)

For Eq.(5.1), we obtain

p0 =
ω

k
u0 (5.9)

By Eq.(5.7) and Eq.(5.9), and consider the relation in Eq.(5.6), we have

ikv0 = u0r. (5.10)

So we have that

ikv0r = u0rr. (5.11)

Then we substitute Eq.(5.11) into Eq.(5.3), one obatin

ru0rr + u0r − rk2u0 = 0, (5.12)
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which is the Bessel equation. Since we have

v(0) = 0, v = v0(r)e
i(kx−ωt),

we conclude that

u0r = 0. (5.13)

Similarly, we have that u0r = ωkη0 by Eq.(5.4). Combine Eq(5.13) and the

knowledge of the Bessel function, one obtains

u0(r) =
η0ωI0(kr)

Ir(kr0)
, (5.14)

where I0 and I1 are Bessel functions.Now we consider the boundary con-

dition when r = r0, By substituting Eq.(5.9) and Eq.(5.14) into Eq(5.5), we

obtains the relation between ω and k,

ω2 =
Eh

ρr30

r0kI1(kr0)
ρwh
ρr0

kI1(kr0) + I0(kr0)
, (5.15)

For convenience, we denote the dispersion relation for the Euler system by

ωε. Now we study the phase velocity of the Euler system, and consider that

the system is under the long-wave condition, which means that k is very

small. Then we can use the Taylor series to expand the phase velocity. Since

the phase velocity is defined as:

c(k) =
ω(k)

k
,

We obtain the following expansion:

cε(k)

c0
= 1− 4α+ 1

24
(r0k)2 +

144α2 + 72α+ 13

3× 29
(r0k)4

−960α3 + 720α2 + 228α+ 31

3× 213
(r0k)6

+
403200× α4 + 403200α3 + 180000α2 + 42480α+ 4591

5× 3× 219
(r0k)8

+O(k10),

(5.16)
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where c0 is the Moens-Korteweg characteristic velocity, which is defined

as:

c0 =

√
Eh

2ρr0
.

5.2 Dispersion relation of the Boussinesq system

Similar with what we have done in Chapter 3, we can also compute the

dispersion relation of the general system with constant radius. We take that

uθ = u0e
i(kx−ωt), ηθ = η0e

i(kx−ωt),

and then we consider the linearised system of Eq.(4.24) and Eq.(4.25):

ηt +
1

2
r0u

θ
x + r30au

θ
xxx − r20bηxxt = 0, (5.17)

uθt +
Eh

ρr20
ηx +

Eh

ρr20
r20cηxxx − r20duθxxt = 0. (5.18)

Thus we can compute the dispersion relation,

ω2(k) =
Eh

ρr30

(1− c(r0k)2)(12 − a(r0k)2)

(1 + b(r0k)2)(1 + d(r0k)2)
(r0k)2.

Denoting the ω for the Boussinesq system by ωB, we compare it with the

dispersion relation of the Euler equations, which has been computed in

Section 5.1:

ω2
ε (k) =

Eh

ρr30

kI1(kr0)
ρ2h
ρr0
kI1(kr0) + I0(kr0)

,
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which has the Taylor expansion as:

cε(k)

c0
= 1− 4α+ 1

24
(r0k)2 +

144α2 + 72α+ 13

3× 29
(r0k)4

−960α3 + 720α2 + 228α+ 31

3× 213
(r0k)6

+
403200× α4 + 403200α3 + 180000α2 + 42480α+ 4591

5× 3× 219
(r0k)8

+O(k10).

(5.19)

We can also take the Taylor expansion for the Boussinesq system:

cB(k)

c0
= 1− 4α+ 1

24
(r0k)2

− 1

29
[64µ− 48)α2 + (64µ(1− θ2) + 32θ2 − 40)α

+16(µ+ ν − 1)θ4 − 8(4µ+ 2ν − 3)θ2 + 16µ+ 4ν − 11](r0k)4

−P3
213

(r0k)6 +
P4
219

(r0k)8 +O(k10),

(5.20)

where P3 and P4 are polynomials of α, µ, ν, and θ2. Observe that the first

two terms of the Euler system and all Boussinesq system are the same, and

the differences between them can be reduced by choosing different µ, nu

and θ. Then we can take θ2 = 1/2 and µ = ν = 0 for simplification and take

only the low order terms of Eq.(5.20), which leads:

cB(k)

c0
= 1− 4α+ 1

24
(r0k)2 +

144α2 + 72α+ 9

3× 29
(r0k)4. (5.21)

Then terms of Eq.(5.21) is very similar the low order terms of the Euler

dispersion relation. Observe that the terms of k2 are the same and we only

have a small difference in the term of k4. Now we consider the realistic

data [23] in Table 5.1:

The graph with two dispersion relations is presented in Figure 5.1, where

the red curve represents the Euler equations and green curve represents the

Boussinesq system.
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Parameter corresponding letter
Vessel’s length L 1.26× 10−2m

Vessel’s nominal radius R 3× 10−3m
Vessel’s thickness h 3× 10−4m

Wall density ρw 1000kg/m3

Blood density ρ 1060kg/m3

Young’s modulus E 4.07× 105kg/(m ˙sec2)
Kinetic viscosity κ 4× 10−6m/sec

Table 5.1: Parameters in the numerical experiments

5.3 Linear well-posedness of the Boussinesq system

In order to study the well-posedness of the system, first we consider the

general linearised system

ηt +
1

2
uθx + δ2auθxxx − δ2bηxxt = 0, (5.22)

uθt + βηx + δ2βcηxxx − δ2duθxxt = 0, (5.23)

where a,b,c and d is defined as in the previous chapter:

a =
(2θ2 − 1)ν

16
, b =

(2θ2 − 1)(1− ν)

8
,

c =
(2α+ (1− θ2))µ

4
, d =

(2α+ (1− θ2))(1− µ)

4
.

(5.24)

We denote the Lp(R) norm of a function f by |f |p, and the norm of the

Sobolev space Hs(R) by ‖f‖s. For a norm on Hs, we have

‖f‖2s = Σs
i=1|f (i)|

2

2.

And if s is not an integer, we take

‖f‖2s =
1

2π

∫ +∞

−∞
|f̂(k)|2(1 + k2)

s
dk. (5.25)
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Figure 5.1: Dispersion relation (Euler in red and Boussinesq in green)

Now we are going to consider the initial value problem with

η0 = φ, u0 = ψ.

Both φ and ψ tend to 0 as x goes to positive or negative infinity. Then we

take the Fourier transform with respect to x, which leads to:

d

dt

(
η̂

û

)
+ ikA(k)

(
φ̂

ψ̂

)
= 0, (5.26)

where

A(k) =

(
0 ω1(k)

ω2(k) 0

)
,

ω1 =
1

2

1− 2δ2ak2

1 + δ2bk2
, ω2 =

1− δ2βck2

1 + δ2dk2
.

