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Abstract 

In this thesis I develop a robust system and method for predicting individuals’ 

emotional responses to musical stimuli. Music has a powerful effect on human emotion, 

however the factors that create this emotional experience are poorly understood. Some of 

these factors are characteristics of the music itself, for example musical tempo, mode, 

harmony, and timbre are known to affect people's emotional responses. However, the same 

piece of music can produce different emotional responses in different people, so the ability 

to use music to induce emotion also depends on predicting the effect of individual 

differences. These individual differences might include factors such as people's moods, 

personalities, culture, and musical background amongst others. While many of the factors 

that contribute to emotional experience have been examined, it is understood that the 

research in this domain is far from both a) identifying and understanding the many factors 

that affect an individual’s emotional response to music, and b) using this understanding 

of factors to inform the selection of stimuli for emotion induction. This unfortunately 

results in wide variance in emotion induction results, inability to replicate emotional 

studies, and the inability to control for variables in research.  

The approach of this thesis is to therefore model the latent variable contributions 

to an individual’s emotional experience of music through the application of deep learning 

and modern recommender system techniques. With each study in this work, I iteratively 

develop a more reliable and effective system for predicting personalised emotion responses 

to music, while simultaneously adopting and developing strong and standardised 

methodology for stimulus selection. The work sees the introduction and validation of a) 

electronic and loop-based music as reliable stimuli for inducing emotional responses, b) 

modern recommender systems and deep learning as methods of more reliably predicting 
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individuals' emotion responses, and c) novel understandings of how musical features map 

to individuals' emotional responses.  

The culmination of this research is the development of a personalised emotion 

prediction system that can better predict individuals emotional responses to music, and 

can select musical stimuli that are better catered to individual difference. This will allow 

researchers and practitioners to both more reliably and effectively a) select music stimuli 

for emotion induction, and b) induce and manipulate target emotional responses in 

individuals. 
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Chapter 1 Introduction 

1.1 Motivation 

Music and affect are deeply entwined. Musicians and composers have used music 

for centuries to both communicate and manipulate emotional states through the 

organisation of sound in time; evolving deep bonds between musical components and 

human emotional responses (Cook & Dibben, 2010). As early as the 1930s, psychologists 

such as Hevner and Gundlach began studying the relationships between music structure 

and emotion, identifying components such as modality, tempo, and pitch as key 

contributors to music’s affective expressions (Gundlach, 1935; Hevner, 1935, 1936). Music 

is considered one of the most powerful tools available to researchers who seek to 

manipulate emotion (Baumgartner, Esslen, & Jäncke, 2006; Juslin & Laukka, 2004; 

Kenealy, 1988; Zentner, Grandjean, & Scherer, 2008; Zhang, Hui, & Barrett, 2014), but 

an understanding of the emotional correlates of music also yields benefits in many other 

applied fields. For example, music therapy, marketing, film, and video game development, 

all rely on music to achieve affective goals (Juslin & Sloboda, 2013). 

However, while it is widely accepted that music can induce emotional responses in 

people, very little research has been conducted to predict and control for how music affects 

the emotional responses of individuals. Researchers have repeatedly warned that the 

failure to account for how individual differences affects emotional responses can lead to 

(a) inconsistent results and failures to replicate psychological studies (Frieler et al., 2013; 

Juslin & Västfjäll, 2008), and (b) the inability to systematically control for experimental 

variables (Juslin & Sloboda, 2011). Some of the factors of individual differences are known; 

including mechanisms such as:  



	 18	

• peoples’ personality (Vuoskoski & Eerola, 2011a, 2011b; Vuoskoski, 

Thompson, McIlwain, & Eerola, 2012),  

• episodic memory (i.e. a piece of music may trigger the memory of a specific 

event) and social contagion (i.e. an individual’s experience of an excerpt 

may be subject to social influences) (Evans & Schubert, 2008; Juslin & 

Västfjäll, 2008), and 

• a person’s musical background including music listening history and 

preferences (Belcher & Haridakis, 2013; Juslin & Laukka, 2004). 

However, many of the factors are still unknown. Of even greater importance, all individual 

differences affect how a person experiences a piece of music, but they are rarely accounted 

for in emotion induction procedures. 

There are two key areas that researchers must improve on in order to (a) better 

account for individual differences in emotional responses, and (b) develop more effective 

and consistent music emotion induction. The first is in developing methods to better 

predict the emotional responses of specific individuals to any given musical stimulus – 

until now, researchers have primarily relied on the average responses to stimuli as their 

selection criteria, if at all (Eerola & Vuoskoski, 2013). The second is in adapting a strong 

and standardised methodology for stimulus selection. Much of the research in music affect 

induction has relied on stimulus sets (usually of classical music) that have been selected 

based on unevaluated or relatively arbitrary assumptions (Frieler et al., 2013; Juslin & 

Västfjäll, 2008). 

The shortcomings of research in this domain to date is understandable, as manually 

mapping each individual's emotional response to music to individual differences and 

musical features would be a very challenging and time-consuming task. However, modern 

recommender system and deep learning techniques are able to learn models of individual 

differences as latent variables and apply them to create personalised predictions. Thus, 

the objective of this thesis is to use machine learning techniques to develop a personalised 
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emotion prediction system that can (1) predict individuals’ emotional responses to music, 

and (2) select musical stimuli that are catered to individual differences. This is a vital 

contribution to the literature as it will allow researchers and practitioners to more reliably 

and effectively (a) select music stimuli for emotion induction, and (b) induce and 

manipulate the target emotional responses in individuals. 

1.2 Thesis Specifications 

In this thesis, I develop a novel approach to predicting emotional responses to music 

in individuals. Although an individual's emotional responses are influenced by mechanisms 

that are not yet well understood in research (Juslin & Västfjäll, 2008), this need not 

hinder our ability to model and account for these mechanisms' effects. I show that it is 

possible to use modern machine learning, deep learning, and recommender techniques to 

predict how latent factors will affect individual emotional responses. These methods 

leverage the emotion that was reported both (a) in response to other musically similar 

items, and (b) by cohorts of similar individuals, to more precisely forecast an individual’s 

emotional response to any given music stimulus. 

 The two primary goals of this thesis were to develop a system that can (1) predict 

individuals’ emotional responses to music, and (2) enable the selection of musical stimuli 

to be catered to individual differences. Therefore, with each study in this work, I 

iteratively develop a more reliable and robust system for predicting personalised emotion 

responses to music, while simultaneously adopting and developing strong and standardised 

methodology for stimulus selection. Figure 1.1 provides an overview of the thesis 

progression across chapters, and indicates how each chapter contributes towards achieving 

each of these two defined research goals. 
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Figure 1.1 Flow diagram showing progressive development of the thesis goals from chapters 
3 to 5. For each of the two research goals, each chapter iteratively builds on the research 
of the previous chapter: (1) the emotion prediction system is iteratively developed to 
become more reliable and robust in each chapter, and (2) an electronic stimulus set is 
established and validated in Chapter 3, which forms the groundwork for the development 
of a malleable electronic loop-based stimulus in Chapter 5. 

Ultimately, while it is important to understand what mechanisms contribute to a 

listener’s response, not all mechanisms for every individual-stimulus combination can be 

thoroughly described, and building a stimulus set to account for all possible combinations 

would be an exhaustive, time-consuming, and likely over-fitted process for researchers to 

implement. The modern machine learning, deep learning, and recommender techniques 

suggested allow for the development of a personalised emotion prediction system that can 

not only be used to predict individuals’ responses, but also select musical stimuli that are 

catered to a specific individual’s characteristics. The proposed personalised emotion 

prediction system allows researchers and practitioners to control for individual differences 

(i.e. the underlying factors specific to individual experience), and makes it possible for 

them to more reliably manipulate emotion in research and applied fields. 

1.3 Novel Contributions 

Within this thesis, I offer several novel contributions to the field of musical emotion 

induction research. Namely, this thesis: 

1. Validates, for the first time, that modern electronic-based music stimuli can 

be just as effective in inducing emotion as traditional orchestral stimuli. 

This allows researchers and practitioners to explore forms of musical stimuli 
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that are more amenable to manipulation, and will thus more easily facilitate 

the manipulation of emotional responses in emotion studies (Eerola, Friberg, 

& Bresin, 2013). 

2. Maps how certain musical features affect emotional responses, and as a 

result explores and validates, for the first time, the use of loops to create 

musical stimuli that are amenable enough to facilitate personalised 

manipulation of emotional responses. 

3. Provides a strong and robust method for selecting music stimuli for emotion 

induction in individuals. This is an area where the research has traditionally 

suffered (Eerola & Vuoskoski, 2013). 

4. Introduces novel approaches to predicting individuals' emotional responses 

to music stimuli. This development allows researchers and practitioners to 

more precisely control for individual differences and improves their ability 

to achieve intended emotional outcomes. 

5. Introduces deep learning and recommender techniques as a solution to 

account for the latent variables that affect individuals’ emotional responses 

to music. Researchers are still far from understanding all the factors that 

contribute to an individual’s emotion response to music stimuli, and 

mapping these factors to specific individuals and their emotional responses 

would be an exhaustive process. However, the methods introduced in this 

thesis can address this issue and more precisely predict individuals’ 

emotional responses. 

1.4 Thesis Structure 

This thesis consists of a comprehensive review of the existing literature, followed 

by three novel studies. Overall, these studies iteratively build to the final development of 
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a personalised emotion prediction system for more reliable and precise music emotion 

induction.  

Specifically, in Chapter 2, I provide an overview of the relevant literature to give 

the reader a background on emotion, the emotional components of music, personalised 

emotion prediction, and approaches toward developing malleable stimulus sets for more 

personalised emotion induction. I begin, in Section 2.1, by introducing several 

psychological models of emotion, and discussing specifically why the ‘dimensional’ model 

of emotion is chosen for this thesis. In Section 2.2, I discuss how music has traditionally 

been understood to affect emotional responses, and the limitations that stem from not 

accounting for individual differences. In Section 2.3, I introduce literature pertaining to 

the development of emotion-based personalised music recommender systems, illustrating 

(a) some advantages of personalised approaches over the traditional averaging approach, 

and (b) how this research could be further developed to create more rigorous personalised 

music emotion prediction systems. Furthermore, in Section 2.4, I highlight Affective 

Algorithmic Composition (AAC) as a potential solution to creating malleable music 

stimulus sets, the limitations of certain approaches pertaining to AAC, and why I deem 

the sequence-based AAC approach to be the optimal solution. I conclude Chapter 2 with 

a discussion of how the literature informs the development of a personalised emotion 

prediction system for more reliable and precise music emotion induction, and explain what 

approaches are developed upon further in the thesis. 

Chapter 3 looks at the selection of musical stimuli, and explores which musical 

features may contribute to people’s emotional responses to music. In Section 3.1, I 

establish a method for selecting music stimuli and introducing modern electronic-based 

music as emotional stimulus. The method consists of (a) asking a committee of music 

experts to select stimuli which they hypothesise will have the targeted emotional effect on 

people, and then (b) asking a group of randomly selected people to provide emotional 

ratings on a Likert-scale for each music excerpt. In Section 3.2, I examine the results of 
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the ratings task and compare participants’ emotional responses between genres, finding 

that modern electronic-based music can be just as effective at inducing emotion as the 

more traditional orchestral music. In Section 3.4 and Section 3.5, I examine the musical 

features that contribute to participants’ averaged emotional responses to musical excerpts, 

and show the features that appear to be generally predictive of emotional responses. I 

perform factor analysis to link low-level musical features to high-level concepts such as 

rhythm, tone, and timbre, and use several standard machine learning algorithms to show 

the features' predictive capabilities. 

In Chapter 4, I develop the first iteration of a personalised music emotion prediction 

system, which is based on the stimulus set and ratings collected in Chapter 3. In Section 

4.2, I use clustering to reveal cohorts of individuals with similar and contrasting emotional 

responses to musical stimuli. I then introduce collaborative and content-based filtering 

techniques in Section 4.3, and use them to predict individuals' emotional responses to the 

music stimuli. In Section 4.4, I introduce and evaluate a novel content-based filtering 

approach based on Convolutional-Recurrent Neural Networks (CB-CRNN). I then 

compare its ability to predict personalised emotional responses to music with other 

personalised recommender techniques and non-personalised (based only on averaged 

ratings for a music excerpt) emotion prediction. 

In Chapter 5, I extend the research from Chapter 4, using modern recommender 

system techniques to better predict personalised emotion responses, and I introduce a 

loop-based method for developing malleable stimulus sets. With the loop-based stimulus 

set, the musical voices of stimuli can be changed to induce emotional responses. In Section 

5.3, I discuss the process of selecting and preparing a loop-based stimulus set to evaluate 

whether it could be used to manipulate emotional responses. In Section 5.4, I repeat the 

techniques from Chapter 4 with more participants and more musical excerpts (i.e. I 

administer a ratings tasks to 1,943 randomly selected people, asking them to provided 

emotional ratings to each of 1,307 music excerpts generated from the loop-based stimulus 
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set). This larger data set of ratings is then used in Section 5.5 to re-evaluate the 

recommender techniques that were originally introduced in Chapter 4, to confirm that 

they are able to better predict individuals' emotional responses to music stimuli. Section 

5.6 is focused on (a) giving the reader an understanding of which musical features 

contribute to individuals' emotional responses to music, and (b) demonstrating how those 

features, represented in the voices of different loops, can be used to manipulate emotional 

responses.  

A summary of the research and my concluding remarks are provided in Chapter 6, 

delineating my conclusions from this research, my novel contributions to the field, and 

exploring avenues of investigation for future research. Finally, several appendices are also 

provided with supplementary information (e.g. a catalogue of the music that was used in 

various studies, and evidence of ethical approval for this research). 



	 25	

Chapter 2 Background and 

Literature Review 
Emotions are psychophysiological states characterized by an individual’s subjective 

experiences, physiological responses, and responsive and adaptive behaviours (Grimshaw, 

2017; Kleinginna Jr & Kleinginna, 1981).  Listening to music has a measurable effect on 

self-reported moods such as happiness, exhilaration, despondency, and sadness (Eerola & 

Vuoskoski, 2013; Kenealy, 1988; Västfjäll, 2002). The effects of listening to music have 

also been measured as physiological responses (Baumgartner et al., 2006). Music has long 

been known to have a marked effect on emotion, and as such, it has been used as a tool 

to induce emotion in applications across many domains (e.g. psychological research, 

consumer marketing, music therapy, film, and videogames). 

Little research has been developed to explore how specific components (or features) 

of music affect emotional responses. Additionally, individual differences such as peoples’ 

personalities (Vuoskoski & Eerola, 2011a, 2011b; Vuoskoski et al., 2012), episodic 

memories and social contagion (Evans & Schubert, 2008; Juslin & Västfjäll, 2008), and 

musical backgrounds (Belcher & Haridakis, 2013; Juslin & Laukka, 2004) can all greatly 

affect an individual’s emotional experience while listening to music. These individual 

differences and other latent factors (e.g. situational factors in certain contexts) appear to 

affect emotion and are triggered by the interaction of many high- and low-level 

components that make up a musical composition (Bai et al., 2016; Kim et al., 2010a; 

Panda, Rocha, & Paiva, 2015; Yang & Chen, 2012). Failure to account for individual 

differences and latent factors, can have negative implications in emotion induction 

procedures, including for example, inconsistency in results, inability to systematically 
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control for underlying mechanisms, and failure to replicate in psychological studies (Frieler 

et al., 2013; Juslin & Sloboda, 2011; Juslin & Västfjäll, 2008). 

2.1 Chapter Goals/Objectives 

The literature review in this chapter discusses (a) the models of emotion that are 

typically studied in music emotion induction research, (b) the musical components that 

are traditionally studied, (c) a brief overview of machine learning and musical use cases, 

(d) background research in affective recommender systems related to creating a more 

personalised system to predict emotional response to music, and finally, (e) research 

related to creating reliable music stimuli for emotion induction in individuals. 

2.2 Discrete and Dimensional Emotion 

Two primary models of emotion are used across studies that induce emotion 

through music; namely, discrete and dimensional. Discrete emotional models premise that 

a set of basic emotions or emotional categories exist, from which all other emotions are 

derived (Ekman, 1992; Ortony, 1990; Plutchik, 1980). For example, Ekman (1992) 

suggests that happiness, anger, surprise, fear, disgust, and sadness are the six basic human 

emotions, and any other emotions must therefore stem from a combination of these. 

Dimensional models on the other hand, suggest that emotional experiences are described 

by their location on dimensional planes. For example, Russell’s circumplex model of 

emotion, presents a two-dimensional scale based on arousal (i.e. sleepy to activated) and 

valence (i.e. pleasure to displeasure; Russell, 1980). 

Researchers have long debated whether discrete or dimensional models are best 

suited to represent emotional states. From a physiological perspective, one-to-one 

mappings between discrete emotions and specific regions in the brain have not been 

observed, lending physiological support to the dimensional representation (Hamann, 

2012). However, this does not necessarily eliminate the importance of discrete 
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representations. In fact, the value of both discrete and dimensional representations in 

psychological research can be seen throughout the literature (Harmon-Jones, Harmon-

Jones, & Summerell, 2017), and are not necessarily mutually exclusive. That is, the basic 

emotional states from the discrete model can exist variably across the dimensional scales 

of arousal and valence (see Figure 1.1) For example, a beautiful sunset and a smiling baby 

may both induce happiness; however, it is possible that the sunset could induce slightly 

less pleasure, and a much lower level of arousal than the smiling baby (Hamann, 2012). 

As such, a dimensional model of emotion affords the ability to differentiate between 

emotional states with high resolution, which is important in the context of developing a 

personalised emotion prediction system. Furthermore, the dimensional model has been 

shown to perform better than the discrete model in characterizing emotionally ambiguous 

music (Eerola & Vuoskoski, 2010). 
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Figure 2.1 A scatterplot showing how different experiences of discrete emotions exist 
variably along the valence and arousal dimensional scales. For example, while sunsets and 
smiling babies may both induce happiness, the levels of arousal and valence they induce 
might differ. 

2.3 Emotional Music Components 

The emotional responses we experience when listening to music occur because of 

the interaction between high- and low- level features (or components) of music 

composition. For example, emotional responses such as sadness, happiness or even a feeling 

of serenity, may be generated by music through a combination of components such as 

mode, tempo and pitch. A high-level, intuitive understanding of how musical components 

may be combined to generate emotional responses is provided in Table 2.1. This table was 

produced in a study about the application of music in consumer marketing (Bruner, 1990), 

and was constructed from early works in understanding how music components affect 
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emotional responses (Gundlach, 1935; Hevner, 1935, 1936). While the research gives a 

high-level, intuitive understanding of how musical features can be manipulated to elicit 

emotional responses, further research has been conducted to determine computationally 

(a) which specific elements of musical composition contribute to emotional responses (Bai 

et al., 2016; Eerola, Lartillot, & Toiviainen, 2009; Kim et al., 2010b; Panda et al., 2015; 

Thammasan, Fukui, & Numao, 2017; Yang & Chen, 2012), and (b) how these elements 

combine additively to do so (Eerola et al., 2013). These studies identify certain low-level 

musical features (e.g. Mel-Frequency Ceptrum Coefficients (MFCCs), Spectral Roll-Off 

and Flux, Rhythms, and Tones) and the combinations of these, as key contributors to our 

emotional experience of music. However, the impact that such features have on the 

emotional experiences of individuals (i.e. the contribution the musical features make to 

individual differences) has rarely been explored. These features can vary significantly 

according to styles and genres of music, meaning that it will not be enough to hypothesize 

how music components contribute to emotion response if we want to be able to accurately 

predict emotion induction for individuals. 
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Despite the impact of musical features on emotion being highly subjective, the 

musical stimulus that is used for emotion induction in psychology research remains largely 

unchanged and its impact at the individual level unexamined (Juslin & Västfjäll, 2008). 

Much more research is required to understand how specific music components affect an 

individual’s emotional responses so as to inform the effective selection music stimuli. This 

issue is growing increasingly relevant with researchers lamenting the lack of replication in 

empirical studies in general, and more specifically in music psychology studies (Frieler et 

al., 2013). To address this issue, it is no longer sufficient to study the components of music 

and their interaction with emotion by averaging responses across individuals and across 

music excerpts (Cronbach, 1957). A novel approach to music emotion induction is 

required; one that takes in to consideration the many latent factors that contribute to the 

emotional experience of an individual when listening to music. This would allow 

researchers to more reliably induce and manipulate emotion in basic emotion and applied 

research. 

2.4 Accounting for individual difference in emotion responses 

2.4.1 A brief overview of Machine Learning 

Machine learning is a paradigm in computer science, whereby algorithms or 

statistical models are designed to detect patterns and structures in input data in order to 

perform tasks such as discrimination, ranking, and inference. In the context of this thesis, 

machine learning is used to form models that predict personalised emotional responses to 

music. However, given the interdisciplinary nature of this work, it is important to first 

elucidate some machine learning concepts and methods that are referred to throughout 

this thesis, including the types of approach, task, and some testing techniques. 

There are typically three approaches to developing a machine learning model: 

● Supervised Learning: Dependent Variables (labels) are used in the model "training" 

stage as targets for which the models learn to reproduce from independent variables 
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with minimal loss (optimisation). For example, you may have a dataset of musical 

stimuli that have been labelled with ratings on a valence scale, and the role of the 

algorithm would be to determine the valence rating of any given new music 

stimulus (Bai et al., 2016). 

● Unsupervised Learning: Models use patterns and structures in input data to 

automatically differentiate or arrange instances - without the need of training labels 

to minimise loss. For example, you may have a dataset of music which you wish to 

automatically organise into playlists of similar items, unsupervised learning 

methods would be able to group music based on similar musical features (Lin & 

Jayarathna, 2018).   

● Reinforcement Learning: Models are trained based on actions taken. As the agent 

explores the environment and changes states, it receives feedback in the form of 

rewards or penalties, and thus learns which actions are appropriate given current, 

previous, and potential future states. For example, you may wish to automatically 

create chord progression in generative music application (see section 2.5), 

reinforcement learning would be able to progressively generate the appropriate 

musical chords based on position in musical context (Shukla & Banka, 2018). 

2.4.1.1 Classification, Regression, and Clustering 

There are also three major categories of machine learning tasks to be aware of 

classification, regression, and clustering. Classification is concerned with determining 

which class(es) a set of input data belongs to - it outputs discrete values (labels). A 

classification algorithm, for example, might be used to predict the discrete emotion of 

musical excerpts (e.g. Happy, Sad, Angry, or Relaxed) – categorising the excerpts into a 

discrete emotional states based on the musical features extracted from them (Laurier, 

Grivolla, & Herrera, 2008). Alternatively, regression is concerned with mapping a set of 

input variables to a continuous rather than discrete values. For example, the output of a 

regression model could be used to predict the degree of arousal or valence induced by 
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musical excerpts (Eerola et al., 2009). Regression is the machine learning approach used 

in this thesis to predict personalised music emotion ratings on dimensional emotional 

scales (see Chapters 3 - 5). 

Some of the more commonly used algorithms for classification and regression 

problems include support vector machines and random forest and k-means for 

unsupervised learning. Support vector machines, illustrated in Figure 2.2, are a technique 

for which the machine learning algorithm learns to construct an optimal hyperplane that 

divides a data space into subsets (e.g. classes) using, for example, the data vectors that 

maximise the margin between subsets as support vectors for the hyperplane (Cortes & 

Vapnik, 1995). Random forests, also shown in Figure 2.2, on the other hand, are ensemble 

methods which use a multitude of decision trees as base classifiers and outputs, as a 

prediction, the value that is the mode (classification) or mean (regression) of the individual 

decision trees’ predictions (Breiman, 2001).  

 
Figure 2.2 Illustration of how (a) support vector machines (b)random forests form 
predictive models. Support vector machines discover an optimal hyperplane to divide the 
space into classes. In the example above, the SVM finds the hyperplane that maximises 
the margin between the square and circle classes. The output of random forest is the result 
of many individual decision trees voting on the prediction. In the example above, the input 
instance passes through paths in each decision tree, with each outputting a class 
prediction. Voting (mode or mean) then ultimately determines the final prediction of class. 
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Clustering is concerned with partitioning instances into groups based on similar 

attributes with other instances, for example similar emotional response to music stimulus 

(see section 4.3). Clustering is a technique commonly associated with unsupervised 

learning, in which labels for data are not available and associations need to be drawn 

between instances. K-means is an algorithm commonly used for unsupervised clustering, 

the method relies on a distance function to cluster instances into “k” subsets based on 

minimising the within-sum-of-squares (WSS) and maximising the distance between 

clusters (Hartigan & Wong, 1979). Illustrations of clustering can be seen in section 4.3.2. 

2.4.1.2 Feature Engineering and Selection 

Critical to developing successful machine learning models is the selection of 

appropriate input features (Guyon & Elisseeff, 2003). In the worst case, the features 

captured may not be very informative about (predictive of) the output, however challenges 

can also include features with high collinearity, in which case those features can have an 

unbalanced influence in predictive modelling, or “the curse of dimensionality”, in which 

too many feature dimensions cause the data space to become too sparse - making it easy 

for algorithms to overfit. Because of these challenges, several methods for reducing 

dimensions have been developed, including feature selection methods that attempt to 

identify the most relevant features and minimise redundancy (e.g. ReliefF) and feature 

transformation methods that attempt combine multiple features into aggregated values 

(e.g. Principal Component Analysis). These methods for feature selection are used and 

described further in Chapter 3. 

2.4.1.3 Deep Learning 

While traditional machine learning techniques rely appropriate feature extraction 

and selection as a pre-processing step, deep learning is a paradigm by which relevant 

feature representations can be learned directly from raw input data (e.g. images) 

(Goodfellow, Bengio, & Courville, 2016; LeCun, Bengio, & Hinton, 2015; Schmidhuber, 
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2015). The ability of deep learning models to learn features directly from the input is 

critical because it ensures that, given (a) best practices are followed and (b) the 

representations actually exist in the data, that the features used for prediction are highly 

informative about the output predictions. For example, the filters of the lower-layers of a 

multi-layer convolutional neural network (CNN) that was performing object detection 

could learn to recognise features such as lines and other simple patterns in the images. As 

the layers progress, the patterns of the lower-layers combine into more complex patterns 

and representations until eventually the CNN would determine if the object existed in the 

image. Allowing features to been engineered by deep learning algorithms means that 

assumptions do not need to be made about what low-level features are relevant to 

predictive outcomes, and could therefore allow for more predictive outcomes (see results 

in section 4.5). 

2.4.1.4 Best Practices 

As explored briefly above, there are a wide variety of basic machine learning 

approaches, tasks and techniques, however it is important to note that there are certain 

overarching elements that must be considered across all machine learning. For example, 

training, testing and validation is required for all machine learning, and best practice 

dictates that performance of an algorithm should be evaluated against novel data to ensure 

that model is not simply overfitting the training data (Cawley & Talbot, 2010). As such, 

available data is typically split into training, testing, and validation sets: the training data 

is used to train the models and generate features, the validation set is used for frequent 

evaluation of the models performance (i.e. hyperparameter tuning), and testing data is 

used only to evaluate the models final performance.  

