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ABSTRACT 

 

Degradation of water quality is a major issue in New Zealand, to which the loss of 

nitrogen, phosphorus and sediment from agriculture into waterways contributes 

significantly. To predict and manage diffuse pollution from intensive agriculture it is 

vital that models are able to spatially map the sources, flows and sinks of nutrients in 

the landscape and spatially target mitigations. This study investigates the application 

of one such model, the Land Utilisation Capability Indicator (LUCI). Used in conjunction 

with OVERSEER, LUCI is a powerful tool to support farm scale land management 

decision-making. 

LUCI includes soil, topography and landcover datasets in its analysis. This thesis 

examines how the quality and resolution of each dataset affects LUCI’s output. Six 

different case studies are examined, across a range of New Zealand farming systems. 

This is the most comprehensive study, to date, of LUCI’s sensitivity to input datasets. 

The results suggest that LUCI nutrient loading estimates are primarily sensitive to soil 

order, and therefore to changes in order classifications. Utilising different soil datasets 

in the LUCI model resulted in varying nutrient load predictions. This sensitivity is 

primarily attributed to the differing hydraulic and phosphorus retention capabilities of 

the respective soil orders. To test the sensitivity of LUCI to digital elevation model 

(DEM) resolution, multiple DEMs with varying spatial and vertical resolution were 

tested. These results strongly indicate that particularly fine resolution DEMs are 

required to accurately model flat landscapes. 

It was recognised that LUCI was not using all of the relevant data available in Landcare 

Research’s S-Map database. LUCI was modified to use more of this information, and 

alternative methods of incorporating sibling level data in both LUCI and OVERSEER 

were investigated. Finally, avenues for future development are suggested. Overall, this 

thesis highlights the potential LUCI has to play a key role in farm scale environmental 

management. 
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CHAPTER 1 INTRODUCTION 

 

 

The connection between agricultural activities and water quality degradation is not 

new, with many studies identifying forms of diffuse pollution such as nitrogen, 

phosphorus, and sediment emitted by intensive agriculture. While the quantities of 

nutrients lost from agriculture are not large compared to the total nutrient amounts 

residing in the soil-plant-animal system, the transfer of nutrients from agricultural land 

to water still causes significant environmental impact (Monaghan et al., 2007). The 

intensification of agriculture over the last few decades has exacerbated water quality 

issues and degraded the health of ecosystems, with associated loss of biodiversity and 

the resilience of habitats occurring at an unprecedented scale (Tscharntke et al., 2005).  

Issues of water quality degradation are important in New Zealand as our national 

economy is reliant on natural resources. The environmentally-based sectors of 

agriculture, horticulture, viticulture, forestry, and fisheries were responsible for 78.7% 

of the income generated from New Zealand's top 20 commodity exports in 2013 

(Roberts et al., 2015). Efforts to improve water quality are important, as these 

industries rely on a functioning ecosystem for the production of goods and to reduce 

the impact of production (Roberts et al., 2015).  

Since agriculture is New Zealand's largest export earner and the dairy industry is its 

largest component, the ongoing intensification of the dairy sector is a cause for 

environmental concern. Dairying provides 37% of New Zealand's total primary industry 

export value, contributing NZ$ 13.2 billion to the economy over 2014/15 period 

(DairyNZ, 2015). 

New Zealand's ‘clean green' image plays an important role in the marketing of 

agricultural products, so any degradation of the natural environment, or in the 

environmental perceptions consumers have of New Zealand will dramatically affect 

the export economy. Therefore, it is important that New Zealand’s environmental 

image is maintained. The impact that perceptions of poor water quality could have on 
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the economy was highlighted by the Ministry for the Environment (2001) study, which 

analysed the impact negative environmental perceptions in the Asian market would 

have on the New Zealand's dairy sector. The study found that 54% fewer dairy 

products would be purchased if the environment was perceived to be degraded, 

amounting to an annual loss of NZ$ 241-569 million (Ministry for the Environment, 

2001). 

While globally New Zealand’s river quality is classed as fairly good compared with 

Europe, North America and Asia, over the past 25 years the health of New Zealand 

rivers has declined due to the prevalence of both point source and diffuse pollution in 

catchments (Davies-Colley, 2013). While there have been improvements to our 

management of point source pollution through the treatment of wastewater from 

urban and industrial settings, there has been an increase in diffuse pollution that can 

be linked to the intensification of agriculture (Davies-Colley, 2013). Specifically, diffuse 

pollution from agriculture is responsible for increased fine sediment load, faecal 

contamination and nutrient enrichment of New Zealand’s lakes and rivers (Davies-

Colley, 2013). 

1.1 MODELLING NUTRIENT FLOWS ON AGRICULTURAL LAND USING THE LAND 

UTILISATION CAPABILITY INDICATOR 

With increasing attention on more sustainable land-use practices and mitigating the 

impact of agricultural intensification on the environment, decision support tools like 

the Land Utilisation Capability Indicator (LUCI) are well suited to aid agricultural 

management, at both small and large scales (Trodahl et al., 2017). The collaboration 

between Victoria University of Wellington and Ravensdown, a farmer owned 

cooperative, has resulted in the development of a bespoke version of LUCI for use by 

Ravensdown Environmental consultants. The results of this thesis feed directly into 

this collaboration, through understanding how LUCI predictions can be used in areas 

that may be data poor, or areas where there is other uncertainty in the input data.  

 

The nitrogen and phosphorus loads in the version of LUCI used by Ravensdown are 

trained to data from the well-established OVERSEER model. The OVERSEER model was 
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originally developed by the Ministry of Primary Industries, the Fertiliser Association of 

NZ Inc, and AgResearch to advise farmers and growers on their on-farm nutrient 

management practices and model nutrient flows onto and off farms (OVERSEER, 2017). 

Most relevant to this research is OVERSEER’s modelled flow of nitrogen and 

phosphorus. However, it is increasingly used by regional councils to quantify diffuse 

pollution at the farm level as a basis for nutrient regulations and discharge policies 

(Journeaux, 2016). Both OVERSEER and LUCI are discussed in detail in the following 

chapters.  

LUCI is a GIS-based (Geographical Information Systems) framework that explores land 

management scenarios to identify locations where changes in land use might deliver 

improvements in ecosystem services, or where trade-offs between services are 

present (Sharps et al., 2017). Ecosystem services are defined in this research as the 

benefits people gain from an ecosystem (MEA, 2005). The trade-off maps produced by 

LUCI provide valuable information on where to target mitigation strategies or alter the 

current farm management practices, such as identifying areas where farmers can 

target efforts to improve water quality without impacting agricultural production 

(Trodahl et al., 2017).  

The algorithms in LUCI explore the impacts of land management changes on flood risk, 

habitat connectivity, erosion and sedimentation, carbon sequestration and agricultural 

productivity, making it a useful tool to respond to the growing concern surrounding 

freshwater quality in New Zealand. This research is focused on LUCI's ability to model 

and track the flow of nitrogen, phosphorus, and sediment across the landscape to 

waterways. To achieve this, LUCI’s representation of landscape hydrology is 

investigated as water is a key pathway of nutrient movement. More information on 

LUCI's other tools can be found in Jackson et al. (2013). 

Decision support tools that represent the complex relationships between ecosystem 

services are gaining interest and popularity, as the New Zealand government is moving 

towards a natural capital approach to managing the country’s resources. This paradigm 

shift in resource management practices is linked to the understanding that an 

ecosystem services approach provides an integrative way to explore the influence of 
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land use and land management practices on natural capital, and the processes that 

protect and degrade the natural environment (Dominati, 2013).  

Models such as LUCI rely on fine spatial scale data to produce high-resolution outputs. 

The level of accuracy and uncertainty in soil, elevation, climate and land use datasets 

are known to influence the output of such decision support tools (Trodahl et al., 2017). 

Understanding the quantitative differences in predictions that arise from the 

sensitivity of LUCI to different datasets, with varying precision and accuracy, will 

provide valuable information to model developers, industry specialists and end users. 

In locations where data is identified as being of poor quality, model users need to 

increase local stakeholder engagement. Engagement throughout the modelling 

process will reduce the inaccuracies or generalisations in the low-resolution data, as 

stakeholders have the best understanding and experience of their surroundings. 

Though this thesis is primarily focused on improving freshwater quality through the 

accurate modelling of nitrogen, phosphorus and sediment movement on farms, 

understanding the sensitivity of LUCI to the data used in New Zealand will also inform 

the reliability of LUCI to model other ecosystem services. Understanding the reliability 

of results will aid the development of LUCI as a forefront decision support tool, capable 

of representing the complex interactions between ecosystem services and 

environmental degradation.   

1.2 AIMS AND OBJECTIVES  

The aim of this research is to examine how the changing quality and resolution of New 

Zealand’s soil, elevation, and landcover datasets impacts the uncertainty in LUCI’s 

output. This aim was accomplished through investigating the sensitivity of the LUCI 

model to various input datasets with different spatial resolution and detail. Where 

observational data was available, the LUCI model outputs were compared to actual 

water quality measurements. Determining the sensitivity of the LUCI model to these 

datasets provides insight into how robust LUCI’s predictions of nitrogen and 

phosphorus loads entering waterways may be in different regions around New 

Zealand.  
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The objectives to achieve the aim stated above are: 

Objective 1: To conduct a review of available soil, topography and landcover datasets 

that can be used in the LUCI model.  

The activities required to achieve Objective 1 are firstly, the identification of drivers of 

poor water quality in New Zealand and how the LUCI model can improve our 

understanding of nutrient flows within a farm system. Secondly, the availability of 

different soil, elevation and landcover datasets and their uncertainties are discussed in 

relation to their potential application to the LUCI model.   

Objective 2: To compare LUCI’s Nitrogen to Water and Phosphorus to Water tools for 

sites covering a variety of climates, topography and rich or poor data environments. 

The activities required to achieve Objective 2 are firstly, the identification of six case 

study sites located in both the North and South Island spanning a variety of climates 

and agricultural management environments. Secondly, model applications at each site 

included at least two soil or elevation datasets. This comparison enabled the 

uncertainties and sensitivities in the model output to be analysed. 

Objective 3: To explore whether available datasets are appropriate for accurate 

model outputs, and how LUCI can be adapted to better use these datasets for 

improved accuracy where appropriate. 

The activities required to achieve Objective 3 are firstly, the comparison of model 

applications to measured data where available, and secondly, to suggest modifications 

to LUCI’s algorithms to enhance accuracy where detail in the datasets is not fully 

utilised in the model.  

1.3 THESIS STRUCTURE  

This thesis contains eight chapters. Following this introduction, Chapter 2 describes 

the concept of ecosystem services and the health of New Zealand’s freshwater, with a 

description of the nitrogen and phosphorus cycle and how agricultural practices impact 

water quality.  
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Chapter 3 introduces LUCI and OVERSEER and how these models can be used to inform 

decision-making, as well as the relevant equations within each model that determine 

their representation of soil water dynamics.  

Chapter 4 provides an overview of available soil and topographic datasets in New 

Zealand. The development, limitations and opportunities to improve these datasets 

are discussed.  

Chapter 5 describes the research methodology. Data for all six case study sites are 

presented, as well as the modelling procedure required to produce results from LUCI’s 

Nitrogen to Water and Phosphorus to Water tools. A description of the hypothetical 

cropping farm setup for this theses’ OVERSEER sensitivity analysis is also presented.  

Chapter 6 reports the outputs and results for all scenarios tested on the six case study 

sites. The hydrological output from LUCI and predicted nutrient load results are 

detailed, with validation against measured in-stream concentrations for two of the 

sites. Results produced after LUCI was developed to incorporate sibling level soil 

information is provided.  

Chapter 7 discusses the sensitivity of LUCI to soil properties and the resolution of the 

DEM used in the modelling process. Sensitivity to landcover data is highlighted, as well 

as the reliability of LUCI outputs compared to in-stream measurements.  

Chapter 8 concludes this research, and addresses the findings based on each research 

objective. Key considerations for future applications of the LUCI model and 

opportunities for development are summarised.   
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CHAPTER 2 ECOSYSTEM SERVICES AND WATER QUALITY 

 

 

Increasing public awareness of the range of services ecosystems provide encourages 

responsible resource use. This notion is not new and can be traced back to the 1860s 

with the publication of Man and Nature, in which Marsh (1864) discredits the notion 

that the Earth's resources are infinite. This chapter outlines the ecosystem services 

concept, how it can be applied to decision-making, and the ‘disservice’ agricultural 

management practices can have on the environment. Next, the health of freshwater 

quality in New Zealand is discussed, including the regulatory framework in place to 

control activities and minimise degradation. An overview of the cycling of nitrogen and 

phosphorus as well as a more detailed description of the environmental impacts of 

agriculture is provided.  

2.1 DEFINING THE ECOSYSTEM SERVICES CONCEPT 

The understanding that the biotic community and the abiotic environment are 

intrinsically linked to world economies and food chains has been developed by 

numerous authors. These contributions to our modern understanding of ecosystem 

services are summarised in Mooney and Ehrlich (1997). Key published works identified 

were Lindeman (1942),  Vogt (1948) and Leopold (1949). These authors discussed ideas 

surrounding how the ecosystem is the fundamental ecological unit on which natural 

relationships depend; the concept of natural capital; and the inability of humans to 

create a substitute for ecosystem services, ensuring that our role on earth is self-

defeating (Mooney & Ehrlich, 1997). 

It was not until a few decades later that the services an ecosystem provides were 

explicitly linked to ecosystem function. The Study of Critical Environmental Problems 

(1970) report Man’s Impact on the Environment identified the ecosystem services that 

would decline if ecosystem function was impacted through loss of biodiversity or other 

catastrophic changes to the environment. The ecosystem services identified were soil 

formation, soil retention, cycling of matter, climate regulation, flood control, pest 
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control, fisheries, insect pollination and composition of the atmosphere. This list was 

expanded four years later to include maintenance of soil fertility and maintenance of a 

genetic library (Mooney & Ehrlich, 1997).  

With the continued challenge of feeding the population sustainably, global food supply 

needs to be understood as food losses and waste impact other natural resources, such 

as freshwater, available land for cropping, and fertilisers containing finite natural 

resources (Kummu et al., 2012). Since the world population is projected to increase by 

more than a billion people within the next 15 years, reaching 9.7 billion by 2050 and 

11.2 billion by 2100, food production must increase to sustain this growth (United 

Nations Population Division, 2015). The Food and Agriculture Organization of the 

United Nations (FAO), predicted that to meet food demand by 2050, global food 

production will have to increase by 60% from 2005-2007 levels (FAO, 2014). The report 

goes on to stipulate that the ecosystems needed to produce extra food are already 

showing signs of stress and degradation.  

The latest FAO report recognises not only the importance of healthy ecosystems in 

food production but also their ability to help mitigate the rise in atmospheric carbon 

dioxide (CO2) (FAO, 2016). Soils are identified as playing a pivotal role in regulating the 

emission of CO2 but improving soil quality and the environment through adaptation 

measures such as reducing deforestation and forest degradation, comes at a cost to 

the agricultural sector (FAO, 2016). Therefore, it is important to understand trade-offs 

between ecosystem services, particularly within the agricultural sector, as adaptation 

and mitigation strategies and outcomes are interlinked.  

The complex interaction between agriculture and ecosystem services is represented in 

Figure 2.1. Since agricultural systems cover 40% of the terrestrial Earth surface, it is 

important that landscape management practices are understood by how they impact 

ecosystem services (Power, 2010). In the past, agriculture was seen as a practice that 

enhances ecosystem services through the provision of food, forage, bioenergy, and 

pharmaceuticals. However, management practices can result in  ‘disservices’ to the 

environment, including loss of habitat for biodiversity; nutrient runoff; sedimentation, 

and pesticide poisoning (Power, 2010; Zhang et al., 2007). The list of services shaded in 
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green in Figure 2.1 indicate ecosystem processes that provide services to both the 

natural environment and agricultural systems (Power, 2010). 

 

Figure 2.1 Interactions of farm management and landscape management practices 
on the flow of ecosystem services and disservices. Source: Power (2010). 

2.1.1 Applying the Ecosystem Services Concept in Decision-making 

Not only is it important for decision-makers to understand the interactions between 

natural processes and the services they provide, but they should also be able to 

identify and involve those who should be part of the evaluation processes (Wallace, 

2007). Models like LUCI provide new approaches for integrating ecosystem services 

into public and private sector decision-making, as they are designed to be 

generalisable to any location (Bagstad et al., 2013). The development of intuitive tools 

that decision-makers can use with relatively little guidance is important, as technical 

knowledge is not the only way of achieving optimal ecosystem outcomes. Therefore, 

the decision-makers level of prior knowledge should not influence the usefulness of 

the tools, as long as they are well-documented and tested before use (Bagstad et al., 

2013; Breure et al., 2012).  
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2.2 THE HEALTH OF THE NEW ZEALAND ENVIRONMENT 

With the intensification and expansion of dairy production over the past two decades 

requiring external inputs such as fertiliser, irrigation and food supplements to enable 

the higher stocking rates and production increases, negative environmental effects are 

occurring that are external to the farm system (Foote et al., 2015). Productivity per 

animal has increased dramatically in pastoral sectors such as sheep and beef farming, 

with lamb production and performance increasing 104% and 34% respectively since 

1990 (Table 2.1). Wool production was the only commodity to decrease during this 

period. This increase in productivity is also seen in the dairy sector, with the amount of 

agricultural land used for dairying increasing 46% from 1993 to 2012  (Foote et al., 

2015). Dairy cattle numbers have also increased 29.8% since 2002, from 5.2 million to 

6.7 million in 2014 (Statistics New Zealand, 2013). Agriculture is reliant on freshwater 

to maintain high levels of production; however, the discharge or unintended loss of 

pollutants into waterways and the removal of water from natural systems for 

irrigation, are the largest threats to the long-term health of freshwater resources 

(Ministry for the Environment, 2016). 

Table 2.1 Livestock productivity trends from 1990 to 2017. Source: Beef and Lamb 
New Zealand (2018). 

 Unit 1990-91 2016-17 change 

Lambing 
performance 

Lambs/100 
ewes 

102 126 +25 

Lamb weight  Kg/head 13.9 18.6 +34% 

Lamb 
production 

Kg/ewe 9.8 20.0 +104% 

Wool 
production  

Kg/head 5.3 5.0 -6% 

Steer weight Kg/head 297 314 +6% 

Milk production kgMS/cow 330 381 +15% 

 

2.2.1. Freshwater Quality  

New Zealand’s freshwater is recognised internationally for its recreational value and 

support of a healthy array of flora and fauna. With over 425,000 kilometres of rivers 

and streams and around 4000 lakes, New Zealand has enough water resources overall 

to sustain the population (Ballantine & Davies-Colley, 2014). Issues with inadequate 
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supply are therefore linked to the discrepancies in rainfall and demand between 

regions. Further pressure on water resources through changing land use and 

population growth will enhance these discrepancies (Ministry for the Environment, 

2016). 

Legislative and Regulatory Framework  

Legislation sets out the standard for water quality in New Zealand. At the centre of 

efforts to combat degradation of this natural resource is the Resource Management 

Act 1991 (RMA), which devolved much of the responsibility of water quality 

management to the regions. The regions are responsible for ensuring water quality is 

above a strict minimum standard set in Section 70 of the RMA (FLRC, 2016). The Land 

and Water Forum was established in 2009, to advise government on long-term 

improvements to freshwater management in New Zealand, via stakeholder-led 

collaboration groups with a vested interest in the health of our freshwater (Ministry 

for the Environment, 2016). The participants of the Land and Water Forum include 

industry groups, environmental and recreational NGOs, iwi and scientists (Land and 

Water Forum, 2017). This group is also joined by observers from local and central 

government (Land and Water Forum, 2017).  

The Ministry for Primary Industries and the Ministry for the Environment co-led the 

development of the National Policy Statement for Freshwater Management (NPS-FM) 

in 2011. The NPS-FM directs local governments on how they should manage 

freshwater sustainably in accordance with their responsibilities set out in the RMA 

(Ministry for the Environment, 2016). The requirements within this policy statement 

include but are not limited to: placing a restriction on the discharge of contaminants 

into streams; setting a minimum acceptable standard for the region through public 

consultation on the ‘use' of the body of water, and regional councils must at least 

maintain the current state of water quality in their region in cases where it cannot be 

improved (FLRC, 2016). 
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2.2.2 Cycling of Nitrogen and Phosphorus 

The loss of nitrogen and phosphorus to waterways is a significant driver of water 

quality degradation.  It is important that farmers and those responsible for 

recommending nutrient inputs to agricultural systems are aware of the different 

forms, pathways, and stocks of nutrients in the environment (FLRC, 2016). Today, 

farmers are under pressure to improve nutrient management (especially nitrogen and 

phosphorus), as target leaching limits may be imposed in large agricultural areas such 

as Canterbury (Qiu et al., 2016). Landscape variability in such soil properties as clay 

percentage, cation and anion exchange capacities and water holding capacity, 

complicate the pattern of nutrient cycling within a farm system. Thus, understanding 

how to maximise plant uptake of nutrients is vital if nutrient losses to water are to be 

reduced (Qiu et al., 2016). 

The Nitrogen Cycle 

Nitrogen is often a major limit on plant production, as it is an essential component of 

amino acids and proteins. Therefore, during the growing season, large amounts of 

nitrogen (200-800 kg N/ha) are taken up by plants (McLaren & Cameron, 1996). Very 

little of the total nitrogen present in the earth system is available to plants as around 

98% of nitrogen in the soil is in a water-insoluble, organic form, with only a small 

amount present in ionic forms in soil solution, or sorbed onto soil particles (McLaren & 

Cameron, 1996). Nitrogen gas (N2) starts the cycle when it is fixed into plant available 

forms, ammonium (NH4
+) and nitrate (NO3

-), ultimately this nitrogen is returned to the 

atmosphere as N2 (Sustainable Agriculture and Education, 2012).  

The nitrogen cycle is shown in Figure 2.2. Under normal conditions, nitrogen in the soil 

comprises only 2-3% NH4
+ and NO3

-. Because of this, soil organic nitrogen must be 

continually decomposed and converted to replenish these ions (FLRC, 2016). The ratio 

of NH4
+ and NO3

- uptake by plants depends on the temperature and moisture 

conditions of the soil. Nitrogen is decomposed to NH4
+ through a process termed 

ammonification, and the NH4
+ is then nitrified into NO3

- in the presence of oxygen 

(McLaren & Cameron, 1996). In aerobic, warm and moist conditions, quantities of NO3
- 

are higher than NH4
+ compared to acidic, cold and wet soils, where the nitrification 
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rate is slow, and NH4
+ is the main source of plant available nitrogen (Groffman & Rosi-

Marshall, 2012). 

 

Figure 2.2 The Nitrogen Cycle (R represents an organic molecule). Source: FLRC 
(2016). 

Both available forms of nitrogen can be leached from the soil. NH4
+ leaches less 

readily, as it is attracted to the negatively charged soil particles. In contrast, NO3
- due 

to its negative charge is repelled by cation exchange sites, and therefore leaches when 

water drains through the soil profile (McLaren & Cameron, 1996).  

Nitrogen can also be added to soils through biological fixation by legumes (e.g. white 

clover). This method of nitrogen fixation provides a renewable source of nitrogen, 

which over recent decades, has been promoted as a sustainable way of reducing 

nitrogen fertiliser input (Sulieman & Tran, 2015). Legumes have a symbiotic 

relationship with rhizobia bacteria in their root nodules, allowing the biological fixation 

of N2. Legumes are capable of fixing between 200-600 kg N/ha/yr depending on the 

topography and fertility of the landscape (Sulieman & Tran, 2015). In clover pasture 

systems, when the organic nitrogen content of the soil increases, the biological fixation 

rate decreases. This is a result of decreased legume population over time, due to 
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competition from non-legume pasture species (FLRC, 2016). Therefore, farmers need 

to have a maintenance program to maintain pasture legume levels.   

The Phosphorus Cycle 

Phosphorus is the second most common nutrient that limits primary production in 

terrestrial and aquatic systems. Like nitrogen, amounts available in the soil for plant 

uptake are often not enough to sustain high agricultural production. To minimise this 

deficit, additional phosphorus is supplied to the soil through fertiliser applications. 

Unlike nitrogen which is replenished through an atmospheric component, the supply 

of phosphorus to the soil occurs over geological timescales through weathering, 

deposition in the ocean, uplift and erosion (Figure 2.3). On a shorter timescale, plant-

available phosphorus cycles into and out of soil solution through adsorption and 

desorption on soil particles (Figure 2.4) (Ruttenberg, 2003).  

Figure 2.3 The Global Phosphorus Cycle. Source: Ruttenberg (2003). 
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Figure 2.4 The Phosphorus Cycle. Source: FLRC (2016). 

When a plant takes up phosphate ions, the concentration of these ions in soil solution 

drops. The drop in concentration then leads to a flow of ions, either through the 

movement of soil solution when plants take up water, or diffusion, from areas of high 

concentration away from the root surface, to areas of low concentration at the root 

surface (McLaren & Cameron, 1996). Phosphorus can be added to the soil (through 

fertiliser, effluent, imported feed, and animal excrement) to increase soil reserves. 

These reserves are termed as labile (plant available) and non-labile (FLRC, 2016). The 

relative size of labile and non-labile pools of phosphorus depends on the soil’s ability 

to adsorb ions, owing to the presence of Al and Fe oxides which vary with soil type 

(FLRC, 2016).  

As phosphorus is mainly lost from soils via runoff and erosion, the ‘P retention’, also 

known as Anion Storage Capacity (ASC) of a soil is a key control of phosphorus loss 

from a farm system (Sustainable Agriculture and Education, 2012).  Phosphorus loss to 

water is dependent on factors which influence erosion, such as meteorological and 
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hydrological events, topography and land cover (Sustainable Agriculture and 

Education, 2012).  

Managing Nitrogen and Phosphorus Loss 

Incorrect timing and rate of fertiliser applications in high rainfall (high risk), winter 

months result in negative environmental effects from increased concentrations of 

nitrates in groundwater or nitrate and phosphorus enrichment of surface water 

(Fertiliser Association of New Zealand, 2009). The relative difference in the pathways 

of nitrogen and phosphorus loss is shown in Figure 2.5 below. To reduce levels of 

nitrogen and phosphorus in water, farmers are encouraged to use ‘good management 

practices’. Good management practices include: applying fertiliser in smaller, more 

frequent applications; avoiding fertiliser applications in heavy rain or on waterlogged 

soils, or, when wind could carry particles to waterways, and restraint in applying 

fertiliser (particularly phosphorus) near stream boundaries (Fertiliser Association of 

New Zealand, 2009).

 

Figure 2.5 Different pathways of nitrogen and phosphorus losses (relative amounts 
indicated by arrow width). Adapted from Sustainable Agriculture and Education 

(2012). 

Impact of Nitrogen and Phosphorus Contamination from Agriculture 

Given that 46% of New Zealand rivers run through agricultural land, diffuse pollution 

from agricultural systems is a major risk to the health of our waterways (Ministry for 
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the Environment, 2016). This diffuse (or non-point source) pollution has significant 

costs to society, as it necessitates the removal of pollutants from drinking water, 

damages ecosystems and commercial fishing, and degrades the recreational and 

cultural values associated with rivers, lakes, and groundwater (Parris, 2011).  

Increased concentrations of nitrogen and phosphorus in rivers, due to surface and 

subsurface runoff from agricultural systems, can accelerate eutrophication through 

‘over fertilisation' of aquatic plants, resulting in excessive plant growth and a reduction 

in dissolved oxygen levels (Figure 2.6) (Vadas et al., 2015). Monitoring data shows, 

both at a national and regional scale, that non-point source pollution exceeds point 

source pollution. This is particularly apparent in Waikato, Southland and Canterbury 

(Controller and Auditor-General, 2011). This pattern in non-point source pollution is 

seen in the Waikato between 1992 and 2002, as cow numbers increased 37%, and 

during the same period, regional monitoring found a 40% increase in measured 

nitrogen and a 25% increase in measured phosphorus levels (NIWA, 2010, as cited by 

Controller and Auditor-General, 2011). 

 

Figure 2.6 Green algae in a stream in the Manawatu catchment. Source: FLRC (2016). 
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Eutrophication has impacted lake and stream systems as excess nitrogen and 

phosphorus promote not only the growth of aquatic plants but also deoxygenation of 

deeper waters, and stratification within the water column (Abell et al., 2010). Excess 

plant growth also inhibits natural flow and smothers native plant life, and fish that rely 

on freshwater systems for food and habitat (Ministry for the Environment, 2016). In 

2006, 134 lakes were monitored across New Zealand, 56% of these were deemed to be 

in a eutrophic state, with some lakes experiencing major blooms of toxic cyanobacteria 

(Ministry for the Environment, 2006). A study one year later went on to conclude that 

30% of lakes with an area greater than one hectare have poor to extremely poor water 

quality as a result of eutrophication (Ministry for the Environment, 2007). 

There is a natural accumulation of nutrients over time in freshwater systems, with 

sources of nitrogen including organic matter from decomposing plants and 

atmospheric nitrogen fixed by planktonic species in the water column (Abell, et al., 

2011). A natural source of phosphorus is through the weathering of apatite minerals 

(Abell et al., 2011). This natural pattern in the accumulation of nutrients in freshwater 

ecosystems has been altered by anthropogenic loading of nitrogen and phosphorus, 

resulting in a shift in ecosystems from their natural state (Paerl, 2009).  

The importance of understanding how much nitrogen and phosphorus is lost to 

freshwater is seen in the Parliamentary Commissioner for the Environment (2012) 

report, where the concepts of nitrogen-limited and phosphorus-limited systems are 

discussed. The report identifies the importance of monitoring nitrogen and 

phosphorus concentrations, and how crucial it is to determine which nutrient is the 

most effective to target. It is important to identify the limiting nutrient, as for 

eutrophication to occur there needs to be enough of both nutrients in the right ratio to 

result in excessive eutrophication (Parliamentary Commissioner for the Environment, 

2012). 

Moving forward, a report released by the Parliamentary Commissioner for the 

Environment (2016) states that debates surrounding the impact of farming and 

pollutants on water quality have died down, with focus shifting to finding solutions. 

However, while reducing sediment and phosphorus pollution is manageable with on-
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farm changes (e.g. bridging streams and fencing to prevent direct nutrient loss to 

water), it is much harder to stop nitrogen pollution as it easily leaches, both into 

surface water and groundwater (Parliamentary Commissioner for the Environment, 

2016).  Nitrate in groundwater can accumulate over decades, further threatening lake 

ecosystems, as in many systems this nutrient will continue to enter the lake (impacting 

water quality) long after the polluting land use has ended (Parliamentary 

Commissioner for the Environment, 2016). 

2.2.3. Increased Erosion and Sedimentation 

Humans have greatly increased rates of erosion and sedimentation since the transition 

from hunter-gathers to agrarian societies; now we are arguably the most effective 

geomorphic agent, able to shape the Earth at a rate that far exceeds the long-term 

denudation associated with the interaction of climate and tectonic forces (Hooke, 

2000). Agriculture is one of the key drivers of erosion related to land use change, as it 

is responsible for more displacement of sediment than the mining and construction 

industries (Wilkinson & McElroy, 2007). The difference between global denudation 

rates over geologic time and now is that present-day erosion rates are one order of 

magnitude higher, with geologic rates being tens of metres per million years, and 

global agriculture today responsible for a rate of hundreds of metres per million years 

(Cerovski-Darriau & Roering, 2016). A high rate of erosion is likely to persist after 

agricultural practices have been halted. On the landscape, past erosion results in a 

geomorphic legacy, changing the morphology of hillslopes and channels to promote 

erosion (Cerovski-Darriau & Roering, 2016).  

