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Abstract 

Introduced mammalian predators, namely possums, stoats and rats, are the leading cause of 

decline in native avifauna in New Zealand. The control of these species is essential to the 

persistence of native birds. A major component of mammal control in New Zealand is carried 

out through the aerial distribution of the toxin sodium monofluoroacetate (otherwise known as 

1080). The use of this toxin, however, is subject to significant public debate. Many opponents 

of its use claim that forests will ‘fall silent’ following aerial operations, and that this is evidence 

of negative impacts on native bird communities. With the continued and likely increased use 

of this poison, monitoring the outcomes of such pest control operations is necessary to both 

address these concerns and inform conservation practice. The recent growth in autonomous 

recording units (ARUs) provides novel opportunities to conduct monitoring using bioacoustics. 

This thesis used bioacoustic techniques to monitor native bird species over three independent 

aerial 1080 operations in the Aorangi and Rimutaka Ranges of New Zealand.      

In Chapter 2, diurnal bird species were monitored for 10-12 weeks over two independent 

operations in treatment and non-treatment areas. At the community level, relative to non-

treatment areas, the amount of birdsong recorded did not decrease significantly in treatment 

areas across either of the operations monitored. At the species level, one species, the introduced 

chaffinch (Fringilla coelebs), showed a significant decline in the prevalence of its calls in the 

treatment areas relative to non-treatment areas. This was observed over one of the two 

operations monitored. Collectively, these results suggest that diurnal native avifaunal 

communities do not ‘fall silent’ following aerial 1080 operations.  

The quantity of data produced by ARUs can demand labour-intensive manual analysis. 

Extracting data from recordings using automated detectors is a potential solution to this issue. 

The creation of such detectors, however, can be subjective, iterative, and time-consuming. In 

Chapter 3, a process for developing a parsimonious, template-based detector in an efficient, 

objective manner was developed. Applied to the creation of a detector for morepork (Ninox 

novaeseelandiae) calls, the method was highly successful as a directed means to achieve 

parsimony. An initial pool of 187 potential templates was reduced to 42 candidate templates. 

These were further refined to a 10-template detector capable of making 98.89% of the 

detections possible with all 42 templates in approximately a quarter of the processing time for 

the dataset tested. The detector developed had a high precision (0.939) and moderate sensitivity 
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(0.399) with novel recordings, developed for the minimisation of false-positive errors in 

unsupervised monitoring of broad-scale population trends.   

In Chapter 4, this detector was applied to the short-term 10-12 week monitoring of morepork 

in treatment and non-treatment areas around three independent aerial 1080 operations; and to 

longer-term four year monitoring in two study areas, one receiving no 1080 treatment, and one 

receiving two 1080 treatments throughout monitoring. Morepork showed no significant 

difference in trends of calling prevalence across the three independent operations monitored. 

Longer-term, a significant quadratic effect of time since 1080 treatment was found, with calling 

prevalences predicted to increase for 3.5 years following treatment. Collectively, these results 

suggest a positive effect of aerial 1080 treatment on morepork populations in the lower North 

Island, and build on the small amount of existing literature regarding the short- and long-term 

response of this species to aerial 1080 operations. 
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1.1. Chapter overview 

The following general introduction provides a brief overview of (1) the context for pest control 

in New Zealand; (2) the role of 1080 in pest control and the controversy surrounding its use 

with respect to native bird species; (3) the known effects of 1080 on native bird species, and; 

(4) the potential for bioacoustics to inform pest management regarding this issue. Its purpose 

is to give a wider context to the issues and topics explored in Chapters 2, 3 and 4 of this thesis. 

Collectively, these chapters utilise bioacoustic monitoring with autonomous recording units 

(ARUs) to evaluate the anecdotal claim that New Zealand forests ‘fall silent’ after aerial 1080 

operations. The effects of operations are investigated for native diurnal bird species short-term, 

and for the morepork (Ninox novaeseelandiae), New Zealand’s only extant native owl, both 

short and long-term. 

1.2. The context for pest control 

Invasive exotic species are a leading cause of biodiversity loss globally (Courchamp et al., 

2003; Steer, 2010), particularly in island scenarios where exotic predators are introduced 

(Parlato et al., 2015). This is true for native New Zealand avifauna which, having evolved in 

relative isolation, are naïve and poorly adapted to mammalian predators (Holdaway, 1989; 

Innes et al., 2010; Wright, 2011). Since the introduction of a range of mammalian species with 

the arrival of humans, 41% of New Zealand’s endemic birds have become extinct (Holdaway 

et al., 2001), and 77% of remaining forest bird species are classified as either declining or of 

conservation concern (Hitchmough et al., 2007; Innes et al., 2010). Predation by introduced 

mammalian predators has long been accepted as a significant factor contributing to these 

declines, and is now described as the main threat to the persistence of New Zealand’s avifauna 

(Parlato et al., 2015). Specifically, predation from common brushtail possums (Trichosurus 

vulpecula), stoats (Mustela erminea) and rats (Rattus exulans, R. norvegicus, and R. rattus) has 

been identified as the main driver of population declines (Elliott & Kemp, 2016; Innes et al., 

2010; Wright, 2011). Thus, the effective management of these predators is essential to the 

conservation of New Zealand’s remaining native avifauna (Brown et al., 2015; Innes et al., 

2010). 

The effect of introduced mammals is not restricted to predation of native avifauna: pest 

mammals have significant negative effects on other native vertebrates, invertebrates, 

vegetation and wider ecosystems (Atkinson et al., 1995; Wright, 2011). Possums also pose a 

significant risk to New Zealand’s cattle farming industry as a vector of bovine tuberculosis 
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(TB) (Warburton & Livingstone, 2015; Weaver, 2006). This disease was first identified in New 

Zealand possums in the late 1960s, and lethal control of possums has been conducted since the 

early 1970s in a bid to control and eradicate it (Byrom et al., 2016; Warburton & Livingstone, 

2015). 

Considering these interests, pest control occurs at a significant scale throughout New 

Zealand; some 10 million hectares are managed for conservation and TB control purposes 

(Byrom et al., 2016). This control is carried out primarily using ground-based trapping, ground-

based poisoning, and the aerial distribution of toxins (Brown et al., 2015; Wright, 2011). 

1.3. Use and controversy of 1080 poison 

A major component of pest control operations is the vertebrate toxin sodium monofluoroacetate 

(hereafter 1080). This toxin is chemically and toxicologically identical to the compound 

fluoroacetate found naturally in a range of poisonous plants. 1080 operates through interference 

with the Krebs cycle, a metabolic pathway that breaks down carbohydrates to provide energy 

for wider cellular function. Once consumed, 1080 is converted to fluorocitrate, which 

subsequently interferes with enzymes of the Krebs cycle. This causes an accumulation of 

citrate, inhibition of energy production and, ultimately, death (Eason, 2002; Eason et al., 2011). 

The effectiveness of this toxin varies species-to-species: carnivorous species have been found 

to be highly susceptible, with herbivorous mammals less susceptible and birds even less so 

(Eason et al., 2011; Eisler, 1995). As a result of its effectiveness against pest mammal species 

and New Zealand’s lack of vulnerable native land mammals, New Zealand is the leading 

consumer of 1080 globally (Eason et al., 2011), comprising 80% of its use (Green & Rohan, 

2012). 

Three forms of bait distribution are utilised in New Zealand 1080 poison operations: 

bait station distribution, ground distribution by hand, and aerial sowing. With the exception of 

brodifacoum in a small number of cases, 1080 is the only poison registered for the aerial control 

of possums, rats and stoats on mainland New Zealand (Eason, 2002; Wright, 2011). In aerial 

control, the poison is combined with carrot or cereal baits which are typically applied at ~2 

kg/ha following modern procedures. This form of application is used extensively due to its 

cost-effectiveness and suitability for large areas and rugged terrain (Wright, 2011). Used in 

New Zealand since 1956 (Wright et al., 2002), 1080 is highly effective in possum control and 

is the most extensively used poison for this purpose (Eason et al., 2010). More recently, aerial 

1080 distribution has also been found to be effective in killing both rats, when pre-feeding is 
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carried out (the distribution of non-toxic baits a number of weeks before toxic baits); and stoats, 

through secondary poisoning, whereby poisoned prey are consumed prior to the decomposition 

of the toxin (Elliott & Kemp, 2016). Given its effectiveness and utility in targeting large and 

difficult to access areas, the use of 1080 continues to grow. The largest aerial application to 

date occurred in 2014, where 649,000 hectares of forest (~10% of New Zealand’s forested area) 

were treated with 1080-laden cereal baits by the Department of Conservation in a bid to control 

high rat and stoat numbers resulting from significant beech tree masting events (Elliott & 

Kemp, 2016). 

The aerial use of 1080, however, is not without controversy. Public support for the 

poison has declined (Eason et al., 2010), with 43% of respondents to a 2009 survey supporting 

its use, down from 52% in 2001 (Green & Rohan, 2012). A range of concerns exist, 

encompassing animal welfare, water supply contamination, sub-lethal effects on humans, and 

the potential for exposure to and by-kill of native bird species and other non-target fauna (Eason 

et al., 2011). By-kill, particularly of native species, is a major concern to 1080 opponents (Graf 

& Graf, 2009; Reider, 2012; Slater, 2015), and has been identified as a leading environmental 

concern regarding the poison’s use (Green & Rohan, 2012). Specifically, it is often anecdotally 

claimed by opponents of 1080 that forests ‘fall silent’ (i.e. become devoid of birdsong) 

following operations (e.g. Reider, 2012), and that this is evidence of a negative effect of the 

poison on native New Zealand avifauna (Hansford, 2016; Toki, 2013). 

1.4. Impacts of 1080 on native avifauna 

Pest control operations occur in the interest of the protection and improved survival and 

breeding success of native bird species. A number of studies have shown positive effects of 

aerial 1080 operations for a range of species including, but not limited to, tūī (Prosthemadera 

novaeseelandiae), silvereye (Zosterops lateralis) (Miller & Anderson, 1992), mohua (Mohoua 

ochrocephala), rock wren (Xenicus gilviventris), South Island robin (Petroica australis), 

rifleman (Acanthisitta chloris) (Elliott & Kemp, 2016), bellbird (Anthornis melanura), brown 

creeper (M. novaeseelandiae), fantail (Rhipidura fuliginosa), grey warbler (Gerygone igata), 

and kākāriki (Cyanoramphus novaezelandiae) (O'Donnell & Hoare, 2012). Though individuals 

of some species may be subject to incidental 1080 poisoning, it has been shown, and generally 

accepted, that species’ populations benefit overall from aerial operations through reduced 

predation pressure and increased breeding success (Brown et al., 2015; Weaver, 2006). 

Nevertheless, the risk of non-target poisoning remains a significant concern. Poisoning of non-
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target species is possible through both primary poisoning, through direct consumption of baits, 

and secondary poisoning, through the consumption of 1080-poisoned prey (Eason et al., 

2013b). Some species are more susceptible to poisoning than others (Eisler, 1995; Lloyd & 

McQueen, 2000), and the significance of poisoning is dependent on both the resilience of the 

species in question and its ability to offset population losses with improved breeding success 

following control (Eason et al., 2011; Veltman & Westbrooke, 2011). If a species benefits long-

term but consistently suffers short-term population losses from treatment, regimes of frequently 

repeated treatment may result in a net-negative impact on its populations (Veltman & 

Westbrooke, 2011). Thus, it is essential that any non-target impacts are known and well 

understood. 

Corpses have been found for 19 native bird species following aerial 1080 operations 

since the beginning of operations in 1956 (Spurr, 2000); 11 of these species have not been 

studied over operations using radio-tagging or banding to directly assess mortality (Veltman & 

Westbrooke, 2011). Deaths recorded occurred predominantly during the 1970’s, when carrot 

baits of varying and often small fragment size, or ‘chaff’, with raspberry flavoured lures were 

used (Eason et al., 2011; Peterson, 2014). In response to studies investigating non-target 

mortalities, practices were changed to minimise chaff, remove raspberry lures, and incorporate 

green dye and cinnamon deterrents in baits to make them less attractive to birds (Peterson, 

2014). Simultaneously, baits used started to shift to cereal-based baits and application rates 

began to reduce. Together, these changes saw a reduction in species reported dead after drops 

(Eason, 2002; Eason et al., 2011). Further changes to application methods, namely pre-feeding, 

the use of deer-repellent, and the use of GPS-guided strip and cluster sowing methods, recently 

sparked questions again regarding avian mortality (Morriss et al., 2016; Veltman & 

Westbrooke, 2011). This considered, a study of 15 operations by Morriss et al. (2016) suggests 

that modern methods pose a negligible risk to native bird populations. Nevertheless, the effects 

that aerial 1080 operations have on native bird populations remain a prominent public concern, 

and continued monitoring serves to inform both public perception and modern baiting 

practices. 

1.5. Monitoring avifauna over pest control operations 

1.5.1. Traditional methods 

A range of methods exist for monitoring bird species over pest control operations in New 

Zealand. These include distance sampling (Westbrooke et al., 2003),  five-minute bird counts 
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(5MBC), checking mapped territories for known occupants, roll-calling identifiable/banded 

birds trained to approach observers, tracking individuals using radio-transmitters, and capture-

mark-recapture/resighting methods using mist nets and leg bands (Davidson & Armstrong, 

2002; Spurr & Powlesland, 2000; Veltman & Westbrooke, 2011). Detailed methodologies for 

a number of these methods are available in a report by Spurr and Powlesland (2000). 

Roll-calling, radio-transmitter tracking and territory-mapping serve mainly for 

monitoring survival, whereas distance sampling, capture-mark-recapture and 5MBCs serve 

more to monitoring population trends (Cook, 2017). Point counts facilitate the surveying of 

broad areas relatively economically, and are the most used method for monitoring bird 

populations internationally (Bardeli et al., 2010; Celis-Murillo et al., 2009; Klingbeil & Willig, 

2015; Spurr & Powlesland, 2000). New Zealand’s adaptation of this method, the 5MBC, has 

been used extensively in monitoring bird populations around 1080 operations (Spurr & 

Powlesland, 2000). However, this method (and other traditional monitoring methods) is subject 

to a number of limitations, generally being labour-intensive, costly, and limited in space and 

time (Aide et al., 2013; Marques et al., 2013). Point count surveys require highly skilled 

observers. This limits the spatial extent to which data can be collected, particularly over short 

periods requiring intensive monitoring, as observers can only be in one place at any one time 

(Aide et al., 2013; Celis-Murillo et al., 2009). Data collection can be spatially and temporally 

limited further when monitoring is carried out in remote areas and requires significant observer 

effort (Digby et al., 2013). The use of multiple observers to address these issues produces data-

comparability issues, as different observers’ varying identification abilities can lead to observer 

biases (Aide et al., 2013; Brandes et al., 2006; Celis-Murillo et al., 2009). Counts can also be 

subject to temporal biases arising from within and between-day variation in species activity 

(Digby et al., 2013). Furthermore, the presence of an observer infield can affect species 

detectability and further bias data (Klingbeil & Willig, 2015). Collectively, these factors limit 

both the extent to which data can be collected spatially and temporally using traditional 

monitoring methods, and the comparability and thus reliability of this data.  

1.5.2. Bioacoustic monitoring 

A relatively new and growing method for monitoring population trends that suffers few such 

limitations is bioacoustic monitoring using autonomous recording units (ARUs) (Celis-Murillo 

et al., 2009; Mortimer & Greene, 2017; Steer, 2010; Turgeon et al., 2017). Bioacoustics 

exploits the distinctive sounds produced by species for communication, display, navigation, 
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and during movement, using them for their identification and monitoring in areas of interest 

(Blumstein et al., 2011; Obrist et al., 2010). Acoustic identification is already used in 

combination with visual identification in point-counts (Klingbeil & Willig, 2015), and is the 

most efficient means to survey birds due to the wide diversity of species-specific vocalisations 

that they produce (Brandes, 2008; Steer, 2010). Bioacoustic monitoring with ARUs uses 

battery-operated digital acoustic recording devices capable of passively recording such sounds 

on a programmable schedule. As a result of technological developments and increasing interest 

in their potential, a range of ARUs are now available for monitoring projects (Mortimer & 

Greene, 2017). 

Bioacoustic monitoring using ARUs poses a number of advantages over traditional 

5MBCs. Multiple ARUs can be set up by both volunteers and experts to record across multiple 

sites. These can be left to record for long periods of time, requiring only two visits to deploy 

and collect recorders (Drake et al., 2016; Zwart et al., 2014). Thus, monitoring using this 

method can achieve large-scale temporal and spatial replication with significantly little 

limitation from observer availability and labour-intensity (Celis-Murillo et al., 2009; Klingbeil 

& Willig, 2015; Steer, 2010). Recording in the absence of observers also eliminates any 

potential variation in species’ detection probabilities arising from observer presence (Klingbeil 

& Willig, 2015; Zwart et al., 2014). Once collected, a single interpreter can analyse recordings 

produced, reducing the influence of observer-biases on data collected. Recorders can also be 

programmed to record simultaneously across sites, eliminating any potential temporal biases 

associated with acoustic activity (Brandes, 2008; Klingbeil & Willig, 2015). Furthermore, as 

recordings can be stored and replayed, the reliability of data can be further improved by cross-

validation of analyses using multiple analyses with multiple observers (Celis-Murillo et al., 

2009). As a result of these benefits, this monitoring method has been suggested as a suitable 

replacement for point-counts if studies capitalise on its potential for replicate sampling 

(Klingbeil & Willig, 2015). A limitation arising from this method is the large amounts of 

recordings produced and requiring analysis (Aide et al., 2013; Steer, 2010). Manual analysis 

of recordings can become labour-intensive (Marques et al., 2013), and  automated analysis 

using signal recognition software is increasingly being explored and applied to address this 

issue (Knight et al., 2017). Automated analyses are critical to the viability of long-term 

monitoring studies employing bioacoustics (Blumstein et al., 2011). 

 Recordings produced by ARUs can be collected and analysed out of the field to monitor 

species using a number of metrics. In its simplest form, bioacoustic monitoring lends itself to 
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monitoring species’ presence. This monitoring method has proved particularly useful in 

detecting the presence of endangered and rare species (Blumstein et al., 2011) and tracking 

changes in the distribution of species after pest control operations (Croll et al., 2016). With 

respect to monitoring population trends, vocalisation counts may be recorded as an index of 

abundance (Frommolt & Tauchert, 2014; Marques et al., 2013). Such counts are dependent on 

the assumption that higher counts are associated with greater population sizes (Royle, 2004). 

The upholding of this assumption is fundamental to the reliability of results gained from the 

monitoring of any species using this method. This relationship has been shown to hold true for 

species of mammal (Thompson et al., 2010), amphibian (Leonard et al., 1997; Nelson & 

Graves, 2004) and bird (Borker et al., 2014; Oppel et al., 2014). If species’ calling rates can be 

estimated, call counts can be converted to produce density estimates (Marques et al., 2013). 

More recent studies have also applied spatially explicit capture-recapture models to recordings 

from microphone arrays, using signal strength and time differences in sound arrival between 

recorders to localise individuals and achieve abundance and density estimates (Blumstein et 

al., 2011; Stevenson et al., 2015). 

1.6. Thesis structure 

1.6.1. Overview 

This Master of Science project is nested within the Victoria University of Wellington (VUW) 

‘Aorangi Project’, a wider study monitoring biodiversity in the Aorangi and Rimutaka Ranges1 

of the lower North Island of New Zealand around recurring aerial 1080 operations. The overall 

aim of this thesis is to utilise bioacoustic monitoring with ARUs to monitor calling prevalences 

as an index of abundance for native bird species’ communities and populations around aerial 

1080 operations, investigating the claim that forests ‘fall silent’ following treatment. It builds 

on former bioacoustic monitoring carried out within the Aorangi Project by Cook (2017) 

around a 2014 operation in the Aorangi Range, and utilises acoustic recordings both from 

archived recordings, and recorded as a part of this Master’s project. The data chapters of this 

thesis are written in the format of stand-alone scientific papers and, as such, elements of 

repetition exist between them. 

Chapter 2 builds directly on the work of Cook (2017), investigating changes in calling 

prevalences of diurnal bird species from before to after 1080 operations in treatment and non-

                                                 
1 Since the completion of this thesis, the Rimutaka Range was subject to a formal name change and is now known 

as the Remutaka Range; the former name is used here for consistency with figures developed prior to this change. 
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treatment areas to assess the claim that forests ‘fall silent’ following treatment. This chapter 

monitors across two operations occurring in 2017 in the Aorangi and Southern Rimutaka 

Ranges, utilising only data collected as a part of this project. 

Chapter 3 explores the potential for an automated detector to be developed from a 

random set of field-quality exemplar calls for the relatively understudied morepork (Ninox 

novaeseelandiae) using open-source, template-based software.  

Chapter 4 applies the detector developed in Chapter 3 to monitor the calling prevalence 

of morepork both short and long-term around three aerial 1080 operations in the Aorangi and 

Rimutaka Ranges. This chapter utilises archived long term data from the wider Aorangi Project, 

archived short-term data collected around the 2014 Aorangi operation by Cook (2017), and 

data collected as a part of this project for monitoring of the two operations occurring in the 

Aorangi and Southern Rimutaka Ranges in 2017. 

Chapter 5 provides a synthesis and discussion of the wider results presented in Chapters 

2, 3 and 4, and their implications for bioacoustic monitoring and conservation in New Zealand.  

 

1.6.2. Research aims 

Specifically, this Master’s project aims to: 

1. Quantitatively test the validity of the claim that forests ‘fall silent’ shortly following 

aerial 1080 operations at both the community and the species level; 

2. Utilise a rationalised methodology to produce a parsimonious automated detector for 

morepork calling events from a random set of field-sourced exemplar calls, and assess 

its performance; 

3. Apply an automated detector to monitor the short- and long-term responses of morepork 

populations to aerial 1080 operations. 
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Chapter 2 - Bioacoustic monitoring of native diurnal 

bird species short-term around aerial 1080 

operations  
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2.1. Introduction 

Aerial distribution of 1080 occurs at a significant scale across New Zealand for the control of 

introduced mammals that act as both predators of native species and vectors of bovine 

tuberculosis (Byrom et al., 2016; Eason et al., 2010; Nugent & Morriss, 2013). The aerial use 

of this toxin, however, is subject to controversy (Green & Rohan, 2012). Environmentally, 

incidental poisoning of non-target native fauna, particularly bird species, is a principal concern 

(Green & Rohan, 2012; Morriss et al., 2016). Pest-control is carried out in the interest of 

protecting native avifauna, intended to reduce predation pressure and thus increase nesting 

success and facilitate species’ recovery (Starling-Windhof et al., 2011). However, wherever 

toxins are broadcast aerially there is the risk of poisoning non-target native species (Veltman 

& Westbrooke, 2011).  

Since the beginning of operations in 1956, 19 species of native bird have been found 

dead following aerial 1080 drops (Spurr, 2000). The majority of these mortalities occurred pre-

1980, when predominantly carrot baits were distributed. Subsequent changes in baiting 

practices prompted by studies in the 1970’s, including a shift to the use of cereal baits, 

significantly mitigated risk existing for avian species (Eason, 2002; Eason et al., 2011; Morriss 

et al., 2016; Veltman & Westbrooke, 2011). Continued changes to baiting practices have since 

prompted further questions regarding non-target impacts (Veltman & Westbrooke, 2011). 