Thereby we know that for the initial value of η0 and u0, we can solve for

Eq. (5.26), and obtain:
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(
η̂

û

)
= e−ikA(k)t

(
η̂0

û0

)
(5.27)

We can diagonalize the matrix A(k) as:

A(k) = PBP−1,

where P is an invertible matrix and A is a diagonal matrix. Then we have

that

P (k) =

 −√ω1
ω2

√
ω1
ω2

1 1

 ,

B(k) =

(
−√ω1ω2 0

0)
√
ω1ω2

)
,

Now we take

σ(k) = |ω1(k)ω2(k)|
1
2 .

Since

ePAP
−1

= PeAP−1,

then for ω1(k)ω2(k) ≥ 0, we have

e−ikA(k)t =

(
cos(kσ(k)t) −i sin(kσ(k)t)ω1(k)

σ(k)

i sin(kσ(k)t)ω1(k)
σ(k) cos(kσ(k)t).

)
(5.28)

When ω1(k)ω2(k) ≤ 0, we have

e−ikA(k)t =

(
cosh(kσ(k)t) −i sinh(kσ(k)t)ω1(k)

σ(k)

i sinh(kσ(k)t)ω1(k)
σ(k) cosh(kσ(k)t).

)
(5.29)

By the theory of Fourier multipliers [3], we know that the system is well-

posed if the matrix e−ikA(k)t is bounded in finite intervals of t. Thus for

each combination of the parameters the rational function ω1
ω2

has neither

zeros nor poles on the real axis. The exact form of ω1/ω2 is:
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ω1

ω2
=

1

2

1− 2δ2ak2

1 + δ2bk2
1 + δ2dk2

1− δ2βck2
.

Obviously we have that β > 0, so we only need to analyze if a, b, c and d are

positive, negative or zero. Here we have four factors, 1− 2δ2ak2, 1 + δ2bk2,

1 + δ2dk2 and 1− δ2βck2. Since we don’t want the result to go across 0, and

obviously for some k all factors have positive value, we need the factors

to be ”properly” positive. First we can assume that all factors are positive,

then the ratio is always positive. Then we can consider the case when some

negative factors can cancelled with some other factors. Hence we know

that one of the following conditions must hold:

(C1) b ≥ 0, d ≥ 0, a ≤ 0, c ≤ 0,

(C2) b ≥ 0, d ≥ 0, 2a = βc > 0,

(C3) b = d < 0, 2a = βc > 0.

By Eq.(5.27) and Eq.(5.28), we can obtain that

|η̂|2 +

(
ω1

ω2

)
|û|2 =

∣∣∣φ̂∣∣∣2 +

(
ω1

ω2

) ∣∣∣ψ̂∣∣∣2.
Here we can define the Fourier multiplier operatorH as following:

Ĥg(k) = h(k)ĝ(k),

where

h(k) =

(
ω1

ω2

)1/2

.

Then the ”energy” for any s of the solution is, [4] :

‖η‖2 + ‖Hu‖2 = ‖φ‖2 + ‖Hψ‖2.

By Eq.(5.25), we know that the operatorH raise the order of the correspond-

ing variable by l. Then we obtain the following :

Theorem 5.1 Let a, b, c, d satisfy (C1)-(C3). Define the order l pseudod-

ifferential operator H as above and set m1 = max(0,−l), m2 = max(0, l).
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Then the corresponding linear initial-value problem is well posed inHs+m1×
Hs+m2 for any s ≥ 0.

For example, if (C1) is satisfied, obviously that ω1
ω2

is always positive. In

either of the above conditions implies that ω1ω2 ≤ 0. Now we investigate

the linearised system Eq(5.17) and Eq(5.18).

ηt +
1

2
uθx + δ2auθxxx − δ2bηxxt = 0, (5.30)

uθt + βηx + δ2βcηxxx − δ2duθxxt = 0, (5.31)

(i) For a classical Boussinesq system, we have

θ2 =
1

2
, ν is abitrary, µ = 0.

Then we know that

a = b = c = 0, d =
4α+ 1

8
.

Hence it satisfies condition (C1).

(ii) For a BBM-BBM type system, we have

µ = ν = 0,

thus

a = 0, b =
2θ2 − 1

8
, c = 0, d =

2α+ (1− θ2)
4

.

Since a = c = 0, it only can be C(1) if the system is well-posed. Thus we

need θ satisfies that:

θ2 ≤ 1

2
, θ2 ≤ 2α+ 1.

(iii) For a KdV-BBM system, we have

ν = 1, µ = 0,

thus

a =
2θ2 − 1

16
, b = c = 0, d =

2α+ (1− θ2)
4

.
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Then it can be seen if a is not 0, the system is not well-posed.

(iv) For a KdV-KdV system, we have

ν = 1, µ = 1,

thus

b = 0, a =
2θ2 − 1

8
, c =

2α+ 1− θ2

4
, d = 0.

Observe that c > 0 the situation is similar to (ii), hence we have if

θ2 =
2αβ + β + 1

β + 2
,

the system is well-posed.

(v) For a Bona-Smith type system, we have

ν = 0, µ is arbitray provided 2(α+ (1− θ2))µ < 0.

Therefore only (C1) can be satisfied if the equation is well-posed. Then we

know that b ≥ 0, d ≥ 0. Since (α + (1 − θ2)) > 0, we know that µ < 0.

Hence we have when

θ2 ≥ 1

2
,

the system is well-posed.

5.4 Well-possedness of the non-linear system

Here we consider the local existence and uniqueness of solution of the

non-linear system:

ηt +
1

2
(1 + εη)uθx + εηxu

θ + δ2auθxxx − δ2bηxxt = 0, (5.32)

uθt + βηx + εuθuθx + δ2βcηxxx − δ2duθxxt = 0, (5.33)

with [3]:

b > 0, d > 0.
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Then we take Fourier transform with respect to x:

d

dt

(
η̂

û

)
+ ikA(k)

(
η̂

û

)
= −ikP−1

 1

2

1

1 + δ2bk2
(ûηx +

1

2
ûxη)

1

2

1

1 + δ2dk2
û2

 ,

(5.34)

where

A(k) =

(
0 ω1(k)

ω2(k) 0

)
,

ω1 =
1

2

1− 2δ2ak2

1 + δ2bk2
, ω2 =

1− δ2βck2

1 + δ2dk2
,

which is the same as in the previous section. In order to study the well-

possedness of the system, we take the change of variables as below:

η = H(v + w),

u = v − w,

whereH is the Fourier multiplier, which satisfies:

Ĥg = h(k)ĝ(k), h(k) =

(
ω1(k)

ω2(k)

) 1
2

.

Then Eq.(5.34) will have the form:

d

dt

(
v̂

ŵ

)
+ ik

(
σ(k) 0

0 −σ(k)

)(
v̂

ŵ

)
=

−ikP−1

 1

2

1

1 + δ2bk2
(ûηx +

1

2
ûxη)

1

2

1

1 + δ2dk2
û2

 ,

(5.35)

where

σ(k) = (ω1(k)ω2(k))
1
2 , P−1 =

1

2


1

h(k)
1

1

h(k)
−1

 .
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For Eq.(5.35), we considerH of different order.