New Zealand’s denudation rate follows a different pattern to the rest of the world as it 

is naturally unusually high, with New Zealand discharging 1-2% of the global annual 

average sediment yields while representing only 0.1% of the global land mass (Basher, 

2013).  The high erosion rate is contributed by New Zealand's steep slopes, high rates 

of tectonic activity, high rainfall, large coastline length to area ratio, and the frequency 

of high-intensity storms (Basher, 2013).  Such high natural erosion rates mask the 

effect humans have as geomorphic agents, with the pattern further complicated by the 

different tectonic environments of the North and South Islands. An early study on 
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uplift and erosion rates across New Zealand identified that human-accelerated erosion 

was negligible in the South Island due to the high uplift and erosion rates of the 

Southern Alps (Adams, 1980). The lower rates of tectonic activity in the North Island 

combined with the increased impact of human activity through conversion of large 

areas of forest to agriculture, and the presence of a larger population, makes 

determining the primary geomorphic agent more difficult (Adams, 1980). 

There is pressure on the agricultural industry to take steps to ensure soil conservation 

is undertaken on pastoral and arable land, with the reestablishment of native habitat 

through reforestation also promoting carbon cycling and habitat quality (Cerovski-

Darriau & Roering, 2016). Therefore, a focus on reducing sediment loading to rivers 

will not only improve water quality but also have a positive impact on other ecosystem 

services. Measurements put in place to reduce erosion were estimated in 2001 to have 

an annual cost of NZ$ 24 million, whereas the damage caused by erosion was 

estimated to be NZ$ 103 million (Basher, 2013).  Soil conservation can reduce the 

impact of erosion thereby maintaining soil fertility and productivity while also 

preventing damage to property and ecosystems (Jones et al., 2008). Therefore, 

maintaining an effective vegetation cover and using land use strategies that result in 

minimal soil disturbance will help prevent the negative impacts eroded sediment has 

on the environment. These impacts are outlined below.  

Impact of Soil Erosion on Agricultural Productivity  

Pasture production levels are often dramatically altered on erosion scars in New 

Zealand’s high country where soil slip erosion is common. One of the first studies into 

this phenomenon carried out by Trustrum et al. (1984) on Wairarapa hill country, 

identified that pasture production levels on the younger erosion scars were around 

20% less than uneroded land. As erosion scars are revegetated over time the area 

never achieves that hillside’s original pasture production and instead, on average, 

eroded slopes result in an overall loss in production of 18% on the whole hillslope 

(Trustrum et al., 1984). In Wairoa, pasture recovery after erosion was found to be 

exponential as ten years after the first slip rapid recovery was measured and over time 

there was no further increase in production (Douglas & Trustrum, 1986).  
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Not only does soil erosion directly impact pasture productivity but reducing the 

average soil depth on a slope limits a soil’s water holding capacity (Derose et al., 1995). 

Initially, when only several landslides are present on a slope, the effect on soil water 

holding capacity will be small. However, over time as the amount of slip scars increase, 

their cumulative effect will result in pasture productivity being limited due to increased 

soil moisture deficits between seasons (Derose et al., 1995). 

Flooding 

Tollan (2002, as cited in Schilling et al., (2014)) linked the effect of land use change due 

to agricultural expansion to increased flood severity and frequency within agricultural 

catchments, contributing this change to reduced infiltration capacity, soil porosity, 

vegetation cover, and lower evapotranspiration rates. High erosion rates increase the 

risk of flooding as excess sediment in river systems results in a reduction in channel 

capacity. A reduced channel capacity increases the risk of flood events breaking river 

banks and flood protection measures, leading to greater flood damage of the 

surrounding areas (e.g. farm sedimentation, road damage, bridge collapse and loss of 

livestock) (Jones et al., 2008).  

Water Quality 

Sedimentation affects the chemical, physical, biological and aesthetic characteristics of 

a water body (Jones et al., 2008). Pollutants (e.g. phosphorus and heavy metals) are 

bound to soil particles and transported to streams as the landscape is eroded, which 

changes the natural chemical regime of the water body (Jones et al., 2008). The 

physical changes associated with sedimentation are increased temperature and 

decreased visual clarity. Low visual clarity decreases the aesthetics of the water for 

recreation but also impacts the habitat of aquatic life, through reduced predation 

efficiency and the build-up of layers of fine sediment (significantly harming benthic 

habitat as it results in burial and suffocation of benthic biota) (NIWA, 2015). Life in the 

water column is also impacted as fine suspended sediment damages respiratory 

structures, through irritation and clogging of the gills of fish (NIWA, 2015). 
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CHAPTER 3 WATER QUALITY MODELLING USING LUCI AND OVERSEER 

 

 

The above identification of agriculture’s effect on water quality and the environment 

highlights the need for increased understanding of the movement of nitrogen and 

phosphorus through the landscape. The ecosystem service decision support tools 

available to farmers and policy makers range in complexity and data input 

requirements (Bagstad et al., 2013). This chapter describes two such models, LUCI and 

OVERSEER and how they aid in understanding of the stocks and flows of nutrients in 

agricultural systems.  

3.1 COMPLEXITIES INVOLVED IN CHOOSING AN APPROPRIATE MODEL  

Ecosystem service models range from spreadsheets, to those that have a mapping 

component. Spatial mapping ranges from overlays based on lookup tables, to more 

complex spatial tools that allow quantification and mapping of the relative magnitude 

of service provisions (LUCI falls into the latter category) (Sharps et al., 2017).  

The outputs of ecosystem service models appear to be similar. Nevertheless, when 

choosing the most appropriate model for your needs Sharps et al. (2017) highlight the 

importance of evaluating the underlying resolution and assumptions the model was 

designed for. The need to carefully match a model’s function to the decision support 

activity under assessment is reinforced by the Ferrier et al. (2017) review of scenarios 

and models of biodiversity and ecosystem services from the IPBES (Intergovernmental 

Platform for Biodiversity and Ecosystem Services).  

Detailed reviews have become the main source of information for users considering 

the applicability of specific models to their area. Since models are continuously 

improved, reviews can become quickly become outdated after publication, meaning 

there is a need for ongoing work to compare ecosystem service models across a range 

of sites to provide continued support for decision-makers (Sharps et al., 2017). The 

IPBES review highlighted three key messages surrounding ecosystem service 

modelling: 
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1. Models can contribute significantly to the development of environmental 

policies. 

2. Models need to be applied with care, with the uncertainty in modelled 

projections being understood by all parties. 

3. The need for capacity-building to overcome the challenges in developing and 

applying ecosystem services models can be met with appropriate planning and 

investment. 

The Ferrier et al. (2017) review described LUCI as a snapshot model which is easy to 

use and of medium flexibility.  Another review was conducted by Bagstad et al. (2013). 

The authors identified and described many ecosystem service models (including LUCI), 

with the aim of highlighting their applicability to model multiple ecosystem services 

and support decision-making in both the public and private sector. Each of the tools 

reviewed were found to have strengths and weaknesses, with the main determinant of 

their applicability being the time required to apply the model and the quality of 

relevant information delivered to the decision-maker (Bagstad et al., 2013). 

Not only do decision-makers need to evaluate the tools available to help their 

understanding of the complexities surrounding ecosystem services and water quality, 

they must also consider the political and social barriers to enacting water quality and 

nutrient management policies (Jay, 2007). In New Zealand this can be seen in the 

pressure on the dairy industry to improve its environmental performance and its 

associated unwillingness to account for environmental degradation within economic 

models, owing to a perceived risk to commercial competitiveness in global markets 

(Jay, 2007). Debate as to how to improve water quality is ongoing, with continual 

adjustments to the limit setting processes in the NPS-FM likely to incorporate the 

increased knowledge of the different attenuation factors between contaminants 

(Tanner et al., 2017).  

LUCI and OVERSEER are the two models this thesis focussed on. The primary purpose 

of this research is to examine how the quality and resolution of New Zealand’s soil, 

elevation, and landcover datasets affect the uncertainty in LUCI’s output. LUCI has 

been trained off a comprehensive OVERSEER database developed by Ravensdown, to 
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support the development of LUCI’s bespoke functionality, for which Ravensdown 

Environmental has a period of exclusive commercial use. Understanding how LUCI 

predictions are impacted by data quality therefore cannot be achieved without also 

looking at the sensitivity of the OVERSEER model, as LUCI predictions are intrinsically 

linked to the uncertainties and assumptions of OVERSEER. 

3.2 LUCI  

LUCI is well placed to represent water quality issues in New Zealand. Development of 

the LUCI model is led by Victoria University, with partners in the agricultural industry 

and other scientific institutions in New Zealand and overseas (Jackson et al., 2013; 

Jackson et al., 2016; Emmett et al., 2016; Trodahl et al., 2017).  This thesis is not the 

first application of LUCI to investigate nutrient enrichment from agriculture. One of 

these applications of LUCI was in the Conwy catchment (Wales), where a reduction in 

water quality had been observed and was linked to an increase in agricultural 

production (Emmett et al., 2016). LUCI was used to model multiple ecosystem services 

within the catchment, to better understand issues of water quality regulation, 

agricultural production, carbon storage potential, and biodiversity maintenance at the 

local scale (Emmett et al., 2016). 

The tools (sub-models) in the LUCI framework investigate the impact of land use on 

flood mitigation, water supply, greenhouse gas emissions, biodiversity, erosion, 

sediment and nutrient delivery to waterways, agricultural production, and quantify 

trade-offs between such services (Jackson et al., 2016). These tools set LUCI apart from 

other models, as they can inform policy makers of the cumulative impacts of farm 

mitigation practices (Jackson et al., 2016).  

LUCI can help mitigate nitrogen loading through the identification of nitrogen sources 

on  farms, and  targeting pathways through  farm systems (pathways identified are 

where water and nutrients converge on the landscape) (Trodahl et al., 2017). Finding 

an area to strategically intercept nitrogen, without impacting agricultural productivity, 

will result in mitigation of all areas of the catchment that meet with the targeted flow 

path (Trodahl et al., 2017).  
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A benefit of using LUCI to model and understand the complex interaction between 

nutrients, sediment and water quality on a farm system is that it is a spatially explicit 

(GIS-capable) framework (Jackson et al., 2016). Tools within the framework allow the 

user to track changes across an entire farm, or within smaller blocks, enabling 

mitigation strategies to be effectively targeted to improve water quality. LUCI was 

recognised, in the Bagstad et al. (2013) evaluation of decision support tools for 

ecosystem services, as being scalable from landscape to individual sites, assuming 

there is data available at an adequate resolution for site-scale analysis. LUCI was the 

only tool capable of covering multiple scales identified in his review.  

The minimum data required for LUCI is a digital elevation model (DEM) and soil and 

land cover data (Table 3.1) (Trodahl et al., 2017). These can be sourced from nationally 

available datasets. The addition of further national or local data along with stakeholder 

consultation will should improve the accuracy of LUCI's output. This thesis tests the 

validity of this idea (Figure 3.1). The maps produced by LUCI show areas of the 

landscape that are currently providing a service, and highlight places where there is 

significant opportunity to enhance service provision because there is little benefit 

currently being produced in that area (Jackson et al., 2016). 

Soil and elevation datasets used in this sensitivity analysis and their uncertainties are 

discussed in Chapter 4. Landcover data in the form of the LCDB4 is also compared to 

OVERSEER farm information for one study site.  
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Table 3.1 Minimum data required by LUCI. 

Data 
Period Covered Resolution Source 

National 15m DEM 2011 15mx15m http://www.otago.ac.nz  

 

Stream network  2010  

 

 https://www.niwa.co.nz  

Rainfall 1960-2004 1000mx1000m Not publicly available 

Evapotranspiration 1960-2004 500mx500m Not publicly available 

Land cover  

(LCDB4)  

2012/13  

 

Designed to a scale of 1:50,000 but 
variable between regions. 

https://lris.scinfo.org.nz 

NZFSL  
Oldest survey dates back to 1960’s. 

Generally, 1:63 360 but may be lower 
resolution depending on original soil 
survey. 

https://soils.landcareresearch.co.nz  

 

S-Map  Based on same data as FSL and 
includes updated soil surveys where 
available. 

1: 50 000 https://smap.landcareresearch.co.nz  
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Figure 3.1 LUCI process diagram. Based on Figure 1 in Trodahl et al. (2017). 

The LCDB4 is a national thematic classification of New Zealand’s landcover containing 

33 landcover classes. The classes included in this dataset are urban, rural, wetlands 

and natural forest catchments. Agriculture is split into four separate landcovers (short-

rotation cropland, perennial crops, high-producing grassland and low-producing 

grassland). These classifications are particularly important when default data is used in 

LUCI, as discussed for North Canterbury in Chapter 6.   

LCDB4 version 4.1 was used in this research; it contains four-time steps (summer 

1996/97, summer 2001/02, summer 2008-09 and summer 2012/13) providing the 

landcover code, and landcover name within a polygon boundary (LRIS, 2018). This 

dataset was created from SPOT satellite imagery with the polygons digitised directly 

from the imagery collected or, in some cases, manually digitised (LRIS, 2018). 

3.2.1 Export Coefficients in LUCI 

The Nitrogen to Water and Phosphorus to Water tools in LUCI use an export coefficient 

approach to model nitrogen and phosphorus lost to water (in kg/ha/yr). The export 

coefficient approach describes the rate at which a contaminant is input into a water 

body per unit of source area. In this case, the unit area is one DEM grid cell (White et 

al. 2015). These export coefficients are linked to the land cover classification, climate 
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and region being modelled, and are commonly used to represent the movement of 

diffuse pollution in the landscape (Trodahl et al., 2017). 

In the LUCI model, spatial data from the DEM and landcover files are used to identify 

areas where nitrogen and phosphorus losses are caused by a combination of climate 

and land management variables, after which, export coefficient algorithms (EC) 

developed by Trodahl (2018) are applied to the data. The algorithms used in this thesis 

for nitrogen calculations take into consideration rainfall (R), irrigation (I), fertiliser 

nitrogen (N), effluent nitrogen(EN), and the relative stock unit (RSU). The phosphorus 

calculations take into consideration rainfall (R), irrigation (I), fertiliser phosphorus (P), 

effluent phosphorus (EP), Olsen P, and topography (Equations 3.1 and 3.2) (Trodahl, 

2018).  

𝑁EC𝑃𝑎𝑠𝑡𝑜𝑟𝑎𝑙= 𝑎1(R+I)𝑏1+ 𝑎2(N+EN)𝑏2+𝑎3𝑅𝑆𝑈+𝑐1 

Equation 3.1 

𝑃EC𝑃𝑎𝑠𝑡𝑜𝑟𝑎𝑙 = [(𝑎1×𝑆𝑉×𝑆𝑙𝑜𝑝𝑒×𝐺𝑟𝑎𝑣𝑖𝑚𝑒𝑡𝑟𝑖𝑐 𝑂𝑙𝑠𝑒𝑛𝑃+𝑎2 ×𝐷𝑅𝑃)×max 
([R+I−𝑐1]𝑏1,0)+𝑎3(P+EP) 

Equation 3.2 

The model constants ax, bx and c were derived, for each soil order, from the 

Ravensdown dataset to minimise the difference between simulated nutrient loss from 

LUCI and the predicted nutrient loss from OVERSEER (Trodahl, 2018). Structural 

vulnerability (SV), gravimetric Olsen P and dissolved reactive phosphorus (DRP) were 

derived from McDowell et al. (2005) and Gray et al. (2016a), with DRP calculated 

according to the equation described by Wheeler (2016a).  

If a farm OVERSEER file is available for the site being modelled in LUCI, the farm data is 

incorporated by linking the management information held in OVERSEER to a 

georeferenced block shapefile. This OVERSEER file represents the most accurate 

representation of the farm system. If an OVERSEER file is not available, LUCI uses 

regional mean information on rainfall, irrigation, fertiliser, effluent and stocking rate 

derived from the Ravensdown dataset with Olsen P set at 25 for all regions. A full 
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description of the regional default inputs can be found in Trodahl (2018). Table 3.2 

below gives the default values for the regions tested in this study. 

3.3 OVERSEER NUTRIENT BUDGET MODEL 

OVERSEER models pastoral, horticultural, arable and vegetable farm systems and 

considers seven nutrients in its nutrient budgets (nitrogen, phosphorus, potassium, 

sulphur, calcium, magnesium and sodium). Greenhouse gas emissions per product or 

per hectare are also estimated (Watkins & Selbie, 2015).  OVERSEER was designed for 

use by non-experts, thus the inputs required to create a farm file are readily available. 

Where information is not available, defaults have been built into the model based on 

current research into nutrient loss in New Zealand farm environments (Figure 3.2) 

(Watkins & Selbie, 2015). The model is based on several key assumptions: the farm is 

in a steady state; actual and reasonable inputs are entered into the model; output is 

annual average representation of the farm; good management practices are always 

followed, and animal production inputs are a factor in pasture production estimates 

(Watkins & Selbie, 2015).  

 

Figure 3.2 OVERSEER process diagram. Source: Arbuckle (2015). 
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Table 3.2 National data used as input in the nitrogen and phosphorus coefficients in LUCI. Source: Trodahl (2018). 

Region Rainfall  

(mm/yr) 

Irrigation 

(mm/yr) 

N fertiliser  

(kg N /ha/yr) 

N effluent  

(kg N/ha/yr) 

P fertiliser  

(kg P /ha/yr) 

P effluent  

(kg P /ha/yr) 

Stocking Rate 

(RSU) 

Olsen P 

Manawatu 1020.6 79.4 134.3 26.9 18.9 9.4 15.8 25 

Greater 

Wellington 

1345 32.3 130.4 26.1 18.5 9.3 12.9 25 

Canterbury 729.6 352.9 159 31.8 18.3 9.2 21.6 25 

Otago 695.6 69.1 136.7 27.3 18 9 16.4 25 
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These default values and OVERSEER’s performance have come under increasing 

scrutiny to ensure that the model is underpinned by strong science. Therefore, there is 

a need for continuous OVERSEER development to both maintain current benefits and 

ensure expansion with new science (Gray et al., 2016b; Journeaux, 2016).  

The shift from using OVERSEER as a decision support tool for fertiliser applications to a 

regulatory tool that is used to set limits on the nitrogen lost from farms has been 

controversial, as the ongoing development of both the science and the model have 

resulted in large shifts in nutrient estimates between versions (Duncan, 2017). 

Arbuckle (2015) outlines this change in the application of OVERSEER from a trusted 

farm support tool to a regulatory, limit management tool used by regional councils, 

highlighting the need for regulators to assess whether they are using OVERSEER 

appropriately in resource management decisions.   

Due to the pressure on regional councils to set nutrient limits to meet NPS-FM 

requirements, it is important that councils are guided on the proper use of OVERSEER 

and ensures that regulators “fit the policy to the model, not fit the model to the policy” 

(Arbuckle, 2015 p. 5). Workshops with Waikato Regional Council, Environment 

Canterbury and Horizons Manawatu found that using ‘hard’ numbers from OVERSEER 

(when planning rules and setting regulation limits) results in plans becoming obsolete 

when OVERSEER is updated. However, using OVERSEER to promote farm environment 

plans and the development of good management practices by audited farms, ensure 

that OVERSEER is used in a way that complements its original purpose, to guide farmer 

decisions surrounding nutrient use (Arbuckle, 2015). 

3.4 SOIL WATER CALCULATIONS IN LUCI AND OVERSEER 

LUCI 

 

LUCI uses a water balance equation to infer profile available water (PAW) at certain 

depths in the soil profile. PAW is defined as the amount of water potentially available 

for plant uptake that is stored in the soil, and it is expressed in units of millimetres of 

water. If there is a root barrier then the PAW will be measured to the root barrier as 

past this depth no water is available for plant uptake.  Thus, PAW is calculated to 
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either the rooting depth of the vegetation or to the depth of the impeding layer, 

whichever comes first (B. Jackson, personal communication, 12 March 2018). The term 

for this is the LUCI soil depth (LSD). A profile available water fraction (PAWf) for each 

soil sibling is then calculated based on the infiltration capacity of the soil (which is 

heavily impacted by the topsoil stoniness) and the effective rainfall on the area. 

Calculating PAW for any sibling is therefore based on Equation 3.3 

𝑃𝐴𝑊 = 𝐿𝑆𝐷 × 𝑃𝐴𝑊𝑓 

Equation 3.3 

A drainable water fraction (DWf) is also calculated to describe the amount of water 

between field capacity (FC) and saturation. This value represents that amount of water 

available to run off the landscape (Equation 3.4). 

𝐷𝑊 = 𝐿𝑆𝐷 × 𝐷𝑊𝑓 

Equation 3.4 

A schematic of the movement of water through the soil profile is displayed in Figure 

3.3.  

OVERSEER 

The soil water content in OVERSEER can be defined by the wilting point (WP), FC and 

saturation in units of mm of water/10cm in the soil profile at three depths (0-30 cm, 

30-60 cm, and > 60 cm) (Wheeler, 2016a). WP denotes the minimum required soil 

moisture before a plant begins to wilt and is defined by the water content at 1500 kPa 

(McLaren & Cameron, 1996). Similarly, FC is the water content at 10 kPa and 

saturation is the water content at 0 Kpa (McLaren & Cameron, 1996).  
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Figure 3.3 Diagram of the movement of water through a soil profile. 

There are two ways soil water content can be estimated in OVERSEER. Firstly, if the 

WP, FC and saturation values of the soil are known, the soil moisture content for each 

10 cm layer (numbered 1-15) is estimated (Wheeler, 2016a). For the layers below the 

impeded layer, the soil water content is zero (Wheeler, 2016a). If the topsoil of the 

area is known to be compacted, the top layer (0-10 cm) soil water content is reduced 

by 5 mm. When WP, FC and saturation values are not estimated for a soil, the soil 

water content of the top soil (0-10 cm) is estimated based on the texture profile of the 

soil (percentage sand, silt or clay), as calculated in Equations 14 to 17 in Wheeler 

(2016a). OVERSEER then uses the difference between the estimates of FC and the 

permanent WP, for each soil type, to estimate total available water (TAW) for plants in 

the soil profile (Wheeler, 2016a). PAW is the rainfall equivalent depth of TAW within a 

specified depth in the soil profile (Equation 3.5) (Wheeler, 2016b).  

PAWD = ∑ (𝑆𝑀𝑓𝑐𝑧 −  𝑆𝑀𝑤𝑝𝑧)  𝑧
1  

Equation 3.5 

D is the depth of interest. 

SMwp is the WP (mm) of the layer z. 

SMfc is the FC (mm) of the layer z. 

(z is the number of 10 cm layers down to the profile depth). 
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This equation is soil-specific and independent of plant type. Nevertheless, if the 

maximum rooting depth of the plant is reached before the root barrier, then crop 

available water (CAW) is calculated to the rooting depth. As CAW is calculated by 

changing the value z in Equation 3.5, estimates of CAW are user-definable by changing 

the z values of the specified crop type (Wheeler, 2016b). For pastoral blocks, the 

bottom of the root zone is defined as 60 cm (Wheeler, 2016a). Since most of the field 

measurements held in S-Map are taken from pastoral land, soil water estimates in S-

Map > 60 cm assume there is no change in the soil profile below 100 cm (Landcare 

Research, 2018a). This assumption affects estimates on cropping blocks in OVERSEER, 

as changing sand, silt and clay percentages at depth in the soil profile will result in over 

or under estimates of soil moisture.  

OVERSEER can also use a drainage class assigned by S-Map to a sibling. A drainage class 

is assigned from 1-5 to describe how water is drained through the soil profile. These 

drainage cases are split into three groups: poorly drained (4); imperfectly drained (3); 

and, well drained (1).  Pollacco et al. (2014) investigated the soil parameters in 

OVERSEER and found that changing the drainage class had no impact on runoff, 

percolation and evapotranspiration of water through the block and, as such, no impact 

on denitrification and leaching estimates. The lack of any feedback between saturation 

and runoff on pasture blocks was identified by Landcare Research as an issue that 

required further investigation (Pollacco et al., 2014). The release notes of OVERSEER 

6.2.3 (OVERSEER, 2018) state that the option of selecting a drainage class has been 

extended from pasture blocks to crop, cut and carry and to fruit crop blocks. The notes 

do not mention if the issues Pollacco et al. (2014) highlighted were addressed. 

3.5 SENSITIVITY TO SOIL PROPERTIES  

Based on LUCI’s hydrology and nutrient loading algorithms, it is expected that nitrogen 

results are sensitive to PAW, DW and the permeability of the soil, and the phosphorus 

model will be sensitive to variations in Olsen P, ASC and the SV of the soil.  

PAW and DW describe soil water properties that will affect the amount of nitrogen 

leached through the soil profile. Variations in these values between soil types will 
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impact the stream concentrations estimated by the nitrogen tool. From data obtained 

by OVERSEER, phosphorus, Olsen P (the measure of plant available phosphorus in the 

soil) and ASC values are associated with most soil types. ASC variations will result in 

different phosphorus estimates, as the phosphorus retention capability of the soil 

changes with soil type. There are three low, medium and high classes of ASC in New 

Zealand (McLaren & Cameron, 1996). The relationship between soil orders and these 

three classes is shown in Table 3.3.  

Table 3.3 Relationship between ASC classes and soil order. Source: McLaren & 
Cameron (1996). 

 
Low (0-30%) Medium (31-85%) High (86-100%) 

Soil Order Organic 

Pallic 

Podzol 

Semi Arid 

Recent 

Raw 

Ultic 

Brown 

Pumice 

Oxidic 

Melanic 

Allophanic 

Granular 

* Gley soils have variable P retention 

Estimating the SV for each soil type provides information on the soil strength based on 

topsoil clay and carbon content (expressed as a percentage), as shown in Equation 3.6. 

This follows the equation used in McDowell et al. (2005), this corrected in Wheeler 

(2016a).   

𝑆𝑉 = 1 −

(
𝐴𝑆𝐶
100 +

√𝐶𝑙𝑎𝑦
5

+
√𝐶𝑎𝑟𝑏𝑜𝑛
8.5 − 0.7

)

2.3
 

Equation 3.6 
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CHAPTER 4 REVIEW OF NEW ZEALAND’S SOIL AND TOPOGRAPHIC 

DATASETS   

 

 

This chapter describes soil and topographic data that can be used in the LUCI model. 

Section 4.1 details the available soil data in New Zealand, including the data held in the 

National Soil Database (NSD) that is fundamental to soil classifications in the 

Fundamental Soil Layer (FSL) and the newer, S-Map database currently under 

development by Landcare Research. Section 4.2 describes the availability of DEMs in 

New Zealand, including low-resolution, national coverage DEMs and high-resolution 

DEMs produced from LiDAR (Light Detecting and Ranging). DEM accuracy is outlined 

based on the source of elevation data, the distribution of samples, interpolation 

techniques, and the chosen grid size of the DEM.     

4.1 AVAILABLE SOIL DATA IN NEW ZEALAND 

The soil is composed  of minerals, organic matter, water and air, with the variation in 

the proportion of these components greatly influencing the physical properties of the 

soil (McCauley et al., 2005). Soil development is dependent on climate and living 

matter acting on the parent material, resulting in weathered mineral or organic 

matter. The weathered material develops into different layers, or horizons, each 

having a distinct texture, structure, and colour (McCauley et al., 2005). There are four 

'master' horizons denoted by the letters O, A, B and C, which correspond to varying 

depths in the soil. Not all soils will have every horizon, as poorly developed soils will 

lack a defined B horizon, and in landscapes with high erosion rates, a thin or non-

existent A horizon may be present (McCauley et al., 2005).  

These 'master' soil horizons enable the communication of soil properties observed at a 

site, as outlined below and identified in Figure 4.1. 

• The O horizon is a layer dominated by soil material consisting of fresh, or 

partially decomposed organic material derived from plants and animals. 
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Commonly, this layer is present at the soil 

surface, while most common in forest soils this 

horizon can make up the entire soil profile in 

organic soils (Buol et al., 2011). 

• The A horizon is the mineral horizon, which is the 

layer most impacted by biological and human 

activity. This layer is either present at the soil 

surface or below the O horizon. The layer usually 

has the highest percentage of soil organic matter 

resulting from the decomposition of plant 

residue (Buol et al., 2011). 

• The B horizon is the zone of accumulation, as 

leached material from the A horizon accumulates 

and alters the parent material, reddening the soil 

colour. Accordingly, this part of the subsurface is 

significantly different from the material from which it was formed (Buol et al., 

2011). 

• The C horizon represents parent material, with little, to no alteration by soil 

forming processes, and does not show any resemblance to the properties of 

the O, A, , or B horizons (Buol et al., 2011). 

• Finally, the R horizon represents layers of bedrock that are strongly cemented 

(Buol et al., 2011). 

The deterioration of soils’ physical quality is mainly a result of agricultural activity, as 

trampling of the soil by livestock leads to degradation through compaction and 

homogenisation (Drewry, 2006). Machinery use on the landscape also results in 

damage to soils, but, this is more localised (e.g. deterioration under the tracks of 

wheeled equipment)  (Drewry, 2006). Soil compaction reduces the fractional air 

volume held within the soil, particularly the volume of macropores, and thus disrupts 

the soil pore network, decreasing the soil's porosity (Menneer et al., 2001).  Increased 

research and reporting to government agencies is being undertaken on the indicators 

of soil physical health or condition; these indicators commonly include bulk density of 

Figure 4.1 A general soil 
profile. Source: McCauley 

et al. (2005). 
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the soil (a measure of large soil pore volume), and saturated hydraulic conductivity 

(Menneer et al., 2001).  

4.1.1 The New Zealand Soil Classification System 

Classification of New Zealand soils was first developed in the New Zealand Genetic 

Classification (NZGS), which linked soil groups to the environment that most influenced 

that soil’s development (Taylor, 1948). This system linked soils to their surrounding 

climate, vegetation and geology. The NZGS, while useful at large scales, made it 

difficult to define the correct class of soil at the field scale, as continuous improvement 

in scientific knowledge and understanding of characteristics of soil properties 

advanced beyond the capability of the genetic classification to manage (Landcare 

Research, 2018b). This led to the development of the New Zealand Soil Classification 

(NZSC) which has been in use since 1983, from Version 1.0 (Hewitt, 1989) to the 

current Version 3.0 (Hewitt, 2010).  

The classification of an area to a soil type begins with the soil profile. A one metre pit 

(or depth to rock) is dug with the functional horizons, pH and other chemical 

measurements taken. These characteristics of the soil are compared to the definitions 

of the 15 soil orders (Table 4.1), and the most appropriate order is chosen. Once a soil 

order is selected, the soil group (of which there are 74 groups based on parent 

material, drainage status and the soils’ physical properties) and relevant soil subgroups 

are selected (there are 299 possible subgroups based on the environment the soil is 

located in) (Hewitt,2010; Landcare Research, 2018b). This hierarchal classification 

system (order, group and subgroup) is also designed to include a fourth category, 

known as a soil series or family. These series are assigned through the differentiation 

of the subgroup into three criteria: parent material; particle size, and permeability. 
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Table 4.1 Soil Order Classification and their respective characteristics. Source: 
Landcare Research (2018b). 

Soil Development  
Soil Order 

 

Soil Characteristics  

 

 Organic Soils dominated by organic 

material 

Gley 

 

Grey colours due to reduction of 

iron caused by waterlogging 

beneath a high-water table 

Anthropic  Soils disturbed by people (made 

by stripping or mixing the original 

soil material to depth or by 

addition of fill) 

Minimal Soil Development  

Soils on young land surfaces 

where rock material or 

sediments in which the soils is 

formed are fresh and little 

altered.  

Raw No topsoil or minimal topsoil 

Recent With a distinct topsoil 

Intermediate Soil 

Development 

Soils where the rock material 

or sediments in which they are 

formed are altered but still 

recognisable, with a large 

proportion of unaltered 

minerals. The soils have well-

developed subsoil horizons if 

not on shallow rock. 

