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Abstract

Software-Defined-Networking (SDN) simplifies the configuration complex-
ity in the computer communication network by decoupling the control
plane from the data plane in a switch. In SDN, the switch has the data
plane only and is configured by the logically centralised controller which
simplifies the forwarding of packets in the network. However, an SDN
switch is sensitive to delay and loss of packets which significantly affects
the network performance.

This thesis uses queueing theory to conduct modelling and perfor-
mance analysis of OpenFlow-based SDN switches. OpenFlow is the de-
facto protocol for communication between an SDN switch and the con-
troller. Using queueing theory, three aspects of packet processing in an
SDN switch are explored. First, the existing research has primarily mod-
elled the output buffer of an SDN switch using two buffer sharing mech-
anisms: the single shared buffer and the priority buffer. However, the ef-
fect of buffer dimensioning in these buffer sharing mechanisms has not
been investigated. Buffer dimensioning helps in determining the mini-
mum buffer capacity for a desired loss probability. The research in this
thesis shows that the use of priority buffer in an SDN switch reduces the
time to update flow tables than the shared buffer but at the cost of a higher
buffer capacity.

Second, much of the existing research has not investigated the impact
of internal buffering of data packets whereby a fraction of a data packet
header is sent to the controller instead of an entire data packet. To inves-
tigate the impact of internal buffering, the queueing model for an SDN
switch with the internal buffer is developed. The investigation shows that



at the time of congestion, the internal buffer in an SDN switch improves
the network performance with lower delay and lower packet loss.

Finally, existing research has focused on a software switch in SDN and
very little research has studied the performance of a hardware switch.
To characterise the performance of SDN-based hardware and software
switches and identify the tradeoffs between them, a unified queueing model
has been developed. The unified queueing model is an analytical tool for
network engineers to predict delay and packet loss in their SDN deploy-
ments. The analysis shows the benefits of a hardware switch over a soft-
ware switch. These benefits are lower delay and lower packet loss. How-
ever, the increasing involvement of the controller reduces the benefit of
using a hardware switch, i.e. forwarding packets at the line speed rate.

This research guides network designers and analysts in the selection
of the shared or buffer model for an SDN switch for their desired Quality
of Service (QoS). Furthermore, the developed queueing model for an SDN
switch with the internal buffer studies the impact of internal buffering in
an SDN switch. Finally, the unified queueing model helps in the selection
of a software or hardware switch in SDN.
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Chapter 1

Introduction

A switch/router in a computer communication network is a network-
ing device that primarily forwards packets. In traditional networking, a
switch/router has a control plane and data plane coupled together [2]. The
control plane performs control functions such as routing protocols and
middle-box configuration while the data plane forwards packets based
on decisions made by the control plane. This makes the control func-
tion hardware-dependent in the traditional network resulting in a com-
plex network configuration. In addition, the use of a low-level program-
ming language and vendor dependency makes it difficult for network op-
erators during configuration. To simplify the configuration complexity
in the traditional network, a new networking paradigm called Software-
Defined Networking (SDN) that uses a high-level programming language
has emerged [3].

SDN is a network paradigm in which the control plane is decoupled
from a switch/router. In an SDN, the control function is moved to a log-
ically centralised controller which eases the load on a switch/router with
the primary function of forwarding packets. It allows the network to be
controlled and managed through a software written in a high-level pro-
gramming language. The shift of control function from a hardware to
software dependency allows the system to be more agile, programmable

1



2 CHAPTER 1. INTRODUCTION

and centrally managed. This makes SDN a promising approach for fu-
ture networks and services such as Software-Defined Wireless Access Net-
work (SDWAN) [5], 5G mobile networks [6], Industrial Internet of Things
(IIoT) [7], Software-Defined Information Centric Network (ICN) [8], and
Software-Defined Smart Home [9]. The concept of an SDN is realised with
OpenFlow which is among the first and most widely used specification
to define communication between the controller and switch in an SDN
paradigm [4].

SDN is a promising network paradigm which overcomes limitations of
the traditional network [10]. However, research into identifying the poten-
tial bottlenecks of an SDN is still being conducted to improve the overall
performance of an SDN. The performance issues for packet processing in
an SDN switch that require further study and investigation are buffer shar-
ing mechanisms, packet encapsulation methods, and SDN switch types.
There are various buffer sharing models which need to be compared and
analysed to address design challenges such as provisioning of buffer ca-
pacity and protection of control packets in an SDN switch [11, 12]. Simi-
larly, there are provisions in OpenFlow for various packet encapsulation
methods at an SDN switch which are still unexplored [13]. These encapsu-
lation methods for processing data packets at SDN switch need to be stud-
ied and analysed to provide insights and guidelines to network analysts.
Finally, SDN switches are generally categorised into software switches and
hardware switches [14]. These switches need to be compared to develop
guidelines that can be used during SDN deployment.

The performance analysis of an SDN has been done by simulations,
measurements or experimental testbeds, and analytical models [2, 15].
While simulations and experimental testbeds have their own advantages,
analytical models can be used to verify and authenticate simulated or ex-
perimental results [16, 17]. Analytical modelling of an SDN switch pro-
vides important insights for benchmarking switch performance and para-
metric sensitivity analysis to help network engineers identify critical fac-
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tors that may influence network performance.

This thesis contributes to analytical modelling and performance anal-
ysis of a reactive SDN architecture using queueing theory. It investigates
different aspects of packet processing in an SDN switch. The outcomes
for these aspects will help network designers and analysts to achieve the
desirable network performance.

1.1 Motivation

Analytical models of an SDN switch are a key step for SDN performance
characterisation. These models will help network engineers design net-
works suitable for delay and packet loss sensitive applications like indus-
trial automation systems, interactive video, network gaming, VoIP, and
online surgery [18, 19, 20, 21]. Analytical models can be used in validating
experimental or simulated results with the theoretical support in the form
of mathematical expressions, theorems and proofs. They have the advan-
tage of being a cheaper and faster approaches for performance analysis
than experimental testbeds and simulations.

In an SDN switch, the control traffic feedback by the controller carries
important flow updates. The choice of buffer sharing mechanisms for an
SDN switch for the protection of flow updates has a significant impact
on the overall performance of an SDN [11, 12]. Therefore, the selection
of an appropriate buffer sharing mechanism that can provide protection
to flow updates and accurately capture SDN behaviour need to be stud-
ied. Generally, there are two buffer sharing mechanisms used for an SDN
switch which are: shared buffer model and priority buffer model. The shared
buffer model is the usual assumption for an SDN switch with a single
shared buffer for both control traffic and external data traffic arriving at
the switch. On the other hand, the priority buffer model uses a high prior-
ity class for the control traffic and low priority class for the data traffic [11].
Clearly, the priority buffer model provides protection to the flow updates
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but its effect on the overall performance of an SDN remains unclear. A
comparative analysis between the shared and priority buffer models will
guide switch designers in their SDN deployments.

Similarly, the data packet in a flow that arrives at the switch may not
have matching flow table entries is sent to the controller. Based on the
OpenFlow specification [13], the data packet seeking a flow update from
the controller can be processed via three packet encapsulation methods:
full encapsulation, internal buffering, and partial encapsulation. With the full
encapsulation method, the entire data packet is encapsulated and sent to
the controller. Whereas in the internal buffering method, the data packet
is temporarily buffered and a fraction of the data packet is only encapsu-
lated. In the partial encapsulation method, if there is sufficient memory
to buffer packets, the internal buffering method is used otherwise the full
encapsulation method is used. The full encapsulation method is the de-
fault packet processing method and is widely used for SDN switches [1].
Consequently, the remaining encapsulation methods, the internal buffer-
ing and partial encapsulation methods have not been explored much. The
selection of a packet encapsulation method at an SDN switch also affects
the overall performance of an SDN that need to be studied and investi-
gated. Therefore, the comparative analysis between these packet encapsu-
lation methods will guide network analysts to obtain the best performance
during their SDN deployments.

Lastly, unlike traditional networking, an SDN switch can also be cate-
gorised as a software or hardware switch. A software-based SDN switch
is a virtual switch such that is instantiated in a virtual machine, whereas a
hardware-based SDN switch is a physical switch [4]. A hardware switch
processes the incoming packets at the line speed rate but is resource con-
straint due to the cost, size and energy consumption. On the other hand,
a software switch is cheaper, consumes less power, is scalable and offers
flexibility to implement complex actions but at the cost of slower perfor-
mance [14]. Both software and hardware switches have strengths and
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weaknesses. Therefore, more research needs to be conducted into why
one could be selected rather than other to achieve an optimal performance
in an SDN.

Through research in analytical modelling using queueing theory, real-
istic queueing models for an SDN are expected that will represent SDN be-
haviour accurately and help in understanding various aspects of an SDN
switch through performance analyses. These models will guide switch
designers and network analysts in their SDN deployments.

1.2 Research Challenges

Modelling and performance analysis of an SDN switch come with the chal-
lenges that are attributed to the characteristics of an SDN and limitations
of analytical models. The research challenges associated with the mod-
elling and performance analysis of an SDN switch in this thesis are listed
below:

• Estimation of a cost-effective buffer capacity for an SDN switch.
Buffer dimensioning helps in estimating the minimum buffer capac-
ity for the switch such that packet loss in the switch is no more than
a desired link loss rate. However, buffer dimensioning estimates the
buffer capacity based on parameters such as the arrival rate, the ser-
vice rate, and the server utilisation. The estimated buffer capacity
may not be cost-effective and feasible for the desired loss probability.
Therefore, buffer dimensioning for different buffer sharing mecha-
nisms should consider the trade-off between Quality of Service (QoS)
and the cost factor.

• Modelling of an SDN switch with the internal buffer. With inter-
nal buffering in an SDN switch, the forwarding delay of packets can
be decreased [106], Quality of Service can be improved with reduced
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packet loss [122], and bandwidth of the control channel can be op-
timised [1]. However, internal buffering requires sufficient memory
which is not feasible in low-end SDN switches. Therefore, modelling
of an SDN switch with the internal buffer needs to assume that the
switch has sufficient memory to characterise internal buffering.

• Modelling of a hardware-based SDN switch. A hardware switch
maintains a software flow table in the central processing unit (CPU)
and a hardware flow table in the specialised hardware for forward-
ing of packets. The software and hardware flow tables are synchro-
nised through a middleware layer on the switch to avoid duplicate
entries and to ensure consistent forwarding behaviour. However, it
is difficult to characterise the synchronisation between software and
hardware flow tables in a hardware switch. Therefore, modelling
of a hardware-based SDN switch requires assumption that the CPU
synchronises the flow tables with the specialised hardware.

1.3 Research Goals

The associated research goals are as follows:

• To provide guidelines to switch designers that include selection
criteria for different buffering strategies and the minimum buffer
capacity for the desired loss probability. This goal aims at mod-
elling the output buffer of an SDN switch using queueing theory
where external and internal traffic arrives at the switch. The two
main objectives of this goal are: (i) to compare existing buffer shar-
ing models and (ii) to perform buffer dimensioning for informing
switch design.

• To provide insights to network analysts for the use of internal
buffering in an SDN with the prediction of performance measures
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such as the delay and packet loss. This goal aims to use queueing
theory to derive a first-order estimate of an SDN switch performance
and to identify potential trade-offs between switch designs with and
without the internal buffer. This goal is to develop the queueing
model to study internal buffering in an SDN switch. The two main
objectives of this goal are (a) to investigate the effect of the inter-
nal buffer in the performance of an SDN switch with the help of
a queueing model, and (b) to compare the queueing models for an
SDN switch with and without internal buffer, and hence identify the
trade-offs.

• To provide guidelines to network engineers for deployment choices
such as under what operating conditions a software data plane out-
performs a hardware data plane and vice versa. The final goal is to
develop the unified queueing model with software and hardware
switches. The unified queueing model will act as an analytical tool
for engineers to the predict delay, packet loss and throughput in their
SDN deployments. This goal has two main objectives, (i) to develop
queueing models for a hardware-based SDN switches, and (ii) to
compare queueing models for a software-based and hardware-based
SDN switch.

1.4 Contributions

This thesis contributes to the analytical modelling of an SDN paradigm in
the context of performance analysis for an SDN switch. The contributions
are listed as follows.

• Shared buffer vs. Priority queueing buffer. Queueing models for
the shared buffer model and the priority queueing buffer model for
an SDN switch were compared. Based on the comparative analysis,
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the priority queueing model has been shown to provide shorter de-
lay while installing flow table entries in the switch. However, this
benefit comes at the cost of a higher buffer capacity required for
the priority buffer than the shared buffer model. Adopting a priority
queue for an SDN switch provides better isolation between the data
and control traffic.

• Internal Buffering. The queueing model for an SDN switch with an
internal buffer was developed to investigate the potential benefits
and trade-off of internal buffering in SDN switches. From the com-
parative analysis with an SDN switch without an internal buffer, it
was observed that a switch with an internal buffer reduced the aver-
age delay and packet loss at the cost of extra switch buffer capacity
required. Therefore, the internal buffering in an SDN switch signif-
icantly reduces the average delay and loss probability at the time of
contention.

• Software vs. Hardware switch. Unified queueing models with and
without the internal buffer were developed to characterise the per-
formance of SDN-based hardware and software switches. SDN-based
hardware switches with and without the internal buffer have not
been investigated much, especially from the analytical modelling as-
pect. Therefore, unified queueing models are useful tools for net-
work analysts to get quick insights into both SDN-based software
and hardware switches. These tools help network analysts to predict
performance measures such as delay and loss probability in SDN-
based software and hardware switches. Delay and loss probability
are important metrics for delay and loss sensitive applications in
computer networks.
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1.5 Thesis Outline

The rest of this thesis is organized as follows.

Chapter 2 provides the overview of an SDN paradigm with different
aspects of packet processing in an SDN switch. The related works on
performance analysis of an SDN switch using queueing theory are
reviewed in this chapter.

Chapter 3 compares two commonly used buffer sharing models for
an SDN switch. These are the shared buffer model and priority
queueing buffer model. The comparison investigates trade-offs be-
tween these two buffer sharing mechanisms.

Chapter 4 investigates the effect of internal buffering in an SDN
switch. The queueing model for an SDN switch with internal buffer
is developed and compared against the queueing model for an SDN
switch without the internal buffer. The benefits and trade-offs of us-
ing the internal buffer in an SDN switch are identified.

Chapter 5 investigates the effect of a hardware switching in an SDN
switch. The queueing models for a hardware-based SDN switch with
and without the internal buffer are developed. These models are
compared against a software-based SDN switch to develop guide-
lines for the selection of a software data plane or a hardware data
plane.

Chapter 6 concludes this thesis with a summary of findings and sug-
gestions for future work based on the outcomes.



Chapter 2

Background and Related Work

This thesis investigates the packet processing aspects of the switch in the
Software-Defined Networking (SDN) to improve the overall performance
of an SDN. This chapter starts with the brief overview of an SDN to pro-
vide information about its concept, architecture, and one of its popular
protocol – OpenFlow. It is then followed by an explanation of an SDN
switch’s packet processing aspects that need to be analysed. This is fol-
lowed by an explanation of existing approaches for performance analysis
of an SDN. The pros and cons of existing approaches are then described.
The reasons for selection of analytical tools, queueing theory, and Quasi-
Birth-Death process are briefly discussed in existing approaches for per-
formance analysis.
Next, previous works that are related to queueing models for SDN switches
are reviewed in detail. Finally, this chapter is concluded with the summary
of background and related works.

2.1 SDN: Overview

In a networked system, switches/routers have two basic components: the
control plane and the data plane. The control plane performs control logic
such as routing protocols, middlebox configuration while the data plane

10
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forwards the traffic based on control logic. The control plane and data
plane are coupled together, thus enabling each switch/router to partici-
pate in route making decisions and data forwarding.

However, this tight coupling is not flexible when the network size in-
creases. The control logic coupled with the hardware and the use of low-
level programming languages makes the system rigid and complex. There-
fore it copes poorly with issues of scalability, reliability and security which
are more pronounced as the network size increases. These issues in the
traditional network hinder the performance of the system as the network
traffic is increasing day by day.

In order to cope with these issues in the traditional network, a new net-
work paradigm called as “Software-Defined Networking” (SDN) emerged.
SDN has two defining characteristics: (a) it separates the control plane
from the data plane, and (b) it logically centralizes the control plane to
direct multiple data plane elements through a software program [22].

Figure 2.1 shows the comparison between traditional networking and
SDN architectures. In an SDN architecture, the control plane is decoupled
from the data plane whereas the control plane and data plane are coupled
together in the traditional networking architecture [3].

Figure 2.1: Comparison between traditional networking architecture and
SDN.
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The decoupling of control plane from data plane simplifies the function
of a switch/router to that of forwarding traffic. The decoupled control is
logically centralized and is named as the controller. Therefore, an SDN is
the concept in which a network can be controlled and managed through
software, for this reason it is termed as Software-Defined Networking. A
switch/router can be configured remotely and network resources can be
virtualized through the software.

A typical SDN consists of three components: a network element, an
SDN Controller, and an SDN Application as shown in Fig. 2.2 [23].

Figure 2.2: The components of a typical SDN.

• Network element: This is a forwarding device (switch or router) with
a data plane only. A network element allows the controller to man-
age its functions via a southbound interface.

• SDN controller: This is a software entity that has network wide ab-
stract and controls the network’s basic functions like routing policy,
middlebox configuration, etc.

• SDN application: This is the software program that directs the con-
troller to perform the network’s basic functions via a northbound
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interface [24].

There are three basic types of interfaces in SDN architecture: South-
bound interface, Northbound interface, and East-West interface.

• Southbound Interface: This is the interface between the network ele-
ment, that is the SDN switch/router, and the controller. The SDN
data plane can be programmed with this interface. Some proto-
cols for the southbound interface are OpenFlow [25], ForCES [26],
Border Gateway Protocol (BGP) [27], Network Configuration Pro-
tocol (NETCONF) [28], and Location Identifier Separation Protocol
(LISP) [29]. OpenFlow, being a popular and widely used standard [3]
is used for analysis in this thesis.

• Northbound Interface: This is the interface between the SDN con-
troller and SDN application. With this interface, the SDN controller
is directed to perform specific functions such as routing, firewall, and
load balancer [30]. Some examples of the northbound interface are
Floodlight Representational State Transfer (REST) API [31], Open-
Stack REST API [32], and Vyatta Remote Access API [33].

• East-West Interface: This is the interface between SDN controllers.
With this interface, SDN controllers interact with each other. Cur-
rently, there is no standard for the east-west interface but efforts
have been made to standardize it with gateway protocols like BGP
(Border Gateway Protocol) [27], SIP (Session Initiation Protocol) [34],
SDNi [35], and East-West Bridge [36].

OpenFlow is the southbound interface standard protocol proposed by
the Open Network Foundation (ONF) [37]. The ONF is a user-driven or-
ganization for developing and standardizing SDN. It defines communica-
tion between the control plane and data plane in SDN by allowing pro-
grammability through the flow table contained in a switch/router. In the
OpenFlow architecture [25], the OpenFlow switch maintains one or more
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flow tables. Flow tables are linked together to form a pipeline, where each
flow table has flow table entries (FTE) which contain a set of match fields.
These match fields are matched against the incoming packet and a spec-
ified action is applied. Every flow table has a table-miss entry which is

Figure 2.3: OpenFlow-based SDN architecture with one controller and one
switch.

used if there is no matching flow table entry. This table-miss entry specifies
what to do with an unmatched packet either by sending it to the controller,
dropping it or directing it to next table. Figure 2.3 shows the OpenFlow-
based SDN architecture with one controller and one switch.

2.2 Packet processing in an SDN switch

A computer communication network comprises of switches that forward
packets from source to destination. The performance of any computer net-
work largely depends on packet processing in a switch. For instance, faster
processing switches can forward packets faster which reduces the overall
delay in the network. Similarly, switches with sufficient memory can pro-
cess a larger number of packets via internal buffering, thereby preventing
loss of packets in the network. Therefore, it is important to analyse packet
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processing aspects of a switch to obtain desirable QoS (Quality of Service)
and improve the overall performance of a network.

SDN was introduced to simplify forwarding of packets. Switches in an
SDN can be programmed through software that makes a computer net-
work agile and flexible. SDN switches can be used in time-critical sys-
tems like industrial automation [19], interactive video [18], and online
surgery [20] that require extremely low packet losses (i.e. below 10−4) [38].
However, design issues such as provisioning of switch capacity and buffer
sharing mechanisms significantly impact the overall performance of an
SDN. To address switch design issues and provide guidelines to network
operators, various aspects of packet processing in an SDN switch have
been analysed. These aspects include buffer sharing mechanisms, packet
encapsulation methods, and SDN switch types which are discussed in the
following subsections.

2.2.1 Buffer sharing mechanism

Decoupling the control and data plane presents a challenging opportunity
for research in buffering requirements due to the different time scales of
packet processing and traffic volume in the data plane and control plane.
Packet processing in an SDN switch is categorized into: (i) fast path - refer-
ring to data plane processing (e.g. checksum calculation, TTL (time to live)
decrement), and (ii) slow path - referring to the control plane processing,
switch management functions, and exception processing (e.g. IP lookup).
Packets traversing the fast path expect low latency, typically in orders of
hundreds of nanosceconds while packets traversing the slow path experi-
ence tens of miliseconds delay.

Packet delays in a switch are determined by the capacity and service
rate of the output buffers because output buffers in a switch are shared
by all ports. Shared buffer switches are the most cost effective because
multiple input ports share a single output buffer and reduces the cost and
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complexity of buffers to individual output ports in the switch. Alterna-
tively, two separate buffers each serving the fast path and slow path can
be used to buffer packets.

2.2.2 Packet encapsulation at an SDN switch

A packet encapsulation in the OpenFlow-based SDN is the encapsulation
of an entire data packet or part of a data packet in the switch with an
asynchronous message designated as “packet-in”. A packet-in message is
sent to the controller without a request from the controller when there is
no matching flow table entries for an external data packet arriving in the
switch [13]. Based on the configuration of a packet-in message, a packet
encapsulation at an SDN switch can be categorized into three types:

• Full encapsulation of a packet (E): If an SDN switch does not support
internal buffering due to insufficient memory, then full packet is en-
capsulated with a packet-in message. The full encapsulation method
is the default packet processing used at an SDN switch.

• Internal buffering of a packet (I): If an SDN switch has sufficient
memory to buffer packets, then part of each buffered packet (i.e.
packet header that contains routing information which is used by
the controller to make forwarding decisions) along with an identifier
(i.e. buffer ID) is encapsulated with a packet-in message. In this case,
a packet to be internally buffered is temporarily queued at the switch
processor.

• Partial encapsulation of a packet (E-I): If an SDN switch with limited
memory supports internal buffering, then packets will be queued
at the switch processor until it has free available memory. When it
runs out of memory to buffer packets, then a packet will be fully
encapsulated with a packet-in message. Hence, this case is termed
as the partial encapsulation of a packet.

In this thesis, “E” and “I” packet encapsulation methods are studied.
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2.2.3 SDN switch types

SDN switches are categorized into Software-based Switch and Hardware
or Physical Switch [4]. An SDN software switch maintains the flow ta-
ble in SDRAM (synchronous dynamic random access memory) where the
incoming packet is matched against the FTE using a CPU (central pro-
cessing unit). If there is no matching FTE, a packet is forwarded to the
controller which will feedback forwarding information to the switch and
update the software flow table. The packet processing logic in a software
switch is implemented in software [4] usually with the help of optimized
software libraries. Open vSwitch (OVS) [39], Pantou/OpenWRT [40], of-
softswitch13 [41], and Indigo [42] running on commodity hardware (e.g.
desktops with several network interface cards) are a few examples of SDN
software switches.

In an SDN hardware switch, the packet processing function is embed-
ded in the specialized hardware. This specialized hardware includes layer
two forwarding tables implemented using content-addressable memories
(CAMs), layer three forwarding tables using ternary content-addressable
memories (TCAMs) [4] and application-specific integrated circuits (ASICs).
In a hardware switch, the FTEs are stored in CAMs and TCAMs of spe-
cialized hardware and packets are processed by the ASICs. Hardware
switches are also equipped with SDRAM and CPU allowing a hardware
switch to maintain flow tables in both TCAM and SDRAM [14]. Switches
such as the Mellanox SN2000 series, NoviFlow NoviSwitch class of switches,
HP ProCurve J9451A, Fulcrum Monaco Reference, Quanta LB4G, and Ju-
niper Juno MX-Series are classified as hardware switches [43, 3].

In the following section, different approaches that are available for the
performance analysis of an SDN network are discussed. The benefits and
limitations of these approaches are briefly discussed followed by the rea-
sons for the selection of analytical modelling.
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2.3 Approaches for performance analysis

Computer communication networks are becoming complex and more ad-
vanced with the digital revolution. The technological advancement has
changed different aspects of human life from education, research, devel-
opment, and business [17]. Computer network designers are constantly
working to improve the communication systems with the help of mod-
elling and performance analysis tools. The performance analysis tool gives
freedom and flexibility to network designers to study and predict a system
before it’s implementation.

As SDN is a new networking architecture, various design issues like
traffic types (control and data traffic), switch buffer capacities, and buffer
sharing mechanisms that can impact the overall performance of a network
should be identified and analysed. For this purpose, we have to do per-
formance analysis to identify the potential bottlenecks that can hinder the
overall performance of an SDN network. The three commonly used per-
formance measures for an SDN network are:

• Delay: This is the time that it takes to transmit a packet from a sender
to a receiver.

• Throughput: This is the rate of a total number of packets transmitted
to a receiver by a sender.

• Packet loss rate: This is the number of packets being blocked or
dropped out of the total packets transmitted by a sender. It is ex-
pressed in a percentage.

In computer communication networks, these performance measures
have a huge impact on the overall user experience. Delay and throughput
determine the speed of the network while the packet loss rate is a negative
indicator that causes a breakup in the communication.

The performance analysis of an SDN network has been done in three
different ways: Experimental testbeds, Software-based tools, and Math-
ematical models [15]. From the survey shown in Fig. 2.4 that there are
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not many mathematical models and experimental testbeds available for
performance analysis of an SDN-based network. A hundred papers were
surveyed which focused on SDN using the following keywords in Google
Scholar, ACM Digital Library, IEEE Xplore, and SpringerLink: experimen-
tal testbeds, simulation, emulation, measurement tools, analytical models,
performance analysis.