However, mortality findings to-date suggest that operations utilising modern baiting practices 

have negligible negative impacts on native bird species (Morriss et al., 2016). While 

complaints regarding 1080 have declined over recent years (Environmental Protection 

Authority, 2012), public support for its use has reportedly declined (Eason et al., 2010; Green 

& Rohan, 2012). The incidental poisoning of non-target native avifauna remains a primary 

concern in ongoing debates regarding aerial operations (Green & Rohan, 2012; Morriss et al., 

2016). It is often proclaimed by opponents of 1080 that forests will ‘fall silent’ following aerial 

operations, and that this is evidence of significant adverse impacts for native bird species (Graf 

& Graf, 2009; Hansford, 2016; Reider, 2012; Slater, 2015). Thus, continued monitoring of bird 

populations and communities around aerial 1080 operations is required both to ensure that no 

adverse effects are occurring and to address these public concerns.  

 Bioacoustic monitoring using autonomous recording units (ARUs) is a rapidly growing 

monitoring method with good potential to monitor bird populations over such operations. 

Traditionally, five-minute bird counts (5MBCs) have been used extensively in monitoring 
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species’ population trends over 1080 operations (Spurr & Powlesland, 2000). However, the 

5MBC is subject to limitations. It requires trained observers and significant field effort, limiting 

the spatial scale, temporal scale, and comparability of data. Furthermore, inter-observer 

variability in skill and observer presence in-field can introduce observer and detectability 

biases in data respectively (Aide et al., 2013; Klingbeil & Willig, 2015). Bioacoustic 

monitoring with ARUs is not subject to such limitations: once deployed, units can 

simultaneously record data at multiple locations for long periods of time in the absence of 

observers, which can then be analysed by a single observer (Aide et al., 2013; Klingbeil & 

Willig, 2015; Steer, 2010). A limitation of this monitoring method is that it lacks visual 

observations and is limited to acoustic detections (Klingbeil & Willig, 2015). Unless 

relationships between calling rates and species’ densities are known, or microphone arrays are 

used, data produced by ARUs provides an index of relative abundance (Efford et al., 2009; 

Marques et al., 2013; Stevenson et al., 2015). The reliability of this data is dependent upon the 

assumption that vocal activity is positively related to population size (Royle, 2004). This 

considered, the acoustic data produced by such recording devices provides a means to 

quantitatively assess the validity of the claim that forests ‘fall silent’ shortly following aerial 

1080 operations (Cook, 2017).  

 Cook (2017) tested the “silent forest” theory utilising ARUs, comparing the 

conspicuousness of bird species in non-treatment and treatment areas of a cereal-bait operation 

carried out in the Aorangi Range of the lower North Island in 2014. The study found no 

evidence for a community-level decline in birdsong in treatment areas after the operation. At 

the population-level, one species, the tomtit (Petroica macrocephala), showed evidence for a 

decline in vocal conspicuousness in treatment areas. This species has historically suffered 

significant mortality following operations using carrot baits, particularly those with small 

unscreened bait fragments, or ‘chaff’ (Powlesland et al., 1998; Powlesland et al., 2000; Spurr 

& Powlesland, 1997). Such a negative effect has the potential to detrimentally affect the 

species’ population if it is consistent across independent treatments of a recurring treatment 

regime (Powlesland et al., 2000; Veltman & Westbrooke, 2011). However, studies suggest that 

modern cereal-based baiting practices show negligible impacts for tomtit populations (Greene 

et al., 2013; Powlesland et al., 2000; Westbrooke & Powlesland, 2005). Thus, though plausible, 

this result is somewhat at odds with the wider scientific literature and warrants further study.  

The current study sought to build on the work of  Cook (2017) and further address the 

‘silent forest’ theory, utilising ARUs to monitor the short-term community- and species-level 
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trends in bird song around a further two aerial 1080 operations occurring in the lower North 

Island. Specifically, its aims were to determine if, relative to non-treatment areas: (1) 

prevalence of silence in recordings from treatment areas increased after operations, and; (2) the 

calling prevalence of any species showed a significant decline in treatment areas post-

treatment.  

2.2. Methods 

2.2.1. Study areas and study sites 

Sound recordings were analysed from recordings made by Department of Conservation (DOC) 

ARUs deployed across seven study sites in three study areas within the Wellington region: the 

Aorangi, Northern Rimutaka and Southern Rimutaka Ranges. Within a study area, between 

one and four study sites were utilised (Figure 2.1). A study site comprised between three and 

nine recorders that could be serviced in one day (i.e. have their batteries and SD cards replaced) 

by a pair of field technicians or students. Vegetation in the area is representative of the southern 

North Island, consisting mainly of a mix of beech, broadleaf, and mixed beech/broadleaf forest, 

with podocarps scattered throughout. Beech (Fuscospora spp.) tends to dominate with 

increasing elevation, and in areas with dry climates and infertile soils (Dymond & Shepherd, 

2004). Regenerating mānuka/kānuka scrub also exists in the region where vegetation has been 

historically modified by burning and pastoralism (Dymond & Shepherd, 2004; Wardle, 1967), 

and is prevalent at one study site monitored. 

The Wellington region has a mild, wet climate (Dymond & Shepherd, 2004); mean 

monthly temperatures near sea level range from 8 ○C (July) to 16 ○C (January), and rainfall 

varies from 800 mm to 7000 mm. There is an east-to-west rainfall gradient in the area, with 

areas in the west receiving more rainfall (Cook, 2017; Dymond & Shepherd, 2004). 

2.2.2. 1080 operations 

The Aorangi Range currently receives aerial 1080 drops for possum control on a three-yearly 

cycle, most recently receiving a drop in June 2017. The range was subject to pre-feed 

application of non-toxic 6 gram cereal baits applied in 260 m swaths on 30-31 May 2017, 

followed by a toxic drop of 12 gram 0.15% toxicity cereal baits applied full-broadcast in 300 

m swaths on 16–17 June 2017. Baits used deer repellent and were applied at 1.5 kg/ha (OSPRI, 

pers. comm.). Previous to this operation, the Aorangi Range last received aerial 1080 treatment 

in August 2014. This operation was monitored by Cook (2017).  
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The Southern Rimutaka Range area received its first and most recent aerial 1080 

treatment in July 2017. Pre-feed of non-toxic 6 gram cereal baits occurred on June 16 2017, 

followed by a drop of 12 gram 0.15% toxicity cereal baits in 180 m swaths on July 30 2017. 

Both operations used deer repellent and were applied full-broadcast at 2 kg/ha (OSPRI, pers. 

comm.).  

The Northern Rimutaka Range area did not receive 1080 treatment throughout the 

course of this study and served as a control site for both treatments. This area last received 

aerial 1080 treatment in August 2012 (Uys & Crisp, 2018). 

 

 

2.2.3. Experimental design 

Both studies employ a BACI (Before-After/Control-Impact) experimental design (Underwood, 

1992), utilising ARU recordings to compare changes in the calling prevalences of native 

diurnal bird species in treatment and non-treatment areas from before to after respective 1080 

operations.  

Figure 2.1 Map showing study sites and approximate forested extent of focus study areas. 
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2.2.3.1. 2017 Aorangi operation 

Recordings were analysed for 13 ARUs distributed across four study sites in one treatment 

area, the Aorangi Range, and 18 ARUs distributed across two study sites in one non-treatment 

area, the Northern Rimutaka Range (Figure 2.2). Six recorders (two in the treatment area and 

four in the non-treatment area) were spaced 350 m from the next-nearest recorder. All other 

recorders were spaced at least 400 m apart. 

2.2.3.2. 2017 Southern Rimutaka operation 

Initially, 18 ARUs were distributed across two study sites in one treatment area, the Southern 

Rimutaka Range, based on proposed treatment boundaries. However, one treatment site was 

outside of/proximal to the treatment boundary after treatment was carried out. Furthermore, 

two recorders failed in the site remaining within the final treatment area. Thus, recordings were 

analysed for 7 ARUs distributed across one study site in the treatment area. Eighteen ARUs 

were distributed across two study sites in one non-treatment area, the Northern Rimutaka 

Range. However, one recorder failed during monitoring. Thus, recordings were analysed for 

17 ARUs distributed across the non-treatment area (Figure 2.3). Three non-treatment recorders 

were spaced 350 m from the next-nearest recorder. All other recorders were spaced at least 400 m 

apart. 

2.2.4. Audio recording specifications 

Audio recordings were made using 2013 and 2016 DOC ARUs. Devices were set to record at 

high frequency, recording sound frequencies of up to 16 kHz at 32,000 samples per second. 

DOC ARUs record with one microphone unit (i.e. in mono) and save recordings as 16-bit .wav 

files. Recorders were mounted to tree trunks approximately 1.5 m above the ground and 

situated away from rivers where possible. Some rivers increase in flow, and thus noise, 

following periods of rainfall. If proximal to a river, recorders were mounted on the side of the 

tree opposite to the river to reduce attenuation of such river noise in recordings.  

Recorders were set to record simultaneously across all locations to minimise the effects 

of intra-day variability in species’ calling prevalences. Recording spanned 30 minutes from 

0800-0830 h (NZST) for a period of at least six weeks before and six weeks after each 1080 

operation’s application of toxic baits. 
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2.2.5. Audio recording selection 

Recordings were analysed for five-week periods both before and after respective 1080 

operations, with one recording analysed per sample week. For each respective drop, ‘before’ 

periods consisted of the five weeks leading up to the date of the toxic drop of interest. One 

week without sampling separated ‘before’ and ‘after’ sampling periods. Thus, ‘after’ periods 

sampled spanned weeks two to six after each respective drop. Sample days (one per week) 

were selected from candidate days within these periods that were identified as having suitable 

weather conditions for analysis. 

Identification of candidate days comprised two phases: primary inspection of weather 

data, and subsequent inspection of recording spectrograms from days passing the primary 

weather filter. For each sampling period, rainfall (cumulative mm, 0800-0900 h NZST) and 

wind speed (km/h at 2.5-10 m, 0800 h NZST) data was inspected as the average of five rainfall 

and five wind speed weather stations in the wider sampling area (Greater Wellington Regional 

Council, 2018) (Appendix I). Days with mean wind speeds of <15 km/h and 0 mm of 

cumulative rainfall were identified as potentially suitable for sampling. The full spectrograms 

of recordings from these days were then inspected using Raven Lite 2.0 (Bioacoustics Research 

Program, 2016) and classified as suitable for analysis if neither heavy rain nor consistent strong 

wind were present. If present, light wind or rain was also noted. In some cases, recordings were 

not present where an ARU recording failed; such recordings were classified as unavailable for 

analysis.  

Sample days were selected from candidate days primarily to maximise sample size and 

recording quality: for each week, the day with the greatest number of suitable recordings and 

least recordings with light wind or rain was primarily chosen. However, if less than four days 

separated two sample days from consecutive weeks, the day with the second highest number 

of suitable recordings of the two weeks was instead chosen for analysis for its respective week 

in the interest of increasing temporal independence between successive samples. Significantly 

windy or rainy recordings were scarce in the days chosen following this method. Thus, all 

recordings available for the sample days selected were analysed. This produced maximum 

sample sizes of 310 and 240 recordings for the Aorangi and Rimutaka operations respectively. 

A total of three recordings were unavailable for the chosen sample days due to recording 

failure, reducing final sample sizes to 308 and 239 recordings respectively (Appendix II). 
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2.2.6. Scoring audio recordings 

Audio recordings were scored employing the ‘intermittent method’ described by Cook and 

Hartley (2018). This method independently scores the presence (1) or absence (0) of species’ 

calls in the first ten seconds of every minute in each recording. This produces a score between 

0 and 30 for each species from 30 ten-second sub-samples sampled across 30 minutes. The 

score produced for each species in each recording analysed is converted to a calling prevalence, 

calculated as the score for the species of interest divided by 30 (the total number of sub-

samples). For example, a species calling in 15 of 30 sub-samples analysed in a recording would 

have a calling prevalence of 0.50.  

The sub-samples analysed using this method total a sampling effort of five minutes, 

equivalent to that of a five-minute bird count. When compared to scoring species’ presence and 

absence in thirty consecutive 10-second sub-samples of a five minute recording, the 

‘intermittent method’ has been found to both increase the number of species detected, and 

decrease variance around calling rate estimates because it reduces the short-range temporal 

autocorrelation of data (Cook, 2017; Cook & Hartley, 2018).  

For all analyses, recordings were given a traceable coded name such that the treatment-

type and date of any recording being analysed was unknown to the observer (i.e. analyses were 

blind). Scoring of species’ presence/absence was carried out by one observer (Roald Bomans) 

in Raven Lite 2.0 using Panasonic RP-HC200 headphones with the noise cancelling function 

disabled.  

2.2.6.1. Species-level 

Recordings were scored by simultaneously listening to recordings and visually inspecting their 

spectrograms. A call was scored as present in a sub-sample if it could be both heard in the 

recording at maximum volume and seen on the spectrogram. Where possible, calls were 

identified to one of 17 focal species known to inhabit the areas studied (Table 2.1). If a call 

could not be confidently identified to a species after listening to a sub-sample five times, the 

call was classed as an ‘unknown’. When present in a sub-sample, wingbeats were also 

classified as a presence for kererū due to the species’ infrequent calling.  

 The calls of bellbird (Anthornis melanura) and tūī (Prosthemadera novaeseelandiae) 

are similar and may influence the reliability of results gained from acoustic identification alone 

(Mortimer & Greene, 2017). To account for the potential influence of misidentifications, tūī or 
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bellbird calls were given one of three classifications: calls that could be confidently classified 

as bellbird or tūī were classified as their respective species, whereas calls that could not be 

confidently classified were grouped (bellbird/tūī). 

Blackbird (Turdus merula) and song thrush (Turdus philomelos) calls can also be 

similar and difficult to distinguish (Miller & Anderson, 1992). As this study was primarily 

focused on native bird species’ responses, calls for these species were grouped 

(blackbird/thrush, i.e Turdus sp.).  

 

 

 

 

Table 2.1 List of 17 focal species monitored in acoustic recordings. Asterisks (*) indicate exotic 

species. 

Common/ Māori name Species name 

Bellbird/Korimako Anthornis melanura 

Blackbird* Turdus merula 

Chaffinch* Fringilla coelebs 

Dunnock* Prunella modularis 

Eastern Rosella* Platycercus eximius 

New Zealand Falcon/Kārearea Falco novaeseelandiae 

Fantail/Pīwakawaka Rhipidura fuliginosa 

Grey warbler/Riroriro Gerygone igata 

Kākā Nestor meridionalis 

Red-Crowned Parakeet/Kākāriki Cyanoramphus novaezelandiae 

Rifleman/Tītipounamu Acanthisitta chloris 

Silvereye/Tauhou Zosterops lateralis 

Song Thrush* Turdus philomelos 

North Island Tomtit/Miromiro Petroica macrocephala toitoi 

Tui Prosthemadera novaeseelandiae 

Whitehead/Pōpokatea Mohoua albicilla 

New Zealand Woodpigeon/Kererū Hemiphaga novaeseelandiae 
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2.2.6.2. Community-level 

A community-level parameter of silence was calculated for each acoustic recording analysed 

to assess if treatment area bird communities ‘fell silent’ post-1080 operations relative to non-

treatment areas. If a 10-second sub-sample contained no calling events for any bird species, it 

was classified as ‘silent’. This prevalence of ‘silent’ sub-samples was analysed in the same 

manner as the calling prevalences of focal species. 

2.2.7. Statistical analyses 

For each 1080 operation, statistical analyses were carried out for the amount of  

‘silence’, and for the calling prevalences of those species found to be both calling in at least 

1% of all sub-samples analysed across all counts; and present in at least half of both treatment 

and non-treatment recording locations for the respective operation. This filter removed very 

rare and/or highly localised bird species from the analysis. 

For each sample, the treatment type (1080 or non-1080), time period (before or after 

1080), study site, recorder location, and recording date were recorded. For silent sub-sample 

prevalences and calling prevalences of each species satisfying prevalence requirements, a 

logistic mixed effects model was fitted in R (R Core Team, 2017) using the lme4 package 

(Bates et al., 2015) with the formula: 

𝑆𝑝𝑒𝑐𝑖𝑒𝑠𝑥 𝐶𝑎𝑙𝑙𝑖𝑛𝑔 𝑃𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒 ~ 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑇𝑦𝑝𝑒 ∗ 𝑇𝑖𝑚𝑒 𝑃𝑒𝑟𝑖𝑜𝑑

+ (1|𝑆𝑡𝑢𝑑𝑦 𝑆𝑖𝑡𝑒/𝑅𝑒𝑐𝑜𝑟𝑑𝑒𝑟 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛)  + (1|𝐷𝑎𝑡𝑒) 

The dependent variable was entered as a single value proportion (rather than 30 ones 

and zeroes) weighted by 30, consistent with the number of sub-samples from which each 

calling prevalence was calculated.  

It was of interest whether or not changes in calling prevalences from before to after 

1080 operations differed between treatment and non-treatment sites. The BACI design of the 

experiment allowed the comparison of these changes; treatment type and time period were 

fitted as crossed fixed factors to investigate any effect of treatment on calling prevalences from 

before to after operations. Specifically, a decline in a species’ calling prevalence or an increase 

in silence at the community level in the treatment area relative to the non-treatment area would 

support the theory that forests ‘fall silent’ after an operation at the species or community level. 

Study site, recorder location and recording date were fitted as random factors to control for 

potentially influential, yet unmeasured, environmental factors that vary day-to-day and from 
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place-to-place. Recorder location was nested within study site to account for the spatially 

nested structure of the sampling design (Figures 2.2 and 2.3). 

A type III ANOVA was carried out on the resulting models in R using the car package 

(Fox & Weisberg, 2011) to produce a chi-square value for the interaction term. A non-

parametric permutation test was applied to approximate the null chi-square distribution and test 

significance for each chi-square value observed. Permutations were made across time periods 

and within recorder locations. Any observations missing due to recording failure (NAs) were 

held constant in their location within the dataset. Five thousand permutations were made to 

reliably test significance at the 1% significance level (Anderson, 2001). Example input-data 

structures and corresponding chi-square distributions are available in Appendix III.  

2.3. Results 

2.3.1. Community-level 

Both treatment and non-treatment sites showed a general increase in the prevalence of silent 

sub-samples for the Aorangi 2017 operation (Figure 2.4a). There was no significant interactive 

effect between treatment type and time period on the prevalence of silent sub-samples for this 

operation (p = 0.469, χ2 = 2.699). Contrastingly, there was a significant interactive effect 

between treatment type and time period on the prevalence of silent sub-samples for the 

Southern Rimutaka 2017 operation (p < 0.001, χ2 = 139.2645). The treatment site showed a 

decrease in silence from before to after the operation, whereas non-treatment sites showed an 

increase (Figure 2.4b). This suggests that, relative to pre-treatment levels, bird song became 

more frequent in the treatment site two to six weeks post-treatment.  

2.3.2. Species-level 

2.3.2.1. Aorangi operation 

Eleven taxa satisfied prevalence requirements for statistical analyses in the Aorangi operation 

study. However, only ten are presented here as permutation models for kererū suffered a high 

rate of convergence failures. Of the results presented, eight showed an insignificant interaction 

between treatment type and time period at the 5% significance level, with treatment type having 

no significant effect on changes in calling prevalences from before to after treatment (Figure 

2.5a-e, h-j).  
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A significant interaction between treatment type and time period was found for the 

calling prevalence of both bellbird (p = 0.0472, χ2 = 14.8135) and chaffinch (p = 0.0432, χ2 = 

2.5475). Mean calling prevalences decreased from before to after 1080 treatment in both 

treatment and non-treatment sites for both of these species (Figure 2.5f, g). For bellbird, 

however, this decrease was more substantial in non-treatment sites (from 0.0691 ± 0.0192 to 

0.0292 ± 0.0121) when compared to treatment sites (from 0.1036 ± 0.0200 to 0.0805 ± 0.0153). 

The opposite interaction held true for chaffinch calling prevalences, which showed a greater 

decrease in treatment sites (from 0.1482 ± 0.0139 to 0.0733 ± 0.0131) than in non-treatment 

sites (from 0.0792 ± 0.0146 to 0.0481 ± 0.0095).  

2.3.2.2. Southern Rimutaka operation 

Nine taxa satisfied prevalence requirements for statistical analyses in the Southern Rimutaka 

operation study. However, only eight are presented here as permutation models for tūī suffered 

high rates of convergence failures. Of these eight taxa, six showed no significant interaction 

between treatment type and time period at the 5% significance level; there was no significant 

difference in changes in calling prevalences from before to after the 1080 treatment between 

treatment and non-treatment sites for these species (Figure 2.6a, b, d, f-h).  

Figure 2.4 Grand mean prevalences of silent sub-samples ± 1 SE (n = number of recorder locations 

monitored) in treatment and non-treatment areas before and after (a) the June 2017 Aorangi and (b) 

July 2017 Southern Rimutaka aerial 1080 operations. Mean and SE estimates are an approximate 

representation of interactions, whereas associated chi-sqaure and p-values are presented from 

permutation tests accounting for the spatially-nested and temporally replicated nature of the 

experimental design. Asterisks (***) indicate p < 0.001, plots share y-axes. 
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Figure 2.5 Grand mean calling prevalences ± 1 SE (n = number of recorder locations sampled) from 

zero to five weeks before to one to six weeks after 1080 treatment for treatment and non-treatment 

areas monitored across the Aorangi operation, and associated chi-square and p-values. Mean and SE 

estimates are shown only for species satisfying statistical analysis requirements, and are an 

approximate representation of interactions, whereas statistics were calculated via a permutation test 

accounting for the spatially-nested and temporally replicated nature of the experimental design. 

Columns and rows of plots share x and y axes respectively. Asterisks (*) indicate p < 0.05. 
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A significant interaction was found for bellbird/tūī (A. melanura/P. novaeseelandiae) 

and tomtit (P. macrocephala). Bellbird/tūī showed a significant decrease in calling prevalence 

in non-treatment sites relative to treatment sites (p < 0.001, χ2 = 31.0801): mean calling 

prevalence in non-treatment sites decreased from 0.2678 ± 0.0428 to 0.0612 ± 0.0230, whereas 

mean calling prevalence in treatment sites decreased from 0.0457 ± 0.0215 to 0.0257 ± 0.0138 

(Figure 2.6c). Contrastingly, tomtit showed a significant increase in calling prevalence in 

Figure 2.6 Grand mean calling prevalences ± 1 SE (n = number of recorder locations monitored) 

zero to five weeks before and one to six weeks after 1080 treatment in treatment and non-treatment 

areas monitored across the July 2017 Southern Rimutaka operation, and associated chi-square and 

p-values. Mean and SE estimates are shown for species satisfying statistical analysis requirements, 

and are an approximate representation of interactions, whereas associated statistics were calculated 

via permutation tests accounting for the spatially-nested and temporally replicated nature of the 

experimental design. Columns and rows of plots share x and y axes respectively. Asterisks (*, ***) 

indicate p < 0.05 and 0.001 respectively. 
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treatment sites relative to non-treatment sites (p < 0.0434, χ2 = 37.4383): mean calling 

prevalence nearly doubled from 0.2324 ± 0.0633 to 0.4200 ± 0.0335 in treatment sites, whereas 

mean calling prevalence only increased slightly from 0.1969 ± 0.0351 to 0.2161 ± 0.0577 in 

non-treatment sites (Figure 2.6e).  

