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Abstract
Nuclear Magnetic Resonance spectroscopy (NMR) is a powerful technique
for rapid and efficient quantitation of compounds in chemical samples.
NMR causes the nuclei in the molecules to resonate and various chemical
arrangements appear as peaks in the Fourier spectrum of a free induction
decay (FID). The spectral parameters elicited from the peaks serve as a
fingerprint of the chemical components contained in the molecule. These
fingerprints can be employed to understand the chemical structure.

Signal acquired from a NMR spectrometer is ideally modelled as a su-
perposition of multiple damped complex exponentials (cisoids) in Addi-
tive White Gaussian Noise (AWGN). The number as well as the spectral
parameters of the cisoids need to be estimated for characterisation of the
underlying chemicals. The estimation, however, suffers from numerous
difficulties in practice. These include: unknown number of cisoids, large
signal length, large dynamic range, large peak density, and numerous dis-
tortions caused by experimental artefacts.

This thesis aims at the development of estimators that, in view of the
above-mentioned practical features, are capable of rapid, high-resolution
and apriori-information-free quantitation of NMR signals. Moreover, for
the analytic evaluation of the performance of such estimators, the thesis
aims to derive interpretable analytic results for the fundamental estima-
tion theory tool for assessing the performance of an unbiased estimator:
the Cramer Rao Lower Bound (CRLB). By such results, we mean those
that analytically allow the determination, in terms of the CRLB, of the im-
pact of the free model parameters on the estimator performance.

For the CRLB, we report analytic expressions on the variance of un-
biased parameter estimates of damping factors, frequencies and complex



amplitudes of an arbitrary number of damped cisoids embedded in AWGN.
In addition to the CRLB, analytic expressions for the determinant and the
condition number of the associated Fisher Information Matrix (FIM) are
also reported. Further results, in similar order, are reported for two special
cases of the damped cisosid model: the Magnetic Resonance Relaxometry
model and the amplitude-only model (employed in quantitative NMR -
qNMR). Some auxiliary results for the above-mentioned models are also
presented, i.e., on the multiplicity of the eigenvalues and the factorisation
of the characteristic polynomial associated with their respective FIMs.

These results have not been previously reported. The reported theo-
retical results successfully account for various physical and chemical phe-
nomena observed in experimental NMR data, and quantify their impact
on the accuracy of an unbiased estimator as a function of both model and
experimental parameters, e.g., influence of prior knowledge, peak multi-
plicity, multiplet symmetry, solvent peak, carbon satellites, etc.

For rapid, high-resolution and apriori-information-free quantitation of
NMR signals, a sub-band Steiglitz-McBride algorithm is reported. The
developed algorithm directly converts the time-domain FID data into a
table of estimated amplitudes, phases, frequencies and damping factors,
without requiring any previous knowledge or pre-processing. A 2D sub-
band Steiglitz-McBride algorithm, for the quantitation of 2D NMR data
in a similar manner, is also reported. The performance of the developed
algorithms is validated by their application to experimental data, which
manifests that they outperform the state-of-the-art in terms of speed, res-
olution and apriori-information-free operation.
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Chapter 1

Introduction

This thesis focuses on the problem of estimation of parameters of one-
dimensional (1D) and two-dimensional (2D) Nuclear Magnetic Resonance
(NMR) signals. The work carried in this thesis will contribute to effi-
cient processing of these signals. It will also be applicable to applications
employing similar signal models, e.g., Electron Paramagnetic Resonance
(EPR) [52], Ion Cyclotron Resonance (ICR) [45], and Microwave Resonance
spectroscopy [33].

This chapter serves as an introduction to the thesis and puts forth the
context of the research problems addressed therein. An outline of the
chapter is as follows. The motivation behind the work carried out in this
thesis is presented in Section 1, followed by a problem statement in Sec-
tion 2. The organisation of the thesis and the original contributions are
outlined in Sections 3 and 4, respectively. Section 5 highlights the publi-
cations originating from this work, succeeded by delineation of notations
employed in the thesis in Section 6.

1.1 Research motivation

Data acquired from Nuclear Magnetic Resonance (NMR) experiments can
be employed for rapid and efficient quantitation of compounds in chem-

5
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Acquisition Quantitation Identification

Figure 1.1: NMR data processing cycle [240].

ical samples. This makes NMR a powerful analytical tool for many re-
search and industrial applications. For example, NMR has been shown
to be gainfully employed in the food industry [19], in biological research
[225], and in drug development [101].

NMR, under proper experimental conditions, causes the nuclei in a
molecule to resonate. These resonances appear as peaks in the Fourier
spectrum. The spectral parameters elicited from the peaks provide a fin-
gerprint of the chemical components contained in the molecule. These fin-
gerprints can be employed by the researchers to understand the chemical
structure [88].

Signals originating from NMR experiments are processed in three
stages [240], depicted in Figure 1.1:

1. Acquisition: the time-domain electromagnetic signal of a chemical
sample is acquired from a NMR spectrometer,

2. Quantitation: the acquired signal is processed for feature extraction,
and

3. Identification: based on the extracted features, compounds underly-
ing the chemical sample are identified

Work carried in this thesis focuses on the second stage, i.e., quantita-
tion. Signal acquired from NMR spectrometer is ideally modelled as a
superposition of multiple damped complex exponentials (cisoids) in Ad-
ditive White Gaussian Noise (AWGN) [216]. The number as well as the
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spectral parameters of the cisoids need to be estimated for the charac-
terisation of the underlying chemicals. The estimator, or the algorithm,
performing this task suffers from numerous difficulties in practice. These
include [166]:

1. The number of cisoids in the signal is generally unknown,

2. Larger data lengths of recorded signal can be computationally pro-
hibitive,

3. Dynamic range of signal can be large, i.e., very small and very large
peaks coexist,

4. Cisoid density can be high, i.e., components overlap strongly,

5. Numerous distortions are also present, e.g., baseline of signal spec-
trum may be wavy (baseline distortion), the spectral shape of cisoids
may deviate from the ideal cisoid shape (lineshape distortion), etc.

In view of these difficulties, an algorithm that can perform rapid and
high-resolution quantitation of the NMR signals is a widely discussed re-
search problem.

Various methods can be found in literature that endeavour to ad-
dress these problems. They can be broadly subsumed under two cate-
gories [151, 221]: model-based, which attempt to quantitate the NMR sig-
nal by minimising the sum of the squared errors between the recorded
data and the signal model, and the so-called high resolution methods,
in which quantitation is performed by separating the signal into signal
and noise subspaces. Numerous other methods from different signal pro-
cessing areas have also been employed. However, these methods suffer
from performance issues – including limited resolution, high computa-
tional cost, and large estimate variance due to heavy apriori information
reliance – when applied to high-complexity real-time NMR signals with
the attributes mentioned in (1)-(5) above.
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Interpretable analytical results for the fundamental estimation theory
tool, the Cramer Rao Lower Bound (CRLB), are unavailable for analytical
evaluation of the performance of such estimation methods for the damped
cisoid model with an arbitrary number of cisoids. Interpretable analytical
CRLB results connote those that explicitly indicate the role of model pa-
rameters in determining the estimator performance. Jointly, these issues
signify room for significant technical contributions to the area of NMR sig-
nal quantitation.

1.2 Problem statement

Motivated by this, the aim for this research can be summarised as fol-
lows: to explore a rigorous mathematical foundation for estimation of NMR sig-
nals and from the insights garnered therein, develop novel algorithms for their
high-resolution, high-speed and apriori-information-independent processing. The
mathematical foundation, based on the CRLB, should serve as the guiding
hand in developing the algorithms that should be able to:

• Estimate, accurately and efficiently, the number and parameters of
cisoids embedded in real-time NMR signals with:

– large data length,

– large number of cisoids,

– large dynamic range, and

– a large number of dense overlapping peaks

in the presence of:

– noise,

– distortions, i.e., baseline, lineshape, etc., and

– possibly any other uncertainty arising in the NMR signal from
potentially undiscovered sources
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and in the absence of:

– aprior signal/chemical knowledge in any form.

These goals are accomplished by deriving novel analytical CRLB re-
sults for parameter estimation of 1D NMR signals, and developing novel
algorithms for processing of data acquired from 1D and 2D NMR (mainly
proton) experiments. These outcomes should serve to advance the mathe-
matical knowledge in the theory of estimation of 1D NMR signals, and
help to overcome the limitations of current methods available for the
quantitation of 1D and 2D NMR signals, providing, at the same time, sig-
nificant advances in their performance as well. Above outcomes should
also bring innovative parameter estimation insights and novel quantita-
tion applications to numerous related areas in spectroscopy and signal
processing.

1.3 Organisation of the thesis

Remainder of the thesis is organised as follows:

Chapter 2 (Introduction to NMR) provides an introduction to the
background knowledge of NMR. Historical development, NMR
physics, the basics of 1D and 2D-NMR experiments, and the chemi-
cal concepts relevant to the thesis are also discussed.

Chapter 3 (Parameter Estimation in NMR: Some general results on
the Cramer Rao Lower Bound) presents the results achieved for the
first part of our work, i.e., the analytical evaluation of the CRLB for
parametric estimation in NMR, in the following order. Firstly, back-
ground to the problem, models of importance in this regard and, for
the models considered, the significance of the results reported are
discussed. Secondly, a formal mathematical statement of the prob-
lem and the methods employed to solve it are elaborated. Finally,
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the derived results and their application to real-time NMR data, in
conjunction with the key insights garnered in this regard, are pre-
sented.

Chapter 4 (Quantitation Methods for 1D-NMR Signals) presents
a review of 1D-NMR signal quantitation methods available in the
literature. They are grouped in three categories: time-domain,
frequency-domain and combined time-frequency domain methods.
Representative approaches in each category are discussed along with
the advantages and limitations of each.

Chapter 5 (Quantitation Algorithm for 1D-NMR Signals) reports
the development of a high-speed, high-resolution and apriori-
information-free quantitation algorithm for 1D-NMR signals. The
chapter comprises a formal introduction to the problem, the pro-
posed solution, the developed algorithm and a performance com-
parison with state-of-the-art methods.

Chapter 6 (Quantitation Methods for 2D-NMR Signals) presents
background to the 2D-NMR, a brief discussion of well-established
2D-NMR experiments, the limitations encountered in experimental
data acquisition/processing, and a review of quantitation algorithms
developed to process the 2D-NMR data strictly on a uniform sam-
pling grid.

Chapter 7 (Quantitation Algorithm for 2D-NMR Signals) reports,
in a manner similar to Chapter 5, the development of an algorithm
for rapid, high-resolution and apriori-information-free quantitation
of 2D-NMR data.

Chapter 8 (Conclusions and Future Work) concludes the thesis by
reviewing the contributions and discussing the potential research di-
rections.
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1.4 Original contributions

The original contributions of this thesis include:

1. Analytical evaluation of the CRLB: Chapter 3 reports analytical ex-
pressions for the CRLB on the variance of unbiased parameter es-
timates of damping factors, frequencies and complex amplitudes of
an arbitrary number of damped cisoids embedded in AWGN (model
representing the FID signal in 1D-NMR data). The expressions dis-
play the explicit relationship of the CRLB for each distinct param-
eter with respect to all the free model parameters, i.e., the num-
ber of cisoids, their amplitudes, phases, frequencies, damping fac-
tors, Signal-to-Noise Ratio (SNR) and the sampling rate, without im-
posing restriction on any of them. The reported results do not in-
volve auxiliary expressions for their explanation and are readily in-
terpretable in terms of all the free model parameters. In addition to
the CRLB, analytical expressions for the determinant and the condi-
tion number of the Fisher Information Matrix (FIM) associated with
the damped cisoid model are also reported.

Two special cases of the damped cisoid model, the Magnetic Res-
onance Relaxometry (MRR) model and the amplitude-only model
(employed in quantitative NMR - qNMR), are also considered, and
analytical expressions for the CRLB on the unbaised parameter esti-
mates of these models, as well as for the determinant and condition
number of their respective FIMs, are reported. Some auxiliary re-
sults for the above-mentioned models are also presented, i.e., on the
multiplicity of the eigenvalues, their separation, and the factorisa-
tion of the characteristic polynomial associated with their respective
FIMs. These results, as such, have not been previously reported in
literature.

The reported theoretical results, when applied to experimental NMR
data, successfully accounted for various physical and chemical phe-
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nomena observed in 1D-NMR data and quantified their impact on
the accuracy of an unbiased estimator as a function of both model
and experimental parameters, i.e., influence of prior knowledge,
peak multiplicity, multiplet symmetry, solvent peak, carbon satel-
lites, baseline distortion, signal truncation, and the second-order ef-
fects observed in spin-coupled NMR systems.

2. High-resolution, high-speed, apriori-information-free quantita-
tion algorithm for 1D NMR data: Chapter 5 reports the develop-
ment of a parametric algorithm for high-resolution, high-speed and
apriori-information-free quantitation of 1D-NMR data. The devel-
oped algorithm is able to convert the time-domain FID data into a
table of estimated amplitudes, phases, frequencies and damping fac-
tors – without requiring any previous knowledge or preprocessing
(i.e., base and phase correction, apodization, noise removal, etc.).
Application of the developed algorithm on experimental proton FID
data attested to its superior performance, in terms of speed, resolu-
tion and automation, when compared to the state-of-the-art in this
area.

3. High-resolution, high-speed, apriori-information-free quantita-
tion algorithm for 2D NMR data: Chapter 7 reports the develop-
ment of a 2D parametric algorithm for high-resolution, high-speed
and apriori-information-free quantitation of 2D-NMR data. The de-
veloped algorithm is able to convert the time-domain 2D-NMR data
into a table of estimated amplitudes, phases, 2D-frequencies and
damping factors. The algorithm achieves this in a highly accurate,
time-efficient and automated fashion, without requiring any previ-
ous knowledge or preprocessing (i.e., linear prediction, zero-filling,
apodization, etc.). The ability of the algorithm to convert raw 2D-
NMR data into a table of estimates makes it directly applicable to
the time-domain data obtained from a variety of homonuclear, het-
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eronuclear and spatial 2D-NMR experiments. When applied to the
data acquired from various 2D-NMR experiments in this regard, the
proposed algorithm yielded excellent quantitation results in terms of
speed, resolution and automation – markedly surpassing, in these re-
spects, the results achieved by the previously published techniques
for the analysis of 2D-NMR data.
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1.6 Notations

The rest of the thesis employs lower-case italic characters, such as x, to
represent scalars; lower case bold characters, such as x, for vectors; upper
case bold characters, such as X, for matrices; the superscript asterisk ∗ to
denote the conjugate of a complex number; {•}T for the transposition and
{•}H for conjugate transposition of a matrix, and equally a vector; ˆ{•} for
the estimated value of a parameter; and <{•} and ={•} to denote the real
and imaginary parts respectively.



Chapter 2

Introduction to NMR

2.1 Background and significance

Nuclear magnetic resonance (NMR) is a well established technique with
a wide range of applications in physics, chemistry, biology, geology and
medicine [105]. Historically, it took NMR almost sixty years to achieve its
currently popular status. NMR technology began with the independent
discoveries of two scientific groups, one lead by Bloch and the other by
Purcell [16]. For their contribution, both were jointly awarded the 1952
Nobel Prize in Physics.

NMR found direct application in chemistry with the discovery of
chemical shift when it was observed that two nitrogen atoms in ammo-
nium nitrate induced two different signals [167]. This observation was
subsequently confirmed by the detection of three lines in the spectrum
of ethanol. This, in turn, gave rise to significant commercial activity in
NMR, the first commercial NMR spectrometer being produced in 1952.
Further discoveries ensued in 1953, when it was observed that the satu-
ration of electrons in metals caused a nuclear polarisation increase. This
effect was named after its discoverer as the Overhauser effect [160]. This
was the first evidence that spins can actually communicate; the method
was later used to study other interactions between nuclei, e.g., spin-spin

15
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coupling in 1961 [76].

In the early ears of its development, the sensitivity of NMR was a sig-
nificant issue. This promoted activity on the development of stronger elec-
tromagnets. These were not fully realised until the early 60s when super-
conducting magnets emerged in the market. This lead to the generation of
much higher 100MHz spectra [69]. However, technical challenges of mag-
netic stability and inhomogeneity remained to be tackled. Progress in this
direction was made when the first 200 MHz spectrum was generated in
1964 [157]. Further increase in sensitivity was achieved with the introduc-
tion of the Fourier transformed NMR (FT-NMR) in 1966 [68]. This allowed
simultaneous excitation, and later, separation of various chemical signals.
The discovery of FT-NMR opened the doors for various pulse sequence
methods.

Towards the end of the 50s, medicinal applications of NMR spec-
troscopy were also being considered [156]. The NMR spectra of red blood
cells in humans, known as erythrocytes, were studied to elicit their prop-
erties, along with human saliva [161]. A few years later, NMR was also ap-
plied to ascertain abnormal properties of tumors [165]. At the same time,
biological molecules were also being studied for their structural proper-
ties using NMR [108]. The majority of the research in this direction was
focused on peptides and paramagnetic proteins. The greatest challenge
was posed by the peak of the water signal whose amplitude was many
times larger than that of the signal of interest. This problem was over-
come by another breakthrough when, in 1976, Ernst et. al introduced an
additional axis in NMR spectra for the assignment of overlapping frequen-
cies. This effectively marked the birth of high-resolution two-dimensional
NMR (2D-NMR) [11].

2D-NMR was rapidly identified as a prospective structural tool by re-
searchers working in the field of biomolecules [145]. The method was
seen to be feasible in this area despite the limited computational resources
available at that time. Its practical use however was hindered for many
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years by the various technical difficulties that arose due to the high con-
centration of proteins. It was not until 1985 when the first 2D-NMR struc-
ture of protein was published [233]. Further improvement in resolution
lead to the introduction of 3D-NMR in 1990 which was subsequently used
to probe the structures of biological macromolecules [184].

Today, NMR is ubiquitous. According to the areas in which it finds its
applications, it can be broadly represented by three overlapping regions:
spectroscopy, relaxometry and imaging as indicated in Figure 2.1 [77].
Spectroscopy allows characterisation based on chemical properties; relax-
ometry allows characterisation based on physical properties; and imaging
allows characterisation based on spatial properties.

NMR spectroscopy has surpassed the X-ray crystallography for struc-
tural determination in biology and chemistry [16]. It has replaced In-
frared (IR) spectroscopy as a principal investigation tool for forensic anal-
ysis [230]. It is also being considered as an alternative to Positron Emission
Tomography (PET) spectroscopy for metabolic imaging in medicine [164].
Furthermore, it is finding its way into ever new applications as a substi-
tute to the orthodox techniques, e.g., Near Infrared (NIR) in determination
of food quality and authenticity [174]. All this can be attributed to the nu-
merous advantages NMR has to offer over the competing techniques.

2.1.1 Advantages of NMR

The principal advantages of NMR are briefly summarised as follows:

1. Non-invasiveness,

2. Non-directional preference,

3. Multi-parametric measurement ability,

4. Immunity to optical opaqueness,

5. Inherently quantitative (signal received directly from the nuclei),
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Imaging

RelaxometrySpectroscopy

Figure 2.1: A schematic representation of NMR as partially overlapping
areas representing the three main applications [77].

6. A direct method, and

7. Multi-nuclear method

2.2 NMR physics

In the following sub-sections, the basic theory behind NMR is discussed.

2.2.1 Spin and the spin angular momentum

NMR is based on the quantum mechanical phenomenon known as spin
angular momentum. The atomic beam experiment, conducted by Stern
and Gerlach in 1922, demonstrated the existence of spatial quantization
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[29]. They observed the splitting of a collated atomic beam of silver in
the presence of an external magnetic field. This implied the existence
of a non-classical spin. The theoretical explanation for the spin was pro-
vided by Dirac in 1928 [95]. Spin is now known as an intrinsic prop-
erty of the atomic nuclei and the source of their spin angular momen-
tum, denoted by I . Spin angular momentum is quantized, i.e., it can
only take 2I + 1 discrete values in a particular observed direction, e.g.,
Iz = h̄mz = h̄{−I,−I + 1, . . . , I − 1, I}. Iz is the spin-component, h̄ is
the reduced Planck’s constant (i.e., h/2π), and mz is the spin projection
quantum number along z-axis. I is the principal spin quantum number.
Nuclei in which protons are evenly paired have zero spin angular momen-
tum. Others have a non-zero spin angular momentum, e.g., hydrogen has
a half-integer spin I = 1/2 due to a single proton. This non-zero spin an-
gular momentum I generates a dipole moment µ in the associated nuclei
given by:

µ = γI (2.1)

where γ is the constant of proportionality, known as the gyromagnetic ra-
tio, e.g., the γ for proton (1H), Flourine (19F) and Phosphorus (31P) are
267.513, 251.662 and 108.291×106 rad s−1 T−1 receptively [91]. Half-integer
spin nuclei have two eigenstates which, in the presence of a static external
magnetic field B0, become non-degenerate. The difference in the energy
levels E is determined by:

E = µ ·B0 = −µxBx0 − µyBy0 − µzBz0 (2.2)

B0 is normally taken along the z-axis as indicated in Figure 2.2. This re-
duces the above expression to:

E = −µzB0 = −γh̄mzB0 (2.3)

Consequently, nuclear spins will possess different energies in the presence
of a non-zero magnetic field. This process is known as Zeeman splitting
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Figure 2.2: Physical basis of NMR [36].

[36]. The net nuclear magnetic moment that results due to the application
of B0 is called magnetisation M . It is defined by:

M =
Nγ2h2I(I + 1)

3kT
B0 = χ0B0 (2.4)

where χ0 represents the magnetic susceptibility of the spin system, N the
number of nuclei, k Boltzmann’s constant, and T the absolute temperature.
This relationship is also known as Curie’s Law [35]. Due to the interaction
with B0, the dipoles precess around the z-axis. The angular frequency of
this precession ω0 is given by:

ω0 = γB0 (2.5)

where ω0 (or v = ω0/2π) is known as the Larmor frequency [36].
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2.2.2 Spin relaxation

In the equilibrium state, the M vector is in the longitudinal direction, i.e.,
along the z-axis as indicated in Figure 2.2. This results from an uneven
population in quantum levels and random phases of the individual spins.
If external energy is applied, typically an oscillating electromagnetic field
B1, M will move from its equilibrium position to align with B1. The re-
covery of the equilibrium state, i.e., the relaxation process, involves both
restoration of population levels and randomisation of the individual spins.
The relaxation occurs due to the interaction of oscillating magnetic fields
within the molecules and is caused by molecular collisions. The relaxation
process is unique to the molecular environment. Consequently, a unique
fingerprint of frequencies will be produced for each chemical group which
can be used for their identification. One point worth mentioning here is
that the collision process in NMR leads to a lifetime in milliseconds for
the excited molecular states which is longer than that of other spectro-
scopic techniques. This, according to Heisenbergs uncertainty principle,
will lead to [36]:

• The NMR signal being comparatively narrower in bandwidth, and

• Being more manipulatable in the time time-domain after excitation.

These two benefits are crucial to the success of NMR.

2.2.3 Spin-Lattice relaxation time (T1)

When a radio wave B1, with a Larmor frequency v, is applied to the sam-
ple, its causes the transition of populations from the lower energy level to
the higher one. Restoration of the equilibrium population levels occurs by
electromagnetic radiation. Magnetisation M also recovers its equilibrium
position, i.e., along B0. This recovery process is exponential and is de-
scribed by a spin-lattice relaxation time T1. T1 is also known as the enthalpic
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component [36] of the equilibrium restoration, as it involves the restoration
of equilibrium populations.

2.2.4 Spin-Spin relaxation time (T2)

Contrary to the restoration of population levels, the spin-spin relaxation
time is connected with the randomisation of individual spins. Represented
by T2, it is also exponential in decay and governs the return of the individ-
ual spins to random phases. T2 is also known as the anisotropic compo-
nent [36] of the equilibrium restoration, as it involves the randomisation of
spin phases.

