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Abstract

High and low-intensity attacks are two common Distributed Denial of
Service (DDoS) attacks that disrupt Internet users and their daily oper-
ations. Detecting these attacks is important to ensure that communica-
tion, business operations, and education facilities can run smoothly. Many
DDoS attack detection systems have been proposed in the past but still
lack performance, scalability, and information sharing ability to detect
both high and low-intensity DDoS attacks accurately and early. To com-
bat these issues, this thesis studies the use of Software-Defined Network-
ing technology, entropy-based features, and machine learning classifiers
to develop three useful components, namely a good system architecture,
a useful set of features, and an accurate and generalised traffic classifica-
tion scheme. The findings from the experimental analysis and evaluation
results of the three components provide important insights for researchers
to improve the overall performance, scalability, and information sharing
ability for building an accurate and early DDoS attack detection system.
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Chapter 1

Introduction

The Internet has become one of the most popularly used technologies
in the past decade. In the 1960s, the Internet started as a small packet
switching network called the Advanced Research Projects Agency Net-
work (ARPANET) in the United States, but has since expanded to create a
better form of communication, education, and businesses on a global scale.
The Internet offers many benefits and advantages to mankind, but the ”no
security” in its original design, the lack of collaboration between Inter-
net Service Providers (ISP), the absence of international laws, the shortage
of Internet security agreements, and the easily available malicious tools
and software have made the Internet an excellent platform for attackers to
launch attacks and perform unlawful activities [1].

Distributed Denial of Service (DDoS) is the most common attack seen
on the Internet [?]. A DDoS attack is a coordinated cyberspace attack that
aims to deny services to legitimate users through flooding of useless or
malicious traffic [2]. With the emerging concept of the Internet-of-Things
(IoT), various devices that are connected to the Internet are often not ad-
equately secured. As a result, attackers often exploit and take advantage
of these unsecured devices by turning them into platforms for instigating
large-scale and sophisticated DDoS attacks [3, 4].

1



2 CHAPTER 1. INTRODUCTION

1.1 Severity of the Attack

In the last five years, the size of DDoS attacks has been increasing expo-
nentially, as shown in Figure 1.1. DDoS attacks initially started on a rela-
tively small-scale with estimated attack traffic of 200Mbps [5]. In the early
days, such a small attack would be adequate in bringing down a victim’s
network. In 2007, a continuous DDoS attack with a maximum of 90 Mbps
crippled Estonia’s Internet for almost three weeks and created major dam-
ages to the government, banking, and media websites [6]. A year later,
the Internet infrastructure of Georgia, a country located at the crossroad
of Western Asia and Eastern Europe, was successfully crippled for nearly
a month as a result of a 200Mbps DDoS attack [7]. Thus, these attacks have
resulted in significant financial loses and disruption of work to businesses
and government organisations.

Figure 1.1: DDoS Attack Growth in Terms of Size (Mbps) from 2002-2018
[8, 9, 10]

With the expansion of the Internet, many of the attackers are increasing
the scale of DDoS attacks with the aim of bringing down a broader set
of victims. While the earlier form of DDoS attacks had mostly targeted
a particular organisation or business, these newer DDoS attacks evolved
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and now possess the capability of bringing down several businesses and
organisations on the Internet within a particular region.

In 2013, the whole Internet infrastructure was put to the test, when
a DDoS attack with a peak of 300Gbps was launched against a not-for-
profit anti-spam organisation, Spamhaus [8]. This particular attack suc-
cessfully took down the Spamhaus servers and resulted in Internet con-
gestion all over Europe, delaying users’ accessibility to major websites [8].
A large DDoS attack occurred the following year against a web hosting
company, OVH, with the highest recorded attack traffic of 400Gbps [9]. In
2016, another major DDoS attack, peaking at over 1Tbps using the Mi-
rai Botnet, had resulted in the inaccessibility of many websites among
which included some high profile websites like Twitter, Reddit, GitHub,
and Airbnb [10].

Since the severity of DDoS attacks can disrupt many of the individuals’,
businesses’, and government organisations’ daily operations, importance
should be given to DDoS attack detection so that these attacks can be mit-
igated more effectively. However, detecting DDoS attacks is not an easy
task. Traditionally, DDoS attacks are sent by using high-intensity traffic
that is directly aimed at the victim. As a case in point, high-intensity at-
tacks such as Smurf [11] would transmit a high-rate of attack traffic in a
short amount of time to their victims, and result in a sudden surge of traf-
fic that leads to a denial-of-service. In contrast, the newer forms of DDoS
attacks would indirectly send low-intensity attack traffic to their victims
and focus on congesting the links shared between the victims and third-
party devices such as decoy servers [12] and bots [13]. These low-intensity
attacks are very effective as they are carefully coordinated by the attackers
to saturate network links through the merging of the coordinated individ-
ual attack traffic at an aggregation point. The aggregated attack traffic can
have legitimate source IP addresses which can be viewed anywhere other
than the target link, allowing it to be indistinguishable from the actual nor-
mal traffic prior to reaching its aggregation point. Additionally, attackers
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may use coordination with persistent routes which are stable and not af-
fected by load balancing mechanisms in sending attack traffic [12]. As a
result, the subtly, persistence, and low-intensity of these new DDoS attacks
have made it much more difficult to maintain the security of the Internet.

While there have been various approaches proposed in addressing the
DDoS attacks, the existing approaches lack performance, scalability, and
information sharing capability for accurate and early detection of high and
low-intensity DDoS attacks [2, 14]. The ability to identify attack traffic is an
essential step towards addressing the problems in DDoS attack detection.
Without DDoS attack detection, it will be difficult to perform any anti-
DDoS measures to handle the attack. Therefore, it is crucial to develop an
understanding of DDoS attack traffic and gaps found in current detection
approaches to improve DDoS attack detection.

1.2 Problems with Current Detection Solutions

An ideal DDoS detection system would aim to detect the DDoS attack traf-
fic in real-time and to mitigate the attack as close to the source as pos-
sible so as to prevent further damages to the network [14]. This trans-
lates into two primary goals, namely high accuracy and early detection.
The term accuracy denotes the system having a high true positive and low
false positive rates in detecting DDoS attacks, and early detection means
detecting DDoS attacks nearest to the source of the attack (i.e. at the local
switch/router closest to the attack source).

Since the DDoS attack traffic can originate from multiple sources and
relies on aggregated traffic volume in saturating its victim, the volume of
the attack traffic is usually small when being measured at any link other
than the aggregation point. A small amount of attack traffic may or may
not be unusual enough for it to be detected from the vast majority of nor-
mal traffic. As such, it is important to detect the DDoS attack traffic as
early as possible so that the impact of the attack on the network can be
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minimised. The detection system also has to be able to detect the attack
traffic closer to its source with minimal false positive and miss detection
rates.

As many current detection solutions primarily focus on the accuracy
and early detection of DDoS attacks, the three main issues that hinder
DDoS attack detection solutions to detect attacks accurately and early are:

a. Performance

Previous DDoS detection systems such as LADS [15], D-WARD [16],
and NetBouncer [17] are mostly aimed at detecting high-intensity
DDoS attacks. These detection systems use volumetric techniques in
detecting the attacks, where they are not effective in the detection of
newer DDoS attacks such as low-intensity attacks. A low-intensity
attack has a lower volume and so will not trigger any alerts on the
volumetric-based detectors. As a way of overcoming this problem,
non-volumetric-based approaches such as entropy-based detection
have been proposed to detect low-intensity DDoS attack traffic [18,
19, 20].

Although the entropy-based DDoS attack detection approach is a
promising approach, its limitation lies in its lack of accuracy as a
result of the type of features and thresholds used in distinguishing
between the normal and attack traffic [21, 22, 23, 24, 25]. Moreover,
the over-reliance of current systems on commonly used features such
as the source and destination IP addresses, source and destination
port numbers, and protocol identifier in detecting DDoS attacks has
neglected the potential and contribution of other features such as
packet content, time to live, packet arrival time, etc., that may lead
to a more accurate DDoS attack traffic detection. These existing so-
lutions do not only rely on a fixed or adaptive threshold, which can
only detect a specific type of DDoS attack traffic, but also do not con-
sider the variations of DDoS attack intensity, particularly high and
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low-intensity DDoS attacks.

b. Scalability

As networks become larger with increasing amounts of traffic, it has
become a challenge to efficiently process the vast amount of network
traffic and detect attack traffic that is located near to its respective
sources. The main challenge in a scalable detection system is its
ability to process traffic smoothly, without consuming too much of
its processing power and incurring large communication overhead.
While some of the current research solutions have increased the scal-
ability of detection systems by using the sFlow [26] and NetFlow
[27] technologies, and traffic sampling as a way to reduce processing
cost, these approaches are unsuccessful in detecting stealthy attacks
since not all types of traffic are subjected to analysis.

In this case, the DDoS attack detection system’s scalability could be
increased through the use of Software-Defined Networking (SDN)
technology, which operates by separating the control plane and data
plane for more efficient handling of the network traffic. Although
the separation allows traffic to be analysed at a logically centralised
controller without impacting the network performance on the data
plane, the control plane can be congested with a sufficiently large
amount of communication traffic and overhead to the controller.

c. Information sharing

The current collaborative approaches for detecting DDoS attack traf-
fic are bounded by information shared within neighbouring nodes
or nodes within the same Local Area Network (LAN) [28]. This not
only limits the gathering of information that is sufficient for accurate
traffic classification, but also hinders early detection since attack traf-
fic could only be detected within each LAN or at the nodes close to
the victim.
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Some of the current DDoS attack detection systems use correlation,
where they measure the relationship between traffic features such as
arrival time, packet volume, protocol, packet size, etc. [29, 30] be-
tween two distinct traffic flows [31], between alerts from detection
systems [32], and between traffic results taken at different times [33].
Although these approaches are able to improve the detection accu-
racy, they only focus on correlating traffic information from a single
location in the network which limits their early detection capabili-
ties.

We summarise the problems of DDoS attacks in the following problem
statement:

The main problem with current DDoS attack detection approaches is the in-
ability to detect both high and low-intensity DDoS attacks accurately and early in
large-scale networks. Traditional methods such as volumetric-based traffic classi-
fication, centralised processing, and LAN-based correlation no longer effectively
support accurate and early DDoS attack detection in large-scale networks due to
the limitations of their performance, scalability, and information sharing capabil-
ities. Therefore, it is important to find new methods for detecting both high and
low-intensity DDoS attacks accurately and early.

1.3 Research Question

As the problems mentioned in Section 1.2 still remain as open research
issues, this thesis attempts to address these problems by answering the
following research question:

How can we detect high and low-intensity DDoS attacks accurately
and early?

The above research question is broken down into the following sub-
questions:
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(a) How can we improve the early detection capability of large-
scale DDoS attack detection with scalability?
This sub-question is closely tied to the scalability and information shar-
ing issues mentioned in Section 1.2. As such, this thesis attempts to
answer this question by examining the use of SDN in reducing the
communication complexity and simplifying information sharing in
a DDoS attack detection system as a way of improving scalability
and information sharing capability, and designing an architecture
that supports network-wide correlation analysis to improve the early
detection capability of a DDoS attack detection system.

(b) What are the good entropy-based features and useful parame-
ter settings for distinguishing attack traffic from normal traffic?
This sub-question is closely tied to the performance issue mentioned
in Section 1.2. This thesis attempts to answer this question by explor-
ing the alternative entropy measures such as Shannon [34], Tsallis
[35], Rényi [36] and Xiang [19] in the computation of entropy-based
features as well as in understanding the trade-off between window
size and detection accuracy in entropy-based features.

(c) How can we improve the accuracy of traffic classification using
entropy-based features?
This sub-question is closely tied to the performance issue mentioned
in Section 1.2. This thesis attempts to find the best machine learning
methods by using the entropy-based features for traffic classification
as a way of improving the accuracy of detecting both high and low-
intensity DDoS attack traffic.

1.4 Research Contributions

Figure 1.2 depicts the overview of the thesis and highlights its contribu-
tions in the last tier of the tree.
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Figure 1.2: Thesis Contribution Map

The contributions are described in detail in the next few sub-sections.

(a) A good DDoS attack detection system architecture
This thesis presents a SCAlable and Fault-tolerant DDoS detection
system architecture for Early detection (SCAFE) by (1) leveraging the
SDN technology in reducing communication complexity and simpli-
fying information sharing, and (2) selecting a centralised approach
that supports a network-wide correlation analysis. SCAFE is based
on a two-level system architecture, which improves the scalability
and information sharing capability of the DDoS attack detection sys-
tem. In addition, SCAFE is also designed to be fault tolerant to hard-
ware and software faults. The first level consists of a coarse-grained
detection mechanism that has the ability for identifying potential at-
tack links, while the second level is a fine-grained detection system
where traffic flows from multiple locations are collected and corre-
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lated to detect attack flows that are closest to the attack source.

The two-level detection approach in SCAFE not only improves the
scalability by maintaining the processing and detection time during
increases in the traffic volume or network size but also improves the
fault-tolerance capability by using a set of fault-tolerant system com-
ponents. Therefore, SCAFE can be regarded as a good system archi-
tecture that can be embedded in the development of an accurate and
early DDoS attack detection system in large-scale networks.

(b) A set of useful entropy-based features
This thesis provides a set of useful entropy-based features that is
based on two types of investigations: (1) exploring the impact of
alternative measures such as Tsallis, Rényi and Zhou entropies as
opposed to the commonly used Shannon entropy in detailing the
DDoS attack traffic patterns in the network and (b) understanding
the trade-off between window size and detection accuracy of entropy-
based features in the generation of good entropy-based features.

The set of useful entropy-based features consists of entropy-based
features that are constructed from raw traffic features as well as those
that are constructed from the variation of two distinct entropy-based
features. This list of entropy-based features is important as it pro-
vides insights on the usefulness of entropy-based features to help in
the feature selection for high and low-intensity DDoS attack detec-
tion.

(c) An accurate and generalised traffic classification scheme
The multiple Entropy-based features with three (3) Machine Learning
classifier (E3ML) is an accurate and generalised traffic classification
scheme for DDoS attack detection, where it is a novel classification
approach that uses entropy-based features for distinguishing both
high and low-intensity DDoS attack traffic from normal traffic accu-
rately. The E3ML utilises a classification model, where it is built from
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exploiting the different strengths of three machine learning classi-
fiers, namely multilayer perceptron, recurrent neural network, and
alternating decision tree classifiers via a voting system.

Since the E3ML traffic classification scheme achieves a high accuracy
rate in detecting both high and low DDoS attacks, the multiple classi-
fier system is a suitable method for improving the detection accuracy
of both high and low-intensity DDoS attacks.

1.5 Thesis Structure

The remaining content of this thesis is organised as follows.

• Chapter 2 - Background and Literature Review
This chapter introduces the Distributed Denial of Service attacks,
discusses the related concepts such as entropy-based features, ma-
chine learning classification, correlation analysis and SDN, analyses
the current detection approaches and identifies the gaps found in the
current literature.

• Chapter 3 - Design of a Scalable and Fault-Tolerant System Archi-
tecture (SCAFE) to Handle Large Networks
This chapter presents the system architecture design of a scalable and
fault-tolerant DDoS detection system (SCAFE) that is based on SDN
and network-wide correlation analysis for large networks. The chap-
ter also presents the design assumptions, goals and principles, the
overview of the system architecture, system component roles and
relationships as well as the communication paths and message inter-
faces of SCAFE.

• Chapter 4 - Evaluation of SCAFE DDoS Detection System
This chapter highlights the evaluation on the scalability, fault-tolerant
and performance analysis of the SCAFE system architecture that was
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designed in Chapter 3 in terms of its effectiveness in handling large
network traffic.

• Chapter 5 - Identifying Good Entropy-based Features
This chapter describes the three-step construction of the entropy-
based features. The chapter also identifies a set of useful entropy-
based features by measuring its accuracy level in distinguishing be-
tween a DDoS attack and normal traffic. The influence of entropy
measures and the effect of window size towards the accuracy of
entropy-based features are also deliberated in this chapter.

• Chapter 6 - Traffic Classification using Entropy-based Features and
Machine Learning Classifiers in DDoS Attack Detection
This chapter presents the overview and evaluation of the E3ML DDoS
detection scheme for detecting the high and low-intensity DDoS at-
tack traffic as well as the evaluation of the E3ML performance on
different DDoS attacks and compares it to other state-of-the-art de-
tection schemes.

• Chapter 7 - Contributions and Future Work
This chapter summarises the results and highlights the contributions
derived from the research done in this thesis. The potential future di-
rections in the field of high and low-intensity DDoS attack detection
are also presented in this chapter.



Chapter 2

Background and Literature
Review

This chapter presents the background of the DDoS attacks and some of
the concepts such as entropy-based features, machine learning classifiers,
correlation analysis, and SDN that form the basis of this thesis. In addi-
tion, this chapter also reviews the literature on the DDoS attack detection
approaches from these concepts as well as identifying the datasets and
test beds used in the evaluations of DDoS attack detection. The gaps and
limitations found in DDoS attack detection are highlighted as part of the
conclusion of this chapter.

2.1 Distributed Denial of Service Attack

Distributed Denial of Service (DDoS) is a type of Denial of Service (DoS)
attack that aims to deny network services by crashing the targeted servers
or consume their resources so that these servers can no longer provide ser-
vices to legitimate users [1, 37, 38, 39]. While the attacker attacks through
a single source in a DoS attack, in the case of a DDoS attack, the attacker
launches attacks that originate from a variety of distributed sources. These
distributed sources are often globally distributed and can amount to sev-

13
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eral hundred thousand sources [40]. Usually, these sources can be from
the attacker’s computers or originate from compromised devices on the
Internet referred to as bots [41]. As such, DDoS attacks are larger (e.g., 600
Gbps), and more difficult to defeat than DoS attacks.

The first large-scale DDoS attack incident was reported in the year
2000, where large Internet sites such as Yahoo!, CNN, eBay, and ZDNet
were left offline for several hours as a result of being flooded with high
volume attack traffic [42]. Since then, the DDoS attacks have grown bigger
and more complex, avoiding detection and bringing down networks and
services on the Internet.

2.1.1 How to Launch an Attack?

Attackers have since come up with many strategies of launching an ef-
fective DDoS attack. An attack is considered effective when it breaches
the security defences and causes major disruption or it successfully brings
down an entire organisation network for several hours. This type of at-
tack would require a large number of attack hosts (i.e. bots) launching a
coordinated DoS attack against a single machine or a large organisation
network. As such, a DDoS attack can be broadly categorised under two
different launching methods, namely the direct and indirect flooding.

Direct Flooding

As shown in Figure 2.1, a direct flooding attack (DFA) occurs when the
attacker commands the bot to send the attack traffic directly to its target
through a flooding of malicious or useless traffic.

Some of the examples of DFAs include:

• SYN Flooding
SYN flooding abuses the three-way handshake session in the Trans-
mission Control Protocol (TCP) by creating many half-open connec-
tions that render a target unresponsive. This three-way handshake
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Figure 2.1: Direct Flooding Attack

session is made up of three messages that are being exchanged be-
tween the client and server prior to establishing a connection. This
involves the client sending a SYN1 message to the server with the
latter reciprocating with a SYN-ACK2 message. A connection will
then be established after the client has responded with the ACK3

message. Under the SYN flooding situation, the attacker will send
as many SYN requests to its target as possible and not respond with
the expected ACK message. As the server continues to anticipate
the ACK reply from the client, an accumulation of half-open connec-
tions between the client and server will occur. When the number of
half-open connections exceeds the server’s resources, the server be-
comes unresponsive hence resulting in its inability to establish new
connections to other legitimate users.

• ICMP Flooding
ICMP Flooding or Ping Flood is a type of attack that sends a large

1 SYN - Synchronised control flag that is used for TCP’s three-way handshake.
2 SYN-ACK - Synchronised-Acknowledgement control flag that is used for TCP’s three-

way handshake.
3 ACK - Acknowledgement control flag that is used for TCP’s three-way handshake.
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number of ICMP echo requests (pings) that overwhelm the target so
that it cannot respond to any of the new requests.

• UDP Flooding
UDP Flooding abuses the User Datagram Protocol (UDP) by sending
a large number of UDP datagrams to random ports of the target until
the target becomes overwhelmed and unresponsive to requests from
legitimate users.

Indirect Flooding

As shown in Figure 2.2, an Indirect Flooding Attack (IFA) denotes the in-
direct flooding of a target by sending attack traffic to third-party devices,
where these devices will route the attack traffic to their targets. In some
cases, these devices will amplify the attack traffic as a way of inflicting a
larger impact on their targets. As such, this method aims to increase the
attack’s stealthiness by hiding the actual source of the attack as a way of
avoiding detection.

Some of the examples of IFAs are as follows:

• Coremelt attack [13]
A Coremelt attack is a fairly new IFA introduced in 2009. The Coremelt
attack aims to congest the targeted links at the network core by us-
ing a collection of bots or subverted machines as attack sources as
well as attack destinations [13], where the bots are paired up to send
legitimate traffic to each other. The detection of a Coremelt attack
has proven to be challenging because these bots send the attack traf-
fic back and forth to each other at a low rate, and the attack traf-
fic sent is similar to legitimate traffic. The effectiveness of this at-
tack was demonstrated through simulation on two different network
sizes with 4746 Autonomous Systems (ASes) and 720 ASes respec-
tively, where the attack successfully cut off the connection of the top
10 ASes using only 700,000 to 1,008,000 bots [13].
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Figure 2.2: Indirect Flooding Attack

• Crossfire Attack [12]

A Crossfire attack aims to indirectly congest the network links by
sending the attack traffic to decoy servers in the network [12]. While
it is similar to a Coremelt attack in terms of using bots as a means
of sending out attack traffic, the main intention is not to flood the
servers and cause them to be inaccessible to public users, but to act
as decoys in flooding the links that are connected to the target server.
The Crossfire attack also shares another similarity with the Coremelt
attack, where the network links between the source and destination
of the attack traffic are being targeted for congestion. For the attack
to be successful, attackers would have to carefully coordinate the
attack traffic by congesting all of the network links surrounding the
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targeted organisation’s network in an attempt to block all of their
access links to the Internet.

• Reflection Attack [38]
A reflection attack uses reflectors on the network to direct the attack
traffic to the target. In this case, the reflector is a network device that
will return any packets that were sent to it, which can be web servers,
DNS servers, and routers on the network. Apart from launching a re-
flection attack, by sending spoofed requests to the many reflectors on
the Internet that will then forward the responses to their target, the
attackers also make use of the combined transmission power of both
the attack machines and reflectors as a way of orchestrating a power-
ful flooding attack on the target. Although most reflectors act as am-
plifiers (sending out a larger reply packet than the request packet),
some of these reflectors may attenuate the packet size and can still
effectively impose damages to the target by having a sufficient num-
ber of reflectors in the attack. By using reflectors, this can also create
a dilution of locality in the attack streams and increase the stealthi-
ness of the attack. In literature, these reflectors such as DNS servers,
GNUTELLA servers, and TCP-based servers running on TCP im-
plementations that suffer from predictable initial sequence numbers
pose a significant threat to the Internet.

