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Abstract
Various spacetime candidates for traversable wormholes, regular black
holes, and ‘black-bounces’ are presented and thoroughly explored in the
context of the gravitational theory of general relativity. All candidate space-
times belong to the mathematically simple class of spherically symmet-
ric geometries; the majority are static (time-independent as well as non-
rotational), with a single dynamical (time-dependent) geometry explored.
To the extent possible, the candidates are presented through the use of
a global coordinate patch – some of the prior literature (especially con-
cerning traversable wormholes) has often proposed coordinate systems
for desirable solutions to the Einstein equations requiring a multi-patch
atlas. The most interesting cases include the so-called ‘exponential metric’
– well-favoured by proponents of alternative theories of gravity but which
actually has a standard classical interpretation, and the ‘black-bounce’ to
traversable wormhole case – where a metric is explored which represents
either a traversable wormhole or a regular black hole, depending on the
value of the newly introduced scalar parameter a. This notion of ‘black-
bounce’ is defined as the case where the spherical boundary of a regular
black hole forces one to travel towards a one-way traversable ‘bounce’ into
a future reincarnation of our own universe. The metric of interest is then
explored further in the context of a time-dependent spacetime, where the
line element is rephrased with a Vaidya-like time-dependence imposed
on the mass of the object, and in terms of outgoing/ingoing Eddington-
Finkelstein coordinates. Analysing these candidate spacetimes extends
the pre-existing discussion concerning the viability of non-singular black
hole solutions in the context of general relativity, as well as contributing
to the dialogue on whether an arbitrarily advanced civilization would be
able to construct a traversable wormhole.
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Chapter 1

Introduction

In February 2016, LIGO, (the Laser Interferometer Gravitational-Wave Ob-
servatory) confirmed detection of astrophysical gravitational waves in a
groundbreaking experimental achievement [1, 36]. One century prior, in
1916, Albert Einstein predicted their existence as a means of transporting
energy via gravitational radiation as a consequence of his theory of gen-
eral relativity [79, 81, 115].1 The fact that a century of ongoing work was
required between the conception of this idea and its scientific verification
is one of many examples that are testament to the subtle and difficult na-
ture of gravitational physics.

At a classical level, general relativity offers a complete theory of grav-
ity. To date there are numerous aspects of the theory which have been
experimentally verified (the detection by LIGO being one of the most sig-
nificant). While it is certainly a far cry from the ‘holy grail’ of a complete
theory of quantum gravity, the combination of thoroughly reviewed the-
oretical justification along with experimental verification informs the con-
clusion that it is the ‘best’ theory of gravitation we currently possess – an
opinion shared by a large number of the members of the global physics
community. Accordingly, general relativity is the author’s preferred the-
ory of gravity, and all analyses within this thesis are conducted using the
framework it provides. As such, §2 and §3 introduce the necessary mathe-
matical framework from differential geometry required for tractable anal-
ysis in general relativity, as well as presenting several useful techniques
which will be utilised for aspects of the subsequent analyses of specific
candidate spacetimes.

Nowhere is the subtlety of gravitational physics more prevalent than in
discussions pertaining to the numerous different solutions to the Einstein
field equations. Throughout the decades we have discovered solutions
to these equations which model many qualitatively different astrophys-
ical objects. These range from stars, to black holes, to wormholes, each

1The birth of the idea is in fact attributed to Henri Poincaré as early as 1905 [37],
however general relativity is most certainly the foundational theory and Einstein’s ac-
creditation is contextually appropriate.

1



2 CHAPTER 1. INTRODUCTION

of which may be stationary, rotating, equipped with an electrical charge,
or some combination of these. To this day even the most mathematically
simple geometric environment of spherical symmetry provokes intensive
and non-trivial discussion at conferences around the world. Hence it is
still of notable scientific relevance and value to analyse proposed candi-
date spacetimes phenomenologically using general relativity, and to draw
conclusions as to their physical nature.

This thesis focuses on the analysis of two categories of spacetime –
traversable wormholes and regular black holes. All candidate spacetimes
analysed possess spherically symmetric geometries, with one dynamical
(time-dependent) candidate and the remainder static (both non-rotational
and time-independent). As astrophysical objects wormholes have a rather
diverse history, having become significant in the popular culture surround-
ing science-fiction during the latter half of the twentieth century. It turns
out that they also have a colourful scientific lineage, with valid solutions to
the Einstein field equations corresponding to wormhole geometries being
presented as early as 1935 (with the Einstein-Rosen bridge [48]). It should
be noted that not all wormholes are traversable however – a mathemati-
cally rigorous definition of the subset which are is presented in §4. Several
metric candidates representing traversable wormholes are then dissected,
with one particular metric of note being the so-called ‘exponential metric’
– a favourite for proponents of alternative theories of gravity (alternatives
to general relativity). An effort is made wherever possible when examin-
ing these solutions to maximally extend all coordinates in the chosen coor-
dinate system in the hopes of examining traversable wormhole geometries
with a global coordinate patch. Historically some members of the gravi-
tational community have proposed that wormhole geometries require a
two-patch atlas,2 and by presenting traversable wormhole geometries in
global coordinate patches it is hoped this notion will be dispelled.

Regular black holes have been objects of significant interest since their
initial proposal by Bardeen in 1968 [19]. They are intuitively attractive
due to their non-singular nature, and their definition is presented in §5.
Analyses of several elementary metrics representing regular black holes
are undertaken, before a metric is presented in §6 which neatly interpo-
lates between being a traversable wormhole solution and that of a regular
black hole, depending on the value of the newly-introduced scalar param-
eter a. It is with this particular candidate that the notion of ‘black-bounce’
is introduced – when the parameter a < 2m (where m is the mass of our
centralised object) the solution corresponds to a regular black hole geome-
try; this geometry possesses a spacelike hypersurface at the spherical shell
r = 0 which permits one-way travel into a future reincarnation of our own
universe.

2Names suppressed to protect the guilty.
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After conducting the analysis of the static case for this metric can-
didate, a Vaidya-like time-dependence is imposed on the metric in §7.
This is achieved by allowing the mass of the object m to depend on the
outgoing/ingoing null time coordinate w (which represents retarded/-
advanced time in identical fashion to the u or v coordinates utilised in
Eddington-Finkelstein coordinates [112, 102]). This dynamical case de-
scribes several physical situations of significant interest, including a ‘black-
bounce’ geometry whose regular black hole region grows with time, the
transition of a traversable wormhole geometry into a regular black hole,
and the converse transition of a regular black hole leaving a wormhole
remnant.

Both traversable wormhole and regular black hole geometries have
canonically required violations of the energy conditions imposed on the
stress-energy-momentum tensor for their construction [143], which has in-
formed the pre-existing discussion concerning the viability of non-singular
black hole and wormhole solutions to the Einstein equations (see for ex-
ample reference [33]). Holistically, the analyses in this thesis contribute to
this discussion, and the key findings are then presented in §8.
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Chapter 2

The concept of ‘spacetime’

Spacetime can be intuitively thought of as the stage on which the ‘play’ of
the universe is set. Upon this intuition, we must impose mathematically
rigorous constraints on which characteristics such a background must ex-
hibit in order to have a physical interpretation in the framework of gen-
eral relativity. Since our human faculties interpret the universe as having
three-dimensional space, and we think of time as being one-dimensional,
we construct spacetime by imagining a four-dimensional backdrop con-
sisting of three dimensions of space and one dimension of time. Coupled
with this notion is the idea that in the presence of an object equipped with
a mass and/or a momentum, the four-dimensional spacetime exhibits cur-
vature. John Archibald Wheeler puts it rather succinctly [102]: “Space acts
on matter, telling it how to move. In turn, matter reacts back on space,
telling it how to curve.” Spacetime is therefore malleable and responsive
to the presence of matter. Specifically, Frederic P. Schuller defines a generic
spacetime as follows [123]: “Spacetime is a four-dimensional topological
manifold with a smooth atlas carrying a torsion-free connection compat-
ible with a Lorentzian metric and a time orientation satisfying the Ein-
stein equations.” Encoded in this statement is much of the mathematical
and physical machinery required to interpret a spacetime in the context of
general relativity. For the sake of developing a thorough background, let
us rigorously unpack these concepts individually before progressing and
examining various candidate spacetimes of interest.

2.1 Four-dimensional topological manifold

This is the type of topological space our so-called ‘background of the uni-
verse’ inhabits. A topological manifoldM of dimension d is a mathemati-
cal object characterised by the following [4, 150]:

• It is a locally Euclidean topological space – that is a topological space
(E , T ) consisting of a set E together with a topology of open sets T

5



6 CHAPTER 2. THE CONCEPT OF ‘SPACETIME’

which satisfies the following axiom:

∀ x ∈ E ∃ O ∈ T and n ∈ Z+ :

x ∈ O and ∃ X ⊂ Rn and ∃ homeomorphism f : O ↔ X . (2.1)

i.e. There is a region surrounding each point in the manifold that is
homeomorphic to a ‘chunk’ of Euclidean space.

• The dimensionality of the space, d, is the same everywhere – this
means that with regard to the previous statement (Eq. 2.1) the num-
ber n = d ∀ such X ⊂ Rn, so the aforementioned ‘chunks’ of Eu-
clidean space all come from the same Euclidean space. In terms of
terminology we may call such a space a ‘d-manifold’. In the con-
text of spacetime, since we have ‘3 + 1’-dimensions corresponding to
space and time respectively, the space is a four-manifold.

• The manifold is Hausdorff:

∀ x1, x2 ∈ E , ∃ O1,O2 ∈ T : x1 ∈ O1, x2 ∈ O2 andO1 ∩O2 = ∅ . (2.2)

i.e. All points in the manifold can be ‘housed off’ from each other by
open sets of the topology.

• The manifold has at least one countable atlas – a set is ‘countable’
if all its elements can be put in injective correspondence with the
natural numbers, N. This statement also encodes the requirement for
the topological space to have a countable basis. To see what an atlas
is, we may move on to the second mathematical concept in Schuller’s
definition for spacetime.1

2.2 Smooth atlas

We may separate ‘smoothness’ from ‘atlas’ for the sake of clarity of defini-
tion; first define an ‘atlas’ [150]:

• An atlas is a collection of charts (also called ‘patches’) which cover
the entire locally Euclidean space E .

• A chart (O, f, U) on a member of the topology O ∈ T is a subset
U ⊆ Rd together with a homeomorphism f : O ↔ U = f(O) (where
d is the dimensionality of the manifold).

• We may therefore think of a countable atlas as being a set of charts
A = {(Oi, fi, Ui)} : fi : Oi ↔ Ui = fi (Oi) ⊆ Rd, with i ∈ I
(arbitrarily indexed by some countable indexing set I), such that⋃
i∈I Oi = E .

1For further elaboration on these very basic concepts from elementary topology please
see reference [4]; e.g. rigorous definition of ‘homeomorphism’, etc.
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Now for ‘smoothness’ [150]:

• An atlas is smooth if all transition maps in the atlas are smooth maps.

• A transition map can be defined by the following: let (O1, f1, U1)
and (O2, f2, U2) be charts within our topological manifold such that
O1 ∩ O2 is non-empty. Then the map defined by g := f2 ◦ f−1

1 is the
transition map g : f1(O1 ∩ O2)→ f2(O1 ∩ O2).

• A smooth map is a map for which derivatives of all orders are de-
fined everywhere in its domain. This concept of a ‘smooth’ manifold
for which all such transition maps are ‘smooth’ is terminologically
interchangeable with what we call a C∞-manifold.

Hence we have outlined the specific class of topological spaces which
spacetimes must inhabit to have a physical interpretation within the con-
text of general relativity. However, this is still an exceptionally broad class
of spaces that could correspond to many qualitatively different manifolds.
To draw physical conclusions concerning specific manifolds we must im-
pose additional structure.

2.3 Torsion-free connection

The additional structure we require is that of a geometry – we eventually
desire a means of making accurate statements concerning distance, angles
and curvature within the spacetime. Let there exist some arbitrary smooth
d-manifoldM. The first crucial step towards establishing a geometry on
M is to impose a coordinate system such that we may uniquely identify
each point in our manifold. In general, we must establish this coordinate
system in a ‘chart-wise’ fashion. Given a countable atlas for M, some
A = {(Oi, fi, Ui)} :

⋃
i∈I Oi =M, we have the following:

∀ p ∈M,∃ i ∈ I, and (Oi, fi, Ui) ∈ A : p ∈ Oi ,

=⇒ ∃ x = (x1, · · · , xd) ∈ Ui ⊆ Rd : x = fi(p) ,

=⇒ p = f−1
i (x) . (2.3)

We may then state that point p ∈ M has coordinate location (x1, · · · , xd)
with respect to the chosen coordinate patch (Oi, fi, Ui). This is a gener-
alised process for establishing a coordinate system on a given manifold.2

2Restricting the domain of each x1, · · · , xd to the reals is a standard practice for the
majority of spacetime candidates; all spacetimes explored in this thesis have real-valued
domains for their respective coordinate patches.
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Other than ensuring global coverage of M, our choice of coordinate
system is at this stage completely arbitrary. Say we impose a chosen co-
ordinate system on M, and ∃ x, y ∈ M : x 6= y .3 This construction
ultimately gives rise to the existence of the respective tangent spaces, Tx
and Ty, and we may now speak freely of the behaviour of tangent vec-
tors onM. In order to see the role the ‘connection’ plays in spacetime we
must first define the parallel transport of these vectors. Parallel transport
is the process by which a vector transports along smooth curves within
our manifold. Say we have a smooth curve connecting x, y ∈ M, and this
curve is parameterised by an arbitrary scalar parameter, γ (i.e. different
values of γ simply inform placement along the curve). Parallel transport
is then defined by a ‘transport’ function, let us call it T[x→y;γ] : Tx → Ty.
This function as a mathematical object is in fact a T 1

1 bi-tensor; for defini-
tions of tangent vectors/tangent spaces/tangent bundles/tensors please
see references [150, 83] – this background material is not covered here for
conciseness. This function must possess several properties:

• The null path γ0 (where a vector remains stationary within the mani-
fold) must define the identity of the function; T[x→x;γ0] = I : Tx → Tx.

• T[x→y;γ] should be an everywhere-invertible mapping; if we are able
to propagate smoothly from x to y within our manifold the return
journey must also be possible.

• Reversing a path should correspond to the inverse of the transport
function; T[x→y;γ] =

(
T[y→x;γ̃]

)−1. 4

• The transport operator ought to be a linear operator between vec-
tor spaces. If two vectors V1, V2 ∈ Tx are both propagated along a
smooth curve from x to y in our manifold, then T[x→y;γ] (V1 + V2) =
T[x→y;γ] (V1) + T[x→y;γ] (V2).

These properties are enough to define an adequate transport operator for
the parallel transport of vectors in our manifold. For a specific example
of parallel transport, see Fig. 2.1 where a vector is parallel transported
along a smooth curve on the two-sphere from an arbitrary starting point
back to its original location. It is important to note that the example of the
two-sphere is purely used for intuition. It is a two-manifold rather than
a four-manifold as we require for a spacetime; however the construction
of the transport function extends very naturally to finitely many dimen-
sions with identical conditions imposed on the transport operator and the
corresponding number of components comprising the tangent vectors.

Ultimately we wish to be able to apply this process of assigning a co-
ordinate system and constructing a transport operator to any d-manifold

3A slight point on notation; when defining the assignation of a coordinate system to
M as in Eq. 2.3, ‘points’ in M were denoted using bold font to highlight their multi-
dimensionality. This is a standard practice, however the convention is henceforth aban-
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Figure 2.1: The vector x̃ is parallel transported clockwise along the curve
enclosing the regionA back to its original location in the manifold to yield
x̃
′
= T (x̃). The transport process rotates the vector by an angle α.

with a smooth atlas. We may now understand the role of the ‘connec-
tion’. Let us examine the simple example of the topological space R2 with
respect to polar coordinates (the same concept extends naturally to arbi-
trary four-manifolds with arbitrary coordinate systems). In this example
we have a two-manifold we observe to be ‘flat’ (the terms ‘flat’ and ‘Eu-
clidean’ will be used interchangeably henceforth), but have arbitrarily im-
posed a coordinate system we observe to be ‘curved’. The standard or-
thonormal basis for our system is {êr, êθ}, with each point x ∈ R2 = (r, θ),
and with natural domains for our coordinates r ∈ [0,+∞) , θ ∈ [0, 2π).
Let r1, r2 ∈ R+; r2 > r1, and θ1, θ2, θ3 ∈

(
3π
2
, 2π
)

; θ3 > θ2 > θ1. We can
construct the following figure (Fig. 2.2):

Figure 2.2: Demonstrating the role of the connection in the context of R2

with respect to polar coordinates.

doned as the dimensionality of mathematical objects shall be obvious from context.
4Note that γ̃ is just some arbitrary scalar-valued re-parameterisation of the reverse

path; we have a degree of freedom in choosing these parameters.
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The red and green vectors b̃1, b̃2, and b̃3 show the direction in which po-
sition in the manifold changes when one of the coordinates is incremented
by an infinitesimal amount at each location. These are the basis vectors;
specifically b̃1 and b̃3 are the êθ and êr basis vectors at the point (r1, θ1)

respectively, and b̃2 is the êθ basis vector at the point (r1, θ2). If the basis
vector b̃1 undergoes parallel transport along the smooth curve r = r1 from
(r1, θ1) to (r1, θ2), we obtain the vector b̃′1. However, b̃′1 is not a basis vector
at that point in the manifold; a rotational correction (and potential scale
factor) must be made to yield the correct basis vector b̃2. The difference
between vectors b̃′1 and b̃2 is denoted by the vector c̃ in yellow. Note: when
speaking of the ‘difference’ between these two vectors or indeed the notion
of ‘scale’ one assumes the existence of some nonsingular parameterisation
along the curves in the manifold; for now this is a sufficiently adequate
notion of ‘distance’. By definition the vector c̃ must be some linear com-
bination of the basis vectors for our manifold; i.e. for some α1, α2 ∈ R,
c̃ = α1êr + α2êθ. We may encode all of the information comprising c̃ in
the triple-indexed object Γijk which we define to be the ‘connection’. This
object has the following properties [102, 68, 35]:

• i, j, k ∈ {r, θ} ;

• The index i indicates the basis vector one is stretching/multiplying;

• The index j indicates which basis vector is moving;

• The index k indicates which basis vector defines the direction of the
motion.

The vector c̃ can then be written as: c̃ = Γrθθ êr + Γθθθ êθ. We see that the
amount a basis vector is altered when propagating along smooth curves in
the manifold via parallel transport is encoded by the connection. It follows
that the connection is a rate of change of our previously defined transport
function T , and in fact defines the covariant derivative of this bi-tensor.
There is significant mathematical subtlety in defining tensor derivatives;
for more detail on the covariant derivative, and methods of tensorial dif-
ferentiation in general, please see references [102, 68, 35].

The example in Fig. 2.2 is one where a curved coordinate system has
been imposed upon flat space; the very same construction may extend
to a curved manifold that has been bestowed with a coordinate system
as ‘straight’ as possible. In the context of spacetime, the connection also
extends naturally to arbitrary four-manifolds. The difference in such cases
is that the domain of the indices is now i, j, k ∈ {0, 1, 2, 3} (where 0, 1, 2, 3
are general labels for the four coordinates comprising whichever chosen
coordinate system is employed). Γijk is hence our first tool in the general
relativity arsenal that enables us to understand the curvature of a given
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spacetime; by informing us how much the basis vectors themselves must
rotate as they parallel propagate smoothly through the manifold.

Before defining the explicit mathematical form of Γijk by discussing
the metric tensor, note that a torsion-free connection is a connection which
obeys the following condition [102, 150]:

Γabc = Γacb . (2.4)

Setting torsion to zero is non-controversial and can greatly simplify the
resulting mathematics – we do not require non-zero torsion to conduct
standard analyses within general relativity. It is also a standard practice
reinforced by empirical data; experiments to date are yet to demonstrate a
requirement for non-zero torsion (see e.g. the discussion in reference [92]).

2.4 Lorentzian metric

Given an arbitrary coordinate system on some manifoldM, the notion of
distance between any two points is defined by an object called the ‘met-
ric’. The form that the metric takes is context-dependent. In mathematics
a general metric on a set E can be characterised by the following defini-
tion [4] (where a, b, c ∈ E are points expressed as coordinate locations with
respect to the chosen coordinate system):

The usual notion of a mathematical metric on a set E is a function
g : E x E → Rwith the following properties:

• g(a, b) ≥ 0 ∀ a, b ∈ E ; and g(a, b) = 0 iff a = b ,

• g(a, b) = g(b, a) ∀ a, b ∈ E ,
• g(a, b) + g(b, c) ≥ g(a, c) ∀ a, b, c ∈ E . (2.5)

We call g(a, b) the distance between points a and b, and the pair (E , g),
consisting of the set E and the metric g, a metric space (this mathematical
notion of a metric will need modification in Lorentzian spacetimes; more
on this below). It should be noted that the function g is defining a sense
of ‘direct distance’ between two points in the manifold; i.e. the distance
between them is minimised (this is a corollary of the third property listed
in Eq. 2.5, also known as the triangle inequality). As such, g is informed
by an object called the ‘line element’, which is constructed from the length
traversed along the ‘straightest possible curve’ between two points in the
manifold.

Let us look at the mathematically simple environment of the Euclidean
three-manifold with respect to Cartesian coordinates. In this environment,
the ‘straightest possible curve’ between two points, quite trivially, is our
intuitive notion of a straight line.5 In Cartesian coordinates we have an

5To generalise these ‘straight curves’ to arbitrary curved manifolds we define
‘geodesic curves’; for more information on geodesic curves see §2.6.
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orthogonal basis. This permits a method of easily foliating the space with
right-angled triangles whose shorter two sides can be expressed solely in
terms of the displacements of our basis components. As such, we im-
pose a definition of distance between two points in accordance with the
Pythagorean theorem. Given the canonical basis representation for R3

in Cartesian coordinates, (x, y, z), this yields the following mathematical
form of the line element:6

ds2 = dx2 + dy2 + dz2

= gxxdxdx+ gyydydy + gzzdzdz

= gijdx
idxj . (2.6)

We see immediately that the line element informs a diagonal metric en-
vironment for g, with components gxx = gyy = gzz = 1. Hence the Eu-
clidean three-manifold has been equipped with the diagonal metric gij =
diag (1, 1, 1) = δij , and this construction satisfies the properties of Eq. 2.5.
This then allows us to define the length of arbitrary smooth curves in R3

via the following: take the limit as each dxi → 0, then integrate the line el-
ement with respect to some scalar parameterisation of the desired curve (a
common parameter choice is a scalar-valued temporal parameter t). The
length of the curve is then:

LR3 =

∫ t1

t0

√
δij
dxi

dt

dxj

dt
dt . (2.7)

Here the curve begins at t = t0 and ends at t = t1. It is worth noting that
as a mathematical object, the metric g has a unique matrix representation.
This is the case for all manifolds and contexts for which we wish to define
a metric.

In order to migrate from the purely mathematical definition of the met-
ric to the realm of physics, we relax the three properties of Eq. 2.5 so that
we may attribute physical meaning to our notion of distance. This differ-
ence in definition is a direct result of the important role that time plays in
the universe; the physical motivation behind it is to be able to clearly sep-
arate between events7 which are timelike-separated, null-separated, and
spacelike-separated. Before discussing the metric in the context of relativ-
ity it pays to clearly define what each of these terms physically mean [102]:

6Use of the Einstein summation convention is employed here, where repeated ‘up-
down’ indices are summed over, for more details see references [68, 150]. Henceforth the
specific Latin indices (i, j, k) will index the three dimensions of space whilst any Greek in-
dices (e.g. µ, ν) will index the four dimensions of spacetime. The summation convention
is assumed throughout the remainder of the thesis whenever pairs of ‘up-down’ indices
appear in the same expression unless otherwise stated.

7To this point precise coordinate locations within a manifold with respect to some
coordinate system have been dubbed ‘points’. ‘Events’ are simply ‘points’ within a man-
ifold which are being expressed with respect to a coordinate system which has a defined
notion of time. Consequently, in the context of spacetime the two terms are interchange-
able.
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• ‘Timelike-separated’ events in a spacetime are events that can be
reached from each other by traveling strictly within either the future
or past-directed light cones on a spacetime diagram. This means that
any ‘timelike-separated’ events may inform each other, in the sense
that it is possible for both massive and massless objects to travel be-
tween the two events without violating the condition that nothing
propagate faster than the speed of light in a vacuum, c.

• ‘Null-separated’ events in a spacetime are events that can only be
reached from one another by particles traveling at the speed of light
c, i.e. along the boundaries of the future and past-directed light cones
in a spacetime diagram. This ultimately restricts the types of parti-
cles that may inform two null-separated events to those that have
both zero rest mass and propagate with velocity c, e.g. photons or
gluons.

• ‘Space-like separated’ events in a spacetime are events that lie strictly
outside of both the future and past-directed light cones emanating
from one another on a spacetime diagram. If we ignore the possibil-
ities of superluminal velocities due to quantum phenomena (which
for elementary general relativity we certainly do), these events may
never inform each other, as to do so would imply particles are trav-
eling at a velocity greater than c.

Figure 2.3: A spacetime diagram showing the regions which are timelike,
null, and spacelike separated from the central event P . One of the spatial
dimensions has been suppressed for ease of diagrammatic representation;
the construction extends naturally to ‘3+1’-dimensions. Note that the light
cone inhabits the tangent space of P , TP , as such defining the separation of
events in a locally flat region ‘near’ P . We may parallel transport the light
cone in much the same way as the basis vectors through arbitrary curved
manifolds to see the generalised separation of events from P .
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The desired physics inherent in the construction of spacetime therefore
requires we have a metric which allows us to define a notion of distance
within the manifold whilst still being able to clearly differentiate between
these three physical scenarios. To see how this is done, let us introduce
the notion of metric signature. The signature of a metric is determined by
the number of both positive and negative eigenvalues that arise from its
matrix representation [35]. A metric with Riemannian signature has ex-
clusively positive eigenvalues; this yields a positive definite metric tensor
and the notion of distance is simply the length of the shortest possible curve
in the manifold. For the prior example of R3 with respect to Cartesian co-
ordinates, the metric g has Riemannian signature. The distance between
two points can then naturally be found by minimising Eq. 2.7. Alterna-
tively, a ‘Lorentzian metric’ is a metric of Lorentzian signature; defined
to be a metric whose matrix representation possesses one single negative
eigenvalue while the remainder are positive. In this case the notion of dis-
tance corresponds to the principle of least action in the manifold; this is
an ‘extremal distance’ defined by the principles of variational calculus (for
details see reference [61]).

In the context of general relativity, the separation between timelike/-
null/spacelike-separated events is achieved by imposing a metric of Lor-
entzian signature on the four-manifold. To see this, let us suppose we pro-
vide the prior example of three-dimensional Euclidean space with an addi-
tional dimension for time, parameterised by some scalar-valued temporal
variable t, treating the temporal dimension identically to the three spatial
dimensions. Our manifold is now the four-manifold R4. One would nat-
urally extend the Pythagorean notion of distance imposed on R3 to apply
to the new scenario, yielding the new line element:

ds2 = dt2 + dx2 + dy2 + dz2 = δµνdx
µdxν . (2.8)

The metric’s matrix representation is the Kronecker delta function in four
dimensions; this is positive definite and therefore Riemannian. However,
notice that if one considers events that are space-like separated versus those
that are time-like separated, the ‘distance’ in each instance between the
events is strictly positive, and there is no distinct value which marks the
transition between the two. Consequently one receives no information
about the underlying physicality of events in spacetime by using this met-
ric. Let us now impose a metric of Lorentzian signature (note – there are
several ways to do this as we can technically choose any of the four basis
variables to correspond to the negative eigenvalue which will be present
in the metric’s matrix representation; this is a matter of taste). The au-
thor’s preferred convention is to enforce the signature ‘-,+,+,+’, such that
the temporal metric coefficient inherits the negative eigenvalue. This con-
vention will be employed for every spacetime candidate analysed in this
thesis.
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We may then define a line element:

ds2 = −dt2 + dx2 + dy2 + dz2 . (2.9)

The metric is now gµν = ηµν = diag (−1, 1, 1, 1), and one can easily see that
when adopting geometric units (where the speed of light c = 1), all null
curves are characterised by the property that ds2 = 0. This is due to the
fact that given a null curve in the manifold, i.e. the worldline of a particle
traveling at the speed of light, then the spatial and temporal displacements
must be equal for all values of t. Hence dt =

√
dx2 + dy2 + dz2, and the

result follows. Furthermore, if events are timelike-separated then parti-
cles traveling between them must be propagating at a velocity less than
the speed of light, which implies ds2 < 0 as the temporal term provides
the dominant balance. Conversely, spacelike-separated events are charac-
terised by a positive line element, ds2 > 0. Equipping the four-manifold
with a Lorentzian metric has enabled us to easily differentiate between the
three cases as desired.

This specific example is in fact the flat-space limit to general relativity
of special relativity, also known as Minkowski space (notice that for a spe-
cific t =constant time-slice the induced three-metric is strictly Euclidean).
This extends to a generalised definition for the metric in general relativity
as follows [68, 110]:

The metric is defined as a symmetric, non-degenerate, and position-
dependent matrix that is a rank-two tensor, denoted canonically by gµν ,
and which has constant Lorentzian signature. Its form is governed by the
‘line element’; the distance in the manifoldM between points which are
infinitesimally displaced with respect to the chosen coordinate basis. The
generalised line element is given by:

ds2 = gµνdx
µdxν , (2.10)

where dxµ are the infinitesimal displacements of each of the coordinates.
The generalised notion of distance between two points is found by extrem-
ising the action of the following integral:

LM =

∫ γ1

γ0

√
gµν

dxµ

dγ

dxν

dγ
dγ , (2.11)

where a geodesic curve connecting the points is arbitrarily parameterised
by some scalar parameter γ (and the points are located on the curve at γ0

and γ1 respectively).
Having established what a ‘Lorentzian metric’ is and why we equip

our manifold with such a structure we may now explicitly define the con-
nection’s mathematical form in terms of the metric. Recalling that the con-
nection is torsion-free, we may specialise it to the case of Christoffel sym-
bols of the second kind – simply a torsion free, affine, metric connection
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(for details see references [150, 68, 35]). For some metric tensor gµν , these
Christoffel symbols are defined by:

Γµαβ =
1

2
gµν (∂αgνβ + ∂βgνα − ∂νgαβ) , (2.12)

where the index ν is contracted over in accordance with the Einstein sum-
mation convention. Hence we have equipped our four-manifold with a
means of measuring both distance and curvature – a geometry on the
space as desired. This concludes the mathematical aspects from differ-
ential geometry required for the construction of spacetime; the remaining
conditions of imposing a time orientation and satisfying the Einstein equa-
tions at all coordinate locations represent physical constraints we wish to
place on candidate spacetimes in order to satisfy desirable laws of physics.