2.2.5 The rotating frame of reference

Under the influence of B0, there is a net magnetisation M along the di-
rection of B0, generally taken along the z-axis as indicated in Figure 2.2.
When B1 is applied along the x-axis, in the form of an RF pulse with a fre-
quency ω1, then under the influence of these two magnetic fields, M will
begin to precess simultaneously around B0, with a frequency ω0 = γB0,
and B1, with a frequency ω1 = γB1. Spins around B0 can be considered
from a laboratory frame of reference, i.e., the observation system from
where B0 has been applied. If this frame of reference is exchanged for
the one that rotates at ω0, spins which have a frequency equal to ω0 will
experience the effect of B1 only and precess about its axis. Other spins
will precess around a magnetic field that is effectively the vector sum of
B0 and B1. The net effect of B1 on M , since B1 is applied for a short time,
is the partial revolution of M around the B1 axis, known as tilt [36].

2.2.6 Bloch equations of magnetisation motion

With all the background in place, the evolution of spins in an external
homogeneous magnetic field shall now be discussed. The equations which
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describe this process are known as Bloch equations after Felix Bloch who
formulated them. The formulation commences by observing that the bulk
magnetisation M of the sample is equal to the vector sum of individual
dipole moments (µi) [129]:

M =
∑
i

µi (2.6)

In terms of the net angular momentum L, M is given by:

M = γL (2.7)

In the presence of an external magnetic field B, M experiences a torque
and the net angular momentum of the system is changed by:

dL
dt

= M× B (2.8)

which can be re-written as:

dM
dt

= γM× B (2.9)

The cross-product can be expanded as:

∣∣∣∣∣∣∣
i j k
Mx My Mz

Bx By Bz

∣∣∣∣∣∣∣ = (MyBz −MzBy)i + (MzBx −MxBz)j + (MxBy −MyBx)k

(2.10)
which can be expanded in terms of the individual components as:

dMx

dt
= γ(MyBz −MzBy)

dMy

dt
= γ(MzBx −MxBz)

dMz

dt
= γ(MxBy −MyBx)

(2.11)
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Since the magnetic field is applied along the z-axis (i.e., Bx = By = 0),
dipoles precess around Bz.

dMx(t)

dt
=γMy(t)Bz

dMy(t)

dt
=− γMx(t)Bz

dMz(t)

dt
=0

(2.12)

In the absence of relaxation, the solution of these equations is:

Mx(t) =Mx cos(ωt) +My sin(ωt)

My(t) =My cos(ωt)−Mx sin(ωt)
(2.13)

Spin-lattice and spin-spin relaxation are first order processes with relax-
ation times T1 and T2 respectively. Including the relaxation terms and
given that Bz = B0 and Bx = By = 0:

dMx(t)

dt
=ω0My(t)−

Mx(t)

T2

dMy(t)

dt
=− ω0Mx(t)−

My(t)

T2

dMz(t)

dt
=− (Mz(t)−M0)

T1

(2.14)

with ω0 = γB0. These equations represent Bloch’s three approximations
which he used to derive them. His first assumption was that the magneti-
sation will return to the z-axis over time in the act of forgetting its state.
This is described by the equation containing the T1 term. Secondly, upon
the interaction with B1, the magnetisation will acquire a transversal com-
ponent. Thirdly, under magnetic inhomogeneities, the spins, though as-
sumed free, will experience a change in their frequencies, and undergo a
decoherence process. The last two approximations are described by the set
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of equations containing in the T2 term. Solving (2.14) yields:

Mz(t) = Mz(0)e−t/T1 +M0(1− e−t/T1)

Mx(t) = {Mx(0) cos(ω0t)−My(0) sin(ω0t)}e−t/T2

My(t) = {−Mx(0) sin(ω0t) +My(0) cos(ω0t)}e−t/T2
(2.15)

When an RF pulse with frequency ω is applied in the transverse plane:

Bx(t) =B1 cos(ωt)

By(t) =B1 sin(ωt)

Bz =B0

(2.16)

The Bloch equations become:

dMx(t)

dt
=ω0My(t)− ω1Mz(t) sin(ωt)− Mx(t)

T2

dMy(t)

dt
=− ω0Mx(t) + ω1Mz(t) cos(ωt)− My(t)

T2

dMz(t)

dt
=− ω1[Mx(t) sin(ωt) +My(t) cos(ωt)]− (Mz(t)−M0)

T1

(2.17)

In a rotating frame of reference, following transformation [173]:

M
′

x(t) = Mx(t) cos(ωt)−My(t) sin(ωt)

M
′

y(t) = Mx(t) sin(ωt) +My(t) cos(ωt)
(2.18)

yields:

dM
′
x(t)

dt
=− (ω − ω0)M

′

y(t)−
M
′
x(t)

T2

dM
′
y(t)

dt
=(ω − ω0)M

′

x(t)−
M
′
y(t)

T2

+ ω1Mz(t)

dMz(t)

dt
=− ω1M

′

y(t)−
(Mz(t)−M0)

T1

(2.19)

These equations characterise the motion of magnetisation under a given
set of initial conditions.



26 CHAPTER 2. INTRODUCTION TO NMR

2.3 The 1D-NMR experiment

The basic experiment in NMR is the one-dimensional or (1D) NMR experi-
ment [38]. It is performed by the application of a 900 pulse along the x-axis
with following initial conditions:

Mx =0

My =M0

Mz =0

(2.20)

In this case, the evolution of the resulting magnetisation processes accord-
ing to (2.19) is given by:

dM
′
x(t)

dt
=− (ω − ω0)M

′

y(t)−
M
′
x(t)

T2

dM
′
y(t)

dt
=(ω − ω0)M

′

x(t)−
M
′
y(t)

T2

(2.21)

yielding the solution:

M
′

x(t) = {M ′

x(0) cos(∆ωt) +M
′

y(0) sin(∆ωt)}e−t/T2

M
′

y(t) = {M ′

x(0) sin(∆ωt) +M
′

y(0) cos(∆ωt)}e−t/T2
(2.22)

with ∆ω = ω − ω0. The initial conditions in (2.20) lead to M ′
x(0) = 0 and

M
′
y(0) = M0 in (2.18). As a result, (2.22) becomes:

M
′

x(t) = M0 sin(∆ωt)e−t/T2

M
′

y(t) = M0 cos(∆ωt)e−t/T2
(2.23)

Treating the x and y as real and imaginary components of a complex vari-
able, M ′

x(t) and M
′
y(t) can be jointly written as:

M
′

y(t) + iM
′

x(t) = M0e
i∆ωte−t/T2 (2.24)

or
M
′

xy(t) = M0e
(i∆ω−1/T2)t (2.25)

The signal M ′
xy(t) is termed as the Free Induction Decay (FID) signal. The

envelope of the FID is signal is described by the transverse relaxation time
T2. An example FID signal is shown in Figure 2.3.
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Figure 2.3: Real and imaginary parts of FID of ethanol recorded on Spin-
solve Benchtop NMR (Magritek; Wellington, New Zealand).

2.3.1 The FID signal model

The FID signal in (2.25) comprises of a real part and an imaginary part cor-
responding to the orthogonal components of the projection of M in the
transversal plane respectively. As a result, application of the excitation
pulse in 1D-NMR experiment is followed by the detection of potential in-
duced in receiver coils placed in transversal plane, a technique known as
quadrature detection. If the chemical sample consists of more than one com-
ponent, the resulting FID signal equals the sum of the FIDs of individual
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components [216]. The FID is acquired in discrete-time.

f(mδ) =
N∑
n=1

βne
(i∆ωn−1/T2)mδ + v(m) m ∈ [0,M − 1] (2.26)

where M represents the number of data points acquired, δ is the acquisi-
tion delay between two adjacent samples, n signifies the number of indi-
vidual spins, and βn characterises the complex amplitude of each complex
decaying exponential. v(m) represents the Gaussian noise which cumu-
latively represents the effects of random molecular motion in the sample,
thermal noise in the receiver coils, and imperfections in the processing
equipment [38]. The FID data is usually collected until the signal has de-
cayed completely [36].

2.3.2 Practical features

Due to inherent magnetic inhomogeneities, the FID signal decays faster
than the rate dictated by T2 [38]. This requires the FID signal to be sam-
pled at a high rate in order to resolve the embedded complex exponentials
– a consequence of the Nyquist sampling theorem. This in turn generates
a large number of FID data samples for processing, generally ≥ 214 for a
typical 1D-NMR experiment. Also, the number of individual complex ex-
ponentials in an FID signal is generally unknown in advance. Further, the
variations in the chemical environment, along with the magnetic inhomo-
geneities, increase the complexity of the generated FID signal by introduc-
ing numerous artefacts, such as distortion in the anticipated Lorentzian
peak shapes and the base-line of the FID spectrum [241]. Moreover, weak
and overlapping peaks may be observed in the FID spectrum, the former
due to chemical impurities and/or carbon satellites [195] and the latter due
to the occurrence of the same type of nuclei in different chemical environ-
ments [8]. These peaks overlap and merge in the resultant FID spectrum,
making it even more complex.
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2.3.3 Motivation for work carried in Chapter 5: Quantita-

tion algorithm for 1D-NMR signals

The general objective of industrial spectroscopy is to estimate the number
of chemically different components in a sample, as well as their character-
istics and concentrations. This is equivalent to the estimation of the num-
ber of complex damped exponentials (cisoids) constituting an FID signal
as well as their parameters, i.e., complex amplitude, frequency and damp-
ing factor. However, the above mentioned practical features of an FID
signal make the accurate quantitation of an FID signal much more compli-
cated in practice. FID quantitation methods that endeavour to tackle this
problem suffer from one or more of the following issues: speed, accuracy,
resolution and requiring operator input. Consequently, there is a need for
a method that strikes a balance among all of the four properties. A de-
tailed survey outlining the state of the art in this area will be presented in
Chapter 4.

2.3.4 Motivation for work carried in Chapter 3: The CRLB

The above-mentioned issues concerning the performance of an FID quan-
titation method are not exhaustive. The universal performance benchmark
that characterizes such quantitation methods, i.e., the Cramer-Rao Lower
Bound (CRLB), does not have closed form expressions, exact or approxi-
mate, that display the explicit dependence of the CRLB on the free model
parameters for the number of cisoids greater than three [37]. This imposes
a limit on the degrees of freedom in which the performance of an estima-
tor can be evaluated in terms of its free parameters. Consequently, this
avenue needs further exploration. The state-of-the-art in this area will be
explored in Chapter 3.
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2.4 The 2D-NMR experiment

The NMR research that took place in the 1970s was focused on devising
new methods for extracting greater information from the chemical sam-
ples, especially for the assignment of overlapping frequencies. The basic
idea was to generalise the pulse sequences into three components: exci-
tation, evolution and acquisition. The “evolution” component, which is
lacking in 1D-NMR experiments, forms the key to 2D experiments. In
the 2D case, once the excitation pulse is applied, the sample is allowed to
evolve for a certain period of time, the evolution time, before the acqui-
sition process begins. The acquired FID signal varies with changes in the
evolution time. This adds another dimension to the signal which in turn
enables the study of the evolution of coupling information between the
resonances of a molecule. Consequently, 2D-NMR is employed to study
macro-molecular structures. A wide variety of 2D-NMR techniques are
available for this purpose, e.g., Diffusion Ordered Spectroscopy (DOSY)
[190], Nuclear Overhauser Effect Spectroscopy (NOESY) [121], Correlation
Spectroscopy (COSY) [73], etc.

2.4.1 Motivation for work carried in Chapter 7: Quantita-

tion algorithm for 2D-NMR signals

The 2D-NMR signal contains more information than the 1D-NMR signal.
As a result, several high-resolution methods have been proposed to quan-
titatively analyse a 2D-NMR signal. These methods suffer from numerous
numerical issues. To begin with, the presence of an extra dimension in the
signal increases the volume of sampled data. This creates matrices of very
large size which, for the matrix decomposition procedures required by
the quantitaion methods, can be computationally prohibitive. Secondly,
large polynomial rooting might be required to extract the increased reso-
nance coupling information encapsulated in the 2D-NMR signal. Collec-
tively, these issues impart tremendous constraints on memory and com-
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putational complexity, let alone the issues of accuracy, resolution and au-
tomation which may arise due to artefacts in the 2D peak shape caused
by magnetic inhomogeneities and uncertainties in the chemical environ-
ment underlying the 2D-NMR experiment. Therefore, a fast, accurate,
high-resolution and automatic 2D-NMR quantitation method is currently
unavailable. A detailed overview of the start of the art in this area would
be carried out in Chapter 6.

2.5 Further related NMR concepts

Further NMR concepts related to the research topic are described below.

2.5.1 Chemical shift

The magnetic field sensed by a nucleus in an NMR experiment, in addi-
tion to the applied magnetic field, is affected by the magnetic fields of the
surrounding electrons. The field “sensed” by the nucleus is equal to the
applied field less the induced field. The greater the electron density sur-
rounding a nucleus, the greater will be the induced field and vice versa.
A nearby electronegative group serves to reduce this electron density and
hence, the surrounding magnetic field. Consequently, such a nucleus ab-
sorbs at a lower field value and is considered as de-shielded. A nearby
electropositive group will serve to increase the electron density, thereby
increasing the induced field and causing the nucleus to absorb at higher
fields. The reference molecule in this regard, in proton NMR, is Trimethyl-
silane (TMS) [176]. Absorption by any other molecule, exhibited in terms
of peaks, is measured in terms of the position of these peaks relative to
TMS, and is known as the chemical shift. Shielded nuclei, absorbing at
higher fields, generate peaks close to TMS. These peaks, therefore, are re-
garded as having low chemical shifts. De-shielded nuclei, absorbing at
lower fields, result in peaks far from the TMS and are regarded to have
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Figure 2.4: Illustration of shielding effect responsible for chemical shift
[138].

higher chemical shifts.

2.5.2 The ppm scale

The chemical shift of a peak, measured down-field from TMS, has units
of magnetic field. Using (2.5), the magnetic field and consequently, the
chemical shift can be expressed in terms of the B0 frequency. The chemical
shift in Hz varies directly with the operating frequency. Using this ratio
makes the chemical shift independent of the operating frequency of the
NMR equipment.

δ =
chemical shift in Hz

operating frequency in MHz
(2.27)

δ has unit of parts-per-million (ppm).
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2.5.3 Spin-Spin coupling

In a given molecule, the nuclei neighbouring each other, acting as mag-
netic dipoles, also influence and interact with each other. Their interaction
causes the peaks observed in the FID spectrum to be split in to a series
of fine adjoining peaks, known in general as multiplets [176]. Presence of
multiplets complicates the FID spectrum.

2.5.4 The n+ 1 rule

The n + 1 rules predicts the multiplicity of peaks due to spin-spin cou-
pling in proton NMR. The rule states that a peak in proton NMR spectrum
is split into n+1 peaks if the number of equivalent protons in adjacent po-
sitions is n. The sizes of peaks in multiplets can be computed from Pascal’s
triangle [176].

2.5.5 Carbon satellites

Carbon satellites are peaks observed in the neighbourhood of peaks in
1H NMR spectra [195], arising due to the spin-spin coupling of hydrogen
atoms with neighbouring 13C atoms. Distinguishing properties of carbon
satellites include: (a) appearance of evenly spaced peaks on either side of
the 1H peak, and (b) splitting order being the same as that of the 1H peak
they surround .
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Chapter 3

Parametric Estimation in NMR:
New general CRLB results

This chapter presents, in three steps, the results achieved for the first part
of our work, i.e., general results on the analytical evaluation of the Cramer-
Rao Lower Bound (CRLB) for parametric estimation in NMR. Background
to the problem, models of fundamental importance in this regard and the
significance of the reported results are discussed first. Then a formal math-
ematical statement of the problem along with the methods employed to
solve this problem are elaborated. Finally, the derived results are pre-
sented and their efficacy is demonstrated by application to real-time MRS
data, in conjunction with the key insights gained.

3.1 Background

Model-based techniques are often employed to analyse the data acquired
from Nuclear Magnetic Resonance (NMR) experiments for rapid quantita-
tion and hypothesis testing [67]. For example, these techniques have been
recently shown to detect the bulk constituents, i.e., water, fats and car-
bohydrates, in food from time-domain 1H NMR (also termed as low-field
NMR) data with virtually no bias [89]. Model-based techniques rely on ac-

35
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curate extraction of information from the recorded signal which, in turn,
depends on the accuracy of an estimator employed for data processing.

The fundamental estimation theory tool for assessing the performance
of an unbiased estimator is the Cramer-Rao Lower bound (CRLB). The
CRLB allows quantification of the efficiency of an estimator by comparing
the estimate variance achieved with the lowest possible value obtained
from the bound. When the lower bound is reached, an estimator is said to
be efficient [112].

For given model parameters, the CRLB is obtained from the diagonal
elements of the inverse of the associated Fisher Information Matrix (FIM).
Obtaining analytical CRLB expressions for model parameters can be chal-
lenging due to the requirement of symbolic inversion of the FIM.

The first attempts made to overcome this difficulty have been in two di-
rections: (a)- the size of the FIM was kept in limits reasonable for symbolic
inversion by limiting the size of the parameter vector for a given model,
i.e., computing the CRLB with respect to one or two models parameters
only [97,128], and (b)- asymptotic CRLB expansions were computed based
on certain model-based assumptions that allowed the FIM to be diagonal
which in turn made its inversion trivial [232].

A large amount of activity in these directions has been associated with
the CRLB analysis of a mixture of exponentials. This model has been
found useful in a wide variety of practical applications, e.g., Magnetic
Resonance Spectroscopy (MRS) [216], speech processing [53], spectral es-
timation [159], etc. Consequently, this model and its numerous variants
have been investigated for CRLB analysis, e.g., models with damped and
undamped exponentials either real or complex [122, 177]. Some general
expressions for these models were obtained by [239]. The expressions in-
volved dependence on auxiliary matrices which made their interpretation
difficult.

Consequently, attempts were made to derive expressions that, though
approximate, were more meaningful, demonstrating explicit dependence
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of the CRLB on the model parameters. Such expressions were reported for
a few model parameters at first and later, for all free parameters, but were
restrictive in their scope, e.g., they were either for frequency estimates of
two closely-spaced complex damped exponential (cisoids) [207] or for the
unbiased estimates of frequency, damping factor, amplitude and phase of
a single cisoid only [208]. Cavassila et al. reported approximate analytical
CRLB expressions for single, double, and triple cisoids [37].

The results reported by Cavassila et al. demonstrated explicit depen-
dence of the CRLB on model parameters for singlet and doublets, but not
for the triplets due to the numerous assumptions made to simplify the ex-
pressions for this case. The expressions obtained for the case of triplets
were quite intricate and did not offer insight. This, once again, can be
attributed to the difficulty associated with symbolic inversion of the FIM.
The size of the FIM is proportional to the number of cisoids times the num-
ber of parameters to be estimated for each cisoid.

Lately, efforts have been made to avoid the inversion of entire FIM,
and to obtain the Equivalent Fisher Information (EFI) instead [186]. The
EFI is computed by inverting the FIM for the “parameters of interest” only.
For example, the EFI for selected model parameters was reported for the
source localisation problem in the near field of a sensor array [65]. The
reported expressions were for one – and later two [66] – near-field sources
only. Similar EFI was reported to analyze the performance of wavefield
estimators in array processing of seismic waves [143]. The reported ex-
pressions were limited to the analysis of rotational or translational mea-
surements of a single Love or Rayleigh wave.

Recently, CRLB expressions for a generalisation of the damped cisoid
model, the complex quasi-polynomial model, have been reported [13].
These expressions depend on auxiliary expressions for their explanation
and do not demonstrate the explicit dependence of the CRLB on model
parameters; no further information is provided about the auxiliary expres-
sions other than that they are continuous, finite and positive. This makes
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them difficult to interpret, which is problematic when intepretability was
one of the key motivations of that work. For interpretation purposes, the
authors provide asymptotic first-order expansions of the CRLB terms with
respect to the number of signal samples – leaving out the sampling rate,
frequency, and the damping factor.

The authors of [13] provide similar asymptotic first-order expansions
for the damped cisoid model. This restricts their scope when compared
with earlier results reported in this regard by Wigren et al. [232], which
demonstrate the asymptotic dependence of the CRLB on frequency and
damping factor as well. Moreover in [13], variation of the CRLB with re-
spect to the frequency gap and the damping factor have been presented
for a maximum of two cisoids only. This case, as we saw earlier, was
more thoroughly addressed by Cavassila et al. [37] in their earlier work
where they show the explicit dependence of the CRLB on the ampli-
tude, phase, sampling rate, frequency, and damping factor for the damped
cisoid model containing two components.

Motivated by this, we derived analytical expressions for the CRLB on
the variance of unbiased estimates of frequency, damping factor and com-
plex amplitude of an arbitrary number of damped cisoids in complex Ad-
ditive White Gaussian Noise (AWGN), i.e., the Magnetic Resonance Spec-
troscopy (MRS) model. The expressions display the explicit relationship of
the CRLB for each distinct parameter with respect to all the free model pa-
rameters. The reported expressions do not involve auxiliary expressions
for their explanation and are readily interpretable; they allow the elicita-
tion of the behaviour of the CRLB in terms of all of the free model param-
eters, i.e., the number of cisoids, their amplitudes, phases, frequencies,
damping factors, Signal-to-Noise Ratio (SNR) and sampling rate, without
imposing any restriction on any of them.

In addition to the CRLB, the results for the determinant and the con-
dition number of the FIM for the MRS model for an arbitrary number of
cisoids are also provided. These results – the CRLB from the inverse of
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the FIM, its determinant and the condition number – are also derived for
the Magnetic Resonance Relaxometry (MRR) model which can be consid-
ered as a special case of the MRS model. Furthermore, these results are
also presented for the MRS model with previous knowledge, which en-
ables the incorporation of prior information about the damping factors
and frequencies in the MRS model and hence, the possibility to analyse
the influence of previous knowledge on the results obtained for the MRS
model.

Moreover, some auxiliary results are provided for the above-
mentioned models, i.e., on the multiplicity and separation of eigenvalues,
the magnitude of the largest and smallest eigenvalues and the factorisation
of the characteristic polynomial of the associated FIMs of these models.

Finally, the efficacy of the derived results is demonstrated by their
application to real-time MRS data. The derived expressions success-
fully explain various physical and chemical phenomena observed in real-
time MRS data and their impact on estimation accuracy of a quantitation
method when applied to MRS data, i.e., impact of model type, peak mul-
tiplicity, multiplet symmetry, solvent peak, carbon satellites, baseline dis-
tortion, signal truncation, and the second-order effects observed in spin-
coupled systems.

The chapter is organised as follows. Section 3.2 presents the models
considered in this work. The motivation for the specific results derived for
these model are discussed in Section 3.3. A problem statement along with
the methods employed to solve the problem, i.e., the Leverrier-Faddeev
method and the method of Lobachevsky-Graeffe, are outlined in Sections
3.4 and 3.5, 3.6 respectively. The results derived using these methods are
presented in Section 3.7. The efficacy of these results, by their application
to real-time MRS data, is demonstrated in Section 3.8.
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3.2 Significance of the models considered

3.2.1 The MRS model

The MRS model constitutes complex exponentially damped sinusoids
(cisoids) embedded in complex Additive White Gaussian Noise (AWGN).
The model has been considered a classic in signal processing ever since the
time of Gaspard Riche de Prony who developed the well-known Prony’s
method for the analysis of such signals [209]. The model continues to at-
tract significant attention as these signals keep arising in modern applica-
tions.

For example, in addition to Nuclear Magnetic Resonance (NMR), this
model occurs in a myriad of other spectroscopic techniques such as Nu-
clear Quadrupole Resonance (NQR) [87], Electron Paramagnetic Reso-
nance (EPR) [52], Ion Cyclotron Resonance (ICR) [45], and Microwave
Resonance spectroscopy [33]. The Free Induction Decay (FID) signal mea-
sured in these techniques, as well as NMR, is modeled as a sum of expo-
nentially damped sinusoids.

Applications of these spectroscopic techniques are far reaching: in
analysis of complexes produced in a pulsed supersonic jet expansion [84],
non-invasive biological and health sensing for characterisation of biomate-
rials [116], probing reaction mechanisms in organic matter that pyrolyzes
to form petroleum [169], paramagnetic tagging of diamagnetic proteins
[178], etc.