2.4. Discussion 

At the community-level, the results of this study show no supporting evidence for the claim 

that forests ‘fall silent’ following aerial 1080 treatment. Monitoring across the Aorangi 

operation showed an increase in silence post-treatment that did not differ significantly between 

treated and non-treated sites. This result corroborates with results found by Cook (2017), which 

indicated no major change in the prevalence of silence in both treated and non-treated areas 

following the previous Aorangi Range aerial 1080 operation in 2014. Though patterns differed 

significantly between treatment and non-treatment sites in the Southern Rimutaka operation, 

birdsong actually increased in the treatment site following the operation, whereas silence 

increased in non-treatment sites. This result provides evidence contrary to the silent forest 

theory. These results support mortality and bird count data analysed for 15 operations by 

Morriss et al. (2016), which collectively suggest that modern aerial 1080 operations pose a 

negligible threat to native forest bird communities. 

At the population-level, only chaffinch calling prevalences exhibited a significant 

decline in treatment sites relative to non-treatment sites. This was observed only after the 2017 

Aorangi operation. Chaffinch are an introduced, granivorous species that, given their diet and 

thus likelihood to interact with baits, has been considered at risk to 1080 poisoning (Miller & 

Anderson, 1992). In a study of 15 aerial 1080 operations occurring between 2003 and 2014, 8 

of 81 bird corpses found were of chaffinches. Five of these were analysed for 1080 residues,   

four of which tested positive (Morriss et al., 2016). Thus, it is possible that the significant 

decline observed in this species’ calling prevalence may reflect a significant mortality rate 

resulting from this operation. Such a decline was not observed over the 2014 operation in the 

same area monitored by Cook (2017). This inconsistency may result from varying factors 

affecting the exposure rate and longevity of toxic baits from one operation to another, such as 

rainfall received in treatment areas following the operation (Booth et al., 1999); differing 

sowing methods; and differing sowing rates (Westbrooke et al., 2003). The concentration of 

1080 in cereal baits has been found to decrease with rainfall, with 0.15% 6 g baits rapidly 

degrading after 10 mm of rainfall and halving in toxicity after ~60-70 mm of rainfall (Booth et 
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al., 1999). Based on data from the five rainfall stations sampled in sample day selection 

(Appendix IV), rainfall did not differ markedly between the Aorangi 2014 and Aorangi 2017 

operations; mean cumulative rainfall exceeded 60 mm 31 and 25 days after these operations 

respectively. However, baits were strip sown at 1.0 kg/ha in the 2014 Aorangi operation, 

whereas baits were full broadcast at 1.5 kg/ha in the 2017 Aorangi operation. Thus, it is possible 

that chaffinch populations in the 2017 Aorangi operation had higher exposure rates and 

suffered significant mortality as a result of the higher application rate and full-broadcast 

method employed in the operation. Bait application was both full-broadcast and highest in the 

Rimutaka 2017 operation (2.0 kg/ha). However, in contrast to the Aorangi 2014 and 2017 

operations, mean cumulative rainfall in the five weeks following this operation exceeded 60 

mm after just 14 days. It is plausible that exposure after this operation might have been 

significantly reduced by this rainfall. These differing conditions may explain the differing 

patterns observed across these treatments.  

The non-significant result for tomtit in the Aorangi 2017 operation is promising 

considering the negative impact suggested by monitoring over the 2014 operation (Cook, 

2017). Tomtit have high reproductive success under low-predator conditions and have been 

shown to benefit in years following aerial 1080 treatment both in other studies (Knegtmans & 

Powlesland, 1999; Peterson, 2014), and after the 2014 Aorangi operation over a 1.5 year period 

(Fea, 2018). With a high reproductive rate, the species has been classed as resilient with a good 

potential to recover from any significant population losses resulting from predator-control 

operations (Powlesland et al., 2000; Spurr, 1979). These factors considered, the results of the 

Aorangi 2017 operation suggest little risk of a net-negative effect of aerial 1080 operations on 

tomtit populations in the Aorangi Range resulting from treatment repeated on a three-yearly 

basis.  

With respect to the Southern Rimutaka operation, the increase in prevalence of tomtit 

calling observed in treatment areas cannot reflect a benefit from recruitment, given that post-

treatment monitoring occurred directly after the operation (August-September) and before the 

breeding season (Atkinson et al., 1995). Spurr and Powlesland (2000) note that, in territorial 

bird species, mortality of territory holders may result in floating individuals establishing new 

territories and, consequently, an increase in calling rates. Tomtit are a highly territorial species 

year round (Knegtmans & Powlesland, 1999; Spurr & Powlesland, 2000) and are known to 

have died following aerial 1080 operations using both carrot and cereal baits, sometimes 

suffering high mortality rates (Morriss et al., 2016; Powlesland et al., 1998; Powlesland et al., 
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2000; Spurr & Powlesland, 1997). Thus, it is possible that the observed increase indicates a 

potential negative effect of aerial 1080 treatment on tomtit populations in the Southern 

Rimutaka Range. However, studies suggest that mortality rates have significantly decreased 

with changing bait practices, with little negative impact following cereal drops (Greene et al., 

2013; Westbrooke et al., 2003; Westbrooke & Powlesland, 2005). An increase in calling 

prevalence might also occur without any change in population size if birds perceive a decrease 

in predator presence following treatment, and thus a reduced risk in predation from calling 

behaviour (Lima, 2009). To resolve which of these possibilities explains the increase in calling 

prevalence for tomtit, a study radio-tracking individuals over a 1080 operation would provide 

more definitive information. Such studies, however, are also more time-consuming than a 

community-wide ARU survey. 

It is also possible that the increase observed may reflect sampling design limitations of 

monitoring around the Southern Rimutaka operation. It is important that treatment and non-

treatment areas are similar in topography when monitoring species’ conspicuousness (Spurr & 

Powlesland, 2000). Originally, two study sites were set up in the treatment study area for 

monitoring over the Rimutaka operation. Nine of these recorder locations were stationed in the 

Catchpool catchment at 40-150 m elevation, and nine were stationed in Turere Valley at 480-

700 m elevation. Similarly, the two non-treatment sites monitored in the Northern Rimutaka 

study area had ten recorder locations at 60-280 m elevation and eight at 450-760 m. However, 

final drop boundaries resulted in all treatment recorders at 40-150 m elevation being either 

outside the treatment area, or too proximal to the drop boundary to be reliably classed as 

receiving the effects of the treatment. Furthermore, two remaining treatment recorders failed. 

Consequently, all treatment recorder locations monitored for this operation were at higher 

elevations (>500 m), with a maximum between-recorder elevational difference of ~200 m.  

It has been noted that tomtit breeding seasons may be affected by elevation, with nesting 

starting as much as a month later at higher elevations (520-740 m) than at lower elevations (0-

200 m) (Knegtmans & Powlesland, 1999). Accordingly, any changes in calling prevalence 

associated with the breeding season are also likely to be delayed at higher elevations. Over 

three years of monitoring, Michaux (2009) found tomtit mean calling prevalences at lower 

elevations (~180-300 m) in the Atuanui Scenic Reserve to consistently increase from June-July 

and decrease from July-August. Pre- and post-treatment monitoring of the Southern Rimutaka 

operation spanned from July to August. Thus, treatment sites monitored over the operation may 

have been experiencing a delayed seasonal increase in calling prevalence normally seen from 
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June-July at lower elevations. Had both high and low-elevation areas been sampled in the 

treatment area, it is possible that no significant difference in trends would have been observed 

between treatment and non-treatment areas. This elevational bias may also explain the 

difference in the prevalence of silence observed between treatment and non-treatment areas at 

the community level. Given this potential bias, results for this operation should be interpreted 

with caution. Recorder locations monitored across the Aorangi 2017 operation had greater 

between-recorder variation in elevation both within sites (max ~320 m) and between sites 

(~490 m). Thus, results from this operation are less likely to be subject to elevation-related 

biases. In light of this potential influence, further study of the impact of elevation on tomtit 

breeding ecology and behaviour would be of significant benefit to future monitoring studies.  

 The lesser decline in calling prevalence observed for bellbirds in treatment areas across 

the Aorangi operation is unlikely to reflect a change in conspicuousness associated with a 

significant mortality event (Spurr & Powlesland, 2000): no bellbird deaths have been reported 

following aerial 1080 operations using both old and modern baiting methods (Morriss et al., 

2016; Spurr & Powlesland, 1997). It is possible that this difference in decreases is associated 

with food-related population movements. Bellbird feed on invertebrates, fruit, and nectar. The 

species has been suggested to be largely nectarivorous, feeding primarily on nectar where it is 

available, and shifting from an insectivorous to nectarivorous diet in late winter as early-

flowering species begin to blossom (Spurr et al., 2011). Bellbird have been reported to move 

large distances to areas where nectar is available (Rasch & Craig, 1988), temporarily leaving 

territories in Kennedy’s Bush, Christchurch and travelling at least 500 m to visit patchy 

resources of seasonally available flax and kowhai flower (Spurr et al., 2010). Furthermore, 

opportunistic sightings of banded birds also suggest that individuals may make large seasonal 

elevational movements, travelling kilometres to move to lower areas in winter (Spurr et al., 

2010). Such movements have the potential to disproportionately affect detection probabilities. 

Depending on the distribution of nectar food resources across study sites, this may explain the 

greater decline in calling prevalence observed in non-treatment sites. If non-treatment sites 

monitored encompassed less nectar resources relative to treatment sites monitored, it is possible 

that declines associated with movements to these resources were exaggerated in these areas. 

The reported extent of nectar-related movements is limited and requires further study (Spurr et 

al., 2010). This would greatly benefit interpretation of results for future BACI studies 

monitoring bellbird populations around pest control operations.  
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Food-related population movements may also explain the significant decline in 

bellbird/tūī calling prevalence observed across the Southern Rimutaka operation. Tūī are highly 

mobile (Pierce & Montgomery, 1992) and have been reported to travel large distances to reach 

nectar resources (Rasch & Craig, 1988; Stewart, 1980 as cited by Craig et al., 1981). Studies 

have found closely-related family groups in scenic reserves interspersed with urban areas to 

follow regular seasonal foraging routes and travel large distances in search of food outside of 

summer, with male foraging ranges reaching 30 km in winter months (Bergquist, 1985, 1989). 

Pierce and Montgomery (1992) note the potential influence of such seasonal movements on 

increases in tūī observed in five minute bird counts from before to after a 1080 cereal bait 

operation in 1990. Spurr and Powlesland (1997) report only one tūī to have been found dead 

following a carrot bait operation. Similarly, only one tūī has been found dead following 

operations using modern baiting methods, with 1080 residue testing showing levels below 

0.001 mg kg-1 (Morriss et al., 2016). Thus, the greater decline of tūī/bellbird calling in non-

treatment areas across the Southern Rimutaka operation is unlikely to reflect changes in 

conspicuousness associated with significant poisoning events, and may be associated with 

nectar-related movements of one or both of these species. However, inferences that can be 

drawn from the grouped-species data in this study are limited given the variations that exist in 

the diets of these species (Rasch & Craig, 1988; Spurr et al., 2011) and are thus likely to exist 

in their behavioural ecology and exposure risk. 

These factors considered, the results of this study suggest no evidence for a decline in 

birdsong at the community-level following aerial 1080 treatment. Furthermore, the chaffinch, 

the only species to show a marked decline in calling prevalence in treated areas post-treatment 

across either of the operations monitored, is an introduced granivorous species known to suffer 

population losses from aerial 1080 operations. Though other species did show differing trends 

in calling prevalence, none suggested a decline in treatment areas relative to non-treatment 

areas consistent with the “silent forest” theory. Any difference in trends between treatment and 

non-treatment areas (both positive and negative) may potentially indicate a detrimental impact 

of treatment. However, these changes might be more likely explained by sampling limitations 

and differential effects of population movements related to patchy and ephemerally available 

food resources. These results highlight the importance of well-matched, balanced sampling 

designs and the importance of understanding the ecology and behaviour of species in the 

interpretation of bioacoustic studies. Study of the potential for such behavioural ecology to 

influence bioacoustic monitoring results would be of major benefit to future monitoring studies 
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employing bioacoustics. Collectively, the results of this study suggest that forests did not ‘fall 

silent’ in the Aorangi or Southern Rimutaka Ranges following aerial 1080 operations neither 

at the community-level, nor at the species-level for any of the native species monitored. These 

results corroborate studies of modern aerial 1080 operations, which suggest a negligible threat 

from modern operations at the community level, and little threat at the individual level for 

native forest bird species (Morriss et al., 2016).  
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Chapter 3 - Achieving parsimony in developing a 

template-based automated acoustic detector – an 

applied study with morepork (Ninox 

novaeseelandiae), a New Zealand owl  
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3.1. Introduction 

Monitoring acoustically active species with autonomous recording units (ARUs) provides 

many advantages as a monitoring method over traditional field surveys, particularly in terms 

of the spatial and temporal scale and reliability of data that can be collected (Digby et al., 2013; 

Joshi et al., 2017; Steer, 2010). However, this monitoring method is not without limitation; 

spectrographic scoring of recordings requires analysis that can demand significant amounts of 

time investment when monitoring occurs over longer periods of time (Digby et al., 2013; 

Kogan & Margoliash, 1998) or with a larger number of recording units. This issue will only 

become more pertinent as recorders decrease in cost and increase in capacity, further-

facilitating large-scale monitoring. Consequently, it is widely accepted that automated analysis 

of acoustic recordings for species recognition has the potential to play a major role in the 

analysis of growing sound file databases (Digby et al., 2013; Katz et al., 2016a; Ulloa et al., 

2016). 

Significant progress has been, and continues to be, made in this field. Machine learning 

algorithms such as Hidden Markov Chains and Artificial Neural Networks have demonstrated 

high accuracy and have been proposed as the best approach to automated species identification 

(Acevedo et al., 2009). However, such approaches require large amounts of training data 

(Acevedo et al., 2009; Towsey et al., 2012), require expert knowledge for development (Joshi 

et al., 2017), and may add unnecessary complication to the detection of simplistic call-types 

(Brandes et al., 2006). Template matching methods, in contrast, require less training data and 

are suitable where the species of interest has a more simplistic and limited call repertoire 

(Brandes, 2008). This method takes call templates (see Table 3.1) and compares them with 

signals within set frequency bounds from field recordings. Where variation exists between or 

within a species’ call(s), a suite of templates representative of this variability can be selected 

and used in combination as a detector (see Table 3.1) to maximise performance  (Katz et al., 

2016a).  

The set of templates selected has a significant impact on detection results (Joshi et al., 

2017; Katz et al., 2016a) and the performance of such detectors can increase moderately 

relative to computation time with increasing size of the template set (Anderson et al., 1996; 

Kogan & Margoliash, 1998). The benefit of employing an automated detector is dependent on 

the time required to create, run and evaluate it relative to the time that would be required for 

equivalent manual analysis (Knight et al., 2017). Thus, an efficient means to produce a simple 
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and effective (i.e. parsimonious) detector is desirable, particularly where a large number of 

potential templates are available for detector development. This considered, the process of 

developing detectors via template matching is described as iterative and subjective (Katz et al., 

2016a). The performance of individual templates or template sets may be difficult to predict 

subjectively, and iteratively and subjectively developing a good-performing detector from 

many potential templates may prove difficult and time-consuming. Additionally, high-quality 

exemplar calls are typically used for the development and training of automated detectors 

(Digby et al., 2013; Joshi et al., 2017). Such quality calls may not be available where exemplars 

calls are sourced from in-field recordings, and performance of detectors may in fact be better 

when developed with templates of a quality more similar to the data to be tested (Joshi et al., 

2017). 

 

 This study sought to establish and apply an objective and efficient method of 

developing a template-matching detector based on call recognition of the morepork/ruru (Ninox 

novaeseelandiae), a relatively common native New Zealand owl for which many field-quality 

exemplar calls were available. Little systematic monitoring has been carried out for morepork. 

However, ARUs show promise as monitoring method for the species, particularly with the 

partial or complete automation of call identification (Pryde & Greene, 2016). The morepork 

has a stereotyped and relatively simple call repertoire, making it a good candidate for template-

based autonomous acoustic monitoring (Brandes, 2008). Furthermore, in many areas it is the 

main species that is acoustically active at night, thus the species has few potential sources of 

error in automated detection (Joshi et al., 2017). Specifically, this study aimed to develop a 

generic method for creating a parsimonious detector using a range of templates sourced from 

Table 3.1 Table of terms and definitions referred to in-text. 

Term Definition 

Template  

 

An exemplar species call that can be used for the 

automated detection of a species’ calling events in 

acoustic recordings. 

Detector  

 

A set of templates used in combination for the detection 

of a species’ calling events in acoustic recordings. 

Block  A section of an acoustic recording with defined time 

limits that may be ‘active’ (containing a calling event of 

interest) or ‘inactive’ (containing no calling event of 

interest). 
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in-field recordings, minimising false positive detections and achieving the best true positive 

detection rate possible with the templates available when cross-validated against independent 

test data.  

3.2. Methods 

3.2.1. Background of detection software  

Detector development was carried out on a 3.2 GHz desktop computer with 8 GB of RAM 

using the open-source R (R Core Team, 2017) package monitoR (Hafner & Katz, 2017). Two 

methods of template matching are available in the monitoR package: spectrogram cross-

correlation, and binary point-matching. For both methods, signals in field recordings are given 

scores based on their similarity to the given template for specific metrics. Spectrogram cross-

correlation templates consist of a matrix of amplitudes drawn from the template’s spectrogram. 

The similarity of each frame in a given field recording to the template’s matrix is scored 

between 0 and 1 using Pearson’s correlation coefficient. Binary point-matching templates, in 

contrast, consist of a map of ‘on’ and ‘off’ points in a template. ‘On’ points exceed an amplitude 

set by the user and are expected regions of the signal-of-interest, whereas ‘off’ points fall below 

the set amplitude and are regions of anticipated non-signal/noise (Figure 3.1). Using this 

method, scores given to potential signals are derived using an equation adapted from Towsey 

et al. (2012), which finds the difference between the mean amplitudes of on and off points for 

the signal of interest (Katz et al., 2016a, 2016b). This method is particularly useful in the 

isolation of faint calls from background noise (Towsey et al., 2012).  

For each template, a threshold can be set below which lower-scoring signals are classed 

as non-calling events. The threshold for a template is often chosen somewhat subjectively 

according to the purpose of the detector. The effect of changing the threshold is commonly   

 (a)  (b) 

Figure 3.1 Example (a) cross-correlation and (b) binary templates for a potential 

call to be tested as a template. Darker areas in (a) represent higher amplitude points; 

yellow and blue areas in (b) represent on and off regions respectively. 



37 

 

explored using Receiver Operating Characteristic (ROC) analyses, plotting true-positive rates  

(TPRs/sensitivities) against false-positive rates (FPRs) derived from the relative rates of true-

positive  (TP), false-positive (FP), true-negative (TN), and false-negative (FN) events (Fielding 

& Bell, 1997; Katz et al., 2016a). A FP detection occurs when a template detects a call that is 

not actually present. Conversely, a FN event occurs when a template does not detect a call that 

is present. In the same manner, a TP detection occurs when a detector accurately detects a call, 

and a TN event occurs when a detector accurately makes no detection (Fielding & Bell, 1997; 

Florkowski, 2008) (Table 3.2, Figure 3.2).  

 

To determine an optimal threshold, a template of interest is run on a training set of 

recordings for which the times of calls have been manually determined (considered the ‘true’ 

state of calling and non-calling). ROC analyses can then be carried out to compare the suite of 

scores given by a template to the manually-verified truth and determine the rates of TP, FP, TN 

and FN detections at different thresholds. The relative rates of such events at different 

thresholds can be expressed by a range of performance metrics (Table 3.3), the utility of which 

are dependent on the purpose of the detector. These metrics may or may not be affected by the 

prevalence of the call-type in the training dataset (Fielding & Bell, 1997).  

Once a threshold is chosen, the template is run on a set of test data for which call-times 

have also been determined. The number of TP, FP, TN and FN detections are compared to 

estimate the template’s detection and error rates with unfamiliar datasets (i.e. independent 

cross-validation). Sensitivity and FPR metrics offer a means of assessing detection and error 

 rates with little effect of varying call prevalence (Fielding & Bell, 1997). Variable performance 

tests have been employed across different studies; however, precision and sensitivity with 

  

Table 3.2 Summary confusion matrix of event possibilities in automated detection adapted from 

Florkowski (2008) and Fielding and Bell (2002).  The presence or absence of calls is the ‘true’ state 

as determined by manual analysis of the recording in question. The prevalence of calls within a 

given dataset is defined as TP + FN / (TP + FP + TN +FN). 

  
Actual  

 
 Call Present Call Absent Total 

P
re

d
ic

te
d

 

Detection True Positive (TP) False Positive (FP) TP +  FP 

No Detection False Negative (FN) True Negative (TN) TN +  FN 

Total TP +  FN TN +  FP  
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independent test datasets have been recommended for the cross-comparable reporting of final 

detector performance (Knight et al., 2017).  

3.2.2. Development process theory and overview 

The detector development process outlined here aimed to develop a detector that 

achieves the best possible sensitivity at a given FPR, using the least number of templates 

possible from a wider pool available. In theory, this can be achieved by testing all possible 

template combinations. However, such a process becomes increasingly complex when larger 

numbers of potential templates are considered. Similarly, trialling of a limited number of 

random detector combinations may lead to the development of an underperforming detector. 

Instead, the process developed here relies on a limited number of detector trials each employing 

a ‘detector rationalisation’ process. It comprises three broader stages each using independent 

datasets: (1) training, where potential templates’ thresholds are independently set and their 

utility is assessed using a training dataset; (2) refining, where the set of templates identified as 

potentially useful in training is reduced to produce a parsimonious final detector using a 

refining dataset, and; (3) testing, where the performance of the final detector developed is 

assessed with a test dataset (Figure 3.3).  

The rationalisation process is fundamental to achieving parsimony in this method of 

detector development. In detector rationalisation, the detector of interest is run on a specified 

dataset with all template thresholds independently optimised to a specified precision. All 

detections made by all templates are recorded; these detections are then inspected, and 

templates that do not make independent detections are removed from the set as a means to 

approach parsimony – i.e. the smallest set of available templates that will detect the most calls 

possible at the chosen precision. This process operates on the assumption that a set of templates 

Table 3.3 Performance metrics and their associated formulae, sourced from Fielding and Bell 

(1997).  

Performance Metric Formula 

Sensitivity = True Positive Rate (TPR) 𝑇𝑃 / (𝑇𝑃 +  𝐹𝑁) 

Specificity = True Negative Rate (TNR) 

False Positive Rate (FPR) 

False Negative Rate (FNR) 

𝑇𝑁 / (𝑇𝑁 +  𝐹𝑃) 

𝐹𝑃 / (𝑇𝑁 +  𝐹𝑃) 

𝐹𝑁 / (𝑇𝑃 +  𝐹𝑁) 

Precision = Positive Predictive Value (PPV) 𝑇𝑃 / (𝑇𝑃 +  𝐹𝑃) 

Negative Predictive Value (NPV) 𝑇𝑁 / (𝑇𝑁 +  𝐹𝑁) 
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that each make independent detections will collectively find the more commonly detected 

calling events found by templates removed from the detector (Figure 3.4).  

 

 

 

 

Figure 3.3 Flow diagram outlining the fundamental stages of the broader detector 

development process, their respective purposes, and the datasets involved. 

Figure 3.4 Example template rationalisation scenario with five calling events (highlighted in green) 

and five hypothetical potential templates; ✔ symbols indicate successful detection of a calling event 

by a template. In this scenario, templates t3 and t5 would be retained based on independent detections: 

these two templates would collectively detect the same calling events as all five templates combined, 

yet in 2/5 of the processing time. 
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The specific steps of the detector development and assessment process are outlined as follows 

(Figure 3.5): 

1. An initial subset of n templates representative of the diversity in the call of 

interest is subjectively chosen from potential templates available for detector 

development (tN). These initial templates (t1  tn) are individually trained using a 

training dataset dat1, and combined to produce an initial ‘training detector’ detinitial. This 

training detector is rationalised using the training dataset. Following rationalisation, the 

total number of TP detections made by the training detector is noted. This training 

detector provides a baseline number of detections for the dataset, and is used to assess 

the utility of further templates to be trialled (step two). 