2.5 Time orientation

Suppose we have a construction (M, gµν); that is a generic four-manifold
equipped with a Lorentzian metric (and a corresponding torsion free met-
ric connection as defined by Eq. 2.12). The purpose of imposing a time
orientation on (M, gµν) is to preserve global causal structure. Locally, the
causal structure is akin to that of special relativity – this ensues due to
the fact that we may always approximate local flatness in general relativ-
ity. Globally however, topology may not be so trivial, and objects such as
manifold singularities or self-identified ‘twists’ withinM may result in a
confused notion of causality. This is something we wish to avoid for stan-
dard general relativity. To make this concept precise, we may refer back to
the light cone construction in Fig. 2.3. Arbitrarily we wish to assign half
of the cone to be the ‘future’ and the other half to therefore be the ‘past’ –
the events lying within the ‘future’ half of the light cone from P are then
deemed to belong to the ‘chronological future’ of P , whilst events lying
within the past half belong to the ‘chronological past’ of P (note that all
events in both the chronological future and past of P are strictly timelike-
separated from P ). Keeping in mind that the light cone belongs to the
tangent space of P , TP , a time orientable spacetime (M, gµν) is defined as
a spacetime in which it is possible to make a continuous designation of the
chronological future of P and the chronological past of P as P varies over
M [158]. Physically this encodes a requirement that as we move through
the manifold we must always know in which direction through time we
are propagating; without this the base causality assumption of ‘cause’ and
then subsequent ‘effect’ collapses. To better understand this statement,
let us examine an example of a spacetime which is not time orientable
(Fig. 2.4):
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Figure 2.4: A temporally non-orientable spacetime.

In this example, the coordinate location of event P is identified with
event Q (via imposing some periodicity on the time coordinate, t). Corre-
spondingly their respective light cones in their respective tangent spaces
are also identified. Through a periodic cycle of t, the topology has per-
mitted the light cones to ‘tip’ sufficiently such that they rotate completely;
what was the chronological future of event P becomes the chronological
past of event Q. This occurs via smooth propagation through the mani-
fold. As such we have no clear notion of a temporal direction – the same
coordinate location within the spacetime has a contradicting chronologi-
cal future and past. A continuous designation of chronological future and
past can not be made, and by definition the spacetime therefore does not
possess a valid time orientation.

To codify the notion of time orientable spacetimes we may make the
following mathematical statement [107, 47]: A spacetime (M, gµν) is time
orientable if and only if there exists a globally defined timelike vector
field on M. All candidate spacetimes examined in this thesis are time-
orientable.

2.6 Einstein’s general relativity

2.6.1 Einstein’s motivation

Before presenting and explaining the Einstein field equations which un-
derpin all of general relativity, it pays to provide historical context to fully
understand their origin. In 1686, Isaac Newton developed his famous
equation for the force felt due to gravity between two objects of respec-
tive masses m1 and m2, separated by some distance r [108]:

F = GN
m1m2

r2
. (2.13)
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Newton’s Law (Eq. 2.13) was the pillar of all gravitational physics for over
two hundred years. Specifically, in the context of the gravitational field of
the Earth it was remarkably accurate and sufficient to satisfy essentially all
practical/engineering requirements that were faced pre-twentieth century.
Meanwhile, a very similar equation was developed in 1785 by Charles-
Augustin de Coulomb describing the electrostatic force felt between two
charged particles of respective charges q1 and q2, separated by some dis-
tance r [66]:

F =
1

4πε0

q1q2

r2
. (2.14)

One can immediately see that other than the constants of proportion-
ality, both Coulomb’s and Newton’s Laws (Eq. 2.14 and Eq. 2.13 respec-
tively) are essentially identical. Gravitational/electrostatic force between
two objects equipped with mass/charge are directly proportional to the
product of their masses/charges and inversely proportional to the square
of the distance between them. However physicists quickly saw a problem
with these equations. They noticed that if one arbitrarily changes the dis-
tance r to some new value, the force felt between the particles will change
in accordance with the formula; the problem here is that time has not been
factored into account – action at a distance is instantaneous. Permitting
instantaneous action at a distance disagreed with all relevant experimen-
tal evidence at the time, as it was well known that all propagating objects
take measurable quantities of time to move through space and for their
subsequent effects to be felt. Specifically pertaining to Coulomb’s Law, a
new school of thought was required to explain electrostatics. The consen-
sus was reached that there must exist some as yet ‘undiscovered’ physical
objects which permit the propagation of electrostatic force between parti-
cles. These objects were deemed to be ‘electrical fields’, and field theory
in the context of electromagnetism was born. A large number of notable
physicists worked together to fully describe the nature of these fields, and
eventually James Clerk Maxwell published the unification of electromag-
netism in the form of Maxwell’s equations (this particular form using vec-
tor calculus was presented in 1884 by Oliver Heaviside, based on the initial
publication by Maxwell circa 1862 [74]):

∇ · E =
ρ

ε0
;

∇ · B = 0 ;

∇× E = −∂B
∂t

;

∇× B = µ0

(
J + ε0

∂E
∂t

)
. (2.15)

These field equations are some of the most celebrated equations in all
of physics, and encode all information required for classical electromag-
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netism (we now know that quantum electrodynamics is a more funda-
mental theory, and that Maxwell’s equations are the classical limit of this
theory). The problem of instantaneous action at a distance with respect
to Coulomb’s Law was resolved. However Newton’s Law (Eq. 2.13) was
still the only tool we had to describe the gravitational force, and still per-
mitted instantaneous action at a distance. The objective therefore was to
alter gravitational theory in a very similar way to what was done for elec-
tromagnetism; by supposing there exist gravitational fields which encode
and transmit information pertaining to the gravitational force between
massive objects.

While many physicists attempted to revolutionise the gravitational the-
ory, it was Albert Einstein who almost single-handedly did so with the for-
mulation of general relativity. This theory was predicated on the Einstein
equivalence principle (also known as the ‘strong’ equivalence principle).
In order to formulate this principle Einstein began with an observationally
well established and fundamental tenet of gravity; that the trajectory of
an object which is exclusively under the influence of a gravitational force
is independent of the object’s mass.8 This phenomenon is known as the
‘universality of free fall’ and is often referred to as the ‘weak’ equivalence
principle. The intriguing thing about this phenomenon is that it is different
from all of the other fundamental forces in physics; electromagnetic forces
for example are certainly dependent on the charges of the objects involved
in the system, and objects with different charges will have a fundamentally
different response when propagated through an electrical field. Equipped
with this knowledge, Einstein made an incredible insight – that the ‘fields’
through which gravitational force propagates must in fact be the fabric of
space and time itself.

It follows naturally that in much the same way as a charged particle
alters the electrical fields around it, an object equipped with a mass must
alter the fabric of space and time in its vicinity as well. This was the first
notion that space and time could be ‘curved’. He posited that all objects
in a gravitational field simply move along the ‘straightest possible’ paths
through the curved space and time, and will continue to do so perpetually
until some other non-gravitational force acts on them. In the context of
our construction of the four-manifold for spacetime, these ‘straight’ paths
are called geodesic curves, and they are defined mathematically by the
fact that tangent vectors will always remain parallel to each other when
undergoing parallel transport along the curve. As we have already seen,
the connection Γµαβ encodes the measure of parallelism within a manifold,
and as such we may formulate the strong equivalence principle.

8Knowledge of this fact is often attributed to Galileo Galilei, who is said to have
dropped spherical objects of different masses from the leaning tower of Pisa (circa 1590)
and observed that they hit the ground at identical times. The factual accuracy of this
anecdote is commonly doubted, however beginning circa 1885, Loránd Eötvös conducted
a highly accurate experiment which concluded that the inertial and gravitational masses
of objects are indeed equal [26].
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Einstein equivalence principle:

Gravity is encoded by the Christoffel connection Γµαβ on a topological
four-manifold equipped with an associated metric tensor gµν of Lorentzian
signature such that:

• The universality of free fall is defined by the geodesic equations of
motion of the Christoffel connection with respect to the chosen co-
ordinate system. This means that a curve in the manifold param-
eterised by some arbitrary scalar parameter γ is a geodesic if (and
only if) the tangent vectors to the curve, given by tµ = dXµ

dγ
, satisfy

the following differential equation (known as the geodesic equation):

d2Xµ

dγ2
+ Γµαβ

dXα

dγ

dXβ

dγ
= f(γ)

dXµ

dγ
, (2.16)

for the full derivation of this equation please see §2.6.2. The parame-
ter γ is deemed to be ‘affine’ if f(γ) = 0 for the function f in Eq. 2.16,
hence the geodesic equations for an affine parameter are given by:

d2Xµ

dγ2
+ Γµαβ

dXα

dγ

dXβ

dγ
= 0 . (2.17)

• The flat space limit of spacetime recovers the theory of special rela-
tivity, where the metric tensor becomes the Minkowski metric; gµν =
ηµν = diag [−1, 1, 1, 1].

From this Einstein had a framework for how objects propagate through
gravitational ‘fields’, i.e. curved spacetime. He still required a codifying
set of ‘field’ equations that would relate the curvature of the manifold to
the source of that curvature; the specific distribution of mass and energy
informed by objects within the manifold itself.

2.6.2 Geodesic equations of motion

Before presenting the Einstein field equations, let us demonstrate that geo-
desic motion does in fact correspond to Eq. 2.16. In accordance with funda-
mental geometry we know that the shortest distance between two points
in Euclidean space is a straight line. The length of a curve in Euclidean
space parameterised by an arbitrary scalar parameter γ is given by the arc
length formula as follows:

L =

∫ √
δij
dX i

dγ

dXj

dγ
dγ , (2.18)

we extend this definition naturally to the flat space limit of general rela-
tivity (the Minkowski space environment of special relativity) by equip-
ping the four-manifold with the metric tensor ηµν = diag (−1, 1, 1, 1). This
yields the following definition for arc length in special relativity:
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L =

∫ √
ηµν

dXµ

dγ

dXν

dγ
dγ , (2.19)

and finally we may analogously define generalised arc length for general
relativity in an arbitrary four-manifold equipped with some Lorentzian
metric gµν by:

L =

∫
dL

dγ
dγ =

∫ √
gµν

dXµ

dγ

dXν

dγ
dγ . (2.20)

We defined the geodesic equation previously as the equation which
governs universal free fall; hence in accordance with Einstein’s supposi-
tions it should define a curve in the manifold which is ‘as straight as pos-
sible’. Keeping analogous with Euclidean space, this would imply that a
geodesic curve between two points on the manifold (say x, y ∈ M) must
be such that the arc length of the curve extremises the distance between x
and y. Therefore a curve onM is a geodesic if (and only if) its tangent vec-
tors extremise Eq. 2.20. Realising that the expression within the integrand
is a Lagrangian L(γ,q(γ),q′γ), we see that the path between points which
extremises arclength L is characterised by the Euler-Lagrange equations
from elementary variational calculus [61]. As such a geodesic curve must
satisfy the following differential equation:

d

dγ

{
∂

∂ (dXα/dγ)

(√
gµν

dXµ

dγ

dXν

dγ

)}
− ∂

∂Xα

(√
gµν

dXµ

dγ

dXν

dγ

)
= 0 .

(2.21)
We can now show that this differential equation is in fact equivalent to

the equation for geodesic motion presented in Eq. 2.16. Evaluating:

d

dγ
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gµν

dXµ
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dXν
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gαβ
dXβ

dγ



 − 1
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√
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dγ

∂gβζ
∂Xα

dXβ

dγ

dXζ

dγ
= 0 ;

d

dγ


 1√
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dXµ

dγ
dXν
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dXβ

dγ
+

1√
gµν

dXµ

dγ
dXν

dγ

{
gαβ

d2Xβ

dγ2
+
∂gαβ
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dXβ

dγ

}

− 1

2
√
gµν

dXµ

dγ
dXν

dγ

∂gβζ
∂Xα

dXβ

dγ

dXζ

dγ
= 0 ,
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and if we define a function:

f(γ) = −
√
gµν

dXµ

dγ

dXν

dγ

d

dγ


 1√

gµν
dXµ

dγ
dXν

dγ




=
1

2

d

dγ

[
ln

(
gµν

dXµ

dγ

dXν

dγ

)]
, (2.22)

we have:

gαβ
d2Xβ

dγ2
+
∂gαβ
∂γ

dXβ

dγ
− 1

2

∂gβζ
∂Xα

dXβ

dγ

dXζ

dγ
= f(γ)gαβ

dXβ

dγ
;

gαβ
d2Xβ

dγ2
+

{
∂gαβ
∂Xζ

− 1

2

∂gβζ
∂Xα

}
dXβ

dγ

dXζ

dγ
= f(γ)gαβ

dXβ

dγ
.

(2.23)

In Eq. 2.12 we defined the Christoffel symbols of the second kind; the
Christoffel symbols of the first kind are obtained via lowering indices us-
ing the metric tensor (for details on this process see references [150, 102])
and are as follows:

Γαβζ =
1

2
(∂βgαζ + ∂ζgαβ − ∂αgβζ) . (2.24)

Looking specifically at the second term on the left hand side of Eq. 2.23,
in view of the fact that there is a contraction on the indices β and ζ , we may
rewrite it as follows:

{
∂gαβ
∂Xζ

− 1

2

∂gβζ
∂Xα

}
dXβ

dγ

dXζ

dγ
=

{
1

2

∂gαζ
∂Xβ

+
1

2

∂gαβ
∂Xζ

− 1

2

∂gβζ
∂Xα

}
dXβ

dγ

dXζ

dγ

= Γαβζ
dXβ

dγ

dXζ

dγ
, (2.25)

hence the geodesic equation of motion is given by:

gαβ
d2Xβ

dγ2
+ Γαβζ

dXβ

dγ

dXζ

dγ
= f(γ)gαβ

dXβ

dγ
, (2.26)

and if we use the inverse metric to raise the appropriate index on both
sides of the equation, we return Eq. 2.16 as required.
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2.6.3 Einstein field equations

The final step to establishing the framework of general relativity is to ex-
amine the Einstein field equations. They are canonically presented as [102,
68, 35]:9

Rµν −
1

2
Rgµν =

8πGN

c4
Tµν . (2.27)

The left-hand side of the equations describes the ‘fields’ themselves, i.e the
curvature of spacetime. The right-hand side describes the source of the
curvature – the distribution of stress-energy, energy density and momen-
tum throughout the spacetime. Let us unpack these individually.

The quasi-local10 curvature of spacetime

This is encoded in the expression: Rµν − 1
2
Rgµν .11 We have developed all

of the mathematical objects required to fully understand this expression.
To understand what these symbols mean we can observe the following:

• gµν – The metric tensor (see §2.4). The desired physics enforces that
this has Lorentzian signature.

• Rµν – The Ricci curvature tensor. This is constructed via the follow-
ing steps; first the connection specialised to the Christoffel symbols
of the second kind:

Γµαβ =
1

2
gµν (∂αgνβ + ∂βgνα − ∂νgαβ) , (2.28)

we may then construct the four-indexed Riemann curvature tensor
as follows [102]:

Rµ
ναβ = ∂αΓµνβ − ∂βΓµνα + ΓµσαΓσνβ − ΓµσβΓσνα , (2.29)

and the Ricci curvature tensor Rµν is obtained via contraction of the
Riemann tensor on the first and third indices [102]:

Rµν = Rσ
µσν . (2.30)

9An alternative form includes a term containing the cosmological constant Λ; approx-
imating Λ ≈ 0 is common practice however since Λ has been observed to be extremely
small.

10There is a distinction being made here between ’quasi-local’ and ’local’ due to the fact
that all finite regions in all spacetimes are locally Minkowski in general relativity.

11This is only the Ricci curvature. To fully express global curvature we must also factor
into account the Weyl curvature. Qualitatively, Ricci curvature contains information per-
taining to how volumes of objects are distorted in the presence of tidal forces, while Weyl
curvature encodes the changes in shape. For more information on the nature of Weyl and
Ricci curvature, please see [45].
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• The Ricci scalar R. This is obtained by contracting the inverse metric
with the Ricci tensor [102]:

R = gµνRµν . (2.31)

Gathering all of these terms defines the Einstein curvature tensor, Gµν =
Rµν − 1

2
Rgµν . Note that this implies that there are in total ten equations

in the Einstein field equations at each point in spacetime; this comes from
the fact that both Rµν and gµν have a four-by-four matrix representation
which is strictly symmetric. Now we fully comprehend the left-hand side
of the Einstein field equations; it is important to note that all information
encoded in the curvature tensors and scalar invariants ultimately stems
directly from the metric tensor, gµν . It therefore follows that defining a
line element (and hence a metric environment) is all one requires in or-
der to characterise all the relevant information pertaining to the curva-
ture of a particular spacetime. We therefore conduct all analyses of can-
didate spacetimes beginning solely with the metric as our starting point.
It is worth noting that there are numerous other curvature tensors and
curvature invariants which provide geometric information about the four-
manifold but are not explicitly part of the Einstein field equations; specif-
ically the tensors and invariants which will form additional parts of the
analyses in this thesis include: the Weyl tensor Cµναβ , the Ricci contrac-
tionRµνR

µν , the Kretschmann scalarRµναβR
µναβ , and the Weyl contraction

CµναβC
µναβ (for details on these mathematical objects see references [150,

102]).

The stress-energy-momentum tensor

The right-hand side of the Einstein field equations encodes the source of
the curvature in spacetime. Before proceeding note the following – until
now all expressions unless otherwise stated have assumed the interna-
tional system of units (SI-units); henceforth geometric units shall be used
to simplify calculation as is conventional in physics. As such, the speed
of light in a vacuum c = 1, and Newton’s gravitational constant GN = 1.
Multiplication of combinations of c and GN where appropriate will return
SI-units if desired. Hence we rephrase the Einstein field equations:

Gµν = Rµν −
1

2
Rgµν = 8πTµν . (2.32)

The general form of Tµν is as follows [68]:

Tµν =

[
ρ Fi
Fj πij

]
, (2.33)

(recall latin indices i, j ∈ {1, 2, 3}).
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These objects are the following:

• ρ is the energy density of the relativistic masses present in the space-
time,

• Fi and Fj represent the directional energy flux of relativistic mass
across each xi surface (these are analogous to the Poynting vectors
from electromagnetism) - this encodes momentum density,

• πij represents the spatial shear stress tensor, with the diagonal en-
tries (those independent of direction) defining radial and transverse
pressure.

One of the simplest examples for the stress-energy-momentum tensor
is in the case when the matter distribution is that of a perfect fluid, i.e we
have spherical symmetry with uniform pressure. In this case:

Tµν =




ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p


 , (2.34)

and in general for spherically symmetric matter distributions:

Tµν =




ρ 0 0 0
0 p‖ 0 0
0 0 p⊥ 0
0 0 0 p⊥


 . (2.35)

All candidate spacetimes analysed in this thesis have a spherically sym-
metric matter distribution and as such the corresponding stress-energy-
momentum tensor will take the form of Eq. 2.35.

As well as the form of the components of Tµν being dictated by the Ein-
stein field equations, there are numerous (at least seven) different energy
conditions in the context of classical general relativity which imply mathe-
matical constraints on Tµν [143]. The most fundamental of these conditions
is the null energy condition (NEC), the satisfaction of which is mathemat-
ically represented by the following [143]:

NEC ⇐⇒ Tµνt
µtν ≥ 0 , (2.36)

where tµ is any arbitrary null vector and the inequality must hold glob-
ally. Given a stress-energy-momentum tensor of the form in Eq. 2.35, this
assertion translates to the following in terms of the pressures within the
matter distribution:

NEC ⇐⇒ ρ+ p‖ ≥ 0, and ρ+ p⊥ ≥ 0 . (2.37)
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The primary energy conditions of interest are the null, weak, strong, and
dominant energy conditions, and if the null energy condition is violated
it mathematically implies direct violation of these remaining three condi-
tions also; this fact is used in the subsequent analyses of the various candi-
date spacetimes (for details pertaining to the corollaries of the violation of
the NEC, please see reference [143]). Canonically, traversable wormhole
geometries have required a violation of the null energy condition [105],
and as such represent what are known as ‘exotic’ solutions to the Einstein
equations.

Regular black hole geometries typically require a violation of some of
the energy conditions, however the NEC might be satisfied in some reg-
ular black hole geometries. This is due to the fact that the violation of
the radial NEC is directly related to the ‘flare-out’ condition pertaining
to wormhole throats [143] (this condition is defined in §4). For regular
black hole spacetimes, one instead expects a violation of the strong energy
condition (SEC). This is a consequence of the fact that the lack of curvature
singularities implies geodesic completeness on the manifold; and geodesic
completeness implies the SEC will not be satisfied (for details on the corol-
laries of geodesic completeness, please see reference [69]). In terms of the
principal pressures from the form of the stress-energy-momentum tensor
as presented in Eq. 2.35, satisfaction of the SEC amounts to the following:

SEC ⇐⇒ ρ+ p‖ + 2p⊥ ≥ 0 . (2.38)

This condition will be utilised as part of the analysis of regular black hole
spacetimes in §5.

We have established the framework of general relativity; every term
in Schuller’s definition for a generic spacetime has been thoroughly un-
packed. There remain various mathematical and physical subtleties to be
discussed before proceeding to analyse various spacetimes of interest us-
ing these foundational building blocks – these are presented in §3.



Chapter 3

Fundamentals: Analysing
candidate spacetimes

Let us introduce some terminology and techniques which are essential in
performing the level of analysis desired for each of the prospective candi-
date spacetimes.

3.1 Spherical symmetry

All candidate spacetimes analysed in this thesis possess a spherically sym-
metric matter distribution. This implies that the four-manifolds corre-
sponding to the left-hand side of the Einstein field equations are all spher-
ically symmetrical geometries. It is worth noting that each metric pre-
sented models a spacetime with one ‘centralised’ (with respect to the cho-
sen coordinate patch) massive object which is controlling the curvature
of that specific spacetime. Surfaces which correspond to a fixed distance
(with respect to the metric) from this object are then spatial two-spheres.
Usually this fixed distance simply corresponds to a specific designation of
our r-coordinate, however this is subject to our chosen coordinate patch.
A corollary of spherical symmetry is that we may fix an angular coordi-
nate arbitrarily when discussing the worldlines of particles and simplify
any physical problems to a reduced equatorial state – for example when
calculating innermost stable circular orbits (ISCOs) and photon spheres1

this greatly reduces the complexity of calculations. We may also discuss
the curvature of the spacetime with respect to the changing areas of the in-
duced spatial two-spheres as we vary distance from the centralised mass;
a powerful tool for verifying certain qualitative aspects for each candidate
spacetime (for dynamical spacetimes this discussion requires that we fix a
time slice, however the majority of metrics analysed henceforth are time-
independent and we have the freedom to vary time arbitrarily without
affecting the nature of the curvature).

1Discussion and definition of these objects is presented in §3.6.

27
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3.2 Horizons

Horizons in the context of general relativity are subtle physical objects,
and there are multiple qualitatively different types of horizon correspond-
ing to disparate technical definitions. Fundamentally all classes of horizon
are characterised as a physical surface within the four-manifold permitting
the passage of massive and massless particles in one direction only, and
whose location is such that the notion of time for all external observers
comes to a stop at the horizon [102, 158, 69, 143].

The most commonly encountered class of horizon is the event hori-
zon, or absolute horizon – this is primarily due to the popularity of the
event horizon in science fiction, although some physicists and applied
mathematicians also advocate using the definition of the event horizon
as it enables an easier environment in which to prove mathematical theo-
rems [149]. In the book Lorentzian Wormholes, the following definition for
the event horizon is provided [143]: “For each asymptotically flat region
the associated future/past event horizon is defined as the boundary of the
region from which causal curves (that is, null or timelike curves) can reach
asymptotic future/past null infinity.”2 It turns out that the event hori-
zon may not in fact be the most well-informed category of horizon when
describing physical reality – one runs into many technical issues, one of
which concerns black hole evaporation across large timescales and the po-
tential recovery of information deemed to be strictly ‘lost’ by the definition
of these event/absolute horizons (for details see reference [149]).

Another type of horizon is the apparent horizon [143]: “defined locally
in terms of trapped surfaces. Pick any closed, spacelike, two-dimensional
surface (two-surface). At any point on the two-surface there are two null
geodesics that are orthogonal to the surface. They can be used to define
inward and outward propagating wavefronts. If the area of both inward
and outward propagating wavefronts decrease as a function of time, then
the original two-surface is a trapped surface and one is inside the apparent
horizon. More precisely, if the expansion of both sets of orthogonal null
geodesics is negative, then the two-surface is a trapped surface.” So the
apparent horizon is the boundary between these trapped and untrapped
surfaces, characterised by conditions on the focussing/defocussing of null
geodesics. Note that in a time-independent metric environment these two
horizon definitions are one and the same. Given the fact the geometry

2Future/past null infinity is defined as [68]: the spatial surface corresponding to the
set of all coordinate locations which outgoing/ingoing null curves (e.g. light rays) are able
to asymptotically approach as |t| → +∞. This boundary is only defined in an asymptoti-
cally flat region of spacetime, and is one of the ‘conformal infinities’ used in constructing
the Carter-Penrose diagrams which diagrammatically represent the global causal struc-
ture of specific spacetimes (the others being future/past timelike infinity and spacelike
infinity – these objects are utlilised for the construction of the diagrams in §6 and §7). For
details on conformal infinities, timelike and spacelike infinity, and their uses in general
relativity, please see reference [52].
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remains unchanged with time, any apparent horizon is also an absolute
horizon, however this is not the case with a dynamical metric environment
and it is important to distinguish between them.

In view of the fact that all metric candidates analysed henceforth model
spherically symmetric geometries, we may simplify the mathematical def-
inition of the apparent horizon. When specialised to spherical symmetry,
the apparent horizon simply corresponds to the locus of coordinate loca-
tions such that radially propagating light rays have zero coordinate veloc-
ity (in most coordinate patches this will be when dθ = 0, dφ = 0, and dr

dt
=

0).3 Accordingly the analyses in this thesis adopt this simplified definition
of the apparent horizon, which for all time-independent candidate space-
times acts as both an event and an apparent horizon. The exception of the
dynamical spacetime is in §7, where a careful distinction is made between
the two qualitatively different horizons. It follows that we naturally de-
fine a black hole region within a spacetime as the region of the geometry
which lies strictly within the apparent horizon.

3.3 Singularity

When discussing the presence/location of a singularity within a specific
geometry, it is important to differentiate between a gravitational singular-
ity and a coordinate singularity. Both are mathematically characterised by
coordinate locations which correspond to poles of a coefficient function or
functions in the metric; their qualitative difference is that a gravitational
singularity is representative of a physical source of infinite curvature in
the spacetime (a tear in the topological manifold), whilst coordinate sin-
gularities represent nothing physically special at all and may always be
removed through an alternative choice of coordinate patch. We therefore
need a way of mathematically separating the two so as to draw meaning-
ful physical conclusions. There are multiple methods of doing this, for ex-
ample via geodesic incompleteness or via analysis of the Riemann curva-
ture tensor with respect to an orthonormal tetrad [69].4 For our purposes
however a gravitational singularity will generally be defined as a coor-
dinate location which forces one or more of the scalar curvature invari-
ants R,RµνR

µν , RµναβR
µναβ , and CµναβC

µναβ to have infinite magnitude.
By imposing the conditions on the scalar invariants, which are coordinate-
independent quantities, we remove the possibility of mistaking a coordi-
nate artefact for a genuine gravitational singularity. For the cases of in-
terest, i.e. traversable wormhole and regular black hole geometries, we

3In the special case when the chosen coordinate system informs a diagonal metric
environment and we have spherical symmetry, this definition implies that the location of
the horizon is simply defined by the surface which forces gtt = 0; this simplification is
utilised henceforth where appropriate.

4This is the method utilised in §6.2; there is no particularly special reason for this; the
calculation was contextually convenient.
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are in fact looking for an absence of gravitational singularities and wish
to demonstrate that no such coordinate locations exist – this therefore cor-
responds to ensuring that the curvature invariants remain finite over the
entire domain of our chosen coordinate patch.

3.4 Killing symmetries

3.4.1 Killing vector fields

A Killing vector field in the context of spacetime is defined as a vector
field which preserves the metric [102]. This means that ξµ is a Killing vec-
tor if and only if any set of points displaced by some ξµdxµ leaves all dis-
tance relationships are unchanged. It follows that displacements along
Killing vector fields are isometries; bijective maps f : Rn → Rn such that
gµν (f(x), f(y)) = gµν (x, y). A physical corollary of this displacement be-
ing an isometric map is that worldlines of particles displaced infinitesi-
mally in an arbitrary direction along the Killing vector field are congru-
ent. From this definition, one can derive Killing’s equation: LX gµν =
∇µXν +∇νXµ = 0; that the Lie derivative of the metric tensor with respect
to a given Killing vector field X is manifestly zero.5

3.4.2 Conserved physical quantities

Given some arbitrary spacetime, often there are symmetries in the space-
time geometry, and as such associated Killing vectors which yield con-
served physical quantities in accordance with the same conservation laws
that arise from classical analytic mechanics [102]. To see that these sym-
metries exist, without loss of generality we may use the example of a
metric expressed with respect to some coordinate patch (t, r, θ, φ) such
that the metric is both diagonal and time-independent, i.e. independent
of the t-coordinate (this argument can be generalised to arbitrary coor-
dinate patches in various domains with ease). It therefore follows that
∂gµν/∂t = 0. The geometric interpretation of this relation is that any curve
in the manifold can be shifted by some ∆t = ε, ε ∈ R, to form a congru-
ent curve; i.e. the transformation t → t + ε preserves the metric. We may
conclude that ξµ = ∂t = (1, 0, 0, 0) = δµt is a Killing vector. Let us derive
Killing’s equation by taking the covariant derivative of the Killing vector
field in the following manner:

5For details on the Lie derivative and its relationship with the Killing vector, please
see references [150, 102].
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∇νξµ = gµσ∇νξ
σ

= gµσ

(
∂ξσ

∂xν
+ Γσναξ

α

)
(definition of covariant derivative)

= gµσΓσνt = Γµνt (using ∂ξσ

∂xν
= 0, ξα = δαt)

=
1

2

(
∂gµt
∂xν

+
∂gµν
∂t
− ∂gνt
∂xµ

)
(definition of Γµνt)

=
1

2
(∂νgµt − ∂µgνt) (using ∂gµν

∂t
= 0)

= −1

2
(∂µgνt − ∂νgµt)

= −∇µξν . (by symmetry) . (3.1)

So we have returned to Killing’s equation,∇µξν +∇νξµ = 0.
If we have an affinely parameterised geodesic curve in our spacetime,

parameterised by some affine scalar parameter γ, then for the affinely pa-
rameterised tangent vector to the curve, Xν , we have the following re-
sult as a corollary from Eq. 2.17: Xµ∇µX

ν = 0. As a consequence of our
connection being a metric connection, we also must satisfy the metricity
condition [102, 150], that∇σgµν = 0.

Combining these results with Killing’s equation, we can prove the fol-
lowing assertion: for any Killing vector field ξµ on a spacetime (M, gµν),
and some affinely parameterised tangent vector field Xν to an affinely pa-
rameterised geodesic curve, ξµgµνXν = K, where K is some scalar-valued
constant. To prove this we show that d

dγ
(ξµgµνX

ν) = 0, by employing the
product rule for the covariant derivative:

d

dγ
(ξµgµνX

ν) = (Xσ∇σξ
µ) gµνX

ν

+ξµ (Xσ∇σgµν)X
ν (zero due to metricity condition)

+ξµgµν (Xσ∇σX
ν) (zero as a corollary of Eq. 2.17)

= (Xσ∇σξ
µ) gµνX

ν

= Xσ∇σξνX
ν (using metric tensor to lower index)

= Xσ∇(σξν)X
ν (since σ and ν are dummy indices)

= Xσ

[
1

2
(∇σξν +∇νξσ)

]
Xν (zero due to Eq. 3.1)

= 0 . (3.2)

As such, for the specific example where ξµ = ∂t, and if we specify the
tangent vector field Xν to be the four-momentum of some test particle
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along its worldline, i.e. P ν = m0V
ν (where V ν is the four-velocity of the

test particle), we have the following:

ξµgµνP
ν = δµtgµνP

ν

= gtνP
ν

= gtνδ
ν
tP

ν (due to diagonal metric environment)
= gttP

t

= E . (3.3)

It follows that the symmetry of the spacetime in the t-coordinate ulti-
mately yields the conservation of energy, E. Hence the Killing vector im-
plies the conservation of energy along our geodesic curves of interest. This
specific conserved quantity is relied upon heavily in the subsequent analy-
ses of candidate spacetimes; also utilised (where appropriate) is the metric
independence of the azimuthal φ-coordinate, which implies the conserva-
tion of the quantity gφφP φ. This quantity in turn implies the conservation
of angular momentum, L.