Consider first H is of order 0. Here we also need to apply the condi-

tion when the system is linearly well-posed, which means that one of the

following conditions holds:

a < 0, c < 0, b > 0, , d > 0

or a = c > 0, b > 0, d > 0.
(5.36)

At the beginning we consider the equivalent system Eq.(5.35) completed

with initial values v0, w0, where

v0 =
H−1(φ) + ψ

2
∈ Hs(R),

w0 =
H−1(φ)− ψ

2
∈ Hs(R),

Then we take the inverse Fourier transform for Eq.(5.35), it follows that

∂

∂t

(
v

w

)
+ B

(
v

w

)
= F

(
v

w

)
, (5.37)

where

B =

(
σ(k) 0

0 −σ(k)

)
,

F

(
v

w

)
= −P−1

 (I − δ2b∂2x)
−1

[
1

2
H(v + w)∂x(v − w) + ∂xH(v + w)(v − w)]

(I − δ2d∂2x)
−1

(v − w)∂x(v − w)

 ,

I is the identity operator and (I − δ2b∂2x)
−1 is the inverse operator of (I −

δ2b∂2x). If S(t) denotes the group generated by B, then we know that it is a

unitary group on Hs(R2) [3]. By Duhamel’s formula, Eq.(5.37) also can be

written in the following form:

(
v

w

)
= S(t)

(
v0

w0

)
+

∫ t

0
S(t− s)F

(
v

w

)
ds.

Now we consider some (f1, g1) and (f2, g2) in a closed ball of radius R

centred at 0, which means that
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‖f1‖2s + ‖g1‖2s ≤ R
2,

‖f2‖2s + ‖g2‖2s ≤ R
2.

Let A = (1− δ2b∂2x)
−1, we have∥∥∥∥∥F
(
f1

g1

)
−F

(
f2

g2

)∥∥∥∥∥ =

∥∥∥∥∥P−1
(
L1

L2

)∥∥∥∥∥, (5.38)

where

L1 = A[
1

2
H(f1 + g1)∂x(f1 − g1) + ∂xH(f1 + g1)(f1 − g1)

−1

2
H(f2 + g2)∂x(f2 − g2) + ∂xH(f2 + g2)(f2 − g2)],

(5.39)

L2 = A[(f1 − g1)∂x(f1 − g1)− (f2 − g2)∂x(f2 − g2)]. (5.40)

Consider that P−1 is bounded, we have∥∥∥∥∥F
(
f1

g1

)
−F

(
f2

g2

)∥∥∥∥∥ ≤ C1

∥∥∥∥∥
(
L1

L2

)∥∥∥∥∥, (5.41)

whereC1 is a constant. For a function f = (f1, f2) in a product spaceX×X ,

the norm is defined as

‖f‖2s = ‖f1‖2s + ‖f2‖2s.

Then we have that∥∥∥∥∥F
(
f1

g1

)
−F

(
f2

g2

)∥∥∥∥∥ ≤ C1(‖L1‖2s + ‖L2‖2s). (5.42)

By the definition of A, we have

‖L1‖s ≤ C2‖
1

2
H(f1 + g1)∂x(f1 − g1) + ∂xH(f1 + g1)(f1 − g1)

−1

2
H(f2 + g2)∂x(f2 − g2) + ∂xH(f2 + g2)(f2 − g2)‖2s−2,

(5.43)
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and

‖L2‖s ≤ C3‖(f1 − g1)∂x(f1 − g1)− (f2 − g2)∂x(f2 − g2)‖2s−2, (5.44)

where Ci denote constants for i = 1, 2, 3 . . .. Since for a norm we have

‖a+ b‖2 ≤ C4(‖a‖2 + ‖b‖2),

thus we obtain that

‖L1‖s ≤ C5(‖
1

2
H(f1 + g1)∂x(f1 − g1)−

1

2
H(f2 + g2)∂x(f2 − g2))‖2s−2

+‖∂xH(f1 + g1)(f1 − g1)− ∂xH(f2 + g2)(f2 − g2)‖2s−2).
(5.45)

Then we consider the substitution

1

2
H(f1 + g1)∂x(f1 − g1)−

1

2
H(f2 + g2)∂x(f2 − g2)

=
1

2
H(f1 + g1)∂x(f1 − g1)−

1

2
H(f1 + g1)∂x(f2g2)

+
1

2
H(f1 + g1)∂x(f2g2)−

1

2
H(f2 + g2)∂x(f2 − g2)

=
1

2
H(f1 + g1)∂x[(f1 − g1)− (f2 − g2)]

+
1

2
H[(f1 − g1)− (f2 − g2)]∂x(f2 − g2),

(5.46)

∂xH(f1 + g1)(f1 − g1)− ∂xH(f2 + g2)(f2 − g2)

= ∂xH(f1 + g1)(f1 − g1)− ∂xH(f1 + g1)(f1 − g1)

−∂xH(f1 + g2)(f1 − g2)− ∂xH(f2 + g2)(f2 − g2)

= ∂xH(f1 + g1)[(f1 − g1)− (f2 − g2)]

−∂xH[(f1 − g1)− (f2 − g2)](f2 − g2).

(5.47)

And we also can do the similar transform for L2. Applying the inequality
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‖a+ b‖2 ≤ C4(‖a‖2 + ‖b‖2),

again, we have

‖1

2
H(f1 + g1)∂x(f1 − g1)−

1

2
H(f2 + g2)∂x(f2 − g2)‖2s−2

≤ C7(‖
1

2
H(f1 + g1)∂x[(f1 − g1)− (f2 − g2)]‖2s−2

−‖1

2
H[(f1 − g1)− (f2 − g2)])∂x(f2 − g2)‖2s−2)

≤ C8‖
1

2
H(f1 + g1)‖2s−2‖∂x[(f1 − g1)− (f2 − g2)]‖2s−2

−‖1

2
H[(f1 − g1)− (f2 − g2)]‖2s−2‖∂x(f2 − g2)‖2s−2.

(5.48)

Note that f1, g1, f2, g2 are all in the closed ball, andH is a bounded operator.

Consider the inequality

‖∂xa‖s ≤ C9‖a‖s+1, ‖a‖s ≤ C10‖a‖s+1,

for arbitrary a, we obtain that:

F

(
0

0

)
=

(
0

0

)
,

and there exists a constant C for which∥∥∥∥∥F
(
f1

g1

)
−F

(
f2

g2

)∥∥∥∥∥ ≤ CR
∥∥∥∥∥
(
f1

g1

)
−

(
f2

g2

)∥∥∥∥∥
whenever (f1, g1) and (f2, g2) are selected from the closed ball B̄R of radius

R and center at 0. If we take some fixed

(v0, w0) ∈ Hs(R2),
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then we can prove on the basis that the mapping (ṽ, w̃) 7→ (v, w), with(
v

w

)
= S(t)

(
v0

w0

)
+

∫ t

0
S(t− s)F

(
ṽ

w̃

)
ds,

is a contraction of B̄R into itself for R sufficiently large [16]. Now we con-

sider the following lemma:

Lemma 3.1 If H has order 0, then it is bounded mapping of Lp(R) for

1 ≤ p ≤ ∞. The operator H is also a bounded mapping with bounded

inverse Hs(R) onto itself for s ≥ 0.