Exponentially damped sinusoidal signals also emerge in a variety of
other practical applications. For example, the human heart sounds that
arise from impairment of artificial heart valves have been shown to be
composed of exponentially damped sinusoidal signals [183]. The oscil-
lations that arise due to the interconnection of electrical power systems
are shown to be best described by exponentially damped sinusoidal sig-
nals [215]. Voltage and current measurements at the terminals of a Pulsed
Corona Reactor (PCR) – used for improving air quality – are best estimated
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by a sum of damped sinusoidal functions [188]. The dominant complex
natural responses of radar targets also constitute exponentially damped
oscillatory signals [43].

Furthermore, these signals are found in many other areas of interest,
e.g., spectral-line estimation [159], source localisation [1], audio signal
modelling and compression [53] and biomedical signal processing [223].

3.2.2 The MRR model

Multicomponent magnetic resonance T2 relaxometry provides a quanti-
tative method for the characterisation of tissues and consequently finds
application in numerous branches of Magnetic Resonance Imaging (MRI)
[144]. Several other practical applications that utilise multicomponent T2

estimates are breast tissue characterisation [85], treatment of multiple scle-
rosis [130], and myelin quantification in the brain [23].

The MRR model constitutes real exponentials embedded in AWGN
[231]. It is an important and well-studied model that, in addition to relax-
ometry, arises in numerous other science/engineering problems including
semiconductor physics [102], transient spectroscopy [125], analysis of ra-
dioactive decays [117], reaction kinetics [22], and medical imaging [187].
No less than fifteen different areas have been identified in which MRR
finds applications [105]. The problem is to determine the number of de-
caying exponentials as well as their amplitudes and damping factors from
empirical data.

3.2.3 The MRS model with previous knowledge

As we saw earlier, the MRS model finds widespread use in spectroscopic
techniques. Out of these techniques, NMR is emerging as one of the
most recognised quantitative tools. Under the umbrella of quantitative
NMR (qNMR), it is being widely exploited in a range of applications:
metabolomics for complex chemical mixture analysis [229], pharmaceu-
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tical analysis for drug identification and testing [100], in food and drink
industry for adulteration detection [5,120], and as well as reaction/process
monitoring [24].

NMR can extract highly detailed structural information from the spec-
tra of a sample by employing a wide variety of experimental techniques
[34]. The resulting NMR spectra can contain densely overlapped peaks
which makes them very complex. These peaks are often separated based
on their physical properties. In the scenarios characterising a large number
of spectra from a single source, prior knowledge, in the form of spectral
databases or operator interaction, can be imposed for separation and elici-
tation of quantitative information from peaks of interest, e.g., quantitation
of peak height in a mixture analysis [63].

3.3 Problem motivation

3.3.1 The CRLB

The CRLB provides a lower bound on the variance of the estimates
achieved by an unbiased estimator. Analytical evaluation of the CRLB
can provide explicit insight into the role of the model parameters in deter-
mining the behaviour of the estimator. This can be utilised to identify the
trade-offs that characterise the sensitivity of the bound and the parame-
ters associated with it and eventually, to optimise the performance of the
estimator.

Furthermore, the insights gained from the CRLB can be employed for
optimal experimental design. For example, they have been used to op-
timise the sampling time for the measurement of longitudinal relaxation
time T1 and the transverse relaxation time T2 in magnetic resonance spin-
echo experiments [110]. The impact of model uncertainties on the CRLB
has been utilised for detection of static eccentricity in synchronous ma-
chines [64]. CRLB has also been used to optimise the performance of di-
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rection of arrival estimation in antenna array configurations [227]. More
recently, the CRLB has been used to optimise low SNR multi-coil acquisi-
tions experiments in Magnetic Resonance Imaging (MRI) [27].

3.3.2 The determinant, trace, and minimum and maximum

eigenvalues

The determinant of the inverse of the FIM (equal to the inverse of the deter-
minant) has been used as an objective function in order to optimise the pa-
rameter estimates for a given model. This procedure, known as D-optimal
design, seeks to minimise the volume of an ellipsoid representing the er-
rors in estimates and, due to its appealing geometrical interpretation, has
been largely employed for experimental design [211].

The Effective Independence Distribution (EID) method was one of the
first methods employing the determinant of the FIM as an objective func-
tion. It was developed by Kammer for the selection of optimal sensor lo-
cations in a modal identification experiment on a space station [111]. Since
then, the determinant of the FIM has found application in a wide variety
of optimisation problems. Examples include: to minimise the parameter
uncertainty of IL-6 signaling pathways for elucidation/modulation of bi-
ological responses to inflammation; to optimise receiver trajectory in scan-
based emitter localisation problem for stationary pulsed radars [61]; and
in path planning of a team of Uninhabited Aerial Vehicles (UAVs) for the
geolocation problem [62], etc.

Analogous to the D-optimal design, the smallest eigenvalue of the FIM,
the trace of the inverse of the FIM, and the trace of the FIM form the basis
of E-optimal, A-optimal, and T-optimal design respectively [10, 168]. These
criteria have been extensively investigated for a variety of applications,
e.g., for adaptive design of waveforms in MIMO radar systems [93], for
infinite-dimensional regularised Bayesian inverse problems [7], and for
the computation of optimal input trajectories in nonlinear dynamical sys-
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tems respectively [72].

3.3.3 The condition number

The FIM is frequently employed to characterise the performance of an esti-
mator. In certain conditions, the FIM cannot accurately predict the amount
of information obtained from the observations. This can happen in param-
eter estimation problems for high-dimensional models or for models that
depend strongly on few parameters with priors for the weaker parameters
not considered properly, e.g., the Stationary Phase Approximated (SPA)
model for parameter estimation of gravitational waves [217].

For such models, the notion of condition number can be employed to
analyse unusual conditions on the perturbation of the inverse of the FIM
and hence, variations engendered in its diagonal elements, i.e., the pre-
dicted estimate variances. A large value of the condition number signifies
the presence of degenerate linear combinations of parameters or the “un-
usual conditions” that lead to degeneracy of the FIM [200]. Analytical
expressions for the condition number of the FIM can explicitly lead to the
identification of such unusual conditions or parameters for a given model.

3.4 Problem statement

We consider minimum variance unbiased estimation of a real parameter
vector θ of size L:

θ =
[
θ1 θ2 . . . θL

]T
(3.1)

based on the complex data vector z:

z = [z(0), z(1), . . . , z(M − 1)] (3.2)

the m-th observed sample of which is z(m), in the presence of complex
white Gaussian noise, having zero mean and variance σ2 independent of
θ. The ij-th element of the Fisher Information Matrix (FIM) for complex
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data z, parameterised by real vector θ independent of the noise variance,
is given by [112]:

[J]ij =
2

σ2
<

[
M−1∑
m=0

∂z̃(m)∗

∂θi

∂z̃(m)

∂θj

]
(3.3)

z̃ is the noise-free version of z. The CRLB is computed by inverting J.

3.5 The Leverrier-Faddeev method

In this section, we explore the Leverrier-Faddeev (LF) method which en-
ables the computation of a matrix inverse along with the coefficients of
its characteristic polynomial and the eigenvectors. This method was sug-
gested by Leverrier in 1840 [127] and modified by Faddeev in 1963 [70].
The method was rediscovered independently by Frame [75] and Souriau
[194] in 1948 and 1949 respectively.

3.5.1 Leverrier’s method

Leverrier’s method enables the determination of the characteristic poly-
nomial associated with a matrix. It is based on Newton’s formulas for the
sums of the powers of the roots of an algebraic equation, and aims at re-
cursive computation of the coefficients associated with the characteristic
polynomial of a matrix. Let:

φ(λ) = λL + q1λ
L−1 + · · ·+ qL (3.4)

be the characteristic polynomial associated with the matrix J such that
φ(λ) = det(J − λI), where I is the L × L identity matrix and λ1, λ2, . . . , λL

are the of roots of polynomial φ(λ). Considering the sums:

tk =
L∑
l=1

λkl (3.5)
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with k = 1, 2, . . . , L such that:

tk = λk1 + λk2 + · · ·+ λkL = trace(Jk) (3.6)

then for k ≤ L, the following relationship holds between qk and tk accord-
ing to Newton’s formula [148]:

tk + q1tk−1 + · · ·+ qk−1t1 = kqk (3.7)

qk can be recursively computed from tk using (3.7):

qk = −1

k
(tk + q1tk−1 + · · ·+ qk−1t1) (3.8)

with k = 1, 2, . . . , L. It follows from (3.8) that the coefficients of the charac-
teristic polynomial of the matrix J can be computed if the sums t1, t2, . . . , tL
are known. Hence, Leverrier’s method for determining the coefficients qk
of the characteristic polynomial φ(λ) associated with the matrix J consists
of computing the matrix powers Jk, finding the sums tk which are their
respective matrix traces, and then employing (3.8) to calculate qk.

3.5.2 Modifications proposed by Faddeev

The modification proposed by D. K. Faddeev to Leverrier’s original
method not only simplifies the determination of the coefficients of the
characteristic polynomial of J, but also enables the computation of its in-
verse and the eigenvectors. The modified Leverrier’s method suggests the
computation of the following sequence of matrices in place of J, J2, . . . , JL.

Ak = JBk−1 (3.9)

with
Bk = Ak − rkI (3.10)

and I being the Identity matrix, A1 = J and:

rk =
trace(Ak)

k
(3.11)
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The coefficients rk obtained in (3.11) satisfy Newton’s formula in (3.7) and
are related to the coefficients of φ(λ) in (3.8) by:

rk = −qk (3.12)

In addition to the determination of the coefficients associated with the
characteristic polynomial of J, Faddeev’s modification enables the com-
putation of J−1 and the determinant of J, which shall be demonstrated
subsequently.

3.5.3 Computation of matrix inverse

Faddeev’s modification makes it possible to compute the inverse of J from
(3.9) and (3.10) as follows. The sequence of matrices Bk in (3.10) terminates
at the L-th step with BL = 0:

AL − rLI = 0 (3.13)

for which (3.9) becomes:

AL = JBL−1 (3.14)

which when substituted in (3.13) leads to:

J−1 =
BL−1

rL
(3.15)

3.5.4 Computation of determinant

The determinant of the FIM can be found from (3.4). For this, we consider
Vieta’s expansion [71] of polynomials which relates the coefficients of a
polynomial to the product and sums of its roots. Allowing λ1, λ2, . . . , λL to
be the roots of characteristic polynomial φ(λ), (3.4) can be written as:

φ(λ) = (λ− λ1)(λ− λ2) . . . (λ− λL) (3.16)
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Expanding binomials in (3.16) and equating them with the coefficients of
identical powers in (3.4) leads to the following relationships between the
roots and coefficients of φ(λ):

λ1 + λ2 + · · ·+ λL = −q1 (3.17)

λ1λ2 + λ1λ2 + · · ·+ λL−1λL = q2

...

λ1λ2 . . . λL = qL

The left-hand side of (3.17) represents the sums of products of roots of
φ(λ) taken in k-tuples. From the fundamental theorem of linear algebra,
the product of the roots of the characteristic polynomial – alternatively the
eigenvalues of the associated matrix – is equal to the determinant of the
matrix [205]. This product we note is qL in (3.17). From (3.11), the result
follows:

rL = −λ1λ2 . . . λL (3.18)

which equals the negative of the determinant of J. Hence:

det(J) = −rL (3.19)

3.5.5 Computation of eigenvalues

Though the LF method allows the determination of the characteristic poly-
nomial, the inverse and the determinant of J simultaneously, no mention
was made regarding the computation of the eigenvalues of J, i.e., the roots
of the characteristic polynomial φ(λ). This, if performed symbolically by
the traditional rooting process, can be a tedious task for polynomials of
high degree. The Abel-Ruffini theorem [2] states that for a polynomial
of degree greater than or equal to five, no formula can be found which
would express the roots of such a polynomial by its coefficients in terms
of radicals. Therefore, we resort to an approximate method for the calcu-
lation of the roots of the characteristic polynomial φ(λ), i.e., the method of
Lobachevsky and Graeffe [54].
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3.6 The Lobachevsky-Graeffe method

Once the characteristic polynomial of the matrix J is determined using the
LF method, the roots of (3.4) or equivalently, the eigenvalues of J, can be
found by the help of the Lobachevsky-Graeffe (LG) Method.

3.6.1 Basic principle

In order to illustrate the basic principle behind the method, we reconsider
(3.4) and assume that its roots λk are such that:

|λ1| � |λ2| � · · · � |λL| (3.20)

with λ1 and λL being the largest and the smallest roots of φ(λ) respectively,
and each root in (3.20) may have multiplicity greater than one. The roots
are distinct in modulus, and the ratio of the moduli of any two successive
roots is a small quantity:

|λk| = εk−1|λk−1| (3.21)

with |εk| < ε ∀ k, ε being a small number, i.e., the roots are well-separated.
From Vieta’s expansions in (3.17), and by virtue of (3.21), we get:

λ1(1 + ξ1) = −q1 (3.22)

λ1λ2(1 + ξ2) = q2

...

λ1λ2 . . . λL(1 + ξL) = qL

such that the quantities |ξk| � 1. Neglecting ξk in (3.22) results in the
following approximate relations:

λ1 ≈ −q1 (3.23)

λ1λ2 ≈ q2

...

λ1λ2 . . . λL ≈ qL
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whence we find the desired roots:

λk ≈ −
qk
qk−1

(3.24)

with k = 1, 2, . . . , L and q0 = 1.

3.6.2 The root separation process

The underlying principle behind the LG method can be garnered from the
examination of (3.24). The LG method states that if the roots of the char-
acteristic polynomial φ(λ) are well-separated, they can be approximately
determined by the following system of linear equations:

λ1 + q1 = 0 (3.25)

q1λ1 + q2 = 0

...

qL−1λ1 + qL = 0

In order to meet the requirement of well-separation of roots, the following
transformation of (3.4) was proposed by Lobachevsky [20]:

µL + qκ1µ
L−1 + · · ·+ qκL = 0 (3.26)

such that the roots µ1, µ2, . . . , µL of (3.26) are the κ-th powers of the roots
λ1, λ2, . . . , λL of φ(λ):

µk = λκk (3.27)

If the value of κ is sufficiently large, the roots of (3.26) will be well-
separated:

lim
κ→∞

µk
µk−1

=
( λk
λk−1

)κ
→ 0 (3.28)

This transformation can be achieved by repeatedly performing the well-
know Lobachevsky-Graeffe root-squaring process [20]. In order to illus-
trate the idea behind this process, we reconsider the characteristic polyno-
mial φ(λ) in (3.16) and substitute −λ in place of λ:

φ(−λ) = (λ+ λ1)(λ+ λ2) . . . (λ+ λL) (3.29)
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Now multiplying (3.29) by (3.16):

φ(λ)φ(−λ) = (λ2 − λ2
1)(λ2 − λ2

2) . . . (λ2 − λ2
L) (3.30)

and setting µ = −λ2 we obtain:

ϕ(µ) = (µ+ λ2
1)(µ+ λ2

2) . . . (µ+ λ2
L) (3.31)

We observe that the roots of the resulting polynomial ϕ(µ) are the square
of the roots of the original polynomial φ(λ):

µk = −λ2
k (3.32)

Now we expand (3.31):

ϕ(µ) = µL + s1µ
L−1 + · · ·+ sL (3.33)

and employ the LG method to determine its coefficients s1, s2, . . . , sL from
the following system of linear equations:

µ1 + s1 = 0 (3.34)

s1µ1 + s2 = 0

...

sL−1µ1 + sL = 0

such that:
µk = − sk

sk−1

(3.35)

Considering the relation in (3.32), we obtain:

λk = ±
√
−µk =

√
sk
sk−1

(3.36)

for k = 1, 2, . . . , L. With these results we observe that the principal require-
ment of the LG method, i.e., the root isolation, can be met by applying the
root squaring process. However, the pursuit of symbolic results can com-
plicate an already unwieldy polynomial by requiring its coefficients to be
squared. This difficulty can be circumvented by considering the work of
Hua [115] which concerns polynomials having real coefficients and real
roots - both of which are valid in this case.
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3.6.3 Hua’s theorem

Hua’s theorem [115] states that given the coefficients of a polynomial are
real (which immediately follows from (3.3)) and all its roots are real (this
again follows from the fact that J = JT ) then the square of each non-
extreme coefficient of the polynomial φ(λ) is greater than the product of
two adjacent coefficients, i.e., for (3.4):

q2
k � qk−1qk+1 (3.37)

for k = 1, 2, . . . , L − 1. To view the implication of Hua’s theorem, we
determine the relationship between the transformed coefficients and the
original coefficients after the root squaring process, i.e., between sk of ϕ(µ)

in (3.33) and qk of φ(λ) in (3.4). For this, we expand the left-hand side of
(3.33) in terms of (3.4) and, keeping in view the relation obtained between
µ and λ in (3.32), equate the coefficients of both sides with identical powers
to obtain:

s1 = q2
1 − 2q2 (3.38)

s2 = q2
2 − 2q1q3 + 2q4

...

sL = q2
L

The above relationship between sk and qk can be compactly expressed as:

sk = q2
k + 2

k∑
l=1

(−1)lqk−lqk+l (3.39)

with q0 = 1, ql = 0 for l < 0 and l > L, and k = 0, 1, . . . , L. Hua’s theorem
expresses this relationship as inequality in (3.37) which, given that q0 = 1,
leads to:

sk ≈ q2
k (3.40)

which in conjunction with (3.36), results in:

λk ≈
√

sk
sk−1

≈ qk
qk−1

(3.41)
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If the root-squaring processing is performed an arbitrary number of times,
say κ-times, a similar argument from Hua’s theorem would follow at each
step, leading to the following relationship between the roots of the trans-
formed equation and the original one:

µk ≈ q2κ

k (3.42)

eventually becoming:

λk ≈ 2κ

√
µk
µk−1

≈ qk
qk−1

(3.43)

with k = 1, 2, . . . , L and q0 = 1. Hence, though the LG method for the
approximate calculation of roots requires them to be well-separated, this
requirement does not effect the computation of roots for the given problem
as a consequence of Hua’s theorem which, in turn, is invoked due to the
symmetry of J and the nature of its definition in (3.3).

3.6.4 Computation of largest eigenvalue

The LG method begins by arranging the roots λk of φ(λ) in descending
order in (3.20), with λ1 being the largest and λL being the smallest root,
given that each root is counted according to its multiplicity. From (3.24),
we obtain the largest polynomial root of φ(λ) by setting k = 1:

λ1 ≈ −q1 (3.44)

with q0 = 1. (3.44), in conjunction with Vieta’s expansions for k = 1 in
(3.17), results in:

λ1 ≈ trace(A1) (3.45)

Given that A1 = J in (3.9), this leads to the following relationship for the
largest eigenvalue λmax of J:

λmax(J) ≈ trace(J) (3.46)
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3.6.5 Computation of smallest eigenvalue

From elementary linear algebra, we know that the eigenvalues of the in-
verse of a matrix equal the inverse of the eigenvalues of the original ma-
trix [205]. This leads to the smallest eigenvalue of J being the largest eigen-
value of J−1. This eigenvalue can be found by following a similar argu-
ment for J−1 as the one developed in the preceding section for J:

λ
′

1 ≈ trace(J−1) (3.47)

where λ′1 is the largest root of the characteristic polynomial associate with
J−1. Hence, the smallest eigenvalue λmin of J will be the reciprocal of λ′1:

λmin(J) ≈ 1

trace(J−1)
(3.48)

J−1 can be found from our earlier discussion in Section 3.5.3 on the com-
putation of the matrix inverse using the LF method.

3.6.6 Computation of condition number

From the smallest and largest eigenvalues, the condition number of J can
be computed as [206]:

cond(J) =
|λmax(J)|
|λmin(J)|

(3.49)

Employing (3.46) and (3.48), cond(J) can be re-written as:

cond(J) ≈ trace(J)trace(J−1) (3.50)

In (3.50), the modulus sign is not placed on J, because by its definition in
(3.3), J is a positive-definite matrix. Consequently, all of its eigenvalues are
positive and hence, the trace is also positive.
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3.7 Results

We now present, for the models discussed in Section 3.2, the results ob-
tained for the Cramer-Rao Lower Bound (CRLB) from the diagonal ele-
ments of J−1, for the determinant, and for the condition number.

3.7.1 The MRS model

In MRS, the observed signal z is modelled as a sum of N damped cisoids,
being observed as M samples, regularly spaced in time by δ:

z(m) =
N∑
n=1

βne
(−αn+jωn)mδ + v(m) (3.51)

where j =
√
−1 and βn = xn + jyn is the complex amplitude of the n-th

component. αn > 0 and ωn are its decay rate and frequency, respectively.
The noise process v, i.e., v = [v(0), v(1), . . . , v(M − 1)], is assumed white
and complex normal, having zero mean and variance σ2. The noise-free
equivalent of (3.51) is z̃(m) =

∑N
n=1 βne

(−αn+jωn)mδ.

The FIM

The parameter vector θ for the signal model (3.51) is defined as:

θ =
[
x1 y1 α1 ω1 x2 . . . ωN

]T
(3.52)

The derivatives of z̃(m) with respect to the elements θi of θ are given by:

∂z̃(m)

∂xn
= pmn (3.53)

∂z̃(m)

∂yn
= jpmn

∂z̃(m)

∂αn
= −βnmδpmn

∂z̃(m)

∂ωn
= jβnmδp

m
n
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where pn = e(−αn+jωn)δ. The ij-th element of the FIM for complex data
z, parameterised by real vector θ independent of noise variance σ2, is ex-
pressed by (3.3) which allows the FIM to be expressed as [232]:

J =
2

σ2


T11 T12 . . . T1N

T21 T22 . . . T2N

...
... . . . ...

TN1 TN2 . . . TNN

 (3.54)

With four unknowns for N damped cisoids each, the dimensions of J
are 4N × 4N . Tkl are 4 × 4 block matrices resulting from (3.53) the
elements of which correspond to the k-th and l-th cisoids, e.g., T kl11 =

Re[
∑M−1

m=0
∂z̃(m)∗

∂xk

∂z̃(m)
∂xl

].

Properties of the FIM

From (3.54), it follows that J is symmetric, i.e., J = JT . This symmetry also
holds for its diagonal and off-diagonal blocks: Tkk = (Tkk)T and Tlk =

(Tkl)T . The relationships among individual elements of Tkk and Tkl are
depicted in Table 3.1. For each diagonal block matrix Tkk, there are only
four distinct elements and for each off-diagonal block Tkl, there are only
eight. Hence, for a FIM of size 4N × 4N , only 4N2 elements are distinct
out of its 16N2 elements.

Properties of signal model

The sampling rate 1/δ in (3.51) is assumed sufficient (i.e., δ is small) for all
frequency components to be adequately represented in the sampled sig-
nal. M is also assumed large, i.e., e−Mδαn ≈ 0 ∀ n. This condition ensures
that the signal is sampled until it has faded away, and is equivalent to
ensuring that nearly all of the signal energy has been captured. This al-
lows one to take M → ∞ in the upper limit of summation in (3.3) and, in
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Table 3.1: Relationships between elements of the Fisher Information Ma-
trix.

Elements of Tkk Elements of Tkl

T kk12 = 0 T kl11 = T kl22

T kk21 = 0 T kl12 = −T 21
kl

T kk34 = 0 T kl13 = −T 24
kl

T kk43 = 0 T kl14 = T 23
kl

T kk11 = T kk22 T kl33 = T 44
kl

T kk33 = T kk44 T kl31 = −T 42
kl

T kk14 = T kk23 T kl32 = T 41
kl

T kk24 = −T kk13 T kl34 = −T 43
kl

conjunction with (3.53), leads to expressions of the form [4]:
∞∑
m=0

pmn =
1

(1− pn)
(3.55)

∞∑
m=0

mpmn =
pn

(1− pn)2

∞∑
m=0

m2pmn =
pn(1 + pn)

(1− pn)3

with q = 0, 1, or 2. Letting δ → 0 and M → ∞, the following integral
formulation was proposed for (3.55) by [37].∫ ∞

0

tqe(−α+jω)tdt =
q!