• Amplification attack
An amplification attack uses a third-party device to either amplify a
small request into a larger request directed to a target, or broadcasts a
request using a spoofed IP address (i.e. target IP address) that directs
all of the replies to the target. In a Smurf attack [11], for example, the
attacker sends the ICMP echo messages to an unprotected broadcast
domain and causes each host in the domain to send out an ICMP
echo reply message. Similar to a reflection attack, spoofed source IP
addresses are also used in the Smurf attack. As a result, all of the
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hosts in the broadcast domain will send the ICMP echo reply mes-
sages to the target’s IP address hence creating a massive volume of
traffic that depletes their target’s network bandwidth. Some of these
approaches may involve the combination of a reflection attack and
IP spoofing as a means of increasing the impact of the attack. This
is shown by the DNS amplification attack, where the attacker takes
advantage of the open recursive feature of a DNS server by sending
a recursive query to the server and having it returned as large am-
plified response traffic to the target. In another example, although
an NTP amplification attack works quite similarly to a DNS ampli-
fication attack, the only difference is that instead of exploiting the
DNS resolvers, it exploits the MONLIST command on NTP servers.
As the MONLIST command operates by sending the requestor a list
of the last 600 hosts that had been connected to the NTP server, the
attacker takes advantage of the MONLIST command and sends the
MONLIST request to the server via a spoofed IP address. Since the
NTP server assumes the request from the spoofed IP address to be
from the target machine, it will then send the MONLIST response to
the target. Once the NTP server is fully populated, the response data
would be 206 times larger than the initial request data. For this rea-
son, an amplification attack can significantly increase the traffic load
hence accelerating the depletion of the target’s bandwidth until it is
completely crippled.

2.1.2 What are Attack Intensities?

A DDoS attack can be launched in various intensities, which can be pri-
marily categorised as either high or low-intensity DDoS attacks.

(a) High-Intensity DDoS Attacks

In a conventional DDoS attack, the attacker uses high-intensity traf-
fic to consume all the network and server resources [20, 43]. High-
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intensity attacks such as Smurf [11] would transmit packets at a high
rate that result in a sudden surge of traffic flow and volume. The
sudden surge can easily trigger network detection systems in the net-
work, which enables mitigation mechanisms to halt the attack and
prevent further damages in the network.

(b) Low-Intensity DDoS Attacks

A low-Intensity DDoS attack is a stealthy attack that uses a signifi-
cant amount of aggregated low-intensity traffic to saturate its target.
Although a low-intensity attack traffic such as Slowloris [44] does
not rely on volume in causing denial-of-service, it will keep and hold
as many connection ports opened as possible to prevent others from
accessing the target servers. In this way, the attack can effectively
cripple the target by sufficiently increasing the aggregated attack vol-
ume without setting off the detection systems. There are also other
low-intensity attacks that do not seek to disrupt service entirely, but
instead choose to degrade the service over a longer period to achieve
economic damage [6].

2.1.3 What is the Attack Target?

DDoS attacks mostly target hosts and links on the network as a way of
disabling their services.

(a) Host
The attacker targets the application, CPU, memory, service resources
or even the hardware of the host which might be a component within
the network (e.g. router), an edge device (e.g. switch, edge router),
or a server within the network with the aim of bringing down the
host.

(b) Link
The attacker attacks the network links by congesting the network
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bandwidth and disabling the communication path of the targeted
organisation’s network. This is deemed as a more severe attack since
by congesting the network link, all the hosts connected to it will also
be simultaneously brought down.

2.1.4 What is used to Launch an Attack?

A DDoS attack can be launched in many ways as shown below.

Army of Bots (Botnet)

Bots are compromised machines on the Internet that the attackers use to
launch attack traffic. Since bots are not only cheap, but are also easily de-
ployable, they are sold in the dark web with many offering DDoS attack
services at a very low price. The attacker only needs to upload the attack
command to a Command & Control (C&C) server, where it will be pushed
down to all of the connected bots. A network of bots connected to the same
C&C server is called a botnet, which can have a large number of bots and
these bots are often globally distributed in the launching of high impact
DDoS attacks on the network. The recent Mirai botnet has shown the dan-
ger of bots on the Internet. Since 2013, bots are one of the contributing
factors that leads to the exponential increase of DDoS attack size.

Some of the more popular bots used in DDoS attacks include:

(a) Code Red Worm
A worm that spreads quickly and has the ability of building up hun-
dreds of thousands of hosts in bot armies, with each bot having a
specific predefined DDoS attack target.

(b) Internet Chat Relay (IRC)
The IRC bots are initially introduced as a way of assisting operators
in managing busy chat channels, but they are used by attackers in
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launching DDoS attacks on the IRC users and servers [45]. The at-
tacker usually controls the bots via a centralised C&C server, where
some of the most commonly used bots for DDoS attacks are Agobot,
Nesebot, Spybot, Rxbot and Kaiten [5].

(c) Peer-to-peer (P2P)
Unlike the other bots that rely on a C&C server to communicate, the
P2P bots communicate with peer bots in launching more resilient
DDoS attacks [46]. This is because the attacker can use any P2P bots
as the C&C server in sending the attack command to the entire bot
army hence making the botnet harder to destroy. Some of the most
commonly used P2P bots for DDoS attacks are Phatbot, SpamThru,
Nugache and Peacomm [47].

(d) Internet-of-Things (IoT)
IoT bots are mostly based on poorly secured IoT devices connected
to the Internet, where Mirai and Hajime botnets are some the more
well-known IoT botnets.

Attack Software

Most attackers adopt a certain type of attack software in the launching of
its DDoS attack since larger resources are required to accomodate for the
increasing attack sizes. This type of attack software is an automated tool
that helps attackers manage the launching of a large-scale attack. Some of
the well-known attack software includes:

(a) Low-Orbit Ion Canon (LOIC)
LOIC [48] is an open source tool that can generate UDP and TCP
datagrams for performing DDoS attacks. One of the disadvantages
of LOIC is that it does not mask the IP address of the traffic it gener-
ates. This will then enable the attack source to be tracked easily.
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(b) Tribe Flood Network (TFN)
TFN [49] allows an attacker to launch a DDoS attack such as Smurf,
TCP SYN flood, UDP flood, and ICMP flood on either a specified or
a random port. The TFN tool consists of a master and a set of servers,
where the master sends instructions to the servers to launch DDoS
attacks. DDoS attacks generated by this tool are difficult to mitigate
because the communication between TFN servers and its master is
mask by using ICMP Echo reply packet, where filtering ICMP echo
reply packets will also cause other applications that rely on these
packets to stop functioning.

(c) MStream
Mstream [50] allows an attacker to rapidly flood and deplete the
bandwidth of the target using TCP ACK packets with masked source
addresses.

(d) Stacheldraht
With Stacheldraht [49], an attacker can launch many types of DDoS
attacks such as Smurf, TCP SYN flood, UDP flood and ICMP ECHO
flood. Since Stacheldraht uses encrypted TCP and ICMP packets
for communication between the attacker and attack sources, it is not
easy to be traced.

(e) Trinoo
Trinoo or Trin00 [49] utilises a UDP flood to deny a particular ser-
vice without spoofing its sources’ IP addresses. This attack tool also
allows an attacker to modify the traffic packet size as well as define
the duration of an attack.

2.1.5 How do you Detect an Attack?

DDoS attack detection is a process that distinguishes attack traffic from
legitimate traffic. In most networks, DDoS attack detection systems are
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used for detecting DDoS attacks and securing the network.

The attack detection systems are commonly classified into two cate-
gories, namely signature detection and anomaly detection. While signature
detection uses a predefined set of signatures to match the incoming traf-
fic packets of known attacks, anomaly detection uses a baseline of normal
traffic patterns and classifies the traffic that deviates from these patterns as
an attack. Each of these two techniques however, has its own advantages
and drawbacks.

The main advantage of signature detection is that such a system can
detect known attacks with a high accuracy rate by matching the traffic pat-
tern to the patterns stored in the signature database. However, it is unable
to identify any attacks that are not listed in the signature database such
as zero-day attacks. In order to maintain the effectiveness of the system,
the signature database would require constant updates of new attack sig-
natures. These updates can cause scalability problems with the increasing
size of the database.

The main advantage of anomaly detection is that it can detect both
new and zero-day attacks more accurately. Instead of using a database to
store attack signatures, this method detects the attack by measuring the
deviation of traffic against the normal traffic profiles. A typical anomaly
detection approach would form thresholds by using the baseline of the
normal traffic to distinguish between attack and normal traffic. For ex-
ample, a significant increase in the traffic statistics such as packet delays,
traffic volumes or a sudden drop in the performance of the network could
be an indication of an attack. However, in some cases, it might be caused
by flash crowd4 events or software maintenance. As such, anomaly detec-
tion is still bounded by the limitation to accurately determine the correct

4 A flash crowd is a type of surge in the network traffic, where a high number of legiti-
mate users are using the same Internet service or a server at the same time. Examples
of flash crowd events are new product campaigns, online polling, and streaming of live
events.



2.1. DISTRIBUTED DENIAL OF SERVICE ATTACK 25

thresholds for distinguishing between attack and normal traffic.

Detection Strategies

Many traffic classification algorithms have been developed, which can be
placed into two main categories, namely the packet-based and flow-based
classifications.

(a) Packet-based Classification

The packet-based classification operates by analysing each packet in
the network to determine if it is an attack or a normal packet. In a
traditional DDoS attack, the attack packets have certain features that
can be used for attack detection, as exemplified by the SYN flood
attack packet where requests with their SYN-flag set are sent to the
target server [51]. Since the recent attacks show how attackers use
legitimate traffic as attack traffic in a synchronised and coordinated
fashion to bring down a network link, it is futile to identify these
attacks at the packet level.

(b) Flow-based Classification

The flow-based classification is used to overcome the limitations of
packet-based classification. Since a flow is a stream of traffic packets
that have the same attributes such as source IP address, destination
IP address, source port number, destination port number and proto-
col identifier in a given time interval, the flow filtering mechanism
can be easily deployed at the switch once an attack flow is identi-
fied. Although most of the flow-based detection methods utilise a
form of distribution analysis to detect the attack flows, the flow ex-
traction process can be time consuming and requires a lightweight
application for statistics collection. The two common types of flow
level detection are complete detection5 and sampling-based detec-

5 Complete detection takes into account all flows within a time interval for analysis.
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tion6. While a complete detection is often not scalable and requires
more resources for completing the detection process due to large in-
coming traffic size, flow sampling detection only requires a portion
of the traffic to be analysed. However, flow sampling can be sus-
ceptible to misdetection. This is because DDoS attack traffic in the
sample might be inadequate for showing signs of attack.

DDoS Attack Detection Architectures

The DDoS attack detection architecture consists of two main forms, namely
centralised and distributed.

(a) Centralised Architecture

A centralised architecture operates by sending all of the network
traffic to a central site for processing, which is more suited to be used
in a small enterprise network. In most cases, larger networks using
this architecture will cause the DDoS attack detection to be ineffec-
tive. This is because processing a large amount of traffic in a large
network will result in high computational burden and a single point
of failure on the central site during an attack [2].

(b) Distributed Architecture

In a distributed architecture, a DDoS attack detection system does
not rely on a single device but a set of devices to reduce the com-
putational burden of a single device and eliminate the single point
of failure found in the centralised architecture. All network traffic is
distributed to a set of devices for data processing to determine the
occurrence of a DDoS attack, where the placement of these devices
can affect the scalability and accuracy of the system [2]. The DDoS
attack detection system proposed by Peng et al. [52] is able to detect

6 Sampling based detection takes a portion of flows within a time interval for analysis
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a wide range of DDoS attacks quickly using a multi-agent system for
distributed attack detection as compared to the centralised method.

Attack Incidents

The size of DDoS attacks has grown significantly over the years. Moti-
vated mostly by political, financial, and personal gains, thousands of these
attacks are launched on a daily basis [43, 53]. In this section, the impact
from some of the prominent DDoS attack incidents occurring in the past
are described.

(a) Spamhaus Attack
The Spamhaus Project, an international organisation for tracking spam
and malware on the Internet, was struck by a DDoS attack with a
peak of 300Gbps in March 2013. This particular attack caused an
overload of the Spamhaus servers, and created massive congestion
on the Internet [54]. By using the Open Resolver DNS to send a mas-
sive amount of attack traffic to Spamhaus servers, the attacker man-
aged to cripple the Spamhaus network for over a week.

(b) ProtonMail Attack
ProtonMail, an encrypted email service based in Europe was attacked
by a DDoS attack which caused its primary data centre to go of-
fline. This particular DDoS attack managed to keep the ProtonMail
offline by congesting all of the upstream Internet Service Providers
that were connected to the data centre [55]. As the attacker continu-
ously sent the attack traffic to keep ProtonMail from being connected
for more than a week, the latter was prompted to use BGP redirec-
tion as a way of mitigating the attack. During the attack, over 100
companies faced collateral damage due to the congestion of the ISPs.
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(c) Dyn Attack

Dyn, a service provider company, was struck by a DDoS attack with
a peak exceeding 1.2 Tbps via the Mirai botnet [56]. The series of at-
tacks from an estimated of 100,000 bots managed to take down hun-
dreds of popular websites such as Netflix, Github, and Twitter.

2.2 Entropy-based Features

In the recent five years, a lot of attention has been given to the inclusion of
entropy in statistical-based methods for DDoS attack detection.

2.2.1 What is Entropy?

Entropy measures the uncertainty of the information provided. In net-
work traffic, entropy captures the unusual distributional changes of traffic
features in a single value [57], where sufficient observation of the changes
in value can distinctly reveal the anomalies in the network. In addition,
entropy can be used to generate useful features for classifying attack and
normal traffic.

Generally, entropy-based features are formed by applying the entropy
measures to raw traffic features such as the source and destination IP ad-
dresses, source and destination port numbers, as well as the protocol iden-
tifier. For example, with regards to the entropy of source IP address, a high
entropy value would indicate a high variation, while a low entropy value
denotes a low variation in the traffic packets’ origins. This is useful for
attack detection since a typical DDoS attack with a large number of attack
sources and a single target usually has a high variation of source IP ad-
dresses and low variation of destination IP addresses as compared to the
normal traffic. The entropy-based features that are formed by using the
variations of two entropy-based features are known as entropy variation
features [21].
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2.2.2 Entropy Measures

Some of the most common entropy measures used in the detection of
DDoS attacks are the Shannon [34], Tsallis [35] and Rényi [36] entropies.

• Shannon entropy was introduced by Claude E. Shannon back in
1948 for the purpose of quantifying the information gain and re-
ducing uncertainty in communication. It was widely adopted in the
classification of network traffic and can be defined in the context of
a probabilistic model as shown in equation 2.1.

H(X) = −
N∑
i=1

P (xi)log2P (xi) (2.1)

In equation 2.1, H(X) represents the entropy of X . X = x1, ..., xN is
a finite set where each element has a probability of p(xi).

• Rényi entropy was introduced by Alfred Rényi as a type of entropy
that is generalised from Shannon entropy as shown in equation 2.2.

Hα(X) = − 1

1− α
log2

N∑
i=1

pαi (2.2)

In equation 2.2, Hα(X) represents the entropy of X . X = x1, ..., xN is
a finite set where each element, xi and i = 1, ...N has a probability of
p(xi), and α ≥ 0, α 6= 1.

• Tsallis entropy was introduced by Constantino Tsallis in 1988 as a
one-parameter generalization of Shannon entropy as shown in equa-
tion 2.3.

Hq(X) = − 1

q − 1
(1−

N∑
i=1

pqi (2.3)

In equation 2.3,Hq(X) represents the entropy ofX whereX = x1, ..., xN

is a finite set where each element, xi and i = 1, ...N has a probability
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of p(xi). q is the entropic index, where the limit q → 1 will recover
Shannon entropy.

• Zhou entropy was proposed by Xiang et al. to detect the low rates of
DDoS attacks [19]. Much like the Tsallis and Renyi entropies, Zhou
entropy is also a generalisation of the Shannon entropy as shown in
equation 2.4.

Hα(x) =
1

1− α
log2

n∑
i=1

pαi (2.4)

where α ≥ 0, α 6= 1.

2.2.3 Entropy-based Detection Approaches

A recent detection analysis has shown that entropy-based detection pro-
vides a better result than the other approaches [58]. The innovation of the
entropy-based features comes from the effectiveness of entropy features
in distinguishing an attack traffic from a legitimate traffic [58]. Compared
to the traditional volumetric-based approaches, this method appeals more
to researchers as well as to security professionals because of its simpler
calculation, higher sensitivity as well as not being affected by network
utilisation.

Gu et al. [23] have proposed the use of maximum entropy estimation
and relative entropy in the detection of anomalies in the network traffic.
The authors have classified the network packets under a two-dimensional
packet class. In the first dimension, packets are divided according to their
protocol related information such as TCP SYN, TCP RST, UDP SYN and
UDP RST, whereas in the second dimension, packets are divided accord-
ing to their destination port number. Once the packets are classified, fea-
ture selection and parameter estimation are used to generate a baseline
distribution of the benign traffic and then followed by the calculation of
their relative entropy, which is used to find the differences between the
packet class distribution and baseline distribution of the network traffic.
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Despite showing a high accuracy rate with very low false positive and
false negative, this method requires a continuous supply of memory and
computation time that is proportional to the traffic, and cannot be done in
real time.

Xinlei Ma et al. [21], on the other hand, have presented a DDoS de-
tection method by using both the Tsallis entropy and a variation of the
Lyapunov Exponent. The authors have used a variation of the Lyapunov
Exponent to quantify the exponent separation of the source and destina-
tion IP address entropies, where unless there has been no occurrence of
IP spoofing, the source and destination IP addresses would exhibit similar
entropy values during the same time interval. Although the experimental
results showed a high true positive rate (TPR) and low False Positive Rate
(FPR) in detecting DDoS attacks, there were no comparisons made with
the other datasets.

Zhang et al. [24] have proposed an advanced entropy-based method
in detecting Low-rate DoS (LDoS) attacks. The method uses three lev-
els of threshold, with each threshold value being regularly adjusted and
adapted to the network condition. Although this method can effectively
distinguish legitimate traffic and flash crowds from LDoS attacks effec-
tively, it consumes substantially more resources than those of the existing
DDoS attack detection systems.

Bhuyan et al. [22] have used an extended entropy metric, which cal-
culates the entropy difference of two traffic samples in the detection of
DDoS attacks. This detection scheme uses a sampling method and three
types of extended entropy features such as the source IP address, to effec-
tively detect DDoS attacks. Although this approach showed high accuracy
in detecting four classes of DDoS attack traffic variation, namely constant,
pulsing, increasing, and dynamic, this method is not tested against DDoS
attacks with low-intensity attack traffic such as those of Crossfire attacks.

Mousavi et al. [25] have introduced an early DDoS attack detection
method, where it measures the destination IP address entropy of incom-
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ing packets within a specific time window to detect attack traffic. Once
the destination IP address entropy drops below the threshold for five con-
secutive times, a DDoS attack is considered present in the network. The
experimental results have shown the effectiveness of this method, where
it is able to detect the presence of DDoS attacks as early as the first 250 in-
coming attack packets. However, the authors have only considered direct
DDoS attack traffic targeting a single host. Other attacks such as indirect
DDoS attacks or multi-target DDoS attacks are not considered, where these
attacks could cause the destination IP address entropy to be higher than
the threshold.

A summary of the recent approaches in entropy-based detection is shown
in Table 2.1.

Paper Entropy Type Launch Intensity Accuracy Classification
Measures Method (%) Technique

Two-dimensional Shannon Host Direct High 95 Maximum
Entropy Features [23] Entropy

Estimation
Lyapunov Exponent Tsallis Host Direct High 98.56 Threshold
Separation [21]
Advanced Entropy-based Shannon Host Direct High > 92 Threshold
Scheme (AEB) [24] Low

Lightweight Extended Extended Host Direct High 99.77 Threshold
Entropy Low
[22]
Entropy in SDN Shannon Host Direct High 96 Threshold
[25]

Table 2.1: Summary of Entropy-Based Detection System

2.3 Machine Learning Classification

Machine learning (ML) is a technique where the machines learn and ac-
quire new knowledge based on the existing knowledge that improves their
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performance over time [59]. For that reason, machine learning approaches
have been designed to counter large and sophisticated attacks, which tra-
ditional statistical approaches such as the single threshold or moving thresh-
old were unable to handle. As there is a continuous evolution of net-
work attack complexity in traffic classification, ML techniques were hence
utilised in 1994 for traffic analysis in the detection of traffic anomalies [60].
As such, these ML classifiers learnt the traffic patterns from both the nor-
mal traffic and attack traffic through training, but without the necessity
of setting and finding the best features or threshold values for detection
purpose.

2.3.1 Types of Classifiers

There are hundreds of machine learning classifiers available for classifi-
cation, however, different classification problems require different types
of classifiers to produce the best classification results [61]. According to a
widely cited survey paper[61], there are a total of 17 families of classifiers
in machine learning: discriminant analysis, bayesian, neural networks,
support vector machines, decision trees, rule-based classifiers, boosting,
bagging, stacking, random forests and other ensembles, generalised lin-
ear models, nearest-neighbours, partial least squares and principal com-
ponent regression, logistic and multinomial regression, multiple adaptive
regression splines and other methods.

The paper evaluated the performance of 179 classifiers on 121 datasets
and found that there is no single classifier that can be used to solve all
classification problems [61]. They found that the classifiers with the over-
all best performance across different datasets are neural networks, support
vector machines and random forest (ensemble classifiers built from deci-
sion trees). These classifiers are described as follows:

• Neural Networks
Artificial Neural Networks (ANNs) use highly interconnected net-
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work models for classification and are used widely and extensively
in attack detection methods. This is because ANNs have better ro-
bustness and fault tolerance in identifying both the known attack
patterns and also unknown attack patterns [62]. Having the ability
for providing satisfactory results in distinguishing attack from nor-
mal traffic, ANN is a viable candidate for DDoS detection [63]. Some
of the typical examples of ANN classifiers are the Multilayer Percep-
tron (MLP) [64] and Recurrent Neural Network (RNN) [65].

• Support Vector Machine

SVM is a form of supervised learning method that can be used to per-
form traffic analysis and pattern recognition by mapping the input
feature vectors into a higher dimensional feature space. A standard
type of SVM classifier is a non-probabilistic binary linear classifier,
which uses labelled training data in the construction of a classifica-
tion model.

• Decision Trees
Decision trees use a tree-like model with nodes and leaves for classi-
fication. A node in a decision tree represents a traffic feature such as
source address entropy where each node may connect to two other
nodes or with a node and a leaf, while the leaf contains a decision
value to determine the presence of an attack. Some examples of de-
cision tree classifiers are Alternating Decision Tree (ADT) [66] and
C4.5 [67], which are considered as one of the most scalable packet
classification techniques [68, 69].