Then we can conclude the following theorem

Theorem 3.2 If H has order 0, assume that the condition in Eq.(5.36)

holds. Let s ≥ 0 and (φ, ψ) ∈ (Hs(R))2. Then there exist T > 0 and a

unique solution pair (η, u) in C(0, T ; (Hs(R))2) for the system of Eq.(5.32)

and Eq.(5.33). Additionally, (ηt, ut) ∈ C(0, T : Hs−1(R))
2 .Moreover, the

correspondence associating initial data to the solution is locally Lipschitz

continuous.

The proof forH of order −1 and 1 ofH are similar. Then we have:

Theorem3.3 If H has order −1, let (φ, ψ) ∈ Hs+1 × Hs, s ≥ 0. Then

there exist T > 0 and a unique solution (η, u) inC(0, T : Hs+1(R))×C(0, T : Hs(R))

for the system of Eq.(5.32) and Eq.(5.33). Moreover, (ηt, ut) ∈ C(0, T : Hs+1(R))×
C(0, T : Hs(R)). The correspondence between initial values and solutions

is locally Lipschitz.

Theorem 3.3 IfH has order 1, let (φ, ψ) ∈ Hs+1×Hs, s ≥ 0. Then there

exist T > 0 and a unique solution (η, u) inC(0, T : Hs(R))×C(0, T : Hs+1(R))

for the system of Eq.(5.32) and Eq.(5.33). Moreover, (ηt, ut) ∈ C(0, T : Hs(R))×
C(0, T : Hs+1(R)). The correspondence between initial values and solu-

tions is locally Lipschitz.
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5.5 Solitary waves of the general system

In order to find solitary waves for the general system, we take the radius

r0 to be constant. Then for Eq.(4.14) and (4.15), we have

ηt +
1

2
(r0 + η)uθx + ηxu

θ + r30au
θ
xxx − r20bηxxt = 0, (5.49)

uθt + β̂ηx + uθuθx + β̂r20cηxxx − r20duθxxt = 0, (5.50)

where β̂ = Eh
ρr20

. Then we take the ansatz:

η = η(x− vt), u = u(x− vt).

Now we substitue into Eq.(5.49) and Eq.(5.50) and obtain:

−vη′ + 1

2
r0u
′ +

1

2
ηu′ + η′u+ r30au

′′′ + vr20bη
′′′ = 0,

−vu′ + β̂η′ + uu′ + β̂r20cη
′′′ + vr20du

′′′ = 0,
(5.51)

where the prime symbol denotes the derivative with respect to s = x − vt.
In order to simplify the Eq.(5.51) we assume:

u = kη.

Hence the above equations will be

−vη′ + 1

2
r0kη

′ +
1

2
ηkη′ + η′kη + r30akη

′′′ + vr20bη
′′′ = 0,

−vkη′ + β̂η′ + kηkη′ + β̂r20cη
′′′ + vr20dkη

′′′ = 0.
(5.52)

Then we collect the terms of different order of derivatives, one obtains

(
1

2
r0k − v)η′ +

3k

2
ηη′ + (ar30k + br20v)η′′′ = 0,

(β̂ − vk)η′ + k2ηη′ + (cβ̂r20 + dvkr20)η′′′ = 0.

(5.53)

In order to get non-trivial solutions, the two equations need to be identical.
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After some computations, we have

vk = 3β̂ − r0k2, r0k
2 =

β̂(c− 2b+ 3d)

2a− 3b+ 3d
.

For convenience, we take

R =
β̂(c− 2b+ 3d)

2a− 3b+ 3d
.

Thereby we obtain that

vk = 3β̂ −R, k =

√
R

r0
, v =

√
R

r0
(3β̂ −R).

Now the equation has the following form:

r0
R

(2β̂ −R)η′ − r30
R

[cβ̂ + d(3β̂ −R)]η′′′ = ηη′. (5.54)

Taking
r0
R

(2β̂ −R) = Â,

r30
R

[cβ̂ + d(3β̂ −R)] = B̂.

Then we know that the equation has solitary wave solution when [7]:

ÂB̂ > 0,

and the solution is

η(ξ) = 3Âsech2(
1

2

√
Â

B̂
(ξ + ξ0)), (5.55)

where v0 is constant.
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5.6 Existence of solitary waves

Here we consider the form of a, b, c and d.

a =
(2θ2 − 1)ν

16
, b =

(2θ2 − 1)(1− ν)

8
,

c =
(2α+ (1− θ2))µ

4
, d =

(2α+ (1− θ2))(1− µ)

4
.

Next we study the existence of the solitary waves with the form of

Eq.(5.55) in the following systems:

(i) For the classical Boussinesq system, we have

θ2 =
1

2
, ν is arbitray, µ = 0.

Then a, b, c are all 0, and d > 0. For the system of Eq.(5.53), we can find

that the coefficient of η′′′ in the first equation is 0, and that the coefficient of

η′′′ in the second equation is dvkr20. Obviously by our definition in order to

obtain the non-trivial solution, none of v, k and r0 can be 0. In the condition

of classical Boussinesq system, d is not 0 too. So the coefficient of η′′′ in the

second equation can’t be 0 too. Then these two equations can’t be identical.

So we don’t have the solitary wave solution of Eq.(5.55).

(ii) For a Bona-Smith type system: ν = 0, µ ∈ R, provided (2α + (1 −
θ2))µ < 0, b > 0, d > 0, a = 0, c < 0. Since c < 0, (2α + (1 − θ2)) > 0, we

know that µ < 0, then we know that 1− µ > 0, thus d > 0. To let b > 0, we

have

2θ2 − 1 > 0,

which means that

θ2 >
1

2
.

(iii) For a BBM-BBM type system, we have

µ = ν = 0.

Hence we have that
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b =
(2θ2 − 1)

8
, d =

(2α+ (1− θ2))
4

.

In order to make the two equations in Eq.(5.53) identical, the following

condition must be satisfied:

k2vr20b =
3

2
vk2r20d,

which means that

b =
3

2
d.

thus we can obtain the relation for θ:

2θ2 − 1 = 3(2α+ (1− θ2)).

Hence we know that the system has the solitary wave solution of form

Eq.(5.55) if and only if

θ2 =
6

5
α+

3

5
.

However, we can see that since b = 3
2d, r0k2 = 0. By our definition nei-

ther of r0 and k2 is 0, so we can’t find solitary wave solutions of the form

Eq.(5.55).

(iv) For a KdV-KdV system, we have

ν = 1, µ = 1,

Then we know that

a =
(2θ2 − 1)

8
, c =

2α+ (1− θ2)
4

,

Then we have

R =
c

2a
.