(α− jω)q+1
(3.56)

The CRLB

The following bounds are obtained from the diagonal elements of J−1 by
application of (3.9), (3.10) and (3.11) of Section 3.5.2 and then (3.15) of Sec-
tion 3.5.3. For N = 1:

σ2
x = σ2

y ≥ δσ22α (3.57)
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and

σ2
α = σ2

ω ≥
δσ2

a2
4α3 (3.58)

For N = 2:

σ2
xk

= σ2
yk
≥ δσ22αk%2 (3.59)

and

σ2
αk

= σ2
ωk
≥ δσ2

a2
k

4α3
kρ2

2 (3.60)

with

%2 =

{
(α1 + α2)2 + ω2

12

}{
α4

1 − 8α3
1α2 + 2α2

1(15α2
2 + ω2

12) + 8α1α2η12 + η2
12

}{
(α1 − α2)2 + ω2

12

}3

(3.61)
and

ρ2 =
(α1 + α2)2 + ω2

12

(α1 − α2)2 + ω2
12

(3.62)

where ω12 = ω1 − ω2 and η12 = α2
2 + ω2

12.
For arbitrary N :

σ2
xk

= σ2
yk
≥ δσ22αk%

(k)
N (3.63)

and

σ2
αk

= σ2
ωk
≥ δσ2

a2
k

4α3
k{ρ

(k)
N }

2 (3.64)

with

%
(k)
N =

N∏
l=1
l 6=k

{
(αk + αl)

2 + ω2
kl

}{
α4
k − 8α3

kαl + 2α2
k(15α2

l + ω2
kl) + 8αkαlηkl + η2

kl

}{
(αk − αl)2 + ω2

kl

}3

(3.65)
and

ρ
(k)
N =

N∏
l=1
l 6=k

(αk + αl)
2 + ωkl

2

(αk − αl)2 + ωkl2
(3.66)

where ωkl = ωk−ωl and ηkl = α2
l +ω

2
kl. CRLB expressions in (3.63) and (3.64)

immediately render multiple observations. To begin with, the bounds
on the real and imaginary amplitudes of a cisoid are identical, and the
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bounds on the damping factor and frequency are also identical. Secondly,
the bound on the amplitude of a cisoid is independent of its amplitude
whereas the bound on its damping factor and frequency is inversely pro-
portional to the cisoid amplitude, i.e., an increase in the Signal-to-Noise
Ratio (SNR) will serve to improve the estimation of its damping factor
and frequency only (although clearly the estimation of the amplitude ex-
pressed as a proportion of that amplitude improves). Thirdly, both bound
terms (3.63) and (3.64) are directly proportional to the damping factor of a
given cisoid; this demonstrates an increased difficulty associated with the
estimation of rapidly decaying cisoids. The results are as expected from
what is known in the literature

Fourthly, if, for the moment, we set aside bound parameters common
to all terms in (3.63) and (3.64) (δ, σ2 and the scalars), then the CRLB ex-
pressions (3.63) and (3.64) can be factored into two distinct terms: a local
term (αk and α3

k in (3.63) and (3.64) respectively), which depends on the lo-
cal properties of the cisoid of interest, i.e., αk, and an interaction term (%(k)

N

and ρ
(k)
N in (3.65) and (3.66) respectively), which depends on the damp-

ing factor and frequency spacing of the ciosid with respect to all other
cisoids, and encapsulates the impact of every other cisoid in the signal on
the cisoid of interest; note here that the interaction terms depend only on
the damping factor and frequency of all other cisoids, and not on their am-
plitudes. The significance of this observation will be discussed in detail in
Section 3.8 where the interaction terms (3.65) and (3.66) will be applied to
real-time MRS data.

Fifthly, we note that the interaction terms %(k)
N and ρ(k)

N are not identical.
Particularly, the interaction term for the amplitude bound %

(k)
N displays a

much more complex interaction of a given cisoid with other cisoids when
compared with the interaction term for the damping factor and frequency
ρ

(k)
N .

To gain an understanding of the impact of this, the interaction terms
for the case of two cisoids , i.e., %2 and ρ2 in (3.61) and (3.62) respectively,
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are plotted individually in Figures 3.1 and 3.2 respectively, as a function
of frequency spacing ω12 between the two cisoids and the ratio of their
damping factors k, with α1 = kα2. To ensure a meaningful comparison,
the results in Figure 3.2 are displayed for ρ2

2, this being its magnitude ap-
pearing in (3.60). We observe from Figures 3.1 and 3.2 that both %2 and ρ2

2

exhibit peaks when either α1 → α2 or ω1 → ω2. This signifies an increase
in the bound, and hence an increase in uncertainty associated with param-
eter estimation, when the damping factors or the frequencies of cisoids
overlap. A singularity in the bounds is reached only when both ω1 = ω2

and α1 = α2. This provides yet another interesting insight that even if two
cisoids overlap exactly in frequency domain, i.e., ω1 = ω2, they can still be
separately estimated if their damping factors are unique, and vice versa.

To gain further understating of the behaviour of the interaction terms,
independent overlaid plots of %2 and ρ2

2, as a function of k (α1 = kα2) and
ω12, are displayed in Figures 3.3 and 3.4 respectively. From Figure 3.3, we
observe that both %2 and ρ2

2 are asymmetric with respect to k, i.e., the tails
being heavier for k > 5. This implies that given two cisoids have con-
stant damping factor separation, a higher uncertainty will be associated
with the estimation of their parameters if the values of their individual
damping factors are large. This however is not observed for estimation
of frequencies in Figure 3.4 as both %2 and ρ2

2 are symmetric with respect
to ω12. Also, we note in Figure 3.4 that the magnitude of ρ2

2 is lower than
that of %2 for all values of ω12. This, at first, might imply that the uncer-
tainty associated with the estimation of the damping factor and frequency
of a cisoid is always lower than that of its amplitude. However, from Fig-
ure 3.3, which depicts ρ2

2 and %2 as a function of k, we observe that this is
not always the case, i.e., the magnitude of ρ2

2 exceeds that of %2 for k > 6.
Further, the uncertainty associated with the estimation of parameters of
a cisoid, in addition to ρ2

2 and %2, also depends on local terms αk in α3
k in

(3.63) and (3.64) respectively.

To gain a clear understanding of the overall uncertainty associated
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with estimation of the damping factor and frequency of a cisoid and am-
plitude, we perform a point-by-point comparison of (3.60) and (3.59), and
highlight the regions where the former exceeds the latter. The results dis-
played in Figure 3.5 indicate a significant region where the damping factor
and frequency bound (3.60) is higher than the the amplitude bound (3.59).
This is contrary to the earlier results reported in [232] which state that un-
certainty associated with the estimation of damping factor and frequency
is always less than that associated with the amplitude.
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Figure 3.1: Amplitude interaction term (3.61) as a function of frequency
separation ω12 and k (α1 = kα2) for the MRS model.

The determinant

The sequence of matrices obtained in (3.9) during the computation of J−1

in Section 3.5.2 enables the computation of (3.11) and subsequently, the
determinant of the FIM associated with the MRS model using (3.19) of
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Figure 3.2: Damping factor and frequency interaction term (3.62) as a func-
tion of ω12 and k (α1 = kα2) for the MRS model.
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Figure 3.3: Logarithmic plot of amplitude and damping factor and fre-
quency interaction terms (3.61) and (3.62) as a function of k (α1 = kα2) for
the MRS model.
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Figure 3.4: Logarithmic magnitude plot of amplitude and damping factor
and frequency interaction terms (3.61) and (3.62) as a function of ω12 for
the MRS model.

Figure 3.5: Comparison of amplitude bound (3.59) and the damping factor
and frequency bound (3.60) for two damped cisoids for the MRS model.
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Section 3.5.4. For N = 1:

d1 =
1

16(σ2δ)4

a4

α8
(3.67)

For N = 2:
d2 =

1

256(σ2δ)8

a4
1a

4
2

α8
1α

8
2

ζ8
2 (3.68)

ζ2 =
(α1 − α2)2 + ω12

2

(α1 + α2)2 + ω12
2

(3.69)

For arbitrary N :

dN =
1

(16)N(σ2δ)4N

a4
1a

4
2 . . . a

4
N

α8
1α

8
2 . . . α

8
N

ζ8
N (3.70)

ζN =
N∏

l,k=1
l 6=k

(αk − αl)2 + ωkl
2

(αk + αl)
2 + ωkl2

(3.71)

Though ζN in (3.70) may appear similar to ρ(k)
N in (3.66), it is significantly

different from ρ
(k)
N , as well as from %

(k)
N in (3.65), in the sense that it en-

capsulates the damping factor and frequency spacings between all cisoids
rather than the damping factor and frequency spacing of a given cisoid k

relative to all other cisoids. The determinant of J−1, which is the inverse
of (3.70), is termed the generalised variance [46]. It can be employed as an
objective function for the minimisation of the uncertainty associated with
parameter estimates. An optimisation procedure employing this minimi-
sation criterion is the D-optimal design, as pointed out in Section 3.3.2.

The condition number

Using (3.46), (3.48) and (3.50) of Sections 3.6.4, 3.6.5 and 3.6.6 respectively,
the following results were obtained for the condition number of the FIM
associated with the MRS model. For N = 1:

c1 ≈ 8
( 1

α
+

a2

2α3

)(
α +

2

a2
α3
)

(3.72)
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For N = 2:

c2 ≈ 8

{
2∑

k=1

( 1

αk
+

a2
k

2α3
k

)}{ 2∑
k=1

(
αkρ

3
2 +

2

a2
k

α3
kρ

2
2

)}
(3.73)

For arbitrary N :

cN ≈ 8

{
N∑
k=1

( 1

αk
+

a2
k

2α3
k

)}{ N∑
k=1

(
αk{ρ(k)

N }
3 +

2

a2
k

α3
k{ρ

(k)
N }

2
)}

(3.74)

It is interesting to note that the condition number does not depend on
noise variance σ2 nor on the sampling rate δ. Condition number can be
used for the identification of unusual conditions that may lead to degener-
acy of the FIM and the subsequent variations engendered in the predicted
estimates, as highlighted in Section 3.3.3.

Factorisation of characteristic polynomial and eigenvalue pairing

The characteristic polynomial associated with J for the MRS model is of
order 4N due to the 4N × 4N size of FIM, N being the number of cisoids
and 4 the number of parameters to be estimated for each cisoid, i.e., real
and imaginary amplitude, damping factor and frequency. This 4N degree
polynomial can be factored into two identical 2N degree polynomials.

φ(λ) = Υ(λ)Υ(λ) (3.75)

such that:
Υ(λ) = (λ− λ1)(λ− λ2) . . . (λ− λ2N) (3.76)

Consequently, all the eigenvalues come in pairs and only 2N of them are
unique. This follows from the following pairing observed in the deriva-
tives of parameter vector for this problem:

∂z̃(m)

∂yn
= j

∂z̃(m)

∂xn
(3.77)

And
∂z̃(m)

∂ωn
= −j ∂z̃(m)

∂αn
(3.78)
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Hence, the eigenvalues of J for the MRS model are repeated with every
eigenvalues having a multiplicity of two.

3.7.2 The MRR model

In MRR, the signal is modelled as a sum of N real exponentials, being
observed as M samples, regularly spaced by δ in time:

z(m) =
N∑
n=1

xne
−αnmδ + v(m) (3.79)

z(m) is the m-th observed sample of the signal vector z such that z =

[z(0), z(1), . . . , z(M − 1)]. xn ∈ R is the amplitude and αn ∈ R is the decay
rate of the n-th component with αn > 0. The noise process v, i.e., v =

[v(0), v(1), . . . , v(M − 1)], is assumed white with zero mean and variance
σ2. The noise-free equivalent of z(m) is denoted by z̃(m) =

∑N
n=1 xne

−αnmδ.

The FIM

The MRR model (3.79) can be considered a special case of the MRS model
(3.51), with the complex part of the amplitude and frequency of each cisoid
in (3.51) set to zero. The parameter vector θ for the MRR model is reduced
from that in (3.52) to:

θ =
[
x1 α1 x2 . . . αN

]T
(3.80)

The ij-th element of the FIM for real data z, parameterised by real vector
θ independent of noise variance σ2, is expressed as:

J =
1

σ2


T11 T12 . . . T1N

T21 T22 . . . T2N

...
... . . . ...

TN1 TN2 . . . TNN

 (3.81)
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The dimensions of J are 2N ×2N . Tkl are 2×2 block matrices the elements
of which correspond to the k-th and l-th exponentials [232], i.e., T kl11 =∑M−1

m=0
∂z̃(m)T

∂xk

∂z̃(m)
∂xl

.

Properties of the FIM and the signal model

The FIM and signal properties for the MRS model discussed in Sections
3.7.1 and 3.7.1 respectively also hold for the MRR model. Specifically, the
substitutions proposed in (3.55) and (3.56) and the subsequent relation-
ships expressed in Table 3.1 (between the elements of the FIM) can also
employed in computation of (3.81) after setting pn = e−αnδ. The CRLB is
computed by inverting J.

The CRLB

The following bounds are obtained from the diagonal elements of J−1 us-
ing (3.9), (3.10) and (3.11) of Section 3.5.2 and (3.15) of Section 3.5.3. For
N = 1:

σ2
x ≥ δσ24α (3.82)

and
σ2
α ≥

δσ2

a2
8α3 (3.83)

For N = 2:
σ2
xk
≥ δσ24αk%2 (3.84)

and
σ2
αk
≥ δσ2

x2
k

8α3
kρ2

2 (3.85)

with

%2 =
(α1 + α2)2

{
α4

1 − 8α3
1α2 + 30α2

1α
2
2 + 8α1α

3
2 + α4

2

}
(α1 − α2)6

(3.86)

and

ρ2 =
(α1 + α2)2

(α1 − α2)2 (3.87)
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For arbitrary N :

σ2
xk
≥ δσ24αk%

(k)
N (3.88)

and

σ2
αk
≥ δσ2

x2
k

8αNk {ρ
(k)
3 }2 (3.89)

with

%
(k)
N =

N∏
l=1
l 6=k

(αk + αl)
2
{
α4
k − 8α3

kαl + 30α2
kα

2
l + 8αkα

3
l + α4

l

}
(αk − αl)6

(3.90)

and

ρ
(k)
N =

N∏
l=1
l 6=k

(αk + αl)
2

(αk − αl)2 (3.91)

The interaction terms (3.86) and (3.87) for bound results (3.84) and (3.85)
are displayed in Figures 3.6 and 3.7 respectively. It can be observed that the
uncertainty associated with the parameter estimation of the MRR model
is relatively large when compared with that of the MRS model. This is
further highlighted in the overlaid plot of (3.86) and (3.87) as a function
of k (α1 = kα2) in Figure 3.8. In order to ensure a meaningful comparison
between the two, the results displayed for (3.87) in Figure 3.8 are raised to
a power of two, i.e., ρ2

2, this being its magnitude appearing in (3.85). Fig-
ure 3.8 also shows that the magnitude of (3.87) is greater than that of (3.86)
for k > 5. This implies that the uncertainty associated with the estimation
of damping factor of a real exponential can be higher than that associated
with its amplitude. To further elucidate this point, a point-by-point com-
parison of (3.84) and (3.85) as a function of α1 and α2 is displayed in Fig-
ure 3.9. The comparison reveals a similar observation as was made for the
MRS model in Section 3.7.1, i.e., in certain cases the uncertainty associated
with estimation of damping factor can exceed the uncertainty associated
with the estimation of the amplitude. Jointly, these observations lead to
the following general remark.



3.7. RESULTS 69

̺
2

10
0

1

10
5

1

10
10

α2

0.5

α1

0.5

0 0

0 0.5 1

α1

10
0

10
2

̺
2

0 0.5 1

α2

10
0

10
2

̺
2

Figure 3.6: Amplitude interaction term (3.86) as a function of α1 and α2 for
the MRR model.
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Figure 3.8: Logarithmic plot of amplitude and damping factor and fre-
quency interaction terms (3.86) and (3.87) as a function of k with α1 = kα2

for the MRR model.

Figure 3.9: Comparison of amplitude bound (3.84) and the damping factor
bound (3.85) for two exponentials for the MRR model.



3.7. RESULTS 71

A general remark on the comparative relationship between parameter
bounds The bound on the damping factor and/or frequency of a cisoid is not
always lower than the bound on its real and/or imaginary parts of the amplitude,
and in certain cases, may exceed the latter. This also holds for the case of real
exponentials.

The determinant

Equations (3.46), (3.48) and (3.50) of Sections 3.6.4, 3.6.5 and 3.6.6 respec-
tively were employed to compute the determinant of FIM associated with
the MRR model. For N = 1:

d1 =
1

16(σ2δ)2

x2

α4
(3.92)

For N = 2:
d2 =

1

256(σ2δ)4

x2
1x

2
2

α4
1α

4
2

ζ4
2 (3.93)

ζ2 =
(α1 − α2)

(α1 + α2)
(3.94)

For arbitrary N :

dN =
1

(16)N(σ2δ)2N

x2
1x

2
2 . . . x

2
N

α4
1α

4
2 . . . α

4
N

ζ4
N (3.95)

ζN =
N∏

l,k=1
l 6=k

(αk − αl)
(αk + αl)

(3.96)

No pairing of eigenvalues

We saw earlier in Section 3.7.1 that the 4N eigenvalues for the MRS model
are observed in pairs, and only 2N of them are unique. This pairing
arose from the relationship between real and imaginary components of
the amplitude and the damping factor and frequency derivatives of pa-
rameter vector for this problem, and was depicted in (3.77) and (3.78) re-
spectively. As the MRR model constitutes only real exponentials with real
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amplitudes, the parameter vector for this model does not contain the terms
for imaginary amplitude and frequency. The derivatives of the parameter
vector with respect to these parameters are not taken and the relation ob-
served no longer exists. Consequently, the eigenvalue pairing is dropped
and 2N unique eigenvalues are observed for the MRR model.

The condition number

Equations (3.46), (3.48) and (3.50) of Sections 3.6.4, 3.6.5 and 3.6.6 respec-
tively were employed to compute the condition number of the FIM for the
MRR model. For N = 1:

c1 ≈ 2

(
1

α
+

x2

2α3

)(
α +

2

x2
α3

)
(3.97)

For N = 2:

c2 ≈ 2

{
2∑

k=1

( 1

αk
+

x2
k

2α3
k

)}{ 2∑
k=1

(
αkρ

3
2 +

2

x2
k

α3
kρ

2
2

)}
(3.98)

For arbitrary N :

cN ≈ 2

{
N∑
k=1

( 1

αk
+

x2
k

2α3
k

)}{ N∑
k=1

(
αk{ρ(k)

N }
3 +

2

x2
k

α3
k{ρ

(k)
N }

2
)}

(3.99)

3.7.3 The MRS model with previous knowledge

We now investigate a special case of the MRS model which enables the in-
corporation of prior knowledge into the model for estimation purposes,
specifically the case in which the frequencies and damping factors are
known and only the real and imaginary part of the amplitude need to
be determined. This case, as we saw in Section 3.2.3, frequently arises in
complex mixture analysis in which only the concentrations of chemicals
need to be ascertained [229]. Henceforth, this model shall be referred to as
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the amplitude-only model. For this problem, the parameter vector of the
MRS model in (3.52) reduces to:

θ =
[
x1 y1 x2 y2 . . . xN yN

]T
(3.100)

Consequently, the block matrices Tkl inside the FIM are now 2 × 2 sized
blocks, and the size of FIM is 2N × 2N . All other relationships for J, men-
tioned in Sections 3.7.1 and 3.7.1, remain intact.

The CRLB

Using (3.9), (3.10), and (3.11) of Section 3.5.2 and (3.15) of Section 3.5.3, the
following CRLB expressions were obtained for the amplitude-only model
from the diagonal elements of J−1. For N = 1:

σ2
x = σ2

y ≥ δσ2α (3.101)

For N = 2:

σ2
xk

= σ2
yk
≥ δσ2αkρ2 (3.102)

with

ρ2 =
(α1 + α2)2 + ω12

2

(α1 − α2)2 + ω12
2

(3.103)

For arbitrary N :

σ2
xk

= σ2
yk
≥ δσ2αkρ

(k)
N (3.104)

with

ρ
(k)
N =

N∏
l=1
l 6=k

(αk + αl)
2 + ωkl

2

(αk − αl)2 + ωkl2
(3.105)

An interesting observation that immediately follows from (3.102) is that
the interaction term for the amplitude bound of the amplitude-only model,
though a special case of the MRS model, does not follow the correspond-
ing interaction term of the latter, but is identical to the interaction term for
the damping factor and frequency bounds in (3.60). Furthermore, unlike
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that in (3.60), the interaction term in (3.102) is not raised to the power of
two. This signifies a marked reduction in the uncertainty in the estimation
of the amplitudes for the amplitude-only model, signifying the advantage
of prior knowledge. This advantage is displayed in Figure 3.10 where the
interaction term (3.103) for N = 2 is plotted as a function of ω12 and k with
α1 = α2. However, to view this more closely, a further comparison show-
ing an overlaid comparison of this interaction term with the amplitude
and damping factor and frequency interaction terms for the MRS model as
a function of ω12 and k are displayed in Figures 3.11 and 3.12 respectively.
The comparison presented in Figures 3.11 and 3.12 confirms the marked
advantage of the inclusion of previous knowledge in the MRS model.

The determinant

The following results were obtained for the determinant of the FIM as-
sociated with the amplitude-only model using (3.46), (3.48) and (3.50) of
Sections 3.6.4, 3.6.5 and 3.6.6 respectively. For N = 1:

d1 = (δσ2)2α2 (3.106)

For N = 2:

d2 =
(δσ2)4

α2
1α

2
2

ζ2
2 (3.107)

with

ζ2 =
(α1 − α2)2 + ω12

2

(α1 + α2)2 + ω12
2

(3.108)

For arbitrary N :

dN =
(δσ2)2N

α2
1α

2
2 . . . α

2
N

ζ2
N (3.109)

with

ζN =
N∏

l,k=1
l 6=k

(αk − αl)2 + ωkl
2

(αk + αl)
2 + ωkl2

(3.110)
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Factorisation of determinant eigenvalue pairing

Just as we observed for the MRS model in Section 3.7.1, the eigenvalues for
the amplitude-only model are also paired, i.e., there are N unique eigen-
values with every eigenvalues having a multiplicity of two. This – as dis-
cussed in Section 3.7.1 – can be attributed to the following relationship
between the derivatives of ẑ(m) in (3.51) when taken with respect to the el-
ements of the parameter vector θ for the amplitude-only model expressed
in (3.100):

∂z̃(m)

∂yn
= j

∂z̃(m)

∂xn
(3.111)

Consequently, the determinant can also be factored into two identical
parts:

dN =

{
(δσ2)N

α1α2 . . . αN
ζN

}{
(δσ2)N

α1α2 . . . αN
ζN

}
(3.112)

with

ζN =
N∏

l,k=1
l 6=k

(αk − αl)2 + ωkl
2

(αk + αl)
2 + ωkl2

(3.113)

This observation about the eigenvalue paring and its relationship to the
derivatives of the parameter vector, and a similar observation made in
Section 3.7.1 for the MRS model, lead to the following general remark.

A general remark on the pairing of eigenvalues of the Fisher Informa-
tion Matrix A pairing is observed in the eigenvalues of the Fisher Information
Matrix associated with a given signal model if its derivatives with respect to the
parameter vector to be estimated are also paired (by a multiplicative factor which
may be complex).

The condition number

The expressions obtained for the condition number of the FIM associated
with the amplitude-only model, computed using (3.46), (3.48) and (3.50)
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of Sections 3.6.4, 3.6.5 and 3.6.6 respectively, are presented as follows. For
N = 1:

c1 = 1 (3.114)

For N = 2:

c2 ≈ 4

{
2∑

k=1

1

αk

}{
2∑

k=1

αkρ2

}
(3.115)

For arbitrary N :

cN ≈ 4

{
N∑
k=1

1

αk

}{
N∑
k=1

αkρ
(k)
N

}
(3.116)

3.8 Application

The theoretical results presented in Section 3.7 are now illustrated by
their application to 1H MRS data of pentanoic acid (also known as valeric
acid). Pentanoic acid is an alkyl carboxylic acid with the chemical formula
C5H10O2. Its 1H NMR spectrum can be approximately characterised by the
“n + 1 rule” [12]. This rule predicts the multiplicity of spectral peaks in the
pentanoic acid spectrum that arise due to the spin-spin coupling between
its hydrogen atoms. The chemical structure of pentanoic acid is displayed
in Figure 3.13. The pentanoic acid molecule contains: one carboxyl CO2H
group (a); three methylene CH2 groups (b), (c) and (d); and one methyl
CH3 group (e). They will now be analysed in the same order according to
the “n + 1 rule”.