These ML-based approaches are designed to counter the sophisticated and
evolving adversaries as a result of their abilities in coping with a signifi-
cant amount of complex evolving data [70]. As opposed to traditional de-
tection systems that use fixed threshold values to distinguish attack traf-
fic from normal traffic, the ML approaches use classification models built
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from learned network behaviour to distinguish attack traffic from normal
traffic.

2.3.2 Machine Learning-based Detection

Some of the machine learning-based detection approaches found in recent
literature that are related to DDoS attack detection are reviewed in the next
six paragraphs.

Gu et al. [63] have proposed the use of a multi-ANN classifier with
an enhanced genetic algorithm (GA) for structural parameter optimisa-
tion and principal component analysis (PCA) in the improvement of its
feature extraction for DDoS attack detection. By using old and up-to-date
datasets (patterns) in the training process, this approach is able to detect
both known and unknown DDoS attacks that have similar patterns to the
training set.

Saied et al. [71], on the other hand, have used ANN to flag the known
and unknown TCP, UDP, and ICMP attacks from normal traffic. The au-
thors have compared the detection results when training with both old
and up-to-date datasets, where improper training of old patterns showed
poor detection results. This approach showed better accuracy, sensitivity,
specificity, and precision levels than other traditional detection systems
such as Snort, Probabilistic Neural Network (PNN) and Back-Propagation
(BP).

In another study, Li et al. [62] have proposed the Learning Vector
Quantisation (LVQ) neural network, which is a supervised version of quan-
tisation used for pattern recognition, multi-class classification, and data
compression tasks for detecting DDoS attacks. The dataset used in the ex-
periments has been converted into numerical form and given as input to
the neural network.

Horng et al. [72] have proposed using an SVM-based detection system
that pre-processes the dataset through a hierarchical clustering algorithm
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prior to training the dataset with an SVM classifier. The hierarchical clus-
tering algorithm is able to reduce the size of the training dataset, while
sustaining the quality of the original dataset. Therefore, this approach
greatly reduced the training time and achieved better detection accuracy
results.

Ramamoorthi et al. [73] have proposed a real-time detection system
by using an enhanced SVM (eSVM) string kernel as a way of classifying
the incoming traffic flow as an attack or normal flow. In this approach,
a normal profile is constructed from the user’s access behaviour and it is
then used by eSVM to build a model file for classifying the attack from the
normal flows. Although the experimental results showed 99% accuracy in
the detection of application and network DDoS attacks, eSVM is not able
to support other DDoS attacks such as port scanning and DNS spoofing.

Wu et al. [74], on the other hand, have adopted a decision-tree classifier
(C4.5) in their DDoS detection mechanism, where the C4.5 algorithm is
used in the selection of attributes for splitting the data into further smaller
subsets. The splitting procedure is repeated until all of the data in the
subset belongs to the same class, or the same gain ratios of all the attributes
are attained.

A summary of the mentioned machine learning-based detection sys-
tems is shown in Table 2.2, where these works and with the exception of
ANN, had mostly focused on a single attack intensity, for instance in either
high or low-intensity attacks [71].

2.4 Correlation Analysis

Correlation analysis is a method for finding a relationship or connection
between two or more random variables. In network traffic analysis, re-
searchers normally use correlation analysis for determining traffic feature
similarities of two or more distinct traffic flows. These traffic features can
be arrival time, packet volume, protocols, packet size, or source and desti-
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Paper Attack Launch Attack Accuracy
Type Method Intensity (%)

Multi ANN with GA [63] Host Direct High 97.68
ANN [71] Host Direct High 98

Low
Learning Vector Quantisation Host Direct high 99.72
(LVQ) Neural Network [62]
Support Vector Machine (SVM) Host Direct High 99.5
[72]
Extended SVM [73] Host Direct High 99.32
C4.5 Decision Tree [74] Host Direct High >90*

* Note that this is an estimation of its True Positive Rate since this paper only provides detection

results in terms of False Positive and False Negative.

Table 2.2: Summary of Machine Learning-based Detection System

nation addresses. DDoS attack traffic is assumed to be similar to the nor-
mal traffic because of the underlying similarity shown between the syn-
chronisation and coordination within the DDoS attack traffic.

Correlation analysis has been widely used in collaborative detection
systems as information at a single point or from a single traffic feature
would not be sufficient to indicate the presence of attack traffic in the net-
work, particularly in cases where legitimate traffic from many sources is
used for launching a DDoS attack.

One of the advantages of using this method is that it can identify traffic
flows that belong to a particular botnet by using the similarities existing
between the flow traffic patterns and behaviour. Traffic flows that orig-
inate from the same botnet are similar because of the coordination and
synchronisation within the bots. For example, Yu et al. [75] who used the
flow correlation coefficient to distinguish attack flows from flash crowd
traffic, found that the aggregated attack flows sent by the bots from the
same botnet have similar standard deviations with those from the original
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attack flow. In another example, Wei et al. [76] used rank correlation-
based detection for detecting attack traffic in the network, observed that
the response flows as having an inherent relationship.

2.4.1 Correlation Algorithms

A popular way for measuring correlation is by using a correlation coeffi-
cient, where the value of the correlation coefficient, r, is always between
-1.0 to +1.0. A positive value (larger than zero) would indicate a positive
relationship between the two random variables, while a negative value
(smaller than zero) denotes a negative relationship between the two ran-
dom variables. A zero value implies the absence of a relationship between
the two variables. The following is a list on some of the correlation algo-
rithms for DDoS detection:

• Pearson Product-Moment Coefficient

Karl Pearson introduced the Pearson’s product-moment coefficient
in 1895, where it is commonly used for measuring linear associations
and relationships between two variables of X and Y. A positive cor-
relation would mean a rise of X with increasing Y, while a negative
correlation would denote otherwise. A zero correlation, on the other
hand, implies no changes of Y when the value of X increases. This
equation is shown in Equation 2.5.

r =

∑
(Xi − X̄)(Yi − Ȳ )

[
∑

(Xi − X̄)2
∑

(Yi − Ȳ )2]1/2
(2.5)

• Spearman’s Rank Correlation Coefficient

Charles Spearman introduced the Spearman’s rank correlation coef-
ficient in 1904 as a method for measuring the relationship between
non-parametric variables, where it converts the variable’s value into
a ranked value before using the Pearson’s product-moment coeffi-
cient in Equation 2.5 as part of its correlation value calculation.
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• Flow Correlation Coefficient

The Flow correlation coefficient is employed in some of the DDoS
attack detection systems and was used to correlate the following in-
formation:

– two or more features such as arrival time, packet volume, pro-
tocol, and packet size [29, 30].

– two or more distinct traffic flows [31]

– two or more alerts from detection systems [32]

– detection results taken at a different time [33]

2.4.2 Correlation-based Detection

Although the success of correlation analysis techniques has led to the de-
velopment of several correlation-based DDoS detection systems [77, 30, 78,
28], these systems focus on correlating information from either the neigh-
bouring links [77, 28] or at a single link or host [30]. As they lack the abil-
ity of sharing link information such as the origin points of the attack flows
between detectors at various locations, this reduces the amount of corre-
lated information and consequently, lessens the risk of misdetection. This
is especially critical for DDoS attacks that use stealthy (low-rate, indirect,
persistent) attack traffic, where they are difficult to distinguish given the
current detection systems. As such, this would require a wider network
of information, since the information between two links that are far apart
can be correlated for detection improvement (i.e. with a wider view of in-
formation content). Moreover, correlating link information nearer to the
attack source can help in the early identification of the attack flows, which
is seen as a crucial way for reducing the attack impact on the network.

The detection results of the network traffic will be different across dif-
ferent viewpoints in the network due to the different detection nodes’ de-
ployment locations [79, 80]. The attributes in each network packet at dif-
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ferent locations and network levels will differ significantly as well since
the detection methods that might be effective in some viewpoints may
fare poorly in others. For this reason, a correlation of data from multiple
viewpoints of the network may increase the accuracy level of the detection
system. Since each of the different viewpoints consists of a detection node
that is connected to a communication mechanism, the correlation of these
results can help to overcome the limitation of a single viewpoint detection
and consequently lead to a more accurate detection system. This method
can also help to overcome entropy spoofing issues since it would be diffi-
cult for the attacker to spoof the traffic entropy at multiple locations.

Some of the correlation-based detection approaches that have been pro-
posed in the literature are discussed in the next few paragraphs.

Li et al. [81] have proposed a correlation approach for detecting the
attack at the backbone of the network through an alarm trigger even with-
out locating the source of the attack. In this research, the authors extracted
anomalies from the network-wide traffic for correlation analysis to detect
changes indicative of an attack.

Ning et al. [82] on the other hand, have presented a technique by in-
tegrating two complementary types of alert correlation methods that not
only enhances intrusion alert correlation efficiency, but also reduces the
false positive rate. The first method is an alert correlation that was based
on similarities between alert attributes, while the second method is an alert
correlation that was based on the prerequisites and consequences of at-
tacks.

In another study, Chen et al. [83] have proposed a collaborative system
that was based on correlation, where each of the detection program on a
router shares alert information on the abrupt changes in packet volumes
to other routers of multiple domains. Since DDoS attack traffic will cause
routers across multiple domains to raise a significant number of alerts,
these shared alerts will then be used in a tree construction, where an at-
tack will be detected when the tree is sufficiently large and exceeds a pre-
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defined threshold. Although the tree represents the attack traffic path,
where a DDoS attack can be detected at the earliest time possible, their
evaluation was only based on traditional DDoS attacks such as TCP SYN
flooding, ICMP flooding, UDP flooding, and Smurf attacks.

François et al. [28] have proposed to use multiple Intrusion Protection
Systems that form the overlay networks of protection rings around its cus-
tomer called Firecol, where it correlates the aggregated traffic by measur-
ing its deviation from the stored traffic profiles. This detection mechanism
is not only free from false positives, but was also able to detect attacks
near to the attack source at the ISP level. However, since Firecol has only
focused on monitoring for the traditional direct DDoS attack traffic in the
protection rings surrounding its customer, this detection mechanism may
not be useful in the detection of an indirect DDoS attack.

A summary of these correlation-based detection systems is shown in
Table 2.3.

Paper Type Launch Intensity Early Detection Scalability
Method Capability

LinkScope [77] Link Direct High No Yes
Low

Multivariate Correlation Host Direct High No Yes
Analysis [30]
Flow Correlation Analysis [78] Various Various Various No No
Traffic Profile Deviation [28] Host Link Direct Yes Yes
Global Correlation Coefficient [81] Host Direct High Yes Yes
Correlation Graphs [82] Host Direct Link No No
Distributed Change-Point Host Direct High Yes Yes
Detection [83]

Table 2.3: Summary of Correlation-based Detection System
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2.5 Software-Defined Networking

Software-Defined Networking (SDN) is an emerging technology that of-
fers the opportunity for creating a flexible and programmable network
[84, 85]. This technology not only creates flexibility by decoupling the
control plane7 and the data plane8 in network devices to allow the addi-
tion of new abstractions in the network, it also creates programmability,
where network devices such as a switch can be programmed as either a
controller or a forwarding switch in the network instead of the default
functionality set by network vendors.

Some DDoS attack detection systems have adopted SDN technology to
provide a global view of the network and reduce traffic overhead [86, 87,
88]. This global view of the network is achieved by connecting all switches
in the network directly to a centralised controller, where any unknown
traffic that is not listed in the switches’ flow tables will be sent to the con-
troller to determine its path [88]. On the other hand, traffic overhead in
the network is reduced due to the separation of control and data planes,
which allows decision making and data processing to be done on the con-
trol plane and traffic forwarding to be done on the data plane. With a
global view of the network and reduction in traffic overhead, SDN tech-
nology can improve the scalability of a DDoS attack detection system.

2.5.1 SDN-based Detection

Some of the recent SDN-based DDoS attack detection approaches are dis-
cussed in this section.

Chin et al. [86] have proposed the use of a collaborative anomaly and

7 The control plane is mostly used as the management plane for managing the connec-
tions between switches in the network and determining the paths of each new packet
to its destination [84].

8 The data plane is mostly used for user traffic to travel to its destination using the for-
warding table managed by the SDN controller [84].
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signature-based detection method through SDN as a way of addressing
the limitations in traditional approaches to process large network traffic in
real-time. This approach constantly monitors the network for anomalies
using distributed monitors installed on SDN switches. Once an anomaly
is detected, an alert is sent to the correlator to perform deep packet inspec-
tion and then triggers the SDN controller to mitigate the attack. Although
this method can process a large amount of network traffic in a short pe-
riod of time, it has only been evaluated on the TCP SYN attack and has
not been considered for other types of attacks.

Lin et al. [87] have proposed an extended SDN architecture of Network
Function Virtualisation (NFV) modules that can reduce traffic overhead
to the SDN controller to improve scalability. As traditional network de-
vices are inflexible and not programmable, the separation of control plane
and data plane has enabled packet processing for DDoS attack detection
to be done on the controller to improve efficiency and scalability. This ap-
proach further improves the scalability of the SDN-based detection system
by performing most of the packet detection processes on OpenFlow vir-
tual switches and NFV modules and only sending the outcome to the con-
troller. As compared to conventional SDN architectures, the use of both
OpenFlow virtual switches and NFV to perform traffic classification and
deep packet inspection has reduced the workload and traffic overhead to
the SDN controller hence increasing the overall scalability. However, one
of the limitations of this method is its lack of early detection capability and
information sharing.

Zheng et al. [89] have proposed to use the Commercial Off-The-Shelf
(COTS) SDN switches in the detection and throttling of DDoS attacks in
real time without incurring additional deployment cost. This method has
been designed to detect the indirect link flooding of DDoS attacks such as
the Crossfire attack through the use of adaptive correlation analysis. The
use of COTS SDN switches in this case enables a selective collection of flow
information without the need of new appliances, as opposed to non-SDN
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based approaches. Although this architecture is somewhat similar to the
SCAFE DDoS detection architecture proposed in this thesis, it is important
to note that this work was published in July 2018 and had run in parallel
with the development of SCAFE. The limitation of COTS however, is that
it is based on a single controller SDN system, where information sharing
between multiple controllers is not considered. In contrast, SCAFE uses
a collaborative approach, where it takes information from multiple con-
trollers and stores it in a centralised database for information sharing.

A summary of these SDN-based DDoS attack approaches is shown in
Table 2.4.

Paper Attack Launch Intensity Early Detection Information
Target Method Capability Sharing

Collaborative Architecture Link Direct High No Yes
[86]
Extended SDN Architecture Host Direct High No No
[87]
COTS SDN Architecture Link Indirect High No No
*[89] Host Direct Low

Table 2.4: Summary of SDN-based DDoS Attack Detection System

2.6 Summary

In this chapter, we have not only studied and reviewed the basics con-
cepts of the DDoS attacks, but also on the four main DDoS attack detection
approaches, namely entropy-based, machine learning-based, correlation-
based, and SDN-based detection approaches.

The main observations made from reviewing recent DDoS attack de-
tection approaches can be summarised:
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(a) All four DDoS attack detection approaches concentrate mostly
on improving the accuracy of detecting direct, high-intensity, and
host-based DDoS attacks.

Very little attention is given to detecting indirect, low-intensity, or
link based DDoS attacks accurately. A generalised method that can
be used to detect all types of attacks, in particular, indirect, direct,
link-based, host-based, high intensity and low intensity DDoS at-
tacks is worth investigating to improve overall detection accuracy
and prevent misdetection.

(b) Current DDoS attack detection approaches are lacking early de-
tection capability for detecting various types of DDoS attack traffic
accurately.

Current DDoS attack detection approaches mostly focus on detect-
ing DDoS attack traffic locally or within the neighbouring networks.
Since the impact of DDoS attack is getting larger, it is important to be
able to address the attack beyond local and neighbouring networks,
as close to the source of attack as possible.

(c) Current DDoS attack detection approaches lack information
sharing capability among network devices in a large-scale network
for detecting various types of DDoS attacks early.

Most of the entropy-based DDoS detection approaches focus on de-
tecting DDoS attack traffic from the information obtained from a sin-
gle device or location such as those from routers, switches, or other
DDoS detection components. One of the limitations of using this ap-
proach is that its early detection capability would be compromised
by the time needed for gathering the information necessary to detect
DDoS attacks. At this point, where sufficient information has been
gathered, a significant amount of damage to the network would have
already occurred. The ability to obtain information from a wider net-
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work, such as from multiple locations, is crucial to improve the early
detection capability of a DDoS attack detection system.



Chapter 3

Design of a Scalable and
Fault-Tolerant DDoS Detection
System for Large-Scale Networks

This chapter focuses on answering the first sub-question of this thesis:

How can we improve the early detection capability of large-scale DDoS
attack detection with scalability?

To answer the above question, this chapter presents the design and
framework for developing a SCAlable and Fault-tolerant DDoS detection
system architecture for Early detection (SCAFE) in large-scale networks.
This architecture is designed for detecting both the high and low-intensity
DDoS attacks at an early stage as well as nearer to the source of attacks
with high scalability and fault tolerance capability. An effective DDoS de-
tection system has to be scalable1 and fault-tolerant2 for it to effectively

1 Scalability is defined as the ability of the system to process traffic with increasing num-
ber of traffic flows and network links, where the processing time and message com-
plexity increases linearly

2 Fault tolerance is defined as the ability of the system to continue to operate despite the
presence of errors or failures.

47
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detect the attack flows3 from a large number of traffic flows and network
links early. The system’s scalability can be measured through its process-
ing time in detecting attack traffic.

SCAFE is a two-level DDoS attack detection system architecture that
scales well with regards to the increasing number of links and traffic flows.
This architecture operates by carrying out coarse-grained detection that
requires a shorter processing time to narrow down the potential target
link as well as fine-grained detection, which requires a longer process-
ing time for detecting the attack flows. In addition, SCAFE also supports
network-wide traffic monitoring and correlation analysis mechanisms that
can scalably handle large networks and traffic volumes via separate com-
munication paths between the detection components and network data
links. Additionally, it leverages the SDN technology by reducing message
complexity as well as simplifying information sharing by decentralising
its traffic collection and processing in the identification of the attack flows
in the network.

The remaining sections of this chapter present the design requirements,
architecture overview, the components’ roles and relationships, as well as
the communication paths and message interfaces.

3.1 System Architecture Design

This section discusses the design assumptions as well as the goals and
principles that have been taken into account in achieving high scalability
and fault-tolerance architecture design for early DDoS attack detection.

3 A traffic flow is a group of traffic that have the same destination address at a particular
time interval.
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3.1.1 Design Assumptions

A1 - A large network with the sub-networks spread across multi-
ple locations

Several reasons have contributed to the occurrence of DDoS attacks
in a large network with multiple sub-networks connected by routers.
Firstly, networks in large corporations such as Microsoft and Google,
have hundreds of thousands of servers spanning across hundreds of
different data centres across the world that require strong protection
against cyber attacks including DDoS attacks [90]. Apart from orig-
inating from many sources across multiple distant locations [12, 13],
DDoS attacks are also hard to detect without considering the long-
distance communications. Thirdly, the current large networks [91]
have been a frequent target for DDoS attacks. Since the attack traf-
fic can originate from sub-networks located in different locations, an
early detection is required for detecting the attack traffic nearer to
the attack source. For this reason, although many of the recent DDoS
attack detection system architectures have been designed to func-
tion in a large network, not many of these approaches use network-
wide correlation analysis to distinguish the attack from normal traf-
fic flows.

A2 - Synchronised and coordinated DDoS attack traffic using au-
tomated tools

This thesis assumes that the attackers use a botnet (a network of bots)
to launch DDoS attacks. Recent top large-scale botnet-based attack
traffic [92] is often generated by using automated tools such as LOIC
[93], TFN [49], and MStream [50] to synchronise and coordinate the
attack. Without synchronisation and coordination enabled by these
tools, DDoS attack traffic cannot be aggregated properly to become
an effective DDoS attack. Such highly synchronised and coordinated
behaviours in network traffic are the key indicator of DDoS attacks
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[30, 78, 75].

A3 - Indirect & direct DDoS attacks

This thesis assumes that DDoS attack traffic can be sent directly or
indirectly to the victim. In the case of an indirect attack such as
the Crossfire attack, attack traffic is forwarded to decoy servers to
flood the network links attached to the victims[12]. This attack is
also persistent because attack traffic is carefully coordinated to use
stable routes where the route change mechanism will not be trig-
gered. On the other hand, direct attack traffic is sent directly to the
victim’s server or network. A good system architecture should be
able to detect both direct and indirect attack detection capability.

3.1.2 Design Goals

With the design assumptions mentioned earlier, this thesis aims to de-
velop a DDoS attack detection architecture that meets the following goals:

G1 - Fully distributed monitoring mechanism to identify potential
target links

A large network consists of many sub-networks with different loca-
tions. These sub-networks are connected through routers and links
that can be the target of a DDoS attack. Target links usually have
a higher concentration of attack flows than other links in the net-
work due to the aggregated attack flows going to the target links. To
identify a target link, a good detection system needs to continuously
monitor every single link in the network for anomalies efficiently.
However, monitoring a large number of links incurs high process-
ing overhead to the monitor. Thus, a fully distributed monitoring
mechanism, where the monitoring load is spread out over several
monitors in the network, can help to minimise the processing over-
head to a single monitor [94]. Moreover, a fully distributed design
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prevents a single point of failure when a fault occurs in the network.
This design is desired in a DDoS attack detection system, because
it avoids the reliance on a central unit to handle all the monitoring
tasks and has the ability to scale better than a centralised design.

G2 - Centralised correlation analysis mechanism to identify attack
traffic

DDoS attack traffic must be highly coordinated and synchronised
for the attack to be successful. During a DDoS attack, a network
link may carry both attack flows and legitimate flows. A highly dis-
tributed attack that generates low-intensity attack traffic is similar to
normal traffic and hard to identify. Correlation is a good measure to
identify identical traffic patterns and behaviour coming from mul-
tiple sources [95]. In addition, correlation can distinguish between
attack traffic and flash crowd traffic because flash crowd traffic is
found to be less correlated with other flows in the network [75].

Since attack traffic comes from multiple locations, it is essential to
have a logically centralised correlation analysis mechanism to corre-
late information from all locations in the network. Note that this lim-
its the scalability. For a fully scalable system, the correlation analysis
mechanism can be distributed to several components during imple-
mentation to reduce communication and processing overhead in the
correlator.

G3 - Separate control network for the detection system to ensure
scalability with the increasing number of traffic flows or network
links

A typical DDoS detection system requires the collection of traffic
data in the network. Collecting traffic data from each device in the
network will usually incur communication overhead. Moreover, the
communication overhead typically increases the network size or traf-
fic volume in the network as more data is being collected. This means
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that the communication overhead may impact network performance
and unintentionally constitute an attack on the network when the
communication overhead gets too large. Performing traffic data col-
lection using a separate network or communication link to the main
communication links is one way to address this issue.