Allophanic Dominated by allophane (from 

volcanic parent materials) 

Melanic   Dominated by high calcium or 

magnesium (from lime rich rocks) 

Pumice  Dominated by pumice or sandy 

glassy tephra 

Semiarid Semi-arid climate, rainfall less 

than 500 mm/yr 

Pallic Sub humid climate with seasonal 

drought 
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 Brown  Humid climate, rarely dry except 

if sandy or stony where soils may 

be drier 

Podzol Super-humid climate 

Strong Soil Development  

Soils on land surfaces where 

the rock material or sediments 

in which the soil is formed are 

mostly transformed to clay.  

Ultic Mainly sedimentary rocks  

Granular Mainly volcanic rocks, well 

developed polyhedral structure  

Oxidic Mainly volcanic rocks, dominated 

by iron and aluminium oxides 

Soil family and sibling were defined by Web and Lilburne (2011) who recognised the 

need for more detailed definition of a soils’ physical properties than that held at the 

subgroup level. Each soil family is defined by a combination of attributes including soil 

order, group, subgroup, parent material, rock class, dominant texture and permeability 

class (Barringer et al., 2008). The soil classes are then separated into siblings, which are 

determined by the soil’s morphology (soil depth, topsoil stoniness, natural soil 

drainage, soil texture-profile and a unique sequence of up to six functional horizons) 

(Webb & Lilburne, 2011).  

The separation of soil families into siblings allows further explanation of soil 

properties, based on the similarity of measurable properties rather than the soils’ 

presumed genesis (Lilburne, 2011). The six functional horizons in the soil sibling 

classification denote one or more parallel layers of soil, enabling soil properties of 

interest to be derived; these layers are defined by stoniness, texture, structure size 

and soil density (Webb, 2003). The functional horizons describe the base properties of 

the siblings, with the variability in these properties estimated by probability 

distribution functions. Expert knowledge and measured data were used to create the 

probability distribution functions for each soil property within the soil sibling 

classification (Lilburne et al., 2009). 
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4.1.2 Mapping New Zealand soils 

New Zealand soil data concentrates on two types of soil properties; one is ‘inherent 

soil properties', which vary slowly in time and can be regarded as fixed over human 

timescales (e.g. clay content) (Hewitt, 2013). The other type, ‘dynamic soil properties’, 

vary on daily and yearly timescales and are responsive to short-term environmental 

drivers, making them important indicators for environmental management (e.g. soil 

water content or total soil organic carbon) (Hewitt, 2013). Field measurements collect 

both types of soil information when describing a soil profile, and the data are  held 

within the NSD (Landcare Research, 2017a). The NSD is a point database of soil, 

physical, chemical and mineralogical characteristics, collected from 1336 soil profile 

surveys across New Zealand. The oldest soil survey dates in the database back to 1959. 

(Hewitt, 2013). The soil information contained within the NSD is the basis for the 

derivation of New Zealand's soil classification system and our understanding of how 

soil properties vary with geology, rainfall, vegetation and topography (Hewitt, 2013). 

 

Recognition of the need for improved coverage and accuracy of New Zealand's soil 

information led to the formation of the FSL (LRIS, 2017). The FSL was created by 

combining features from the New Zealand Land Resource Inventory (NZLRI) with the 

soil data from the NSD.  The NZLRI contains 90 000 polygons that cover New Zealand 

(except for Stewart Island), at a scale of 1:50 000 (LRIS, 2017). These polygons contain 

physical land resource information, such as soil units for a given area, based on the 

physical factors of rock, slope, erosion, and vegetation (LRIS, 2017). Information from 

both the NZLRI and the NSD were combined using expert knowledge and consultations 

with stakeholders, which determined the fifteen soil attributes described in the FSL 

(Appendix A).   

Limitations of the FSL and NSD 

The soil data used to produce the FSL is of lower resolution than the physical factors of 

the landscape held in the NZLRI, thus that the scale of the NZLRI had to be reduced to 

from 1:50 000 to 1:63 360 (Lilburne et al., 2004). In some instances, the incomplete 

coverage of soil data across New Zealand means that particular areas are only 
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represented by a soil map at the scale of 1:253 440 (Hewitt, 2013). Not only is the 

varying resolution of the FSL an issue, but there are inconsistencies in how much data 

was collected from each of the soil surveys. For the individual profiles sampled and 

entered into the NSD, a different number of soil properties were documented, with 

some having chemical data only, whereas others have a full analysis of the soil profile’s 

chemical, physical and mineralogical characteristics (Wilde, 2003).  

The location of the soil profiles entered in the NSD is represented in Figure 4.2. These 

profiles are clustered around research sites, resulting in a patchy distribution that does 

not represent of all regions in New Zealand, with most of the surveys taken on 

agricultural land (Wilde, 2003). The criteria for selecting a site also introduced a bias 

towards a certain type of landscape, as pedologists chose stable sites with minimum 

disturbance that have no recent signs of land use change (e.g. scrub/forest converted 

to pasture) (Wilde, 2003). If the land was converted from pasture to arable, it too 

would be rejected, as the upper soil horizons would be disturbed, making the soil 

profile characterisation process difficult (Wilde, 2003). These decisions have led to the 

NSD mainly representing uneroded sites or very slightly eroded sites, with a stable 

history of land use. Consequently, when transferring these attributes to the polygons 

of the NZLRI layer, the data does not reflect the characteristics of the entire polygon, 

which would have a range of erosion severity and land uses. These discrepancies in the 

NSD can be seen in Tables 4.2 and 4.3 where regions such as Northland, Hawkes Bay, 

Taranaki and Tasman are under sampled compared to high producing areas like 

Waikato and Canterbury. With 25% of all field samples classified as brown soils, it is 

clear that further work is required to create a representative database of field 

measurements.  

The patchy distribution is also seen in the soil series recorded. Of the 2000 soil series 

that have been recognised, less than half are represented in the NSD (Hewitt et al., 

2012). How representative the NSD is of real-world conditions has been called into 

question, as soil water dynamics are not analysed at any of the sites, and only 425 sites 

include water retention data (Hewitt et al., 2012). The limited understanding of soil 

water dynamics is thus problematic, as soil water can influence plant growth and the 

movement of nutrients through the soil (Hewitt et al., 2012).   
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Further limitations of this soil dataset arise from a lack of standards for entering soil 

data into the NSD. Data can be entered both manually and electronically, resulting in 

incomplete data capture and transcription errors (Hewitt et al., 2012). When the NSD 

data was held in a card filing system before the establishment of the electronic 

database, there were strict protocols in place regarding the level of detail needed for 

each survey, but, these were not always adhered to (Wilde, 2003). Information lost 

between data collection and entry into the electronic database includes: the rationale 

for the methods used and the uncertainty associated with measurements; any change 

to the methods used between sites; and the identification and qualifications of the 

individuals providing the expert judgement for any uncertainty estimates (Wilde, 

2003). 

 

Figure 4.2 Sample site locations of the NSD. Source: Hewitt et al. (2012). 
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Table 4.2 NSD sites separated into regions sampled. Source: Landcare Research 
(2018c). 

 
New Zealand 

Regions 

Number of 

Survey Sites in 

Each Region 

Percentage of 

Survey Sites in 

Each Region 

North Island (49%) Northland 39 3% 

Auckland 37 3% 

Waikato 128 10% 

Bay of Plenty 85 6% 

Gisborne 43 3% 

Hawke's Bay 31 2% 

Manawatu-

Wanganui  

176 13% 

Taranaki 38 3% 

Wellington 75 6% 

South Island (51%)  Marlborough 84 6% 

Tasman 37 3% 

West Coast  155 12% 

Canterbury 150 11% 

Otago 155 12% 

Southland  103 8% 

Total 1336 
 

A contributing factor to incomplete data coverage is a significant drop in funding for 

soil science research since the mid-1980s, which has limited the development of land 

resource databases and the ongoing maintenance of the NSD (Hewitt et al., 2012). The 

lack of funding means that research since mid-1990 was no longer incorporated into 

the NSD, remaining as temporary datasets. Some improvement has been made to the 

NSD since funding has increased, through the recognition of the Land Resource 

Information System (LRIS) as a nationally significant dataset by the New Zealand 

government, and the development of the NSD Improvement Project by Landcare 

Research (Hewitt et al., 2012).  
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Table 4.3 Survey sites classified by soil order in the NSD. Data queried to produce this 
table was collected between 1959 and 1997. Source: Landcare Research (2018c). 

 

New Zealand Soil 

Classification 

Total Amount of Each Soil 

Order Present in the 

Survey Record  

Percentage of Database with 

Each Soil Classification 

Organic Soil 47 4% 

Granular Soil 15 1% 

Raw Soil 7 1% 

Melanic Soil 58 4% 

Oxidic Soil 17 1% 

Semiarid Soil 23 2% 

Pallic Soil 175 13% 

Allophanic Soil 98 7% 

Ultic soil 32 2% 

Gley Soil 175 13% 

Recent Soil 159 12% 

Podzol Soils 121 9% 

Pumice Soil 52 4% 

Brown Soil 334 25% 

Mafic Brown Soil 23 2% 

Total  1336 
 

Efforts to improve the coverage and accuracy of New Zealand’s soil data has focused 

on critically evaluating the existing FSL and NSD databases, instead of increasing the 

coverage of the soil profiles analysed. This is because the majority of field techniques 

are time-consuming and expensive (Wösten et al., 2001). Working off existing 

databases is the approach Landcare Research has taken with the development of S-

Map (Landcare Research, 2017b). S-Map will act as a platform for fusion with other 

environmental layers and new soil data as it is made available, enabling spatial 

modelling of New Zealand's soil characteristics to an extent that was not possible with 

previous databases (Lilburne et al., 2004). Improving the NSD fell under Landcare's 

$1.52 M funding investment for 2014/15, labelled the Data Stewardship Infoservices 
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Program, to improve the integration of soil attribute data, and parallel efforts to 

extend the coverage of S-Map across New Zealand (Landcare Research, 2017b).  

4.1.3 The Development of S-Map 

S-Map was created by combining legacy data (previously analysed pedons and older 

soil surveys held within the NSD) with the work of experienced pedologists on soil 

variability and soil-landscape relationships, to create web accessible, dynamic, soil 

factsheets (Hewitt, 2010). Expert knowledge from pedologists was used to sift through 

the legacy data, extracting information from the soil profile to describe the functional 

horizons and to estimate the probability distribution of key attributes within soil 

classes (Hewitt et al., 2010).  Uncertainty ratings were attached to express the relative 

contribution of data and expert judgement involved in the creation of the soil 

information factsheets. This also identifies where investment is needed to improve 

areas of lower certainty in the national coverage (Hewitt, 2010).   

Advances in information technology mean that S-Map is not just an improvement on 

previous soil databases, but it is also an information system that can store data at 

multiple scales and provide rule-based validation checks, automatic taxonomic 

correlation, data modification history, dynamic fact sheet generation and an image 

database (Lilburne et al., 2012). This complex soil database is made possible through 

the development of numerous software models and tools for managing soil data by 

Landcare Research. Users’ ability to create web-based factsheets for a soil or spatial 

location of interest, makes the data accessible to a wide range of people. The 

factsheets can be designed to suit the needs of pastoral or cropping farmers and 

people trained in soil science, or to educate school children (Lilburne et al., 2012).  

The coverage of S-map over New Zealand is not complete, and additional funding is 

being sought from regional and national government and farm servicing agencies. 

Since each of these have their own interests and goals, funding to dramatically extend 

the coverage of the soil database is unlikely (Lilburne et al., 2012). The extent of S-map 

over productive land is shown in Figure 4.3 below. There are evident discrepancies 

between regions, which indicate the funding and commitment that some councils have 

invested in understanding the soil properties in their region. Not only should councils 
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focus funding to improve the coverage of S-Map, but funding should be allocated by 

these groups towards further development of the NSD and the soil samples it holds.  

 

Figure 4.3 Coverage of S-Map over New Zealand. Source: Landcare Research (2018) 
for S-Map data, and Land Resource Information System (2018) for agricultural 

classed landcover data. 

Pedotransfer Functions and the Improvement with S-Map 

Although S-Map has made advances in the description and representation of soil data, 

there is still a lack of high-resolution soil information that covers New Zealand. S-Map’s 
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representation of soil characteristics is strongly linked to the information from a 

limited number of soil profiles in the NSD. To limit the effect the lack of collected soil 

data may have on the accuracy of digital soil mapping, pedotransfer functions (PTFs) 

are used to estimate soil properties that have not been measured in the legacy 

dataset, or that are difficult/expensive to measure.  These properties are instead 

estimated from their relationship to other soil properties (Giltrap & Hewitt, 2003).  

PTFs are used in the NSD to estimate: available water capacity; readily available water 

capacity; total porosity; macroporosity, and fine earth dry bulk density (Giltrap & 

Hewitt, 2003; Lilburne et al., 2014).  

The PTFs used in S-Map were developed by Cichota et al. (2013). Information held 

within the NSD (fractions of sand, silt and clay; organic carbon content and soil bulk 

density) was collated, then several PTFs for each soil property were combined from 

PTFs developed from soil data from other regions of the world. The weighting of 

several PTFs to match local measurements in the NSD is a novel approach termed the 

ensemble PTF (ePTF) by Webb et al. (2000). This ePTF avoids reliance on a single 

function and enables the uncertainty of any PTF to be averaged out by the weighted 

effect of the other members.  

To estimate these properties requires data on the percentages of sand, silt and clay in 

the soil profile, and the soils’ dry bulk density (which is used as a predictor variable in 

PTFs except when it is the target in its own PTF) (Giltrap & Hewitt, 2003).  

Understanding the texture of soil is important, as it is the primary determinant of a 

soil's ability to hold water. If the soil contains many macropores it loses water through 

gravitational drainage, so there is only a small amount of water available for use 

before the wilting point is reached (McCauley et al., 2005). The opposite occurs in fine-

textured soils, as micropores do not freely drain water under gravity and therefore 

have more plant available water. While the use of texture to approximate soil drainage 

characteristics excludes the effect biologic activity and clay mineralogy have in 

developing soil macropores, the use of PTFs to predict hydraulic characteristics does 

enable experts to quantify the physical, chemical and biological processes active in soil 

profiles where measurements are unavailable (Wösten et al., 2001).  



49 

Modelling developments within S-Map have incorporated improved PTFs for soil 

properties with limited data, thus increasing the accuracy of soil-climate and soil-

climate-land management models (Lilburne et al., 2014). These improvements came 

about due to pressure for soil data that could support environment and production 

models used by industry specialists and policymakers as not only are PTFs associated 

with water movement through the soil important, and require improvement with new 

science, but improved PTFs for soil-related vulnerabilities to nutrient leaching and 

runoff are also required (Lilburne et al., 2014).   

The improved PTFs use regression models based on soil order, parent rock, soil 

functional horizon, and texture. Where appropriate, other relevant soil characteristics 

are used, such as phosphorus adsorption capacity and nitrogen leaching vulnerability 

(Lilburne et al., 2014). However, the analytical data held within the NSD are still the 

basis for all relationships modelled by PTFs. An example is the water retention curve (a 

key component of all of S-Map's PTFs). This is based on observed differences in soil 

water tension from the NSD profiles, creating a water tension curve to estimate the 

value of 1500kPa (WP) and four other tension points (Lilburne et al., 2014). Use of this 

curve ensures that modelled water values closely match observed values in the NSD 

(Lilburne et al., 2014). Therefore, even with past advances in modelling these 

parameters, the reliance on a small sample of soil profiles with a patchy distribution 

across New Zealand serves to highlight how important it is to fund the NSD’s 

extension.   

Advances in Representing Soil Data Through S-Map  

S-Map’s representation of soil types focuses heavily on the identification of functional 

characteristics (the utility of the soil for management purposes). Other soil 

characteristics described within the FSL and NSD that are closely related to 

environmental data (e.g. climate and topography-related variables) are not included 

(Lilburne et al., 2012). The primary map layer in S-Map consists of polygons labelled 

with the family name of the soil (Barringer et al., 2008). Soil siblings are expressed in S-

Map as a list of up to five siblings found inside a family polygon; the estimated 
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proportion of each sibling is given, although siblings that make up less than 10% of the 

map unit are not listed (Lilburne et al., 2009).  

The detailed description of soil properties within each map unit, compared with the 

single attribute tables associated with the polygons in the FSL, shows the effort 

Landcare Research has put into representing the variability and uncertainty in New 

Zealand’s soils.  S-Map is a considerably larger database than the FSL, with ten 

attribute tables associated with each map unit. This complexity is needed, as any one 

soil family identified (comprising more than 85% of a polygon) could have four or five 

siblings within it. Since each sibling shows the characteristics of its functional horizon, 

further tables are required to display this information (Lilburne et al., 2009). If 

compound map units are used to describe an area, then the data presented to the user 

is further complicated  (Lilburne et al., 2009). 

4.1.4 Opportunities for Improving New Zealand’s Soil Data 

The goal of S-Map is to provide easy access to soil data of a consistent scale, with 

common attributes derived for all soil orders, and data of sufficiently high quality to be 

applied in both field and national scale research (Barringer et al., 2008). Until this goal 

is realised, the resolution of the soil data from S-Map or the FSL will affect models 

based on that data. Pearse et al. (2015) identified the implications and issues with New 

Zealand's expert-based approach to soil mapping, and emphasises the need for larger 

datasets of measured soil attributes that can be used both as an input, and to validate 

the outputs produced. Currently, the lack of data underlying the NSD will have an 

impact on S-Map ability to provide useful information to users, despite the advances in 

estimating soil characteristics from measured values.  

Research into the appropriate scale to collect soil data was undertaken by Martin et al.  

(2016). Their study, of chemical variation within the underlying geology across 

southern Otago and Southland, determined that the ideal grid spacing was 16 km 

between each soil profile survey.   Nevertheless, a 32 km grid was thought to be 

acceptable for a national soil survey, as it provides a compromise between the area 

covered and the resolution, with only the subtle effects of soil variation lost from the 

geochemical results (Martin et al., 2016). Higher-resolution farm scale surveys should 
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be undertaken where finer detailed soil information is required (e.g. for irrigation, 

nutrient, soil, sediment and dairy effluent management). 

Carrick et al. (2014) developed a national protocol and standard for accurate soil 

mapping at the farm scale. While extensive farm scale mapping is costly, the benefits 

associated with using this data to inform mitigation management practices provides 

maximum benefit for the both the farm, and the catchment. In an earlier study, Carrick 

et al. (2010) quantified the cost-benefit of farm scale soil mapping as a 1:6 ratio. This 

accounted for the cost of establishing the soil map, and the benefits of targeted 

mitigation of nitrogen leaching in the case study catchment on the Mataura River, 

Southland (Carrick et al., 2010). The cost of producing a farm scale soil map was 

calculated in Barringer et al. (2016), with a 120 ha farm surveyed in a 40 m grid pattern 

costing $12,000 (10 minutes for each auger sample and labour costs of $100 per hour). 

After sampling, they estimated spending a further $3,000 on data processing and 

mapping. 

Landcare Research is currently working to extend the NSD and S-Map by including soil 

surveys from soil science projects that came after the NSD and thus have not yet been 

included in the national dataset. Some soil types, however, will still be under-

represented. Efforts to gain additional funding target both regional and national 

government and farm service agencies. As each organisation has its own interests and 

goals, opportunities for substantial funding capable of dramatically extending S-Map 

coverage are limited (Lilburne et al., 2012). Unless S-Map attracts significant 

investment from a government wanting to provide a stable, national-scale dataset, 

then the uncertainty associated with derived soil properties will always hinder the 

advancement of models that use soil data as a base for predictions. This thesis 

recognises the importance of quantifying the uncertainty in soil data as, for the 

foreseeable future, New Zealand's soil data will continue to be a source of error and 

uncertainty for decision support tools such as LUCI, that model nutrient flows across 

farms.   
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4.2 NEW ZEALAND’S TOPOGRAPHIC DATA 

The topography of a landscape is important, as slope is a key parameter which 

influences land use and erosion (Barringer & Lilburne, 1997). DEMs, also known as 

Digital Terrain Models (DTMs), represent the varying topography of the Earth and are 

therefore integral to spatial analysis. A DEM represents the bare ground surface of an 

area with objects, such as plants and buildings, removed (Elkhrachy, 2017). DEM data, 

which includes slope gradient, aspect, curvature, catchment area and upslope length, 

is used in a variety of hydrological and geomorphological applications (Thompson et 

al., 2001). While DEMs contain information on topographic parameters, their ability to 

represent landscape elements such as slope depends on the accuracy of the DEMs 

representation of the earth’s surface (Barringer & Lilburne, 1997). This DEM error is 

rarely measured or estimated in a manner that provides relevant accuracy information 

to users (Barringer & Lilburne, 1997). 

4.2.1 DEM Availability 

DEM coverage of New Zealand is not of fine resolution, as national LiDAR coverage is 

not yet available. Instead, regional councils hold LiDAR data for some or all of their 

region, which researchers, if given access, can use to create a fine resolution DEM. 

There are several freely-available DEMs created from LiDAR data held by LINZ; these 

cover Auckland, the Wellington region, Christchurch and Waimakariri and Selwyn in 

Canterbury, Tauranga, and the coastline of the Bay of Plenty (Figure 4.4a) (LINZ, 

2017b). LINZ is actively procuring LiDAR data from databases held by councils and 

companies to create and provide access to fine resolution elevation data (LINZ, 2016). 

Figure 4.4b shows areas currently in the process of LiDAR data capture, or where 

existing LiDAR databases will be transferred to the LINZ Data Service (LINZ, 2017a). 

The development of this publicly available LiDAR database by LINZ requires the data to 

be in a standard format (a 1m gridded DEM with a vertical and horizontal accuracy of 

95% and a pulse density greater than 2 pls/m2) (LINZ, 2016). Specifying the standard of 

vertical and horizontal accuracy describes the positional accuracy of an attributes 

(Elkhrachy, 2017). These two accuracy types cannot be separated, as an error could be 
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caused by an incorrect elevation value at the correct position, or by a correct elevation 

value for the wrong position (Elkhrachy, 2017). 

 

Figure 4.4 (a) Areas covered by LiDAR data available through the LINZ Data Service. 
Source: LINZ (2017b). (b) Areas where capture and supply of LiDAR data are in 

progress and will be made available through the LINZ Data Service in the future. 
Source: LINZ (2017a). 

There is currently no publicly available national DEM developed from LiDAR data, but 

there are two lower-resolution DEMs freely available through the LINZ Data Service: 

NZDEM-SoS-v1.0 

Otago University’s National School of Surveying created this 15m Dem in 2011. The 

topographic data for this DEM was sourced from the LINZ NZTopo 50 database (a 

seamless 1:50,000 scale topographic map of the country derived from aerial 

photographs) (Columbus et al., 2011).  Individual tiles (maps) can be downloaded from 

https://koordinates.com, enabling users to easily store and transfer data for specific 

areas of the country rather than having to download the entire DEM (Columbus et al., 

2011).  

https://koordinates.com/
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The contour lines and point height data are projected on the New Zealand Transverse 

Mercator 2000 projection with contour lines that are 20 m apart. Columbus et al. 

(2011) interpolated a 15m2 DEM from this data, providing a fine spatial resolution 

whilst avoiding a file size too impractical to be used in research. Before the creation of 

this DEM, the only other nationally available topographic data was the Landcare 25m 

and SRTM 90m (LRIS, 2018; OpenTopography, 2018).  

To interpolate the contour lines and height points into a raster grid, the ANUDEM 

method was chosen (there are numerous interpolation techniques, the advantages 

and disadvantages of which are detailed below). The ANUDEM method was developed 

at Australian National University and uses splines to generate a hydrologically correct 

DEM through the removal of false sinks (a sink is the end of a flow direction pathway) 

(Columbus et al., 2011).   

Arun (2013) found that ANUDEM produced a DEM that represented hilly terrain much 

better than other methods, as stream and ridgeline areas had a low RMSE value (a 

comparison of modelled and observed elevation data at test points measured by field 

survey or a known contour height). This low RMSE value makes ANUDEM an 

appropriate choice to model New Zealand’s topography. The drainage enforcement 

algorithm in ANUDEM is one of the main innovations that led Columbus et al. (2011) to 

select it. Their tests showed it produced a DEM with fewer artefacts compared to 

other methods. This algorithm provides additional outputs that assess the quality of 

the DEM, optimise the resolution and detect data errors (Hutchinson, 2011). Limiting 

artefacts in the DEM reduces the need for manual editing of the interpolated grid, and 

the drainage conditioning of the DEM produces accurate drainage properties based on 

a small set of surface specific data (Hutchinson, 2011).  

NZ 8m DEM 

This DEM was developed in 2012 by Geographx, a map design studio, (Geographx, 

2017). It is also derived from the contour line and height point data contained in the 

LINZ Topo 50. The purpose of this DEM was to describe natural landforms therefore it 

is primarily a cartographic visualisation tool not suitable for terrain analysis (LINZ, 
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2017c). LINZ does note that this DEM can be used for some preliminary analysis when 

looking at natural landforms to identify areas of interest, before the acquisition of 

high-resolution data (LINZ, 2017c). This 8m DEM is used in this thesis on several sites 

where only national DEM data is available.  

4.2.2 DEM Accuracy 

The accuracy of a DEM and the outputs derived depend on: the source of the elevation 

data (either active or passive sensors); the density and distribution of elevation 

samples; the method of data interpolation into a network, and the chosen grid size of 

the DEM (Liu et al., 2007; Thompson et al., 2001). This section considers each of these 

factors in more detail.   

Source of Elevation Data 

With satellite imagery providing bulk, high-speed information about the land surface, 

elevation data is collected through both passive and active sensors. Passive sensors 

detect radiation that has been emitted or reflected by an object in visible, near-

infrared, mid-infrared and thermal infrared wavelengths. Active sensors, unlike passive 

sensors, can direct electromagnetic energy towards the target and detect the reflected 

energy, enabling data collection independent of atmospheric conditions such as cloud 

and light conditions (Figure 4.5) (Dong & Chen, 2017). It is important to note that 

elevation estimates from both sensor types are based on the visible land surface rather 

than the ground level, and this could affect the results of spatial models such as LUCI.  

If errors are present, the DEM may require correction to ensure that elevation at 

ground level is represented accurately. 

Aerial Photography  

Aerial photography is a passive sensor and thus is of variable accuracy as passive 

sensors are unable to detect the ground in cloudy or low light conditions. Aerial 

photography was initially conducted using balloons, kites and gliders. Photographs 

were taken for the first time from an aircraft in 1908, and aerial photography for 

military reconnaissance developed rapidly during World War I and II (Dong & Chen, 

2017). Aerial imagery became the basis for topographic maps from the 1920s, and as 
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colour and infrared imaging was developed, aerial imaging became widely used to 

interpret the Earth.  

 

 

 

 

 

 

 

 

 

 

The development of aerial imagery made it possible for researchers to map landscapes 

in areas that were inaccessible to field researchers, and aid in interpreting ground 

information through the inclusion of topographic information since infrared 

photographs provided information that was previously unobtainable (Dong & Chen, 

2017).  The construction of a DEM sourced from photogrammetry has many modelling 

and processing steps (this is true for all DEMs generated from both passive and active 

sensors) (Figure 4.6). Each of these steps introduces random and systematic errors. 

Random errors arise from a lack of precision in the triangulation of target points on a 

photograph, whereas systematic errors include instrumental and pilot errors that 

cannot be rectified by an interpolation process (Fisher & Tate, 2006).   

LiDAR 

Figure 4.5 A comparison of passive and active remote sensors. Source: 
Dong & Chen (2017).  
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Collecting high accuracy terrain data by field survey is costly and time-consuming and, 

in some places, it may be too difficult to collect (e.g. densely forested or remote 

regions) (Liu et al., 2007). LiDAR is an alternative method of collecting high accuracy 

and high precision point data which describes a landscape based on irregular point 

measurements, which can be converted into a regular grid using interpolation 

techniques (Lloyd & Atkinson, 2006). LiDAR is an active sensor and has been in use 

since the 1960’s. The more accurate and dense the data collected, the more accurate 

the DEM will be (Hodgson et al., 2003). However, Lui et al. (2007) found that LiDAR 

density can be reduced, to enable easier data handling and storage, without 

decreasing the accuracy of the DEM. The study compared two 5m DEMs, a DEM 

produced from the original dataset and another using 50% of the data with a point 

spacing of 2.4m. The study concluded that the removal of redundant data enabled 

faster data processing, but the extent to which researchers can reduce their data 

depends on the complexity of the terrain (Lui et al., 2007).  

 

Figure 4.6 Processing steps to create a DEM from photogrammetry. Source: Fisher & 
Tate (2006). 

A LiDAR system consists of an aircraft equipped with a scanning laser sensor, the 

position of which is continuously monitored by GPS (Hodgson et al., 2003). The laser 

scanner records the distance to the surface and the location of the surface is 
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calculated by the spatial (x,y,z) location and the angle of the laser scanner for that 

measurement. From 4000 ft (1219 m) a pulsed LiDAR beam will project a 24-60 cm 

diameter area on the surface. These are discrete measurements and can be separated 

by up to several metres (Hodgson et al., 2003). The density of these points along a 

flight line makes up a key component of the accuracy of the DEM produced from this 

data.  

Elevation measurements by the methods discussed above have a horizontal error 

defined by the accuracy of the horizontal coordinates, and a vertical accuracy defined 

as the linear error of the datasets coordinate (Octariady et al., 2017). The vertical 

accuracy of DEMs produced from LiDAR data have been found to be better than that of 

DEMs from satellite imagery, with vertical accuracy achievable to less than 30 cm in 

LiDAR DEMs with varying horizontal accuracy (Octariady et al., 2017). To reach these 

levels of accuracy, ground-filtering algorithms are applied to determine point returns 

from ground and non-ground features (Meng et al., 2010). In regions with high surface 

variability (natural relief change, dense forests and urban areas), determining the 

actual height to ground can be challenging.  

Shrub-covered areas are commonly mislabelled as ground surface by the filtering 

algorithms. This is because shrubs are usually less then 1m in height, meaning that 

elevations differences between individual ground points and neighbouring shrubs are 

similar, especially if the underlying topography is variable (Meng et al., 2010). In 

situations with dense vegetation cover, vertical accuracy is affected as there are few 

actual ground point measurements available within the dataset for the filtering 

algorithms to use, thereby increasing the vertical error in the LiDAR data (Holmes et 

al., 2000).  

Distribution of Samples 

The level of processing required after the collection of point measurements using 

LiDAR or photogrammetry depends on the distribution of samples. If resources are 

available, LiDAR or photogrammetry can be used to collect measurements in a uniform 

grid, meaning that little data processing is required. However, if the source data is 

irregular, further errors can be introduced to the final DEM, as variations in the spacing 
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between data points requires interpolation to recorded height measurements at all 

grid points (Fisher & Tate, 2006).  

Not only does the interpolation technique used on the sampled elevation data have 

the potential to introduce errors in addition to the random and systematic errors 

discussed above, but it also controls the final resolution of the DEM. Fisher & Tate 

(2006) describe the resolution of a DEM as a discrete sampling of a continuous 

function, meaning information is lost at distances smaller than the sampling interval 

and data is altered at distances greater than the sampling interval.  This can be seen 

with the changes in slope and aspect when four DEMs are compared with 100 m, 50 m, 

25 m and 5 m resolution in the Kienzle (2004) study. This study compared DEMs 

produced from the same data using the same interpolation technique and found that 

modelled soil erosion and slope increased with a decrease in DEM grid size, with the 

largest DEM grid cell estimating 21.4 t ha-1 yr-1 compared to the smallest DEM grid size 

estimate of 35.4 t ha-1 yr-1 (Kienzle, 2004). These results are also reflected in Zhang & 

Montgomery (1994); Kienzle (1994); and Elsheikh & Guercio (1997). When modelling 

sediment-bound nutrients like phosphorus, researchers must take these factors into 

account as erosion soil loss equations such as the one used by LUCI will be impacted by 

the resolution of the DEM.  