There are several ways to split training, testing, and validation data. If there is a 

sufficiently large and represented amount of sample data, it is appropriate to perform a 

percentage split on the sample data - forming three sets of data - testing, training, and 

validation. However, if there is limited sample data to train and evaluate models on, cross-
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validation (a resampling procedure) is commonly used to evaluate the model (Kohavi, 

1995). This procedure is used in 3.6.3, and splits the data into "k" folds, and incrementally 

uses one fold (of each of "k" iterations) as a test set while the other folds are used to train 

the model. Ultimately, the performance of the model is an aggregation of the performance 

of "k" runs. In each case, the groups can be formed by picking randomly, stratified (e.g. 

instance balances), or blocked (e.g. temporal dependence), depending on the nature of the 

data and thus the statistical validity. Crucially, in cross-validation, instances must remain 

in the same fold throughout the training and evaluation of a model. As an example, an 

illustration in Figure 2.3, shows how data can be split into training, validation, and testing 

sets across five folds. 

 
Figure 2.3 Illustration of how a dataset is split into training, validation, and testing set 
across 5-fold cross validation. 

2.4.2 Recommender Systems 

Recommendation systems are a class of algorithms that filter content based on user 

preferences which are formulated from the cohorts of similar groups of individuals and/or 

items. The two main approaches to recommendation systems are Collaborative Filtering 

and Content-Based Filtering. Collaborative filtering takes advantage of ‘collective 

intelligence’, that is, knowledge generated by the preferences of an entire userbase 

(Shardanand & Maes, 1995). In such cases an n x m matrix (i.e. users by items) is 

constructed with each cell containing a user’s preference feedback (e.g. like or dislike) for 

a specific item and then a matrix-factorisation routine is performed to fill empty cells for 

each user based on other users with similar preferences. As a simple example: if person A 
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and person B both ‘liked’ 10 music excerpts and ‘disliked’ another 10 excerpts, we can 

assume that person A and B might have similar preferences, and thus use each of their 

ratings on new excerpts to predict the other person’s preference. Content-based filtering 

on the other hand, takes advantage of knowledge about the content itself in relation to a 

user’s preferences (Kuo & Shan, 2002). Content is analysed to determine components that 

contribute to its construction and these components are fit to a user’s profile. The 

algorithm is then able to recommend content with similar construction. The most 

successful recommender systems typically combine these approaches in a ‘hybrid’ 

recommender system (Chen & Chen, 2001; Yoshii, Goto, Komatani, Ogata, & Okuno, 

2006). 

 There have been several very prominent examples of music recommender systems 

developed on data descriptors for content and user modelling (e.g. semantic tags in 

Pandora1); however, in the last 5 years researchers have begun to explore the development 

of affective music recommendation systems (Song, Dixon, & Pearce, 2012). Affective 

recommendation systems utilise a user’s affective response profile, which is created 

through a person’s affective ratings of items or objects, to either generate or improve the 

quality of recommendations to a user (Tkalcic, Kosir, & Tasic, 2011). w  created a generic 

emotion-based music recommender system that analysed the emotion of film music in 

order to generate recommendations.  Emotional components of music were identified 

through a process of feature extraction on music tracks, and then the authors developed 

models that were used to ‘discover’ the association between music features and the film’s 

emotion (e.g. a sad film). The system in this case was not personalised to a users’ 

emotional profile, but to that of the films, so if a film was sad the relation was made to 

sad music components. Yoon, Lee, and Kim (2012) developed a personalised recommender 

system based on low-level music features that were found to trigger emotional responses. 

They used a database of 400 songs. In order to establish an emotional profile to fit each 

                                     
1 www.pandora.com 
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user and make recommendations of affective songs, they had users pre-identify a song for 

each discrete class of angry, happy, sad, and peaceful from the (discrete) extended 

Thayer’s mood model (Thayer, 1989). Though not thorough, the study showed promising 

results for a personalised emotion recommender system based on musical features, and the 

authors acknowledged the need for understanding how individual differences, preferences, 

and components of music affect a person’s emotional response to music stimuli. 

Whilst the work in developing personalised affective music recommendation has 

shown the promise of affective music recommendation engines and the recommendation 

approach in general, these systems have largely been developed for entertainment 

purposes. Without the goal of developing reliable personalised music emotion induction 

for areas such as basic emotion research, psychology of music and musicology research, 

and applied research such as music therapy, past studies lack the methodology and rigour 

required to incorporate and predict individual differences in emotional responses to music. 

A further benefit of recommendation engines in the context of this thesis is that they can 

take advantage of prior knowledge to more intelligently account for a person’s personal 

preferences and other individual differences, as opposed to a brute-force algorithm which 

would start from ground up building a unique understanding for every individual user. 

2.5 Creating malleable music stimulus sets 

In order to develop music selection systems that reliably induce emotional responses 

in individuals (i.e. accounting for the individual differences associated with latent factors), 

psychologists and researchers would either need (a) a very large database of music 

segments, or (b) a small, malleable database of music segments that could be manipulated 

to cater to individual differences in affective responses. The benefit of using malleable 

datasets is that they are scalable to research projects of different sizes or specifications, 

and they afford the ability to control for specific musical variables while manipulating 

others. Eerola et al. (2013) used MIDI-produced stimuli to manipulate musical parameters 
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such as mode, tempo, dynamics, articulation, timbre, register, and musical structure. 

MIDI pieces are electronically created and easily manipulable, however they require 

musicians or composers to produce the originals and can sound artificial to subjects if not 

produced with care, which may introduce other sources of variance in subjects. 

A field of research dedicated to the development of affective algorithmic 

composition (AAC) has grown considerably over the last decade (Williams et al., 2014), 

and lends considerable insights on how we can form malleable music stimulus set for the 

induction and manipulation of individuals’ emotional responses. These systems are 

designed to create music based on intended affective response, as opposed to the 

traditional algorithmic composition approaches which do not consider affect in generation. 

Algorithmic composition has existed since the 1950s and a large number of AI methods 

have been employed as solutions (Fernández & Vico, 2013; Nierhaus, 2009). Approaches 

generally fall into three categories: generative compositions, transformative compositions, 

and sequenced compositions (Rowe, 1992).  

The generative approach to algorithmic composition uses rules to create music. For 

example, music is formed of underlying grammatical structures such as those described in 

the Generative Syntax Model (Rohrmeier, 2011), which is illustrated in an analysis of 

Bach's Chorale 'Ermuntre Dich, mein schwacher Geist' in Figure 2.4. This model describes 

a tree-based hierarchical structure of generative rules of western tonal music that is 

extendable to both historical and modern pieces of music. Algorithmic tools leverage such 

rules to create new music. The limitation of such systems though is that rules must be 

described exhaustively, however, the rules that describe how music influences emotion are 

not fully understood, so it is not currently possible to articulate them. A further concern 

with these systems is that it is very challenging to replicate the expression of music 

through rules – especially rules which only consider the syntactical and semantic 

components and structures of music composition. In fact, much of what makes music 

sound ‘musical’ is a result of what is known as performance practice, that is, a legacy of 
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unwritten practices that musicians follow in interpreting a musical performance in 

different styles (Rink, 2005). For example, the concept of “swing” has proved virtually 

impossible to replicate in rules, and is an interpretation that many musicians even struggle 

with (Friberg & Sundströöm, 2002; Lindsay & Nordquist, 2007). These sorts of 

performance practices have a significant effect on our psychological perception of 

musicality (London, 2012), and therefore failure to account for them could have 

unintended consequences on a person’s emotional response to music. 

 
Figure 2.4. Analysis of Bach's Chorale 'Ermuntre Dich, mein schwacher Geist', mm. 1-4 
using the Generative Syntax Model. 

On the contrary, a transformative system takes existing music as input, and 

transforms it to produce a different output. This is often accomplished through some 

inference by the system about musical rules of transformation. For example, Weinberg, 

Raman, and Mallikarjuna, (2009) have used Markov Chains to learn musical input from 
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users, captured through MIDI, in order to develop collaborative improvisation with a 

musical robot. The robot generates musical responses similar to that of the human 

performers as a result of the learnings of the Markov Chains. A system like this accounts 

for the challenges of performance practice by learning directly from the input of human 

performers what those practices are. This could ultimately make the output of the 

transformative system sound more musical. However, it would be difficult to use such 

systems in a context where a researcher wanted to control the emotion for an individual 

user, because (a) there would first need to be a suitable musical input, (b) there would 

need to be enough flexibility in the system to change that input in order to map musical 

parameters to induce emotional responses, and (c) the system would need to be trained 

to be ‘musical’ by a musician – who may not be readily available at researchers’ disposal.  

Most promisingly, the sequence based approach works by combining pre-recorded 

excerpts (or loops) of music into larger musical compositions. The pre-recorded loops can 

be used as standalone excerpts, or combined horizontally (sequentially in time) or 

vertically (harmony or polyphony) to create novel excerpts. The sequencing approach is 

useful because it allows composers to create the music, and for the system to reorder that 

music in time while also allowing for segments to be pre-rated using affective rating scales 

by participants. An example of this type of system, in the entertainment domain, is The 

Affective Remixer (Chung & Vercoe, 2006; Vercoe, 2006). The authors experimented with 

the layering and complexity of musical loops, and recorded galvanic skin response (GSR) 

(used to measure arousal), foot tapping (used to measure valence), and self-reported 

arousal (engaged-soothing) and valence (like-dislike) scales.  Based on a listener’s current 

affective state (which was inferred using state-transition Markov Chains), the system 

selects music segments and re-arranges them to induce a new target affective state. 

However, because this system was built with the goal of entertainment and not in attempt 

to reliably induce emotion, no evaluation of the system’s performance was reported. The 

authors reported inconsistencies with GSR and arousal reports, and concluded that foot 
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tapping correlated with valence, however they acknowledge the need of further research 

and the inclusion of additional listener data like music preference to improve accuracy. 

The loop approach to affective music composition has been much more widely 

explored in the domain of interactive gaming audio. In the game scoring domain, 

composers are tasked with creating interactive music to accompany a user’s gaming 

experience. The music must continue to adapt to the current state of gameplay, while 

keeping aligned with the theme of the game and not sounding disconnected or artificial 

as it develops. The sequencing approach has been used to much success in developing 

affective music in the context of games (Collins, 2008, 2017; Collins, Kapralos, & Tessler, 

2014; Enns, 2015; Phillips, 2014). Combined with a personalised emotion prediction 

system, these loop-based systems could be extended to the domain of reliably inducing 

and manipulating emotional responses in individuals. 

2.6 Chapter Conclusion 

Through a review of the relevant literature, in this chapter I established how the 

learnings of emotional models, musical components, recommender techniques, and music 

generation systems can be used towards the development of more robust and reliable 

music emotion induction for individuals. Dimensional models of emotion offer high 

resolution, and will be well suited for capturing subtleties in emotional responses. As 

stated in Section 1.1, the failure to account for individual differences in music emotion 

responses can lead to poor reliability and replicability in psychological studies, and poor 

control for experimental variables in emotion research. Researchers have previously shown 

that there are psychological mechanisms that lead to individual differences in emotional 

responses, and the literature in Section 2.3 shows that even in terms of music, very little 

is known about the components that affect individuals. 

However, despite these obstacles, the recommender system approaches, discussed 

in Section 2.4, appear to illuminate a path toward creating personalised emotion prediction 
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for individuals. This research has shown that collaborative and content-based filtering 

techniques can potentially be used in the development of a personalised emotion prediction 

system, to capture and account for the many latent variables that affect an individuals’ 

emotion response to music. This would allow researchers to select stimuli that more 

precisely induce and manipulate emotional responses. Furthermore, the research that has 

been done in AAC, specifically the sequence-based (loop-based) approach has shown that 

this is a promising avenue to pursue in creating a stimulus set that could be catered to 

reliably and effectively induce emotion in individuals. 
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Chapter 3 Electronic Music 

Stimuli and Emotion 

Prediction 
Music and emotion research continues to evolve, however the musical stimuli used 

for affect induction in psychology research remain largely unchanged (despite the fact that 

compositional techniques and elements in music have changed with modern generations). 

A recent review (Eerola & Vuoskoski, 2013) of 250 music and emotion studies shows that 

researchers still largely rely on familiar classical music excerpts (48%), that stimulus sets 

are often chosen either arbitrarily by the researcher (33%) or that the selection process is 

not identified (39%)2. 

The best music for emotion induction should effectively induce affect but also 

minimise the role of subjective musical preference, which is often associated with 

familiarity and genre preference. Eerola and Vuoskoski (2010) minimised the effect of 

subjective music preference by building a stimulus set from film soundtracks. They do not 

fall easily into genres because they are designed with the explicit goal of inducing affect 

within a narrative context, and are meant to do so in global audiences. 

However, the film scores that were selected (Eerola & Vuoskoski, 2010) were still 

limited to a traditional orchestral style. Electronic music is more representative of modern 

musical styles that may be useful in some research domains. Furthermore, it is more 

                                     
2 Another 8% percent used a Pilot study, 9% used a previous study, 6% used an Expert 
panel, and 4% used Participants for selection. 
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amenable than orchestral music to online analysis and manipulation of musical 

parameters. A set of musical excerpts that can be digitally manipulated across a range of 

dimensions has many uses in psychological research. For example, music that can be easily 

manipulated can be used to determine the causal relationship between musical features 

and emotional responses. Such music can also be used as the output of brain-computer 

interfaces and other emerging technologies that produce music as a product of mental 

activity (Christopher, Kapur, Carnegie, & Grimshaw, 2014). Manipulation of musical 

features is very difficult using solely acoustic music because it requires an orchestra or 

ensemble to record the specific excerpts for the experimenter. Researchers often must rely 

on MIDI produced stimuli in order to manipulate musical parameters. These are 

electronically created and easily manipulable, however they require someone of musical 

background to produce, and often sound quite synthetic in nature (Eerola et al., 2013). 

3.1 Chapter Goals/Objectives 

In this study I used a similar method to that described by Eerola and Vuoskoski, 

(2010), to produce a stimulus set based on modern electronic film music. The vast majority 

of research up to this point has used orchestral music for affect induction. However, given 

that I wanted to develop a stimulus set that is manipuable, and electronic music is the 

best approach to doing that, I needed to (a) create a set of electronic music stimuli with 

a broad affective range, and (b) identify the specific low-level musical features that impact 

emotional response. 

First, a panel of experts preselected music excerpts according to predefined criteria 

(i.e. music must be electronic and cover a range of emotions). Then the music excerpts 

were rated by naive participants on the dimensional emotion scales of valence and arousal; 

as well as degrees of liking and familiarity. These ratings were used to develop a 

modernised affective music stimulus set. Emotional ratings for these electronic excerpts 

were also compared to those elicited by orchestral musical excerpts, which are the 
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mainstay of music and emotion research. Orchestral and electronic music differ in spectral 

qualities (e.g. timbre), that are strong predictors of emotional experience. It was therefore 

important to determine the range of emotional experience electronic music can elicit. 

Second, given that the physical features (i.e. timbre and rhythm) of music are one 

of the factors that drive emotional responses in individuals, I evaluated which specific 

musical elements of the stimulus set correspond with the emotional ratings provided by 

participants. I performed musical feature extraction followed by exploratory factor 

analysis in order to identify the musical components of the stimulus set and how they 

contribute to emotional responses in subjects. Furthermore, I explored the predictive 

qualities of the derived musical factors using regression models. 

3.2 Method for Electronic Music Stimulus Selection 

3.2.1 Music Excerpts 

A panel of experts in electronic music composition (1 music professor, 4 PhD 

students in music, and 1 professional musician) were recruited in order to preselect a large 

set of music excerpts that would be later evaluated by non-selected participants. A total 

of 15 film scores using primarily electronic music, composed between 1999 and 2014, were 

selected to be evaluated by the experts (Table 3.1). These soundtracks encompassed 13 

different film, TV, and video game genres. The 15 albums were randomly placed into 

three groups of five albums each. Within each group, the music tracks were anonymised 

and placed in random order. Each group was distributed to two experts and consisted of 

approximately 100 music tracks each (277 tracks total). The experts were given the 

following instructions: 

 

In this task we are trying to collect a series of music samples that we can use in future 

experiments. For these experiments, we want a selection of electronic music that 

represents different emotional qualities. For example, we can distinguish music based on 
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whether it makes us feel positive or negative – this is a component we refer to as valence. 

Music at the negative end of the valence scale can make us feel unhappy, annoyed, 

unsatisfied, melancholic or despairing, while music at the positive end of the valence scale 

can make us feel happy, pleased, satisfied, contented or hopeful. We can also distinguish 

music based on its intensity. Music at the low end of the intensity scale can make us feel 

relaxed, calm, sluggish, dull, sleepy or unaroused, while music at the high end of the 

intensity scale can make us feel stimulated, excited, frenzied, jittery, wide-awake or 

aroused. 

In this task, we ask you to listen to the selection of music provided and to choose excerpts 

from 5 music tracks that you think best represent the four categories described above (i.e. 

high arousal positive, high arousal negative, low arousal positive, low arousal negative; 20 

excerpts in total). The excerpts should fit the following criteria: 

1. No Lyrics 

2. No Dialogue 

3. Excerpts must be 20-30 seconds in duration (within the constraints of musical phrasing) 

4. Excerpts must be predominantly electronic in nature (this excludes midi mock-ups of 

acoustic instruments). 

This process resulted in the identification of 120 emotional music excerpts (i.e. 30 

for each combination of arousal and valence). The emotional ratings, albums, timepoints, 

and track numbers for the 120 excerpts are presented in Table A.1 of Appendix A.  An 

additional 40 orchestral excerpts were selected from the Eerola and Vuoskoski (2010) 

stimulus set, to allow direct comparisons between orchestral and electronic music in the 

same participants. The excerpts were selected to represent the full emotional range of 

valence and intensity present in the stimulus set produced by Eerola and Vuoskoski 

(2010). A full table of the emotional ratings, albums, track numbers, and timepoint for 

the 40 excerpts is presented in Table A.2 of Appendix A. 
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Table 3.1. Soundtracks selected for stimulus set 

Film Composer Year Genre 
American Beauty Thomas Newman 1999 Drama, Romance 
Batman Begins Hans Zimmer, James Newton 

Howard 
2005 Action, Adventure 

The Dark Knight Hans Zimmer, James Newton 
Howard 

2008 Action, Crime, 
Drama 

Far Cry 4 Cliff Martinez 2014 Video Game: 
Action, Thriller 

The Lego Movie Mark Mothersbaugh 2014 Animation, Action, 
Adventure 

Gone Girl Trent Reznor and Atticus Ross 2014 Drama, Mystery, 
Thriller 

A Series of 
Unfortunate Events 

Thomas Newman 2004 Adventure, Comedy 

A Road to Perdition Thomas Newman 2002 Crime, Drama, 
Thriller 

Spring Breakers Cliff Martinez 2012 Action, Crime, 
Drama 

The Social Network Trent Reznor and Atticus Ross 2010 Biography, Drama 
300 Movie Tyler Bates 2007 Action, Fantasy, 

War 
Cinderella Man Thomas Newman 2005 Biography, Drama, 

Sports 
The girl with the 
Dragon Tattoo 

Trent Reznor and Atticus Ross 2011 Crime, Drama, 
Mystery 

Finding Nemo Thomas Newman 2003 Animation, 
Adventure, Comedy 

The Knick Cliff Martinez 2014 TV: Drama 
 

3.2.2 Participants 

A total of 242 participants were recruited through an online crowdsourcing service, 

CrowdFlower3, to provide evaluation of the musical excerpts on a number of emotional 

dimensions. The participants came from 48 different countries including India (10%), 

                                     
3 Note: this platform was rebranded as ‘Figure Eight’ in 2018. 
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Indonesia (7%), Serbia (6%), Bosnia and Herzegovina (6%), Portugal (5%), and the USA 

(5%). The ages of the participants ranged from 18 to 68 years (M = 29.04, SD = 9.05; 

26% female). This meant a reasonably diverse population evaluated the emotional quality 

of the music stimulus set. Thirty-four percent of participants indicated having no musical 

training at all, 25% had less than a year of training, 20% had 1-3 years of training, and 

21% had over 3 years of musical training. One percent of participants replied that on a 

typical day they didn’t listen to any music, 20% replied that they listened to music for 

less than an hour, 33% 1-2 hours, 21% 2-3 hours, 11% 3-4 hours, and 14% more than 4 

hours. Participants were paid $0.50USD. 

3.2.3 Procedure 

In order to obtain emotion ratings on the music excerpts, a ratings task was 

administered via the Qualtrics platform. A total of 160 audio files were evaluated: the 120 

chosen by the musical experts, and an additional 40 orchestral excerpts selected from the 

study by Eerola et al., (2009). The orchestral excerpts represented negative and positive 

valence, crossed with low and high energy4. Excerpts were divided into 4 groups of 40 

each (approximately balanced based on categorization of excerpt provided by the experts), 

and each participant listened to 40 excerpts (≈20 minutes). Each participant was assigned 

to rate either valence or arousal so that they could focus on one dimension. Furthermore, 

within each group of participants, half of the participants rated felt emotion – that is, 

how the music made them feel personally. The other half rated perceived emotion – that 

is, the emotion they believe the music is intending to convey. While the felt and perceived 

emotion of music will likely tend to be in agreement, it is possible that music can convey 

one emotion (such as sadness) but make the participant feel another (such as a positive 

appreciation of beauty). 

                                     
4 The arousal scale in Eerola, Lartillot, and Toiviainen (2009) splits arousal into 2-
dimensions: energy and tension. When controlling for valence, the energy dimension is 
closely aligned with arousal. 
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After each excerpt, participants were presented with three 9-point Likert scales on 

which they rated the affect (felt or perceived, valence or arousal – according to their 

assigned ratings condition), how much they liked or disliked the excerpt, and how familiar 

the excerpt was to them.  Each excerpt was rated by 14 to 17 listeners. Likert scales were 

set low to high for arousal and familiarity, and negative to positive for valence and 

preference. Audio file order was randomized for each participant.  

After providing the ratings, participants completed a short questionnaire adapted 

from Belcher & Haridakis (2013), which asks questions about the participant’s music 

interest, musical preference, and musical training. This information was collected for 

demographic purposes and to inform other projects, but was not use in analyses. 

3.3 Resulting Electronic Music Stimulus Set 

3.3.1 Emotion Ratings 

Affect ratings for the 120 electronic music excerpts across Felt Arousal, Perceived 

Arousal, Felt Valence, and Perceived Valence conditions appear in Table 2. The individual 

ratings for each excerpt are presented in Appendix A. All analysis is conducted using the 

R programming language and “psych” package. A Pearson’s Product Moment correlation 

analysis with Holm p-value correction for multiple comparisons shown Table 3.2 revealed 

a very strong positive correlation between the felt and perceived conditions of both arousal 

(N = 120, r = 0.848, p < .001) and valence (N = 120, r = 0.846, p < .001). However, a 

two-sample paired t-test, in which the music excerpts are used as subjects, reveals 

significant differences between felt and perceived emotion in both arousal (t = 3.8, df 

=119, p < .001, d  = 0.264) and valence (t = 7.33, df =119, p < .001, d  = 0.4). Music 

was rated as more positive and more arousing by participants who rated the felt emotion 

compared to those who rated the perceived emotion. However, Table 3.3 shows that 

despite this shift in ratings as a function of task, felt and perceived ratings are highly 

correlated. Also of note is that liking and familiarity seem to have high positive 
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correlations with valence. One possible explanation for this is in the nature of film music. 

Film music has adapted some tried and tested techniques for effectively conveying 

emotions to global audiences. Because of this, some excerpts may be very reminiscent 

(cliché) and quite catchy - resulting and higher ratings of both familiarity and liking. The 

difference between felt and perceived valence may suggest the “negative/opposite” or 

“unmatched relationship” effect (Gabrielsson, 2002; Schubert, 2013).  This is the case when 

the music may convey one emotion, but the listener may feel another. For example, an 

excerpt may convey negative valence, but the user may enjoy it and experience positive 

valence. 
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3.3.2 Comparison to Orchestral Ratings 

Participants also rated 40 excerpts taken from Eerola et al. (2009), which in the 

original study were  assessed on 3-dimensions: Energy, Tension, and Valence, however in 

this study are assessed along the Arousal and Valence dimensions. In order to establish 

that the ratings for the orchestral excerpts showed consistency across studies, I performed 

correlation analyses between the valence, energy, and tension ratings reported in the 

original study and the valence and arousal ratings collected in this study for the same 

excerpts. Overall, these high correlations across studies, calculated using a Pearson’s 

Product Moment correlation analysis with Holm p-value correction for multiple 

comparisons and shown in  Table 3.4, support the reliability of the ratings collected here. 

Analysis showed a strong positive correlation between current ratings in the felt and 

perceived valence conditions and the original valence ratings, demonstrating consistency 

in the valence dimension. Furthermore, the energy ratings from Eerola et al. (2009) were 

positively correlated with both felt and perceived arousal and felt and perceived valence, 

suggesting that the energy dimension is a construction of both arousal and valence. 

Tension showed a strong negative correlation with felt and perceived valence, indicating 

that tension is a product of negative valence. 

Table 3.4. Correlation between comparison ratings and original ratings (across the top) 
and ratings collected from this study. 
 

Energy Valence Tension 

Felt Arousal .803*** .193 .221 

Perceived Arousal .675*** .197 .144 

Felt Valence .532** .938*** -.650*** 

Perceived Valence .560** .879*** -.584*** 

Significance: * = p<.05, ** = p<.01, *** = p<.001 

 

In order to compare the emotional ratings made by our non-selected participants 

for the 40 excerpts from Eerola et al. (2009) to the electronic excerpts selected by our 
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expert panel, I split the axis of each emotional dimension into four quartiles: extreme low 

(10%), moderate low (20%–40%), moderate high (60%–80%) and extreme high (90%), (as 

in Eerola and Vuoskoski, (2010), and performed a 4𝑥2𝑥2 ANOVA (4 percentiles, 2 

stimulus set, 2 emotion states), comparing sets across emotional dimension using the 

ratings from my participants only. This process yielded no significant main effects (besides 

the expect effects of quadrants), indicating that the electronic excerpts showed the same 

affective range as orchestral excerpts. Figure 3.2 demonstrates the spread of ratings across 

emotion quadrants, and spread within quartiles respectively. As can be seen, the electronic 

music excerpts from this study cover an emotional range as large as acoustic excerpts 

selected from Eerola et al. (2009). 
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Figure 3.1 This plot illustrates the range of ratings for music excerpts collected in this 
study across the felt (experienced) arousal and valence space. It compares ratings of 
electronic-based excerpts selected by experts with ratings on excerpts originally selected in 
Eerola et al. (2009). As illustrated, our excerpts cover a similarly large space as orchestral 
musical selections described in previous work. 
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Figure 3.2. This illustrates the range of ratings for music excerpts collected in this study 
across perceived arousal and valence space. It compares ratings of electronic-based 
excerpts selected by experts with ratings on excerpts originally selected in Eerola et al. 
(2009). As illustrated, our excerpts cover a similarly large space as orchestral musical 
selections described in previous work. 

3.4 Interim Summary 

The objective of the first phase of this study is to produce a stimulus set based on 

modern electronic film music. I assembled a panel of experts to preselect music excerpts, 

then I had the music excerpts rated by naive participants on dimensional emotion scales 

of valence and arousal. Analysis of these ratings show that the electronic music excerpts 

both cover a similarly large emotional range of the orchestral stimulus set produced by 

Eerola et al. (2009), thus showing that electronic music can induce the full range of 
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affective experience as demonstrated previously with orchestral music. Reliability of the 

ratings are accessed by comparing ratings of 40 excerpts originally collected in Eerola et 

al. (2009) with ratings on the same excerpts in this study and the results presented in 

Table 3.4 show that the ratings between the two studies on the same excerpts are 

consistent. 