3.1.3 Design Principles

This section explains some of the key principles that influence the design
of SCAFE towards achieving the design goals mentioned in the previous
section.

P1 - Scalability in handling traffic of various sizes

SCAFE needs to be scalable to handle networks with a large number
of traffic flows and network links. In this thesis, SCAFE is designed
in a way that its processing time will increase at most linearly with
the number of traffic flows or network size. The scalability of SCAFE
is measured in terms of processing time and message complexity.

P2 - Modularity in system architecture components

SCAFE components need to be modular in the sense that each com-
ponent in the detection system is an individual building block of the
detection system with specific functionality. This means that each of
the components is designed with a well-defined interface and can be
replaced or upgraded when necessary. Each component is created
separately and has separate functionality. For example, a collector is
used for collecting traffic statistics, a monitor is used for traffic mon-
itoring, a correlator is used for correlation analysis and a database is
used for storing statistical information obtained from the collectors.

P3 - Fault tolerance and availability

SCAFE must be fault tolerant with high availability so as to safe-
guard the continuous functionality of the detection system and to
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avoid having a single point of failure. This means that SCAFE needs
to be designed in a way that it can handle both software and hard-
ware faults such as a server crash, disk failure, or network failure
when handling large traffic flows and network links. Each of the
components in SCAFE will need to be actively replicated to ensure
that SCAFE is able to function smoothly and in a fault-tolerant man-
ner.

3.2 Architecture Overview

As shown in Figure 3.1, SCAFE is designed to include four major com-
ponents: collector (packet and flow statistics collectors), monitor (local
monitors), database (local and global databases) and a correlator. These
components are built on SDN controllers and also Network Function Vir-
tualisation (NFV) servers in a large network which consists of several sub-
networks connected through the routers.

Figure 3.1: The SCAFE Architecture
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There are two-levels of granularity in SCAFE, namely, coarse-grained
detection and fine-grained detection. The coarse-grained detection is the
first level of the detection system, where SCAFE identifies potential target
links by collecting port statistics from switches. On the other hand, the
fine-grained detection is the second level of the detection system, where
identification of attack flows is performed by correlating the flow statistics
found in target links with the flows in other edge links in the network.

3.2.1 Level 1 - Target Link Identification

The first level (Level 1) is called target link identification. The logical repre-
sentation of this level is depicted in Figure 3.2.

Figure 3.2: Logical Flow of Level 1

This level performs a continuous local monitoring of network links
within each of the sub-networks in the network and detects signs of con-
gestions with regards to traffic volume4. These signs of congestion can be
obtained by inspecting the switch/router port statistics collected as shown
in Table 3.1. Once any of these port statistics exceed a predefined threshold
of either a traffic volume or rate of change, the network link is considered
as a potential target link.

4 Traffic volume is the total byte count or total packet count of incoming traffic on a port
which does not include the dropped byte or dropped packet count
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No Port Statistics Definition
1 bytes in Number of incoming bytes into the switch/router

port for each second
2 bytes out Number of outgoing bytes from the switch/router

port for each second
3 packets in Number of incoming packets into the switch/

router port for each second
4 packets out Number of incoming packets into the switch/

router port for each second
5 dropped in Number of dropped packets at the incoming port

of the switch/router port for each second
6 dropped out Number of dropped packets at the outgoing port

of the switch/router for each second
7 error in Number of erroneous packets at the incoming

port of the switch/router for each second

Table 3.1: List of Port Statistics Collected and their Definitions

Level 1 supports the coarse-grained detection by narrowing down the
potential target link that contains a high amount of aggregated attack traf-
fic. One of the limitations of the coarse-grained mechanism is that it would
not be able to immediately confirm if any of the traffic flows in the de-
tected links is an attack flow. This is because the signs of congestion or
rate of change in traffic volume can also be caused by normal traffic, such
as during flash crowd events. Moreover, it is also not wise to conclude that
all flows in the link are attack flows, since network links in the early stages
of an attack would likely contain both attack and normal flows. Although
there is a likelihood of false positive results arising from the presence of nor-
mal traffic in the target link, this level is still regarded as the first step for
narrowing down the search of DDoS attacks flows in the network. When a
potential target link is detected, SCAFE will then trigger an alert to initiate
the second level of the detection system, where it analyses traffic flows in
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the target link to detect attack flows.

3.2.2 Level 2 Attack Flow Detection

The second level (Level 2) of SCAFE is called attack flow detection. The
logical representation is depicted in Figure 3.3.

Figure 3.3: Logical Flow of Level 2

This level is used to detect DDoS attack flows found in the identified
potential target link in Level 1. Once SCAFE receives an alert from the
target link identification mechanism, it will then trigger the collection of
traffic flow statistics for correlation analysis. The flow statistics collected
at this level will consist of information obtained from the flow tables of
each SDN switch in the network as described in Table 3.2. At this stage,
correlation analysis of traffic flows in the potential target link and traffic
flows from other network links located in the perimeter at the edge of the
network is performed to measure their statistical similarities. Apart from
identifying if the traffic flow is an attack or normal flow, these statistics can
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also be used to identify the edge link that is closest to source of the attack
flow.

No Flow Statistics Definition
1 bytes count Total bytes count of a single traffic flow per

second
2 duration sec Duration of the traffic flow
3 length Length of traffic flow
4 packets count Number of packets in a single traffic flow per

second

Table 3.2: List of Flow Statistics Collected and their Definitions

Level 2 is designed to perform fine-grained detection because of its
ability to distinguish attack from normal flows. Unlike existing approaches
that correlate the upstream and downstream network links, SCAFE ex-
tends the correlation method by correlating network links that are located
further away in other sub-networks such as network links at the edge of
the network.

The network-wide correlation analysis method enables aggregated at-
tack traffic to be detected early at the edge before it reaches its victim.
Traditional detection approaches only identify attack traffic near to the
target link but not at the network links that are further away from the
targeted links. Note that this approach is designed primarily to detect ex-
ternal DDoS attacks but may not be as useful in detecting internal DDoS
attacks originating within the network. This is because internal DDoS at-
tacks are less common and the attack sources are often highly distributed.

3.3 Component Roles and Relationships

The four major components in SCAFE are: collector, monitor, correlator,
and database. These components interact with each other via a separate
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link in the network than the link used by the user traffic. Through the
separation of control plane and data plane in SDN, these components are
able to communicate on the control plane where user traffic travelling on
the data plane will not be impacted by the components’ communication
overhead. In addition, these components are replicated to allow SCAFE to
tolerate faults occurring in the network. This means that each component
has redundant pairs and replication will be triggered when a fault occurs.
The cost required to enable these components to communicate via the con-
trol plane and to perform replication would be the cost of implementing
SDN-enabled devices, network cabling to connect SDN-enabled devices to
the SDN controller, and redundant pairs of each SCAFE’s components on
the network.

3.3.1 Collector for Traffic Information Collection

A collector only communicates with local switches and controllers (in an
SDN network) for the purpose of obtaining both the port and flow statis-
tics. These statistics are then stored in databases for retrieval by local
monitors and the global correlator. In this case, the collectors periodically
communicate with switches, controllers, and databases through separate
management links instead of data links that carry user traffic. A separate
link helps to avoid extra communication overhead to the normal network
communication. SDN enables the separation of data plane and control
plane on the switch, where the latter is used in the polling of statistics
from switches in the network. This will ensure that the current network
performance (packet delay and congestion rate) will not be affected by
SCAFE’s operation.

3.3.2 Monitor for Target Link Identification

In SCAFE, the monitor is not only used for monitoring port statistics col-
lected by the collector, but also for sending alerts to the correlator once
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a potential target link is detected. Each of these sub-networks has a lo-
cal monitor that watches the links in the sub-network and continuously
retrieves port statistics data from the local database and compares them
with the predefined thresholds. Whenever a network link’s port statistics
exceed the thresholds, the network link is identified as a target link that
has the potential to contain DDoS attack traffic flows.

By communicating with the database, the monitor retrieves the port
statistics for every n time interval in the sub-network, where n denotes the
time in seconds. For example, when n=60, this means that the monitor will
send a request for port statistics retrieval at an interval of every 60 seconds.
The time interval is selected or determined depending on the criticality of
the network. Compared to a longer time interval, a shorter interval may
result in a more accurate detection because of the higher collection of traf-
fic information. However, a short interval can lead to frequent commu-
nication with the database, which increases the communication overhead.
At each retrieval time, all of the port statistics will be collected between the
current time, t, and the previous retrieval time, t− n. After the port statis-
tics are retrieved, the monitor will then examine if these statistics have
exceeded any of the predefined thresholds. Those statistics that exceeded
the predefined threshold will then be identified as a potential DDoS attack
target link. In this thesis, the time interval used is n=1, which is the de-
fault time interval in SCAFE. The time interval setting is predefined and
changes in the network criticality would require manual alteration to the
time interval. An adaptive time interval could be used to improve the
efficiency of SCAFE, however, it is not studied in this thesis.

Algorithm 1 shows the pseudocode for target link identification. The
same algorithm will be installed in every switch and router in the network.
The algorithm starts by retrieving port statistics from the local database
based on switchID and portID. switchID is the MAC address of a switch
whereas portID is the port number of a port on a switch. Next, the statis-
tics of each portID is compared to a predefined threshold, threshold. If any
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of the port statistics (packetcount, bytecount, length, or duration) is larger
than or equal to threshold, the link connecting to the portID is identified
as a target link, Link attack = 1. Otherwise, the link is considered as a
normal link, Link attack = 0.

When a target link is detected, the monitor will then alert the correlator
in the network with the switchID and the portID of the potential DDoS
attack target link to start Level 2 of SCAFE.

Algorithm 1 Target Link Identification in Monitor
Input:

– port statistics: retrieved from the local database
Output:

– Link attack = 1: potential attack target links
– Link attack = 0: otherwise
Level 1: Target link Identification in every switch/router

1: while true do
2: getPortStatistics(switchID, portID, packetcount, bytescount, length, duration)

3: for every switchID do
4: for every portID do
5: if (packetcount || bytescount || length || duration) ≥ threshold then
6: return Link attack = 1

7: else
8: return Link attack = 0

9: end if
10: end for
11: end for
12: end while

3.3.3 Correlator for Attack Flow Detection at Edge Routers

In SCAFE, a correlator is used to correlate the flow statistics obtained from
the potential target link identified by the local monitors and flow statistics
from the edge links. The correlation analysis process can find similari-
ties by correlating statistical traffic patterns in both target and edge links’
traffic flows to identify attack flows. SCAFE correlates flow information
between the target link and edge links instead of all other links as a way
of reducing the number of links needed for correlation. Edge links are suf-
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ficient for detecting attack flows because they are the first link an attack
flow passes through from an external network to reach its target. There-
fore, links between edge links and target link will possess similar traffic
patterns hence correlation with these links is redundant.

The correlator requires an alert from any of the local monitors to begin
the correlation analysis process. This is because correlation analysis re-
quires a large amount of processing power to compute the correlation coef-
ficient of each pair of flows (a flow from the target link and a flow from the
edge link). Since the correlator only starts correlation analysis whenever
an alert is received, unnecessary correlation analysis can be avoided dur-
ing a non-attack period. Avoiding these unnecessary correlations not only
can improve efficiency of the detection system, but also can improve the
scalability of the DDoS attack detection system. SCAFE can still be scal-
able with an increasing number of network links in the network because
the additional network links might not be edge links hence not increasing
the processing overhead of correlation analysis.

Algorithm 2 shows the pseudocode of the flow correlation analysis in
the correlator. The correlator starts flow correlation analysis when the cor-
relator receives an alert from any of the monitors in the network, indi-
cating that there is an attack. The correlation begins by retrieving flow
statistics from the global database of the target link (targetID) and also all
the edge links (edgeIDs) in the network. For each pair of flows5, where
a flow from a targetID (flowIDi) and a flow from edgeIDs (flowIDj), its
flow strength (fccij) is calculated. If the calculated flow strength is higher
than 0.8, then both flows are considered as attack flows. Otherwise, both
flows are considered as normal flows.

A correlator only communicates with the global database for informa-
tion retrieval and with monitors to receive alerts. A separate management
interface is used for the communication between databases and monitors.
This means that the communication will not be interrupted by the failure

5 Only the pair of flows from the target link and edge links are considered.
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Algorithm 2 Flow Correlation Analysis in Correlator
Input:

– flow statistics: retrieved from global database
Output:

– Link attack = 1: attack flows incoming port
– Link attack = 0: otherwise
Level 2: Flow Correlation Analysis

1: while linkUnderAttack = true do
2: getF lowStatistics

3: for f in flowID do
4: for t = 0, t ≤ 60, t++ do
5: Fingerprint(flowID)[x] = getF lowStrength

6: end for
7: end for
8: for flowIDi, f lowIDj do
9: fcci,j = fcci

fccj

10: if fcci,j > 0.8 then
11: attack flows
12: else if fcci,j ≤ 0.8 then
13: normal flows
14: end if
15: end for
16: end while

of the production network. For example, if the production network link
is under DDoS attack and experiencing congestion, this will not impact
the processing time in the correlator or data retrieval rate from the global
database to the correlator. Meanwhile, the production network will also
not be affected by the failure of the correlator in SCAFE.

3.3.4 Database for Data Storage and Retrieval

Each sub-network has a local database and is connected to a global database.
The global database resides in the core network where it connects to all
sub-networks in the network. A local database has the role of storing local
port statistics to be used for target link detection. A global database has
the role of storing flow statistics of target links and edge links (links near-
est to the hosts) in the network. SCAFE contains two different types of
databases to improve its efficiency. A local database is used in local traffic
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monitoring, and a global database can be used in the network-wide corre-
lation analysis. If we use only a single database to store all the information,
it will increase the storage space needed and communication and process-
ing overhead to the database. Therefore, having two databases, each ded-
icated to each detection level will improve the efficiency of SCAFE.

A local database is used for communication between collectors and
monitors. A collector will continuously record information into the database
where a monitor will retrieve the information from it. A global database
facilitates indirect information exchange in between both collector and
correlator. The collector will start to record information into the global
database when triggered by monitors where the correlator will retrieve
the information from it.

These databases will have a retention period to store data, where traffic
data will be deleted after a certain period of time. A secondary database
may be installed for redundancy and fault-tolerance.

3.4 Communication Path and Message Interfaces

We describe the communication path and message interfaces design be-
tween SCAFE components in both level 1 and level 2.

Variables that will be used in this section and their definitions are listed
in Table 3.3.

3.4.1 Level 1 - Target Link Identification

In the first level, the communication paths and message interfaces can be
divided into two separate processes, i.e. port statistics collection and traf-
fic monitoring. Both processes perform concurrently to detect target links
in the local AS.

In the port statistics collection communication path shown in Figure
3.4, the monitor sends a polling request to the switch where the switch
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Table 3.3: List of Variables and their Definitions

No Variable Definition
1 Port stats Statistics information on a port.
2 bytes in The number of received bytes on a port.
3 bytes out The number of transmitted bytes on a port.
4 packets in The number of received packets on a port.
5 packets out The number of transmitted packets on a port.
6 dropped in The number of received packets dropped by a port.
7 dropped out The number of transmitted packets dropped by a

port.
8 errors in The number of receive errors on a port.
9 Flow collection A command to start flow collection at the collector.
10 Flow tables Tables containing flow information and forward-

ing rules.
11 bytes count The number of bytes in a flow.
12 flow name The flow name based on destination IP.
13 duration sec The time a flow has been alive in seconds.
14 duration nsec The time a flow has been alive in nanoseconds be-

yond duration sec.
15 packet count Number of packets in a flow
16 length Length of a flow.
17 msg A command to the correlator to start the correla-

tion process.
18 dp name The name of a link.
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will post a reply with port statistics information back to the collector. The
collector will then update the local database with the new port statistics
information. This process will be repeated with a predefined time inter-
val. The time interval used is dependent on the trade-off between moni-
toring frequency and processing overhead. The higher the monitoring fre-
quency, the higher the processing overhead which will impact the overall
efficiency of the detection system.

Switch (S) Port Statistics Collector (PC) Local Database (LD)

Send PollReq(Port)

Reply(Port Stats)

Update (Port Stats)

Figure 3.4: Sequence Diagram of Port Statistics Collection Function Com-
munication Path

Descriptions for each function in the Port Statistics Collection process
are as follows:

Send PollReq(Port) Collector sends a request to the switch where it
requests to query information about port statistics.

Reply(Port stats) The switch responds to the port statistics request
by sending an update of the port statistics information (Port stats) to
the collector. The port statistics information includes bytes in, bytes out,
packets in, packets out, dropped out, dropped in, errors in.

Update(Port Stats) The collector updates the port statistics informa-
tion in a time-series table of the Local Database (LD). Each column of
the table represents a statistic, and its rows contain the value of the
statistic based on time.
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In the link monitoring communication path shown in Figure 3.5, the
monitor starts sending port statistics queries of each link in the local AS
to the LD. The port statistics information obtained from the LD is used
for checking anomalies in the statistics. The anomalies are determined
based on a set of predefined threshold values. If an anomaly is detected,
an alert containing link name (dp name) will be sent to the correlator for
the second level of detection.

Local Database (LD) Local Monitor (LM) Global Correlator (GC)

Check Anomaly
(Bytes in)

Query(Port Stats)

Query Reply(Port Stats)

alert(dp name)

Figure 3.5: Sequence Diagram of Link Monitoring Communication Path

The description of each function in the Link Monitoring process is as
follows:

Query(Port stats) The monitor will periodically query port statistics
from the local database to be used for the local monitoring process.

Query Reply(Port stats) The database will reply to the query from
the monitor with port statistics information.

Check anomaly(Bytes in) The monitor will check for suspicious statis-
tics values of every single link in the sub-network. A threshold is
used to measure the suspiciousness such as incoming/outgoing bytes
count and if the value exceeds the threshold value, it will indicate a
link is under attack.
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alert(dp name, msg) When the monitor detects a network link, the
monitor will raise an alert to the correlator to start the second stage
of detection. The alert consists of a command to start correlation
analysis on the link.

3.4.2 Level 2 - Attack Flow Detection

The second level of detection is triggered by the alert generated by the
monitor through the link detection mechanism on the first level. This level
consists of two processes, i.e. flow monitoring process, and correlation
analysis process. The alert triggers both of these processes in the first level
of detection and starts simultaneously.

In the flow statistics collection communication path as shown in Figure
3.6, when the correlator receives an alert, the correlator will send a request
to the collector to start the flow statistics process. The collector will post a
polling request to the switch where the switch will send a reply to its flow
statistics back to the collector. Unlike port statistics collection, collectors
in each sub-network will dump flow statistics (i.e. flow table information)
to a centralised Global Database. Collectors will record flow statistics for
a certain amount of time depending on the length of flow signatures re-
quired for correlation analysis.

Monitor (TM) Correlator (TR) Collector (TC) Switch (SW) Global Database (GD)

alert(dp name,
msg)

Send Req
(FlowCollection)

Poll Req(Flow)

Update(Flow tables)

Store(Flow Tables)

Figure 3.6: Sequence Diagram of Flow Statistics Collection Communica-
tion Path
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alert(dp name) Correlator received an alert from the Monitor that a
network link is potentially under DDoS attack. The alert contains
dp name which contains the name of the network link that is under
attack and msg which is a message to start the correlation process.

SendReq(Flow collection) Collector sends a request to the switch to
obtain flow statistics from the switch’s flow tables.

Update(Flow Tables) The switch responds to the flow statistics re-
quest by sending an update of the flow tables information (Flow Tables)
to the collector. The flow tables information include bytes count, du-
ration nsec, duration sec, packets count, length.

In the flow correlation analysis communication path as shown in Fig-
ure 3.7, the correlator sends queries to the global database for flow statis-
tics of the target link identified in level 1 and the global database sends a
reply with a series of flow statistics queried. The correlator then uses the
flow statistics for correlation analysis by calculating the flow correlation
coefficient for each pair of flows. A pair of flows consists of flows from the
target link and a flow from one of the edge links. If the flow correlation
coefficient is higher than a predefined threshold, then two correlated flows
are both considered as attack flows.

Read(Flow Tables) The monitor will periodically read flow statistics
information from the local database to be used for the network-wide
correlation analysis process.

Flow Tables(Bytes count, flow name, dp name) The flow statistics
needed for the network-wide correlation analysis process are bytes count,
flow name and dp name. This information is sent to the monitor.

Correlation(dp name, bytes count, flow name) The correlator will
calculate the correlation coefficient [75] of a pair of flows made up
from flows in the target link and flows in other network links. If the
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Monitor (TM) Correlator (TR) Global Database (GD)

Correlation(dp name,
bytes count, flow name)

alert(flow name, dp name)

alert(dp name, msg)

Read(Flow tables)

Flow Tables(bytes count,
flow name, dp name)

Figure 3.7: Sequence Diagram of Flow Correlation Analysis Communica-
tion Path

correlation coefficient value of bytes count exceeds a certain thresh-
old, it is considered as an attack flow. A report is created at the end
of the analysis to determine the incoming link at the edge switch,
where incoming attack source can be recognised.

alert(flow name, dp name) The correlator will raise an alert to the
administrator or mitigation system for further action to stop the at-
tack which is not within the scope of this work.

3.5 Summary

This chapter presents the design of SCAFE, a scalable and fault-tolerant
DDoS detection system architecture based on SDN and network-wide traf-
fic correlation analysis. The two-level approach in SCAFE aims to improve
scalability by narrowing the amount of traffic required for analysis to dis-
tinguish between attack and normal traffic flows. The two-level approach
consists of a coarse-grained detection where SCAFE detects a network link
that is potentially under DDoS attack and a fine-grained detection where
it distinguishes attack flows from normal flows in the network.

The first design goal, where a fully distributed monitoring mechanism
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is desired to identify potential target link is achieved by allocating local
monitor and database in each sub-network for local monitoring based on
SDN technology. A fully distributed monitoring mechanism in SDN al-
lows the use of a separate communication link (control link) for monitor-
ing without adding additional communication overhead to the production
network.

The second design goal, where a centralised correlation mechanism is
desired to identify attack traffic is achieved by using a global database
to store flow information from every link located in the perimeter of the
edge network and a centralised correlator. The global database enables the
correlator to retrieve and correlate flow information efficiently.

The third design goal, where a separate control network for SCAFE is
desired to ensure scalability with the increasing number of traffic flows
or network links is achieved by creating a separate control network for
communication such as data storage and data retrieval between SCAFE
components in various locations. The creation of a separate control net-
work avoids additional overhead on the data network where the overhead
might unintentionally constitute an attack on the network.

Overall, SCAFE fulfilled its three design goals for a scalable and fault-
tolerant DDoS attack detection system architecture in large-scale network.
The next chapter presents the implementation of SCAFE in a testbed en-
vironment and the evaluation of its effectiveness in achieving early detec-
tion, high accuracy, linear scalability and fault tolerance in a large-scale
network.