3.5 Static spacetimes

A spacetime is mathematically characterised as static if it admits a hyper-
surface orthogonal timelike Killing vector field [69]. Physically this means
that the geometry is time-independent and also non-rotational (note that
spherical symmetry implies lack of rotation). This is a special case of the
more general stationary spacetime – one which is time-independent but
permits rotation (hence mathematically only requires that it admits a time-
like Killing vector field). For example the Kerr geometry is a spacetime
which is stationary without being static [161], however every metric anal-
ysed in this thesis is non-rotational due to the relative tractability of the
mathematics, and all bar one are time-independent (and hence static). The
exception has a dynamical metric environment which is time-dependent;
neither static nor stationary.

3.6 ISCO and photon sphere

The innermost stable circular orbit (ISCO) and the photon sphere corre-
spond to specific locations within a given spacetime which are of signif-
icant observational interest. The ISCO is defined as the innermost stable
circular orbit which a massive particle is able to maintain around some
massive object [102], and physically corresponds to the innermost edge of
the accretion disc; an important astrophysical object for empirical obser-
vation. The photon sphere corresponds to the locus of coordinate loca-
tions sufficiently near the centralised massive object such that photons (or
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any massless particle) are forced to propagate in circular geodesic orbits
(which may be stable or unstable) [102]. Given an appropriate test par-
ticle for each case, both of these mathematical concepts are characterised
by coordinate locations corresponding to stationary points of the effective
energy potentials of the test particles – this is a corollary of the desired
physics inherent in orbital mechanics; that a test particle orbiting a mas-
sive body be in mechanical equilibrium (in the classical sense; please see
reference [65] for details). To find the coordinate location of the ISCO we
re-parameterise the line element using tangent vectors to a timelike world-
line, whilst for the photon sphere we re-parameterise the line element with
respect to the tangent vectors of a null worldline.

Given the fact that both the ISCO and the photon sphere are strictly cir-
cular orbits, they are typically only discussed in the context of spherically
symmetrical geometries. There are much messier generalisations, ISCOs
and photon rings, for the equatorial plane of axially symmetric geome-
tries such as Kerr [161]; these are not explored in this thesis. In view of
this, without loss of generality we may always (through an appropriate
choice of coordinate patch) define the effective energy potentials of arbi-
trary test particles as some function V (r), the form of which is found via
analysis of the conserved quantities implied by the Killing symmetries of
each candidate spacetime. This implies that the coordinate locations of the
circular orbits are found at the r-values which satisfy V ′(r) = 0. The stabil-
ity of each circular orbit is determined by the sign of V ′′(r) in the following
manner [65, 41]:

V
′′
(r) < 0 =⇒ unstable orbit ;

V
′′
(r) = 0 =⇒ marginally stable ;

V
′′
(r) > 0 =⇒ stable orbit . (3.4)

We define the notion of stability to be whether small peturbations orthog-
onal to the geodesic orbit on either side cause the particle to remain in the
circular orbit (stable), or cause it to follow some altogether qualitatively
different worldline (unstable). This raises a notable point: terminologi-
cally ‘ISCO’ is standard, but one would assume that use of the word ‘sta-
ble’ in the term ISCO implies that the corresponding orbit must always
be stable. In general, this is not the case. Quite often the ISCO is at best
one-sided stable, and in the specific case for the Morris-Thorne traversable
wormhole spacetime analysed in §4, the ISCO is in fact two-sided unstable.
This is merely an oddity in use of language; there are no significant rami-
fications pertaining to whether the ISCO is stable/unstable in the context
of the desired astronomical analysis.

The motivation for this section of analysis is that given a specific solu-
tion to the Einstein equations, astronomers will be informed as to where
to point their telescopes (with respect to a specified coordinate patch) in
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order to gain as much pertinent information regarding the behaviour of
both massless and massive particles as they near the region of spacetime
with the highest curvature. Due to the fact that the ISCO corresponds to
the innermost edge of the accretion disc, it is inherently crucial for the as-
trophysical imaging of black hole regions. The photon sphere is also of
significance for astronomers; for extensive discussion on the importance
of the photon sphere for astrophysical imaging see references [140, 137,
139, 138, 40, 136].

It should be noted that in Newtonian gravity, there is no concept of
an ISCO, as one may easily stabilise the orbits of test particles which are
arbitrarily close to a mass source. It follows that ISCO locations are intrin-
sically general relativistic.

3.7 Regge-Wheeler equation

In order to use the Regge-Wheeler equation to conduct tractable analysis,
we must first rewrite the metric environment in terms of a naturally de-
fined tortoise coordinate. In a spherically symmetric geometry with a di-
agonal metric environment, the tortoise coordinate r∗ is constructed such
that it must satisfy the first-order differential equation [30]:

dr∗ =

√
−grr
gtt

dr ;

=⇒ r∗ =

∫ √
−grr
gtt

dr . (3.5)

For the specialised case where grrgtt = −1, as is the case for all spacetime
candidates analysed in this thesis, we have the simplified tortoise coordi-
nate given by:

dr∗ = grr dr ; =⇒ r∗ =

∫
grr dr . (3.6)

In a spherically symmetric and static environment, without loss of gener-
ality, this enables us to rewrite the metric as follows:

ds2 = A(r)
{
−dt2 + dr2

∗
}

+ gθθ dΩ2 . (3.7)

The use of the tortoise coordinate normalises the relation between dt2 and
dr2, such that radially propagating test particles (i.e. dΩ2 = 0) have world-
lines which correspond to π/4-radian lines on a spacetime diagram. This
is a useful feature, however it comes at the cost of some hitherto unknown
conformal factor in the form of A(r) (for radial null propagation use of the
tortoise coordinate is particularly nice as we may simply ignore the effect
of the conformal factor in view of the fact that dŝ2 = 0).
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Having rewritten the metric in terms of r∗, the Regge-Wheeler equation
enables one to draw conclusions pertaining to the energy potentials of the
following objects, subject to linear peturbations induced by greybody fac-
tors [30]:

• The spin zero massless scalar field minimally coupled to gravity,

• The spin one Maxwell vector field,

• The spin two axial peturbation mode.

The general form of the Regge-Wheeler equation is given by [30]:

∂2
r∗φ̂+ {ω2 − V}φ̂ = 0 , (3.8)

where φ̂ is the scalar or vector field of interest, V is the spin-dependent
Regge-Wheeler potential for our particle, and ω is a temporal frequency
component in the Fourier domain. The formalism of all subsequent Regge-
Wheeler analyses in this thesis closely follows that of reference [30], and
extracting Regge-Wheeler potentials forms part of the standard analysis
for each candidate spacetime.

3.8 Surface gravity and Hawking temperature

Canonical surface gravity in general relativity requires the existence of
a static Killing horizon, defined to be a null hypersurface at a coordi-
nate location where the norm of the Killing vector field goes to zero [102,
158]. Given a static Killing horizon in a spacetime, and some suitably nor-
malised Killing vector field ξµ, the surface gravity κ is then calculated by
evaluating the following equation at the coordinate location of the Killing
horizon [102, 158]:

ξµ∇νξµ = −κ ξν , (3.9)

and via Killing’s equation and appropriate contraction with the metric ten-
sor we may rewrite this as:

ξµ∇µξν = κ ξν . (3.10)

Surface gravity κ is then directly related to the Hawking temperature TH
as a consequence of Hawking evaporation by the following formula [69]:

TH =
~κ

2πkB
. (3.11)

In §6.5 a calculation is performed to obtain the surface gravity κ at the
horizon for the regular black hole geometry. This calculation is not re-
peated for other sections as it is either physically uninteresting (e.g. for
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the Bardeen and Hayward metrics in §5), or it is not a well-defined pro-
cess (e.g. in the time-dependent environment presented in §7, the lack of a
suitable Killing horizon prevents classical calculation of κ). For traversable
wormhole spacetimes the notion of surface gravity is at best unusual [143],
and discussion on this point is omitted from this thesis.

We are now sufficiently armed with the necessary tools to conduct thor-
ough analysis in the context of general relativity. Accordingly, let us pro-
ceed to analysing various candidate spacetimes of interest.



Chapter 4

Introducing the traversable
wormhole

Science fiction is littered with examples of ‘wormholes’ which permit all
sorts of miraculous travel through space and time; as such the concept
has blossomed in popularity in contemporary times – even to the layper-
son. Often less well known however is that there are specific and rigorous
ways of defining these objects within the context of general relativity, and
that there exist model spacetimes of interest whose geometric curvature
informs a traversable wormhole environment and subsequent matter dis-
tribution in accordance with the Einstein field equations. First let us define
what a traversable wormhole is as a physical object.1 At its most elemen-
tary, a "wormhole is a short-cut through space and time" [143], and fun-
damentally traversable wormholes can be characterised by the following
criteria [105]:

• We are working within the framework of general relativity. As such
we require that any wormhole solution obeys the Einstein field equa-
tions at all coordinate locations, hence defining the form of the stress-
energy-momentum tensor, Tµν .

• The geometry should possess a specific coordinate location called
the ‘throat’ which connects two asymptotically flat regions of space-
time – these flat regions may either be from the same or different
universes; the geometry is still a traversable wormhole provided
their asymptotic limits model Minkowski space (in most coordinate
patches this occurs as |r| → +∞). Without loss of generality, we
can always choose a coordinate system where the throat is located
at r = 0 (and in fact it is usually prudent to do so for simplicity of
calculations near the throat). In the local area near the throat, the ge-
ometry must satisfy the ‘flare-out’ condition – that the areas of the

1Here we are defining a wormhole geometry which is merely traversable in principle;
in order for a real traveller to pass through the geometry there are numerous engineering
concerns also, e.g. tidal forces due to gravity mustn’t tear a would-be traveller to pieces.

37
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induced spatial hypersurfaces on either side of the throat are strictly
increasing as a function of distance from the throat. This is often
mathematically characterised by the condition that A′′(rthroat) > 0;
i.e. the throat locally minimises the area function of the spatial hy-
persurfaces.

• There must be no horizons in the geometry as the wormhole must
be two-way traversable – naturally the existence of a horizon would
permit one-way travel, but in the opposite direction travel would re-
quire one to violate the condition from special relativity that nothing
propagate faster than the speed of light, c.

• The geometry should be gravitationally non-singular (or at the very
least one should be able to isolate any gravitational singularities in
small, easily avoided regions); a gravitational singularity in the vicin-
ity of a particle’s worldline would nullify any need to discuss engi-
neering concerns as any object experiencing travel through a region
of infinite curvature will most certainly be destroyed. This is also
of mathematical convenience, as a gravitationally non-singular ge-
ometry enforces that all curvature tensor components and curvature
invariants remain everywhere-finite with appropriate coordinate se-
lection.2 In a spherically symmetrical geometry with a traversable
wormhole throat the combination of the ‘flare-out’ condition and the
requirement for asymptotic flatness informs that there be strictly no
gravitational singularity anywhere in the geometry.

These criteria are sufficient to ensure that a wormhole geometry is
traversable in principle. We may now begin analysing specific candidates
for traversable wormhole solutions phenomenologically, and draw con-
clusions as to their nature. Specifically we are interested in traversable
wormhole solutions which correspond to global (or near-global) coordi-
nate patches in order to extend the pre-existing discussion, where a global
coordinate patch is a coordinate patch defined on the manifold M such
that every point in M has a corresponding coordinate location with re-
spect to the chosen coordinate patch (i.e. a one-chart atlas completely cov-
eringM).

4.1 Morris-Thorne wormhole

Morris and Thorne provide what is most likely the simplest metric repre-
senting a traversable wormhole geometry as follows [105]:3

2Note that there certainly are wormhole geometries possessing singularities – e.g. the
Einstein-Rosen bridge. However this geometry is strictly not traversable [143].

3The subsequent analysis of this metric is not at all new, rather it is intended to act as a
straightforward template for which all remaining analyses of other candidate spacetimes
adheres to. Analysis which extends the pre-existing discussion begins from §4.2.
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ds2 = −dt2 + dr2 +
(
r2 + a2

) (
dθ2 + sin2 θ dφ2

)
. (4.1)

Here a is simply a scalar parameter and we may enforce a 6= 0. If a = 0
then we have the metric for Minkowski space with respect to spherical
polar coordinates – clearly not the traversable wormhole candidate we de-
sire. Note that the metric is time-independent and spherically symmetric
in view of the diagonal metric environment; therefore it is non-rotational.
Hence ξ = ∂t is a Killing vector and the metric is static (see §3.5). Further-
more, the areas of spherical symmetry are given by:

A(r) = 4π
(
r2 + a2

)
=⇒ A′(r) = 8πr ;

A′(r) = 0 =⇒ r = 0 , (4.2)

and we have a stationary point at r = 0, which is a minimum for the
area of spherical surfaces in view of the fact that: A′′(r) = 8π, +8π >
0 ∀ r. As |r| → +∞, a2 � r2, so r2 + a2 ∼ r2 and the metric becomes
asymptotic to that of Minkowski space. We may therefore conclude that
the geometry described by Eq. 4.1 has a throat at coordinate location r = 0
which connects two asymptotically flat regions of spacetime, and satisfies
the ‘flare-out’ condition for a traversable wormhole. Note that at the throat
when r = 0, A(r) = 4πa2, hence we conclude that the scalar parameter a is
in fact informing the radial width of the throat of our geometry.

By definition a traversable wormhole geometry must also have no hori-
zons for all coordinate locations in the spacetime. We may observe imme-
diately that gtt = −1; this is clearly non-zero irrespective of any parameter
values. As such there are no horizons as required. Furthermore the ra-
dial null curves arising from this metric (i.e. ds2 = 0; θ, φ = constant) are
given by dr

dt
= 1. This defines a coordinate speed of light for the metric

that is equal to the speed of light in a vacuum, and a corresponding re-
fractive index of n = 1. Also note the metric permits a global coordinate
patch, where t ∈ (−∞.+∞), r ∈ (−∞,+∞), θ ∈ [0, π], φ ∈ [−π,+π), and
the entire manifold is covered. It remains to check that the geometry is
gravitationally non-singular.

4.1.1 Curvature tensors and invariants analysis

The Ricci scalar:

R =
−2a2

(r2 + a2)2 . (4.3)
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Ricci tensor non-zero components:4

Rr
r =

−2a2

(r2 + a2)2 = R ;

as |r| → 0, Rr
r →

−2

a2
;

as |r| → +∞, Rr
r → 0 . (4.4)

Riemann tensor non-zero components:

Rrθ
rθ = Rrφ

rφ = −Rθφ
θφ =

−a2

(r2 + a2)2 =
1

2
R ;

as |r| → 0, Rrθ
rθ → −

1

a2
;

as |r| → +∞, Rrθ
rθ → 0 . (4.5)

Einstein tensor non-zero components:

Gt
t = −Gr

r = Gθ
θ = Gφ

φ =
a2

(r2 + a2)2 = −1

2
R ;

as |r| → 0, Gt
t →

1

a2
;

as |r| → +∞, Gt
t → 0 . (4.6)

Weyl tensor non-zero components:

−2Ctr
tr = Ctθ

tθ = Ctφ
tφ = Crθ

rθ = Crφ
rφ

= −2Cθφ
θφ =

−a2

3 (r2 + a2)2 =
1

6
R ;

as |r| → 0, Ctθ
tθ → −

1

3a2
;

as |r| → +∞, Ctθ
tθ → 0 . (4.7)

4Non-zero curvature tensor components for this analysis are all presented using the
mixed components with one or two indices raised (depending on whether it is a rank two
or rank four tensor) via contraction with the contravariant metric. This is done for simpli-
fication of the resulting algebraic expressions, and this form is utilised where appropriate
for all other candidate spacetimes.
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The Ricci contraction RµνR
µν :

RµνR
µν =

4a4

(r2 + a2)4 = R2 ;

as |r| → 0, RµνR
µν → 4

a4
;

as |r| → +∞, RµνR
µν → 0 . (4.8)

The Kretschmann scalar:

RµναβR
µναβ =

12a4

(r2 + a2)4 = 3R2 ;

as |r| → 0, RµναβR
µναβ → 12

a4
;

as |r| → +∞, RµναβR
µναβ → 0 . (4.9)

The Weyl contraction CµναβCµναβ :

CµναβC
µναβ =

16a4

3 (r2 + a2)4 =
4

3
R2 ;

as |r| → 0, CµναβC
µναβ → 16

3a4
;

as |r| → +∞, CµναβC
µναβ → 0 . (4.10)

It is therefore clear that all curvature tensor components and invari-
ants are strictly finite at all coordinate locations in the domain for the
Morris-Thorne metric. Characterising a gravitational singularity as a co-
ordinate location corresponding to infinite curvature as in §3.3, we may
conclude that the geometry possesses no gravitational singularities. Fur-
thermore the components and scalars are very simple near the throat of
the wormhole geometry; of particular interest is the fact that all non-zero
tensor components and curvature invariants can be expressed as simple
functions of the Ricci scalar, R. The Morris-Thorne metric is therefore
singularity-free, has no horizons, has a throat connecting two asymptoti-
cally flat regions of spacetime which also satisfies the ‘flare-out’ condition,
and as such is indeed a traversable wormhole as presupposed.

4.1.2 ISCO and photon sphere analysis

Let us find the coordinate locations of the photon sphere for massless par-
ticles and the ISCO for massive particles as functions of r and a, emphasis-
ing that the current calculation is essentially a template for future re-use
with respect to other metric environments.
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Consider the tangent vector to the worldline of a massive or massless
particle, parameterised by some arbitrary affine parameter, λ:

gµν
dxµ

dλ

dxν

dλ
= −

(
dt

dλ

)2

+

(
dr

dλ

)2

+
(
r2 + a2

)
{(

dθ

dλ

)2

+ sin2 θ

(
dφ

dλ

)2
}
.

(4.11)
Since we have used an affine parameter here, and we are certainly not
dealing with a spacelike separation in either the massive or massless case,
we may, without loss of generality, separate the two cases by defining a
scalar-valued object as follows:

ε =

{
−1 Massive particle, i.e. timelike worldline ;

0 Massless particle, i.e. null geodesic . (4.12)

That is, gµν dx
µ

dλ
dxν

dλ
= ε, and due to the metric being spherically symmetric

we may fix θ = π
2

arbitrarily and view the reduced equatorial problem:

gµν
dxµ

dλ

dxν

dλ
= −

(
dt

dλ

)2

+

(
dr

dλ

)2

+
(
r2 + a2

)(dφ
dλ

)2

= ε . (4.13)

At this stage we must note that there are symmetries in the spacetime
geometry, and as such associated Killing vectors which yield conserved
physical quantities in accordance with the same conservation laws that
arise from classical analytic mechanics.5 The metric is independent of both
time, t, and azimuthal angle, φ; this yields the following expressions for
the conservation of energy E, and angular momentum L:

(
dt

dλ

)
= E ;

(
r2 + a2

)(dφ
dλ

)
= L . (4.14)

Hence:

−E2 +

(
dr

dλ

)2

+
L2

r2 + a2
= ε , (4.15)

=⇒
(
dr

dλ

)2

= E2 + ε− L2

r2 + a2
. (4.16)

Noting that we may assume both the photon sphere and ISCO locations
to correspond to geodesic orbits, and in the context of spherical symmetry
this corresponds to a fixed r-coordinate (i.e. dr

dλ
= 0), this gives ‘effective

potentials’ for geodesic orbits as follows (‘potentials’ are proportional to
E2):

Vε(r) = −ε+
L2

r2 + a2
. (4.17)

5For a more rigorous insight into the mathematics here, please see §3.4.
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• For a photon orbit we have the massless particle case ε = 0. Since we
are in a spherically symmetric environment, solving for the locations
of such orbits amounts to finding the coordinate location of the ’pho-
ton sphere’; i.e. the value of the r-coordinate sufficiently close to our
mass such that photons are forced to propagate in circular geodesic
orbits. These circular orbits occur at V ′0 (r) = 0, as such:

V0(r) =
L2

r2 + a2
, (4.18)

leading to:

V
′

0 (r) =
−2rL2

(r2 + a2)2 . (4.19)

Evaluating where V ′0 (r) = 0, this yields the location of these circular
orbits to be the coordinate location r = 0, at the wormhole throat.

To verify stability, check the sign of V ′′0 (r):

V
′′

0 (r) =
−2L2

(r2 + a2)2

[
1− 4r2

r2 + a2

]
, (4.20)

evaluating this at r = 0 we have:

V
′′

0 (r = 0) =
−2L2

a4
, (4.21)

which is strictly less than zero in view of L being an angular momen-
tum (i.e. L > 0), and a ∈ (0,+∞). Therefore this corresponds to an
unstable photon orbit.

• For massive particles the geodesic orbit corresponds to a timelike
worldline and we have the case that ε = −1. Therefore:

V−1(r) = 1 +
L2

r2 + a2
, (4.22)

and it is easily verified that this leads to:

V
′

−1(r) = V
′

0 (r) =
−2rL2

(r2 + a2)2 , (4.23)

and we similarly have a coordinate location for our ISCO at r = 0,
right at the wormhole throat. Similarly to the photon sphere, this
orbit will be unstable – please see §3.6 for details on the stability of
ISCOs in general.
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4.1.3 Regge-Wheeler analysis

Considering the Regge-Wheeler equation in view of the formalism devel-
oped in [30], we may explicitly evaluate the Regge-Wheeler potentials for
particles of spin S ∈ {0, 1} in our spacetime. Firstly note that the metric
Eq. 4.1 can be written as:

ds2 =

{
− dt2 + dr2

∗

}
+
(
r2 + a2

) (
dθ2 + sin2 θ dφ2

)
, (4.24)

where dr∗ = dr is the naturally defined tortoise coordinate, and we can ex-
press (r2 + a2) as a function of r∗, B(r∗) (the only reason for re-expressing
the metric in terms of the tortoise coordinate in this case is to remain con-
sistent with the general formalism surrounding the Regge-Wheeler equa-
tion as developed in [30]; for this particular analysis grr = 1, so the tortoise
coordinate and our standard r-coordinate are in fact identical), yielding:

ds2 =

{
− dt2 + dr2

∗

}
+B(r∗)

2
(
dθ2 + sin2 θ dφ2

)
. (4.25)

The general Regge–Wheeler equation is [30]:

∂2
r∗φ̂+ {ω2 − V}φ̂ = 0 . (4.26)

For a scalar field (S = 0) examination of the d’Alembertian equation quickly
yields [30]:

VS=0 =

{
1

B2

}
`(`+ 1) +

∂2
r∗B

B
. (4.27)

For a vector field (S = 1) conformal invariance in ‘3+1’-dimensions guar-
antees that the Regge-Wheeler potential can depend only on the ratio 1/B,
whence normalizing to known results implies [30]:

VS=1 =

{
1

B2

}
`(`+ 1). (4.28)

Collecting results, for S ∈ {0, 1}we have:

VS =

{
1

B2

}
`(`+ 1) + (1− S)

∂2
r∗B

B
. (4.29)

The spin 2 axial mode (S = 2) is somewhat messier in this particular case,
and not of immediate interest.

Noting that for our metric ∂r∗ = ∂r and B =
√
r2 + a2 we have:

∂2
r∗B

B
=

a2

(r2 + a2)2 , (4.30)



4.1. MORRIS-THORNE WORMHOLE 45

therefore:

VS∈{0,1} =
1

(r2 + a2)

{
` (`+ 1) + (1− S)

a2

(r2 + a2)

}
. (4.31)

This has the correct behaviour as |r| → +∞, since VS∈{0,1} → 0. At the
throat we observe the following:

As |r| → 0, VS∈{0,1} →
` (`+ 1) + 1− S

a2
. (4.32)

For the specific spin cases we have:

Spin zero

Let S = 0:

VS=0 =
1

(r2 + a2)

{
` (`+ 1) +

a2

(r2 + a2)

}
. (4.33)

For scalars the s-wave (` = 0) is particularly important:

V0,`=0 =
∂2
r∗r

r
=

a2

(r2 + a2)2 . (4.34)

Spin one

Let S = 1:

VS=1 =
` (`+ 1)

(r2 + a2)
. (4.35)

4.1.4 Stress-energy-momentum tensor

Let us examine the resulting Einstein field equations for this spacetime,
and subsequently analyse the various energy conditions. In view of the
form of the energy conditions presented in §2.6.3, we shall first use the
metric tensor to lower one index on the non-zero Einstein tensor compo-
nents from Eq. 4.6. Combining this with the form of the Einstein field
equations presented in Eq. 2.32, we have: gµσGσ

ν = Gµν = 8πTµν . This
yields the following specific form of the stress-energy-momentum tensor:

ρ = p‖ = −p⊥ =
−a2

8π (r2 + a2)2 . (4.36)

We may now conduct analysis of the various energy conditions and see
whether they are violated in our spacetime.
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Null energy condition

We require that ∀ r, a,m, both ρ+ p‖ ≥ 0, and ρ+ p⊥ ≥ 0. Firstly looking at
ρ+ p‖:

ρ = p‖ =
−a2

8π (r2 + a2)
=⇒ ρ+ p‖ =

−2a2

8π (r2 + a2)
< 0 . (4.37)

In view of the fact that this is manifestly negative for all coordinate loca-
tions in our domain, it is clear the null energy condition is strictly violated
in this spacetime. It is a corollary of this that the remaining weak, strong,
and dominant energy conditions will be similarly violated (see §2.6.3 for
details). We therefore have an intriguing spacetime which in the frame-
work of general relativity requires us to thread the throat with some ex-
otic mass source possessing a negative energy density (i.e. ρ < 0); not
consistent with the energy conditions.

4.2 The exponential metric

A specific metric candidate of interest, the so-called ‘exponential metric’,
has been favoured by certain members of the community for some time.
Emphasis has been placed on the lack of horizons present in the sub-
sequent geometry (which implies the metric is certainly not modeling a
black hole), although rarely has it been noted that instead one is dealing
with a traversable wormhole, in the sense of Morris and Thorne [105].
Furthermore it is of specific interest in this context as it permits a global
coordinate patch. Some of the proponents of this metric are also in favour
of pursuing alternative theories of gravity to that of general relativity, and
believe that this metric supports this pursuit. As such, let us undertake a
standard analysis of the metric and see whether it yields a straightforward
interpretation through the lens of general relativity.

The ‘exponential metric’ is described by the line element:

ds2 = −e−2m/rdt2 + e+2m/r{dr2 + r2(dθ2 + sin2 θ dφ2)} , (4.38)

and has now been in circulation for some sixty years [163, 164, 165, 39, 114,
51, 101, 6, 117, 116, 76, 75, 23, 128, 99, 24, 129, 5, 118]; at least since 1958. In
weak fields, (2m

r
� 1), one has:

ds2 = {−dt2+dr2+r2(dθ2+sin2 θ dφ2)}+ 2m

r
{dt2+dr2+r2(dθ2+sin2 θ dφ2)} ,

(4.39)
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that is:

gab = ηab +
2m

r
δab . (4.40)

This exactly matches the lowest-order weak-field expansion of the can-
onical Schwarzschild solution, and so this exponential metric will auto-
matically pass all of the standard lowest-order weak-field tests of general
relativity. However strong-field behaviour, (2m

r
� 1), and even medium-

field behaviour, (2m
r
∼ 1), is rather different.

The exponential metric has no horizons, gtt 6= 0, and so is clearly not a
black hole. On the other hand, it does not seem to have been previously
remarked that the exponential metric describes a traversable wormhole in
the sense of Morris and Thorne [105, 106, 142, 141, 143, 43, 113, 71, 156,
72, 73, 16, 18, 44, 157, 84, 77, 86, 127, 60, 25, 7, 58, 91, 160, 122]. In fact,
the exponential metric has a wormhole throat at r = m, with the region
r < m corresponding to an infinite-volume ‘other universe’ where time
runs slower on the other side of the wormhole throat. Note also that metric
is both static and spherically symmetric.

4.2.1 Traversable wormhole throat

Consider the area of the spherical surfaces of constant r coordinate:

A(r) = 4πr2e2m/r . (4.41)

Then:

dA(r)

dr
= 8π(r −m)e2m/r , (4.42)

and:

d2A(r)

dr2
= 8πe2m/r

(
1− 2m

r
+

2m2

r2

)
= 8πe2m/r

{(
1− m

r

)2

+
m2

r2

}
> 0 .

(4.43)
That is: the area is a concave function of the r coordinate, and has a
minimum at r = m, where it satisfies the ‘flare-out’ condition A′′|r=m =
+8πe2 > 0. Furthermore, all metric components are finite at r = m, and
the diagonal components are non-zero. This is sufficient to guarantee that
the surface r = m is a traversable wormhole throat, in the sense of Morris
and Thorne [105, 106, 142, 141, 143, 43, 113, 71, 156, 72, 73, 16, 18, 44, 157,
84, 77, 86, 127, 60, 25, 7, 58, 91, 160, 122]. There is a rich phenomenology of
traversable wormhole physics that has been developed over the last thirty
years (since the Morris-Thorne paper [105]), much of which can be readily
adapted (mutatis mutandi) to the exponential metric.
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4.2.2 Comparison: exponential versus Schwarzschild

Let us briefly compare the exponential and Schwarzschild metrics.

Isotropic coordinates

In isotropic coordinates the Schwarzschild spacetime is:

ds2
Sch = −

(
1− m

2r

1 + m
2r

)2

dt2 +
(

1 +
m

2r

)4

{dr2 + r2(dθ2 + sin2 θ dφ2)} , (4.44)

which we should compare with the exponential metric in isotropic coordi-
nates:

ds2 = −e−2m/rdt2 + e+2m/r{dr2 + r2(dθ2 + sin2 θ dφ2)} . (4.45)

It is clear that in the Schwarzschild spacetime there is a horizon present
at r = m

2
. Recalling that the domain for the r-coordinate in the isotropic

coordinate system for Schwarzschild is r ∈ (0,+∞), we see that the hori-
zon also corresponds to where the area of spherical constant-r surfaces is
minimised:

A(r) = 4πr2
(

1 +
m

2r

)4

;

dA(r)

dr
= 8πr

(
1− m

2r

)(
1 +

m

2r

)3

;

d2A(r)

dr2
= 8π

(
1 +

m

2r

)2
(

3

4

(m
r

)2

− m

r
+ 1

)
. (4.46)

So for the Schwarzschild geometry in isotropic coordinates the area has a
minimum at r = m

2
, where A′|r=m

2
= 0, and A′′|r=m

2
= +64π > 0. While

this satisfies the ‘flare-out’ condition the corresponding wormhole (it is in
fact the Einstein-Rosen bridge) is non-traversable due to the presence of the
horizon.