Figure 2.4: Approaches for performance analysis in SDN

2.3.1 Experimental testbeds

Experimental testbeds are real-time hardware testbeds which allow the re-
searchers to validate and test their algorithms and mechanisms. Some of
the examples of experimental testbeds used for an SDN are GENI (Global
Environment for Networking Innovations) in the USA [44]; AKARI [45],
JGN-X (Japan Gigabit Network-X) [46], and RISE [47] in Japan; FEDER-
ICA (Federated E-Infrastructure Dedicated to European Researchers Inno-
vating in Computing Network Architectures) [48], OFELIA (OpenFlow in
Europe: Linking Infrastructure and Applications) [49], FIBRE (Future In-
ternet Research and Experimentation) [46], and OpenLab [50] in Europe;
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OF@TEIN [51] in South Korea and JOLNET [50] in Italy.

Experimental testbeds provide a flexible environment for testing, mea-
suring, and validating new networking technologies and applications with
real traffic. They can also use artificial traffic with packet manipulation
tools like Scapy [52]. Experimental testbeds use high-performance real
devices which make them more convincing than emulators and simula-
tors [50]. However, experimental testbeds are expensive to deploy and
have scalability problems due to hardware limitations [2, 50, 53, 54].

2.3.2 Software-based tools

Software-based tools are used to debug, verify and simulate or emulate
SDN applications and APIs [55]. Debugging and testing tools ensure the
quality of an SDN software by getting rid of bugs and errors [56]. Some of
the available debugging and testing tools are FlowChecker, ndb, Veriflow,
OFRewind, OFf, OFTest, NICE, NetSight, PathletTracer, and SDN tracer-
oute [2, 56]. Similarly, verification tools are used to verify and analyse
the characteristics of SDN switches and controllers. Some of the avail-
able verification tools for an SDN are Cbench, OFCBenchmark, OFLOPS,
OFLOPS-Turbo, OpenSketch, SDLoad [2].

A simulator is software that sets up a necessary environment to sim-
ulate the hardware’s behaviour, while an emulator emulates every aspect
of hardware’s behaviour to make it an exact replica of actual hardware.
Some examples of the simulator used in an SDN are NS-3, FS-SDN, Max-
iNet, STS,VND-SDN, EstiNet 8.0 OpenFlow netowrk simulator, and OM-
Net++ [2]. Mininet, Mininet CE, Mininet-HiFi and DOT[2] are examples
of emulator. Simulators and emulators are low-cost and flexible compared
to experimental testbeds. However, simulators use artificial traffic while
emulators use real traffic [2, 3, 55, 56].
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2.3.3 Mathematical models

For the networks to be designed or operational networks that need to be
optimized, a mathematical-based performance analysis is the cost-effective
solution to predict performance measures [16]. The mathematical model
represents the system in the form of mathematical equations, theorems
and proofs. The model can be used to support experimental or simulated
results. It also has the advantage of being cheaper and faster than the ex-
perimental framework or simulator. However, there are very few models
available for mathematical analysis of an SDN-based network. The two
basic mathematical methodologies used to model an SDN-based network
are queueing theory and network calculus. The queueing theory shows
the performance of a system in an average quantities at equilibrium state,
while the Network Calculus shows the performance of a system in a prob-
abilistic bound curve with the worst case scenario.

2.3.3.1 Network Calculus

An SDN-based network has two level of services: flow-level and packet-
level. A flow-level service is for the SDN-controller while a packet-level
service is for an SDN switch [57]. The network calculus is used in an SDN
for performance analysis of a flow-level arrival process which may consist
of multiple or many packet-level arrival processes.

Network Calculus uses min-plus algebra and max-plus algebra to trans-
form complex network systems into an analytical system that can be tractable
[58]. Network Calculus is used for modelling a flow as a cumulative ar-
rival process A. A(t) represents the total number of packet arrivals in the
interval [0, t) [59].

The cumulative arrival process A at time “t” from any time “s” is char-
acterized by the average sustainable arrival rate (ρ) and the burstiness (σ)
such that A ∼ (σ, ρ):

A(t)− A(s) ≤ σ + ρ(t− s), 0 ≤ s ≤ t. (2.1)
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If constrained flows are merged, the resulting process is also constrained
according to the multiplexing rule:

Ai ∼ (σi, ρi)→
∑

Ai ∼ (
∑

σi,
∑

ρi). (2.2)

At time τ , the stopped sequence (Aτ ) is defined for increasing sequence A.

Aτ (t) =

A(t), if t ≤ τ,

A(τ), otherwise.
(2.3)

If there are no packet arrivals after time τ , the stopped sequence Aτ is
equal to (σ(t), ρ) where

σ(t) = max
0≤t≤τ

max
0≤s≤t

[A(t)− A(s)− ρ(t− s)]. (2.4)

The summary of analytical models that use Network Calculus to model
an SDN network is shown in Table 2.1. The analytical model presented
in [60] has used network calculus to characterize the behaviour of the con-
trol interface with a single controller and switch. However, this model
does not consider the interaction between the switch and controller. The
interaction between switch and controller was considered in [57] with feed-
back model that computes worst-case bounds on performance metrics.
The work in [57] was extended in [61] for scalable SDNs with multiple
controllers. Similarly, [62] proposed the closed form expression to com-
pute the worst-case bounds for the distributed control plane. The work
in [63] proposed a hybrid scheduling model that combines PGPS (Packet
Generalized Processor Sharing) and preemptive priority scheduling algo-
rithms for multimedia flows in switches.

In the above-mentioned analytical models, a flow-level arrival in the
controller and a packet-level arrival in the switch has been considered.
However, for an SDN network where we want to study and analyse an
SDN switch, queueing theory is a more useful mathematical tool to per-
form a packet-level analysis.
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Table 2.1: Related works on SDN modelling using Network Calculus.
Model Contribution

Bozakov, 2013 [60] Model to characterize the service of the
switch’s control interface.

Azodolmolky, 2013 [57] Feedback model to characterize interaction
between the switch and controller.

Azodolmolky, 2013 [61] Worst delay bound case for Scalable SDNs.
Koohanestani, 2017 [62] Delay bound based on the similarities be-

tween caches and flow tables in switches.
Huang, 2017 [63] Hybrid scheduling model for multimedia

flows in switches.

2.3.3.2 Queueing theory

Queueing theory is the classical mathematical tool to study queues. It has
been used for performance analysis and modelling of computer networks
for many years where a computer network is represented as a network of
queues [64]. It is used to analyse a network’s delay and throughput at the
steady state. In queueing theory, Kendall notation i.e A/S/c/K/D [65] is
used to describe and classify a queue where

• A denotes inter-arrival time distribution,

• S denotes service time distribution,

• c denotes the total number of servers in the system,

• K denotes the maximum number of packets in the system, and

• D denotes the queue discipline.

The distribution of A and S may be Exponential Distribution (M), Deter-
ministic Distribution (D), Erlang Distribution (Ek), General Distribution
(G), or Phase-type Distribution (PH), to name a few. Similarly, the com-
mon queue disciplines are FIFO (First In First Out), LIFO (Last In First
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Out), SIRO (Service In Random Order), PNPN (Priority Service) and PS
(Processor Sharing).

M/M/1 is the simplest queueing model where the system has one server
with the arrival of Poisson distribution, service of exponential time dis-
tribution, infinite capacity and FIFO as default queue principle. The ba-
sic performance metrics determined using queueing theory in a computer
network are delay and throughput.

The summary of analytical models that uses Queueing theory to anal-
yse an SDN network is shown in Table 2.2. The model in [66] is the first
analytical model for an SDN network with single switch and controller
where switch (as M/M/1 queue) and controller (as M/M/1/K queue)
are assumed to be operating independently. This assumption of indepen-
dent operation was removed in [67] with the switch and controller collec-
tively modelled as a Jackson’s network. The work in [67] was extended
in [68] with multiple switches. The model in [69] have modelled SDN-
based cloud computing as a two-stage tandem network where the switch
is modelled as M/M/1 queue with no distinction between the control and
data traffic.

The models in [12] and [11] are the first to use priority buffer sharing
models in the switch. The model in [12] uses a preemptive priority buffer
while the model in [11] uses non-preemptive priority buffer in the switch.
In both of these models, priority is given to the control packet over the data
packet. However, the use of non-preemptive priority shows the accurate
representation of an SDN behaviour where a packet in the processor is
serviced without interruption. The work in [12] was extended in [70] with
arrival assumed as an MMPP under bursty multimedia traffic scenario.
Similarly, [71] have followed the work in [11] and have compared shared
buffer with non-preemptive priority buffer sharing model in the switch.
In [71], with the help of buffer dimensioning, they have shown that the
use of priority buffer requires lower time to install FTE compared to a
shared buffer model.
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The model presented in [72] has assumed the switch service time distri-
bution as a two-phase hyperexponential distribution and modelled switch
as M/H2/1 queue which has been studied earlier in [73]. Similarly, the
model presented in [74] also have assumed switch as M/H2/1 queue and
proposed a network visualization and performance evaluation model based
on [73] and [75]. In [72] and [74], two different service distributions for
packets arriving at the switch are assumed. One of the service distribu-
tions is used to forward packets with matching flow updates, while the
other one is used to send packets without matching flow updates to the
controller. The use of two different service distributions paves the way for
modelling hardware switches, one for the CPU and the other one for the
TCAM.

The model presented in [76] have assumed the switch as M/G/1 model
with log-normal mixture model as the service distribution. The work in
[76] further demonstrates M/M/1 as a poor fit for the switch through ex-
periments. The model presented in [77] is the first to model SDN hardware
switch but does not consider a hardware data plane. In [77], the switch
is assumed as M/Geo/1 model where inter-arrival is exponentially dis-
tributed and the service time is geometrically distributed.

The model presented in [78] models TCP connections over an SDN
where both the switch and controller are modelled as MMPP/M/1. In [78],
four-dimensional states are used to evaluate the performance of the switch
and controller jointly under steady states, hence the model is named as the
4D state model.

The models presented in [79] are the first to model an SDN with NFV (Net-
work function virtualization). In this work, two models: NFV under the
controller, and NFV aside the controller are analysed. The comparative
analysis in [79] shows that NFV aside the controller is a better architecture
for integrating an SDN with NFV. The model presented in [80] is the ex-
ception that does not consider the switch and focused only on interactions
between controllers.
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Table 2.2: Related works on SDN modelling using Queueing Theory.
Model Switch Contribution

Jarschel, 2011 [66] M/M/1 First to model an SDN where the switch and con-

troller operate independently.

Mahmood, 2014 [67] M/M/1 The switch and controller are collectively mod-

elled as Jackson’s network.

Yen, 2014 [69] M/M/1 SDN-based cloud computing as a two-stage tan-

dem network.

Mahmood, 2015 [68] M/M/1 Extension of [67] with multiple switches.

Wang, 2015 [80] – Only focuses on controllers, root and local con-

trollers.

Miao, 2015 [12] M/M/1 Compare shared and preemptive priority buffer

sharing models in the switch.

Shang, 2016 [72] M/H2/1 Two different service distributions for packets ar-

riving at the switch.

Xiong, 2016 [73] MX/M/1 Investigated the arrival flow request messages at

the controller.

Miao, 2016 [70] MMAP Extension of [12] with arrival as MMAP under

bursty multimedia traffic scenario.

Sood, 2016 [77] M/Geo/1 Among the first to model an SDN hardware

switch.

Goto, 2016 [11] GI/M/1/K Non-preemptive priority buffer model in the

switch.

Javed, 2017 [76] M/G/1 Switch as M/G/1 with log-normal mixture model

as the service distribution.

Muhizi, 2017 [74] M/H2/1 Network visualization and performance evalua-

tion model.

Singh, 2017 [71] GI/M/1/K Compare shared and non-preemptive priority

buffer sharing models in the switch with buffer di-

mensioning.

Lai, 2017 [78] MMPP/M/1 TCP connection over an SDN.

Fahmin, 2018 [79] M/M/1 An SDN with NFV.
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In this thesis, we use queueing theory over Network Calculus to anal-
yse an SDN switch. This is because the Network Calculus analyses worst
case conditions of network which may result in over-provisioning of re-
sources in real world production [62]. In queueing theory, the Quasi-Birth-
Death (QBD) process has been widely used to model a computer network
in greater detail [16]. Some examples that use QBD for detailed study of
a computer network are scheduling of resource reservation [81], reliability
of a computer system [82], telecommunication model with impatient cus-
tomers [83], and modelling of P2P file sharing systems [84]. To study an
SDN switch in greater detail, the modelling approach in this thesis is based
on QBD processes. Hence, the following section is devoted to describe the
notation and concepts behind QBD processes.

2.3.4 Quasi-Birth-Death process

A continuous-time Markov chain with multidimensional state spaces that
can be partitioned into disjoint levels is a QBD process [85]. A continuous-
time QBD process is a two-dimensional Markov chain represented as

{(Xt, Yt), t ≥ 0} (2.5)

with the state space S = {(i, j) ∈ {0, 1, ..., K} × {0, 1, ..., L}} where i and j

denote the level and phase variables of the process, respectively [86]. Sim-
ilarly,K and L determine the queue capacities of level and phase variables
respectively which can be finite or infinite. In an SDN network, the con-
troller may be represented by a level variable and the switch by a phase
variable.

In queueing network, QBD processes can be multi-dimensional with
one level variable and multi-dimension phase variables based on the num-
ber of the nodes or queues in the network. For N queues, the state of the
network can be represented by the vector n = (n1, n2, ..., nN) where nl is
the number of packets in queue l. If queue 1 is the queue of interest for
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analysis, then packets at queue 1 (i.e. n1) are represented by the level vari-
able and packets at queues other than queue 1 are represented by phase
variables as the vector r = (n2, n3, ..., nN) [87].

In QBD processes, the transitions between the state are limited within
the level or between two adjacent levels. If the transitions of QBD process
are independent of level, then such type of QBD process is homogenous
or level-independent. Similarly, if the transitions are dependent of level,
then QBD process is nonhomogenous or level-dependent [88].

2.3.4.1 Homogenous QBD process

Using standard QBD notation [89], the transition matrix for a homogenous
or level-independent QBD process is given by an infinitesimal generator
matrix (Q) with a repetitive tri-diagonal block structure as shown below:

Q =



B1 A0

A2 A1 A0

A2 A1 A0

. . . . . . . . .

A2 A1 A0

A2 A1


, (2.6)

where A0, A1, A2, and B1 are standard notations of block matrices used
to represent phase variable distributions in homogeneous QBD processes.
The matrices B1 and A1 represent the phase distributions for boundary
condition (i.e. i = 0) and non-boundary condition (i.e. i 6= 0) respec-
tively when level variable remain unchanged (i.e. i → i). Similarly, A0

andA2 represent the phase distributions when level variable increases (i.e.
i → i + 1) or decreases (i.e. i → i − 1 for i > 0) by 1, respectively. In an
SDN network, A1 or B1, A0, and A2 represent homogeneous state distri-
bution of the switch when the number of packets in the controller remains
unchanged, increases by 1, and decreases by 1, respectively.
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With the help of Matrix Geomteric/Analytic Method [87], the station-
ary probability distribution π of homogeneous QBD process can be com-
puted that satisfies the system of equations πQ = 0 and πe = 1, where “e”
is the column vector of ones. The stationary probabilities are defined as:

πij := lim
t→∞

P(Xt = i, Yt = j), (2.7)

where πi = (πi0, πi1, ..., πiL), for i = 0, 1, ..., K and π = (π0, π1, π2, ...). The sta-
tionary probabilities can be used to compute network performance such as
throughput, delay, and packet loss rate.

The homogeneous QBD process is positive recurrent and markov chain
is ergodic if

πAA0e < πAA2e, (2.8)

where πA is the stationary probability vector of the matrix A which equal
the sum of matrices A0, A1 and A2. For ergodic markov chain, the system
of equation πQ = 0 is equivalent to second-order difference equations

π0B1 + π1A2 = 0, (2.9)

πi−1A0 + πiA1 + πi+1A2 = 0, i ≥ 1, (2.10)

with πi = πi−1R for i ≥ 2, where R is the rate matrix of QBD process with
dimensions (L+ 1)× (L+ 1) and is non-negative solution to the equation

A0 +RA1 +R2A2 = 0. (2.11)

The matrix R can be computed using various iterative algorithms like
Successive Substitution (SS) [89], Logarithmic Reduction (LR) [90], and
Cyclic Reduction (CR) [91]. However, the LR method has been widely
used in performance analysis of communication systems due to a faster
quadratic convergence rate [16, 92].

The LR method computes matrix G instead of directly computing the
rate matrix R. The matrix G represents the hitting probability distribution
on states in a given level and has an intuitive stochastic interpretation for
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ergodic QBD process [87]. Like matrix R, matrix G is also characterized as
non-negative solution which is dual equation to Eq. 2.11,

A2 +GA1 +G2A0 = 0. (2.12)

The computation of matrices G and R using the LR method is shown
in Appendix A.

2.3.4.2 Nonhomogenous QBD process

The nonhomogeneous QBD process has been widely used to model telecom-
munication systems with dynamic stochastic arrivals and holding times [93].
It has level-dependent transition rates and is given by infinitesimal gener-
ator matrixQ using standard notation with a repetitive block structure [89],

Q =



A
(0)
1 A

(0)
0

A
(1)
2 A

(1)
1 A

(1)
0

A
(2)
2 A

(2)
1 A

(2)
0

. . . . . . . . .

A
(K−1)
2 A

(K−1)
1 A

(K−1)
0

A
(K)
2 A

(K)
1


, (2.13)

where A
(i)
0 , A(i)

1 , and A
(i)
2 are non-negative sub-matrices for i ≥ 0. The

sub-matrices A(i)
0 , A(i)

1 , and A
(i)
2 represent the phase variable distributions

when level variable increases by 1 (i.e. i→ i+ 1), remains unchanged (i.e.
i→ i), and decreases by 1 (i.e. i→ i− 1 for i > 0), respectively.

Similar to homogeneous QBD, the system of equations πQ = 0 for non-
homogeneous QBD process is equivalent to the second-order matrix dif-
ference equations

π0A
(0)
1 + π1A

(1)
2 = 0, (2.14)

πi−1A
(i−1)
0 + πiA

(i)
1 + πi+1A

(i+1)
2 = 0, for i = 1, 2, ..., K − 1, (2.15)

πK−1A
(K−1)
0 + πKA

(K)
1 = 0, (2.16)
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with first-order recurrence scheme i.e. πi+1 = πiRi for i = 0, 1, ..., K − 1.

Substituting πi+1 = πiRi in Eqs. 2.14, 2.15, and 2.16 yields

π0(A
(0)
1 +R0A

(1)
2 ) = 0, (2.17)

πi−1(A
(i−1)
0 +Ri−1A

(i)
1 +RiA

(i+1)
2 ) = 0, for i = 1, 2, ..., K − 1, (2.18)

πK−1(A
(K−1)
0 +RK−1A

(K)
1 ) = 0, (2.19)

Equations 2.17, 2.18, and 2.19 are the solution to stationary distribution
probabilities for the nonhomogeneous QBD process which requires the
rate matrix for the highest level (RK).

There are various methods to compute RK , out of which the Bright-
and-Taylor method [94] and the Matrix Continued Fraction Algorithm
(MCF) [95] are widely used. The Bright-and-Taylor method is among the
first to compute rate matrices for nonhomogeneous QBD by approximat-
ing RK . This approximation of RK requires larger memory for computa-
tion and storage of iteration matrices to satisfy specified tolerance (say
10−10). This may result in overflow or underflow errors in a memory-
constrained network [83]. As an alternative, MCF method is faster and
more efficient which assumes RK as a zero matrix instead of approximat-
ing it. The algorithm for the MCF method is shown in Appendix B.

2.4 Related works on queueing models for an SDN

Switch

This section is devoted to detail existing works that use queueing theory
as analytical tool to model an SDN network. This section will start with
a generic queueing model for an SDN network. Based on this generic
queueing model, we will relate existing works into three different aspects
of a performance analysis for an SDN switch as mentioned in the Sec-
tion 2.2: (1) Buffer Sharing Models for Buffer Sharing Mechanism, (2) In-
ternal Buffering for Packet Encapsulation, and (3) SDN switches for SDN
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Switch Types.

Figure 2.5: Generic model for an SDN network.

A generic block diagram of an SDN network where an external packet
arrives at the switch and the switch is connected to a controller is shown
in Fig. 2.5. There are three important phases an SDN model with a switch
must capture. Phase (1), the first packet of a flow arrives at the switch and
there is no matching FTE for the packet in SDRAM. Phase (2), the packet
without a matching FTE is forwarded to the controller or a packet with
the matching FTE is serviced by the switch and forwarded to the destina-
tion. All packet processing and forwarding in the switch is executed on
CPU and SDRAM. Finally, Phase (3), the controller feeds the forwarding
information back to the switch and updates the flow table in the switch.

2.4.1 Buffer sharing models

Bufferring in a switch is primarily to absorb temporary traffic fluctuations.
The output buffers of the switch block in Fig. 2.5 is modelled either as:
(i) a single shared queue or (ii) a two-priority queue (fast path vs. slow
path as discussed in Section 2.2.1). In the shared queue model, packets
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passing through the fast path and slow path share a single queue with first
in first out (FIFO) service discipline. While in the two-priority queue, the
fast path and slow path packets are queued separately and each queue is
served in a FIFO manner without preemption. In the two-priority queue
model, packets in the slow path are always served with higher priority
over fast path packets but the server does not preempt the service of fast
path packets once it has commenced, this is referred to as service without
preemption.

The analytical model in [66] models the switch block as a shared M/M/1
queue and the controller block represented by M/M/1/K queueing sys-
tem, respectively. In this model, the controller and switch queues are con-
sidered to be operating independently and a fraction of incoming exter-
nal traffic to the switch is forwarded to the controller. This independence
assumption together with the infinite buffers preserves the Markovian
property of the individual queues, reduces the complexity in the resulting
queueing network and yields a model that is amenable to product-form
analysis. Product-form analysis decomposes the stationary probability
distribution of the queueing network into the product of marginal prob-
ability distribution of each queue (Burke’s theorem [96, 97]), thus greatly
simplifying analysis.

While the shared queue model simplifies analyses, it does not reflect
the realities of the different packet processing time scales of the fast path
vs. slow path. There is an implicit assumption in the shared queue model
that the traffic on the slow path forwarded by the controller back to the
switch is treated identically to new packets entering the switch. This is
a strong assumption because the control vs. data plane distinction is not
taken into consideration.

The model presented in [67] considers switch and controller collec-
tively as Jackson’s network mimicking the model in [66]. The model in
[67] differs from [66] in that it does not assume that the controller and
switch are independent. The traffic forwarded by the controller to the
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switch mixes with the external packet arrivals to the switch and this mix-
ing better reflects the operational realities of an SDN switch.

The model presented in [69] considers an SDN-based cloud computing
as a two-stage tandem network. In this work, the switch is assumed to be
a M/M/1 model with simple approximate analysis and does not distin-
guish the control and data traffic.

The model presented in [76] demonstrates M/M/1 as a poor fit for
the switch through experiments and have assumed switch to be a M/G/1
model. Similarly, the model presented in [78] models TCP connections
over an SDN with both the switch and controller as MMPP/1/1. However,
the analysis in [78] is an approximation with no clear distinction between
control packets and data packets.

The model presented in [12] uses preemptive priority queues to rep-
resent a switch with infinite capacity. This work also compares a prior-
ity queueing buffer and a shared buffer using a simpler analysis conclud-
ing priority queueing to be a better buffer sharing mechanism. However,
the work in [12] does not analyse the buffer dimensioning which can be
a tradeoff between the selection of priority queueing buffer and shared
buffer in an SDN switch. The work in [12] is extended into [70] which as-
sumes arrival to be a MMPP under a bursty multimedia traffic scenario,
and have also assumed infinite capacity for the high priority queue and
finite capacity for the low priority queue.

The models presented in [11, 98] were the first to use priority queues
and finite capacity respectively to represent switch. The priority queues in
these models are non-preemptive whereby the lower priority queue is ser-
viced when there are no packets in the higher priority queue. This queue
structure more accurately reflects an OpenFlow switch. However, with
the use of finite capacity queue model for the switch, the queueing model
does not admit a product form queueing solution which is significantly
more difficult to analyse. The tradeoff is clear: increased model complex-
ity for more accurate representation of the SDN behavior.
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Table 2.3: Summary of queueing models for buffer sharing mecha-
nisms.

Model Buffering Switch Dimen- Analysis
SSB PQ model sioning EXA. APP.

Jarschel [66] M/M/1
Mahmood [67] M/M/1

Yen [69] M/M/1
Miao [12] M/M/1
Miao [70] MMAP
Goto [11] GI/M/1/K
Javed [76] M/G/1

Lai [78] MMPP/M/1

SSB denotes single shared buffer, PQ denotes priority queue, EXA.
denotes exact analysis and APP. denotes approximate analysis.

A summary of existing queueing models for buffer sharing mecha-
nisms is shown in Table 2.3. In Table 2.3, the first column denotes existing
queueing models for buffer sharing in SDN switches, the second column
indicates buffer sharing mechanisms, the third column denotes the queue-
ing model in Kendall’s notation, the fourth column indicates model is used
for buffer dimensioning in a switch and the final column denotes the type
of analysis.

From Table 2.3, it is clear that most of the analysis is an approximation
with the assumption of infinite buffer capacity in the switch. Similarly,
only a few have used the priority queueing buffer model to accurately
represent an SDN behaviour. However, none of the surveyed analytical
models do buffer dimensioning which can be used to identify trade-offs
between shared and priority buffer models.
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2.4.2 Internal buffering

In the previous section, the related works for buffer sharing models have
used the full encapsulation of data packets i.e. “E” (as discussed in Sec-
tion 2.2.2) at an SDN switch. This is because “E” is the default packet
encapsulation method in the OpenFlow protocol. However, OpenFlow
specifications have provisions for switches to support internal buffering
of data packets [13]. In this section, the related works on a packet encap-
sulation method that supports internal buffering in an SDN switch i.e. “I”
(as discussed in Section 2.2.2) are discussed.