Chapter 4

SCAFE Implementation and
Evaluation

This chapter presents the implementation and evaluation of the SCAFE
architecture described in Chapter 3 to validate its scalability and fault-
tolerant capability in the early detection of both high and low-intensity
DDoS attack traffic. The evaluation consists of both quantitative and qual-
itative analysis. The quantitative analysis consists of traffic distribution
analysis in large networks, processing time scalability and end-to-end de-
lay in the network. On the other hand, qualitative analysis consists of
message complexity analysis and software and hardware fault-tree analy-
sis.

4.1 SCAFE Implementation

This section describes the implementation of the SCAFE architecture for
quantitative analysis. SCAFE is implemented on a large scale network us-
ing The Global Environment for Network Innovations (GENI). GENI is a
virtual laboratory that provides resources to carry out large-scale exper-
iments using real devices. A number of recent approaches in detecting
DDoS attacks [86] have evaluated their techniques using GENI because of

71
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its ability to emulate a real network environment. In this section, the sys-
tem implementation, such as network topology, normal traffic generation,
and attack traffic generation are described in detail.

Network Topology

Figure 4.1: GENI Testbed Emulation Set Up

A simple network topology is used in the evaluation and is shown in
Figure 4.1. The network consists of six sub-networks which represents
the different locations of the network. These sub-networks are intercon-
nected by a network of core switches (E1, E2 and E3) with routing capa-
bilities. Switches in the network are connected to an SDN controller for
traffic collection and monitoring. Each controller (C1, C2, and C3) is con-
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nected to an NFV server (MonDB1,MonDB2, and MonDB3) where the
local database and local monitoring mechanism is located. Since SCAFE
uses SDN technology, there are two types of communication paths: (1)
user traffic (data links) and (2) SCAFE’s communication traffic (control
links).

Each node in the network is a virtual machine with Ubuntu 16.04.1 LTS
installed. The role of each component in the network topology is described
in Table 4.1.

No Roles Nodes
1 Local SDN Switch S1, S2, S3, S4, S5, S8, S9
2 Core SDN Switch E1, E2, and E3
3 SDN Controller C1, C2, and C3
4 Legitimate Host User1, User2, and User3
5 Malicious Host Attacker1, Attacker2 and Attacker3
6 Decoy Server Decoy1, Decoy2, and Decoy3
7 Monitor and Local Database MonDb1, MonDb2, and MonDb3
8 Correlator and Global Database CorDb1
9 Target Host Target1, Target 2

Table 4.1: Roles Assignment

The configurations and functionalities of the nodes in the network are
as follows :

Local and Core SDN Switches - These switches are configured as
virtual switches (Open vSwitch) following the OpenFlow 1.3 proto-
col and are used to forward traffic to its respective destination us-
ing flow tables. In each switch, the port that is attached to the pro-
duction link in the network is configured as an OpenFlow vSwitch
interface. Meanwhile, the port that is connected to the DDoS detec-
tion system communication link is configured as a normal port with
static routes to the DDoS detection system components. All of the
OpenFlow vSwitch ports are configured to connect to the controller
in their local sub-network. For simplicity, switches S1, S2 and S3 are
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connected to controller C1, S4 and S5 are connected to C2, and S8 is
connected to C3.

SDN controller - A controller is used to manage traffic flows in the
network. SDN switches forward unknown packets to the controller,
and the controller will decide where to forward the packet and up-
date the switch flow tables. The controller is also used for collecting
traffic statistics. For each controller node, there are two types of SDN
controller: POX and FAUCET. POX is used to manage traffic flows
and update flow tables in switches, while FAUCET is used for col-
lecting traffic statistics using its Gauge Monitoring API. Each switch
will connect to both controllers in the controller node.

Legitimate Host - The legitimate host is used to send normal traffic
(TCP and HTTP traffic) to the target nodes in the network. Harpoon
[96] is used to generate normal traffic in the node.

Malicious Host - The malicious host acts as the attacker in the net-
work. The attacker sends DDoS attack traffic (TCP and HTTP) to its
target in the network. The target can be either Decoy servers (indi-
rect DDoS attacks) or target servers (direct DDoS attacks). D-ITG is
installed to generate DDoS attack traffic.

Decoy Server - The decoy server acts as a decoy for the indirect at-
tacks. The decoy is set as an HTTP Apache server to receive HTTP
requests in the network.

Monitor and Local Database - The monitor and local database are
two components in the DDoS detection system. Both of these com-
ponents are installed in the same node for simplicity. The node acts
as an NFV server where a monitoring script is installed for moni-
toring and an InfluxDB database is installed for traffic statistics stor-
age. From our design, each sub-network will have a monitor and
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local database node. To overcome resource limitations, multiple sub-
networks are connected to the same monitor and local database node.
However, each sub-network will have a monitor and local database
component in the node.

Correlator and Global Database - Like monitor and local database,
the correlator and global database are installed in the same node in
the NFV server. However, the correlator and global database are
a centralised component where all sub-networks are connected to
them. The node contains a correlation script for network-wide corre-
lation analysis, and an InfluxDB database is installed for storing flow
statistics.

4.2 Quantitative Analysis

This section presents the quantitative analysis as follows.

4.2.1 Traffic Distribution Evaluation

The traffic distribution evaluation consists of normal traffic generation and
attack traffic generation.

Normal Traffic Generation

Harpoon [96] is a flow level traffic generator tool that generates normal
traffic in the network. This tool is capable of generating traffic that is
representative of normal TCP and UDP traffic using distributional pa-
rameters such as file size, inter-connection time, source and destination
IP ranges, number of active sessions, constant bit-rate, periodic, and ex-
ponential ping-pong. The Pareto distribution is used to generate normal
traffic, where it is the closest distribution to normal traffic in reality [97].
In this experiment, Harpoon generates normal traffic from three normal
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hosts to two target servers in the network for approximately 30 minutes.
The process is repeated for a total of two hundred (200) times using five
different seed numbers. In other words, normal traffic generation is iter-
ated forty (40) times for every seed number. The average bytes and packets
transmitted using Harpoon is shown in Figure 4.2.

Using Harpoon, the normal TCP traffic is generated as the background
traffic by adhering to the following parameters:

File sizes: Empirical distribution of file sizes transferred from legit-
imate users to target servers. The normal traffic is generated using
file sizes that are randomly generated following the seed settings.

Inter-connection time: Empirical distribution of time between con-
secutive TCP connections initiated by an IP source-destination pair.
Similar to file sizes, inter-connection time is randomly generated us-
ing different seed settings.

IP ranges: IP ranges are set to match the IP addresses of the legiti-
mate host and target servers in our network. Our DDoS attack sys-
tem is not sensitive to the variation of source IP addresses. Therefore,
a large range of IP addresses is not needed to measure its generality.

Active sessions: The distribution of average active session during
consecutive intervals. 6 active sessions are used.

Seed number: Specify the seed for random number generation. Nor-
mal traffic is generated using five different seed numbers (i.e. 1,2,3,4,5).
The traffic generated using each seed provides variation in traffic
patterns.

Attack Traffic Generation

The two different types of DDoS attacks, namely direct link flooding DDoS
attack and indirect link flooding DDoS attack are launched through the use
of three malicious hosts (attackers).
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Figure 4.2: Average Bytes and Packets Transmitted using Harpoon
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Figure 4.3 shows the traffic distribution of direct traffic generated us-
ing the D-ITG tool: (1) direct attack traffic generated in the network with
regards to number of bytes per second, (2) direct attack traffic generated
in the network with regards to number of packets per second
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Figure 4.3: Direct Attack Traffic using D-ITG

Figure 4.4 shows the traffic distribution of indirect traffic generated us-
ing the D-ITG tool: (1) indirect attack traffic generated in the network with
regards to number of bytes per second, and (2) indirect attack traffic gen-
erated in the network with regards to number of packets per second.

Different attack intensities will produce different attack versus normal
traffic ratios in the network. As normal traffic intensity remains constant
at 30-35 Mbps, 10Mbps of attack traffic will give the attack versus normal
traffic ratio of 3.5:1. The lower the ratio of attack traffic in the network,



4.2. QUANTITATIVE ANALYSIS 79

0

20

40

60

80

650 700 750 800 850 900

Time

N
um

be
r 

of
 B

yt
es

 (
M

bi
ts

/s
) Indirect Attack Traffic from Malicious Hosts (Number of Bytes Distribution)

2500

5000

7500

10000

12500

650 700 750 800 850 900

Time

N
um

be
r 

of
 P

ac
ke

ts

Indirect Attack Traffic from Malicious Hosts (Number of Packets Distribution)

Intensity

10

15

20

25

30

35

40

45

5

50

55

60

65

70

75

80

85

90

95

Figure 4.4: Indirect Attack Traffic using D-ITG

the more similar the traffic distribution will be to that of normal traffic,
whereas a high ratio of attack traffic will show a significant difference in its
traffic distribution as compared to normal traffic. Different ratios of attack
traffic can also represent the location of attack traffic in the network. This
is because attack traffic usually has a lower ratio nearer to the attack source
and the ratio of attack traffic increases as the attack traffic gets nearer to the
victim.

From Figure 4.3 and Figure 4.4, the attack traffic distribution for both
direct and indirect attacks show similar traffic patterns to that of normal
traffic (see Figure 4.2). Heuristically, it will be difficult to identify attack
traffic from normal traffic just by using volumetric measures such as the
number of packets or number of bytes in a link.
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The set up of each type of attack is described as follows:

(a) Direct Link Flooding DDoS Attack

In a direct link flooding attack, the attackers will send attack traffic
directly to their target hosts.

(b) Indirect Link Flooding DDoS Attack

An indirect link flooding attack consists of attackers sending attack
traffic indirectly to their target by using decoys. Attack traffic is care-
fully coordinated to be forwarded to decoy servers to congest the
targeted network links.

4.2.2 Detection Accuracy of Attack Traffic in the Network

A pair of flows are considered attack flows when their correlation coef-
ficient exceeds the threshold value. The detection accuracy test aims to
investigate the impact of certain parameter settings on the accuracy of de-
tecting attack flows in SCAFE. The detection accuracy is measured using:
detection accuracy rate (DR), and false positive rate (FPR).

The parameter settings are defined in the following:

(a) Threshold value - A fixed number in terms of megabits per second
to determine the presence of DDoS attack traffic in a link. If the total
number of bytes per second exceeds the pre-defined threshold, the
link is considered to have DDoS attack traffic. Otherwise, the link is
considered as a normal link.

(b) Observation period - An observation period is a specific time period,
where network link’s information is collected and analysed. Infor-
mation about network links is collected every second but the deci-
sion on the network link status (i.e. attack or normal) will be made
at the end of each observation period. A shorter observation time
allows DDoS attacks to be detected quicker.
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Impact of Threshold Values in Detecting Potential Attack Links

A link is considered as a potential attack link once its total number of bytes
per second continuously exceeds the predefined threshold value during
the observation period. Five different threshold values (i.e. 10, 30, 50, 70
and 90 Mbps) are considered for exploration purpose.

Figure 4.5 and 4.6 show the direct and indirect high-intensity DDoS at-
tack detection rates of three monitors using different threshold values to
differentiate attack links from normal links in the network. For each moni-
tor located in different network locations, the detection rate does not differ
significantly across different threshold values except for when the thresh-
old value is at 10Mbps. At this value, the detection mechanism performs
poorly where the average detection rate of all attack intensities is about
60% for Monitor 1 and Monitor 3, and 80% for Monitor 2. This is because
of the false classification of normal traffic as an attack. The rate of normal
traffic in this experiment is about 30Mbps. For other threshold values (i.e.
30, 50, 70 and 90 Mbps), the detection rate is well above 65% for all attack
intensities in Monitor 1, 80% for Monitor 2 and 60% for Monitor 3. Moni-
tor 2 reports the highest accuracy rate among the three monitors because
that is where the attack traffic is aggregated. Monitor 2 aggregates more
attack traffic than the other two monitors because the target link is located
in the sub-network where Monitor 2 is monitoring. A higher attack traffic
concentration improves detection accuracy.

Figure 4.7 and Figure 4.8 depict the FPR values obtained from three
monitors in the network for direct DDoS Link attack detection and indi-
rect DDoS attack detection. Monitor 1 has the highest FPR values, while
Monitor 2 achieves the lowest FPR values. This is because the attack traffic
has not reached its aggregation point in sub-network 1, where attack traf-
fic information might not be sufficient, causing Monitor 1 to have a higher
FPR than Monitor 2 and Monitor 3. In all three monitors, the FPR values
decrease with increasing threshold values. This is because smaller thresh-
old values will cause a higher number of alerts generated in the Level 1
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Figure 4.5: Mean Detection Accuracy Rate of Direct DDoS Attacks on All
Monitors with Different Threshold Settings

detection of SCAFE, as normal links are identified as target links.

The results indicate that the threshold values selected do not signifi-
cantly impact either direct or indirect attack detection accuracy. However,
the FPR can be significantly reduced by using higher threshold values on
all variants of attack intensities.
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Figure 4.6: Mean Detection Accuracy Rate of Indirect DDoS Attacks on All
Monitors with Different Threshold Settings

Impact of Observation Period in Detecting Target Links

This section explores the impact of observation periods on the detection
accuracy. Shorter observation period allows attack traffic to be identified
much earlier and allows time for mitigation processes to take action. How-
ever, data collected during the short observation period might not be suf-
ficient to detect both high and low-intensity DDoS attack traffic accurately.
A set of experiments are conducted to find out the impact of observation



84 CHAPTER 4. SCAFE IMPLEMENTATION AND EVALUATION

0

5

10

15

20

10 30 50 70 90
Threshold (Mbps)

F
P

R
(%

)

Mean False Positive Rate (FPR) of Direct DDoS Attacks in Monitor 1

0

1

2

3

4

5

10 30 50 70 90
Threshold (Mbps)

F
P

R
(%

)

Mean False Positive Rate (FPR) of Direct DDoS Attacks in Monitor 2

0

5

10

15

20

10 30 50 70 90
Threshold (Mbps)

F
P

R
(%

)

Mean False Positive Rate (FPR) of Direct DDoS Attacks in Monitor 3

Intensity

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

Figure 4.7: Mean False Positive Rate of Direct DDoS Attacks on All Moni-
tors with Different Threshold Settings

period in detecting target links. 5 different observation periods are used
and the results are shown in Figure 4.9 and Figure 4.10.

Figure 4.9 shows the detection accuracy rate of Monitor 1, Monitor 2
and Monitor 3 for the detection of direct DDoS attack traffic. Detection
rate at Monitor 2 is shown to be the highest among the three monitors
because the target link and links closest to the target links are being mon-
itored by Monitor 2. All three monitors show a slight improvement or no
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Figure 4.8: Mean False Positive Rate of Indirect DDoS Attacks on All Mon-
itors with Different Threshold Settings

improvement at all with increasing observation periods. This means that
longer observation period does not impact the detection accuracy rate sig-
nificantly.

Figure 4.9 and 4.10 show the detection rate of Monitor 1, Monitor 2, and
Monitor 3 at the 1, 5, 10, 15, and 20 second observation periods. In Figure
4.9, all three monitors show a slight improvement or no improvement at
all in the detection accuracy as observation periods get longer when de-
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Figure 4.9: Mean Detection Accuracy Rate of Direct DDoS Attacks on All
Monitors with Different Observation Periods

tecting direct DDoS attack traffic. Similarly, Figure 4.10 also shows a slight
improvement or no improvement in the detection accuracy as observation
periods get longer when detecting indirect DDoS attack traffic.

Figure 4.11 and 4.12 show the detection rate of Monitor 1, Monitor 2,
and Monitor 3 at the 1, 5, 10, 15, and 20 second observation periods. In
Figure 4.11, the false positive rates only show a slight improvement or
no improvement at all, as the observation period gets longer, to detecting
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Figure 4.10: Mean Detection Accuracy Rate of Indirect DDoS Attacks on
All Monitors with Different Observation Periods

direct DDoS attack links from all three monitors in the network. Similarly,
Figure 4.12 shows there is only a slight improvement or no improvement
at all, as the observation periods get longer, to detecting indirect DDoS
attack links.

Figure 4.12 and 4.11 show FPR values when different observation peri-
ods are used. FPR values decrease linearly as the observation period gets
longer on all monitors. The results show that the observation periods have
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Figure 4.11: Mean False Positive Rate of Direct DDoS Attacks on All Mon-
itors with Different Observation Periods

very little to no impact on the detection accuracy but have a linear effect
on the false positive rate.

Although the results shows that no significant improvement is observed
from the range of observation times evaluated, evaluation using an ob-
servation time longer than 20 seconds is not compared. This is because
a longer observation period means a larger amount of data is needed for
processing which will impact the efficiency of the detection system. There-
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Figure 4.12: Mean False Positive Rate of Indirect DDoS Attacks on All
Monitors with Different Observation Periods

fore, this thesis only compares the observation time from 1 -20 seconds.

4.2.3 Network End-to-End Delay

Figure 4.13 shows the end to end delay from users to targets in three dif-
ferent events; before a DDoS attack occurs, during the attack, and after the
attack has stopped. This is to measure the impact of DDoS attacks on the
delay time of packet transmission from users to targets.



90 CHAPTER 4. SCAFE IMPLEMENTATION AND EVALUATION

● ● ● ● ● ● ● ●3

6

9

12

hi
gh

_d
ire

ct
_5

0

hi
gh

_d
ire

ct
_7

5

hi
gh

_d
ire

ct
_1

00

hi
gh

_d
ire

ct
_1

25

hi
gh

_i
nd

ire
ct

_5
0

hi
gh

_i
nd

ire
ct

_7
5

hi
gh

_i
nd

ire
ct

_1
00

hi
gh

_i
nd

ire
ct

_1
25

Time (minutes)

D
el

ay
 (

m
s)

event ● After Attack Before Attack During Attack

Direct−75−End to End Delay from User1 to Target1

● ● ● ● ● ● ● ●3

6

9

12

hi
gh

_d
ire

ct
_5

0

hi
gh

_d
ire

ct
_7

5

hi
gh

_d
ire

ct
_1

00

hi
gh

_d
ire

ct
_1

25

hi
gh

_i
nd

ire
ct

_5
0

hi
gh

_i
nd

ire
ct

_7
5

hi
gh

_i
nd

ire
ct

_1
00

hi
gh

_i
nd

ire
ct

_1
25

Time (minutes)

D
el

ay
 (

m
s)

event ● After Attack Before Attack During Attack

Direct−75−End to End Delay from User1 to Target2

● ● ● ● ● ● ● ●3

6

9

12

hi
gh

_d
ire

ct
_5

0

hi
gh

_d
ire

ct
_7

5

hi
gh

_d
ire

ct
_1

00

hi
gh

_d
ire

ct
_1

25

hi
gh

_i
nd

ire
ct

_5
0

hi
gh

_i
nd

ire
ct

_7
5

hi
gh

_i
nd

ire
ct

_1
00

hi
gh

_i
nd

ire
ct

_1
25

Time (minutes)

D
el

ay
 (

m
s)

event ● After Attack Before Attack During Attack

Direct−75−End to End Delay from User2 to Target1

● ● ● ● ● ● ● ●3

6

9

12

hi
gh

_d
ire

ct
_5

0

hi
gh

_d
ire

ct
_7

5

hi
gh

_d
ire

ct
_1

00

hi
gh

_d
ire

ct
_1

25

hi
gh

_i
nd

ire
ct

_5
0

hi
gh

_i
nd

ire
ct

_7
5

hi
gh

_i
nd

ire
ct

_1
00

hi
gh

_i
nd

ire
ct

_1
25

Time (minutes)

D
el

ay
 (

m
s)

event ● After Attack Before Attack During Attack

Direct−75−End to End Delay from User2 to Target2

● ● ● ● ● ● ● ●3

6

9

12
hi

gh
_d

ire
ct

_5
0

hi
gh

_d
ire

ct
_7

5

hi
gh

_d
ire

ct
_1

00

hi
gh

_d
ire

ct
_1

25

hi
gh

_i
nd

ire
ct

_5
0

hi
gh

_i
nd

ire
ct

_7
5

hi
gh

_i
nd

ire
ct

_1
00

hi
gh

_i
nd

ire
ct

_1
25

Time (minutes)

D
el

ay
 (

m
s)

event ● After Attack Before Attack During Attack

Direct−75−End to End Delay from User3 to Target1

● ● ● ● ● ● ● ●3

6

9

12

hi
gh

_d
ire

ct
_5

0

hi
gh

_d
ire

ct
_7

5

hi
gh

_d
ire

ct
_1

00

hi
gh

_d
ire

ct
_1

25

hi
gh

_i
nd

ire
ct

_5
0

hi
gh

_i
nd

ire
ct

_7
5

hi
gh

_i
nd

ire
ct

_1
00

hi
gh

_i
nd

ire
ct

_1
25

Time (minutes)

D
el

ay
 (

m
s)

event ● After Attack Before Attack During Attack

Direct−75−End to End Delay from User3 to Target2

Figure 4.13: Average End-to-End Delay based on High and Low-Intensity
Attacks per Time Interval
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All monitors show significant increase in their end-to-end delay during
an attack. This indicates that the DDoS attack is successful as user traffic is
experiencing congestion and taking much longer time than usual to reach
its destination. Direct DDoS attacks impact the monitor’s end-to-end de-
lay more significantly, where it is approximately 10 seconds higher than
the delay time before and after an attack, as opposed to only 1-2 seconds
increase in the delay time during an indirect DDoS attack.

In this evaluation, direct DDoS attacks show more significant end-to-
end delay than indirect DDoS attacks because there are only two victim
servers receiving attack traffic from direct DDoS attacks as opposed to four
decoy servers receiving attack traffic from indirect DDoS attacks.

4.2.4 Processing Time Scalability

The processing time of SCAFE with different attack intensities, network
sizes, and traffic volumes are evaluated.

Figure 4.14 depicts the average time to monitor each link in a sub-
network for each time interval. The processing time of different attack
types and intensities. This figure shows the average processing time does
not change significantly when the intensity of the attack increases with
regards to direct and indirect DDoS attack traffic. This is because an in-
crease of attack intensity does not increase the number of links, number
of switches or number of flows in the network where the processing time
could be affected based on the scalability analysis conducted in Section 4.3.
The DDoS attack uses the same number of attackers (bots) in the network
but with different levels of attack intensity. However, the average process-
ing time rises during an attack and decreases after the attack because of
the change in the number of flows. While an attack is happening, there is
an increasing number of traffic flows from the attackers to their victims.

Figure 4.15 depicts the average time to correlate flows in a link each
time local monitors in the network detect a potential target link. From
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Figure 4.14: Average Time Taken for Each Monitor to Observe each Link
in a Sub-Network

the figure, the average processing time increases almost linearly with the
increase in attack intensity. This result validates SCAFE’s design where the
processing time increases linearly to the increase of DDoS attack intensity.