In contrast the geometry described by the exponential metric clearly
has no horizons, since ∀ r ∈ (0,+∞) we have gtt = exp

(−2m
r

)
6= 0. As al-

ready demonstrated, there is a traversable wormhole throat located at r =
m, where the area of the spherical surfaces is minimised, and the ‘flare-out’
condition is satisfied, in the absence of a horizon. Thus the Schwarzschild
horizon at r = m

2
in isotropic coordinates is replaced by a wormhole throat

at r = m in the exponential metric.
Furthermore, for the exponential metric, since exp

(−2m
r

)
> 0 is mono-

tone decreasing as r → 0, it follows that proper time for a stationary ob-
server evolves increasingly slowly as a function of coordinate time as one
moves closer to the centre r → 0.
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Curvature coordinates

To go to so-called ‘curvature coordinates’, rs, for the exponential metric
we make the coordinate transformation:

rs = r em/r; drs = em/r (1−m/r) dr . (4.47)

So for the exponential metric in curvature coordinates:

ds2 = −e−2m/rdt2 +
dr2

s

(1−m/r)2
+ r2

s(dθ
2 + sin2 θ dφ2) . (4.48)

Here r is regarded as an implicit function of rs. Note that as the isotropic
coordinate r ranges over the interval (0,∞), the curvature coordinate rs
has a minimum at rs = me. In fact for the exponential metric the curvature
coordinate rs double-covers the interval rs ∈ [me,∞), first descending
from ∞ to me and then increasing again to ∞. Indeed, looking for the
minimum of the coordinate rs:

drs
dr

= em/r
(

1− m

r

)
=⇒ drs

dr

∣∣∣∣
r=m

= 0 . (4.49)

So we have a stationary point at r = m, which corresponds to rs = me,
and furthermore:

d2rs
dr2

=
m2

r3
em/r =⇒ d2rs

dr2

∣∣∣∣
r=m

> 0 . (4.50)

The curvature coordinate rs therefore has a minimum at rs = me, and in
these curvature coordinates the exponential metric exhibits a wormhole
throat at rs = me > 2m.

Compare this with the Schwarzschild metric in curvature coordinates:

ds2
Sch = −(1− 2m/rs) dt

2 +
dr2

s

1− 2m/rs
+ r2

s(dθ
2 + sin2 θ dφ2) . (4.51)

By inspection it is clear that there is a horizon at rs = 2m, since at that
location gtt|rs=2m = 0. For the Schwarzschild metric the isotropic and cur-
vature coordinates are related by rs = r

(
1 + m

2r

)2.
If for the exponential metric one really wants the fully explicit inver-

sion of r as a function of rs, then observe:

r = rs exp (W (−m/rs)) = − m

W (−m/rs)
. (4.52)

Here W (x) is the ‘appropriate branch’ of the Lambert W function – im-
plicitly defined by the relation W (x) eW (x) = x. This function has a con-
voluted two hundred and fifty-year history; only recently has it become



50 CHAPTER 4. INTRODUCING THE TRAVERSABLE WORMHOLE

common to view it as one of the standard ‘special functions’ of mathemat-
ics [42]. Applications vary [42, 134], including combinatorics (enumera-
tion of rooted trees) [42], delay differential equations [42], falling objects
subject to linear drag [135], evaluating the numerical constant in Wien’s
displacement law [125, 126], quantum statistics [133], the distribution of
prime numbers [151], constructing the ‘tortoise’ coordinate for Schwarzs-
child black holes [31], etcetera.

In terms of the Lambert W function and the curvature coordinate rs,
the explicit version of the exponential metric becomes:

ds2 = −e2W (−m/rs) dt2 +
dr2

s

(1 +W (−m/rs))2
+ r2

s(dθ
2 + sin2 θ dφ2) . (4.53)

The W0(x) branch corresponds to the region r > m outside the wormhole
throat; whereas the W−1(x) branch corresponds to the region r < m inside
the wormhole. The Taylor series for W0(x) for |x| < e−1 is [42]:

W0(x) =
∞∑

n=1

(−n)n−1xn

n!
. (4.54)

A key asymptotic formula for W−1(x) is [42]:6

W−1(x) = ln(−x)− ln(− ln(−x)) + o(1); (x→ 0−) . (4.55)

The two real branches meet at W0(−1/e) = W−1(−1/e) = −1, and in the
vicinity of that meeting point:7

W (x) = −1 +
√

2(1 + ex)− 2

3
(1 + ex) +O[(1 + ex)3/2] . (4.56)

More details regarding the Lambert W function can be found in Corless et
al, please see reference [42].

4.2.3 Curvature tensors and invariants analysis

For the Riemann tensor the non-vanishing components are:

Rtr
tr = −2Rtθ

tθ = −2Rtφ
tφ =

2m(r −m)e−2m/r

r4
;

Rrθ
rθ = Rrφ

rφ = −me
−2m/r

r3
;

Rθφ
θφ =

m(2r −m)e−2m/r

r4
. (4.57)

6Eq. 4.55 employs use of the ‘Little o’ notation; this means that o(x) exhibits the asymp-
totic behaviour |o(x)|/|x| → 0 [82].

7Eq. 4.56 employs use of the ‘BigO’ notation; this means thatO(x) is some expression
which is at most a positive constant multiple of the input, x [10].
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Weyl tensor non-zero components:

Ctr
tr = −2Ctθ

tθ = −2Ctφ
tφ = −2Crθ

rθ = −2Crφ
rφ

= Cθφ
θφ =

2m(3r − 2m)e−2m/r

3r4
. (4.58)

For the Ricci and Einstein tensors, as well as the Ricci scalar:

Rµ
ν = −2m2e−2m/r

r4
diag{0, 1, 0, 0}µν ; (4.59)

R = −2m2e−2m/r

r4
; (4.60)

Gµ
ν =

m2e−2m/r

r4
diag{1,−1, 1, 1}µν . (4.61)

For the Kretschmann and other related scalars we have:

Rµναβ R
µναβ =

4m2(12r2 − 16mr + 7m2)e−4m/r

r8
; (4.62)

Cµναβ C
µναβ =

16

3

m2(3r − 2m)2e−4m/r

r8
; (4.63)

Rµν R
µν = R2 =

4m4e−4m/r

r8
. (4.64)

All of the curvature components and scalar invariants exhibited above
are finite everywhere in the exponential spacetime – in particular they
are finite at the throat (r = m) and decay to zero both as r → +∞ and
as r → 0. They take on maximal values near the throat, where r =
(dimensionless number)×m.

4.2.4 Ricci convergence conditions

In the usual framework of general relativity the standard energy condi-
tions are useful (null energy condition, weak energy condition, etc...) be-
cause they feed back into the Raychaudhuri equations and its general-
izations, and so give information about the focussing and defocussing of
geodesic congruences [78, 72]. In the absence of the Einstein equations
were one to attempt analysis through an alternative theory of gravity, one
can instead impose conditions directly on the Ricci tensor.

Specifically, a Lorentzian spacetime is said to satisfy the timelike, null,
or spacelike Ricci convergence condition if for all timelike, null, or space-
like vectors tµ one has:

Rµν t
µtν ≥ 0 . (4.65)
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For the exponential metric one has:

Rµν = −2m2

r4
diag{0, 1, 0, 0}µν . (4.66)

So the failure of the Ricci convergence condition amounts to:

Rµν t
µtν = −2m2

r4
(tr)2 � 0 . (4.67)

The Ricci convergence condition clearly will not be satisfied for all time-
like, null, or spacelike vectors tµ (if tr > 0 the contraction is in fact strictly
negative). Specifically, the violation of the null Ricci convergence condi-
tion is crucial for understanding the ‘flare-out’ at the throat of the traversable
wormhole [143].

4.2.5 Effective refractive index – lensing properties

The exponential metric can be written in the form:

ds2 = e2m/r
{
−e−4m/rdt2 + {dr2 + r2(dθ2 + sin2 θ dφ2)}

}
. (4.68)

If we are only interested in photon propagation, then the overall conformal
factor is irrelevant (since ds2 = 0), and we might as well work with:

dŝ2 = −e−4m/rdt2 + {dr2 + r2(dθ2 + sin2 θ dφ2)} . (4.69)

That is:

dŝ2 = −e−4m/rdt2 + {dx2 + dy2 + dz2} . (4.70)

But this metric has a very simple physical interpretation: It corresponds
to a coordinate speed of light c(r) = e−2m/r, or equivalently an effective
refractive index:

n(r) = e2m/r . (4.71)

This effective refractive index is well defined all the way down to r = 0,
and (via Fermat’s principle of least time) completely characterizes the fo-
cussing/defocussing of null geodesics. This notion of ‘effective refractive
index’ for the gravitational field has in the weak field limit been consid-
ered in reference [28], and in the strong-field limit falls naturally into the
‘analogue spacetime’ programme [15, 148].

Compare the above with Schwarzschild spacetime in isotropic coordi-
nates where the effective refractive index is:

n(r) =
(1 + m

2r
)3

|1− m
2r
| . (4.72)

The two effective refractive indices have the same large-r limit, n(r) ≈
1 + 2m

r
, but differ markedly once r . m

2
.
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Figure 4.1: The graph shows the refractive index for the exponential metric
compared to the Schwarzschild metric in the isotropic coordinate. The
parameter m = 1. The top panel is for relatively small r & 2m and the
bottom-left panel is for large r. The bottom-right panel is for the strong
field region r ∼ m

2
.

From the graphs presented in Fig. 4.1, we can see that the refractive
index for the exponential metric is greater than that of the Schwarzschild
metric in the isotropic coordinate at tolerably small r & 2m. For large
r, they converge to each other and hence are asymptotically equal. In
the strong field region they differ radically. Observationally, once you get
close enough to where you would have expected to see the Schwarzschild
horizon, the lensing properties differ markedly.

4.2.6 ISCO and photon sphere analysis

For massive particles, it is relatively easy to find the innermost stable cir-
cular orbit (ISCO) for the exponential metric, while for massless particles
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such as photons there is a unique unstable circular orbit. These can then be
compared with the Schwarzschild spacetime. It is emphasised that the no-
tion of ISCO depends only on the geodesic equations, not on the assumed
field equations chosen for setting up the spacetime. Since Schwarzschild
ISCOs for massive particles at rs = 6m have already been seen by as-
tronomers, this might place interesting bounds somewhat restraining the
exponential-metric enthusiasts. Additionally, the Schwarzschild unsta-
ble circular photon orbit for massless particles is at rs = 3m (the photon
sphere); the equivalent for the exponential metric is relatively easy to find.

To determine the circular orbits, consider the affinely parameterised
tangent vector to the worldline of a massive or massless particle:

ds2

dλ2
= −e−2m/r

(
dt

dλ

)2

+e2m/r

{(
dr

dλ

)2

+ r2

[(
dθ

dλ

)2

+ sin2 θ

(
dφ

dλ

)2
]}

= ε . (4.73)

Here ε ∈ {−1, 0}; with −1 corresponding to a timelike trajectory and 0
corresponding to a null trajectory. In view of the spherical symmetry we
might as well just set θ = π/2 and work with the reduced equatorial prob-
lem:

ds2

dλ2
= −e−2m/r

(
dt

dλ

)2

+ e2m/r

{(
dr

dλ

)2

+ r2

(
dφ

dλ

)2
}

= ε ∈ {−1, 0} .

(4.74)
The Killing symmetries imply two conserved quantities (energy and

angular momentum):

e−2m/r

(
dt

dλ

)
= E; e2m/rr2

(
dφ

dλ

)
= L . (4.75)

Thence:

e2m/r

{
−E2 +

(
dr

dλ

)2
}

+ e−2m/rL
2

r2
= ε , (4.76)

that is: (
dr

dλ

)2

= E2 + e−2m/r

{
ε− e−2m/rL

2

r2

}
. (4.77)

This defines the ‘effective potential’ for geodesic orbits:

Vε(r) = e−2m/r

{
−ε+ e−2m/rL

2

r2

}
, (4.78)

note that this is significantly more complicated than for the Morris-Thorne
wormhole presented in §4.1.
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• For ε = 0 (massless particles such as photons), the effective potential
simplifies to:

V0(r) =
e−4m/rL2

r2
. (4.79)

This has a single peak at r = 2m corresponding to V0,max = L2

(2me)2
.

This is the only place where V ′0(r) = 0, and at this point V ′′(r) < 0.
Thus there is an unstable photon sphere at r = 2m, corresponding to
the curvature coordinate rs = 2me1/2 ≈ 3.297442542m (this is not too
far from what we would expect for Schwarzschild, where the photon
sphere is at rs = 3m).

• For ε = −1 (massive particles such as atoms, electrons, protons, or
planets), the effective potential is:

V−1(r) = e−2m/r

{
1 + e−2m/rL

2

r2

}
= e2W (m/rs)

{
1 +

L2

r2
s

}
. (4.80)

It is easy to verify that:

V ′−1(r) =
2e−2m/r(L2e−2m/r[2m− r] +mr2)

r4
, (4.81)

and that:

V ′′−1(r) =
2e−2m/r(L2e−2m/r[8m2 − 12mr + 3r2] + 2m2r2 − 2mr3)

r6
.

(4.82)
Circular orbits, denoted rc, occur at V ′−1(r) = 0, but there is no sim-
ple analytic way of determining rc(m,L) as a function of m and L.
Working more indirectly, by assuming a circular orbit ar r = rc, one
can solve for the required angular momentum Lc(rc,m) as a function
of rc and m. Explicitly:

Lc(rc,m) =
rc e

m/rc
√
m√

rc − 2m
. (4.83)

Note that at large rc we have Lc(rc,m) ∼ √mrc as one would ex-
pect from considering circular orbits in Newtonian gravity. This is a
useful consistency check; in classical physics the angular momen-
tum per unit mass for a particle with angular velocity ω is Lc ∼
ωrc [162]. Kepler’s third law of planetary motion implies that ω2 ∼
GNm/rc [80] (here m is the mass of the centralised object, as above).
It therefore follows that Lc ∼

√
GNm/rc rc. That is, Lc ∼

√
mrc, as

above. Eq. 4.83 is enough to tell you that circular orbits for massive
particles do exist all the way down to rc = 2m, the location of the
unstable photon orbit; this does not yet guarantee stability. Noting
that:

∂Lc(rc,m)

∂rc
=
em/rc(r2

c − 6mrc + 4m2)
√
m

2rc(rc − 2m)3/2
, (4.84)
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we observe that the curveLc(rc,m) has a minimum at rc =
(
3 +
√

5
)
m

where Lmin ≈ 3.523216438m (see Fig. 4.2).

Figure 4.2: The graph shows the angular momentum L/m required to es-
tablish a circular orbit at radius r/m. Note the minimum at r = (3 +

√
5)m

where Lmin ≈ 3.523216438m. Circular orbits for r ≥ (3 +
√

5)m are stable;
whereas circular orbits for r < (3 +

√
5)m are unstable (and circular orbits

for r < 2m do not exist).

To check stability substitute Lc(rc,m) into V ′′−1(r) to obtain:

V ′′−1(rc) =
2me−2m/rc(r2

c − 6mrc + 4m2)

r4
c (rc − 2m)

. (4.85)

This changes sign when r2
c −6mrc+4m2 = 0, that is rc =

(
3±
√

5
)
m.

Only the positive root is relevant (the negative root lies below rc =
2m where there are no circular orbits, stable or unstable). Conse-
quently we identify the location for the massive particle ISCO (for
the exponential metric in isotropic coordinates) as:

rISCO =
(

3 +
√

5
)
m ≈ 5.236067977m . (4.86)

In curvature coordinates:

rs,ISCO =
(

3 +
√

5
)

exp

{
1

4

(
3−
√

5
)}

m ≈ 6.337940263m . (4.87)

This is not too far from what would have been expected in the stan-
dard Schwarzschild spacetime, where the Schwarzschild geometry
ISCO is at rs,ISCO = 6m.
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4.2.7 Regge-Wheeler analysis

Consider now the Regge–Wheeler equation for scalar and vector pertur-
bations around the exponential metric spacetime. We will invoke the in-
verse Cowling approximation (wherein we keep the geometry fixed while
letting the scalar and vector fields oscillate; we do this since we do not
a priori know the spacetime dynamics). The analysis closely parallels the
general formalism developed in [30].

Start from the exponential metric:

ds2 = −e−2m/rdt2 + e+2m/r{dr2 + r2(dθ2 + sin2 θ dφ2)} . (4.88)

Define a tortoise coordinate by dr∗ = e2m/r dr, then:

ds2 = e−2m/r(−dt2 + dr2
∗) + e+2m/rr2(dθ2 + sin2 θ dφ2) . (4.89)

Here r is now implicitly a function of r∗. We can also write this as:

ds2 = e−2m/r(−dt2 + dr2
∗) + r2

s(dθ
2 + sin2 θ dφ2) . (4.90)

Using the formalism developed in [30], the Regge–Wheeler equation can
be written in the form:

∂2
r∗ φ̂+

{
ω2 − V

}
φ̂ = 0 . (4.91)

For a general spherically symmetric metric, specifying the metric compo-
nents in curvature coordinates and with the coefficient of dΩ2 being r2

s (i.e.
this replaces the function B(r∗) seen in the Regge-Wheeler analysis of the
Morris-Thorne spacetime in §4.1.3), the Regge-Wheeler potential for spins
S ∈ {0, 1, 2} and angular momentum ` ≥ S is given by [30]:8

VS = (−gtt)
[
`(`+ 1)

r2
s

+
S(S − 1)(grr − 1)

r2
s

]
+ (1− S)

∂2
r∗rs

rs
. (4.92)

For the exponential metric in curvature coordinates we have already seen
that both gtt = −e−2m/r and grr = (1−m/r)2. Therefore:

VS = e−2m/r

[
`(`+ 1)

r2
s

+
S(S − 1)[(1−m/r)2 − 1]

r2
s

]
+ (1− S)

∂2
r∗rs

rs
. (4.93)

It is important to realize that both rs and r occur in the equation above. By
noting that ∂r∗ = e−2m/r∂r it is possible to evaluate:

∂2
r∗rs

rs
=
e−4m/rm(2r −m)

r4
= −e

−4m/r[(1−m/r)2 − 1]

r2
, (4.94)

8Note that the spin two axial mode has a far more tractable analysis in this context
than for that of Morris-Thorne. This is directly related to the simplicity of the coefficient
of dΩ2 when the metric is represented with respect to curvature coordinates.
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and so rephrase the Regge–Wheeler potential as:

VS = e−4m/r

[
`(`+ 1)

r2
+

(S2 − 1)[(1−m/r)2 − 1]

r2

]
. (4.95)

This is always zero at r = 0 and r = ∞, with some extrema at non-trivial
values of r.

The corresponding result for the Schwarzschild spacetime is:

VS,Sch =

(
1− 2m

rs

)[
`(`+ 1)

r2
s

− S(S − 1)2m

r3
s

]
+ (1− S)

∂2
r∗rs

rs
. (4.96)

For the Schwarzschild metric ∂r∗ = (1 − 2m/rs)∂rs , and so it is possible to
evaluate:

∂2
r∗rs

rs
=

(
1− 2m

rs

)
2m

r3
s

. (4.97)

Then:

VS,Sch =

(
1− 2m

rs

)[
`(`+ 1)

r2
s

− (S2 − 1)2m

r3
s

]
. (4.98)

Converting to isotropic coordinates, which for the Schwarzschild geome-
try means one is applying rs = r

(
1 + m

2r

)2, we have:

VS,Sch =

(
1− m

2r

1 + m
2r

)2
[

`(`+ 1)

r2
(
1 + m

2r

)4 −
(S2 − 1)2m

r3
(
1 + m

2r

)6

]
. (4.99)

This is always zero at the horizon r = m/2 and at r = +∞, with some
extrema at non-trivial values of r.

Spin zero

In particular for spin zero one has:

V0 = e−2m/r `(`+ 1)

r2
s

+
∂2
r∗rs

rs

= e−4m/r `(`+ 1)

r2
+
∂2
r∗rs

rs

= e−4m/r

[
`(`+ 1)− [(1−m/r)2 − 1]

r2

]
. (4.100)

This result can also be readily checked by brute force computation.
The corresponding result for the Schwarzschild spacetime is:

V0,Sch =

(
1− m

2r

1 + m
2r

)2
[

`(`+ 1)

r2
(
1 + m

2r

)4 +
2m

r3
(
1 + m

2r

)6

]
. (4.101)
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Figure 4.3: The graph shows the spin zero Regge-Wheeler potential for ` =
0. While the Regge-Wheeler potentials are not dissimilar for r > m/2, they
are radically different once one goes to small r < m/2 (where the Regge-
Wheeler potential for Schwarzschild is only formal since one is behind a
horizon and cannot interact with the domain of outer communication).

For scalars the s-wave (` = 0) is particularly important:

V0,`=0 = e−4m/r

[
1− (1−m/r)2

r2

]
= e−4m/r

[
2m

r3

(
1− m

2r

)]
, (4.102)

versus:

V0,`=0,Sch =

(
1− m

2r

1 + m
2r

)2
[

2m

r3
(
1 + m

2r

)6

]
. (4.103)

Note that these potentials both have zeroes at r = m/2 and that for r <
m/2 only the exponential Regge-Wheeler potential is of physical interest
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(thanks to the horizon at r = m/2 in the Schwarzschild metric). See Fig. 4.3
for qualitative features of the potential. The potential peaks are at r =(

1 + 1√
3

)
m and r = 3m

2
respectively. For the exponential metric there is

also a trough (a local minimum) at r =
(

1− 1√
3

)
m.

Spin one

For the spin one vector field the {r−1
s ∂2

∗rs} term drops out; this can ulti-
mately be traced back to the conformal invariance of massless spin one
particles in ‘3+1’-dimensions. We are left with the particularly simple re-
sult (` ≥ 1):

V1 =
e−4m/r`(`+ 1)

r2
. (4.104)

See related brief comments regarding conformal invariance in reference [30].
Note that this rises from zero (r → 0) to some maximum at r = 2m, where
V1 → `(`+1)

(2me)2
, and then decays back to zero (as r →∞).

The corresponding result for the Schwarzschild spacetime is:

V1,Sch =

(
1− m

2r

)2

(
1 + m

2r

)6

`(`+ 1)

r2
. (4.105)

Note that this rises from zero (at r = m/2) to some maximum at r =(
1 +

√
3

2

)
m, where V1 → 2`(`+1)

27m2 , and then decays back to zero (as r →∞).
See Fig. 4.4 for qualitative features of the potential.

Spin two

For spin two, more precisely for spin 2 axial perturbations (see reference [30]),
one has (` ≥ 2):

V2 = e−2m/r `(`+ 1)

r2
s

− 3
∂2
r∗rs

rs

= e−4m/r `(`+ 1)

r2
− 3

∂2
r∗rs

rs

= e−4m/r

[
`(`+ 1) + 3[(1−m/r)2 − 1]

r2

]
. (4.106)

The corresponding result for Schwarzschild spacetime is:

V2,Sch =

(
1− m

2r

1 + m
2r

)2
[

`(`+ 1)

r2
(
1 + m

2r

)4 −
6m

r3
(
1 + m

2r

)6

]
. (4.107)

See Fig. 4.5 for qualitative features of the potential.
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Figure 4.4: The graph shows the spin one Regge-Wheeler potential for ` =
1. While the Regge-Wheeler potentials are not dissimilar for r > m/2, they
are radically different once one goes to small r < m/2 (where the Regge-
Wheeler potential for Schwarzschild is only formal since one is behind a
horizon and cannot interact with the domain of outer communication).



62 CHAPTER 4. INTRODUCING THE TRAVERSABLE WORMHOLE

Figure 4.5: The graph shows the spin two (axial) Regge-Wheeler poten-
tial for ` = 2. The Regge-Wheeler potentials are somewhat dissimilar for
r > m/2, and are radically different once one goes to small r < m/2 (where
the Regge-Wheeler potential for Schwarzschild is only formal since one is
behind a horizon and cannot interact with the domain of outer communi-
cation).
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4.2.8 General relativistic interpretation for the exponential
metric

While many of the proponents of the exponential metric have for one rea-
son or another been trying to build ‘alternatives’ to standard general rel-
ativity, there is nevertheless a relatively simple interpretation of the expo-
nential metric within the framework of standard general relativity and the
standard Einstein equations, albeit with an ‘exotic’ matter source. The key
starting point is to note:

Rµν = −2m2

r4
diag{0, 1, 0, 0}µν = −1

2
∇µ

(
2m

r

)
∇ν

(
2m

r

)
= −1

2
∇µΦ∇νΦ .

(4.108)
Equivalently:

Gµν = −1

2

{
∇µΦ∇νΦ−

1

2
gµν (gαβ∇αΦ∇βΦ)

}
. (4.109)

This is just the usual Einstein equation for a negative kinetic energy mass-
less scalar field, a ‘ghost’ or ‘phantom’ field. The contracted Bianchi iden-
tity Gµν

;ν then automatically yields the scalar field equations of motion
(gµν∇µ∇ν)Φ = 0. That the scalar field has negative kinetic energy is inti-
mately related to the fact that the exponential metric describes a traversable
wormhole (and so must violate the null energy condition [105, 143]).

So, perhaps ironically, despite the fact that many of the proponents of
the exponential metric for one reason or another reject general relativity,
the exponential metric they advocate has a straightforward if somewhat
exotic general relativistic interpretation.9

4.2.9 Overview

Phenomenologically, the exponential metric has a number of interesting
features:

• It is a traversable wormhole, with time slowed down for stationary
observers on the other side of the wormhole throat.

• Strong field lensing phenomena are markedly different from Schwarzs-
child.

• ISCOs and unstable photon orbits still exist, and are moderately shifted
from where they would be located in Schwarzschild spacetime.

9It is also possible to interpret the exponential metric as a special sub-case of the Brans
class IV solution of Brans-Dicke theory, which in turn is a special case of the general
spherical, asymptotically flat, vacuum solution [49, 50]; in this context it is indeed known
that some solutions admit a wormhole throat, but that message seems not to have reached
the wider community.
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• Regge-Wheeler potentials can still be extracted, and are moderately
different from what they would be in Schwarzschild spacetime.

Notably, the exponential metric has a natural interpretation in terms of
general relativity coupled to a phantom scalar field.



Chapter 5

Introducing the regular black hole

So-called ‘regular black holes’ are a topic currently of considerable interest
in the general relativity and astrophysics communities. Ever since James
Bardeen initially proposed the concept of a regular black hole over fifty
years ago in 1968 [19], see also the more recent references [120, 70, 20, 54,
53, 55, 57, 56, 32, 21, 33, 34], the notion has been intuitively attractive due
to its non-singular nature. Rodrigues, Marcos and Silva give the following
general definition [119]: “If some energy conditions on the stress-energy
tensor are violated, [it] is possible [to] construct regular black holes in Gen-
eral Relativity and in alternative theories of gravity. This type of solution
has horizons but does not present singularities.” When referring to a reg-
ular black hole one therefore requires a spacetime that possesses a horizon
but no singularity. Similarly to the analysis on traversable wormhole ge-
ometries, it pays to explore various metric candidates for regular black
hole geometries within the framework of general relativity, and provide
thorough analyses of their phenomenological properties [33, 34].

5.1 Bardeen regular black hole

One metric which models a regular black hole is the aptly named ‘Bardeen
metric’, presented by Bardeen in the initial proposal for a regular black
hole geometry, defined by the following line element [19]:

ds2 = −


1− 2mr2

[
r2 + (2ml2)

2
3

] 3
2


 dt2 +

dr2

(
1− 2mr2[

r2+(2ml2)
2
3

] 3
2

)

+ r2
(
dθ2 + sin2 θdφ2

)
. (5.1)

Here l is a length scale, typically associated with the Planck length [33].

65
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We may note immediately that the metric is static and spherically sym-
metric. The areas of spherical symmetry of constant-r coordinate are triv-
ially modelled by the area function A(r) = 4πr2, clearly minimised when
r = 0. We may conclude that r = 0 marks the coordinate location of the
mass controlling the spacetime curvature.

Note that the pole of gtt is complex-valued, found at coordinate loca-
tion r = ± (2ml2)

1
3 i ; as such this does not affect the domain of the co-

ordinate patch in view of the fact we are not modelling a complex space-
time (by construction our topological environment is homeomorphic to
R4). However, there will be a coordinate singularity at the horizon loca-

tion,1 where
[
r2 + (2ml2)

2
3

] 3
2

= 2mr2 (these r-values are the poles of grr;
two of the three roots will be eliminated as candidates for the horizon lo-
cation in the subsequent analysis); without loss of generality let us call the
location of the remaining root rH . The metric therefore admits an ‘almost-
global’ coordinate patch, with the specific coordinate domains expressed
further below.

Bardeen’s objective when introducing this form of the metric was to
present a non-singular black hole solution which was a minimal perver-
sion of the Schwarzschild solution. The complex pole of gtt is directly re-
lated to this motivation; Bardeen’s desire was to remove the gravitational
singularity which is present at r = 0 in the Schwarzschild solution. Note
that if we make the convenient mathematical approximation r2 � (2ml2)

2
3 ,

we return the Schwarzschild solution in quite straightforward fashion via
the following:

r2 �
(
2ml2

) 2
3 =⇒ r2 +

(
2ml2

) 2
3 ≈ r2

=⇒ 2mr2

[
r2 + (2ml2)

2
3

] 3
2

≈ 2m

r
=
rs
r
. (5.2)

Making the approximation r2 � (2ml2)
2
3 is uncontroversial for all regions

of spacetime that are not extremely close to the centralised massive object
with respect to the chosen coordinate patch.

1Demonstration that this is merely a coordinate singularity and not a curvature singu-
larity is a consequence of the analysis in §5.1.1. Note that this is also qualitatively similar
to the Schwarzschild solution, in the sense that with respect to Schwarzschild curvature
coordinates the Schwarzschild solution has a coordinate artefact at the horizon location,
rs.
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To see this, we have:

r2 �
(
2ml2

) 2
3 =⇒ r3 � 2ml2

=⇒ r �
(
2ml2

) 1
3 .

(5.3)

A la Bardeen, we associate l as a length scale parameter to be the Planck
length. This means that with respect to SI-units, l ≈ 1.6× 10−35 m [103]. l2,
therefore, is of an order of magnitude of 10−70 m2. The solar mass, typically
used as a unit of measurement when discussing the masses at the centres
of black hole regions, is M� ≈ 2 × 1030 kg [87]. Converting these units to
metres for consistency, i.e. multiplying by GN/c

2, yields the solar mass in
metres to beM� ≈ 1.5×103 m. It therefore follows that even when dealing
with the largest estimates of the masses of supermassive black holes in
our universe (which are of the order of several billion solar masses [100],
so we may approximate m from Eq. 5.3 to be of an order of magnitude of
1013 m), we observe that (2ml2)

1
3 ∝ 10−19 m. Therefore we resolve that

r � (2ml2)
1
3 is equivalent to stating that we are significantly further from

the centralised mass than a distance proportional to 10−19 m. In order
to conduct general analysis concerning the standard physical objects in
this spacetime, which are typically much further from the centralised mass
than this, the separation of scales is sufficient to ensure the approximation
is wholly uncontroversial. Accordingly we expect both mathematical and
physical results from the analysis to look very similar to those from the
analysis of the Schwarszchild solution, subject to very minor peturbations.