The hydrogen atom in the carboxyl group (a) generates the highest
spectral peak which, due to the lack of immediately neighbouring hydro-
gen atoms, is unsplit. This peak is highest in the spectrum due to an elec-
tronegative oxygen atom present in the group. The CH2 group (b) lies
closest to this oxygen atom. It is split into a triplet due to the two hydro-
gen atoms present in the neighbouring CH2 group (c), i.e., (2 + 1) = 3;
the triplet (b) is observed alongside the large water peak. Next in line is
the CH2 group (c) which is split into a pentuplet (five peaks) due to four
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Figure 3.14: 1H NMR spectrum of pentanoic acid.

neighbouring hydrogen atoms, i.e., two in (b) and two in (d). The CH2

group (d) is split into a sextuplet(six peaks) due to two hydrogen atoms in
(c) and three in (e). Finally, the CH3 group (e) is split into a triplet by two
hydrogen atoms in (d). These groups as well as their locations are depicted
in Figure 3.14. Individual labelling scheme for peaks inside a multiplet is
displayed in the inset of Figure 3.14, and shall likewise be followed for all
multiplets in Table 3.2 and onwards.

It is apparent from the above that a relatively simple compound of pen-
tanoic acid with first-order spectra can generate multiplets with up to six
peaks. The resolution of these multiplets is important for the determina-
tion of the fine chemical structure of the compound. The ability of a quan-
titation method to resolve such multiples, i.e., how accurately such peaks
can be estimated under given experimental conditions, can be analytically
examined by the CRLB. But this requires analytical CRLB expressions ap-
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plicable to multiplets of higher order than has previously been available.

To demonstrate the efficacy of the derived results in this regard, we ap-
ply them to the 1H NMR spectrum of the pentanoic acid depicted in Fig-
ure 3.14. The Free Induction Decay (FID) signal of the pentanoic acid was
recorded on a 60 MHz spectrometer (Spinsolve Benchtop NMR; Magritek,
Wellington, New Zealand). The FID quantitation was performed using
the subband Steiglitz-McBride algorithm proposed in Chapter 5 for the
quantitation of 1D-NMR signals. The algorithm converts the FID signal
into a table of amplitudes, phases, frequencies and damping factors. The
quantitation results thus obtained are employed to compute the interac-
tion terms for the MRS, MRR and the amplitude-only model using (3.65),
(3.66), (3.90), (3.91) and (3.105) respectively. The interaction terms are
specifically considered because they essentially encapsulate the behaviour
of the CRLB with respect to the model under consideration and the multi-
plicity of the peaks involved.

Calculations for the interaction terms are carried out in two steps. In
the first step, the calculations are made for individual multiplet groups,
independent of each other, and are displayed in Table 3.2 1. This is per-
formed explicitly to observe the influence of model type, prior knowledge,
asymmetry or any other imperfection that may be present in the individ-
ual multiplet groups. In the second step, incremental calculations – when
an extraneous peak is observed in the neighbourhood of a multiplet – are
made for the interaction term for a given multiplet in order to analyse the
impact of extraneous peaks on the accuracy of estimation. Specifically,
these calculations were performed to analyse the impact of solvent peaks
and carbon satellites, discussed in Sections 3.8.4 and 3.8.5 and displayed
in Tables 3.3 and 3.4 respectively.

1The results depicted for the MRR model are synthetic and do not correspond to any
real experiment.
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3.8.1 Impact of model type

It is evident from Table 3.2 that, for all the results displayed, the interac-
tion terms with highest magnitude are associated with the MRR model
and those with the lowest amplitude are associated with the amplitude-
only model. Even for a triplet, the magnitude of the interaction terms
for the MRR model is almost 1011 times higher than those of the MRS
model, which is due to the lack of frequency information in the former.
The MRR model has been shown to be highly ill-conditioned [86]. Several
methods have been proposed in the literature for analysis of MRR data.
However, due to the inherent complexity associated with this problem as
shown above, these methods suffer from limited resolution, low detection
power, and large statistical variance [198].

On the other hand, the relatively small magnitude of the interaction
terms in the amplitude-only model displays the advantage of having prior
knowledge. This can be explained by considering the relationship be-
tween the interaction terms derived for the MRS model and the amplitude-
only model. The interaction term for the real and imaginary part of the
amplitude of the latter (3.105) is equal to the square-root of the interac-
tion term for the damping factor and frequency of the former (3.66). Due
to the square-root – and due to the fact that the magnitude of (3.66) is
much smaller than that of its amplitude counterpart (3.65) in the vicin-
ity of damping factor and frequency singularities (demonstrated in Fig-
ures 3.3 and 3.4)– a much smaller magnitude of (3.105) is observed for
the amplitude-only model in all cases. This advantage has been widely
exploited for parameter estimation in a broad range of MRS problems
[48, 196, 222].

3.8.2 Impact of multiplicity

As observed from Table 3.2, the magnitude of the interaction terms for
all model types increases with increase in the multiplicity. This increase in
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the magnitude of the interaction terms increases the uncertainty associated
with each cisoid in turn. This is because the interaction terms encapsulate
the relative impact of the peaks present in the spectrum on the peak under
consideration. On the other hand, the local terms, discussed explicitly
in Section 3.7.1, depend only on the local properties of the peak whose
parameter are being estimated, and not on its interaction with the rest of
the peaks in the spectrum.

3.8.3 Impact of symmetry

Considering the damping factor and frequency interaction term (3.66) for
the MRS model first, we observe that in a multiplet with an odd number
of peaks, say in triplet (e), the largest value of (3.62), and hence the largest
damping factor and frequency estimation uncertainty, is associated with
the centre peak. This can be explained by observing that the magnitude
of (3.62) for a given peak is inversely proportional to the frequency spac-
ing of that peak relative to all other peaks. In this regard, the centre peak,
being equidistant from the neighbouring peak, is more closely influenced
and has the the highest value of (3.66). This also suggests that the neigh-
bouring peaks, both being at same frequency distance from the centre peak
and each other, should have identical values of (3.66) and hence, identical
uncertainty associated with the estimation of their damping factors and
frequencies. The value of (3.66) for these peaks, though close, is not iden-
tical.

This asymmetry becomes evident for the amplitude interaction term
(3.65) for the MRS model, and is pronounced with increase in the order of
multiplets, i.e., in pentuplet and sextuplet (d). This can be attributed to the
nature of (3.65) which, when compared with (3.66), depicts a much more
complicated interaction of the given peak with other peaks in the spec-
trum. This was pointed out in Section 3.7.1: that even for two cisoids, de-
pendence of (3.65) on the individual cisoid damping factors is not straight-
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forward, i.e., see (3.61). This makes (3.65) highly asymmetric with respect
to k (α1 = kα2) and consequently it exhibits much heavier tails for k > 5

than displayed by (3.66). This was shown in Figure 3.3 for the theoretical
results obtained from (3.62) and (3.61).

Yet another interesting observation concerns the interaction term of the
amplitude-only model expressed in (3.105). This term, rather than fol-
lowing the amplitude interaction term of the MRS model (from which the
model follows after the incorporation of prior knowledge about damping
factors and frequencies) follows the behaviour of its damping factor and
frequency interaction term (3.66).

Furthermore, no symmetry is observed in interaction terms for the
MRR model, even for first-order splitting, i.e., the triplets. This is because
the MRR model consists of real exponentials only. The interaction terms
for this model, (3.90) and (3.91), exclusively depend on the damping fac-
tor spacing of a given exponential relative to all other exponentials. The
frequency spacing information, encapsulating the symmetry arising due
to the multiplicity of spectral peaks from the spin-spin splitting, is not
employed by (3.90) and (3.91). Splitting does, however, serve to increase
the number of components in (3.79) which populates (3.90) and (3.91) and
drastically increases their magnitude in Table 3.2. This is in line with our
earlier theoretical analysis of (3.90) and (3.91) carried in Section 3.7.2, as
well as results displayed for (3.86) and (3.87) in Figure 3.8.

3.8.4 Impact of solvent peak

Solvents are required for sample preparation in NMR experiments. This
invariably results in a large solvent (e.g., water) peak in the neighbour-
hood of the peaks of interest. By peaks of interest, we mean the peaks
that arise due to the molecular structure of the chemical under investi-
gation. The solvent peak is usually considered a nuisance as it serves to
obscure the peaks of interest and makes estimation of their parameters dif-
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ficult [176]. Many methods, hardware and software-based, have been pro-
posed to eliminate these peaks from the generated spectrum [9, 104, 135].
In Figure 3.14, we see the presence of a large water peak in the vicinity of
the triplet (b). The calculations displayed for triplet (b) in Table 3.2 were
made without considering this peak. In Table 3.3, calculations made for
the MRS model inclusive of the water peak, alongside those without, are
displayed for comparison. Inclusion of the water peak exhibits an increase
in the magnitude of interaction terms. This, in turn, implies an increase in
the estimation uncertainty associated with parameters of triplet (b) peaks.
However, we observe that, despite the relatively large magnitude of the
water peak compared with those of triplet peaks, increase in the magni-
tude of triplet (b) interaction terms is not proportionally large. In order to
probe this observation further, we perform similar calculations for triplet
(e) for another type of extraneous peaks, the carbon satellites, which can
also occur in the neighbourhood of the peaks of interest, but are relatively
small in magnitude.

3.8.5 Impact of carbon satellites

Carbon satellites are small peaks appearing in the neighbourhood of large
peaks in 1H NMR spectra [195]. They arise due to the spin-spin coupling
of hydrogen atoms to neighbouring carbon 13 atoms, i.e., as a result of
13C − 1H coupling. Two important properties of carbon satellites which
distinguish them are: (a) they appear as evenly spaced peaks on either
side of the 1H peak, and (b) their order of splitting is the same as that of
the 1H peak they surround [195]. These properties we immediately ob-
serve in the small peaks surrounding the triplet (e) of the pentanoic acid
molecule in Figure 3.15 (further pointed out by arrows): the satellites ap-
pear on either side of the triplet, and their order of multiplicity (on both
sides) is the same as that of the triplet, i.e., 3. Calculations of the interac-
tion terms for triplet (e), including the carbon satellites, are presented in
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Figure 3.15: Carbon satellites in the vicinity of the triplet (e) of the pen-
tanoic acid molecule.

Table 3.4 alongside those made without the inclusion of satellites. From
Table 3.4, we observe that the satellites serve to increase the magnitude of
the interaction terms, but this increase in their magnitude is comparable
to the increase observed for the water peak. This can be explained by once
again considering the bound expressions (3.63) and (3.64) for an individ-
ual peak. The magnitude term, i.e., the local term, in both (3.63) and (3.64)
depends on the local properties of a peak, e.g., its damping factor. The
interaction term, on the other hand, depends on the remote properties of
the peak, i.e., the number of peaks in the spectrum, and how these peaks
interact with the given peak. On close inspection of (3.65) and (3.66), it
is revealed that the magnitude of these terms, which represents the mag-
nitude of interaction, depends only on the damping factor and frequency
of every other peak in the spectrum, but not on their amplitudes. This
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implies that the uncertainty introduced in the estimates of the peaks of in-
terest by a large water peak or a small satellite peak will essentially be the
same, given the frequency proximity and damping factor spread of both is
same with respect to the given peak. This observation from Tables 3.3 and
3.4, leads us to make the following remark.

A general remark on the impact of an extraneous peak on the estimation
accuracy of the peaks of interest

The uncertainty introduced in the estimation of parameters of a peak of interest
due to extraneous peaks — whether solvent, carbon satellite or else — is inde-
pendent of the extraneous peak amplitudes, and is proportional to their frequency
proximity and the damping factor spread relative to the peaks of interest.

3.8.6 Impact of second-order effects

The spacing between adjacent peaks in a multiplet is known as the cou-
pling constant. The coupled protons have the same coupling constant and
their relative intensities follow a well-defined pattern predicted by Pas-
cal’s triangle [138]. Consequently, the multiplets should be symmetric,
both in their amplitudes and the frequency spread. However, asymmetry
is observed in the multiplets with respect to both amplitude and peak po-
sitions. The former, known as “leaning”, causes peak amplitudes in a mul-
tiplet to depart from the ratios in Pascal’s triangle. Due to the latter, peak
positions no longer relate symmetrically. These effects are observed when
chemical shift between the protons is smaller than the coupling constant
between them, and are known, collectively, as the “second-order effects”.
This asymmetry in peak position leads to asymmetric magnitudes for the
interaction terms computed for a given multiplet. This can be readily ob-
served in Table 3.2. For example, for the MRS model, the unequal values
of (3.66) are observed for peaks 1 and 3 of the triplet (b), i.e., 4.929 and
5.214 respectively. Similar asymmetry is observed in the values of (3.66)
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and (3.65) for pentuplet (c) and sextuplet (d). Consequently, any asymme-
try in peak frequency positions in the multiplet will be readily mirrored in
their interaction terms. On the other hand, asymmetry in the amplitude
of multiplets would not be reflected in the interaction terms, as (3.66) and
(3.65) do not depend on the amplitudes of the relative peaks. This, for an
individual peak in a multiplet, will be reflected in the magnitude part of
its bound for the frequency and damping factor, i.e., in (3.64) and (3.89), as
an inverse relationship.

3.8.7 Impact of baseline distortion

A distortion in baseline of 1H NMR spectra is manifested in the form of
low frequency modulations [176]. A signal quantitation method observes
these low frequency modulations as auxiliary peaks with very large damp-
ing factors. We know from our earlier discussion in Section 3.8.5 that ad-
dition of such auxiliary peaks to the spectrum of an FID signal increases
the magnitude of the interaction terms for every peak, i.e., magnitude of
(3.65) and (3.66). This, in turn, increases the bounds (3.63) and (3.64) and
consequently the uncertainty associated with estimation of parameters of
individual peaks. This increase in uncertainty, as noted in our earlier dis-
cussion in Section 3.7.1, becomes critical for parameter estimation of peaks
with relatively small amplitudes. Accurate quantitation of these small
peaks is crucial in some studies, e.g., in the study of metabolites where
the error in the estimation of peaks can lead to the failure in identification
of biomarkers characterising the signal [237].

3.8.8 Impact of FID truncation

Number of points in the 1H NMR spectra is frequently increased by
padding the time-domain FID data with zeros. This, however, serves
to add an abrupt discontinuity to the original data if FID has not de-
cayed, and causes the appearance of truncation artifacts in the FID spec-
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Table 3.3: Impact of water peak (MRS).

With water peak Without water peak

Triplet

(e)

Peaks (3.65) (3.66) (3.65) (3.66)

1 31.5 6.5 43.8 7.7

2 212.9 20.1 267.5 22.5

3 34.6 7.2 39.3 7.7

Table 3.4: Impact of carbon satellites (MRS).

With carbon satellites Without carbon satellites

Triplet

(b)

Peaks (3.65) (3.66) (3.65) (3.66)

1 61.7 15.8 25.1 5.2

2 368.8 27.9 82.7 11.4

3 52.7 7.7 18.6 4.9

trum [191]. These artefacts appear as undesired oscillation at the base of
spectral peaks, and are viewed by the quantitation method as legitimate
peaks to be characterised. This causes an increase the magnitude of in-
teraction terms associated with every peak in the spectrum and the sub-
sequent uncertainty associated with the estimation of their respective pa-
rameters. This effect will be pronounced for small peaks occurring in the
proximity of larger peaks – the frequency proximity being directly trans-
lated to an approach towards singularity in (3.65) and (3.60) – and will
serve to impair the estimation of their parameters.

3.9 Conclusion

In this chapter, analytical expressions are reported for the Cramer-Rao
Lower Bound on the unbiased parameter estimates of all free-model pa-
rameters of the MRS model, the MRR model and the MRS model with
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previous knowledge. In addition, analytical expressions for the determi-
nant and condition number of the FIMs of these models are also reported.
Some auxiliary results, i.e., regarding the multiplicity of eigenvalues, the
magnitude of the largest and smallest eigenvalues, and the factorisation of
the characteristic polynomial associated with the respective FIMs of these
models, were also presented. The derived expressions, when applied to
real-time MRS data, were shown to successfully capture and account for
various physical and chemical phenomena observed in spin-coupled MRS
systems.



Chapter 4

Quantitation methods for
1D-NMR signals

In this chapter, the state-of-the-art concerning the methods available for
the quantitation of 1D-NMR FID data will be reviewed. Broadly, such
methods can be categorised into:

• Time-domain methods, and

• Frequency-domain methods

4.1 Time-domain methods

Time-domain methods can be further sub-divided into [221]:

• Interactive methods, and

• Black-box methods

4.1.1 Interactive methods

These methods, requiring human interaction and input for their operation,
have been termed as interactive methods. They try to obtain the maximum

91
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likelihood estimates of the FID parameters by first forming a cost func-
tion of residues and then minimising it. As the FID model is made up
of complex damped exponentials (cisoids), the cost function is non-linear.
As a result, the minimisation becomes a Non-Linear Least Squares (NLLS)
problem [201]. This problem is particularly challenging to solve due to the
difficulties that arise due to the inherent non-linearity of the cisoid model,
e.g., ill-conditioning, local minima, etc [198]. In order to minimise this cost
function effectively, the following four requirements need to be met [23]:

1. A prior estimate of the number of the cisoids, or model order,

2. A good initial guess of the parameters,

3. Convergence to an acceptable solution and in a reasonable time, and

4. Not getting stuck in local minima.

One way to meet the first requirement is to employ sub-space methods [50]
or the Least Squares (LS)-based Prony methods [122]. However, due to the
variable performance of these methods, it cannot be guaranteed that the
initial guess generated by these methods will always be reasonable. Fur-
thermore, these methods require manual input for the information about
the model order in advance, which if not estimated correctly, introduces
a systemic error in their results [141]. Nevertheless, keeping the require-
ments in view, the NLLS minimisation can be solved by using:

• Local optimisation search methods,

• Global optimisation search methods, and

• Specific methods

Local optimisation methods

Many of the search methods, stemming from Least Squares (LS) search
problem, have been applied to the NLLS problem in order to search for
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the cost function minimum in the multidimensional parameter space. But
these methods have the tendency to get stuck in local minima rather then
finding the global minimum. This is their major drawback and prevents
their application to the NLLS problem [79].

Global optimisation methods

The problem of getting caught in local minima has spurred the interest
towards the development of more advanced search methods, termed as
global optimisation search methods. Popular methods in this regard are
simulated annealing, probabilistic simulated annealing, methods based on
genetic algorithms, etc. These methods, in order to circumvent the local
minimum problem, incur exceptionally high computational overhead and
are sometime very slow [81, 149, 152, 234, 235].

Specific methods

Several methods, in their own regard, have become widely popular in the
MRS community. The first of these widely used interactive methods was
the Levenberg-Marquardt (LM) method which is a famous NLLS search
method [146]. It is based on the Gauss-Newton (GN) algorithm and the
Steepest Descent (SD) algorithm [92]. Though slower than the GN algo-
rithm, it is much more robust regarding the first requirement for the search
methods, i.e., it can converge to an acceptable solution even if the initial
guess is not very accurate [162]. Another method to be applied to MRS is
the Variable Projection for Non-linear Least Squares (VARPRO) method. It
is a modified version of the LM method [106], and uses LM to minimise the
variable projection VARPRO functional which, in turn, reduces the dimen-
sionality of the search space [82]. Like the LM method, VARPRO is quite
robust to the initial conditions as compared to other NLLS search methods.
The drawback of VARPRO is that the computation of certain gradients,
which it requires for its operation, can be very demanding computation-
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ally. However, this problem has been reported to be solved [163]. Next
in line is the Advanced Method for Accurate, Robust, and Efficient Spec-
tral Fitting (AMARES) [222]. In contrast to VARPRO, which minimises
the variable projection VARPRO functional derived from the cost func-
tion, AMARES minimises the cost function itself. In doing so, AMARES
offers much better performance in terms of robustness and accuracy. It
is also much more flexible than VARPRO as it extends the possibilities
of the incorporation of the prior information in the method. The possi-
bility of choosing Gaussian peaks instead of Lorentzian peaks [222] has
also been accommodated. Further in line is the Expectation Maximisa-
tion (EM) method [155]. The basic idea behind this method is to reduce
the complexity of the high-dimensional search space by breaking it into
many one-dimensional search spaces. Initially, this method did not allow
the flexibility of incorporation of prior knowledge to facilitate the search
process [137]. Later, this flexibility was also added [21].

Advantages and disadvantages of interactive methods

Overall, the interactive methods offer following advantages:

1. Flexibility in terms of peak fitting and incorporation of prior knowl-
edge, and

2. If the assumption underlying the model and the noise are met, then
the estimates obtained are the ML estimates.

Their drawbacks are that they

1. Are computationally inefficient,

2. Lack of automation as they require user interaction for their opera-
tion, e.g., for model order input. They also require user input for en-
tering the starting values of the parameter estimates. This is because
the local optimisation methods rely on a visual procedure, known as
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the peak-picking procedure, in order to obtain better starting values
for the iterative methods [221],

3. No guarantee of finding the global minimum, and

4. No reasonable estimate of the time required to find the global mini-
mum.

4.1.2 Black-box methods

These methods are termed Black-box methods because they are said to
require minimal user input for their operation [221]. These methods can
be sub-divided into four categories:

• Linear prediction based methods,

• State-space based method,

• Matrix pencil based methods, and

• Iterative Quadrature Maximum Likelihood Method

These methods are reviewed as follows.

Linear prediction based methods

These methods rely on the fact that FID model equation satisfies the equa-
tion for the Linear Prediction (LP) process. The LP equation, in turn, repre-
sents an Auto Regressive Moving Average (ARMA) model in terms of its
Autoregressive (AR) and Moving Average (MA) parts . It is well-known
that an ARMA model can be reasonably approximated by a high order
AR model due to which the MA part of the LP equation is sometimes
omitted [197]. As a result, the FID parameter estimation problem becomes
an AR model parameter estimation problem. Two approaches have been
traditionally employed to solve the latter; the first employs the Autocor-
relation Function (ACF) of the received signal to construct the data matrix
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whereas the second employs the samples of the received signal directly. In
MRS literature, the second approach is much popular than the first one.
For example, the well-known LP Singular Value Decomposition (LPSVD)
method [14] first performs the SVD of the data matrix containing the sam-
ples of the received signal, and then obtains a reduced-rank approxima-
tion to the data matrix by dropping the singular vectors corresponding to
the singular values that lie below a certain threshold. After replacing the
original data matrix by the reduced-rank one, a LS solution of the system
is computed. By reducing the dimensionality of the data in this way, (i.e.,
removing data that does not contribute significantly to the reconstruction
of the FID signal) the LPSVD method attempts to remove the noise from
the FID signal. To further suppress the noise and hence improve the data
fit, the Cadzow Enhancement Procedure (CEP) [56], which aims to restore
the Hankel structure of the data matrix, can also be employed after the
LPSVD, resulting in EPLPSVD method [55]. Furthermore, prior to the ap-
plication of CEP, a minimum variance procedure was proposed [220] as a
criteria for retaining the singular values in the rank-reduced matrix. An-
other possibility to remove the noise from data is to smooth it by perform-
ing Tikhonov regularisation (TR) which is applied in the LS stage instead
of the rank-reduction process carried out by SVD. This forms the basis of
the LPSVD Continuous Regularisation (LPSVDCR) method [114]. How-
ever, the LS step, i.e., the step performed on the reduced-rank matrix, as-
sumes that the noise only exits in the received signal and not in the data
matrix. This obviously is not true as the data matrix is also made up of the
received signal with noise in it. The Total Least Squares (TLS) method [83]
takes this point into account and, when applied after the rank reduction
stage, has been shown to provide superior noise reduction as compared
to the LS solution. TLS forms the basis for the next method, the LPTLS
method [224].
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State-space based methods

State-space based methods avoid the polynomial rooting process in LP
based methods. They try to estimate the signal poles as the eigenvalues of
the data matrix instead [172]. This is accomplished by creating the rank-
reduced matrix out of the Hankel data matrix using the SVD, deleting the
extra rows at the bottom of the left singular vector matrix, and then com-
puting the LS solution of the resulting system to obtain parameter esti-
mates. The method that follows this process is known as Hankel SVD
(HSVD) [224]. Another method, Hankel Lanczos SVD (HLSVD) is a com-
putationally efficient variant of HVSD. It does not compute the full SVD of
the data matrix but only part of it, using the Lanczos algorithm [153]. An-
other variant of the HVSD, known as the HTLS method [39], computes the
TLS solution in HVSD instead of the LS solution in order to achieve bet-
ter noise reduction and hence, more accurate estimates. Likewise in the
LPSVD, the CEP has also been employed in HVSD and HTLS to improve
noise reduction and result in better model fitting [40].