4.3 Qualitative Analysis

This section presents the qualitative analysis of message complexity and
fault tree analysis.
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Figure 4.15: Average Time Taken for Each Controller to Correlate Each
Target Link in a Sub-network based on High and Low-Intensity Attacks in
a Time Interval

4.3.1 Message Complexity

Message complexity is used to evaluate SCAFE’s scalability design. The
message complexity is defined as the number of messages required to
communicate between components in the system in order to perform DDoS
detection tasks in a single unit of time per polling period as the network
scales in terms of network size and traffic volume.

The notations used to calculate the message complexity are shown in
Table 4.2.

A scalable system would be able to process traffic smoothly by keeping
the number of messages low as the network size or traffic volume increases
in magnitude. This translates to a scalability target, where the number of
messages should increase sub-linearly or linearly with respect to the net-
work size and traffic volume. If the system requires a superlinear amount
of messages with the increase of the network or traffic size, the system
is said to be non-scalable. To evaluate SCAFE’s scalability, the complex-
ity of each detection component is analysed. Note that the scalability can
also be affected by the polling period, where longer polling period will re-
duce communication overheads. However, its impact is not as significant
as other factors. For simplicity, it is assumed that all components use the
same polling period (i.e. 1 second).
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Item Notation Description

Switch(S)
Sn

The total number of switches in a
sub-network

Se
The total number of switches with edge
links in a network

Link (L)
Ln The total number of links in a sub-network

Le
The total number of edge links in a
network

Flow(F ) F̄ The average number of flows per link
Sub-network(N ) N The number of sub-networks in a network

Message(M ) M

The number of messages required for
communication between components to
execute a task in a single time interval.

Table 4.2: Notations Used in Complexity Analysis

Relationship among Links, Switches, Flows and Sub-networks towards
the Network Size and Traffic Volume

The relationship among the number of links, switches, flows and sub-
networks towards the size of the network and volume of the traffic is de-
scribed in the following.

(a) Number of Links, L
A link connects two nodes1 in the network. Each pair of nodes has
only a single link connecting to each other. Therefore, an increase
in the number of links in the network means that there is also an
increase in the number of nodes in the network, where these nodes
may or may not be switches in the network.

1 A node is a network device is the network such as host, server, router, switch, and
network controller.
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(b) Number of Switches, S
A switch forwards traffic in the network following a set of rules in
its forwarding tables. Each switch in the network would require at
least one link connected to the network. There is a linear relationship
between the number of switches and the number of links where the
number of switches is indirectly proportional to the number of links
in the network. However, it is noted that the number of links is not
directly proportional to the number of switches in the network.

(c) Average Number of Flows, F̄
A network link consists of traffic flows travelling to their respective
destinations. The average number of flows, F̄ , represents the aver-
age number of distinct flows found in a single link. The number of
flows in each link increases when the number of nodes (hosts and
servers) in the network increases.

(d) Number of Sub-Network, N
The number of sub-networks in a network. The number of sub-
network is based on the design of the network. Each sub-network
represents a specific location in the network. The number of links
and switches can vary across multiple sub-networks. Every sub-
network will have a port statistics collector, flow statistics collector
and local database.

Message Complexity of Each Component

The message complexity between components when detecting DDoS at-
tacks using the DDoS detection architecture is described in Table 4.3.

(a) Port Statistics Collector
Periodically, the port statistics collector is responsible for running
two tasks: (1) send port statistics poll requests to switches in a sub-
network and (2) store port statistics information in a local database.
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Component Task Complexity

Port
Statistics
Collector

Send port statistics poll request to switches
in a sub-network, Ppoll

O(Sn)

Forwards port statistics information to a lo-
cal database, Pstore

O(Ln)

Flow
Statistics
Collector

Send flow statistics poll requests to edge
switches in a sub-network, Fpoll

O(Se

N
)

Forwards flow statistics information to a
global database, Fstore

O(F̄Le)

Monitor Send port statistics queries to local
database, Wquery

O(Ln)

Correlator Send flow statistics queries to global
database, Cquery

O(F̄Le)

Local
Database

Return port statistics queries to monitor,
DLreply

O(Ln)

Global
Database

Return flow statistics queries to correlator,
DGreply

O(F̄Le)

Switch
Return port statistics poll request to port
statistics collector, Spreply

O(Ln

N
)

Return flow statistics poll request to flow
statistics collector, Sfreply

O(F̄ Le

Se
)

Table 4.3: Message Complexity of Port Statistics Collector, Flow Statistics
Collector, Monitor, Local Database, and Switch

For the first task, at a predefined polling interval, a port request will
be sent to each switch in the sub-network to poll port statistics. Since
a request is sent for each switch, it is assumed each switch will re-
quire one message to be sent from the port statistics collector. There-
fore, the number of messages a port statistics collector would be re-
quired to send for polling port statistics from all switches in the sub-
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network will depend on the number of switches in the sub-network.
For the second task, it is assumed that a single message is needed
to send each link’s port statistics information to the local database.
Hence, the number of messages required to send the port statistics
information of all links in the sub-network to the local database de-
pends on the number of links available in the sub-network (refer to
Table 4.3).

(b) Flow Statistics Collector
Tasks in the flow statistics collector are triggered when a potential
attack link is found in a sub-network. Whenever an attack link is
detected, the flow statistics collector will run two tasks : (1) send
flow statistics poll requests to edge switches and the attack switch
in a sub-network and (2) store flow statistics information in a global
database. For each polling period, only one potential attack link is
detected.

In the first task, where the flow statistics collector sends polling re-
quests to edge switches and attack switch, only edge switches and
one of the switches connected to the potential attack link are polled
by the flow statistics collector. Each of the edge switches requires
one message to poll flow statistics from the edge switches and there
will only be a single switch connected to the potential attack link.
Accordingly, the number of messages required by the flow statistics
collector to request flow statistics from switches is dependent on the
number of edge switches in the network.

In the second task, it is assumed that one message is needed to store
the flow statistics of a single flow in the network. To detect the pres-
ence of DDoS attack flow in the network, the flow statistics of edge
links and potential target link are needed for analysis. This means
that the number of messages required to send all flow statistics in-
formation to the global database will depend on the total number of
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edge flows in the network (refer to Table 4.3).

(c) Monitor
Periodically, each local monitor communicates with its local database
to query for port statistics information of every link in the sub-network
per polling interval. Assuming that each link requires a single mes-
sage to send port statistics information to the local database, the
number of messages needed to query each link’s port statistics in-
formation from its local database relies on the number of links in the
sub-network (refer to Table 4.3).

(d) Local Database
The role of a local database is to store port statistics information and
return queried port statistics information to the monitor. In a net-
work, each sub-network has a local database. Given the assump-
tion that each link’s port statistics information is delivered through
one message, the number of links in the sub-network will determine
the number of messages needed by local database to return all port
statistics queries to the monitor (refer to Table 4.3).

(e) Global Database
The global database acts as a storage for flow statistics information
sent by the flow statistics collector and returns queried flow statistics
information when requested by the correlator. The correlator sends
a query for each edge and each potential target links in the network
to obtain flow statistics information. Assuming that the number of
flows in the potential attack link is constant or bounded above by a
constant, the number of messages required to return all flow infor-
mation will be dependent on the number of edges flows in the entire
network (refer to Table 4.3).
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(f) Switch
Switches in the SCAFE detection system report port statistics to the
port statistics collector. If the switch is an edge switch, it will also re-
turn flow statistics information when polled by the flow statistics col-
lector. In the former task, assuming that the switch returns the port
statistics of each link in a single message to the port statistics collec-
tor, the number of messages needed to return all port statistics infor-
mation will be dependent on the number of links in the sub-network.
In the latter task, the number of edge links in a sub-network will de-
termine the number of messages required to forward flow statistics
to the flow statistics collector with the assumption that a single mes-
sage is needed to send flow statistics information of a single link to
the flow statistics collector (refer to Table 4.3).

(g) Correlator
The correlator’s primary goal is to calculate the flow correlation co-
efficient of each pairwise combination of flows, which consist of a
flow from the target link and a flow from one of the edge links. To
achieve that, the correlator will need to communicate with the global
database to obtain flow statistics information from all edge and po-
tential attack links stored in the global database. Assuming that the
correlator will send a single message to query flow statistics of each
link and there is only one potential attack link, the total number of
messages the correlator needs to send is dependent on the number
of edge links in the entire network (refer to Table 4.3).

Message Complexity of Each Process

Recall that the SCAFE detection system consists of four processes: port
statistics collection, traffic monitoring, flow statistics collection and flow
correlation analysis (see Section 3.2). Each sub-network has local port
statistics collection, traffic monitoring and flow statistics collection pro-
cesses and they run in parallel with other sub-networks. Since the com-
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plexity of each task based on the analysis presented in section 4.3.1 has
been discussed and all of them have linear complexity, the complexity val-
ues of each process is derived as shown in Table 4.4.

(a) Port Statistics Collection

As described in Section 3.4.1 and shown in Figure 3.4, port statis-
tics collection consists of three sequential tasks associated with one
polling interval. All the three tasks involve communication with
other components in the system. First, the system starts by using
the port statistics collector to send poll requests to all switches in
the sub-network and second, each switch will reply by returning its
port statistics information. Lastly, the port statistics collector will
forward the port statistics information to the local database for stor-
age. The complexity measures as shown in Table 4.4 show that there
is a linear relationship between port statistics collection complexity
and the number of switches and links in the sub-network. In other
words, whenever the number of links or number of switches in the
sub-network increases, the complexity will increase linearly. This is
because the increase in the number of switches or links is directly
proportional to the number of messages sent between monitor, local
database and port statistics collector in the sub-network.

(b) Link Monitoring

Link monitoring has two tasks that require communication with other
components in the system. These tasks are: (1) Each monitor com-
municates with the local database in the sub-network to query port
statistics information, and (2) local database replies to monitor queries
by sending queried port statistics information back to the monitor.
The complexity of this process will also increase linearly with in-
creasing number of links in the sub-network. This is because when
the number of links increases in a sub-network, the monitor and lo-
cal database will need to send a greater number of messages to per-
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form the tasks. The linearity of the process follows the equation,
O(Ln) +O(Ln) +O(Ln) ≈ O(Ln).

(c) Flow Statistics Collection

Flow statistics collection consists of three tasks according to the dia-
gram shown in Figure 3.6. Similar to port statistics collection, these
tasks run sequentially and involve communicating with other com-
ponents in the system. First, the poll requests are sent from the
flow statistics collector to poll flow statistics in the edge switches
on the sub-network. Second, each switch replies by returning the
flow statistics information to the flow statistics collector. Lastly, the
collected flow statistics will be forwarded to the global database for
storage. The message complexity measures shown in Table 4.4 showed
that there is a linear relationship between the number of switches
and links in the sub-network. This means that whenever the num-
ber of edge links or number of edge switches in the sub-network
increases, the complexity will increase linearly.

(d) Flow Correlation Analysis

The message complexity in flow correlation analysis is derived from
two tasks: (1) number of messages sent from correlator to the global
database for the purpose of querying flow statistics information of
all edge links and target links, and (2) number of messages sent to
port statistics collector by the global database to return the queried
flow statistics information. The complexity of this process will in-
crease linearly with an increase in the number of edge links and the
average number of flows per link in the sub-network. As the number
of edge links increases, the number of messages to query and return
the queries of flow statistics information between correlator and the
global database will also increase.
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Overall Scalability

Based on the complexity measures of the components and processes in
SCAFE, all of them scaled linearly with the increase in network size and
traffic volume. A linear increase in message complexity indicates that
SCAFE is scalable as the network size and traffic volume increases.

From the evaluation results, SCAFE scales well with increasing traf-
fic volume and network size, which is suitable for large-network deploy-
ments. By taking advantage of the separation of control and data planes
in SDN technology, SCAFE is able to collect both port and flow statistics
through the control link. This avoids adding extra overhead to the net-
work data link that may lead to congestion. Also, each sub-network has
a local controller to prevent overloading the controller in a large network
environment.

4.3.2 Fault-Tree Analysis

The fault-tree analysis is used to evaluate both software and hardware
fault tolerance of SCAFE. Software faults are related to the functionality of
the system components where they experience crashing or being compro-
mised. Hardware faults are related to the hardware of each component in
the SCAFE detection system such as correlators, monitor, collectors, and
databases. Both software and hardware faults can be further categorised
into fail-stop failure where the faults resulted in the DDoS detection stop-
ping completely or Byzantine failure where faults result in the SCAFE de-
tection system providing inaccurate results.

This analysis identifies potential faults in the SCAFE detection sys-
tem. SCAFE is designed to be in a general active replication environment,
where secondary(i.e. redundant) components are actively replicating their
respective primary components. Active replication means that both pri-
mary and secondary components can run in parallel while receiving the
inputs and deterministically generating the same output. With this design,



104 CHAPTER 4. SCAFE IMPLEMENTATION AND EVALUATION

each component is stateless, where all states are the same in both primary
and secondary components to ensure the system can function smoothly
with faults.

Hardware Related Faults

SCAFE is designed to be fault-tolerant by using simple component redun-
dancy. Each component is modular and can be actively replicated, where
primary and secondary components run in parallel. Figure 4.16 shows a
detailed diagram of the hardware component faults and their impacts on
the functionality of SCAFE.

In figure 4.16, it shows that the detection will fail if the correlator fails.
Correlator failure can be caused by three events which are (1) Target link
identification failure where it did not trigger the correlator to start corre-
lation analysis when there is DDoS attack traffic in the network, and (2)
Correlator stops working due to the correlator crashing, and (3) correlator
faulty due to a corrupted database, the component being compromised or
human error in the configuration or updates of the component. Traffic col-
lection can cause target link identification failure, monitor stops working,
or monitor is faulty. Traffic collection failure is due to the collector crash-
ing, or the collector is faulty due to being compromised or configuration
error.

The system can tolerate these faults, and the fault-tolerance methods
are explained in the following:

(a) What will happen when a switch is ill-functioning? How does
it impact the accuracy of detection?

Switches in the network are installed with SDN capabilities where
each switch is responsible for sending port and traffic statistics to the
SDN controller. When a switch is ill-functioning, it means that the
switch is overloaded and unable to post statistics to the controller.
Also, the switch is unable to forward or receive traffic smoothly. The
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Figure 4.16: Fault Tree for Hardware Faults

system accuracy is not impacted by the missing statistics from the
failed switch since there will be no traffic regardless of attack traffic
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or normal traffic passing through the switch. According to the design
of conventional networks, traffic intended to be forwarded to a failed
switch will be re-forwarded to another switch when failure happens.
Therefore, the traffic statistics will be captured by another switch in
the network to be analysed for attack flows.

(b) What will happen when a collector fails? How does it impact
the accuracy of detection?

A collector in the SCAFE detection system is responsible for collect-
ing port and flow statistics in its sub-network. When a port statis-
tics collector in a particular sub-network fails, the secondary col-
lector, which runs in parallel with the primary collector, continues
port/flow statistics collection to detect congested links in the net-
work. Therefore, the accuracy of the detection system will not be
impacted. However, if the secondary collector fails before the pri-
mary collector is fixed, then the accuracy of the detection system
might be reduced because the monitor in the sub-network is unable
to monitor the traffic of that particular sub-network. This will result
in misdetection which will impact the overall accuracy of the detec-
tion system.

(c) What will happen when a monitor fails? How does it impact
the accuracy of detection?

A monitor is responsible for monitoring port statistics collected by
the collector to detect congested network links in the sub-network
that can potentially be a DDoS attack target link. When the mon-
itor fails, its secondary monitor will continue the monitoring pro-
cess. This is similar to the fault-tolerance ability of the collector. A
failed monitor will result in DDoS target links in the particular sub-
network going undetected and reduce the accuracy of the system
linearly.



4.3. QUALITATIVE ANALYSIS 107

(d) What will happen if the correlator fails? How does it impact
the accuracy of detection?

A correlator is responsible for correlating traffic flows from differ-
ent parts of the network to detect DDoS attack traffic. The correla-
tor requires flow statistics stored in the global database for correla-
tion analysis. This is the most crucial part of the system where fine-
grained detection to detect attack traffic flows is executed. Without
the correlator, the flow correlation analysis is unable to perform, and
the detection system will only identify DDoS attack target links. The
correlator is also redundant whereby a replica correlator will resume
the correlation analysis function when the correlator fails. The accu-
racy of SCAFE to detect traffic flows will exponentially reduce when
both correlator and replica correlator fails.

(e) What will happen if the database is not working? How does it
impact the accuracy of detection?

The local and global databases are responsible for storing traffic statis-
tics for monitoring and correlation analysis. The collector from each
sub-network will update the local database with port statistics peri-
odically and with flow statistics when the attack flow detection pro-
cess is triggered. Port statistics are later retrieved for link monitoring,
and flow statistics are extracted for correlation analysis. If a database
is not working, then it means that links cannot be monitored and at-
tack flows cannot be detected. However, SCAFE is designed for link
monitoring process to be decentralised where each sub-network has
a local database. Therefore, the failure of the database will cause the
detection accuracy to reduce linearly depending on the number of
links unable to be monitored due to the failed database.
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(f) What will happen if one of the network links in the detection
system communication path fails? How does it impact the accuracy
of detection?

Network links are responsible for the communication channel be-
tween components in the detection system. If a network link is not
working or has failed, components in the detection system will not
be able to communicate with each other. For example, if the network
link connecting between the collector and a local database failed, the
collector will not be able to update nor retrieve information from the
database.

Software Related Faults

SCAFE is designed to be fault tolerant by duplicating the functionality of
the software. Each component is modular and can its functionality can be
copied or transfer to another device when the component stops working.
Figure 4.17 shows a detailed diagram of the fault tolerance level of the
system impacting its software functionality.

In figure 4.17, it shows that the detection will fail if the correlation anal-
ysis fails. The correlation analysis process can be caused by two events
which are (1) Target link identification failure where it did not trigger the
correlator to start correlation analysis when there is DDoS attack traffic
in the network, and (2) the global database is corrupted, and no data can
be retrieved for the correlation analysis process. Target link identification
failure can be caused by the inability of traffic monitoring to detect any
attack links because traffic collection on the port statistics collector failed,
the local database is corrupted, or connection between the components
used for traffic monitoring is broken. Port statistics collection can fail due
to corrupted traffic or link delay causing the information to be dropped
before reaching the collector for processing.

The system can tolerate these software faults, and the fault-tolerance
methods are explained in the following:



4.3. QUALITATIVE ANALYSIS 109

 

or 

collector 
crash 

Collector 
Stop 

Working 

Collector 
Faulty 

(byzantine) 

or 

config 
error compromised 

Monitor stop 
working 

Target Link 
Identification 

failed 

Monitor 
Faulty 

(byzantine) 

Monitor 
crash 

database 
corrupted compromised human 

error 

or 

Traffic 
Collection 

Failed 

Correlator 
Stop 

Working 

Correlator 
Faulty 

(byzantine) 

database 
corrupted 

compromised 

human 
error 

Correlator 
crash 

or 

Correlator 
failed 

Detection 
Failed 

Sofware Level Fault Tree Analysis 

Figure 4.17: Fault Tree for Software Faults

(a) What will happen when the traffic collection mechanism fails?

The traffic collection mechanism runs periodically in the SCAFE de-
tection system to detect DDoS attack target links. This mechanism
runs on an NFV server locally on each sub-network. When the traffic
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collection mechanism fails, a redundant traffic collection mechanism
will start and continue with the collection mechanism by sending re-
quests to switches to poll port statistics until the failed mechanism
is restored. The accuracy of the SCAFE detection system will not be
impacted because a redundant traffic collection mechanism is used
to ensure no port statistics are lost and missing for the use in the
target link identification process.

(b) What will happen when the correlation mechanism fails?

The correlation mechanism only runs when a target DDoS attack link
is detected. When the correlation mechanism is not working, the
SCAFE detection system will be unable to detect attack flows. This
would also impact the accuracy of the SCAFE detection system sig-
nificantly. To tolerate faults impacting the correlation mechanism,
the mechanism can be duplicated on another device. When the cor-
relation mechanism fails, the correlation process can be transferred
to the other device to detect attack flows.

Overall System Fault Tolerance

SCAFE is tolerant of components crashing, corruption, and broken net-
work links because the detection components are designed to be modular
and can be duplicated to allow active replications to prevent the DDoS
detection system failing or its accuracy decreasing during a fault.

4.4 Summary

This chapter demonstrated the scalability and fault tolerance capability
of SCAFE through qualitative and quantitative analysis of the system ar-
chitecture. SCAFE is implemented in the GENI testbed for quantitative
analysis.
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The quantitative analysis shows that the use of threshold values only
impacts the false positive rate of DDoS attack detection in both direct and
indirect DDoS attacks. On the other hand, the observation period does not
affect detection accuracy significantly where SCAFE is able to provide sim-
ilar accuracy with a shorter observation period. This validates the early
detection capability of SCAFE.

The qualitative analysis shows the scalability analysis with regards to
message complexity and fault-tolerant analysis based on fault trees. The
scalability analysis proves that SCAFE components and processes are able
to scale linearly as the amount of traffic flow and the number of network
links increases. On the other hand, the fault-tolerant analysis shows the
behaviour of SCAFE during the event of software and hardware faults by
using fault trees. The modularity and active replication of SCAFE compo-
nents increase the fault tolerance level of the DDoS attack detection sys-
tem. Moreover, the decentralised design of some components and mecha-
nisms in SCAFE allows partial failures when both primary and secondary
components or mechanisms fail.

Overall SCAFE is scalable and fault-tolerant. However, its accuracy
can be improved. Normal volumetric features are used in investigating
the detection accuracy in this chapter. However, alternative features can
also be used to detect DDOS attacks. Next chapter explores the use of
an alternative traffic features called entropy-based features to increase the
accuracy in distinguishing attack traffic from normal traffic.





Chapter 5

Identifying Good Entropy-based
Features

This chapter focuses in answering the second sub-question of this thesis:

What are the good entropy-based features and useful parameter set-
tings for distinguishing attack traffic from normal traffic?

Although entropy is popularly used in detecting DDoS attack traffic,
it still lacks the generality in detecting various intensity DDoS attacks ac-
curately. This thesis hypothesises that using different entropy measures,
window sizes, and the entropy-based features may affect the accuracy of
detecting DDoS attacks. This means that using some particular entropy
measures, window sizes, and entropy-based features in DDoS attack de-
tection may provide higher accuracy than other measures in distinguish-
ing attack traffic amongst normal traffic. Therefore, this chapter explores
various entropy measures, gains an understanding of the trade-off be-
tween window size and accuracy, and identifies a set of useful entropy-
based features and parameter settings for constructing good entropy-based
features that are useful in the identification of both high and low-intensity
DDoS attacks.

113
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In the next three subsections, we present the dataset used, steps to con-
struct entropy-based features, the influence of entropy measures and the
influence of window sizes in revealing attack traffic patterns. Then, we
discuss the relationship of entropy-based features with the SCAFE archi-
tecture and conclude the chapter by providing a summary on the useful-
ness of entropy features.