Data Interpolation  

Interpolating elevation points within a sampled dataset provides a representation of 

land surfaces between point measurements and enables spatial models to be applied 

to an area (Anderson et al., 2005). Each of these interpolation methods is based on the 

principle of spatial autocorrelation, where closer points are more similar compared to 

points farther away (Arun, 2013). These are split into two categories; deterministic and 

geospatial. Deterministic interpolation creates a surface from the measured points 

without incorporating statistical analysis on the spatial properties of the data. As such, 

they are particularly useful at handling large datasets (Anderson et al., 2005). 

Geospatial, as the name suggests, utilises statistical properties of the provided sample 

points to estimate the elevation of unsampled areas through spatial correlation 

(Cressie, 1993).  
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Examples of deterministic interpolation methods are inverse distance weighting (IDW) 

and nearest neighbour. IDW calculates a point through the influence of the local 

measured points around it; this influence decreases with distance (Watson, 1992; 

Anderson et al., 2005). A user-defined parameter is used to determine the level of 

influence the nearest points have in the calculation (Arun, 2013). Nearest neighbour 

uses the surrounding samples to estimate the value of missing elevation data; it does 

not create troughs or peaks that are not represented in the data and has been found 

to work in irregularly and regularly spaced datasets (Arun, 2013). Unlike IDW, there is 

no user input required. Geospatial interpolation techniques, like kriging, are seen as a 

more rigorous approach to develop a DEM. Kriging uses the correlation of data points 

as the source of its estimates (like IDW, closer measured points have more weight in 

the calculation then points farther away) rather than the actual data values (Anderson 

et al., 2005).  

The Grid Size of a DEM 

Once a DEM is produced, issues arise as there is little control over how the DEM is 

used for research, and if the limitations of the DEM are properly considered (Fryer et 

al., 1994; Moore et al., 1991). More recently, the importance of scale in remotely 

sensed datasets has been highlighted, as the coarser the DEM, the greater the risk of 

high-value and low areal extent landscapes to be overlooked when mapping 

ecosystem services (Konarska et al., 2002). Researchers need to address the scale their 

work is focusing on and the patterns their study is attempting to explain, as the detail 

required to model ecosystem services varies greatly depending on the question asked. 

The scale used in remotely sensed landcover datasets shows that as the grid size is 

altered, the amount of area covered by each landcover class changes, with increasing 

land fragmentation known to occur as the grid size becomes coarser (Liu et al., 2007).  

DEM based modelling at the farm or watershed scale is increasingly being used by 

policymakers at regional or national scales. This causes problems as upscaling or 

downscaling a model reduces the accuracy of the inputs’ representativeness of the 

landscape and reduces a model’s ability to represent the heterogeneity in the 

landscape (Shepherd et al., 2013). DEMs are used in LUCI and other models that 
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estimate non-point source pollution to delineate watersheds, identify terrain features 

and other hydrological parameters. In the OVERSEER model, a DEM is not required. 

Instead of using a DEM, the model calculates nitrogen and phosphorus loss using 

transport factors such as drainage class, slope class and rainfall (OVERSEER, 2018). The 

four separate slope classes, ranging from flat to steep, were based on combinations of 

LRI slope classes, originally selected for modelling the effect of animal behaviour on 

excreta transfer, and are defined by the user for each block they are modelling (Table 

4.4) (Comforth & Sinclair, 1982; Metherell & Morrison, 1984). This means that the 

OVERSEER model is unable to identify critical source areas as the model is not spatially 

explicit.  

Table 4.4 Topography classes in OVERSEER. Source: Gray et al. (2016a).  

Topography Class 
Slope Comments 

Flat 0° – 7°  

Rolling 8° – 15° Area mostly navigable by tractor 

Easy Hill 16° – 25° > 50% area navigable by tractor 

Steep Hill  > 26° < 50% area navigable by tractor 

In models such as LUCI, which investigate a landscape’s potential to provide benefits 

through the configuration of landscape elements and their biophysical properties, the 

scale of the DEM is immensely important, as finding the correct DEM for an application 

is a balance between computational efficiency and accuracy. Previous applications of 

LUCI have suggested that a 5m DEM is an adequate resolution to make decisions at a 

field scale (Jackson et al., 2013). Nevertheless, the impact lower resolution DEMs may 

have on the hydrology, sediment and chemical routing algorithms in LUCI needs to be 

investigated, as well as the benefit of using finer scale 1m or 2m DEMs on the nitrogen 

and phosphorus results produced.  
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CHAPTER 5 METHODS 

 

 

This chapter outlines the modelling process for the six case study farms included in the 

sensitivity study for this research. Section 5.1 discusses the data requirements, site 

selection process and the background information for each site modelled. Section 5.2 

describes the modelling process, including the pre-processing steps and outputs of the 

LUCI model. Next, the statistical analysis of the nutrient load estimates is discussed, 

followed by the steps involved to add farm specific soil data in LUCI. Finally, the 

method developed to include scenarios with multiple siblings in LUCI is presented.  

5.1 CASE STUDIES AND DATASETS TESTED  

5.1.1 Data 

While national spatial information is available on land use classifications and 

management practices, there is no dataset of fine detail. Rutledge et al. (2009) 

evaluates the geospatial information available to inform land use classifications and 

argues that New Zealand lacks comprehensive and consistent information covering 

natural, production and urban landscapes. In the current policy and resource planning 

environment, the spatial information available does not bridge critical data gaps at 

national, regional and local scales (Rutledge et al., 2009).  

Such data gaps impact the ability of LUCI to accurately model a landscape, as the 

model relies on information pertaining to precipitation, slope, land cover, soil 

variability and land management practices (stocking rates and irrigation or fertiliser 

applications). If these datasets are poor representations of a catchment or farm 

system, then LUCI’s nutrient estimates will be inaccurate. 

The data requirements of LUCI are, at a minimum, cover soil, land cover and a DEM of 

the area of interest. These can be sourced from nationally available datasets (many are 

available as default inputs in LUCI if a data license has been obtained by the user, and 

are discussed in Chapter 3) or, if available, site-specific soil and landcover data can be 

used in the form of a farm scale survey map and an OVERSEER Nutrient Budget.  
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Many national scale datasets are freely available or are provided under license. The 

LUCI package used in this research includes soil data from FSL, S-Map, landcover data 

from the LCDB4 and a Ravensdown Hybrid Layer of FSL and S-Map data for OVERSEER. 

The LUCI data folder also contains NIWA’s annual average evaporation and annual 

average rainfall from 1981-2010. The annual average evaporation dataset was 

calculated using the accepted Penman-Monteith method outlined in Burman & Pochop 

(1994). These datasets were provided under license from Victoria University of 

Wellington and Ravensdown.  

It is outside the scope of this research to investigate the uncertainty in all datasets 

LUCI uses to estimate nutrient loss on farm systems. However, it should be noted that 

the accumulation of water and associated nutrients is heavily reliant on the accuracy 

and representativeness of LUCI's default rainfall dataset. While this thesis focuses on 

the use of soil, elevation and landcover datasets in LUCI, further work to understand 

the uncertainty in LUCI's output could consider the representativeness of rainfall 

averages at catchment scale and farm scale.  

Climate, soil, slope and land cover data is available for LUCI model input however, 

spatial land use data is also available in the form of Land Use New Zealand (LUNZ) 

created by Landcare Research. This dataset addresses the need for a nationally 

consistent representation of rural land use and was developed in the Catchment Land 

Use for Environmental Sustainability (CLUES) project (Rutledge et al., 2009). The 

dataset expands on landcover classes in the national LCDB4 by splitting land classes up 

into smaller sub-classes based on the contaminant yield of an area (Semandeni-Davies 

et al., 2015). Splitting up land class units enables the differentiation of specific types of 

farming practices (hill country sheep and beef, lowland intensive or high country as 

well as different crop products). The information on these farming systems was 

provided to Landcare by land use statistics held in Agribase (Semandeni-Davies et al., 

2015). LUNZ is not included in the LUCI model due to the need to maintain land owner 

privacy, but it does highlight the need for investment in datasets such as LUNZ, to 

provide models such as LUCI with specific georeferenced land management 

information.  
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5.1.2 Case Studies 

To begin to understand the uncertainty in LUCI outputs linked to the uncertainty in 

input data, a range of farm environments over both the North and South Island were 

selected (Figure 5.1). Soil and elevation data combinations using both coarse, 

nationally available, and farm specific data are tested with the potential uncertainty 

that could propagate through the modelling process discussed in Chapter 4. These 

farms were modelled in ArcMap 10.4.1 with the spatial analyst extension as currently 

LUCI is not available as a standalone package.  

 

Figure 5.1 Location of case studies used in this sensitivity analysis. 

The requirements for sites to be included in this research were that at least two 

different types of soil and elevation data are available. The sites also need to be clients 

of Ravensdown. This is due to the commercial sensitivity of the bespoke Ravensdown 

functionality included within the LUCI model version used here, and to allow access to 
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farm specific data for all sites from OVERSEER files produced by Ravensdown 

Consultants. An OVERSEER Nutrient Budget was used at all sites to provide LUCI with 

information on the cropping practices, fertiliser and irrigation management, as these 

factors influence nitrogen and phosphorus lost from farm systems. 

To protect the privacy of the farm owners, only University-owned case study sites are 

identified by their proper name, as these farms have already been widely publicised in 

previous research. Privately owned farms are referred to by their region. All farms are 

incorporated into various components of the sensitivity analysis, depending on the 

data available at each site. Below is a description of each farms enterprise, climate, 

and topography and the datasets available to model these farms in LUCI.  

5.1.2.1 Tuapaka Catchment within Tuapaka Agricultural Experimental Station  

This site is a 85 ha sheep and beef farm located east of Palmerston North and is a small 

catchment within the 476 ha Tuapaka farm platform owned by Massey University. This 

catchment was selected due to the presence of ongoing water quality monitoring and 

the ability of this study to complement previous work by Trodahl (2018) comparing 

LUCI estimates to nitrogen and phosphorus estimates from OVERSEER. The farm is in 

the foothills of the Tararua ranges and the terrain is rolling to steep hill country (Figure 

5.2). Soil at this site is classed as a mix of pallic (poorly drained) and brown (well 

drained) soil orders (Figure 5.3). Average annual rainfall in this region ranges from 

1100-1200mm with a mean temperature of 12.2°C. Soil data available at this site is FSL 

and a detailed farm scale soil map developed by Massey University (Pollok & 

McLaughlin, 1986). 

Research at this site includes cow efficiency projects, body condition scoring and 

wintering systems (Massey University, 2018; Cosgrove et al., 2003; McRae, 2003). 

Ongoing monitoring of sediment and nutrients from this hill country, sheep and beef 

environment has been carried out, with monthly in-stream water quality samples 

collected over the 2013-2015 period summarised in Burkitt et al. (2016). Two DEMs 

(the national 15m and the national 8m) as well as the two soil maps (FSL and Farm 

Scale) are tested. The classification of the different soil polygons in each dataset is 

shown in Table 5.1. 
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Figure 5.2 Contour map of Tuapaka Catchment. 

 

 

Figure 5.3 Soil order classifications in FSL and the farm scale soil map for Tuapaka, 
with the labels representing different soil subgroups. 
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Table 5.1 Soil properties of the Tuapaka case study held in both the FSL and Farm Scale datasets. Only dominant siblings are shown in the 
table. 

Data Source 
NZSC Soil Order NZSC Classification NZSC Subgroup Series Soil Description 

Area 

(ha) 

FSL Pallic PXM Mottled Fragic Pallic Soils Halcombe fine sandy loam 39 

Pallic PIM Typic Fluvial Recent Soils Tuapaka fine sandy loam 9 

Brown BLA Acidic Allophanic Brown Soils Ramiha silt loam 15 

Farm Scale Brown BFT Typic Firm Brown Soils Korokoro silt loam 8 

Brown BLA Acidic Allophanic Brown Soils Ramiha silt loam 15 

Pallic PXM Mottled Fragic Pallic Soils Shannon silt loam 4 

Pallic PIM Typic Fluvial Recent Soils Tuapaka fine sandy loam 4 

Brown BOM Mottled Orthic Brown Soils Makara stony loam 33 
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5.1.2.2 Greater Wellington  

This is a 99 ha dairy farm located west of Carterton in the Mangaterere Catchment. 

Also located in the foothills of the Tararua ranges it has a mix of flat to rolling 

topography (Figure 5.4). Annual rainfall in the region is 1500 mm with an average 

annual temperature of 12°C. The soil types are predominantly brown (well drained) 

soils with recent (well drained) soils located along the stream boundaries. The only 

major change between the soil datasets is a classification change from all brown soils 

in the original FSL soil dataset to the inclusion of 10 ha of recent soils with the updated 

S-Map data on half of the farm (Figure 5.5, Table 5.2).  

 

Figure 5.4 Contour map of the Greater Wellington case study. 
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Figure 5.5 Soil order classifications in the S-Map-FSL Hybrid and FSL for Greater 
Wellington, with the labels representing different soil subgroups. 

 

5.1.2.3 North Canterbury 

This site is a 309ha sheep and beef farm located in North Canterbury in the Ashley 

Watershed. The terrain is mostly flat (Figure 5.6), with a mix of brown (well drained), 

pallic (poorly to moderately well drained) and recent (well drained) soil orders. The 

area classified as brown, pallic and recent soils changes between the FSL and S-Map 

datasets (Figure 5.7). The area classified as brown soil changed from 89ha in FSL to 

167ha in S-Map (Table 5.3); this change will impact the drainage properties of the soil 

and may result in differences in LUCI’s estimates of nitrogen loss between soil 

scenarios.  
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Table 5.2 Soil properties of the Greater Wellington case study held in both the FSL and S-Map datasets. Only dominant siblings are shown in 
the table. 

Data 

Source 

NZSC Soil 

Order 

NZSC 

Classification NZSC Subgroup 

NZSC Family 

and Sibling 
Series Soil Description Area (ha) 

FSL Brown BLT Typic Allophanic Brown Soils  Kohinui loam 49 

Brown BOP Pallic Orthic Brown Soils  Kaikouta silt loam 43 

Pallic BOA Acidic Orthic Brown Soils  Ruahine stony silt loam 0.5 

S-Map-FSL 

Hybrid Recent RFT Typic Fluvial Recent Soils 

Huangaruaƒ’ 

(Sib 1)  shallow, well drained, silty loam 10 

Brown BFT Typic Firm Brown Soils Kohinuiƒ’ (Sib 4)   shallow, well drained, silty loam 39 

Brown BLT Typic Allophanic Brown Soils  Kohinui loam 14 

Brown BOP Pallic Orthic Brown Soils  Kaikouta silt loam 30 

Brown BOA Acidic Orthic Brown Soils  Ruahine stony silt loam 1 
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Figure 5.6 Contour map of the North Canterbury case study. 

 

 

Figure 5.7 Soil order classifications in FSL and S-Map for North Canterbury, with the 
labels representing different soil subgroups. 
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Annual rainfall in the region is between 800-900 mm and a median annual average 

temperature of 11-12 °C (Mascara, 2016). There is one permanent stream running 

north to south along the western boundary, with 19ha of the total farm area classified 

as the river bed. Landcover data was taken from the LCDB4 database with 67% of the 

farm classed as high producing grassland and 23% classed as rotational cropland 

(Figure 5.8). The other smaller areas classified were exotic forest, gorse and deciduous 

hardwoods. The area classed as exotic forest in the image below is covering a steep 

escarpment between the main farm block and the river flat, which would normally be 

an area at risk of erosion and subsequent phosphorus loss. The forest, however, is 

stabilising the soil. Datasets available to model this farm in LUCI are two soil datasets, 

FSL and S-Map; two DEMs (the national scale 15m DEM and a 2m DEM produced from 

the 2005 Waimakariri LiDAR survey).  

 

 

Figure 5.8 Land cover classifications in LCDB4 and OVERSEER. The OVERSEER 
classification specifies the type of crop grown in each crop block and also splits High 

Producing Exotic Grassland into Main, Cottage, Yard, South and North River Flat 
Blocks, which have different management practices. 
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Table 5.3 Soil properties of the North Canterbury case study held in both the FSL and S-Map datasets. Only dominant siblings are shown in 
the table. 

Data 

Source 

NZSC Soil 

Order 

NZSC 

Classification NZSC Subgroup 

NZSC Family 

and Sibling 
Series Soil Description Area (ha) 

FSL 

Pallic PXM 

Mottled Fragic Pallic 

Soils 

 

Mairaki silt loam 51 

Recent RFT Typic Fluvial Recent Soils  Waimakariri very stony sandy loam 29 

Brown BOA Acidic Orthic Brown Soils  Hororata very stony silt loam 89 

Recent  ROW 

Weathered Orthic 

Recent Soils 

 

Eyre shallow silt loam 108 

Recent  RFW 

Weathered Fluvial 

Recent Soils 

 

Waimakariri sandy loam 19 

S-Map 

Pallic PJT Typic Argillic Pallic Soil Darnleyƒ’ (Sib 7)  

shallow, moderately well 

drained, silty loam  27 

Pallic PJT Typic Argillic Pallic Soil Darnleyƒ’ (Sib 1)  

shallow, moderately well 

drained, silty loam  4 

Recent RFT Typic Fluvial Recent Soils 

Rangitataƒ’ (Sib 

6)  

shallow, well drained, sandy 

loam  2 

Recent RFW 

Weathered Fluvial 

Recent Soils Rakaiaƒ’ (Sib 2)  shallow, well drained, loam  23 

Brown BFA Acidic Firm Brown Soils 

Ruapunaƒ’  (Sib 

2)  shallow, well drained, silty loam  167 
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Pallic PPX 

Fragic Perch-gley Pallic 

Soils 

Claremontƒ’ (Sib 

1)  

moderately deep, poorly 

drained, silty loam 44 

Recent ROW 

Weathered Orthic 

Recent Soils Eyreƒ’ (Sib 3)  shallow, well drained, silty loam  28 
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5.1.2.4 Lincoln University Dairy Farm 

The Lincoln University Dairy Farm (LUDF) is a 120ha dairy farm located outside Lincoln, 

Canterbury. This farm is owned by Lincoln University and managed by the South Island 

Dairying Development Centre (SIDDC) and as such, there is a multitude of published 

work on the farms nutrient management, fertiliser and cropping practices, and the 

physical properties of the soil (Moir et al., 2007; Van Bysterveldt, 2005; Longhurst & 

Roberts, 2000; Barringer et al., 2016).  

This farm has a flat topography and no streams inside its boundary (Figure 5.9), with 

the entire area classed as high producing grassland in the LCDB4. Average annual 

rainfall is 666mm with a mean annual temperature of 11.8°C (SIDDC, 2018). The soil 

data available at this site includes FSL, S-Map, and a detailed farm scale soil map 

developed by Barringer at al. (2016) (Figure 5.10). The farm scale soil map was created 

from a survey of 723 auger holes across the farm, excluding the east block. 

Accordingly, the east block was removed in this analysis to ensure the comparison of 

LUCI’s outputs between soil datasets occurs over the same area.  

 

Figure 5.9 Contour map of the LUDF case study. 
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Figure 5.10 Soil order classifications in FSL, S-Map and the farm scale soil map for LUDF, with the labels representing different soil 
subgroups. 
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The soil at this site is characterised as gley (poorly drained), pallic (poorly drained) and 

recent soils (well drained). The level of information pertaining to these soil 

characteristics varies between soil datasets with four soil siblings identified in the FSL; 

12 siblings in S-Map (seven dominant and five subdominant), and eight soil siblings in 

the farm scale soil map (Barringer et al., 2016) (Table 5.4). Two DEMs are tested 

against the different soil datasets, these are the national 15m DEM and a 1m DEM 

produced from the 2017 LiDAR survey owned by Environment Canterbury. 

5.1.2.5 South Canterbury  

This is a 2,969 ha sheep and beef farm located on the shores of Lake Benmore, South 

Canterbury. It has a mix of flat and steep hill topography (Figure 5.11), with a mean 

annual rainfall of 520 mm and an annual temperature of 10°C. Soil types on this site 

are a mix of predominantly pallic and recent soils, with brown soils classified in the FSL 

database and reclassified as recent soils with the update to S-Map (Figure 5.12, Table 

5.5). A small area of semiarid soils is also defined in FSL on the flat sections of the site.  

This will be tested with a 10m DEM produced from photogrammetry from the 2013-14 

rural aerial survey licensed by Aqualinc limited as well as the national 15m DEM. 

 

Figure 5.11 Contour map of the South Canterbury case study. 
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Table 5.4 Soil properties of the LUDF case study held in both the FSL, S-Map and Farm Scale datasets. Only dominant siblings are shown in 
the table. 

Data 

Source NZSC Soil Order 

NZSC 

Classification NZSC Subgroup 

NZSC Family and 

Sibling 
Series Soil Description Area (ha) 

FSL 

Recent  ROW 

Weathered Orthic Recent 

Soils 

 

Paparua stony sandy loam 3 

Gley GOT Typic Orthic Gley Soils  Temuka silt loam 28 

Pallic PIT Typic Immature Pallic Soils  Templeton silt loam 88 

S-Map 

Pallic PIM 

Mottled Immature Pallic 

Soils Wakanuiƒ’ (Sib 3)  

deep, imperfectly drained, silty loam 

over sandy loam 23 

Pallic PIT Typic Immature Pallic Soils Templetonƒ’ (Sib 4)  

moderately deep, moderately well 

drained, silty loam  10 

Pallic PIT Typic Immature Pallic Soils Templetonƒ’ (Sib 1)  

deep, moderately well drained, silty 

loam  21 

Pallic PIT Typic Immature Pallic Soils Templetonƒ’ (Sib 2)  

moderately deep, moderately well 

drained, silty loam  9 

Pallic PIT Typic Immature Pallic Soils Barrhillƒ’ (Sib 5)  

deep, well drained, loam over sandy 

loam  10 

Pallic PIM 

Mottled Immature Pallic 

Soils Wakanuiƒ’ (Sib 1)  deep, imperfectly drained, silty loam  19 

Gley GOT Typic Orthic Gley Soils Flaxtonƒ’ (Sib 4)  

deep, poorly drained, silty loam over 

clay 26 
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Farm 

Scale Recent ROW 

Weathered Orthic Recent 

Soils Eyreƒ’ (Sib 2)  shallow, well drained, loam 5 

Pallic PIT Typic Immature Pallic Soils Templetonƒ’ (Sib 1)  

deep, moderately well drained, silty 

loam 13 

Pallic PIT Typic Immature Pallic Soils Barrhillƒ’ (Sib 5)  

deep, well drained, loam over sandy 

loam 63 

Pallic PIM 

Mottled Immature Pallic 

Soils Wakanuiƒ’ (Sib 3)  

deep, imperfectly drained, silty loam 

over sandy loam 11 

Pallic PIM 

Mottled Immature Pallic 

Soils Wakanuiƒ’ (Sib 1)  deep, imperfectly drained, silty loam 23 

Pallic PIM 

Mottled Immature Pallic 

Soils Ballanceƒ’ (Sib 6)  

moderately deep, imperfectly drained, 

silty loam over clay 2 

Gley GOT Typic Orthic Gley Soils Temukaƒ’ (Sib 57)  deep, poorly drained, clay 24 

Pallic PIM 

Mottled Immature Pallic 

Soils Ballanceƒ’ (Sib 7)  

moderately deep, imperfectly drained, 

silty loam over clay 7 
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Figure 5.12 Soil order classifications in S-Map and FSL for South Canterbury, with the 
labels representing different soil subgroups. 
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Table 5.5 Soil properties of the South Canterbury case study held in both the FSL and S-Map. Only dominant siblings are shown in the table. 

Data 

Source 

NZSC Soil 

Order 

NZSC 

Classification NZSC Subgroup 

NZSC Family and 

Sibling Series Soil Description Area (ha) 

FSL 

Pallic PJT 

Typic Argillic Pallic 

Soil 

 

Waitaki shallow silt loam 726 

Recent ROT 

Typic Fluvial 

Recent Soils 

 

Omarama silt loam on clay loam 559 

Pallic PLT 

Typic Orthic 

Recent Soils 

 

Otematata silty loam 569 

Recent RFW 

Weathered 

Fluvial Recent 

Soils 

 

Eweburn sandy loam 827 

SemiArid SJT 

Saline Argillic 

Semiarid Soils 

 

Ranfurly fine sandy loam 178 

Gley GRT 

Typic Recent Gley 

Soils 

 

Dobson shallow soils 17 

Pallic PXJC 

Argillic Fragic 

Pallic Soils 

 

 Grampians 66 

S-Map 

Brown BOA 

Acidic Orthic 

Brown Soils Benmoreƒ’ (Sib 2)  

shallow, well drained, 

silty loam 15 
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Brown BOP 

Pallic Orthic 

Brown Soils 

Mackenzieƒ’ (Sib 

7)  

very shallow, well 

drained, loam 419 

Brown BOP 

Pallic Orthic 

Brown Soils 

Mackenzieƒ’ (Sib 

9)  

shallow, well drained, 

sandy loam  1 

Gley GRT 

Typic Recent Gley 

Soils Te Kakahiƒ’ (Sib 7)  

shallow, very poorly 

drained, silty loam 2 

Pallic PIT 

Typic Immature 

Pallic Soils Glenrockƒ’ (Sib 5)  

shallow, well drained, 

silty loam 121 

Pallic PJM 

Mottled Argillic 

Pallic Soils Salixƒ’ (Sib 7)  

deep, imperfectly 

drained, clay 1 

Pallic PJT 

Typic Argillic Pallic 

Soils 

Otematataƒ’ (Sib 

1)  

very shallow, well 

drained, silty loam 43 

Pallic PJT 

Typic Argillic Pallic 

Soils 

Culverdenƒ’ (Sib 

8)  

very shallow, well 

drained, silty loam 71 

Pallic PJT 

Typic Argillic Pallic 

Soils 

Culverdenƒ’ (Sib 

5)  

very shallow, well 

drained, silty loam 0.7 

Pallic PJT 

Typic Argillic Pallic 

Soils 

Otematataƒ’ (Sib 

2)  

shallow, well drained, 

silty loam 406 

Pallic PJT 

Typic Argillic Pallic 

Soils Mayfieldƒ’ (Sib 25)  

deep, moderately well 

drained, silty loam over 

clay 0.6 
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Pallic PJT 

Typic Argillic Pallic 

Soils 

Culverdenƒ’ (Sib 

5)  

shallow, well drained, 

silty loam 0.1 

Pallic PJT 

Typic Argillic Pallic 

Soils 

Otematataƒ’ (Sib 

3)  

moderately deep, well 

drained, silty loam 51 

Pallic PJT 

Typic Argillic Pallic 

Soils 

Otematataƒ’ (Sib 

2)  

shallow, well drained, 

silty loam 113 

Recent RFT 

Typic Fluvial 

Recent Soils 

Rangitataƒ’ (Sib 

41)  

very shallow, well 

drained, sandy loam 13 

Recent RFT 

Typic Fluvial 

Recent Soils 

Rangitataƒ’ (Sib 

15)  

very shallow, well 

drained, sandy loam 17 

Recent RFW 

Weathered 

Fluvial Recent 

Soils Wairauƒ’ (Sib 3)  

very shallow, well 

drained, sandy loam 186 

Recent RFW 

Weathered 

Fluvial Recent 

Soils Rakaiaƒ’ (Sib 6)  

shallow, well drained, 

silty loam 4 

Recent RFW 

Weathered 

Fluvial Recent 

Soils Wairauƒ’ (Sib 2)  

shallow, well drained, 

sandy loam 155 

Recent RFW 

Weathered 

Fluvial Recent 

Soils Rakaiaƒ’ (Sib 1)  

shallow, well drained, 

loam 0.1 



84 

Recent RFW 

Weathered 

Fluvial Recent 

Soils Wairauƒ’ (Sib 3)  

very shallow, well 

drained, sandy loam 52 

Recent ROW 

Weathered Orthic 

Recent Soils Eyreƒ’ (Sib 25)  

shallow, well drained, 

silty loam 35 

Recent RXT 

Typic Rocky 

Recent Soils 

OmaramaRockƒ’ 

(Sib 8)  

very shallow, well 

drained, silty loam 1,138 

Recent RXT 

Typic Rocky 

Recent Soils Bogroyƒ’ (Sib 1)  

very shallow, well 

drained, loam 50 
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5.1.2.6 Otago  

This is a 276ha dairy farm in the Lake Tuakitoto and Dull Burn catchments, South 

Otago. It has rolling topography (Figure 5.13), with a mix of brown (well drained) and 

pallic (poorly drained soils) (Figure 5.14, Table 5.6). Landcover information, from an 

OVERSEER file completed for this farm, details the cropping, effluent and fertiliser 

practises occurring (Figure 5.15), and separates the farm into different management 

block units.  

 

Figure 5.13 Contour map of the Otago case study. 

Annual rainfall in the region is 800-900mm of 9 °C (Mascara, 2015). There is a network 

of streams running through this property (Figure 5.16), making it an excellent site to 

test the accuracy of streams generated in LUCI during the Hydtopo pre-processing step 

as well as the in-stream estimates of nitrogen and phosphorus predicted by LUCI.  
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Figure 5.14 Soil order classifications in FSL and S-Map for Otago, with the labels representing different soil subgroups. 
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Figure 5.15 The different management blocks on the farm classified in OVERSEER. 

 

Figure 5.16 Stream network on this case study farm and the Otago Regional Council’s 
water quality site. 

Monthly in-stream measurements of nitrogen (in both nitrate and ammonia forms and 

total nitrogen), phosphorus (DRP and total phosphorus load) and E.coli is available for 

this site. This water quality data is from the Otago Regional Council’s (2014) study into 

the water quality and ecosystem health of Lake Tuakitoto. The monthly data is 

averaged, to provide an average total load that is then compared to LUCI’s stream 

concentration estimates. 
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Table 5.6 Soil properties of the Otago case study held in both the FSL and S-map. Only dominant siblings are shown in the table. 

Data 

Source 
NZSC Soil 

Order 

NZSC 

Classification NZSC Subgroup 

 

NZSC Family and 

Sibling Series Soil Description Area (ha) 

FSL 

Brown BOA 

Acidic Orthic Brown 

Soils 

 

Tuapeka No description provided  5 

Pallic PXM 

Mottled Fragic Pallic 

Soils 

 

Waitahuna No description provided 443 

S-Map 

Brown BOA 

Acidic Orthic Brown 

Soils Gladstoneƒ’ (Sib 57)  

moderately deep, well drained, 

silty loam 65 

Pallic PXM 

Mottled Fragic Pallic 

Soils Timaruƒ’ (Sib 30)  

moderately deep, imperfectly 

drained, silty loam 269 

Brown BFA 

Acidic Firm Brown 

Soils Kakahuƒ’ (Sib 17)  deep, well drained, silty loam 114 
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5.2 MODELLING PROCESS 

The LUCI model has been used in many studies to model the trade-offs between 

ecosystem services, with this thesis following the work of: Jackson et al. (2013); 

Jackson et al. (2016); Trodahl et al. (2017), and Sharps et al. (2017). The method 

described below is similar to that used in their research, as the input of spatial datasets 

and the modelling process is completed in a standard format for all LUCI users. A 

detailed description of the pre-processing steps in LUCI and how to interpret results 

can be found in the LUCI v0.4 Help documentation developed by B. Jackson and 

collaborators. This research, however, requires the use of multiple datasets including 

several that do not have built in input options, therefore sections of the method 

described below vary from past applications of LUCI. 

5.2.1 Pre-processing: Hydtopo Setup 

This Hydtopo file needs to be generated at the start of the modelling process to create 

the input hydrological and topographical information required for LUCI's ecosystem 

services tools (Figure 3.1). Hydtopo setup needs to be run once for any site and data 

combination (usually one Hytopo folder is sufficient for each farm), but, in this 

research, multiple Hydtopo folders, representing the different elevation datasets, were 

created. The different DEM’s used in this research and the sites they were applied to 

are listed in Table 5.7.   
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Table 5.7 DEM resolution and source of data for all case study sites. 