2. Using the training dataset, all other potential templates (tn+1  tN) are 

independently trained and added to the training detector (detinitial + ti). Those found to 

increase the training detector’s detection rate are saved as candidate templates.  

3. Once all templates have been trialled, candidate templates from tn+1  tN are 

randomly grouped to create a set of ‘refining detectors’ (detrefining_1  detrefining_m) each 

comprising approximately 10 templates. These are independently rationalised using the 

refining dataset, dat2.  

4. Candidate templates retained from all refining detectors are combined with 

initial templates from the training detector. This set of templates is rationalised a final 

time, again using the refining dataset.  

5. The resulting detector is the final detector, detfinal. This is run and cross-

validated on an independent test dataset, dat3, to assess its performance with unfamiliar 

recordings.  

3.2.3. Applied detector development 

3.2.3.1. Manual listening and scoring 

Twenty-four Department of Conservation (DOC) ARUs were simultaneously active from 

2000-2005 h (NZST) in seven study sites spread across three study areas (the Aorangi, 

Northern Rimutaka and Southern Rimutaka Ranges) for five weeks, from 6 November – 10 

December 2016. Manual scoring was carried out on a set of recordings from this period to 

establish both a collection of calls from which templates could be developed, and a set of 

manually-verified datasets against which detectors could be trained, refined and tested.  
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Climate data sourced from two Greater Wellington Regional Council (2017) weather 

stations in the Wainuiomata region (Appendix I) was used to identify days likely to have 

recordings suitable for analysis. Days with wind speeds of less than 15 km/h (at 10 m, 0800 h 

Figure 3.5 Flow diagram outlining the fundamental steps of the detector development process. Dotted 

octagons indicate datasets utilised, double lined boxes indicate detectors produced, and shape-fill colours 

highlight the broader stages employed with reference to Figure 3.3. 
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NZST, Wainuiomata Bowling Club AQ station) and 0 mm of rainfall (cumulative, 0800-0900 

h, Wainuiomata River at Wainui Reservoir station) were classified as candidates for analysis. 

This preliminary requirement shortened the available sampling period to three weeks, from 20 

November – 10 December 2016.  

Spectrograms of recordings from candidate days were then visually inspected using 

Raven Lite 2.0 (Bioacoustics Research Program, 2016) to identify days with recordings 

suitable for manual analysis. Recordings were defined as suitable if background noise was of 

a low-enough amplitude to visually identify morepork calls on a spectrogram. All candidate 

days identified in climate analyses were first inspected for at least one recorder per study site 

to identify days which were likely to have suitable recordings across all study sites. All 

recordings from these days were then further inspected and classified as suitable or unsuitable 

for analysis. Five days were then selected from these days for manual analysis. Days with the 

highest number of suitable recordings across all sites were primarily chosen. However, if less 

than three days separated two consecutive chosen days, the next-highest scoring candidate day 

was selected in place of the lowest-scoring day of the two. This selection process resulted in a 

sample of 118 recordings spanning 20 days. 

Recordings from the selected days were then scored manually for the presence of 

morepork calls. Recordings were scored by one observer (Roald Bomans) simultaneously 

listening to recordings and visually inspecting their spectrograms in Raven Lite 2.0. Panasonic 

RP-HC200 headphones were used for all analyses with the noise-cancelling function disabled. 

Each sample was broken into 30 consecutive ten-second ‘blocks’ (see Table 3.1) to be 

independently scored, each of which were given either an ‘active’ score of 1 or an ‘inactive’ 

score of 0. A block was only given an active score if any class of morepork call could be both 

heard in the recording and seen on its spectrogram. Occasionally a call would be split across 

the start or end of a block; in such cases, both blocks containing split calls were scored as 

active. A block was given an inactive score if a call could be heard but could not be seen on 

the spectrogram; a call was present but could not be confidently identified as morepork; or if 

no call was present. Scores were totalled across all blocks for each recording, giving each 

recording a maximum potential score of 30 and minimum potential score of 0.  

3.2.3.2. Call classification 

Data from manual analysis was manipulated using the reshape package in R (Wickham, 2007) 

to produce a list containing file and time-stamp information for all active blocks identified in 
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manual analysis. Using the Seewave (Sueur et al., 2008) and tuneR (Ligges et al., 2016) 

packages in R, this data was used to create a series of 10-second potential template .wav files 

for all active blocks identified (Appendix V). 

The calls within these potential template files were then classified by visual 

spectrogram analysis in Raven Lite 2.0. As many as 10 call-types have been recognised for 

morepork (Brighten, 2015; Heather & Robertson, 2005; Moon, 1992), though the extent to 

which they overlap and how many should be recognised is debated (Morgan & Styche, 2012). 

In this study, calls were classified into five widely recognised broader categories. The names 

of these calls vary source-to-source, but are here termed as the typical ‘more-pork’ call, the 

low-pitched and repeated ‘more-more’ call, the single-syllable ‘more’ call, the drawn-out and 

often harmonic ‘cree’ call, and the short and inflected ‘mew’ call  (Figure 3.6). Calls were 

disregarded if either (1) though visible, their presence on the spectrogram was not clear enough 

for use in template development (i.e. individual syllables were broken in the spectrogram), or; 

(2) the call had been split across two blocks, and all syllables were not fully visible in the 10-

second potential template .wav file produced.  

 

Call-to-call variation in the more-pork call was noted. To account for this variation, 

these calls were classified into six further sub-categories apparent within this call-type. These 

Figure 3.6 Spectrogram 

examples of the five 

broader morepork call 

categories: (a) ‘more-

pork’; (b) ‘more-more’; 

(c) ‘more’ at ~1kHz with 

tūī call from 2kHz-9kHz; 

(d) ‘cree’; and (e) ‘mew’. 

 

(a) (b) (c) 

(d) (e) 
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were established based on the sound and spectral appearance of the ‘more’ and ‘pork’ syllables 

in the call and comprised a ‘long-long’ call, a ‘long-short’ call, a ‘short-short’ call, a ‘short-

long’ call, an ‘arcing’ call, and a ‘high-low’ call (Figure 3.7).  

 

Detector development was focused on the more-pork call due to its prevalence as a call-

type both described in the literature and observed in call classification (Heather & Robertson, 

2005; Moon, 1992). In manual analysis, no mew calls suitable for template development were 

observed; eleven more calls were observed; one more-more event was observed; and blocks 

with cree calls suitable for template development were a quarter as prevalent as those with 

more-pork calls suitable for template development, likely due to the cree call’s association with 

hunting (Heather & Robertson, 2005). A total of 110 .wav files containing 187 more-pork calls 

suitable for template development were identified. 

3.2.3.3. Development of training, refining and test datasets  

Training, refining, and test datasets consisted of carefully-determined active and inactive 

blocks within a timeframe specific to each recording. This timeframe spanned from ten seconds 

before the first more-pork call that had two syllables fully visible on the recording’s 

spectrogram to ten seconds after the tenth call of the same quality. This limit ensured that clear 

Figure 3.7 Example spectrograms of the six types of ‘more-pork’ calls classified by sound 

and spectral appearance: (a) ‘long-long’; (b) ‘long-short’; (c) ‘short-short’; (d) ‘short-long’; 

(e) ‘arcing’; and (f) ‘high-low’. 
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calls and calls specific to individuals calling frequently in any given recording or at any given 

location were not overrepresented in the data. Some exceptions to this timeframe rule applied: 

(1) if the first recorded call was less than ten seconds into a recording, the start-point for 

comparison was set as zero seconds; (2) if another call was present less than ten seconds after 

the tenth manually-detected call with two or more syllables clearly visible on the spectrogram, 

the endpoint for comparison was set as one-second before this next call’s start point to avoid 

call overrepresentation, and; (3) if less than ten calls with two or more syllables clearly visible 

on the spectrogram were present, the end point for comparison was set at five-minutes. 

Active blocks were determined within this timeframe for both more-pork and more 

calls; more calls were scored as active to allow for their potential detection by templates with 

a faint syllable. Consistent with methods employed in manual analyses, active blocks were only 

determined for calls that could be both heard and seen on the spectrogram. Active block length 

varied call-to-call, spanning from 0.2 seconds before a given call’s start-time to 0.2 seconds 

after its end-time. This 0.2 second margin was incorporated to account for the fact that template 

detections are reported by monitoR as the midpoint of the template; this could lead to detections 

falling outside of a call’s bounds in scenarios where only one syllable is detected, and the 

syllable is shorter than those present in the template it is being tested against (Figure 3.8). 

Where two or more consecutive calls were less than 0.4 seconds apart the calls of interest were 

classed as one calling event, with the active block spanning from 0.2 seconds before the first 

call in the event to 0.2 seconds after the last.  

 

Figure 3.8  Example spectrogram of a calling event requiring a margin. Template t1 successfully detects 

both syllables of the call of interest and estimates its time within the call’s bounds; template t2 detects 

only its second syllable, estimating its time as approximately 0.1 seconds after the call’s end when a 

margin is not applied. 
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 Inactive blocks were the time between two consecutive active blocks. If this time 

exceeded twenty seconds, it was broken into 𝑛 consecutive even-length blocks to maintain an 

inactive block resolution of ~10 seconds; 𝑛 was calculated as:  

𝑛 = ⌊
𝑠𝑡𝑎𝑟𝑡𝑖+1 − 𝑒𝑛𝑑𝑖

10
⌋ 

where 𝑒𝑛𝑑𝑖 was the end time of the preceding active block and 𝑠𝑡𝑎𝑟𝑡𝑖+1 was the start time of 

the next active block. 

  Active and inactive blocks were given a binary score of 1 and 0 respectively, consistent 

with the scoring criterion formerly described for manual analyses. If no calls were visible on 

the recording’s spectrogram, the whole five minutes was scored as thirty consecutive inactive 

ten-second blocks.  

Twenty-six high-scoring recordings from manual analysis were used for the training 

dataset. Twenty-five further high-scoring recordings from manual analysis were used for the 

refining dataset. Detector performance could be overestimated if training and test datasets are 

sourced from the same area and season, and share calls characteristic of the same resident 

individuals. To reduce this potential, the test dataset was sourced from Aorangi and Northern 

Rimutaka Range recordings archived from summer 2014-2015 seasonal monitoring of the 

VUW Aorangi Project. This season was chosen on the basis that it had the most (10) 

simultaneously active DOC ARUs out of the archived seasons available. Days scored were 

randomly selected from days that were to be analysed by the detector for applied long-term 

analyses in Chapter 4. One recording was randomly selected and scored per recorder to develop 

the test dataset. The resulting training, refining, and test dataset structures are summarised in 

Table 3.4. 

 

3.2.3.4. Development of the initial training detector 

Two example calls of those clearest in call classification were selected for each of the six more-

pork sub-categories as initial templates (t1 – t12) for training detector development. Both cross-

Table 3.4 Summary of training, refining and test dataset compositions. 

Dataset No. of Recordings No. of Active Blocks No. of Inactive Blocks 

Training (Dat1) 26 306 489 

Refining (Dat2) 25 174 570 

Test (Dat3) 10 136 199 
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correlation and binary template-matching templates were developed for all initial templates. 

Amplitude cut-off points for binary template testing were selected such that the ‘on’ 

components of the template contained no extraneous background noise, and best resembled the 

key components of the call as seen when viewed as a correlation template (Figure 3.1). 

 Each initial detector template was run on the training dataset with a threshold of zero, 

such that all detections possible were reported. Given that multiple detections can be made by 

a detector in any given block, each block’s highest scoring detection was saved to ensure that 

the training process was as stringent as possible, incorporating the highest possible FP event 

scores. A score of zero was given to blocks where no detections were made. ROC analyses 

were carried out on the resulting detections using the pROC package in R (Robin et al., 2011). 

The pROC package reports performance metrics for local maxima across the ROC curve. For 

each template, the thresholds of local maxima and their relative precisions, sensitivities, 

specificities, and FPRs were saved. 

All twelve templates were then combined to produce the training detector. A detector 

producing a low number of FP events was desired to maximise the reliability of unsupervised 

recording analyses. However, a reasonable sensitivity was also desired. Thus, precision (the 

conditional probability of a detection event being a TP) was used for threshold optimisation 

(Katz et al., 2016a). Template thresholds were selected from the local maxima identified in 

ROC analyses such that the precision of each template was >0.965 and as close to 0.97 as 

possible. This training detector was run on the training dataset and rationalised. The 

rationalised training detector comprised six retained initial templates collectively making 130 

detections out of a possible 306 (i.e. TPR = 0.4248). 

3.2.3.5. Identification of candidate templates  

Templates additional to the twelve initial templates subjectively chosen for the training detector 

were then trialled.  All 175 more-pork calls (t13 t187) suitable for template development 

remaining from those identified in call classification were independently developed as 

templates. Observational analyses of initial template training results found that binary 

templates had higher sensitivities than cross-correlation templates at thresholds with 

approximately equivalent levels of precision (Figure 3.9), possibly due to the method’s utility 

in detecting faint calls (Towsey et al., 2012). Given this observation, only binary templates 

were developed for remaining potential templates in the interest of maximising detection 

power. Some calls did not develop well as binary templates though visible in spectrogram, with 
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portions of syllables lost when amplitude cut-offs were set high enough to remove extraneous 

background noise; these templates were not further developed. All calls producing adequate 

templates were trained using the training dataset. These templates were then independently 

added to the training detector with their thresholds optimised to a precision of ~0.97 and run 

on the training dataset. The resulting number of detections was inspected. The additional 

template’s information was saved as a candidate for the final detector if it made two or more 

additional detections (i.e. total detections were 132 or greater). This process identified thirty-

six candidate templates additional to the six initial templates present in the training detector.  

 

3.2.3.6. Development of final detector 

The 36 additional candidate templates identified were randomly split to form three refining 

detectors, each comprising twelve templates. These detectors were then independently 

rationalised using the refining dataset, reducing the candidate list to a set of 20 templates. These 

20 retained templates were then added to the training detector. The resulting 26-template 

detector was then rationalised a final time using the refining dataset, producing a final detector 

with 10 templates. The applied detector development process is summarised in Figure 3.10. 

Templates may differ in performance across different amplitude cut-offs. After the 

development of the final detector, amplitude cut-off points of templates in the final detector 

were independently optimised to maximise sensitivity. Each final template was independently  

Figure 3.9 Scatterplots showing the precisions, specificities, sensitivities, and FPRs of local maxima 

for a 'short-short' call tested as a binary and a cross-correlation template. Dotted lines indicate the 

threshold with a precision closest to 0.97 (0.96703 and 0.96875 respectively). Specificity values are 

shown in background to illustrate the trade-off between a gain in specificity and a loss of sensitivity 

when minimising FPRs in training a template. 
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run on the training dataset at the lowest amplitude cut-off possible that did not include 

background noise in the template’s ‘on’ points. ROC analyses were carried out on the resulting 

detections, and threshold, precision and sensitivity information were saved for local maxima 

with precisions >0.965 and <1. The amplitude cut-off was iteratively increased by one unit and 

Figure 3.10 Flow diagram outlining applied steps of the detector development process and their 

results in the creation of the 10-template more-pork call detector developed. Dotted octagons 

indicate use of datasets, double-lined boxes indicate detectors produced. 
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this process repeated until the template’s sensitivity began to decrease across equivalent levels 

of precision. Each template’s amplitude cut-off was then adjusted such that sensitivity was 

maximised with a precision greater than but as close to 0.98 as possible  

3.2.3.7. Assessment of rationalisation process utility 

During the refining stage, the total number of TP detections made by each refining detector 

was recorded before and after rationalisation to assess the effect of the process on sensitivity, 

and the utility of the process in achieving detector parsimony. All candidate and initial 

templates were also combined to form a 42-template detector and run on the refining dataset to 

determine the total number of TP detections made if all templates were used for comparison 

with the final detector developed.  

3.2.3.8. Assessment of final detector performance 

3.2.3.8.1. Detection of more-pork calling events 

The final optimised detector was run on the training, refining, and test datasets, with the 

highest-scoring detection for each block reported. The detections made for each set of 

recordings were then compared to their manually-verified comparison datasets to determine 

their relative rates of TP, FP, TN and FN classifications. Any FP classifications found were 

manually inspected and their likely cause noted. Causes included wind; rain; more-pork calls 

missed in manual analysis or not visible on the spectrogram; cree, more-more, or mew 

morepork calls; tūī calls; secondary detection of a morepork call slightly outside of an active 

block’s bounds; and unknown where no cause could be identified.  

Classification rates were then restructured in two ways, such that: (1) FP classifications 

caused by wind, tūī calls, morepork cree or mew calls, more-pork calls detected secondarily 

outside of their active block bounds, or more-pork calls not visible on the spectrogram were 

classed as TNs and; (2) FP classifications caused by more-pork calls visible on the spectrogram 

were classified as TPs.  These adjustments were made on the basis that wind events only 

occurred where gusts clearly reached 1kHz, and recordings with such events can be easily 

identified and excluded from analyses; tūī calls were only present in recordings made just after 

sunset, and would not normally be present in the more truly nocturnal recordings the detector 

was developed for, and; alternative morepork calls were not necessarily false detections as they 

would not misleadingly inflate detection rates. The sensitivity and FPR of the detector was 

calculated using both raw and restructured classification rates. The precision of the final 

detector was also calculated for the test dataset using its restructured classification rates. 
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3.2.3.8.2. Detection of mew and cree calling events 

It was of interest if the detector developed for more-pork calls was sensitive to cree and mew 

calls. Given the limited presence of these call-types in the training, refining and test datasets, 

two further test datasets were developed to assess the detector’s detection rates for these calls. 

Recordings with high cree or mew calling rates were identified in archived data and scored 

such that both call-types had over 100 events in their respective datasets.  

The two datasets were scored independently: only mew calls were scored as active 

blocks in the mew dataset, and only cree calls scored as active blocks in the cree dataset. Where 

any other morepork call occurred simultaneously with a cree or mew call in its respective 

dataset, the block of interest was scored as inactive to avoid inflation of sensitivity estimates 

by other morepork call-types. Active and inactive block boundaries were determined 

consistently with the methods described for training, refining, and test dataset development. 

Each recording’s scoring timeframe spanned from ten seconds before the first event visible on 

the spectrogram to ten seconds after the last event visible on the spectrogram.  

The detector was run on each dataset and the relative number of TP, TN, FP and FN 

events were calculated. FP events were manually inspected and reclassified as TN events where 

another morepork call-type had caused a detection, and as TP events where a call of interest 

was faint on the spectrogram and had been missed. The sensitivity and FPR for each call-type 

was then calculated to approximate the detector’s performance for these call-types.  

3.2.3.8.3. Assessment of background noise impacts 

To investigate whether the recording selection process effectively minimised any potential 

impact of background noise on sensitivities, the sensitivities for each recording from the 

training, refining and test datasets were modelled against average power density (dB FS) values 

calculated for each recording. Average power density values were taken as the mean of two 

average power densities calculated for 200-500Hz and 1300-1600Hz, frequency ranges just 

below and just above the region of more-pork calls. These ranges were selected to sample 

background noise in a frequency range proximal to more-pork calls without any impact of calls 

themselves on estimates.  Power densities for both frequency ranges were sampled using Raven 

Lite 2.0 across the entirety of each recording’s respective sampling timeframe. 

 Sensitivities were modelled against mean average power densities using a generalised 

linear model with a binomial link using the lme4 package in R with the formula: 

𝑇𝑃𝑅 ~ 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑜𝑤𝑒𝑟 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 
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A likelihood ratio test was carried out on the resulting model to explore the effect of 

background noise on sensitivities.  

3.3. Results 

3.3.1. Utility of the detector rationalisation process 

The detector rationalisation process provided an efficient means to achieve detector parsimony; 

all three refining detectors were reduced in template number without any impact on each 

respective detector’s total number of detections. The final rationalisation producing the final 

detector reduced the template set from 26 to 10 templates. This detector nearly achieved the 

performance of all 42 templates combined, making 89 of the 90 (98.89%) detections possible 

if all templates were used (Table 3.5). Only 1 template from the initial subset subjectively 

chosen and trialled (t1
 
 t12) remained in the final detector. 

 

3.3.2. Detection of more-pork calling events  

As expected, the detector’s performance declined across the datasets: sensitivities decreased 

and FPRs increased from the training to the test dataset (Figure 3.11). The final detector had 

an estimated precision of 0.9385, sensitivity of 0.3986, and FPR of 0.0253 for the restructured 

independent test dataset: i.e. 93.85% of detections were TPs, 39.86% of calls present were 

detected, and only 2.53% of silent blocks were falsely classed as calls. Events causing FPs 

were most often attributable to bands of low frequency noise most likely produced by electronic 

activity of the ARU; such events accounted for seven (58.33%) of the FP events across all 

datasets. Other causes included three incidences of indiscernible calls, and one-off incidences 

of a branch-knock and a heavy rain drop. Confusion matrices from which sensitivities and 

FPRs were estimated are available in Appendix VI. 

Table 3.5 Summary of the number of TP detections made by refinement detectors and the final 

detector before and after undergoing rationalisation, and by all 42 candidate templates combined as 

a detector when run on the refining dataset. The number of templates making up each respective 

detector are shown in brackets. 

 All templates Detrefining_1 Detrefining_2 Detrefining_3 Detfinal 

Original 90 (42) 73 (12) 80 (12) 71 (12) 90 (26) 

Rationalised NA 73 (7) 80 (8) 71 (5) 89 (10) 
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3.3.3. Detection of mew and cree calling events 

The final detector detected both mew and cree calling events, achieving a sensitivity of 0.0977 

(9.77%) for cree calls and 0.2946 (29.46%) for mew calls. Excluding detections of other 

morepork call-types, FPR rates were 0.0156 (1.56%) for the cree test dataset and 0.0116 

(1.16%) for the mew test dataset.   

 

3.3.4. Assessment of background 

noise effects on sensitivities 

Background noise was not a significant predictor 

of sensitivity (Figure 3.12); the likelihood ratio 

test showed no significant effect of the mean 

power density (dB FS) of recordings on 

observed sensitivities (p = 0.65, χ2 = 0.2059, df 

= 1). 

 

 

 

 

Figure 3.11 Bar graphs of raw and restructured TPR (sensitivity) and FPR estimates for the final 

detector across the training, refining and test datasets.  

Figure 3.12 Scatterplot showing the lack of 

relationship between observed TPRs and 

mean power density values (dB FS) across 

recordings. 
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3.4. Discussion 

The process of detector rationalisation developed here proved to be an effective means to 

achieve detector parsimony in the development of a template-based detector: the final 10-

template detector developed made only one less detection than all 42 candidate templates 

combined when run on the refining dataset. Whereas all templates combined took 32.5 minutes 

to analyse the 271.7 minutes of data in the refining dataset, the final detector took just 8.5 

minutes (i.e. 26.15% of the time).  Furthermore, only one template of the twelve that were 

included in the initial detector based on structural diversity and call clarity was retained in the 

final detector. This highlights the limitations that may be associated with choosing templates 

subjectively. These results give strong support for the use of this method as a structured means 

to achieve detector parsimony in other template-based detector development projects with a 

large pool of potential templates. The refining stage of the process developed could be 

simplified to the rationalisation of a single set of candidate templates, particularly where fewer 

candidate templates are being considered. However, candidate templates in this study were 

split into three subsets to: (1) facilitate easier location of independent event detections in data 

produced; (2) facilitate faster assessment of detection data (while one refining detector was 

being run on the refining dataset, another’s detections could be inspected), and; (3) produce 

multiple opportunities to assess the utility of the rationalisation process. Where few potential 

templates are available, candidate template identification could be bypassed and the 

rationalisation process applied as a simple and effective means to achieve detector parsimony. 