5.1 Dataset

This chapter uses the UNB ISCX 2012 intrusion detection evaluation dataset
(ISCXIDS2012) [98]. This dataset contains seven days (Monday through to
Sunday) of network activities which include high and low-intensity at-
tack traffic. IRC Botnet DDoS attack traffic represents the high-intensity
DDoS attack and HTTP Denial of Service attack traffic represents the low-
intensity DDoS attack traffic. Each day has a different combination of at-
tacks. This dataset was chosen because it is one of the recent datasets that
is popularly used by other researchers.

5.2 Constructing Entropy-based Features

Entropy-based features can be constructed using two steps: (1) extract
features from the raw dataset, (2) compute entropy values based on pre-
defined entropy measures using a specific time interval.

5.2.1 Step 1 - Extract Features from Raw Dataset

All possible traffic features that can be extracted from packet header in-
formation are used to construct entropy-based features except redundant
features (i.e., Absolute time, resolved/unresolved addresses) or features
that contains null values (i.e., Cisco VSAN, 802.1Q VLAN id, Expert Info
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Severity). Table 5.1 shows the list of traffic features that can be extracted
from packet header information.

No Features Definition

1 Delta Time Time since the previous packet was captured.
2 Source IP Address Source IP address of the packet
3 Destination IP Address Destination IP address of the packet
4 Source Port Number Source port number of the packet
5 Destination Port Number Destination port number of the packet
6 Source MAC Address Hardware address of the previous network router/ host the

packet is coming from
7 Destination MAC Address Hardware address of the next-hop network router/host the

packet is going to
8 Source Network Address Source Network address of the packet
9 Destination Network Address Destination Network address of the packet
10 Protocol Identifier Type of protocol identifier such as HTTP, TELNET, and DNS
11 Packet Length Size of packets in bits
12 IP DSCP Value Differentiated Services Code Point value of each packet
13 TCP Sequence Number TCP sequence number relative to the first seen segment in a TCP

session
14 TCP Window Length Maximum amount of received data, in bytes, that can be buffered

at one time on the receiver
15 TCP Payload Size of TCP Payload

Table 5.1: List of Traffic Features from a Tcpdump File Extracted using
Wireshark

5.2.2 Step 2 - Compute Entropy Values of Features based

on a Pre-Defined Entropy Measure and Window Size

Two types of entropy-based features are computed by calculating their
entropy values: regular entropy-based features created by calculating the en-
tropy of single traffic features and entropy variation features created by cal-
culating the variation between two distinct regular entropy-based features.
Table 5.2 shows the list of regular entropy-based features and Table 5.3
shows the list of entropy variation features computed from features ex-
tracted in Section 5.2.1.
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Regular Entropy-based Features

Delta Time Entropy (D.Time) Protocol Identifier Entropy (Protocol)
Source IP Address Entropy (S.IP) Destination IP Address Entropy(D.IP)
Source Port Address Entropy (S.Port) Destination Port Address Entropy (D.Port)
Source MAC Address Entropy (S.MAC) Destination MAC Address Entropy (D.MAC)
Source Network Address Entropy (S.Net) Destination Network Address Entropy (D.Net)
Packet Length Entropy (P.Length) IP DSCP Value Entropy (DSCP)
TCP Sequence Number Entropy (Seq) TCP Window Length Entropy (W.Length)
TCP Payload Entropy (Payload)

Table 5.2: List of Regular Entropy-based Features Constructed

Entropy Variation Features

Separation IP Address Entropy(V.IP) [21]
Separation Port Number Entropy(V.Port) [99]
Separation MAC Address Entropy (V.MAC) [99]
Separation TCP Information Entropy(V.TCP)[99]

Table 5.3: List of Entropy Variation Features Constructed

5.2.3 Influence of Entropy Measures in Traffic Patterns

This subsection focuses on examining the influence of different entropy
algorithms in the accuracy of detecting DDoS attack traffic. Four differ-
ent entropy measures, namely, Shannon, Tsallis, Rényi and Zhou entropy
measures were used in this evaluation.

Network Traffic Containing High-Intensity DDoS Attack

The Tuesday’s network activities in the ISCXIDS2012 dataset contains the
IRC Botnet based DDoS attack traffic. This dataset is used as a represen-
tation of network traffic containing high-intensity DDoS attack traffic as
shown in Figure 5.1, Figure 5.2, and Figure 5.3.

Figure 5.1 shows the traffic patterns of high-intensity DDoS attack traf-
fic and normal traffic based on the seven entropy features, namely Delta
Time, Source & Destination IP Addresses, Source & Destination Port Num-
bers and Source & Destination MAC Addresses.
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Figure 5.1: Different Entropy Measures of Entropy-based Features with
High-Intensity Attack Traffic - 1

Figure 5.2 shows the traffic patterns of high-intensity DDoS attack and
normal traffic of Protocol Identifier, IP DSCP Value, TCP Sequence Num-
ber, TCP Window Length, TCP Payload, Source Network Address and
Destination Network Address.

Figure 5.3 depicts the traffic patterns of high-intensity DDoS attack
and normal traffic of entropy variation features, namely Separation IP Ad-
dress, Separation Port Number, Separation MAC Address, and Separation
TCP Information.

In all three figures (Figure 5.1, Figure 5.2, Figure 5.3), the grey area
indicates the presence of DDoS attack, while the non-grey area indicates
normal traffic. From these figures, entropy values generated using Shan-
non, Tsallis and Zhou entropy measures provide a similar traffic pattern
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Figure 5.2: Different Entropy Measures of Entropy-based Features with
High-Intensity Attack Traffic - 2

whereas Rényi entropy gives quite a different traffic pattern than the oth-
ers. Since Tsallis and Zhou entropies are a generalisation of Shannon en-
tropy, traffic patterns generated will be similar.

In this evaluation, we observe that it is possible to distinguish high-
intensity DDoS attack traffic from normal traffic quite easily when entropy
measures are applied to most traffic features except for entropy measures
calculated using the TCP Sequence (”Seq”) field as shown in Figure 5.3.
This is because in most entropy-based features generated, the entropy val-
ues of attack traffic have a much smaller range than normal traffic. For
example, in Figure 5.1, the attack traffic entropy values of the Source IP
address feature, using the Shannon entropy algorithm, lie between 0.5 to
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Figure 5.3: Different Entropy Measures of Entropy-based Features with
High-Intensity Attack Traffic - 3

0.75 whereas the normal traffic entropy values of the same entropy lie be-
tween 0.15 to 0.9. Rényi entropy performs poorly in providing significant
differences between attack traffic and normal traffic as both traffic entropy
values lie in a similar range.

The differences between these entropies, as shown in the figures, are
the distributional differences between attack and normal traffic. There is
not much of a difference in the distributional patterns of attack and nor-
mal traffic using entropy-based features constructed using Tsallis entropy,
which may not be useful in identifying stealthy DDoS attacks. This is
because the differences between attack and normal traffic entropy values
may be too small to be noticeable and can be easily misclassified.

Shannon and Zhou entropies provide more distinct differences in dis-
tributional patterns and entropy values between attack and normal traf-
fic. Unlike Shannon and Zhou entropies, Rényi entropy gives almost no
difference in the traffic patterns between attack traffic and normal traffic.
However, Rényi entropy shows significant differences between the traffic
patterns of attack traffic and normal traffic when applied to TCP Window
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Length (”W.Length”) and Delta Time between packets (”D.Time”) entropy
features, in which it shows more explicit differences than other entropy al-
gorithms (Zhou, Shannon, and Tsallis) examined.

Overall, Rényi entropy does not perform well at distinguishing high-
intensity DDoS attack traffic from normal traffic whereas Shannon, Tsallis
and Zhou entropies perform better and can identify DDoS attack traffic
relatively well.

Network Traffic Containing Low-Intensity DDoS Attack

The Monday’s network activities in ISCXIDS2012 dataset contains HTTP
Denial of Service attack traffic. We use this dataset to represent network
traffic containing low-intensity DDoS attack as shown in Figure 5.4, Fig-
ure 5.5, and Figure 5.6.

Figure 5.4 depicts the traffic patterns of low-intensity DDoS attack and
normal traffic based on the seven entropy features, namely Delta Time,
Source & Destination IP Addresses, Source & Destination Port Numbers
and Source & Destination MAC Addresses.

Figure 5.5 shows the traffic patterns of high-intensity DDoS attack and
normal traffic of Protocol Identifier, IP DSCP Value, TCP Sequence Num-
ber, TCP Window Length, TCP Payload, Source Network Address and
Destination Network Address.

Figure 5.6 depicts the traffic patterns of low-intensity DDoS attack and
normal traffic of entropy variation features, namely Separation IP Ad-
dress, Separation Port Number, Separation MAC Address, and Separation
TCP Information.

Similar to Figures 5.1, Figures 5.2, and Figures 5.3, the grey area shown
Figures 5.4,Figures 5.5,and Figures 5.6 indicate that DDoS attack traffic is
present in that time interval. Unlike high-intensity DDoS attacks, it is dif-
ficult to distinguish between low-intensity attack traffic and normal traf-
fic. Most entropy-based features such as Delta Time (”D.Time”), source
IP address (“S.IP”), destination IP address (“D.IP”), source port number
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Figure 5.4: Different Entropy Measures of Entropy-based Features with
Low-Intensity Attack Traffic - 1

(“S.Port”), destination port number (“D.Port”), source MAC address (“S.MAC”),
destination MAC address (“D.MAC”), protocol identifier (“Protocol”), and
packet length (“P.Length”), show the entropy values decreases during the
attack. However, this is true for only a small part of the attack, specifi-
cally in the middle of the attack (i.e. around the 1200-second area in the
graphs). This phenomenon indicates that the low-intensity attack requires
some time before it shows a significant change in the traffic distribution in
the network.

TCP Sequence (“Seq”) and Window Length (“W. Length”) entropies
shown in Figure 5.5 using Shannon, and Zhou entropies show a clear dis-
tinction between attack traffic and normal traffic.
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Figure 5.5: Different Entropy Measures of Entropy-based Features with
Low-Intensity Attack Traffic - 2

5.2.4 Effects of Window Size in Traffic Patterns

This subsection focuses on examining the influence of window size in cal-
culating entropy values for DDoS detection on network traffic containing
both high and low-intensity DDoS traffic. As the window size determines
which traffic is used to calculate an entropy value, it is important to find
the right size to prevent inaccuracy in detecting attack traffic from normal
traffic. For example, if the window size is set too large, DDoS attacks that
lasted for a shorter period than the window size may be hidden and the
entropy value computed may not show the distinct difference between
attack traffic and normal traffic. However, if the window size is set too
small, entropy values generated may be too sensitive to the changes in the
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Figure 5.6: Different Entropy Measures of Entropy-based Features with
High-Intensity Attack Traffic - 3

traffic. This means that a slight change in the network can be regarded as
an attack even though it is not. In this case, a lot of false alarms may occur.

Network Traffic Containing High-Intensity DDoS Attack

Here, we compare six different window sizes (30, 60, 90, 120, 150, and
180 seconds) and observe the traffic patterns generated. Traffic patterns
based on the entropy values of traffic features are shown in Figure 5.7 and
Figure 5.8.

Inspecting the figures, we observe that all features have similar traffic
patterns even though different window intervals are applied. We observe
that there are almost no differences in traffic patterns between these four
window intervals. Entropy is being calculated more frequently in the 30-
second interval compared to the 60-second interval, but both gave similar
traffic patterns. The lack of differences in attack traffic and normal traffic
patterns suggest that the size of the window used for generating traffic
feature entropy values only gives a slight effect on the accuracy of DDoS
attack detection.
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Figure 5.7: Shannon entropy-based features with high-intensity attack
constructed using different window sizes - 1

5.2.5 Relationship with SCAFE Architecture

The entropy-based features constructed in this chapter can be used in both
Level 1 and 2 of the SCAFE architecture discussed in Chapter 3. In the
Target Link Identification level (Level 1) of the detection system, entropy-
based features can be used to indicate signs of DDoS attacks by measuring
their entropy values. When the value of these entropy-based features ex-
ceeds the threshold, an alert can be raised to trigger the start of SCAFE’s
Attack Flow Detection Level (Level 2). In level 2, the value of entropy-
based features in network links can be used to measure the correlation
between two links as opposed to using flow information in the current
SCAFE architecture design.
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Figure 5.8: Shannon Entropy-based Features with High-Intensity Attack
Constructed using Different Window Sizes - 2

The effectiveness of entropy-based features in the SCAFE architecture
could not be evaluated in this research due to a constraint on resources.
SCAFE was implemented on GENI which is a shared testbed for cyberse-
curity research. Constructing entropy-based features in GENI would re-
quire traffic data to be collected on the packet level, which would require
a huge amount of storage space. Since GENI provides a limited amount of
disk space (i.e. 10GB) in each node in a shared environment, it would not
be possible to perform data collection. In addition, downloading a large
amount of data from GENI would also take a huge amount of time. There-
fore, the usage of entropy-based features in the SCAFE architecture is not
studied in this thesis.
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5.2.6 Summary

In this chapter, we examine the usefulness of entropy-based features in de-
tecting DDoS attacks. We start by analysing each entropy-based feature as
shown in Figure 5.1 to Figure 5.8. We found that entropy-based features
such as Delta Time (Figure 5.1), Destination Port Number (Figure 5.1), Des-
tination MAC Address (Figure 5.1), Protocol Identifier (Figure 5.2), and
Packet Length (Figure 5.3) can show a more distinct difference between
attack and normal traffic.

Although some entropy-based features can be effective in detecting a
DDoS attack, they may not be effective for all types of DDoS attack. For
example, Delta Time can be effective against DDoS attacks that send attack
traffic at a constant rate but may not be effective against DDoS attacks that
send attack traffic at a variable rate that is similar to the rate of normal
traffic. Destination IP Address is effective against DDoS attacks that send
attack traffic to the same IP Address but may not be effective against DDoS
attacks that send attack traffic to multiple IP addresses such as the Cross-
fire attack [12]. An attacker can easily defeat the detection scheme based
on single entropy features by randomising the attack traffic sending rate
and IP addresses.

Also, at the earlier stage of an attack, the temporal change of a single
entropy feature may be too small to be noticed by the detection scheme,
especially when it is observed close to the attack source. Temporal changes
are changes that could be observed over time. Entropy values before an
attack and during an attack could be different based on the characteris-
tics of attack traffic and its differences with normal traffic. These differ-
ences might not be noticeable in the early stage of an attack, before the
aggregated attack traffic meets at the aggregation point, but become more
noticeable after some time where attack volumes are increasing over time.

We conclude that entropy-based features are useful in DDoS attack
detection, but their accuracy relies on the type of entropy features used,
the type of entropy measures used and the type of attacks that are being
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detected. Therefore, the next chapter will investigate a generalised traf-
fic classification based on entropy-based features that can detect various
types of DDoS attack traffic with consistent accuracy.





Chapter 6

Traffic Classification using
Multiple Entropy-based Features
and Three (3) Machine Learning
Classifiers in DDoS Attack
Detection

The third sub-question for developing an accurate and early DDoS attack
detection system is:

How can we improve the accuracy of traffic classification using entropy-
based features?

Since entropy-based features were found to be promising for distin-
guishing between attack traffic and normal traffic in the previous chapter,
this chapter aims to answer the aforementioned sub-question by propos-
ing a generalised traffic classification scheme: Entropy-based Features and
Three (3) Machine Learning Classifiers (E3ML). The rationale behind the
design of E3ML is that it utilises the strength of entropy-based features
studied in Chapter 5 with machine learning classifiers to improve detec-

129
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tion accuracy in the detection of both high and low-intensity DDoS attacks.
By utilising the traffic patterns of multiple entropy-based features and a
voting mechanism based on MLP, RNN and ADT classifiers, E3ML is able
to improve the overall accuracy of both high and low-intensity DDoS at-
tack detection in the network.

The remainder of this chapter presents the overview of the E3ML DDoS
attack detection scheme, its attack detection model and the evaluation re-
sults.

6.1 Overview

E3ML is a traffic classification scheme that is designed to address the per-
formance issues mentioned in Section 1.2. All entropy-based features iden-
tified in Chapter 5 are used to expose different types of DDoS attack traffic
in the network. These features act as inputs to E3ML’s classification model,
where the classification model is formed through a voting mechanism
based on three machine learning classifiers: multilayer perceptron (MLP),
recurrent neural network (RNN) and alternating decision tree (ADT). An
initial pilot study was conducted, where every single ML classifier avail-
able in the WEKA library was evaluated using 10 cross-fold validation.
The top three classifiers were chosen as the ML classifiers used in E3ML
after comparing the performance results of all the classifiers: MLP, RNN,
and ADT gave the highest accuracy among all other classifiers found in
WEKA.

E3ML attack detection scheme is composed of two parts: (1)Entropy-
based Feature Construction and (2) Attack Detection.

6.1.1 Entropy-based Feature Construction

The first part of E3ML, an entropy-based feature construction module (Fig-
ure 6.1) for constructing two types of entropy-based features: regular entropy-
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based features and entropy variation features. Regular entropy-based features are
created from the entropy of raw traffic features, whereas the entropy vari-
ation features are created by calculating the variation between two distinct
regular entropy-based features. Since each entropy-based feature studied in
Chapter 5 gave different accuracy results for different DDoS attacks, this
thesis hypothesises that combining these two type of features may increase
the consistency in identifying different types of DDoS attacks accurately.

Figure 6.1: Feature Construction

The feature construction is done in three steps.

1. Raw feature extraction: The raw features are extracted from each
packet header. The features such as source IP address, destination IP
address, source port number, destination port number, and protocol
identifier, are commonly used features, whereas delta time, packet
length, TCP sequence number, TCP window length are the uncom-
mon features used in DDoS attack detection [100].

2. Entropy calculation: E3ML computes the entropy value of each traf-
fic feature based on the Shannon entropy using specific window size,
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W where W = 60 seconds in all of our experiments. Since the pre-
vious study in Section 5.2 has shown that the entropy measures and
window size selections have a very little impact on the accuracy of
DDoS attack detection, Shannon entropy is used as the entropy mea-
sure and 60 seconds as the window size for evaluation of the E3ML
detection scheme. A window size of 60 seconds is used because it
was shown as a suitable classification point and a common practice
in the literature [21]. The Shannon entropy measure is used because
it is a commonly used entropy measure in traffic classification. Fea-
tures computed in this stage are known as regular entropy-based fea-
tures as described in Table 6.1.

3. Build entropy variation features: By using combinations of two reg-
ular entropy-based features generated from previous steps, entropy
variation features are generated using the Lyapunov exponent sep-
aration method proposed by Ma et al. [21] as shown in Equation
(6.1).

λk =
1

tk
ln

Ĥs(k)

Ĥd(k)
(6.1)

From Equation (6.1), λk is the rate of separation between two dis-
tinct features, for example, the entropy of source IP address (Ĥs(k))
at time tk and the entropy of destination IP address (Ĥd(k)) at time tk
where k is the time sequence of the traffic. This method generates a
new feature that can distinguish attack traffic effectively on high-
intensity DDoS attacks [21]. Four new entropy variation features
(separation port number, separation MAC address, separation network ad-
dress and separation TCP value) are generated using this method to
evaluate their effectiveness at detecting a wider range of DDoS at-
tacks, in particular, both high and low-intensity DDoS attacks.

These features are described in Table 6.2.
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No Features Definition

1 Delta time Entropy value of Delta Time of the network traffic in a specific
time interval

2 Source IP Address Entropy value of Source IP address of the network traffic in a
specific time interval

3 Destination IP Address Entropy value Destination IP address of the network traffic in a
specific time interval

4 Source Port Address Entropy value Source port number of the network traffic in a spe-
cific time interval

5 Destination Port Address Entropy value Destination port address of the network traffic in
a specific time interval

6 Source MAC Address Entropy value of source MAC address of the network traffic in a
specific time interval

7 Destination MAC Address Entropy value of destination MAC address of the network traffic
in a specific time interval

8 Source Network Address Entropy value of Source Network address of the network traffic
in a specific time interval

9 Destination Network Address Entropy value of Destination Network address of the network
traffic in a specific time interval

10 Protocol Entropy value of protocol of the network traffic in a specific time
interval

11 Packet Length Entropy value of packet length of the network traffic in a specific
time interval

12 IP DSCP Value Entropy value of IP DSCP Value of the network traffic in a spe-
cific time interval

13 TCP Sequence Number Entropy value of TCP sequence number of the network traffic in
a specific time interval

14 TCP Window Size Entropy value of TCP Window Size of the network traffic in a
specific time interval

15 TCP Length Entropy value of TCP Length of the network traffic in a specific
time interval

Table 6.1: List of Entropy-based Features Constructed

6.1.2 Attack detection

Figure. 6.2 shows the second part of E3ML called Attack Detection. The
attack traffic is detected through a classification model that is built upon a
voting system. The voting system uses a simple majority voting technique,
where the classification results of both MLP and RNN needs to be the same
for a consensus to be reached. If both MLP and RNN are unable to reach
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Table 6.2: Entropy Variation Features generated using Lyapunov Exponent
Separation

No attributes Definition

1 Separation IP Exponent separation of source and destination IP Address
2 Separation Port (new) Exponent separation of source and destination Port numbers
3 Separation MAC (new) Exponent separation of source and destination MAC Address
4 Separation Network (new) Exponent separation of source and destination Network Address
5 Separation TCP (new) Exponent separation of TCP window size and destination TCP Length

a consensus or resulted in a tie, the classification result of a third classifier,
ADT will be taken into account for the final decision. The voting system
in E3ML is summarised in Algorithm 3.

Figure 6.2: Attack Detection

The advantage of this algorithm lies in the use of multiple ML classi-
fiers, where two ML classifiers will need to have the same results or a third
ML classifier will used to break the tie. This approach not only increases
the accuracy E3ML, but also avoids the reliance on a single ML classifier
to detect both high-intensity and low-intensity DDoS attacks. In addition,
the use of multiple ML classifiers allows the exploitation and collective
use of multiple ML classifiers. Among all the ML classifiers tested (i.e.
Naive Bayesian, Linear Regression, SVM, etc), MLP, ADT, and RNN were
found to give the best performance. Although these ML classifiers top the



6.1. OVERVIEW 135

Algorithm 3 E3ML Algorithm

1: procedure TRAFFIC CLASSIFICATION

2: Build training model for each classifier (MLP, RNN, and ADT)
3: Let X = {a set of entropy features of traffic with respect to a time

interval, T}
4: for every X do
5: Get classification result (C) from MLP and RNN
6: if CMLP == CRNN == attack then
7: Majority vote == true
8: Detection result == attack
9: else if CMLP == CRNN == normal then

10: Majority vote == true
11: Detection result == normal
12: else if CMLP != CRNN then
13: Majority vote == not true
14: Get classification result (C) from ADT (arbiter)
15: if CADT == CRNN == attack then
16: Detection result == attack
17: else if CADT == CRNN == normal then
18: Detection result == normal
19: else if CADT != CRNN then
20: Detection result == attack
21: end if
22: end if
23: end for
24: end procedure
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other ML classifiers in distinguishing attack from normal traffic, they still
lack performance consistency between different types of DDoS attacks. In
particular, RNN can detect attack traffic effectively with high precision
on high-intensity attacks but does not perform well with low-intensity at-
tacks. On the other hand, MLP performs better in detecting normal traffic
but at the same time has poor overall precision. ADT performs relatively
well in both low-intensity attack traffic and high-intensity attack traffic,
but its overall precision for both attacks is not as high as RNN.