As discussed in Section 2.2.2, asynchronous messages are sent either
with the arriving packet or only with a fraction of the packet header based
on the availability of memory in the switches for internal buffering. In a
packet, only the header contains routing information which is used by the
controller to make forwarding decisions. If the switches have sufficient
memory to buffer packets, then the packet header along with a buffer ID
is sent with the asynchronous message. Similarly, some switches do not
support internal buffering and require full packet (not just the header) to
be sent with the asynchronous message.

While internal buffering has been well studied in a traditional switch,
the buffering of asynchronous messages over a separated control and data
plane remains unexplored. The separation of the data plane and control
plane in an SDN brings a different set of challenges for switch designers
working with SDN switches. For example the control decisions from the
controller may take up to 1 millisecond to reach the switch.

Figure 2.6 shows the simple example of an OpenFlow switch that sup-
ports internal buffering. In Fig. 2.6, OpenFlow switch consists of a flow
table for storing flow information and the CPU for processing the packets
in a flow. The “packet-in” message is an asynchronous message sent by
an OpenFlow switch to the controller while the “packet-out” message is
controller-to-switch message [13]. The packet-in message generally con-
sists of three important fields: header, buffer ID, entire packet or part of a
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Figure 2.6: OpenFlow switch with support for internal buffering [1].

packet [1]. The header is OpenFlow header information, buffer ID is the
ID given to the temporarily buffered packet in the CPU. The buffer ID field
is only used when packet-in events are configured for the internal buffer-
ing. To simplify notation in Fig. 2.6, a packet with identifier is represented
as “Pkt #” and buffer ID as “Buf id#”. It is also assumed that packet out
message carries all control information including flowmod messages.

The packet processing for the internal buffering in an OpenFlow switch
can be explained in five steps as shown in Fig. 2.6. First, an external data
packet arrives at the switch. Second, the forwarding information in an
external packet is matched against the flow table. Third, the data packet
without matching FTE is temporarily buffered in the CPU and the packet-
in message is sent to the controller or the data packet with matching FTE is
outputted to the destination. Fourth, the controller processes the packet-
in message and updates the flow table by processing the packet-out mes-
sage. Fifth, the switch then extracts the temporarily buffered packet from
the CPU based on Buf id in the packet-out message and outputs it to the
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destination.

The internal buffering for software-based SDN switches can be easily
realised by configuring packet-in events to support buffering of packets.
However, for hardware-based SDN switches, there are very few commod-
ity switches that support internal buffering. Pica8 switches are among the
few that support OpenFlow’s feature to configure temporary buffering of
packets [99], while other commodity switch manufacturers like Cisco [100],
HP enterprise [101], Juniper [102], Arista network [103], and Extreme net-
work [104] still do not support internal buffering. The reason behind fewer
commodity switches supporting internal buffering is due to hardware lim-
itations in hardware switches. This is also the reason why there is almost
no experimental research conducted on SDN commodity switches to anal-
yse internal buffering.

In [105] the authors adopted an SDN for wireless mesh networks and
show that the delay variability and limited bandwidth over the wireless
network induces throughput and packet loss. However, no internal buffer-
ing was considered. The use of internal buffering in [105] could have im-
proved the channel utilization in the SDN-enabled wireless networks for
increasing control traffic. Earlier studies [106, 1] suggest that the smooth-
ing of control traffic via the internal buffer would reduce the losses during
periods of poor wireless connectivity or sudden burst of new flows to a
mesh router. However, these studies have not explored the drawbacks of
internal buffering in an SDN.

For SDWAN (i.e. Software Defined Wireless Access Network) appli-
cations, a multi-path OpenFlow channel for resilience and scalability in
wireless environments was proposed in [107]. In SDWANs, the control
path may incur failure due to many reasons, such as deep fading, mobility,
etc. In such cases, buffering packets in the switch’s internal buffer allows
the switch to continue operating momentarily while the control channel
recovers back to its stable state.

Hu et al. [108] take a radically different approach whereby the control
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packets are neither buffered nor sent to the controller immediately but sent
through a looping path - inducing delay to allow the control messages to
be processed and the feedback from the controller. The internal buffering
in [108] could have reduced the delay at the cost of extra memory.

From a performance modelling perspective, queueing theory has been
widely used to model and predict the performance of an SDN [11, 66, 67,
12, 70, 109, 69, 76, 78]. These studies use a generic model such as the one
shown in Fig. 2.5 where the output buffer of a switch is modelled either
as a single shared queue or two-priority queues. While none of the above
mentioned models consider the internal buffering capabilities of an SDN
switch, they pave the way for building a new model for internal buffering
within SDN switches. The models for the internal buffering mechanisms
will guide network analyst with both the benefits and the drawbacks of
internal buffering in an SDN.

A summary of existing queueing models for the packet encapsulation
methods at the switch is shown in Table 2.4. In Table 2.4, the first column
denotes existing queueing models for SDN switches, the second column
indicates the packet processing configurations for asynchronous messages,
the third column denotes the queueing model in Kendall’s notation and
the final column denotes the type of analysis.

From Table 2.4, it is clear that none of the surveyed analytical models
have considered internal buffering of data packets. The effects of internal
buffering on the performance of an SDN network need to be investigated
through modelling and performance analysis.
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Table 2.4: Summary of queueing models for packet encapsu-
lation methods at the SDN switch.

Model Processing Switch Analysis
E I E-I model EXA. APP.

Jarschel [66] M/M/1
Mahmood [67] M/M/1

Yen [69] M/M/1
Miao [12] M/M/1
Miao [70] MMAP
Goto [11] GI/M/1/K
Javed [76] M/G/1

Lai [78] MMPP/M/1

E denotes full encapsulation of a packet with no need for
internal buffering, I denotes a queueing of a data packet
at a switch server that supports internal buffering, E-I de-
notes partial encapsulation of a packet with internal buffer-
ing, EXA. denotes exact analysis and APP. denotes approxi-
mate analysis.

2.4.3 SDN switches: Software vs. Hardware

Most of the previous works have modeled a software switch where the
output buffers of the switch block in Fig. 2.5 are modelled either as a:
(i) single shared queue or (ii) a two-priority queue (fast path vs. slow
path).

The analytical model in [66] models the switch as a shared M/M/1
queue and the controller block modelled by an M/M/1/K queueing sys-
tem respectively. In this model, the switch queue is a software switch and
a fraction of incoming external traffic to the switch is forwarded to the
controller. While the shared queue model simplifies analyses, it does not
reflect the realities of the different packet processing time scales of hard-
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ware and software switches.

The model presented in [67] considers software switch and controller
collectively as Jackson’s network mimicking the model in [66]. A sin-
gle server in the model in [67] does not reflect the hardware processing
speeds and internal queueing structure of hardware switches. To model a
hardware switch through the model in [67] will necessitate a multi-server
queue in place of a single server.

The model presented in [72] has assumed that the switch service time
has a two-phase hyperexponential distribution and therefore modelled as
an M/H2/1 queue which was studied earlier in [73]. In the work of [72],
there are two different service distributions for packets arriving at the
switch, one that does not have matching information and needs to be sent
to the controller and other which has matching information. While both
analyses do not distinguish between hardware and software switches, the
model in [72] does pave the way for modelling hardware switches via the
two phases of the hyperexponential distribution.

The Log-Normal Mix Model (LNMM) has been proposed for Open-
Flow switch in [76] to determine the path latency. In this model, they have
assumed switch as a M/G/1 model with a log-normal mixture model as
the service distribution. Furthermore, M/M/1 is demonstrated as poor fit
for OpenFlow switch through experiments performed on Mininet, MikroTik
Routerboard 750GL and GENI but did not consider it from the perspec-
tives of hardware and software switches. The lack of separation between
the control plane and data plane packets in the model by [76] makes it a
poorer fit (compared to other published works) for modelling SDN switches.

The model presented in [12] uses preemptive priority queues in a switch
with infinite capacity. This work was extended into [70] which assumes ar-
rival as a MMPP under a bursty multimedia traffic scenario. Both the work
in [76] and [12] have features suitable for modelling hardware switches
because it can accommodate the different processing speeds in the TCAM
and the CPU. The processing speeds for the TCAM and the CPU were
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characterized by different distributions of service times.
To reflect a realistic OpenFlow switch more accurately, priority queues

with finite capacity are used instead [11]. The priority queue in [11] is non-
preemptive whereby the lower priority queue is serviced only when there
are no packets in the higher priority queue. The reality of limited buffer
sizes for “C” ingress ports each modelled as M/M/1/K/∞ is then specif-
ically addressed by a C-M/M/1/K/∞ queueing model that has been pro-
posed for computing the minimum buffer size requirement of an Open-
Flow switch [110]. The model presented in [77] is among the first to model
an SDN hardware switch using queueing theory but does not consider
a hardware data plane. In this model, the switch is assumed to be an
M/Geo/1 model where inter-arrival is exponentially distributed and the
service time is geometrically distributed but this model does not account
for the switch-controller interaction. In this work, the performance of the
switch is defined as the time required by the switch to process the pack-
ets without any interaction with controller. However, the analysis in [77]
does not map the workings of hardware switch such as flow matching and
dedicated packet processing to the queueing model.

Based on our survey of related research presented in this section, we
summarize our findings in Table 2.5. In Table 2.5, the first column denotes
existing queueing models for SDN software and hardware switches, the
second column denotes the queueing model in Kendall’s notation while
the third and fourth column denote the type of analysis (exact vs. approx-
imation) and the switch type (hardware vs. software). It is clear that apart
from [77] we have not found other works that model an SDN hardware
switch.

From Table 2.5, it is clear that most of the analysis is an approximation
and has assumed software switches. A unified queueing model that char-
acterizes the performance of hardware and software switches in an SDN
will allow network engineers to predict performance during their SDN
deployments.
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Table 2.5: Summary of queueing models for SDN switches.

Model Switch Analysis Switch Type
model EXA. APP. SW HW

Jarschel [66] M/M/1
Mahmood [67] M/M/1
Yen [69] M/M/1
Miao [12] M/M/1
Shang [72] M/H2/1
Sood [77] M/Geo/1
Miao [70] MMAP
Goto [11] GI/M/1/K
Javed [76] M/G/1

SW denotes software, HW denotes hardware, EXA. denotes
exact analysis and APP. denotes approximate analysis.

2.5 Summary

SDN is an emerging network paradigm that requires modelling and per-
formance analysis to identify potential bottlenecks that could hinder it’s
performance. An analytical approach for performance analysis is not only
cost-effective but is a good choice for designing a new network and op-
timising the performance of an existing network architecture. Queueing
theory is a popular mathematical tool that has been widely used for a pre-
dictive packet-level analysis of an SDN switch and will be the approach
used in this thesis.

From the literature review, several research works have independently
studied buffer sharing mechanisms but have not address the tradeoffs be-
tween those mechanisms. We address tradeoffs with the help of buffer
dimensioning in Chapter 3.

Similarly, existing queueing models for an SDN have focused on switches
that immediately send packets to the controller for decisioning, with no
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existing models investigating the impact of the internal buffer in an SDN
switch and the associated tradeoffs of having an internal buffer. We pro-
pose an analytical model for an SDN switch with the internal buffer to in-
vestigate the potential benefits, drawback and trade-offs of internal buffer-
ing in Chapter 4.

Finally, existing queueing models for an SDN have focused on the per-
formance analysis of software switches with almost none to address the
tradeoffs in choosing software switch over hardware switch, and vice-
versa. We develop a unified queueing model for characterizing the perfor-
mance of hardware switches and software switches for an SDN in Chap-
ter 5.



Chapter 3

Shared vs. Priority Buffer

From a generic queueing model for an SDN network discussed in Sec-
tion 2.4, the output buffer of the switch block in Fig. 2.5 is modelled either
as : (i) a single shared queue or (ii) a two-priority queue. In the shared
queue model, packets passing through the fast path and slow path share
a single queue with first in first out (FIFO) service discipline. While in
the two-priority queue, fast path and slow path packets are queued sepa-
rately and each queue is served in a FIFO manner without preemption. In
the two-priority queue model, packets in the slow path are always served
with higher priority over fast path packets but the server does not preempt
service of fast path packets once it has commenced. This is referred to as a
service without preemption.

3.1 Infinite and finite capacity queue models

Figure 2.5 shows that the controller block and switch block can be mod-
elled as infinite (denoted by M/M/1) or finite (denoted by M/M/1/K)
capacity queue. For the queueing network with infinite capacity queues,
the stationary behaviour of the network can be obtained with the help of
product-form analysis [111]. The product-form queueing analysis requires
the assumption that each queue in the network is independent of others.

45
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This assumption is not realistic as the state of one queue might affect the
behaviour of another queue especially in feedback queueing network.

Similarly, the queueing network with finite capacity queues result in
a non-product-form queueing network. This is due to the fact that the
feedback queueing network traffic mixes with external arrivals that result
in non-Poissonian inputs to the switch. Hence, the stationary behaviour
for such a network cannot be obtained using product-form network anal-
ysis. The stationary behaviour for such a network can be obtained by the
global-balance equations [112], however, the analysis is significantly more
complex due to the large state space [97].

In this thesis, the switch is assumed to have a finite queue capacity
for both shared and priority buffer to analyse the realistic behaviour of an
SDN. In the following section, buffer dimensioning with queueing models
is discussed to address the packet loss incurred in a finite queue capacity
switch due to the blocking.

3.2 Buffer dimensioning with queueing models

A key design question for SDN switches is determining the output buffer
size (K) given a desired loss probability. Buffers absorb temporary fluctua-
tions in packet arrivals and must be dimensioned to achieve a desired loss
probability that is lower than the loss probability on the outgoing links.
For example, a 1Gbps outgoing link using the 802.3 standard specifica-
tions must have bit error rate (BER) below 10−12 [113] while a 40Gbps
link must have errors below 10−20. Thus, it is in the interest of the switch
designer to dimension the buffer to ensure that the losses due to queueing
are below the BER of the outgoing links.

To answer this design question, the buffers are first assumed to be an
infinite queue, and the queue is truncated at some finite integer K such
that the desired loss probability is achieved [114, 115]. To render the prob-
ability of a loss below the desired loss rate (e.g. 10−12 for 1Gbps link), the
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switch buffer may be dimensioned so that the probability of the queue in
an unlimited buffer exceeding the capacity K packets at an arbitrary in-
stant is less than the target value.

In the simplest form, the buffer space requirement K, is measured in
bits, line rate is specified in bits per second, and the queue service period
is specified in seconds. However, the required buffer space, in practice, is
more meaningful if measured in packets. The minimum output queue ca-
pacity for switch (denoted by Kmin) can be derived using an infinite queue
model. However, losses in the queue are typically expressed as Packet Er-
ror Ratio (PER) while losses in the outgoing links are expressed by BER.
The relationship between BER and PER is given as

PER = 1− (1−BER)Nb , (3.1)

where Nb is the number of bits in the packet. Therefore, given a PER,
the minimum number of packets the switch can queue is obtained from
M/M/1 queueing model which guarantees the desired loss probability in
a switch is less than PER. In an M/M/1 queue, the probability that the
queue length (L) exceeds Kmin is given by Pr{L > Kmin} = ρ, where ρ is
the server utilization at the queue for given Kmin. Therefore, if PER is the
desired loss probability, ρ should be less than PER. Thus, a queue with a
capacity of at least Kmin is sufficient to ensure the loss probability that is
bounded below PER. The value of Kmin is calculated as

Kmin ≥
log[PER]

log[ρ]
. (3.2)

In this thesis, the minimum buffer capacities of queues are approxi-
mated values and do not affect the comparison of different models. The
approximated buffer helps in identifying trends while performing sensi-
tivity analysis.
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3.3 SDN switch design guidelines through com-

parative analysis

To study the effect of buffer sharing in an SDN switch, two queueing mod-
els: Model SE and Model SPE are defined. These models are based on dif-
ferent queue structures in the switch. In Models SE and SPE, “S” refers
to the switch with software data plane, “E” refers to the encapsulation
method in switch where packets are encapsulated and forwarded to the
controller, and “P” refers to the priority queue in data plane. The term
software data plane makes it explicit that the switch runs forwarding soft-
ware (e.g. OpenVswitch, Lagopus or DPDK) on CPU (central processing
unit) rather than hardware mircocoded forwarding engines, thus a single
server model is appropriate. Model SE uses a single queue for the fast
path and slow path [66, 67], this is also referred to as the Shared Buffer
Queue model. Model SPE uses priority queues as in [11, 12, 70], and is
also referred as Priority Queue Model. For brevity, Model SE is denoted
as SE and Model SPE as SPE.

By comparing SE and SPE, two switch design questions are answered
that were mentioned earlier in Section 1.3 as research objectives for buffer
sharing models:

• SE vs. SPE: Under what conditions, shared buffer queue structure
(as in SE) can be used instead of priority buffer queues (as in SPE).

• Buffer dimensioning: Compare the minimum required buffer space
between SE and SPE given a desired loss probability (e.g. dictated
by outgoing link on switch).

For performance analysis of SE and SPE, the controller is assumed to
have an infinite capacity queue. The external arrival at the switch is as-
sumed to be Poisson and is denoted by λ1, the service rate of the switch
is denoted by µsp, and the service rate of the controller is denoted by µc.
If an incoming data packet has no matching FTE or table miss, the packet
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is sent to the controller, and this occurs with probability referred as table
miss probability represented as β.

The average time to install FTEs in an SDN switch is the primary per-
formance metric used for comparing SE and SPE. It is commonly denoted
by mean sojourn time of packet in queueing theory. Also, when using Lit-
tle’s theorem (i.e. mean sojourn time of packet is ratio of average packet
length and arrival rate), arrival rate is replaced by throughput (denoted by
T ) for the finite buffer in the switch due to the packet losses.

3.3.1 Model SE: an SDN switch with a single shared queue

Figure 3.1: Model SE – an SDN Switch with a single shared queue.

Model SE uses a single queue for the switch shared between packets
traversing the fast path and slow path. Figure 3.1 shows SE with a finite
capacity queue at switch and the net traffic entering the switch is a sum of
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external traffic and feedback dependent on the controller (thus depicted as
a single arrow). As such, the queue in the switch is denoted as GI/M/1/K
to represent independent arrivals with general distribution [116]. Such
models have been separately analysed in [66] and [67].

The standard M/M/1 expression for the average queue length and
average delay does not hold for switches modelled with finite capacity
(GI/M/1/K) queue because the traffic from external arrivals mix with
packets fed back from the controller resulting in the aggregate process los-
ing its Markovian property [116, 117].

The queues for the network shown in Fig. 3.1 are modelled as a homo-
geneous QBD process and the matrix analytic method (MAM) is applied
to derive the average queue length and average delay. The finite capac-
ity switch in Fig. 3.1 is modelled as continuous Markov process with its
state defined by {(nc(t), ns(t)), t ≥ 0}. These state variables denoted by
nc(t) and ns(t) represent the number of packets in controller and switch,
respectively. Let the Markov process at time t for SE be defined as

{nc(t), ns(t)} = {x, y} (3.3)

where x ∈ Z+ and y ∈ Z≤KSE
+ . The KSE is the minimum output buffer

capacity for the switch in SE. The permissible transitions for the Markov
process {(nc(t), ns(t))} are listed in Table 3.1. With the help of permissible
transitions given in Table 3.1 and standard methods from MAM, an in-
finitesimal generator matrix Q can be derived to yield the stationary state
distribution (π). A detailed derivation of the generator matrix for SE is
detailed in the following subsection.

3.3.1.1 Generator matrix

Here, sub-matrices (denoted byA0, A1, B1, andA2) of the generator matrix
for SE are derived.



3.3. SDN SWITCH DESIGN GUIDELINES THROUGH COMPARATIVE ANALYSIS51

Table 3.1: Permissible transitions for Model SE.

Event From To Rate

One packet arrives at the switch (x, y) (x, y + 1) λ1

One packet departs from the switch

to out of the system (SE)
(x, y > 0) (x, y − 1) µsp(1− β)

One packet forwarded from the

switch to the controller
(x, y > 0) (x+ 1, y − 1) µspβ

One packet serviced by the con-

troller to the switch
(x > 0, y) (x− 1, y + 1) µc

Elements of matrix A0: The sub-matrix A0 represents the phase distribu-
tion of controller and switch when the number of packets in the controller
(i.e. nc(t) or x in Eq. (3.3)) increases by 1:

A0(y,y′) =

µspβ, y′ = y − 1,

0, otherwise.

Elements of matrix A1: The sub-matrix A1 represents the phase distribu-
tion of controller and switch when the number of packets in the controller
(i.e. nc(t) or x in Eq. (3.3)) remains unchanged:

A1(y,y′) =


µsp(1− β), y′ = y − 1,

λ1, y′ = y + 1,

0, otherwise.
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The diagonal elements of A1(y,y′) where y is equal to y′ has the following
cases:

A1(y,y′) =



−λ1 − µc, y = 0,

−λ1 − µc − µsp, 0 < y < KSE,

−µsp, y = KSE,

0, otherwise.

Elements of matrix B1: The sub-matrix B1 represents the phase distribu-
tion of controller and switch when the number of packets in the controller
remains unchanged and there is no packet in the controller (i.e. nc(t) or x
in Eq. (3.3) is equal to 0). The sub-matrix B1 is identical to A1 except that
its diagonal element is different from A1.

∴ B1 = A1 (for µc=0).

Elements of matrix A2: The sub-matrix A2 represents the phase distribu-
tion of controller and switch when the number of packets in the controller
(i.e. nc(t) or x in Eq. (3.3)) decreases by 1:

A2(y,y′) =

µc, y′ = y + 1,

0, otherwise.

3.3.1.2 Network performance metrics for SE

The sub-matrices A0, A1, B1, and A2 are input to MAM which will output
π distribution for SE. This π distribution is used to compute performance
metrics such as throughput, average queue length, and packet loss proba-
bility. The throughput and average queue length of the switch are used to
compute the average time to install FTEs in the shared buffer.
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Throughput of the switch (denoted by Ts) is given by the sum of proba-
bilities that the switch has at least one data packet to forward (with service
rate of µsp) and this is given by

Ts = µsp

∞∑
x=0

KSE∑
y=1

πx,y, (3.4)

where πx,y is the stationary probability for x packets in controller and y

packets in switch.

Throughput of the controller (denoted by Tc) is given by the sum of prob-
abilities that the controller has at least one control packet to forward (with
service rate of µc) and this is given by

Tc = µc

∞∑
x=1

KSE∑
y=0

πx,y. (3.5)

Average number of data packets (denoted by LSE) is the average number
of data packets in SE where data packets travel through the switch and the
controller. Therefore, LSE is expressed as:

LSE =
∞∑
x=0

KSE∑
y=0

(x+ y)πx,y. (3.6)

Average queue length of switch (denoted by Ls) is the average number
of packets in the switch expressed as

Ls =

KSE∑
y=1

πy × y, (3.7)

where πy is the marginal probability for the average number of packets in
the switch, and this marginal probability is defined as

πy =
∞∑
x=0

π(x, y). (3.8)
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Average data packet transfer delay (denoted by tSE) in the mean sojourn
time of a data packet in SE. It is obtained by applying Little’s theorem to
Eq. (3.6) which is expressed as:

tSE = LSE/TSE, (3.9)

where TSE is the throughput of SE expressed as:

TSE = (1− β)Ts. (3.10)

Average time to install FTEs (denoted by ttSE) at the switch is the aver-
age packet transfer delay (commonly denoted by the mean sojourn time of
the packet). Applying Little’s theorem to Eq. (3.7) yields the average time
to install FTEs for SE which is expressed as

ttSE = Ls/Ts, (3.11)

where ttSE is the average time to install an FTE into the switch flow table
for SE.

Packet loss probability (denoted by PLSE) is the average number of
packets being blocked or dropped in the shared buffer out of total incom-
ing packets. It is expressed as

PLSE = 1− TSE/λ1. (3.12)

Note that the validity of the expressions given in this section are con-
tingent on the stability condition for the queueing network. Following
standard M/M/1 theory (also given in [66]), the queues are stable if the
following inequality holds:

βλ1 − (1− β)µc < 0. (3.13)
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Figure 3.2: Model SPE – an SDN switch with a two-priority queue.

3.3.2 Model SPE: an SDN Switch with a two-priority queue

Figure 3.2 shows the model that uses priority queues for the switch with
a finite capacity. The priority queues provides isolation between packets
arriving from the controller and external packets arriving at the switch. In
this model, non-preemptive priority queues are used in which the lower
priority queue is serviced when there are no packets in the higher priority
queue. The two priority classes proposed in [11] reflect the realities of
the fast path and slow path, these priorities are called Class CS (control
traffic from controller to switch), and Class ES (external data traffic arrival
at switch) to indicate the different packet processing paths.

Class ES represents the class for an external data packet arrival to the
switch. If the external data packet has no matching entry in the switch, the
packet is sent to the controller, and this occurs with probability β. Class CS
represents the class for packets fed back to the switch from the controller
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and must be forwarded out to the destination. Packets in the Class ES
already have a forwarding rule installed in the switch and are assigned to
the lower priority with respect to the Class CS packets. Both Class CS and
Class ES queues shares service rate µsp.

The SPE queues are modelled with a homogeneous QBD process with
indexed by three state variables {(nc(t), ncs(t), nes(t)), t ≥ 0}. The state
variables denoted by nc(t), ncs(t), and nes(t) represent the number of pack-
ets in controller, Class CS, and Class ES, respectively. The minimum out-
put buffer capacity for the switch in SPE is equal to KSPE . It is assumed
that the Class CS and Class ES has the queue capacity of K1 and K2 re-
spectively. Let the Markov process at time t for SPE be defined as

{nc(t), ncs(t), nes(t)} = {x, y, z} (3.14)

where x ∈ Z+, y ∈ Z≤K1
+ and z ∈ Z≤K2

+ . The permissible transitions for the
Markov chain {(nc(t), ncs(t), nes(t))} are shown in Table 3.2 and these help
us determine the stationary distribution probability (π) for SPE.

3.3.2.1 Generator matrix

Here, sub-matrices (denoted byA0, A1, B1, andA2) of the generator matrix
for SPE are derived.