3.5 Method for Performing Musical Feature Analysis 

The methodology of the next phase of this study consists of performing feature 

extraction, feature selection, prediction, and evaluation components in order to explore 

the potential for developing a personalised music affect induction system that can predict 

emotional responses of individuals based on qualities of the music presented to them. The 

Essentia library (Bogdanov et al., 2013) is used to extract 443 spectral, rhythmic, and 

tonal features from each excerpt of music and to compute summary statistics for each 

feature: the minimum, maximum, median, mean, variance, mean of the derivative, 

variance of the derivative, mean of the second derivative, and variance of the second 

derivative for each feature across the excerpts; these features are listed in Table 3.5. The 

features can broadly be classified as being related to rhythm, tone, and low-level features. 

Many of the low-level features are related to timbre, but some have no obvious musical 

correlate. 

 

 

 

 

 

 

 

 



	 59	

Table 3.5 Musical Features extracted with Essentia Toolbox 

Group Abbreviation Features  
Low-level features L Average Loudness Energy of the Barkbands 

Energy of the Erbbands 
Energy of the Melbands 
Dissonance 
Dynamic Complexity 
HFC (High Frequency Content) 
Pitch Salience 
Silence Rate 
Spectral Centroid 
Spectral Complexity 
Spectral Energy 
Spectral Energy Band High 
Spectral Energy Band Low 
Spectral Energy Band Middle High 
Spectral Energy Band Middle Low 
Zero Crossing Rate 
GFCC (Gammatone Feature Cepstral Coefficients) 
MFCC (Mel-Frequency Cepstral Coefficients) 

Rhythm features R Beats Loudness 
Beats Loudness Band Ratio 
BPM (The mean of the most salient tempo) 
BPM Histogram 
Onset Rate 

Tonal features T Chords Changes Rate 
Chords Number Rate 
Chords Strength 
Key Strength 
Chords Histogram 
HPCP (Harmonic Pitch Class Profile) 

 

 The next step is to reduce the dimensionality of the feature vector. There are three 

motivations for this process. First, with too many features (greater than 10% of sample 

size) the regression algorithms will likely overfit the data. Second, the features often 

contain a large amount of redundant information. Finally, there is often no direct 

correspondence between individual low-level music features and perceptual music qualities 
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– which means drawing a conceptual relationship between some low-level features and 

emotional responses would be very difficult. Grouping these features into factors that map 

on to psychological constructs clarifies the contribution of some of these low-level features 

to emotional response. 

 For this task, I implemented factor analysis with oblimin rotation. An oblique 

rotation is chosen because it allows factors to be correlated with one another - this makes 

sense in the context of music features because musical effects are often composed of a 

combination of features and the effects of combined features on emotional perception are 

additive (Eerola et al., 2013). The number of factors generated are chosen through parallel 

analysis, and of those created, those that correlate with emotional responses are kept for 

further analysis. I then use Random Forest feature selection to a) identify which factors 

contribute to emotional response, and to b) examine their partial dependency plots and 

explain in which ways they are contributing to emotional responses.  

 For developing a predictive model for music emotion, three models are evaluated 

as potential solutions: Multiple Linear Regression (MLR), Support Vector Regression 

(SVR), and Random Forest Regression. MLR is a standard regression algorithm that 

assumes linear effects of features and is often used as a baseline model to which other 

models can be compared, whereas SVR and Random Forest regression are able to 

approximate non-linear functions and are more suitable when relationships may not 

necessarily be linear. The SVR accomplishes non-linearity through the use of a kernel 

function, and it optimises the generalization bounds for regression through a loss function 

that is used to weight the actual error of the point with respect to the distance from the 

correct prediction. The SVR available in Matlab R2016a is used for this. Random Forest 

is a bagging technique comprised of a collection of decision trees; each node of the tree 

takes an input variable and selects a sub-branch based on the node criteria. This input is 

passed down the tree to a leaf that makes a decision on the output. In Random Forest, 



	 61	

all trees provide a vote and the result with the highest number of votes wins. Random 

Forest is amongst the most popular and successful algorithms in use currently. 

For evaluation of the models’ performances, ten iterations of 10-fold cross-

validation are performed on each model. The performances of regression models are then 

compared using Wilcoxon signed rank test. 

3.6 Results of Music Feature Analysis 

3.6.1 Selecting Factors 

Parallel analysis, performed using the psych package in R, determined that from 

443 independent musical features, 15 is the optimal number of factors. The R package 

uses Ordinary Least Squares (OLS) to find the minimum residual (minres or MR) solution. 

A scree plot from the parallel analysis is shown in Figure 3.3. A table of factor loadings 

for each music feature is presented in Appendix B. 
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Figure 3.3. Scree plot of parallel analysis which suggest the extraction of 15 factors. The 
acceleration factor (AF) corresponds to the second derivative of the plot, and thus 
identifies where the ‘elbow’ of the plot occurs. The optimal coordinates (OC) corresponds 
to an extrapolation of the preceding eigenvalue by a regression line between the eigenvalue 
coordinates and the last eigenvalue coordinates.5 

3.6.2 Understanding which factors contribute to emotional response 

I perform Random Forest feature selection to identify factors that contribute to 

the emotional ratings, where the mean affective ratings for felt arousal and felt valence 

are set as outcome variables and the factor scores for each music excerpt are set as 

predictor variables. Felt (as opposed to perceived) ratings are chosen because the goal is 

to predict emotional response to better induce affect in subjects. Variable importance is 

                                     
5 nFactors R Package: https://cran.r-project.org/web/packages/nFactors/index.html 
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determined by incremental node impurity of variables, which in terms of regression forests 

refers to the increase in residual sum of squares if a variable is randomly permuted. 

From examining the node impurity plot in Figure 3.4, I can observe that four 

factors are contributing to the arousal response to music excerpts. Factor MR14 is chosen 

as the cut-off because its impurity is almost a factor of two greater than MR9, and factors 

following MR9 make no significant difference to node impurity. The four factors chosen 

for arousal consist of three factors that appear to represent timbral qualities of the music, 

and one (MR14) that has a rhythmic component to it. This is not surprising, as both 

timbre and rhythm are consistently linked to the energy or intensity of the music in the 

literature (Gabrielsson & Lindström, 2001; Lu, Liu, & Zhang, 2006). The partial 

dependency plot in Figure 3.5 shows these factors to have a monotonic relationship with 

arousal ratings – an increasing relationship with factors MR1, MR11, and MR14, and a 

decreasing relationship with MR2. MR2 is composed of factors related to spectral flatness, 

entropy, and kurtosis, which would indicate that it is likely capturing a timbral quality 

related to the level of smoothness (vs. spikiness) in the timbre. Its inverse relationship 

with arousal would indicate that as the timbre becomes more spiked, emotional arousal 

increases. Also included in this factor is the dissonance feature, which has a negative 

impact on the factor, and thus an increase in dissonance is related to an increase in arousal. 

MR1 is constructed from higher order moments of spectral features, which indicates that 

this factor represents articulatory qualities in timbre, or Attack Decay Sustain and Release 

(ADSR). As articulations become more pointed, punchy, or choppy, arousal is likely to 

increase. This is reflected by the monotonic increasing relationship shown in the figure. 

MR11 is comprised of moments taken from spectral contrasts coefficients, and would seem 

to indicate a component of noise within the timbre. As shown in the figure, as noisiness 

in the timbre increases, so too does the experience of arousal. Lastly, MR14 is composed 

of silence rate, spectral RMS, spectral energy, and spectral flux; and represents a rhythmic 
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component. As demonstrated in the partial dependency plot, as this rhythmic component 

increases, so does the experience of arousal in participants. 

 
Figure 3.4. Graph of Node Impurity in factor selection for arousal as determined through 
Random Forest. The drop off after MR14 suggest that 4 factors are sufficient. 
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Figure 3.5. Partial dependency plot of factors and arousal. The first four plots from the 
top left indicate the factors chosen to contribute to arousal. The y-axis represents factor 
score whereas the x-axis represents affective ratings. 

Examining the node impurity plot for valence, in Figure 3.6 reveals that two factors 

primarily contribute to the affective valence responses, MR4 and MR2, both of which are 

composed of timbral variables. Valence has often been associated with tonality and timbre; 

typically, timbres with higher numbers of harmonics and dissonant tonalities have been 

associated with negative valence (Blood, Zatorre, Bermudez, & Evans, 1999; Koelsch, 

Fritz, v. Cramon, Müller, & Friederici, 2006). MR4 has a monotonically increasing 

relationship with valence responses and is comprised entirely of spectral contrast and 

spectral valley features which indicates that as timbre becomes more dynamic, valence 

response increases – that is, emotional response becomes more positive. As with arousal, 

MR2 has a monotonically decreasing relationship - as timbre becomes more pronounced 

valence becomes more negative. 
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Figure 3.6. Graph of Node Impurity in factor selection for valence as determined through 
Random Forest. The drop off after MR2 suggest that 2 factors are sufficient. 
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Figure 3.7. Partial Dependency plot of Factors and valence. The first 2 plots indicate the 
factors chosen to contribute to valence. 

3.6.3 Using factors to predict average emotional responses 

Once contributing factors are identified, I want to determine if these factors could 

be used to form predictive models of emotional responses. In order to accomplish this, I 

evaluate three machine learning models that are commonly used in regression problems: 

Linear Regression, Random Forest Regression, and Support Vector Regression – these 

models provide an understanding of the predictive power of the musical factors. I perform 

the evaluation using ten iterations of 10-fold cross-validation on the machine learning 

algorithms in Matlab2016. The performance of these models is shown in Figure 3.8 and 

Figure 3.9, and are determined to be equivalent in predictive value through a Wilcoxon 

comparison (used to detect significant differences). The figures indicate that it is indeed 

possible to use these basic models and musical factors to predict averaged emotional 
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ratings on ratings scales of 1 to 9 within a deviation of about 0.88 for arousal and about 

1 for valence, and that factors can be extracted from the musical excerpts that can form 

predictors for emotional responses. This indicates that it may be possible to use musical 

features to create more fine-grained personal affective induction models in future studies. 

 
Figure 3.8 Ten iterations of 10-fold cross-validation is performed on 3 standard machine 
learning models to determine the predictive ability of the musical factors. This figure 
shows the performance of these algorithms in predicting arousal ratings for music excerpts. 
There was no significant difference in performance between algorithms. 
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Figure 3.9  Ten iterations of 10-fold cross-validation is performed on 3 standard machine 
learning models to determine the predictive ability of the musical factors. This figure 
shows the performance of algorithms in predicting valence ratings for music excerpts. 
There was no significant difference in performance between algorithms. 

3.7 Chapter Conclusion 

This study is designed to identify a set of electronic music that could be used to 

effectively induce affective responses in individuals, to validate that these excerpts could 

be as effective in inducing emotional responses as commonly used orchestral excerpts, to 

identify components of the music that contribute to the emotional responses, and to 

validate that these components could be used to predict the averaged emotional experience 

induced by the music excerpts. This study shows that electronic music can effectively 

induce self-reported emotion in individuals. The felt emotional responses to the music 

excerpts presented covered the majority of the two-dimensional affective space and a large 

emotional range, similar to that of the orchestral excerpts taken from Eerola et al. (2009). 

This chapter highlights key factors in music that induce affective responses and 

demonstrates the ability of these factors to predict general affective ratings of the 
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electronic music stimulus set. This is an important validation step towards the 

development of an individualised affect induction system because it shows that not only 

is electronic music effective in inducing affect in individuals, but also that specific music 

factors can be extracted to develop predictive affect models. 
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Chapter 4 Predicting 

Individual Emotional 

Responses 

4.1 Introduction 

While it has been shown, on average, that the manipulation of certain music 

components affect the self-reported emotional responses to music excerpts (see Section 

3.6.3), still not much research has been conducted to understand how musical components 

affect emotion at the individual level. Individual differences such as people’s personalities, 

social influences, musical listening history, and preferences can all factor into an 

individual’s emotional experience when listening to an excerpt of music. The necessity of 

understanding and accounting for these factors in affect induction has been made clear in 

the literature (Juslin & Västfjäll, 2008), and failing to account for them can lead to 

inconsistencies in study results, failure to replicate in psychological studies, and the 

inability to systematically control variables. The ability to better explain the relationship 

between music and emotion at an individual level, will not only improve the psychological 

research, but also has implications for applied fields. For example, this understanding 

could expand the possibilities of music therapy, by giving music therapists the ability to 

more precisely identify emotional music for a particular patient. In entertainment 

applications, such as film and videogames, this research could also give the creators the 
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ability to create more personalised and adaptive musical experience, allowing the game or 

content to respond to the human’s own emotional response. 

4.2 Chapter Goals/Objectives  

In this chapter, I lay the foundation for developing a personalised emotion 

prediction system. The aim of this system is to predict an individual’s emotional response 

to novel excerpts of music (i.e. excerpts they haven’t listened to), based on their emotional 

rating responses to music excerpts that they have already listened to. This research 

consists of three steps. In Section 4.3 I highlight the differing emotional responses to music, 

by comparing responses to similar emotional music features at the cohort level (i.e. 

grouping individuals who exhibit similar emotional responses). This exploratory step 

provides a coarse view of the individual differences that exist within emotional responses 

to musical features, and highlights the need for more personalised emotion induction in 

psychological research. In Section 4.4, I implement and evaluate several standard 

approaches to collaborative and content-based recommendation systems for developing 

the personalised emotion prediction system. These recommender systems are designed to 

produce personalised experiences for the user, and serve as baseline measures of the 

potential success in developing a personalised music emotion induction system. Section 

4.5 extends existing recommender research with the development and evaluation of a novel 

content-based Convolutional-Recurrent Neural Network (CB-CRNN). 

4.3 Discovering and comparing emotional responses between similar individuals 

Although there are statistically significant relationships between specific musical 

features and emotional responses (see Chapter 3), there are also clear individual differences 

in the mapping between music and emotion. Many factors contribute to an individual’s 

emotional responses while listening to music, and these factors often result in different 

people experiencing different emotional responses when listening to the same musical 
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features. In this study, I highlight these differences at a coarse level through the extraction 

of ‘emotional cohorts’, or groups of individuals that display similar emotional responses 

to musical features.  

4.3.1 Procedure 

For this study, I used the ratings data for the electronic music stimulus set 

developed in Chapter 3. However, given that the focus in Chapter 3 was on the 

identification of musical features with emotional qualities, relatively few individuals rated 

each specific excerpt. This presented a challenge when trying to use the data from this 

same stimulus set for identifying individual differences in emotional response and 

extracting cohorts. The study in Chapter 3 was designed with four groups of about 15 

raters per musical excerpt with no crossover participants between groups, meaning no 

participants in different groups listened to the same music excerpt. Thus, to identify 

cohorts of people with similar emotional response to similar music features, I first 

combined (through clustering) all music excerpts with similar emotional music features 

into a single entity (i.e. cluster). I then averaged each individual’s arousal or valence 

rating for each excerpt they rated within a music cluster, and considered that to be a 

measure of an individual’s emotional response to the music features of that cluster. In this 

way, I was able to construct cohorts of individuals with similar emotional responses to 

music regardless of whether they listened to and rated the same excerpts or not. 

4.3.2 Method 

4.3.2.1 Music clustering 

The first step was to identify similar low-level features that define clusters (groups) 

of musical excerpts with common emotional properties. K-means is commonly used as a 

method for grouping musical excerpts according to low-level features, and has been applied 

in the development of several music recommendation solutions (McFee, Barrington, & 

Lanckriet, 2012; Pauws & Eggen, 2002; Schedl, Knees, McFee, Bogdanov, & Kaminskas, 
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2015). As such, I used k-means clustering on the music excerpts from Section 3.3, with 

musical feature vectors constructed of the top 30 most relevant musical features from both 

the arousal and valence conditions (identified in Section 4.4.2.3). 

4.3.2.2 Cohort development 

Similarly, the k-means method was also used to develop cohorts of individuals 

(Dakhel & Mahdavi, 2011; Ungar & Foster, 1998). After averaging each user’s ratings for 

musical excerpts within each cluster (i.e. groups of music with similar affective features), 

I applied k-means again to identify cohorts of individuals who had similar emotional 

responses. This revealed connections between sets of affective musical features and cohorts 

of individuals with similar emotional responses. 

4.3.2.3 Gap analysis for determining the optimal k in k-means 

 As a divisive clustering technique (i.e. a technique that splits data points into 

exclusive clusters based on their distances from neighbouring points), it is necessary to 

determine the optimal k number of clusters to divide the data into. To determine the 

optimal k, I used the gap statistic, which is a standard heuristic for determining the 

optimal number of clusters for each analysis (Tibshirani, Walther, & Hastie, 2001). The 

gap statistics are computed by running the k-means clustering algorithm i times and 

calculating the difference between the log mean dispersion of a bootstrapped sample of a 

reference distribution, 

𝐸&∗{𝑙𝑜𝑔(𝑊.)},      ( 4.1 ) 

and the log mean dispersion of the original dataset, 

𝑙𝑜𝑔(𝑊.).             ( 4.2 ) 

Dispersion is defined as the sum of all point distances from the cluster mean 

𝑊. =	∑
4
5&6

𝐷8.
894 ,      ( 4.3 ) 

where nr is the number of data points in cluster r, and Dr is the sum of the pairwise 

distances for all points in cluster r. The gap is thus defined by the equation 
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𝐺𝑎𝑝&(𝑘) = 	𝐸&∗{𝑙𝑜𝑔(𝑊.)} −	 𝑙𝑜𝑔(𝑊.),   ( 4.4 ) 

where n represents the sample size, k is the number of clusters being evaluated, and 𝑊. 

is the within-cluster dispersion. 

For the gap analysis system, 500 iterations of bootstrapping were implemented 

using the factoextra package in R, and the firstmax method. The firstmax method gives 

the location of the first local maximum, which is then used as the optimal number of 

clusters.  

4.3.2.4 Semantic annotations for cohorts and music clusters 

As a further step in analysing the musical clusters, expert excerpt annotations 

collected in the previous study (Section 3.2.1) were used to identify the musical qualities 

(i.e. articulation, volume, timbre, harmony, tempo, rhythm, mode, and pitch) that 

characterised each emotional music cluster. While these annotations came from a 

relatively small sample of experts and did not fully represent all musical pieces in the 

clusters, they provided a broad semantic description of each cluster’s musical features. 

These annotations assisted in understanding the make-up of music in different clusters, 

and helped provide a tangible understanding of how different cohorts of individuals have 

differing emotional experiences to the same musical features. For example, these semantic 

labels can help a reader distinguish the difference between clusters with fast and slow 

tempo, or firm and flowing rhythms. For each music excerpt cluster, the annotations are 

summed to show how frequently experts associated the music of that cluster with the 

given semantic quality. 

4.3.3 Results 

In this section I evaluate the results of music clustering procedure, and cohort 

discovery for arousal and valence conditions. 
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4.3.3.1 Music clustering 

The first step in cohort development is identifying clusters of music excerpts with 

similar emotion-related music features (as determined in section 4.3.2.2). Gap analysis 

(shown in Figure 4.1) determined the optimal number of clusters to be four – meaning 

that the 160 music excerpts could be collapsed into four clusters based on the extracted 

emotion relevant features. The optimal number of clusters is determined by the first local 

maximum, however in this case the maximum spans between approximately three and 

five, so I chose the four-cluster solution a reasonable medium given the relatively small 

difference of dispersion between these three clustering solutions, they would result in 

clustering solutions very close in n-dimensional space with very little difference in effect. 

Figure 4.2 shows a plot of the first two principal components extracted for visualization 

of each music excerpt for three, four, and five cluster solutions. These principal 

components were extracted by performing Principal Component Analysis (PCA) on the 

42 music excerpt feature vectors that were used for clustering. The PCA representation 

is a useful method for visualizing how the excerpts are similar or different in 2D space. As 

seen in Figure 4.2, the plot demonstrates very little separation between the three-, four-, 

and five-cluster solutions in the two largest component axes.  

To semantically characterise each of the four music excerpt clusters, I examined 

the experts’ annotations of the musical excerpts in each cluster. Figure 4.3 shows these 

annotations in a graphical representation. Each cluster is described according to the 

frequency of qualities in each semantic space (i.e. articulation, volume, mode, pitch, 

rhythm, tempo, and harmony). Cluster 1 is described by its pointed articulation, flowing 

rhythm, medium to slow tempo, medium-low pitch, and medium-soft volume. Also of 

note, many of the excerpts in Cluster 1 include clarinet, plucked strings, piano, and 

pitched percussion. Cluster 2 is comprised of excerpts that feature medium-high pitch, 

contrasting bright and dark timbres, fast tempo, firm rhythm, medium to high volume, 

and choppy or pumping articulation. The excerpts of Cluster 3 are mostly in minor mode, 
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low-pitched, dark in timbre, with dissonant harmony, and slow to medium tempo. Cluster 

4 excerpts are primarily major in modality, medium-pitched, rhythmically flowing, and 

low to medium tempo. 

 
Figure 4.1. A line graph showing the results of gap analysis on the first step of clustering 
music excerpts, and illustrating that the optimal number of music clusters is four. The 
optimal number of clusters is determined by the first local maximum, which is a standard 
indicator used in Gap Analysis. 
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Figure 4.2. Shows the first 2 principal components plot on two-axes for three, four, and 
five cluster solutions respectively. The plot demonstrates very little separation between the 
solutions in the two largest component axes. 
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Figure 4.3. Radial plot depictions of the experts’ annotations for musical excerpts, 
averaged across clusters. The coloured lines refer to the cluster numbers, and the 
percentage to the percentage of excerpts within a cluster that were associated with the 
semantic quality. 



	 80	

4.3.3.2 Arousal cohorts 

After forming clusters of music with similar emotional features (as in Section 

4.3.3.1), I used those clusters to identify cohorts of individuals with similar arousal and 

valence responses to the excerpts within a cluster. This approach segments users based on 

similar responses to similar content.  

First, I assessed arousal cohorts. Participants’ arousal ratings for excerpts lying 

within each music cluster were averaged, resulting in four ratings per participant (i.e. a 

mean rating for each cluster). These ratings were used to group (segment) participants 

into cohorts. As such, we can predict how any given participant will rate a novel musical 

excerpt based on how others in their cohort rated that music. Gap analysis, shown in 

Figure 4.4, determined that the optimal number of participant cohorts for arousal was 

six. The cohorts are visualized in Figure 4.5, which shows a clear separation on the first 

two principal components. The optimal number of cohorts was determined by the first 

maximum in standard error.  
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Figure 4.4. A line graph, showing the results of gap analysis for arousal cohorts, 
illustrating that the optimal number of cohorts is 6. The optimal number of cohorts is 
determined by the first local maximum, which is a standard indicator used in gap analysis. 

 

Figure 4.5. Shows the first two principal components plotted on two-axes, with a clear 
separation between the arousal cohorts (each point is a person). 
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The next step is compare the emotional responses of cohorts to observe differences. 

As shown in Table 4.1, cohorts of individuals can have contrasting responses to similar 

music features. For example, participants in Arousal Cohort 5 have contrasting emotional 

responses to those in Cohort 4 across all music excerpt clusters. Furthermore, the 

differences between responses are intricate, where two cohorts may respond similarly on 

certain music clusters, but can disagree on others. For example, participants in Arousal 

Cohorts 1 and 6 have similar arousal responses to excerpts in Clusters 1, 2, and 4; but 

differ in the arousal induced by Cluster 3. The variable nature of individuals’ arousal 

responses to musical features, as demonstrated through cluster analysis on these small 

sample sizes, illustrates the need for a more personalised emotional stimulus 

recommendation. As shown in Table 4.1, participants fitting into different cohorts (rows) 

could have contrasting responses to stimuli within the same cluster (columns), making 

consistency in implementation difficult without a personalised recommendation approach. 

Table 4.1 Average normalised arousal ratings as rated by each arousal cohort (rows) for 
excerpts from the different music clusters (columns). 

 Cluster 
Cohort 1  2 3 4 
1 -0.973 1.228 0.201 -0.456 
2 -0.870 0.205 1.244 -0.579 
3 0.539 0.881 -1.296 -0.124 
4 1.062 -0.385 -0.922 0.245 
5 -1.290 0.683 0.781 -0.174 
6 -0.400 1.419 -0.607 -0.412 

 

4.3.3.3 Valence cohorts 

The process described above for identifying groups of individuals (cohorts) that 

respond similarly to musical features was then similarly repeated for valence responses. 

Participants’ valence ratings for each of the excerpts lying within each cluster were 

averaged, resulting in one rating for each of the four clusters, for each participant. These 

ratings were used to group participants into cohorts and the gap analysis, shown in Figure 
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4.6, determined that the optimal number of participant cohorts for valence was four. 

Again, the optimal number of cohorts was determined by the first local maximum. A plot 

of the first two principal components (see Figure 4.7). shows a clear separation between 

valence cohorts. As in Section 4.3.3.1, several very close maxima appear together and so 

the median was selected.  

 
Figure 4.6 A line graph showing the results of gap analysis for valence cohorts, illustrating 
that the optimal number of cohorts is four. The optimal number of clusters is determined 
by the first local maximum, which is a standard indicator used in gap analysis. 
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Figure 4.7 Shows the first 2 principal components of valence cohorts plotted on two-axes 
(each point is a person). 

As seen in Table 4.2, it appears that cohorts of individuals (rows) can have 

contrasting valence judgements to similar music clusters (columns). For example, while 

participants in Cohort 4 found excerpts of Cluster 1 to be of negative valence, participants 

of Cohort 1 found them to have a positive valence. As with the arousal condition (Section 

4.3.3.2), it appears that individual differences can play a large role in the emotional 

experience of the music excerpt, so failure to account for individual differences could 

interfere with the ability to produce reliable experimental results in affective research. 

Once again, the undeniable clustering of valence cohorts was exhibited even by this small 

sample of individuals. This validated the need for a personalised prediction system that 

can intelligently recommend music in such a way that the individual’s unique emotional 

responses are reflected. 
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Table 4.2. Average normalised ratings; showing how each valence cohort (rows) rated 
excerpts from music clusters (columns). 

 Cluster 
Cohort 1 2 3 4 
1  0.731 0.255 -1.294 0.309 
2 0.860 -0.887 0.524 -0.496 
3 -0.114 1.274 -0.768 -0.393 
4 -1.068 0.743 0.141 0.184 

 

4.4 Developing recommender systems 

In Section 4.3, cohorts of individuals were extracted from the ratings collected in 

Chapter 3. The development of the cohorts in Sections 4.3.3.2 and 4.3.3.3 highlights, at a 

coarse level, that there are individual differences in the emotional responses to music, and 

thus supports the need for a more personalised music affect induction system for 

psychological research. In the next section I evaluate several existing recommendation 

techniques that could be used to develop a more personalised music emotion induction 

system for researchers to use for more controlled emotion induction. 