Template-based detection methods have had both positive and mixed results (Katz et 

al., 2016a). The performance of the more-pork detector developed here is promising with a 

moderate sensitivity (0.3986), low FPR (0.0253) and high precision (0.9385). A final precision 

lower than the minimum level set for individual templates (0.98) likely stems from differing 

triggers of FPs template-to-template resulting in a higher pooled error. It is important to note 

that the sensitivity of this detector is a generalisation of performance across recordings in an 

independent test dataset. Detector performance has been found to increase with increasing call 

quality, the majority of false negatives being attributable to low signal strength (Digby et al., 

2013; Swiston & Mennill, 2009). Thus, performance is likely to vary recording-to-recording. 

Recordings with a greater number of clear, high-amplitude calls are likely to achieve higher 

sensitivities than those with a disproportionate level of low-amplitude calls.  
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Unfortunately, the comparability of detector performance achieved across detector 

studies is limited by the diverse and non-standardised testing standards employed (Knight et 

al., 2017). For example, detectors developed using monitoR for black-throated green warbler 

(Setophaga virens) and ovenbird (Seiurus aurocapilla) songs appear better-performing than 

the detector developed here; one high signal:noise ratio template was used per species to 

achieve sensitivities of 0.72 and 0.62 respectively and FPRs of 0.01 (Katz et al., 2016a).  

However, the reported performance metrics of Katz et al. (2016a) are based on a ‘silver-

standard’ testing set which excludes particular call variants, and events less than 10dB louder 

than ambient background noise. A gold standard including all call variants of all amplitudes 

was also developed in the study, but not used to assess performance. Joshi et al. (2017) note 

that the use of only high-quality calls to train detectors may lead to poor performance with in-

field recordings. In the same manner, it is possible that the use of only higher signal:noise ratio 

calls in testing may lead to an overestimation of performance, as these are more likely to be 

detected (Swiston & Mennill, 2009). Save for calls not visible on the spectrogram, the 

performance of the more-pork detector developed here was assessed using the equivalent of a 

gold-standard test dataset. Any more-pork events visible on the spectrogram were included in 

the training, refining and test datasets, as were single syllable more events. The number of clear 

calls per recording was also limited to avoid overestimation of performance resulting from their 

overrepresentation. Given these differences in testing, the performance metrics of Katz et al. 

(2016a) may overestimate performance relative to those of this study.  

The performance of this detector appears comparable to the 0.349 sensitivity and 0.000 

FPR of a detector developed for Screaming Piha (Lipaugus vociferans) birds  (Ulloa et al., 

2016). However, metrics estimated by Ulloa et al. (2016) were not independent, being self-

validated with the training data used to develop the detector. This may again overestimate 

performance, relatively-speaking, and limit comparability (Knight et al., 2017). Nevertheless, 

the performance of the detector developed in this study is promising in the context of wider 

bioacoustics. A recent review of 68 bioacoustic studies found 12 single-species detectors tested 

on unedited field-quality recordings to have mean precisions and sensitivities of 0.71 and 0.60 

respectively (Knight et al., 2017). Though the sensitivity of the detector developed here is 

somewhat lower than average (0.3986), the precision (0.9385) is notably higher. This is fitting 

given that the detector was trained to minimise FP detections (Ulloa et al., 2016). A higher 

sensitivity could be achieved with this detector at the cost of a reduction in the reliability of 

detection results (e.g. a template-matching detector developed by Borker et al. (2014) for 
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Foster’s tern (Sterna forsteri) calls achieves a higher sensitivity (0.536) with lower precision 

(0.773). However, a high precision is preferable here given the detector’s intended use for 

unsupervised analyses. 

It is possible that the performance of the detector developed in the current study could 

be improved with little loss of precision. More simplistic calls have incurred higher FPRs 

relative to complex stereotypical calls (Swiston & Mennill, 2009). Considering the simple 

structure of more-pork calls, it is likely that, at the current high-precision template thresholds, 

many low-quality calls are falsely classed by the detector as negatives to avoid a high FPR. 

This loss of TP detections might be mitigated by the inclusion of rejection templates 

representative of common TN events, particularly those likely to cause FPs (Charif & Pitzrick, 

2008). This method has been utilised to identify and remove common background noises and 

periods of silence in the automated recognition of indigo bunting (Passerina cyanea) and zebra 

finch (Taeniopygia guttata) calls (Anderson et al., 1996; Kogan & Margoliash, 1998), and 

reduce FP detections by an order of magnitude in some cases (Charif & Pitzrick, 2008). 

Template score thresholds could be reduced and sensitivity increased if rejection templates 

were included in this detector; any resulting increase in FPR could be minimised through 

subsequent rejection template analyses. This would be particularly useful to reduce FPs caused 

by recorder noise and general background noise, but would come at the cost of increased 

processing time. 

It is unsurprising that the detector developed also detects mew and cree morepork calls, 

though at lower rates.  Due to the limited occurrence of these calls in training data, and any 

other call in nocturnal recordings, it is likely that the detector is highly sensitive to short-

duration sounds in the more-pork frequency range. The low 9.77% sensitivity of cree events 

likely stems from their dissimilarity to more-pork calls, consisting of a single drawn out 

syllable in the frequency range of the more-pork call. In contrast, considering their inflected 

structure, mew calls may bear similarity to more calling events or more-pork calling events if 

only their start and/or end falls into the frequency range of the more-pork templates developed. 

This may explain their higher detection rate (29%) relative to cree calls. The detection of these 

call-types may be of concern in studying call-specific trends in calling for the species, and 

could be mitigated by the employment of training datasets rich in these call-types (>100 

examples of each call). Furthermore, a detector would best benefit from the development of 

templates for these call-types. However, these calls are infrequent and have been found to occur 

at similar rates as relative proportions of total calls produced by morepork between different 
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study sites (Fraser & Hauber, 2008). Given they are detected at a consistent rate, these 

detections should bear no negative impact on the overall trends in calling detected by the 

detector developed.  

Finally, it is important to note that this detector’s performance is designed for nocturnal 

recordings that have been identified as suitable for automated analysis. Analysis of unchecked 

recordings, particularly those with low frequency noise such as wind gusts, is likely to produce 

higher FPRs. Background noise remains a pertinent issue in automated detection, causing both 

FP and FN events, and many automated detection methods still rely on low background noise 

levels (Brandes, 2008; Joshi et al., 2017). However, the non-significant effect of average power 

density on sensitivity in the current study indicates that, though somewhat subjective, the 

weather-based recording selection process employed here effectively eliminated any effect of 

background noise on detection probabilities. To remove all subjectivity from the recording 

selection process, recording suitability could be determined through a check of each potential 

recording’s mean average power density in the frequency ranges assessed. This could greatly 

streamline the detection process if automated, as the majority of time in analyses using this 

detector would be invested in inspection of the suitability of recordings for analyses.  

The rise of ARUs in ecological monitoring is providing new opportunities for ecologists 

to monitor acoustically active species. However, as the use of ARUs increases, there is a 

pressing need for efficient means to extract data from acoustic recordings. Automated detection 

of species’ calls is the most likely solution to this issue. A range of software now exists for 

automated detector development, with template-matching detectors suitable for species with 

simple calls. This study developed and applied a directed method of template-based detector 

development to successfully create a parsimonious detector for morepork calls from a large 

pool of potential templates. The net-benefit of automated analyses is dependent on the 

performance of detectors, and the time required to develop and run them (Knight et al., 2017). 

This considered, the process developed has the potential to enhance the utility of template-

based detectors in wider bioacoustic monitoring, given its success here in efficiently and 

effectively achieving detector parsimony with templates available. The detector developed here 

is capable of detecting more-pork calls of morepork in the Aorangi and Rimutaka Ranges of 

the lower North Island, New Zealand at a moderate sensitivity with high precision. These 

respective rates make the detector suitable for the applied unsupervised retrieval of general 

calling trends in suitable recordings from these areas. Given the challenges associated with 

monitoring nocturnal species, little systematic monitoring has been carried out for this species 
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(Pryde & Greene, 2016). However, assuming a relationship between calling prevalence and 

relative abundance, this detector provides a means to efficiently monitor population trends of 

morepork in the lower North Island. It may also be applicable to the monitoring of morepork 

populations across wider New Zealand and is easily distributable, consisting of only 10 .wav 

files totalling 8.47MB and an R script (Appendix VII). However, regional dialects affect the 

potential application of widely applicable automated detectors (Brandes, 2008), and are an area 

for study for morepork (Brighten, 2015). Thus, the performance of this detector in other regions 

would need to be assessed before utilisation. If necessary, regional detectors would be easy to 

develop using the parsimonious templated development method described here.  
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Chapter 4 - Applied use of an automated detector 

for short- and long-term monitoring of morepork 

(Ninox novaeseelandiae) around aerial 1080 

operations  
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4.1. Introduction 

Aerial 1080 distribution plays a major role in New Zealand’s pest control operations, being the 

principle method for controlling possums in forested areas since the 1970’s (Lloyd & 

McQueen, 2000). As acceptance of the need for predator control for wildlife protection has 

grown, so too has the use of this poison: 2014 saw the largest 1080 operation to date, with 10% 

of New Zealand’s forested area treated in an effort to control significant predator numbers 

resulting from a major beech masting season (Elliott & Kemp, 2016). With any aerial poison 

operation there is a risk of poisoning non-target native avifauna (Veltman & Westbrooke, 

2011). This issue is of significant public interest and concern (Green & Rohan, 2012). Non-

target poisoning may occur as primary poisoning, where non-target species directly consume 

poisoned baits; or as secondary poisoning, where non-target species consume prey or carcasses 

that have fed on baits (Eason et al., 2013a; Lloyd & McQueen, 2000). However, the benefits 

gained by non-target species through reduced predation pressure and/or reduced competition 

after aerial 1080 operations are generally considered to outweigh any such losses (van Klink et 

al., 2013). It is important that the potential losses and benefits of non-target species in areas 

destined for 1080 treatment are well understood. This is particularly pertinent where less 

resilient species are present; where bait specifications change (Greene et al., 2013); and in 

mainland scenarios where repeated treatment is necessary to mitigate reinvasion by pests, as 

such repeated treatment may lead to a negative long-term impact on non-target species if 

repeated short-term losses are incurred (Veltman & Westbrooke, 2011).  

The prevalence and impact of secondary poisoning on native predatory avian species 

has not been widely studied (Stephenson et al., 1999), and a lack of knowledge exists around 

the long-term responses of native avifauna to aerial 1080 treatment at the population level 

(Veltman & Westbrooke, 2011). This is true for the morepork/ruru (Ninox novaeseelandiae), 

New Zealand’s only extant native owl (Fraser & Hauber, 2008; Stephenson et al., 1999). 

Morepork have been found dead after poisoning operations using both brodifacoum (Empson 

& Miskelly, 1999; Stephenson et al., 1999) and carrot- and cereal-based 1080 baits (Spurr & 

Powlesland, 1997). Moreover, three of the four morepork carcasses that have been analysed 

for 1080 residues after being found following 1080 operations have tested positive (Powlesland 

et al., 1998; Spurr & Powlesland, 1997). Thus, there is evidence to suggest that morepork are 

susceptible to 1080 poisoning.  
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A top predator, morepork are known to prey on vertebrates, particularly mice and small 

rats when they are abundant, but feed predominantly on large invertebrates (Denny, 2009; 

Powlesland et al., 1998), specifically beetles (Coleoptera), moths (Lepidoptera) and wētā 

(Orthoptera) (Haw & Clout, 1999; Haw et al., 2001). Given this diet, the species is not 

considered threatened by primary poisoning (Spurr, 1979; Stephenson et al., 1999). As a 

predominantly visual predator (Stephenson, 1998), morepork hunt live prey and are also not 

considered to be at risk of secondary poisoning from scavenging carcasses (McFadden, 1992). 

However, potential routes for secondary poisoning exist through the predation of sub-lethally 

poisoned invertebrates and small vertebrates. Beetles and wētā have been found feeding on 

non-toxic baits (Spurr & Drew, 1999), and 1080 residues have been found in cockroaches, wētā 

(Eason et al., 1993 as cited by Eason et al. (2011)), and a number of other invertebrate species 

(Lloyd & McQueen, 2000). Furthermore, arthropod bait consumption has been found to occur 

predominantly at night. Thus, nocturnal species such as morepork may be particularly at risk 

to secondary poisoning through predation of arthropod species (Lloyd & McQueen, 2000). 

Sub-lethally poisoned rodents and birds have also been suggested as prime targets for predators 

following poisoning operations (Spurr, 1979).  

Despite these mortalities and potential risks, morepork have been sparsely monitored 

both in general (Pryde & Greene, 2016) and around 1080 operations. Only five studies tracking 

a total of 27 radio-tagged individuals in treatment areas have been carried out to date (Greene 

et al., 2013), and only one study has monitored calling rates short-term around an operation 

(Pierce & Montgomery, 1992). No published literature currently exists regarding the long-term 

responses of morepork to any form of 1080 operation. Morepork are slow reproducers, 

producing a single clutch of only 2-3 chicks per year (Stephenson & Minot, 2006). Given this 

low reproductive capacity, Spurr (1979) classed the species as at medium risk to non-recovery 

from any potential population losses sustained from 1080 operations. Accordingly, Spurr and 

Powlesland (1997) deemed the study of morepork around 1080 possum control operations to 

be of high priority given the historic mortality of the species and lack of research at the time. 

Only three studies, however, have been carried out since 1997, namely Greene et al. (2013); 

Powlesland et al. (1998); and Powlesland et al. (1999). Thus, there is a gap in the literature and 

evident need for further investigation of morepork population trends around aerial 1080 

operations. 

The lack of research regarding morepork population trends may result from the 

logistical challenges associated with monitoring nocturnal species (Pryde & Greene, 2016). 
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However, call counts employing autonomous recording units (ARUs) show promise as a 

practical and cost-effective means for widespread monitoring of the species, particularly if 

automated call detection can be applied (Pryde & Greene, 2016). The current study sought to 

apply the use of an automated acoustic detector developed for morepork calls (see Chapter 3) 

to the monitoring of morepork across three aerial 1080 operations. This detector does not detect 

all calling events; however, its low error-rate (FPR = 0.0253), consistent sensitivity (0.3986) 

and resulting precision (0.9385) with independent data makes it a suitable tool for monitoring 

broad-scale morepork population trends using calling prevalences as an index of relative 

abundance.  

Nocturnal acoustic recordings were analysed (1) short-term across treatment and non-

treatment areas for approximately five weeks before and after three independent 1080 

operations, and; (2) longer-term over four years for one treatment area receiving two 1080 

applications, and one non-treatment area receiving no 1080 treatment. Specifically, it was 

sought to determine if changes in detected calling prevalences as an index of morepork 

abundance differed between treatment and non-treatment sites short-term from before to after 

1080 operations; or showed any long-term response, negative or positive, to repeated 1080 

operations.  

4.2. Methods 

4.2.1. Study areas and study sites 

Acoustic recordings were analysed from data recorded by ARUs situated across five study 

areas monitored at various times over a four year period (2013-2017): the Aorangi, Tararua, 

Northern Rimutaka and Southern Rimutaka Ranges, and Tora Bush (Figure 4.1). These study 

areas collectively comprise vegetation representative of the southern North Island, consisting 

mainly of beech, broadleaf, and mixed beech/broadleaf forest, with podocarps scattered 

throughout. Beech tends to dominate at areas of higher elevation or infertile soils (Dymond & 

Shepherd, 2004; Wardle, 1967), and regenerating mānuka/kānuka and gorse scrub is also 

present at one Aorangi study site.  

Within a study area, between one and six study sites were utilised. A study site 

comprised between one and nine recorders that could be serviced in one day (i.e. have their 

batteries and SD cards replaced) by a pair of field technicians or students. With a few 

exceptions noted below, recorder locations within a study site were spaced at least 400-500m 
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apart to minimise the chances of recording the same individual bird at more than one location 

(Pryde & Greene, 2016). 

The region has a mild, wet climate (Dymond & Shepherd, 2004). Rainfall varies from 

800 mm to 7000 mm on an elevational and east-to-west gradient, with areas in the west and at 

higher elevations receiving more rainfall (Cook, 2017; Dymond & Shepherd, 2004). Mean 

monthly temperatures near sea-level vary from 8 ○C (July) to 16 ○C (January) (Dymond & 

Shepherd, 2004).  

 

 

 

 

4.2.2. 1080 operations 

The Aorangi Range currently receives 1080 drops on a three-yearly cycle, the two most recent 

drops being in August 2014 and June 2017. In 2014, the area was subjected to a pre-feed 

application of non-toxic 6 gram cereal baits on August 4-5 2014, followed by a toxic drop of 

Figure 4.1 Map showing study sites and approximate forested extent of focus study areas. 
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12 gram cereal baits with 0.15% toxicity on August 18 and August 27 2014. Pre-feed was 

applied at 0.5 kg/ha and toxic bait was applied at 1.0 kg/ha in 180 m swaths with intervening 

40 m strips of non-application. In 2017, the area was pre-fed on May 30-31 2017 using 6 gram 

cereal baits applied in 260 m swaths, followed by a toxic drop of 12 gram 0.15% toxicity cereal 

baits in 300 m swaths on June 16-17 2017. Both operations used deer repellent and were applied 

full-broadcast at 1.5 kg/ha. Prior to the 2014 operation, the northern and southern half of the 

Aorangi Range last received 1080 treatment in July 2009 and September 2006 respectively 

(Cook, 2017; OSPRI, pers. comm.). 

The Southern Rimutaka Range area was subject to its first ever 1080 drop in July 2017. 

Pre-feed of non-toxic 6 gram cereal baits occurred on June 16 2017, followed by a toxic drop 

of 12 gram 0.15% toxicity cereal baits in 180 m swaths on July 30 2017. Both operations used 

deer repellent and were applied full-broadcast at 2 kg/ha (OSPRI, pers. comm.).  

Where monitored throughout the course of this study (Nov 2013 to November 2017), 

Tora Bush, the Northern Rimutaka and Tararua Ranges did not receive 1080 in areas studied 

and served as non-treatment comparison sites for respective 1080 operations. Prior to 

monitoring commencing in 2013, the Northern Rimutaka and Tararua Ranges received aerial 

1080 treatment in 2012 and 2010 respectively (TBfree, 2010; Uys & Crisp, 2018). Tora Bush 

has not received aerial 1080 treatment since at least 2009 (DOC, pers. comm.).  

4.2.3. Experimental Design 

4.2.3.1. Short-term effects 

The study of short-term effects of 1080 mammal control on morepork employed a BACI 

(Before-After/Control-Impact) experimental design (Underwood, 1992), utilising ARU 

recordings to compare changes in morepork calling prevalence in treatment and non-treatment 

areas from zero to five weeks before to one to six weeks after three respective 1080 operations.  

4.2.3.1.1. Aorangi 2014 operation 

Nocturnal acoustic recordings were sourced from unanalysed archived recordings collected in 

either the preceding study by Cook (2017), or the VUW Aorangi Project’s seasonal monitoring 

(Hartley, 2017). Only recording locations with recordings of adequate quality both before and 

after treatment were monitored. Recordings were analysed for 12 ARUs distributed across six 

study sites in one treatment area, the Aorangi Range, and 13 ARUs distributed across three 

study sites in three non-treatment study areas: the Tararua and Northern Rimutaka Ranges and 
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Tora Bush (Figure 4.2). Recorders were 2013 DOC or Song Meter™ SM2+ ARUs spaced at 

least 500 m apart within a study site. 

4.2.3.1.2. Aorangi 2017 operation 

Initially, 13 and 18 ARUs were distributed across the treatment and non-treatment areas 

respectively. However, one location was not sampled due to inadequate recording quality for 

automated analyses. Thus, recordings were analysed for 17 ARUs distributed across two study 

sites in one non-treatment area, the Northern Rimutaka Range, and for 13 ARUs distributed 

across four study sites in one treatment area, the Aorangi Range (Figure 4.3). Recorders were 

2013 or 2016 DOC ARUs spaced at least 400 m apart within study sites, with the exception of 

two treatment and three non-treatment recorders spaced 350 m from the next-nearest recorder. 

4.2.3.1.3. Southern Rimutaka 2017 operation 

Initially, 18 ARUs were distributed across both the treatment and non-treatment study areas 

(i.e. N = 36). However, final operational drop boundaries, recorder failures and poor recording 

quality reduced recordings that could be analysed. Thus, recordings were analysed for 7 ARUs 

distributed across one study site in one treatment area, the Southern Rimutaka Range, and 16 

ARUs distributed across two study sites in one non-treatment area, the Northern Rimutaka 

Range (Figure 4.4). Recorders were 2013 or 2016 DOC ARUs spaced at least 400 m apart, 

with the exception of two non-treatment recorders spaced 350 m from the next-nearest 

recorder. 

4.2.3.2. Longer-term trends 

Archived recordings from the VUW Aorangi Project made using Song Meter™ SM2+, 2013 

DOC and 2016 DOC ARUs were available for eight consecutive summer (December-January) 

and winter (July-September) monitoring seasons from summer 2013-14 to winter 2017 

(Hartley, 2017). The number of active recorders and their distribution differed somewhat from 

year-to-year. In the interest of maximising the reliability of observed long-term trends, audio 

recordings were sourced only from recording locations for which recordings suitable for 

analysis were available in at least two monitoring seasons. This resulted in a study design 

comprising 15 recorder locations distributed across six study sites in the treatment area, the 

Aorangi Range, and 14 recorder locations distributed across two study sites in the non-

treatment area, the Northern Rimutaka Range (Figure 4.5). 
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4.2.4. Sound recording specifications 

Recorders were mounted to tree trunks at approximately 1.5 m. Song Meter™ SM2+ devices 

were set to record at a rate of 44,100 samples per second, recording sound frequencies of up to 

22.05 kHz. DOC ARUs were set to record at high frequency, recording sound frequencies of 

up to 16 kHz at 32,000 samples per second. All recordings were made with one microphone 

unit in mono and saved as 16-bit .wav files.  

Slight changes in recording span specifications were made progressively from 2013-

2017. However, all recordings were ≥ 5 minutes and recording start times were fixed: all 

summer recordings began at 2230 h NZDST (Daylight Savings Time), and all winter and short-

term BACI recordings began at 2000 h NZST (Standard Time).  

4.2.5. Audio recording selection  

The automated detector used for recording analyses is suitable for analysis of recordings above 

a certain quality standard (see Chapter 3). To maximise the reliability of detection results, 

sample days were selected primarily by recording quality. Sample day selection consisted of 

two phases: inspection of regional weather data, and subsequent inspection of spectrograms for 

days that passed the primary weather filter. For each sampling period, rainfall (cumulative mm, 

2000-2100 h NZST for winter/BACI, 2200-2300 h NZST for summer) and wind speed (km/h 

at 2.5-10 m, 2000 h NZST for winter/BACI, 2200 h NZST for summer) data was inspected as 

the average of five rainfall and five wind speed weather stations, the locations of which are 

available in Appendix I (Greater Wellington Regional Council, 2018). Days with mean wind 

speeds of <11 km/h and mean cumulative rainfall of 0 mm were identified as potentially 

suitable for analysis. Audio recordings from these days were then spectrographically inspected 

in Raven Lite 2.0 (Bioacoustics Research Program, 2016) and classified as suitable for 

automated analysis if no heavy rain, clear wind gust exceeding 0.5 kHz, or aeroplane noise was 

present. The first five minutes of each recording was inspected, as this timespan was to be 

analysed. In some cases, recordings were shorter than 5 minutes or not present where an ARU 

recording failed: these were classed as unavailable for analysis.  