Hence we find the following for the horizon location in the Bardeen
metric (employing the approximation r2 � (2ml2)

2
3 as above):2

gtt = 0 =⇒
[
r2 +

(
2ml2

) 2
3

] 3
2

= 2mr2

=⇒ r3 ≈ 2mr2

=⇒ r ∈ {+O(l), 2m+O(l)} . (5.4)

We may immediately discount the solutions near r = 0 (note that +O(l)
is a repeated root) in view of the mathematical approximation. Therefore

2Eq. 5.4 employs use of the ‘Big O’ notation; this means that O(l) is some expression
which is at most a positive constant multiple of the Planck length, l [10]. Contextually
we may assume whichever constant of proportionality to l is the genuine ‘tight’ upper
bound is sufficiently small that ourO(l) is negligible (this assumption is again predicated
on the minuteness of the Planck length informing the separation of scales argument).
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we have a horizon at coordinate location rH = 2m + O(l), i.e. rH ≈ rs,
and we may conclude the geometry contains a black hole region with a
horizon location which is a small peturbation to that of the Schwarzschild
solution (consistent with the aforementioned expectation). The ‘almost-
global’ coordinate patch therefore has domains: t ∈ (−∞,+∞), r ∈ R+ −
{+O(l), 2m+O(l)} , θ ∈ [0, π], and φ ∈ [−π, π); note that while the metric
mathematically permits negative r-values we restrict the domain of the r-
coordinate to locations that lie within our universe, as any structure lying
on the ‘other side’ of the curvature controlling mass at r = 0 is grossly
unphysical. It remains to demonstrate that the geometry is gravitationally
non-singular in order to show that this black hole region is ‘regular’ in the
sense of Bardeen.

5.1.1 Curvature tensors and invariants analysis

The Ricci scalar:

R =
6m (2ml2)

2
3

(
4 (2ml2)

2
3 − r2

)

(
r2 + (2ml2)

2
3

) 7
2

;

as |r| → 0, R→ 12

l2
. (5.5)

Ricci tensor non-zero components:

Rt
t = Rr

r =
3m (2ml2)

2
3

(
2 (2ml2)

2
3 − 3r2

)

(
r2 + (2ml2)

2
3

) 7
2

,

Rθ
θ = Rφ

φ =
6m (2ml2)

2
3

(
r2 + (2ml2)

2
3

) 5
2

;

as |r| → 0, Rµ
ν →

3

l2
. (5.6)

Riemann tensor non-zero components:

Rtr
tr =

m

(
2
(
r2 − (2ml2)

2
3

)2

− 7r2 (2ml2)
2
3

)

(
r2 + (2ml2)

2
3

) 7
2

,
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Rtθ
tθ = Rtφ

tφ = Rrθ
rθ = Rrφ

rφ =
m
(

2 (2ml2)
2
3 − r2

)

(
r2 + (2ml2)

2
3

) 5
2

,

Rθφ
θφ =

2m
(
r2 + (2ml2)

2
3

) 3
2

;

as |r| → 0, Rµν
αβ →

1

l2
. (5.7)

Einstein tensor has non-zero components:

Gt
t = Gr

r =
−6m (2ml2)

2
3

(
r2 + (2ml2)

2
3

) 11
2

{
r6 + 3r4

(
2ml2

) 2
3 + 3r2

(
2ml2

) 4
3

+
(
2ml2

)2

}
,

Gθ
θ = Gφ

φ =
3m (2ml2)

2
3

(
3r2 − 2 (2ml2)

2
3

)

(
r2 + (2ml2)

2
3

) 7
2

;

as |r| → 0, Gµ
ν → − 3

l2
. (5.8)

Weyl tensor non-zero components:

−1

2
Ctr

tr = Ctθ
tθ = Ctφ

tφ

=
−r2m

2
(
r2 + (2ml2)

2
3

) 17
2

{
r2
(
r2 +

(
2ml2

) 2
3

)[
r6
(

2r2 + 5
(
2ml2

) 2
3

)

−
(
2ml2

)2
(

10r2 + 13
(
2ml2

) 2
3

)]
+ 3

(
2ml2

) 8
3

(
r4 −

(
2ml2

) 4
3

)}
,
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Crθ
rθ = Crφ

rφ =
r2m

2
(
r2 + (2ml2)

2
3

) 11
2

{
2r6 + r4

(
2ml2

) 2
3

−4r2
(
2ml2

) 4
3 − 3

(
2ml2

)2

}
,

Cθφ
θφ =

r2m
(

3 (2ml2)
2
3 − 2r2

)

(
r2 + (2ml2)

2
3

) 7
2

;

as |r| → 0, Cµν
αβ → 0 . (5.9)

The Ricci contraction RµνR
µν :

RµνR
µν =

18m2 (2ml2)
4
3

{
13r4 − 4r2 (2ml2)

2
3 + 8 (2ml2)

4
3

}

(
r2 + (2ml2)

2
3

)7 ;

as |r| → 0, RµνR
µν → 36

l4
. (5.10)

The Kretschmann scalar:

RµναβR
µναβ =

24m2

(
r2 + (2ml2)

2
3

)7

{
2r8 − 6r6

(
2ml2

) 2
3 + 47r4ml2

(
2ml2

) 1
3

−2r2
(
2ml2

)2
+ 4

(
2ml2

) 8
3

}
;

as |r| → 0, RµναβR
µναβ → 24

l4
. (5.11)

The Weyl contraction CµναβCµναβ :

CµναβC
µναβ =

768r4m2

(
r2 + (2ml2)

2
3

)17

{
289r4

(
2ml2

) 2
3

[
(
ml2
)6

+
57

289
r6
(
ml2
)4

− 195

4624
r12
(
ml2
)2

+
7

4624
r18

]
+ 78r2

(
2ml2

) 4
3

[
(
ml2
)6
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+
105

52
r6
(
ml2
)4 − 9

26
r12
(
ml2
)2

+
23

1664
r18

]
+ 36

(
ml2
)8

+580r6
(
ml2
)6 − 147

2
r12
(
ml2
)4

+
45

24
r18
(
ml2
)2

+
1

16
r24

}
;

as |r| → 0, CµναβC
µναβ → 0 . (5.12)

All non-zero curvature tensor components and all scalar curvature invari-
ants exhibit the correct behaviour as |r| → +∞, asymptotically tending
towards zero (indicative of the fact that the spacetime is asymptotically
Minkowski as we move further from the centralised mass at r = 0). Fur-
thermore, all components and invariants exhibit finite behaviour as they
tend toward the region of highest curvature; we may conclude that they
are everywhere-finite within the spacetime. As such the spacetime pos-
sesses no gravitational singularities, and the singularity present at the
horizon is indeed a coordinate artefact, removable through an appropri-
ate change of coordinate patch (this is also true for the repeated pole of
grr at r = +O(l) near the centralised mass). We have verified that this
spacetime models a regular black hole in the sense of Bardeen.

5.1.2 ISCO and photon sphere analysis

Let us examine the locations of the ISCO for massive particles and the
photon sphere for massless particles as functions of m and l.

Consider the tangent vector to the worldline of a massive or massless
particle, parameterized by some arbitrary affine parameter, λ:

gµν
dxµ

dλ

dxν

dλ
= −gtt

(
dt

dλ

)2

+ grr

(
dr

dλ

)2

+ r2

{(
dθ

dλ

)2

+ sin2 θ

(
dφ

dλ

)2
}
.

(5.13)
We may, without loss of generality, define a scalar-valued object as follows:

ε =

{
−1 Massive particle, i.e. timelike worldline ;

0 Massless particle, i.e. null geodesic . (5.14)

That is, gµν dx
µ

dλ
dxν

dλ
= ε, and due to the metric being spherically symmetric

we may fix θ = π
2

arbitrarily and view the reduced equatorial problem:

gµν
dxµ

dλ

dxν

dλ
= −gtt

(
dt

dλ

)2

+ grr

(
dr

dλ

)2

+ r2

(
dφ

dλ

)2

= ε . (5.15)
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Observe that the vectors ξt and ξφ are Killing vectors, as all metric com-
ponents gµν are independent of t and φ respectively. In accordance with
the conserved quantities associated with each Killing vector, this yields
the following expressions for the conservation of energy E, and angular
momentum L:


1− 2mr2

[
r2 + (2ml2)

2
3

] 3
2



(
dt

dλ

)
= E ; r2

(
dφ

dλ

)
= L . (5.16)

Hence:


1− 2mr2

[
r2 + (2ml2)

2
3

] 3
2




−1{
−E2 +

(
dr

dλ

)2
}

+
L2

r2
= ε , (5.17)

=⇒
(
dr

dλ

)2

= E2 +


1− 2mr2

[
r2 + (2ml2)

2
3

] 3
2



{
ε− L2

r2

}
. (5.18)

This gives the ‘effective potentials’ for geodesic orbits as follows:

Vε(r) =


1− 2mr2

[
r2 + (2ml2)

2
3

] 3
2



{
−ε+

L2

r2

}
. (5.19)

• For a photon orbit we have the massless particle case ε = 0. Since we
are in a spherically symmetric environment, solving for the locations
of such orbits amounts to finding the coordinate location of the ’pho-
ton sphere’; i.e. the value of the r-coordinate sufficiently close to our
mass such that photons are forced to propogate in circular geodesic
orbits. These circular orbits occur at V ′0 (r) = 0, as such:

V0(r) =


1− 2mr2

[
r2 + (2ml2)

2
3

] 3
2



(
L2

r2

)
, (5.20)

leading to:

V
′

0 (r) =
2rL2

[
r2 + (2ml2)

2
3

] 5
2





3m−

[
r2 + (2ml2)

2
3

] 5
2

r4





. (5.21)
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When V ′0 (r) = 0, if we discount the solution r = 0 (in view of the fact
that r = 0 lies within the horizon; certainly not a location in which

one may observe photons), one obtains: 3mr4 =
[
r2 + (2ml2)

2
3

] 5
2
.

Using the approximation r2 � (2ml2)
2
3 , as we employed previously,

this yields a photon sphere location of r = 3m+O(l); a slight petur-
bation on the expected r = 3m result for Schwarzschild.

To verify stability, we check the sign of V ′′0 (r); it can be easily shown
that:

V
′′

0 (r) = 6L2





1

r4
+

m
(
r2 + (2ml2)

2
3

) 7
2

[(
2ml2

) 2
3 − 4r2

]




. (5.22)

In view of the fact that the photon sphere is very near r = 3m, let us
examine behaviour of V ′′0 (r) at r = 3m:

V
′′

0 |r=3m =
6L2

(3m)4 +
6L2m

(
(3m)2 + (2ml2)

2
3

) 7
2

[(
2ml2

) 2
3 − 4 (3m)2

]
,

(5.23)
and making the subsequent approximations 36m2, 9m2 � (2ml2)

2
3 :

V
′′

0 |r=3m ≈ 6L2

{
1

(3m)4 −
4

3 (3m)4

}

≈ − 2L2

(3m)4 < 0 . (5.24)

We may conclude (in view of the approximations above) that the
circular orbits for massless particles in the ‘local’ area near r = 3m
are unstable, hence r = 3m + O(l) corresponds to a photon sphere
with an unstable circular orbit. This is consistent with expectations.

• For massive particles the geodesic orbit corresponds to a timelike
worldline and we have the case that ε = −1. Therefore:

V−1(r) =


1− 2mr2

[
r2 + (2ml2)

2
3

] 3
2



(

1 +
L2

r2

)
, (5.25)
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and it is easily verified that this leads to:

V
′

−1(r) =
2mr

[
r2 + (2ml2)

2
3

] 5
2

{
3L2 + r2 − 2

(
2ml2

) 2
3

−
L2
(
r2 + (2ml2)

2
3

) 5
2

mr4

}
. (5.26)

There is no straightforward analytic way of equating V ′−1(r) to zero
and solving for r; it is again preferable to assume a circular orbit
at some rc and rearrange for the required angular momentum Lc at
that orbital radius. It then follows that the ISCO for a massive par-
ticle will lie at the r-coordinate for which that angular momentum
is minimised. Therefore, when V ′−1(r) = 0, discounting the solution
r = 0 (as this lies within the horizon), it follows that:

3L2 + r2 − 2
(
2ml2

) 2
3 −

L2
(
r2 + (2ml2)

2
3

) 5
2

mr4
= 0 . (5.27)

Assuming fixed circular orbits at values rc and rearranging for Lc it
can be shown that:

Lc =

√
mr2

c

√
2 (2ml2)

2
3 − r2

c√
3mr4

c −
[
r2
c + (2ml2)

2
3

] 5
2

. (5.28)

Here we take the positive square root of L2
c to keep solutions physi-

cal, since we desire a positive angular momentum. Let us check that
for large r we recover Lc ∼

√
mrc in accordance with classical me-

chanics:

as |r| → +∞, Lc →
√
mr2

c

√
−r2

c√
3mr4

c − r5
c

,

→
√
mr2

c

√
−r2

c

rc
√
−r2

c

√
rc − 3m

,

∼
√
mrc√
rc
∼ √mrc , (5.29)

as desired.
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It can then be easily shown that:

∂Lc
∂rc

=

√
mrc

√
2 (2ml2)

2
3 − r2

c√
3mr4

c −
(
r2
c + (2ml2)

2
3

) 5
2

{
4 (2ml2)

2
3 − 3r2

c

2 (2ml2)
2
3 − r2

c

−
12mr4

c − 5r2
c

(
r2
c + (2ml2)

2
3

) 3
2

6mr4
c − 2

(
r2
c + (2ml2)

2
3

) 5
2

}
. (5.30)

Equating ∂Lc
∂rc

= 0 yields (and ignoring the solutions at rc = 0, and

rc = ±
√

2 (2ml2)
1
3 , as these lie either within the photon sphere loca-

tion or outside of the domain for our r-coordinate; clearly not valid
for an ISCO location):

4 (2ml2)
2
3 − 3r2

c

2 (2ml2)
2
3 − r2

c

=
12mr4

c − 5r2
c

(
r2
c + (2ml2)

2
3

) 3
2

6mr4
c − 2

(
r2
c + (2ml2)

2
3

) 5
2

. (5.31)

Now we make the following approximation in view of the separation
of scales: r2

c � 2 (2ml2)
2
3 . This allows the following substitutions to

approximate solutions for rc to Eq. 5.31:

• 4
(
2ml2

) 2
3 − 3r2

c ≈ −3r2
c ;

• 2
(
2ml2

) 2
3 − r2

c ≈ −r2
c ;

• r2
c +

(
2ml2

) 2
3 ≈ r2

c . (5.32)

Eq. 5.31 can then be approximated by:

3− 12mr4
c − 5r5

c

6mr4
c − 2r5

c

≈ 0 ,

=⇒ 6mr4
c − r5

c ≈ 0 ,

=⇒ r4
c [6m− rc] ≈ 0 . (5.33)

Discounting the solution at rc = 0, we therefore have an ISCO loca-
tion at rc ≈ 6m, or rc = 6m +O(l). This once again is a small petur-
bation to the expected ISCO location for the Scwarzschild solution,
as expected.
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Denoting rH as the location of the horizon, rPh as the location of the
photon sphere, and rISCO as the location of the ISCO, we have the follow-
ing summary:

• rH = 2m+O(l) ;

• rPh = 3m+O(l) ;

• rISCO = 6m+O(l) .

All locations are very near those of the Schwarzschild solution and we see
that the Bardeen metric is indeed a good choice for a geometry modelling
a regular black hole with minimal perversion to Schwarzschild.

5.1.3 Regge-Wheeler analysis

Consider now the Regge-Wheeler equation for scalar and vector pertur-
bations around this spacetime. The analysis closely parallels the general
formalism developed in [30]. We begin with the Bardeen metric:

ds2 = −


1− 2mr2

[
r2 + (2ml2)

2
3

] 3
2


 dt2 +

dr2

(
1− 2mr2[

r2+(2ml2)
2
3

] 3
2

)

+ r2
(
dθ2 + sin2 θdφ2

)
. (5.34)

Define a tortoise coordinate by:

dr∗ =


1− 2mr2

[
r2 + (2ml2)

2
3

] 3
2




−1

dr , (5.35)

then the metric can be rewritten as:

ds2 =


1− 2mr2

[
r2 + (2ml2)

2
3

] 3
2



{
−dt2 + dr2

∗
}

+r2
(
dθ2 + sin2 θdφ2

)
. (5.36)

Here r is now implicitly a function of r∗. The Regge-Wheeler equation can
be written as [30]:

∂2
r∗ φ̂+

{
ω2 − V

}
φ̂ = 0 . (5.37)
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For a general spherically symmetric metric with respect to curvature co-
ordinates, the Regge-Wheeler potential for spins S ∈ {0, 1, 2} and angular
momentum ` ≥ S is [30]:

VS = (−gtt)
{
` (`+ 1)

r2
+
S (S − 1) (grr − 1)

r2

}
+ (1− S)

∂2
r∗r

r
. (5.38)

For the Bardeen metric we therefore have the following Regge-Wheeler
potential:

VS =


1− 2mr2

[
r2 + (2ml2)

2
3

] 3
2



{
` (`+ 1)

r2
− 2mS (S − 1)
(
r2 + (2ml2)

2
3

) 3
2

}

+ (1− S)
∂2
r∗r

r
. (5.39)

It can be readily shown that:

∂2
r∗r

r
=

2m

{[
r2 + (2ml2)

2
3

] 3
2 − 2mr2

}{
r2 − 2 (2ml2)

2
3

}

[
r2 + (2ml2)

2
3

]4 , (5.40)

and so we may rephrase the Regge-Wheeler potential as:

VS =


1− 2mr2

[
r2 + (2ml2)

2
3

] 3
2



{
` (`+ 1)

r2
− 2mS (S − 1)
(
r2 + (2ml2)

2
3

) 3
2

}

+ (1− S)

2m

{[
r2 + (2ml2)

2
3

] 3
2 − 2mr2

}{
r2 − 2 (2ml2)

2
3

}

[
r2 + (2ml2)

2
3

]4 .

(5.41)
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Spin zero

In particular for spin zero one has:

V0 =


1− 2mr2

[
r2 + (2ml2)

2
3

] 3
2



{
` (`+ 1)

r2

}

+

2m

{[
r2 + (2ml2)

2
3

] 3
2 − 2mr2

}{
r2 − 2 (2ml2)

2
3

}

[
r2 + (2ml2)

2
3

]4 . (5.42)

This result can also be readily checked by brute force computation. For
scalars the s-wave (` = 0) is particularly important:

V0,`=0 =
∂2
r∗r

r
=

2m

{[
r2 + (2ml2)

2
3

] 3
2 − 2mr2

}{
r2 − 2 (2ml2)

2
3

}

[
r2 + (2ml2)

2
3

]4 . (5.43)

Spin one

For the spin one vector field the
{
r−1∂2

r∗r
}

term drops out; this can ulti-
mately be traced back to the conformal invariance of massless spin one
particles in ‘3+1’-dimensions. We are left with the particularly simple re-
sult (` ≥ 1):

V1 =


1− 2mr2

[
r2 + (2ml2)

2
3

] 3
2



{
` (`+ 1)

r2

}
. (5.44)

Spin two

For the spin two axial mode (i.e. S = 2) we have the following (` ≥ 2):

V2 =


1− 2mr2

[
r2 + (2ml2)

2
3

] 3
2



{
` (`+ 1)

r2
− 4m
(
r2 + (2ml2)

2
3

) 3
2

}

−
2m

{[
r2 + (2ml2)

2
3

] 3
2 − 2mr2

}{
r2 − 2 (2ml2)

2
3

}

[
r2 + (2ml2)

2
3

]4 .

(5.45)
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5.1.4 Stress-energy-momentum tensor

Let us examine the Einstein field equations for this spacetime. In this in-
stance, due to the complexity of the algebraic expressions for the non-zero
Einstein tensor components as presented in Eq. 5.8, instead of using the
metric tensor to lower the upper index on the mixed components, it is
preferable to raise an index on either side of the Einstein field equations.
As such, the form of the equations becomes: Gµ

ν = 8πT µν . Due to the neg-
ative eigenvalue corresponding to the temporal metric coefficient as a con-
sequence of the preferred type of Lorentzian signature (‘-,+,+,+’), this pro-
cess will yield the following general form of the stress-energy-momentum
tensor:

T µν =




−ρ 0 0 0
0 p‖ 0 0
0 0 p⊥ 0
0 0 0 p⊥


 . (5.46)

i.e. ρ has switched sign due to the contraction process. We therefore have
the following specific form of the stress-energy-momentum tensor for the
Bardeen metric:

ρ =
6m (2ml2)

2
3

8π
(
r2 + (2ml2)

2
3

) 11
2

{
r6 + 3r4

(
2ml2

) 2
3 + 3r2

(
2ml2

) 4
3

+
(
2ml2

)2

}
,

p‖ = − 6m (2ml2)
2
3

8π
(
r2 + (2ml2)

2
3

) 11
2

{
r6 + 3r4

(
2ml2

) 2
3 + 3r2

(
2ml2

) 4
3

+
(
2ml2

)2

}
,

p⊥ =
3m (2ml2)

2
3

(
3r2 − 2 (2ml2)

2
3

)

8π
(
r2 + (2ml2)

2
3

) 7
2

. (5.47)

Let us now analyse the various energy conditions and see whether they
are violated in this spacetime.

Null energy condition

In order to satisfy the null energy condition (NEC), both ρ + pr ≥ 0 and
ρ+ p⊥ ≥ 0 for all r and m.
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First let us examine ρ+ p‖:

ρ+ p‖ =
6m (2ml2)

2
3

8π
(
r2 + (2ml2)

2
3

) 11
2

{
r6 + 3r4

(
2ml2

) 2
3 + 3r2

(
2ml2

) 4
3

+
(
2ml2

)2

}
− 6m (2ml2)

2
3

8π
(
r2 + (2ml2)

2
3

) 11
2

{
r6 + 3r4

(
2ml2

) 2
3

+3r2
(
2ml2

) 4
3 +

(
2ml2

)2

}
,

= 0 . (5.48)

This is manifestly zero in our manifold; we have ρ = −p‖. It follows that
the first inequality required for the NEC to hold will be satisfied for this
spacetime. Now let us examine ρ+ p⊥:

ρ+ p⊥ =
6m (2ml2)

2
3

8π
(
r2 + (2ml2)

2
3

) 11
2

{
r6 + 3r4

(
2ml2

) 2
3 + 3r2

(
2ml2

) 4
3

+
(
2ml2

)2

}
+

3m (2ml2)
2
3

(
3r2 − 2 (2ml2)

2
3

)

8π
(
r2 + (2ml2)

2
3

) 7
2

,

=
15mr2 (2ml2)

2
3

(
r2 + (2ml2)

2
3

) 17
2

{
r10 + 5r8

(
2ml2

) 2
3 + 10r6

(
2ml2

) 4
3

+10r4
(
2ml2

)2
+ 5r2

(
2ml2

) 8
3 +

(
2ml2

) 10
3

}
. (5.49)

The conformal factor is strictly positive, and all individual terms present
within the braced brackets are globally positive. It follows that this sum is
manifestly positive on our manifold and we may conclude that the NEC
is satisfied for the Bardeen regular black hole spacetime.

Strong energy condition

In order to satisfy the strong energy condition (SEC) the spacetime must
globally satisfy the following inequality: ρ+ p‖ + 2p⊥ ≥ 0.
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Evaluating:

ρ+ p‖ + 2p⊥ = 2p⊥ ,

=
3m (2ml2)

2
3

(
3r2 − 2 (2ml2)

2
3

)

4π
(
r2 + (2ml2)

2
3

) 7
2

. (5.50)

This switches sign when r =
√

2
3

(2ml2)
1
3 , and is negative in the region

r <
√

2
3

(2ml2)
1
3 . The Bardeen metric therefore models a geometry which

accurately depicts a regular black hole, but clearly violates the strong en-
ergy condition associated with the stress-energy-momentum tensor. This
is consistent with the statement by Rodrigues et al.

5.2 Hayward regular black hole

Another metric modeling a regular black hole is the Hayward metric [70]:

ds2 = −
(

1− 2mr2

r3 + 2ml2

)
dt2+

dr2

(
1− 2mr2

r3+2ml2

)+r2
(
dθ2 + sin2 θdφ2

)
. (5.51)

Similarly to the Bardeen metric, here l is a length scale typically identified
with the Planck length [33].

Once again, we have a time-independent and non-rotational metric
(static and spherically symmetric). The areas of spherical symmetry of
constant-r coordinate are once again trivially modelled by the area func-
tion A(r) = 4πr2, clearly minimised when r = 0. We may conclude that
r = 0 marks the coordinate location of the mass controlling the spacetime
curvature.

The pole of gtt is where r3 + 2ml2 = 0, i.e. at r = − (2ml2)
1
3 . This

is slightly different from the Bardeen metric, where the pole of gtt was
complexified in order to avoid it affecting the coordinate patch. However
the pole corresponds to a strictly negative value for our r-coordinate; as
such the coordinate location of the singularity does not lie within our uni-
verse (as our universe corresponds to the domain r ∈ R+). The Hayward
metric therefore replaces the curvature singularity present at r = 0 in the
Schwarzschild solution with a pole at r = − (2ml2)

1
3 . This lies outside the

domain we impose on our r-coordinate, and as such presents no issues.
The presence of this negative pole in the absence of a gravitational sin-

gularity is indicative of the fact that, in a very similar fashion to Bardeen,
the proposal of the Hayward metric as a regular black hole spacetime was
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designed to be a minimal perversion of the Schwarzschild solution. Ac-
cordingly we can expect physics between the Hayward and Schwarzschild
spacetimes to be fairly similar, particularly for sufficiently large r. In fact,
if we may make the specific mathematical approximation r � (2ml2)

1
3 , it is

easily demonstrated that we return the Schwarzschild solution when mak-
ing the appropriate substitutions into the metric environment of Eq. 5.83.
The validity of this approximation is again intrinsically linked to the sep-
aration of scales between coordinate locations of interest within the space-
time and multiples of the Planck length l; see §5.1 for details on this argu-
ment.

Assuming that r � (2ml2)
1
3 , we may examine the location of the hori-

zon in the Hayward spacetime:3

gtt = 0 =⇒ r3 ≈ 2mr2

=⇒ r ∈ {+O(l), 2m+O(l)} . (5.52)

We may immediately discount the solutions (remembering that +O(l) cor-
responds to a repeated root) near r = 0 in view of the mathematical ap-
proximation made, hence there is a horizon location for the Hayward met-
ric at coordinate location rH = 2m + O(l); this is once again very similar
to the expected result for the Schwarzschild solution at rs = 2m, subject
to small peturbations. The geometry governed by the Hayward metric
therefore certainly possesses a black hole region of some kind. We may
now also state clearly that the metric permits an ‘almost-global’ coordi-
nate patch with domains as follows: t ∈ (−∞,+∞) ,
r ∈ R+ − {+O(l), 2m+O(l)} , θ ∈ [0, π], and φ ∈ [−π, π). This is identical
to the coordinate patch for the Bardeen metric. It remains to demonstrate
that the geometry has no curvature singularities in order to show that the
black hole region is ‘regular’ in the sense of Bardeen.

5.2.1 Curvature tensors and invariants analysis

The Ricci scalar:

R =
24m2l2 (4ml2 − r3)

(2ml2 + r3)3 ;

as |r| → 0, R→ 12

l2
. (5.53)

3Once again use of the ‘Big O’ notation is employed here. For details please see refer-
ence [10].
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Ricci tensor non-zero components:

Rt
t = Rr

r =
24m2l2 (ml2 − r3)

(2ml2 + r3)3 ,

Rθ
θ = Rφ

φ =
12m2l2

(2ml2 + r3)2 ;

as |r| → 0, Rµ
ν →

3

l2
. (5.54)

Riemann tensor non-zero components:

Rtr
tr =

2m
(

(2ml2)
2 − 7r3 (2ml2) + r6

)

(2ml2 + r3)3 ,

Rtθ
tθ = Rtφ

tφ = Rrθ
rθ = Rrφ

rφ =
m (4ml2 − r3)

(2ml2 + r3)2 ,

Rθφ
θφ =

2m

2ml2 + r3
;

as |r| → 0, Rµν
αβ →

1

l2
. (5.55)

Einstein tensor non-zero components:

Gt
t = Gr

r =
−12m2l2

(2ml2 + r3)2 ,

Gθ
θ = Gφ

φ =
−24m2l2 (ml2 − r3)

(2ml2 + r3)3 ;

as |r| → 0, Gµ
ν → −

3

l2
. (5.56)

The Weyl tensor non-zero components are straightforward:

−1

2
Ctr

tr = −1

2
Cθφ

θφ = Ctθ
tθ = Ctφ

tφ = Crθ
rθ

= Crφ
rφ =

mr3 (4ml2 − r3)

(2ml2 + r3)3 ;

as |r| → 0, Cµν
αβ → 0 . (5.57)
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For the Kretschmann scalar and other related curvature invariants:

RµναβR
µναβ =

48m2

(2ml2 + r3)6

{
r12 − 4r9

(
2ml2

)
+ 18r6

(
2ml2

)2

−2r3
(
2ml2

)3
+ 2

(
2ml2

)4

}
;

as |r| → 0, RµναβR
µναβ → 24

l4
. (5.58)

RµνR
µν =

288m4l4
(

2 (2ml2)
2 − 2r3 (2ml2) + 5r6

)

(2ml2 + r3)6 ;

as |r| → 0, RµνR
µν → 36

l4
. (5.59)

CµναβC
µναβ =

48m2r6 (4ml2 − r3)
2

(2ml2 + r3)6 ;

as |r| → 0, CµναβC
µναβ → 0 . (5.60)

All non-zero curvature tensor components and all scalar curvature invari-
ants exhibit the correct behaviour as |r| → +∞, asymptotically tending
towards zero (indicative of the fact that the spacetime is asymptotically
Minkowski as we move further from the centralised mass at r = 0). Fur-
thermore, all components and invariants exhibit finite behaviour as they
tend toward the region of highest curvature; we may conclude that they
are everywhere-finite within the spacetime. As such the spacetime pos-
sesses no gravitational singularities, and the singularities present at loca-
tions r ∈ {+O(l), 2m+O(l)} are indeed coordinate artefacts, removable
through an appropriate change of coordinate patch. We have verified that
this spacetime models a regular black hole in the sense of Bardeen. No-
tably, all algebraic expressions for the non-zero curvature tensor compo-
nents and the curvature invariants are of the general form:

F (r)

(2ml2 + r3)n
, (5.61)

where F (r) is some polynomial function of r and n ∈ Z+.
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5.2.2 ISCO and photon sphere analysis

Let us now calculate the locations of the ISCO for massive particles and
the photon sphere for massless particles as functions of m and l.

Consider the tangent vector to the worldline of a massive or massless
particle, parameterized by some arbitrary affine parameter, λ:

gµν
dxµ

dλ

dxν

dλ
= −gtt

(
dt

dλ

)2

+ grr

(
dr

dλ

)2

+ r2

{(
dθ

dλ

)2

+ sin2 θ

(
dφ

dλ

)2
}
.