4.4.1 Procedure 

In recommender systems, content-based and collaborative filtering techniques can 

be used to better predict individuals’ preferences and responses to novel items. I looked 

at several variations of both content-based filtering and collaborative filtering approaches, 

to evaluate their performance in making personalised recommendations of music excerpts 

from the electronic music stimulus set. The content-based filtering approach to 

recommendation engines is built on the premise that similar content will be rated 

similarly, so if music excerpts have similar music features, they will be rated as emotionally 

similar by individuals. Collaborative filtering on the other hand, does not use information 

about the musical features, instead assuming that individuals with similar rating patterns 

are likely to rate novel items similarly. As such, collaborative filtering approaches identify 
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different cohorts of individuals who have been found to rate items similarly, in order to 

predict future rating behaviour for novel items. For example, in the context of music 

excerpts, if two participants are in the same given cohort, and participant A has rated an 

excerpt that participant B has not, we can assume that participant B would give a similar 

rating to that provided by participant A. 

4.4.2 Methods 

4.4.2.1 Collaborative and content-based filtering 

I evaluated five different collaborative and content-based filtering systems:  

1. item average,  

2. user-based collaborative filtering,  

3. item-based collaborative filtering,  

4. singular value decomposition approximation, and  

5. distance-weighted knn algorithm (content-based). 

The first method, known as the item average approach, is a non-personalised 

approach that simply takes the average rating for each excerpt and uses that average to 

fill in missing user ratings. This method functions as a good comparison for more 

personalised recommendation techniques. 

The second approach, user-based collaborative filtering, predicts ratings based on 

a person’s ‘nearest neighbours’ – that is, the n users that have ratings most similar to 

theirs. For this study, n was set at five and the distance function used was cosine 

similarity. 

The item-based collaborative filtering approach, assumes that users will rate similar 

items similarly. Similarity of items in this technique is calculated based on similar item 

ratings, and ratings are predicted as a result of a participant’s ratings on similar items. 

 The singular value decomposition (SVD) approximation is a popular matrix 

factorisation technique used in recommender systems. This collaborative filtering 
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technique decomposes a m×n ratings matrix (e.g. m participants, n music excerpts) into 

three matrices using SVD:  

1. U: m × r matrix (m participants, r latent factors) 

2. S: r × r diagonal matrix (strength of each latent factor) 

3. V: r × n matrix (r factors, n music excerpts) 

The predictions are then generated by multiplying the product matrix U and diagonal 

matrix S by the transpose of matrix V. 

The final approach evaluated is a standard content-based filtering algorithm known 

as distance-weighted knn. The knn approach to content-based recommendation typically 

serves as a baseline for comparisons of recommendation solutions (Davidson et al., 2010; 

Linden, Smith, & York, 2003). The objective of the distance-weighted knn is to give the 

ratings of music excerpts that are nearer in n-dimensional space greater influence.  Like 

item-based collaborative filtering, content based filtering is built on the assumption that 

users will rate similar items similarly. However, the similarity in content-based is 

computed based on an item’s features (attributes) and not participants’ ratings. The 

development of the distance-weighted knn algorithm is accomplished in four steps: 

1. Extracting feature vectors that describe each item. 

2. Taking the inverse of absolute difference for k nearest neighbours (k=5). 

3. Dividing each inverse distance by the sum of all inverse distances (the resulting 

inverse distances sum to 1). 

4. Multiplying each of five k-nearest neighbours’ ratings by their inverse distance, and 

summing the result to produce the predicted rating. 

Crucially, for each of the collaborative and content filtering techniques described 

above, I held out 5% of ratings from 30% of participants as novel test data. This allowed 

for the system to be tested on excerpts that were not used in training the models. 
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4.4.2.2 Feature extraction for content-based filtering 

One of the challenges of creating a content-based recommender system for 

personalised music emotion induction is selecting appropriate musical features that 

correspond with individual differences in the experience of emotion. In the previous study 

(Section 3.6.3), I used factor analysis to demonstrate that, when averaging across 

individuals, musical features could be extracted to predict the emotional state induced by 

music. In the present section, for the development of a more personalised emotion 

prediction system, I focused on the more granular attributes that could be combined in 

individualised ways, utilising the features extracted in Section 3.5. These are standard 

musical features, many of which are used in many Musical Information Retrieval (MIR) 

studies on emotional identification in music. 

4.4.2.3 Feature selection for content-based filtering 

In general, using too many or too few features can lead to ‘overfitting’ or 

‘underfitting’. In such cases predictive models would be poor at generalising because they 

would either (a) be too specific to the original training data, or (b) not learn enough 

relevant information to form good predictions. I therefore use the ReliefF feature selection 

algorithm to find the most important musical features for predicting arousal and valence. 

As opposed to other feature selection methods such as the correlation coefficient, 

information gain, and signal to noise ratio, ReliefF feature selection takes feature 

interrelationship into account in selecting the best features (Yang & Chen, 2011). To 

determine the number of features to retain from the ReliefF weighting, I implement an 

At Most One Change (AMOC) changepoint analysis using the ChangePoint package in 

R. For this changepoint analysis I set the parameters to test for changes in the mean and 

variance of the sequence of ReliefF weight values, to identify any significant change in the 

sequences’ normal distribution (Hinkley, 1970). I set the methods penalty to ‘asymptotic’ 

with a penalty value of 0.05 to ensure that changepoints are detected with 95% confidence. 

The benefit of this approach is that as opposed to arbitrarily selecting a number or 
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percentage of features to retain, the selection is made based on statistically significant 

changes in the ReliefF weighting distribution. The results of the changepoint analysis are 

shown in Figure 4.8 and Figure 4.9 for arousal and valence respectively. The figures show 

with 95% confidence that a changepoint in the mean and variance of the normal 

distribution of ReliefF weights occurs after 35 features for arousal and 32 features for 

valence. From this determination, I selected the 30 highest ranked musical features for 

arousal and valence (resulting in 42 unique features), shown in Figure 4.10 and Figure 

4.11. These ReliefF features were determined by the algorithm to be more highly 

predictive than other individual features of emotion ratings. 

 
Figure 4.8. Graph showing the AMOC changepoint analysis on arousal music feature 
ReliefF weights. A change in the mean and variance was found to occur after 35 features, 
determined with 95% confidence. The red bars shows the cut-off of the first section of 35 
features, and the beginning of the second section (where the mean and variance changes). 
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Figure 4.9 Graph showing the AMOC changepoint analysis on valence music feature 
ReliefF weights. A change in the mean and variance was found to occur after 32 features, 
determined with 95% confidence. The red bars shows the cut-off of the first section of 32 
features, and the beginning of the second section (where the mean and variance changes). 
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Figure 4.10. Bar graph showing the ReliefF weights for the top 30 features extracted for 
arousal using the ReliefF feature selection algorithm. 
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Figure 4.11. Bar graph showing the ReliefF for the top 30 features extracted for valence 
using the ReliefF feature selection algorithm.  
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4.4.3 Results 

This section provides an overview of the experimental results from my evaluation 

of the arousal based and valence based personalised emotion prediction systems.  Five 

methods of recommendation (1 non-personalised, 3 collaborative filtering, and 1 content-

based filter) were evaluated on the four groups of participants 10 times for both arousal 

and valence. I used Root Mean Square Error (RMSE) to measure how well the algorithm 

predicts the actual value rating of individuals for excerpts and participants that were 

withheld. This is important, as the predictions should correspond with actual user ratings 

of excerpts. Also, because the user ratings in this system refer to the magnitude of an 

emotional experience (e.g. very negative or only moderately negative), the systems should 

be able properly predict the magnitude for an individual. 

The results of the recommendation evaluations, presented in Figure 4.12 and Figure 

4.13, illustrate that each personalised recommender (with the exception of distance-

weighted knn and SVD in the arousal predictions), significantly outperforms the non-

personalised recommender system in both arousal and valence predictions. The 

significance of each pairwise comparison between recommender methods is evaluated using 

a Wilcoxon Test with Holms p-value correction and shown in Table 4.3 and Table 4.4. 
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Figure 4.12 A box plot showing the performance of collaborative filtering (CF) and 
content-based filtering (CB) algorithms on personalised arousal predictions. The y-axis 
represents the RMSE scores of the recommenders. Across 10 iterations on four groups of 
participants, the user-based collaborative filtering approach performed best in predicting 
missing user ratings. The error bars represent the variability across iterations. 
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Figure 4.13 A box plot showing the performance of collaborative filtering (CF) and 
content-based filtering (CB) algorithms on personalised valence predictions. The y-axis 
represents the RMSE scores of the recommenders. Across 10 iterations on four groups of 
participants, the item-based collaborative filtering approach performed best in predicting 
emotional response values. The error bars represent variability across the iterations. 

Table 4.3 Results of Wilcoxon Test of significance on the difference in Arousal 
Recommender performances using Holms p-value correction for multiple comparisons. 

Model non-personalised CF user-based CF item-based CF SVD 
user-based CF < .001 

   

item-based CF < .001 < .001 
  

SVD .16 < .001 < .001 
 

weighted-knn CB .63 < .001 < .001 .25 
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Table 4.4 Results of Wilcoxon Test of significance on the difference in Valence 
Recommender performances using Holms p-value correction for multiple comparisons. 

Model non-personalised CF user-based CF item-based CF SVD 
user-based CF < .001 

   

item-based CF < .001 < .001 
  

SVD < .001 1.00 < .001 
 

weighted-knn CB < .001 < .001 < .001 < .001 
 

The user-based collaborative filtering approach (M = 1.14, SD = 0.23) performed 

best in predicting arousal, with the item-based collaborative filtering (M = 1.36, SD = 

0.2) as a close second. Each of SVD (M = 1.71, SD = 0.27), weighted k-means (M = 1.81, 

SD = 0.14) and the non-personalised (M = 1.97, SD = 0.43) recommenders performed 

worse on the arousal condition and showed no significant difference in means. However, 

for the valence prediction, all recommenders significantly outperformed the non-

personalised recommender (M = 2.02, SD = 0.25) with item-based collaborative filtering 

(M = 1.23, SD = 0.27) performing best, followed by SVD (M = 1.37, SD = 0.23) and 

user-based collaborative filtering (M = 1.39, SD = 0.02)6 with statistically equivalent 

performances, and distance-weighted knn (M = 1.82, SD = 0.20). 

4.4.3.1 Discussion 

Overall, results showed that the personalised recommenders performed better at 

predicting how music made people feel, in comparison with the non-personalised 

recommenders. This indicates that it is indeed possible to use the predictions of the 

collaborative and content-based filtering techniques to produce a proxy of people’s felt 

emotions to provide improved music emotion induction in psychological research. 

However, there are still some limitations with these models and the current evaluation of 

them. First, collaborative filtering methods typically require a lot of ratings for each item 

                                     
6 Of note, the variability of participants’ ratings of the valence of music excerpts (SD = 
1.9) was less than that of arousal (SD = 2). 
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or else suffer from the ‘cold-start problem’. The cold-start problem arises when there are 

simply not enough ratings to identify substantial nearest neighbours from which to 

preform precise predictions. Also, standard collaborative filtering methods typical rely on 

a substantial user rating history to make good neighbour comparisons and predictions, 

and they are locked into the dataset for which they are created. This is problematic if a 

user’s mood influences their emotional response, or if researchers want to introduce new 

music excerpts into data sets.  

The content-based filtering approach resolves the issue of the cold start problem 

by depending on the items features, rather than users’ ratings. Content-based filtering 

approaches also allow new stimuli to be introduced to the stimulus set, because they 

predict based on user responses to item features. However, content-based features can 

only work well if the musical features successfully identify and differentiate individuals’ 

emotional responses. In this study, despite the small amount of data, the content-based 

method was outperformed by the collaborative filtering methods, indicating that the 

extracted features may not have been the most useful in differentiating individual 

emotional responses. To resolve this limitation, I introduce a content-based convolutional-

recurrent neural network (CB-CRNN) method in Section 4.5, to personalise feature 

engineering (feature creation) for content-based filtering. 

4.5 Content-based convolutional-recurrent neural network (CB-CRNN) 

In this section, I introduce and evaluate a novel content-based technique based on 

both convolutional (CNNs) and recurrent neural networks (RNNs), which can build 

memory of events and their outcomes over time. Furthermore, given that the features 

used for content-based filtering performed poorly compared to collaborative filtering 

approaches and non-personalised recommendation in Section 4.3.3, I evaluate two state-

of-the-art approaches to music feature extraction - using CNNs and RNNs to extract 

features of music – with the aim of extracting musical features that differentiate 
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individuals’ emotional responses and summarising  those features in a way that accounts 

for the features’ short-term and long-term effects on emotional experience. 

4.5.1 Methods 

4.5.1.1 Feature extraction 

Certain musical features can trigger shorter-term or longer-term effects on 

individuals’ emotional experiences, depending on the features that proceed or succeed 

them in music time. As such, it is important to account for the temporal context when 

predicting individual’s emotional responses to musical features. Thus, in order to develop 

more personalised music affect induction based on musical features, emotional musical 

features must be able to describe time dependent effects. I introduce and evaluate two 

state-of-the-art approaches to music feature extraction that are based on CNNs and RNNs 

and designed to account for the dynamic aspect of emotional experience: kernel=2D, 

convolution=2D (k2C2) and convolutional recurrent network (feature-CRNN) (Choi, 

Fazekas, Sandler, & Cho, 2017). Each approach extracts features from a mel-spectrogram 

representation of the music signal. The mel-spectrogram is a human perception inspired 

time-frequency representation of the audio signal derived by weighted averaging of the 

absolute values squared of a short-term fourier transform (STFT). For this study, I 

computed the mel-spectrogram for 10 second clips of audio from each excerpt and used 

parameters that are commonly used in music information retrieval (MIR): N_FFT = 

2048, N_MELS = 128, HOP_LEN = 256, Sample_Rate = 22050 (Dörfler, Bammer, & 

Grill, 2017). This resulted in a matrix of size 128 × 862 (mel-frequencies × time), meaning 

that each frame size was approximately 0.093 seconds, with a hop length of 0.023 seconds. 

The resulting matrices then represented the audio excerpts in the neural network. Figure 

4.14 illustrates the process of a mel-spectrogram representation being fed into a CNN 

architecture which learns to extract emotional features from the music. The shaded area 

of the square refers to a single 𝑛 × 𝑛 region for which a 𝑛 × 𝑛 convolution is performed. 
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Each layer has 𝑛 convolutional filters that are applied to the output of the previous layer. 

The key benefit of this approach is that the CNN learns features from the mel-spectrogram 

that are highly predictive of emotional experience on an individual basis (see Section 

4.5.2). 

 
Figure 4.14. A mel-spectrogram representation is fed into a convolutional neural network 
architecture on the left, which learns to extract emotional features from the music. The 
shaded area of the square refers to a single 𝑛 × 𝑛 region for which a 𝑛 × 𝑛 convolution is 
performed. Each layer has 𝑛 convolutional filters that are applied to the output of the 
previous layer. 

4.5.1.2 CNN feature extractor architectures 

I used two CNN- and RNN-based approaches to music feature extraction, namely 

k2c2 and feature-CRNN, and evaluated them at 0.1 × 106 and 0.26 × 106 parameters (Choi 

et al., 2017). The full description of each feature extraction model’s layer types, layer 

widths, kernel sizes, maxpoolings, and activation functions are presented in Table 4.5 and 

Table 4.6. 
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Table 4.5 Description of the k2c2+ CNN feature extractor. This model affords time and 
frequency invariances in different scales by gradual 2D sub-samplings. Layer width refers 
to the number of units in each layer (each network is tested at two sizes), kernel refers to 
the size of the convolutional kernel, maxpooling refers to the dimensions of the maxpooling 
applied after each convolutional layer, and activation refers to the activation function 
used. 

k2c2 + 
Type Layer width 

(No. params {0.1, 0.25} × 106) 
Kernel Maxpooling Activation 

Convolution {20, 33} (3, 3) (2, 4) ELU 
Convolution {41, 66} (3, 3) (2, 4) ELU 
Convolution {41, 66} (3, 3) (2, 4) ELU 
Convolution {62, 100} (3, 3) (3, 5) ELU 
Convolution {83, 133} (3, 3) (4, 4) ELU 
Convolution*  {30, 48} (1, 1)  ELU 
Convolution* {15, 24} (1, 1)  ELU 

* Note: 1×1 convolutions were added to reduce the dimensions of the feature vector and 
match the size of CRNN feature vectors for comparison. 

Table 4.6 Description of CRNN feature extractor. This model uses two gated recurrent 
unit layers to summarise local features extracted using 4 convolutional layers. The 
assumption of this model is that there are underlying temporal patterns that are better 
captured by using RNNs than by averaging. Layer width refers to the number of units in 
each layer (each network is tested at two sizes), kernel refers to the size of the 
convolutional kernel, maxpooling refers to the dimensions of the maxpooling applied after 
each convolutional layer, and activation refers to the activation function used. 

CRNN 
Type Layer width 

(No. params {0.1, 0.25} × 106) 
Kernel Maxpooling Activation 

Convolution {30, 48} (3, 3) (3, 3) ELU 
Convolution {60, 96} (3, 3) (2, 2) ELU 
Convolution {60, 96} (3, 3) (3, 3) ELU 
Convolution {60, 96} (3, 3) (4, 4) ELU 
GRU {83, 133}   ELU 
GRU {30, 48}   ELU 
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The first to be evaluated was the k2c2 architecture, and it was constructed of five 

convolutional layers with 3×3 kernels and max-pooling layers ((2×4)-(2×4)-(2×4)-(3×5)-

(4×4)). It was designed initially for the task of music autotagging (Choi, Fazekas, & 

Sandler, 2016) and its ability to capture local time-frequency relationships makes it highly 

suitable for extracting temporal features, such as ostinatos and trills, that effect 

individuals emotional responses (see Section 5.6.2). In addition to the layer specified in 

the original research paper (Choi et al., 2016), I added two 1×1 convolutional layers at 

the end in order to reduce the dimensions of the final music feature vector to match the 

size of feature-CRNN feature vectors for comparison. 

 The second architecture I evaluated was the feature-CRNN, which was constructed 

of four convolutional layers with 3×3 kernels and max-pooling layers (2×2)-(3×3)-(4×4)-

(4×4), followed by two RNN layers with gated recurrent units (GRU) to summarise 

temporal patterns of the CNNs. The summarising of temporal patterns with RNNs rather 

than statistical moments such as mean and standard deviation allow it, like k2c2, to better 

explain the short-term and long-term effects of musical features on emotions. 

4.5.1.3 Gated recurrent units 

RNNs are a type of neural network devised to model variable lengths of sequential 

data, thus making them suitable for time-series. The ability of RNNs to model long term 

dependencies in dynamic temporal data make them ideally suited for use in the 

development of a personalised emotion prediction system that needs to (a) develop a 

memory of an individual’s emotional responses to musical features, and (b) account for 

the effects of temporal musical features on emotional experiences. RNNs have an internal 

hidden state that allows them to integrate input from the current time step and previous 

time steps.  
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A standard of RNN is described by the update function: 

ℎB = 𝑔(𝑊𝑥B + 𝑈ℎBE4)    ( 4.5 ) 

where W and U are weight matrices, 𝑥B is the input at the current time 𝑡, ℎBE4 is the 

previous state, and 𝑔 is an activation function. Intuitively, the weighting matrices can be 

thought of as providing a measure of the influence that a feature of input (current or 

historical) has on the current prediction. However, traditional RNNs suffer from the 

vanishing gradient problem, an issue which prevents the backpropagation process from 

affecting weights for more than a few steps (Bengio, Simard, & Frasconi, 1994). Two of 

the most successful solutions for this problem are the long short-term memory (LSTM) 

(Hochreiter & Schmidhuber, 1997) and the gated recurrent unit (GRU) (Cho, Van 

Merriënboer, Bahdanau, & Bengio, 2014) RNN models, both of which implement complex 

gating mechanisms that allow them to learn arbitrarily long dependencies in time-series 

data. The memory cells of a GRU is illustrated in Figure 4.15. 

 
Figure 4.15. GRU Architecture 

The GRU is potentially useful in two aspects of developing a personalised emotion 

prediction system. First, from the feature extraction perspective, the GRU can capture 
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dynamic aspects such as certain musical features having more immediate or sustained 

effects on emotional responses. Second, from an emotion prediction perspective, the GRU 

can learn which present and historical musical features and subsequent emotional 

responses are highly indicative of an individual’s future emotional responses to music 

features. The innovation in the GRU model is that it uses update and reset gates to decide 

what information from the present and past should pass through and affect the current 

outcome. 

The GRU’s update gate 𝑧B determines how much of the past information is to be 

passed along to the future: 

𝑧B = 𝜎(𝑊I𝑥B +	𝑈IℎBE4)     ( 4.6 ) 

where 𝑥B is the input to the network at time 𝑡, ℎBE4 holds the information about the 

GRU’s activations at previous times, and 𝑊I  and 𝑈I  are their respective weight 

(influence) matrices. The products are summed and a sigmoid activation function is used 

to range them between 0 and 1.  

The reset gate 𝑟B is used to determine how much of the past to forget, and is 

calculated like the update gate: 

𝑟B = 𝜎(𝑊8𝑥B +	𝑈8ℎBE4)     ( 4.7 ) 

with the difference being the value of weight matrices of 𝑊8 and 𝑈8. The reset gate is then 

used to form a memory content: 

ℎKB = 𝑡𝑎𝑛ℎ(𝑊𝑥B +	𝑟B ∘ (𝑈ℎBE4))   ( 4.8 ) 

where the element-wise product between, 𝑟B and 𝑈ℎBE4, determines what to remove from 

previous time steps, and is summed with the product of a weight matrix 𝑊 and input 𝑥B. 

The sum is passed through the non-linear activation function 𝑡𝑎𝑛ℎ. 

The final GRU architecture is defined as: 

ℎB = 	 (1 − 𝑧B) ∘ ℎBE4 + 𝑧B ∘ ℎKN    ( 4.9 ) 
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where the activation ℎB is a linear interpolation between the previous activation ℎBE4 and 

the candidate activation ℎKB. The update gate 𝑧B is used to determine what is collected 

from current memory  ℎKN and previous steps ℎBE4. 

Given these advanced memory cells, RNN models provide the ability to 

continuously predict an individual’s emotional responses throughout time, in relation to 

the responses it has previously observed from the user to other musical features, and to 

emotional patterns it has been trained to predict from other users (training data). At the 

feature level, the models can also summarise the features in a way that accounts for their 

long and short term impact on emotional experience, and use features at the 

recommendation level in a content-based filtering approach. The hybrid collaborative and 

content-based filtering approach created by RNNs captures both explicit content based 

and latent collaborative emotional music features and their relative impact emotion.  

4.5.1.4 Siamese-network architecture 

I used two different siamese network architectures that are based on RNNs. A 

Siamese Network, such as the one shown in Figure 4.16, is a special kind of neural network 

architecture in which two identical branches of a neural network (shared weights) are 

simultaneously fed different inputs and forced to learn a similar representation (Bromley, 

Guyon, LeCun, Säckinger, & Shah, 1994). For example, I want the network to learn how 

a listener’s emotional response changes between two different music excerpts, however I 

only want the network to learn one set of musical features that can explain individual 

emotional responses to music. The Siamese architecture allows for this single 

representation to be learned and is the common choice for tasks that involve finding 

similarity or a relationship between two comparable things. 

 



	 105	

 
Figure 4.16 Example of a siamese network architecture in which: (1) two feature 
extraction branches with identical weights extract features, (2) those extracted features 
are joined through some operation (i.e. addition, concatenation, etc.), and (3) that joint 
representation is then passed through a second path of the network which form the output 
prediction. 

Both Siamese networks are trained on feature vectors constructed from current 

music features (unrated), previous music features (rated), and the previous ratings (affect, 

liking, familiarity), where music feature vectors, are passed through a Siamese network 

before the outputs of which are concatenated with the ratings of the previous music 

excerpt in the session and passed through the rest of the network. The network then 

predicts the person’s rating for the current music excerpt. The architecture for this model 

is shown in Figure 4.17. The RNN approaches are evaluated by splitting participants into 

training (70%) and testing (30%) blocks and performing RMSE on predictions. The Keras 

Python package (Chollet, 2015), which is a deep learning package that combines both 

Theanos and Tensorflow backends, is used for training the RNNs. 
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Figure 4.17 CB-CRNN architecture for affective rating prediction. The model takes three 
inputs: the melspectrogram of rated music excerpts, the ratings, and the melspectrogram 
of unrated music excerpts. The model outputs the predicted emotion ratings of the unrated 
music excerpts. 
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4.5.2 Results 

For each condition (arousal and valence), I evaluated 54 parameter configurations 

for the CB-CRNN using the Hyperopt python package (J. Bergstra, Yamins, & Cox, 2013), 

which implements tree-structured parzen estimators (J. S. Bergstra, Bardenet, Bengio, & 

Kégl, 2011), to determine the best combination of learning rates, dropout rates, CNN 

feature extractor, and RNN units. The objective of the hyperparameter optimization is to 

discover parameters that neither overfit nor underfit the training and testing data. Each 

model is optimised using RMS propagation, with a 50% decay rate of the learning after 

every 10 epochs. All models significantly outperform the non-personalised and content-

based model evaluated in Section 4.4.3. 

The performance of the Siamese models (k2c2 and CRNN) are compared with the 

results of the five standard models presented in Section 4.4.3. The best performing arousal 

model (RMSE 1.66), outperformed each of SVD (M = 1.71, SD = 0.27), weighted-kmeans 

(M = 1.81, SD = 0.14) and the non-personalised (M = 1.97, SD = 0.43). Similarly, the 

best performing valence model (RMSE 1.61) outperformed the distance-weighted knn (M 

= 1.82, SD = 0.20) and the non-personalised recommender (M = 2.02, SD = 0.25). In 

both cases, the k2c2 feature extraction architecture outperformed the CRNN. 
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4.6 Chapter Conclusion 

In this chapter I performed three studies to show that there are individual 

differences in emotional responses to musical features, and that personalised emotion 

prediction systems are better suited for predicting emotional responses than non-

personalised approaches. In the first study, cohort analysis revealed that a group of 

relatively homogeneous individuals can vary greatly from other groups in their emotional 

responses to musical features. I then evaluated the predictive ability of five 

recommendation approaches in predicting individuals’ emotional responses based on the 

responses of similar people (collaborative-filtering), or similar musical features (content-

based filtering), showing that these personalised methods outperform non-personalised 

prediction. As a final step, I showed the advantages of CNN and RNN methods in their 

ability to (a) create custom feature extraction and (b) predict the emotional responses of 

an individual based on their previous responses. 

While these results are promising for the personalised emotion prediction system, 

the stimulus set used for the evaluation was still quite small (120 excerpts). Furthermore, 

the number of participants used to develop these cohorts was also relatively small. 

Subsequently, this limitation demanded further investigation to determine whether these 

methods would still be effective using a larger database of music stimulus and greater 

population of participants. As such, in Chapter 5, I further develop the personalised 

emotion prediction system by conducting a similar experiment to Chapter 4 with far 

greater quantities of data (i.e. with a database of over 1,307 manipulated audio loops and 

approximately 2,000 participants to provide emotional ratings). 
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Chapter 5 A Reliable 

System for Personalised 

Emotion Prediction 

5.1 Introduction 

The purpose of this study is to further develop the personalised prediction 

techniques that were introduced in Chapter 4 (i.e. collaborative and content-based 

recommender systems), to account for individual differences and more precisely predict 

emotional response. Most notably, one of the techniques introduced was a novel content-

based Convolution-Recurrent Neural Network (CB-CRNN) model that uses combinations 

of RNNs and CNNs to (a) generate music feature representations, and (b) predict a 

participant’s individual emotional response to music excerpts.  