Since 0 ≤ θ2 ≤ 1, we have c > 0. Then we can compute for ÂB̂ > 0, which
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leads to:

(2β̂ − β̂ c

2a
)(cβ̂) > 0.

Since β̂, c > 0, we have:
c

2a
< 2.

If a < 0, the above inequality holds. If a > 0, then

c < 4a,

thus

2α+ (1− θ2) < 4θ2 − 2,

which leads to:

θ2 >
2α+ 3

5
.

(v)For a KdV-BBM system, we have

ν = 0, µ = 1,

Then we know that

d =
(2α+ (1− θ2))

4
, a =

2θ2 − 1

16
,

b = c = 0.

Then we know that under this condition, we can compute for Â, B̂

Â =
r0(θ

2 − 6α− 2)

3(θ2 − 1− 2α)
, B̂ = αr30 −

1

4
r30θ

2 +
3

8
r30.

In order to satisfy that ÂB̂ > 0, we need:

6 + 34α+ 48α2 − 7θ2 − 20αθ2 + 2θ4

24(1 + 2α− θ2)
> 0.
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5.7 Symmetries

To study the symmetry properties of the solution, we computed the

symmetry point transformations of the system of Eq.(4.22) and Eq.(4.23)

for all µ, ν and θ. The solutions remain symmetric with respect to time and

space translations. However, if we assume that ν = 0 and θ2 = 1
2 , we obtain

an additional symmetry transformations. The complete set of infinitesimal

generators in this particular case is given here

X1 =
∂

∂x
,

X2 =
∂

∂t
,

X3 = −t ∂
∂t

+ 2(η + r0)
∂

∂η
+ u

∂

∂u
.

The corresponding point transformations are given below in the same or-

der:

t′ = t, x′ = x, η′ = η, u′ = u,

t′ = t+ ε2, x′ = x, η′ = η, u′ = u,

t′ = e−ε3t, x′ = x, η′ = −r0 + e2ε3(r0 + η), u′ = −ε3u,

where ε1,2,3 ∈ R are free parameters. The last transformation is a scaling

transformation. In order to achieve further symmetries to the solutions one

should include higher order terms even if they break the asymptotic order

of the models.



64 CHAPTER 5. PROPERTIES OF THE GENERAL SYSTEM



Chapter 6

Alternative derivation of the
Boussinesq system

In this chapter we provide an alternative derivation of the general sys-

tem considering the equations of potential flow. We show that the two

different derivations lead to the same system. The alternative derivation is

based on asymptotic series expansions.

6.1 Derivation of the additional system

Now we apply the method of potential flow to solve the problem. Here

we consider the dimensional variables first. Since the velocity ~u of the

blood is a vector field, we consider a potential φ such that:

∇φ = ~u.

We still denote u the velocity in the x direction and v in the radius direction.

Then we have that

φx = u, φr = v.

65
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Hence the Euler equations take the form

φxx +
1

r
(rφr)r = 0, (6.1)

φt +
1

2
|∇φ|2 +

p

ρ
= 0. (6.2)

The boundary conditions now have the form

φxx +
1

r
(rφr)r = 0, 0 < r ≤ r0 + η, (6.3)

φr = ηt + (r0x + ηx)φx, r = r0 + η, (6.4)

φt +
1

2
|∇φ|2 +

ρw

ρ
hηtt +

Eh

ρr20
η = 0, r = r0 + η, (6.5)

φr = 0, r = 0. (6.6)

Then we perform the same scaling as in the Chapter 3:

x = Λx, r = Rr, η = Aη, t =
Λ

c
t,

c =

√
Eh

2Rρ
, ε =

A

R
, δ =

R

Λ
.

If we add bar on the dimensional variables and take the non-dimensional

variables without bar, we make the following change:

φ̄ =
Λ̄Āc̄

R̄
φ.

Then we have that

δ2φxx +
1

r
(rφr)r = 0, 0 < r ≤ r0 + εη, (6.7)

φr = δ2ηt + δ2(r0x + εηx)φx, r = r0 + εη, (6.8)

δ2φt +
1

2
εδ2φ2x +

1

2
εφ2r + δ4αηtt + δ2βη = 0, r = r0 + εη, (6.9)
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φr = 0, r = 0. (6.10)

Now we take a series expansion with respect to r for the potential function

φ:

φ = φ0 + rφ1 + r2φ2 + ... (6.11)

Since φ is only a function of x and t, we have

φr = φ1 + 2rφ2 + 3r2φ2 + ...+ nrn−1φn + ...,

and
1

r
(rφr)r =

1

r
φ1 + 22φ2 + 33rφ3 + ...+ n2rn−2φn + ...

Substituting Eq.(6.11) into Eq.(6.7), we obtain:

δ2(φ0 + rφ1 + r2φ2 + ...)xx +
1

r
φ1 + 22φ2 + 33rφ3 + ...+ n2rn−2φn + ... = 0.

(6.12)

Now we can collect the terms of r of different order. It can be easily seen

that the term of r−1 is zero, and φn+2 is some constant multiplying the

second order derivative of φn. Then we observe the following relation:

δ2∂2xφn−2 + n2φn = 0, n ≥ 2. (6.13)

Instantly we find that

δ2∂2xφ0 + 4φ2 = 0,

δ2∂2xφ2 + 16φ4 = 0,

...

Since the term of r−1 is zero, which is φ1. then by Eq.(6.13) we know that

φ3, φ5, ..., and all other φn for odd n are all zero:

φ1 = φ3 = φ5 = ... = φ2n−1 = 0, n = 1, 2, 3, ...
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For even n the terms φn are:

φ2n = δ2n∂2nx
1

(−1)n(22n)(n!)2
φ0, (6.14)

where n are positive integers. Then we can write the φ in the following

form:

φ = φ0 + r2nΣ∞n=1φ2nδ
2n∂2nx

1

(−1)n(22n)(n!)2
φ0. (6.15)

If only the first several terms are considered, we have:

φ = φ0 −
r2

4
δ2φ0xx +

r4

64
δ4φ0xxxx, (6.16)

Substituting Eq.(6.16) into Eq.(6.8), one obtains

−2r

4
δ2φ0xx +

1

64
4r3δ4φ0xxxx = δ2ηt + δ2[r0x + εηx][φ0x + rφ1x + r2φ2x...].

If we assume that only the first a few terms are important, and combine

with Eq.(6.11), one obtains that:

−1

2
(r0 + εη)δ2φ0xx +

1

16
(r0 + εη)3δ4φ0xxxx

= δ2ηt + δ2[r0x + εηx][φ0x −
1

4
(r0 + εη)2δ2φ0xxx].

(6.17)

After dividing both sides by δ2, one obtains

−1

2
(r0 + εη)φ0xx +

1

16
(r0 + εη)3δ2φ0xxxx

= ηt + [r0x + εηx][φ0x −
1

4
(r0 + εη)2δ2φ0xxx].

(6.18)

Thus we have that

ηt +
1

2
r0φ0xx +

1

2
εηφ0xx + r0xφ0x + εηxφ0x

−δ
2

4
(r0 + εη)2r0xφ0xxx −

1

16
r0

3δ2φ0xxxx = O(εδ2).