DEM Resolution 
Data Source Case study  Vertical 

Accuracy 

15m National 15m DEM, University 

of Otago School of Surveying 

All study sites ± 5m 

10m Aqualinc 10m DEM South 

Canterbury 

± 0.8m 

8m National 8m DEM, Geographx Otago, 

Tuapaka 

± 10m 

2m 2005 LiDAR Survey, 

Waimakariri District Council 

and Environment Canterbury 

North 

Canterbury  

± 0.2m 

1m 2005 LiDAR Survey, LINZ Greater 

Wellington 

± 0.2m 

2017 LiDAR Survey, 

Environment Canterbury.  

LUDF ± 0.2m 

The user connects to the DEM covering the area of interest and a study area mask 

(which must be smaller than DEM extent). The Hydtopo tool then creates a 

hydrologically consistent DEM from the standard user-provided DEM (Jackson et al., 

2013). The DEM is corrected by filling in sinks to remove any hydrologic inconsistencies 

and streams are generated based on the stream initiation threshold the user selects 

(default values will be used if no threshold is provided). This threshold determines the 

hectares above which flow accumulation is assumed to result in stream generation 

(Jackson et al., 2013). If available, stream vector data for a site can be input by the user 

under 'additional Hydtopo parameters', then that stream network is "burnt in" to the 

DEM using the Agree method (Jackson et al., 2013; Maidment, 2002).  

The saved Hydtopo file will be used as an input in all tools in the LUCI model (Figure 

5.17). It is important, therefore, to look at the Hydtopo output generated and analyse 

if the modelled output is reflective of the farm’s actual stream network. If the 

modelled water flow is incorrect, then the subsequent estimates of nitrogen and 
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phosphorus loss will not reflect the real-world characteristics of the site. For this 

research, the Hydtopo tool was run multiple times with different stream and river 

initiation values, until the modelled stream network matched as close as possible the 

actual network at each site (in some instances, no streams were present on a farm, so 

the initiation threshold was increased to an unrealistic value resulting in no stream 

generation).   

 

Figure 5.17 LUCI user interface displaying Hydtopo setup. 

5.2.2 Pre-processing: LUCI Scenario Setup  

Currently there are two versions of the LUCI model. The original LUCI has been 

predominantly used by researchers, and an associated commercial LUCI framework is 

being developed for use by Ravensdown Environmental consultants (LUCIRav).  

Significant investment has gone into the development of LUCIRav, to enable more 

options for data input such as the use of an OVERSEER Nutrient Budget. The inclusion 

of OVERSEER results provides site-specific landcover and farm management practices 

to LUCI. Comparing the two versions of LUCI is outside the scope of this research. 

LUCIRav is linked to a Hybrid S-Map- FSL layer created by Ravensdown with a license 

from Landcare Research. To access this layer, all modelled scenarios were completed 

using this LUCIRav version (Figure 5.18).  
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A description of the soil datasets used can be seen in Table 5.8. It is important to note 

that an OVERSEER file was incorporated into the scenario of every site, however, the 

Greater Wellington and North Canterbury case studies investigated the effect of just 

having the national LCDB4 dataset as well as different soil datasets.  

 

Figure 5.18 LUCIRav user interface displaying Scenario setup. 

Table 5.8 Soil datasets and their source for all case study sites. 

Soil Dataset 
Source Case study  

FSL Landcare Research  

https://lris.scinfo.org.nz/ 

All study sites 

S-Map 

 

 

Landcare Research 

https://Smap.landcareresearch.

co.nz/ 

All study sites (Greater 

Wellington only has partial 

coverage)  

Lincoln University 

Soil Map 

Barringer et al. (2016) LUDF 

Massey University 

Soil Map 

Pollok and McLaughlin (1986) Tuapaka 
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The scenario setup file combines the hydrologically consistent DEM from the Hydtopo 

file with soil and landcover information for the site. Once this step is complete, then 

LUCI's Nitrogen to Water and Phosphorus to Water tools can be used.  The soil data 

used for this research was both S-Map and FSL as mentioned above, inputting the FSL 

dataset into LUCI requires a soil data source and soil linking code to enable LUCI to 

read the correct columns in the FSL attribute table. These linking codes are also 

required to connect to the landcover data in the LCDB4 database (the correct codes for 

soil and landcover datasets can be found in the LUCI v.04 Help documentation). No 

linking codes are required when generating a scenario using S-Map-FSL hybrid as, if an 

OVERSEER file is not provided, LUCIRav is automatically linked to relevant columns in 

the dataset and the LCDB4.  

5.2.3 Individual Ecosystem Service Outputs 

The Nitrogen to Water and Phosphorus to Water tools use an export coefficient 

approach to model nitrogen and phosphorus lost to water in kg/ha/yr. The export 

coefficient approach describes the rate at which a contaminant is input into a water 

body per unit of source area. In this case, the unit area is one DEM grid cell (White et 

al. 2015). These export coefficients are linked to the land cover classification, climate 

and region being modelled and are commonly used to represent the movement of 

diffuse pollution in the landscape (Trodahl et al., 2017).  

Topographic routing of water through the landscape and the effective precipitation for 

the area enable estimates of the accumulated water flow over the landscape, and the 

delivery of water at certain points along the modelled stream network. For every grid 

cell (based on DEM grid size) in the landscape, the nitrogen and phosphorus amount 

exported to water is calculated based on the land cover classification, soil properties 

and farm management variables at that point (Jackson et al., 2013). Cumulative flow 

based on modelled export from grid cells and nutrients removed through interception 

processes are then used to calculated total nutrient concentration moving through the 

stream network (Jackson et al., 2016).  This approach considers both dissolved (bound 

to water) and particulate (bound to sediment) nutrients which are tracked separately 

through the landscape (Jackson et al., 2016). The separation of dissolved and 
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particulate nutrients is calculated through a ratio entered by the user (or, if unknown, 

a default ratio is used). This ratio is required in the model, as the export coefficient 

approach assumes the total amount exported from a cell, rather than the amount of 

dissolved vs particulate nutrient removed.  

The remaining options that require input before the model can be run all have default 

values; these values should not be altered, unless the user understands the system and 

knows a more appropriate value for that site (in this research, no default values were 

changed). These default values pertain to the nutrient concentration/nutrient loading 

threshold below which the concentration is not considered to be a concern; nutrient 

concentration/nutrient loading threshold above which the concentration is a 

significant concern (based on drinking water standards for nitrogen); and the 

attenuation factor in both the root zone and the stream network, which is used to 

calculate the nutrient amounts remaining in water.  

Model Outputs 

The model results are in the form of maps and tables that can be easily shown and 

discussed with land owners and stakeholders. Currently, a ‘traffic light system’ is used 

to distinguish between the categories of ecosystem service provision, with other 

colour schemes, black/white printing and colour-blind options under development. 

The traffic light colour scheme implies that areas in green indicate high existing service 

provision (optimum utilisation of the land), so decisions makers should think carefully 

before changing the current management plan. Red indicates that there is an 

opportunity to significantly improve service provisions in that area as it is currently 

underutilised, so decision-makers are advised to make changes to current land 

management practices to increase the potential service provision of the area. 

The PDF file produced by the Nitrogen to Water and Phosphorus to Water tools 

contains several colour coded maps of a farmer’s land and a table of estimates of the 

nutrient load and concentration at any exit points on the farm. Exit points include but 

are not limited to: where a stream enters a property; where a stream crosses a farm 

boundary, and the final exit points where the stream leaves the farm. The maps detail 
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both the total nutrient load generated at any point in the landscape (kg/ha/yr) and the 

accumulated total nutrient load, considering not just the load at a point but the load 

contributed from neighbouring cells (kg/yr). Other maps generated by these tools go 

into detail on the classified nutrient loads based on the thresholds specified in the 

model setup. This thesis, however, focuses only on total and accumulated load output 

for each case study site.  

For accumulated load results, a comparison of relative differences between the 

modelled locations of load pathways is discussed. Therefore, the difference between 

individual accumulated load estimates at a point is not within the scope of this thesis. 

Accumulated load results for the higher resolution DEMs (1m and 2m) are aggregated 

so that the pathways represented in the maps below are the same width and the 

national DEMs, enabling easy comparison between scenarios. As such, the results 

presented in this thesis differ from automatically generated outputs. 

5.2.4 Matlab Analysis to Estimate Total Annual Load of Nitrogen and 

Phosphorus  

Because it is difficult to directly compare the maps produced between different data 

input scenarios based solely on the patterns in estimated nutrient loads, the nitrogen 

and phosphorus loss estimates were exported to Matlab for statistical analysis. In 

Matlab, the total nutrient load in kg/yr for the whole farm is calculated by summing 

the estimated load of every grid cell covering the farm area. These results provide 

information on the distribution of load estimates and the probability of a particular 

load value’s occurrence on the landscape. Matlab analysis provides supporting 

evidence to the conclusions drawn from the mapped patterns in nitrogen and 

phosphorus loading. 

In order to analyse the load estimates between different DEM grid size scenarios, the 

area component of the estimates needs to be removed (Equation 5.1).  

Load X(N,P) 𝑘𝑔 𝑦𝑟 =
𝐿𝑜𝑎𝑑 𝑋 𝑘𝑔 ℎ𝑎 𝑦𝑟⁄⁄

10,000×𝑐𝑒𝑙𝑙 𝑎𝑟𝑒𝑎 (ℎ𝑎)
⁄  

Equation 5.1 
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Once the estimates from each cell are in kg/yr, all cell unit values are summed across 

the farm system. Normalising the nitrogen and phosphorus load estimates enables the 

probability of the proportion of data with a particular load value to be calculated, as 

well as the cumulative probability of a load value at or below a certain point.   

5.2.5 How to Add Farm Specific Soil Data in LUCI  

Because two of the case study farms have farm scale soil maps over some or all of their 

area, this site-specific data must be added manually to the LUCI model.  While in the 

future, LUCI development may lead to an input option for user defined soil maps, this 

thesis is one of the first applications of LUCI using an alternative soil dataset to FSL or 

S-Map. In order to add this soil data into LUCI, the S-Map-FSL Hybrid layer that LUCIRav 

is connected to must be intersected with the new soil data.  

5.2.6 Importance of Including Sibling Information 

Both LUCI and OVERSEER model nutrients lost from farm systems by using the soil 

properties held at the sibling level in S-Map. These sibling classifications hold 

information on the combination of drainage class, topsoil stoniness, soil depth, texture 

contrasts, and a sequence of up to six functional horizons for each soil order (Web & 

Lilburne, 2011). LUCI currently reads information only on the dominant sibling listed 

for each polygon, and it is standard practice to only select the dominant sibling in 

OVERSEER. Nevertheless, each soil polygon could be described by up to five siblings 

(Lilburne et al., 2009). Information on S-Map's sibling level classification can be found 

in Section 4.1.3.  

OVERSEER has the ability to access S-Map properties directly from the soil database, 

enabling the model to link to the relevant parts, if available, of the S-map dataset 

(Carrick et al., 2014). OVERSEER's ability to target specific information within S-map’s 

factsheets ensures that the nutrient budget model stays up to date with the latest 

available soil data in New Zealand (Carrick et al., 2014).  LUCI has the ability to link to 

an OVERSEER Nutrient Budget and therefore can access the same sibling information 

provided by S-Map. Currently S-Map and OVERSEER use different approaches to LUCI 

when calculating soil water content of the soil.  
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Modelling Multiple Sibling Options in LUCI 

Since neither LUCI or OVERSEER currently model areas based on more than the 

information from the dominant soil sibling, the development of LUCI to incorporate 

different levels of sibling information represents a progression in LUCI's ability to 

realistically model farm systems. The recently released OVERSEER FM model 

incorporates a user defined selection of multiple siblings per block.  

This research tested three different methods of incorporating sibling data into LUCI's 

soil water calculations on two study sites in Canterbury. Sibling data from S-Map and a 

farm scale survey map were included and the sibling management options were: 

1. Maintain the status quo, using information from the dominant sibling. 

2. Calculate a weighted average representation of the siblings (𝑖)in a polygon 

using the sibling proportion values estimated when each soil map was created 

as per Equation 5.2.  

 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑎𝑣𝑔 =  ∑ 𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝑖 ×  𝑠𝑜𝑖𝑙 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠 𝑜𝑓 𝑖

𝑖=5

𝑖=1

 

Equation 5.2 

3. Assign all siblings present in a soil polygon a value from 1 to 5, and using a 

random number generator, randomly select a sibling to represent that whole 

polygon.  

Currently LUCI’s estimates of nitrogen and phosphorus loads are parameterised by soil 

order. Because of this, adapting LUCI’s code to incorporate additional data will not 

result in changing load estimates if the siblings are characterised as the same order. 

Instead, the additional suborder information will alter the modelled hydrology of the 

farm as PAW and DW properties vary between all sibling types. This is shown through 

changing stream concentration estimates of nitrogen and phosphorus concentrations 

and maps of PAW across the farm. 
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For the South Canterbury site, management blocks on the farm are highlighted that 

have multiple soil siblings of varying orders. This information, when linked into the 

model, may result in changing nitrogen load estimates due to the altered hydrology of 

the site. For phosphorus, LUCI will be adapted to include ASC values for each sibling 

which could impact the models estimates of phosphorus lost from the system.  

While initial results were generated in this thesis for one case study farm, further 

analysis is required at multiple sites to fully understand the impact of adding suborder 

soil data into the LUCI model.  

5.3 OVERSEER SENSITIVITY ANALYSIS  

To test the sensitivity of OVERSEER to different farm management and environmental 

factors, a hypothetical cropping farm was created. Characteristics for this hypothetical 

farm were chosen to give moderate to high nitrogen and phosphorus losses, so that 

sensitivity to parameter changes can be demonstrated. 

The hypothetical farm is located in the Otago region; 100km from the coast; has a 

rolling topography; an effective area of 1000 ha; a climate of 1000 mm/yr rainfall with 

temperature and PET set to default values; pallic soil, and a history of 10 years in 

pasture prior to the reporting year, with prior land useas grazed pasture by non-farm 

animals (sheep and/or deer). These values were selected to promote nitrogen and 

phosphorus loss with a slightly higher than average rainfall, which is 800-900mm for 

the region (Mascara, 2015). 

The crop rotation was set up as spring wheat (sown in September; 10 T/ha yield; 

conventional cultivation practice at sowing and residue management selected as 

removed), with no fertiliser application or grazing by animals (Figure 5.19).  

 

Figure 5.19 Crop rotation for the hypothetical farm. 
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Some of the scenarios used in the sensitivity test may not be realistic for the type of 

soil/soil properties and/or climate of the region selected. This sensitivity test, however, 

aims to determine if the changes in modelled nitrogen and phosphorus lost from the 

system make sense, given the variation in chosen input factors.  

The following management and environmental factors were altered to show the 

sensitivity of the nitrogen and phosphorus sub models in OVERSEER, with only one 

management or environmental factor being altered from the original farm at a time 

(except for the brown soil scenarios with varying amount of rainfall). This allowed the 

comparison between the sensitivities to moderate variation in input parameters, 

rather than a comparison between extreme differences.  

Management Factors  

• Incorporating fertiliser at the time of sowing (soluble fertiliser with 50 kg N/ha 

and 20 kg P/ha). 

• Doubling the amount of fertiliser incorporated at the time of sowing to 100 kg 

N/ha and 40 kg P/ha. 

• An additional surface application of soluble fertiliser with 50 kg N/ha and 20 kg 

P/ha one month after the previous scenarios rate of fertiliser was incorporated. 

• Changing the cultivation practice at the time of sowing to direct drilled. 

• Changing the block history by reducing the number of years spent in pasture to 

five.   

• Changing the block history to continuous cropping (zero years in pasture) with 

prior land use selected as crop.   

• Changing the crop rotation to include two months of fallow before planting. 

• Changing the crop rotation to be fallow only (cultivated wheat the month after 

planting). 

Environmental Factors  

• Increasing the ASC of the soil from the default value of 21 to 50. 

• Decreasing the ASC of the soil from the default value of 21 to 10. 
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• Entering in an Olsen P test of 20 under the specify soil tests in the crop rotation 

window.  

• Entering in an Olsen P test of 100 under the specify soil tests in the crop 

rotation window.  

• Decreasing the amount of annual rainfall to 400 mm. 

• Decreasing the amount of annual rainfall to 600 mm. 

• Decreasing the amount of annual rainfall to 800 mm. 

• Changed the soil order of the farm from pallic to brown, with a medium soil 

texture group. 

o Decreased the amount of annual rainfall to 800mm. 

o Increased the amount of annual rainfall to 1200 mm. 

o Increased the amount of annual rainfall to 1400 mm. 
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CHAPTER 6 RESULTS 

 

 

This chapter details the results produced for each of the six case study farms used in 

this analysis to achieve Objective 2 in this research. Different data combinations tested 

at each site include varying levels of local vs national detail, with four soil maps and six 

DEMs tested. The level of analysis at each site varies based on the available input data, 

but generally includes the hydrological output from the first step in LUCI; nutrient load 

results from the nitrogen and phosphorus tools; comparison of measured nitrogen and 

phosphorus concentrations to LUCI estimates where available; analysis of the effect of 

incorporating sibling level soil properties into the LUCI model; and finally, the results 

from the OVERSEER sensitivity analysis are presented.  

6.1 TUAPAKA CATCHMENT  

6.1.1 Hydtopo Output  

The hydrology of this farm consists of one watershed and exit point at the base of the 

catchment (Figure 6.1). Both the 8m and 15m DEMs estimates similar catchments, 

with the watershed outline of the lower resolution 15m DEM detailed by an uneven 

line due to the larger grid size of the 15m DEM. The 8m DEM is also estimating a larger 

catchment area on the western side of the farm, resulting in an additional stream 

channel in this area. Comparing the predicted stream pathway to the actual stream 

channels presented in Burkkitt et al. (2016), the 15m DEM estimates the most accurate 

stream pattern.  
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Figure 6.1 Hydrological output of both DEM resolutions tested at this site. 

  

6.1.2 Nutrient Load Results  

The results for all scenarios run on the Tuapaka Catchment are presented below in 

Table 6.1. Here it can be seen that the total nitrogen results are similar across all 

scenarios ranging from 380 kg N/yr for the FSL + 15m to 392 kg N/yr for the Farm Scale 

+ 8m DEM. The major difference between scenarios is shown in the phosphorus results 

with a reduction in total load when the farm scale soil data was used. This reduction in 

phosphorus load is because the farm scale soil map reduced the area of land classified 

as pallic soil and reclassified the area as brown soil, resulting in a 10 kg P/yr reduction 

in phosphorus loss over this catchment. 

Table 6.1 Total nitrogen and phosphorus load results for all scenarios.  

LUCI Applications Nitrogen (kg N/yr) Phosphorus (kg P/yr) 

FSL + 8m 389 23 

FSL+ 15m 380 22 

Farm Scale + 8m 392 13 

Farm Scale + 15m 384 13 
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While total load results indicate that nitrogen loss is similar between all scenarios, 

Figure 6.2 a-b show there is variation in load estimates between the different soil and 

DEM resolutions tested. All estimated nitrogen loads range from 6.05 to 6.9 kg/ha/yr 

with the two FSL scenarios estimating the majority of their data between 6.1-6.3 

kg/ha/yr and the farm scale soil map scenarios data estimated between 6.2-6.3 

kg/ha/yr. For phosphorus, a few unique load values were calculated between 180-210 

g/ha/yr and 420-450 g/ha/yr (Figure 6.2 c-d). The two FSL scenarios estimated around 

80% of their results between 420-450 g/ha/yr, whereas the farm scale scenarios only 

estimated 20% of their data to be within this range. This is a result of the increased soil 

area classified as pallic soil in the FSL and, due to the nature of pallic soil properties, 

these areas are modelled with a high risk of phosphorus loss. 

Nitrogen 

Nitrogen load and nitrogen accumulated load results for this site are presented below 

in Figure 6.3. While the load estimates do not have a broad range, LUCI is still able to 

highlight the variations in the landscape.  The areas classified as high loads (red) in 

Figure 6.3 indicate the areas of brown soil in both scenarios. For FSL, the spatial 

distribution of 6-6.2 kg/ha/yr nitrogen load is on areas of pallic soils close the stream 

network. The load on these areas increases to 6.2-6.4 kg/ha/yr with the change to the 

farm scale soil map. This change in load classification is due to the changing 

classification from pallic to brown soil. The difference between the 8m and 15m DEM 

is seen in the resolution of the boundaries between load estimates. However, when 

looking at the accumulated load (Figure 6.4), the nutrient flow pathways estimated 

between the two DEMs are similar, as they both have highlighted four main pathways 

of nutrient movement where mitigations could be targeted. 
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Figure 6.2 (a) Proportional occurrence of nitrogen load values in kg N/ha/yr, (b) cumulative probability of occurrence of a nitrogen load at 
or below a specified load value, (c) proportional occurrence of phosphorus load values in g P/ha/yr, (d) cumulative probability of occurrence 

of a phosphorus load at or below a specified load value.  

 

 



105 

 

Figure 6.2 Continued. 
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Figure 6.3 Nitrogen load results for all scenarios in kg N/ha/yr. 

 

Figure 6.4 Nitrogen accumulated load results for all scenarios. 
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Phosphorus 

Phosphorus loss for this site, unlike nitrogen, is clustered into two contrasting low/high 

ranges of nutrient load estimates, with no moderate loads. Low values (0-200 g/ha/yr) 

are modelled on brown soil with high values (400-450 g/ha/yr) modelled on the pallic 

soil (Figure 6.5). These outputs therefore clearly show the impact of farm scale soil 

mapping on this catchment. In these results, the impact of slope is insignificant 

compared to LUCI’s more marked response to the changes in soil properties between 

these specific two soil orders. 

 

Figure 6.5 Phosphorus load results for all scenarios in g P/ha/yr. 

For accumulated load, the four pathways modelled are similar to the accumulated 

nitrogen load output (Figure 6.6), as the hydrology and topography of this farm route 

the water down defined paths, meaning that mitigations put in place to target nitrogen 

loss will also reduce phosphorus loss from this system as well. 



108 

 

Figure 6.6 Phosphorus accumulated load results for all scenarios. 

6.1.3 Modelled vs Collected Data Comparison 

Average concentration from measured water quality data was calculated from in-

stream measurements taken over a two-year period (June 2013-June 2015). These 

results are shown in Table 6.2, row 1, with average LUCI stream estimates shown in 

rows 2-5. Using the farm scale soil map and the 8m DEM resulted in the closest 

concentration (0.93 mg N/l) to the measured value (0.61 mg N/l), with phosphorus 

estimates identical between the soil maps used (0.06 mg P/l for FSL outputs and 0.03 

mg P/l for the farm scale soil map). Regardless of the DEM and soil map used, LUCI 

estimates are all reasonably close to the measured values.  
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Table 6.2 Observed and predicted total nitrogen and phosphorus loads for all 
scenarios at this site. 

Data Source  
Total Nitrogen (mg/L) Total Phosphorus (mg/L) 

Burkitt et al. (2016); Trodahl 

(2018) 

0.61 0.025 

LUCI FSL + 8m DEM 1.32 0.06 

LUCI FSL + 15m DEM 1.25 0.06 

LUCI Farm Scale + 8m DEM 0.93 0.03 

LUCI Farm Scale + 15m DEM 0.97 0.03 

6.2 GREATER WELLINGTON  

6.2.1 Hydtopo Output  

The hydrology of this farm can be seen in Figure 6.7. The different DEM resolutions 

delineate different catchment areas and stream networks for this farm. The 1m DEM 

estimated four watersheds, where the 15m DEM only modelled two. This difference in 

modelled watersheds impacts the stream network generated, with the northernmost 

stream modelled to exit the farm in the 1m DEM, whereas that same stream in the 

15m is modelled to exit and then re-enter farther along the farm boundary. From 

aerial imagery and a discussion with the farmer, the actual stream profile more 

accurately resembles the 1m DEM network.   

 

Figure 6.7 Hydrological output of both DEM resolutions tested at this site. 
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6.2.2 Nutrient Load Results 

The results for all the scenarios run on the Greater Wellington case study are 

presented in Table 6.3. For this site, all four of the S-Map-Hybrid and FSL scenarios 

included an OVERSEER xml file, with the S-Map-FSL hybrid soil layer rerun without this 

farm’s specific landcover information. For both nitrogen and phosphorus results, there 

is little variation between scenarios as there was little variation in the classification of 

soil by order between soil datasets. Total nitrogen loads for the S-Map-FSL hybrid with 

different DEM resolutions are 1,284 kg N/yr and 1,229 N/yr for the 1m and 15m DEM 

respectively. For the FSL 1m and 15m scenarios, total nitrogen loads were 1,279 kg 

N/yr and 1224 kg N yr. Phosphorus also shows little variation in results with total 

estimates ranging from 10 kg P/yr to 8 kg P/yr between scenarios. When the 

OVERSEER file was removed from the S-Map-FSL hybrid 1m DEM scenario, total 

nitrogen load changed from 1,284 kg N/yr to 1,521 kg N/yr and phosphorus increased 

from 10 kg P/yr to 24 kg P/yr, indicating that regional default landcover data 

overestimates nutrient load values. 

Table 6.3 Total nitrogen and phosphorus load results for all scenarios. 

LUCI Applications Nitrogen (kg N/yr) Phosphorus (kg P/yr) 

S-Map-FSL Hybrid + 1m 1,284 10 

S-Map-FSL Hybrid + 15m 1,229 9 

FSL + 1m 1,279 9 

FSL+ 15m 1,224 8 

S-Map-FSL Hybrid + 1m +LCDB4 1,521  24 

In Figure 6.8a-d, the distribution of data indicates that similar results are grouped 

based on the same DEM resolution, rather than on the soil dataset used. When the 

OVERSEER file was removed, it can be seen that both nitrogen and phosphorus load 

results change dramatically. For nitrogen, load estimates are now clustered between 

15-16 kg N/ha/yr (Figure 6.8a) with no other unique values present, and for 

phosphorus, the proportional occurrence of load values is mostly around 200 g P/ha/yr 

with a small proportion of estimates at the high end of 600 g/ha/yr (Figure 6.8c).  
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Figure 6.8 (a) occurrence of nitrogen load values in kg N/ha/yr, (b) cumulative probability of occurrence of a nitrogen load at or below a 

specified load value, (c) proportional occurrence of phosphorus load values in g P/ha/yr, (d) cumulative probability of occurrence of a 

phosphorus load at or below a specified load value. 
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Figure 6.8 Continued. 
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Nitrogen 

Results from LUCI’s nitrogen model for this site are presented below. In Figure 6.9, the 

areas where high nitrogen loads are estimated are similar between outputs using the 

two soil maps. The red areas occupy the flat parts of the farm with lower loads 

(orange) estimated on the rolling topography. The green areas near the streams 

indicate lower nitrogen loading between 0-5 kg/ha/yr. This similarity in LUCI’s nitrogen 

load estimates for both soil datasets for this site are also present in the model’s 

estimates of accumulated load (Figure 6.10). Accumulated load pathways in all 

scenarios show more pathways present on the south west side of the property using 

the 15m DEM, however, on the north-east side of the property the 1m and 15m DEM 

estimate pathways in the same locations.  

 

Figure 6.9 Nitrogen load results for all scenarios in kg N/ha/yr. 

 



114 

 

Figure 6.10 Nitrogen accumulated load results for all scenarios. 

Phosphorus 

For phosphorus, the pattern of the soil order is present, with the strip of recent soils 

along the stream boundary displaying higher phosphorus loads of 600-700 g P/ha/yr 

then areas of brown soil (which range from 0-100 and 200-300 g P/ha/yr) (Figure 6.11). 

The pattern in phosphorus accumulated load (Figure 6.12) demonstrates similar 

pathways of nutrient movement to the nitrogen results presented above.  
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Figure 6.11 Phosphorus load results for all scenarios in g P/ha/yr. 

 

 

Figure 6.12 Phosphorus accumulated load results for all scenarios. 
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National Landcover Data 

When the OVERSEER file is removed from the S-Map- FSL Hybrid + 1m scenario, the 

results produced differ from those presented above. In Figure 6.13a below, nitrogen 

loads can be seen to follow the pattern in the NIWA gridded rainfall dataset that LUCI 

connects to if no site-specific climate data is available. Since the soil order of the S-

Map-FSL Hybrid for this site is mostly brown soils and some recent soil, the removal of 

landcover information from OVERSEER means that only default landcover information 

is used. In this case, the LCDB4 database shows the whole farm as high producing 

grassland. Therefore, the gridded rainfall data is the only input data used in this 

scenario that has any variation that would result in different nitrogen load estimates.  

For phosphorus (Figure 6.13b), impacts from variations within the gridded rainfall 

network are not evident. Instead, the recent and brown soil classifications are the 

cause of the variation in phosphorus loads. 

 

Figure 6.13 Nitrogen and phosphorus load results for S-Map-FSL Hybrid soil data + 
1m DEM without farm specific information from an OVERSEER xml file. 
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6.3 NORTH CANTERBURY 

6.3.1 Hydtopo Output  

Using the 2m DEM, it can be seen in Figure 6.14 that the watershed is larger than the 

watershed estimated by the 15m DEM, and the 2m DEM models the stream running 

north to south along the property boundary. This stream outline is more realistic than 

the 15m DEM which models the stream north of its actual position and cuts across the 

property. The catchment boundary represented by the black outline also varies with 

the DEM used and this impacts LUCI’s nutrient load estimates as the model calculates 

nutrients contributed from ‘uphill sources’ when calculating accumulated load. 

 

Figure 6.14 Hydrological output of both DEM resolutions tested at this site. 

6.3.2 Nutrient Load Results  

The results from the North Canterbury case study are presented below from scenarios 

using S-Map and a 2m DEM, S-Map and a 15m DEM, FSL and a 2m DEM, and finally FSL 

and a 15m DEM. The S-Map and FSL datasets were also tested with a detailed farm 

specific soil map from OVERSEER. Both nitrogen and phosphorus results were 

calculated with the total loads shown in Table 6.4. These results have been presented 

in a paper of which I was the lead author (Taylor et al., 2018- Appendix B).  
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Table 6.4 Total nitrogen and phosphorus load results for all scenarios. 

The data produced from all the scenarios with the nitrogen tool is shown in Figure 

6.15a-d. Here it can be seen that the distribution of data is similar between the 

scenarios using the same soil data, with data clumped between 1-3 kg N/ha/yr and 19-

22 kg N/ha/yr for the two FSL scenarios, and data clumped between 1-3 kg N/ha/yr 

and 17-18 kg N/ha/yr for the two S-Map scenarios (Figure 6.15a). Figure 6.15b 

describes the proportion of that scenario estimating at or below a load value. Here it 

can be seen that at a load value of 17 kg N/ha/yr, approximately 40% of the load data 

in the FSL scenarios estimate this load or below, and for the S-Map scenarios approx. 

95% of the load data is at this load or below. When OVERSEER landcover information is 

added to the model (Figure 6.15 c-d), the difference in the distribution of load values 

between S-Map and FSL 2m scenarios is minimal, with both scenarios estimating 

around 30% of load values at 8 kg N/ha/yr.  

Phosphorus results for all scenarios can be seen in Figure 6.16. As with nitrogen, S-Map 

scenarios are estimating a high proportion of load values from 0.2 to 0.5 kg P/ha/yr 

(Figure 6.16b), with FSL scenarios having 40% of their load estimates at the high range 

of 0.6 kg P/ha/yr. Including the OVERSEER file in the S-map + 2m and FSL+ 2m 

scenarios did not lead to similar results for phosphorus loads between the two soil 

datasets, unlike the results from the nitrogen model. In Figure 6.16 d, S-Map is 

estimating a higher proportion of its data at or below 0.5 kg P/ha/yr like the results 

shown in the S-Map scenarios with default landcover. 