In the previous study (Section 4.4), the collaborative filtering techniques (i.e. user-

based and item-based), consistently outperformed both the content-based techniques (i.e. 

distance-weighted knn and CB-CRNN) and the non-personalised emotion prediction 

model in predicting individuals’ emotional responses to music stimuli. This is not 

surprising given that collaborative filtering techniques tend to perform well when there 

are large user and item spaces as they rely on similarities between users or items to 

calculate ratings. As such, within a largescale emotion induction research setting (using a 

finite set of prepared stimuli), collaborative filtering techniques appear to create a valuable 
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prediction model, demonstrating a clear performance advantage over non-personalised 

prediction techniques. 

On the other hand, although outperformed by the collaborative filtering techniques 

in predicting individuals’ emotional responses, content-based techniques offer the benefit 

of being more adaptable than collaborative filtering techniques in the sense that they are 

not limited to the stimulus set on which they are trained (i.e. new stimuli can be 

incorporated without requiring new participant ratings to retrain the model). For example, 

the novel CB-CRNN technique I introduced in Section 4.5 is a Siamese network which 

operates by taking samples of (a) the participant’ s emotional response (i.e. ratings) to a 

set of music excerpts as one input, and (b) a set of unrated musical excerpts as a second 

input, and then combining the output of Siamese branches to predict the participant’s 

response to the unrated excerpts. Theoretically, the excerpts added to either side of the 

Siamese network could be completely novel, as the network is trained to predict on musical 

features, as opposed to querying a collected database of users and item ratings. This would 

be particularly useful for researchers or game developers wanting to introduce new musical 

excerpts as emotional stimuli and predict personalised responses. 

Although the evaluation of collaborative and content-based recommendation 

techniques in Chapter 4 validate that both are more effective than non-personalised 

techniques in predicting the induced emotional responses of participants, there were some 

limitations to that study:  

1. The models were developed on a limited stimulus set (160 excerpts). 

2. The study had a relatively small number of participants (120 participants).  

The present study attempts to address these limitations by (a) using a larger and 

more musically diverse stimulus set (i.e. with a broader range of features), to improve the 

content-based filters’ ability to generalize to music it has not been trained with, and (b) 

recruiting more participants, to increase the probability of “tightly aligned” neighbours for 



	 113	

the collaborative filtering techniques to use in predicting a participant’s emotional 

responses. 

A second goal of this study is to determine whether the personalised emotion 

prediction techniques can be used by researchers and practitioners to develop stimuli that 

manipulate emotional responses. I hypothesized that if the personalised emotion system 

has been trained to predict an individual’s emotional response to a set of loops, then a 

researcher or practitioner should be able to use these predictions to select loops and create 

customized musical compositions that will intentionally induce any given emotion for each 

individual participant (i.e. the person’s predicted responses would inform the selection of 

loops to be used in creating the musical composition, allowing the system to select loops 

that will induce the particular emotion). 

5.2 Chapter Goals/Objectives 

This chapter consists of two studies, with several modifications designed to extend 

the previous personalised emotion prediction systems:  

1. I increased the number of participants for this study (1,943 in total).  

2. I increased the number of excerpts that were evaluated (1,307 in total). 

3. I reduced the musical difference between excerpts by creating excerpts that 

were more similar to each other (i.e. variations of each other). This modification 

allows the content-based system to learn at a more resolute level what 

manipulations of musical features result in changes in individuals’ emotional 

responses. It also allows collaborative filtering systems to capture the rating 

differences between highly similar excerpts. 

In Section 5.3, I discuss the development of a new loop-based stimulus set, to collect 

people’s ratings and form an amenable stimulus. Using the personalised emotion prediction 

system, researchers will be able design more effective and reliable emotion induction using 

this loop-based stimulus set. In Section 5.3, I describe the collection of ratings for the new 
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stimulus set. In Section 5.5, I evaluate the recommender techniques introduced in Section 

4.4 and Section 4.5 using the data collected in this study. In Section 5.5, I analyse the 

features of the different content-based filtering techniques, and show how changes in 

musical features can be used to manipulate emotions. Finally, I summarize the results of 

the system in Section 5.6. 

5.3 Development of Stimulus Set 

 For the purposes of this study, I used loop libraries as ‘building blocks’ to create 

the stimulus sets. Loops are useful because they can be combined sequentially and 

simultaneously to quickly and easily create a vast quantity of novel stimuli (i.e. without 

having to create stimuli from scratch). Loops are short (typically 10-30 seconds), self-

contained musical excerpts that can be repeated, and combined horizontally (i.e. 

sequentially in time) or vertically (i.e. in harmony or polyphony), to form larger musical 

compositions. Individual loops are typically in the form of instrumental tracks (e.g. drums, 

bass, pads, strings, etc.) and are presented in libraries (i.e. groups of compatible loops 

that can be combined).  

Typically, loop-based libraries are sold on popular loop websites, such as Producer 

Loops7 and Loop Master8. These websites have demos of the loops that are prepared by 

professional musicians, but the loops themselves are hidden behind a paywall. In this 

section, I discuss the selection and development of a loop-based stimulus set from loop 

libraries.  

5.3.1 Procedure 

As cinematic music is usually designed with the explicit intent of inducing emotions 

across a maximum range of audiences (see Section 3.3), I selected film music again to 

                                     
7 www.producerloops.com 
8 www.loopmaster.com 
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create the stimuli for this study. I identified 19 loop libraries using the single tag 

“cinematic” on three popular loop library websites. However, to be suitable for developing 

stimulus sets, loop libraries were required to be (a) of good quality, (b) able to effectively 

induce emotional states (i.e. Low Arousal, High Arousal, Negative Valence, Positive 

Valence), and (c) easily combined in sequence-based AAC compositions.  

As it is difficult to discern the loops’ construction and quality based on the online demos, 

I used an expert panel to select the initial loop libraries (as in the studies of Chapter 3). 

The experts were limited to (a) the information they could read about the loop library, 

and (b) the audio demo provided on the websites. The expert committee consisted of one 

music professor, four PhD students in music, and one professional musician (see Section 

3.2.1 for expert selection). 

The expert panel was presented with the 19 loop libraries and asked to answer the 

following questions about each, by providing ratings on a 9-point Likert scale (1 = lowest, 

9 = highest): 

1. How well does the loop library represent each of the emotional states (Low Arousal, 

High Arousal, Negative Valence, Positive Valence)? 

2. How do you rate the quality of the loops used in this library? 

3. How difficult would it be for a machine to create music that conforms to the rules 

of music using this library? 

4. How effective would this library be at inducing affect? 

5. Would you recommend that we use this library for our study? 

5.3.2 Results 

The chart in Figure 5.1 shows the normalized (standard score) ratings that the 

experts provided on the quality, difficulty, effectiveness, and recommendation for each 

library in decreasing order of recommendation from left to right (i.e. the library with the 

highest recommendation rating is presented first).  The scale is normalized to a zero mean, 

and I acquired all the libraries for which the experts gave a positive (> 0) or neutral 
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recommendation. This process resulted in the selection of ten loop libraries in total (i.e. 

File_01 to File_18 in order of the chart). 

 

 
Figure 5.1 A column graph showing the expert panel’s normalized ratings for the quality, 
difficulty, effectiveness, and recommendation of each library. Results are presented in 
decreasing order of recommendation (i.e. highest recommendation first, from left to right). 
The first ten libraries exhibiting positive or neutral recommendations (i.e. File_01 to 
File_18), were selected for further consideration. 

As seen in Figure 5.1, most of the acquired libraries also received positive ratings 

in the other categories (i.e. quality, difficulty and effectiveness); the exceptions being 

“File_03 and “File_19”, which experts suggested may be difficult to use in a sequenced-

based AAC system. However, upon acquiring the libraries, only eight files were kept for 

further preparation, with two (i.e. “File_06” and “File_08”) excluded because they were 
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determined to be too difficult to use in sequence-based AAC systems9. This selection 

process ultimately resulted in the selection of eight loop libraries to be used as ‘building 

blocks’ in the construction of the stimulus sets. 

5.3.3 Stimulus Preparation 

There were found to be two different types of loop-based libraries within the final 

selection of files. Each loop in the first type of library contains an instrumental layer (e.g. 

drums, synth, etc.) and is grouped into pre-composed music excerpts that share attributes 

(e.g. key and tempo) but are free to be combined in any way at any given point in time 

(i.e. sequentially/horizontally or simultaneously/vertically). The second type of library 

consists of loops that differ only in instrument type, but are not grouped into pre-

composed music excerpts and are also free to be combined in any way. These tracks also 

share attributes such as key and tempo. 

For the first type of loop, I prepared four excerpts in two ways (1) a full example 

with all voices active (sounding simultaneously), and (2) three partial excerpts randomly 

generated with a 50% chance of dropout on each instrument voice. The dropout simulates 

the effect of musical components being added or removed during a musical composition, 

and allows the personalised emotion prediction system to learn any granular effects that 

the manipulation of musical features can have on individuals’ emotional responses. 

For the second type of loop library, I generated approximately ten examples per 

instrument with a 50% chance of voices dropping out. Ultimately, I produced a stimulus 

set of 1,307 excerpts, based on 240 loop families. 

                                     
9 After exploring the contents, these files were found to be “Construction Kits” rather than 
loop-based libraries. Construction kits are through-composed pieces of music with libraries 
constructed of small cues of music that are designed to fit in at specified times in a musical 
composition (i.e. they are thus unable to be repeated and combined in the same way that 
loop-based libraries are). 
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5.4 Collecting ratings for loop-based excerpts 

5.4.1 Participants 

A total of 1,943 participants were recruited using the CrowdFlower platform1. 

Participants came from 92 countries, including Venezuela (8%), Serbia (7.7 %), the United 

States (6.4 %), India and Russia (6%). Ages ranged from 18 to 75 (M = 33.5, SD = 11), 

with 33% of participants identifying as female. All participants were paid $0.50USD to 

complete the ratings task. 

5.4.2 Procedure 

Participants were presented with 40 musical excepts (see Section 3.2.3 for 

procedure), and asked to answer a set of questions about their emotional response to each. 

Responses were collected as a set of four 9-point Likert scales for each excerpt, on which 

participants rated (a) the level of arousal they felt (1 = low, 9 = high ), (b) the level of 

valence they felt (1 = very negative, 9 = very positive ), (c) how much they liked or 

disliked the excerpt, and (d) how familiar the excerpt was to them. The 40 excerpts were 

randomly allocated to participants from a total stimulus set of 1,307 musical excerpts 

(prepared from the expert-selected loop libraries, see Section 5.3). The task was 

administered to participants via the Qualtrics platform. 

5.4.3 Results 

As expected, the count of all rating values, the users’ average ratings, and the 

excerpts’ average rating are normally distributed and centred around five (i.e. the central 

value of the 9-point Likert scale). Each user rated 40 items and each of the 1,307 items 

received between 25 and 75 ratings. The normalised ratings of each loop are plotted in 

Figure 5.2, against the normalised ratings of the electronic music stimulus set. As there is 

much more similarity between excerpts within the loop-based stimulus set, and this effects 

                                     
1 Note, this platform was rebranded as ‘Figure Eight’ in 2018. 
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the standard deviation in z-score normalisation, each set was normalised individually. The 

figure shows that the loop-based stimulus set covers a similarly large space as the 

electronic stimulus set and thus represent an acceptable emotional range. 

 
Figure 5.2 This plot illustrates the range of ratings for loop-based music excerpts collected 
in this study, across the arousal and valence space. It compares the normalised ratings of 
the electronic stimulus set, with the normalised ratings of the loop-based stimulus set. As 
illustrated, the loop-based excerpts cover a similarly large space as the electronic-based 
stimulus set. 

I performed a visual inspection of cohorts of raters in Figure 5.3 and Figure 5.4 for 

arousal and valence respectively. To do this, I calculated the cosine similarity of every 

pair of users and used agglomerative hierarchical clustering to form dendrograms. Cosine 

similarity ignores any items that have not been rated by both users, and only includes 

mutually rated items in the calculation of similarity. Although I had previously used k-

means clustering in Section 4.3.2.2 (to also validate the existence of cohorts of individuals 
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and show that the responses to musical excerpts could be subject to individual differences), 

the k-means visualisations would not be as effective in this study, because they are less 

capable of demonstrating coarse separations in this instance. The current study produced 

more sparse ratings (less overlapping ratings between individuals), and demonstrated 

higher musical similarity between excerpts (less separation in musical feature space). As 

such, I elected to use dendrograms instead in Figure 5.3 and Figure 5.4 to visualise these 

results, as dendrograms are able to give both a coarse and fine grain intuition of how 

cohorts form. This intuition gives insight on how the predictive systems are expected to 

perform, and the reason for the performances. 

A visual inspection of how participants experienced arousal, shown in Figure 5.3, 

reveals that participants fall into roughly four cohorts. These cohorts in the dendrogram 

are colour coded, and I have identified these by splitting by the top four nodes in the tree. 

These groups are of roughly similar size, suggesting that multiple factors contribute to 

individual differences in the arousal. This contrasts with the valence dendrogram in Figure 

5.4, of which a visual inspection does not yield such substantial cohorts. I split the cohort 

into 6 clusters to analyse valence, revealing that most participants belong to one massive 

cohort, and relatively fewer belong to the others. The contrasting dendrograms indicate 

that participants tend to be more aligned in the level of valence that was induced by each 

excerpt, rather than the level of arousal. This suggests that valence responses may be less 

difficult to predict than arousal responses. This result should be reflected in the non-

personalised emotion prediction models (i.e. non-personalised emotion prediction models 

should perform better in predicting valence responses than predicting arousal responses), 

and could potentially be reflected in the personalised systems as well. 
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Figure 5.3 A dendrogram showing participants’ arousal responses highlights that there are 
at least four substantial cohorts of ratings. The dendrogram on the top represents the 
separation into four cohorts. The remaining dendrograms represent each of the four 
cohorts individually. 
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Figure 5.4. Dendrogram showing participants’ valence responses highlights one massive 
cohort and five much smaller ones. The dendrogram on the top represents the separation 
into six cohorts. The remaining dendrograms represent each of the six cohorts individually. 
The agreement on valence suggest that the non-personalised prediction might perform 
better than it does for the arousal condition. 
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5.4.4 Feature selection for content-based filtering 

Content-based filtering works by predicting emotional responses to novel stimuli 

based on an individual’s response to stimuli with similar musical features. However, as 

stated in Section 3.6.1 and Section 4.3.1, using too many identified features in the analysis 

will create noise and redundancy and reduce the overall efficiency of the system. Therefore, 

before evaluating the distance-weight knn content-based filters’ ability to predict 

individuals’ emotional responses, I again perform dimensionality reduction. 

The method I used to conduct this dimensionality reduction is a repetition of the 

procedures in Section 4.3. I first used the ReliefF feature selection algorithm to weight the 

importance of each feature (see Section 4.3 for technical explanation). Next, to select the 

cutoff threshold for the ReliefF weightings (i.e. to determine at what weighting level the 

features should be deemed less important), I conducted a AMOC changepoint analysis, 

with parameters set to test for changes in the mean and variance of the sequence of weight 

values.  

The AMOC changepoint analysis showed with 95% confidence that (a) the first 30 

features were the most important to participants’ ratings of arousal response (see Figure 

5.4), while (b) the first 20 features were most important to participants’ ratings of valence 

response (see Figures 5.5). Consequently, I selected the top ranked features for both 

arousal and valence as the features to be used in training (see Figures 5.6 and 5.7 for a 

list of features for arousal and valence respectively). This resulted in a final selection of 

36 unique features to be included in the training model (i.e. 14 of the top ranked features 

were found to be important to both arousal and valence).  

Unsurprisingly, most of the feature groups for arousal and valence appear to be the 

same. Minor differences arise from which statistical moments are represented from the 

features (i.e. mean, median, variance, etc.). The bigger differences come with the addition 

of dynamic complexity, onset rate, spectral entropy, and spectral rolloff and the removal 

of some features related MFCC bands. This is not surprising, as these new features are 
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commonly identified in music emotion studies, and it is not as clear what low- and high-

level timbral features the MFCC bands are capturing (see Section 3.5 for discussion of 

music features). 

 
Figure 5.5. AMOC changepoint analysis on Arousal music feature ReliefF weights 
determined with 95% confidence that a change in the mean and variance occurred after 
30 features. The red bars shows the cut-off of the first section of 30 features, and the 
beginning of the second section (where the mean and variance changes). 
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Figure 5.6 AMOC changepoint analysis on Valence music feature ReliefF weights 
determined with 95% confidence that a change in the mean and variance occurred after 
20 features. The red bars shows the cut-off of the first section of 20 features, and the 
beginning of the second section (where the mean and variance changes). 
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Figure 5.7 Column graph showing the top 30 features extracted by the ReliefF feature 
selection algorithm for the arousal condition 
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Figure 5.8. Top 20 Features extracted for Valence using the ReliefF feature selection 
algorithm 
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traditional non-personalised prediction techniques. Specifically, the user-based filtering 

system was found to outperform all other methods, followed by item-based filtering 

systems, then CB-RNN, with distance-weighted knn performing poorest of the 

personalised prediction techniques. For these re-evaluations, I held out 5% of ratings from 

30% of participants (as in Section 4.4.1), to ensure novel test data was kept for each of 

the collaborative and content filtering techniques (i.e. to allow the system to be tested on 

novel music excerpts after training). 

For the CB-CRNN introduced in Section 4.5, I evaluated both CNN-based feature 

extractors (k2c2+ and feature-CRNN) at 0.1 × 106 and 0.26 × 106 parameters while 

varying hyperparameters such as the number of GRU units, learning rate, and dropout 

rates, and found that the k2c2+ features extractor outperformed feature-CRNN. However, 

in the present study the stimulus sets are much larger and more diverse, and a greater 

number of features must be learned. As such, both extractors (i.e. k2c2+ and feature-

CRNN) must be re-evaluated to ensure they learn all appropriate features. The 

hyperparameter search was not repeated for this study, as it would take too long to train 

given the stimulus set size and the size of the parameter space. Instead, the parameters 

were set to match those found to consistently rank the best in predicting both arousal and 

valence in Section 4.5.2 (see Table 5.1). 

Table 5.1 Parameters for training CB-CRNN recommendation 

Learning rate Feature 
dropout 

GRU 
embedding 
units 

GRU model 
units 

Recurrent 
dropout 

.003 .3 32 8 .04 
 

5.5.1 Results 

The recommender evaluation results are presented in Table 5.2. The table shows 

the root mean square error (RMSE) loss for each evaluated technique, whereby lower 

values indicate less error on the individuals’ predicted response. Many of the models were 
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found to perform better on valence than on arousal responses, corroborating the visual 

inspection of cohorts from Section 5.4.3. Notably, the non-personalised prediction 

outperforms both the distance-weight knn and the SVD approach in the valence condition. 

This confirms my prediction in Section 5.3.3 that the non-personalised approach should 

work better for predicting valence than arousal (given the level of agreement that was 

seen in the valence responses).  

A comparison of these RSME results (see Table 5.2) with those found in Section 

4.4.3, shows that the performance of many of the recommender systems did indeed 

improve as expected with the increased number of participants. User-based collaborative 

filtering, the top performing model in both conditions, outperformed all other 

recommenders, and improved significantly over the previous study (Arousal RMSE=1.14, 

Valence RMSE=1.39). This improvement confirms, as expected, that increasing the 

number of participants does indeed improve the model’s ability to predict emotional 

responses. However, the performance of item-based collaborative filtering, did not improve 

over the previous study (Arousal RMSE=1.36, Valence RMSE=1.23). This is not 

surprising however, considering that determining items with similar ratings patterns was 

a much simpler task in the previous study (i.e. participants rated a random selection of 

the total items in a group for the present study, whereas in the previous study all the 

items in a group were rated by all the participants). Interestingly, SVD was found to 

perform poorer in this study than previously (Arousal RMSE=1.73, Valence RMSE=1.37). 

Future studies should be conducted to determine why this result is observed. Finally, the 

Convolution-Recurrent Neural Network also outperformed the distance-weighted knn 

content-based filtering, showing this novel method to be a more viable option for 

personalised prediction of music emotion induction than the more commonly used content-

based knn technique. 
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5.6 Understanding feature representations and embeddings 

The topological representation of an item in vectors is known as an “embedding”.  

An interesting and useful property of well-formed embedding spaces are their ability to 

capture relationships between their embeddings. The most famous examples are the 

word2vec embeddings (e.g. king - man + woman = queen and paris - france + poland = 

warsaw). Embeddings essentially provide a spatial representation of items, with more 

similar items represented closer to each other in space. Within the present context (i.e. 

for the personalised emotion prediction system), embeddings can be used to help define a 

music excerpt within the context of its musical features, and place it relationally on the 

scale of emotional responses.  

As such, in the content based-filtering approaches, I endeavoured to create 

embeddings of musical excerpts that best captured their effect on emotional responses. A 

well parameterized embedding of emotional music features allows for better training of 

the various content-based filtering algorithms and allows them to be more predictive of 

emotional responses. The k2c2+ and feature-CRNN features for example were directly 

formed to account for individual differences. Crucially, in the context of this thesis, a well 

parameterized embedding of emotional music features yields navigable music emotional 

spaces. 

 In this section, I use embeddings to validate that the system can create more 

personalised emotion predictions through the use, combination, and manipulation of 

musical loops. To accomplish this, I first created a visualization of the emotional spaces 

created by the different music feature representations. This showed that the neural 

network based feature representations, which were designed to account for individual 

differences in emotional responses, did indeed better separate the music-emotion 

embedding space. These embedding representations thus create more direct paths for 

potential automated systems to navigate the music-emotion spaces (i.e. more similar 
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features are represented closer together in representational space, and as such, the system 

has a more direct path to access similar features).  

Next, to provide an example of what kind of emotion inducing music features were 

being learned by the neural network feature representations, I performed an auditory 

analysis (i.e. a listening exercise) of the features of CRNN_param_0. This allowed me to 

identify some of the high-level musical features that may be used to predict, differentiate, 

and manipulate individual’s emotional responses. Finally, I showed how random 

manipulation of certain groups of loops (see Section 5.3.1) resulted in different positioning 

in the emotional space. This highlights some of the types of manipulations an automated 

system could learn in order to induce different emotional responses in an individual. 

5.6.1 Visualization of Embeddings and Emotional Space 

To better understand how these emotional embedding spaces are formed, I plotted 

the embeddings in 2D space using the well-established dimensionality reduction technique, 

t-sne (Maaten & Hinton, 2008). In Figure 5.9., three visualizations are presented to depict 

the arousal embedding space, using three different musical feature extraction techniques 

(tandard features, k2c2+, CRNN). In the top row, each point represents a music excerpt 

in n-dimensional space, with the average level of arousal that the algorithm has attributed 

to that excerpt represented on an intensity scale of colour ranging from low (blue) to high 

(red) intensity. In the bottom row, a density plot of the actual participant ratings is added 

as an underlay (using the same intensity scale), to show how these embedding areas relate 

to the average person’s emotional responses. As can be seen in the top row of illustrations, 

all three representations show a separation of the extreme in arousal and valence levels. 

However, the density plots underneath show that the features learned by the neural 

networks are more consistent with the actual data and do a better job of separating the 

arousal space than the standard feature extractor. This indicates that the music features 

captured by the neural network are likely more useful for navigating the arousal space. 
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Figure 5.9. T-sne visualizations of arousal music embeddings. These representations of 
musical excerpts in n-dimensional space were produced by, in columns from left to right, 
(a) standard feature extraction, (b) the k2c2+ feature extractor, and (c) the CRNN feature 
extractor. The top row of plots depict a standard t-sne representation of the embeddings, 
while the bottom row includes a density map of the actual participant rating response 
averages as an added underlay. In both cases, level of arousal is represented by colour, 
on an intensity scale ranging from low intensity (blue) to high intensity (red). 

Similar results are also observed when the valence emotion spaces are represented 

in this format. In Figure 5.10, the t-sne embedding plots and density map underlays are 

used again to represent the valence emotional space for each of the three feature extraction 

techniques. Once again, the top row of t-sne representations show that all three 

embeddings separate musical excerpts into the extremes of the valence space well. 

However, again, the density plot also reveals that the embeddings created by the neural 

network are more consistent with participant ratings and do a better job of separating 

the valence space overall. Consequently, these visualisations of both arousal and valence 

spaces suggest that the neural networks model of embedding may generate feature 

representations that are highly useful for both predicting and inducing emotion. 
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Figure 5.10 T-sne visualizations of valence music embeddings. These representations of 
musical excerpts in n-dimensional space were produced by, in columns from left to right, 
(a) standard feature extraction, (b) the k2c2+ feature extractor, and (c) the CRNN feature 
extractor. The top row of plots depict a standard t-sne representation of the embeddings, 
while the bottom row includes a density map of the actual participant rating response 
averages as an added underlay. In both cases, valence is represented by colour, on an 
intensity scale ranging from negative (blue) to positive valence (red). 

5.6.2 Understanding how musical features are represented in the neural networks models 

As explained above, neural network models provide a clear benefit over standard 

feature extraction methods in learning and representing musical features. To quickly 

recap, in standard feature extraction methods, certain relevant features that have been 

predetermined to be relevant are selected and assigned to the system by the researcher. 

In contrast, the neural networks models (i.e. the k2c2+ and feature-CRNN methods used 

above), can learn from and apply the relationships between inputted data to distinguish, 

to a much more granular level than is possible from a predetermined set of features, which 

musical features are most important. As such, these neural network representations 

inherently account for individual differences in emotional response to music by allowing 

for the engineering of feature representations that have been derived specifically from the 
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induced emotional responses (i.e. as opposed to being derived from a predetermined, 

theoretical set of features).  

However, describing what neural networks are learning is an art in itself. The 

networks themselves can function as somewhat of a ‘black box’ (i.e. it is a complex system, 

so the internal workings can be difficult to define in concrete terms), and dissecting what 

each feature in every network represents musically and how it affects emotional responses 

would be an exhaustive and time-consuming process. Fortunately however, by examining 

correlation heatmaps for the k2c2+ and feature-CRNN representations at param_0, it is 

clear that the representations are highly correlated for both arousal (see Figure 5.11), and 

valence (see Figure 5.12). These heatmaps show that the majority features in the feature-

CRNN model have highly correlated counterparts in the k2c2+ model, thus showing that 

similar music features are being used to represent emotion in both models. Therefore, as 

similar music features appear to be captured across both models, it should suffice to 

examine just one example representation in detail to understand the types of relationships 

that are being learned across both. For the purposes of this study, I will use the feature-

CRNN representation as this example. 

 
Figure 5.11 A heat map showing the correlation between the k2c2+ and feature-CRNN 
representations for the arousal condition. The significant Pearson correlation coefficients 
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(with Holme p value correction for multiple comparisons) are depicted by colour, on a 
scale from 1 (red) to -1 (blue).  

 
Figure 5.12. A heat map showing the correlation beween the k2c2+ and feature-CRNN 
representations for the valence condition. The significant Pearson correlation coefficients 
(with Holme p value correction for multiple comparisons) are depicted by colour, on a 
scale from 1 (red) to -1 (blue). 