Elements of matrix A0: The sub-matrix A0 represents the phase distribu-
tion of controller and switch when the number of packets in the controller
(i.e. nc(t) or x in Eq. (3.14)) increases by 1:

A0(y,y′) =

Ã0
(y), y′ = y = 0,

0, otherwise,

where

Ã0
(0)

(z,z′) =

µspβ, z′ = z − 1,

0, otherwise.
(3.15)
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Table 3.2: Permissible transitions for Model SPE.

Event From To Rate

One packet departs from the

switch out of the system (SPE)
(x, 0, z > 0) (x, 0, z − 1) µsp(1− β)

One packet departs from the

Class CS out of the system (SPE)
(x, y > 0, z) (x, y − 1, z) µsp

One packet arrives at the Class

ES
(x, y, z) (x, y, z + 1) λ1

One packet forwarded from the

Class ES to the controller
(x, 0, z > 0) (x+ 1, 0, z − 1) µspβ

One packet serviced by the con-

troller to Class CS
(x > 0, y, z) (x− 1, y + 1, z) µc

Elements of matrix A1: The sub-matrix A1 represents the phase distribu-
tion of controller and switch when the number of packets in the controller
(i.e. nc(t) or x in Eq. (3.14)) remains unchanged:

A1(y,y′) =


A11

(y), y′ = y,

A12
(y), y′ = y − 1,

0, otherwise,

(3.16)

where

A11
(y)

(z,z′) =


λ1, z′ = z + 1,

µsp(1− β), y = 0, z′ = z − 1,

0, otherwise,

(3.17)

and

A12
(y)

(z,z′) =

µsp, z′ = z,

0, otherwise.
(3.18)
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The diagonal elements of A11
(y)

(z,z′) where z is equal to z′ has the following
cases:

A11
(y)

(z,z) =



−λ1 − µc, y = 0, z = 0,

−λ1 − µc − µsp, y = 0, 0 < z < K2,

−λ1 − µc − µsp, 0 < y ≤ K1, 0 ≤ z < K2,

−µsp, 0 ≤ y ≤ K1, z = K2,

0, otherwise.

(3.19)

Elements of matrix B1: The sub-matrix B1 represents the phase distribu-
tion of controller and switch when the number of packets in the controller
remains unchanged and there is no packet in the controller (i.e. nc(t) or x
in Eq. (3.14) is equal to 0). The sub-matrix B1 is identical to A1 except that
its diagonal element is different from A1.

∴ B1 = A1 (for µc=0).

Elements of matrix A2: The sub-matrix A2 represents the phase distribu-
tion of controller and switch when the number of packets in the controller
(i.e. nc(t) or x in Eq. (3.14)) decreases by 1:

A2(y,y′) =

A20
(y), y′ = y + 1,

0, otherwise,
(3.20)

where

A20
(y)

(z,z′) =

µc, z′ = z,

0, otherwise.
(3.21)

3.3.2.2 Network performance metrics for SPE

The sub-matrices A0, A1, B1, and A2 are input to MAM which will output
π distribution for SPE. This π distribution is used to compute the average
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time to install FTEs and packet loss probability in the priority buffer. These
performance metrics are computed using throughputs and average queue
lengths of Class ES and Class CS.

Throughput of the Class ES (denoted by Tes) is given by the sum of prob-
abilities that the Class ES has at least one data packet to forward (with ser-
vice rate of µsp) and no packet in the Class CS in the stationary state, and
this is given by

Tes = µsp

∞∑
x=0

K2∑
z=1

πx,0,z. (3.22)

Throughput of the Class CS (denoted by Tcs) is given by the sum of prob-
abilities that the Class CS has at least one data packet to forward (with
service rate of µsp) and this is given by

Tcs = µsp

∞∑
x=0

K1∑
y=1

K2∑
z=0

πx,y,z. (3.23)

Throughput of the controller (denoted by Tc) is given by the sum of prob-
abilities that the controller has at least one control packet to forward (with
service rate of µc) and this is given by

Tc = µc

∞∑
x=1

K1∑
y=z

K2∑
z=0

πx,y,z. (3.24)

Average queue length of the Class ES (denoted by Les) is the average
number of packets in the Class ES of switch which is expressed as

Les =

K2∑
z=1

πz × z, (3.25)
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where πz is the marginal probability for average number of packets in the
Class ES of switch and is expressed as

πz =
∞∑
x=0

K1∑
y=0

π(x, y, z). (3.26)

Average queue length of the Class CS (denoted by Lcs) is the average
number of packets in the Class CS of the switch which is expressed as

Lcs =

K1∑
y=1

πy × y, (3.27)

where πy is the marginal probability for average number of packets in the
Class CS of the switch and is expressed as

πy =
∞∑
x=0

K2∑
z=0

π(x, y, z). (3.28)

Average number of data packets (denoted by LSPE) is the average num-
ber of data packets in SPE where data packets travel through the switch
(the Class ES and the Class CS) and the controller. Therefore, LSPE is ex-
pressed as:

LSPE =
∞∑
x=0

K1∑
y=0

K2∑
z=0

(x+ y + z)πx,y,z. (3.29)

Average data packet transfer delay (denoted by tSPE) in the mean so-
journ time of a data packet in SPE. It is obtained by applying Little’s theo-
rem to Eq. (3.29) which is expressed as:

tSPE = LSPE/TSPE, (3.30)

where TSPE is the throughput of SE expressed as:

TSPE = Tcs + (1− β)Tes. (3.31)
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Average time to install FTEs (denoted by ttSPE) is the average packet
transfer delay at the Class CS of the switch. Applying Little’s theorem on
Eq. (3.27) yields the average delay for the packet that pass through the
Class CS which is expressed as

ttSPE = Lcs/Tcs. (3.32)

where ttSPE is the average time to install an FTE into the finite queue ca-
pacity switch for SPE.

Packet loss probability (denoted by PLSPE) is the average number of
packets being blocked or dropped in the priority buffer out of total incom-
ing packets. It is expressed as

PLSPE = 1− TSPE/λ1. (3.33)

The validity of the expressions given for SPE are contingent on the fol-
lowing stability condition:

βλ1 − µc < 0. (3.34)

The proof is given in [11].

3.3.3 Buffer dimensioning: SE vs. SPE

For the buffer dimensioning problem in SE, the switch queue is assumed
as M/M/1 (see Section 3.2). The minimum capacity for the switch in SE
i.e. KSE is calculated using Eq. (3.2) as

KSE ≥
log[PER]

log[ρs]
, (3.35)

where ρs is the server utilization at the switch defined as ρs = (1+β)λ1/µsp.
Likewise, for the buffer dimensioning of SPE, the switch queues are

assumed to be M/M/1 and the PER is fixed. The minimum queue capac-
ities for Class CS and Class ES of the switch in SPE are denoted as K1 and
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K2 respectively and can be calculated using Eq. (3.2) as:

K1 ≥
log[PER]

log[ρcs]
, K2 ≥

log[PER]

log[ρes]
, (3.36)

where ρcs and ρes are the server utilization at the Class CS and Class ES of
the switch respectively. These server utilization (ρcs and ρes) are defined
as:

ρcs =
βλ1
µsp

, ρes =
λ1
µsp

.

Therefore, the minimum total queue capacity of switch in SPE is the sum
of minimum queue capacity for Class CS and Class ES which is given as

KSPE = K1 +K2. (3.37)

3.4 Results

The parameters used for numerical evaluation are shown in Table 3.3.
From Table 3.3, the table miss probability β varies from 0.1 to 1, the ex-
ternal arrival rate (λ1) is set of 120 or 240 or 480 packets/sec that typ-
ify arrivals from a small business premise [118] to a campus area net-
work [119, 120]. The switch processing rate (µsp) is assumed to be 1000
packets/sec which is greater than λ1 to assure stationary distribution and
an Ethernet network is assumed for which theBER is assumed to be 10−12.
The Transmission Control Protocol (TCP) is used as the transport protocol
with maximum transmission unit (MTU) of 1500 bytes. Using this value
of MTU, the number of bits in the packet (Nb) is computed for Packet Error
Ratio (PER) in Eq. (3.1). Thus, the PER forBER of 10−12 and MTU of 1500
bytes is 1.2 × 10−8 (using Eq. (3.1)). This value of PER is used to deter-
mine the minimum buffer capacity for the switch queues as discussed in
Section 3.3.3.

Along with the analytical results, the simulation results obtained through
a discrete event simulation of the SE and SPE queueing networks are shown.
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The discrete event simulation in this thesis is based on Monte Carlo sim-
ulation where Monte Carlo simulators use random number generators to
simulate the system. The events for the Monte Carlo simulation are re-
lated to the transition rates of queueing models which cause models to
change their states. The Monte Carlo simulations for model SE and model
SPE with pseudo codes are explained in Appendix C and Appendix D,
respectively. The simulations are repeated 100 times and the 95% confi-
dence intervals (CI) are computed on the basis that the errors are normally
distributed. The analytical and simulation results are obtained for param-
eters β, λ1, and µc that satisfy the stability conditions for both SE and SPE
(Eq. (3.13) and Eq. (3.34)).

Table 3.3: Parameter used for analysis and simulation for both SE and SPE.
Parameter Value

Table miss probability, β 0.1∼1
Switch processing rate, µsp (packets/sec) 1000

Arrival rate, λ1 (packets/sec) 120, 240, 480
Controller to CPU Processing Ratio, mr 0.1∼2

Bit Error Rate, (BER) 10−12

MTU TCP packet size (byte) 1500

Note that the switch processing rate is assumed to be constant and con-
troller processing rate is determined by controller to CPU processing ratio
(i.e. mr = µc/µsp). Also, the term “saturated switch” is introduced to refer
to the net traffic arrivals to the switch which is greater than 60% of switch
service rate (i.e. 0.6× µsp).

3.4.1 Validating queueing models SE and SPE

In this section, analytical results for SE and SPE are validated by compar-
ing it with discrete event simulation result. Fig. 3.3 and Fig. 3.4 shows the
validation results for SE and SPE respectively for increasing β and mr = 1.
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(a) (b)

Figure 3.3: Validation of Model SE in terms of (a) Average time to install
FTE, and (b) Packet loss probability.

(a) (b)

Figure 3.4: Validation of Model SPE in terms of (a) Average time to install
FTE, and (b) Packet loss probability.
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To induce packet losses, the queue capacity of switch in both SE and SPE
is truncated to 0.8 times of the queue capacity determined via buffer di-
mensioning.

For the average time to install FTEs and packet loss probability, both
SE and SPE predictions from the queueing models track the simulation
models. The predictions for the average time to install FTEs fall within
95% CI (Fig. 3.3a and Fig. 3.4a) and drifts out of 95% CI for packet loss
probability (Fig. 3.3b and Fig. 3.4b) as β progresses past 0.8.

The error percentage between analysis and simulation predictions for
the average time to install FTEs in SE is up to 2.3%, while for SPE, the error
percentage is below 1%. Similarly, the error percentage for the packet loss
probability in both SE and SPE is below 2.8%.

3.4.2 Switch design considerations

From Section 3.3, the analysis in this chapter answers two design questions
by comparing SE and SPE:

(i) what is the tradeoff between providing traffic isolation and mini-
mum buffer space for a desired loss probability?

(ii) does priority queueing improve the time to install flow table in an
SDN switch?

The two performance measures are used to compare the performance
of SE and SPE namely the relative minimum capacity and relative time to
install FTE.

3.4.2.1 Relative minimum capacity

In this section, the minimum queue capacity of the switch between SE (de-
noted by KSE as in Eq. (3.35)) and SPE (denoted by KSPE as in Eq. (3.37))
is compared. In this comparison, the tradeoff between shared buffer and
priority queueing buffer in an SDN switch is investigated.
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(a) (b)

Figure 3.5: Minimum switch queue capacity (Kmin) between SE and SPE
for µsp = 1000 pkts/sec and increasing β: (a) Relative difference i.e. εK

and (b) Absolute value.

The relative minimum queue capacity of the switch between SE and
SPE is denoted as εK which is expressed as

εK =
KSE −KSPE

KSE
× 100%.

The relative minimum queue capacity reflects the percentage difference in
minimum queue space to achieve the desired loss probability. Figure 3.5a
shows the εK curves and Fig. 3.5b shows the absolute values of KSE and
KSPE for increasing β. A negative value of εK means SPE requires more
capacity than SE, while a positive value implies the opposite.

For a given loss probability, SE requires approximately up to 80% more
capacity than SPE. This observation is due to the increased control traffic
with β which requires a larger buffer to achieve the desired loss probabil-
ity. The additional capacity required for a control traffic in the Class CS
is very small compared to that required for Class ES which results in the
total queue capacity for Model SE being higher than Model SPE. In the
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non-saturated switch, the SPE requires more capacity than SE as seen in
Fig. 3.5a because the Class CS queue and Class ES queue must individu-
ally be dimensioned to achieve the desired loss probability. This results in
needing a larger buffer capacity than SE in the non-saturated switch.

In brief, adopting a priority queue for better isolation between the
Class ES and Class CS traffic requires a smaller switch queue capacity in
saturated switches, and conversely requires a larger switch queue capacity
for non-saturated switches. This conclusion helps answer the first switch
design question posed in Section 3.3.

3.4.2.2 Relative average time to install FTE

In this section, the average time to install FTEs between SE (denoted by
ttSE as in Eq. (3.11)) and SPE (denoted by ttSPE as in Eq. (3.32)) is com-
pared. In this comparison, the effects of priority queueing in the switch is
investigated.

The relative time difference (denoted by εtt) to install FTE in the switch
between SE and SPE (both with finite capacity) is calculated as:

εtt =
(ttSE − ttSPE)

ttSE
× 100%.

A positive value of εt means SPE has lower average time to install FTEs
compared to SE.

Fig. 3.6 shows the relative average time to install FTEs in the switch
between SE and SPE for increasing β and mr for µsp of 1000 packets/sec.
From Fig. 3.6, SPE exhibits up to 85% reduction in the average time to
install FTEs compared to SE for increasing β and mr. This is because the
separate high priority queue for control traffic prioritizes control traffic
and reduces the waiting time of control packets compared to SE where the
control traffic shares the buffer with data traffic.

As mr increases from 0.5 to 2, the relative time to install FTEs in SPE
decreases, especially for higher β as seen in Fig. 3.6. This is because higher
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(a) (b)

(c)

Figure 3.6: Relative time to install FTEs between SE and SPE i.e. εt for
increasing β : (a) mr = 0.5; (b) mr = 1.0; (c) mr = 2.0.

mr represents faster processing at the controller. With a dedicated queue
to serve the faster controller, the average time to install FTEs decreases for
SPE while there is no change for SE.

It is observed in Fig. 3.7 that as β increases from 0.1 to 1 (left to right),
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(a) (b)

(c)

Figure 3.7: Relative time to install FTEs between SE and SPE i.e. εtt for
increasing mr : (a) β = 0.1; (b) β = 0.5; (c) β = 1.

the relative time to install FTE increases from 50% to 78% for a saturated
switch (i.e. λ1 = 480 packet/sec). For Fig. 3.7(a) where β = 0.1, a lower
average time to install FTE is predicted for SPE because a small amount
of control traffic is forwarded to the controller, and increasing controller
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server capacity makes negligible difference to the time to install FTEs.

Overall, a switch buffer designed with the priority queueing signifi-
cantly reduces the average time to install FTEs compared to a switch de-
signed with the single shared queue. This answers the second switch de-
sign question posed in Section 3.3.

3.5 Conclusion

In this chapter, by comparing the shared buffer model (SE) and prior-
ity queueing buffer model (SPE), three key switch design questions in
an SDN are answered, viz. buffer dimensioning, selection of priority or
non-priority queue, and controller server capacity. The findings from the
investigation are as follows:

(i) for the switch with slower processing capacity, the average time to
install FTEs with SPE model decreases by up to 85% and requires up
to 82% less switch buffer capacity compared to SE model,

(ii) for the faster switch processing capacity, the average time to install
FTEs with the SPE model decreases as well but at the cost of higher
switch buffer capacity compared to the SE model, and

(iii) for a switch with priority queues, a faster controller (i.e. mr ≥ 1) sig-
nificantly improves relative average time to install FTEs as the table
miss probability increases.

3.6 Summary

Based on the investigation from this chapter, it is evident that the priority
queueing buffer model provides better performance in terms of shorter
delays when installing FTEs in a switch. Therefore, the priority queue-
ing buffer model is the preferred choice for switch designers and network
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analysers in an SDN as it accurately represents SDN behaviour. In the fol-
lowing chapters, the two-priority queueing structure will be assumed for
a software data plane or CPU in an SDN switch.



Chapter 4

Internal Buffering in SDN
Switches

Internal buffering in the computer communication network is a tempo-
rary buffering of packets within the switch. It has been used in traditional
switches such as ATM and Banyan switches to avoid the delay and loss of
packets under a heavy traffic condition [121].

Some of the benefits of internal buffering in SDN switches are: for-
warding delay of data packets can be decreased [106], Quality of Service
(QoS) can be improved with reduced packet loss [122], and bandwidth
of the control channel can be optimized [1]. However, it will be increas-
ingly important for the next generation of SDN switches to support inter-
nal buffering with increasing diversification of SDN deployments. There
may be an intermittent connectivity between the SDN switch and the con-
troller during SDN deployments in domains such as SDWANs, mobile
SDN and IoT.

Most existing research in the literature analyses the performance of an
SDN switch with no internal buffering. This is perhaps attributed to the
evolving nature of OpenFlow specifications which in its current incarna-
tion leaves the buffering of a data packet an optional feature.

In this chapter, queueing theory is used to derive a first order estimate

72
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of an OpenFlow switch’s performance and to identify potential trade-offs
between switch designs with the internal buffer and without the inter-
nal buffer. Queueing models are useful in predicting switch performance
trends as parametrized functions and link the cause to effect relationships
of the switch performance. The two main objectives of the research pre-
sented in this chapter are: (a) to model an SDN switch with the internal
buffer, and (b) to investigate the effect of internal buffering in the perfor-
mance of an SDN switch by comparing the queueing models for an SDN
switch with and without the internal buffer, and hence identify trade-offs.

In the following section, the queueing model for an SDN switch with
the internal buffer is developed and described with details of the generator
matrix and performance metrics.

4.1 Model SPI: an SDN Switch with the internal

buffer

Using similar convention with SPE in Section 3.3.2, the queueing model
for a switch with the internal buffer is named Model SPI, where “I” refers
to queueing of data packets in the internal buffer. As seen in Fig.4.1, the
switch has the internal buffer for buffering of packets destined for the con-
troller. The input buffer of the switch is modelled as a finite capacity with
two-priority class queues, Class ES (for external data packets) and Class
CS (for control packets) like SPE.

Model SPI consists of characterizing the four steps of packet process-
ing as shown in Fig. 4.1: (1) external data packets arrive at the Class ES
queue of the switch, (2) if the switch does not have a matching FTE then
data packets are temporarily buffered in the internal memory. The CPU
then forward a fraction of the data packet (around 20%) to the controller
encapsulated within packet-in messages. Similarly, if the switch have a
matching FTE then data packets are successfully forwarded to the desti-
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Figure 4.1: Model SPI – an SDN switch with a priority queue and the in-
ternal buffer.
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nation through an output port, (3) the controller feedbacks the forwarding
information with a packet-out message to Class CS of the switch, (4) and
the switch processes the control packets in Class CS, updates the flow table
with forwarding information, the temporarily buffered data packet is ex-
tracted from the internal buffer and forwarded to the destination through
an output port.

SPI is modelled as a continuous time Markov process with four state
variables, {(nb(t), nc(t), ncs(t), nes(t)), t ≥ 0}. The state variables denoted
by nb(t), nc(t), ncs(t), and nes(t) represent the number of packets in the
internal buffer, controller, Class CS, and Class ES respectively. The min-
imum output buffer capacity for the switch in SPI is equal to KSPI . It is
assumed that the Class CS, the Class ES, and the internal buffer have the
queue capacity of K1, K2, and K3 respectively. Let the Markov process at
time t be defined as:

{nb(t), nc(t), ncs(t), nes(t)} = {w, x, y, z} (4.1)

where w ∈ Z≤K3
+ , x ∈ Z+, y ∈ Z≤K1

+ and z ∈ Z≤K2
+ .

The number of packets in the controller and Class CS is dependent on
the number of packets in the internal buffer. Therefore, the state space of
the controller can be rewritten as x ∈ Z≤w+ and y as the fixed value equal to
(w − x).

For example, if the number of packets in the internal buffer at some in-
stant t is 1, i.e. nb(t) = 1, then the permissible state space for the controller
and Class CS are nc(t) = {0, 1} and ncs(t) = {1, 0} respectively. Due to
this dependency, the Markov process in SPI is the nonhomogenous QBD
process with the number of packets in the internal buffer as a level vari-
able [87]; while the number of packets in the controller, Class CS and Class
ES are phase variables. The permissible transitions for the Markov chain
{(nb(t), nc(t), ncs(t), nes(t))} are shown in Table 4.1 and these help in de-
riving sub-matrices (denoted by A0, A1, B1 and A2) of transition generator
matrix (Q) for SPI. These sub-matrices are inputs to the matrix geometric
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Table 4.1: Permissible Transitions for Model SPI.

Event From To Rate

One packet arrives to the

Class ES.
(w, x, y, z) (w, x, y, z + 1) λ1

One packet departs from

the Class ES to out of the

system (SPI).

(w, x, 0, z > 0) (w, x, 0, z − 1) µsp(1− β)

One packet departs from

the Class ES to the in-

ternal buffer and sub-

sequently one packet-in

message is sent to con-

troller.

(w, x, 0, z > 0) (w + 1, x+ 1, 0, z − 1) µspβ

One packet-out serviced

by the controller to the

Class CS.

(w, x > 0, y, z) (w, x− 1, y + 1, z) µc

One packet in the Class

CS is processed and sub-

sequently one packet de-

parts from the internal

buffer to out of the system

(SPI).

(w > 0, x, y > 0, z) (w − 1, x, y − 1, z) µsp
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solution for computing the stationary distribution probability (π) which is
used to determine performance metrics for SPI.

4.1.1 Generator matrix

Here, sub-matrices (denoted byA0, A1, B1, andA2) of the generator matrix
for SPI are derived.

Elements of matrix A0: The sub-matrix A0 represents the phase distribu-
tion of controller, Class CS, and Class ES when the number of packets in
the internal buffer (i.e. nb(t) or w in Eq. (4.1)) increases by 1:

A0(x,x′) =

A00
(x), x′ = x+ 1,

0, otherwise,

where,

A00
(x)

(y,y′) =

A001
(y), y′ = y = 0,

0, otherwise,

where,

A001
(0)

(z,z′) =

µspβ, z′ = z − 1,

0, otherwise.

Elements of matrix A1: The sub-matrix A1 represents the phase distribu-
tion of controller, Class CS, and Class ES when the number of packets in
the internal buffer remain unchanged and there are some packets in the
internal buffer (i.e. nb(t) or w in Eq. (4.1) is a positive integer that remain
unchanged):

A1(x,x′) =


A11

(x), x′ = x,

A12
(x), x′ = x− 1,

0, otherwise,
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where,

A11
(x)

(y,y′) =

A111
(y), y′ = y,

0, otherwise,

and

A12
(x)

(y,y′) =

A120
(y), y′ = y + 1,

0, otherwise,

where,

A111
(y)

(z,z′) =


λ1, z′ = z + 1,

µsp(1− β), y = 0, z′ = z − 1,

0, otherwise,

and

A120
(y)

(z,z′) =

µc, z′ = z,

0, otherwise.

The diagonal elements of A111
(y)

(z,z′) where z is equal to z′ has four distinct
cases:

(i) when there is no packet in controller (i.e. nc(t) or x in Eq. (4.1) is
equal to 0),

A111
(y)

(z,z′) =


−λ1 − µsp, 0 ≤ z < K2;

−µsp, z = K2;

0, otherwise,

(ii) when the number of packets in controller is less than the number of
packets in the internal buffer i.e. 0 < x < w and w < K3,

A111
(y)

(z,z′) =


−λ1 − µsp − µc, 0 ≤ z < K2;

−µsp − µc, z = K2;

0, otherwise,
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(iii) when the number of packets in controller is equal to that in the inter-
nal buffer which is not full i.e. x = w and w < K3,

A111
(y)

(z,z′) =



−λ1 − µc, z = 0;

−λ1 − µsp − µc, 0 < z < K2;

−µsp − µc, z = K2;

0, otherwise,

(iv) when the number of packets in the controller and the internal buffer
are equal to the queue size of the internal buffer i.e. x = w = K3,

A111
(y)

(z,z′) =



−λ1 − µc, z = 0;

−λ1 − µsp(1− β)− µc, 0 < z < K2,

−µsp(1− β)− µc, z = K2,

0, otherwise,

Elements of matrix B1: The sub-matrix B1 represents the phase distri-
bution of controller, Class CS, and Class ES when the number of packets
in the internal buffer is unchanged and there is no packet in the internal
buffer (i.e. nb(t) or w in Eq. (4.1) is equal to 0):

B1(x,x′) =

B11
(x), x′ = x = 0,

0, otherwise,

where,

B11
(0)

(y,y′) =

B111
(y), y′ = y = 0,

0, otherwise,

where,

B111
(0)

(z,z′) =


λ1, z′ = z + 1,

µsp(1− β), z′ = z − 1,

0, otherwise.
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The diagonal elements of B111
(0)

(z,z′) where z is equal to z′ is expressed as

B111
(0)

(z,z′) =



−λ1, z = 0,

−λ1 − µsp, 0 < z < K2,

−µsp, z = K2,

0, otherwise.

Elements of matrix A2: The sub-matrix A2 represents the phase distribu-
tion of the controller, Class CS and Class ES when the number of packets
in the internal buffer (i.e. nb(t) or w in Eq. (4.1)) decreases by 1:

A2(x,x′) =

A21
(x), x′ = x,

0, otherwise,

where,

A21
(x)

(y,y′) =

A212
(y), y′ = y − 1,

0, otherwise,

where,

A212
(y)

(z,z′) =

µsp, z′ = z,

0, otherwise.

4.1.2 Network performance metrics for SPI

The sub-matrices A0, A1, B1, and A2 are input to MAM which will output
π distribution for SPI. This π distribution is used to compute the average
packet transfer delay and packet loss probability. These performance met-
rics are computed using throughputs and the average number of packets
in SPI.