 

LUCI Applications 
Total Nitrogen Load 

(kg N/yr) 

Total Phosphorus Load 

(kg P/yr) 

S-Map+2m+ OVERSEER 1,954 92 

FSL+ 2m + OVERSEER 2,000 115 

S-Map + 2m 3,691 57 

S-Map + 15m 3,713 58 

FSL + 2m 4,401 89 

FSL + 15m 4,443 90 
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Nitrogen  

Using the OVERSEER file instead of default landcover data results in a lower total 

nitrogen load with the S-Map + 2m + OVERSEER scenario estimating 1,954 kg N/yr and 

the FSL + 2m + OVERSEER estimating a slightly higher nitrogen load of 2,000 kg N/yr. 

The four scenarios where default landcover data was used range from 3,691 kg N/yr 

for S-Map + 2m to 4,443 kg N/yr for S-Map + 15m. Between all the scenarios, the two 

FSL applications estimated a higher total nitrogen load, indicating that the source of 

the soil data plays a significant role in producing nutrient load results.  

Nitrogen loads from the two applications with OVERSEER data are shown in Figure 

6.17. The distribution of high and low loads again shows the errors associated with 

using regional default data as the areas of high nitrogen loads are located on the 

laneways and yards, with the low nitrogen loads not clearly separated into different 

soil orders. As a result, the S-Map and FSL outputs are similar with lower loads in the 

pallic areas of the farm. 

 

. 
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Figure 6.15 (a) occurrence of nitrogen load values in kg N/ha/yr for the soil + DEM scenarios with default landcover, (b) cumulative 
probability of occurrence of a nitrogen load at or below a specified load value for the soil + DEM scenarios with default landcover, (c), 

occurrence of nitrogen load values in kg N/ha/yr for scenarios with farm specific OVERSEER information, (d) probability of occurrence of a 
nitrogen load at or below a specified load value for scenarios with farm specific OVERSEER information. 
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Figure 6.15 Continued.
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Figure 6.16 (a) occurrence of phosphorus load values in kg P/ha/yr for the soil + DEM scenarios with default landcover, (b) cumulative 
probability of occurrence of a phosphorus load at or below a specified load value for the soil + DEM scenarios with default landcover, (c), 

occurrence of phosphorus load values in kg P/ha/yr for scenarios with farm specific OVERSEER information, (d) probability of occurrence of 
a phosphorus load at or below a specified load value for scenarios with farm specific OVERSEER information. 
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Figure 6.16 Continued. 

 



124 

 

6.17 Nitrogen load results in kg N/ha/yr for S-Map and FSL soil data + 2m DEM with 
farm specific information from an OVERSEER xml file. 

The four applications with regional land cover data are shown in Figure 6.18, with the 

nitrogen accumulated load shown in Figure 6.19. The distribution of high and low 

nitrogen loads can be seen to follow the pattern of each applications’ input soil data. 

The changing ratio of brown, pallic and recent soil order classifications across the farm 

when using the newer, S-Map dataset, resulted in a reduction in the areas classed as 

having high nitrogen loads. This reduction in high load estimates is linked to the 

changing classification of recent soils in the FSL to brown soils in S-Map. The area 

classified as pallic soil remained as a low nitrogen load. Changing soil classification 

between datasets resulted in pallic soil area increasing from 51 ha in the FSL to 75 ha 

in S-Map over the farm, recent soils reduced from 156 ha to 25 ha and brown soils 

increasing from 89 ha to 167 ha.  
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Figure 6.18 Nitrogen load results for all scenarios without farm specific OVERSEER 
information in kg N/ha/yr. 

However, when looking at the outputs of accumulated nutrient load on the landscape, 

the effect of the different soil datasets is not apparent. Instead, the changing 

resolution of the DEM is the main cause of difference between the applications. When 

looking at the accumulated loads of S-Map 2m and S-Map 15m, it is apparent that the 

15m DEM is estimating different pathways to the 2m DEM and this is the same when 

comparing FSL 2m and FSL 15m. Since LUCI estimates accumulated load using a 

topographic routing algorithm that associates soil, climate, slope based on the grid size 
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of the DEM provided, when using a lower resolution DEM, the microtopography 

present on the farm is not present in the input data so cannot be picked up by the 

algorithm and the accumulated load patterns are not realistic in this relatively flat 

landscape.  

 

Figure 6.19 Nitrogen accumulated load results for all scenarios without farm specific 
OVERSEER information. 

Another important factor to consider is the different ways data can be represented on 

a landscape, as default symbology in ArcMap software separates estimated 

accumulated loads into different classes by standard deviation. Figure 6.20 below 
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highlights issues in data presentation as the underlying data is the same as the 

accumulated load scenarios presented above, but instead of classifying high and low 

loads through standard deviation, the histogram equalize setting was used. Depending 

on what setting the user defines, the resultant pathways where mitigations could be 

targeted change greatly between the input soil datasets selected. 

 

Figure 6.20 Nitrogen accumulated load results for all scenarios without farm specific 
OVERSEER information using the histogram equalise setting in ArcMap symbology. 

Not only is soil classification affecting LUCI’s estimates of nitrogen loads but the 

landcover classification in the LCDB4 has resulted in load inconsistencies. The 
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estimates of nitrogen load along the river flat on the western edge of the farm vary 

despite being classed as recent soils in both FSL and S-Map datasets. The reason for 

the different loading estimates along this block is the classification of the upper 

northern part as cropland and the southern half as high producing grassland. In reality, 

the entire river flat is covered by high producing grassland, which shows the 

importance of understanding (and correcting where possible) errors in the underlying 

data used in models such as LUCI and the importance of using high-resolution, site-

specific land cover data wherever it is available. 

Phosphorus 

Phosphorus load estimates also follow the pattern in soil input data (Figure 6.21). 

Again, FSL+2m and FSL +15m estimate higher phosphorus loads than their S-map 

counterparts, with FSL+ 2m estimating 89.2 kg P/yr and S-Map+ 2m estimating 57.2 kg 

P/yr (Table 6.4). Comparing loads of individual cells with the same soil order between 

applications shows that the load values are similar. Therefore, the reason for the 32 kg 

P/yr difference between S-Map and FSL applications can be attributed to the 

classification change from recent to brown soil over the main block of the farm (this is 

the most significant area of difference between the two soil maps). Areas of recent 

soils are classified as having a phosphorus load of 0.45-0.6 kg P/ha/yr, and brown soils 

have an estimated load of 0.15-0.3 kg P/ha/yr. 
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Figure 6.21 Phosphorus load results for all scenarios without farm specific OVERSEER 
information in kg P/ha/yr. 

Unlike nitrogen, when OVERSEER farm specific landcover information is provided, LUCI 

estimates higher total phosphorus loads than the other four soil and DEM scenarios. 

The total phosphorus load estimated using regional data is 57 (58) kg P/yr using S-Map 

(FSL) and the 2m DEM. When an OVERSEER file is added, this value is increased to 92 

kg/ha and 115 kg P/ha respectively (Table 6.4). When adding in the OVERSEER file, the 

pattern in the different loads based on the different soil orders present is not masked 

by the reduced stocking rate compared to national data (Figure 6.22).  
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Figure 6.22 Phosphorus load results in g P/ha/yr for S-Map and FSL soil data + 2m 
DEM with farm specific information from an OVERSEER xml file.  

The accumulated phosphorus load results show a similar pattern to the accumulated 

nitrogen load output, where the effect of the lower resolution DEM results in a 

different representation of accumulated load across the landscape (Figure 6.23). In this 

figure, accumulated load pathways can be seen running north to south along the farm, 

with S-Map producing a load pathway perpendicular to the other load pathways 

running east to west, terminating below the modelled stream. Again, when mapping 

the results using a different symbology setting in ArcMap, a greater number of nutrient 

pathways are highlighted as having high loads, similar to the results from the nitrogen 

accumulated loads using the same standard deviation symbology (Figure 6.24).   
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Figure 6.23 Phosphorus accumulated load results for all scenarios without farm 

specific OVERSEER information. 
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 Figure 6.24 Phosphorus accumulated load results for all scenarios without farm 
specific OVERSEER information using the histogram equalise setting in ArcMap 

symbology. 

 

6.4 LUDF 

6.4.1 Hydtopo Output 

This site has no permanent streams on the property (Figure 6.25), and therefore no 

watersheds have been modelled, making the hydrology at this site simpler to interpret 

than other farms modelled in this study. 
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Figure 6.25 Hydrological output of both DEM resolutions tested at this site. 

6.4.2 Nutrient Load Results  

The total nutrient results are presented below in Table 6.5. Here it can be seen that 

the total load results for nitrogen and phosphorus for all scenarios do not vary greatly, 

with the lowest nitrogen load estimated by S-Map + 1m of 1,828 kg N/yr and the 

highest nitrogen load estimated by Farm Scale +1m of 1,890 kg N/yr. For phosphorus, 

total load estimates range from 58 kg P/yr to 61 kg P/yr; this is due to the area classed 

as pallic soil remaining of similar size between the three soil maps tested. 

Table 6.5 Total nitrogen and phosphorus load results for all scenarios. 

LUCI Applications Nitrogen (kg N/yr) Phosphorus (kg P/yr) 

S-Map + 1m 1,828 59 

S-Map + 15m 1,829 58 

FSL + 1m 1,857 58 

FSL + 15m 1,857 58 

Farm Scale + 1m 1,890 61 

Farm Scale + 15m 1,856 61 
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While the total nitrogen loads are similar between all scenarios, the distribution of 

load estimates shows the connection between the two different DEM resolutions 

tested. In Figure 6.25a-b, the three 15m DEM scenarios estimate 25% of their nitrogen 

loads between 14-17 kg/ha/yr, whereas all three 1m scenarios estimate 10% of their 

values within that range. For phosphorus (Figure 6.25c-d), the distribution of the 

different, loads is similar with all scenarios estimating phosphorus loads between 50-

100 g/ha/yr, 300-350 g/ha/yr and 700-750 g/ha/yr. 

Nitrogen 

Nitrogen load results display the pattern of recent soil order classification in the three 

soil maps, with the red area (25-30 kg N/ha/yr) evident in the FSL (Figure 6.27) and 

Farm Scale (Figure 6.28) scenarios. Other patterns besides soil order are evident in 

these outputs, with the landcover information provided by OVERSEER resulting in the 

non-effluent pivot having a lower estimated nitrogen load of 10-15 kg N/ha/yr 

compared to the effluent pivot area, which has a nitrogen load of 15-20 kg N/ha/yr. 

For nitrogen accumulated load (Figure 6.29 and Figure 6.30), the location of the 

pathways modelled are similar between all soil maps tested, the variation between 

scenarios can instead be seen between the resolution of the 1m and 15m DEMs used. 

Given this farm's flat topography, the 15m DEM produced unrealistic flow pathways 

including a series of diagonal nutrient flow pathways.  
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Figure 6.26 (a) proportional occurrence of nitrogen load values in kg N/ha/yr, (b) cumulative probability of occurrence of a nitrogen load at 

or below a specified load value, (c) proportional occurrence of phosphorus load values in g P/ha/yr, (d) cumulative probability of occurrence 

of a phosphorus load at or below a specified load value. 
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Figure 6.26 Continued. 
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Figure 6.27 Nitrogen load results for the S-Map and FSL scenarios in kg N/ha/yr. 

 

Figure 6.28 Nitrogen load results for the farm scale soil map scenarios in kg N/ha/yr. 



138 

 

Figure 6.29 Nitrogen accumulated load results for the S-Map and FSL scenarios. 

 

Figure 6.30 Nitrogen accumulated load results for the farm scale soil map scenarios. 
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Phosphorus  

Phosphorus load outputs highlight the differences in the soil maps and the landcover 

data from the OVERSEER xml file. The areas with the lowest estimates of phosphorus 

loss on all soil maps are the areas classed as gley soil, with the highest estimates 

shown on recent and pallic soils (Figure 6.31 and Figure 6.32). The pivot outline is also 

identified with the non-effluent area having a higher phosphorus load of 600-750 

g/ha/yr compared to the effluent pivot block with 30-450 g/ha/yr. This variation 

between effluent and non-effluent areas is a result of different fertiliser applications 

on this block. No phosphorus fertiliser is applied on the effluent area, whereas under 

the pivot that is not receiving effluent 500 kg/ka/yr Superphosphate is applied in 

October.  

The farm tracks and lanes are identified in these figures as these areas are connected 

to national data, not the landcover information provided for the farm. For the 

phosphorus accumulated load outputs, like nitrogen, the main difference between the 

nutrient pathways identified in the model is between the low and high-resolution DEM 

scenarios (Figure 6.33 and Figure 6.34).  

6.5 SOUTH CANTERBURY 

6.5.1 Hydtopo Output 

The hydrology of this farm consists of a network of streams and watersheds. The 10m 

and 15m DEMs produce similar hydrological results along the flat and steep sections of 

the property (Figure 6.35). One difference between the outputs is the extra land area 

included in the catchment in the 15m DEM to the west of the property, as well as the 

15m DEM, estimating a greater number of stream entry and exit points. Based on 

discussions with others who have visited the site for previous LUCI development, the 

location of the estimated streams closely resembles the location of the actual streams 

(B. Jackson, personal communication, 17 May 2018).  
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Figure 6.31 Phosphorus load results for the S-Map and FSL scenarios in kg P/ha/yr. 

 

Figure 6.32 Phosphorus load results for the farm scale soil map scenarios in kg 
P/ha/yr. 
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Figure 6.33 Phosphorus accumulated load results for the S-Map and FSL scenarios. 

 

Figure 6.34 Phosphorus accumulated load results for the farm scale soil map 
scenarios. 
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Figure 6.35 Hydrological output of both DEM resolutions tested at this site. 

6.5.2 Nutrient Load Results 

The total nutrient loads for all scenarios are presented in Table 6.6. For nitrogen, all 

scenarios produce similar total load estimates ranging from 6,178 kg N/yr for S-Map + 

10m DEM to 6,303 kg N/yr for FSL + 10m DEM.  For phosphorus, the difference 

between soil maps is more apparent with the FSL+ 10m scenario estimating 185 kg 

P/yr compared to 130 kg P/yr for S-Map scenario with the same DEM resolution. This 

change in estimated phosphorus load is due to the larger part of the farm classified as 

pallic soil in the FSL database, which was reclassified as recent soil in the updated S-

Map data.   

Table 6.6 Total nitrogen and phosphorus load results for all scenarios. 

LUCI Applications 
Total Nitrogen Load (kg 

N/yr) 

Total Phosphorus Load (kg 

P/yr) 

S-Map + 10m 6,176 130 

S-Map + 15m 6,178 129 

FSL + 10m 6,303 185 

FSL + 15m 6,261 183 
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The distribution of load results for nitrogen and phosphorus can be seen in Figure 

6.36a-d. This shows that the distribution of load results is similar between scenarios, 

with most of the nitrogen load estimates between 1.5-2.5 kg N/ha/yr and most of the 

phosphorus results estimated between 0-100 g P/ha/yr. Several estimates for nitrogen 

and phosphorus are much higher than the rest of the nutrient estimates, as shown in 

Figure 6.36b and 6.36d. These figures show that 98% of FSL and S-Map scenarios 

estimates are present at or below 2.5 kg N/ha/yr for nitrogen and 100 g P/ha/yr for 

phosphorus. The remaining estimates are located around 7 kg/ha/yr for nitrogen and 

500 g/ha/yr. These outliers are estimated in the two FSL scenarios where semi-arid, 

irrigated soil is present such areas are prone to slaking, and the input of water through 

irrigation results in high nutrient loss as this soil type is not as well structured as a 

brown or recent soil.   

Nitrogen 

Nitrogen load and accumulated load outputs are presented in Figure 6.37 and Figure 

6.38. Here, the difference between FSL and S-Map scenarios is apparent on the south 

side of the property through the changing load classification between 4-6 kg/ha/yr on 

brown soils in S-Map, to 6-8 kg/ha/yr for the recent and semi-arid soil combination in 

FSL. The parts of the farm that are irrigated by pivot and sprinkler systems are also 

evident in LUCI’s output as high nutrient loss areas due to increased drainage under 

irrigation systems. The difference in nitrogen loads based on the two DEMs tested are 

not as apparent as the difference connected to soil type. This is because the 

boundaries between different nitrogen load estimates appear to be of similar 

resolution with the 15m DEM not producing obvious simplifications in the polygons 

due to its lower resolution. However, this could also be because both DEMs are of a 

lower resolution than the LIDAR produced DEMs tested on other sites in this analysis.   
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Figure 6.36 (a) proportional occurrence of nitrogen load values in kg N/ha/yr, (b) cumulative probability of occurrence of a nitrogen load at 
or below a specified load value, (c) proportional occurrence of phosphorus load values in g P/ha/yr, (d) cumulative probability of occurrence 

of a phosphorus load at or below a specified load value. 
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Figure 6.36 Continued.
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Figure 6.37 Nitrogen load results for all scenarios in kg N/ha/yr. 

For nitrogen accumulated load, the complexity of the topography of this farm is 

shown, with the gullies present on the north side of the farm flowing down into the 

lake highlighted as pathways for nutrient transport. On the flat, pivot irrigation area in 

the central south part of the farm, the artefacts associated with low-resolution DEMs 

modelling flat landscapes are apparent with straight lines of modelled nutrient 

pathways flowing towards the stream network. In reality, flow accumulation along the 

pivot area would not result in so many separate pathways of nutrients, especially if 

irrigation applications were carried out under good management practices.    
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Figure 6.38 Nitrogen accumulated load results for all scenarios. 

Phosphorus 

Phosphorus load and accumulated results (Figure 6.39 and Figure 6.40) also show the 

pattern of high nutrient loads present on the irrigated area with 450-600 g/ha/yr 

estimated on the irrigated area in the FSL scenarios; 150-300 g/ha/yr estimated on the 

brown soil in S-Map, and 300-450 g/ha/yr estimated on the irrigated area of pallic soil. 

The north side of the property with steep hill topography is shown to be a low source 

of phosphorus on the farm. Given the topography of this area, it was expected that the 

slopes would be modelled as a source of phosphorus loss from the farm. However, due 

to the low stocking rate and reduced fertiliser application on the steep hill country, the 

loss of phosphorus from this area could be masked by the high phosphorus loss 

modelled due to the combinations of brown and semi-arid soil types and irrigation 
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practices on the farm. Looking at the modelled phosphorus accumulated load, some 

pathways on the northern part of the property are highlighted, but as with nitrogen, 

the main areas of nutrient movement are located on the flat, southern side of the 

property. 

 

Figure 6.39 Phosphorus load results for all scenarios in g P/ha/yr. 
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Figure 6.40 Phosphorus accumulated load results for all scenarios. 

6.5.3 Sibling Sensitivity Analysis  

The results presented below were modelled after LUCI’s algorithms were updated to 

include regional specific patterns of rainfall and evaporation instead of a national 

average rainfall distribution. This makes the drainage calculations in LUCI more 

representative of different regions and is part of ongoing development to more 

accurately model nitrogen and phosphorus movements within the landscape, a core 

part of this thesis. This update to LUCI did not alter input requirements for each 

scenario, but, it should be noted that the scenarios presented below produce slightly 

different estimates to those run previously at the same site. This can be seen in the S-

Map + 15m DEM total nitrogen load result of 6,178 kg N/yr (Table 6.6) and when this 

same scenario was rerun as the dominant sibling + 15m DEM, the total load result was 

6,134 kg N/ha. Total phosphorus load results have not changed as a result of the 
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update, with both S-Map +15m DEM and dominant sibling +15m DEM estimating a 

total loss of 129 kg P/yr. All sibling scenarios were tested using the 15m DEM and farm 

specific information from OVERSEER.  

For the purpose of this thesis, the change to the LUCI model will not affect how the 

results are discussed, as the comparison of the different ways sibling data is 

incorporated into LUCI is independent of the analysis of LUCI’s sensitivity to soil and 

elevation datasets.  

The stream concentration results are compared on this farm as, although there is not 

in stream measured data available, changing the way S-Map siblings are used in each 

soil polygon affects the modelled drainage characteristics. This is because PAW is 

parameterised by the texture and drainage properties of the siblings, and those 

properties change depending on which sibling is selected to represent the soil polygon. 

Unlike the stream concentration results for the Tuapaka and Otago case studies, these 

results are presented to 3 significant figures as the level of variation is an order of 

magnitude less than the other sites.   

Nutrient Load Results  

It can be seen in Table 6.7 that there is no difference between the sibling scenarios and 

total nitrogen load results with all scenarios estimating a loss of 6,134 kg N/yr and only 

a slight change to phosphorus load; all scenarios except the Random3 model run 

estimate 129 kg P/yr. The load results have not varied as the nitrogen and phosphorus 

tools are still parameterised by soil order, and the difference in sibling properties may 

not have been enough to trigger a change in soil order classification between soil 

polygons. The similarity between scenario runs is also shown in Figure 6.41 where the 

distribution of nitrogen and phosphorus load results are identical. Because of this, the 

map outputs generated for these scenarios are not shown as no comparison can be 

drawn between them.  
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Table 6.7 Total nitrogen and phosphorus load results for all sibling scenarios. 

Scenario 
Nitrogen (kg N/yr) Phosphorus (kg P/yr) 

Dominant 6,134 129 

Weighted 6,134 129 

Random1 6,134 129 

Random2 6,134 129 

Random3 6,134 128 

 

6.5.4 Predicted Stream Concentrations  

LUCIs’ predictions of stream concentrations for this farm have been weighted 

according to the flow of each stream, providing a weighted average nutrient loss to 

water for the whole farm. As shown in Table 6.8, the variation in nitrogen and 

phosphorus estimates is small; however, it does highlight the changed hydrology 

between the scenarios and precisely how sibling data is used impact results. The 

lowest nitrogen and phosphorus estimates were calculated in the dominant sibling 

scenario, with 1.23 mg/LL nitrogen and 0.0216 mg/L phosphorus.    

6.5.5 Testing Sibling Variation in OVERSEER 

OVERSEER allows the user to choose the dominant sibling for each user defined block 

on the farm, which is the same as LUCIs original method of extracting the dominant 

sibling soil information before the multiple sibling options were coded as this thesis 

progressed. In Table 6.9 below, the difference in OVERSEER results is shown. 

Management blocks on the farm were chosen to highlight the difference in model 

results based on the soil type selected, and the impact on modelled whole farm 

nutrient loss if three of the largest blocks on the farm, representing 73% of total farm 

area are altered. In each of these three blocks, the dominant sibling only covered 

between 50%- 65% of the soil polygon, suggesting that including a multiple sibling 

option on OVERSEER as well as LUCI could result in more accurate nitrogen and 

phosphorus modelling on the landscape. 
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Figure 6.41 (a) proportional occurrence of nitrogen load values in kg N/ha/yr, (b) cumulative probability of occurrence of a nitrogen load at 
or below a specified load value, (c) proportional occurrence of phosphorus load values in g P/ha/yr, (d) cumulative probability of occurrence 
of a phosphorus load at or below a specified load value. 
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Figure 6.41 Continued.



154 

Table 6.8 Predicted total nitrogen and phosphorus stream concentrations for all 
sibling scenarios at this site. 

Scenario 
Total Nitrogen (mg/L) Total Phosphorus (mg/L) 

Dominant  1.23 0.0216 

Weighted 1.26 0.0221 

Random1 1.24 0.0218 

Random2 1.24 0.0217 

Random3 1.28 0.0222 

 

Table 6.9 OVERSEER estimated total nitrogen and total phosphorus load using the 
dominant and (second sibling) classified in S-Map for three of the South Canterbury 

pastoral blocks. 

Scenario 
Total Nitrogen 

Load (kg N/yr) 

Total Phosphorus 

Load (kg P/yr) 

Pasture1- Omrk_8a.1 to Glenr_5b.1  3,053 (1,319) 93 (65) 

Pasture2- Omrk_8a.1 to Benm_2a.4 3,243 (1,225) 80 (17) 

Pasture3-Otem_2a.1 to Bogr_1a.1 2,412 (4,686) 13 (8) 

Whole farm 24,913 (23,408) 478 (382) 

 

 6.6 OTAGO 

6.6.1 Hydtopo Output 

In this case study, both the 8m and 15m DEMs produced similar hydrological outputs. 

There are slight variations in the model’s estimation of the catchment boundary, with 

the 8m DEM modelling a larger catchment area on the south side of the farm. The two 

stream networks generated are located in similar areas with the 15m DEM estimating 

a greater number of watersheds over this farm (Figure 6.42). 
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Figure 6.42 Hydrological output of both DEM resolutions tested at this site. 

6.6.2 Nutrient Load Results 

The results of the four scenarios run on this farm are presented below in Table.6.10. 

The highest total nitrogen load of 4,583 kg N/yr was estimated by the S-Map + 8m 

DEM scenario, with the S-Map +15m scenario estimating 4,545 kg N/yr. The two FSL 

scenarios estimated less total nitrogen, because that dataset classes most of the farm 

as pallic soil (poor drainage) compared to S-Maps classification of the area as brown 

soils (well drained), thereby changing the soil water characteristics of the site. The 

opposite pattern is seen in the total phosphorus load estimates, with the FSL + 8m 

scenario estimating the highest load of 261 kg P/yr. Again, this is due to the FSL 

classifying the majority of the farm as pallic soil. The results are clumped by the soil 

dataset used as both the DEMs, as mentioned previously, produced similar Hydtopo 

outputs and therefore do not have a dramatic effect on estimated nitrogen and 

phosphorus loads. 

Table 6.10 Total nitrogen and phosphorus load results for all scenarios 

LUCI Applications Nitrogen (kg N/yr) Phosphorus (kg P/yr) 

S-Map + 8m 4,583 210 

S-Map + 15m 4,545 210 

FSL + 8m 3,890 261 

FSL + 15m 3,860 259 
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The distribution of all nitrogen and phosphorus scenarios tested is shown in Figure 

6.43. Here the similarity in results based on the soil dataset is evident. All four 

scenarios have a high proportion of their results estimated between 9-11 kg N/ha/yr 

and between 530-540 g P/ha/yr as shown in Figure 6.43a and c. Both S-Map scenarios 

estimate high nitrogen loads between 15-16 kg N/ha/yr. The proportional occurrence, 

Figure 6.43b and d, indicate that around 98% of all FSL scenario results are estimated 

at 10 kg/ha/yr with only 50% of the S-Map scenarios results at or below 10 kg/ha/yr. 

For phosphorus, both S-Map and FSL scenarios follow the same pattern in cumulative 

probability of occurrence, as all four scenarios have 98% of their results at or below 

530 g/ha/yr. 

Nitrogen 

Nitrogen load and nitrogen accumulated load are shown in Figure 6.44 and Figure 6.45. 

Here the difference between S-Map and FSL results is evident, as the strip of brown 

soils on the eastern side of the property is classified as an area of higher nitrogen load 

(12-16 kg N/ha/yr) than the same area under the FSL classification (8-12 kg/ha/yr). The 

area with the highest nitrogen load classification is shown in both S-Map scenarios as 

15-50 kg N/ha/yr. This area in the S-Map scenarios is classified with the highest load as 

it is an effluent block (Figure 5.15). Since this effluent block is classified as having 

brown soils in S-Map and thus, a higher potential to leach nitrogen, when classified as 

a pallic soils in the FSL, this effluent block does not have a high risk of nitrogen leaching 

and therefore is not classified as having a high load in the FSL scenarios. The nitrogen 

accumulated load outputs for these scenarios show that the areas where load 

pathways are present in the landscape do not vary greatly between model runs. 

Figure 6.46 depicts the same data as the accumulated nitrogen presented above, but 

uses the histogram equalise method of classifying data, instead of the standard 

deviation. As for the results shown in the North Canterbury case study, the nutrient 

pathways estimated with the histogram equalise setting classes more significant areas 

of the landscape as having high accumulated loads, likely altering where a farmer 

might choose to place his mitigation strategies. 
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Figure 6.43 (a) proportional occurrence of nitrogen load values in kg N/ha/yr, (b) cumulative probability of occurrence of a nitrogen load at 

or below a specified load value, (c) proportional occurrence of phosphorus load values  in g P/ha/yr, (d) cumulative probability of 

occurrence of a phosphorus load at or below a specified load value. 
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Figure 6.43 Continued. 
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Figure 6.44 Nitrogen load results for all scenarios in kg N/ha/yr. 

 

Figure 6.45 Nitrogen accumulated load results for all scenarios. 
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Figure 6.46 Nitrogen accumulated load results for all scenarios using the histogram 
equalise setting in ArcMap symbology. 

Phosphorus 

Phosphorus load and phosphorus accumulated load estimates for this farm are shown 

in Figure 6.47 and Figure 6.48. As for nitrogen, the variation between brown and pallic 

soil classification in S-Map and FSL are evident, as well as the location of the OVERSEER 

management blocks. The areas of the farm classed as cropping rotations have the 

highest phosphorus loss, because the ground is cultivated, increasing the risk of soil 

loss to water, whereas trees and riparian planting areas have the lowest phosphorus 

loss. The areas of pasture classified as brown soils in S-Map have a phosphorus load of 

600-900 g P/ha/yr in the FSL scenarios; this is reduced to 0-300 g P/ha/yr with the 

different soil classification. For the phosphorus accumulated load results (Figure 6.49), 

the location of accumulated load pathways is similar for all applications, with the 

histogram equalise outputs also consistent between all scenarios. Like nitrogen, 

however, the areas of high nutrient loads differ from the results produced using the 

standard deviation setting. 
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Figure 6.47 Phosphorus load results for all scenarios in g P/ha/yr. 

 

Figure 6.48 Phosphorus accumulated load results for all scenarios. 
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Figure 6.49 Phosphorus accumulated load results for all scenarios using the 
histogram equalise setting in ArcMap symbology. 

 

6.6.3 Modelled vs Collected Data Comparison 

Table 6.11 summarises total nitrogen and phosphorus concentrations from measured 

water quality data and the four LUCI scenarios modelled for this farm. The measured 

data was taken fortnightly from September 2013 to September 2014; the mean 

concentrations are shown in row 1, and below that are LUCI’s predictions for the 

watershed on the south side of the property, where the council monitoring site is 

located for the four scenarios tested (Figure 5.16).  

LUCI’s water quality predictions for this farm vary from measured council data, with 

the most variation away from measured data nitrogen estimated by the S-Map +8m 

scenario (2.71 mg/L compared to the measured 3.69 mg/L). For phosphorus, LUCI 

varied with S-Map estimates 0.05 mg/L and 0.03 mg/L off Otago Regional Council’s 

values. The FSL + 15m estimated a slightly higher concentration of 0.11 mg/L, this was 

the only scenario to overestimate phosphorus load.  
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Table 6.11 Observed and predicted total nitrogen and phosphorus loads for all 
scenarios at this site. 

Data Source  
Total Nitrogen (mg/L) Total Phosphorus (mg/L) 

Otago Regional Council (2014) 3.69 0.103 

LUCI S-Map + 8m DEM 2.71 0.0547 

LUCI S-Map + 15m DEM 3.74 0.0798 

LUCI FSL + 8m DEM 2.90 0.0731 

LUCI FSL + 15m DEM 3.07 0.110 

 

6.7 OVERSEER SENSITIVITY  

6.7.1 Effect of Changing Management Factors 

In Table 6.12 are the results of the management scenarios tested in the hypothetical 

OVERSEER nutrient budget. 

The Nitrogen sub-model within OVERSEER is responsive to changes in the input 

parameters that would affect the amount of nitrogen leaving the farm system.  The 

baseline value of total nitrogen loss is 53,941 kg N/yr with 54 kg N/ha/yr lost to water 

and 12.6 ppm lost in drainage.  These values increased when fertiliser applications are 

added to the block, showing that the nitrogen sub-model is sensitive to changes, as the 

scenario shows the expected increase in modelled nitrogen loss associated with 

increased nitrogen input on the cropping block.  