Next, I performed an auditory analysis of the musical features of the 

CRNN_param_0 representations for arousal and valence to perceptually characterise the 

type of features that are being learned. This is particularly important to provide practical 

guidance of how researchers, practitioners, or AAC systems can apply these models to 

predict or manipulate music for emotion induction. To conduct this auditory analysis, I 

identified and analysed the top ten most-representative excerpts (i.e. that had resulted in 

the maximum activation of that particular feature) for each of the features identified by 

CRNN_param_0. This process resulted in the selection of 30 groups of excerpts in total 

for analysis (i.e. a group of excerpts for each of the 15 features, for each of the arousal 

and valence emotion conditions). The auditory analysis, revealed that high-level features 

related to components of time (e.g. rhythm and musical patterns), timbre (e.g. 

instruments and drones), modes (i.e. major and minor), and mixture between these were 



	 137	

represented within the model. A concise summary of all results from the auditory analysis 

is provided in Table 5.3. A full list of the top 10 music excerpts for each musical feature 

type is available in Appendix C. 

Table 5.3 Summary of feature-CRNN musical feature types 

Feature 
Type 

Emotion 
Condition 

Feature Description Feature 
Number 

Rhythm Arousal Pumping 1 
Driving 10 
Sparsity 9 

Valence Firm 15 
Sparsity 6 

Musical 
Patterns 

Arousal Harp and Pizzicato like Ostinatos 3 
Static, Repetitive, Long Decay 4 

Valence Minor Ostinatos 4 
Stepwise and Arpeggio type patterns 10 
Rapid harp like arpeggios and musical trills 14 

Drones Arousal Drones 7 
Long-Release 8 
Buzzy - Square waves 14 

Valence Low range - buzzy 5 
Low range and rhythmic 13 

Instrument Arousal Taiko and Bass Drums 5 
mid to high range sustained 6 
Brass 11 
Light Piano and Pizzicato 13 
Reverse Sweep Snare 15 

Valence Sawtooth wave 3 
Noisy 9 
Bitcrush 12 

Modal Arousal Low Tones and Minor Key 2 
Valence Upbeat and Major Key 3  

7 
Slow tempo and Minor Key 8 
Slow chord progression that feature vocal or 
brass choirs 

11 
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For example, the distinction between rhythm, timbres, and patterns are often 

blurred to human perception when elements such as speed come into play. However, 

auditory analysis revealed that the model picked up some distinctively rhythmic features 

(see Table C.4). Specifically, an auditory analysis of the top 10 excerpts of (a) 

Arousal_Feature_1 highlighted a pumping like rhythmic quality, (b) Arousal_Filter_10 

seemed to capture a driving rhythm, and (c) Valence_Filter_15 appeared to capture a 

firm rhythmic quality. As such, these features all seem to capture an explainable and 

manipulable rhythmic quality. 

Contrary to the relatively energetic rhythmic features presented above, 

Arousal_Feature_9 and Valence_Filter_6 seem to capture the temporal quality of 

sparsity (see Table C.5). Interestingly, while these two filters have a significant positive 

correlation with each other (r = .43, p < .05), they only highlight a few of the same 

excerpts. This indicates that while they both appear to capture similar qualities (i.e. from 

a human’s perceptual capability), they are not synonymous emotional features. 

Other rhythmic features seem to be related to specific musical patterns (see Table 

C.6). For example, in the arousal model, Arousal_Feature_4 seems to capture a quality 

characterized by static, repetitive rhythms with a long decay, while Arousal_Feature_3 

picks up specific harp and pizzicato like ostinatos. Furthermore, in the valence model, 

Valence_Feature_4 captures minor ostinatos, Valence_Feature_10 captures rising 

stepwise and arpeggio like patterns, and Valence_Feature_14 is related to rapid harp-

like arpeggios and musical trills.  

Auditory analysis also revealed that several features also appear related to drones 

(see Table C.7). In the arousal model three features seemed to directly relate to drones: 

Arousal_Feature_7 (drones), Arousal_Feature_8 (long release - drone), and 

Arousal_Feature_14 (buzzy - squarewaves). In the valence model, drones seemed to be 

captured by Valence_Feature_1 (drones), Valence_Feature_5 (low range and buzzy), 

and Valence_Feature_13 (low rhythmic drones). 
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Some features capture specific instrument sounds (see Table C.8). In the arousal 

condition, Arousal_Feature_5 captures taiko and bass drums, Arousal_Feature_6 

captures mid to high range sustained sounds, Arousal_Feature_11 captures brass sounds, 

Arousal_Feature_12 relates to strings, Arousal_Feature_13 captures light pianos and 

pizzicatos, and Arousal_Feature_15 identifies the effect of reverse percussion sweeps 

(often used as an effect to relay suspense). Valence_Feature_2 captures smooth sawtooth-

like sounds, Valence_Feature_9 captures noisy instruments, Valence_Feature_12 

captures a bit crushing effect (heavy metal-like). 

There are also several features that appear to relate to mode (i.e. major or minor). 

The excerpts that make up the top list for Arousal_Feature_2 are characterized low tones 

in a minor key. Valence_Feature_3 seems to capture upbeat excerpts in a major key and 

Valence_Feature_7 similarly. Valence_Feature_8 highlights slow excerpts in minor 

keys. Mixing time, timbre and mode, Valence_Filter_11 highlights several excerpts that 

exhibit slow chord progression and feature vocal or brass choirs. Mode is more difficult to 

manipulate in loops, because in music, modal changes typically require some type of 

modulation. This challenge is however overcome by having loop libraries with loops 

designed to transition into each other. An example of this can be seen in Table C.9, where 

the EL_VOL02 library has excerpts activating several different modal features, meaning 

a system can compose within that library and easily navigate to different modes. 

5.6.3 Within family manipulations 

As outlined in the previous section, certain musical features appear to be directly 

related to emotional responses. This shows that it is theoretically possible to manipulate 

emotion through changing the musical features of an excerpt, so in this section I set out 

to explore a few concrete examples of how changing musical features might affect emotion. 

The goal of this section is not to perform a comprehensive analysis of all the features that 

can be manipulate to alter emotional responses, but to show the usefulness of loop families 

for AAC systems. As discussed in Section 5.3, I can investigate this by randomly dropping 
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voices, with the assumption that dropping voices from a loop will inherently result in the 

removal of a random selection of features as well. Thus, by comparing several variations 

of the loop (i.e. excerpts with differing voices dropped out) we should be able to get an 

indication of how certain musical features affect emotion. 

Table 5.10 presents an example family of excerpts, consisting of Drums, Piano, 

Strings, Sub, and Synth components. The table outlines four variations of excerpt for this 

example (one is the full excerpt, and the other three excerpts have random voices dropped 

out). For this example, as seen in Figure 5.13. A column graph showing the arousal 

feature-CRNN activations for the group “Dys_90_D”., the feature that appears to cause 

the greatest difference in the arousal space is Arousal_Feature_8, which is related to a 

drone-like sounds. That sound is the synth sound, and when it is introduced the average 

arousal increases. As this is the sole difference between the full excerpt, 

“DYS_90_D_Full_SP_01.mp3” (Arousal M = 6.02, Valence M = 6.09) and 

“DYS_90_D_Time 98_1_1_1_1_0_.mp3” (Arousal M = 5.93, Valence M = 5.44), it 

can therefore be assumed to be responsible for the observed difference in arousal. This 

drone-like quality of the synth is also captured by Valence_Feature_1, so is also clearly 

a contributor to the difference in valence (see Figure 5.13). Another example within the 

valence space is the positive difference in valence that becomes apparent with the 

introduction of the piano and drums. The feature breakdown provided Figure 5.13, shows 

that this likely stems from the upbeat quality captured by Valence_Feature_7. 
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Table 5.4 Example Family 1: Manipulating emotion by changing musical features 

Library Group Name Instruments Arousal 
(average) 

Valence 
(average) 

Dystopian DYS_90_D_Full_SP_01.mp3 Drums, 
Piano, 
Strings, 
Sub, Synth 

6.02 6.09 

DYS_90_D_Time 
98_0_0_1_1_0_.mp3 

Strings, Sub 4.96 3.75 

DYS_90_D_Time 
98_0_0_1_1_1_.mp3 

Strings, 
Sub, Synth 

5.46 5 

DYS_90_D_Time 
98_1_1_1_1_0_.mp3 

Drums, 
Piano, 
Strings, Sub 

5.93 5.44 

 

 
Figure 5.13. A column graph showing the arousal feature-CRNN activations for the group 
“Dys_90_D”. The y-axis is the activation of the feature, the x-axis is the feature number, 
and the colours represent the different variants of the loop family. 
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Figure 5.14. A column graph showing the valence feature-CRNN activations for the group 
“Dys_90_D”. The y-axis is the activation of the feature, the x-axis is the feature number, 
and the colours represent the different variants of the loop family. 

The second example family I examined consists of Choir, ChoirStrings, 

DrumPercBrass, Harp, Piano, TunedPercussion, and UprightBass (see Table 5.5). The 

feature-CRNN activations for this group are presented in Figure 5.15 and Figure 5.16, for 

arousal and valence respectively. The introduction of the choir seems to have a suppressing 

effect on the tuned percussion, as realised in Arousal_Feature_4 (Static, Repetitive, Long 

Decay), Arousal_Feature_3 (Harp and Pizzicato like Ostinatos), and 

Arousal_Feature_13 (Light Piano and Pizzicato). This suppression results in a increase 

in arousal for the family. The tuned percussion has positive effect on valence, activating 

Valence_Feature_3 (Upbeat Major Key) and Valence_Feature_7 (Upbeat Major Key), 

increasing positive valence when it is introduced. An AAC would exploit the 

parameterisation of this loop to intentionally manipulate emotion. 
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Table 5.5 Example Family 2: Manipulating emotion by changing musical features 

Library Group_Name Instruments Arous
al 

Valen
ce 

MusicForMe
dia 

MFM_100_F#_01_0_0_0_1_1_1
_1_.mp3 

Harp, Piano, 
TunedPercuss
ion, 
UprightBass 

4.06 6.95 

MFM_100_F#_01_1_0_0_1_1_0
_1_.mp3 

Choir, Harp, 
Piano, 
UprightBass 

4.43 5.32 

MFM_100_F#_01_1_1_0_1_1_0
_0_.mp3 

Choir, 
ChoirStrings, 
Harp, Piano 

4.63 5.40 

MFM_100_F#_Full_SP.mp3 Choir, 
ChoirStrings, 
DrumPercBra
ss, Harp, 
Piano, 
TunedPercuss
ion, 
UprightBass 

5.09 7.32 
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Figure 5.15. Arousal feature-CRNN activations for the group “MFM_100_F#”. The y-
axis is the activation of the feature, the x-axis is the feature number, and the colours 
represent the different variants of the loop family. 
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Figure 5.16. Valence feature-CRNN activations for the group “MFM_100_F#”. The y-
axis is the activation of the feature, the x-axis is the feature number, and the colours 
represent the different variants of the loop family. 

 

The final group I examine consists of Basses, Choir, PercussionA, PercussionB, 

Piano, ViolasViolins, and Vocal (Table 5.6). The feature-CRNN activation for the arousal 

and valence models are shown in Figure 5.17 and Figure 5.18 respectively. In this group, 

the ostinato in the strings is captured by Arousal Feature 3 and the static repetitive 

nature is captured by Arousal Feature 4, which together lead to an increase in average 

felt arousal. The choir creates positive valence with its introduction, activating valence 

feature 11 with its slow vocal chord progression, but the effect is somewhat masked with 

the addition of percussions. An AAC based on the personalised emotion prediction system 

could learn this relationship from the features to automatically manipulate the voices and 

induce targeted emotional responses. 
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Table 5.6 Example Family 3: Manipulating emotion by changing musical features 

 
Library Group_Name Instrument

s 
Arous
al 

Valenc
e 

MusicForMe
dia 

MFM_120_C_01_1_0_0_1_0_0_1
_.mp3 

Percussion
B, Piano, 
ViolasVioli
ns, Vocal 

4.79 4.47 

MFM_120_C_01_1_1_0_0_0_0_0
_.mp3 

Basses, 
Percussion
B, Piano, 
Vocal 

4.55 6.07 

MFM_120_C_01_1_1_0_0_1_1_0
_.mp3 

Basses, 
Choir, 
Percussion
B, Piano 

5.34 6.93 

MFM_120_C_Full_SP.mp3 Basses, 
Choir, 
Percussion
A, 
Percussion
B, Piano, 
ViolasVioli
ns, Vocal 

5.24 6.56 
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Figure 5.17. Arousal feature-CRNN activations for the group “MFM_120_C”. The y-axis 
is the activation of the feature, the x-axis is the feature number, and the colours represent 
the different variants of the loop family. 

 
Figure 5.18 Valence feature-CRNN activations for the group “MFM_120_C”. The y-axis 
is the activation of the feature, the x-axis is the feature number, and the colours represent 
the different variants of the loop family. 
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5.7 Chapter Conclusion 

The goal of this chapter was to first validate that the personalised emotion 

prediction systems, presented in Chapter 4, are better suited for the task of emotion 

prediction than non-personalised emotion prediction. Many individual differences factor 

into an individual’s emotional experience when listening to an excerpt of music and failure 

to account for these differences can result in high variability and contrast in emotional 

response. In this chapter, I made three modifications to the previous study. First, I 

increase the number of participants to 1943 from 120 previously. This adjustment allows 

for the examination of a larger number of individual responses to music, while also 

increasing the chances of identifying more closely aligned participants to base predictions 

on. Second,  I increase the number of excerpts that are evaluated to 1307 from 120 

previously. This allows participants to rate many more examples and provides a wider 

range of musical features for the content-based filtering techniques to learn. Third, I 

reduce the musical difference between excerpts, allowing the content-based filtering 

techniques to learn at a more resolute level what manipulations of musical features result 

in changes in individuals’ emotional responses. 

This chapter shows that collaborative filtering is a useful approach when a database 

of ratings is available for a defined stimulus set. The collaborative filtering approaches, 

user-based and item-based, outperform all other personalised and non-personalised 

techniques in predicting emotional responses. They are limited however, in that they are 

constrained to their pre-rated stimulus set. The content-based approaches, CB-CRNN and 

distance-weighted knn, also outperform non-personalised recommendation, and because 

they rely on musical features rather than other ratings exclusively, they can be used to 

predict a participant’s ratings on novel items. The results of these systems validate the 

use of personalised music emotion prediction systems as better suited than non-

personalised emotion prediction systems at accounting for individual differences in 

emotional responses. These studies show the potential of personalised emotion prediction 
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systems to reduce the variability in emotional research studies, and more reliably induce 

intended affect in individuals. 

A secondary goal was to show that emotion could be manipulated within a musical 

composition by changing the musical features within an excerpt. Music manipulation could 

be useful for applications such as film scoring, gaming, and musical therapy. Furthermore, 

AAC systems could learn to manipulate emotional responses by changing the musical 

features of a musical excerpt. In this chapter, I used loops to construct musical excerpts 

– dropping different instrumental voices in and out of musical compositions. Through 

analysis of the emotional musical features, and of groups of loops, I showed that it is 

indeed possible to manipulate emotional responses to music using loops – associating loops 

within a group with musical features that had a direct impact on emotional response. 

These results are promising for researchers and composers who may want to prepare 

stimulus pre-induction or understand the musical factors contributing to emotional 

responses. The results are also promising for composers who work in industries like 

gaming, and must compose emotional music for different scenarios. 
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Chapter 6 Conclusion 
Music is tremendously effective in its ability to induce emotional responses in 

people, and thus is amongst the most commonly used tools in both emotion induction 

research and applications such as film and videogame scoring where music is used to set 

cinematic moods or manipulate levels of tension (Baumgartner et al., 2006; Juslin & 

Laukka, 2004; Kenealy, 1988; Zentner et al., 2008; Zhang et al., 2014). However, very 

little research has been dedicated to identifying and/or accounting for the factors that 

lead to individual differences in peoples' emotional responses (Frieler et al., 2013; Juslin 

& Västfjäll, 2008). An individual's emotional response can be influenced by a wide range 

of factors: including, to name just a few, their personality (Vuoskoski & Eerola, 2011b, 

2011a; Vuoskoski et al., 2012), episodic memories and social influences (Evans & Schubert, 

2008; Juslin & Västfjäll, 2008), and their musical background (Belcher & Haridakis, 2013; 

Juslin & Laukka, 2004). In practice, the lack of understanding of these factors has made 

it difficult to both (a) reliably create emotion inducing stimulus sets, and (b) forecast how 

an individual will respond to a given musical stimulus. In this thesis, I rectify these two 

issues with the development of a personalised music affect induction system that accounts 

for individual differences in emotional response. 

6.1 Achievements 

There is a clear gap in research in which a more effective and standardized process 

is required for the selection of music stimuli. A comprehensive review of 250 music and 

emotion studies (Eerola & Vuoskoski, 2013) revealed at least three major pitfalls in the 

selection of music stimuli: 

1. Forty-eight percent of researchers used familiar classical music excerpts for emotion 

induction. 
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2. In terms of who chose the stimuli: 

a. Thirty-three percent of researchers arbitrarily chose their stimulus sets. 

b. Thirty-nine percent of researchers did not reveal their selection method at 

all. 10 

The best music for emotion induction should not only effectively induce affect, but 

also minimise the role of subjective musical preference, which is often associated with 

familiarity and genre preferences. For example, emotional responses to familiar music can 

be affected by factors such as episodic memories (Evans & Schubert, 2008). A researcher 

may select a seemingly happy song with the intention of inducing a positive emotional 

response, however some individuals may associate the familiar music with a contradictory 

memory (e.g. a sad event), leading to an emotional response that diverges from the 

research intentions. Furthermore, a researcher’s own perception of and emotional response 

to, music is subject to their individual experiences and preferences, and does not 

necessarily reflect how others may respond to the same musical stimuli. A more rigorous 

process is needed to guide researchers’ selection of stimulus sets for emotional induction. 

In Chapter 3, I introduce a preprocessing step to the stimulus selection method, by which 

a committee of music experts first select music excerpts which they believe will induce the 

intended emotion, before a broad base of participants provides emotion ratings, on the 

arousal and valence dimensional scales, to each excerpt to confirm the experts’ initial 

classifications. Furthermore, to alleviate the effect of genre preferences and maximize 

effectiveness in emotional response, I limit the stimulus set to film music because it is 

designed with the express intent of inducing emotion in wide and diverse audiences. 

Another concern addressed in Chapter 3 is that not much research has explored 

the effects of modern (say electronic-based) music on emotion. Researchers have 

recognized that the ability to manipulate the components of musical compositions can be 

                                     
10 Another 8% percent used a Pilot study, 9% used a previous study, 6% used an Expert 
panel, and 4% used Participants for selection. 



	 153	

used to determine the causal relationship between musical features and emotional 

responses, but often lack the ability to develop such compositions themselves  (Eerola et 

al., 2013). The benefit of exploring electronic music for the personalised emotion prediction 

system is that the music can be much more amenable than orchestral music to the 

manipulation of musical parameters. I address this concern in Chapter 3 by employing an 

electronic-music based stimulus set, which I use in three ways. First, I use the stimulus 

set to validate that modern electronic-based music can be as effective in inducing emotion 

responses as orchestral music. This provides both a new validated stimulus set for 

researchers to use, and opens a new paradigm of study for the use of modern electronic-

based music in psychological research as an alternative to familiar classical music. Second, 

I identify music components within the electronic-based music that contribute to averaged 

emotional responses, a domain that has rarely been explored in modern electronic-based 

music. Finally, I show that certain features of the electronic music could be used to predict 

emotional responses in the arousal and valence dimension. This research shows promise 

in forming predictive emotional models based on musical features, and provides high-level 

insight about the types of features that could be manipulated in electronic-based music 

to influence emotional responses.  

After exploring electronic music in Chapter 3, by (a) showing the promise of 

modern electronic music’s ability to predict emotional responses to music, (b) validating 

that electronic-based music can be used to effectively induce emotions across the range of 

the arousal and valence scales, and (c) showing that the features of the music can form 

predictive models of emotion responses, Chapter 4 takes this research further, to account 

for individual differences in emotion responses. In practice, failing to account for individual 

differences in emotional responses leads to inconsistent results, failures to replicate in 

psychological studies (Frieler et al., 2013; Juslin & Västfjäll, 2008), and the inability to 

systematically control musical variables (Juslin & Sloboda, 2011). In Chapter 4, I use 

clustering techniques as an exploratory step to show, at a coarse level, that within the 
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averaged emotional ratings there exist several cohorts of individuals with differing 

emotional responses to musical features. In fact, a further examination of these cohorts 

and their emotional responses to musical features show that in many cases people can 

have contrasting emotional responses to the same music (see Section 4.3.3). This step 

further validates the need for a more personalised emotion prediction system to account 

for individual differences in emotion responses to music. 

I present several solutions to personalised music affect induction with the final 

study in Chapter 4, based on techniques used in modern recommendation engines. I first 

explore collaborative filtering techniques – user-based collaborative filtering techniques 

rely on the ratings of other similar users to make predictions about how an individual will 

rate a novel item, while item-based collaborative filtering techniques rely on similar items 

(as determined by the ratings of other people) to predict how an individual will rate a 

novel item. These techniques essentially capture latent information that could be the 

result of factors such as social contagion and cultural preferences without having to 

explicitly code them. In Chapter 4, collaborative-filtering techniques outperform all other 

techniques, including non-personalised, in predicting individuals’ emotion responses to 

music. The limitation of these techniques is that they require a pre-rated database of 

music stimuli to base their predictions on and it isn't easy to add new items. This could 

be a challenge if, for example, the researchers wanted to introduce new music or use 

completely different stimulus sets, but is the most effective technique in settings where 

this is not the case. 

The second approach to personalised emotion prediction I implement in Chapter 4 

is content-based filtering techniques – an approach that utilises the individuals’ ratings 

on other similar musical excerpts (i.e. determined by the musical features), to predict their 

emotional responses to novel music excerpts. In the first case, I used a standard distance-

weighted knn approach with the musical features extracted in Chapter 3 to calculate an 

individual's ratings on novel music, showing that this approach to emotional response 
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prediction significantly outperformed non-personalised prediction. I also created a novel 

Siamese Convolutional-Recurrent Neural Network model that learned to both encode 

musical features from MFCC representations, and predict an individual’s emotional 

response to novel musical excerpts based on a short history of their previous emotional 

responses. This approach further personalised the extraction of relevant emotional musical 

features, as the process of feature engineering was directly connected to the emotional 

responses they created rather than retrofitted to capture perceptive musical components. 

This approach significantly outperformed both the distance-weighted knn technique and 

the non-personalised approach to emotional response prediction. While the content-based 

techniques did not perform as well as the collaborative-filtering techniques, their benefit 

lies in the fact that they are not constrained to the dataset, nor the people they were 

trained on. This gives researchers the ability to extend the stimulus set, freely adding 

music excerpts to the existing stimulus set or fully replacing it. This could be useful if, for 

example, the excerpts become too familiar, the researcher wants to extend the study, or 

a composer wants to use the system on completely novel music. 

With Chapters 3 and 4, I have (a) introduced a rigorous method for developing 

stimulus sets for music emotion induction, (b) shown that it is possible to use modern 

electronic-based music to reliably induce emotion across the range of the arousal and 

valence dimensions, and (c) implemented and developed techniques to account for 

individual differences and better predict emotional responses to music stimuli. In Chapter 

5, I further extend my contributions by validating these techniques on a larger population 

of individuals, and with a larger set of musical stimuli. A larger and more musically diverse 

stimulus set afforded the content-based filters a broader range of musical features, testing 

their ability to generalize and therefore improving their robustness to potentially novel 

stimuli. A larger number of participants offered the collaborative-filtering techniques a 

higher probability of “tightly aligned” neighbours on which to predict a participant’s 

emotional responses, and the content-based filters more data to train on. The performance 
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of both the collaborative and content-based filtering approaches was improved in Chapter 

5. 

Finally, in Chapter 5, I show how musical features can be used to manipulate 

emotional responses, by introducing the use of loop libraries. Loops are designed to be 

added or subtracted from a musical composition freely, so with an understanding of 

emotional music features we can use loops as tools to manipulate emotional response. By 

dropping different loops in and out of musical compositions and analysing the average 

emotional responses to these modified excerpts, I show that certain musical features 

captured in loops can indeed be used to manipulate emotional responses. The benefits of 

this research go beyond the psychological research applications, and extend to areas such 

as music therapy, marketing, film, and video game development, all of which rely on 

manipulating music to achieve affective goals (Juslin & Sloboda, 2013). 

6.2 Future works 

In this thesis, I have created robust systems for personalised emotion prediction 

that can be used to more reliably induce emotions in individuals. There are at least three 

research domains that will benefit from these systems. The first is basic emotion research 

- researchers can use the personalised emotion prediction system to more reliably induce 

and manipulate affect for the purpose of studying emotional responses. The second is in 

psychology of music and musicology research, in which researchers can use this system to 

better understand the components and structures of music that contribute to emotional 

responses. The third includes applied research, in which practitioners in music therapy, 

consumer marketing, film and video game making, and many more could use this system 

to create music that better helps them achieve their emotional goals. Given these areas of 

application, I foresee several logical extensions to the research I have developed, 

specifically relating to applications of different emotional models, the development of 
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affective algorithmic composition systems, and studies exploring emotion in longer form 

musical compositions. 

While the focus in this thesis is on predicting dimensional emotion (arousal and 

valence), a logical extension to this research would be to explore discrete emotion, such 

as happiness, anger, surprise, fear, disgust, and sadness (Ekman, 1992). I chose to study 

dimensional models for multiple reasons: 

 

a) Research has thus far ruled out the idea of one-to-one mappings between discrete 

emotions and specific regions in the brain (Hamann, 2012). 

b) Discrete models have been shown to perform poorer in characterizing emotionally 

ambiguous music (Eerola & Vuoskoski, 2010). 

c) Dimensional models provide a higher resolution of emotional responses than 

discrete models. 

  

However, these reasons neither rule out the importance of discrete models 

(Harmon-Jones, Harmon-Jones, & Summerell, 2017), nor the potential practical 

applications of these models. For example, practitioners such as film and video game 

composers are often tasked with creating music to induce specific emotional responses, say 

fear or surprise, in order to match the accompanying storyline or scene. Personalised 

emotion prediction systems trained to predict discrete emotional states would afford this 

scenario with more ease than systems trained to predict dimensional responses. The 

development of stimulus sets and models for discrete emotions could be an interesting 

area to further explore with these techniques. 

Another logical extension of this research relates to the development of affective 

algorithmic composition. In Section 5.6.3 I demonstrate how different loop configurations 

within a group affected average arousal and valence responses and explained the auditory 

analysis of the features in Section 5.6.2 to explain these changes. As a logical next step, 
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it would be interesting to develop an AI system that automatically maps the musical 

features of a loop library to changes in emotional responses and utilises this knowledge to 

automatically produce sequence-based compositions. This development could be 

accomplished using both the models and the stimulus set I have developed in my research. 

Finally, it may be of interest to explore longer forms of music composition. In my 

research, I focus on the emotional responses to excerpts and short phrases of musical 

compositions. A logical extension to this work would be to examine longer form musical 

compositions, to determine if there are emotional effects related to contextual factors 

within a music itself. For example, if the music is mostly negative and then positive 

phrases are introduced, how do factors such as recent memory effect the current emotional 

response? A theoretical advantage of the Convolutional-Recurrent Neural Network, 

introduced in Section 4.5, is that it would capture and account for such temporal 

dependencies in its predictions. This would be an interesting area for researchers to further 

explore. 