Matrix pencil based methods

The underlying principal of matrix pencil methods is very similar to that
of state-space based methods. Both try to avoid the polynomial rooting
process in LP based methods [228]. For the noiseless case, the estimates
obtained by both are identical. For the noisy case, no significant difference
has been reported between the estimates obtained by both methods [171].
Recently, a new localised matrix pencil method, termed as LocMaP [3],
has been proposed for the parametric processing of high resolution NMR
data.

Iterative quadrature maximum likelihood method

The Iterative Quadrature Maximum Likelihood Method (IQML) is an ap-
proximation of the ML method. It was proposed for obtaining ”exact”
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maximum likelihood estimates of the parameters of superimposed expo-
nential signals buried in noise [30]. However, it has been shown that
frequency estimates obtained by IQML are ”almost always inconsistent”
[199].

Advantages and disadvantages of black-box methods

In general, the advantages of black-box methods are:

1. Require less user input compared with the interactive methods, i.e.,
being non-iterative methods they do not require a manual input for
the starting values. However, they still require user interaction for
model order input,

2. Are non-iterative. All estimates are computed in one go without the
need for starting values,

3. Can incorporate prior knowledge,

4. Provide a good fit to data, and

5. Can represent non-Lorentzian peak shapes by a superposition of
Lorentzian, Gaussian or Voigt shapes [15, 98].

Their drawbacks are summarised as follows:

1. High computational complexity,

2. Limited flexibility for the incorporation of prior information,

3. Polynomial rooting can be time-consuming for large model orders,
and

4. Estimates may be statistically suboptimal as the MA part of the
ARMA model is not taken into account.
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4.2 Frequency-domain methods

In frequency-domain methods, the FID signal is first converted from the
time-domain into the frequency-domain using the Discrete Fourier Trans-
form (DFT) and then processed for the extraction of FID parameters. The
methods then employed can be further sub-divided into two categories
[151]:

• Peak-area integration methods, and

• Model fitting methods

4.2.1 Peak-area integration methods

These methods work by integrating the DFT spectrum of the FID signal.
The signal, which is a sum of complex decaying exponentials (cisoids), has
complex Lorentzian peaks associated with each cisoid in the frequency-
domain. When phase aligned, the real part of a complex Lorentzian peak
is always positive and has much narrower tails than its imaginary coun-
terpart [109]. These methods rely on this observation and try to extract
the information about the amplitude of the cisoid by calculating the area
under the real peak. Integration is quite a straightforward approach and
this is the main advantage of these methods.

Advantages and disadvantages of peak-area integration methods

Their advantages are listed as follows:

1. Simple and straightforward to implement,

2. Ideal for visual analysis, and

3. Computationally less demanding.

Below are their disadvantages [109]:
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1. Due to magnetic inhomogeneities, i.e., dipole-dipole interaction, J-
coupling, etc., the peaks may not be strictly of Lorentzian shape.
Consequently, the estimates turn out to be biased,

2. Also since Lorentzian peaks are heavily tailed, the integration has
to be truncated at some point which also introduces an error in the
estimates [150],

3. In case of overlapping peaks, the integration approach is of little
practical use,

4. These methods have limited resolution,

5. Baseline-distortion severely affects their performance. This distor-
tion arises due to the unknown background in the FID spectrum and
causes the baseline to be anything other than a flat line at zero inten-
sity,

6. There is no systematic way to directly incorporate prior information,

7. The height of, and area under, the absorption component of a par-
ticular Lorentzian peak depends on the amplitude and the damp-
ing factor of the associated cisoid in time-domain. As a result, all
frequency-domain methods focus on the extraction of peak ampli-
tude information and leave out the damping factor which contains
the information about T2 [109],

8. These methods are inflexible in admission of peak shapes that arise
due to magnetic inhomogeneities, i.e., Gaussian, Voigt, etc.,

9. They perform poorly at low SNR, and

10. Require perfect phasing. Ideally, at the start of the FID signal, mag-
nitude of the absorption component is maximum and that of the dis-
persion component is minimum, i.e., zero. This, however, is not the
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case in general, and both components observe a certain phase shift.
Consequently, neither the absorption nor the dispersion component
has a perfect absorption mode line shape. This, in turn, does not
yield a correct amplitude value if peak-area integration is performed
for either of the components. Aprior phasing of the components is
thus required before the integration can be correctly performed.

4.2.2 Model-fitting methods

Due to the many drawbacks associated with the peak-area integration
methods, which prevent their direct application to the FID spectrum, more
sophisticated methods, known as model fitting methods have evolved.
There were particularly two reasons that motivated the development of
these methods:

• Problem of overlapping peaks, and

• The problem of incorporation of the prior information

Basic idea behind these methods is this: Instead of integrating the area
under each Lorentzian peak, try to fit a model - made up of complex
Lorentzians - to the FID spectrum in the frequency domain. This process
is similar to model fitting in the time-domain and hence follows the name,
model-fitting methods. Afterwards, a NLLS algorithm, e.g., LM algorithm,
is applied to extract the information about each cisoid, i.e., complex am-
plitude, frequency, and damping factor.

An early and popular method in this regard is the FITPLA method [6].
It uses the LM algorithm to find the maximum likelihood model parame-
ter estimates by minimising the chi-square function between the frequency
domain data points and the frequency domain model function. FITPLA is
able to process both real and imaginary parts of the FID spectrum, can
exploit prior knowledge during minimisation, and can also handle large
FID data sets, which at that time, the time-domain methods like VARPRO
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could not handle due to the computationally demanding SVD [219]. The
performance of this method is largely affected by the baseline distortion
and hence, it requires baseline correction prior to its application. Another
method based on the LM method is the QUALITY method [49]. This
method can remove the effects of magnetic inhomogeneities on spectral
peak shapes. Also, it can incorporate prior information during the process.
But in quantitation of the spectra with overlapping peaks, this method re-
quires additional frequency domain LS fitting in order to incorporate the
prior information. Without the prior information, the method has been
shown to lead to unreliable results even at high SNR [151]. Another model
fitting method, that is specifically targeted for the spectral quantitation at
low SNR, is termed as PIQABLE [158]. After the identification of peaks,
this method performs peak smoothing prior to the calculation of peak-
areas areas using integration. But when applied to the overlapping peaks,
this method has been pointed out to have obvious limitations. Yet another
popular method in this domain is the Total Line Shape (TLS) method [193].
TLS has replaced the FITPLA method and provides more options in terms
of incorporation of prior information, choice of initial guesses for the pa-
rameter estimates, and peak shape selection for model fitting. However,
a crucial point on which the success of both FITPLA and TLS depends is
that the spectral peaks should either have Lorentzian shapes or at least, a
linear combination of Lorentzian shapes [124].

Advantages and disadvantages of model-fitting methods

Overall, model fitting methods offer the following advantages:

1. More flexibility in terms of prior information incorporation,

2. More flexibility in terms of peak shapes as they also allow the inclu-
sion of Gaussian and Voigt peaks shapes, or a linear combination of
these, in the specified model,
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3. Their estimates can be easily exploited as initial values for the NLLS
methods, e.g., the LM method.

Their main drawbacks are enumerated as below:

1. Numerous corrections, in the form of pre-processing, have to applied
to the FID spectrum before these methods can be applied. For exam-
ple:

(a) Baseline-distortion needs to be corrected as it significantly de-
grades their performance,

(b) The deviation of the peak shape from the Lorentzian one, which
primarily arises due to the magnetic inhomogeneities, should
be accounted for, e.g., Gaussian and Voigt shapes have been
used for that purpose [151], and

(c) Spectrum phasing is also an issue and crucial to the success of
these methods [41].

4.3 Time-domain vs frequency-domain methods

Apart from many other drawbacks, one issue that severely limits the per-
formance of the frequency-domain methods is the baseline distortion. In
the absence of baseline distortion – which unfortunately cannot always be
assumed – and given that the prior knowledge is incorporated, frequency-
domain methods perform equally with the time-domain methods [218]. In
some specific problems where the baseline distortion does not play a very
significant role, frequency-domain methods can even be a better choice
due to two reasons: their frequency selectivity and their computationally
less demanding nature. However, these conclusions apply both to time
and frequency-domain methods operating at high SNR. At low SNR, it
has been ascertained that both perform equally poorly [26].
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4.4 Combined methods

4.4.1 Time-domain frequency-domain (TDFD) fitting

One of the major drawbacks of the frequency-domain methods is that they
suffer from the inflexibility for admitting various peak shapes that may
arise due to magnetic inhomogeneities and other molecular phenomena.
A method, known as the time-domain frequency-domain (TDFD) fitting
[189] method, circumvents this problem by specifying the model in the
time-domain. This allows the flexibility for admitting numerous peaks
shapes. The fitting itself is performed in the frequency-domain using an
iterative cost-function minimisation procedure. However, due to the time-
domain to frequency-domain conversion required at each iterative step,
the method turns out to be relatively slow.

4.4.2 SVD-based frequency-selective methods

SVD-based algorithms generally fall under the category of time-domain
methods. Due to the large computational overhead incurred by the SVD,
these methods are generally slow. This can be offset by combining them
with the frequency-domain methods in the following way: once a fre-
quency interval is picked by the frequency-domain method, only that par-
ticular region is then considered for parameter extraction in time-domain
by the SVD-based method. As a result, much faster methods can be ob-
tained in time-domain. A plethora of such methods exits in this domain
as well, e.g., the SVD-based method usable in a SELected Frequency band
(SELF-SVD), Method Of Direction Estimation with SELected Frequency
band (SELF-MODE), the SVD-based High-Order Yule-Walker method in
Sub-Bands (SB-HOYWSVD), etc [182]. However, the estimation results of
these methods are largely dependent on the selection of appropriate fre-
quency interval for processing, the location of spectral bands and their
width. If not selected properly, the estimates in the individual spectral
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bands suffer from systematic bias and large variance [214].

4.4.3 Method based on maximum likelihood and Bayesian

analysis

These methods try to find the maximum likelihood estimates of the FID
parameters based on the Maximum Likelihood Method (MLM) and the
Bayesian Analysis Method (BAM) [32]. The criteria used by both groups,
the MLM and the BAM, is slightly different. The former tries to maximise
the likelihood that the FID signal was generated by the given time-domain
model. The latter maximises the posterior probability that the model is
correct by incorporating a prior. In general, these methods work as fol-
lows. The FID signal is first augmented by zeros and then transformed to
the frequency-domain. The largest amplitude spectral peak is selected and
its parameters are extracted. By using the estimated parameters, the FID
signal is reconstructed in time-domain using the damped cisoid model.
This signal is then subtracted from the acquired FID signal in order to gen-
erate the residue. The residue is again transformed to frequency-domain
and the subsequent largest peak is selected for further processing. This
process is repeated until the signal is indistinguishable from noise. A
method based on this approach is the Complete Reduction to Amplitude
Frequency Table (CRAFT) [118]. In this method, a region-of-interest of the
FID spectrum is first specified, which is filtered and downsampled to gen-
erate a sub-FID. BAM is then applied to convert the sub-FID into a table
of amplitudes and frequencies. The performance results of this method,
other than those presented by the authors in the original manuscript, have
not been reported.

4.4.4 Filter diagonalization method

This is another high-resolution method for processing FIDs. The idea be-
hind the Filter Diagonalization Method (FDM) is cast in its name. The
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filtering stage divides the spectrum into smaller subbands to reduce the
computational overhead, and the diagonlization stage diagonalizes the
matrices corresponding to these subbands for the extraction of individ-
ual subband parameters [142]. As this method endeavours to estimate the
parameters of components lying in a pre-specified frequency band, this re-
quires that the number of bases of FDM for a particular subband are prop-
erly chosen. In practice, this often necessitates a systematic analysis of the
whole spectral band. This, without apriori information, further gives rise
to the problem of selecting the spectral subbands, their width and their
location, and the choices, if not carefully made, can strongly condition the
resulting estimates [214].

These, and others issues highlighted throughout the chapter, shall be
duly addressed in the subsequent chapter which reports the development
of a high-speed, high-resolution and apriori-information-free algorithm
for the quantitation of 1D-NMR signals.



Chapter 5

Quantitation algorithm for
1D-NMR signals

In this chapter, we report the development of a high-speed, high-
resolution and apriori-information-free algorithm for the quantitation of
1D-NMR signals. The chapter commences with a formal introduction to
the problem and gradually builds toward the proposed solution by high-
lighting the issues encountered. It culminates by presenting the results ob-
tained by the algorithm on laboratory data which, when compared with
the state-of-the-art in this area, demonstrate the superior performance of
the proposed algorithm on all three fronts, i.e., speed, resolution and op-
eration that is free of apriori information.

5.1 Introduction

Quantitation of a 1D-NMR FID signal, in general, requires the estimation
of the number as well as the parameters of the cisoids constituting the FID
signal, i.e., the complex amplitudes, damping factors, and frequencies, in
a high-speed, high-resolution and aprior-information-free manner.

Many methods are available in the literature that attempt to address
this task, e.g., methods based on maximum entropy, linear prediction, and
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state-space formulation [78, 126, 224]. Broadly, these methods can be sub-
sumed under two categories: non-parametric and parametric.

Most popular of the non-parametric methods is the Fourier Transform
(FT). This has been the most obvious approach for the estimation of FID
parameters for a long time due to its relative ease and straightforward ap-
plication. But the drawbacks of this approach are equally well-established,
including limited resolution and large estimate variance [204].

Parametric methods (discussed in detail in Chapter 4) surpass their
non-parametric counterparts in terms of resolution and sensitivity [23].
However, these methods suffer from systematic bias in their estimates due
to the requirement that the number of cisoids in the FID signal model be
known apriori. Furthermore, due to the use of the SVD, these methods
can be computationally expensive for large data lengths.

The performance issues experienced by the FID quantitation methods
can be attributed to the following [166]:

1. The number of peaks in the FID signal model is generally unknown,
which, if adjusted by trial-and-error, generates a systematic bias in
the estimates produced,

2. This lack of apriori information, when coupled with the possibility
of a large number of peaks present in experimental FID signals, ag-
gravates the influence of model order by increasing the possibility of
false detections,

3. Low magnetic field strength reduces the SNR of the FID sig-
nal, which can adversely affect the performance of a quantitation
method,

4. Low magnetic field strength also causes the spectra of the cisoids to
overlap strongly, thus creating the issue of their accurate resolution,

5. The Nyquist sampling rate requirement for accurate resolution of
peaks in FID signal can generate a large number of FID signal sam-
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ples, which not only increases the computational costs associated
with the quantitation method (i.e., taxing its speed of operation), but
also affects its quantitation performance for laboratory data sets con-
taining a large number of dense, overlapping peaks,

6. The spectral dynamic range, i.e., the ratio of the largest to the small-
est peak amplitude in the FID spectrum, can be high in experimental
FID data. This results in occurrence of small peaks often embedded
in the tails of relatively large peaks, making accurate resolution of
the former challenging for the quantitation method, and

7. Magnetic field inhomogeneities and variations in the chemical envi-
ronment increase the overall complexity of the FID signal

All these problems make the accurate extraction of parameters of FID
signal much more complicated [31], and suggest the need for an alterna-
tive method that can cope with these issues in a robust manner. In order
to rectify these issues, we suggest:

• The Steiglitz-McBride method (SM) for the quantitation of the FID
signal: This method has been shown to exhibit superior performance
over other methods when applied to the extraction of T2 relaxation
parameters for myelin water imaging of the brain – a problem that
also employs an exponential signal model [23]. Also, it has been
shown to be completely user-input free.

• A preprocessing stage of subband decomposition before the ap-
plication of the SM method to the FID signal: This proposition
solves the issues (1)-(6), because the subband decomposition results
in [212]:

– An increase in the subband SNR,

– An increase in spectral resolution, and
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– A decrease in the length of the subband signals, making the ex-
ecution of the SM method in individual subbands faster and
serving to offset the additional computational overhead in-
curred by the subband decomposition process

• An adaptive subband decomposition process based on the
Bayesian Information Criterion (BIC): This proposition addresses
issues (1) and (2) by employing the BIC for model order selection.
The BIC is selected due to its superior performance over comparable
alternatives [202]. The BIC is also employed to make the subband
decomposition process adaptive [58] and, accordingly, the proposed
algorithm completely independent of user-input.

5.2 Problem formulation

Formal development of algorithm will be addressed in this section and
henceforth.

5.2.1 Signal model

The FID signal in (2.3.1) is modelled as a sum of N damped complex sinu-
osids (cisoids), being observed as M samples, regularly spaced in time by
∆:

r[m] =
N∑
n=1

ζne
(−αn+jωn)m∆ + v[m] (5.1)

where m = 0, . . . ,M − 1, j =
√
−1 and ζn = xn + jyn is the complex

amplitude of the n-th component. αn > 0 and ωn are its decay rate and
frequency, respectively. The noise process v[m] is assumed white and com-
plex normal, having zero mean and variance σ2. We assume that sampling
rate 1/∆ is sufficient for all frequency components to be adequately repre-
sented in the sampled signal.
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5.2.2 Least square formulation

The maximum likelihood estimate of {ζn, αn, ωn, N} is the Least-Square
(LS) fit [201]:

min
{ζn,pn}Nn=1

M−1∑
m=0

∣∣∣∣∣r[m]−
N∑
n=1

ζnp
m
n

∣∣∣∣∣
2

(5.2)

with pn = e(−αn+jωn)∆. However, the minimisation problem presented by
(5.2) is non-linear and highly ill-conditioned. Moreover, N is generally
unknown [201].

5.2.3 ARMA representation

Under the assumption that v[m] is white, r[m] in (5.1) can be modelled as
an Auto Regressive Moving Average (ARMA) process of the form [213]:

r[m] = −
N∑
i=1

a[i]r[m− i] +
N−1∑
i=0

b[i]v[m− i] (5.3)

(5.3) is known as the minimal ARMA representation of r[m]. Information
about the noiseless part of r[m] is retained in the AR part of (5.2).

5.3 Steiglitz-McBride algorithm

The Steiglitz-McBride Algorithm (SMA), also called the Iterative Prefilter-
ing (IPF) algorithm, was originally proposed for the computation of lin-
ear system LS parameter estimates. SMA achieves this by polynomial re-
parameterisation of (5.2) using (5.3) [203]:

min
{a[i]}Ni=1,{b[i]}

N−1
i=0

1

2π

∫ π

−π

∣∣∣∣R(z)− B(z))

A(z))

∣∣∣∣2 dω (5.4)

with B(z) and A(z) being:

B(z) = b[0] + b[1]z−1 + · · ·+ b[N ]z−N+1 (5.5)
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A(z) = 1 + a[1]z−1 + · · ·+ a[N ]z−N (5.6)

with:
B(z)

A(z)
=

N∑
n=1

ζn
1− pnz−1

(5.7)

SMA computes the estimate of (5.6) by recursively solving the following
equation:

min
{a[i]}Ni=1,{b[i]}

N−1
i=0

M−1∑
m=0

(
R(z)A(z)−B(z)

Â(z)

)2

(5.8)

where Â(z) is the initial estimate, generally initialised to 1, and A(z) is the
updated estimate of (5.6). The process is repeated until further improve-
ment in the residue is not observed. Then p̂n is computed from the roots
of Â(z). Finally, ζ̂n is obtained from:

ζ̂n =

[
(1− p̂nz−1)

B(z)

Â(z)

]
z=p̂n

(5.9)

5.4 Model order selection

Model order input is required in (5.8), and is generally unknown. The
Bayesian Information Criteria (BIC) is considered for this purpose. It ex-
hibits superior performance compared with alternatives available in this
regard, i.e., Generalised Information Criterion (GIC), Akaike Information
Criterion (AIC), etc [202]. The BIC, for optimal model order selection, adds
an extra term to (5.2).

min
{ζn,pn}Nn=1

M log

[M−1∑
m=0

|r[m]−
N∑
n=1

ζnp
m
n |2
]

+ 2N log(M) (5.10)

The extra term, serving as a penalty term, discards models with higher or-
der if they do not achieve a significant reduction in the residue. This helps
to prevent spurious estimates which do not contribute to reconstruction of
r[m]. Also, this term does not incur significant computational cost.
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Figure 5.1: Illustration of the employed filterbank structure and the de-
composition stages [58].

5.5 Adaptive subband decomposition

Subband decomposition converts (5.10) to numerous subband problems
of lower model order. Advantages gained in individual subbands are: in-
creased SNR, increased frequency resolution, reduced signal length, and
reduced computational complexity [212]. Also achieved are advantages
in speed and accuracy of the estimating algorithm when compared to the
fullband problem. For this purpose, a uniform, multi-step subband de-
composition is employed which successively filters and decimates the sig-
nal by a factor of 2 at every stage. Figure 5.1 illustrates this process along
with the filterbank structure employed. Coiflets – due their ripple-free
pass-band, sharp cut-off and relatively small group-delay – are used as
decimation filters [226]. Decomposition yields the following decimated
signal in individual subbands [60]:

rq,s(m) =
N ′∑
n=1

ζ ′np
′m
n + vq,s(m) (5.11)
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for m = 0, 1, . . . , M̂ − 1. M ′ is the number of signal samples in individual
subbands, N ′ ≤ N is the number of cisoids in the subband (q, s), and ζ ′n

and p′mn are parameter estimates obtained in the (q, s)-th subband. Once
p̂′
m

n are computed, their full-band versions can be obtained using:

p̂mn = (p̂′
m
n )1/2qejπ

2s+1
2q+1 for ω ∈ [0, π] (5.12)

p̂mn = (p̂′
m
n )1/2qejπ( 2s+1

2q+1
−1) for ω ∈ [−π, 0] (5.13)

ζ̂n
′

are computed from ζ̂n
′

using (5.9). Since the responses of the decima-
tion filters are not ideal, as depicted in Figure 5.1, their transition bands
overlap. Consequently, a frequency component may be observed in sev-
eral bands. The correct subband, i.e., the one to which the component
actually belongs, can be identified using the following criteria [212]:

max |Sq,s(ejω̂
′
i)| (5.14)

where ω̂′i is selected in the (q, s)-th subband with the highest amplitude in
the corresponding band spectrum Sm(ejω̂

′
i). In the final step, a BIC based

stop criteria based on the frequency domain residual of the fullband signal
is adopted to make the subband decomposition adaptive [58].

5.6 Algorithm

The complete process, in the form of an algorithm, is summarized as fol-
lows:

1. The signal is checked for poles using (5.10).

2. If poles are absent, algorithm is stopped.

3. Otherwise, pole parameters are extracted using SMA, and the resid-
ual is is subjected to subband decomposition.

4. Steps from (1) to (3) are repeated for individual subbands until a
global halt is achieved.
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5. Subband estimates are converted to fullband using (5.12) and (5.13).

6. (5.9) is employed to compute ζ̂n.

5.7 Experimental results

Experimental results obtained by the application of the proposed algo-
rithm to real-time FID data are presented in this section.

5.7.1 Acquisition/processing parameters

The FID signals used in the demonstration of results were recorded on a 60

MHz spectrometer (Spinsolve Benchtop NMR; Magritek, Wellington, New
Zealand). The length of the recorded signals was 32, 768 samples. The sig-
nals were used “as-is” for algorithmic processing, i.e., without subjecting
them to any phasing, filtering, correction or noise removal, etc. The pro-
posed algorithm, as well as all other algorithms presented henceforth for
comparison, were executed on an Intel 3.40 GHz CPU.