(6.19)
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And we discard the high order terms on the right hand side, one obtains:

ηt +
1

2
r0φ0xx +

1

2
εηφ0xx + r0xφ0x + εηxφ0x

−δ
2

4
(r0 + εη)2r0xφ0xxx −

1

16
r0

3δ2φ0xxxx = 0.

(6.20)

For Eq.(6.9), first we differentiate both sides with respect to x, which leads

to:

δ2φxt +
εδ2

2
φ2x + δ4αηxtt + δ2βηx = O(εδ2). (6.21)

Now we only take the first two terms of Eq.(6.16):

φ = φ0 −
r2

4
δ2φ0xx, (6.22)

If we substitute Eq.(6.22) into Eq.(6.21), and take r = r0, we will obtain that:

φ0xt −
1

4
δ2r20φ0xxxt −

r0r0x
2

φ0xxt + (β(x)η)x + εφ0xφ0xx + δ2αηxtt = O(ε, δ2).

(6.23)

Since we have φ0x = u0, which is velocity at the vessel wall, we can see

that the above equation is totally the same one as Eq.(3.47). Esssentially the

relation for u0 and the velocity at r, ur, are the same, too. So the system

derived here is the same with the one we derived in chapter 3:

ηt+r0xu0+εηxu0+
r0
2
u0x+

εη

2
u0x−δ2u0xx

(r0)
2r0x
4

−δ2u0xxx
(r0)

3

16
= O(εδ2),

(6.24)

u0t + εu0u0x + pwx − δ2u0xxt
(r0)

2

4
− δ2u0xt

r0r0x
2

= 0, (6.25)

where pwx = δ2αηxtt − (βη)x.

6.2 The general system

Here we focus on the vessel with constant radius. We consider a pa-

rameter θ, with

0 ≤ θ ≤ 1,
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then we can take that

r = θr0.

Now we denote the velocity for any parameter θ by w. Obviously when

θ = 0 we obatin u0, which is the horizontal velocity of the center of the

vessel. For convenience we only write it as u. Since we have done the

scaling and we can take R = r0, thereby

w = u− 1

4
δ2uxx +

1

64
δ2uxxxx +O(δ6).

Then we can apply the Fourier transform and denote the variables after

Fourier transform with a hat:

ŵ = (1 +
1

4
δ2θ2k2 +

1

64
δ4θ2k4)û+O(δ6).

Since we have the approximation of

1

1 + x
= 1− x+ x2...,

Let the x above be 1
4δ

2θ2k2 + 1
64δ

4θ2k4, therefor we obtain the expression of

û:

û = (1− 1

4
δ2θ2k2 − 1

64
δ4θ2k4 +

1

16
δ4θ4k4) +O(δ6).

thereby

û = (1− 1

4
δ2θ2k2 +

3

64
δ4θ2k4) +O(δ6).

Now we can apply the inverse Fourier transform, which gives:

u = w +
1

4
δ2θ2wxx +

3

64
δ4θ4wxxxx +O(δ6).

The above result can be substitued into the previous equations:

ηt +
1

2
r0u0x +

1

2
εηu0x + εηxu0 −

δ2

16
r30u0xxx = 0 (6.26)
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u0t −
1

4
δ2r20u0xxt −

1

2
δ2r0r0xu0xt + (β(x)η)x + εu0u0x

−δ2α(
1

2
r0u0x)

xt
= 0,

(6.27)

which leads to:

ηt +
1

2
(wx +

1

4
δ2θ2wxxx) +

1

2
εηwx + εηxw −

δ2

16
wxxx = O(ε, δ2) (6.28)

wt −
1

4
δ2wxxt + (β(x)η)x + εwwx − δ2α

1

2
wxxt = O(ε, δ2). (6.29)

6.3 Viscoelastic correction

For Eq(2.27) in chapter 2, we can add one correction term of viscoelastic,

then the equation is:

ρwhηtt = pw + γ̃ηt −
Eσ(x)h

r20
η, (6.30)

where γ is a constant related to visco-elasticity. In the previous chapters,

we have the following equation

δ2φt +
1

2
εδ2φ2x +

2

2
εφ2r + δ4αηtt + δ2βη = 0, r = r0 + εη. (6.31)

Since now we import the viscoelastic terms, we have the new equation:

δ2φt+
1

2
εδ2φ2x+

2

2
εφ2r +δ4αηtt−δ4

γ̃R̄

Λ̄Āc̄
ηxt+δ2βη = 0, r = r0 + εη. (6.32)

Then we do the similar derivation as in section 6.1, which leads to:

u0t+ εu0u0x+ δ2αηxtt+ (βη)x− δ
2 γ̃R̄

Λ̄Āc̄
ηxt− δ2u0xxt

(r0)
2

4
− δ2u0xt

r0r0x
2

= 0,

(6.33)
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By substituting Eq.(6.30) into the system of Eq.(4.14) and Eq.(4.15), one ob-

tains the new system:

ηt +
1

2
(r0 + η)uθx + (r0x + ηx)uθ = 0, (6.34)

(1− ᾱr0xxt)uθt + [ ¯β(x)η]x + uθuθx −
(3α+ r0)r0x

2
uθxt −

γ̃

ρ
ηxt

−(4ᾱ+ r0)r0
8

uθxxt + 8κ
uw

r20
= 0.

(6.35)

By Eq.(6.25), one obatins:

ut + (β(x)η)x = O(ε, δ2),

And we also have Eq.(6.24), which lead the relation:

ηt = −1

2
r0u0x − r0xu0 +O(ε, δ2).

Then we can make substitution for the term of uxt and ηxt of Eq.(6.33),

which lead to the following result after going back to the dimensional form:

ηt +
1

2
(r0 + η)uθx + (r0x + ηx)uθ = 0, (6.36)

(1− ᾱr0xxt)uθt + [ ¯β(x)η]x + uθuθx −
(3α+ r0)r0x

2
( ¯β(x)η)xx +

γ̃

ρ
(
1

2
r0u0x + r0xu0)

−(4ᾱ+ r0)r0
8

uθxxt + 8κ
uw

r20
= 0.

(6.37)



Chapter 7

Numerical Methods

In this Chapter we introduce the basic concepts of finite difference meth-

ods for the numerical solutions of partial differential equations. We de-

velop finite difference methods for the numerical solution of the BBM equa-

tion and for the classical Boussinesq system studied in the previous chap-

ters. Finally, we demonstrate the application of the new models to blood

flow problems. By performing several numerical simulations.

7.1 Finite difference method

Now we consider the funcion u(x, t), which is defined on the domain

x ∈ [a, b],×t ∈ [0, T ]. We define our grids x0,x1,...,xN+1 for x and t0,t1,...,tM+1

for t. Let ∆x = xi+1 − xi, ∆t = tj+1 − tj for any i, j and ∆x and ∆t are

all uniform. Let x0 = a and xN+1 = b. Let t0 = 0 and tM+1 = T . Then we

denote uji the approximation of u(xi, tj)by only taking the u(x, t) at x = xi

and t = tj for the i, j invovled. Now we have discretized u(x, t) at the

domain x ∈ [a, b], t ∈ [0, T ].