Throughput of the internal buffer (denoted by Tib) is given by the sum
of probabilities that the internal buffer of the switch has at least one data
packet to forward (service rate of µsp). The throughputs of the internal
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buffer (Tib) and high priority class (i.e. Class CS) of the switch (Tcs) for
SPI are the same because a packet in the internal buffer is assumed to
be extracted instantaneously after Class CS packet is processed. This as-
sumption is reflected in permissible transitions table for SPI as shown in
Table 4.1. Therefore, the throughputs of the internal buffer and Class CS
of the switch for SPI is given by:

Tib = Tcs = µsp

K3∑
w=1

w−1∑
x=0

K2∑
z=0

πw,x,y,z. (4.2)

Throughput of the Class ES (denoted by Tes) for SPI is given by the sum
of probabilities that the low priority class of the switch (i.e. Class ES) has at
least one data packet to forward (service rate of µsp) and there is no packet
in the high priority class of the switch (i.e. Class CS) in the stationary state,
and this is given by:

Tes = µsp

K3∑
w=0

w∑
x=0

K2∑
z=1

πw,x,0,z. (4.3)

Throughput of the controller (denoted by Tc) for SPI is given by the sum
of probabilities that the controller has at least one control packet to for-
ward (service rate of µc) with the condition that there is at least one packet
temporarily buffered in the internal buffer of the switch, and this is given
by:

Tc = µc

K3∑
w=1

w∑
x=1

K2∑
z=0

πw,x,y,z. (4.4)

Average number of data packets (denoted by LSPI) is the average num-
ber of data packets in SPI where data packets travel only through the
switch (the Class ES and the internal buffer) for SPI. Therefore, LSPI is
expressed as:

LSPI =

K3∑
w=0

w∑
x=0

K2∑
z=0

(w + z)πw,x,y,z. (4.5)
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Average data packet transfer delay for SPI (denoted by tSPI) is the mean
sojourn time of the packet in SPI. The lower value of tSPI results in the
lower waiting time of packets in an SDN network with the switch that sup-
ports internal buffering. In delay sensitive applications like an industrial
automation system, interactive video, and online surgery; a lower tSPI is
expected and higher tSPI is unacceptable. The value of tSPI is obtained by
applying Little’s theorem to Eq. (4.5) which is expressed as:

tSPI = LSPI/TSPI , (4.6)

where TSPI is the throughput of SPI expressed as:

TSPI = Tib + (1− β)Tes. (4.7)

Packet loss probability (denoted by PLSPI) is the average number of
packets being blocked or dropped by the Class CS, the Class ES, and the
internal buffer out of total incoming packets in SPI. The lower value of
PLSPI results in better QoS which is the positive indicator for applications
like web-based multimedia and industrial automation.
Assuming independence between the arrival at the Class CS, the Class
ES and the internal buffer, the packet loss probability for SPI (PLSPI) is
the sum of packet loss probabilities in the Class CS, the Class ES and the
internal buffer which is given as:

PLSPI = PLcs + PLes + PLib, (4.8)

where PLcs, PLes, and PLib represents the packet loss probabilities of
Class CS, Class ES, and switch’s internal buffer, respectively. These packet
loss probabilities are expressed as:

PLcs = PLib = 1− Tcs/Tc,

PLes = 1− Tes/λ1.
(4.9)
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4.1.3 Buffer dimensioning for SPI

For the buffer dimensioning problem in SPI, the switch queue is assumed
as M/M/1 (see Section 3.2). The minimum buffer capacities for the Class
CS, the Class ES, and the internal buffer of the switch are denoted as K1,
K2, and K3, respectively, and can be calculated using Eq. (3.2) as:

K1 ≥
log[PER]

log[ρcs]
,

K2 ≥
log[PER]

log[ρes]
,

K3 ≥
log[PER]

log[ρib]
,

(4.10)

where ρcs, ρes, and ρib are server utilizations at the Class CS, the Class ES,
and the internal buffer of the switch, respectively, and are defined as:

ρcs =
βλ1
µsp

, ρes =
λ1
µsp

, ρib =
βλ1
µsp

,

Therefore, the minimum buffer capacity for the switch in SPI (denoted as
KSPI) is the sum of minimum queue capacity for the Class CS, the Class
ES and the internal buffer:

KSPI = K1 +K2 +K3. (4.11)

4.2 Results

In this section, the queueing model for an SDN switch with internal buffer-
ing (i.e. SPI) is validated by discrete event simulation. The discrete event
simulation based on Monte Carlo simulation for model SPI with pseudo
codes is explained in Appendix E. The average packet transfer delay and
packet loss probability are the performance metrics of interest. Further,
SPI is compared with SPE (i.e. the queueing model for an SDN switch
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Table 4.2: Parameter used for analysis and simulation for both SPE and
SPI.

Parameter Value
Table miss probability, β 0.1∼1

Switch processing rate, µsp (packets/sec) 1000
Arrival rate, λ1 (packets/sec) 120, 240, 480

Controller to CPU Processing Ratio, mr 0.1∼2
Bit Error Rate, (BER) 10−12

MTU TCP packet size (byte) 1500

without internal buffering) to identify the benefits and trade-offs of using
SPI over SPE.

The parameters used for analysis and simulation for both SPE and SPI
are shown in Table 4.2. From Table 4.2, the table miss probability β varies
from 0.1 to 1 to investigate the performance of the switch in the presence of
increasing traffic intensity while the controller to CPU packet processing
rate ratio (mr) varies from 0.1 to 2 to study different processing power
disparity that typically exists between the switch and SDN controller.

The CPU processing rate (µsp) is assumed to be 1000 packets/sec and
the external arrival rate (λ1) is set to {120, 240, 480} packets/sec that typify
arrivals from a small business premise [118] to a campus area network
[66, 120]. To induce packet losses, the queue buffer capacity of Class ES
(K2) is truncated in both SPE and SPI to K2

2
while the values of K1 and K3

are determined via buffer dimensioning (Section 3.3.3 and Section 4.1.3) to
protect the control packets from being lost or dropped.

The simulations are repeated a hundred times and the 95% confidence
intervals (CI) are computed on the basis that the errors are normally dis-
tributed.
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(a) (b)

Figure 4.2: Validation of Model SPI in terms of (a) Average packet transfer
delay, and (b) Packet loss probability.

4.2.1 Validating queueing model SPI

In this section, the analytical result for SPI is validated by comparing it
with discrete event simulation result. Figure 4.2 shows the validation re-
sults for SPI for increasing β with mr = 1. The trend of increasing aver-
age delay with increasing β from the queueing model track the simulation
model very well.

The error percentage between analysis and simulation predictions for
both average packet transfer delay and packet loss probability is between
0.6%-2.8% as shown in Fig. 4.2a and Fig. 4.2b.

This range of error is acceptable for analysis as computation of π distri-
butions for non-homogenous QBD processes is known to introduce inac-
curacies due to the possibility of a singular matrix becoming nonsingular
in machine precision [85].
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(a) (b)

Figure 4.3: Minimum switch queue capacity (Kmin) between SPE and SPI
for µsp = 1000 pkts/sec and increasing β: (a) Relative difference i.e. εK

and (b) Absolute value.

4.2.2 SPE vs. SPI

4.2.2.1 Relative minimum buffer capacity

In this section, the relative minimum capacity between SPI and SPE de-
noted as εK is computed where εK which is defined as,

εK =
KSPI −KSPE

KSPE
× 100%.

A positive value of εK means SPI requires more capacity than SPE, while
a negative value implies that SPI requires less capacity than SPE.

Figure 4.3a shows the εK curves and Fig. 4.3b shows the absolute val-
ues of KSPE and KSPI for increasing β. From Fig. 4.3a, it can be seen that
SPI requires up to 50% more buffer capacity than SPE for increasing table
miss probabilities. This is because the switch in SPI requires extra inter-
nal buffer to temporarily store packets going to the controller. This result
shows the trade-off of using a switch with the internal buffer over a switch
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without the internal buffer and is expected to be useful for switch design-
ers in balancing costs and meeting quality of service requirements for a
switch.

4.2.2.2 Relative average delay

In this section, the average packet transfer delay between SPI (denoted by
tSPI given earlier in Eq. 4.6) and SPE (denoted by tSPE given earlier in
Eq. 3.30) is compared. In this comparison, the effect of internal buffering
in terms of average packet transfer delay is investigated.

The relative average packet transfer delay (denoted by εd) between SPE
and SPI (both with finite capacity) is calculated as:

εd =
(tSPI − tSPE)

tSPE
× 100%.

A negative value of εd indicates that SPI has lower average delay for pack-
ets to travel in the network compared to SPE.

(a) (b)

Figure 4.4: Relative average packet transfer delay between SPE and SPI
i.e. εt for (a) increasing β and mr = 1; and (b) increasing mr and β = 0.5.
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Figure 4.4 shows the relative average packet transfer delay between
SPI and SPE. Figure 4.4a and Fig. 4.4b show the relative average packet
transfer delay between SPI and SPE for increasing β and mr, respectively.

Varying the table miss probability (β): From Fig. 4.4a, SPI exhibits up to
30% reduction in average delay of the packet compared to SPE. As β in-
creases, more packets are sent to the controller for decisioning, and thus εd
decreases further. Hence, the benefits of having the internal buffer become
more significant with increasing β.

The lower delay in SPI is because with the buffering of packets in the
switch’s internal buffer of SPI, the switch sends a smaller sized message to
the controller as compared to SPE. As a result, the packet-in messages in
SPI are processed faster than that of SPE. This shows the benefit of utilizing
a switch with the internal buffer over a switch without the internal buffer,
i.e. reducing the average delay of the packets traversing the SDN switch.

Varying the controller to switch processing ratio (mr): From Fig. 4.4b,
SPI exhibits lower average packet transfer delay with a slower controller
(lower mr) than a faster controller (higher mr). This is because with a
slower controller, the decisioning time increases, which has significant im-
pact in the waiting time for packets in the switch. With internal buffering,
packets in a flow awaiting for decisioning from the controller are internally
buffered, which allows other packets in a flow to be serviced.

For an SDN network with a faster controller, the decisioning time is
also reduced which results in faster flow table updates in the switch. These
faster flow table updates shadow the effect of the internal buffer with rel-
atively lower average packet transfer delay.

This shows the benefit of a switch with the internal buffer over a switch
without the internal buffer in an SDN network with a slower controller.
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4.2.2.3 Relative average packet loss probability

In this section, the packet loss rate between SPE (denoted by PLSPE as in
Eq. (3.33)) and SPI (denoted by PLSPI as in Eq. (4.8)) is compared. In this
comparison, the effects of packet loss probability in the switch with and
without the internal buffer is investigated, computed as

εPL =
(PLSPI − PLSPE)

PLSPE
× 100%.

A negative value of εPL indicates that SPI has lower packet loss proba-
bility delay in the network compared to SPE.

(a) (b)

Figure 4.5: Relative average packet loss probability between SPE and SPI
i.e. εt for (a) increasing β and mr = 1; and (b) increasing mr and β = 0.5.

Figure 4.5 shows the relative packet loss probability between SPI and
SPE. Figure 4.5a and Fig. 4.5b show the relative packet loss probability
between SPI and SPE for increasing β and mr, respectively.

Varying the table miss probability (β): From Fig. 4.5a, SPI exhibits up
to 6% reduction in the packet loss probability compared to SPE. This re-
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sult shows that for increasing β, the internal buffer absorbs the increasing
number of data packets that need to be sent to the controller and reduces
the loss probability.

The relative loss probability curve for λ1 = 480 pkts/sec in Fig. 4.5a
increases after β reach 0.8. This is because the number of data packets
that need to be sent to the controller after β reaches 0.8 is much higher
for λ1 = 480 pkts/sec than λ1 = 120 or 240 pkts/sec. Due to the limited
capacity of the internal buffer, the higher number of data packets for λ1
= 480 pkts/sec are internally dropped because of which the relative loss
probability increases after β reach 0.8.

Varying the controller to switch processing ratio (mr): From Fig. 4.5b,
SPI exhibits up to 50% reduction in the packet loss probability for a slower
controller compared to SPE, whereas for a faster controller the reduction
is up to 6%.

This result shows that with increasing controller processing power, the
waiting time for packets in the switch is reduced. Thus, the output buffer
of the switch becomes available for packets arriving at the switch which
reduces the blocking of packets. In such a case, the effect of internal buffer-
ing in the switch is advantageous with a slower controller than a faster
controller.

4.2.3 Increasing packet arrivals (λ1):

With the fixed switch processing rate, the switch becomes slower with in-
creasing arrival rate. In this section, λ1 varies from 100 pkts/sec to 990
pkts/sec to study the effect of varying arrival rate in both SPE and SPI.
This is done by computing the relative average packet transfer delay and
relative packet loss probability for increasing λ1.

Relative average packet transfer delay: Figure 4.6 shows the relative av-
erage packet transfer delay between SPI and SPE for varying λ1 with vary-
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ing mr as seen in Fig. 4.6a (mr = 0.5), Fig. 4.6b (mr = 1), and Fig. 4.6c
(mr = 2).

(a) (b)

(c)

Figure 4.6: Relative average packet transfer delay between SPI and SPE
for varying λ1 with (a) mr = 0.5; (b) mr = 1; and (c) mr = 2.

From Fig. 4.6a, the switch with the internal buffer significantly reduces
the waiting time of packets up to 70% than the switch without the in-
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ternal buffer. This is because the waiting time for packets in the switch
significantly increases in an SDN network with a slower controller and a
slower switch. With temporarily buffering of data packets that require de-
cisioning from a slower controller, a slower switch with the internal buffer
provides significance advantage over a slower switch without the internal
buffer. However, this benefit comes at the cost of larger memory required
for internal buffering.

The curve for β = 0.9 in Fig. 4.6a is different from the other curves be-
cause of the amount of traffic that goes to the controller for β = 0.9 increases
drastically with the increasing arrival rate. Also, the controller’s process-
ing capacity is 0.5 times of the switch’s processing capacity (i.e. mr = 0.5).
The amount of traffic that goes to the controller for β = 0.9 is much higher
than β = 0.1 & 0.5. Therefore, the delay caused by the slower controller
for β = 0.9 is also much higher and displays a decreasing trend with the
increasing arrival rate.

Similarly, for an SDN network with a faster controller and a slower
switch, the waiting time of packets awaiting for decisioning from the con-
troller in the switch is reduced. Thus the use of the internal buffer to re-
duce the overall delay is relatively lower compared to the switch without
the internal buffer as seen in Fig. 4.6b and Fig. 4.6c.

Relative packet loss probability: With the increasing λ1 and β, the num-
ber of packets sent to the controller for decisioning is also increased. This
results in increase of waiting time for packets and blocking of incoming
packets in the switch.

The packets waiting for decisioning are absorbed for a smaller time in-
terval with a faster switch. However, with a slower switch, these absorbed
packets are temporarily buffered for longer time interval which results in
blocking of packets in the internal buffer as well. This additional packet
loss in the internal buffer reduces the benefit of having the internal buffer
over the switch without the internal buffer in reduction of packet loss as



4.2. RESULTS 93

(a) (b)

(c)

Figure 4.7: Relative average packet loss probability between SPE and SPI
for varying λ1 with (a) mr = 0.5; (b) mr = 1; and (c) mr = 2.

seen in Fig. 4.7. In Fig. 4.7, for λ1 greater than 400 pkts/sec (i.e. slower
switch), the relative packet loss probability starts increasing.
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4.3 Conclusion

In this chapter, the queueing model for the switch with the internal buffer
(SPI) is developed and compared with the switch without the internal
buffer (SPE). From this comparison, the following benefits and trade-offs
of using the internal buffer over without using the internal buffer are iden-
tified:

(a) In an SDN network with a faster controller, the switch with the inter-
nal buffer reduces the average delay by 30% and packet loss proba-
bility by 7% of the packets in an SDN. These numbers increase with
a slower controller where the switch with the internal buffer reduces
the average delay by 85% and packet loss probability by 40% of the
packets in an SDN.

(b) The trade-off is that up to 50% extra switch buffer capacity is required.

4.4 Summary

Based on the investigation from this chapter, the developed queueing model
for an SDN switch with the internal buffer showed better performance
than the switch without the internal buffer. The switch with the internal
buffer gave a lower delay and packet loss than the switch without the in-
ternal buffer at the cost of higher memory required for internal buffering.
However in a computer network, this trade-off is acceptable for delay and
loss sensitive applications where QoS is of the utmost importance.

In the following chapter, hardware-based SDN switches with and with-
out the internal buffer are modelled and analysed.



Chapter 5

Hardware Switching in SDN
Switches

Prior to this chapter, a software-based SDN switch is studied and investi-
gated. In this chapter, the effect of hardware switching in SDN switches
is studied. The block diagram of a hardware-based SDN switch where the
switch maintains flow tables in both hardware and software is shown in
Fig. 5.1. The hardware and software flow tables are synchronized through
a middleware layer on the switch to avoid duplicate entries and to ensure
consistent forwarding behavior [123, 124].

There are four important phases that an SDN model with a hardware
switch must capture. Phase (1), the first packet of a flow arrives at the spe-
cialised hardware in the switch that maintain hardware flow table entries
(FTE) and there is no matching FTE for the packet. Phase (2), a packet with
the matching FTE in the TCAM is serviced by the ASIC and forwarded to
the destination, otherwise a packet without a matching FTE in TCAM is
matched against the FTE in SDRAM and processed by the CPU for for-
warding to the destination. In phase (3), a packet without any matching
entry in TCAM or SDRAM is forwarded to the controller. In phase (4), the
controller feeds the forwarding information back to the switch and up-
dates the flow tables in both TCAM and SDRAM. Finally, the packet is

95
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Figure 5.1: Generic model for a hardware-based SDN switch with the spe-
cialised hardware and the CPU.
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serviced by the CPU and forwarded to the destination.

Based on these four important phases, queueing models for a hardware-
based SDN switch with and without the internal buffer are developed in
the following sections.

5.1 Model HPE: a hardware switch without the

internal buffer

Figure 5.2 shows the queueing model for a hardware-based SDN switch
without the internal buffer which is named Model HPE. Similar to a soft-
ware switch without the internal buffer in Fig. 3.2 (i.e Model SPE), “E”
and “P” in HPE refers to the full encapsulation of a data packet and the
use of priority queues in the CPU respectively. The “H” in HPE refers to
the hardware switch. The priority queues in the hardware switch provide
isolation between the packets arriving from the controller and packets to
be processed by CPU when there is no matching FTE in the hardware ta-
ble stored in the switch’s TCAM. In this model, non-preemptive priority
queues are used for the CPU similar to that in Model SPE for the software
switch.

Class HP represents the low priority class of CPU for an external data
packet that has no matching entry in the hardware table maintained by
the switch’s specialised hardware. This packet is sent to the controller by
the switch’s specialised hardware with the probability β. Class CP rep-
resents the high priority class for packets fed back to the CPU from the
controller and must be forwarded out to the destination. It is assumed
that the CPU synchronises the flow tables with specialised hardware as
shown in Fig. 5.1. Both Class CP and Class HP queues share service rate
µsp while the switch’s hardware queue has a service rate of µsh.

The packet processing in HPE can be explained in five steps as shown
in Fig. 5.2: (1) external data packets arrives at the specialised hardware
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Figure 5.2: Model HPE – hardware switch modelled with two servers to
reflect the presence of network processing functions.
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of the switch, (2) data packets are forwarded to Class HP of CPU if the
specialised hardware in the switch does not have a matching FTE or for-
warded to destination through output port, (3) data packets are forwarded
to the controller encapsulated with packet-in control message, (4) con-
troller feeds back the forwarding information with packet-out message
to Class CP of the CPU, (5) finally the CPU processes the control pack-
ets in Class CP, updates and synchronises the flow table with specialised
hardware, and forwards data packets to the destination through an output
port.

The HPE is modelled as a continuous time Markov process with four
state variables, {(nc(t), ncp(t), nhp(t), nsh(t)), t ≥ 0}. The state variables de-
noted by nc(t), ncp(t), nhp(t), and nsh(t) represent the number of packets in
controller, Class CP, Class HP, and switch hardware, respectively. Let the
Markov process at time t be defined as:

{nc(t), ncp(t), nhp(t), nsh(t)} = {w, x, y, z}. (5.1)

where w ∈ Z+, x ∈ Z≤K1
+ , y ∈ Z≤K2

+ , and z ∈ Z≤K3
+ . The queue capacity

for the CPU of the switch is equal to K. It is assumed that Class CP and
Class HP have a queue capacity of K1 and K2 respectively with the total
queue capacity of the CPU as K. Similarly, the queue capacity for switch
hardware is equal to K3.

The permissible transitions for the Markov process {(nc, ncp, nhp, nsh)}
are listed in Table 5.1. With the help of permissible transitions in Table
5.1, the sub-matrices (denoted by A0, A1, B1, and A2) of the transition rate
generator matrix determine (Q) for Model HPE are derived. These sub-
matrices are further used to compute the stationary distribution probabil-
ity (π) for HPE.

5.1.1 Generator matrix

Here, sub-matrices (denoted by A0, A1, B1, and A2) of the generator matrix
for HPE are derived.
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Table 5.1: Permissible transitions for Model HPE.

Event From To Rate

One packet arrives at the
switch hardware.

(w, x, y, z) (w, x, y, z + 1) λ1

One packet departs from
hardware to out of the
system.

(w, x, y, z > 0) (w, x, y, z − 1) µsh(1− β)

One packet arrives at
Class HP for CPU pro-
cessing.

(w, x, y, z > 0) (w, x, y + 1, z − 1) µshβ

One packet forwarded
from Class HP to con-
troller.

(w, 0, y > 0, z) (w, 0, y − 1, z) µsp

One packet serviced by
Controller to Class CP.

(w, x, y, z) (w, x+ 1, y, z) µc

One packet processed by
CPU to out of the sys-
tem.

(w, x > 0, y, z) (w, x− 1, y, z) µsp
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Elements of matrix A0: The sub-matrix A0 represents the phase distri-
bution of Class CP, Class HP, and switch hardware when the number of
packets in the controller (i.e. nc(t) or w in Eq. 5.1) increases by 1.

A0(x,x′) =

A01
(x), x′ = x = 0,

0, otherwise.

where,

A01
(0)

(y,y′) =

A012
(y), y′ = y − 1,

0, otherwise.

where,

A012
(1 ≤ y ≤ K2 + 1)

(z,z′) =

µsp, z′ = z − 1,

0, otherwise.

Elements of matrix A1: The sub-matrix A1 represents the phase distri-
bution of Class CP, Class HP, and switch hardware when the number of
packets in the controller remains unchanged and there are some packets
in the controller (i.e. nc(t) or w in Eq. 5.1 is a positive integer that remains
unchanged).

A1(x,x′) =


A11

(x), x′ = x,

A12
(x), x′ = x− 1,

0, otherwise.

where,

A11
(0 ≤ x ≤ K1 + 1)

(y,y′) =



A110
(y), y′ = y + 1,

A111
(y), y′ = y, x = 0,

Ã111
(y), y′ = y, x 6= 0,

0, otherwise,
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and

A12
(1 ≤ x ≤ K1 + 1)

(y,y′) =

A121
(y), y′ = y,

0, otherwise.

where,

A111
(0 ≤ y ≤ K2 + 1)

(z,z′) =


λ1, z′ = z + 1,

µsh(1− β), y = 0, z′ = z − 1,

0, otherwise,

Ã111
(0 ≤ y ≤ K2 + 1) = A111

(0 ≤ y ≤ K2 + 1),

A110
(0 ≤ y < K2 + 1)

(z,z′) =

µshβ, z′ = z,

0, otherwise,

and

A121
(0 ≤ y ≤ K2 + 1)

(z,z′) =

µsp, z′ = z,

0, otherwise.

The diagonal elements of A111 and Ã111 are given as,

A111
(y)

(z,z) =



−λ1 − µc, y = 0, z = 0,

−λ1 − µc − µsp, 0 < y ≤ K2 + 1, z = 0,

−λ1 − µc − µsh, y = 0, 0 < z ≤ K3,

−λ1 − µc − µsh − µsp, 0 < y ≤ K2 + 1 and,

0 < z ≤ K3

−µc − µsh, y = 0, z = K3 + 1,

−µc − µsh − µsp, 0 < y ≤ K2 + 1 and,

z = K3 + 1,

0, otherwise,
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and

˜A111
(y)

(z,z) =


A111

(y) − µspIe, y = 0,

A111
(y), y 6= 0,

0, otherwise.

where, Ie is the identity matrix.

Elements of matrix A2: The sub-matrix A2 represents the phase distri-
bution of Class CP, Class HP, and switch hardware when the number of
packets in the controller (i.e. nc(t) or w in Eq. 5.1) decreases by 1.

A2(x,x′) =

A20
(x), x′ = x+ 1,

0, otherwise.

where,

A20
(0 ≤ x ≤ K1 + 1)

(y,y′) =

A201
(y), y′ = y,

0, otherwise.

where,

A201
(0 ≤ y ≤ K2 + 1)

(z,z′) =

µc, z′ = z,

0, otherwise.

Elements of matrix B1: The sub-matrix B1 is identical to A1 that repre-
sents the phase distributions of Class CP, Class HP and switch hardware
when the number of packets in controller (i.e. nc(t) or w in Eq. 5.1 is equal
to 0).

∴ B1 = A1( for µc = 0).

5.1.2 Network performance metrics for HPE

With these sub-block matrices and matrix geometric solution, we can com-
pute the stationary distribution probabilities (πw,x,y,z) for w packets in the
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controller, x packets in Class CP, y packets in Class HP, and z packets in
the switch hardware. The performance metrics like throughput of the con-
troller and switch, the average packet transfer delay in the switch, and
average packet loss in the switch can be computed using (πw,x,y,z).