(5.62)
Since we have used an affine parameter here, and we are certainly not
dealing with a spacelike separation in either the massive or massless case,
we may, without loss of generality, separate the two cases by defining the
following scalar-valued object:

ε =

{
−1 Massive particle, i.e. timelike worldline ;

0 Massless particle, i.e. null geodesic . (5.63)

That is, gµν dx
µ

dλ
dXν

dλ
= ε, and due to the metric being spherically symmetric

we may fix θ = π
2

arbitrarily and view the reduced equatorial problem:

gµν
dxµ

dλ

dxν

dλ
= −gtt

(
dt

dλ

)2

+ grr

(
dr

dλ

)2

+ r2

(
dφ

dλ

)2

= ε . (5.64)

Once again, the metric is independent of time t and azimuthal coordinate
φ. This means that ξt and ξφ are Killing vectors. In accordance with the
conserved quantities associated with each Killing vector, this yields the
following expressions for the conservation of energy E, and angular mo-
mentum L:

(
1− 2mr2

r3 + 2ml2

)(
dt

dλ

)
= E ; r2

(
dφ

dλ

)
= L . (5.65)

Hence:

(
1− 2mr2

r3 + 2ml2

)−1
{
−E2 +

(
dr

dλ

)2
}

+
L2

r2
= ε , (5.66)

=⇒
(
dr

dλ

)2

= E2 +

(
1− 2mr2

r3 + 2ml2

){
ε− L2

r2

}
. (5.67)

This gives ‘effective potentials’ for geodesic orbits as follows:

Vε(r) =

(
1− 2mr2

r3 + 2ml2

){
−ε+

L2

r2

}
. (5.68)
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• For a photon orbit we have the massless particle case ε = 0. Since we
are in a spherically symmetric environment, solving for the locations
of such orbits amounts to finding the coordinate location of the ’pho-
ton sphere’; i.e. the value of the r-coordinate sufficiently close to our
mass such that photons are forced to propogate in circular geodesic
orbits. These circular orbits occur at V ′0 (r) = 0, as such:

V0(r) =

(
1− 2mr2

r3 + 2ml2

)(
L2

r2

)
, (5.69)

leading to:

V
′

0 (r) =
2r2L2

(r3 + 2ml2)2

{
3m− (r3 + 2ml2)

2

r5

}
. (5.70)

When V ′0 (r) = 0, if we discount the solution r = 0 (as r = 0 lies within
the horizon; not a location in which one may observe photons), one
obtains: 3mr5 − (r3 + 2ml2)

2
= 0. Making the approximation r �

(2ml2)
1
3 , as employed previously, we have: 3mr5 ≈ r6, implying a

photon sphere location of r = 3m+O(l) ≈ rs,Photon. As expected, this
is very near the location of the photon sphere for the Schwarzschild
spacetime.

To verify stability, check the sign of V ′′0 (r):

V
′′

0 (r) =
6L2

r4
+

24mrL2

(r3 + 2ml2)3

{
ml2 − r3

}
. (5.71)

In view of the fact that the photon sphere location is very near r =
3m, let us examine behaviour of V ′′0 (r) at r = 3m:

V
′′

0 |r=3m =
6L2

(3m)4 +
72m2L2

(
(3m)3 + 2ml2

)3

{
ml2 − (3m)3} , (5.72)

and making the subsequent approximation 27m3 � 2ml2:

V
′′

0 |r=3m ≈ 6L2

{
1

(3m)4 −
4

3 (3m)4

}

≈ − 2L2

(3m)4 < 0 . (5.73)

We may conclude (in view of the approximations above) that the
circular orbits for massless particles in the ‘local’ area near r = 3m
are unstable, hence r = 3m + O(l) corresponds to a photon sphere
with an unstable circular orbit – consistent with expectations.
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• For massive particles the geodesic orbit corresponds to a timelike
worldline and we have the case that ε = −1. Therefore:

V−1(r) =

(
1− 2mr2

r3 + 2ml2

)(
1 +

L2

r2

)
, (5.74)

and it is easily verified that this leads to:

V ′−1(r) =
2mr

(r3 + 2ml2)2

{
r3 + 3rL2 − 4ml2 − L2 (r3 + 2ml2)

2

mr4

}
.

(5.75)

There is no straightforwad analytic way of equating V ′−1(r) to zero
and solving for r; it is once again preferable to assume a circular or-
bit at some rc and rearrange for the required angular momentum Lc
at that orbital radius. It then follows that the ISCO for a massive par-
ticle will lie at the r-coordinate for which that angular momentum
is minimised. Therefore, when V ′−1(r) = 0, discounting the solution
r = 0 (as this lies within the photon sphere location; not a valid can-
didate for an ISCO location), it follows that:

r3 + 3rL2 − 4ml2 − L2 (r3 + 2ml2)
2

mr4
= 0 . (5.76)

Assuming a fixed circular orbit at rc and rearranging for Lc yields
the following (taking the positive square root of L2

c to keep solutions
physical):

Lc =

√
mr4

c (4ml2 − r3
c )

3mr5
c − (r3

c + 2ml2)2 . (5.77)

At large rc we observe:

as |r| → +∞, Lc →
√
mr3

c

√−rc√
3mr5

c − r6
c

,

→
√
mr3

c

√−rc
r2
c

√−rc
√
rc − 3m

,

∼ √
mrc . (5.78)

This is consistent with the desired result from classical mechanics.
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Taking the partial derivative of Lc with respect to our orbit location
rc, we obtain the following:

∂Lc
∂rc

=

√
mrc√

3mr5
c − (r3

c + 2ml2)2

{
16ml2 − 7r3

c

2
√

4ml2 − r3
c

−rc
√

4ml2 − r3
c (15mr4

c − 6r5
c − 12r2

cml
2)

2
(
3mr5

c − (r3
c + 2ml2)2)

}
. (5.79)

Equating this to zero, and discounting the nonphysical solution at
rc = 0, we obtain:

(
16ml2 − 7r3

c

) (
3mr5

c −
(
r3
c + 2ml2

)2
)

−r3
c

(
4ml2 − r3

c

) (
15mr2

c − 6r3
c − 12ml2

)
= 0 . (5.80)

We may now make the following approximations in view of the sep-
aration of scales:

• 16ml2 − 7r3
c ≈ −7r3

c ,

• r3
c + 2ml2 ≈ r3

c ,

• 4ml2 − r3
c ≈ −r3

c ,

• 15r2
c − 12l2 ≈ 15r2

c . (5.81)

Accordingly, Eq. 5.80 can be approximated by:

r6
c

(
15r2

c − 6r3
c

)
− 7r3

c

(
3mr5

c − r6
c

)
≈ 0 ,

=⇒ r9
c − 6mr8

c ≈ 0 ,

=⇒ r8
c [rc − 6m] ≈ 0 . (5.82)

Once again discounting the solution at rc = 0, we obtain the ISCO lo-
cation for this spacetime at rc ≈ 6m, or rc = 6m+O(l). This is a small
petrubation to the expected ISCO location for the Schwarzschild so-
lution, as expected.
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Denoting rH as the location of the horizon, rPh as the location of the
photon sphere, and rISCO as the location of the ISCO, we have the follow-
ing summary:

• rH = 2m+O(l) ;

• rPh = 3m+O(l) ;

• rISCO = 6m+O(l) .

All locations are very near those of the Schwarzschild solution. As such,
similarly to the Bardeen metric, we can conclude that the Hayward metric
is indeed a good choice for a geometry modelling a regular black hole with
minimal perversion to Schwarzschild.

5.2.3 Regge-Wheeler analysis

Consider now the Regge-Wheeler equation for scalar and vector pertur-
bations around this spacetime. The analysis closely parallels the general
formalism developed in [30]. We begin with the Hayward metric:

ds2 = −
(

1− 2mr2

r3 + 2ml2

)
dt2+

dr2

(
1− 2mr2

r3+2ml2

)+r2
(
dθ2 + sin2 θdφ2

)
. (5.83)

Define a tortoise coordinate by:

dr∗ =

(
1− 2mr2

r3 + 2ml2

)−1

dr , (5.84)

then the metric can be rewritten as:

ds2 =

(
1− 2mr2

r3 + 2ml2

){
−dt2 + dr2

∗
}

+ r2
(
dθ2 + sin2 θdφ2

)
. (5.85)

Here r is now implicitly a function of r∗. The Regge-Wheeler equation can
be written as [30]:

∂2
r∗ φ̂+

{
ω2 − V

}
φ̂ = 0 . (5.86)

For a general spherically symmetric metric with respect to curvature co-
ordinates, the Regge-Wheeler potential for spins S ∈ {0, 1, 2} and angular
momentum ` ≥ S is [30]:

VS = (−gtt)
{
` (`+ 1)

r2
+
S (S − 1) (grr − 1)

r2

}
+ (1− S)

∂2
r∗r

r
. (5.87)
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For the Hayward metric we therefore have the following Regge-Wheeler
potential:

VS =

(
1− 2mr2

r3 + 2ml2

){
` (`+ 1)

r2
− 2mS (S − 1)

2ml2 + r3

}

+ (1− S)
∂2
r∗r

r
. (5.88)

It can be readily shown that:

∂2
r∗r

r
=

2m (r3 + 2ml2 − 2mr2) (r3 − 4ml2)

(r3 + 2ml2)3 , (5.89)

and so we may rephrase the Regge–Wheeler potential as:

VS =

(
1− 2mr2

r3 + 2ml2

){
` (`+ 1)

r2
− 2mS (S − 1)

r3 + 2ml2

+
2m (1− S) (r3 − 4ml2)

(r3 + 2ml2)2

}
. (5.90)

Spin zero

In particular for spin zero one has:

V0 =

(
1− 2mr2

r3 + 2ml2

){
` (`+ 1)

r2
+

2m (r3 − 4ml2)

(r3 + 2ml2)2

}
. (5.91)

This result can also be readily checked by brute force computation. For
scalars the s-wave (` = 0) is particularly important:

V0,`=0 =
∂2
r∗r

r
=

2m (r3 + 2ml2 − 2mr2) (r3 − 4ml2)

(r3 + 2ml2)3 . (5.92)

Spin one

For the spin one vector field the
{
r−1∂2

r∗r
}

term drops out; this can ulti-
mately be traced back to the conformal invariance of massless spin one
particles in ‘3+1’-dimensions. We are left with the particularly simple re-
sult (` ≥ 1):

V1 =

(
1− 2mr2

r3 + 2ml2

){
` (`+ 1)

r2

}
. (5.93)
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Spin two

For the spin two axial mode (i.e. S = 2) we have the following (` ≥ 2):

VS =

(
1− 2mr2

r3 + 2ml2

){
` (`+ 1)

r2
− 4m

r3 + 2ml2

−2m (r3 − 4ml2)

(r3 + 2ml2)2

}
. (5.94)

5.2.4 Stress-energy-momentum tensor

Let us examine the Einstein field equations for this spacetime, and subse-
quently analyse the various energy conditions. We shall use the form of
the stress-energy-momentum tensor defined by the mixed non-zero Ein-
stein tensor components from Eq. 5.56. This gives the following form of
the Einstein field equations: Gµ

ν = 8πT µν . Accordingly, this yields the
following general form of the stress-energy-momentum tensor:

T µν =




−ρ 0 0 0
0 p‖ 0 0
0 0 p⊥ 0
0 0 0 p⊥


 , (5.95)

and we have the following specific forms for the principal pressures:

ρ =
12m2l2

8π (2ml2 + r3)2 ,

p‖ = − 12m2l2

8π (2ml2 + r3)2 ,

p⊥ = −24m2l2 (ml2 − r3)

8π (2ml2 + r3)3 . (5.96)

We may now analyse the various energy conditions and see whether they
are violated in our spacetime.

Null energy condition

In order to satisfy the null energy condition, we require that both ρ+p‖ ≥ 0
and ρ+ p⊥ ≥ 0 globally in our spacetime. Let us first consider ρ+ p‖:

ρ+ p‖ =
12m2l2

8π (2ml2 + r3)2 −
12m2l2

8π (2ml2 + r3)2 = 0 . (5.97)
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This is manifestly zero for our spacetime, and the condition that ρ+p‖ ≥ 0
is satisfied. Let us now consider ρ+ p⊥:

ρ+ p⊥ =
12m2l2

8π (2ml2 + r3)2 −
24m2l2 (ml2 − r3)

8π (2ml2 + r3)3

=
12m2l2

8π (2ml2 + r3)2

{
1− 2ml2 − 2r3

2ml2 + r3

}

=
12m2l2

8π (2ml2 + r3)2

{
3r3

2ml2 + r3

}
> 0 . (5.98)

Given that r ∈ R+, this is manifestly non-negative, and we may conclude
that the NEC is satisfied for the geometry induced by the Hayward metric.

Strong energy condition

In order to satisfy the strong energy condition (SEC), we require that ρ +
p‖ + 2p⊥ ≥ 0 globally in our spacetime. Evaluating:

ρ+ p‖ + 2p⊥ = 2p⊥

= −48m2l2 (ml2 − r3)

8π (2ml2 + r3)3 ,

as |r| → 0, ρ+ p‖ + 2p⊥ → −
3

4πl2
. (5.99)

The expression switches sign at r = (ml2)
1
3 , and is strictly negative in the

region r < (ml2)
1
3 . Accordingly the inequality will not be satisfied. We

may conclude that the SEC is violated for this spacetime. As such, we have
a geometry which satisfies the null energy condition, whilst violating the
strong energy condition – very similar to the spacetime induced by the
Bardeen metric.

5.3 Regular black hole with exponentially
suppressed mass

Presented here is a new and rather different metric, dubbed the ‘exponen-
tially suppressed mass’ metric. Conducting a standard general relativistic
analysis of the resulting spacetime (in a similar fashion to the analyses
performed for both the Bardeen and Hayward metrics), one can demon-
strate that this metric does indeed correspond to a regular black hole in
the sense of Bardeen, but with the mass of the centralised object becoming
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exponentially suppressed as one nears the coordinate location r = 0. The
line element is as follows:

ds2 = −
(

1− 2me−a/r

r

)
dt2+

dr2

(
1− 2me−a/r

r

)+r2
(
dθ2 + sin2 θdφ2

)
. (5.100)

First we note that the metric is static and spherically symmetric. The areas
of spherical symmetry of constant r-coordinate are trivial, modelled by the
area function A(r) = 4πr2, which we can clearly see is minimised at r = 0.
We may conclude that the mass controlling the spacetime curvature has
coordinate location r = 0.

Note that this representation of the metric corresponds to the central
mass being r-dependent in the following manner: m(r) = me−a/r. We
may immediately enforce that a ∈ R+ in order to ensure the mass is be-
ing exponentially ‘suppressed’ as |r| → 0; if a = 0 we simply have the
Schwarzschild solution, and if a < 0 we have an altogether different sce-
nario where asymptotic behaviour for small r indicates massive exponen-
tial ‘growth’. The exponential expression has the following properties:

lim
r→0+

e−a/r = 0 , lim
r→0−

e−a/r = +∞ . (5.101)

The metric is therefore not analytic at coordinate location r = 0. Looking at
behaviour as r → 0− can be omitted from the analysis; the severe discon-
tinuity at r = 0 implies that behaviour in the negative r domain is grossly
unphyiscal. This does not affect our coordinate patch regardless, as r = 0
also marks a coordinate singularity (demonstration that this is a coordi-
nate singularity and not a curvature singularity is a corollary of analysis
in §5.3.1) as it is the pole of gtt. We may trivially avoid these ‘issues’ by
enforcing r ∈ R+, i.e. strictly remaining within our universe, which is the
primary region of interest. In view of the diagonal metric environment, we
may now examine horizon locations for the spacetime by setting gtt = 0:

gtt = 0 =⇒ r − 2me−a/r = 0 ,

=⇒ − a

2m
= −a

r
e−a/r ,

=⇒ −a
r

= W
(
− a

2m

)
,

=⇒ r = − a

W
(
− a

2m

) ,

=⇒ r = +2meW (−a/2m) . (5.102)
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We have a coordinate location of the horizon defined explicitly in terms of
the real-valued branches of the Lambert W function (please see §4.2.2 for
detailed discussion on the Lambert W function as one of the ‘special func-
tions’ in mathematics). Using the convention that positive r-coordinate
values correspond to locations in our universe, and having enforced a > 0,
we may restrict the LambertW function on the denominator to only taking
negative values. This presents two possibilities:

• Taking the W0 (x) branch of the real-valued Lambert W function:

W0

(
− a

2m

)
< 0 =⇒ − a

2m
∈
(
−1

e
, 0

)
,

=⇒ a ∈
(

0,
2m

e

)
. (5.103)

Provided a lies in this interval we will therefore have a defined r-
coordinate location for a horizon in our universe when taking the
W0(x) branch of the Lambert W function. Keeping in mind that fix-
ing a in this interval causes W0

(
− a

2m

)
∈ (−1, 0), the possible coordi-

nate locations of the horizon are given by rH ∈ (a,+∞).

• Taking the W−1 (x) branch of the real-valued Lambert W function:

The W−1(x) branch only returns outputs for x ∈
(
−1
e
, 0
)
, hence we

have the same restriction on a as before to ensure a defined coor-
dinate location for the horizon; that a ∈

(
0, 2m

e

)
. The range of the

W−1(x) branch is entirely negative so all possible solutions will cor-
respond to locations in our universe. However the difference is that
fixing a in the interval of interest causes W−1

(
− a

2m

)
∈ (−1,−∞),

hence the possible coordinate locations for the horizon are given by
rH ∈ (0, a).

It follows then that in order for our geometry to possess a horizon in our
universe, we require a ∈

(
0, 2m

e

)
. Then depending on whether we take the

W−1(x) or W0(x) branch of the Lambert W function, the horizon will be
located either in the region rH ∈ (0, a) or rH ∈ (a,+∞) respectively. In
both cases the geometry is certainly modelling a black hole region of some
description; it remains to demonstrate that the spacetime is gravitationally
nonsingular in order to show this is a regular black hole in the sense of
Bardeen. However, first let us take a look at what happens to the geometry
when a ≥ 2m

e
:

a ≥ 2m

e
=⇒ − a

2m
≤ −1

e
,

=⇒ W
(
− a

2m

)
is undefined . (5.104)
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Therefore no such r-value exists in our geometry such that gtt = 0, i.e.
there are no horizons in the geometry. It follows that when a ≥ 2m

e
,

there is no black hole of any kind; the geometry is modelling something
qualitatively independent. The geometry admits a generalised ‘almost-
global’ coordinate patch with the following domains:4 t ∈ (−∞,+∞) , r ∈
R+ − {rH} , θ ∈ [0, π], and φ ∈ [−π, π). Analysis of the radial null curves
leads to a radial coordinate speed of light:

c(r) = 1− 2me−a/r

r
, (5.105)

i.e. a radial refractive index of:

n(r) =
r

r − 2me−a/r
. (5.106)

Let us now examine the non-zero components of the curvature tensors as
well as the curvature invariants to show that, for a ∈

(
0, 2m

e

)
, this metric is

indeed modelling a regular black hole geometry.

5.3.1 Curvature tensors and invariants analysis

Before proceeding with the standard analysis of the mixed non-zero cur-
vature tensor components and curvature invariants, it is prudent to intro-
duce a relevant piece of mathematical detail. For any polynomial function
f(r), as |r| → 0, e

−a/r

f(r)
→ e−a/r → 0; i.e. the exponential expression provides

the dominant balance for the asymptotic behaviour for small r. Keeping
this in mind, let us examine the mixed non-zero curvature tensor compo-
nents and the curvature invariants.
The Ricci scalar:

R =
2ma2e−a/r

r5
;

as |r| → 0, R→ 0 . (5.107)

Ricci tensor non-zero components:

Rt
t = Rr

r =
ma (a− 2r) e−a/r

r5
,

Rθ
θ = Rφ

φ =
2mae−a/r

r4
;

as |r| → 0, Rµ
ν → 0 . (5.108)

4In view of rH being dependent on the choice of branch of the LambertW function, we
keep the terminology for the coordinate location of the horizon general, some rH ∈ R+.
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Riemann tensor non-zero components:

Rtr
tr =

m (a2 − 4ar + 2r2) e−a/r

r5
,

Rtθ
tθ = Rtφ

tφ =
m (a− r) e−a/r

r4
,

Rrθ
rθ = Rrφ

rφ =
m (a− r) e−a/r

r4
,

Rθφ
θφ =

2me−a/r

r3
;

as |r| → 0, Rµν
αβ → 0 . (5.109)

Einstein tensor non-zero components:

Gt
t = Gr

r = −2mae−a/r

r4
,

Gθ
θ = Gφ

φ = −ma (a− 2r) e−a/r

r5
;

as |r| → 0, Gµ
ν → 0 . (5.110)

Weyl tensor non-zero components:

−1

2
Ctr

tr = −1

2
Cθφ

θφ = Ctθ
tθ = Ctφ

tφ = Crθ
rθ

= Crφ
rφ = −m (a2 − 6ar + 6r2) e−a/r

6r5
;

as |r| → 0, Cµν
αβ → 0 . (5.111)

The Ricci contraction RµνR
µν :

RµνR
µν =

2m2a2 (a2 − 4ar + 8r2) e−2a/r

r10
;

as |r| → 0, RµνR
µν → 0 . (5.112)
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The Kretschmann scalar:

RµναβR
µναβ =

4m2 (a4 − 8a3r + 24a2r2 − 24ar3 + 12r4) e−2a/r

r10
;

as |r| → 0, RµναβR
µναβ → 0 . (5.113)

The Weyl contraction CµναβCµναβ :

CµναβC
µναβ =

4m2 (a2 − 6ar + 6r2)
2
e−2a/r

3r10
;

as |r| → 0, CµναβC
µναβ → 0 . (5.114)

As |r| → +∞, e−a/r → 0, and all non-zero tensor components and in-
variants become inversely proportional to some polynomial function of
r. Therefore for large r, all non-zero components and invariants tend to
zero, consistent with the fact that asymptotic infinity models Minkowski
space. Of note is the fact that as r → 0+, all non-zero tensor components
and invariants also asymptote to zero. This is directly related to the ex-
ponentially suppressed mass at small r, even though we are nearing the
massive object controlling the curvature of the spacetime, the exponen-
tial expression suppressing the mass dominates the components, and the
spacetime tends to the flat space limit. As such we have a geometry which
approaches Minkowski both near the centralised mass and at asymptotic
infinity, with some maximised area of curvature located in between. We
may conclude that all non-zero tensor components and invariants are most
certainly globally finite, and as such the geometry possesses no curvature
singularities as predicted – we are indeed dealing with a regular black hole
spacetime.

5.3.2 ISCO and photon sphere analysis

Let us now calculate the location of both the photon sphere for massless
particles and the ISCO for massive particles as functions of m and a.

Consider the tangent vector to the worldline of a massive or massless
particle, paramterized by some arbitrary affine parameter, λ:

gµν
dxµ

dλ

dxν

dλ
= −gtt

(
dt

dλ

)2

+ grr

(
dr

dλ

)2

+ r2

{(
dθ

dλ

)2

+ sin2 θ

(
dφ

dλ

)2
}
.

(5.115)
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We may define a scalar-valued object as follows:

ε =

{
−1 Massive particle, i.e. timelike worldline ;

0 Massless particle, i.e. null geodesic . (5.116)

That is, gµν dx
µ

dλ
dxν

dλ
= ε, and due to the metric being spherically symmetric

we may fix θ = π
2

arbitrarily and view the reduced equatorial problem:

gµν
dxµ

dλ

dxν

dλ
= −gtt

(
dt

dλ

)2

+ grr

(
dr

dλ

)2

+ r2

(
dφ

dλ

)2

= ε . (5.117)

The Killing symmetries yield the following expressions for the conserva-
tion of energy E, and angular momentum L:

(
1− 2me−a/r

r

)(
dt

dλ

)
= E ; r2

(
dφ

dλ

)
= L . (5.118)

Hence:

(
1− 2me−a/r

r

)−1
{
−E2 +

(
dr

dλ

)2
}

+
L2

r2
= ε ; (5.119)

=⇒
(
dr

dλ

)2

= E2 +

(
1− 2me−a/r

r

){
ε− L2

r2

}
. (5.120)

This gives ‘effective potentials’ for geodesic orbits as follows:

Vε(r) =

(
1− 2me−a/r

r

){
−ε+

L2

r2

}
. (5.121)

• For a photon orbit we have the massless particle case ε = 0. This
corresponds to the photon sphere location, and these circular orbits
occur at V ′0 (r) = 0, hence:

V0(r) =

(
1− 2me−a/r

r

)(
L2

r2

)
, (5.122)

leading to:

V
′

0 (r) =
2mL2e−a/r

r5

{
3r − a− r2ea/r

m

}
. (5.123)
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When V ′0 (r) = 0, require:

3r − a− r2ea/r

m
= 0 ,

=⇒ m (3r − a) = r2ea/r ,

=⇒ am (3r − a)

r3
=
a

r
ea/r ,

=⇒ a

r
= W

(
am(3r − a)

r3

)
,

=⇒ r =
a

W
(
am(3r−a)

r3

) . (5.124)

We have a solution for the photon sphere location implicitly defined
by the real-valued branches of the Lambert W function. Subject to a
choice of branch, this corresponds to a real-valued coordinate loca-
tion within our spacetime, however the intractability of the implic-
itly defined solution renders it inefficient to pursue further analysis
pertaining to the stability of the circular orbit – we expect the orbit
to be unstable based on the known literature, i.e. V ′′(r) < 0, and the
coordinate location must lie strictly outside of the horizon location,
rH .

• For massive particles the geodesic orbit corresponds to a timelike
worldline and we have the case that ε = −1. Therefore:

V−1(r) =

(
1− 2me−a/r

r

)(
1 +

L2

r2

)
, (5.125)

and it can be shown that:

V
′

−1(r) =
2mL2e−a/r

r5

{
3r − a+

r2 (r − a)

L2
− r2

me−a/r

}
. (5.126)

When V ′−1(r) = 0, we therefore require:

3r − a+
r2(r − a)

L2
− r2ea/r

m
= 0 ,
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=⇒ a

r
ea/r =

am (L2(3r − a) + r2(r − a))

L2r3
,

=⇒ a

r
= W

(
am (L2(3r − a) + r2(r − a))

L2r3

)
,

=⇒ r =
a

W
(
am(L2(3r−a)+r2(r−a))

L2r3

) . (5.127)

Once again, the solution is implicitly defined in terms of the Lambert
W function. Subject to a choice of branch, we have a valid coordinate
location for our ISCO in this spacetime, and expect it to be located
outside of both the horizon at rH and the photon sphere. Verifying
the stability of this circular orbit is intractable due to the difficult
nature of working with the Lambert W function.

5.3.3 Regge-Wheeler analysis

Consider now the Regge-Wheeler equation for scalar and vector pertur-
bations around this spacetime. Similarly to previous analyses, the subse-
quent analysis closely parallels the general formalism developed in [30].
We begin with the ‘exponentially suppressed mass’ metric:

ds2 = −
(

1− 2me−a/r

r

)
dt2+

dr2

(
1− 2me−a/r

r

)+r2
(
dθ2 + sin2 θdφ2

)
. (5.128)

Define a tortoise coordinate by:

dr∗ =

(
1− 2me−a/r

r

)
dr , (5.129)

then the metric can be rewritten as:

ds2 =

(
1− 2me−a/r

r

){
−dt2 + dr2

∗
}

+ r2
(
dθ2 + sin2 θdφ2

)
. (5.130)

Here r is now implicitly a function of r∗. The Regge-Wheeler equation can
be written as [30]:

∂2
r∗ φ̂+

{
ω2 − V

}
φ̂ = 0 . (5.131)
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For a general spherically symmetric metric with respect to curvature co-
ordinates, the Regge-Wheeler potential for spins S ∈ {0, 1, 2} and angular
momentum ` ≥ S is [30]:

VS = (−gtt)
{
` (`+ 1)

r2
+
S (S − 1) (grr − 1)

r2

}
+ (1− S)

∂2
r∗r

r
. (5.132)

For the ‘exponentially suppressed mass’ metric we therefore have the fol-
lowing Regge-Wheeler potential:

VS =

(
1− 2me−a/r

r

){
` (`+ 1)

r2
− 2me−a/rS(S − 1)

r3

}

+ (1− S)
∂2
r∗r

r
. (5.133)

It can be readily shown that:

∂2
r∗r

r
=

2me−a/r (a− r)
r (r − 2me−a/r)

3 , (5.134)

and so we may rephrase the Regge–Wheeler potential as:

VS =

(
1− 2me−a/r

r

){
` (`+ 1)

r2
− 2me−a/rS(S − 1)

r3

}

+ (1− S)
2me−a/r (a− r)
r (r − 2me−a/r)

3 . (5.135)

Spin zero

In particular for spin zero one has:

V0 =

(
1− 2me−a/r

r

){
` (`+ 1)

r2
+

2me−a/r(a− r)
(r − 2me−a/r)

4

}
. (5.136)

This result can also be readily checked by brute force computation. For
scalars the s-wave (` = 0) is particularly important:

V0,`=0 =
∂2
r∗r

r
=

2me−a/r (a− r)
r (r − 2me−a/r)

3 . (5.137)
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Spin one

For the spin one vector field the
{
r−1∂2

r∗r
}

term drops out; this can ulti-
mately be traced back to the conformal invariance of massless spin one
particles in ‘3+1’-dimensions. We are left with the particularly simple re-
sult (` ≥ 1):

V1 =

(
1− 2me−a/r

r

){
` (`+ 1)

r2

}
. (5.138)

Spin two

For the spin two axial mode (i.e. S = 2) we have the following (` ≥ 2):

VS =

(
1− 2me−a/r

r

){
` (`+ 1)

r2
− 4me−a/r

r4

−2me−a/r(a− r)
(r − 2me−a/r)

4

}
. (5.139)

5.3.4 Stress-energy-momentum tensor

Let us examine the Einstein field equations for this spacetime, and subse-
quently analyse the various energy conditions. We shall use the form of
the stress-energy-momentum tensor defined by the mixed non-zero Ein-
stein tensor components from Eq. 5.110. This gives the following form of
the Einstein field equations: Gµ

ν = 8πT µν . Accordingly, this yields the
following general form of the stress-energy-momentum tensor:

T µν =




−ρ 0 0 0
0 p‖ 0 0
0 0 p⊥ 0
0 0 0 p⊥


 , (5.140)

and we have the following specific forms for the principal pressures:

ρ =
2mae−a/r

8πr4
,

p‖ = −2mae−a/r

8πr4
,

p⊥ = −ma (a− 2r) e−a/r

8πr5
. (5.141)

Let us examine where the energy density is maximised for this spacetime
(this is of specific interest due to the exponential suppression of the mass
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– we wish to see how the suppression affects the distribution of energy
densities in through the geometry):

∂ρ

∂r
=

2mae−a/r

8πr6
(a− 4r) . (5.142)

Setting this to zero we can clearly see that ρ is maximised at coordinate
location r = a

4
. Let us now analyse the various energy conditions and see

whether they are violated in our spacetime.

Null energy condition

In order to satisfy the null energy condition, we require that both ρ+p‖ ≥ 0
and ρ+ p⊥ ≥ 0 globally in our spacetime. Let us first consider ρ+ p‖:

ρ+ p‖ =
2mae−a/r

8πr4
− 2mae−a/r

8πr4
= 0 . (5.143)

This is manifestly zero for our spacetime, and the condition that ρ+p‖ ≥ 0
is satisfied. Let us now consider ρ+ p⊥:

ρ+ p⊥ =
2mae−a/r

8πr4
− ma (a− 2r) e−a/r

8πr5

=
mae−a/r

8πr5
{4r − a} . (5.144)

This changes sign when r = a
4

and is negative in the region r < a
4
. We

therefore have the non-typical instance where the radial NEC is satisfied
by the geometry whilst the transverse NEC is violated.