4.2.5.1. Short-term effects 

Recordings were analysed for five weeks before and after each respective 1080 operation. For 

each operation, the pre-treatment period consisted of the five weeks leading up to the toxic 

drop date. One week without sampling was allowed after the drop before the five-week post-
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treatment sampling period. For each week (Sunday to Saturday), the day with the highest 

number of suitable recordings was selected for analysis. If less than four days were present 

between the selected recordings of two consecutive weeks, the second-best day of one of the 

two weeks was instead selected for analysis. For three sample weeks, insufficient recordings 

suitable for analysis were available. To increase sample size and maximise representation of 

recording locations, the Saturday of the preceding week was instead chosen for analysis for 

these weeks.  

This selection process produced maximum potential sample sizes of 250, 300 and 230 

audio recordings for the Aorangi 2014, Aorangi 2017 and Southern Rimutaka 2017 operations 

respectively. After exclusion of recordings unavailable or unsuitable for analysis, final sample 

sizes after recording selection were 212, 281, and 217 audio recordings (recorder locations and 

dates sampled are available in Appendix VIII).  

4.2.5.2. Longer-term trends 

For each sampling season (winter and summer), the span of dates recorded at each recorder 

location was inspected and compared. The five weeks during which the greatest number of 

recorders were simultaneously active was selected as each season’s main sampling period. 

Sampling periods were then compared winter-to-winter and summer-to-summer, and an 

additional sixth week was selected for each period to maximise the consistency of the seasonal 

time period compared between years.  

Due to an intensified sampling effort later in the project, samples were available from 

late autumn and across winter for the winter 2017 sampling period. This period’s six sampling 

weeks were instead chosen to maximise cross-over with the winter sampling periods of 2014, 

2015, and 2016.  

After determining sample periods, days were selected for analysis utilising the same 

methods employed for short-term analyses. The resulting sample size was 566 audio recordings 

(Appendix IX). 

4.2.6. Scoring audio recordings 

Each recording was analysed using the automated detector developed for morepork calls in 

Chapter 3. The monitoR (Hafner & Katz, 2017) package reports time-specific data for detected 

events. For each recording analysed, the time-specific detection results of the first five minutes 

analysed were converted to binary scores for thirty consecutive 10-second sub-samples (i.e. 0-
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10 sec, 10-20 sec…, 290-300 sec), consistent with the ‘continuous method’ described by Cook 

and Hartley (2018). In each sub-sample, the presence or absence of one or more morepork 

call(s) was scored as a ‘1’ or a ‘0’ respectively. A resulting call prevalence was calculated for 

each recording as a proportion ranging from 0/30 to 30/30. For example, a recording with at 

least one calling event detected in 15 out of 30 10-second sub-samples would have a call 

prevalence of 0.50. This entire scoring process was automated using a series of loop scripts 

written and executed in R (Appendix VII).  

4.2.7. Statistical analyses 

4.2.7.1. Short-term effects  

For each observation the treatment type (1080 or non-1080), time period (before or after 1080 

application), study area, study site, recorder location and recording date were recorded. For the 

Aorangi 2014 operation, a logistic mixed effects model was fitted to the data with the glmer 

function of the lme4 R package (Bates et al., 2015) using the formula: 

𝐶𝑎𝑙𝑙𝑖𝑛𝑔 𝑃𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒~ 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑇𝑦𝑝𝑒 ∗ 𝑇𝑖𝑚𝑒 𝑃𝑒𝑟𝑖𝑜𝑑

+ (1|𝑆𝑡𝑢𝑑𝑦 𝐴𝑟𝑒𝑎/𝑆𝑡𝑢𝑑𝑦 𝑆𝑖𝑡𝑒/𝑅𝑒𝑐𝑜𝑟𝑑𝑒𝑟 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛)  + (1|𝐷𝑎𝑡𝑒) 

The same model was fitted for each of the 2017 operations monitored. However, study 

area was dropped from these models, as only one study area was monitored in each treatment 

type for these operations. All data values (proportions from 0/30 to 30/30) were weighted by 

30, given that 30 binary sub-samples were scored to produce each proportion. 

Treatment type and time period were fitted as crossed fixed factors to investigate 

whether or not changes in calling prevalences from before to after 1080 operations differed 

between treatment and non-treatment sites. A significant interaction between these factors 

would indicate an effect of 1080 treatment on changes in calling prevalences from before to 

after operations. The BACI design of the experiment allowed for comparison of these changes 

whilst controlling for systematic temporal and spatial effects across each study. 

Study area, study site, and recorder location were fitted as random nested factors to 

account for the spatially nested nature of the sampling design (Figures 4.2, 4.3, 4.4). Recording 

date was also fitted as a random variable to account for any extraneous variation arising day-

to-day. 

A type III ANOVA was carried out on the resulting models to produce a chi-square 

value for the treatment type and time period interaction term. A non-parametric permutation 
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test was applied to approximate the null chi-square distribution and test the significance of the 

observed chi-square value for each study. Permutations of the data values were made within 

recorder locations across recording dates, i.e. values were shuffled within the rows of a recorder 

by date (rows by columns) matrix. Any missing values (NAs) resulting from inadequate 

recording qualities or missing recordings were held constant in their location within the dataset 

across permutations. Five thousand permutations were used to reliably test significance to the 

1% significance level (Anderson, 2001).  

4.2.7.2. Longer-term trends 

For each observation the year, month, recording date, recorder type (SM2+, 2013 DOC 

Recorder, or 2016 DOC Recorder), study area, study site, recorder location and time since the 

location’s last 1080 operation in months were recorded. It was of interest if mean morepork 

calling prevalences showed a significant long-term response to 1080 operations. To assess the 

effect of 1080, a logistic mixed effects model was fit to the data, again using the glmer function 

of the lme4 R package, with a quadratic formula for the effect of time: 

𝐶𝑎𝑙𝑙𝑖𝑛𝑔 𝑃𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒 ~ 
𝑀𝑜𝑛𝑡ℎ𝑠 𝑆𝑖𝑛𝑐𝑒 1080

12
+ (

𝑀𝑜𝑛𝑡ℎ𝑠 𝑆𝑖𝑛𝑐𝑒 1080

12
)

2

+ (1|𝑆𝑡𝑢𝑑𝑦 𝐴𝑟𝑒𝑎/Study 𝑆𝑖𝑡𝑒/𝑅𝑒𝑐𝑜𝑟𝑑𝑒𝑟 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛) + (1|𝑌𝑒𝑎𝑟) + (1|𝑀𝑜𝑛𝑡ℎ)

+ (1|𝐷𝑎𝑡𝑒) + (1|𝑅𝑒𝑐𝑜𝑟𝑑𝑒𝑟 𝑇𝑦𝑝𝑒) 

Time since 1080 was modelled as a quadratic factor as, if present, any positive or 

negative effect of 1080 on calling prevalence was expected to eventually decay with increasing 

time since treatment. Study area, study site, recorder location, recording year, month, date and 

recorder type were included as random factors to account for any extraneous variation in calling 

prevalences arising sample-to-sample from spatial or temporal factors, or from potential 

differences in recording quality between different recorder types used. As with the analyses of 

short term effects, study area, study site and recorder location were fitted as nested factors to 

account for the spatially nested nature of the sampling design (Figure 4.5). Backwards stepwise 

AIC model selection was used to determine the most suitable model. A permutation test was 

deemed unsuitable for final analyses given the unbalanced experimental design arising from 

varying recording locations sampled year-to-year, and from varying time since 1080 treatment. 

Hence, a conservative parametric model was used for model selection and significance testing. 

Though each data point was derived from 30 sub-samples, each model tested was 

conservatively weighted by 1 to account for temporal autocorrelation in the data resulting from 
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the consecutive sampling structure of the ‘continuous method’. It was of interest if time since 

1080 had a significant effect, positive or negative, on detected calling prevalences. A Type III 

Wald Chi-square Analysis of Deviance was carried out on the resulting model of best fit to test 

for this effect. 

Recorder location was also subsequently fitted as a fixed factor for post-hoc analyses 

to explore the potential effect of differing yearly recorder combinations on detected calling 

prevalences, due to apparent outlying trends in two seasons with low numbers of recorders 

sampled. A Tukey test of pairwise comparisons was run on the fixed factor of recorder location 

to explore this effect for the two years when the least number of recorders were active. 

4.3. Results 

4.3.1. Short-term effects 

Sites in the treatment area showed an increase in mean detected calling prevalences from before 

to after treatment across the 2014 operation, whereas non-treatment sites showed a very slight 

decline (Figure 4.6a). However, any interactive effect of treatment with time period on mean 

detected calling prevalences was not significant (p = 0.2056, χ2 = 22.0187). There was a 

marginally insignificant effect of treatment on detected calling prevalences across time periods 

in the 2017 Aorangi operation (p = 0.0628, χ2 = 1.8532); both treatment and non-treatment sites 

showed a decline in detected calling prevalences from before to after the drop, with the non-

treated area showing the slightly greater decline (Figure 4.6b). There was also no significant 

effect of treatment on calling prevalences across time periods in the 2017 Rimutaka operation 

Figure 4.6 Grand mean detected morepork calling prevalences ± 1 SE (n = number of recorder 

locations  sampled) in treatment and non-treatment study areas for zero to five weeks before and 

two to six weeks after the three respective 1080 operations, and associated chi-square and p-values. 

Mean and SE estimates are an approximate representation of interactions, whereas associated 

statistics were calculated via permutation tests accounting for the spatially-nested and temporally 

replicated nature of the experimental design. Plots share y-axes. 
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(p =0.5178, χ2 = 2.3873); both treatment and non-treatment sites showed a slight increase in 

detected calling prevalences from before to after the operation (Figure 4.6c).  

4.3.2. Longer-term trends 

Detected calling prevalence showed an apparent seasonal trend, with summer sampling periods 

showing higher mean detected calling prevalences than winter sampling periods. Prevalences 

detected in summer 2013-2014 and summer 2015-2016 appeared to outlie these trends for the 

Northern Rimutaka and Aorangi Ranges respectively, with detected calling prevalences 

appearing markedly higher in the Northern Rimutaka Range and lower in the Aorangi Range 

than other respective summer seasons (Figure 4.7).  

Stepwise model selection found year, month, study area, study site, recorder location, 

and time since 1080 as a quadratic factor to be useful predictors of detected calling prevalences. 

Accordingly, date and recorder type were excluded from the final model used to test the effect 

of 1080 treatment on calling prevalence with time. Analysis of deviance of the final model 

found time since 1080 to have a significant effect on detected calling prevalences as a quadratic 

factor (p = 0.0195, χ2 = 5.457, df = 1, Table 4.1). A negative quadratic relationship was shown: 

when modelled with time after a hypothetical operation with months cycled accordingly and 

all other factors held constant, detected prevalences were predicted to increase for ~40 months 

(3-3.5 years) after an operation, after which they began to decline. There was a clear seasonal 

pattern in calling across months sampled (Figure 4.8).  

 

  

Table 4.1 Table of results for Analysis of Deviance (Type III Wald chi-square test) of fixed effects 

retained in the best-fitting logistic mixed effects model for long-term data. Asterisks (*) denote 

significance at the 5% level. 

 Chisq Df Pr(>Chisq) 

(Intercept) 3.917 1 0.0478* 

(Months.Since.1080/12) 4.645 1 0.0311* 

(Months.Since.1080/12)2 5.457 1 0.0195* 
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Recorder location showed a significant effect when modelled as a fixed factor (p < 

0.001, χ2 = 97.54, df = 28, Table 4.2). In post-hoc Tukey testing carried out to explore this 

effect, no significant difference in calling prevalence was found between any recorder locations 

sampled within the Northern Rimutaka study area (Table 4.3). Accordingly, no significant 

difference in mean calling prevalence existed between recorders sampled in the lesser-sampled 

summer 2013-14 and 2015-16 seasons (Figure 4.9a). Contrastingly, a significant difference in 

calling prevalence was found for seven pairwise Aorangi recorder location comparisons (Table 

4.4). With respect to recorders sampled in the lesser-sampled summer 2013-14 and 2015-16 

seasons, calling prevalence was significantly higher at one location sampled only in the 2013-

14 season, WAI L1 100m, than at MAN L1 100m (sampled 2015-16; z-ratio = -4.127, p = 

0.012) and WHA L2  100m (sampled 2013-14 and 2015-16; z-ratio = 3.815, p = 0.038, Table 

4.4, Figure 4.9b).  

 

Figure 4.8 Predicted change in mean detected calling prevalence as a function of time (in months) 

since a hypothetical 1080 treatment occurring in July for a randomly selected recorder location. 

Predictions are made only for months in which sampling was carried out, with year and location 

factors held constant. Annual cycles in calling prevalence are evident and superimposed over a long-

term positive response to 1080 treatment peaking at ~40 months (3-3.5 years) after treatment. 

Table 4.2 Table of results for Analysis of Deviance (Type III Wald chi-square test) of fixed effects 

retained in the best-fitting logistic mixed effects model for long-term data, with recorder location 

fitted as a fixed effect. Asterisks (***) denoted significance at the 0.1% level. 

 Chisq Df Pr(>Chisq) 

(Intercept) 0.088 1 0.7668 

(Months.Since.1080/12) 3.445 1 0.0635 

(Months.Since.1080/12)2 3.762 1 0.0524 

Recorder Location 97.54 28 <0.001*** 
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4.4. Discussion  

The results of this study showed no evidence for a significant effect of 1080 treatment on trends 

in the calling prevalence of morepork from zero to five weeks before to one to six weeks after 

any of the three aerial 1080 operations monitored. If calling prevalence can be interpreted as 

an index of abundance, these results suggest that morepork populations did not suffer 

significant population losses from secondary poisoning over the course of any of these three 

operations. Only one other study has applied bioacoustics to the short-term monitoring of 

morepork before and after a 1080 operation. Pierce and Montgomery (1992) found the number 

of individuals detected in an area treated with 1080 to double in contrast to a decline shown in 

a non-treatment area. In-field call counts conducted by multiple observers were utilised, 

however, and it is noted that the non-treatment decline observed may have been in part 

attributable to a ‘new’ listener being employed in the area. The results of the current study are 

not subject to the potential effects of multiple observer biases. Acoustic recordings offer the 

opportunity to minimise observer bias (Hobson et al., 2002), and the use of an automated 

Figure 4.9 Boxplots of calling prevalences detected at recorders locations monitored in the summer 

2013-14 and summer 2015-16 seasons showing (a) the non-significant differences in prevalences 

detected in recordings from recorders locations monitored in the Northern Rimutaka Range and; (b) the 

significantly higher prevalences detected in recordings from WAI L1 100m than in recordings from 

MAN L1 100m and WHA L2 100m in the Aorangi Range, particularly in summer 2013-14. Detected 

prevalences from individual days sampled are overlaid on plots: summer 2013-14 days are blue; 

summer 2015-16 days are green; and days from other seasons are hollow-fill points. Grey points 

indicate outliers. Blue asterisks and green asterisks indicate recorder locations monitored in the summer 

2013-14 and summer 2016-17 seasons respectively.  
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detector of a known performance standard may further support the reliability of trends detected 

here (Blumstein et al., 2011).  

As aforementioned, twenty-seven radio-tagged morepork have so far been monitored 

in treatment areas over five 1080 operations. These studies suggest a low mortality rate for the 

species, with one individual subject to lethal secondary poisoning after a 1996 carrot bait 

operation in Pureora Forest Park (Greene et al., 2013; Powlesland et al., 1998). Of these 

individuals, 21 were monitored over operations using cereal baits (Greene et al., 2013; 

Powlesland et al., 1999; Walker, 1997). As baiting practices change, further study is required 

to reliably estimate any mortality rates resulting from modern aerial 1080 operations. All 

operations monitored here utilised cereal baits. Furthermore, all incorporated deer repellent in 

baits, a relatively new practice first trialled in the early 2000’s, the effects of which remain 

poorly studied for native birds (Morriss et al., 2016; Speedy, 2005).  Preliminary findings of 

more recent, yet-to-be-published radio-tagging surveys have been reported to find no mortality 

for morepork monitored over modern operations (G. Elliot, DOC, unpubl. data, as cited by 

Brown et al., 2015; Elliott & Kemp, 2016). In contrast to the direct estimation of mortality 

rates achievable with radio-tagging surveys, call-counts are limited to detecting large changes 

in populations due to the potential effects of various factors on conspicuousness (Atkinson et 

al., 1995; Spurr & Powlesland, 1997). Nevertheless, the results of the current study suggest 

that if morepork populations incur any mortality through secondary poisoning over aerial 1080 

operations using modern cereal baiting practices with deer repellent, rates are so low as to not 

affect broad-scale population trends. 

 The general trends observed in calling prevalences from before to after operations likely 

result from monthly and seasonal trends in morepork calling prevalences related to their 

breeding cycle. The morepork breeding season spans from September to February (Higgins et 

al., 1999). A pattern of low calling rates throughout winter has been described to increase in 

late August/early September with the beginning of this breeding season (Brighten, 2015; 

Imboden, 1985). Broad scale, the before-and-after trends in calling prevalences observed in 

short-term studies here corroborate with these patterns. Furthermore, the trends observed fit 

monthly calling patterns observed by Brighten (2015) on Mokoia Island in 2013. Specifically, 

before and after samples in the Aorangi 2017 operation spanned May/June and June/July 

respectively. The general decline in calling prevalence detected across this period is consistent 

with a decline in mean morepork call syllables observed by (Brighten, 2015) from May to July. 

In contrast, a minimal change or increase in calling prevalences was notable from before to 
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after samples in the Aorangi 2014 and Rimutaka 2017 studies. Before-to-after sampling periods 

for these studies spanned July/August to August/September, and June/July to 

August/September respectively. These increases are also consistent with trends described by 

Brighten (2015), who reports a decrease in average syllable numbers per night from June to 

August, followed by an increase from August to September.  

 Longer-term, the results of this study showed a significant positive response in the 

prevalence of morepork calling to aerial 1080 operations. This peaked with an increase in 

prevalence of an additional ~20% at ~40 months, after which predicted prevalence declined. 

As an index of relative abundance, this would suggest that morepork populations have so far 

benefited from aerial 1080 operations in the Aorangi Range. Calling rates have been compared 

between managed and unmanaged areas after three years of ongoing brodifacoum treatment to 

suggest a positive long-term effect of treatment on morepork populations (Fraser & Hauber, 

2008). With respect to 1080, the population trends, nesting success and survival of morepork 

is reportedly being monitored more closely within a wider study evaluating the responses of 

native bird species to aerial operations (Brown et al., 2015). However, no other study could be 

found in the current scientific literature that has monitored the long-term response of morepork 

to aerial 1080 operations in any way. Thus, the current study is the first to suggest a realised 

long-term benefit to morepork populations from aerial 1080 operations. 

 A number of mechanisms may contribute to and explain this apparent benefit. It has 

been suggested that the reduced availability of small rodents as a food source resulting from 

pest control operations might have negative implications for morepork (Pierce & Montgomery, 

1992; Stephenson & Minot, 2006). However, recent studies contest this concern, showing 

morepork to be primarily insectivorous (Denny, 2009; Haw & Clout, 1999; Haw et al., 2001). 

Hence, introduced small mammals may in fact compete with morepork for their primary food 

source (Brighten, 2015; Denny, 2009). It has accordingly been suggested that increases in 

invertebrate and possibly mouse populations resulting from reduced rat populations may confer 

a benefit to morepork through increased prey availability (Fraser & Hauber, 2008). Such post-

treatment increases have been noted for mice at some sites monitored in the VUW Aorangi 

Project (Hartley, 2017). Additionally, morepork are commonly a hole-nesting species 

(Stephenson, 1998; Stephenson & Minot, 2006), making eggs, chicks and nesting adults 

vulnerable to predation by introduced mammalian predators (Brighten, 2015; O'Donnell, 

1996). Possums have also been suggested to compete with hole-nesting species for nesting 

spaces (Wilson et al., 1998). It is therefore possible that the significant reduction in introduced 
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mammals resulting from an aerial 1080 operation may confer a benefit for morepork through 

increased survivorship and reproductive success resulting from a combination of reduced 

predation pressure, reduced food competition, increased food availability and reduced 

competition for nest-sites. Which of these factors are at play and how they interact with 

morepork population trends in the Aorangi Range, however, would require further study to 

determine.  

 The apparent seasonal patterns observed in long-term calling prevalence for both the 

Aorangi and Northern Rimutaka study areas of high calling rates in summer and low calling 

rates in winter corroborate with seasonal patterns in morepork calling associated with their 

breeding cycle (Brighten, 2015; Imboden, 1985). The apparent outlying low calling prevalence 

observed in the Aorangi study area in summer 2015-16 is likely attributable to the small number 

of recording locations that were available for sampling in this season. Pairwise recorder 

location comparisons showed a significant difference in mean calling prevalences at the 5% 

level between a recorder active only in summer 2013-14 and two recorders active in summer 

2015-16. In both cases, sites sampled in the 2015-16 summer season had lower mean calling 

prevalences. Thus, given the higher mean prevalences observed in all other seasons, the small 

combination of locations monitored in summer 2015-16 may underestimate mean calling 

prevalence for this season. Contrastingly, no difference in mean calling prevalences was found 

between recorders sampled in these seasons for the Northern Rimutaka study area. The 

difference observed between these seasons may instead be attributable to year-to-year variation 

in calling prevalences and/or the number of suitable recordings available for calling prevalence 

estimates. These apparent differences highlight the importance of sample size (number of 

ARUs) and consistency of sampling locations in treatment and non-treatment areas when 

monitoring long-term with ARUs. This is particularly pertinent considering the variable impact 

that local weather conditions may have on the suitability of recordings for analysis at different 

recorder locations. Nevertheless, this was beyond the control of this study given that archived 

data was analysed. The otherwise consistent seasonal patterns in calling prevalences detected 

using the data available is encouraging. There would be great benefit in the continued 

monitoring of sites monitored in the winter 2017 sampling season over the next four to five 

years to determine the consistency of these long-term patterns and responses to 1080 

operations.  

 It is important that the potential influence of a number of limitations are considered 

regarding this study. Firstly, morepork calling rates vary throughout the year with the breeding 
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season, day-to-day, and hour-to-hour (Brighten, 2015; Fraser & Hauber, 2008; Stephenson, 

1998). The analysis of multiple recordings per recording location for each sampling period, 

and the consistency of time of day and dates sampled in both the short and long-term analyses 

of this study should minimise any potential effects resulting from such variability.  Moreover, 

the effect of any remaining variability arising from these sources should be further reduced by 

the inclusion of temporal and spatial random variables in statistical modelling. This is 

particularly advantageous, as the relative influence of environmental variables on calling 

prevalence is not well understood. It has been suggested that calling rates may be influenced 

by wind, moon, and cloud conditions (Fraser & Hauber, 2008). However, Stephenson (1998) 

anecdotally reports calling frequency to vary widely night-to-night irrespective of wind or rain 

conditions, with much higher calling frequencies some nights than others. The ability of ARUs 

to standardise these potential error sources greatly enhances the reliability of inferences drawn 

in the current study.  