Throughput of Class CP (denoted by Tcp) for Model HPE is given by the
sum of probabilities that the Class CP of the CPU has at least one control
packet from the controller to process with service rate of µsp and this is
given by:

Tcp = µsp

∞∑
w=0

K1∑
x=1

K2∑
y=0

K3∑
z=0

πw,x,y,z. (5.2)

Throughput of Class HP (denoted by Thp) for Model HPE is given by the
sum of probabilities that the Class HP of the CPU has at least one data
packet to forward to the controller with service rate of µsp and no control
packet in the Class CP in the stationary state, and this is given by:

Thp = µsp

∞∑
w=0

K2∑
y=1

K3∑
z=0

πw,0,y,z. (5.3)

Throughput of specialised hardware queue (denoted by Thp) for Model
HPE is given by the sum of probabilities that the specialised hardware
switch has at least one data packet to forward with service rate of µsh and
this is given by:

Tsh = µsh

∞∑
w=0

K1∑
x=0

K2∑
y=0

K3∑
z=1

πw,x,y,z. (5.4)

Throughput of Controller (denoted by Tc) for Model HPE is given by the
sum of probabilities that the controller has at least one control packet to
forward to Class CP with service rate of µc and this is given by:

Tc = µc

∞∑
w=1

K1∑
x=0

K2∑
y=0

K3∑
z=0

πw,x,y,z. (5.5)
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Average number of data packets (denoted by LHPE) is the average num-
ber of data packets in HPE where data packets travel through the switch
(the CPU and the specialised hardware) and the controller. Therefore,
LHPE is expressed as:

LHPE =
∞∑
w=0

K1∑
x=0

K2∑
y=0

K3∑
z=0

(w + x+ y + z)πw,x,y,z. (5.6)

Average data packet transfer delay for HPE (denoted by tHPE) is the
mean sojourn time of a data packet in an SDN network with a single con-
troller and hardware switch without the internal buffer. Applying Little’s
formula on Eq .(5.6), the average time to traverse packet in Model HPE is
derived and given as,

tHPE =
LHPE
THPE

, (5.7)

where THPE is the total throughput of Model HPE and given as,

THPE = Tcp + (1− β)Tsh. (5.8)

Packet loss probability (denoted by PLHPE) is the total average packet
loss probability of the Class CP (PLcp), the Class HP (PLhp), and the spe-
cialised hardware (PLsh) for Model HPE. Assuming independence of packet
arrivals between Class CP, Class HP, and the specialised hardware queue;
PLcp, PLhp and PLsh represent the average number of packets being blocked
or dropped by Class CP, Class HP and switch hardware out of the total
incoming packets in the respective queue. The packet loss probabilities
PLcp, PLhp, and PLsh for Model HPE are expressed as,

PLcp = 1− Tcp/Tc,

PLhp = 1− Thp/Tsh,

PLsh = 1− Tsh/λ1.

(5.9)

The average packet loss probability for Model HPE is given as,

PLHPE = 1− THPE/λ1. (5.10)
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The validity of the expressions given for HPE are contingent on the sta-
bility condition which can be derived using the traffic equilibrium equa-
tion [125]. Let Trc, T rcp, T rhp and Trsh denote the traffic intensities at the
controller, Class CP, Class ES of the CPU and switch hardware respectively.
The queueing network represented by HPE is stable if (Trc−µc) < 0.Using
the traffic equilibrium equations, we get,

Trc = Trhp, T rcp = Trc, T rhp = βTrsh, T rsh = λ1.

Solving the traffic equations for HPE and using the condition of (Trc −
µc) < 0, we get the stability condition from [11] for HPE which is the same
as that of SPE, i.e.,

βλ1 − µc < 0. (5.11)

5.2 Model HPI: a hardware switch with the in-

ternal buffer

Similar to “SPI” for the software switch with the internal buffer, the queue-
ing model for a hardware switch with the internal buffer is named Model
HPI, where “I” refers to internal buffering. HPI is an extension of SPI, with
one additional server and queue for specialised hardware with M/M/1/K
distribution.

As shown in Fig. 5.3, the switch has two servers, one for specialised
hardware (referred to as hardware processor and denoted by µsh) and the
other one for the CPU (referred to as CPU processor and denoted by µsp).
Similar to SPI, the CPU is modelled as finite capacity with non-preemptive
two-priority class queues; Class HP (similar to Class ES for SPI) as a low
priority, Class CP (similar to Class CS for SPI) as a high priority.

The packet processing in HPI can be explained in five steps as shown
in Fig. 5.3: (1) external data packets arrive at specialised hardware of the
switch, (2) data packets are forwarded to Class HP of CPU if the spe-
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Figure 5.3: Model HPI – hardware switch modelled with two servers and
internal buffer to realise the internal buffering.
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cialised hardware in the switch does not have a matching FTE or for-
warded to destination through output port, (3) data packets are temporar-
ily buffered in the internal memory and a fraction of the data packet is for-
warded to the controller encapsulated with packet-in control message, (4)
controller feedback the forwarding information with packet-out message
to Class CP of the CPU, (5) finally the CPU processes the control packets in
Class CP, updates and synchronises the flow table with specialised hard-
ware, extracts temporarily buffered data packet from the internal buffer
and forwards to the destination through an output port.

HPI is modelled as a continuous time Markov process with five state
variables, {(nb(t), nc(t), ncp(t), nhp(t), nsh(t)), t ≥ 0}. The state variables de-
noted by nb(t), nc(t), ncp(t), nhp(t), and nsh(t) represent the number of pack-
ets in the internal buffer, controller, Class CP, Class HP, and specialised
hardware respectively.

Similar to SPI, queue capacities of the internal buffer, Class CP, and
Class HP are K3, K1, and K2 respectively; and the controller is assumed to
have infinite capacity. The queue capacity of specialised hardware is K4.
Let the Markov process at time t be defined as:

{nb(t), nc(t), ncp(t), nhp(t), nsh(t)} = {v, w, x, y, z} (5.12)

where v ∈ Z≤K3
+ , w ∈ Z+, x ∈ Z≤K1

+ , y ∈ Z≤K2
+ , and z ∈ Z≤K4

+ . The number
of packets in the controller and the Class CP are dependent on the number
of temporarily buffered packets in the internal buffer. Therefore, the state
space of the controller can be rewritten as w ∈ Z≤v+ and and the state space
of the Class CP is limited by the number of packets in the internal buffer
and the contoller i.e., x = v − w as discussed in Section 4.1.

Due to the dependency of nc(t) and ncp(t) on the internal buffer, the
process governing the number of packets in HPI is also a nonhomogenous
QBD process with the internal buffer as a level variable; controller, Class
CP, Class HP, and specialised hardware as phase variables. The permis-
sible transitions for the Markov chain {(nb(t), nc(t), ncp(t), nhp(t), nsh(t))}
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Table 5.2: Permissible Transitions for Model HPI.

Event From To Rate

One packet arrives at

switch hardware.
(v, w, x, y, z) (v, w, x, y, z + 1) λ1

One packet departs from

hardware to out of the sys-

tem (HPI).

(v, w, x, y, z > 0) (v, w, x, y, z − 1) µsh(1− β)

One packet arrives at Class

HP for CPU processing.
(v, w, x, y, z > 0) (v, w, x, y + 1, z − 1) µshβ

One packet departs from

Class HP to the internal

buffer and subsequently

one packet-in message is

sent to the controller.

(v, w, 0, y > 0, z) (v + 1, w + 1, 0, y − 1, z) µsp

One packet serviced by the

controller to Class CP.
(v > 0, w > 0, x, y, z) (v > 0, w − 1, x+ 1, y, z) µc

One packet out in Class

CP is processed and subse-

quently one packet departs

from the internal buffer to

out of the system (HPI).

(v > 0, w, x > 0, y, z) (v − 1, w, x− 1, y, z) µsp
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are listed in Table 5.2. These transitions help in deriving sub-matrices
(A0, A1, B1, andA2) of the generator matrix (Q) for HPI. These sub-matrices
are input to matrix geometric solution to compute the stationary distribu-
tion probability (π) which is used to determine performance metrics for
HPI.

5.2.1 Generator matrix

Here, sub-matrices (denoted by A0, A1, B1, and A2) of the generator matrix
for HPI are derived.

Elements of matrix A0: The sub-matrix A0 represents the phase distri-
bution of controller, Class CP, Class HP, and specialised hardware when
the number of packets in the internal buffer (i.e. nb(t) or v in Eq. (5.12))
increases by 1:

A0(w,w′) =

A00
(w), w′ = w + 1,

0, otherwise,

where,

A00
(w)

(x,x′) =

A001
(x), x′ = x = 0,

0, otherwise,

where,

A001
(0)

(y,y′) =

A0012
(y), y′ = y − 1,

0, otherwise,

where,

A0012
(y)

(z,z′) =

µsp, z′ = z,

0, otherwise.

Elements of matrix A1: The sub-matrix A1 represents the phase distribu-
tion of controller, Class CP, Class HP, and specialised hardware when the
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number of packets in the internal buffer remain unchanged and there are
some packets in the internal buffer (i.e. nb(t) or v in Eq. (5.12) is a positive
integer that remain unchanged):

A1(w,w′) =


A11

(w), w′ = w,

A12
(w), w′ = w − 1,

0, otherwise,

where,

A11
(w)

(x,x′) =

A111
(x), x′ = x,

0, otherwise,

and

A12
(w)

(x,x′) =

A120
(x), x′ = x+ 1,

0, otherwise,

where,

A111
(x)

(y,y′) =


A1111

(y), y′ = y,

A1110
(y), y′ = y + 1,

0, otherwise,

and

A120
(x)

(y,y′) =

A1201
(y), y′ = y,

0, otherwise,

where,

A1111
(y)

(z,z′) =


λ1, z′ = z + 1,

µsh(1− β), z′ = z − 1,

0, otherwise,

A1110
(y)

(z,z′) =

µshβ, z′ = z − 1,

0, otherwise,
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and

A1201
(y)

(z,z′) =

µc, z′ = z,

0, otherwise.

The diagonal elements of A1111
(y)

(z,z′) where z is equal to z′ has the four
distinct cases:

(i) when there is no packet in the controller (i.e. nc(t) or w in Eq. (5.12)
is equal to 0),

A1111
(y)

(z,z′) =



−λ1 − µsp, 0 ≤ y ≤ K2,

z = 0;
−λ1 − µsh − µsp, 0 ≤ y < K2,

0 < z < K4;
−λ1 − µsh(1− β)− µsp, y = K2,

0 < z < K4;
−µsh − µsp, 0 ≤ y < K2,

z = K4;
−µsh(1− β)− µsp, y = K2,

z = K4;
0, otherwise,

(ii) when the number of packets in the controller is less than the internal
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buffer which is not full i.e. 0 < w < v and v < K3,

A1111
(y)

(z,z′) =



−λ1 − µsp − µc, 0 ≤ y ≤ K2,

z = 0;

−λ1−µsp−µsh−
µc,

0 ≤ y < K2,

0 < z < K4;

−µsp − µsh − µc, 0 ≤ y < K2,

z = K4;

−λ1 − µsp
−µsh(1−β)−µc,

y = K2,

0 < z < K4;

−µsp−µsh(1−β)
− µc,

y = K2,

z = K4;

0, otherwise,

(iii) when the number of packets in the controller is equal to that in the
internal buffer which is not full i.e. w = v and v < K3,

A1111
(y)

(z,z′) =



−λ1 − µc, y = z = 0;

−λ1 − µsh − µc, y = 0,

0 < z < K4;

−µsh − µc, y = 0,

z = K4;

−λ1 − µsp − µc, 0 < y ≤ K2,

z = 0;

−λ1−µsp−µsh−
µc,

0 < y ≤ K2,

0 < z < K4;

−µsp − µsh − µc, 0 < y ≤ K2,

z = K4;

−λ1 − µsp − µc
− µsh(1− β),

y = K2,

0 < z < K4;

−µsp−µsh(1−β)
− µc,

y = K2,

z = K4;

0, otherwise,
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(iv) when the number of packets in the controller and the internal buffer
are equal to the queue size of the internal buffer i.e. w = v = K3,

A1111
(y)

(z,z′) =



−λ1 − µc, 0 ≤ y ≤ K2,

z = 0;

−λ1 − µsh − µc, 0 ≤ y < K2,

0 < z < K4;
−µsh − µc, 0 ≤ y < K2,

z = K4;

−λ1−µsh(1−β)
− µc,

y = K2,

0 < z < K4;
−µsh(1−β)−µc, y = K2,

z = K4;

0, otherwise,

Elements of matrix B1: The sub-matrix B1 represents the phase distribu-
tion of the controller, Class CP, Class HP, and specialised hardware when
the number of packets in the internal buffer remain unchanged and there
is no packet in the internal buffer (i.e. nb(t) or v in Eq. (5.12) is equal to 0:)

B1(w,w′) =

B11
(w), w′ = w = 0,

0, otherwise,

where,

B11
(0)

(x,x′) =

B111
(x), x′ = x = 0,

0, otherwise,

where,

B111
(0)

(y,y′) =

B1111
(x), y′ = y,

0, otherwise.
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where,

B1111
(y)

(z,z′) =


λ1, z′ = z + 1,

µsh(1− β), z′ = z − 1,

0, otherwise.

The diagonal elements of B1111
(y)

(z,z′) where z is equal to z′ are expressed
as

B1111
(y)

(z,z′) =



−λ1, y = 0, z = 0;

−λ1 − µsh, y = 0,

0 < z < K4;
−µsh, y = 0, z = K4,

−λ1 − µsp, 0 < y ≤ K2,

z = 0;

−λ1 − µsh − µsp, 0 < y < K2,

0 < z < K4;

−µsh − µsp, 0 < y < K2,

z = K4;

−λ1 − µsh(1− β)− µsp, y = K2,

0 < z < K4;

−µsh(1− β)− µsp, y = K2, z = K4;

0, otherwise.

Elements of matrix A2: The sub-matrix A2 represents the phase distribu-
tion of the controller, Class CP, Class HP, and specialised hardware when
the number of packets in the internal buffer (i.e. nb(t) or v in Eq. (5.12))
decreases by 1:

A2(w,w′) =

A21
(w), w′ = w,

0, otherwise,
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where,

A21
(w)

(x,x′) =

A212
(x), x′ = x− 1,

0, otherwise,

where,

A212
(x)

(y,y′) =

A2121
(y), y′ = y,

0, otherwise.

where,

A2121
(y)

(z,z′) =

µsp, z′ = z,

0, otherwise.

5.2.2 Network performance metrics for HPI

With these sub-block matrices and matrix geometric solution, we can com-
pute the stationary distribution probabilities (πv,w,x,y,z) for v packets in the
internal buffer, w packets in controller, x packets in Class CP, y packets in
Class HP, and z packets in the switch hardware. The performance metrics
like the average packet transfer delay and packet loss probability can be
computed using πv,w,x,y,z.

Throughput of the internal buffer (denoted by Tib) is the sum of proba-
bilities that the internal buffer at the CPU has at least one data packet to
forward with service rate of µsp for HPI. Like SPI, throughputs of the Class
CP (Tcp) and the internal buffer (Tib) for HPI are the same and this is given
by:

Tb = Tcp = µsp

K3∑
v=1

v−1∑
w=0

K2∑
y=0

K4∑
z=0

πv,w,x,y,z. (5.13)

Throughput of the controller (denoted by Tc) is the sum of probabilities
that the controller has at least one control packet to forward with service
rate of µc, and there is at least one data packet temporarily buffered in the
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internal buffer for HPI. This is given by:

Tc = µc

K3∑
v=1

v∑
w=1

K2∑
y=0

K4∑
z=0

πv,w,x,y,z. (5.14)

Throughput of the Class HP (denoted by Thp) is the sum of probabilities
that the Class HP of the CPU buffer has at least one data packet to forward
with service rate of µsp and there is no packet in the Class CP for HPI, and
this is given by:

Thp = µsp

K3∑
v=0

v∑
w=0

K2∑
y=1

K4∑
z=0

πv,w,x,0,z . (5.15)

Throughput of the specialised hardware (denoted by Tsh) is the sum of
probabilities that the specialised hardware switch has at least one data
packet to forward with service rate of µsh for HPI and this is given by:

Tsh = µsh

K3∑
v=0

v∑
w=0

K2∑
y=0

K4∑
z=1

πv,w,x,y,z . (5.16)

Average number of data packets (denoted by LHPI) is the average num-
ber of data packets in HPI where data packets travel only through the
specialised hardware (i.e TCAM) and the CPU (i.e the Class HP and the
internal buffer) of the switch. Therefore, LHPI is expressed as:

LHPI =

K3∑
v=0

v∑
w=0

K2∑
y=0

K4∑
z=0

(v + y + z)πv,w,x,y,z. (5.17)

Average data packet transfer delay (denoted by tHPI) is the mean so-
journ time of a data packet in an SDN network with a single controller
and hardware switch with the internal buffer. The average packet transfer
delay of a data packet in HPI is obtained by applying Little’s theorem to
Eq. (5.17) which is expressed as:

tHPI = LHPI/THPI , (5.18)
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where THPI is the throughput of HPI expressed as:

THPI = Tib + (1− β)Tsh. (5.19)

Packet loss probability (denoted by PLHPI) is the total average packet
loss probability for Model HPI. Assuming independence of packet arrivals
between the Class CP, the Class HP, the internal buffer, and the specialised
hardware queue, the packet loss probabilities of the Class CP (PLcp), Class
HP (PLhp), the switch’s internal buffer (PLib) and the specialised hardware
queue (PLsh) represent the average number of packets being blocked or
dropped by the Class CP, Class HP, the switch’s internal buffer, and the
specialised hardware queue out of total incoming packets in the respective
queue. The packet loss probabilities PLcp, PLhp, PLib, and PLsh for HPI
are expressed as,

PLcp = PLib = 1− Tcp/Tc,

PLhp = 1− Thp/Tsh,

PLsh = 1− Tsh/λ1.

(5.20)

Therefore, the total packet loss probability for HPI (PLHPI) is the sum of
packet loss probabilities in the Class CP, the Class HP, the internal buffer,
and the specialised hardware queue of the switch which is given as,

PLHPI = PLcp + PLhp + Pib + PLsh. (5.21)

5.2.3 Buffer dimensioning for HPE and HPI

In this section, the buffer dimensioning for HPE and HPI is discussed
which assumes that the switch queues are M/M/1 (see Section 3.2) as op-
posed to GI/M/1/K and M/M/1/K (used for specialised hardware).

The minimum queue capacity for the switch in HPE is denoted by
KHPE which is the sum of K1 (i.e. minimum buffer capacity required for
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Class CP), K2 (i.e. minimum buffer capacity required for Class HP), and
K4 (i.e.minimum buffer capacity required for specialised hardware) which
are calculated using the approximation in Eq. (3.2) as:

K1 ≥
log[PER]

log[ρcp]
, K2 ≥

log[PER]

log[ρhp]
, K4 ≥

log[PER]

log[ρsh]
, (5.22)

where ρcp, ρhp, and ρsh are the server utilisation at the Class CP, Class HP,
and the specialised hardware, respectively, which are defined as:

ρcp =
βλ1
µsp

, ρhp =
βλ1
µsp

, ρsh =
λ1
µsh

.

Therefore, KHPE can be expressed as

KHPE = K1 +K2 +K4. (5.23)

Likewise, for HPI, the minimum buffer capacities for the Class CP, the
Class HP, the internal buffer, and the specialised hardware are denoted as
K1, K2, K3, and K4, respectively, and can be calculated using Eq. (3.2) as:

K1 ≥ log[PER]
log[ρcp]

, K2 ≥ log[PER]
log[ρhp]

, K3 ≥ log[PER]
log[ρib]

,

K4 ≥ log[PER]
log[ρsh]

,
(5.24)

where ρcp, ρhp, ρib, and ρsh are server utilizations at the Class CP, the Class
HP, the internal buffer of the CPU, and the specialised hardware, respec-
tively, which are defined as:

ρcp =
βλ1
µsp

, ρhp =
βλ1
µsp

, ρib =
βλ1
µsp

, ρsh =
λ1
µsh

.

Therefore, the minimum buffer capacity for the switch in HPI is the sum
of minimum buffer capacity for the Class CP, the Class HP, the internal
buffer, and the specialised hardware:

KHPI = K1 +K2 +K3 +K4. (5.25)

In this chapter, the minimum buffer capacities of the switch for HPE and
HPI are KHPE and KHPI , respectively.
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5.3 Results

This section presents the analytical and discrete event simulation results
of the developed queueing models for hardware-based SDN switches with
and without the internal buffer (i.e. HPE and HPI respectively).
This section is briefly categorised into the following subsections:

• Validating queueing models HPE & HPI where analytical results are
compared with discrete event simulation results.

• Software vs. Hardware Switch where SDN software and hardware
switches with and without the internal buffer are compared (i.e. SPE
vs HPE and SPI vs HPI).

• HPE vs. HPI where SDN hardware switches with and without inter-
nal buffer are compared.

The parameters used for analysis and simulation are shown in Table
5.3. From Table 5.3, the table miss probability β varies from 0.1 to 1, the
switch processor or CPU processing rate (µsp) is assumed to be 1000 pack-
ets/sec, the controller to switch processing ratio (mr) varies from 0.1 to 2,
and the specialised hardware to CPU processing ratio (ms) varies from 100
to 1000. The external arrival rate (λ1) to switch from each host is assumed
to be 120 or 240 or 480 packets/sec and we assume an Ethernet network for
which the BER is assumed to be 10−12. The number of hosts per switch
(N ) varies from 1 to 80 to study the effect of the internal buffer in SDN
hardware switches.

The discrete event simulations based on Monte Carlo simulation for
models HPE and HPI with pseudo codes are explained in Appendix F and
Appendix G, respectively. The simulations are repeated 100 times and the
95% confidence intervals (CI) are computed on the basis that the errors are
normally distributed.

In the following subsections, to take into consideration packet loss prob-
ability, the queue capacities of the Class ES (in SPE and SPI), the Class HP
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Table 5.3: Parameter used for analysis and simulation for both HPE and
HPI.

Parameter Value

Table miss probability, β 0.1∼1

CPU processing rate, µsp (packets/sec) 1000

Controller to CPU Processing Ratio (µc/µsp), mr 0.1∼2

Specialised hardware to CPU Processing Ratio (µsh/µsp), ms 100∼1000

Arrival rate, λ1 (packets/sec) 120, 240, 480

Bit Error Rate, BER 10−12

MTU TCP packet size (byte) 1500

Number of hosts per switch, N 1 ∼ 80

(in HPE and HPI), and the specialised hardware queue (in HPE and HPI)
are assumed to be half of their minimum queue capacities determined
from buffer dimensioning (using Eq. 5.23 and Eq. 5.25). The queue ca-
pacities of the Class CS (in SPI), the Class CP (in HPI), and the internal
buffer (in both SPI and HPI) are minimum queue capacities determined
from buffer dimensioning where there is no packet loss. This buffer sizing
ensures no loss of control packets.

5.3.1 Validating queueing models HPE & HPI

The validation of analytical results for HPE and HPI is done by compar-
ing them with discrete event simulation results. Figures 5.4 and 5.5 show
the validation results for HPE and HPI respectively for increasing β with
mr = 1 and ms = 1000. The error percentage between analysis and sim-
ulation predictions for both average packet transfer delay and packet loss
probability is between 0.6%-2.8% as shown in Fig. 5.4 and Fig. 5.5. The
error for HPI is slightly higher than HPE by 1%. This range of error is ac-
ceptable for analysis, as computation of π distributions for HPI which is
modelled as a nonhomogenous QBD process is prone to inaccuracy due to
the possibility of singular matrix becoming nonsingular in machine preci-
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(a) (b)

Figure 5.4: Validation of Model HPE in terms of (a) Average packet trans-
fer delay, and (b) Packet loss probability.

(a) (b)

Figure 5.5: Validation of Model HPI in terms of (a) Average packet transfer
delay, and (b) Packet loss probability.
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sion [85].

5.3.2 Software vs. Hardware switch

5.3.2.1 Relative minimum buffer capacity

In this section, the the relative minimum buffer capacity between a soft-
ware and hardware switch are compared as seen in Fig. 5.6.

The relative minimum buffer capacity between a software and hard-
ware switch without the internal buffer (SPE and HPE) is denoted as εKa
and defined as,

εKa =
KHPE −KSPE

KSPE
× 100%.

Similarly, the relative minimum capacity between a software switch and
hardware switch with the internal buffer (SPI and HPI) is denoted as εKb
and defined as,

εKb =
KHPI −KSPI

KSPI
× 100%.

Positive values of εKa and εKb mean SPE and SPI require less capacity than
HPE and HPI respectively, while a negative value implies SPE and SPI
require more capacity than HPE and HPI respectively.

Figure 5.6a shows the εKa curves and Fig. 5.6b shows the absolute val-
ues of KSPE and KHPE for increasing β. Similarly, Fig. 5.6c shows the εKb
curves and Fig. 5.6d shows the absolute values of KSPI and KHPI for in-
creasing β. From Fig. 5.6a, it can be observed that HPE requires up to 55%
more buffer capacity than SPE. This number is slighty lower for HPI which
requires up to 45% more buffer capacity than SPE as seen in Fig. 5.6c.

This is because the switches in both SPI and HPI require queue ca-
pacities for the CPU, the specialised hardware, and the internal buffer,
while the switches in SPE and HPE require queue capacities for the CPU
and specialised hardware only. Given the fact that relative differences
(KSPE−KHPE) and (KSPI−KHPI) are the same irrespective of with or with-
out the internal buffer but relative parameters KSPE and KSPI are different.
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(a) (b)

(c) (d)

Figure 5.6: Minimum switch queue capacity (Kmin) (a) Relative difference
between SPE and HPE i.e. εKa, (b) Absolute value between SPE and HPE,
(c) Relative difference between SPI and HPI i.e. εKb and (d) Absolute value
between SPI and HPI for µsp = 1000 pkts/sec and increasing β.
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It is evident that a higher value of the relative parameter gives a lower rel-
ative minimum queue capacity, which in this case KSPI has a higher value
than KSPE due to the internal buffer.

5.3.2.2 Relative average delay

In this section, the relative average packet transfer delay between software
and hardware switch are compared as seen in Fig. 5.7.

SPE vs. HPE: In this comparison, effects of the delay in a software and
hardware switch without the internal buffer is compared. In Fig. 5.7a and
Fig. 5.7b, the average delay in the switch between SPE (denoted by tSPE

as in Eq. (3.30)) and HPE (denoted by tHPE as in Eq. (5.7)) is compared for
increasing β and mr, respectively.

The relative time difference (denoted by εda) to traverse packets in the
switch between SPE and HPE (both with finite capacity) is calculated as:

εda =
(tSPE − tHPE)

tSPE
× 100%.