Strong energy condition

In order to satisfy the strong energy condition (SEC), we require that ρ +
p‖ + 2p⊥ ≥ 0 globally in our spacetime. Evaluating:

ρ+ p‖ + 2p⊥ = 2p⊥

= −ma (a− 2r) e−a/r

4πr5
, (5.145)

The is negative for the region r < a
2
, and we may conclude that the SEC is

violated for this spacetime – this is consistent with expectations.
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5.3.5 Overview

The ‘exponentially suppressed mass’ geometry therefore accurately mod-
els a regular black hole geometry in the sense of Bardeen when the param-
eter a ∈

(
0, 2m

e

)
, and violates the strong energy condition accordingly. It

also satisfies the radial NEC in the absence of a wormhole throat, but vi-
olates the tangential NEC in the region nearest the centre of mass, when
r < a

4
, due to the mathematical side effects which come from exponen-

tially suppressing the centralised mass. The energy density ρ is maximised
at r = a

4
, and for r < a

4
the exponential expression present in the metric

has the effect of suppressing the mass of our centralised object, asmpyoti-
cally heading to zero as we approach the centre of mass (r = 0). This im-
plies the local region near the centre of mass is asymptotically Minkowski,
while for some finite positive r-coordinate value the curvature of the ge-
ometry is maximised (this can be found by analysing the extrema of the
Kretschmann scalar, e.g., but the subsequent calculations are rather in-
tractable – the key point is to note that the curvature of the geometry is
asymptotically flat at infinity, at the centre of mass, and has some maxi-
mal peak in between). We can find a valid ISCO and photon sphere lo-
cation, but these results are implicitly defined by the Lambert W function,
and as such are rather difficult to deal with. The intractability of dealing
with the LambertW function in general means that the ‘exponentially sup-
pressed mass’ metric is a tricky candidate spacetime to analyse, however
it is certainly a curious geometry modelling a scenario of physical inter-
est. Accordingly further analysis of this metric, as well as the concept of
‘exponentially suppressed mass’ in general, shall be the subject of further
research.



Chapter 6

From ‘black-bounce’ to
traversable wormhole

A particularly interesting regular black hole spacetime is described by the
line element:

ds2 = −
(

1− 2m√
r2 + a2

)
dt2 +

dr2

1− 2m√
r2+a2

+
(
r2 + a2

) (
dθ2 + sin2 θ dφ2

)
.

(6.1)
This spacetime neatly interpolates between the standard Schwarzschild
black hole and the Morris-Thorne traversable wormhole; at intermediate
stages passing through a ‘black-bounce’ (into a future incarnation of the
universe), an extremal null-bounce (into a future incarnation of the uni-
verse), and a traversable wormhole. As long as the parameter a is non-
zero the geometry is everywhere regular, so one has a somewhat unusual
form of ‘regular black hole’, where the ‘origin’ r = 0 can be either space-
like, null, or timelike. Thus this spacetime generalizes and broadens the
class of ‘regular black holes’ beyond those usually considered. This space-
time is carefully designed to be a minimalist modification of the ordinary
Schwarzschild spacetime; when adjusting the parameter a, this metric rep-
resents either:

• The ordinary Schwarzschild spacetime;
• A regular black hole geometry with a one-way spacelike throat;
• A one-way wormhole geometry with an extremal null throat (com-

pare this case especially with reference [32]); or
• A canonical traversable wormhole geometry, (in the Morris-Thorne

sense [105, 106, 142, 141, 143, 157, 71, 113, 18, 72, 43, 156, 16, 60, 29,
85]), with a two-way timelike throat.

In the region where the geometry represents a regular black hole the ge-
ometry is unusual in that it describes a bounce into a future incarnation of
the universe, rather than a bounce back into our own universe [14, 11, 13,
12, 59, 121, 67, 38, 46, 89, 109, 22, 90]. Let us conduct a standard analysis of
the metric within the context of general relativity.

105
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6.1 Metric analysis and Carter-Penrose diagrams

Consider the metric:

ds2 = −
(

1− 2m√
r2 + a2

)
dt2 +

dr2

1− 2m√
r2+a2

+
(
r2 + a2

) (
dθ2 + sin2 θdφ2

)
.

(6.2)
Note that if a = 0 then this is simply the Schwarzschild solution, so enforc-
ing a 6= 0 is a sensible starting condition if we are to conduct an analysis
concerning either regular black holes or traversable wormholes (trivially,
the Schwarzschild solution models a geometry which is neither). Further-
more, this spacetime geometry is manifestly static and spherically sym-
metric. That is, it admits a global, non-vanishing, timelike Killing vector
field that is hypersurface orthogonal, and there are no off-diagonal com-
ponents of the matrix representation of the metric tensor; fixed r coor-
dinate locations in the spacetime correspond to spherical surfaces. This
metric does not correspond to a traditional regular black hole such as the
Bardeen, Bergmann-Roman, Frolov, or Hayward geometries [19, 120, 70,
20, 54, 53, 55, 57, 56, 32, 21]. Instead, depending on the value of the param-
eter a, it is either a regular black hole (bouncing into a future incarnation
of the universe) or a traversable wormhole.

Before proceeding any further, note that the coordinate patch is global,
and the coordinates have natural domains:

r ∈ (−∞,+∞); t ∈ (−∞,+∞); θ ∈ [0, π]; φ ∈ (−π, π] . (6.3)

Analysis of the radial null curves in this metric yields (setting ds2 = 0,
dθ = dφ = 0):

dr

dt
= ±

(
1− 2m√

r2 + a2

)
. (6.4)

It is worth noting that this defines a ‘coordinate speed of light’ for the
metric (6.2):

c(r) =

∣∣∣∣
dr

dt

∣∣∣∣ =

(
1− 2m√

r2 + a2

)
, (6.5)

and hence an effective refractive index of:

n(r) =
1(

1− 2m√
r2+a2

) . (6.6)
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Let us now examine the coordinate location(s) of horizon(s) in this geom-
etry:

• If a > 2m, then ∀ r ∈ (−∞,+∞) we have dr
dt
6= 0, so this geometry

is in fact a (two-way) traversable wormhole [105, 106, 142, 141, 143,
157, 71, 113, 18, 72, 43, 156, 16, 60, 29, 85].

• If a = 2m, then as r → 0 from either above or below, we have dr
dt
→ 0.

Hence we have a horizon at coordinate location r = 0. However, this
geometry is not a black hole. Rather, it is a one-way wormhole with
an extremal null throat at r = 0.

• If a < 2m, then consider the two locations r± = ±
√

(2m)2 − a2; this
happens when

√
r2
± + a2 = 2m. Thence:

∃ r± ∈ R;
dr

dt
= 0 . (6.7)

That is, when a < 2m there will be symmetrically placed r-coordinate
values r± = ±|r±|which correspond to a pair of horizons.

The coordinate location r = 0 maximises both the non-zero curvature ten-
sor components (see §6.2) and the curvature invariants (see §6.3).

We may therefore conclude that in the case where a > 2m the two-
way traversable wormhole throat is a timelike hypersurface located at r =
0, and negative r-values correspond to the universe on the other side of
the geometry from the perspective of an observer in our own universe.
We then have the quite standard Carter-Penrose diagram for traversable
wormholes as presented in Fig. 6.1.

0
0 Our universe"Other" universe

W
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o
le

 t
h
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a
t 

a
t 

r=
0

i

i

i

i

Figure 6.1: Carter-Penrose diagram for the case when a > 2m and we have
a traditional traversable wormhole in the Morris-Thorne sense.
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Similarly for the null case a = 2m the null throat is located at the hori-
zon r = 0. Note that in this instance the wormhole geometry is only one-
way traversable. The Carter-Penrose diagram for the maximally extended
spacetime in this case is given in Fig. 6.2.

0

0

0

Our Universe

Copy of our universe

etc...

etc...

r=
0

r=
0

r=
0

r=
0

r=
0

0

i

i
i

i

i

i

i

i

i

i

i

i

Figure 6.2: Carter-Penrose diagram for the maximally extended spacetime
in the case when a = 2m. In this example we have a one-way wormhole
geometry with a null throat.
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As an alternative construction we can identify the past null bounce at r = 0
with the future null bounce at r = 0, yielding the ‘looped’ Carter-Penrose
diagram of Fig. 6.3.

Identify time coordinate

0

r=
0

r=
0

Our Universe i

i

i

Figure 6.3: Carter-Penrose diagram for the case when a = 2m where we
have identified the future null bounce at r = 0 with the past null bounce
at r = 0.

For regular black holes, we can restrict our attention to the interval a ∈
(0, 2m). Then the hypersurface r = 0 is a spacelike spherical surface which
marks the boundary between our universe and a bounce into a separate
copy of our own universe. For negative values of r we have ‘bounced’
into another universe. See Fig. 6.4 for the relevant Carter-Penrose diagram
(contrast these Carter-Penrose diagrams with the standard one for the
maximally extended Kruskal-Szekeres version of Schwarzschild – see for
instance references [158, 102, 69] – the major difference is that the singular-
ity has been replaced by a spacelike hypersurface representing a ‘bounce’).

Another possibility of interest for when a ∈ (0, 2m) arises when the r =
0 coordinate for the ‘future bounce’ is identified with the r = 0 coordinate
for the ‘past bounce’. That is, there is still a distinct time orientation but
we impose periodic boundary conditions on the time coordinate such that
time is cyclical. This case yields the Carter-Penrose diagram of Fig. 6.5
(note that the global causal structure is much milder than that for the so-
called ‘twisted’ black holes [63]).
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Our Universe

0
0

00

Copy of our Universe

Parallel Universe

Copy of Parallel Universe

"Bounce"

"Bounce"

−

H+ H+

H+ H+

H−H−

H− H−

i

i

i

i

i

i

i

i

i

i

i

i

Figure 6.4: Carter-Penrose diagram for the maximally extended spacetime
when a ∈ (0, 2m). In this example the time coordinate runs up the page,
‘bouncing’ through the r = 0 hypersurface in each black hole region into a
future copy of our own universe ad infinitum.

0 Our Universe 0Parallel Universe

"Bounce"

H+ H+

H−
H−

Identify time coordinate

ii

i

i

i

i

Figure 6.5: Periodic boundary conditions in time when a ∈ (0, 2m). In this
example we impose periodic boundary conditions on the time coordinate
such that the future bounce is identified with the past bounce.
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6.2 Curvature tensors

Next it is prudent to check that there are no singularities in the geome-
try, otherwise we do not satisfy the requirements for the regularity of our
black hole. In view of the diagonal metric environment of Eq. 6.2 we can
clearly see that the chosen coordinate basis is orthogonal though not or-
thonormal, and it therefore follows that the (mixed) non-zero components
of the Riemann tensor shall be the same with respect to this basis as to any
orthonormal tetrad, ensuring that the appearance (or lack thereof) of any
singularities is not simply a coordinate artefact.

With this in mind, for simplicity we first consider the mixedCµν
αβ non-

zero components of the Weyl tensor (these are equivalent to orthonormal
components):

Ctθ
tθ = Ctφ

tφ = Crθ
rθ = Crφ

rφ = −1

2
Ctr

tr = −1

2
Cθφ

θφ

=
6r2m+ a2

(
2
√
r2 + a2 − 3m

)

6 (r2 + a2)
5
2

. (6.8)

Note that as r → 0 these Weyl tensor components approach the finite value
2a−3m

6a3
.

For the Riemann tensor the non-zero components are a little more compli-
cated:

Rtr
tr =

m(2r2 − a2)

(r2 + a2)
5
2

;

Rtθ
tθ = Rtφ

tφ =
−r2m

(r2 + a2)
5
2

;

Rrθ
rθ = Rrφ

rφ =
m (2a2 − r2)− a2

√
r2 + a2

(r2 + a2)
5
2

;

Rθφ
θφ =

2r2m+ a2
√
r2 + a2

(r2 + a2)
5
2

. (6.9)

Provided a 6= 0, as |r| → 0 all of these Riemann tensor components ap-
proach finite limits:

Rtr
tr → −

m

a3
;

Rtθ
tθ = Rtφ

tφ → 0 ;

Rrθ
rθ = Rrφ

rφ →
2m− a
a3

;

Rθφ
θφ →

1

a2
. (6.10)
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As |r| increases, with m and a held fixed, all components asymptote to
multiples of m/r3, hence as |r| → +∞, all components tend to 0 (this is
synonymous with the fact that for large |r| this geometry models weak
field general relativity). Hence ∀ r ∈ (−∞,+∞) the components of the
Riemann tensor are strictly finite. We may conclude that on the interval
a ∈ (0, 2m] there is a horizon, but no singularity, and the metric really does
represent the geometry of a regular black hole. In the case when a > 2m
and we have a traversable wormhole, trivially there are also no singulari-
ties.

The Ricci tensor has non-zero (mixed) components:

−2Rt
t = Rθ

θ = Rφ
φ =

2a2m

(r2 + a2)
5
2

,

Rr
r =

a2
(
3m− 2

√
r2 + a2

)

(r2 + a2)
5
2

. (6.11)

The Einstein tensor has non-zero (mixed) components:

Gt
t =

a2
(√

r2 + a2 − 4m
)

(r2 + a2)
5
2

, Gr
r =

−a2

(r2 + a2)2 ,

Gθ
θ = Gφ

φ =
a2
(√

r2 + a2 −m
)

(r2 + a2)
5
2

. (6.12)

6.3 Curvature invariants

The Ricci scalar is:

R =
2a2
(
3m−

√
r2 + a2

)

(r2 + a2)
5
2

. (6.13)

The Ricci contraction RµνR
aµν is:

RµνR
µν =

a4
[
4
(√

r2 + a2 − 3
2
m
)2

+ (3m)2
]

(r2 + a2)5 . (6.14)

Note that this is a sum of squares and so automatically non-negative (and
finite).

The Weyl contraction CµναβCµναβ :

CµναβC
µναβ =

4

3 (r2 + a2)5

{
3m
(
2r2 − a2

)
+ 2a2

√
r2 + a2

}2

. (6.15)
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Note that this is a perfect square and so is automatically non-negative (and
finite).

The Kretschmann scalar is:

Rµναβ R
µναβ = Cµναβ C

µναβ + 2Rµν R
µν − 1

3
R2 , (6.16)

and so (in view of the above) is guaranteed finite without further calcula-
tion. Explicitly:

Rµναβ R
µναβ =

4

(r2 + a2)5

{√
r2 + a2

[
8a2m

(
r2 − a2

)]

+3a4
(
r2 + a2

)
+ 3m2

(
3a4 − 4a2r2 + 4r4

)}
. (6.17)

6.4 Stress-energy-momentum tensor

Let us examine the Einstein field equations for this spacetime. We first note
that for

√
r2 + a2 > 2m, that is, outside any horizon that may potentially be

present, one has ρ = −Ttt while p‖ = Tr
r and p⊥ = Tθ

θ = Tφ
φ. Using

the mixed components Gµ
ν = 8π T µν , this yields the following form of the

stress-energy-momentum tensor:

ρ = −a
2
(√

r2 + a2 − 4m
)

8π (r2 + a2)
5
2

;

p‖ =
−a2

8π (r2 + a2)2 ;

p⊥ =
a2
(√

r2 + a2 −m
)

8π (r2 + a2)
5
2

. (6.18)

Now a necessary condition for the NEC (null energy condition) to hold is
that both ρ+p‖ ≥ 0 and ρ+p⊥ ≥ 0 for all r, a, m. It is sufficient to consider:

ρ+ p‖ =
1

8π

{
−a

2
(√

r2 + a2 − 4m
)

(r2 + a2)
5
2

− a2

(r2 + a2)2

}

=
−a2(

√
r2 + a2 − 2m)

4π (r2 + a2)
5
2

. (6.19)

Assuming
√
r2 + a2 > 2m, this is manifestly negative for all values of a

and m in our domain, and the NEC is clearly violated.
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Note that for
√
r2 + a2 < 2m, that is, inside any horizon that may po-

tentially be present, the t and r coordinates swap their timelike/spacelike
characters and one has ρ = −Trr while p‖ = Tt

t and p⊥ = Tθ
θ = Tφ

φ. So
inside the horizon:

ρ =
a2

8πGN (r2 + a2)2 ;

p‖ =
a2
(√

r2 + a2 − 4m
)

8πGN (r2 + a2)
5
2

, (6.20)

and:

ρ+ p‖ =
a2(
√
r2 + a2 − 2m)

4πGN (r2 + a2)
5
2

. (6.21)

But since we are now working in the region
√
r2 + a2 < 2m this is again

negative, and the NEC is again clearly violated. We can summarize this
by stating:

ρ+ p‖ = −a
2 |
√
r2 + a2 − 2m|

4πGN (r2 + a2)
5
2

, (6.22)

which now holds for all values of r and is negative everywhere except on
any horizon that may potentially be present.

Demonstrating that the NEC is violated is sufficient to conclude that
the weak, strong, and dominant energy conditions shall also be violated [143].
We therefore have a spacetime geometry that accurately models that of a
regular black hole or a traversable wormhole depending on the value of
a, but clearly violates all of the classical energy conditions associated with
the stress-energy-momentum tensor [77, 104, 152, 17, 153, 154, 2, 3, 148, 98,
95, 96, 97, 144, 145, 146, 147].

6.5 Surface gravity and Hawking temperature

Let us now calculate the surface gravity at the event horizon for the regular
black hole case when a ∈ (0, 2m]. The Killing vector which is null at the
event horizon is ξµ = ∂t. This yields the following norm:

ξµξµ = gµνξ
µξν = gtt = −

(
1− 2m√

r2 + a2

)
. (6.23)



6.6. ISCO AND PHOTON SPHERE ANALYSIS 115

Then we have the following relation for the surface gravity κ (see for in-
stance [158, 102, 69]):

∇ν (−ξµξµ) = 2κξν . (6.24)

That is:

∇ν

(
1− 2m√

r2 + a2

)
= 2κξν ; (6.25)

Keeping in mind that the event horizon is located at radial coordinate r =√
(2m)2 − a2 we see:

κ =
∂r
2

(
1− 2m√

r2 + a2

) ∣∣∣∣∣
r=
√

(2m)2−a2
=

√
(2m)2 − a2

8m2
= κSch

√
1− a2

(2m)2
.

(6.26)
As a consistency check it is easily observed that for the Schwarzschild case
when a = 0, we have κ = 1

4m
, which is the expected surface gravity for the

Schwarzschild black hole. For a = 2m the null horizon (one-way throat)
is seen to be extremal. It now follows that the temperature of Hawking
radiation for our regular black hole is as follows (see for instance [158,
102, 69]):

TH =
}κ

2πkB
=
}
√

(2m)2 − a2

16πkBm2
= TH,Sch

√
1− a2

(2m)2
. (6.27)

6.6 ISCO and photon sphere analysis

Let us now find the location of both the photon sphere for massless parti-
cles and the ISCO for massive particles as functions of m and a.

Consider the tangent vector to the worldline of a massive or massless
particle, parameterized by some arbitrary affine parameter, λ:

gµν
dxµ

dλ

dxν

dλ
= −gtt

(
dt

dλ

)2

+grr

(
dr

dλ

)2

+
(
r2 + a2

)
{(

dθ

dλ

)2

+ sin2 θ

(
dφ

dλ

)2
}
.

(6.28)
We may, without loss of generality, separate the two physically interesting
cases (timelike and null) by defining:

ε =

{
−1 massive particle, i.e. timelike worldline ;

0 massless particle, i.e. null worldline . (6.29)
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That is, ds2/dλ2 = ε. Due to the metric being spherically symmetric we
may fix θ = π

2
arbitrarily and view the reduced equatorial problem:

gµν
dxµ

dλ

dxν

dλ
= −gtt

(
dt

dλ

)2

+ grr

(
dr

dλ

)2

+
(
r2 + a2

)(dφ
dλ

)2

= ε . (6.30)

The Killing symmetries yield the following expressions for the conserved
energy E per unit mass and angular momentum L per unit mass (see for
instance [158, 102, 69]):

(
1− 2m√

r2 + a2

)(
dt

dλ

)
= E ;

(
r2 + a2

)(dφ
dλ

)
= L . (6.31)

Hence:

(
1− 2m√

r2 + a2

)−1
{
−E2 +

(
dr

dλ

)2
}

+
L2

r2 + a2
= ε ; (6.32)

implying:
(
dr

dλ

)2

= E2 +

(
1− 2m√

r2 + a2

){
ε− L2

r2 + a2

}
. (6.33)

This gives ‘effective potentials’ for geodesic orbits as follows:

Vε(r) =

(
1− 2m√

r2 + a2

){
−ε+

L2

r2 + a2

}
. (6.34)

• For a photon orbit we have the massless particle case ε = 0. Since we
are in a spherically symmetric environment, solving for the locations
of such orbits amounts to finding the coordinate location of the ‘pho-
ton sphere’. That is, the value of the r-coordinate sufficiently close to
our central mass such that photons are forced to propagate along cir-
cular geodesic orbits. These circular orbits occur at V ′0 (r) = 0. That
is:

V0(r) =

(
1− 2m√

r2 + a2

)(
L2

r2 + a2

)
, (6.35)

leading to:

V
′

0 (r) =
2rL2

(r2 + a2)
5
2

{
3m−

√
r2 + a2

}
. (6.36)

When V
′

0 (r) = 0, if we discount the solution r = 0 (as this spheri-
cal surface is clearly invalid for the location of the photon sphere),
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this gives the location of these circular orbits as r = ±
√

(3m)2 − a2.
Firstly note that if a ∈ (0, 2m], (3m)2 > a2 ∀ a, hence this solution
does in fact correspond to a real-valued r-coordinate within our do-
main. Hence the photon sphere in our universe (i.e. taking posi-
tive solution) for the case when the geometry is a regular black hole
has coordinate location r =

√
(3m)2 − a2. It also follows that in the

case when a > 2m and we have a traversable wormhole, since we
have strictly defined our r-coordinate to take on real values, there ex-
ists a photon sphere location in our universe only for the case when
2m < a < 3m. When a > 3m we have no photon sphere. To verify
stability, check the sign of V ′′0 (r):

V
′′

0 (r) =
2L2

(r2 + a2)
7
2

{
√
r2 + a2

(
3r2 − a2

)
− 3m

(
4r2 − a2

)
}
. (6.37)

For ease of notation let us first establish that when r =
√

(3m)2 − a2,
then r2 + a2 = (3m)2, hence it can be shown that:

V
′′

0

(
r =

√
(3m)2 − a2

)
=
−2L2

(3m)6

(
(3m)2 − a2

)
< 0 . (6.38)

Now V
′′

0 < 0 implies instability, hence there is an unstable photon
sphere at r =

√
(3m)2 − a2 as presumed. For the Schwarzschild so-

lution the location of the unstable photon sphere is at r = 3m; which
provides a useful consistency check.

• For massive particles the geodesic orbit corresponds to a timelike
worldline and we have the case that ε = −1. Therefore:

V−1(r) =

(
1− 2m√

r2 + a2

)(
1 +

L2

r2 + a2

)
, (6.39)

and it is easily verified that this leads to:

V
′

−1(r) =
2r

(r2 + a2)
5
2

{
L2
(

3m−
√
r2 + a2

)
+m

(
r2 + a2

)}
. (6.40)

Equating this to zero and rearranging for r gives a messy solution for
r as a function of L,m and a. Instead it is preferable to assume a fixed
circular orbit at some r = rc, and rearrange the required angular
momentum Lc to be a function of rc, m, and a. It then follows that
the innermost circular orbit shall be the value of rc for which Lc is
minimised.
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Hence if V ′−1(rc) = 0, we have:

L2
c

(
3m−

√
r2
c + a2

)
+m

(
r2
c + a2

)
= 0 , (6.41)

implying:

Lc (rc,m, a) =

√
m (r2

c + a2)√
r2
c + a2 − 3m

, (6.42)

As a consistency check, for large rc (i.e. rc >> a) we observe thatLc ≈√
mrc, which is consistent with the expected value when considering

circular orbits in weak-field general relativity.

It is then easily obtained that:

∂Lc
∂rc

=




√
mrc

2
√√

r2
c + a2 − 3m



(

2√
r2
c + a2

− 1√
r2
c + a2 − 3m

)
.

(6.43)
Solving for stationary points, and excluding rc = 0 (as this lies within
the photon sphere, which is clearly an invalid solution for the ISCO
of a massive particle):

√
r2
c + a2 − 6m = 0 ; =⇒ rc =

√
(6m)2 − a2 , (6.44)

(once again, discounting the negative solution for rc in the interests
of remaining in our own universe). We therefore have a coordinate
ISCO location at rc =

√
(6m)2 − a2. This is consistent with the ex-

pected value (r = 6m) for Schwarzschild, when a = 0. For our
traversable wormhole geometry, provided 2m < a < 6m we will
have a valid ISCO location in our coordinate domain. When a > 6m,
we have a traversable wormhole with no ISCO.

Denoting rH as the location of the horizon, rPhoton as the location of the
photon sphere, and rISCO as the location of the ISCO, we have the follow-
ing summary:

• rH =
√

(2m)2 − a2 ;

• rPhoton =
√

(3m)2 − a2 ;

• rISCO =
√

(6m)2 − a2 .
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6.7 Regge-Wheeler analysis

Considering the Regge-Wheeler Equation in view of the formalism de-
veloped in [30], (see also reference [29]), we may explicitly evaluate the
Regge-Wheeler potentials for particles of spin S ∈ {0, 1} in our spacetime.
Firstly define a tortoise coordinate as follows:

dr∗ =
dr(

1− 2m√
r2+a2

) , (6.45)

which gives the following expression for the metric Eq. 6.2:

ds2 =

(
1− 2m√

r2 + a2

){
−dt2+dr2

∗

}
+
(
r2 + a2

) (
dθ2 + sin2 θ dφ2

)
. (6.46)

It is convenient to write this as:

ds2 = A(r∗)
2

{
− dt2 + dr2

∗

}
+B(r∗)

2
(
dθ2 + sin2 θ dφ2

)
. (6.47)

The Regge–Wheeler equation is [30]:

∂2
r∗φ̂+ {ω2 − VS}φ̂ = 0 , (6.48)

where φ̂ is the scalar or vector field, V the spin-dependent Regge-Wheeler
potential for our test particle, and ω is some temporal frequency compo-
nent in the Fourier domain. For a scalar field (S = 0) examination of the
d’Alembertian equation quickly yields:

VS=0 =

{
A2

B2

}
`(`+ 1) +

∂2
r∗B

B
. (6.49)

For a vector field (S = 1) conformal invariance in ‘3+1’-dimensions guar-
antees that the Regge-Wheeler potential can depend only on the ratioA/B,
whence normalizing to known results implies:

VS=1 =

{
A2

B2

}
`(`+ 1) . (6.50)

Collecting results, for S ∈ {0, 1}we have:

VS =

{
A2

B2

}
`(`+ 1) + (1− S)

∂2
r∗B

B
. (6.51)

The spin 2 axial mode is somewhat messier, and not of immediate interest.
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Noting that for our metric: ∂r∗ =
(

1− 2m√
r2+a2

)
∂r, and B =

√
r2 + a2,

we have:

∂2
r∗B

B
=

{
1− 2m√

r2 + a2

} (
2m(r2 − a2) + a2

√
r2 + a2

(r2 + a2)5/2

)
. (6.52)

Therefore:

VS∈{0,1} =

(
1− 2m√

r2 + a2

){
`(`+ 1)

r2 + a2

+(1− S)

(
2m(r2 − a2) + a2

√
r2 + a2

(r2 + a2)5/2

)}
.

(6.53)

This has the correct behaviour as a→ 0. Note that this Regge-Wheeler po-
tential is symmetric about r = 0. For a < 2m the situation is qualitatively
similar to the usual Schwarzschild case (the tortoise coordinate diverges
at either horizon, and VS∈{0,1} → 0 at either horizon). For a = 2m the
tortoise coordinate diverges at the extremal horizon (one-way null throat),
while we still have VS∈{0,1} → 0. For a > 2m the tortoise coordinate con-
verges at the wormhole throat, while we now have have VS∈{0,1} nonzero
and positive at the throat:

VS∈{0,1} →
(

1− 2m

a

){
`(`+ 1)

a2
+ (1− S)

(
a− 2m

a3

)}
. (6.54)

6.8 Overview

We have analysed a candidate spacetime which models qualitatively dif-
ferent geometries in an a-dependent manner with minimal perversion to
the Schwarzschild solution (with a being the newly introduced scalar pa-
rameter in the metric). When a ∈ (0, 2m) the geometry models a regu-
lar black hole (in the sense of Bardeen) possessing a spacelike ‘bounce’ at
r = 0, when a = 2m we have an extremal null bounce corresponding to a
one-way traversable wormhole, and for a > 2m we have a standard two-
way traversable wormhole in the sense of Morris and Thorne. This met-
ric candidate therefore neatly interpolates between the classes of space-
time which are of primary interest in this thesis, and it does so in a neat
and tractable manner, broadening the class of ‘regular black holes’ and
‘traversable wormholes’ beyond those typically considered. Accordingly,
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further analysis of this candidate spacetime is prudent, and we immedi-
ately look to extend the discussion by imposing a time dependence on the
metric in §7.
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Chapter 7

Beyond the static case:
Introducing Vaidya spacetimes

7.1 Introduction

In §6 (also see reference [124]) the following static spacetime was consid-
ered:

ds2 = −
(

1− 2m√
r2 + a2

)
dt2 +

dr2

1− 2m√
r2+a2

+
(
r2 + a2

) (
dθ2 + sin2 θdφ2

)
.

(7.1)
Adjusting the parameter a, assuming without loss of generality that a > 0,
following the analysis of §6, this metric represents either:

• The ordinary Schwarzschild spacetime (a = 0) ;
• A ‘black-bounce’ with a one-way spacelike throat (a < 2m) ;
• A one-way wormhole with a null throat (a = 2m); or
• A traversable wormhole in the Morris-Thorne sense (a > 2m) .

Now let us look to explore a (relatively) tractable way of adding time-
dependence to this spacetime. We start by re-writing the static spacetime
in Eddington–Finkelstein coordinates:

ds2 = −
(

1− 2m√
r2 + a2

)
dw2 − (±2 dw dr) +

(
r2 + a2

) (
dθ2 + sin2 θ dφ2

)
.

(7.2)
Here w = {u, v} is the {outgoing, ingoing} null time coordinate, that is it
represents {retarded, advanced} time. Here the upper + sign corresponds
to u, and the lower − sign corresponds to v. We now invoke a Vaidya-like
trick [132, 130, 131, 27, 159, 111], by allowing the mass parameter m(w) to
depend on the null time coordinate.

123
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That is we consider the spacetime described by the metric:

ds2 = −
(

1− 2m(w)√
r2 + a2

)
dw2 − (±2 dw dr) +

(
r2 + a2

) (
dθ2 + sin2 θ dφ2

)
.

(7.3)
When a → 0 this is just the standard Vaidya spacetime [132, 130, 131,
27, 159, 111] (either a ‘shining star’ or a star accreting a flux of infalling
null dust). This metric can be used either to study the collapse of null
dust, or the semiclassical evaporation of black holes. When the parameter
m(w)→ m is a constant we just have the static ‘black-bounce’/traversable
wormhole of §6. The point of introducing time-dependence in this precise
manner is to keep calculations algebraically tractable; and so provide a
simple model of an evolving regular black hole. Another considerably less
tractable option, which will not be explored in this thesis, would consist
of promoting the parameter a to a(w), with m either kept constant or not.

So it is natural to argue that, on one hand, for an increasing func-
tion m(v) crossing the a/2 limit, the spacetime metric Eq. 7.3 describes
the conversion of a wormhole into a regular black hole by the accretion
of null dust. On the other hand, for a decreasing function m(u) crossing
the a/2 limit, the situation will correspond to the evaporation of a regu-
lar black hole leaving a wormhole remnant. Moreover, this may be re-
lated to the more-or-less equivalent process of phantom energy accretion
onto black holes, which should, however, be studied considering nega-
tive energy and using the ingoing null coordinate v (for related discus-
sion see [8, 9, 94, 62, 93, 88]). Finally, it is worth noticing that one can
describe the transmutation of a regular black hole into a wormhole and
vice versa in this classical description only because the black hole is reg-
ular and, therefore, there is no topology change. It should be noted that
‘black-bounce’ models have recently become quite popular, though more
typically for bounces back into our own universe (see for instance ref-
erences [14, 11, 13, 12, 59, 121, 67, 38, 46, 89, 109, 22, 90]). Not all of
these bounce models are entirely equivalent, either to each other or to the
bounce scenarios of this current analysis. Let us now investigate whether
the above mentioned physical scenarios can actually be described by the
metric Eq. 7.3, and subsequently analyse interesting physical characteris-
tics of this geometry.