6.3 Chapter Conclusion 

In this thesis, I have created a robust systems for personalised emotion prediction 

that will allow researchers and practitioners to more reliably induce emotions in 

individuals. In Chapter 3 I validate, for the first time, that modern electronic-based music 

stimuli can be just as effective in inducing affect as the popular orchestral stimuli that 

has traditionally dominated the domain of music emotion induction (Eerola & Vuoskoski, 

2013). I also validate the usefulness of this development in Chapter 5 by, for the first 

time, showing that loop-based music stimuli sets, in which loops can be easily added to 

or subtracted from a musical composition, can be used as a tool to induce changes people's 

emotional state. These novel contributions will allow researchers and practitioners to a) 

create more amenable datasets that can be used to manipulate emotional responses and 
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to b) counteract the emotional effects of familiarity that are inherently present in the 

popular classical music that dominates current music emotion induction stimulus sets. 

Furthermore, in Chapter 4 and Chapter 5, for the first time, I implement and 

validate deep learning and modern recommender system techniques as solutions for, 

accounting for the latent variables that lead to individual differences in emotional 

responses to music. This novel contribution to the research domain will enable researchers 

and practitioners to more precisely select emotional stimuli for individuals and to therefore 

more reliably achieve their emotional induction goals. The connection between musical 

features and emotional responses, learned for example by the novel Convolution-Recurrent 

Neural Network model, can be further utilised by affective algorithmic compositions 

systems, to automatically develop stimuli from the loop-based stimulus set in order to 

induce specific emotional responses in individuals. 

Overall, I have provided the domain of emotion induction with a strong and robust 

system and methodology for selecting music stimuli for reliable and effective emotion 

induction in individuals. The novel contributions of this thesis open up innumerable 

possibilities to researchers and practitioners. It has the potential to form the basis for 

innovation in many more works in the domains of basic emotion research, psychology of 

music and musicology, and applied research fields such as music therapy, consumer 

marketing, film and video game making, and many more. 
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Appendix A 
Table A.1 Electronic Music Excerpt Ratings.  

Exc
erpt 

Emotion 
(expert 
committee) 

Album Tr
ac
k 

mm:s
s 

Ar
(F
) 

Ar
(P
) 

Va
(F) 

Va
(P
) 

Li
ke 

Fam
iliar 

101 High Arousal The Dark Knight 11 04:08-
04:38 

7.1 6.6 7.1 5.9 6.
3 

5.0 

21 High Arousal Far Cry 4 3 00:00-
00:30 

6.7 6.6 5.7 6.4 5.
4 

4.5 

5 High Arousal The Girl with the 
Dragon Tattoo 

28 02:14-
02:44 

5.7 5.9 4.9 4.9 3.
7 

3.4 

37 High Arousal The Social 
Network 

3 00:41-
01:11 

6.6 6.6 6.3 5.2 4.
3 

4.1 

38 High Arousal The Dark Knight 10 00:12-
00:42 

7.5 6.8 7.0 5.9 6.
4 

5.8 

149 High Arousal Spring Break 1 00:00-
00:28 

6.8 7.8 6.7 6.3 5.
9 

5.4 

150 High Arousal The Girl with the 
Dragon Tattoo 

28 02:44-
03:05 

6.8 6.4 4.7 4.1 4.
1 

3.7 

69 High Arousal Spring Break 10 00:32-
00:59 

6.3 7.5 5.5 6.3 4.
3 

3.7 

53 High Arousal Far Cry 4 12 01:10-
01:40 

6.6 7.8 4.2 4.3 4.
5 

4.4 

117 High Arousal The Social 
Network 

12 01:53-
02:20 

6.8 7.2 6.1 5.7 6.
0 

6.3 

102 High Arousal The Girl with the 
Dragon Tattoo 

16 02:24-
02:54 

5.6 5.7 6.0 5.1 5.
2 

3.9 

151 High Arousal Spring Break 10 00:04-
00:31 

6.1 6.5 6.2 5.2 5.
2 

4.1 

118 High Arousal Far Cry 4 19 00:30-
01:00 

6.5 6.9 6.3 5.3 5.
1 

4.0 

85 High Arousal Far Cry 4 24 01:50-
02:13 

5.9 6.5 4.7 4.1 4.
6 

3.7 

6 High Arousal The Girl with the 
Dragon Tattoo 

4 00:44-
01:03 

5.3 7.0 6.0 5.5 5.
0 

4.4 
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39 High Arousal  A Series of 
Unfortunate 
Events 

29 00:32-
01:01 

5.3 5.9 6.1 6.0 5.
7 

4.5 

7 High Arousal The Road to 
Perdition 

20 00:15-
00:39 

7.5 7.6 6.0 5.3 5.
5 

4.9 

133 High Arousal The Girl with the 
Dragon Tattoo 

36 05:30-
06:00 

7.4 6.9 5.0 3.9 4.
6 

4.0 

119 High Arousal Gone Girl 18 00:12-
00:32 

4.8 5.2 3.5 3.5 3.
6 

2.9 

70 High Arousal Far Cry 4 14 00:00-
00:30 

6.4 6.9 5.4 4.8 5.
6 

4.4 

86 High Arousal Three 1 00:00-
00:19 

6.5 6.7 5.6 5.0 5.
2 

4.3 

71 High Arousal Far Cry 4 26 00:16-
00:46 

7.5 7.5 4.7 4.8 4.
7 

4.3 

134 High Arousal Three 17 00:48-
01:18 

7.2 7.1 5.8 4.8 5.
7 

5.2 

54 High Arousal  A Series of 
Unfortunate 
Events 

11 01:10-
01:40 

4.7 4.7 4.7 4.5 5.
2 

4.5 

103 High Arousal The Girl with the 
Dragon Tattoo 

17 01:33-
01:55 

5.3 5.9 4.0 2.6 3.
4 

3.2 

22 High Arousal Three 5 02:03-
02:27 

7.4 7.3 4.6 3.7 4.
4 

4.9 

23 High Arousal Far Cry 4 5 00:01-
00:30 

6.0 6.8 5.5 5.7 4.
9 

4.4 

135 High Arousal Three 15 01:30-
01:55 

7.4 7.2 5.7 4.3 5.
3 

4.3 

55 High Arousal The Lego Movie 5 00:20-
00:50 

6.8 7.1 5.9 5.9 4.
8 

4.4 

87 High Arousal The Social 
Network 

5 00:00-
00:28 

5.3 5.6 6.1 5.5 5.
4 

4.3 

40 Low Arousal The Social 
Network 

14 00:00-
00:20 

5.2 4.1 4.5 3.1 3.
9 

3.6 

136 Low Arousal Gone Girl 11 01:00-
01:30 

5.6 3.6 4.7 3.8 4.
5 

3.9 

8 Low Arousal Gone Girl 3 00:23-
00:53 

3.3 3.2 4.1 4.3 4.
8 

4.2 

152 Low Arousal The Knick 7 00:15-
00:35 

5.6 4.2 6.3 6.1 5.
7 

4.4 
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56 Low Arousal The Knick 18 00:39-
01:09 

4.0 4.2 5.9 6.1 5.
7 

4.3 

120 Low Arousal The Road to 
Perdition 

3 00:18-
00:48 

4.5 2.6 5.4 5.1 5.
7 

4.3 

104 Low Arousal Gone Girl 12 01:50-
02:20 

5.0 3.8 6.2 4.9 5.
7 

4.5 

72 Low Arousal The Knick 16 00:09-
00:27 

5.1 3.5 3.9 4.0 4.
9 

4.2 

24 Low Arousal American Beauty 14 00:00-
00:30 

2.7 3.1 4.4 3.4 4.
7 

4.3 

88 Low Arousal The Girl with the 
Dragon Tattoo 

22 00:46-
01:16 

4.1 4.1 6.0 4.8 5.
5 

3.9 

89 Low Arousal Far Cry 4 9 01:55-
02:15 

4.9 4.5 6.5 5.7 5.
3 

3.9 

73 Low Arousal  A Series of 
Unfortunate 
Events 

24 02:08-
02:28 

5.1 4.5 4.0 3.3 4.
3 

3.9 

137 Low Arousal The Knick 4 00:00-
00:23 

5.7 3.8 5.7 4.6 5.
3 

4.3 

41 Low Arousal The Girl with the 
Dragon Tattoo 

13 03:34-
03:57 

5.4 5.0 4.7 4.4 4.
9 

4.3 

121 Low Arousal The Knick 18 01:18-
01:37 

4.8 3.5 4.8 5.3 5.
4 

4.2 

138 Low Arousal Far Cry 4 30 02:00-
02:30 

4.8 3.6 5.6 5.3 5.
8 

4.6 

105 Low Arousal The Girl with the 
Dragon Tattoo 

5 00:00-
00:30 

4.1 4.1 2.9 3.1 2.
9 

2.9 

74 Low Arousal Gone Girl 2 00:00-
00:32 

3.3 2.9 5.8 5.7 6.
1 

4.8 

9 Low Arousal Gone Girl 23 00:30-
00:53 

3.5 3.9 4.9 4.1 4.
9 

4.1 

57 Low Arousal Batman 1 00:00-
00:30 

4.6 4.3 4.4 3.7 4.
6 

3.6 

106 Low Arousal The Knick 19 00:10-
00:31 

3.8 3.7 4.7 4.5 4.
7 

3.9 

153 Low Arousal The Lego Movie 2 00:40-
01:00 

6.6 6.6 4.7 4.0 4.
4 

3.7 

58 Low Arousal The Social 
Network 

12 00:20-
00:30 

4.3 4.7 6.2 6.0 5.
7 

6.2 
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122 Low Arousal American Beauty 1 00:00-
00:30 

5.3 4.1 6.8 5.9 5.
8 

5.6 

10 Low Arousal The Lego Movie 4 00:00-
00:30 

4.0 3.8 6.6 6.8 6.
0 

5.1 

154 Low Arousal American Beauty 2 00:00-
00:30 

5.5 3.7 6.3 6.1 6.
2 

4.7 

90 Low Arousal The Dark Knight 7 00:14-
00:40 

5.2 5.1 3.7 2.6 3.
9 

3.8 

42 Low Arousal The Girl with the 
Dragon Tattoo 

24 03:05-
03:32 

5.4 5.5 5.3 5.7 5.
2 

4.0 

25 Low Arousal The Road to 
Perdition 

1 00:05-
00:35 

2.3 2.9 3.9 4.1 4.
0 

3.7 

26 Low Arousal American Beauty 3 00:00-
00:30 

4.0 4.1 5.8 5.7 5.
4 

4.3 

59  Negative 
Valence 

The Girl with the 
Dragon Tattoo 

5 01:42-
02:05 

5.1 4.2 3.3 3.0 3.
7 

3.7 

27  Negative 
Valence 

The Road to 
Perdition 

5 01:00-
01:22 

4.0 3.6 3.6 3.6 3.
7 

3.7 

11  Negative 
Valence 

American Beauty 14 00:00-
00:30 

2.6 2.9 4.0 4.5 4.
7 

4.2 

12  Negative 
Valence 

Gone Girl 4 00:16-
00:37 

3.6 4.8 4.0 2.3 3.
2 

3.4 

107  Negative 
Valence 

Gone Girl 7 00:00-
00:32 

4.1 3.5 4.9 4.4 5.
2 

3.9 

139  Negative 
Valence 

Far Cry 4 5 00:00-
00:30 

6.9 6.4 6.1 4.6 5.
5 

4.4 

13  Negative 
Valence 

The Girl with the 
Dragon Tattoo 

27 01:47-
02:14 

5.8 4.8 3.6 4.3 4.
1 

3.9 

140  Negative 
Valence 

Far Cry 4 1 02:14-
02:38 

5.5 4.2 5.2 4.3 4.
6 

4.0 

60  Negative 
Valence 

Cinderella 6 00:00-
00:30 

4.9 4.1 2.9 2.3 3.
5 

3.3 

75  Negative 
Valence 

The Lego Movie 23 01:18-
01:48 

4.7 4.3 6.5 6.1 7.
0 

5.5 

123  Negative 
Valence 

Far Cry 4 20 00:00-
00:30 

5.7 4.5 4.9 4.6 5.
2 

4.6 

124  Negative 
Valence 

Three 3 01:24-
01:51 

6.0 4.6 4.3 3.9 4.
4 

3.9 

28  Negative 
Valence 

Batman 8 02:30-
03:00 

6.2 5.9 4.7 3.9 4.
6 

4.6 
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61  Negative 
Valence 

The Girl with the 
Dragon Tattoo 

21 00:56-
01:23 

4.4 3.2 3.9 2.9 4.
7 

3.9 

76  Negative 
Valence 

The Social 
Network 

7 00:30-
01:00 

4.5 4.9 4.1 3.5 3.
9 

3.5 

43  Negative 
Valence 

The Girl with the 
Dragon Tattoo 

6 00:04-
00:34 

3.4 3.6 6.3 6.1 6.
8 

5.3 

44  Negative 
Valence 

The Knick 8 00:46-
01:10 

4.3 5.2 5.5 5.2 4.
6 

3.6 

155  Negative 
Valence 

Batman 8 00:30-
01:00 

6.6 5.8 5.8 5.1 6.
1 

5.1 

45  Negative 
Valence 

Far Cry 4 28 00:00-
00:25 

6.9 7.4 4.5 4.7 4.
2 

3.9 

91  Negative 
Valence 

Three 5 01:18-
01:43 

5.9 5.1 3.9 3.7 4.
6 

4.1 

77  Negative 
Valence 

The Social 
Network 

1 01:15-
01:40 

4.3 3.8 3.4 3.5 3.
8 

3.6 

108  Negative 
Valence 

The Social 
Network 

18 00:53-
01:16 

4.4 3.9 3.5 3.7 4.
4 

3.7 

125  Negative 
Valence 

Gone Girl 16 01:30-
01:55 

6.4 5.0 4.1 4.2 4.
7 

3.9 

92  Negative 
Valence 

Gone Girl 19 01:00-
01:20 

5.1 5.2 3.1 3.5 4.
5 

3.6 

93  Negative 
Valence 

The Road to 
Perdition 

5 00:11-
00:31 

4.6 3.9 3.6 3.0 4.
2 

3.9 

156  Negative 
Valence 

Far Cry 4 7 00:00-
00:30 

7.5 7.7 5.9 4.5 5.
1 

4.6 

109  Negative 
Valence 

The Social 
Network 

7 00:23-
00:53 

4.5 4.7 2.8 3.1 3.
4 

2.8 

157  Negative 
Valence 

Three 18 00:07-
00:30 

6.2 5.8 4.0 3.8 4.
6 

3.9 

29  Negative 
Valence 

Nemo 34 00:36-
01:06 

6.4 6.5 5.3 4.7 4.
6 

4.2 

141  Negative 
Valence 

The Dark Knight 12 01:30-
02:00 

6.9 7.0 6.1 5.0 6.
3 

5.1 

158  Positive 
Valence 

 A Series of 
Unfortunate 
Events 

29 02:00-
02:22 

5.0 5.5 6.4 5.5 5.
7 

4.3 

78  Positive 
Valence 

The Lego Movie 13 00:15-
00:45 

7.6 7.4 6.4 6.4 4.
6 

4.4 
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126  Positive 
Valence 

The Lego Movie 24 00:36-
01:06 

5.8 5.9 7.1 7.1 6.
4 

5.4 

62  Positive 
Valence 

Nemo 1 00:52-
01:09 

3.8 5.1 6.7 7.3 5.
6 

4.7 

63  Positive 
Valence 

The Girl with the 
Dragon Tattoo 

6 02:44-
03:15 

5.6 5.4 5.7 5.7 5.
9 

4.6 

46  Positive 
Valence 

Nemo 3 00:00-
00:30 

3.2 2.8 6.3 6.2 6.
2 

5.1 

14  Positive 
Valence 

Nemo 28 01:06-
01:23 

4.3 4.1 6.7 6.1 6.
2 

5.1 

94  Positive 
Valence 

The Knick 1 01:46-
02:16 

6.1 5.7 6.9 5.6 5.
8 

4.4 

15  Positive 
Valence 

Far Cry 4 10 01:10-
01:39 

4.7 4.4 5.5 5.9 5.
4 

4.7 

127  Positive 
Valence 

Spring Break 3 00:49-
01:19 

4.6 3.8 6.4 5.4 5.
4 

4.4 

142  Positive 
Valence 

Nemo 3 00:12-
00:35 

5.1 2.7 6.1 6.6 6.
2 

5.2 

30  Positive 
Valence 

Far Cry 4 18 00:00-
00:28 

6.2 5.9 5.5 5.3 5.
1 

4.3 

16  Positive 
Valence 

Spring Break 4 00:00-
00:30 

6.0 6.3 5.5 6.9 4.
9 

5.0 

110  Positive 
Valence 

The Lego Movie 13 00:30-
01:00 

6.8 6.7 7.1 6.9 5.
6 

4.8 

143  Positive 
Valence 

Far Cry 4 25 00:00-
00:30 

6.3 5.6 5.9 4.3 5.
2 

4.3 

79  Positive 
Valence 

Spring Break 18 00:30-
01:00 

3.7 3.7 6.2 6.1 6.
1 

5.1 

31  Positive 
Valence 

The Lego Movie 7 00:00-
00:30 

6.3 6.0 6.8 6.3 6.
2 

5.8 

95  Positive 
Valence 

The Dark Knight 12 01:06-
01:26 

6.6 6.4 7.8 6.4 6.
5 

5.7 

80  Positive 
Valence 

The Knick 14 00:00-
00:30 

4.7 5.3 5.6 6.1 5.
3 

4.3 

47  Positive 
Valence 

The Lego Movie 3 01:31-
01:55 

7.1 7.4 7.2 6.9 5.
5 

5.0 

159  Positive 
Valence 

Spring Break 7 01:30-
01:50 

5.9 4.6 7.0 6.4 5.
8 

4.6 

96  Positive 
Valence 

American Beauty 4 00:30-
01:00 

5.4 4.0 7.1 6.2 6.
4 

4.4 
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48  Positive 
Valence 

 A Series of 
Unfortunate 
Events 

5 01:10-
01:40 

3.2 3.1 6.9 6.5 6.
7 

5.2 

144  Positive 
Valence 

The Road to 
Perdition 

26 02:30-
02:53 

4.7 3.7 5.5 6.8 6.
3 

5.1 

32  Positive 
Valence 

Nemo 5 00:26-
00:42 

5.2 4.4 7.0 7.1 6.
2 

5.4 

111  Positive 
Valence 

The Girl with the 
Dragon Tattoo 

6 00:25-
00:44 

4.7 3.1 5.7 4.9 6.
4 

4.6 

128  Positive 
Valence 

 A Series of 
Unfortunate 
Events 

5 01:21-
01:41 

4.8 3.0 5.8 5.6 6.
0 

4.8 

64  Positive 
Valence 

 A Series of 
Unfortunate 
Events 

21 00:05-
00:34 

3.4 3.5 6.5 6.3 5.
7 

4.3 

112  Positive 
Valence 

The Social 
Network 

8 01:25-
01:52 

5.5 4.9 6.9 5.3 5.
6 

4.2 

160  Positive 
Valence 

Nemo 21 01:36-
01:56 

6.2 5.9 6.6 5.8 5.
5 

4.6 

 

Table A.2 Music Excerpts from Eerola & Vuoskoski (2010) 

Exc
erpt 

Emotion Album Tr
ack 

mm:ss Ar(
F) 

Ar
(P) 

Va
(F) 

Va
(P) 

Li
ke 

Fam
iliar 

17 High 
Energy 

Batman  18 00:55-
01:15 

6.7 6.5 7.7 7.0 6.
5 

6.1 

65 High 
Energy 

Man of Galilee 
CD1  

2 03:02-
03:18 

5.7 7.1 6.8 7.9 6.
1 

5.7 

113 High 
Energy 

The Untouchables  6 01:50-
02:05 

6.4 5.2 7.3 7.4 6.
0 

5.4 

129 High 
Energy 

Shine  5 02:00-
02:16 

5.2 6.3 7.2 6.7 6.
2 

5.0 

145 High 
Energy 

Shine  15 01:00-
01:19 

4.4 5.1 6.9 6.6 5.
7 

4.4 

1 High 
Energy 

Juha  2 00:07-
00:18 

4.2 4.2 6.2 6.3 5.
1 

4.7 

33 High 
Energy 

Lethal Weapon 3  4 01:40-
02:00 

3.7 4.4 5.5 6.9 5.
2 

4.6 

49 High 
Energy 

Crouching Tiger, 
Hidden Dragon  

13 01:52-
02:10 

5.0 5.7 6.1 5.3 6.
3 

5.2 
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81 High 
Energy 

Oliver Twist  7 01:30-
01:46 

5.5 3.6 7.5 6.2 6.
6 

5.7 

97 High 
Energy 

Batman  4 02:31-
02:51 

6.1 5.9 7.3 7.3 6.
3 

6.2 

2 Low 
Energy 

Blanc  16 00:00-
00:15 

3.2 3.5 3.5 4.1 4.
6 

4.2 

34 Low 
Energy 

Road to Perdition  16 00:17-
00:32 

4.0 4.2 5.3 4.7 5.
3 

4.5 

50 Low 
Energy 

Blanc  10 00:13-
00:31 

2.6 3.5 5.4 4.3 5.
6 

5.0 

66 Low 
Energy 

Batman Returns  12 00:57-
01:14 

3.5 2.7 4.8 4.7 4.
9 

4.2 

114 Low 
Energy 

Running Scared  15 02:06-
02:27 

4.9 4.2 4.8 3.8 5.
1 

4.2 

18 Low 
Energy 

Blanc  18 00:00-
00:16 

3.6 2.9 4.9 4.3 5.
1 

5.1 

82 Low 
Energy 

Big Fish  15 00:55-
01:11 

4.2 4.1 5.6 4.8 5.
6 

4.3 

98 Low 
Energy 

Big Fish  11 01:26-
01:40 

5.2 3.9 6.3 5.9 6.
3 

5.0 

130 Low 
Energy 

Oliver Twist  6 00:51-
01:07 

5.1 3.1 4.9 4.4 5.
3 

4.3 

146 Low 
Energy 

Juha  16 00:00-
00:15 

5.4 3.4 5.6 5.8 5.
9 

5.0 

19 Negative 
Valence 

Road to Perdition  6 00:34-
00:49 

5.4 4.6 3.3 3.1 3.
6 

3.4 

67 Negative 
Valence 

Grizzly Man  16 01:05-
01:32 

5.6 5.4 2.9 2.7 3.
6 

3.8 

83 Negative 
Valence 

Lethal Weapon 3  7 00:00-
00:16 

4.6 4.1 4.3 3.9 4.
9 

3.6 

99 Negative 
Valence 

The English 
Patient  

8 01:35-
01:57 

5.5 5.6 4.3 3.0 4.
2 

4.4 

115 Negative 
Valence 

Hellraiser  5 00:00-
00:15 

5.5 6.1 4.1 3.8 4.
9 

4.6 

3 Negative 
Valence 

Batman  9 00:57-
01:16 

3.3 3.1 4.2 4.3 4.
4 

4.1 

35 Negative 
Valence 

Shakespeare in 
Love  

11 00:21-
00:36 

3.7 4.4 3.8 4.1 4.
3 

4.1 

51 Negative 
Valence 

The Fifth Element  9 00:00-
00:18 

4.5 4.3 4.1 3.7 4.
6 

4.1 
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131 Negative 
Valence 

Big Fish  15 00:15-
00:30 

5.4 4.2 5.6 4.3 5.
2 

4.1 

147 Negative 
Valence 

Juha  18 02:30-
02:46 

6.1 5.3 6.2 5.9 5.
8 

4.4 

4 Positive 
Valence 

Gladiator  17 00:14-
00:27 

4.2 4.3 6.2 6.5 5.
6 

4.7 

68 Positive 
Valence 

Juha  10 00:20-
00:38 

4.1 4.1 7.3 7.9 6.
8 

5.6 

84 Positive 
Valence 

Dances with 
Wolves  

10 00:28-
00:46 

5.6 5.0 7.7 6.5 6.
2 

5.1 

132 Positive 
Valence 

Blanc  12 00:51-
01:06 

4.4 3.9 6.7 6.3 6.
4 

5.0 

148 Positive 
Valence 

Pride & Prejudice  9 00:01-
00:21 

4.4 2.9 6.1 5.8 5.
9 

4.4 

20 Positive 
Valence 

Vertigo OST  6 04:42-
04:57 

6.2 6.1 6.3 5.9 5.
9 

6.1 

36 Positive 
Valence 

Vertigo OST  6 02:02-
02:17 

3.8 4.4 4.7 5.2 5.
4 

4.7 

52 Positive 
Valence 

Man of Galilee 
CD1  

2 00:19-
00:42 

4.7 6.2 6.7 7.2 6.
1 

5.7 

100 Positive 
Valence 

Shakespeare in 
Love  

21 00:03-
00:21 

7.4 5.4 7.6 6.2 6.
2 

5.1 

116 Positive 
Valence 

Outbreak  6 00:16-
00:31 

5.6 4.5 6.6 5.5 5.
7 

4.8 
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Appendix B 
Table B.3 Factor Loadings for each feature 

Feature MR
2 

MR
1 

MR
4 

MR1
4 

MR1
1 

Facto
r 

barkbands crest (dmean) 
 

0.68 
   

MR1 
barkbands crest (dmean2) 

 
0.67 

   
MR1 

barkbands crest (dvar) 
 

0.70 
   

MR1 
barkbands crest (dvar2) 

 
0.77 

   
MR1 

barkbands spread (dmean) 
 

0.64 
   

MR1 
barkbands spread (dmean2) 

 
0.67 

   
MR1 

hfc (dmean) 
 

0.66 
   

MR1 
hfc (dmean2) 

 
0.70 

   
MR1 

melbands crest (dmean) 
 

0.60 
   

MR1 
melbands crest (dmean2) 

 
0.58 

   
MR1 

melbands crest (dvar) 
 

0.63 
   

MR1 
melbands crest (dvar2) 

 
0.66 

   
MR1 

melbands spread (dmean) 
 

0.55 
   

MR1 
melbands spread (dmean2) 

 
0.61 

   
MR1 

pitch salience (dmean) 
 

0.59 
   

MR1 
pitch salience (dmean2) 

 
0.61 

   
MR1 

pitch salience (dvar) 
 

0.60 
   

MR1 
pitch salience (dvar2) 

 
0.67 

   
MR1 

spectral centroid (dmean) 
 

0.58 
   

MR1 
spectral centroid (dmean2) 

 
0.63 

   
MR1 

spectral complexity (dmean) 
 

0.74 
   

MR1 
spectral complexity (dmean2) 

 
0.76 

   
MR1 

spectral complexity (dvar) 
 

0.84 
   

MR1 
spectral complexity (dvar2) 

 
0.86 

   
MR1 

spectral complexity (var) 
 

0.53 
   

MR1 
spectral energyband high (dmean) 

 
0.61 

   
MR1 

spectral energyband high (dmean2) 
 

0.65 
   

MR1 
spectral energyband high (median) 

 
0.58 

   
MR1 

spectral rolloff (dmean) 
 