Thereby we can discretize the derivatives. By the Taylor expansion, we

have:

∂u

∂t

∣∣∣∣j
i

=
uj+1
i − uji

∆t
+O(∆t).

Then we obtain the derivatives with respect to t of the finite difference form

73
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of order ∆t. By the Taylor expansion also gives that

u(x+ ∆x, t) = u(x, t) +
∂u(x, t)

∂x
∆x+

1

2

∂2u(x, t)

∂x2
∆x2 +O(∆x3), (7.1)

u(x−∆x, t) = u(x, t)− ∂u(x, t)

∂x
∆x+

1

2

∂2u(x, t)

∂x2
∆x2 +O(∆x3). (7.2)

By comparing the above two equations, we can eliminate the terms of order

∆x2, thus we obtain

∂u

∂x

∣∣∣∣j
i

=
uji+1 − u

j
i−1

2∆x
+O(∆x2),

which is the derivative with respect to x of the finite difference form of

order ∆x2. By applying the Taylor expansion, we can have the following

relation:

u(x+2∆x, t) = u(x, t)+2
∂u(x, t)

∂x
∆x+2

∂2u(x, t)

∂x2
∆x2+

4

3

∂3u(x, t)

∂x3
∆x3+O(∆x4),

(7.3)

u(x−2∆x, t) = u(x, t)−2
∂u(x, t)

∂x
∆x+2

∂2u(x, t)

∂x2
∆x2−4

3

∂3u(x, t)

∂x3
∆x3+O(∆x4),

(7.4)

Substituting Eq.(7.1) and Eq.(7.2) into and Eq.(7.3) and and Eq.(7.4), we ob-

tain the second order derivatives with respect to x of order ∆x2:

∂2u(x, t)

∂x2

∣∣∣∣j
i

=
uji−1 − 2uji + uji+1

∆x2
.

We will use these formules to descritize our model equation.

7.2 A finite difference method for the BBM equation

In this section we study the numerical solution of the BBM equation.

The numerical scheme is linearly implict and it was first derived in [18].

For convenience, we take the all the coefficients to be 1. Then the BBM
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equation has the following form:

ut + ux + uux + uxxt = 0,

in x ∈ [a, b] with initial condition u(x, 0) = u0(x) and boudary condition

u(a, t) = u(b, t) = 0. We apply the following method [9]:

∆t(1− δ2x)uji +
1

2
(1 + uji )Hx(uj+1

i + uji ) = 0.

The operators here are:

δ2xu
j
i =

uji−1 − 2uji + uji+1

∆x2
,

Hxu
j
i =

uji+1 − u
j
i−1

2∆x
,

∆tu
j
i =

uj+1
i − uji

∆t
.

For convenience. we denote ∆x by h and denote ∆t by τ . Then we have

the exact form the the finite difference relation:

uj+1
i − uji
τ

−
(uj+1
i+1 − 2uj+1

i + uj+1
i−1 )− (uji+1 − 2uji + uji−1)

h2τ

+
1

2
(1 + uji )

uj+1
i+1 − u

j+1
i−1 + uji+1 − u

j
i−1

2h
= 0.

(7.5)

Rearranging the terms we have:

uj+1
i

τ
−
uj+1
i+1 − 2uj+1

i + uj+1
i−1

h2τ
+

1

2
(1 + uji )

uj+1
i+1 − u

j+1
i−1

2h

=
uji
τ
−
uji+1 − 2uji + uji−1

h2τ
− 1

2
(1 + uji )

uji+1 − u
j
i−1

2h
.

(7.6)

Collecting the j + 1 terms on the left side of Eq.(7.6) we can express this
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relation in matrix-vector form CU = F , where

C =


...

... − 1
h2τ

+ (1 + uji )
1
4h

1
τ + 2

h2τ
− 1
h2τ
− (1 + uji )

1
4h ...

...

 .

C is tridiagonal with diagonals:

Ci−1,i = − 1

h2τ
− (1 + uji )

1

2h
,

Ci,i =
1

τ
+

2

h2τ
,

Ci+1,i =
1

τ
+

2

h2τ
.

The first row and the (N + 1)th row are related to boundary conditions.

And we also consider the vector U for some j:

UT = (uj+1
1 uj+1

2 ... uj+1
N+1).

For F T := (F1 F2... FN+1), we have

Fi =
uji
τ
−
uji+1 − 2uji + uji−1

h2τ
− 1

2
(1 + uji )

uji+1 − u
j
i−1

2h
,

for 2 < i < N . When i = 1 or i = N + 1, we take the boundary conditions

into account.

The equation CU = F is for some specific j. On the left hand side the

terms are all related to j + 1 and on the right hand side the terms are all

related to j. To solve the system, we multiply C−1 on both sides:

U = C−1F.

Once all the uji are known for some j and for all i, we can compute the

solution for j+ 1. Note that the matrix C depends on j since it has terms of

that contain uji .
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7.3 Stability analysis of the numerical method for the

BBM equation

In this section we study the stability of the numerical scheme. Specif-

ically we study the limits for the discretization parameters ∆t, ∆x so that

the numerical solutions remains bounded. In order to do so we consider

the Von Neumann analysis of the linearized equation.

ut + ux − uxxt = 0.

Since we will denote the imaginary unit by i here, we will denote u by ujn.

Then we consider:

ujn = ξjeiknh.

It can be easily seen that

uj+1
n = ξj+1eiknh,

ujn+1 = ξjeikheiknh.

Thus for the linearised Eq.(7.5), we have

(ξ − 1)

τ
+

(ξ − 1)(eikh − 2 + e−ikh)

h2τ
+

1

2
(ξ + 1)

eikh − e−ikh

2h
= 0.

Since we have

eikh + e−ikh = 2 cos(kh),

eikh − e−ikh = 2 sin(kh),

we obtain that

(ξ − 1)

τ
+

(ξ − 1)(2 cos(kh)− 2)

h2τ
+

1

2
(ξ + 1)

2 sin(kh)

2h
= 0.

Therefore solving for ξ we have

ξ =
1− 2 cos(kh)−2

h2
+ i sin(kh)2h

1− 2 cos(kh)−2
h2

− i sin(kh)2h

.
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In order for the solutions to be bounded, so we have |ξ| ≤ 1. Observe that

the denominator and the numerator of ξ are complex conjugate, we have

that

|ξ| = 1,

for all k and h. So we conclude the solution is bounded for any value k, ∆t,

∆x and this numerical scheme is unconditionally stable.

7.4 A numerical method for the Boussinesq system

In this section we develop a finite difference method to solve the Boussi-

nesq system Eq.(4.58) and Eq.(4.59):

ηt +
1

2
(r0 + η)uθx + (r0x + ηx)uθ = 0, (7.7)

(1− ᾱr0xx)uθt + [ ¯β(x)η]x + uθuθx −
(3α+ r0)r0x

2
uθxt

−(4ᾱ+ r0)r0
8

uθxxt + 8κ
uw

r20
= 0.