With the addition of 50 units of nitrogen fertiliser at sowing, total nitrogen loss 

increased 25% above the original farm, and with 100 units of nitrogen added, total 

nitrogen lost increased 49% above the original farm. When another application of 50 

units of nitrogen was applied one month after sowing, total nitrogen loss increased 

69% above the original farm value. The amount of nitrogen lost in drainage water also 

increased proportionally to the increased nitrogen load of the fertiliser applications.  
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Table 6.12 OVERSEER Results of management factor scenarios on the hypothetical 
cropping farm. 

 
Nitrogen 

Phosphorus 

Scenario  

Total N 

lost (kg 

N/yr)  

N lost to 

water (kg 

N/ha/yr) 

N in 

Drainage 

(ppm) 

Total 

P lost 

(kg 

P/yr) 

P lost in 

water (kg 

P/ha/yr) 

Original Farm 53,941 54 12.6 388 0.4 

Fertiliser at sowing 67,226 67 15.7 435 0.4 

Double the amount of fertiliser at 

sowing 
80,361 80 18.7 483 0.5 

Double fertiliser at sowing + 

additional application after 1 

month 89,482 89 20.8 531 0.5 

Direct Drilled  48,512 49 11.3 388 0.4 

5 years of pasture 39,549 40 9.2 388 0.4 

Continuous Cropping  
32,005 32 6.2 1,027 1 

Fallow prior to planting 62,062 62 14.0 388 0.4 

Fallow only 115,770 116 20.3 403 0.4 

In these scenarios phosphorus loss also increased 12% above the original farm value of 

388 kg P/yr when 20 units of phosphorus was applied at sowing. This estimated loss 

then increased 24% and 37% respectively, when 40 units and an additional 20 units 

were applied one month after sowing.  

The other scenarios run on this farm also resulted in changes to nitrogen and 

phosphorus loss from the system. A decrease in nitrogen loss occurred through 

changing the sowing practice and the block history. Changing from conventional to 

direct drilled cultivation resulted in a 10% reduction in the amount of nitrogen lost 

from the system. This change is realistic, as direct drilling does not disturb the soil as 

much as conventional cultivation, thereby reducing the amount of nitrogen lost from 

the top layer of the soil. In this scenario, total phosphorus loss did not change from the 
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base value of 388 kg P/yr. The lack of variation between this scenario and the base 

scenario indicates that the phosphorus loss sub-model is insensitive to cultivation, 

although it would be expected that phosphorus loss would also decrease as the 

structure of the soil is not compromised, as there is less exposed soil available for 

erosion. 

Changing the block history by reducing the prior years in pasture from the base 

scenario of ten to five years in pasture, resulted in a 26% reduction of nitrogen lost. 

Again, the phosphorus status of the farm remained at the original value.  

The total nitrogen lost is further reduced by 41% under a continuous cropping regime 

with zero prior years in pasture. This reduction is caused by OVERSEER adjusting the 

nitrogen mineralisation rate, which is a critical factor to consider if cropping has 

occurred, especially if it was within two years of the reporting year, which could have a 

considerable influence on OVERSEER outputs (Watkins et al., 2013).  

Whereas previously, changing the block history had no effect on phosphorus loss, for a 

continuous cropping scenario, phosphorus loss was estimated to be 2.6 times the 

phosphorus loss on the original farm. This increase is expected, as cropping practices 

significantly disturb the top soil, resulting in soil exposure and increased background 

phosphorus loss in the sub-model (i.e. phosphorus that has had the opportunity to 

react with the soil and then be lost via flow events throughout the year) (Gray et al., 

2016b). This pattern is identified in the AgResearch report reviewing the phosphorus 

loss sub-model (Gray et al., 2016a), as modelled total phosphorus loss incorporates 

factors that relate to the loss of phosphorus in particulate form due to soil erosion, the 

soils Olsen P status, and the topography of the block. Nevertheless, despite cropping 

being identified as impacting the phosphorus status of soil, there is no cropping 

component in the sub-model. Instead, the pastoral sub-model is used with the 

exclusion of grazing specific components (dung or effluent return), leading to a mean 

increase in phosphorus loss that is equivalent to twice the amount of phosphorus loss 

on pastoral blocks (Gray et al., 2016a). 
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In the scenarios with two months fallow prior to planting, and fallow for the entire 

reporting year, the total nitrogen lost increased 15% and 1.1% respectively.  This 

increase is expected, as having a period of the reporting year where no crop is sown 

will increase the nitrogen pool of the soil, as no nitrogen will be lost through plant 

uptake. Accordingly, more nitrogen is available for drainage (nitrogen lost in drainage 

increased from the base value of 12.6 ppm to 14 ppm and 20.3 ppm respectively). 

There was a 3.8% increase in the phosphorus sub-model in the fallow-only scenario. In 

reality a more significant change would be expected as leaving the ground bare for a 

whole year would dramatically affect the phosphorus cycle.   

6.7.2 Effect of Changing Environmental Factors  

In Table 6.13 are the results of all environmental scenarios tested in the hypothetical 

OVERSEER nutrient budget. 

Table 6.13 Results of environmental factor scenarios on the hypothetical farm. 

  Nitrogen  Phosphorus 

Scenario  
Total N lost 
(kg N/yr)  

N lost to 
water (kg 
N/ha/yr) 

N in 
Drainage 
(ppm) 

Total P 
lost (kg 
P/yr) 

P lost in 
water (kg 
P/ha/yr) 

ASC= 50 53,941 54 12.6 281 0.3 

ASC= 10 
53,941 54 12.6 463 0.5 

Olsen P= 20 53,941 54 12.6 391 0.4 

Olsen P= 100 53,941 54 12.6 510 0.5 

Rainfall= 400mm 
1,000 1 19.8 31 0.0 

Rainfall= 600mm 5,980 6 5.5 31 0.0 

Rainfall= 800mm 14,446 14 6.2 130 0.1 

Brown soil 46,568 47 11.3 115 0.1 

Rainfall= 800mm 
(brown soil) 12,061 12 5.5 39 0 

Rainfall= 1200mm 
(brown soil) 77,319 77 11.7 205 0.2 

Rainfall= 1400mm 
(brown soil) 103,395 103 12.0 309 0.3 
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The phosphorus sub-model did respond to changes in soil properties that will affect 

the concentration of phosphorus lost in overland flow. When the ASC was adjusted 

from the default value for a pallic soil to 50%, the total phosphorus lost from the 

system decreased 28%. At the other extreme, when ASC was decreased to 10%, the 

response from the model resulted in 19% increase in total phosphorus lost to 463 kg 

P/yr. 

The same pattern was seen when increasing and decreasing the Olsen P value of the 

soil, reflecting how ASC and Olsen P affects P retention, and therefore the background 

rate of phosphorus loss from the soil. While the phosphorus sub-model is sensitive to 

changes in these inputs, the output provided by OVERSEER does not differentiate 

between phosphorus lost in surface and subsurface flows. This lack of differentiation 

between phosphorus loss pathways makes it hard for mitigation strategies to be 

identified, as viable options differ greatly between pathways (Gray et al., 2016b).  

Changing the climatic properties of the farm block, by adjusting the average annual 

rainfall, indicated that the phosphorus sub-model is sensitive to changes in climatic 

conditions. As the phosphorus sub-model and other nutrient leaching sub-models are 

connected to the monthly calculations in the hydrology sub-model, changes in annual 

rainfall will impact the soil moisture content, the amount of surface runoff, and 

drainage past the root zone (Wheeler, 2016b). Changes to the flow within the 

hydrological sub-model are governed by the relationship that drainage or drainage + 

runoff (surface and subsurface), will occur when surplus precipitation is present (i.e. 

there is more rainfall and irrigation than actual evapotranspiration) (Gray et al., 

2016a).  
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CHAPTER 7 DISCUSSION 

 

 

The results presented in Chapter 6 demonstrate LUCI’s sensitivity to a soil polygon’s 

classification within the NZSC, the effect DEM resolution has on model outputs, how 

national vs farm specific landcover and management data affects the reliability of load 

estimates, and finally, provides guidance on where LUCI can and can’t be reliably used 

to target mitigations.  

This chapter summarises the results of the individual case studies and interprets them 

with a view to understanding the wider implications of applying the LUCI model in New 

Zealand. The case studies highlight different farm systems, climates, topography and 

data environments, reflecting the variable nature of agriculture. To be clear, these 

farms were not selected to be representative of either the full diversity or 

commonalities within New Zealand’s agricultural industry, but rather to provide 

guidance on LUCI’s reliability in different environments. This thesis is the first study to 

focus on testing LUCI’s sensitivity and predictive accuracy against a range of input 

datasets and farm environments; further research is needed to confirm these initial 

findings.  

The discussion below addresses Objective 2 and 3 in Section 1.2: “To compare LUCI’s 

Nitrogen to Water and Phosphorus to Water tools in case study sites” and “To explore 

whether available datasets are appropriate for accurate model outputs, and to provide 

guidance on how LUCI can be adapted to better use these datasets for improved 

accuracy where appropriate”.  

7.1 SENSITIVITY OF LUCI TO SOIL PROPERTIES AND THE RESOLUTION OF 

ELEVATION DATA USED 

LUCI’s Nitrogen to Water and Phosphorus to Water tools, as tested on six farms 

around New Zealand, highlight the variation in the sensitivity of each site based on its 
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topography and the level of variation between FSL and S-Map soil order classifications 

for the same area. Table 7.1 summarises these differences below. 

Table 7.1 Sensitivity of the case study sites to soil and elevation datasets. 

Scenario 
Sensitive to soil 

dataset used 

Sensitive to 

DEM used 

Tuapaka Catchment ✓   

Greater Wellington  ✓  

North Canterbury ✓  ✓  

LUDF ✓  ✓  

South Canterbury ✓   

Otago ✓   

To our knowledge, there is currently no readily available objective assessment to 

measure sensitivity of accumulated flow in the landscape. Subjective criteria were 

used to classify if a site was sensitive to soil data or a DEM. While there is established 

literature on the appropriate method to carry out a sensitivity analysis to highlight 

calibration process issues for specific model parameters (Nossent & Bauwnes, 2012), 

measuring the sensitivity of the spatial configuration of modelled nutrient flows is 

undefined. Therefore, the subjective assessment of the sensitivity LUCI to soil and 

elevation data used several model outputs:  

Firstly, a comparison of the Hydtopo output for each DEM on a site provided insight on 

the hydraulic variation in stream placement and watershed delineation based on the 

different grid sizes. This visual comparison between the DEMs and the known stream 

position, based on discussions with the landowner, LUCI developers who have carried 

out site visits, and a comparison to topographic maps, indicates which datasets used in 

LUCI produce the most accurate representation of the hydraulic properties of the 

farm. For Tuapaka, it was shown that the 15m DEM produced the most accurate 

output based on the stream outline provided in Burkitt et al. (2016). The 8m scenarios 

in the Tuapaka study did, however, represent a realistic watershed as the location 

where the two streams merged was similar between both DEMs. We concluded, 
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therefore, that this site was not sensitive to the resolution of the DEM used.  The 15m 

DEM was not, however, the most accurate representation on the North Canterbury 

cases study site. The fine resolution 2m DEM produced the most realistic stream 

profile and watershed, with the 15m DEM greatly underestimating the size of the 

watershed and the position of the stream in the landscape. These two sites are 

examples of where LUCI is considered sensitive or not sensitive to the DEM grid size in 

the Hydtopo setup. Based on this subjective assessment, it was found that the sites 

that have rolling topography (except for Greater Wellington) are not sensitive to 

changes in DEM resolution. 

Secondly, the nutrient load results enabled a comparison of total estimated nitrogen 

and phosphorus loads on each farm. All sites (apart from Greater Wellington) are 

sensitive to changing soil input datasets, owing to the changing classification of soil 

orders between FSL, S-Map, and Farm Scale soil maps. Greater Wellington is an 

exception, as this site has little variation between FSL and S-Map soil classifications, 

with all of the farm classified as brown soil in FSL. When updated with S-Map, only a 

strip of recent soil near the stream network is added. This differs from the other sites 

tested, where soil order classifications are more complex. Since soil order did not 

change significantly between scenarios, the predicted hydrology of the farm did not 

result in substantial variation in estimated nutrient loads. Instead, a sensitivity to 

climate, instead of soil order, was apparent in the load outputs. Results from the other 

case studies suggest that, when soil datasets are very different, the sensitivity of LUCI 

to soil parameters dominates other sensitivities. This is a known issue in environmental 

modelling where sensitivity to multiple parameters exists, but some parameters are 

more influential the others (Nossent & Bauwnes, 2012). 

Finally, the spatial pattern in load estimates and accumulated flow pathways enabled a 

visual comparison between scenarios, with the placement of flow paths on the farms 

with flat topography (North Canterbury and LUDF) shown to be unrealistic, as the 

lower resolution DEMs are unable to pick up the microtopography of the farm. In 

contrast, the accumulated load pathways for case studies with rolling to steep hill 

topography, such as Tuapaka and South Canterbury, did not produce significantly 

different estimates of accumulated flow with different DEM resolutions.   
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7.1.1 Sensitivity to Soil Order  

The significant sensitivity of most sites to soil order was expected, as the LUCI nitrogen 

and phosphorus tools are trained to pick up the differences between soil orders and 

how this might affect nutrient transport. This can be seen in the Tuapaka catchment, 

where the FSL initially classified 48 ha as pallic soil, and the farm scale soil map 

classified only 8 ha as pallic. This resulted in significant changes to load estimates, 

particularly for phosphorus, with high nutrient loads, predicted between 400-450 g 

P/ha/yr, reduced to between 0-200 g P/ha/yr near the outlet of the catchment (Figure 

6.5).  A similar result between input soil datasets and consequent model output 

sensitivities is seen in the North Canterbury, LUDF, South Canterbury and Otago sites.  

Soil order classifications on the North Canterbury site change between FSL (S-Map) 

datasets with 51 ha (75 ha) as pallic soil, 156 ha (53 ha) recent soil and 89 ha (167 ha) 

brown soil. This change in soil classification resulted in different load patterns on the 

farm with higher nitrogen loads present on areas of brown soil, therefore, nitrogen 

loss increased as the brown soil area increased in S-Map.  

As with the patterns highlighted for Tuapaka and North Canterbury, the changing ratio 

of brown, pallic, recent (and, for LUDF and South Canterbury, gley and semi-arid soils 

respectively), resulted in changes to LUCI’s predictions of nitrogen and phosphorus 

loads on the landscape. Whilst the changes to the soil datasets are outlined in Section 

5.1.2 and tested in Sections 6.1 to 6.6 of this thesis, implications of the model's 

parameterisation by soil order and the underlying dataset LUCI is trained from, are 

discussed below.  

Whilst the newer, S-Map dataset is considered to contain more robust soil property 

information than FSL, as shown on the LUDF case study (Section 6.4), the nitrogen load 

estimates from the FSL scenarios more closely resembled the nitrogen estimates 

produced from the farm scale soil map. When FSL classification for this site were 

updated to S-Map, 3 ha of recent soil was reclassified as pallic soil. When the farm was 

surveyed as part of the Barringer et al. (2016) study, 5 ha was classified as recent soil in 

similar areas on the north side of the farm.  This provides an example of an area where 

S-Map may not necessarily be the best representation of the soil properties on a farm. 
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Further research is needed to compare S-Map soil data to farm scale soil maps that 

represent the most accurate soil information available for a site. As this research is 

costly and given the aim to provide national S-Map coverage in future this should be a 

funding priority for councils, central government and industry. 

Grealish et al. (2018) outlined farm scale soil mapping protocols to be used nationally 

for collecting and presenting farm scale soil maps between 1:500 to 1:20,000. These 

protocols could be used to identify farms which would benefit from farm scale soil 

mapping based on the minimum level of detail required for each activity, particularly if 

the farm is applying dairy effluent and requires verification of appropriate areas for 

application or irrigation planning, and to verify OVERSEER nutrient budgets containing 

S-Map soil information.  

The document goes on to identify a classification of fine, medium and low detail farm 

scale soil maps which are classified as having one field observation per 1 cm2 of 

published map area; one field observation per 2 cm2 of published map area; and one 

field observation per 4 cm2 of published map area respectively (Grealish et al., 2018). 

In the future, LUCI could be used by researchers to test the relative difference 

between these three levels of accuracy. The same level of detail required for 

OVERSEER nutrient budgets should be applied when creating farm scale soil maps for 

use in LUCI, with a high level of site density, soil characterisation (soil properties 

determined from laboratory analysis), and an explicit description of the different soil 

types on the property.  

Ravensdown Dataset 

The LUCI model tested in this thesis includes bespoke components beyond the 

standard implementation. Ravensdown Environmental have a period of exclusive 

commercial use of this additional functionality. Due to this relationship, LUCI has been 

trained off Ravensdown’s OVERSEER database which contains over 20,000 

management block units. The database includes nitrogen, phosphorus and other 

outputs responding to variable climates, soils, topography and land cover 

combinations, as well as many other farm management, farm system and 
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environmental input drivers. It should be noted, however, that OVERSEER block 

information can only be characterised by four slope classes, which is important for the 

DEM sensitivity discussed in Section 7.1.2. Training the LUCI model on this database 

was undertaken by Trodahl (2018) and other key LUCI developers over recent years 

and will continue to be updated. 

While this data is divided between the North and South Islands and is representative of 

many farm management environments, the underlying data is dependent on the 

assumptions discussed in Sections 3.3.  As such, the OVERSEER data LUCI is trained 

from was initially calibrated to a limited range of land use, soil and climates. Freeman 

et al., (2016) highlights that a significant part of the uncertainty in OVERSEER stems 

from imperfect input information. Errors in parameter values are further compounded 

by the application of OVERSEER in environments where data has not been collected 

and therefore cannot be used to calibrate the model.  As with all models, including 

LUCI, the simplification of complex processes involves uncertainties and assumptions. 

It was initially decided to train LUCI to the soil properties provided at the soil order 

level, as soil sibling and series information was not defined for many blocks in the 2016 

dataset used by Trodahl (2018). OVERSEER default soil order values, therefore, 

underpin LUCI’s predictions of nitrogen and phosphorus loads on the landscape when 

both FSL and S-Map soil data is provided (Appendix C).  The representativeness of the 

Ravensdown dataset of these soil orders varies with 3,141 defined as brown soil; 2,801 

defined as pallic soil; 1,996 defined as recent soil and 1,715 defined as gley soil. In 

comparison, only 22 blocks are attributed as semi-arid. Since semi-arid soils only cover 

1% of New Zealand (Landcare Research, 2018d), this value is probably reflective of the 

number of nutrient budgets completed with this soil type. It does, however, highlight 

the challenges in modelling an environment based on limited data.  

The South Canterbury site in this study has an area of semi-arid soil on the flat, 

irrigated part of the property in the FSL dataset. In the FSL scenarios LUCI modelled 

this area as having a nitrogen load between 6-8 kg N/ha/yr and a low phosphorus load 

between 0-150 g P/ha/yr (Section 6.5.2). Semi-arid soils are characterised as having a 

weakly developed soil structure, with high slaking potential, low organic carbon and 
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dominated by illite clay minerals (Landcare Research, 2018d). Given this description it 

is expected that semi-arid soils would contribute more to the total phosphorus on a 

farm than LUCI estimated. The lower than expected phosphorus lost from the semi-

arid soil highlights the need for further calibration of the LUCI model; currently the 

model has only been trained from 22 blocks in the Ravensdown OVERSEER dataset, 

which indicates that incomplete soil data is currently limiting further model 

development.  

The values of OVERSEER soil properties based on soil order (Appendix C) imply that a 

semi-arid soil would produce higher phosphorus loads compared to recent soils, as 

semi-arid soils have a drainage class of 2 and a structural integrity of 0.94 (Appendix C). 

These values imply that this soil type is moderately well drained and prone to erosion 

compared to a recent soil, which has a drainage class of 1 (well drained) and a lower 

structural integrity of 0.84, implying it is less prone to erosion (Wheeler, 2016a). When 

this pivot area on the South Canterbury site is modelled as recent soil in OVERSEER, a 

total of 42 kg P/yr is lost from this block with 0.5 kg P/ha/yr lost to water, and when 

the soil order of this block is classified as semi-arid, phosphorus loss is increased to 66 

kg P/yr and 0.8 kg P/ha/yr lost to water.  

OVERSEER Sensitivity  

The sensitivity analysis carried out in Section 6.7 supports the findings of the Watkins 

and Selbie (2015) report on the use of OVERSEER for Regional Councils. It is important 

to understand that both their results and the OVERSEER sensitivity results produced in 

this thesis, were created under narrow constraints and are not representative of the 

full range of New Zealand environmental conditions and farm systems. 

In the Watkins and Selbie (2015) report, a sensitivity analysis was carried out to 

determine the inputs that have the most influence on modelled nutrient loss. The 

report found that OVERSEER was most sensitive to inputs that influence the magnitude 

of the source of nutrient (e.g. stocking rates and fertiliser input), and those that 

influence the transport of nutrients (e.g. soil drainage and slope) (Watkins & Selbie, 

2015). The report highlighted that the key influence on nitrogen is drainage and thus 
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the key inputs that influence nutrient loss are climate, those soil parameters that 

affect PAW estimates (soil order, texture, and depth to sandy or stony subsoils) and 

irrigation management. Trodahl (2018) found in her sensitivity analysis that 

phosphorus loss was sensitive to rainfall, irrigation, fertiliser, Olsen P and effluent, 

inputs that again, influence the magnitude of the source of a nutrient and its 

movement through the farm system.  

The results for the OVERSEER sensitivity test in this thesis showed that the nitrogen 

sub-model was sensitive to the inputs identified in Watkins and Selbie (2015), as 

modelled total nitrogen loss increased when fertiliser inputs were increased and 

decreased when conventional cultivation and the hypothetical farm’s block history was 

altered. For phosphorus, total phosphorus also increased when fertiliser inputs were 

increased but the model was insensitive to changes to the farm's cultivation practices 

and block history. These changes would impact the amount of phosphorus lost from a 

farm as they affect the structure of the soil and therefore how much sediment is at risk 

of erosion.  

In the scenario with a fallow year, phosphorus loss is expected to be high as exposed 

sediment increases the risk of phosphorus loss. Nevertheless, total phosphorus loss 

only increased 3.8% from the base scenario. OVERSEER’s underestimation of the 

contribution of fallow to total phosphorus loss is linked to how OVERSEER calculates 

the phosphorus lost from a system. This is determined by the SV of the soil (calculated 

from the ASC), total organic carbon and clay content of the soil. These properties are 

used to estimate the inherent soil erosion potential of the block. One problem with 

this approach, is that it will underestimate the effect of fallow, as soil cover is not 

taken into account (McDowell et al., 2005). Another approach would be to use the 

universal soil loss equation, which uses the input parameters slope, soil type, soil cover 

and rainfall intensity to estimate annual soil erosion (McDowell et al., 2005). Data for 

this equation is not presently available across New Zealand but it is an approach that 

may not underestimate the effect of fallow conditions on phosphorus loss.  

Further issues with the OVERSEER phosphorus loss sub-model were highlighted in Gray 

et al. (2016a). They discussed the need for the inclusion of phosphorus inputs from 
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organic fertilisers which are currently not considered by the model, unlike nitrogen 

inputs from these sources. The impact of soil compaction on soil structure reduces the 

amount of phosphorus lost, as the model takes into account parameters that alter soil 

drainage. It does not, however, separate the risk of phosphorus loss based on a high or 

low stocking rate. This could be considered by a probability risk factor dependant on 

the stocking rate of the farm (Gray et al., 2016a). While this sensitivity analysis did not 

test the effect of slope, the results for the six case study farms highlight the need for 

increased sensitivity of both OVERSEER and LUCI to a wider range of topographic 

descriptors, instead of the current four options currently used by OVERSEER (flat, 

rolling, easy hill and steep hill). 

An Alternative Method to Train LUCI via Sibling Properties  

As described above, due to the lack of information describing sibling and series 

properties within the Ravensdown OVERSEER database, LUCI was parameterised to the 

subgroup level for hydrology and soil order for nitrogen and phosphorus predictions. 

As this thesis progressed, it became apparent that LUCI was not fully utilising the 

detailed soil data held in S-Map. Incorporating the sibling information into LUCI’s 

hydrology model enabled the nitrogen and phosphorus sub models in LUCI to predict 

variations in the chemical loading to streams based on PAW variations held in the 

sibling level hydraulic properties. In this section, the results of adapting LUCI to 

incorporate sibling level information is discussed, as well as further suggestions to 

adapt to subgroup and sibling level detail in future developments. 

Soil siblings in the NZSC provide information on the hydraulic properties of a soil. New 

Zealand does not have detailed field measurements of these soil properties, as it is 

costly and time consuming to gather this data directly from field measurements 

(McNeill et al., 2018). Soil hydraulic PTFs are frequently updated to incorporate new 

scientific understanding of soil water dynamics, but the ability of a modeller to 

accurately represent complex soil water dynamics is constrained by the scarcity of data 

on a range of soil characteristics. These constraints on S-Map’s derived soil properties 

means that current PTFs do not account for the effect of environmental conditions, or 
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observed moisture dynamics, as S-Map has a limited number of explanatory factors 

available to base predictions on (McNeill et al., 2018). 

LUCI, until the development of the hydrology model as part of this thesis, 

parameterised soil properties based on the information provided on the soil order or 

subgroup from S-Map or FSL. From these, estimates of TAW and macroporosity are 

assigned to each soil polygon depending on its order classification, and then those 

values are used in LUCI’s hydrological equation (Section 3.4) to calculate PAW for the 

entire polygon.  

Adapting the LUCI model to take in the soil water properties classified for each soil 

sibling in the Hydtopo step of the modelling process, was the first step towards 

training LUCI against the S-Map dataset at all modelling stages. It is common practice 

to model a soil polygon based on the characteristics of its dominant sibling. One of the 

questions that came up as this thesis progressed was the impact that practice has on 

modelled hydrology at the farm scale. We tested how using two different approaches 

might change predicted outcomes: a weighted average of sibling properties and a 

random selection of the sibling representative of a soil polygon. The results from the 

South Canterbury case study identified variations in LUCI’s estimates of nitrogen and 

phosphorus in the streams on the property. This result is directly related to the 

variation in modelled hydrology on the farm, specifically the variations in modelled 

PAW (Figure 7.1). 
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Figure 7.1 Estimated PAW for all sibling scenarios on the South Canterbury case 
study. 

Figure 7.1 highlights the hydraulic variation across the farm for each sibling scenario. 

This variation propagates through the model process, and results in changing stream 
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water quality estimates. At this stage the nitrogen and phosphorus models are still 

targeting the variations in soil properties at the order level, so it was expected that the 

estimated load values would not vary between scenarios for nitrogen. Phosphorus 

loads, however, should vary due to the incorporation of each siblings’ ASC value.  

In this instance, the site selected did not have significant variation in ASC between the 

different siblings, as the majority of siblings within a soil polygon were from the same 

soil order. Thus, there was little impact of sibling selection method on phosphorus 

load. Future LUCI development could investigate the method developed in this thesis 

on several farms that are identified to contain contrasting sibling properties within the 

same soil polygon. Another option is to evaluate, at a sibling level, the relevant soil 

properties that influence nitrogen and phosphorus movement within a landscape and 

train the LUCI model on this new dataset.  

It would be difficult to develop this training dataset. Sibling properties are accessible 

through Landcare Research, but uncommon siblings won’t have a lot of soil data 

available to train the ePTFs in S-Map. Also, given the current limitations of the amount 

of measured soil property data held in the NSD, if LUCI developers were to create this 

dataset and link it to the farm management information present in the Ravensdown 

OVERSEER database, it would be difficult to determine if all the properties attributed 

to the different siblings are accurate, without a significant increase in the amount of 

measured data held within the NSD.  

The sibling analysis conducted in this thesis highlights the potential for LUCI to be 

trained at the sibling or subgroup level rather than that for soil order. Soil subgroup 

could be used in the nitrogen and phosphorus models to bring in the additional 

information on the range of environments for which a soil could form. This subgroup 

level may be more relevant to predicted nitrogen and phosphorus loads than to soil 

properties at the sibling level, as detailed hydraulic information at the sibling level is 

provided to the nitrogen and phosphorus models in the Hydtopo step of the modelling 

process.  



180 

While work needs to continue to test the relative difference between sibling 

properties and their effects on modelled nutrient flows in the landscape, the variation 

in LUCI’s hydrology as a result of the different ways siblings were modelled on the 

South Canterbury site, indicates the potential for LUCI to be developed and become 

more sensitive to variations in soil properties that adjust PAW in the soil. Figures 7.2 to 

7.4 quantify the variation between siblings classified under the same soil order, with 

the variation in brown, pallic, and recent siblings indicating the potential variation in 

the landscape that LUCI and OVERSEER do not model at this stage, given the 

preference for representing a soil polygon by the dominant sibling (the maximum PAW 

value held in the S-Map Database is 700mm).  

Further measured soil data and the ongoing development of PTFs will enable models 

such as LUCI and OVERSEER to better represent real-world variation in soil 

characteristics. The range of PAW variation at the South Canterbury site is not extreme 

between siblings of the same order. There is potential for this analysis to be 

undertaken on another farm, one that has known significant variation in soil hydraulic 

properties, to indicate the possible variation in predicted hydrology based on the 

method of representing the S-Map sibling data in a soil polygon.  

Figure 7.2 Variation in PAW for selected siblings classified as brown soils. Red box 
indicates range in PAW found at the South Canterbury site. 
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Figure 7.3 Variation in PAW for selected siblings classified as pallic soils. Red box 
indicates range in PAW found at the South Canterbury site. 

 

Figure 7.4 Variation in PAW for selected siblings classified as recent soils. Red box 
indicates range in PAW found at the South Canterbury site. 

7.1.2 Sensitivity to DEM Resolution  

The sensitivity of LUCI outputs to DEM resolution highlights the importance of using a 

high-resolution DEM to model flat landscapes. The accumulation flow patterns on 

LUDF and North Canterbury using the national 15m resolution DEM estimated 

unrealistic flow paths that cut diagonal lines across the landscape (Section 6.3 and 6.4). 
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The reduced accuracy of low-resolution DEMs, when used to model flow pathways, is 

linked to the importance of estimating flow direction, as the extraction of flow 

direction is confounded by the presence of flat areas in DEMs (Zhang et al., 2017).  

Flow Direction  

LUCI, like many other hydrological models, uses the D8 method to calculate flow 

directions. The D8 method developed by Jenson and Domingue (1988), calculates the 

flow direction from a pixel based on the elevation of the eight neighbouring pixels 

around it. One fundamental assumption in this method is that the main flow path in a 

flat region is a straight line from inlet to outlet (Garbrecht & Martz, 1997). This 

assumption was improved when Barnes et al. (2014) imposed a gradient from higher 

to lower terrain to help guide flow direction on flat areas. While developments to flow 

direction algorithms have reduced their computational cost, the problem of calculating 

flow lines on flat landscapes is not currently resolved and therefore still poses a 

significant problem in hydrological modelling (Zhang et al., 2017).  

As seen in the six case studies analysed in this thesis, flow pathways on rolling-steep 

terrain follow realistic patterns in the landscape.  Accumulated nutrient load pathways 

for Tuapaka, Greater Wellington, South Canterbury and Otago were calculated using 

the same D8 method as the flat landscapes of LUDF and North Canterbury. Given the 

variation in slope length and steepness in this type of terrain, the outflow DEM pixel is 

in the direction of the neighbouring cell with the most downslope angle (Zhang et al., 

2017). As water is modelled to flow in one of eight possible directions, the aggregation 

of data when a DEM has a large grid size compared to a fine resolution DEM on rolling 

to steep terrain, does not result in significant variations in estimated flow paths unlike 

the same aggregation of DEM pixels on a flat landscape. 