0.77 
   

MR1 
spectral rolloff (dmean2) 

 
0.78 

   
MR1 

spectral rolloff (dvar) 
 

0.57 
   

MR1 
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spectral rolloff (dvar2) 
 

0.67 
   

MR1 
zerocrossingrate (dmean) 

 
0.51 

   
MR1 

zerocrossingrate (dmean2) 
 

0.58 
   

MR1 
spectral contrast coeffs 6 (dmean) 

    
0.50 MR11 

spectral contrast coeffs 5 (dvar) 
    

0.56 MR11 
spectral contrast coeffs 6 (dvar) 

    
0.63 MR11 

spectral contrast coeffs 5 (dvar2) 
    

0.57 MR11 
spectral contrast coeffs 6 (dvar2) 

    
0.63 MR11 

spectral contrast coeffs 6 (var) 
    

0.59 MR11 
dynamic complexity 

   
-0.69 

 
MR14 

hfc (median) 
   

0.67 
 

MR14 
silence rate 60dB (dmean) 

   
-0.77 

 
MR14 

silence rate 60dB (dmean2) 
   

-0.77 
 

MR14 
silence rate 60dB (dvar) 

   
-0.78 

 
MR14 

silence rate 60dB (dvar2) 
   

-0.78 
 

MR14 
silence rate 60dB (mean) 

   
-0.68 

 
MR14 

silence rate 60dB (var) 
   

-0.74 
 

MR14 
spectral decrease (mean) 

   
-0.58 

 
MR14 

spectral decrease (median) 
   

-0.75 
 

MR14 
spectral energy (mean) 

   
0.59 

 
MR14 

spectral energy (median) 
   

0.75 
 

MR14 
spectral energyband low (median) 

   
0.57 

 
MR14 

spectral energyband middle low (mean) 
   

0.54 
 

MR14 
spectral energyband middle low 
(median) 

   
0.68 

 
MR14 

spectral flux (median) 
   

0.53 
 

MR14 
spectral rms (mean) 

   
0.74 

 
MR14 

spectral rms (median) 
   

0.81 
 

MR14 
barkbands flatness db (mean) 0.81 

    
MR2 

barkbands flatness db (median) 0.80 
    

MR2 
dissonance (mean) -0.50 

    
MR2 

erbbands flatness db (mean) 0.77 
    

MR2 
erbbands flatness db (median) 0.75 

    
MR2 

melbands flatness db (mean) 0.80 
    

MR2 
melbands flatness db (median) 0.80 

    
MR2 

spectral entropy (mean) -0.66 
    

MR2 
spectral entropy (median) -0.65 

    
MR2 

spectral kurtosis (dmean) 0.78 
    

MR2 
spectral kurtosis (dmean2) 0.77 

    
MR2 
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spectral kurtosis (mean) 0.92 
    

MR2 
spectral kurtosis (median) 0.92 

    
MR2 

spectral skewness (dmean) 0.78 
    

MR2 
spectral skewness (dmean2) 0.79 

    
MR2 

spectral skewness (dvar) 0.57 
    

MR2 
spectral skewness (dvar2) 0.56 

    
MR2 

spectral skewness (mean) 0.90 
    

MR2 
spectral skewness (median) 0.90 

    
MR2 

spectral skewness (var) 0.67 
    

MR2 
spectral spread (mean) -0.61 

    
MR2 

spectral spread (median) -0.61 
    

MR2 
mfcc 1 -0.60 

    
MR2 

mfcc 2 0.54 
    

MR2 
mfcc 3 0.54 

    
MR2 

spectral contrast coeffs 6 (mean) -0.61 
    

MR2 
spectral contrast coeffs 6 (median) -0.61 

    
MR2 

spectral contrast valleys 4 (mean) -0.56 
    

MR2 
spectral contrast valleys 5 (mean) -0.73 

    
MR2 

spectral contrast valleys 6 (mean) -0.67 
    

MR2 
spectral contrast valleys 4 (median) -0.56 

    
MR2 

spectral contrast valleys 5 (median) -0.72 
    

MR2 
spectral contrast valleys 6 (median) -0.65 

    
MR2 

spectral contrast coeffs 1 (dmean) 
  

0.68 
  

MR4 
spectral contrast coeffs 2 (dmean) 

  
0.67 

  
MR4 

spectral contrast coeffs 3 (dmean) 
  

0.78 
  

MR4 
spectral contrast coeffs 4 (dmean) 

  
0.77 

  
MR4 

spectral contrast coeffs 1 (dmean2) 
  

0.64 
  

MR4 
spectral contrast coeffs 2 (dmean2) 

  
0.62 

  
MR4 

spectral contrast coeffs 3 (dmean2) 
  

0.75 
  

MR4 
spectral contrast coeffs 4 (dmean2) 

  
0.74 

  
MR4 

spectral contrast coeffs 1 (dvar) 
  

0.65 
  

MR4 
spectral contrast coeffs 2 (dvar) 

  
0.68 

  
MR4 

spectral contrast coeffs 3 (dvar) 
  

0.77 
  

MR4 
spectral contrast coeffs 4 (dvar) 

  
0.78 

  
MR4 

spectral contrast coeffs 1 (dvar2) 
  

0.61 
  

MR4 
spectral contrast coeffs 2 (dvar2) 

  
0.64 

  
MR4 

spectral contrast coeffs 3 (dvar2) 
  

0.73 
  

MR4 
spectral contrast coeffs 4 (dvar2) 

  
0.74 

  
MR4 

spectral contrast valleys 1 (dmean) 
  

0.59 
  

MR4 



	 174	

spectral contrast valleys 2 (dmean) 
  

0.63 
  

MR4 
spectral contrast valleys 1 (dmean2) 

  
0.58 

  
MR4 

spectral contrast valleys 2 (dmean2) 
  

0.63 
  

MR4 
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Appendix C 
Table C.4 Rhythmic features and the top 10 music excerpts that activate that feature 

Arousal_Feature
_1 
(Pumping 
Rhythm)  

BZ_11-00-00-00-00.mp3 
BZ_00-00-06-28-74.mp3 
CM_TechnoWorm_01.mp3 
BZ_00-03-00-48-37.mp3 
BZ_11-16-00-00-00.mp3 
BZ_09-26-00-00-37.mp3 
BZ_11-00-00-00-58.mp3 
CM_Chopper_01.mp3 
CM_Chopper_02.mp3 
BZ_13-00-00-43-00.mp3 

Arousal_Feature
_10 
(Driving 
Rhythm) 

BZ_00-00-00-00-56.mp3 
BZ_11-16-00-00-00.mp3 
BZ_31-23-00-00-70.mp3 
FR_Em_2_1_1.mp3 
BZ_11-00-00-00-58.mp3 
BZ_18-00-00-49-23.mp3 
BZ_11-00-00-00-00.mp3 
BZ_11-15-00-00-04.mp3 
FR_Em_3_1_1.mp3 
BZ_10-00-00-01-00.mp3 

Valence_Featur
e_15 
(Firm Rhythm) 

CM_MetalTron_01.mp3 
BZ_00-00-08-00-37.mp3 
EL_VOL3_02_143_Dm_Part1_1_0_1_0_1_1_1_.mp3 
EL_VOL1_05_78_A_to_Bb_Part3_0_0_0_1_0_0_0_0_1_0
_.mp3 
EL_VOL2_02_141_D5_to_Ab_Part1_1_1_0_0_1_1_1_0_1
_.mp3 
EL_VOL2_02_141_D5_to_Ab_Part1_0_1_0_1_1_1_1_0_1
_.mp3 
EL_VOL2_05_75_Dm_to_Ebm_Part4_0_0_0_1_0_0_1_0_
1_1_1_0_.mp3 
FR_Dm_0_4.mp3 
FR_D#m_0_0_3_0.mp3 
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FR_Am_0_1_0_0.mp3 
 

Table C.5 Rhythmic sparsity features and the top 10 excerpts that activate that feature 

Arousal_Feature
_9 
(Rhythmic 
sparsity) 

EL_VOL1_04_158_Cm_Part1_1_1_1_0_1_0_1_0_1_0_.mp
3 
EL_02_141_Var_MIX_pt1.mp3 
CM_FallenHero_02.mp3 
DYS_118_G_Haze_1_0_1_1_1_.mp3 
CM_MinorMelody_01.mp3 
CM_FallenHero_01.mp3 
CM_HappyIrishWhistle_01.mp3 
BZ_00-00-00-00-02.mp3 
BZ_00-00-00-00-04.mp3 
BZ_00-00-00-00-28.mp3 

Valence_Featur
e_6 
(Rhythmic 
sparsity) 

FR_Dm_0_4.mp3 
FR_Am_0_1_0_0.mp3 
EL_02_141_Var_MIX_pt1.mp3 
EL_VOL2_02_141_D5_to_Ab_Part1_1_0_1_1_1_1_1_0_1
_.mp3 
EL_05_75_Cm_MIX_pt1.mp3 
EL_02_141_Ab:G#m_MIX_pt2.mp3 
EL_04_158_Cm_MIX_pt2.mp3 
EL_VOL2_02_141_D5_to_Ab_Part2_0_0_0_1_0_1_0_1_0
_0_1_.mp3 
EL_03_91_Ebm_MIX_pt2.mp3 
EL_03_110_D_MIX_pt1.mp3 

 

Table C.6 Musical pattern features and top 10 excerpts that activate that feature 

Arousal_Feature_3 
(Harp and Pizzicato like 
Ostinatos) 

EL_VOL1_05_78_A_to_Bb_Part1_0_1_0_0_0
_.mp3 
EL_VOL1_05_78_A_to_Bb_Part1_0_1_1_1_0
_.mp3 
EL_05_78_A_MIX_pt1.mp3 
EL_VOL1_01_70_Dm_to_Em_Part2_0_1_1_.m
p3 
EL_VOL1_02_100_G7_to_Gm_Part1_0_1_1_1
_0_1_.mp3 
MFM_100_F#_01_0_0_0_1_1_1_1_.mp3 
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EL_VOL2_04_98_Am_Part2_0_1_0_0_1_0_0_
.mp3 
EL_VOL3_01_115_F#_to_Eb_Part1_0_1_0_0
_0_0_0_1_.mp3 
EL_VOL2_03_110_D_Part2_1_0_0_1_1_1_.mp
3 
EL_VOL1_02_100_G7_to_Gm_Part1_1_1_1_1
_0_0_.mp3 

Arousal_Feature_4 
(Static, Repetitive, Long 
Decay) 

MFM_100_F#_01_0_0_0_1_1_1_1_.mp3 
MFM_130_C_01_1_0_0_1_0_1_1_.mp3 
MFM_125_Fm_01_1_0_1_1_0_1_0_.mp3 
MFM_100_F#_01_1_0_0_1_1_0_1_.mp3 
EL_VOL1_05_78_A_to_Bb_Part1_0_1_1_1_0
_.mp3 
EL_VOL1_05_78_A_to_Bb_Part1_0_1_0_0_0
_.mp3 
MFM_120_G#_01_0_1_0_1_0_1_.mp3 
EL_05_78_A_MIX_pt1.mp3 
MFM_130_C_01_0_0_0_1_1_0_0_.mp3 
DYS_100_Am_Blissfull_1_0_1_0_0_.mp3 

Valence_Feature_4 
(minor ostinatos) 

EL_04_158_Cm_MIX_pt2.mp3 
EL_VOL2_02_141_D5_to_Ab_Part2_0_0_0_1_
0_1_0_1_0_0_1_.mp3 
EL_VOL3_05_75_Cm_to_Gm_Part2_0_0_0_1
_1_1_.mp3 
EL_VOL1_05_78_A_to_Bb_Part3_1_0_0_0_0
_1_0_1_1_0_.mp3 
EL_04_98_Am_MIX_pt1.mp3 
EL_03_110_D_MIX_pt3.mp3 
EL_VOL1_02_100_G7_to_Gm_Part2_1_0_0_1
_1_1_0_.mp3 
EL_VOL3_01_115_F#_to_Eb_Part1_0_1_1_0
_1_1_1_1_.mp3 
EL_05_78_Bb_MIX_pt3.mp3 
EL_04_98_Am_MIX_pt2.mp3 

Valence_Feature_10 
(stepwise and arpeggio type 
patterns) 

EL_05_75_Cm_MIX_pt1.mp3 
EL_02_141_Ab:G#m_MIX_pt2.mp3 
EL_04_158_Cm_MIX_pt2.mp3 
EL_VOL2_02_141_D5_to_Ab_Part2_0_0_0_1_
0_1_0_1_0_0_1_.mp3 
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EL_03_91_Ebm_MIX_pt2.mp3 
EL_03_110_D_MIX_pt1.mp3 
EL_VOL3_05_75_Cm_to_Gm_Part2_0_0_0_1
_1_1_.mp3 
EL_VOL2_03_110_D_Part2_1_0_0_0_1_1_.mp
3 
EL_VOL1_05_78_A_to_Bb_Part3_1_0_0_0_0
_1_0_1_1_0_.mp3 
EL_04_98_Am_MIX_pt1.mp3 

Valence_Feature_14 
(rapid harp-like arpeggios and 
musical trills) 

CM_Euphoria_01.mp3 
MFM_120_G#_02_0_0_1_0_0_1_.mp3 
CC_Intro_18_Full.mp3 
EL_02_141_Var_MIX_pt4.mp3 
FR_Dm_0_4.mp3 
FR_Am_0_1_0_0.mp3 
EL_02_141_Var_MIX_pt1.mp3 
MFM_120_Am_01_1_0_0_1_1_1_.mp3 
EL_VOL2_03_110_D_Part3_1_0_0_0_0_0_0_.
mp3 
DYS_90_C#_Forget_0_1_0_0_1_.mp3 

 

Table C.7 Drone features and the top 10 excerpts that activate them 

Arousal_Feature_7 
(drones) 

DYS_90_D_Time 98_1_1_1_1_0_.mp3 
DYS_100_D#_Dark Fog_1_1_0_1_1_1_.mp3 
FR_Gm_4_0_0_1.mp3 
FR_Gm_0_0_1_0.mp3 
CM_Purgatory_01.mp3 
MFM_130_C_02_0_1_1_1_1_0_.mp3 
DYS_132_F_Full_SP_01.mp3 
MFM_130_C_Full_SP.mp3 
MFM_120_Dm_01_1_1_1_0_1_0_0_.mp3 
EL_VOL2_03_110_D_Part1_0_0_1_.mp3 

Arousal_Feature_8 
(long release - drone) 

DYS_100_D#_Dark Fog_1_1_0_1_1_1_.mp3 
DYS_90_D_Time 98_1_1_1_1_0_.mp3 
FR_Gm_0_1_1_1.mp3 
CT_01_0_0_0_0_1_.mp3 
FR_Gm_0_0_1_0.mp3 
FR_D#m_1_0_1_0.mp3 
FR_Gm_4_0_0_1.mp3 
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MFM_120_C_01_1_1_0_0_0_0_0_.mp3 
EL_VOL3_02_143_Dm_Part1_1_0_1_0_1_1_1_.mp3 
EL_VOL3_02_143_Dm_Part1_0_0_0_0_1_0_1_.mp3 

Arousal_Feature_14 
(buzzy - squarewaves) 

DYS_100_D#_Dark Fog_1_1_0_1_1_1_.mp3 
DYS_90_C#_Forget_1_0_1_0_1_.mp3 
DYS_90_D_Time 98_1_1_1_1_0_.mp3 
FR_Cm_0_0_2.mp3 
DYS_70_E_Omnis_0_1_0_0_1_0_.mp3 
FR_Cm_0_3_5.mp3 
FR_G#m_2_0_0_0.mp3 
FR_Dm_0_2.mp3 
FR_Cm_0_2_0.mp3 
FR_D#m_0_1_1_11.mp3 

Valence_Feature_1 
(drones) 

BZ_00-00-07-00-00.mp3 
CT_07_0_1_0_0_.mp3 
BZ_00-00-06-00-00.mp3 
FR_Cm_3_0_0.mp3 
FR_Gm_4_4_3_1.mp3 
FR_D#m_0_1_0_0.mp3 
FR_Fm_0_1_0_0.mp3 
FR_Bm_0_3_0.mp3 
FR_D#m_0_0_4_0.mp3 
FR_Fm_2_1_0_0.mp3 

Valence_Feature_5 
(low range - buzzy) 

FR_Fm_2_0_2_0.mp3 
FR_Fm_1_1_0_0.mp3 
FR_Fm_2_1_1_1.mp3 
FR_Fm_2_1_2_0.mp3 
FR_Am_1_0_1_0.mp3 
FR_Fm_2_1_0_0.mp3 
FR_D#m_0_0_3_0.mp3 
FR_Fm_2_1_2_1.mp3 
FR_Fm_0_1_1_0.mp3 
FR_Gm_4_6_2_6.mp3 

Valence_Feature_13 
(low rhythmic drones) 

CC_Intro_20_Full.mp3 
BZ_00-00-08-00-37.mp3 
FR_D#m_0_0_3_0.mp3 
FR_Am_1_0_1_0.mp3 
FR_G#m_0_1_0_0.mp3 
FR_Am_0_0_1_0.mp3 
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BZ_00-00-04-00-00.mp3 
FR_Cm_1_0_0.mp3 
DYS_100_Am_Blissfull_1_0_1_0_0_.mp3 
FR_Cm_7_4_3.mp3 

 

Table C.8 Instrument features and the top 10 excerpts that activate them 

Arousal_Feature_5 
(Taiko and Bass Drums) 

EL_04_140_Gm_MIX_pt1.mp3 
EL_04_140_Gm_MIX_pt2.mp3 
EL_03_113_Am_MIX_pt3.mp3 
EL_02_141_G#m_MIX_pt3.mp3 
EL_VOL2_02_141_D5_to_Ab_Part5_0_1_0_0_0_
1_0_0_.mp3 
EL_03_110_D_MIX_pt3.mp3 
EL_VOL2_02_141_D5_to_Ab_Part5_1_1_0_1_1_
1_0_0_.mp3 
EL_VOL1_03_91_Ebm_Part2_0_1_0_0_1_1_1_1
_0_.mp3 
EL_04_98_Am_MIX_pt2.mp3 
EL_02_141_Var_MIX_pt5.mp3 

Arousal_Feature_6 
(mid to high range 
sustained sounds) 

EL_VOL1_04_158_Cm_Part1_1_1_1_0_1_0_1_0
_1_0_.mp3 
FR_Gm_0_1_1_1.mp3 
DYS_100_D#_Dark Fog_1_1_0_1_1_1_.mp3 
DYS_90_D_Time 98_1_1_1_1_0_.mp3 
EL_02_141_Var_MIX_pt1.mp3 
FR_F#m_0_2_0_0.mp3 
DYS_70_F_Dub Commissar_1_0_0_.mp3 
FR_Gm_0_0_1_0.mp3 
FR_Dm_0_4.mp3 
CM_NobleSacrifice_01.mp3 

Arousal_Feature_11 
(Brass) 

EL_VOL1_04_158_Cm_Part1_1_1_1_0_1_0_1_0
_1_0_.mp3 
CM_EvilRising_01.mp3 
CM_FormallySad_01.mp3 
CM_March_01.mp3 
CM_BrassSteps_01.mp3 
FR_Gm_0_1_1_1.mp3 
DYS_90_C#_Full_SP_01.mp3 
CM_AdventureTime_01.mp3 
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CM_LighterMoment_01.mp3 
CM_HopeRises_01.mp3 

Arousal_Feature_12 
(Strings) 

EL_VOL2_04_98_Am_Part3_0_0_1_0_1_1_0_0_
1_1_1_.mp3 
EL_VOL2_04_98_Am_Part3_0_1_0_1_1_1_0_0_
0_0_1_.mp3 
EL_05_78_A_MIX_pt1.mp3 
EL_02_100_G7_MIX_pt1.mp3 
EL_VOL1_05_78_A_to_Bb_Part1_0_1_1_1_0_.m
p3 
EL_VOL2_04_98_Am_Part1_0_0_0_0_1_1_.mp3 
EL_VOL1_05_78_A_to_Bb_Part1_0_1_0_0_0_.m
p3 
EL_05_78_A_MIX_pt2.mp3 
EL_VOL1_05_78_A_to_Bb_Part2_0_1_0_0_1_1_
1_.mp3 
EL_VOL2_04_98_Am_Part1_1_1_1_0_0_1_.mp3 

Arousal_Feature_13 
(Light Piano and 
Pizzicato) 

MFM_100_F#_01_0_0_0_1_1_1_1_.mp3 
MFM_130_C_01_0_0_0_1_1_0_0_.mp3 
MFM_130_C_01_1_0_0_1_0_1_1_.mp3 
MFM_120_G#_01_0_1_0_0_1_0_.mp3 
MFM_120_G#_01_0_1_0_1_0_1_.mp3 
MFM_100_Gm_01_0_1_1_0_1_1_0_.mp3 
MFM_100_F#_01_1_1_0_1_1_0_0_.mp3 
EL_02_100_G7_MIX_pt1.mp3 
MFM_120_C_01_1_1_0_0_1_1_0_.mp3 
MFM_120_G#_01_0_0_0_0_1_0_.mp3 

Arousal_Feature_15 
(Reverse Sweep Snare) 

FR_Gm_0_1_1_1.mp3 
EL_04_140_Gm_MIX_pt2.mp3 
EL_01_79_Dm_MIX_pt3.mp3 
EL_VOL2_02_141_D5_to_Ab_Part5_1_1_0_1_1_
1_0_0_.mp3 
FR_Am_0_1_0_0.mp3 
FR_Gm_0_9_3_0.mp3 
FR_F#m_0_2_0_0.mp3 
FR_Cm_9_0_2.mp3 
FR_F#m_5_3_0_0.mp3 
EL_03_110_D_MIX_pt3.mp3 

Valence_Feature_2 
(sawtooth) 

CM_MetalTron_01.mp3 
FR_Am_0_0_1_1.mp3 
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EL_VOL2_03_110_D_Part2_1_0_0_0_1_1_.mp3 
EL_05_78_Bb_MIX_pt3.mp3 
EL_VOL2_04_98_Am_Part3_0_0_1_0_1_1_0_0_
1_1_1_.mp3 
EL_VOL2_04_98_Am_Part3_0_1_0_1_1_1_0_0_
0_0_1_.mp3 
EL_VOL1_05_78_A_to_Bb_Part3_0_0_0_1_0_0_
0_0_1_0_.mp3 
EL_05_75_Dm_Ebm_MIX_pt4.mp3 
EL_VOL2_01_79_Dm_to_Gm_Part3_0_0_1_0_0_
1_1_1_0_1_1_.mp3 
EL_03_91_Ebm_MIX_pt1.mp3 

Valence_Feature_9 
(noisy) 

FR_Dm_0_4.mp3 
FR_D#m_0_0_3_0.mp3 
FR_Am_0_1_0_0.mp3 
FR_Am_1_0_1_0.mp3 
FR_G#m_0_1_0_0.mp3 
FR_Am_0_0_1_0.mp3 
BZ_00-00-04-00-00.mp3 
CT_Action5-Cue_G_125.mp3 
CC_Intro_14_Full.mp3 
MFM_130_A_01_0_0_0_1_0_0_.mp3 

Valence_Feature_12 
(bitcrush) 

BZ_00-00-08-00-37.mp3 
FR_Am_0_0_1_1.mp3 
CM_MetalTron_01.mp3 
BZ_00-00-03-00-43.mp3 
FR_F#m_5_3_1_1.mp3 
BZ_11-32-03-03-40.mp3 
BZ_41-00-00-41-07.mp3 
FR_Dm_0_4.mp3 
BZ_22-30-04-03-65.mp3 
BZ_00-31-00-00-11.mp3 

 

Table C.9 Modal features and the top 10 excerpts that activate them 

Arousal_Feature_2 
(low-tones and minor key) 

FR_Gm_0_1_1_1.mp3 
DYS_100_Am_Blissfull_1_0_1_0_0_.mp3 
MFM_130_A_01_1_1_0_1_1_1_.mp3 
DYS_90_C#_Full_SP_01.mp3 
MFM_100_D#_01_1_1_0_1_1_0_.mp3 
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MFM_115_Em_Full_SP.mp3 
MFM_100_Em_01_1_1_0_1_0_.mp3 
MFM_100_D#_01_1_1_0_0_0_1_.mp3 
MFM_125_Fm_01_1_0_0_0_1_0_1_.mp3 
MFM_110_Em_01_1_0_0_.mp3 

Valence_Feature_3 
(Upbeat Major Key) 

CM_TooHappy_01.mp3 
MFM_100_D#_Full_SP.mp3 
EL_03_91_Ebm_MIX_pt2.mp3 
EL_VOL2_03_110_D_Part2_1_0_0_1_1_1_.
mp3 
EL_03_110_D_MIX_pt1.mp3 
MFM_115_Em_Full_SP.mp3 
MFM_110_F_Full_SP.mp3 
MFM_115_Bm_Full_SP.mp3 
MFM_115_Am_Full_SP.mp3 
EL_VOL2_03_110_D_Part2_0_1_1_1_0_1_.
mp3 

Valence_Feature_7 
(Upbeat Major Key) 

MFM_110_F_Full_SP.mp3 
CM_TooHappy_01.mp3 
MFM_115_C_Full_SP.mp3 
MFM_115_D_Full_SP.mp3 
MFM_100_F#_Full_SP.mp3 
MFM_125_D#_01_0_1_1_1_0_1_1_.mp3 
MFM_100_D#_Full_SP.mp3 
MFM_120_Dm_Full_SP.mp3 
MFM_115_Bm_Full_SP.mp3 
CM_Polite_01.mp3 

Valence_Feature_8 
(slow minor) 

EL_VOL3_04_140_Gm_to_G#m_Part3_0_0
_1_1_.mp3 
EL_VOL3_01_115_F#_to_Eb_Part1_0_1_0_
0_0_0_0_1_.mp3 
EL_VOL3_01_115_F#_to_Eb_Part2_1_1_0_
0_0_1_0_0_1_1_1_1_1_0_0_.mp3 
EL_VOL1_03_91_Ebm_Part1_0_0_1_1_1_1
_1_.mp3 
EL_VOL1_03_91_Ebm_Part1_1_1_1_1_0_0
_1_.mp3 
EL_VOL2_03_110_D_Part1_0_0_1_.mp3 
EL_VOL1_01_70_Dm_to_Em_Part1_0_0_0_
1_.mp3 
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EL_VOL3_01_115_F#_to_Eb_Part2_0_1_1_
1_0_0_1_0_0_0_1_0_0_0_0_.mp3 
EL_VOL2_02_141_D5_to_Ab_Part1_0_1_0_
1_1_1_1_0_1_.mp3 
EL_02_141_Var_MIX_pt1.mp3 

Valence_Feature_11 
(slow chord progression that 
feature vocal or brass choirs.) 

CM_Prayer_01.mp3 
CM_FanfareTheme_01.mp3 
CM_TenseChoir_01.mp3 
CM_MinorMelody_01.mp3 
CM_Haunted_01.mp3 
DYS_128_F#_Full_SP_01.mp3 
MFM_120_Am_01_1_0_0_0_0_1_.mp3 
CM_MemoryDance_02.mp3 
MFM_120_C_01_1_1_0_0_0_0_0_.mp3 
EL_VOL3_04_140_Gm_to_G#m_Part3_1_1
_0_1_.mp3 
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