Multiple ML classifiers can be used to overcome the shortcomings of
a single ML classifier. The rationale behind the selection of multiple ML
classifiers and a voting system is to take advantage of the strength of each
classifier to distinguish attack traffic from normal traffic. Since RNN per-
formed poorly in detecting normal traffic, MLP and ADT can be used to
improve decision making. For example, when traffic is considered as at-
tack traffic by RNN and as normal traffic by MLP, ADT will act as a tie
breaker by choosing a side based on its classification result. In the E3ML
algorithm, the traffic is said to be malicious if ADT and RNN disagrees
with each other or ADT and RNN both say that it is attack traffic. Other-
wise, the traffic will be considered as normal traffic.

6.2 Performance Evaluation

This section analyses the efficacy of the E3ML DDoS attack detection scheme.
E3ML is implemented using JAVA and WEKA Data Mining Software [101]
is integrated as the ML library. The evaluation metrics, datasets used for
evaluation and also the evaluation results are detailed in the next three
subsections.

6.2.1 Evaluation Metrics

The evaluation metrics used in the evaluation of E3ML are precision, recall,
and F1 score.
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• True Positive (TP) - The amount of attack traffic correctly detected as
attack traffic.

• False Positive (FP) - The amount of normal traffic incorrectly de-
tected as attack traffic.

• False Negative (FN) - The amount of attack traffic incorrectly de-
tected as normal traffic.

• Precision - The ratio of correctly detected attack traffic (TP) against
the total of detected attack traffic (TP+ FP). The equation is described
as:

precision =
TP

TP + FP
(6.2)

In other words, precision measures the number of detected attacks
that were actually attacks. The higher the precision, the better the
performance of the classifier.

• Recall - The ratio of correctly detected attack traffic (TP) against the
total of actual attack traffic (TP+ FN). The equation is described as:

recall =
TP

TP + FN
(6.3)

Recall is also known as the sensitivity measure, where it measures
the number of actual attacks that are detected as attacks. The higher
the recall, the higher the number of attacks the classifier correctly
detects.

• F1 score - The harmonic mean of precision and recall. The equation
is described as:

F1-Score = 2 ∗ Precision ∗ Recall
Precision + Recall

(6.4)

The higher the F1-score, the better the performance for a classifier. If
the F1-score reaches 1, both precision and recall are perfect.
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6.2.2 Datasets

E3ML is evaluated and validated by using a relatively new dataset from
the University of New Brunswick 2012 ISCX dataset (ISCX’12) [98] and
the commonly used 1998 DARPA Intrusion Detection dataset (DARPA’98)
[102]. Although the DARPA’98 is two decades old, this dataset is still be-
ing used for the comparison and evaluation of DDoS attack detection and
defence approaches in the literature [103, 104].

The ISCX’12 dataset is provided by the University of New Brunswick.
This dataset contains seven days of traffic data (Monday - Sunday) and
focuses on more recent forms of attacks such as the high-intensity ap-
plication layer attacks generated using IRC botnets and low-intensity at-
tacks generated using the Slowloris tool. Monday’s traffic contains HTTP
DoS traffic which is high-intensity and normal traffic data, whereas Tues-
day’s traffic consists of IRC botnet-based DDoS attack traffic which is low-
intensity and normal traffic data. Both Monday’s (High-Intensity) and
Tuesday’s (Low-Intensity) traffic data are used to evaluate E3ML perfor-
mance on distinguishing high and low intensity DDoS attack traffic from
normal traffic.

As for the DARPA’98 dataset provided by MIT Lincoln Lab, it con-
tains more traditional attacks such as SMURF, Neptune, and Land. Each
of these attacks uses a different attack intensity in sending its attack traffic
hence this dataset is considered to have a mix-intensity attack traffic. This
dataset contains seven weeks (Week 1-7) of training data and two weeks
(Week 8-9) of testing data, which includes 27 types of network-based at-
tacks that can be summarised into four categories: Denial-of-Service (DoS),
Remote to Local User (R2L), User to Superuser (U2S), and Probe. The
training data from Week 1 and Week 2 containing mix-intensity attack traf-
fic and normal traffic are used to evaluate E3ML performance on distin-
guishing mix-intensity attack traffic from normal traffic. Week 1 training
data is labelled as Mix-Intensity 1 dataset and Week 2 training data is la-
belled as Mix-Intensity 2 dataset. Note that E3ML focuses only on detect-
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ing DoS attacks (SMURF, Neptune, Pod, Teardrop, and Land attacks) for
this dataset. Other attacks are considered as noise and labelled as normal
traffic.

6.2.3 Evaluation Results

These datasets are evaluated by randomly selecting 70% of attack traffic
and normal traffic from each dataset as suggested by Tan et al. [105] as
a way of avoiding inaccurate detection due to the hidden bias in the se-
quential data. A 10-fold cross-validation and default parameter settings
of ADT and MLP in WEKA [101] are used in the performance evaluation
of E3ML. Since WEKA does not have an official RNN classifier, the Elman
RNN package [106] is adopted into the WEKA library and its default pa-
rameter settings are used.

In this evaluation, two sets of entropy-based features are used: (1) 20
common and uncommon entropy-based features (source and destination
IP addresses, source and destination port addresses, protocol identifier,
delta time, source and destination MAC addresses, source and destination
Network addresses, packet length, IP DSCP value, TCP sequence number,
TCP Payload, TCP Window length) and (2) 5 commonly used entropy-
based features (source and destination IP addresses, source and destina-
tion port addresses, and protocol identifier). These features are used as
inputs to the machine learning classifiers.

20 entropy-based features are selected based on the study done in Chap-
ter 5. Since not all single entropy-based classifiers can distinguish between
both high and low-intensity DDoS attack traffic and normal traffic, all con-
structed entropy-based features are used to leverage the strength of both
common and uncommon entropy-based features for improving detection
accuracy. For comparison, 5 commonly used entropy-based features are
used. Other combinations of entropy-based features are not tested as the
aim of this chapter is to show the effectiveness of using both uncommon
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and common entropy-based features. Finding the optimal set of entropy-
based features will require additional study which is beyond the scope of
this this thesis.

As shown in Figure 6.3, 20 entropy-based features showed better F1-
scores as compared to the 5 commonly used entropy-based features. The
results were consistent for all four classifiers except for the ADT classifier
in the high-intensity dataset. However, this can be ignored since there
is only a mere 0.06% difference compared to the other classifiers where
the difference is at least 1% in the F1-score between the 20 features and 5
features.
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Figure 6.3: Effects of 5 Commonly used Entropy-based Features - 5F (red)
vs 20 Entropy-based Features - 20F (blue)

Figure 6.4 shows the precision, recall and F1-score of E3ML and three
single ML classifiers in detecting both high and low-intensity DDoS at-
tacks. E3ML consistently achieved the highest or second highest preci-
sion and F1-score as compared to ADT, RNN, and MLP on High-Intensity,
Mix-Intensity 1 and Mix-Intensity 2 datasets. E3ML consistently achieved
the lowest or second lowest in terms of recall on all four datasets. E3ML
achieved the highest or second highest in terms of F1 score on Low-Intensity
dataset.

Table 6.3 presents the average F1-scores along with standard deviation
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Figure 6.4: Precision, Recall and F1-scores of ADT, MLP, RNN, and E3ML
in High, Low and Mix-Intensity DDoS Attack Detection

of E3ML and other single ML classifiers on various DDoS attack intensity
datasets. The average F1-scores of each classifier for each dataset is calcu-
lated by averaging the F1-scores obtained through x-fold cross-validation,
where x = {2, · · · , 19}. The results clearly show that E3ML outperforms
other single ML classifiers in all four datasets.

Based on the study by Demšar [107], the Wilcoxon signed rank test
[108] is a preferred method used to compare two ML classifiers. In this
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Table 6.3: The Comparison of F1-Scores between E3ML and other Machine
Learning Classifiers on Various Intensity Datasets

Dataset E3ML ADT RNN MLP
High-intensity 0.98 ± 0.02 0.59± 0.03 0.90± 0.03 0.90± 0.04

Low-intensity 0.86 ± 0.02 0.34± 0.02 0.57± 0.07 0.57± 0.02

Mix-intensity 1 1.00 ± 0.02 0.84± 0.01 0.95± 0.02 0.95± 0.01

Mix-intensity 2 1.00 ± 0.02 0.84± 0.01 0.95± 0.02 0.95± 0.01

thesis, the two-tailed Wilcoxon signed rank test is performed to measure
the significance of the differences in performance between E3ML and sin-
gle ML classifiers on various intensity datasets. E3ML is considered to be
significantly better than a single ML classifier when the significance level,
p-value, is smaller than 0.05 (5% significance level). The test results are
shown in Table 6.4, Table 6.5, and Table 6.6.

As shown in Table 6.4, E3ML is significantly better than ADT, MLP, and
RNN for all datasets in terms of precision. The results indicate that E3ML
is able to detect attack traffic more accurately than the other classifiers
tested.

Table 6.4: The Significance Test (p-value > 0.05) on the Precision

Dataset E3ML vs ADT E3ML vs RNN E3ML vs MLP
High-intensity 0.0002 0.0027 0.0002
Low-intensity 0.0002 0.0278 0.00288

Mix-intensity 1 0.0002 0.01878 0.0002
Mix-intensity 2 0.0002 0.01878 0.0002

Table 6.4 shows the significance of the recall between E3ML and other
single ML classifiers (i.e. RNN, MLP, and ADT). E3ML is evidently better
than all three classifiers in terms of recall on three out of the four datasets
tested. The recall of the low-intensity dataset is shown to be less signifi-
cant, which indicates that E3ML performance is similar to the performance
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of all three classifiers in terms of recall.

Table 6.5: The Significance Test (p-value > 0.05) on the Recall

Dataset E3ML vs ADT E3ML vs RNN E3ML vs MLP
High-intensity 0.0002 0.0042 0.0002
Low-intensity 0.61708 0.1141 0.48392

Mix-intensity 1 0.0002 0.01878 0.0002
Mix-intensity 2 0.0002 0.01878 0.0002

Similar to the significance test shown in Table 6.5, E3ML performance
in terms of F1-score is significantly better than ADT, MLP and RNN for
high-intensity, mix-intensity 1 and mix-intensity 2 datasets as shown in
Table 6.6. However, for the low-intensity dataset, E3ML is only signifi-
cantly better than ADT but not for RNN and MLP.

Table 6.6: The Significance Test (p-value > 0.05) on the F1-Score

Dataset E3ML vs ADT E3ML vs RNN E3ML vs MLP
High-intensity 0.0002 0.0139 0.0002
Low-intensity 0.0012 0.47152 0.0703

Mix-intensity 1 0.0002 0.01878 0.0002
Mix-intensity 2 0.0002 0.01878 0.0002

Based of the Wilcoxon Signed Rank test, it can be concluded that E3ML
is significantly better than all three classifiers in all datasets except for low-
intensity datasets where the significance level of E3ML is not prominent.

E3ML is also compared with existing entropy-based approaches and
other recent approaches as shown in Table 6.7. The Exponent Separation
Detection Algorithm (ESDA) proposed by Ma et al. [21] is implemented
for comparison and investigates the performance of the approach with dif-
ferent threshold values, Tk, including the one used in their paper, Tk = 0.1

in the case of a positive effect on the detection accuracy. In addition, E3ML
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is also compared to the reported results of another recent approach by
Tan et al. [105]. These approaches are evaluated using the High-Intensity
dataset (IRC-Botnet attack traffic) and 10-fold cross validation.

Table 6.7: Comparison of Detection Performance on ISCX 2012 Dataset

Approaches

Non Entropy-based Entropy-based approach

EMD-Li

[105] ESDA [21]

Our ApproachThreshold (T )

0.1 -0.1 -0.5 -0.01

TPR 90.04% 4.93% 46.48% 43.66% 42.96% 94.74%

The evaluation results showed that the E3ML approach outperformed
the entropy-based methods and other state-of-the-art approaches such as
computer vision and evolutionary computation based methods. E3ML
achieved 4.74% higher precision than EMD-Li (computer vision technique
based on Earth Mover’s Distance). E3ML has also proven to be more ac-
curate than the chaos analysis technique in [21] by more than double its
accuracy rate on all four threshold values tested.

6.3 Summary

This chapter proposed a DDoS detection scheme based on multiple entropy-
based features and machine learning classifiers to improve detection accu-
racy and generality. The technique, Entropy-based Three Machine Learn-
ing Classifiers (E3ML) consists of feature construction to generate two
types of entropy-based features (i.e., regular entropy-based features and en-
tropy variation features) and attack detection to classify network traffic into
attack or normal using our detection algorithm. E3ML also contains a
voting system to compare classification results of two different machine
learning classifiers, MLP and RNN and later compare with ADT when a
tie happens between MLP and RNN.
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Results from performance evaluations showed that E3ML could detect
DDoS attacks with different intensities effectively across datasets. Even
though E3ML is only slightly more accurate than RNN, E3ML shows po-
tential in differentiating attack traffic from normal traffic consistently across
different datasets with high accuracy and low misdetection. E3ML outper-
formed several recent approaches (EMD-Li and ESDA) and showed that it
could produce consistently high accuracy results with datasets containing
different kinds of DDoS attacks.

This chapter found that a combination of multiple entropy-based fea-
tures performed better than single entropy-based features. In addition, the
evaluation results showed that machine learning acts as a better threshold
selector or classifier in determining whether traffic is an attack traffic or
a normal traffic than a fixed threshold. The technique, developed based
on multiple entropy-based features and machine learning techniques, pro-
vides a promising direction for DDoS detection.





Chapter 7

Contributions and Future Work

The main research question of this thesis as described in Chapter 1 was
”How can we detect high and low-intensity DDoS attacks accurately
and early?”. In answering this question, this thesis proposed three useful
components for developing an accurate and early high and low-intensity
DDoS attack detection system.

The first section of this chapter presents the main contributions to the
field of DDoS attack detection. Section 7.2 outlines the possible future
work for DDoS attack detection. This thesis concludes by providing a
summary of this research.

7.1 Contributions

7.1.1 Design for a Scalable and Fault-Tolerant DDoS De-

tection System for Early Detection (SCAFE)

SCAFE is designed to detect DDoS attacks early, where attack traffic is de-
tected at the edge of the network, closer to the attack source. The SCAFE
architecture is scalable and fault tolerant so as to ensure that DDoS at-
tack detection could operate smoothly even with large amount of traffic or
faults occurring in the large network. The findings discovered during the
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construction of SCAFE are described in the following:

(a) A decentralised approach allows linear scalability in the traffic
information collection process This thesis finds that by decentralis-
ing the traffic collection mechanism with lightweight local monitors
and databases, an increase in the amount of collected traffic will in-
crease the message complexity linearly. SCAFE uses a decentralised
traffic collection approach through the GAUGE monitoring mecha-
nism installed in each monitor, where these monitors collect the traf-
fic statistics information of every single link in its respective subnet-
work. A decentralised approach also allows monitors and databases
to be added to the network for a more scalable monitoring when the
size of a network increases.

(b) The network-wide correlation analysis approach using infor-
mation gathered from multiple locations improves the early detec-
tion capability of a DDoS attack detection system

This thesis finds that network-wide correlation analysis improves
the early detection capability by detecting the DDoS attack traffic at
the edge of the network, where the edge of the network is the clos-
est possible point to the source of the attack that is connected to the
DDoS attack detection system. SCAFE employs SDN technology in
its traffic monitoring mechanism to provide a comprehensive view
of the network, where traffic can be monitored at multiple locations.
The early detection is achieved by correlating information collected
from multiple points since information at a single point is usually
not prominent enough to indicate the presence of attack traffic.

(c) Using a separate network for communication between detec-
tion system components avoids additional overhead to the data
network

The separate network is made possible by leveraging SDN technol-
ogy, where the technology allows the separation of control plane and
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data plane in the network. The SCAFE components are connected
via a control network for communication (e.g. data requests and re-
trievals) between components. The dedicated network is separated
from the main data links to avoid adding additional overhead to the
network that might unintentionally constitute an attack to the net-
work.

7.1.2 Providing a Set of Useful Entropy-based Features

Section 3.1 has identified a list of useful entropy-based features for distin-
guishing DDoS attack traffic from normal traffic. The entropy-based fea-
tures consist of common, uncommon, and entropy variation features that
were constructed from packet header information in the network within a
particular time interval. The findings are summarised in the following.

(a) Not all regular entropy-based features provide clear distinction
between attack and normal traffic patterns

A total of 15 regular entropy-based features, which consisted of 5
common and 10 uncommon features in DDoS detection were eval-
uated individually for their effectiveness in distinguishing high and
low intensity attack traffic from normal traffic. Not all five common
features, namely source IP address, destination IP address, source
port number, destination port number, and protocol identifier were
able to provide a relatively clear distinction between attack traffic
and normal traffic for both high and low-intensity DDoS attacks.
In particular, only source port address and destination port address
showed relatively clear distinction between high-intensity attack and
normal traffic patterns, whereas destination IP address, source port
address and protocol identifier provided similar patterns in both at-
tack and normal traffic for low-intensity DDoS attack traffic. Ten less
common features, namely delta time, source MAC address, desti-
nation MAC address, source network address, destination network
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address, packet length, IP DSCP value, TCP sequence number, TCP
Window size and TCP length were evaluated. Only packet length
was able to provide some distinction between high-intensity attack
and normal traffic, whereas window length and sequence were able
to provide some distinction between low-intensity attack and nor-
mal traffic.

(b) Five useful entropy-based features from entropy variation of
two distinct entropy-based features

The entropy variation features are constructed from the Lyapunov
separation of two distinct features. The five features found to be use-
ful, where the entropy variation features derived from the Lyapunov
separation of two distinct features, are:

– IP address separation - The separation between source IP ad-
dress and destination IP address

– Port number separation - The separation between source port
number and destination port number)

– MAC address separation - The separation between source MAC
address and destination MAC address

– Network address separation - The separation between source
network address and destination network address)

– TCP separation - The separation between TCP window size and
TCP window length

(c) Entropy Measures such as Shannon, Tsallis, and Zhou show
clearer DDoS attack traffic patterns than Rényi entropy

Based on our findings, Shannon, Tsallis and Zhou entropy measures
show clearer DDoS attack traffic patterns than Rényi entropy. The
only difference found in the first three entropy measures is the gap
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difference between attack and normal traffic entropy values. Shan-
non entropy provides a bigger gap between the normal traffic en-
tropy values and attack traffic entropy values, which indicates a more
distinctive difference between attack and normal traffic.

(d) Window size section used in entropy construction has minimal
impact on overall accuracy

The time interval window size used in constructing entropy-based
features has minimal effect on the accuracy of DDoS attack detec-
tion. Hypothetically, window size can influence the traffic patterns
if a high concentration of attack traffic is being captured in a single
window. However, DDoS attack traffic concentration varies depend-
ing on the aggregation level and also the type of DDoS attack being
launched. In the evaluation shown in Section 3.1.2, there is no clear
difference between the traffic patterns of different window sizes in
revealing DDoS attack traffic.

7.1.3 Multiple Entropy-based Features and Multiple Ma-

chine Learning Classifiers Increase Accuracy

The E3ML DDoS detection scheme proposed in Chapter 3.2 focuses on
improving the accuracy of DDoS detection through effective traffic clas-
sification. Entropy is used to construct traffic features, where these fea-
tures are then used as the inputs to the machine learning classification
model. This model integrates three machine learning classification mod-
els, namely Alternating Decision Tree (ADT), Recursive Neural Network
(RNN) and Multilayer Perceptron (MLP), which forms a voting system
to determine the most accurate result for detecting attack traffic. E3ML
is evaluated using low-intensity, high-intensity and mix-intensity datasets
and is found to generate consistent results as being the best or second best
classifier in four different types of datasets containing high, low and mix-
intensities DDoS attack traffic.
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(a) A clear potential in the use of uncommon entropy-based fea-
tures in DDoS attack detection

The E3ML DDoS attack detection scheme demonstrated that uncom-
monly used entropy-based traffic features in DDoS attack detection
(i.e. delta time, packet length, TCP Window size and TCP length)
and entropy variation features (i.e. separation IP, separation port,
separation MAC, separation network and separation TCP) with mul-
tiple machine learning classifiers (ADT, MLP and RNN) can reveal
attack traffic patterns more distinctively even with low-intensity DDoS
attack. The evaluation results shown in Section 6.2.3 have clearly
indicated that using 20 entropy-based features (both common and
uncommon features) have higher detection accuracy that using five
commonly used entropy-based features.

(b) A single machine learning classifier is unable to accurately de-
tect both high and low-intensity DDoS attack traffic

A single machine learning classifier is shown in Section 6.2.3 to be
less precise that E3ML which uses multiple machine learning classi-
fiers in classifying network traffic.

7.2 Future Work

This section lists the potential directions for future work related to the
research in this thesis.

(a) Extending E3ML and SCAFE approaches to IOT networks The
datasets used in this thesis do not contain traffic from IOT devices.
Since IOT devices are becoming a popular target for attackers to ex-
ploit for DDoS attacks, it is a good direction to extended approaches
to be able to distinguish between IOT attack traffic from normal traf-
fic.



7.3. SUMMARY 153

(b) Distributed correlation analysis to further improve scalability
Level 2 in the SCAFE DDoS attack detection architecture, which is
used for detecting attack flows in network links, is currently cen-
tralised. Distributed methods can be applied to this detection level
to achieve full scalability.

(c) Feature selection methods for optimization to improve the mul-
tiple classifier method The E3ML approach uses a set of entropy-
based features derived from raw traffic features and the variation of
two distinct entropy-based features. Feature selection methods can
be applied to optimize the use of entropy-based features and further
improve detection accuracy.

(d) Exploring other traffic features for network wide correlation to
further improve accuracy This thesis uses byte count, flow duration,
packet count and flow length features from traffic flows for correla-
tion. Exploring other features in the flow tables that might be useful
can potentially improve the detection accuracy of a DDoS attack de-
tection system.

7.3 Summary

In summary, this thesis has contributed to the field of DDoS attack de-
tection by proposing three useful components: (1) a good architecture
(SCAFE), (2) a set of useful features (regular entropy and entropy varia-
tion features), and (3) a generalised traffic classification technique (E3ML).
These proposed components can help researchers gain better insights in
the use of entropy, machine learning, and SDN techniques to further im-
prove the detection of high and low-intensity DDoS attacks accurately and
early.
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