5.7.2 Comparison with SMA

Figure 5.2 compares the spectrum of ethanol with the spectra generated
from the parameter estimates obtained by the proposed algorithm and the
SMA. As evident from the figure, the latter misses 10 out of 14 spectral
peaks of ethanol whereas the proposed algorithm successfully captures all
of them. Proposed algorithm, at the decomposition depth of 9, was able to
achieve this at a comparable speed of 2.8 seconds when compared to 1.9

seconds taken by the SMA.
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5.7.3 Comparison with LCModel

For further elucidation, quantitation results obtained by the LCModel –
a software for automatic quantitation of 1H NMR data and freely avail-
able 1 – are also presented. These results along with those achieved by
the proposed algorithm/SMA are displayed in Table 5.1. For each chemi-
cal sample, the FID signal was processed, and its spectrum was generated
for comparison. Results presented include execution time, MSE between
the true and reconstructed spectra, number of peaks missed/estimated
in excess if any, and the decomposition depth utilised by the proposed
algorithm. The results corroborate the earlier observation that the ex-

1http://s-provench-er.com
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Figure 5.2: Comparison of regenerated FID spectra of ethanol to the orig-
inal one. At this scale, no difference is visible between the true ethanol
spectrum and that reconstructed using the proposed algorithm.
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ecution time incurred by the proposed algorithm is comparable to the
SMA/LCModel.

Also observed is the number of spectral peaks missed by the LCModel
/SMA becoming significant with increase in the complexity of chemical
spectra. This is highlighted in the lactose spectrum, a challenging spectrum
for a quantitation algorithm due to a large number of resonances (149), a
high dynamic range (90 dB), and a noise floor with many resonances lying
well below it. The 1H spectrum for lactose, as well as the one estimated
by the proposed algorithm, is displayed in Figure 5.3. The proposed al-
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Figure 5.3: Comparison of the original and estimated 1H spectrum of
the lactose signal. Inset displays the zoomed view of the smallest peak
captured by the proposed approach. This peak is as almost 35,000 times
smaller than the largest peak in the signal. The proposed algorithm took
just 5.7 seconds to capture all 149 peaks in the signal. The mean squared
error achieved was 2.5× 10−5.
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Figure 5.4: (a) Quantitation results achieved by the proposed algorithm
for a representative fermentation broth in 90% H2O. The proposed algo-
rithm took 12.4 seconds compared to 3.5 minutes taken by CRAFT [118],
and does not require Regions of Interest (ROIs) to be specified. (b-c) Ex-
pansions of (a), displaying overlaid component spectra (from bottom to
top, experimental, estimated, residual and component spectra).
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gorithm successfully estimated all spectral peaks – including the smallest
peak which, also depicted in Figure 5.3, is almost 35, 000 times smaller
than the largest peak. The algorithm took 5.7 seconds and achieved MSE
of 2.5×10−5. On the other hand, the SMA and the LCModel captured only
2 and 6 peaks out of 149 peaks, respectively.

5.7.4 Comparison with CRAFT

Finally, a performance comparison with Complete Reduction to Ampli-
tude Frequency Table (CRAFT) – a Bayesian algorithm for quantitative
NMR mixture analysis [118] – is presented. The CRAFT algorithm took
approximately 3.5 minutes to analyze 28 Regions of Interest (ROIs) of 1H
NMR spectrum of representative fermentation broth in 90% H2O. The pro-
posed algorithm took only 12.4 seconds to process the entire spectrum and,
contrary to CRAFT, did not require specification of the ROIs; the true and
estimated spectra are shown in Figure 5.4 which depict a close agreement.
A similar close agreement is observed for the quantitation results obtained
for the valeric acid (depicted in Figure 5.5).

5.8 Conclusion

In this chapter, a subband Steiglitz-McBride algorithm – based on the Stei-
glitz McBride algorithm, subband decomposition and the Bayesian In-
formation Criterion – was presented for high-speed, high-resolution and
apriori-information-free quantitation of 1D-NMR data. Proposed algo-
rithm outperformed, on all three fronts, the previously published tech-
niques in this area when applied to real-time 1D-NMR data of high com-
plexity, i.e., with large data size, large number of overlapping resonances
and a high-dynamic range.
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Chapter 6

Quantitation methods for
2D-NMR signals

In the discussions so far, a single FID signal has been the only source of in-
formation for the extraction of FID parameters, processed either in time or
frequency-domain. However, a chemical sample may contain large num-
ber of peaks, many of which may overlap closely. Also, the ratio between
the amplitude of the largest and the smallest peak in the sample can be
high. As a result, small peaks often appear embedded in the tails of rel-
atively large ones. This creates a marked difficulty in the analysis and
extraction of chemical information from such spectra. In order to tackle
this problem, two-dimensional (2D) NMR was proposed [139].

6.1 Basic 2D NMR experiment

The general scheme of a 2D-NMR experiment is depicted in Figure 6.1.
The first stage is known as the preparation time in which the sample is
excited by one or more pulses. The resulting magnetisation is allowed to
evolve in the evolution stage; this time period forms the first time dimen-
sion t1 know as the evolution time. Then the next stage, called the mix-
ing stage, constitutes a further series of pulses allowing various molecu-
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Preparation Evolution Mixing Detection

Figure 6.1: The general scheme of a 2D-NMR experiment.

lar couplings to interact. Finally, in the detection stage, the FID signal is
recorded as a function of second time variable t2 called the acquisition time.
The resulting data is traditionally Fourier transformed with respect to the
two variables t1 and t2 to obtain a 2D frequency spectrum which allows
better resolution of closely overlapping peaks. The nature and amount of
information yielded by the 2D spectrum depends on the exact nature of
the pulse sequences [74].

6.2 Types of 2D-NMR experiments

In general, 2D-NMR experiments can be grouped into two categories [74]:

• Homonuclear 2D-NMR experiments,

• Heteronuclear 2D-NMR experiments, and

• Spatial 2D-NMR experiments

These categories, and the famous 2D-NMR experiments constituting them,
are summarised below.

6.2.1 Homonuclear 2D-NMR experiments

In homonuclear experiments, the transfer of magnetisation occurs be-
tween nuclei of similar type during the evolution time. Popular 2D-NMR
experiments in this category are discussed below.
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COSY

Correlation Spectroscopy (COSY) is probably the most popular 2D-NMR
experiment, employed to resolve the coupling of closely-bound nuclei. In
the COSY experiment, a mixing pulse is applied for the transfer of polar-
isation between spins that are directly J-coupled. The 2D frequency spec-
trum obtained from COSY experiment is known as the correlation map, and
contains two types of peaks: diagonal and off-diagonal. Diagonal peaks,
i.e., with identical value on both frequency axes, represent the contribu-
tions from nuclei for which the magnetisation did not change during the
evolution process, and are the peaks to be expected in the 1D-NMR exper-
iment. Off-diagonal peaks, on the other hand, indicate contribution from
the nuclei that exchanged magnetisation during the evolution time and
hence, depict interaction between the nuclei. Correlation is only observed
if spin-spin coupling between the nuclei exists; otherwise, no coupling ap-
pears on the map.

ECOSY

Exclusive Correlation Spectroscopy (ECOSY), also known as long-range
COSY, is tailored to resolve small-scale couplings. It accomplishes this
by incorporating an additional delay of 100-400 milliseconds to the COSY
pulse sequence [242]. This causes more relaxation to occur which in turn
helps to ascertain if a certain coupling information existed which did not
appear in the regular COSY spectrum.

TOCSY

Total Correlation Spectroscopy (TOCSY) is advantageous for elucidating
coupling information from large, densely-coupled molecules. This is be-
cause TOCSY, in addition to resolving the coupling information between
directly coupled nuclei, can also resolve the coupling information that ex-
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ists between nuclei in the same spin system. This is accomplished by
inserting a series of repetitive pulses to allow for isotropic mixing dur-
ing the transfer of magnetisation across a network of coupled atoms. In-
creased isotropic mixing times enable the magnetisation to span an in-
creasing number of bonds.

6.2.2 Heteronuclear 2D-NMR experiments

In heteronuclear 2D-NMR experiments, the transfer of magnetisation oc-
curs between nuclei of different types. Famous heteronuclear 2D-NMR
experiments are outlined below.

HSQC

Heteronuclear Single Quantum Correlation Spectroscopy (HSQC) can de-
tect coupling between nuclei separated by a single bond length. HSQC
accomplishes this by employing pulse sequences with a particular delay
that allows the detection of couplings for a range of given coupling con-
stants. HSQC is particularly advantageous in enhancing the resolution of
the 2D spectrum as it is able to suppress the multiplets that arise due to
the 1H couplings.

HMBC

Heteronuclear Multiple Bond Correlation Spectroscopy (HMBC) can de-
tect coupling over multiple bond lengths. It does so by excluding delays
from the HSQC pulse sequences which enables HMBC to cover the broad
range of couplings resulting from multiple bonds.

6.2.3 Spatial 2D-NMR experiments

These experiments considers the magnetization effects that arise due to
nuclei being in close spatial proximity to each other, regardless of the exis-
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tence of a bond between them. Famous 2D-NMR experiments are outlined
below [80].

NOESY

Nuclear Overhauser Effect Spectroscopy (NOESY) is the most popular
among the spatial 2D-NMR experiments. In order to neutralise magnetisa-
tion effects arising due to the spatial proximity of nuclei, NOESY employs
a different pulse sequence to that employed in homo/heteronuclear ex-
periments. After the application of the first pulse and then waiting for the
evolution time, a second pulse consisting of two closely-spaced pulses in
time is applied. The first pulse, similar to that in COSY, eliminates the ef-
fects of bond coupling whereas the second pulse neutralizes the effect of
spatial coupling. Afterwards, the FID is collected over acquisition time t2.
NOESY experiments are helpful in stereochemistry, i.e., identification of
the three-dimensional arrangement of atoms and molecules.

ROESY

The Nuclear Overhauser Effect (NOE) accounts for the change in the mag-
nitude of the peaks of a particular nucleus when a nucleus in its proximity
is stimulated by an RF pulse. In NOESY, NOEs are positive when accu-
mulated for small molecules, and negative for large molecules. Rotating-
frame Nuclear Overhauser Effect Spectroscopy (ROESY) peaks, on the
other hand, are always positive. This is accomplished by spin-locking the
equilibrium magnetisation so that it cannot precess. ROESY, hence, can
obtains NOE information about a molecule without previous knowledge
of its spectral assignment or structure.
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6.3 Applications of 2D NMR

2D NMR spectroscopy is particularly important in structural biology
where it is used to determine the structures of proteins [236]. This is pri-
marily due to the ability of 2D NMR to resolve overlapping peaks. Also,
it is rapidly finding new applications in metabolomics [17], e.g., for the
detection of metabolites, and pharmaceuticals [99] for chemical character-
isations.

6.4 Practical issues of 2D-NMR

As observed from the preceding discussion, adding an extra dimension to
the NMR experiment can help to resolve overlapping peaks. Also, it can
facilitate the extraction of complex molecular information. However, this
raises two issues of practical concern: the issue of acquisition time and the
limitations imposed by the FT.

6.4.1 Limitations imposed by the acquisition time

Acquisition time for an NMR experiment rises exponentially with every
added dimension [47]. This sets a practical limit to the number of dimen-
sions in which the NMR data can be collected. Table 6.1 shows a com-
parison of the acquisition time required for multidimensional NMR ex-
periments [47]. As observed from the Table 6.1, the acquisition time for a
2D-NMR experiment is around 64 minutes as compared to 30 seconds re-
quired for 1D-NMR experiment, representing a 128 fold increase over the
former. To further highlight this limitation, also shown in Table 6.1 is the
acquisition time for a 3D-NMR experiment which can be as large as 136

hours. This is almost equivalent to 6 days, and is impractical for lab data
acquisition purposes. Consequently, the acquisition time sets a limit to the
number of data points available in a 2D-NMR experiment.
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Table 6.1: Comparison of acquisition time for multidimensional NMR ex-
periments [47].

Dimensions of NMR experiment Data acquisition time

1D (1 FID) 30 seconds

2D (128 FIDs) 64 minutes

3D (128× 128 FIDs) 136 hours

6.4.2 Limitations imposed by FFT

The time-domain data acquired from a 2D-NMR experiment is tradition-
ally fast Fourier transformed to the frequency-domain for spectral pro-
cessing. The FFT is applied in both t1 and t2 dimensions. Two issues arise
immediately:

• The use of the FFT on NMR data creates an unavoidable resolu-
tion/sensitivity discrepancy inherent to FFT, and

• This is compounded by relatively fewer data points in the coupling
dimension, a direct consequence of the limitation imposed by the
acquisition time on multidimensional NMR experiments

Number of the points in the FFT spectrum can be increased by adding
zeros to the end of the time-domain FID data. This, however, serves to add
an abrupt discontinuity to the original data and causes the appearance of
artefacts in the spectrum, known as truncation artefacts [191].

These artefacts can be circumvented by gradually reducing the am-
plitude of the FID signal at the point of truncation, a process known as
“apodization”. This process, though it improves the resolution without
the appearance of additional artefacts, ends up in broadening the spectral
peaks, thereby reducing the sensitivity of the signal.
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Another way to improve the length of the FID spectrum is to sample
the FID for longer time periods. This generates larger data sets and hence,
better resolution. However, this is impractical for multidimensional NMR
experiments because, as indicated in Table 6.1, the acquisition of addi-
tional data points tremendously increases the acquisition time of the ex-
periment [154].

6.5 Addressing the limitations

Approaches taken to overcome the aforementioned issues can be grouped
in two categories:

• Pre-acquisition methods, and

• Post-acquisition methods

6.5.1 Pre-acquisition methods

These methods, known as pre-acquisition methods, employ techniques
other than the evolution time to extract correlation maps in multiple di-
mensions. They either constitute modification of pulse sequences prior to
the acquisition of the FID signal and/or any other hardware changes [154].
These, being hardware-based methods, lie beyond the scope of this thesis.

6.5.2 Post-acquisition methods

Post-acquisition methods modify the signal after its acquisition. They em-
ploy high-resolution signal processing methods that focus on extraction
of information from short or incomplete data records without requiring
them to be sampled over longer time periods. They are generally software-
based methods, and currently form the centre of research activity to over-
come the restrictions imposed by the FFT. They are also in line with the
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research carried out in this thesis and will be the focus of attention hence-
forth. These methods can be split into two categories according to the
sampling schemes they employ:

• Non-uniform sampling methods, and

• Uniform sampling methods

6.6 Non-uniform sampling methods

These methods employ non-uniform sampling techniques in the time-
domain and can be further split into [107]:

• Deterministic sampling methods, and

• Irregular sampling methods

6.6.1 Deterministic sampling methods

Deterministic sampling methods use deterministic sample distributions
in time-domain to sample outside the grid defined by the Nyquist theo-
rem. A powerhouse of such schemes is one that employs radially sampled
data [25]. It generates radial projections of data based on the so called
Projection-Slice theorem [28]. The theorem states that the FFT of the data
recorded along a radial axis in the time-domain is equivalent to the pro-
jection of the 2D spectrum on the same axis in frequency-domain. Once
collected, these projections are analysed individually by numerous post-
processing methods discussed in Chapter 4 to locate the position of peaks
in the spectrum. This approach effectively reduces the dimension of the 2D
experiment by one wherein the individual projections can be processed to
obtain the results of the full 2D experiment. An issue with this approach
is that the data in different dimensions turns out to be dependent; peaks
in different dimensions are linked, giving rise to multiplets, in which the
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number of peaks observed in a lower dimension depend on the number
of dimensions that are linked. As a result, deconvolution procedures need
to be applied prior to the extraction of any useful information. The util-
ity of this approach for practical NMR applications, e.g., for extraction of
information about the relaxation rates, is still under investigation [154].

6.6.2 Irregular sampling methods

These methods employ irregular sampling schemes, also known as Non-
Uniform Sampling (NUS) schemes, to minimise the number of data points
recorded in a particular dimension [107]. A general way of doing this is
to employ a random distribution - Gaussian, Poisson, etc. - to locate the
time scale for sample collection. The data thence recorded lies outside the
Nyquist grid. Consequently, these methods impose another requirement:
the data processing method should be able to generate the spectrum of
the signal from its irregularly spaced samples. Direct application of FFT
to such data is equivalent to leaving certain basis functions out of the FFT
formula. As a result, its orthonormal basis set is no longer complete and
the remaining basis functions interfere with each other. This can also be
viewed as the convolution of the spectrum of the uniformly sampled sig-
nal and that of the sampling function. The latter is responsible for generat-
ing associated sampling artefacts [185]. Removal of these artefacts from the
spectrum is an issue of significant contemporary interest and a motivation
behind the development of non-Fourier based methods.

6.7 Uniform sampling methods

These methods endeavour to overcome the limitations posed by acquisi-
tion time/FFT by exploiting alternative approaches directly applicable to
the uniformly sampled data. Often they are the extensions of 1D-NMR
quantitation methods to 2D, e.g., 2D MUSIC [132], 2D IQML [44], 2D ES-
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PRIT [179], TLS-Prony [180], 2D Matrix Pencil [103], etc.
Another major family of techniques employs Linear Prediction (LP) for

Autoregressive (AR) modelling of 2D-NMR data: Linear Predictive Singu-
lar Value Decomposition (LPSVD) [243], Linear Predictive QR Decompo-
sition (LPQRD) [210], Linear Prediction Maximum Entropy Method (LP-
MEM) [197], etc.

Yet another category, known as SVD-based high resolution methods,
includes: Hankel SVD (HSVD) [140], Matrix Enhancement Matrix Pencil
(MEMP) [96], Multi-Dimensional Folding (MDF) [136], Improved Multi-
Dimensional Folding (IMDF) [134], and Principal singular vector Utiliza-
tion for Modal Analysis (PUMA) [192].

These subspace/linear prediction/SVD-based approaches have been
shown [57,181,240] to suffer from performance issues as well as high com-
putational costs – incurred by extensive computations in polynomial root-
ing/matrix decomposition procedures – when applied to high complex-
ity real-time 2D-NMR signals, i.e., with a large number of data samples
and/or cisoids.
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Chapter 7

Quantitation algorithm for
2D-NMR signals

In Chapter 4, we demonstrated that the Steiglitz-McBride algorithm, when
used in conjunction with the subband decomposition process and the BIC,
yields excellent quantitation results on 1D-NMR data in terms of speed, ac-
curacy and apriori-information-free operation. In this chapter, we demon-
strate that the 2D Steiglitz-McBride algorithm, along with 2D subband de-
composition and the 2D-BIC, permits fast, accurate and automated extrac-
tion of quantitation information from 2D-NMR data. The proposed algo-
rithm is able to process the time-domain 2D-NMR data directly, and does
not require linear prediction, baseline and phase correction, zero-filling, or
apodization for preprocessing. This makes the algorithm favourable for
direct application to time-domain data from 2D-NMR experiments, which
is verified by the application of the proposed algorithm to a variety of
both homo- and heteronuclear experimental data. The results demonstrate
that the proposed algorithm clearly outperforms the previously published
methods in this area in terms of speed, accuracy and operation free of apri-
ori input.
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7.1 Introduction

Comprehensive molecular analysis using 2D-NMR spin interactions re-
quires lengthy experimental measurements for the acquisition of the
necessary spectral information. The measurement time for a multi-
dimensional NMR experiment rises exponentially with every added di-
mension, and sets a practical limit to the number of dimensions in which
the NMR data can be collected [47]. Consequently, 2D-NMR data is al-
most invariably truncated, especially in the indirect dimension, i.e., the
extra dimension added by the 2D-NMR experiment. This hampers the use
of 2D-NMR in recent high-throughput applications [90].

The necessity for prolonged measurement times for a 2D-NMR ex-
periment has been attributed to, and eventually characterised into two
regimes: sensitivity-limited and sampling-limited [131]. The former, due
to inherently low sensitivity of 2D-NMR experiments, relies on increased
measurement times to obtain higher Signal-to-Noise (SNR) ratio. The lat-
ter, in order to achieve a specific spectral resolution, employs a certain
measurement time dictated by the Nyquist sampling rate. Efforts have
been directed towards retaining a high spectral resolution while keeping
the measurement time minimal.

Fourier transformation (FT) has been traditionally employed for post-
processing of the truncated 2D-NMR data due to its relative ease and
straightforward application. Use of the FT for truncated data-sets suffers
from unavoidable resolution/sensitivity trade-off inherent to the FT. To
overcome this issue, Linear Prediction (LP) has been widely used prior
to FT processing. Methods employing LP for 2D-NMR data processing
include: Linear Predictive Singular Value Decomposition (LPSVD) [243],
Linear Predictive QR Decomposition (LPQRD) [210], and the Linear Pre-
diction Maximum Entropy Method (LPMEM) [197]. The use of LP for pro-
cessing of 2D-NMR data necessitates a 2D deconvolution operation before
the quantitation of 2D frequency-domain data can be performed by FT.
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Quantitation by FT, in turn, requires peak integration/fitting which relies
on rigorous apriori phase/baseline correction. A detailed discussion of
the limitations of LP and FT for 2D-NMR data processing has been carried
out in [175] and [140] respectively.

Lately, mixed time-frequency methods, such as the Complete Reduc-
tion to Amplitude Frequency Table (CRAFT) [119], have been proposed as
an alternative to FT for processing 2D-NMR data. CRAFT, inherently, is a
1D method [118]. It is applied to 2D data in two steps. FT is performed
along the direct dimension after zero-filling, followed by phase-correction.
In the second step, corresponding to each frequency in the direct dimen-
sion, time-domain data in the indirect dimension is extracted, apodized,
and processed using CRAFT. Consequently, peak-width is dominated by
the apodization function. A method using a similar approach is Absolute
Minimal Sampling (AMS) [90] which, in turn, is a generalisation of Single-
point Evaluation of the Evolution Dimension (SPEED) [123]. AMS and
SPEED use a non-linear least-squares procedure for fitting time-domain
data in the indirect dimension.

Numerous other methods have been proposed to improve the spec-
tral resolution of truncated data sets. Many employ LP for Autore-
gressive (AR) modelling of 2D-NMR data: Linear Predictive Singular
Value Decomposition (LPSVD) [243], Linear Predictive QR Decomposition
(LPQRD) [210], Linear Prediction Maximum Entropy Method (LPMEM)
[197], 2D Filter Diagonalization Method (FDM) [142], etc. Yet another
category, known as SVD-based high resolution methods, includes: Han-
kel SVD (HSVD) [140], Matrix Enhancement Matrix Pencil (MEMP) [96],
Multi-Dimensional Folding (MDF) [136], Improved Multi-Dimensional
Folding (IMDF) [134], and Principal singular vector Utilisation for Modal
Analysis (PUMA) [192].

Though these extension/SVD based methods offer better resolution
and detection properties than FT, they suffer from several drawbacks.
Firstly, they have been shown to experience performance issues when ap-
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plied to real-time 2D-NMR signals with high complexity, i.e., with rela-
tively large data size, large number of dense, overlapping modes, and pos-
sibly, low SNR [57]. Secondly, computational costs associated with these
methods can be prohibitive due to the extensive computations required
in their polynomial rooting and matrix decomposition procedures [240].
Thirdly, these methods generally require apriori information about the
number of modes in data which, if adjusted by trial-and-error, not only
generates a systemic bias in their output, but also prevents operation that
is independent of user input [59].

Application of subband decomposition prior to the quantitation of 2D-
NMR data can help in resolution of these and other highlighted issues as
follows [212]:

• It improves SNR in individual subbands, which serves to offset the
inherent low sensitivity of 2D-NMR experiments,

• It increases spectral resolution, which enables improved spectral
quantitation of truncated data sets arising from limited measurement
time, and

• It reduces the data size in individual subbands, which helps to alle-
viate the computational load on the quantitation method involved.

Lastly, in order to enable a user-input independent operation, the
Bayesian Information Criterion (BIC), due to its superior performance
when compared to the alternative methods available [202], can be em-
ployed for the estimation of number of modes.