 Another issue to consider is the potential for detection of the same individual in 

recordings across multiple recorders. It has been reported that morepork may cover large 

distances in a short space of time. Imboden (1975) found individuals with territories estimated 

at up to 5.3 ha in size (approximately 200-250m in width) to cross their entire home range 

multiple times in the space of an hour. More recently, Pryde and Greene (2016) estimated the 

mean home range of morepork in Eglinton Valley to be 43.5 ha (i.e. 600-700m in width for a 

reasonably round home range). Accordingly, Fraser and Hauber (2008) warn that the tendency 

of morepork to cover such distances may affect the accuracy of auditory surveys where 

auditory surveys conducted are long. The short five-minute recording span analysed in this 

study (recorded simultaneously across all recorders) minimises the potential for detection of 

the same individual across multiple recorders resulting from such events.  

Another potential source of double-detection exists in recorder spacing. Pryde and 

Greene (2016) found the rate of morepork calls recorded by ARUs in beech forest to decline 

with increasing distance from recording units after 150 m, with 46% of calls attenuated at 200 

m and 0% recorded at 250 m. Consequently, morepork calls detected by recording unit pairs 

less than 500 m apart may be from the same individual, and inadequate spacing of recorders 

may produce non-independent estimates of calling prevalence. In the present study, recorders 

were set up on biodiversity monitoring lines 450m in length to maximise future comparability 

of results to pest-tracking data. Hence, some recorder pairs were closer than this 

recommendation; at minimum distance, five recorder pairs were spaced 350 m apart. It is thus 
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possible that some calls were double-detected in data. This considered, double-detected calls 

are likely to occur near the mid-point (175 m at minimum spacing in the current study) between 

recorder pairs. Given the attenuation of recording rate with distance, these calls are likely faint 

in recordings. Considering a negative relationship exists between signal detection and 

decreasing signal strength in automated detection (Digby et al., 2013; Swiston & Mennill, 

2009) and the high precision of the detector employed here, it is arguable that such double-

detections contribute to a small portion of the data in this study (Ulloa et al., 2016).  

 The use of an automated detector for the analysis of recordings in this study must also 

be considered. As already highlighted, the detector employed has an estimated sensitivity of 

39.9%. Thus, not all calls will have been detected in analyses. However, the focus of this study 

was not on changes in total call numbers, but relative changes in calling prevalence. Given that, 

on average, this detector’s performance should be consistent across all recordings analysed, the 

overall trends detected at a 39.9% sensitivity should be representative of those that would be 

found at a 100% sensitivity with an equivalent FPR. Of equal importance is the 2.53% FPR of 

the detector: it can be expected that 2.53 in 100 10-second sub-samples scored as active in the 

data produced will be a FP event. This low inflation of detected calling should also occur in a 

random unbiased manner across the recordings analysed and have no significant impact on the 

overall trends observed. Unless subject to variable background noise across recordings, 

detector performance should be consistent. The recording selection process employed in this 

study should both minimise and standardise any effect of background noise on both TP and FP 

detections. The consistency of the long and short-term trends found both within this study 

season-to-season and with trends described in the wider scientific literature gives encouraging 

support for their reliability. Nevertheless, the sensitivity of this detector is based on individual 

call detection. Calls may differ in quality, amplitude and, consequently, detectability across 

recordings. Thus, future comparison of calling prevalences produced by automated and manual 

analyses of recordings using the ‘continuous method’ of scoring employed in this study would 

be useful for further assessment of the reliability of trends observed.  

  Notwithstanding these potential limitations, the current study is the first to investigate 

the response of morepork to aerial 1080 operations both short- and longer-term. The non-

significant short-term effect of treatment on calling prevalence as an index of abundance across 

all three operations strongly indicates that aerial 1080 operations did not have an immediate 

large-scale negative effect on the morepork populations studied. Furthermore, long-term 

monitoring of this study provides evidence for a net positive effect of aerial 1080 treatment on 



85 

 

morepork populations in the Aorangi Range over a timescale of 2-4 years. Reduced 

competition from mammals, increased prey availability, and reduced predation upon morepork 

chicks are all mechanisms that may explain this response. Given the lack of literature that 

currently exists regarding the response of morepork populations to aerial 1080 operations, it is 

advisable that monitoring is both continued for the populations studied here and extended to 

other treatment and non-treatment areas across New Zealand. The growing availability of 

ARUs and development of recognition software continues to advance the ease with which this 

can be achieved. Simultaneous monitoring of pest and invertebrate populations and morepork 

nesting success across future operations would facilitate better understanding of the dynamics 

at play in observed long-term responses.
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5.1. Responses of avifauna to aerial 1080 operations 

5.1.1. Short-term community-level effects 

The theory that forests fall silent post-1080 treatment is a key concern in the debate around 

aerial 1080 operations. Bioacoustic monitoring in Chapter 2 investigated this issue directly at 

the community level. Comparing from before to after the 2017 Aorangi operation, the amount 

of silence in the treatment area increased very slightly, in the same way that silence increased 

in the non-treatment areas (Figure 2.4a). These results probably reflect a general reduction in 

bird calling behaviour as autumn progresses to winter (Hartley, 2012). They are consistent with 

and build on those of Cook (2017), who found no significant difference in trends of silence for 

bird communities between treatment and non-treatment areas across the 2014 Aorangi 

operation. Further, they highlight the importance of the BACI experimental design: monitoring 

of only the treatment site may have led to alternative interpretations. Extending from the 

Aorangi Range, trends in silence were found to differ significantly between treatment and non-

treatment areas across the 2017 Southern Rimutaka operation. However, treatment areas 

showed an increase in birdsong, whereas non-treatment areas showed an increase in silence 

(Figure 2.4b). As highlighted in Chapter 2, this pattern may reflect altitudinal biases in 

sampling and should be treated conservatively. However, taken at face value, the patterns 

observed across this operation provide evidence contrary to those suggested by the silent forest 

theory. Together, these bioacoustic studies provide no support for the anecdotal silent forest 

theory in diurnal forest bird communities of the lower North Island of New Zealand.  

Proponents of 1080 propose that forests are indeed silent, but that they do not fall silent; 

rather, low birdsong is attributable to high predation pressure of introduced mammals limiting 

bird communities, and may be observed both shortly before and shortly after an aerial 1080 

operation (Hansford, 2016; Toki, 2013). Such dynamics might explain the trends observed 

across the two Aorangi operations monitored to date. The reduced bird mortality rates with 

baiting practice changes (Eason, 2002; Eason et al., 2011) and low native bird mortality 

findings over operations using modern baiting practices would support this theory (Morriss et 

al., 2016). As Cook (2017) denotes, though many studies have investigated the mortality of 

bird species over 1080 operations (Morriss et al., 2016; Spurr & Powlesland, 1997; Veltman 

& Westbrooke, 2011), little work has been done to quantitatively assess the silent forest theory 

proposed by 1080 opponents. As demonstrated both here and by Cook (2017), bioacoustic 

studies utilising autonomous recording units (ARUs) provide a direct means to achieve this. 
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Continued monitoring of the areas studied here would facilitate an evaluation of the consistency 

of these results across independent treatments. Furthermore, bioacoustic monitoring of other 

areas across New Zealand would facilitate an investigation of their consistency for different 

bird community compositions across the country. Given the controversy that exists around 

1080, the probable increase in its use with Predator Free 2050 aims (Parliamentary 

Commissioner for the Environment, 2013) will likely both necessitate and provide 

opportunities for such studies.  

5.1.2. Species-level effects 

A total of 19 native bird species have been found dead following aerial 1080 operations (Spurr, 

2000). However, recent studies of operations employing modern baiting procedures suggest a 

negligible negative impact of operations on native bird species (Morriss et al., 2016). 

Corroboratively, manual analyses of diurnal recordings in Chapter 2 found no significant 

difference in the trends of calling prevalence in treatment and non-treatment areas for eight of 

the ten taxa statistically analysed across the 2017 Aorangi operation (Figure 2.5a-e, h-j); and 

six of the eight taxa analysed for the 2017 Southern Rimutaka operation (Figure 2.6a, b, d, f-

h). Automated analyses of nocturnal recordings in Chapter 4 also found no significant 

difference in the morepork calling prevalence trends between treatment and non-treatment sites 

from shortly before to shortly after any of the three operations monitored (Figure 4.6).  

Of the four taxa that showed a significant short-term difference in calling prevalence 

across any of the operations monitored, only one (chaffinch) showed a significant decline in 

the respective treatment area. Relative to non-treatment areas, calling prevalences for the 

chaffinch in treatment areas were found to decrease from the five-week before to the five-week 

after period monitored for the 2017 Aorangi operation (Figure 2.5g). Given that chaffinch are 

an granivorous species considered at risk to poisoning (Miller & Anderson, 1992) and have 

been found dead following modern operations (Morriss et al., 2016), it is possible that this 

decline may indicate a direct negative effect of the 2017 operation on Aorangi chaffinch 

populations.  

For all other taxa showing a significant interaction, an increase or lesser decline was 

observed in treatment areas relative to non-treatment areas. As discussed in detail in Chapter 

3, and briefly below regarding considerations around bioacoustic studies, these results were 

unlikely indicative of a negative impact for these species. Given that chaffinch are an 

introduced species, the results of this study suggest that none of the native species’ populations 
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monitored over these operations suffered significant mortality as a result of aerial 1080 

treatment. This corroborates with, and contributes to, the wider literature regarding the 

potential negative impacts of modern aerial 1080 operations on native bird species (Brown et 

al., 2015; Morriss et al., 2016). In particular, the results here address the lack of literature 

regarding the potential susceptibility of morepork to aerial 1080 operations (Greene et al., 

2013). Furthermore, in combination with those of Cook (2017),  they address the susceptibility 

of bird populations to aerial 1080 treatment using modern baiting methods. Across all 

operations, both prefeeding and deer repellent were utilised; these relatively new methods 

might increase exposure rate and risk to native bird species and are relatively understudied. 

However, the results here suggest a negligible risk of operations utilising these methods, 

consistent with that reported by Morriss et al. (2016). 

Given that pest-control operations are carried out in the interest of net positive effects 

for native species, quantifying the long-term response of native species’ populations is an 

important consideration. It is generally accepted that, even if native species experience short-

term population losses, a positive long-term impact of aerial 1080 treatment is generally shown 

(Brown et al., 2015; Weaver, 2006). Bioacoustic monitoring by Fea (2018) using ARU 

recordings from the Aorangi and Rimutaka Ranges found such positive responses after the 

2014 Aorangi operation: relative to before the treatment, smaller-bodied rifleman and tomtit, 

and medium-bodied bellbird exhibited a significant increase in calling rates 1.5 years after 1080 

treatment. Thus, the short-term decline of tomtit exhibited in bioacoustic monitoring by Cook 

(2017) was outweighed by benefits two breeding seasons later. Furthermore, bellbird showed 

a sustained positive response evident after 2.5 years, with tūī and kererū, the largest-bodied 

species, also exhibiting positive responses over this timeframe (Fea, 2018). The long-term 

monitoring of large-bodied morepork (~175 g (Heather & Robertson, 2005)) in Chapter 4 

showed a similar positive long-term response: calling prevalence showed a significant 

quadratic relationship with time since 1080 treatment, predicted to peak after 3.5 years. This is 

the first study to quantify a multi-year response of morepork to aerial 1080 treatment. 

Collectively, the results of Cook (2017), Fea (2018) and this thesis suggest a net positive impact 

of aerial 1080 treatment on native avifauna in the lower North Island. 

Species’ responses to 1080 treatment may vary with differing application methods. 

Currently, the use of prefeeding, deer repellent, and differing sowing methods is relatively 

understudied in terms of its direct and indirect impacts on bird populations (Morriss et al., 

2016). Furthermore, regimes of sustained three-yearly treatment have been recommended, and 
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are carried out, in the interest of providing a safe ‘breeding window’ for native species in at 

least one of every three years (Brown & Urlich, 2005; DOC 2014), but results of this approach 

have yet to be widely reported in the published literature (Brown et al., 2015; Veltman & 

Westbrooke, 2011). The Aorangi Range has received two of three aerial applications in a 10 

year treatment programme (TBfree, 2016), with the next application most likely to occur in the 

winter of 2020. Continued bioacoustic monitoring in the areas studied would provide an 

opportunity to extensively assess the net outcomes for native bird species in this area resulting 

from this regime. For morepork, the capacity to continue this monitoring is enhanced by the 

ability to employ automated analyses of recordings. At a broader scale, the potential to expand 

bird species monitoring to other areas receiving differing treatments is greatly enhanced by the 

capacity of bioacoustics to simultaneously collect data over large spatial and temporal scales, 

with little increased field effort relative to traditional methods. Monitoring might also be 

extended to other acoustically active species that are difficult to manage with traditional field 

methods. For example, DOC ARUs now have the capacity to record the acoustic frequency of 

bat calls. 

5.2. Automated monitoring 

With the increasing use of ARUs, there is a growing demand for automated extraction of data 

from acoustic recordings, particularly in the context of long-term monitoring (Blumstein et al., 

2011; Joshi et al., 2017). In Chapter 3, a detector with moderate sensitivity and high precision 

for ‘more-pork’ calling events of morepork, New Zealand’s only extant native owl, was 

successfully developed for this purpose. This detector is capable of detecting 39.9% of calling 

events in field-recordings with high precision (0.939), classing only 2.53% of non-calling 

events falsely as calls. The sensitivity of this detector (0.399) is somewhat lower than that of 

detectors developed for other species’ calls in the wider scientific literature: a recent review of 

68 studies in the bioacoustic literature by Knight et al. (2017) found the mean sensitivity of 12 

single-species recognisers tested on un-edited field recordings to be 0.60. However, its 

precision (0.939) is notably higher than the mean precision (0.71) of studies reported in the 

same review. In detector development, there is an inevitable trade-off between sensitivity and 

precision: detectors maximising sensitivity will have lower precision and vice versa (Ulloa et 

al., 2016). The detector here was developed for the unsupervised monitoring of trends in 

morepork calling prevalences, and thus purposefully developed to have a high precision at the 

expense of sensitivity. 
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 The utility of automated detection in bioacoustic monitoring is dependent on the time 

required to create, run, and assess the performance of a detector relative to the amount of time 

otherwise required for manual analyses (Knight et al., 2017). Detector development, however, 

can be a subjective, iterative, and time consuming process (Katz et al., 2016a). The method 

that was conceptualised, developed and employed in Chapter 3 (Figure 3.5) aimed to provide 

a directed and efficient means to develop a parsimonious template-based detector. When 

employed to create the morepork detector, this process identified a candidate list of 42 more-

pork call templates from an initial pool of 187 templates sourced from field recordings. These 

42 templates were reduced to a final detector comprising 10 templates. At the level of precision 

chosen during development (~ 0.975), these 10 templates were collectively capable of making 

89 of the 90 detections possible if all 42 templates were used, in approximately a quarter of the 

processing time. Thus, the method developed was highly effective as a means to achieve 

parsimony in the development of this template-based detector. Highlighting the potential 

limitations associated with subjective template development, only one of the twelve calls that 

were subjectively trialled as initial templates in this process remained in the final detector. The 

assessment of this method’s utility in other template-based detector development projects for 

further species is recommended. If consistently effective across projects, this process has the 

potential to streamline and enhance the efficacy of bioacoustic monitoring employing template-

based detectors for the detection of other acoustically active species.  

5.3. Limitations and considerations 

An inherent limitation of bioacoustic studies is the assumption that the abundance of calls 

observed is related to species’ abundances, with greater prevalence of calls associated with 

greater species’ abundance (Royle, 2004). The monitoring results of both diurnal bird species 

in Chapter 2 and morepork in Chapter 4 are dependent on this assumption. This assumption 

has been investigated and found to hold true for a range of species (Borker et al., 2014; Nelson 

& Graves, 2004; Thompson et al., 2010). It has not been widely studied, however, for native 

New Zealand bird species: only one known study has investigated a relationship between 

conspicuousness and density, finding the detectability of grey warblers and robins to vary in 

proportion to density for five-minute bird counts (Gill, 1980; Hartley & Greene, 2012; Spurr 

& Powlesland, 2000). The reliability of inferences that can be drawn from future bioacoustic 

studies in New Zealand would greatly benefit from an investigation of this assumption, 

particularly around pest control operations. Such studies would broaden the extent to which 

bioacoustics can be applied to reliably monitor species’ responses and inform conservation 
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management. This considered, the assertion that forests falling silent is indicative of a negative 

effect of aerial 1080 treatment on native bird species is itself fundamentally dependent on this 

assumption. Thus, the results presented here can be quantitatively employed to address this 

concern at the species level.  

An important caveat highlighted in Chapter 2 is the potential for species ecology and 

behaviour to limit the inferences that can be drawn from bioacoustic monitoring. Across the 

2017 Aorangi operation, bellbird calling prevalences were found to show a significantly lesser 

decline in treatment areas relative to non-treatment areas (Figure 2.5f). The same pattern was 

found for bellbird/tūī across the 2017 Southern Rimutaka operation (Figure 2.6c). Such 

observed patterns could result from significant mortality events in territorial species if 

remaining individuals increase call rates to establish new territories and mates (Spurr & 

Powlesland, 2000). Despite this theoretical possibility, bellbird and tūī deaths following 

operations using both old and modern baiting methods appear unlikely, as no bellbird have 

been found dead, and only two tūī have been found dead after aerial 1080 operations 

historically (Morriss et al., 2016; Spurr & Powlesland, 1997). The observed pattern might more 

likely reflect the movement of these species to follow seasonally available nectar resources 

(Rasch & Craig, 1988; Spurr et al., 2010; Stewart, 1980 as cited by Craig et al., 1981), which 

may unevenly influence detection probabilities at recorder locations monitored across an 

operation.  

A significant increase in the prevalence of calls was found for tomtit in the treatment 

area across the 2017 Southern Rimutaka operation (Figure 2.6e). This study had an unbalanced 

design, however, as recorders adjacent to final 1080 drop boundaries could not be 

unambiguously designated as either inside or outside the treatment zone, leading to the 

exclusion of a treatment study area from sampling. Consequently, only high elevation (>500 

m) treatment recorder locations were sampled, whereas both high and low elevation (<280 m 

and >450 m) recorder locations were sampled in the non-treatment area. The onset of the 

tomtit’s breeding season is marked by an increase in calling (Heather & Robertson, 2005) and 

may be affected by elevation, being delayed at higher elevations (Knegtmans & Powlesland, 

1999). Considering this potential source of variation, the pattern observed might reflect such 

an elevational effect of breeding behaviour on calling prevalence.  

The potential influence of behavioural factors on calling patterns should receive careful 

consideration in studies employing bioacoustic monitoring, and is an inherent limitation of any 
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study not directly tracking individuals. Future bioacoustic studies would benefit from the 

investigation of species’ calling prevalences in relation to factors such as elevation and seasonal 

resource distribution that might affect detection probabilities and, accordingly, the distribution 

of ARUs accounting for such factors. The simultaneous use of radio-telemetry to track 

individuals should also be considered, especially for species exhibiting behaviours likely to 

influence detection probabilities that cannot be accounted for in bioacoustic monitoring.  

These considerations might be incorporated in developing a standardised methodology 

for monitoring New Zealand birds using ARUs. As already highlighted, bioacoustic monitoring 

using ARUs has significant potential as a monitoring method. However, no standardised 

methodology currently exists, and its development would enhance both the quality and cross-

comparability of bioacoustic data collected using ARUs. The necessity of such a methodology 

will only increase as this monitoring method increases in both accessibility and use. With 

respect to the limitations encountered here, there is a need to determine which species may and 

may not be suitable for acoustic monitoring as a result of their behavioural ecology, and to 

establish what factors, such as resource distribution and elevation, are likely to affect the 

applicability of acoustic monitoring, how ARUs are distributed, and the interpretation of any 

data collected. Extending to the cross-comparability of data, ARUs greatly facilitate the 

standardisation of data collection. In the current study, recording settings and analyses were 

based on previous work by Cook (2017) and Cook and Hartley (2018). However, there is no 

standard protocol regarding the optimal time to bioacoustically monitor species, the optimal 

duration of recordings, and how data should be extracted from recordings (e.g. employing 

‘continuous’ or ‘intermittent’ methods as described by Cook and Hartley (2018)). Establishing 

protocol around these factors would greatly enhance both the quality of data collected, and 

comparability of results across studies. 

5.4. Conclusion 

The use of 1080 for pest control remains a controversial issue, with particular concern 

regarding the effects of aerial operations on native bird species. Bioacoustic monitoring carried 

out in this thesis found no evidence for a decline in native birdsong following aerial 1080 

treatment, neither at the community nor the species level across two aerial operations occurring 

in the lower North Island in 2017. An automated detector with moderate sensitivity and high 

precision was successfully developed for morepork calls. Applied to the short-term BACI 

monitoring of three independent operations, this detector found no negative effect of aerial 
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1080 treatment on the prevalence of morepork calls as an index of relative abundance. 

Furthermore, a positive response spanning 3-3.5 years was shown where long-term monitoring 

was applied. The method developed and applied to the development of this detector proved to 

be an effective directed means to produce a parsimonious template-based detector from a pool 

of random field-quality exemplar calls, and has potential to enhance the utility of future 

template-based detector projects.  

Collectively, the results of this thesis suggest no significant negative effect of aerial 

1080 treatment on native bird communities, and a positive long-term effect for the relatively 

understudied morepork. Given the variation in baiting practices that exists operation-to-

operation and a prospective future increase in the use of 1080 with Predator-Free 2050 aims, 

further monitoring of native bird communities will likely be required to both address concerns 

around operations and to facilitate adaptive management for best practice. Bioacoustic 

monitoring has the potential to play a significant role in this monitoring.  
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Appendices 

Appendix I - Maps of GWRC wind speed and rainfall stations sampled across 

chapters 

 

 

 

 

 

 

 

Figure A.I-1 Map of GWRC rainfall data stations used to source cumulative rainfall data across 

chapters. 
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Figure A.I-2 Map of GWRC climate data stations used to source wind speed data across chapters. 
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Appendix II - Recorder locations and dates sampled in diurnal analyses 

 

 
 

 

Table A.II-1 Table of recorder locations and dates sampled before and after the June 17 2017 

Aorangi 1080 operation. Ticks (✔) and crosses (✖) indicate date/recorder combinations included 

and excluded from samples respectively.  
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Table A.II-2 Table of recorder locations and dates diurnally sampled before and after the July 30 

2017 Southern Rimutaka 1080 operation in diurnal monitoring. Ticks (✔) and crosses (✖) indicate 

date/recorder combinations included and excluded from samples respectively.  
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Appendix III - Example structures of input-data and chi-square distributions 

 

Observed chaffinch calling prevalences 

Figure A.III-1 Example structure of calling prevalences scored at recorder locations in 

treatment and non-treatment areas before and after the 2017 Aorangi operation for (top) 

chaffinch and (bottom) tomtit calling. 

Observed tomtit calling prevalences  
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Figure A.III-2 Examples of chi-square distributions approximated using permutations 

of data presented in Figure AIII-1 for chaffinch (top) and tomtit (bottom), and 

observed chi-square values and their significance relative to the approximated 

distributions. 
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Appendix IV - Mean cumulative rainfall (mm) five weeks following 1080 

operations monitored 

 

Table A.IV-1 Table of mean cumulative rainfall across GWRC five rainfall stations (Appendix I) 

five weeks after the Aorangi 2014, Aorangi 2017 and Southern Rimutaka 2017 operations monitored. 