A positive value of εda means HPE has lower average delay for a packet
to travel in the network compared to SPE.
Figure 5.7a and Fig. 5.7b show the average relative time for packets to
traverse a switch between SPE and HPE for varying β andmr respectively.
From Fig. 5.7a, the relative average packet delay decreases from 85% to
1.8% for increasing β. However, the trend is reversed in Fig. 5.7b with
increasing mr, whereby the relative total delay increases from 0.8% to 56%
as mr increases from 0.5 to 2.0.

As the value of β increases, the traffic processed by CPU in Model HPE
significantly increases, therefore increasing the delay predicted by HPE
and diminishing the benefit of having dedicated switch hardware for for-
warding.

Moreover, asmr increases, the relative average delay between HPE and
SPE increases exponentially and then plateaus off. The reason for this is
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(a) (b)

(c) (d)

Figure 5.7: Relative average packet transfer delay between (a – b) SPE and
HPE in % i.e. εda , (c – d) SPI and HPI in % i.e. εdb for increasing β and mr.

that highermr means controller processing power is higher than CPU pro-
cessor at the switch which significantly reduces the delay caused by pack-
ets traversing the control path.
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SPI vs. HPI: This comparison helps to investigate the effect of the in-
ternal buffer in a software and hardware switch with reference to average
packet transfer delay. The average delay in the switch between SPI (de-
noted by tSPI as in Eq. (4.6)) and HPI (denoted by tHPI as in Eq. (5.18)) for
increasing β and mr is shown in Fig. 5.7c and Fig. 5.7d, respectively.

The relative average packet transfer delay (denoted by εdb) between SPI
and HPI (both with finite capacity) is calculated as:

εdb =
(tSPI − tHPI)

tSPI
× 100%.

A positive value of εdb means HPI has a lower average delay for a packet
to travel in the network compared to SPI.
Figure 5.7c and Fig. 5.7d show the average relative time for packets to tra-
verse a switch between SPI and HPI for varying β and mr respectively.
From Fig. 5.7c, the relative average packet delay in a switch with the in-
ternal buffer is same as that of a switch without the internal buffer for
increasing β. This is because the delay caused by a faster controller has
insignificant effects on switches with and without the internal buffer.

However, the relative delay between SPI and HPI is different from SPE
and HPE for the slower controller as seen in Fig. 5.7d, whereby the relative
total delay increases from 25%. This is because the internal buffer causes a
reduction in the size of packet-in messages that are sent to the controller.

This shows the benefit of a hardware switch over a software switch,
that significantly reduces the overall average delay of the packet for a
lower β and higher mr.

5.3.2.3 Relative average packet loss probability

In this section, the packet loss probability between a software and hard-
ware switch are compared as seen in Fig. 5.8.

SPE vs. HPE: In this comparison, effects of the packet loss probability
in a software and hardware switch without the internal buffer are investi-
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(a) (b)

(c) (d)

Figure 5.8: Relative average packet loss probability between (a – b) SPE
and HPE i.e. εla, (c – d) SPI and HPI i.e. εlb for increasing β and mr.

gated. In Fig. 5.8a and Fig. 5.8b, the packet loss probability in the switch
between SPE (denoted by PLSPE as in Eq. (3.33)) and HPE (denoted by
PLHPE as in Eq. (5.10)) is compared for increasing β and mr, respectively.

The relative packet loss probability difference (denoted by εla) in the
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switch between SPE and HPE (both with finite capacity) is calculated as:

εla =
(PLSPE − PLHPE)

PLSPE
× 100%.

A positive value of εla means HPE has a lower packet loss rate com-
pared to SPE.

From Fig. 5.8a, the relative packet loss probability is up to 100% higher
in Model SPE than Model HPE for lower β, and it decreases to approxi-
mately 2% for β = 1.0. The reason for this is, as the β increases, the amount
of traffic processed by the CPU in Model HPE significantly increases (i.e.
the hardware processing at the switch is not leveraged) rendering its per-
formance closer to that of SPE, therefore reducing the gap between models
SPE and HPE for packet loss probability. This difference in performance
decreases drastically for higher β, for which the packet loss probability is
much higher due to increasing amount of traffic to be processed by the
CPU.

Similarly, the relative packet loss probability is up to 83% higher in
Model SPE than Model HPE for lower mr and remains a steady 100% with
increasing mr as seen in Fig. 5.8b. The reason for the increasing relative
packet loss probability with increasing mr is: a higher mr means higher
controller processing power than CPU processor which quickly feeds back
the packet to the CPU, significantly increasing the packet loss probability
in the CPU.

SPI vs. HPI: In this comparison the effect of the internal buffer in a soft-
ware and hardware switch with reference to the packet loss probability is
investigated. In Fig. 5.8c and Fig. 5.8d, the packet loss probability in the
switch between SPI (denoted by PLSPI as in Eq. (4.8)) and HPI (denoted
by PLHPI as in Eq. (5.21)) is compared for increasing β and mr, respec-
tively.

The relative packet loss probability difference (denoted by εlb) in the
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switch between SPI and HPI (both with finite capacity) is calculated as:

εlb =
(PLSPI − PLHPI)

PLSPI
× 100%.

A positive value of εlb means HPI has lower packet loss rate compared
to SPI.

The trend for the relative packet loss probability in Fig. 5.8c is similar
to the packet loss probability in Fig 5.8a for varying β. The reason for this
is, a faster controller introduces lower delay that has insignificant effects
on switches with and without the internal buffer.

Similarly, the relative packet loss probability between SPI and HPI (as
seen in Fig. 5.8d) follows a similar trend to that of the relative packet loss
probability between SPE and HPE (as seen in Fig 5.8b), except for lower
mr. This is because with a slower controller, the waiting time of packets at
the switch increases, increasing the contention rate and blocking of pack-
ets. The contention for the buffer space caused by a slower controller is
reduced with internal buffering, hence reducing the blocking of packets
compared to the switch without internal buffer.

This shows the benefit of a hardware switch over a software switch,
that significantly reduces the packet loss probability.

5.3.3 HPE vs. HPI

5.3.3.1 Relative minimum buffer capacity

In this section, the relative minimum buffer capacity between a hardware
switch with (i.e. HPI) and without the internal buffer (i.e. HPE) is com-
puted. The relative minimum capacity between HPE and HPI is denoted
as εKc and defined as,

εKc =
KHPI −KHPE

KHPI
× 100%.

A positive value of εKc means HPE requires less capacity than HPI, while
a negative value implies HPE requiring more capacity than HPI.
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(a) (b)

Figure 5.9: Minimum switch queue capacity (Kmin) between HPE and HPI
for µsp = 1000 pkts/sec and increasing β: (a) Relative difference i.e. εKc
and (b) Absolute value.

Figure 5.9 shows the εKc curve for increasing β. From Fig. 5.9, it can be
observed that HPI requires upto 50% more buffer capacity than HPE.

This is because the switch in HPI requires buffer capacities for the CPU,
the specialised hardware, and the internal buffer. While, the switch in HPE
requires buffer capacities for the CPU and specialised hardware only.

5.3.3.2 Relative average delay

In this section, the average packet transfer delay between HPE (denoted by
tHPE as in Eq. (5.7)) and HPI (denoted by tHPI as in Eq. (5.18)) is compared.
This comparison helps to investigate the effect of the internal buffer in a
hardware switch with reference to the average packet transfer delay.

The relative average packet transfer delay (denoted by εdc) between
HPE and HPI (both with finite capacity) is calculated as:

εdc =
(tHPI − tHPE)

tHPE
× 100%.
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A positive value of εdc means HPE has a lower average delay for a packet
to travel in the network compared to HPI.

(a) (b)

(c)

Figure 5.10: Relative average packet transfer delay between HPE and HPI
i.e. εdc for (a) increasing β and mr = 1, ms = 1000; (b) increasing mr and
β = 0.5, ms = 1000; and (c) increasing ms and mr = 1, β = 0.5.

Figure 5.10 shows the relative average packet transfer delay between
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HPE and HPI in percentile. Figures 5.10a, 5.10b, and 5.10c show the rela-
tive average delay for increasing β,mr, andms respectively. From Figs. 5.10a,
5.10b, and 5.10c, it can be observed that HPI exhibits up to 28%, 80% and
26% reduction in the average delay of a packet compared to HPE respec-
tively.

This is because with increasing β the number of packets sent to the con-
troller is increased. These packets requires a decision from the controller
are processed by the CPU which has a slower processor than the spe-
cialised hardware. With internal buffering, the CPU absorbs these pack-
ets with temporary buffering and encapsulates packet-in message with a
small part of the data packets (mostly packet header information). The
smaller packet-in messages are processed faster by the controller than packet-
in messages encapsulated with a full data packet as in the case of a hard-
ware switch without the internal buffer. The temporary buffering signif-
icantly reduces the overall delay for increasing traffic forwarded by the
specialised hardware as seen in Fig. 5.10a.

Similarly, with the increasing mr the controller processing capacity in-
creases. The performance of the controller degrades with increasing flow
update requests from the switch. Such a controller can be called a slower
controller and can be related with a lower value of mr. The real benefit
of the internal buffer at the switch can be observed for a slower controller
as seen in Fig. 5.10b . With internal buffering of packets awaiting decision
from the controller, the control traffic size can be reduced, allowing the
controller to process packets faster.

Also, with the increasing hardware processing capacity, the average
delay of packets at the specialised hardware is reduced as seen in Fig.
5.10c. Again with internal buffering, the overall average delay is reduced
as compared to without internal buffering.

This shows the benefit of a hardware-based SDN switch with the inter-
nal buffer over a hardware-based SDN switch without the internal buffer,
that significantly reduces the overall average delay of the packet for lower
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β and mr.

5.3.3.3 Relative average packet loss probability

In this section, the average packet loss probability between HPE (denoted
by PLHPE as in Eq. (5.10)) and HPI (denoted by PLHPI as in Eq. (5.21)) is
compared. This comparison helps to investigate the effect of the internal
buffer in a hardware switch with reference to the packet loss probability.

The relative packet loss probability (denoted by εlc) between HPE and
HPI (both with finite capacity) is calculated as:

εlc =
(PLHPI − PLHPE)

PLHPE
× 100%.

A positive value of εlc means HPE has a lower packet loss probability com-
pared to HPI.

Figure 5.11 shows the relative packet loss probability between HPE and
HPI in percentile. Figure 5.11a, Fig. 5.11b, and Fig. 5.11c show the rela-
tive packet loss probability for increasing β, mr, and ms respectively. In
Fig. 5.11a, HPI exhibits up to 60% reduction in the packet loss probability
for a lower β and up to 6% reduction for a higher β. This is due to a limited
memory resource available for an internal buffering. With a lower β, the
number of data packets to be stored in the internal buffer is lower which
gives minimal packet loss in HPI. Whereas with a higher β, the number
of data packets to be stored in the internal buffer can be higher than the
buffer capacity of the internal buffer which gives significant packet loss in
HPI.

Similarly, in Fig. 5.11b, HPI exhibits up to 89% reduction in the packet
loss probability for lower mr and up to 50% reduction for higher mr. It
is observed that higher value of λ1 (i.e 480 pkts/sec) significantly reduces
the packet loss probability for a lower value of mr (i.e mr / 1), whereas
the lower value of λ1 (i.e 120 or 240 pkts/sec) shows a better packet loss
probability for a higher value of mr (i.e mr ' 1). This is because lower
mr means the controller is slower than the CPU and higher mr means the
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(a) (b)

(c)

Figure 5.11: Relative average packet loss probability between HPE and
HPI i.e. εt for (a) increasing β and mr = 1, ms = 1000; (b) increasing mr

and β = 0.5, ms = 1000; and (c) increasing ms and mr = 1, β = 0.5.

controller is faster than the CPU. The slower controller processes packet-
in messages slower, which increases the blocking of data packets in the
CPU. With the internal buffer, the blocking of data packets in the CPU is



136 CHAPTER 5. HARDWARE SWITCHING IN SDN SWITCHES

significantly reduced, whereas the faster controller processes the packet-in
messages faster, which reduces the blocking of data packets in the CPU.
This reduces the benefit of the internal buffer especially for a higher value
of λ1.

Similarly, with the increasing hardware processing time, HPI exhibits a
lower packet loss probability than HPE as seen in Fig. 5.11c. This is because
the average waiting time of packets at the specialised hardware reduces
with the increasing hardware processing time. This lower waiting time
of packets reduces the packet loss at the switch hardware. Furthermore,
internal buffering reduces the packet loss by temporarily buffering packets
at the CPU.

This shows the benefit of a hardware switch with the internal buffer
over a hardware switch without the internal buffer for the lower β and
mr, which significantly reduces the packet loss probability.

5.3.3.4 Effect of varying number of hosts connected to switch

So far, the external traffic at the specialised hardware of the switch is as-
sumed to arrive from a single host (i.e. N = 1). In this section, the effect of
varying the number of hosts for both HPE and HPI is presented by varying
N from 1 to 80 with the following assumptions:

(i) The minimum queue capacities for the CPU, the internal buffer, and
the specialised hardware in both HPE and HPI remain the same for a
varying number of hosts.

(ii) Similarly, the value of processing time for the CPU, specialised hard-
ware in the switch, and controller remains the same for a varying
number of hosts.

(iii) The external traffic (λ1) arriving at the specialised hardware from
each host is assumed to be homogeneous.

(iv) The effective external arrival rate (λeff ) at the switch from N hosts is
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calculated as:
λeff = N × λ1. (5.26)

(v) Finally, taking into account of a computation complexity due to lim-
ited memory resources in a computation device, the initial value of
λ1 is taken as 12 pkts/sec. This value of λ1 is also the reason for the
maximum number of hosts being selected as 80. The effective arrival
rate for N(= 80) hosts gives 960 pkts/sec (80 × 12 pkts/sec) which
is less than µsp of 1000 pkts/sec ensuring the stationary distribution
condition.

Figure 5.12 shows the effect of varying the number of hosts for λ1 = 12

pkts/sec, mr = 1 and β = 0.5. Figures 5.12a and 5.12b show the effect
of varying the number of hosts on the average packet transfer delay and
packet loss probability, respectively. From Fig. 5.12a, with the increase in
number of hosts, HPI exhibits much lower average packet transfer delay
than HPE. Similarly, from Fig. 5.12b, the packet loss probability for both
HPE and HPI is identical and increases with the increase in the number of
switches.

This is because with the increase in number of hosts, the net arrival
of packets at both HPE and HPI increases exponentially, increasing the
contention rate over limited buffer capacity. The internal buffer in HPI ab-
sorbs packets requiring flow updates from the controller. This absorption
of packet reduces the overall delay in HPI as compared to HPE.

5.4 Conclusion

In this chapter, queueing models for a hardware-based SDN switch with
and without the internal buffer are developed, i.e. HPI and HPE, respec-
tively. Comparative analyses were done between a software and hardware
switch (a) without the internal buffer (SPE vs HPE), (b) and with the inter-
nal buffer (SPI vs HPI) in an SDN to provide insights on the performance
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(a) (b)

Figure 5.12: Effect of varying number of hosts for λ1 = 12 pkts/sec,mr = 1

and β = 0.5.

of software and hardware switches. Similarly, the impact of the internal
buffer in a hardware-based SDN switch is also investigated (HPE vs HPI).
From comparisons, the following conclusions were made:

• Software vs. Hardware switch

– The hardware switch requires additional buffer (almost 50%)
compared to the software switch,

– The hardware switch significantly reduces the average packet
transfer delay (almost 80%) compared to software switch.

– The hardware switch significantly reduces the packet loss prob-
ability (almost 99%) compared to software switch.

• Hardware switch without vs. with the internal buffer

– The hardware switch with the internal buffer requires almost
50% additional buffer compared to the hardware switch with-
out the internal buffer,
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– Internal buffering significantly reduces the average packet trans-
fer delay (almost 85%) for a slower controller and (almost 20%)
for a faster controller compared to without the internal buffer in
a hardware switch.

– Internal buffering significantly reduces the packet loss probabil-
ity (almost 60%) for a lower table miss probability and (almost
6%) for a higher table miss probability compared to without the
internal buffer in a hardware switch.

– For increasing number of hosts connected to the switch, a hard-
ware switch with the internal buffer exhibits significantly lower
delay compared to a hardware switch without the internal buffer.

5.5 Summary

Based on the investigation from this chapter, the developed queueing mod-
els for a hardware-based SDN switch with and without the internal buffer
perform better than software-based SDN switches in terms of the average
delay and packet loss probability. The use of the internal buffer on a hard-
ware switch reduces average delay and packet loss probability at the cost
of additional memory required for internal buffering.

However there is a contingent on a stable network whereby the num-
ber of new flows that arrive at a switch for decisioning is low. Increasing
involvement of the controller means that the hardware switch increasingly
uses the CPU for forwarding (as opposed to ASICs and TCAM) hence re-
ducing the benefits of using a hardware switch.

In the following chapter, this thesis is concluded with a summary and
contribution of each chapters followed by future works that could not be
addressed due to lack of time.
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Conclusions

Software-Defined Networking (SDN) simplifies the forwarding function
of a switch by moving the control function away from the data plane. The
performance of a switch with the data plane only is critical as it influences
the overall performance of an SDN. Therefore, this thesis has focused on
improving the network performance by modelling and analysing the per-
formance of a switch in an SDN. The overall goal was to identify poten-
tial bottlenecks in a switch that can hinder the overall performance of an
SDN. The three aspects of an SDN switch that needed further research to
improve the performance of an SDN were identified. The three aspects
are buffer sharing mechanisms, internal buffering, and SDN switch types
(software and hardware). These aspects were studied via modelling and
performance analysis using queueing theory.

This thesis started with the comparison of existing buffer sharing mech-
anisms (the shared buffer and priority buffer) for an SDN switch with the
help of buffer dimensioning in Chapter 3. The buffer dimensioning is per-
formed for the output buffer of an SDN switch to ensure packet losses are
no more than a desired link loss rate.

The comparison shows that the priority buffer optimises the network
performance with shorter delays when updating flow tables in an SDN
switch. However, this benefit is achieved at the cost of extra buffer ca-

140
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pacity required to ensure no packet loss in an SDN switch. Based on the
findings in Chapter 3, the priority buffer is used for the output buffer of
an SDN switch in the Chapters 4 and 5.

In Chapter 4, the queueing model for an SDN switch with the internal
buffer is developed to investigate the impact of internal buffering. The in-
vestigation shows that the use of internal buffer reduces the overall delay
and packet loss at the time of congestion. However, this benefit is achieved
at the cost of additional memory required to support internal buffering.

Based on the findings from Chapter 4, queueing models for hardware-
based SDN switches with and without the internal buffer are developed
in Chapter 5. In Chapters 3 and 4, only software-based SDN switches are
analysed. Therefore, the unified queueing model is developed in Chap-
ter 5 to characterise the performance of SDN-based hardware and software
switches. The analysis in Chapter 5 justifies the benefit of a hardware-
based SDN switch with lower delay and lower packet loss through the in-
creasing involvement of the specialised hardware for forwarding packets
at the line speed rate. However, the increasing involvement of the central
processing unit (CPU) for forwarding packets reduces the benefit of using
a hardware-based SDN switch.

The queueing models presented in this thesis will guide network en-
gineers and analysts to predict performance measures such as delay and
loss in an SDN switch to improve the network performance.

6.1 Contributions

This thesis contributed to the performance analysis of an SDN switch by
providing guidelines to switch designers and network analysers. The con-
tributions of this thesis are listed as follows.

1. The shared buffer and the priority buffer model for the output buffer
of an SDN switch were compared with buffer dimensioning. The
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priority buffer model for an SDN switch accurately represents SDN
behaviour by isolating control traffic and data traffic. The priority
buffer model provides protection of a flow updates with a lower
average time to install FTE and packet loss. Therefore, the priority
buffer model will be the preferred choice for a switch in an SDN.

2. The queueing model for an SDN switch with the internal buffer is
developed. This queueing model helps to investigate the potential
benefits and trade-off of internal buffering in an SDN switch.

3. The queueing models for hardware-based SDN switches with and
without the internal buffer at the CPU are developed. These models
are used as unified queueing models for characterising the perfor-
mance of a software and hardware switch in an SDN.

6.2 Future Work

The research presented in this thesis can be extended with the following
future works.

Experimental Validation The queueing models for a software and
hardware-based SDN switch presented in this thesis can be validated
experimentally that can provide realistic detail insights.

The reason why the experimental validation could not be done in this
thesis is due to the difficulty in realising priority queueing buffer in
real hardware or software switches. The priority queueing buffer in
this thesis uses two logical blocks to isolate control traffic from data
traffic with priority. The realisation of these blocks in real hardware
or software switches is not feasible at present. However, from an
abstract level, these models closely match with discrete-event simu-
lation where logical separation can be realised. This is the limitation
of analytical models where the complexity of the analysis increases
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manifold as fewer assumptions are made, yet the analysis still re-
mains at an abstract level when compared to real experiments.

With an experimental analysis, the difference between analytical re-
sults and experimental results may increase (say up to 10%). This
is because smaller details are difficult to take into account in ana-
lytical modelling. The modelling becomes complex with too many
details and therefore require assumptions. The observed difference
between analytical results and discrete event simulation results are
in the range of 0.2% to 2.9% [71, 126].

Partial Encapsulation of data packets In this thesis only two encap-
sulation methods for packet processing at an SDN switch are dis-
cussed. These two encapsulation methods are: (a) Full encapsula-
tion of a data packet, and (b) Queueing of a data packet at the switch
with sufficient memory for internal buffering as discussed in Sec-
tion 2.2.1. In Section 2.2.1, the third encapsulation method i.e. partial
encapsulation of a packet at the switch with limited memory to sup-
port internal buffering is also discussed. With partial encapsulation,
an SDN switch will generate two types of packet-in messages to the
controller :(i) small-sized packet-in message encapsulated with part
of a data packet, and (ii) large-sized packet-in message encapsulated
with a full data packet requiring decisions from the SDN controller.

To consider these two types of packet-in messages for the partial
encapsulation method, traffic classification will be required at the
controller. In addition, the switch will also require additional traffic
classification to distinguish an external data traffic, a small-sized and
large-sized packet-out messages feedback by the controller.

The queueing model for the partial encapsulation of a packet at the
switch will give insights for switching performance of a memory-
constrained CPU with support for internal buffering. Clearly, the
partial encapsulation method affects the performance of the switch
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and controller which need to be studied and investigated.
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Appendix A

Logarithmic Reduction (LR)
Method

The pseudocode to compute matrix G using LR method is shown in Algo-
rithm 1 [92].

Algorithm 1: Logarithmic Reduction Method to compute matrix
G.

Initialize:
s = 0;

L = −A−11 A2; . Matrix L describes transitions to lower level
H = −A−11 A0; . Matrix H describes transitions to upper level
G = L;

T = H;

while (‖e−Ge‖∞ > ε) do
s = s+ 1;

D = I −HL− LH; . I is identity matrix
L = D−1L2;

H = D−1H2;

G = G+ TL;

T = TH;
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The matrix R can be computed from the relationship between matrices
R and G shown in [90],

R = −A0(A1 + A0G)
−1. (A.1)

Using matrix R and boundary equations of πQ = 0, the initial station-
ary distribution probabilities π0 and π1 can be computed. The boundary
equations of πQ = 0 are shown as

π0B1 + π1A2 = 0,

π0A0 + π1A1 + π2A2 = 0.
(A.2)

Rewriting Eq. A.2 into matrix form after substituting π2 = π1R, we get

(π0, π1)

(
B1 A0

A2 A1 +RA2

)
= 0. (A.3)

The remaining stationary distribution probabilities for homogeneous QBD
process can be computed using the general solution for π i.e. πi = π1R or
πi = πi−1R, i ≥ 2.



Appendix B

Matrix Continued Fraction
Algorithm (MCF)

The computation of stationary distribution using MCF is shown in Algo-
rithm 2.

Algorithm 2: A Matrix Continued Fraction Algorithm (MCF).

if Q is infinite then
Truncate infinite number of levels to finite large number K;

else
The maximum number of levels of Q is assigned to K;

RK = 0; . Set RK as zero matrix.
RK−1 = −A(K−1)

0 (AK1 )
−1; . Compute RK−1.

for i = K − 1, K − 2, ...1 do
Ri−1 = −Ai−10 (Ai1 +RiA

i+1
2 )−1; . Compute remaining rate

matrices.

π0(A
(0)
1 +R0A

(1)
2 ) = 0; . Estimate π0.

for i = 0, 1, ..., K − 1 do
πi+1 = πiRi; . Compute remaining stationary distribution
probabilities.

Normalize π.
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Appendix C

Monte Carlo Simulation for
Model SE

To work with events, a class “Event” is declared with a pointer object
“eve” as shown below:

c l a s s Event{
publ ic :

double time ;
double r a t e ;

}* eve ;

For model SE, there are three events i.e., n event = 3 which are initialised
with the transition rates of model SE as shown below:

• eve[0].rate = λ1,

• eve[1].rate = µsp, and

• eve[2].rate = µc,

where λ1 is the external arrival rate at the CPU, µsp is the CPU’s processing
rate, and µc is the controller’s processing rate.

The processing times for each of these events can be computed using
the function “edis” which is defined as,
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double edis ( double r a t e ){
re turn −1/r a t e * log (1−genrand real1 ( ) ) ;

}

where “genrand real1()” is a “MT.h” function which generates a random
number on [0,1] real interval.

There are three processes related to three events of model SE. These
processes are denoted by the variable “flag” ∈ {0, ..., n event − 1} such
that,

• flag = 0 represents the process for external packets arriving at the
CPU,

• flag = 1 represents the process for a packet processing by the CPU,
and

• flag = 2 represents the process for a packet processing by the con-
troller.

Similarly, the number of packets for each queue is given by an array
“N [n event]”. As seen in Fig. 3.1, there are two queues for model SE for
which the array N is given as,

• N [0] = Number of external packets arriving at the switch,

• N [1] = Number of packets at the controller forwarded by the switch,
and

• N [2] = Number of packets feedback by the controller to the switch.

Using these parameters, the pseudo code for Monte Carlo simulation
of model SE is shown in Algorithm 3. The list of variables used in pseudo
code for model SE and remaining models are:

• “clock” stores the clock time.