7.2 Problem formulation

This section presents the formal introduction to the problem and estab-
lishes the framework for its solution.
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7.2.1 The 2D signal model

A two-dimensional Free Induction Decay (FID) signal r(m1,m2) can be
modelled as a sum of N two-dimensional damped complex sinusoids
(cisoids), being observed as M1 × M2 samples, regularly spaced in time
by ∆1 and ∆2 respectively: [132]:

r(m1,m2) =
N∑
n=1

ζne
(−α(1)

n +jω
(1)
n )∆1m1+(−α(2)

n +jω
(2)
n )∆2m2 + v(m1,m2) (7.1)

where ζn = βne
jθn is the complex amplitude of the n-th 2D cisoid, and

ω
(1)
n , ω(2)

n and α
(1)
n , α

(2)
n > 0 are its frequencies and damping factors cor-

responding to two sampling dimensions m1 and m2 respectively, with
m1 = 0, . . . ,M1 − 1, m2 = 0, . . . ,M2 − 1 and j =

√
−1. v(m1,m2) is com-

plex two-dimensional Gaussian white noise. Sampling rates 1/∆1, 1/∆2

are assumed sufficient for all frequency components to be adequately rep-
resented in the sampled signal. It is not assumed that M1, nor M2, is suf-
ficiently high for the signal to have faded by the M1-th and M2-th sample,
i.e., {Ml∆lαnl ≯ 1 ∀ n}2

l=1. The noise free version of r(m1,m2) is denoted
by r̂(m1,m2):

r̂(m1,m2) =
N∑
n=1

ζnp
m1
n qm2

n (7.2)

with pn = e(−α(1)
n +jω

(1)
n )∆1 and qn = e(−α(2)

n +jω
(2)
n )∆2 .

7.2.2 Least square formulation

The problem is to estimate the number N of the 2D cisoids as well as
their associated parameters {ζn, pn, qn}Nn=1. This estimation problem can
be modelled as the least square (LS) fitting procedure:

min
{ζn,pn,qn}Nn=1

M1−1∑
m1=0

M2−1∑
m2=0

|r(m1,m2)− r̂(m1,m2)|2 (7.3)
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This minimisation problem is nonlinear and ill-conditioned. Moreover, N
is generally unknown.

7.2.3 ARMA modelling

Taking the 2D z-transform of (7.2) yields:

R̂(z1, z2) =
N∑
n=1

ζn

(1− pnz−1
1 )(1− qnz−1

2 )
(7.4)

Expanding the partial fractions in (7.4) leads to the following Auto Regres-
sive Moving Average (ARMA) representation of r̂(m1,m2):

R̂(z1, z2) =
B(z1, z2)

A(z1, z2)
(7.5)

with B(z1, z2) and A(z1, z2) given by:

B(z1, z2) = b(0, 0)+b(1, 0)z−1
1 +b(0, 1)z−1

2 + · · ·+b(N−1, N−1)z−N+1
1 z−N+1

2

(7.6)
A(z1, z2) = 1 + a(1, 0)z−1

1 + a(0, 1)z−1
2 + · · ·+ a(N,N)z−N1 z−N2 (7.7)

The AR part of (7.5) is sufficient for estimation of the damping factors and
frequencies.

7.3 2D Steiglitz-McBride algorithm

The 2D Steiglitz-McBride Algorithm (2D-SMA), also called the 2D Itera-
tive Prefiltering algorithm, uses the ARMA representation in (7.5) to re-
parameterise (7.3) [133]:

min
{a(k1,k2)}Nk1,k2=1,{b(k1,k2)}N−1

k1,k2=0

1

(2π)2

∫ π

−π

∫ π

−π
|E(z1, z2)|2 dω1dω2 (7.8)

with
E(z1, z2) = R(z1, z2)− B(z1, z2)

A(z1, z2)
(7.9)
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The 2D-SMA estimates A(z1, z2) by iteratively minimising the residual
E(z1, z2) in (7.8):

E(i+1)(z1, z2) =
R(z1, z2)A(i+1)(z1, z2)−B(i+1)(z1, z2)

A(i)(z1, z2)
(7.10)

where A(i+1)(z1, z2) and B(i+1)(z1, z2) are the updated estimates of
A(i)(z1, z2) and B(i)(z1, z2) respectively. The method can be formulated by
defining:

H(i)(z1, z2) =
1

A(i)(z1, z2)
(7.11)

which lends the signal domain representation of (7.10) to be:

e(i+1)[m1,m2] = r(i)[m1,m2] ∗ ∗ a(i+1)[m1,m2]− b(i+1)[m1,m2] ∗ ∗ h(i)[m1,m2]

(7.12)
with r(i)[m1,m2] defined by:

r(i)[m1,m2] = r[m1,m2] ∗ ∗ h(i)[m1,m2] (7.13)

with (∗∗) representing the 2D convolution operation. For the (i + 1)-th
iteration, a(i+1)[m1,m2] and b(i+1)[m1,m2] in (7.12) are chosen to minimise
||e(i+1)[m1,m2]||2 for given r(i)[m1,m2] and h(i)[m1,m2]. Consequently, fol-
lowing LS formulation of (7.12) is proposed:

e(i+1) =
[
R(i) H(i)

] [ a(i+1)

−b(i+1)

]
(7.14)

with

[
R(i) H(i)

]
=


R(i)[0] 0 . . . 0 H(i)[0] 0 . . . 0
R(i)[1] R(i)[0] . . . 0 H(i)[1] H(i)[0] . . . 0

...
... . . . ...

...
... . . . ...

R(i)[M1 − 1] R(i)[M1 − 2] . . . R(i)[M1 −N − 1] H(i)[M1 − 1] H(i)[M1 − 2] . . . H(i)[M1 −N ]


(7.15)

such that

R(i)[k] =


r(i)[k, 0] 0 . . . 0

r(i)[k, 1] r(i)[k, 0] . . . 0
...

... . . . ...
r(i)[k,M2 − 1] rk,(i)[M2 − 2] . . . r(i)[k,M2 −N − 1]

 ;H(i)[k] =


h(i)[k, 0] 0 . . . 0

h(i)[k, 1] h(i)[k, 0] . . . 0
...

... . . . ...
h(i)[k,M2 − 1] hk,(i)[M2 − 2] . . . h(i)[k,M2 −N ]


(7.16)
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and

e(i+1) =


e(i+1)[0]

e(i+1)[1]
...

e(i+1)[M1 − 1]

 ; a(i+1) =


a(i+1)[0]

a(i+1)[1]
...

a(i+1)[N ]

 ; b(i+1) =


b(i+1)[0]

b(i+1)[1]
...

b(i+1)[N − 1]


(7.17)

such that

e(i+1)[k] =


e(i+1)[k, 0]

e(i+1)[k, 1]
...

e(i+1)[k,M2 − 1]

 ;a(i+1)[k] =


a(i+1)[k, 0]

a(i+1)[k, 1]
...

a(i+1)[k,N ]

 ; b(i+1)[k] =


b(i+1)[k, 0]

b(i+1)[k, 1]
...

b(i+1)[k,N − 1]


(7.18)

with a(i)[0, 0] = 1. (7.14) leads to block LS Yule-Walker type equation [42]
which can be solved for a(i+1) and b(i+1). The process in (7.12) is repeated
until no further improvement in e(i+1)[m1,m2] is observed.

7.4 Model order selection

2D-SMA requires model order input N in (7.8). The 2D Bayesian Infor-
mation Criterion (BIC) is considered for this purpose [238]. The BIC is
considered due to its superior performance when compared with alterna-
tives, e.g., Akaike Information Criterion (AIC), Generalised Information
Criterion (GIC), etc [202]. BIC adds an extra term to the LS cost function
in (7.3).

2M1M2 log

[M1−1∑
m1=0

M2−1∑
m2=0

|r(m1,m2)−
N∑
n=1

ζnp
m1
n qm2

n |2
]

+8N log(M1M2) (7.19)

The extra term penalises higher order models if they do not yield a signifi-
cant improvement in the residue. This prevents spurious estimates which
do not actually contribute to the reconstruction of r(m1,m2). Furthermore,
this extra term does not incur a significant computational cost.
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Figure 7.1: Schematic diagram of the 2D subband decomposition process
with ideal frequency responses {Hi,j(f2, f2)}2

i,j=1 [57].

7.5 Adaptive subband decomposition

Subband decomposition converts a fullband problem to numerous sub-
band problems with the following immediate advantages in individual
subbands: increase in Signal-to-Noise (SNR) ratio, increase in frequency
resolution, decrease in signal length, and a decrease in computational
complexity [212]. The above advantages help to improve the speed and
accuracy of the quantitation algorithm in the individual subbands. For
subband decomposition, we adopt a uniform, multi-step approach consti-
tuting successive filtering and decimation stages as depicted in Figure 7.1.
Decomposition is obtained as follows [60]:

rs,u(m1,m2) =
N ′∑
n=1

ζ ′np
′m1
n q′

m2
n + vs,u(m1,m2) (7.20)

for m1 = 0, 1, . . . ,M ′
1 − 1 and m2 = 0, 1, . . . ,M ′

2 − 1. M ′
1 and M ′

2 are the
number of samples in the (s, u)-th subband with corresponding subband
modes N ′ ≤ N . ζ ′n, p′n and q′n are subband counterparts of the fullband
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parameters ζn, pn and qn respectively. Once the subband estimates p̂′n and
q̂′n are obtained, they can be converted to fullband using:

p̂n = (p̂′n)1/2sejπ
2u+1
2s+1 ω̂(1)

n ∈ [0, π]

p̂n = (p̂′n)1/2sejπ( 2u+1
2s+1

−1) ω̂(1)
n ∈ [−π, 0] (7.21)

and

q̂n = (q̂′n)1/2sejπ
2u+1
2s+1 ω̂(2)

n ∈ [0, π]

q̂n = (q̂′n)1/2sejπ( 2u+1
2s+1

−1) ω̂(2)
n ∈ [−π, 0] (7.22)

Fullband estimates of ζ̂n
′

are computed using (7.4). As the filters are not
ideal, their responses will overlap as depicted in Figure 1. Consequently,
a component may appear in more than one subband. The following cri-
teria can be applied to uniquely determine the subband to which a mode
belongs [212]:

max |Rs,u(ejω̂
′
n
(1)

, ejω̂
′
n
(2)

)| (7.23)

ω̂′n
(1) and ω̂′n

(2) are the frequencies chosen in the subband with the high-
est amplitude. Finally, the subband decomposition is made adaptive by
employing the BIC-based order criterion in individual subbands [58].

7.6 Algorithm

The algorithm can be summarised as:

1. Data is checked for poles according to the 2D-BIC in (7.19).

2. Algorithm is halted if no poles are present.

3. Otherwise, poles are extracted using 2D-SMA, and the residual is
subjected to 2D subband decomposition.

4. Steps from (1) to (3) are repeated until a global halt is reached.
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5. Estimated p̂′n and q̂′n are mapped to fullband values using (7.21) and
(7.22).

6. ζn is computed using (7.4).

7.7 Experimental results

In this section, quantitation results obtained by the application of the pro-
posed algorithm to experimental 2D-NMR data are presented. The The
data was acquired from Biological Magnetic Resonance Data Bank, Uni-
versity of Wisconsin1. The recorded data was used as-is for algorithmic
processing, i.e., without subjecting it to LP, apodization, zero-filling, phase
and baseline correction or noise removal, etc. Fifth order coiflet filters were
employed as 2D decimation filters due to their flat magnitude response,
sharp cut-off and relatively small group delay [226]. The proposed algo-
rithm was executed on an Intel 3.40 GHz CPU. The algorithm converts
the time-domain 2D-NMR data into a table of estimated 2D amplitudes,
phases, frequencies and damping factors – magnitude of the components
can be read directly from the table without requiring numerical integra-
tion of the peaks. These tables can be used for chemical fingerprinting,
analysis of chemical concentrations in metabolomics, or monitoring of re-
actions in quality assurance and control [118]. But to visualise the results,
we have converted the tables into conventional spectra.

Figure 7.2 presents the quantitation results obtained for the 1H − 13C
HSQC data of Nicotinamide Adenine Dinucleotide (NAD). The data was
obtained by recording 256 complex data points in t1 and 1024 complex
data points in t2 dimension. Stacked magnitude plots of spectra computed
using FT and those reconstructed using (7.4) are displayed in Figures 7.2a
and 7.2b respectively.

Figure 7.2 reveals that much finer resolution is obtained in the spec-

1http://bmrb.wisc.edu/
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Figure 7.2: 1H − 13C HSQC spectrum (Bruker DMX - 500Mhz) of nicoti-
namide adenine dinucleotide: (a)- stacked magnitude plot computed us-
ing FT, and (b)- reconstructed using (7.4). Processing time is 98.1 seconds.
MSE is 5.8× 10−6.
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trum reconstructed using using (7.4) than the FT spectrum. FT was unable
to resolve a number of spectral peaks and, for those resolved, was unable
to predict the correct height. Similar observations were made by Belkic et
al. [18] of FT when employed for quantitation of truncated 1D-NMR data.

This, once again, can be observed in Figure 7.3 for the 1H − 1H COSY
spectrum of HydroxyEthylPiperazine Ethane Sulfonic acid (HEPES). The
spectrum reconstructed from the estimates generated by the proposed al-
gorithm (Figure 7.3b) offers betters resolution than the one computed us-
ing FT (Figure 7.3a).

Figures 7.2 and 7.3 highlight the advantage of the proposed algorithm
of obtaining high-resolution quantitation information from the truncated
2D-NMR data, keeping in view that it is almost invariably truncated in
the indirect dimension [47]. Further, the NAD and HEPES data sets, of
size 256 × 1024 each, were processed by the proposed algorithm in 98.1

and 81.3 seconds. This indicates that the processing speed of the proposed
algorithm is not at all prohibitive, and highlights yet another advantage.

Finally, quantitation results for the data set originally employed in
[119] are presented for further comparison. Figures 7.4a and 7.4b display
the FT and reconstructed stacked magnitude for the zTOCSY spectrum of
gibberellic acid. These show the improved spectral resolution achieved by
the proposed algorithm for the given data set, i.e., the eight cross peaks are
clearly resolved, which is also indicated by the achieved MSE of 3.1×10−7.
The CRAFT MSE was unspecified. The data set, of size 256×1024, was pro-
cessed by the proposed algorithm in 73.7 seconds. The CRAFT processing
time was 15 minutes. This once again shows the marked speed advantage
of the proposed algorithm.

7.8 Conclusion

In this chapter, a 2D subband Steiglitz McBride algorithm – based on the
2D subband decomposition, the 2D Bayesian Information Criterion and
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Figure 7.3: 1H−1H COSY spectrum (Bruker DMX - 500Mhz) of HEPES: (a)-
stacked magnitude plot computed using FT, and (b)- reconstructed using
(7.4). Processing time is 81.3 seconds. MSE is 1.2× 10−6.
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a new formulation of the 2D Steiglitz McBride algorithm – was reported
for rapid, high-resolution and automatic quantitation of 2D-NMR data.
The algorithm is able to process the 2D-NMR data without requiring any
previous knowledge or preprocessing, i.e., linear prediction, zero-filling or
apodization, etc. The efficacy of the proposed algorithm was verified by its
application to experimental 2D-NMR data. The algorithm outperformed
the state-of-the-art in this area in terms of speed, resolution and apriori-
information-free operation.
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Figure 7.4: zTOCSY spectrum (Bruker DMX - 500Mhz) of gibberellic acid:
(a)- computed using FT, and (b)- reconstructed using (7.4). Processing time
is 73.7 seconds. MSE is 3.1× 10−7.



Chapter 8

Conclusions and future work

This thesis reported research conducted to tackle the theoretical as well
as practical problems encountered in parametric processing of NMR sig-
nals, firstly for 1D NMR signals and the later for 2D NMR signals. The
contributions of this thesis can be grouped into following three categories:

• Analytical evaluation of the CRLB on unbiased parameter estimates
of the damped cisoid model employed for representing the FID data
in 1D-NMR,

• Development of a high-resolution, high-speed and apriori-
information-free algorithm for parametric quantitation of 1D-NMR
data, and

• Development of a similar algorithm, i.e., with similar quantitation
properties, for parametric processing of two-dimensional 2D-NMR
data.

8.1 Conclusions

Detailed conclusions of each category are outlined below.

151
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8.1.1 Analytical evaluation of the CRLB

For the CRLB, Chapter 3 reported analytic expressions on the variance of
unbiased parameter estimates of damping factors, frequencies and com-
plex amplitudes of an arbitrary number of damped cisoids embedded in
AWGN – model employed in 1D-NMR data to represent the FID signal.
In addition to the CRLB, analytic expressions for the determinant and the
condition number of the associated Fisher Information Matrix (FIM) were
also reported. Further results, in similar order, were reported for two spe-
cial cases of the damped cisoid model: the Magnetic Resonance Relaxome-
try model and the amplitude-only model (employed in quantitative NMR
- qNMR). Some auxiliary results for the above mentioned models were
also presented, i.e., on the multiplicity of the eigenvalues, their separa-
tion, and the factorisation of the characteristic polynomial associated with
their respective FIMs. The application of reported theoretical results to ex-
perimental data successfully accounted for various physical and chemical
phenomena observed in MRS and quantified their impact on the accuracy
of an unbiased estimator as a function of both model and experimental
parameters.

8.1.2 Quantitation algorithm for 1D-NMR data

For rapid, high-resolution and apriori-information-free quantitation of
1D-NMR data, a sub-band Steiglitz-McBride algorithm – based on the Stei-
glitz McBride algorithm, the subband decomposition and the Bayesian In-
formation Criterion – was reported in Chapter 5. The developed algorithm
converts the time-domain FID data into a table of estimated amplitudes,
phases, frequencies and damping factors. It does so without requiring any
previous knowledge or preprocessing, i.e., base-line or phase correction,
apodization, noise removal, etc. Application of the developed algorithm
on experimental proton 1D-NMR data verified its superior performance
in resolving dense, overlapped peaks with high dynamic range in a highly
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time-efficient manner when compared to the state-of-the-art in this area.

8.1.3 Quantitation algorithm for 2D-NMR data

For rapid, high-resolution and apriori-information-free quantitation of
2D-NMR data, a 2D sub-band Steiglitz-McBride algorithm – based on the
2D subband decomposition, the 2D Bayesian Information Criterion and a
new formulation of the 2D Steiglitz McBride algorithm – was reported in
Chapter 7. The algorithm converts the time-domain 2D NMR data into a
table of 2D amplitudes, phases, frequencies and damping factors, without
requiring any previous knowledge or preprocessing, i.e., linear prediction,
zero-filling, apodization, etc., and is directly applicable to time-domain
data from a variety of homonuclear, heteronuclear and spatial 2D NMR
experiments. This was verified and by its application to data from homo-
and heteronuclear 2D NMR experiments. The algorithm yielded excellent
quantitation results in terms of resolution, speed and automation, and con-
siderably outperformed the state-of-the-art on all three fronts.

8.2 Future work

Following potential research directions are suggested by the results
achieved in this thesis work:

• The first possibility concerns the work carried out in Chapter 3 re-
garding the derivation of the CRLB for parameter estimates of an
arbitrary number of damped cisoids embedded in AWGN, i.e., the
model representing the 1D-NMR data. This work may be extended
to derive the CRLB for the 2D damped cisoid model representing
the 2D-NMR data. Theoretical insights gained from this extension
can be employed to further improve the performance of the devel-
oped 2D-NMR quantitation algorithm (Chapter 7) in particular, and
any 2D-NMR quantitation algorithm in general,
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• A second possibility would be to extend the 2D quantitation algo-
rithm (Chapter 7) for rapid, high-resolution and apriori-information-
free quantitation of 3D-NMR data and, in general, ND-NMR data,

• A third possibility would be to embed in the developed 1D and 2D
algorithms, the ability to incorporate previous knowledge about the
chemical shifts – as in certain applications, one or more of the un-
derlying frequencies in NMR signal are known, e.g., in NMR-based
metabolomics [113].

• A fourth possibility would be to incorporate in the developed 1D
and 2D quantitation algorithms, the ability to process non-uniformly
sampled data, both on a deterministic grid or an altogether random
grid. Non-uniform sampling is becoming increasingly important in
the acquisition and processing of higher dimensional NMR signals
[51].

• Alluding to the fourth possibility, an alternative approach to the pro-
cessing of non-uniform sampling can be adopted by deriving the an-
alytical CRLB results (analogous to those in Chapter 3) for the non-
uniform sampling case. Analytical CRLB results may lead to explicit
insights into the design of non-uniform sampling schemes which can
preserve the spectral content while keeping the number of sampling
points minimum.

• A sixth possibility would be to explore, and possibly mitigate, the
impact of the magnetic inhomogeneities which give rise to the non-
Lorentzian peaks [32]. For example, we know from our discussion
in Chapter 6 that these magnetic inhomogeneities arise due to the
nuclei that are either bonded or are in close spatial proximity to each
other. The magnetic effects of these nuclei are neutralised by the ap-
plication of double and triple pulse sequences in COSY and NOESY
respectively. Once these pulse have been applied, the resulting FIDs
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can be acquired [74] and the impact of these pulses on the peak shape
can be explored (quantitatively) using the 1D-NMR quantitation al-
gorithm reported in Chapter 5. If the procedure is successful in the
restoration of the Lorentzian peak shapes, the acquisition time for
the 2D-NMR experiments, which can exceed an hour, can be reduced
considerably. It is important to note that conventional 2D-NMR ex-
periments, like COSY and NOESY, acquire the whole set of 2D-FIDs
to improve the resolution of overlapping peaks. By contrast, the ob-
jective in this scenario will be to acquire and analyse the FIDs gen-
erated after the application of initial mitigating pulses, so that the
impact on these pulses on peak shapes can be observed explicitly.

• A seventh possibility, connected to the eighth, focuses on the impact
of magnetic inhomogeneities on the performance of the quantitaion
algorithms only. Since a damped ciosid term in the damped cisoid
model represents a Lorentzian peak shape in the frequency domain,
a Gaussian or a Viogt peak shape arising due to the magnetic in-
homogeneities may be represented by the quantitation method as a
superposition of individual Lorentzian peaks [94] – a single peak ap-
pearing as a sum of numerous individual peaks. This situation may
be compounded after subband decomposition in which one peak,
after the decomposition, may appear in more than one subbands. A
group of such related peaks, treated as a single unit (singlet), can
reduce the number of poles and, in turn, the number of parameters
to be estimated in the model. Furthermore, the possibility of multi-
plets can also be explored which can further reduce the redundant
estimates.

• An eighth possibility concerns, in addition to the multiplets, other
artefacts present in the FID signal that are ignored by the time-
domain model. For example, the time-domain model implies that
the phases of the individual peaks can be different, which is not nec-
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essarily true. If the peaks are correlated (i.e., they have the same
phase), it will reduce the number of unknowns to be estimated in
the model [147], a possibility which can be taken into account. An-
other possibility that needs to be addressed is the impact of the con-
stant offsets, in damping factors and frequencies, caused by imper-
fections in the amplifier. These offsets, if modelled, can reduce the
number of artefacts in the model. Furthermore, base-line distortion,
which severely hampers the performance of many excellent quanti-
tation methods discussed in Chapter 04, could also be modelled in
the time-domain model of the FID signal.

• Finally, yet another possibility concerns the reduction of acquisition
time for 2D-NMR experiments, and originates from the observation
that the indirect dimension in such experiments can be only partially
occupied, i.e., chemically meaningful peaks may appear only at few
locations, leaving rest of the axis largely unoccupied [170]. Com-
pressed sensing framework, for sparse spectral reconstruction in the
indirect dimension, can be integrated into the 2D-NMR quantitation
algorithm developed in Chapter 07.
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resonances: exact solution of the harmonic inversion problem. Jour-
nal of Physics B: Atomic, Molecular and Optical Physics 44, 12 (2011),
125002.

[19] BERTELLI, D., LOLLI, M., PAPOTTI, G., BORTOLOTTI, L., SERRA,
G., AND PLESSI, M. Detection of honey adulteration by sugar
syrups using one-dimensional and two-dimensional high-resolution
nuclear magnetic resonance. Journal of agricultural and food chemistry
58, 15 (2010), 8495–8501.



160 BIBLIOGRAPHY

[20] BEST, G. Notes on the Graeffe method of root squaring. The Ameri-
can Mathematical Monthly 56, 2 (1949), 91–94.

[21] BI, Z., BRUNER, A. P., LI, J., SCOTT, K. N., LIU, Z.-S., STOPKA,
C. B., KIM, H.-W., AND WILSON, D. C. Spectral fitting of nmr spec-
tra using an alternating optimization method with a priori knowl-
edge. Journal of Magnetic Resonance 140, 1 (1999), 108–119.

[22] BITTL, J. A., AND INGWALL, J. S. Reaction rates of creatine kinase
and ATP synthesis in the isolated rat heart. a 31P NMR magnetiza-
tion transfer study. Journal of Biological Chemistry 260, 6 (1985), 3512–
3517.
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