7.2 Geometric basics

Consider the metric:

ds2 = −
(

1− 2m(w)√
r2 + a2

)
dw2 − (±2 dw dr) +

(
r2 + a2

) (
dθ2 + sin2 θ dφ2

)
,

(7.4)
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where the coordinates have natural domains:

w ∈ (−∞,+∞); r ∈ (−∞,+∞); θ ∈ [0, π]; φ ∈ (−π, π] . (7.5)

Here w = {u, v} denotes the {outgoing, ingoing} null time coordinate, and
± → + for u, while ± → − for v.

The radial null curves are found by setting:

0 = ds2 = dw

[(
1− 2m(w)√

r2 + a2

)
dw ± 2 dr

]
, (7.6)

corresponding to:

dw = 0 and dr = ∓1

2

(
1− 2m(w)√

r2 + a2

)
dw , (7.7)

and the associated radial null vectors are proportional to:

kµ = (0, 1, 0, 0) and kµ =

(
1,∓1

2

(
1− 2m(w)√

r2 + a2

)
, 0, 0

)
, (7.8)

respectively. For tangential null curves (that is, dr = 0) we can without
any loss of generality set φ = 0 and concentrate on:

0 = ds2 = −
(

1− 2m(w)√
r2 + a2

)
dw2 + (r2 + a2)dθ2 , (7.9)

for which the associated tangential null vectors (defined only for√
r2 + a2 ≥ 2m(w)) are proportional to:

kµ =

(
√
r2 + a2, 0,

√
1− 2m(w)√

r2 + a2
, 0

)
. (7.10)

Similarly to the static case analysed in §6, we can define a ‘coordinate
speed of light’ that is equal to dr/dw. If 2m(w) > a, this quantity van-
ishes at:

rAH(w) = ±
√

(2m(w))2 − a2 , (7.11)

so we have a dynamical apparent horizon. The existence of a future/past
event horizon depends on the presence or absence of an apparent horizon
in the limit t → ±∞. We already know from the static case that there is
a throat/bounce hypersurface at r = 0. At this hypersurface the induced
three-metric is:

ds|2Σ = −
(

1− 2m(w)

a

)
dw2 + a2

(
dθ2 + sin2 θ dφ2

)
. (7.12)
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Geometrically, this induced three-geometry is always a cylinder, though
potentially of variable signature. Specifically this r = 0 hypersurface is
timelike if 2m(w)/a < 1, null (lightlike) if 2m(w)/a = 1, and spacelike if
2m(w)/a > 1. These correspond to a traversable wormhole throat, a one-
way null throat, or a ‘black-bounce’ respectively, where now (as opposed
to the static discussion of §6) the nature of the throat can change in a w-
dependent manner. Because of this feature, the relevant Carter-Penrose
diagrams will thus depend on the entire history of the ratio 2m(w)/a over
the entire domain w ∈ (−∞,+∞). Since the Carter-Penrose diagrams are
constructed to exhibit intrinsically global causal structure, to determine
them one needs global information regarding 2m(w)/a.

7.3 Einstein tensor and energy conditions

In Eddington-Finkelstein coordinates, as long as a 6= 0, both the metric
gµν and the inverse metric gµν have finite components for all values of r.
Moreover, as it was shown in detail for the static case, and as we shall
analyse for the dynamical case, all the curvature tensors (Riemann, Weyl,
Ricci, Einstein) have finite components for all values of r. Consequently,
even for a time-dependentm(w) one still has a regular spacetime geometry
– there are no curvature singularities.

We discuss here in some detail the results for the Einstein tensor, since
it is strongly related with the stress-energy tensor in general relativity. The
Einstein tensor has non-zero components:

Gww = ∓ 2r ṁ(w)

(r2 + a2)3/2
−
a2
{

1− 2m(w)√
r2+a2

}{
1− 4m(w)√

r2+a2

}

(r2 + a2)2
;

Gwr = ∓a2

√
r2 + a2 − 4m(w)

(r2 + a2)5/2
;

Grr =
−2a2

(r2 + a2)2
;

Gθθ = +
a2(
√
r2 + a2 −m(w))

(r2 + a2)3/2
=

Gφφ

sin2 θ
. (7.13)

with ṁ(w) = dm/dw. Note that the derivative term ṁ(w) only shows up
linearly, and only in a very restricted way. In fact we can write:

Gµν = Gnonderivative
µν ∓ 2r ṁ(w)

(r2 + a2)3/2
(dw)µ(dw)ν , (7.14)

where we remind the reader that the upper − sign corresponds to the out-
going coordinate u and the lower + sign to the ingoing coordinate v. It is
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interesting to underline that the derivative term is precisely the only term
present in the pure Vaidya case where a = 0. Note that Gµν ∝ Tµν . So, it is
like we were considering a flux equivalent to that of the Vaidya geometry
on top of the (now dynamical) fluid that generates the static spacetime. It
is in this sense that discussion ensues on the existence of a null flux pro-
portional to ṁ(w) in the dynamical region of the geometry in §7.4.

Now, let us consider the nature of the matter content generating these
geometries. We already know that the material supporting the static ge-
ometry, with m(w) = m, violates the null energy condition (NEC). This
condition is a necessary requirement for forcing all timelike observers to
see non-negative energy densities. As the NEC is used in the singular-
ity theorems to assure convergence of geodesics in general relativity, one
should already expect to have some violations in wormholes, where the
throat has to flare out, or in ‘black bounces’, which avoid the formation of
singularities [63, 77, 104, 152, 17, 153, 154, 2, 3, 148, 98, 95, 96, 144, 145, 146,
147].

In the dynamical case, some results of the static geometry will be re-
covered, but there will also be some crucial differences. For the specific
radial null vector kµ = (0, 1, 0, 0) we have:

Tµνk
µkν ∝ Gµνk

µkν = Grr = − 2a2

(r2 + a2)2
. (7.15)

This implies that in general relativity the stress-energy-momentum tensor
is always NEC violating. Although the result above is already enough
to conclude the violation of the NEC, let us study other contractions in
order to figure out the effect of having a non-constant mass. For the other
radial null vector kµ =

(
1,∓1

2

(
1− 2m(w)√

r2+a2

)
, 0, 0

)
, where the minus sign

corresponds to u and the plus sign to v, we have:

Gµνk
µkν = −a

2
(√

r2 + a2 − 2m(w)
)2

2(r2 + a2)3
∓ 2rṁ(w)

(r2 + a2)3/2
. (7.16)

The non-derivative term is always NEC violating. The derivative term
ṁ(w) might or might not be NEC violating depending on sign. When con-
sidering ingoing radiation (described by v) the stress-energy-momentum
tensor that can be constructed considering only the derivative term satis-
fies the NEC for non-decreasingm(v). For outgoing radiation the situation
is the opposite, so the NEC is satisfied by that flux for ṁ(u) < 0. Overall
NEC violation in this particular direction would depend on relative mag-
nitudes and signs.

In contrast, for the transverse null vector:

kµ =

(
√
r2 + a2, 0,

√
1− 2m(w)√

r2 + a2
, 0

)
, (7.17)
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we have:

Gµνk
µkν =

3m(w)a2(
√
r2 + a2 − 2m(w))

(r2 + a2)2
∓ 2rṁ(w)√

r2 + a2
. (7.18)

The non-derivative term is now NEC satisfying for wormholes and out-
side the horizon of regular black holes. The derivative term ṁ(w) might or
might not be NEC violating depending on sign. Overall NEC violation in
this particular direction would depend on relative magnitudes and signs.
However, we emphasise that to violate the NEC it is sufficient to have
even one direction in which we have non-positive contraction Gµνk

µkν .
This certainly occurs for the radial direction; see Eq. 7.15.

Summarising, we can write:

Tµν = T nonderivativeµν + T derivativeµν , with T derivativeµν ∝ ∓ṁ(w) (dw)µ(dw)ν .
(7.19)

Whereas T nonderivativeµν always violates the NEC in the radial direction; the
flux described by T derivativeµν satisfies the NEC for ingoing radiation with
ṁ(v) ≥ 0 and for outgoing radiation with ṁ(u) ≤ 0.

7.4 Physical models

Let us now analyse some particular evolutionary scenarios that can be de-
scribed by the spacetime metric Eq. 7.3. In particular, focus is placed on
several situations of direct physical interest first taking ingoing Eddington-
Finkelstein coordinates and later outgoing Eddington-Finkelstein coordi-
nates. We classify those scenarios as having ingoing or outgoing radiation,
respectively, focusing attention on the T derivativeµν part of the stress-energy-
momentum tensor, which is not present in the static case.

7.4.1 Models with ingoing radiation

Let us now focus on the metric with ingoing (advanced) Eddington-Finkel-
stein coordinates. That is:

ds2 = −
(

1− 2m(v)√
r2 + a2

)
dv2+2 dv dr+

(
r2 + a2

) (
dθ2 + sin2 θ dφ2

)
. (7.20)

As is well known, in the standard Vaidya situation [132, 130, 131, 27, 159,
111] (that is for a = 0), this metric describes an ingoing null flux with
Tvv ∝ 2ṁ(v)/r2. So, the black hole mass increases as a result of an ingoing
flux with positive energy. When a 6= 0, the geometry is generated by a non-
vanishing stress-energy-momentum tensor even in the static case, m(v) =
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m. But, as we have discussed in the previous section, when one allows
m(v) to be a dynamical quantity, then an extra null flux term will appear
in that tensor. That is:

T derivativeµν ∝ ṁ(v) (dv)µ(dv)ν . (7.21)

So, the derivative contribution to the null flux is positive for ṁ(v) > 0 and
negative for ṁ(v) < 0. In this case we can distinguish three different phys-
ically relevant situations. Denoting m0 as the initial mass, two of them
are characterised by ṁ(v) > 0 and the last one by ṁ(v) < 0. These three
scenarios are:

Growing ‘black-bounce’ (a < 2m0)

For an outside observer in our universe the initial situation will be sim-
ilar to that for a black hole with an apparent horizon given by r+0 =√

(2m0)2 − a2; however, the interior region will instead describe a bounce
into another universe. Now, turn on an additional positive ingoing null
flux by considering a non-constant increasing function m(v). With the in-
crease of m(v), the radius of the apparent horizon will also increase, r+(v),
leading to a bigger black object. A particularly simple example is that of
linear growth, given by:

m(v) =





m0 > a/2, v ≤ 0 ;
m0 + αv, 0 < v < vf ;
mf = m0 + α vf , v ≥ vf ,

(7.22)

with α > 0. In this case, there is an apparent horizon at:

r+(v) =
√

(2m(v))2 − a2 , (7.23)

and an event horizon, which partially overlaps with the final apparent
horizon, located at:

r+f =
√

4m2
f − a2 =

√
(2m0 + 2α vf )2 − a2 . (7.24)

The Carter-Penrose diagram for this scenario can be seen in Fig. 7.1, whereas
in Fig. 7.2 we show the resulting spacetime if one considers that a similar
flux is turned on in the parallel universe.
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Figure 7.1: Carter-Penrose diagram for a growing ‘black-bounce’. There
is positive radiation being accreted by the ‘black-bounce’ for 0 < v <
vf (shown by arrows in the diagram). The apparent horizon evolves
from AH0 to AHf . Note that before the influx of this radiation the
diagram is symmetric; however, during accretion of the fluid by the
‘black-bounce’ the diagram is asymmetric, and after the subsequent post-
accretion bounce the diagram is again symmetric but shifted to the right.
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Provided a 6= 0, as |r| ! 0 all of these Riemann tensor components approach finite
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Figure 7.2: Carter-Penrose diagram for a growing ‘black-bounce’. We now
restore the symmetric character of the diagram by assuming that, for some
reason, there is also positive radiation being accreted by the ‘black-bounce’
of the parallel universe for 0 < v < vf .



132CHAPTER 7. BEYOND THE STATIC CASE: INTRODUCING VAIDYA SPACETIMES

Wormhole to ‘black-bounce’ transition (a > 2m0)

In this case, the initial scenario will be that of a traversable Morris–Thorne
wormhole (which could even have m0 = 0). Now, we again turn on an
additional ingoing flux with positive energy, by taking a non-constant in-
creasing function m(v). At first, this will have no effect in the causal prop-
erties of the geometry. But, if the increasing function m(v) crosses the crit-
ical value a/2, then we will momentarily have a one-way wormhole, and
then a regular black hole will form. So sufficiently large ingoing positive
null flux will lead to the transition from a wormhole to a regular black
hole. As in the previous case, we could consider:

m(v) =





m0 < a/2, v ≤ 0 ;
m0 + αv, 0 < v < vf ;
mf = m0 + α vf > a/2, v ≥ vf .

(7.25)

The Carter-Penrose diagram of this scenario can be seen in Fig. 7.3. This
situation can be interpreted as the accretion of energy satisfying the NEC
onto a wormhole. When the mass of the hole reaches the value 2m(v) =
a, its causal character changes from timelike to spacelike, momentarily
passing through null. At that point, an apparent horizon forms to hide the
spacelike bounce. The event horizon of our space, which partially overlaps
with the final apparent horizon, is placed at:

r+f =
√

4m2
f − a2 =

√
(2m0 + 2α vf )2 − a2 . (7.26)
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Figure 7.3: Carter-Penrose diagram for a wormhole to ‘black-bounce’ tran-
sition. There is an incoming flux of positive radiation into the wormhole
(depicted by arrows) that causes its transmutation into a ‘black-bounce’.
That is, the timelike wormhole throat hypersurface becomes a spacelike
‘black-bounce’ hypersurface, passing through being null at the point from
which the apparent horizon emerges. Since there is a final apparent hori-
zon, our universe would have an event horizon which cannot end at the
throat (which is not a boundary of the spacetime) and, therefore, continues
through the other universe.
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Phantom energy accretion onto a ‘black-bounce’

One could also consider the case in which the additional ingoing flux that
we turn on when allowing m(v) to vary is characterised by a negative
energy density. This type of exotic fluid is called phantom energy in a cos-
mological setting. The accretion of phantom energy into black holes has
been studied in the test-fluid regime [8, 9, 94, 62, 93, 88], predicting a de-
crease of the black hole mass. With the present formalism we could take
into account the back-reaction of this process, by using the advanced met-
ric Eq. 7.20, but considering ṁ(v) < 0. However, an important difference
with that picture is that our static geometry is a non-vacuum solution of
the Einstein equations. We consider again for simplicity a finite region of
linear evolution, that is now:

m(v) =





m0 > a/2, v ≤ 0 ;
m0 − αv, 0 < v < vf ;
mf = m0 − α vf < a/2, v ≥ vf .

(7.27)

The apparent horizon of the regular black hole decreases due to the accre-
tion of phantom energy. At 2m(v) = a, this horizon disappears and the
bounce surface is null, becoming then timelike. So, an ideal observer in
this universe will see a black hole that is converted into a wormhole. The
Carter-Penrose diagram of this scenario can be seen in Fig. 7.4.
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Figure 7.4: Carter-Penrose diagram for a ‘black-bounce’ to wormhole tran-
sition due to the accretion of phantom energy. The arrows indicate the re-
gion where the phantom fluid is being accreted. There is a ‘black-bounce’
in our universe, characterised by an apparent horizon, that converts into a
wormhole. Therefore, there is no event horizon in our universe.
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7.4.2 Model with outgoing radiation

It is also interesting to consider the spacetime metric with outgoing (re-
tarded) Eddington-Finkelstein coordinates. That is:

ds2 = −
(

1− 2m(u)√
r2 + a2

)
du2−2 du dr+

(
r2 + a2

) (
dθ2 + sin2 θ dφ2

)
. (7.28)

For a = 0, this is the standard retarded Vaidya metric that describes an
outgoing null flux with Tuu ∝ −2ṁ(u)/r2. This scenario can be used to de-
scribe classically the back reaction of the semi-classical Hawking radiation
by a black hole, in which case there is a positive outgoing flux of radiation
that corresponds to a decrease of the black hole mass. For our case, a 6= 0
and we have a non-vacuum solution even for m(u) = m. So, when m(u)
varies, an extra null flux term will appear in that tensor (see §7.3), with:

T derivativeµν ∝ −ṁ(u) (du)µ(du)ν . (7.29)

Therefore, we have a positive outgoing flux for ṁ(u) < 0.

Classical effective description of black hole radiation

Of course, one should first study carefully the semi-classical properties of
this solution to interpret the outgoing flux as semi-classical [64, 155]. How-
ever, it is interesting to consider this scenario as we may have a ‘black-
bounce’ to wormhole transition similar to that already considered in the
previous subsection. In this case it would be interesting to emphasise
that the remnant of the ‘black-bounce’ would be a wormhole. The Carter-
Penrose diagram of this scenario can be seen in Fig. 7.5.
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another universe. Now, turn on an additional positive ingoing null flux by considering

a non-constant increasing function m(v). With the increase of m(v), the radius of

the apparent horizon will also increase, r+(v), leading to a bigger black object. A

particularly simple example is that of linear growth, given by

m(v) =

8
<
:

m0 > a/2, v  0;

m0 + ↵v, 0 < v < vf ;

mf = m0 + ↵ vf , v � vf ;

(4.3)

with ↵ > 0. In this case, there is an apparent horizon at r+(v) =
p

(2m(v))2 � a2

and an event horizon, which partially overlaps with the final apparent horizon, located

at r+f =
p

(2m0 + 2↵ vf )2 � a2. The Carter–Penrose diagram for this scenario can be

seen in Figure 1.

i+

i�

i0

J

Wormhole to black-bounce transition (a > 2m0). In this case, the initial scenario

will be that of a traversable Morris–Thorne wormhole (which could even have m0 = 0).

Now, we again turn on an additional ingoing flux with positive energy, by taking a

non-constant increasing function m(v). At first, this will have no e↵ect in the causal

properties of the geometry. But, if the increasing function m(v) crosses the critical

– 8 –

Figure 7.5: Carter-Penrose diagram for a ‘black-bounce’ to wormhole tran-
sition due to the emission of positive energy. This diagram is very similar
to that shown in Figure 7.4, however, now there is a (positive) flux being
emitted by the ‘black-bounce’ and wormhole.
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7.5 Curvature tensors and curvature invariants

The key point is that in Eddington-Finkelstein coordinates, as long as a 6=
0, both the metric gµν and the inverse metric gµν have finite components
for all values of r. Specifically (taking upper sign for u, lower sign for v):

gµν =




−
(

1− 2m(w)√
r2+a2

)
∓1 0 0

∓1 0 0 0
0 0 (r2 + a2) 0
0 0 0 (r2 + a2) sin2 θ


 , (7.30)

and:

gµν =




0 ∓1 0 0

∓1 +
(

1− 2m(w)√
r2+a2

)
0 0

0 0 1
(r2+a2)

0

0 0 0 1
(r2+a2) sin2 θ


 . (7.31)

Similarly we shall soon see that the curvature tensors (Riemann, Weyl,
Ricci, Einstein) have finite components for all values of r. Consequently,
even for a time-dependentm(w) one still has a regular spacetime geometry
– there are no curvature singularities.

With this in mind, for simplicity we first consider the non-zero compo-
nents of the Weyl tensor:

Cwrwr =
m(w)(a2 − 2r2)

(r2 + a2)5/2
− 2a2

3(r2 + a2)2

= ∓ 2Cwθrθ
r2 + a2

= ∓ 2Cwφrφ
(r2 + a2) sin2 θ

= − Cθφθφ
(r2 + a2)2 sin2 θ

;

Cwθwθ = −(2r2 − a2)m(w)2

(r2 + a2)2
+

(6r2 − 7a2)m(w)

6(r2 + a2)3/2
+

a2

3(r2 + a2)
=
Cwφwφ
sin2 θ

.

(7.32)

Note that there are no derivative contributions (no ṁ(w) = dm(w)/dw
contributions) to the Weyl tensor, and that the Weyl tensor components
are finite at all values of r.
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For the Riemann tensor the non-zero components are a little more compli-
cated:

Rwrwr = −(2r2 − a2)m(w)

(r2 + a2)5/2
;

Rwθrθ = ± r2m(w)

(r2 + a2)3/2
=
Rwφrφ

sin2 θ
;

Rrθrθ = − a2

(r2 + a2)
=
Rrφrφ

sin2 θ
;

Rθφθφ =

(
2r2m(w)√
r2 + a2

+ a2

)
sin2 θ ;

Rwθwθ = ∓ r ṁ(w)√
r2 + a2

+
r2m(w)

(r2 + a2)3/2
− 2r2m(w)2

(r2 + a2)2
=
Rwφwφ

sin2 θ
. (7.33)

Note that the derivative term ṁ(w) only shows up linearly, and only in a
very restricted way.

The Ricci tensor has non-zero components:

Ruu = ∓ 2r ṁ(w)

(r2 + a2)3/2
+
a2m(w)

{
1− 2m(w)√

r2+a2

}

(r2 + a2)5/2
;

Rur = ± a2m(w)

(r2 + a2)5/2
;

Rrr =
−2a2

(r2 + a2)2
;

Rθθ =
2a2m(w)

(r2 + a2)3/2
=

Rφφ

sin2 θ
. (7.34)

Note that the derivative term ṁ(w) only shows up linearly, and only in a
very restricted way. In fact for the outgoing u coordinate we we can write:

Rµν = Rnonderivative
µν − 2r ṁ(u)

(r2 + a2)3/2
(du)µ(du)ν . (7.35)

On the other hand, if we had taken instead the ingoing coordinate v, we
would have obtain Rvr = −Rur and a sign flip in the derivative term of
Rvv with respect that of Ruu. That is:

Rµν = Rnonderivative
µν +

2r ṁ(v)

(r2 + a2)3/2
(dv)µ(dv)ν . (7.36)
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The Einstein tensor has been discussed in §7.3, and those formulae will
not be repeated here.

Note that all of these curvature tensor components are finite at all val-
ues of r. From the discussion above, it is already clear that all of the (poly-
nomial) curvature invariants are all finite for all values of r. For instance,
the Ricci scalar is:

R = − 2a2

(r2 + a2)2

{
1− 3m(w)√

r2 + a2

}
. (7.37)

Note this is independent of the derivative term ṁ(w).

Furthermore, the Ricci contraction RµνR
µν is:

RµνR
µν = ± 8a2r ṁ(w)

(r2 + a2)7/2
+

4a4

(r2 + a2)4

{
1− 3m(w)√

r2 + a2
+

9m(w)2

2(r2 + a2)

}
;

= ± 8a2r ṁ(w)

(r2 + a2)7/2
+

4a4

(r2 + a2)4

{(
1− 3m(w)

2
√
r2 + a2

)2

+
9m(w)2

4(r2 + a2)

}
.

(7.38)

Note that the derivative term ṁ(w) only shows up linearly. Note that the
non-derivative contribution is a sum of squares and so automatically non-
negative. In ‘3+1’-dimensions GµνG

µν = RµνR
µν , so the GµνG

µν contrac-
tion provides nothing new.

The Weyl contraction CµναβCµναβ is a perfect square:

CµναβC
µναβ =

16a4

(r2 + a2)4

{
1− 3m(w)

2
√
r2 + a2

+
3m(w)r2

a2
√
r2 + a2

}2

. (7.39)

The Kretschmann scalar is:

Rµναβ R
µναβ = Cµναβ C

µναβ + 2Rµν R
µν − 1

3
R2 , (7.40)

and so (in view of the above) without further calculation we have:

Rµναβ R
µναβ = ±16a2r ṁ(w)

(r2 + a2)7/2
+

12a4

(r2 + a2)4

{
1 +

8m(w)(r2 − a2)

3a2
√
r2 + a2

+

m(w)2(4r4 − 4a2r2 + 3a4)

a4(r2 + a2)

}
. (7.41)

Note that the derivative term ṁ(w) only shows up linearly. All the curva-
ture invariants are well-behaved everywhere throughout the spacetime.
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7.6 Overview

We have analysed a simple method of adding time-dependence to the
‘black-bounce’ to traversable wormhole geometry presented in §6, by im-
posing a Vaidya-like time-dependence on the metric. Subsequently, var-
ious physical models of interest have been analysed in a tractable fash-
ion, providing an amenable framework for discussing the time-dependent
transition between ‘black-bounce’ and traversable wormhole geometries.
Further analysis of interest could potentially involve extending the time
dependence to the parameter a, such that both a(w) and m(w) are func-
tions of the outgoing/ingoing null time coordinate, however this analysis
will be extremely algebraically involved and is relegated to the domain of
future research.
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Chapter 8

Conclusions

The various analyses and discussions present in this thesis are primarily
focused on nonsingular model spacetimes. Numerous geometries mod-
elling either traversable wormholes or regular black holes (or the tran-
sition between the two) have been the subject of thorough general rela-
tivistic analysis, and several specific candidate spacetimes have been pre-
sented which extend the prior discussion beyond the class of singularity-
free spacetimes typically considered. Let us review the spacetimes of pri-
mary interest individually, before presenting a holistic conclusion of the
key findings.

8.1 The exponential metric

Regardless of one’s views regarding the merits of some of the ‘justifica-
tions’ used for advocating the exponential metric, the exponential metric
can simply be viewed as a phenomenological model that can be studied in
its own right. Viewed in this way the exponential metric has a number of
interesting features:

• It is a traversable wormhole, with time slowed down for stationary
observers on the other side of the wormhole throat.

• Strong field lensing phenomena are markedly different from the
Schwarzschild geometry.

• ISCOs and unstable photon orbits still exist, and they are moderately
shifted from where they would be located in Schwarzschild space-
time.

• Regge–Wheeler potentials can still be extracted, and are moderately
different from what they would be in Schwarzschild spacetime.

Many of the proponents of the exponential metric are arguing for using
it as a replacement for the Schwarzschild geometry of general relativity
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– however typically without any detailed assessment of the phenomenol-
ogy. It is strongly felt that if one wishes to replace all the black hole candi-
dates astronomers have identified with traversable wormholes, then cer-
tainly a careful phenomenological analysis of this quite radical proposal
(somewhat along the lines of §4.2) should be carried out. Perhaps most
ironically, despite the fact that many of the proponents of the exponential
metric reject general relativity, the exponential metric has a quite natural
interpretation in terms of general relativity coupled to a phantom scalar
field.

8.2 ‘Black-bounce’ to traversable wormhole

The regular black hole presented in §6 in some sense represents minimal
violence to the standard Schwarzschild solution. Indeed for a = 0 it is
the standard Schwarzschild solution. For a ∈ (0, 2m) the Carter-Penrose
diagram is in some sense ‘as close as possible’ to that for the maximally
extended Kruskal-Szekeres version of Schwarzschild, except that the sin-
gularity is converted into a spacelike hypersurface representing a ‘bounce’
into a future incarnation of the universe. This is qualitatively different
from the picture where the collapsing regular black hole ‘bounces’ back
into our own universe [14, 11, 13, 12, 59, 121, 67, 38, 46, 89, 109, 22, 90], and
is a scenario that deserves some attention in its own right. The specific
model introduced also has the very nice feature that it analytically inter-
polates between black holes and traversable wormholes in a particularly
clear and tractable manner. The ‘one-way’ wormhole at a = 2m, where the
throat becomes null and extremal, is particularly interesting and novel.

8.3 ‘Black-bounces’ in Vaidya spacetimes

In §7 several simple and tractable scenarios were presented for the time
evolution of the regular ‘black-bounce’/traversable wormhole spacetime
considered in §6. These models provide a good framework for consider-
ing ‘black-bounce’ ←→ traversable wormhole transitions. However, de-
spite the generality of the simple models shown, it should be noted that
in this framework a ‘black-bounce’ cannot be formed by gravitational col-
lapse from an ordinary stellar object. This is because in the limit m → 0,
we have a traversable wormhole instead of Minkowski spacetime. So, in
order to describe the physically relevant situation of stellar collapse one
should go beyond our simple treatment above and consider both a(w) and
m(w) appropriately. Note that computations would then be significantly
more complex, and more importantly that there would then be a qualitative
difference between the cases a = 0 and a 6= 0. Such considerations are left
for future work.
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8.4 Overall findings

All candidate spacetimes analysed have required some violation of one or
more of the classical energy conditions associated with the stress-energy-
momentum tensor in general relativity. For traversable wormhole geome-
tries, the ‘flare-out’ at the wormhole throat has consistently led to the vio-
lation of the null energy condition (NEC), and consequently the remaining
energy conditions are also violated. For regular black hole spacetimes we
observe the specific violation of the strong energy condition (SEC), and in
general the satisfaction of the radial NEC, in the absence of a wormhole
throat. This is consistent with the pre-existing discussion on the viability
of nonsingular geometries in the context of general relativity, and we may
conclude that a lack of singularities certainly requires violation of one or
more of the classical energy conditions on Tµν .

The traversable wormhole geometry induced by the exponential met-
ric of §4.2 has been thoroughly analysed and conclusively found to have a
standard interpretation in general relativity – it is the opinion of the author
that this should be sufficient evidence to stop using it as a ‘prop’ for alter-
native theories of gravity (such as Yilmaz gravity, vector theory of gravity,
etc.).

A result of primary interest is the establishment of a tractable frame-
work in which to discuss regular black hole/‘black-bounce’ to traversable
wormhole transitions; this is a corollary of the analyses in §6 and §7. These
spacetimes are of significant physical interest and extend the pre-existing
class of nonsingular geometries beyond those usually considered. There
are many potential avenues for further research in this specific framework,
and the conversion of regular black hole regions to wormhole geometries
is a subject of particular interest to those who are interested in the potential
fate of regular black holes, as it presents a qualitatively different discussion
to the canonical discourse pertaining to black hole evaporation.

The ‘exponentially suppressed mass’ metric analysed in §5.3 also pre-
sents opportunities for further research, defining a physically interesting
scenario where the effective mass of the central object is r-dependent,
asymptotically heading to zero as one nears the centre of mass. This is
a novel method of imposing geodesic completeness on the manifold, and
further analysis could include adding a time-dependence to the metric, or
thoroughly analysing the ISCO and photon sphere locations by unpacking
the solutions which are implicitly defined by the Lambert W function.

Holistically, it is hoped that the research presented in this thesis has
made a valuable contribution to some of the more qualitatively interesting
questions which remain open in general relativity, and once again I would
like to acknowledge and thank all those who have assisted me in any way
over the course of its construction. Special thanks goes to Professor Matt
Visser – your time and wisdom has been invaluable.
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Appendix of Publications

Publications in Journals:

• Exponential metric represents a traversable wormhole
P. Boonserm, T. Ngampitipan, A. Simpson, and M. Visser
Phys. Rev. D 98, 084048 (2018)
[arXiv:gr-qc/1805.03781]

• Black-bounce to traversable wormhole
A. Simpson and M. Visser
Journal of Cosmology and Astroparticle Physics Feb 2019, 02, 042
doi:10.1088/1475-7516/2019/02/042
[arXiv:gr-qc/1812.07114]

Article accepted for publication in Classical Quantum Gravity:

• Vaidya spacetimes, black-bounces, and traversable wormholes
A. Simpson, P. Martín-Moruno, and M. Visser
[arXiv:gr-qc/1902.04232] .
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