Vertical Accuracy  

Not only does the resolution of a DEM impact hydrological models, the vertical 

accuracy of a grid cells’ elevation can lead to incorrect mode predictions, and 

researchers should consider the vertical accuracy of a DEM before model processing 

begins (Vaze et al., 2010). Of all the DEMs tested in this thesis, the lowest vertical 
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accuracy was classified from the National 8m DEM with each elevation point having 

the potential to range ± 10m from its given value (Section 5.2.1). The National 15m 

DEM has a vertical accuracy of ± 5m; it is thus advised that the 15m DEM is used if 

there is no finer DEM produced from LiDAR or photogrammetry representing the area 

being modelled by LUCI.  

If LiDAR is available for the area being modelled, especially if the farm and/or 

catchment is characterised as having areas of flat topography, then fine resolution 

LiDAR data should be used in the Hydtopo setup stage of the LUCI modelling process. 

Increased generation of LiDAR by researchers and regional councils is encouraged, as 

for regions such as Canterbury, the fine resolution LiDAR-based DEMs are the most 

accurate way to model nutrient flows in the landscape. The LiDAR-based DEMs used in 

this research have a vertical accuracy of ± 0.2m. Given the unrealistic spatial pattern of 

accumulated loads generated from the 15m DEM, care needs to be taken by 

Ravensdown Consultants if LiDAR data is unavailable when modelling farms with 

similar environments to the LUDF and North Canterbury case studies.   

Estimated Phosphorus Loss Based on Four Slope Classes 

The topography of a block in OVERSEER can be classed as one of four slopes: flat; 

rolling; easy hill, and steep hill as outlined in Table 4.4.  These four slope classes are 

used in OVERSEER’s phosphorus model to subjectively weight the contribution of the 

separate slopes to phosphorus loss from soils. The weighting of slope classes is defined 

by McDowell et al. (2005) as flat (0.15), rolling (0.5), easy (0.75) and steep (1.0), from 

the assumption that, in general, more phosphorus is lost from soils as the slope 

increases. This weighting is developed from the United States P index, which used a 

similar blocking technique. The weighting method targets the movement of particulate 

phosphorus through the landscape. Currently, OVERSEER does not separate 

phosphorus lost through leaching with total phosphorus lost from the system, as 

phosphorus loss via runoff includes both dissolved and particulate phosphorus (Gray et 

al., 2016a).  
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The weighting developed by McDowell et al. (2005) and the documentation 

surrounding the phosphorus model in OVERSEER does not describe how this subjective 

weighting was chosen to represent New Zealand slopes, as McDowell et al. (2005 p. 

133) states: 

“A greater weighting, and influence on P loss, is given to steeper slopes”.  

Either the separate weightings for each slope class were calculated from measured 

data of phosphorus loss from different slopes, or through an assumption of the relative 

contribution to phosphorus loss from a system. If the weightings were estimated from 

trends in measured data, then OVERSEER’s simplification would not result in elevated 

levels of uncertainty. However, without further information on the parameterisation of 

these four slope classes, we must assume that the assumption of the relative 

contribution of a slope to phosphorus loss was undertaken without measured field 

data.   

LUCI is spatially explicit and calculates an average slope based on the size of a DEM 

grid in its phosphorus export coefficient equation and uses a continuous function 

based on the subjective weighting for OVERSEER slope categories (McDowell et al., 

2005) (Section 3.2.1). This assumption in OVERSEER and LUCI affects both models’ 

estimates. LUCI is impacted as the Ravensdown dataset that LUCI’s water quality 

models were trained on contains phosphorus estimates that may over- or under-

estimate the contribution of slope to phosphorus loss.  The model constants calculated 

by Trodahl (2018) to minimise the difference between LUCI and OVERSEER’s 

predictions may also bias LUCI’s predictions. 

7.2 SENSITIVITY TO LANDCOVER DATA  

The Ravensdown dataset represents the farm management practices of real farm 

systems, containing actual and predictive nutrient budgets completed between 2011 

and 2016 by Ravensdown Consultants (Trodahl, 2018). The challenge is to separate this 

information on different land use types (dairy, sheep and beef) and attribute this 

information based on a national land use database, which currently is not freely 

available.   
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Since there is no national land use database available, the regional averages estimated 

from the Ravensdown database are applied across all areas classified as high-

producing grassland in the LCDB4. This has implications for LUCI’s application in areas 

where only regional default landcover data is used, as the average irrigation, nitrogen 

and phosphorus fertiliser use, effluent applications and stocking rate for each region 

are biased towards intensive farming practices.  

Given that Ravensdown is primarily a fertiliser company, the advice and service 

provided to farmers targets intensive farming practices. This can be seen in the 

Ravensdown OVERSEER database with 50% of blocks classed as dairy, 42% classed as 

sheep, beef or deer farms, 3% classed as mixed pastoral, 2% classed as fodder and 3% 

classed as cropping land use (Trodahl, 2018). The over-representation of dairy farms 

within the Ravensdown OVERSEER database can also be attributed to the emphasis on 

nutrient budgeting for dairy farms, with other farm types receiving less pressure from 

industry groups to carry out such monitoring during the 2011 to 2016 period. While 

50% of the blocks in OVERSEER are classed as dairy, this is not representative of New 

Zealand’s national landuse, for which 9.8% of total land is classed as dairy and 31.9% 

classed as sheep and beef farms (Statistics New Zealand, 2018).    

When looking to specific regions, the dominance of some farming practices within the 

database can be seen.  Canterbury made up of 44% dairy only blocks; 41% sheep, beef 

or deer and 5% in mixed pastoral use (Trodahl, 2018). Although this thesis did not test 

a case study site in the Waikato, 77% of OVERSEER blocks in that region were classed 

as dairy, with only 10% classed as sheep, beef or deer farms.  

This risk of overestimating nutrient loads when farm specific OVERSEER information is 

not used is evident in the North Canterbury case study (Section 6.3). On this site, total 

nitrogen load estimates for the S-Map + 2m + OVERSEER scenario is 1,954 kg N/yr, but 

when the OVERSEER file is removed, the estimated total nitrogen loss increases to 

3,691 kg N/yr (Table 6.4). Using OVERSEER information in this case study masks the 

difference between the soil order classifications in FSL and S-Map, as the majority of 

the farm is classed as having a load value between 5-10 kg N/ha/yr instead of 15-20 kg 
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N/ha/yr for brown soils (and 20-25 kg N/ha/yr for recent soils classed as high-

producing grassland in the LCDB4).  

The reduction in LUCI’s estimates of nitrogen load is a direct response to the difference 

between the regional stocking rate used from the Ravensdown OVERSEER database 

when no farm specific OVERSEER information is provided. The regional default value 

for Canterbury is 21.6 RSU (Table 3.2), a value which is significantly biased towards 

intensive dairy farms. The modelled stocking rate for the farm in OVERSEER is 5.1 RSU, 

as this case study site is a low intensity sheep and beef farm with no irrigation, thus 

pasture production is limited compared to an irrigated dairy platform that can support 

a higher stocking rate. Phosphorus loads between the OVERSEER and the scenarios 

containing regional landcover did not vary as much as nitrogen, which shows that 

phosphorus loss in this case study environment is more strongly linked to the soil 

properties on a farm than landcover data.   

When OVERSEER information is used in the LUCI model, the farm tracks, lanes, house 

and other areas classed as non-productive land are characterised by regional default 

data. This results in these areas being assessed to contribute high nutrient loads to the 

environment.  In reality, these areas would be contributing only marginal loads to the 

environment.  To date, there has been no standardised naming system used in 

OVERSEER for such areas. It is vital that Ravensdown Environmental provide a specific 

naming system for such non-productive areas, for all consultants who will be modelling 

farms in OVERSEER and LUCI. The LUCI developers can then tag this classification as 

having a low nutrient load, and the model will no longer automatically default to 

regional data.  

To avoid large variations in modelled results when regional landcover data is used, 

particularly in regions with pronounced dairy influence, a method of separating out 

spatial information based on the land use of an area needs to be developed. This 

would enable separate regional defaults for dairy, sheep, beef and deer farms which 

would minimise the overestimation of stock units present on a farm for low-intensive 

systems.  As described in a previous section, LUNZ is a spatial database that separates 

rural land into individual land uses (Section 5.1.1). While LUNZ cannot be used directly, 
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owing to the need for landowner privacy, investment should be made in the 

establishment of land use classes that can be used in the LUCI model. Datasets like 

LUNZ and Agribase could be aggregated to larger units in the landscape, thereby 

limiting the risk to privacy, but still improving on the current land cover knowledge 

held within the LCDB4.  

Another possible development to improve the representativeness of models like LUCI 

is the incorporation of a dataset to estimate a land parcel’s contribution to 

contaminating the environment. A Land Use Suitability (LUS) concept was proposed by 

McDowell et al. (2018) which incorporates an assessment of the productive potential 

of a piece of land and its impact on receiving environments, thereby connecting 

economic, environmental and social impacts. If such a database was available to LUCI, 

the model would be able to target and identify at-risk areas based on the landscape 

attributes, and thus remove the model's reliance on regional values.  

Developing a national LUS database would require significant investment from 

government, research institutes and universities. A LUS database requires 

understanding three contributing factors for a given land parcel (McDowell et al., 

2018): 

1. The capacity of a land parcel for primary productivity. 

2. The potential of a land parcel to contribute contaminants. 

3. The response of the receiving environment to that contaminant.  

LUCI is well placed to assist with the development of a LUS approach. With its 

agricultural productivity model and in-stream nutrient estimates, LUCI can be used to 

target specific land parcels that could be further studied to confirm their contribution 

to environmental effects. It will be a while, however before LUS and LUNZ are capable 

of guiding LUCI’s estimates of nitrogen and phosphorus loss. Test farms should be 

developed to trial the LUS technique, as it is clear that regional default values do not 

provide enough information to accurately model a low-intensity farm system. 
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7.3 OBSERVED VS PREDICTED NUTRIENT CONCENTRATIONS 

While instream water quality measurements allow the interpretation of water quality 

trends, collecting field measurements comes at a high cost. Even given multiple site 

measurements, high temporal variability in the processes and pathways of nutrient 

transport limit the reliability of results (Drewry et al., 2006). Land management also 

plays a factor, with Tyson et al. (1997) finding a mean nitrate leaching loss of 12.9 kg N 

/ha/yr from grass/clover pastures with no fertiliser nitrogen applications over an eight-

year period. Nevertheless, mean nitrate leaching increased to 50 kg N/ha/yr when 200 

kg N/ha/yr of fertiliser was applied. The variation in stream quality measurement as a 

result of land use changes makes it difficult to compare the results between studies. 

Water quality models need to take into account grazing practices, cultivation, effluent 

and fertiliser management when modelling farm stream systems (Drewry et al., 2006). 

LUCI’s stream predictions, when compared to measured concentrations at sampling 

sites for Tuapaka and Otago, highlight the ability of LUCI to support decision-making in 

this field. Both sites resulted in stream predictions that were close to measured values. 

Given that the model was not calibrated to either site, these results indicate LUCI’s 

ability to produce realistic nutrient concentrations when inputs are based on detailed 

farm-specific data, such as OVERSEER.   

For the Otago case study, LUCI’s predictions of concentration were targeted to the 

same sub-catchment where Otago Regional Council (2014) collected samples for the 

Lake Tuakitoto catchment State of the Environment water quality monitoring 

programme. The spatially-explicit nature of LUCI means that this tool can be used by 

decision-makers to target high-risk catchments as priorities for mitigation. For 

Tuapaka, the farm-specific soil map provided the closest estimate of total nitrogen 

0.93 mg/L to the measured concentration of 0.61 mg/L. This highlights the importance 

of using detailed soil data where available, as the farm scale soil map classified 56 ha 

of the farm as brown soil, compared to only 15 ha of brown soil in the FSL. 

Burkitt et al. (2016) attempted to minimise errors in the measured nutrient and 

sediment loads in their ongoing water quality monitoring of the Tuapaka catchment 

(this research compared predicted nitrogen and phosphorus to measurements taken 
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between June 2013 to June 2014). Fortnightly samples were taken, with eight 

additional samples collected during storm events in rising flow conditions, and in dry 

periods during falling flow conditions. These additional samples increase the 

representativeness of the measured water quality results, as storm and flood events 

can account for a large proportion of annual nutrient load (Letcher et al., 2002). It is 

not only important to sample a stream during high flow events; multiple sample sites 

within a catchment will provide information as to which sub-catchments may be 

contributing excess nutrients. Such detailed information would reduce the knowledge 

gap in contaminant contributions to streams based on land use in their catchment 

(Drewry et al., 2006).  

This thesis found that LUCI stream nutrient model predictions were very close to 

observed in-stream concentrations, however, these results should be treated with a 

degree of caution. Both of the case studies where predicted concentrations are 

compared to measured stream data were located in headwater catchments. 

Headwater catchments are not as complicated as receiving environments (valley 

bottoms or flat alluvial plains), given that steep slopes are characterised by shallow soil 

layers.  The reduced storage capacity of these shallow soils leads to simpler 

groundwater dynamics (Ala-aho et al., 2017).   

The more complex surface water-groundwater interactions are difficult to simulate in 

hydrology models. Further investigation is needed regarding LUCI's predictions of total 

nitrogen and phosphorus on a flat landscape. We suggest that a further case study is 

developed for a receiving environment. This farm should have a network of streams 

running through the property (unlike our North Canterbury study, where the majority 

of the watershed was outside the property boundary). The results for such a site can 

be compared to the findings of this thesis to determine if LUCI’s hydrology, nitrogen 

and phosphorus models predict realistic concentrations in receiving catchments. 
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CHAPTER 8 CONCLUSION 

 

 

Degradation of water quality is a significant issue in New Zealand, driven by excesses 

of nitrogen, phosphorus and sediment loss from agricultural systems. The increasing 

focus on how to mitigate nutrient losses to water demands user-friendly decision 

support tools with appropriate levels of detail. One tool that is well placed to support 

such decisions is LUCI. LUCI identifies ecosystem services, trade-offs and synergies, and 

allows the user to model past, present and future land use scenarios that impact 

nitrogen and phosphorus loading among other things. While work to improve LUCI and 

apply it to different farm environments is ongoing, this thesis has highlighted how 

valuable LUCI can already be to decision-makers. 

This chapter discusses the key conclusions drawn from the research. To begin, key 

points drawn from the case studies are summarised. Following this, the research 

objectives and specific findings associated with each are detailed. Key considerations 

and future development of the LUCI model are also provided.  

The spatial nature of LUCI accompanied with its recent enhancements allowing input 

of site specific, spatially detailed landcover, soil and farm system data, means that the 

model can resolve areas of high nutrient loading at a sub-field scale to target 

mitigation strategies. While the absolute difference in nutrient load predictions based 

on the different soil order classifications between the S-Map, FSL and farm scale soil 

datasets is important, and further work needs to be undertaken to understand where 

absolute numbers can be relied upon, as long as the soil data used highlights the 

relative differences in drainage, PAW and clay content of the soil, the model will 

represent realistic patterns of nutrient loads. Representing realistic nutrient load 

patterns regardless of the absolute predicted load of an area, will still assist decision-

making on farm. This research highlighted the dramatic impact of using a low 

resolution 15m DEM, particularly in flat areas, on the spatial distribution of modelled 

accumulated flow pathways. This impact of the DEM is assumed to be associated not 
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only with the horizontal resolution of the data, but also the vertical inaccuracies in the 

utilised DEM. In hill country settings, the impact of vertical accuracy is not as apparent, 

as the ridges and troughs within the landscape enable realistic flow patterns to be 

calculated despite this high vertical error. 

Results from the case study areas suggest: 

• Since nutrient loading predictions in LUCI are primarily sensitive to soil order, 

as long as FSL is broadly representative of the soil orders at the site, the 

resultant LUCI predictions will not be too dissimilar to predictions using S-Map 

data. Key factors that influence where to target mitigation strategies are 

primarily driven by the location of the accumulated flow pathway and the 

identification of areas were multiple nutrients can be targeted.  

• The multiple ecosystem services and other environmental components that 

LUCI provide makes this model applicable in a range of environments and for 

multiple purposes. However, LUCI outputs should be interpreted by someone 

with specialised knowledge in this field, as the sensitivities and assumptions 

within the model make it difficult to accurately interpret results. The need for 

specialised advice is likely to be reduced once automated identification of 

critical source areas and estimates of the relative impact a mitigation strategy 

will have on a farm’s production level is identified to the user. In the near 

future this is unlikely, as currently there is no established methodology to 

achieve this automated processing meaning that LUCI will always require a 

degree of expert interpretation.  LUCI is one of the few models able to spatially 

target nutrient movement through a landscape, and few external off the shelf 

libraries are available to assist such automation. Updates to allow such 

functionality are likely to require significant effort directly by LUCI developers.  

8.1 RESEARCH OBJECTIVES AND FINDINGS 

As LUCI can use a variety of soil, topography and landcover data, our primary aim was 

to examine how the changing quality and resolution of New Zealand’s soil, elevation, 

and landcover datasets impacts the uncertainty in LUCI’s output. This was addressed in 



192 

three research objectives. A summary of the findings associated with each objective is 

presented below. 

Objective 1: To conduct a review of available soil, topography and landcover datasets 

that can be used in the LUCI model.  

Chapters 2, 3 and 4 achieve this objective. Chapter 2 summarises the ecosystem 

services concept and its use in decision-making, after which we review the state of 

freshwater quality in New Zealand and the effect of agricultural activities in degrading 

water quality. In Chapter 3, an ecosystem service model (LUCI), and a nutrient 

budgeting tool (OVERSEER) are described, including the soil water calculations that 

contribute to each model’s respective nitrogen and phosphorus predictions. Both 

models can inform farm management decisions. The spatially-explicit nature of LUCI 

enables farmers to quantify nutrient flows, and to identify critical source areas and 

potential mitigations applicable to their land. This spatial output is complementary to 

the block based nutrient budget provided by OVERSEER. Chapter 3 identifies the 

minimum data required to run the LUCI model, and describes New Zealand’s regional 

landcover data sets. Chapter 4 reviews the currently available soil and topography 

datasets identified in Chapter 3. The spatial extent and resolution of each dataset, and 

their limitations, is discussed. 

Objective 2: To compare LUCI’s Nitrogen to Water and Phosphorus to Water tools for 

sites covering a variety of climates, topography and rich or poor data environments. 

Chapter 5 and 6 achieve this objective. In Chapter 5, information on six case study sites 

is provided that includes a map of each soil dataset, details on the dominant soil series 

or family on each property and the topography of the landscape. Three of the sites are 

located in the Manawatu, Greater Wellington and Otago regions, with a further three 

sites analysed in Canterbury (two on the Canterbury plains and another in the high 

country). At least two soil maps and two DEMs were tested for each site. A comparison 

of regional landcover information and farm-specific information from OVERSEER was 

also carried out for several sites. 
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The results of the different data scenarios in LUCI are presented in Chapter 6, as well 

as the sensitivity of OVERSEER to different input parameters. These applications of the 

LUCI model provide detailed maps of nitrogen and phosphorus loss to water. Results 

indicate that LUCI nitrogen and phosphorus results are primarily sensitive to soil order, 

which often masks the sensitivity of the tools to other datasets. The relative sensitivity 

of soil and elevation datasets varies between farming systems, indicating that a fine 

spatial scale and vertically accurate DEM is necessary to model flat landscapes. 

Objective 3: To explore whether available datasets are appropriate for accurate 

model outputs, and how LUCI can be adapted to better use these datasets for 

improved accuracy where appropriate. 

Chapter 7 achieves this objective. Each case study was classified, based on a subjective 

analysis (Section 7.1). Sites were found to be most sensitive to either soil data or DEM 

resolution (or in the case of North Canterbury and LUDF, sensitive to both soil and 

DEM resolution). Tuapaka, South Canterbury and Otago were found to be most 

sensitive to the soil datasets used, as the rolling-steep hill terrain enabled the lower 

resolution 15m DEM to still realistically model nutrient flows in the landscape. Greater 

Wellington was most sensitive to the DEM used, as soil order classifications did not 

vary greatly between FSL and S-Map. Finally, North Canterbury and LUDF were 

sensitive to both the soil dataset and DEM resolution, due to the flat topography and 

substantial variation between soil classification in FSL and S-Map. The flat topography 

at these sites highlights the inability of the low resolution 15m DEM to model 

microtopography and nutrient pathways that a finer resolution and more vertically 

resolved DEM will pick up.   

Compared to in-stream water quality measurements, LUCI predictions at the Tuapaka 

and Otago case study sites were very similar to the measured values. This result is 

encouraging but should still be treated with caution until comparisons between 

observed and modelled data are carried out at a broader range of sites. Issues 

regarding the representativeness of in-stream water quality measurements exist, such 

as the representativeness of stream measurements during low and high flow events. 

Both sites tested in this thesis were located in headwater catchments that, by nature, 
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are easier to represent in a hydraulic model due to their more resolved topography 

and simple groundwater characteristics than those of flat landscapes. Further testing is 

required to better understand how changing input datasets impacts LUCI’s hydrology 

model, particularly in receiving environments.  

Over the course of this research, it was highlighted that LUCI might be improved if 

hydraulic soil data (held at the sibling level in S-Map) was incorporated in LUCI’s 

hydrology model. Different methods of incorporating sibling level data were 

investigated as well as the default approach used by other models to incorporate only 

the properties of the dominant sibling. These different methods where: a weighted 

average approach to sibling soil properties and a random selection of sibling properties 

to represent a single soil polygon.  The variation in PAW, as a result of the different 

sibling methods used, is represented by the variation in predicted nitrogen and 

phosphorus concentrations at the South Canterbury site. This site is classified as a mix 

of brown, recent and pallic soils, with a range of sibling information in each soil 

polygon, yet the variation in sibling PAW is not extreme. Further study of these three 

methods of incorporating sibling level information for a site with known variation in 

soil properties within a soil polygon is recommended as the method developed in the 

thesis could be used to inform other models that represent soil water dynamics in a 

landscape, such as OVERSEER. 

8.2 KEY CONSIDERATIONS FOR LUCI MODELLING 

The following considerations, developed through this thesis, should be taken into 

account before LUCI is applied to a farm or catchment: 

• After collecting all available data for the site (soil, DEM and an OVERSEER file), 

it is important to discuss with the farmer the available data and identify areas 

prone to flooding, drought or at risk of soil erosion. While the farmer won’t 

necessarily be able to confirm the precise soil classification mapped on the 

farm, their understanding of seasonal patterns will help inform the 

representation of their farm system in LUCI and identify whether soil and other 

data available for their site is generally correct.  
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• Whilst nutrient load results are primarily sensitive to soil order, and thus 

incorrect soil classifications will impact LUCI’s estimates, predicted 

accumulation nutrient load pathways are generally more sensitive to the DEM 

used. To accurately target areas that mitigations can be applied to, it is more 

important to have accurate hydrological information and a fine resolution 

DEM (when modelling a flat landscape). Regardless of relative load estimates 

across the farm, mapped accumulated load pathways are the key output to 

inform the farmer where best to mitigate nutrient loss.  

• LUCI produces numerous maps and tables of hydraulic, landcover, soil and 

nutrient loads on the landscape. Instead of presenting a full portfolio of figures 

to the farmer, the consultant should consider what is most relevant for each 

site. It is recommended that a map of the predicted stream paths and 

concentrations is discussed first, to identify any discrepancies that require 

model adjustments. Afterwards, load and accumulated load maps should be 

provided highlighting potential at-risk areas identified by the farmer during the 

data collection process.  

8.3 FUTURE DEVELOPMENT OF THE LUCI MODEL  

This thesis explored the sensitivity of LUCI to input datasets. The spatially explicit 

nature of LUCI, unlike OVERSEER, means that the model can be used in conjunction 

with data representing our best understanding of farm practices. Before this project, 

advice given to users was to incorporate the finest level of data available, and LiDAR 

data was considered desirable over the use of a national scale DEM. The results from 

the six case studies suggests that the national DEM is sufficient to model hill country, 

but finer resolution such as LiDAR derived datasets is required to pick up the 

microtopography present on flat landscapes, as shown in the two sites on the 

Canterbury Plains.  

While some areas of future work have been identified in Chapter 7, key 

recommendations for the development of the LUCI model are: 

• To invest more resources in the NSD to increase the number of samples held 

and the level of analysis carried out at sample sites. Improving our 
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understanding of actual measured soil water properties will enhance models 

like LUCI and OVERSEER and improve the reliability of PTFs that underlie the 

models’ understanding of the soil profile.  

• LUCI developers should consider a more explicit way of communicating the 

sensitivity of LUCI with different datasets. One option is to create a spatial tool 

that overlays LUCI outputs, and highlights areas where predictions differ 

significantly. Such a tool would provide similar results to this thesis and would 

enable the user to quickly communicate uncertainties rather than have to 

compare the distribution of loads in the underlying model data. The tool could 

also highlight the differences in the hydrological and topographic outputs on a 

farm, which would be particularly useful when sibling data is incorporated into 

the model. 

• To test the model in further regions and environments. This thesis applied LUCI 

in four different regions of New Zealand, including high country and lowland 

Canterbury. Further work is needed to understand where the model performs 

best, and where further refinement of the Ravensdown OVERSEER regional 

information is required. Whilst the stream predictions, for the two case studies 

with measured stream values, were close to those observed, it is advised that 

farms with flat topography and measured stream quality data are selected for 

further analysis and these results compared to what may be more accurate 

predictions in headwater catchments, such as the two sites tested in this thesis.   

8.4 SUMMARY  

This thesis has successfully tested the sensitivity of LUCI to input soil, elevation and 

landcover datasets in a range of climates, farm management practices and data-rich vs 

data-poor environments. The resolution of a DEM was found to be a key determinant 

of how realistic LUCI’s predictions of accumulated load were. This DEM resolution was 

shown to be particularly important for flat landscapes. The incorporation of sibling 

level soil information highlights an avenue for future research. Nevertheless, LUCI as it 

currently stands is already a useful tool to represent nutrient load and accumulation in 

the landscape. The explicit spatial nature of the model, combined with the farm 

management information from OVERSEER, enables the user to map the sources, 
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pathways and sinks of nutrients.  This thesis has shown the potential LUCI has to 

represent farm systems under a range of data inputs, suggesting that LUCI has great 

potential to play a key role, not only in farm scale environmental management, but in 

the regulation and management of New Zealand’s fresh water resources.  
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APPENDIX A: THE FIFTEEN KEY ATTRIBUTES USED TO DESCRIBE SOILS IN 

THE FSL. 

These fall into three categories: soil fertility/toxicity (F); soil physical properties (P), 
and topography/ climate (T). Unless otherwise stated, the source of this information 

is Webb and Wilson (1995). 

Soil attribute  
Description 

Slope (T) The topography of a landscape affects management and production costs 

as the land's susceptibility to erosion increases with an increase in slope. 

Also, an increase in slope reduces the ease of access to a piece of land by 

heavy machinery.  

Potential 

rooting depth 

(P) 

Depth to a layer within the soil subsurface that may physically impede 

root extension. The soil characteristics known to influence root 

development are penetration resistance, aeration, water retention and 

sharp contrasts between soil horizons (e.g. compact horizons and 

cemented layers). Calculation of potential rooting depth is achieved 

through the measurement of penetrability with depth (penetration 

resistance or density estimates through the soil column, with the layer 

that restricts root penetration defined when the penetration resistance 

exceeds 3000 kPa).  

Topsoil gravel c 

content (P) 

Percentage of gravel content in the top 20 cm of the soil profile. The 

degree of stoniness affects the hydraulic characteristics of the soil, having 

both positive and negative effects on crop production and land 

management. Stony topsoils can damage instruments, and in very 

extreme levels have marked negative effects on plant growth. However, 

positive effects of high quantities of stones in topsoils are seen in soil 

temperature and drainage properties.  

Proportion of 

rock outcrop (P) 

These represent practical problems of access and hazards to crop 

cultivation and are defined as a percentage of the land cover made up of 

rock outcrops (this includes surface boulders). Areas that have more than 

25% of the landscape covered in rock outcrops are determined to be an 

extremely rocky environment. 

pH (F) The pH value of a soil affects plant growth through its influence on 

nutrient availability and the presence of toxins. Since it is difficult to alter 
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the pH level below the topsoil, adverse pH levels have a dramatic effect 

on the productivity of an area. 

Salinity (F) Estimates of salinity are calculated through the measurement of soluble 

salts and electrical conductivity of the soil water extracted from the soil 

profile. The salinity of soil is determined by the horizon with the highest 

conductivity in the upper 0.6 m of the soil. 

Cation 

exchange 

capacity (F) 

Estimating the cation exchange capacity of a soil provides information on 

its buffering capacity, as the higher the cation exchange capacity, the 

greater a soil's ability to absorb chemical contaminants. This greater 

absorption capability means that these soils can retain nutrients (such as 

calcium, magnesium and potassium) and cations against leaching. Cation 

exchange sites are present on the surface of clay particles and organic 

matter, consequently, soils with large amounts of clay or organic matter 

have a high cation exchange capacity. 

Total carbon (F) Quantifying soil carbon stocks and rates of change is important 

knowledge for national greenhouse gas inventories. The calculation 

involves multiplying the mass of the material collected from within a 

known ground area by the carbon concentration of that material, this is 

then scaled spatially over the area of interest (Landcare Research, 2012). 

Phosphorus 

retention (F) 

Phosphorus retention is closely linked to the cation exchange capacity as 

the higher the cation exchange capacity, the higher the phosphorus 

retention. The retention of phosphorus in topsoil horizons is an important 

determinant of the structural stability of the soil. 

Flood return 

interval (T) 

Flooding is defined as the temporary covering of the soil surface by 

flowing water from any source. The probability of an area flooding is 

important to understand when making land management decisions as it 

will influence what type of land use is applied to an area. In the absence 

of flood risk data from regional councils, estimates of flood frequency can 

be gauged from soil profile and vegetation data. Different risk 

classifications are derived for an area based on the calculated flood 

return interval. An area that has a flood return interval of less than 1 in 5 

years is classed as having a very severe flood risk, with an area with a 

flood return interval of 1 in 60 years classed as having a slight risk. 
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Soil 

temperature (T) 

Soil temperature regimes are based on the mean annual soil temperature 

at 0.3 m depth and the number of days above 5°C and 20°C. The number 

of days above 5°C denotes time above biological zero, which is important 

as growing conditions are not present below this temperature.  

Total profile 

available water 

(P) 

The amount of soil water available for plant growth (stored within the top 

one meter of soil) is an important part of maximising crop production, 

and determining the frequency of irrigation required to maintain growth. 

Profile readily 

available water 

(P) 

While this attribute is similar to total profile available water, it denotes 

the amount of water held in the soil that is easily absorbed by plants (not 

just an estimate of the potential water available). Conditions that affect 

the availability of water within the soil are the presence of root barriers 

(as plants can only extract water where roots can grow), and as soil dries 

out it becomes more difficult for plants to extract water.  

Drainage (P) The drainage characteristics of a soil provide an indication of how long a 

soil or part of a soil is saturated, and how quickly it can rid itself of the 

excess water. Drainage is an important factor in the supply of oxygen to 

the plant root zone and how often the soil is saturated. The division of 

soils into different drainage classes is determined by looking at the colour 

(chroma) of soil with depth. 

Macropores 

(shallow and 

deep) (P) 

Macroporosity is a measure of the proportion of large pores in the soil 

and is usually expressed as a percentage of the total volume of soil. 

Macroporosity details the air-filled porosity of the soil at field capacity, 

where large soil pores are filled with both air and water and the small 

pores are still full of water as the water has yet to drain.  
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APPENDIX B: PAPER SUBMITTED TO MASSEY UNIVERSITY’S FERTILISER 

AND LIME RESEARCH CENTRE WORKSHOP 2018 
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APPENDIX C: SOIL PROPERTIES BASED ON SOIL ORDER IN OVERSEER. 

SOURCE: WHEELER (2016A).  
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