(7.8)

We consider similar approximations as in the previous sections to derive

the method of [18]. We discretise the time interval by τ and spatial interval

by h. We denote U ji ≈ u(xi, tj) and Hj
i ≈ η(xi, tj) instead of eta. From

Eq.(7.7) we obtain that:

Hj+1
i −Hj

i

τ
+

1

2
(r0i +Hj

i )
U ji+1 − U

j
i−1

2h
+ (r0xi +

Hj
i+1 −H

j
i−1

2h
)U ji = 0,

(7.9)

By the above equation, we can solve for Hj+1
i . Since we have the term of

j + 1, we can take the average term:

Hj
i +Hj+1

i

2

instead of the term Hj
i . For covenience, we denote the average term by
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H
j+ 1

2
i . We also take that:

BHj
i = β̄iH

j
i .

Therefore we can compute theU j+1
i by Eq.(7.8) using the following relation:

P (i)
U j+1
i − U ji

τ
+
BH

j+ 1
2

i+1 −BH
j+ 1

2
i−1

2h

+
U ji+1 − U

j
i−1

2h
U ji +Q(i)

BH
j+ 1

2
i+1 − 2BH

j+ 1
2

i +BH
j+ 1

2
i−1

h2

−R(i)
(U j+1

i+1 − 2U j+1
i + U j+1

i−1 )− (U ji+1 − 2U ji + U ji−1)

h2τ

+8κ
U ji
r20i

= 0.

(7.10)

Now we can solve for U j+1
i and the process is similar to the previous sec-

tion. Finally at every time step we improve the first approximation of Hj
i

obtained by Eq.(7.9) using the average term of U
j+ 1

2
i :

Hj+1
i −Hj

i

τ
+

1

2
(r0i +Hj

i )
U
j+ 1

2
i+1 +−U j+

1
2

i−1
2h

+ (r0xi +
Hj
i+1 −H

j
i−1

2h
)U ji = 0.

(7.11)

7.5 Numerical experiments

In order to validate our system, we perform some numerical experi-

ments. Table 7.1 presents the parameters used in our experiments, which is

from the reference [23]. We consider a vessel with the parameters of table

7.1 and we study the propagation of a pulse in an elastoc vessel.

Now we compute the relations for a stenosed vessel, tapered vessel and

a vessel with constant radius. The parameter of the studied vessel is listed

in the above table. We let the inflow side of the vessel to be x = 0 and the

outfow side of the vessel to be x = 0.126.
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Parameter corresponding letter
Vessel’s length L 1.26× 10−2m

Vessel’s nominal radius R 3× 10−3m
Vessel’s thickness h 3× 10−4m

Wall density ρw 1000kg/m3

Blood density ρ 1060kg/m3

Young’s modulus E 4.07× 105kg/(m ˙sec2)
Kinetic viscosity κ 4× 10−6m/sec

Table 7.1: Parameters in the numerical experiments

To check our system, a stenosed part is involved in the vessel. In this

case, the radius can be described by the function:

r0(x) = 0.003− 0.0003(1− cos(2π(x− 0.02)))/2, x ∈ [0.02, 0.03].

We considera tapered vessel also. For the tapered vessel, the radius

will reduces linears with respect to x. At x = 0.126, the radius is 0.002,

compared with 0.003 at x = 0.

We compute the flow rate q and the pressure p in the following figures.

The blue lines represent the boundary conditions at x = 0 while the red

lines represent the solution at x = 0.126.

In the Figure 7.1,we demonstrate the flow rate and the pressure at the

position of x = 0 anb x = 0.126. In the Figure 7.2 shows that it takes longer

time for the wave peak to arrive. Since that the vessel narrows, the velocity

can be even larger than the initial velocity. The biggest difference is in the

pressure, due to the narrowing of the vessel. In the Figure 7.3, we can see

that the flow rate of the blood is a little smaller than the flow rate of the

blood in the constant radius vessel.

We can also compare the results obtained with the BBM equation. Since

the BBM equation is for inviscid fluid, we take the viscosity 0 for the system

as well. The results here shows that the BBM equation is a good aprroxi-

mation for the system.

Notice that the pressure here is not the ”real” pressure because we also

need to consider the pressure ourside the vessel. Here we take the pressure

ourside to be 0 just for convenience since the pressure outside is seen to be
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Figure 7.1: vessel with constant raidus

constant and to be equal for all vessels. These results agree with observa-

tions in analogous vessels simulating the carotid artery showing that these

models can be used to simulate blood flow in arteries.
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Figure 7.2: tapered vessel

Figure 7.3: stenosed vessel
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Figure 7.4: system of constant raidus and no viscosity

Figure 7.5: BBM equation for the vessel
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Chapter 8

Conclusions

In this thesis we review previous derived systems for fluids in elastic

vessels with constant radius. We also review the derivation of the equa-

tion for the vessel wall. By the no-slip condition on the vessel wall and

equation of the vessel wall we derived a Boussinesq system for fluid flow

in elastic vessels with variable radius. The velocity we use in the system is

that on the vessel wall. Based on this system, we compute soliton solutions

and dispersion relations. We also compute the velocity at the center of the

vessel.

Then we derive the general system with parameters, and for the gen-

eral system we can use the velocity at any distance from the center of the

vessel. We studied the general system with constant radius in detail. There-

fore we can derived one-way propagation models, namely BBM and KdV

equations. By some deriviation we add the term of viscotiy thus obtain the

dissipative Boussinesq systems.

We compute the dispersion relation of the Euler system, and we com-

pared the dispersion relation of the Euler system and that of the general

system. Specifically we distinguish a simple system by adjusting some

parameters. It shows that when the phase velocity is not very large, our

system is a good approximation of the Euler system. We proved the well-

posedness of the linearized system, and for the non-linear system. The

existence of the solitary waves has been studied too. Also, some symmetry

properties are also involved in the study.

85
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The method of potential flow and asymptotic series is used as an alter-

native method to derive the same Boussinesq systems. It shows that the

pervious derivation is proper. Application of the Fourier analysis leads to

different type of systems.

For the numerical discretization of the systems We introduce the finite

difference method in this theis. We discritize numerically the BBM equa-

tion and the classical Boussinesq system. We studied the stability of the

numerical method for the BBM equation. Some modifications have been

imposed in the scheme for the Boussinesq system to improve the results.

Several numerical experiments was carried out. The results show that the

tapered vessel make the peak exist longer, and the stenosed vessel makes

the peak move slower. We also can see that the BBM equation derived as

one-way propagation model has good approximation properties for pulse

wave in elastic vessels.

In this study, we derived asymptotic models for fluid in elastic vessels,

which hasn’t been done before. Since we derived a Boussinesq system, we

expand the application range of the Boussinesq system. It will be helpful to

have more profound understanding of fluids in elastic vessels. The result

of this study will help studies in medicine and engineering.
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