• “ptime” holds the value of processing time for the next event.
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• “AT” and “DT” are arrays to store the arrival time and departure
time of the nth packet, respectively.

• “an” and “dn” are the identifiers for the nth packet arriving at the
switch and departing from the switch, respectively.

• “inq” is an array to store the number of packets sent to the controller
for inquiry.

• “inqn” is the identifier for the packet sent to the controller for inquiry.

• “NSD” stores the total number of packets at the switch.

• “loss” stores the number of packet dropped or lost at the switch.

• “odr” is the character array to store the values ‘0’ and ‘1’ to dis-
tinguish packets arriving at the switch. ‘0’ represents the external
packet arriving at the switch and ‘1’ represents the packet feedback
by the controller to the switch.

• “NOP” is the maximum number of packets entering into the system.

• “K” is the finite queue capacity for the shared buffer in the CPU.

• “β” is the table miss probability.

• “nos” represents the maximum number of simulation.

• “NPTD” is an array to store the packet transfer delay for each sim-
ulation.

• “NPL” is an array to store the packet loss for each simulation.

• “PTD” is the variable to store an average packet transfer delay.

• “PL” is the variable to store an average packet loss rate.
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Algorithm 3: Pseudo code for model SE.

for count = 0, ..., nos− 1 do
Initialise:

inqn = NSD = an = dn = loss = clock = 0;

N [0] = N [1] = N [2] = 0;

eve[0].time = edis(eve[0].rate); . model is activated with

external packets arriving at the CPU.

do
Selection of the next event as shown in Algorithm 4;

clock += ptime;

switch flag do
case 0 do

Pseudo code for the flag = 0 case as shown in Algorithm 5;

case 1 do
Pseudo code for the flag = 1 case as shown in Algorithm 6;

case 2 do
Pseudo code for the flag = 2 case as shown in Algorithm 7;

while (dn < NOP && inq[0] < NOP )
NPTD[count] = 0;

for i = 0, ..., dn− 1 do
if DT [i] 6= 0 then

NPTD[count]+=DT [i]−AT [i];
NPL[count] = loss/dn;

NPTD[count] /= dn;

PL = PTD = 0;

for count = 0, ..., nos− 1 do
PTD+=NPTD[count];

PL+=NPL[count];

PTD/=nos; . average packet transfer delay

PL/=nos; . average packet loss rate
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Algorithm 4: Pseudo code for the selection of next event in model
SE.

Initialise:
ptime = inf ;

if (N [0] == 0 && N [2] == 0) then
eve[1].time = inf ; . if the CPU has no packets.

if (N [1] == 0) then
eve[2].time = inf ; . if the controller has no packets.

for i = 0, 1, ..., n event− 1 do
if (eve[i].time == 0) then

eve[i].time = edis(eve[i].rate); . Update the event’s processing

time if equal to zero.

if (ptime > eve[i].time) then
ptime = eve[i].time;

flag = i; . Select the event with smallest processing time.

for i = 0, 1, ..., n event− 1 do
eve[i].time = eve[i].time− ptime; . Update the processing time for all

events by subtracting the smallest processing time.

Algorithm 5: Pseudo code for the flag equal to ‘0’ in model SE.

if (N [0] +N [2] < K) then
AT [an] = clock;. assigning the clock value to “an” packets arriving at

the switch.

if (N [0] == 0 && N [2] == 0) then
eve[1].time = edis(eve[1].rate);

odr[NSD] = ‘0’;

odr[NSD+1] = ‘\0’;

NSD++; an++;

N [0]++; . one packet arrives at the CPU.

else
loss++;
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Algorithm 6: Pseudo code for the flag equal to ‘1’ in model SE.

if (genrand real1() < β) then
if (odr[0] ==‘0’) then

N [0]- -; . one packet forwarded from the CPU to the controller.

inq[inqn] = dn;

inqn++;

if (N [1] == 0) then
eve[2].time = edis(eve[2].rate);

N [1]++; . one packet forwarded from the CPU to the controller.

dn++;

else if (odr[0] == ‘1’) then
N [2]- -; . one packet serviced by the controller to the CPU.

temp = inq[0];

for k = 0, ..., inqn− 2 do
inq[k] = inq[k + 1];

inq[k] = temp;

if (N [1] == 0) then
eve[2].time = edis(eve[2].rate);

N [1]++;

else
if (odr[0] ==‘0’) then

N [0]- -; . one packet departs from the CPU to out of the system

(SE).

DT [dn] = clock;

dn - -;

else if (odr[0] ==‘1’) then
N [2]- -; . one packet serviced by the controller to the CPU departs

out of the system (SE).

DT [inq[0]] = clock;

for j = 0, ..., inqn− 1 do
inq[j] = inq[j + 1];

inqn - -;
NSD - -;

for j = 0, ..., NSD − 1 do
odr[j] = odr[j + 1];

odr[NSD] = ‘\0’;
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Algorithm 7: Pseudo code for the flag equal to ‘2’ in model SE.

N [1]- -; . one packet serviced by the controller to the CPU.

if (N [0] +N [2] < K) then
if (N [0] == 0 && N [2] == 0) then

eve[1].time = edis(eve[1].rate);

N [2]++; . one packet serviced by the controller arrives at the CPU.

odr[NSD] = ‘1’;

odr[NSD+1] = ‘\0’;

NSD++;

else
loss++;

DT [inq[0]] = clock;

for j = 0, ..., inqn− 1 do
inq[j] = inq[j + 1];

inqn- -;



Appendix D

Monte Carlo Simulation for
Model SPE

Similar to model SE, there are three events for model SPE i.e., n event =
3 which are initialised with the transition rates of model SPE as shown
below:

• eve[0].rate = λ1,

• eve[1].rate = µsp, and

• eve[2].rate = µc,

where λ1 is the external arrival rate at the Class ES of the CPU, µsp is the
CPU’s processing rate, and µc is the controller’s processing rate.

The processing times for each of these events can be computed using
the function “edis” as discussed in Appendix C.

There are three processes related to three events of model SPE. These
processes are denoted by the variable “flag” ∈ {0, ..., n event − 1} such
that,

• flag = 0 represents the process for external packets arriving at the
Class ES of the CPU,
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• flag = 1 represents the process for a packet processing by the CPU,
and

• flag = 2 represents the process for a packet processing by the con-
troller.

As seen in Fig. 3.2, there are three queues for model SPE such that the
array “N” is given as,

• N [0] = Number of external packets arriving at the Class ES of the
CPU,

• N [1] = Number of packets at the controller forwarded by the CPU,
and

• N [2] = Number of packets feedback by the controller to the Class CS
of the CPU.

The finite queue capacity of the CPU (denoted by K) for model SPE is
the sum of queue capacities of the Class CS (denoted by K1) and Class ES
(denoted by K2) of the CPU, i.e. K = K1 + K2. Using these parameters,
the pseudo code for Monte Carlo simulation of model SPE is shown in
Algorithm 8.
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Algorithm 8: Pseudo code for model SPE.

for count = 0, ..., nos− 1 do
Initialise:

inqn = an = dn = loss = clock = 0;

N [0] = N [1] = N [2] = 0;

eve[0].time = edis(eve[0].rate); . model is activated with

external packets arriving at the CPU.

do
Selection of the next event as shown in Algorithm 9;

clock += ptime;

switch flag do
case 0 do

Pseudo code for the flag = 0 case as shown in Algorithm 10;

case 1 do
Pseudo code for the flag = 1 case as shown in Algorithm 11;

case 2 do
Pseudo code for the flag = 2 case as shown in Algorithm 12;

while (dn < NOP && inq[0] < NOP )
NPTD[count] = 0;

for i = 0, ..., dn− 1 do
if DT [i] 6= 0 then

NPTD[count]+=DT [i]−AT [i];
NPL[count] = loss/dn;

NPTD[count] /= dn;

PL = PTD = 0;

for count = 0, ..., nos− 1 do
PTD+=NPTD[count];

PL+=NPL[count];

PTD/=nos; . average packet transfer delay

PL/=nos; . average packet loss rate
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Algorithm 9: Pseudo code for the selection of next event in model
SPE.

Initialise:
ptime = inf ;

if (N [0] == 0 && N [2] == 0) then
eve[1].time = inf ; . if the CPU has no packets.

if (N [1] == 0) then
eve[2].time = inf ; . if the controller has no packets.

for i = 0, 1, ..., n event− 1 do
if (eve[i].time == 0) then

eve[i].time = edis(eve[i].rate); . Update the event’s processing

time if equal to zero.

if (ptime > eve[i].time) then
ptime = eve[i].time;

flag = i; . Select the event with smallest processing time.

for i = 0, 1, ..., n event− 1 do
eve[i].time = eve[i].time− ptime; . Update the processing time for all

events by subtracting the smallest processing time.

Algorithm 10: Pseudo code for the flag equal to ‘0’ in model SPE.

if (N [0] < K2) then
AT [an] = clock;. assigning the clock value to “an” packets arriving at

the switch.

if (N [0] == 0 && N [2] == 0) then
eve[1].time = edis(eve[1].rate);

N [0]++; . one packet arrives at the Class ES.

an++;

else
loss++;
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Algorithm 11: Pseudo code for the flag equal to ‘1’ in model SPE.

if (N [2] > 0) then
N [2]- -; . one packet departs from the Class CS out of the system

(SPE).

DT [inq[0]] = clock;

for j = 0, ..., inqn− 1 do
inq[j] = inq[j + 1];

inqn - -;
else

N [0]- -; . one packet departs from the Class ES.

if (genrand real1() < β) then
inq[inqn] = dn;

inqn++;

if (N [1] == 0) then
eve[2].time = edis(eve[2].rate);

N [1]++; . one packet forwarded from the Class ES to the

controller.

dn++;

else
DT [dn] = clock;

dn++;
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Algorithm 12: Pseudo code for the flag equal to ‘2’ in model SPE.

N [1]- -; . one packet serviced by the controller to the Class CS.

if (N [2] < K1) then
if (N [0] == 0 && N [2] == 0) then

eve[1].time = edis(eve[1].rate);

N [2]++;. one packet serviced by the controller arrives at the Class CS.

else
loss++;

DT [inq[0]] = clock;

for j = 0, ..., inqn− 1 do
inq[j] = inq[j + 1];

inqn- -;



Appendix E

Monte Carlo Simulation for
Model SPI

Similar to model SE and model SPE, there are three events for model SPI
i.e., n event = 3 which are initialised with the transition rates of model SPI
as shown below:

• eve[0].rate = λ1,

• eve[1].rate = µsp, and

• eve[2].rate = µc,

where λ1 is the external arrival rate at the Class ES of the CPU, µsp is the
CPU’s processing rate, and µc is the controller’s processing rate.

The processing times for each of these events can be computed using
the function “edis” as discussed in Appendix C.

There are three processes related to three events of model SPI. These
processes are denoted by the variable “flag” ∈ {0, ..., n event − 1} such
that,

• flag = 0 represents the process for external packets arriving at the
Class ES of the CPU,

177



178 APPENDIX E. MONTE CARLO SIMULATION FOR MODEL SPI

• flag = 1 represents the process for a packet processing by the CPU,
and

• flag = 2 represents the process for a packet processing by the con-
troller.

As seen in Fig. 4.1, there are four queues for model SPI such that the
array “N” is given as,

• N [0] = Number of external packets arriving at the Class ES of the
CPU,

• N [1] = Number of packets at the controller forwarded by the CPU,
and

• N [2] = Number of packets feedback by the controller to the Class CS
of the CPU.

• N [3] = Number of packets temporarily buffered at the internal buffer
of the CPU.

Using these parameters, the pseudo code for Monte Carlo simulation
of model SPI is shown in Algorithm 13.
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Algorithm 13: Pseudo code for model SPI.

for count = 0, ..., nos− 1 do
Initialise:

inqn = an = dn = loss = clock = 0;

N [0] = N [1] = N [2] = N [3] = 0;

eve[0].time = edis(eve[0].rate); . model is activated with

external packets arriving at the CPU.

do
Selection of the next event as shown in Algorithm 14;

clock += ptime;

switch flag do
case 0 do

Pseudo code for the flag = 0 case as shown in Algorithm 15;

case 1 do
Pseudo code for the flag = 1 case as shown in Algorithm 16;

case 2 do
Pseudo code for the flag = 2 case as shown in Algorithm 17;

while (dn < NOP && inq[0] < NOP )
NPTD[count] = 0;

for i = 0, ..., dn− 1 do
if DT [i] 6= 0 then

NPTD[count]+=DT [i]−AT [i];
NPL[count] = loss/dn;

NPTD[count] /= dn;

PL = PTD = 0;

for count = 0, ..., nos− 1 do
PTD+=NPTD[count];

PL+=NPL[count];

PTD/=nos; . average packet transfer delay

PL/=nos; . average packet loss rate
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Algorithm 14: Pseudo code for the selection of next event in
model SPI.

Initialise:
ptime = inf ;

if (N [0] == 0 && N [2] == 0) then
eve[1].time = inf ; . if the CPU has no packets.

if (N [1] == 0) then
eve[2].time = inf ; . if the controller has no packets.

for i = 0, 1, ..., n event− 1 do
if (eve[i].time == 0) then

eve[i].time = edis(eve[i].rate); . Update the event’s processing

time if equal to zero.

if (ptime > eve[i].time) then
ptime = eve[i].time;

flag = i; . Select the event with smallest processing time.

for i = 0, 1, ..., n event− 1 do
eve[i].time = eve[i].time− ptime; . Update the processing time for all

events by subtracting the smallest processing time.

Algorithm 15: Pseudo code for the flag equal to ‘0’ in model SPI.

if (N [0] < K2) then
AT [an] = clock;. assigning the clock value to “an” packets arriving at

the CPU.

if (N [0] == 0 && N [2] == 0) then
eve[1].time = edis(eve[1].rate);

N [0]++; . one packet arrives at the Class ES.

an++;

else
loss++;
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Algorithm 16: Pseudo code for the flag equal to ‘1’ in model SPI.

if (N [2] > 0) then
N [2]- -; . one packet in Class CS is processed by the CPU.

N [3]- -; . one data packet is extracted from the internal buffer.

DT [inq[0]] = clock;

for j = 0, ..., inqn− 1 do
inq[j] = inq[j + 1];

inqn - -;
else

N [0]- -; . one packet departs from the Class ES.

if (genrand real1() < β) then
inq[inqn] = dn;

N [3]++; . one data packet is temporarily buffered in the internal

buffer.

inqn++;

if (N [1] == 0) then
eve[2].time = edis(eve[2].rate);

N [1]++; . one packet with a part of a data packet encapsulated

with a packet in message is forwarded to the controller.

dn++;

else
DT [dn] = clock;

dn++;
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Algorithm 17: Pseudo code for the flag equal to ‘2’ in model SPI.

if (N [2] < K1) then
N [1]- -; . one packet serviced by the controller to the Class CS.

if (N [0] == 0 && N [2] == 0) then
eve[1].time = edis(eve[1].rate);

N [2]++;. one packet serviced by the controller arrives at the Class CS.

else
loss++;

DT [inq[0]] = clock;

for j = 0, ..., inqn− 1 do
inq[j] = inq[j + 1];

inqn- -;



Appendix F

Monte Carlo Simulation for
Model HPE

In model HPE, there are four events i.e., n event = 4 which are initialised
with the transition rates of model HPE as shown below:

• eve[0].rate = λ1,

• eve[1].rate = µsp,

• eve[2].rate = µc, and

• eve[3].rate = µsh.

where λ1 is the external arrival rate at the switch hardware, µsp is the
CPU’s processing rate, µc is the controller’s processing rate, and µsh is the
switch hardware’s processing rate.

The processing times for each of these events can be computed using
the function “edis” as discussed in Appendix C.

There are four processes related to four events of model HPE. These
processes are denoted by the variable “flag” ∈ {0, ..., n event − 1} such
that,

• flag = 0 represents the process for external packets arriving at the
switch hardware,
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• flag = 1 represents the process for a packet processing by the CPU,

• flag = 2 represents the process for a packet processing by the con-
troller, and

• flag = 3 represents the process for a packet processing by the switch
hardware.

As seen in Fig. 5.2, there are four queues for model HPE such that the
array “N” is given as,

• N [0] = Number of packets forwarded by the switch hardware to the
Class HP of the CPU,

• N [1] = Number of packets at the controller forwarded by the CPU,

• N [2] = Number of packets feedback by the controller to the Class CP
of the CPU, and

• N [3] = Number of external packets arriving at the switch hardware.

The finite queue capacities for the Class CS, Class ES, and the switch
hardware for model HPE are denoted by K1, K2, and K3, respectively.
Using these parameters, the pseudo code for Monte Carlo simulation of
model HPE is shown in Algorithm 18.
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Algorithm 18: Pseudo code for model HPE.

for count = 0, ..., nos− 1 do
Initialise:

inqn = an = dn = loss = clock = 0;

N [0] = N [1] = N [2] = N [3] = 0;

eve[3].time = edis(eve[3].rate); . model is activated with

external packets arriving at the switch hardware.

do
Selection of the next event as shown in Algorithm 19;

clock += ptime;

switch flag do
case 0 do

Pseudo code for the flag = 0 case as shown in Algorithm 20;

case 1 do
Pseudo code for the flag = 1 case as shown in Algorithm 21;

case 2 do
Pseudo code for the flag = 2 case as shown in Algorithm 22;

case 3 do
Pseudo code for the flag = 3 case as shown in Algorithm 23;

while (dn < NOP && inq[0] < NOP )
NPTD[count] = 0;

for i = 0, ..., dn− 1 do
if DT [i] 6= 0 then

NPTD[count]+=DT [i]−AT [i];
NPL[count] = loss/dn;

NPTD[count] /= dn;

PL = PTD = 0;

for count = 0, ..., nos− 1 do
PTD+=NPTD[count];

PL+=NPL[count];

PTD/=nos; . average packet transfer delay

PL/=nos; . average packet loss rate
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Algorithm 19: Pseudo code for the selection of next event in
model HPE.

Initialise:
ptime = inf ;

if (N [0] == 0 && N [2] == 0) then
eve[1].time = inf ; . if the CPU has no packets.

if (N [1] == 0) then
eve[2].time = inf ; . if the controller has no packets.

if (N [3] == 0) then
eve[3].time = inf ; . if the switch hardware has no packets.

for i = 0, 1, ..., n event− 1 do
if (eve[i].time == 0) then

eve[i].time = edis(eve[i].rate); . Update the event’s processing

time if equal to zero.

if (ptime > eve[i].time) then
ptime = eve[i].time;

flag = i; . Select the event with smallest processing time.

for i = 0, 1, ..., n event− 1 do
eve[i].time = eve[i].time− ptime; . Update the processing time for all

events by subtracting the smallest processing time.

Algorithm 20: Pseudo code for the flag equal to ‘0’ in model HPE.

if (N [3] < K3) then
AT [an] = clock;. assigning the clock value to “an” packets arriving at

the switch hardware.

if (N [3] == 0) then
eve[3].time = edis(eve[3].rate);

N [3]++; . one packet arrives at the switch hardware.

an++;

else
loss++;
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Algorithm 21: Pseudo code for the flag equal to ‘1’ in model HPE.

if (N [2] > 0) then
N [2]- -; . one packet departs from the Class CP out of the system

(HPE).

DT [inq[0]] = clock;

for j = 0, ..., inqn− 1 do
inq[j] = inq[j + 1];

inqn - -;
else

N [0]- -; . one packet departs from the Class HP.

if (N [1] == 0) then
eve[2].time = edis(eve[2].rate);

N [1]++; . one packet forwarded from the Class HP to the controller.

Algorithm 22: Pseudo code for the flag equal to ‘2’ in model HPE.

N [1]- -; . one packet serviced by the controller to the Class CP.

if (N [2] < K1) then
if (N [0] == 0 && N [2] == 0) then

eve[1].time = edis(eve[1].rate);

N [2]++;. one packet serviced by the controller arrives at the Class CP.

else
loss++;

DT [inq[0]] = clock;

for j = 0, ..., inqn− 1 do
inq[j] = inq[j + 1];

inqn- -;
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Algorithm 23: Pseudo code for the flag equal to ‘3’ in model HPE.

N [3]- -; . one packet departs from the switch hardware.

if (genrand real1() < β) then
inq[inqn] = dn;

inqn++;

dn++;

if (N [0] < K2) then
if (N [0] == 0 && N [2] == 0) then

eve[1].time = edis(eve[1].rate);

N [0]++; . one packet arrives at the Class HP for CPU processing.

else
loss++;

DT [inq[inqn− 1]] = clock;

inqn- -;

else
DT [dn] = clock; . one packet departs from the switch hardware to

out of the system (HPE).

dn++;



Appendix G

Monte Carlo Simulation for
Model HPI

Similar to model HPE, there are four events in model HPI i.e., n event =
4 which are initialised with the transition rates of model HPI as shown
below:

• eve[0].rate = λ1,

• eve[1].rate = µsp,

• eve[2].rate = µc, and

• eve[3].rate = µsh.

where λ1 is the external arrival rate at the switch hardware, µsp is the
CPU’s processing rate, µc is the controller’s processing rate, and µsh is the
switch hardware’s processing rate.

The processing times for each of these events can be computed using
the function “edis” as discussed in Appendix C.

There are four processes related to four events of model HPI. These
processes are denoted by the variable “flag” ∈ {0, ..., n event − 1} such
that,

• flag = 0 represents the process for external packets arriving at the
switch hardware,
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• flag = 1 represents the process for a packet processing by the CPU,

• flag = 2 represents the process for a packet processing by the con-
troller, and

• flag = 3 represents the process for a packet processing by the switch
hardware.

As seen in Fig. 5.3, there are five queues for model HPI such that the
array “N” is given as,

• N [0] = Number of packets forwarded by the switch hardware to the
Class HP of the CPU,

• N [1] = Number of packets at the controller forwarded by the CPU,

• N [2] = Number of packets feedback by the controller to the Class CP
of the CPU,

• N [3] = Number of external packets arriving at the switch hardware,
and

• N [4] = Number of packets temporarily buffered at the internal buffer
of the CPU.

Using these parameters, the pseudo code for Monte Carlo simulation
of model HPI is shown in Algorithm 24.
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Algorithm 24: Pseudo code for model HPI.

for count = 0, ..., nos− 1 do
Initialise:

inqn = an = dn = loss = clock = 0;

N [0] = N [1] = N [2] = N [3] = N [4] = 0;

eve[3].time = edis(eve[3].rate); . model is activated with

external packets arriving at the switch hardware.

do
Selection of the next event as shown in Algorithm 25;

clock += ptime;

switch flag do
case 0 do

Pseudo code for the flag = 0 case as shown in Algorithm 26;

case 1 do
Pseudo code for the flag = 1 case as shown in Algorithm 27;

case 2 do
Pseudo code for the flag = 2 case as shown in Algorithm 28;

case 3 do
Pseudo code for the flag = 3 case as shown in Algorithm 29;

while (dn < NOP && inq[0] < NOP )
NPTD[count] = 0;

for i = 0, ..., dn− 1 do
if DT [i] 6= 0 then

NPTD[count]+=DT [i]−AT [i];
NPL[count] = loss/dn;

NPTD[count] /= dn;

PL = PTD = 0;

for count = 0, ..., nos− 1 do
PTD+=NPTD[count];

PL+=NPL[count];

PTD/=nos; . average packet transfer delay

PL/=nos; . average packet loss rate
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Algorithm 25: Pseudo code for the selection of next event in
model HPI.

Initialise:
ptime = inf ;

if (N [0] == 0 && N [2] == 0) then
eve[1].time = inf ; . if the CPU has no packets.

if (N [1] == 0) then
eve[2].time = inf ; . if the controller has no packets.

if (N [3] == 0) then
eve[3].time = inf ; . if the switch hardware has no packets.

for i = 0, 1, ..., n event− 1 do
if (eve[i].time == 0) then

eve[i].time = edis(eve[i].rate); . Update the event’s processing

time if equal to zero.

if (ptime > eve[i].time) then
ptime = eve[i].time;

flag = i; . Select the event with smallest processing time.

for i = 0, 1, ..., n event− 1 do
eve[i].time = eve[i].time− ptime; . Update the processing time for all

events by subtracting the smallest processing time.

Algorithm 26: Pseudo code for the flag equal to ‘0’ in model HPI.

if (N [3] < K3) then
AT [an] = clock;. assigning the clock value to “an” packets arriving at

the switch hardware.

if (N [3] == 0) then
eve[3].time = edis(eve[3].rate);

N [3]++; . one packet arrives at the switch hardware.

an++;

else
loss++;
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Algorithm 27: Pseudo code for the flag equal to ‘1’ in model HPI.

if (N [2] > 0) then
N [2]- -; . one packet in Class CP is processed by the CPU.

DT [inq[0]] = clock;

for j = 0, ..., inqn− 1 do
inq[j] = inq[j + 1];

inqn - -;

N [4]- -; . one data packet is extracted from the internal buffer.

else
N [0]- -; . one packet departs from the Class HP.

if (N [1] == 0) then
eve[2].time = edis(eve[2].rate);

N [1]++; . one packet forwarded from the Class HP to the controller.

N [4]++; . one data packet is temporarily buffered in the internal

buffer.

Algorithm 28: Pseudo code for the flag equal to ‘2’ in model HPI.

N [1]- -; . one packet serviced by the controller to the Class CP.

if (N [2] < K1) then
if (N [0] == 0 && N [2] == 0) then

eve[1].time = edis(eve[1].rate);

N [2]++;. one packet serviced by the controller arrives at the Class CP.

else
loss++;

DT [inq[0]] = clock;

for j = 0, ..., inqn− 1 do
inq[j] = inq[j + 1];

inqn- -;
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Algorithm 29: Pseudo code for the flag equal to ‘3’ in model HPI.

N [3]- -; . one packet departs from the switch hardware.

if (genrand real1() < β) then
inq[inqn] = dn;

inqn++;

dn++;

if (N [0] < K2) then
if (N [0] == 0 && N [2] == 0) then

eve[1].time = edis(eve[1].rate);

N [0]++; . one packet arrives at the Class HP for CPU processing.

else
loss++;

DT [inq[inqn− 1]] = clock;

inqn- -;

else
DT [dn] = clock; . one packet departs from the switch hardware to

out of the system (HPI).

dn++;
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