Bold values highlight cumulative rainfall exceeding ~60 mm sufficient to cause loss of 50% of 

toxicity in 6g baits (Booth et al., 1999). 

 
  Operation 

 
  Aorangi 2014 Aorangi 2017 Southern Rimutaka 2017 

 

D
a
y
s 

A
ft

e
r 

T
re

a
tm

en
t 

1 0.0 0.0 0.0 

 2 0.0 0.1 0.6 

 3 1.5 0.1 11.3 

 4 6.6 0.1 12.0 

 5 10.6 0.2 20.1 

 6 18.9 2.1 25.0 

 7 20.0 24.6 25.9 

 8 20.5 27.1 27.4 

 9 21.0 30.1 27.6 

 10 21.0 30.5 31.3 

 11 21.0 30.5 49.6 

 12 21.2 31.3 55.1 

 13 21.5 31.5 57.3 

 14 21.5 31.7 58.2 

 15 22.6 33.6 75.6 

 16 23.7 36.3 91.8 

 17 23.8 38.1 96.0 

 18 23.9 38.2 103.7 

 19 30.4 38.2 107.6 

 20 39.4 38.7 107.8 

 21 41.4 39.6 112.4 

 22 41.4 39.6 153.8 

 23 41.4 41.2 160.3 

 24 41.4 43.0 161.7 

 25 41.4 43.2 161.7 

 26 41.4 73.8 161.7 

 27 43.0 209.9 161.7 

 28 54.5 239.4 161.7 

 29 54.5 240.7 161.7 

 30 56.3 241.3 181.4 

 31 56.3 250.1 184.6 

 32 64.9 250.8 186.2 

 33 81.5 250.8 214.8 

 34 96.6 256.9 225.4 

 35 100.9 274.1 230.7 
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Appendix V - R script for creation of 10-second .wav files containing target calls 

##Import data containing file paths, file names, and binary scores for 

##presence/absence of calls in 10 second blocks, with block column names as 

##"0_10", #"10_20", ..., "290_300". 

binary.data <- read.csv("Data File.csv", check.names = FALSE) 

 

##Transpose and order data by file name.  

library(reshape) 

t.binary.data <- melt(binary.data, id=c("Filepath", "Count.ID")) 

ordered.t.binary.data<-t.binary.data[ order(t.binary.data$Count.ID),] 

 

##Split columns containing block start and end times such that start and end 

##times are separate. Remove all inactive blocks from dataset. 

ordered.t.binary.data = transform(ordered.t.binary.data, variable = 

colsplit(variable, split = "\\_", names = 

c("start", "end"))) 

colnames(ordered.t.binary.data)[3]<-"block" 

ordered.t.binary.data$value[which(ordered.t.binary.data$value==0)] = 

NA_character_ 

 

##Create final set of data with no zero values and thus only segments 

##containing calls and file #names for snippets containing calls to be 

##generated 

final.data <- na.omit(ordered.t.binary.data) 

final.data$snip.names <- paste(data$Count.ID, data$block$start, 

data$block$end, ".wav", sep = "_") 

final.data$Count.ID <- as.character(final.data$Count.ID) 

 

##Run loop script through data generated above to produce 10-second .wav files 

##for active blocks identified in manual analysis 

library(seewave) 
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library(tuneR) 

for (i in 1:nrow(final.data)){ 

id <- paste(final.data$Count.ID[i],".wav",sep="") 

blockstart <- final.data$block[i,"start"] 

blockend <- final.data$block[i,"end"] 

name <- final.data$snip.names[i] 

sample <- readWave(id, from = blockstart, to = blockend, units = 

c("seconds"), toWaveMC = F) 

writeWave(sample, name, extensible = F) 

} 
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Appendix VI - Confusion matrices of event classifications made in raw and 

restructured training, refining and test datasets 

 

 

 

 

 

 

 

Table A.VI-1 Confusion matrix of raw event classifications made by the final more-pork detector 

developed when run on the training dataset. 

  Actual  

 
 Call Present Call Absent Total 

P
re

d
ic

te
d

 

Detection 151 3 154 

No Detection 155 486 641 

Total 306 489 795 

 

Table A.VI-2 Confusion matrix of restructured event classifications made by the final more-pork 

detector developed when run on the training dataset. 

  Actual  

 
 Call Present Call Absent Total 

P
re

d
ic

te
d

 

Detection 151 0 151 

No Detection 155 489 643 

Total 306 489 795 

 

Table A.VI-3 Confusion matrix of raw event classifications made by the final more-pork detector 

developed when run on the refining dataset. 

  Actual  

 
 Call Present Call Absent Total 

P
re

d
ic

te
d

 

Detection 74 23 97 

No Detection 88 518 606 

Total 162 541 703 
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Table A.VI-6 Confusion matrix of restructured event classifications made by the final more-pork 

detector developed when run on the test dataset.  

 

 

 

Table A.VI-4 Confusion matrix of restructured event classifications made by the final more-pork 

detector developed when run on the refining dataset. 

  Actual  

 
 Call Present Call Absent Total 

P
re

d
ic

te
d

 

Detection 77 7 84 

No Detection 88 531 619 

Total 165 538 703 

 

Table A.VI-5 Confusion matrix of raw event classifications made by the final more-pork detector 

developed when run on the test dataset. 

  Actual  

 
 Call Present Call Absent Total 

P
re

d
ic

te
d

 

Detection 53 13 66 

No Detection 83 186 269 

Total 136 199 335 

 

  Actual  

 
 Call Present Call Absent Total 

P
re

d
ic

te
d

 

Detection 55 5 60 

No Detection 83 192 275 

Total 138 197 335 
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Appendix VII - R script for automated morepork detector developed 

############################################################################## 

######################### 1 - Create Detector Function ####################### 

############################################################################## 

library(monitoR) 

create.detector <- function(file.list){ 

setwd("~/1 Masters Pt 2/2 Chapter 3 Morepork Detector/2 Final Detector") 

test.temp25 <<-makeBinTemplate("902_30_40_.wav", t.lim = c(4.9, 5.9), 

frq.lim = c(.7, 1.2), amp.cutoff = -14, name 

= "test.temp25") 

cutoff25 <<- 5.85254887748494 

test.temp5 <<-makeBinTemplate("272_130_140_.wav", t.lim = c(2.6, 3.4), 

frq.lim = c(.8, 1.15), amp.cutoff = -28, name 

= "test.temp5") 

cutoff5 <<- 4.617183925 

test.temp9 <<-makeBinTemplate("193_40_50_.wav", t.lim = c(5.95, 6.95), 

frq.lim = c(.7, 1.1), amp.cutoff = -41, name 

= "test.temp9") 

cutoff9 <<- 2.98318934257334 

test.temp4 <<-makeBinTemplate("455_130_140_.wav", t.lim = c(0.5, 1.4), 

frq.lim = c(.7, 1.25), amp.cutoff = -26, name 

= "test.temp4") 

cutoff4 <<- 5.41317448759603 

test.temp6 <<-makeBinTemplate("438_150_160_.wav", t.lim = c(0, 0.7), 

frq.lim = c(.65, 1.3), amp.cutoff = -11, name 

= "test.temp6") 

cutoff6 <<- 6.8015741678202 

test.temp17 <<-makeBinTemplate("585_40_50_.wav", t.lim = c(1.6, 2.5), 

frq.lim = c(.65, 1.15), amp.cutoff = -12, 

name = "test.temp17") 

cutoff17 <<- 5.34130384789447 

test.temp20 <<-makeBinTemplate("678_50_60_.wav", t.lim = c(6.35, 7.15), 

frq.lim = c(.65, 1.15), amp.cutoff = -37, 

name = "test.temp20") 
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cutoff20 <<- 4.31599433730107 

test.temp21 <<-makeBinTemplate("730_220_230_.wav", t.lim = c(7.15, 7.95), 

frq.lim = c(.65, 1.15), amp.cutoff = -21, 

name = "test.temp21") 

cutoff21 <<- 6.20149140082264 

test.temp22 <<-makeBinTemplate("730_270_280_.wav", t.lim = c(2.9, 3.85), 

frq.lim = c(.65, 1.1), amp.cutoff = -25, 

name = "test.temp22") 

cutoff22 <<- 2.97015918342093 

nds2.b <<- makeBinTemplate("730_220_230_.wav", t.lim = c(2.6, 3.4), frq.lim 

= c(.75, 1.15), amp.cutoff = -25, name = 

"nds2") 

cutoffnds2 <<- 5.30759355413837 

} 

 

############################################################################## 

########################## 2 - Run Detector Function ######################### 

############################################################################## 

run.detector <- function(file.list){  

 

##Create template set to be run on files 

mo.temp <<-combineBinTemplates(test.temp25, test.temp5, test.temp9,                                 

test.temp4, test.temp6, test.temp17, 

test.temp20, test.temp21, test.temp22, 

nds2.b) 

 

##Set template thresholds maximised at 0.98 PPV 

templateCutoff(mo.temp) <<-c("test.temp25" = cutoff25, "test.temp5" = 

cutoff5, "test.temp9" = cutoff9,                    

"test.temp4" = cutoff4, "test.temp6" = 

cutoff6, "test.temp17" = cutoff17,                           

"test.temp20" = cutoff20, "test.temp21" = 

cutoff21, "test.temp22" = cutoff22,                              

"nds2" = cutoffnds2) 

 

##Run detector on a list of .wav files specified in a csv with column 

##heading “Count.ID” and produce new csv with raw detections. 
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for (i in 1:nrow(file.list)){ 

id <- paste(file.list$Count.ID[i], ".wav", sep="") 

mo.scores <- binMatch(id, mo.temp, warn = F, show.prog = T) 

mo.detects <- findPeaks(mo.scores) 

info <- getDetections(mo.detects) 

write.csv(info, file = paste(file.list$Count.ID[i], 

"_final_detections.csv", sep="")) 

 

##Take newly written csv with raw detections and order detections by 

##time. 

csv.id <- paste(file.list$Count.ID[i], "_final_detections.csv", 

sep="") 

csv <- read.csv(csv.id, header=T, sep=",") 

csv <- csv[ order(csv$time),] 

 

##Create blank binary dataset (i.e. with 0 detections) to be filled 

##with appropriate scores based on detections made. 

formatted.data <- rep(0,31) 

names(formatted.data) <- c("0", "0.1", "0.2", "0.3", "0.4", "0.5", 

"1", "1.1", "1.2", "1.3", ”1.4", "1.5", 

"2", "2.1", "2.2", "2.3", "2.4", "2.5", 

"3", "3.1", "3.2", "3.3", "3.4", "3.5", 

"4”, "4.1", "4.2", "4.3", "4.4", ”4.5",   

"Overall Frequency") 

 

##Skip and write a csv file with all 0 binary scores and calling 0 

##frequency for recordings where no detections were made. For files 

##with detections, reorder and replace times with timeframe 

##identifiers (0-10 sec = 0, 10-20 sec = 0.1, …, 290-300 sec = 4.5, > 

##300 sec = 10) and remove times > 300 sec. 

csv.id2<-paste(file.list$Count.ID[i], 

_final_detections_binary.csv",sep="") 

if (nrow(csv) == 0) {write.csv(formatted.data, csv.id2, row.names = 

FALSE)} 

else for (j in 1:nrow(csv)){ 

if (csv$time[j] > 0 & csv$time[j] < 10){csv$time[j] <- 0} 
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else if (csv$time[j] > 10 & csv$time[j] < 20){csv$time[j] <- 0.1} 

else if (csv$time[j] > 20 & csv$time[j] < 30){csv$time[j] <- 0.2} 

else if (csv$time[j] > 30 & csv$time[j] < 40){csv$time[j] <- 0.3} 

else if (csv$time[j] > 40 & csv$time[j] < 50){csv$time[j] <- 0.4} 

else if (csv$time[j] > 5100 & csv$time[j] < 60){csv$time[j] <- 0.5} 

else if (csv$time[j] > 60 & csv$time[j] < 70){csv$time[j] <- 1.0} 

else if (csv$time[j] > 70 & csv$time[j] < 80){csv$time[j] <- 1.1} 

else if (csv$time[j] > 80 & csv$time[j] < 90){csv$time[j] <- 1.2} 

else if (csv$time[j] > 90 & csv$time[j] < 100){csv$time[j] <- 1.3} 

else if (csv$time[j] > 100 & csv$time[j] < 110){csv$time[j] <- 1.4} 

else if (csv$time[j] > 110 & csv$time[j] < 120){csv$time[j] <- 1.5} 

else if (csv$time[j] > 120 & csv$time[j] < 130){csv$time[j] <- 2.0} 

else if (csv$time[j] > 130 & csv$time[j] < 140){csv$time[j] <- 2.1} 

else if (csv$time[j] > 140 & csv$time[j] < 150){csv$time[j] <- 2.2} 

else if (csv$time[j] > 150 & csv$time[j] < 160){csv$time[j] <- 2.3} 

else if (csv$time[j] > 160 & csv$time[j] < 170){csv$time[j] <- 2.4} 

else if (csv$time[j] > 170 & csv$time[j] < 180){csv$time[j] <- 2.5} 

else if (csv$time[j] > 180 & csv$time[j] < 190){csv$time[j] <- 3.0} 

else if (csv$time[j] > 190 & csv$time[j] < 200){csv$time[j] <- 3.1} 

else if (csv$time[j] > 200 & csv$time[j] < 210){csv$time[j] <- 3.2} 

else if (csv$time[j] > 210 & csv$time[j] < 220){csv$time[j] <- 3.3} 

else if (csv$time[j] > 220 & csv$time[j] < 230){csv$time[j] <- 3.4} 

else if (csv$time[j] > 230 & csv$time[j] < 240){csv$time[j] <- 3.5} 

else if (csv$time[j] > 240 & csv$time[j] < 250){csv$time[j] <- 4.0} 

else if (csv$time[j] > 250 & csv$time[j] < 260){csv$time[j] <- 4.1} 

else if (csv$time[j] > 260 & csv$time[j] < 270){csv$time[j] <- 4.2} 

else if (csv$time[j] > 270 & csv$time[j] < 280){csv$time[j] <- 4.3} 
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else if (csv$time[j] > 280 & csv$time[j] < 290){csv$time[j] <- 4.4} 

else if (csv$time[j] > 290 & csv$time[j] < 300){csv$time[j] <- 4.5} 

else if (csv$time[j] > 300){csv$time[j] <- 10} 

} 

csv$time[csv$time == 10] <- NA 

csv <- na.omit(csv) 

 

##Rewrite binary file with no detections for recordings with no 

##detections. For recordings with detections, convert timeframe 

##identifiers to binary scores and write final binary file with 

##appropriate calling frequency. 

if (nrow(csv) == 0) {write.csv(formatted.data, csv.id2, row.names = 

FALSE)} 

else for (j in 1:nrow(csv)){ 

if (csv$time[j] == 0){formatted.data[1] <- 1} 

else if (csv$time[j] == 0.1){formatted.data[2] <- 1} 

else if (csv$time[j] == 0.2){formatted.data[3] <- 1} 

else if (csv$time[j] == 0.3){formatted.data[4] <- 1} 

else if (csv$time[j] == 0.4){formatted.data[5] <- 1} 

else if (csv$time[j] == 0.5){formatted.data[6] <- 1} 

else if (csv$time[j] == 1.0){formatted.data[7] <- 1} 

else if (csv$time[j] == 1.1){formatted.data[8] <- 1} 

else if (csv$time[j] == 1.2){formatted.data[9] <- 1} 

else if (csv$time[j] == 1.3){formatted.data[10] <- 1} 

else if (csv$time[j] == 1.4){formatted.data[11] <- 1} 

else if (csv$time[j] == 1.5){formatted.data[12] <- 1} 

else if (csv$time[j] == 2.0){formatted.data[13] <- 1} 

else if (csv$time[j] == 2.1){formatted.data[14] <- 1} 

else if (csv$time[j] == 2.2){formatted.data[15] <- 1} 
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else if (csv$time[j] == 2.3){formatted.data[16] <- 1} 

else if (csv$time[j] == 2.4){formatted.data[17] <- 1} 

else if (csv$time[j] == 2.5){formatted.data[18] <- 1} 

else if (csv$time[j] == 3.0){formatted.data[19] <- 1} 

else if (csv$time[j] == 3.1){formatted.data[20] <- 1} 

else if (csv$time[j] == 3.2){formatted.data[21] <- 1} 

else if (csv$time[j] == 3.3){formatted.data[22] <- 1} 

else if (csv$time[j] == 3.4){formatted.data[23] <- 1} 

else if (csv$time[j] == 3.5){formatted.data[24] <- 1} 

else if (csv$time[j] == 4.0){formatted.data[25] <- 1} 

else if (csv$time[j] == 4.1){formatted.data[26] <- 1} 

else if (csv$time[j] == 4.2){formatted.data[27] <- 1} 

else if (csv$time[j] == 4.3){formatted.data[28] <- 1} 

else if (csv$time[j] == 4.4){formatted.data[29] <- 1} 

else if (csv$time[j] == 4.5){formatted.data[30] <- 1} 

} 

formatted.data[31] <- ((sum(formatted.data[1:30]))/30) 

formatted.data <- t(formatted.data) 

csv.id2<-paste(file.list$Count.ID[i], 

"_final_detections_binary.csv",sep="") 

write.csv(formatted.data, csv.id2, row.names = FALSE)  

} 

 

##Create file with all scores collated. 

all.data <- data.frame(ModelName = character(), Object = character(), 

stringsAsFactors = F) 

for (i in 1:nrow(file.list)){ 

csv.id2<-paste(file.list$Count.ID[i], 

“_final_detections_binary.csv",sep="") 
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temp.data <- read.csv(csv.id2, header = T) 

all.data <- rbind(all.data, temp.data) 

} 

all.data <- cbind(file.list$Count.ID[], all.data) 

names(all.data) <- c("Count.ID", "0", "0.1", "0.2", "0.3", "0.4", "0.5", 

"1", "1.1", "1.2", "1.3", "1.4", "1.5", "2", "2.1", 

"2.2", "2.3", "2.4", "2.5", "3", "3.1", "3.2", "3.3", 

"3.4", "3.5", "4", "4.1", "4.2", "4.3", "4.4", "4.5", 

"Overall Frequency") 

write.csv(all.data, "All Detections - Final Detector.csv", row.names = 

FALSE) 

} 

 

##############################################################################

############################# 3 - Run functions ############################## 

############################################################################## 

##Set the appropriate working directory, change the file name to match file 

##containing file list and run the detector.  

create.detector() 

file.list <- read.csv("List of files to be tested.csv", header = T) 

run.detector(file.list) 
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Appendix VIII - Recorder locations and date sampled in short-term nocturnal 

analyses 

 

 

Table A.VIII-1 Table of recorder locations and dates sampled nocturnally before and after the August 

18 2014 Aorangi 1080 operation. Ticks (✔) and crosses (✖) indicate date/recorder combinations 

included and excluded from samples respectively.  
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Table A.VIII-2 Table of recorder locations and dates sampled nocturnally before and after the June 

16-17 2017 Aorangi 1080 operation. Ticks (✔) and crosses (✖) indicate date/recorder combinations 

included and excluded from samples respectively.  
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Table A.VIII-3 Table of recorder locations and dates sampled nocturnally before and after the July 

30 2017 Southern Rimutaka 1080 operation. Ticks (✔) and crosses (✖) indicate date/recorder 

combinations included and excluded from samples respectively.  
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Appendix IX - Dates sampled in long-term nocturnal analyses 
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Appendix X - Recorder location specifications 

 

 

 

 

 

Table A.X-1 Table of GPS information for recorder locations monitored at the Bull Hill (BUL), 

Mangatoetoe (MAN), Putangirua Pinnicles (PIN), Tauanui (TAU), Waihora (WAI) and 

Whawanui (WHA) study sites in the Aorangi Range study area. 

Recorder Location Latitude Longitude Elevation (m) 

BUL_L1_100m -41.346363 175.361700 463 

BUL_L2_100m -41.349087 175.351586 565 

BUL_L3_0m -41.349730 175.344445 724 

BUL_L3_100m -41.349683 175.343316 757 

MAN_L1_100m -41.572561 175.275631 276 

MAN_L1_450m -41.573795 175.279714 417 

MAN_L2_100m -41.576278 175.285256 569 

PIN_L0_SM -41.444428 175.248418 260 

PIN_L1_100m -41.447059 175.254929 384 

PIN_L2_100m -41.454384 175.260604 454 

PIN_L2_450m -41.456142 175.262222 390 

PIN_L3_100m -41.459091 175.272521 401 

TAU_L2_350m -41.399536 175.291531 311 

TAU_L3_100m -41.401421 175.284762 263 

WAI_L1_100m -41.351424 175.290075 141 

WAI_L1-2_SM -41.353787 175.296076 404 

WAI_L2_100m -41.353296 175.301018 434 

WAI_L4_100m -41.345293 175.282909 181 

WHA_L1_100m -41.528224 175.342899 207 

WHA_L2_100m -41.535858 175.342141 487 

WHA_L3_100m -41.537429 175.348314 324 
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Table A.X-2 Table of GPS information for recorder locations monitored at the Orongorongo 

(ORO) and Waiorongomai (WRM) study sites in the Northern Rimutaka Range study area. 

Recorder Location Latitude Longitude Elevation (m) 

ORO_5km -41.244775 175.037493 281 

ORO_L1_100m -41.244558 175.051680 577 

ORO_L1_450m -41.242134 175.054723 522 

ORO_L2_100m -41.237105 175.057353 525 

ORO_L3_100m -41.229557 175.064997 505 

ORO_SM1 -41.245321 175.031084 197 

ORO_SM2 -41.247793 175.051439 537 

ORO_SM3 -41.259245 175.046600 752 

ORO_SM4 -41.277770 175.053642 590 

ORO_SM5 -41.284976 175.050180 509 

ORO_SM6 -41.291175 175.043800 457 

WRM_L2_100m -41.259184 175.110298 115 

WRM_L2_450m -41.256853 175.107137 100 

WRM_L3_100m -41.255232 175.111084 202 

WRM_L3_450m -41.252474 175.111938 239 

WRM_L4_100m -41.254508 175.127121 113 

WRM_L4_450m -41.251666 175.126345 71 

WRM_R1 -41.256795 175.130573 64 

WRM_R2 -41.254485 175.119200 88 

WRM_R3 -41.257543 175.114691 91 

 

Table A.X-3 Table of GPS information for recorder locations monitored at the Tora Bush study 

site in the Tora Bush study area. 

Recorder Location Latitude Longitude Elevation (m) 

TOR_SM1 -41.489212 175.460831 379 

TOR_SM2 -41.485504 175.466425 359 

TOR_SM3 -41.480999 175.470197 366 
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Table A.X-4 Table of GPS information for recorder locations monitored at the Tauherenikau 

(THN) study site in the Tararua Range study area. 

Recorder Location Latitude Longitude Elevation (m) 

THN_SM1 -40.990653 175.369170 546 

THN_SM2 -40.987364 175.353832 619 

THN_SM3 -40.981830 175.354709 600 

 

Table A.X-5 Table of GPS information for recorder locations monitored at the Turere Valley 

(TUR) study site in the Southern Rimutaka study area. 

Recorder Location Latitude Longitude Elevation (m) 

TUR_MW14 -41.293820 174.984090 577 

TUR_SG2 -41.289706 174.984600 500 

TUR_XA10 -41.295400 174.992570 572 

TUR_XD1 -41.302969 174.979142 668 

TUR_XD10 -41.306719 174.979078 613 

TUR_XF1 -41.312976 174.973888 698 

TUR_XF10 -41.315584 174.977450 594 

 



 

 

 


